
www.allitebooks.com

http:///
http://www.allitebooks.org

Early praise for Agile Web Development with Rails 4

Agile Web Development with Rails is the Rails way to build real-world web apps—it’s

definitive. Rails itself relies on this book as a test suite. Rails moves fast and

AWDwR is always there, a backstage pass to the very latest.

➤ Jeremy Kemper

Member of the Rails core team

This is an excellent way to quickly get up and running with Ruby and Rails. The

book is so good that Sam Ruby should change his name to Sam Rails.

➤ Aaron Patterson

Member of the Ruby and Rails core teams

Like many, I started out with Ruby by reading an earlier version of Agile Web

Development with Rails. Many years (and a few updates) later, it’s still as good a

resource for learning Rails as it has ever been, and this edition brings it right up

to date with Rails 4.

➤ Stephen Orr

Lead developer, Made Media

www.allitebooks.com

http:///
http://www.allitebooks.org

Agile Web Development with Rails 4

Sam Ruby

Dave Thomas

David Heinemeier Hansson

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

www.allitebooks.com

http:///
http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in

initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,

Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-

marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes

no responsibility for errors or omissions, or for damages that may result from the use of

information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create

better software and have more fun. For more information, as well as the latest Pragmatic

titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Susannah Pfalzer (editor)

Kim Wimpsett (copyeditor)

David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2013 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-937785-56-7

Printed on acid-free paper.

Book version: P1.0—September 2013

www.allitebooks.com

http://pragprog.com
http:///
http://www.allitebooks.org

Contents

Acknowledgments ix

Introduction xi

Part I — Getting Started

1. Installing Rails 3

Installing on Windows 41.1

1.2 Installing on Mac OS X 4

1.3 Installing on Linux 6

1.4 Choosing a Rails Version 8

1.5 Setting Up Your Development Environment 9

1.6 Rails and Databases 12

2. Instant Gratification 15

2.1 Creating a New Application 15

2.2 Hello, Rails! 17

2.3 Linking Pages Together 24

3. The Architecture of Rails Applications 29

3.1 Models, Views, and Controllers 29

3.2 Rails Model Support 32

3.3 Action Pack: The View and Controller 34

4. Introduction to Ruby 37

Ruby Is an Object-Oriented Language 374.1

4.2 Data Types 39

4.3 Logic 43

4.4 Organizing Structures 45

4.5 Marshaling Objects 48

4.6 Pulling It All Together 49

4.7 Ruby Idioms 50

www.allitebooks.com

http:///
http://www.allitebooks.org

Part II — Building an Application

5. The Depot Application 55

5.1 Incremental Development 55

5.2 What Depot Does 56

5.3 Let’s Code 60

6. Task A: Creating the Application 61

6.1 Iteration A1: Creating the Products Maintenance

Application 61

6.2 Iteration A2: Making Prettier Listings 68

7. Task B: Validation and Unit Testing 77

7.1 Iteration B1: Validating! 77

7.2 Iteration B2: Unit Testing of Models 82

8. Task C: Catalog Display 91

Iteration C1: Creating the Catalog Listing 918.1

8.2 Iteration C2: Adding a Page Layout 96

8.3 Iteration C3: Using a Helper to Format the Price 100

8.4 Iteration C4: Functional Testing of Controllers 101

8.5 Iteration C5: Caching of Partial Results 104

9. Task D: Cart Creation 107

9.1 Iteration D1: Finding a Cart 107

9.2 Iteration D2: Connecting Products to Carts 108

9.3 Iteration D3: Adding a Button 110

10. Task E: A Smarter Cart 119

10.1 Iteration E1: Creating a Smarter Cart 119

10.2 Iteration E2: Handling Errors 124

10.3 Iteration E3: Finishing the Cart 128

11. Task F: Add a Dash of Ajax 135

Iteration F1: Moving the Cart 13611.1

11.2 Iteration F2: Creating an Ajax-Based Cart 142

11.3 Iteration F3: Highlighting Changes 146

11.4 Iteration F4: Hiding an Empty Cart 149

11.5 Iteration F5: Making Images Clickable 152

11.6 Testing Ajax Changes 154

Contents • vi

www.allitebooks.com

http:///
http://www.allitebooks.org

12. Task G: Check Out! 159

12.1 Iteration G1: Capturing an Order 159

12.2 Iteration G2: Atom Feeds 172

13. Task H: Sending Mail 177

13.1 Iteration H1: Sending Confirmation Emails 177

13.2 Iteration H2: Integration Testing of Applications 184

14. Task I: Logging In 191

Iteration I1: Adding Users 19114.1

14.2 Iteration I2: Authenticating Users 197

14.3 Iteration I3: Limiting Access 202

14.4 Iteration I4: Adding a Sidebar, More Administration 204

15. Task J: Internationalization 211

Iteration J1: Selecting the Locale 21115.1

15.2 Iteration J2: Translating the Storefront 215

15.3 Iteration J3: Translating Checkout 222

15.4 Iteration J4: Add a Locale Switcher 229

16. Task K: Deployment and Production 233

16.1 Iteration K1: Deploying with Phusion Passenger and

MySQL 234

16.2 Iteration K2: Deploying Remotely with Capistrano 242

16.3 Iteration K3: Checking Up on a Deployed Application 248

17. Depot Retrospective 253

17.1 Rails Concepts 253

17.2 Documenting What We Have Done 256

Part III — Rails in Depth

18. Finding Your Way Around Rails 261

18.1 Where Things Go 261

18.2 Naming Conventions 270

19. Active Record 275

Defining Your Data 27519.1

19.2 Locating and Traversing Records 280

19.3 Creating, Reading, Updating, and Deleting (CRUD) 284

19.4 Participating in the Monitoring Process 298

19.5 Transactions 304

Contents • vii

www.allitebooks.com

http:///
http://www.allitebooks.org

20. Action Dispatch and Action Controller 309

20.1 Dispatching Requests to Controllers 309

20.2 Processing of Requests 319

20.3 Objects and Operations That Span Requests 330

21. Action View 341

Using Templates 34121.1

21.2 Generating Forms 343

21.3 Processing Forms 346

21.4 Uploading Files to Rails Applications 348

21.5 Using Helpers 351

21.6 Reducing Maintenance with Layouts and Partials 358

22. Migrations 367

Creating and Running Migrations 36722.1

22.2 Anatomy of a Migration 370

22.3 Managing Tables 375

22.4 Advanced Migrations 379

22.5 When Migrations Go Bad 382

22.6 Schema Manipulation Outside Migrations 383

23. Nonbrowser Applications 385

23.1 A Stand-Alone Application Using Active Record 385

23.2 A Library Function Using Active Support 386

24. Rails’ Dependencies 393

Generating XML with Builder 39324.1

24.2 Generating HTML with ERB 395

24.3 Managing Dependencies with Bundler 397

24.4 Interfacing with the Web Server with Rack 400

24.5 Automating Tasks with Rake 404

24.6 Survey of Rails’ Dependencies 405

25. Rails Plugins 411

Credit Card Processing with Active Merchant 41125.1

25.2 Beautifying Our Markup with Haml 413

25.3 Pagination 416

25.4 Finding More at RailsPlugins.org 418

26. Where to Go from Here 421

A1. Bibliography 423

Index 425

Contents • viii

www.allitebooks.com

http:///
http://www.allitebooks.org

Acknowledgments

Rails is constantly evolving and, as it does, so has this book. Parts of the

Depot application were rewritten several times, and all of the narrative was

updated. The avoidance of features as they become deprecated have repeat-

edly changed the structure of the book as what was once hot became just

lukewarm.

So, this book would not exist without a massive amount of help from the

Ruby and Rails communities. To start with, we had a number of incredibly

helpful formal reviewers of drafts of this book.

Ken CoarAndrea BarisoneJeremy Anderson

Geoff DrakeJoel ClermontJeff Cohen

Michael JurewitzPavan GorakaviJeremy Frens

Stephen OrrNigel LowryMikel Lindsaar

Martijn ReuversPaul RaynerAaron Patterson

Tibor SimicGary ShermanDoug Rhoten

Charley StranDavanum SrinivasGianluigi Spagnuolo

José ValimStefan TuralskiFederico Tomassetti

Additionally, each edition of this book has been released as a beta book:

early versions were posted as PDFs, and people made comments online. And

comment they did; over time more than 1,000 suggestions and bug reports

were posted. The vast majority ended up being incorporated, making this

book immeasurably more useful than it would have been. While thanks go

out to all for supporting the beta book program and for contributing so much

valuable feedback, a number of contributors went well beyond the call of

duty.

Seth ArnoldManuel E. Vidaurre Arenas

Andy BriceWill Bowlin

Victor Marius CostanJason Catena

report erratum • discusswww.allitebooks.com

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///
http://www.allitebooks.org

Jason HollowayDavid Hadley

Trung LEDavid Kapp

mltsyKristian Riiber Mandrup

Jim PulsSteve Nicholson

Leonel SJohnathan Ritzi

Don SmithKim Shrier

Martin ZollerJoe Straitiff

Finally, the Rails core team has been incredibly helpful, answering questions,

checking out code fragments, and fixing bugs—even to the point where part

of the release process includes verifying that new releases of Rails don’t break

the examples provided in this book.1 A big “thank you” to the following:

Guillermo Iguaran (guilleiguaran)Rafael França (rafaelfranca)

Yehuda Katz (wycats)Jeremy Kemper (bitsweat)

Santiago Pastorino (spastorino)Michael Koziarski (nzkoz)

José Valim (josevalim)Aaron Patterson

Sam Ruby

rubys@intertwingly.net
August 2013

1. https://github.com/rails/rails/blob/master/RELEASING_RAILS.rdoc#is-sam-ruby-

happy--if-not-make-him-happy

Acknowledgments • x

report erratum • discusswww.allitebooks.com

https://github.com/rails/rails/blob/master/RELEASING_RAILS.rdoc#is-sam-ruby-happy--if-not-make-him-happy
https://github.com/rails/rails/blob/master/RELEASING_RAILS.rdoc#is-sam-ruby-happy--if-not-make-him-happy
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///
http://www.allitebooks.org

Introduction

Ruby on Rails is a framework that makes it easier to develop, deploy, and

maintain web applications. During the months that followed its initial release,

Rails went from being an unknown toy to being a worldwide phenomenon;

more important, it has become the framework of choice for the implementation

of a wide range of so-called Web 2.0 applications.

Why is that?

Rails Simply Feels Right

A large number of developers were frustrated with the technologies they were

using to create web applications. It didn’t seem to matter whether they used

Java, PHP, or .NET—there was a growing sense that their jobs were just too

damn hard. And then, suddenly, along came Rails, and Rails was easier.

But easy on its own doesn’t cut it. We’re talking about professional developers

writing real-world websites. They wanted to feel that the applications they

were developing would stand the test of time—that they were designed and

implemented using modern, professional techniques. So, these developers

dug into Rails and discovered it wasn’t just a tool for hacking out sites.

For example, all Rails applications are implemented using the Model-View-

Controller (MVC) architecture. Java developers are used to frameworks such

as Tapestry and Struts, which are based on MVC. But Rails takes MVC further:

when you develop in Rails, you start with a working application, there’s a

place for each piece of code, and all the pieces of your application interact in

a standard way.

Professional programmers write tests. And again, Rails delivers. All Rails

applications have testing support baked right in. As you add functionality to

the code, Rails automatically creates test stubs for that functionality. The

framework makes it easy to test applications, and as a result, Rails applica-

tions tend to get tested.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Rails applications are written in Ruby, a modern, object-oriented scripting

language. Ruby is concise without being unintelligibly terse—you can express

ideas naturally and cleanly in Ruby code. This leads to programs that are

easy to write and (just as important) are easy to read months later.

Rails takes Ruby to the limit, extending it in novel ways that make a program-

mer’s life easier. This makes our programs shorter and more readable. It also

allows us to perform tasks that would normally be done in external configu-

ration files inside the codebase instead. This makes it far easier to see what’s

happening. The following code defines the model class for a project. Don’t

worry about the details for now. Instead, just think about how much informa-

tion is being expressed in a few lines of code.

class Project < ActiveRecord::Base
belongs_to :portfolio
has_one :project_manager
has_many :milestones
has_many :deliverables, through: milestones
validates :name, :description, presence: true
validates :non_disclosure_agreement, acceptance: true
validates :short_name, uniqueness: true

end

Two other philosophical underpinnings keep Rails code short and readable:

DRY and convention over configuration. DRY stands for don’t repeat yourself.

Every piece of knowledge in a system should be expressed in just one place.

Rails uses the power of Ruby to bring that to life. You’ll find very little dupli-

cation in a Rails application; you say what you need to say in one place—a

place often suggested by the conventions of the MVC architecture—and then

move on. For programmers used to other web frameworks, where a simple

change to the schema could involve a dozen or more code changes, this was

a revelation.

Convention over configuration is crucial, too. It means that Rails has sensible

defaults for just about every aspect of knitting together your application.

Follow the conventions, and you can write a Rails application using less code

than a typical Java web application uses in XML configuration. If you need

to override the conventions, Rails makes that easy, too.

Developers coming to Rails found something else, too. Rails doesn’t merely

play catch-up with the de facto web standards; it helps define them. And

Rails makes it easy for developers to integrate features such as Ajax and

RESTful interfaces into their code because support is built in. (And if you’re

not familiar with Ajax and REST interfaces, never fear—we’ll explain them

later in the book.)

Introduction • xii

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Developers are worried about deployment too. They found that with Rails you

can deploy successive releases of your application to any number of servers

with a single command (and roll them back equally easily should the release

prove to be somewhat less than perfect).

Rails was extracted from a real-world, commercial application. It turns out

that the best way to create a framework is to find the central themes in a

specific application and then bottle them up in a generic foundation of code.

When you’re developing your Rails application, you’re starting with half of a

really good application already in place.

But there’s something else to Rails—something that’s hard to describe.

Somehow, it just feels right. Of course, you’ll have to take our word for that

until you write some Rails applications for yourself (which should be in the

next forty-five minutes or so…). That’s what this book is all about.

Rails Is Agile

The title of this book is Agile Web Development with Rails 4. You may be

surprised to discover that we don’t have explicit sections on applying agile

practices X, Y, and Z to Rails coding.

The reason is both simple and subtle. Agility is part of the fabric of Rails.

Let’s look at the values expressed in the Agile Manifesto as a set of four

preferences.1

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Rails is all about individuals and interactions. There are no heavy toolsets,

no complex configurations, and no elaborate processes. There are just small

groups of developers, their favorite editors, and chunks of Ruby code. This

leads to transparency; what the developers do is reflected immediately in

what the customer sees. It’s an intrinsically interactive process.

Rails doesn’t denounce documentation. Rails makes it trivially easy to create

HTML documentation for your entire codebase. But the Rails development

process isn’t driven by documents. You won’t find 500-page specifications at

the heart of a Rails project. Instead, you’ll find a group of users and developers

1. http://agilemanifesto.org/. Dave Thomas was one of the seventeen authors of this

document.

report erratum • discuss

Introduction • xiii

http://agilemanifesto.org/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

jointly exploring their need and the possible ways of answering that need.

You’ll find solutions that change as both the developers and the users become

more experienced with the problems they’re trying to solve. You’ll find a

framework that delivers working software early in the development cycle. This

software may be rough around the edges, but it lets the users start to get a

glimpse of what you’ll be delivering.

In this way, Rails encourages customer collaboration. When customers see

just how quickly a Rails project can respond to change, they start to trust

that the team can deliver what’s required, not just what has been requested.

Confrontations are replaced by “What if?” sessions.

That’s all tied to the idea of being able to respond to change. The strong,

almost obsessive, way that Rails honors the DRY principle means that changes

to Rails applications impact a lot less code than the same changes would in

other frameworks. And since Rails applications are written in Ruby, where

concepts can be expressed accurately and concisely, changes tend to be

localized and easy to write. The deep emphasis on both unit and functional

testing, along with support for test fixtures and stubs during testing, gives

developers the safety net they need when making those changes. With a good

set of tests in place, changes are less nerve-racking.

Rather than constantly trying to tie Rails processes to the agile principles,

we’ve decided to let the framework speak for itself. As you read through the

tutorial chapters, try to imagine yourself developing web applications this

way, working alongside your customers and jointly determining priorities and

solutions to problems. Then, as you read the more advanced concepts that

follow in Part III, see how the underlying structure of Rails can enable you to

meet your customers’ needs faster and with less ceremony.

One last point about agility and Rails is that although it’s probably unprofes-

sional to mention this, think how much fun the coding will be!

Who This Book Is For

This book is for programmers looking to build and deploy web-based applica-

tions. This includes application programmers who are new to Rails (and

perhaps even new to Ruby) and ones who are familiar with the basics but

want a more in-depth understanding of Rails.

We presume some familiarity with HTML, Cascading Style Sheets (CSS), and

JavaScript, in other words, the ability to view source on web pages. You need

not be an expert on these subjects; the most you will be expected to do is to

copy and paste material from the book, all of which can be downloaded.

Introduction • xiv

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

How to Read This Book

The first part of this book makes sure you are ready. By the time you are

done with it, you will have been introduced to Ruby (the language), you will

have been exposed to an overview of Rails, you will have Ruby and Rails

installed, and you will have verified the installation with a simple example.

The next part takes you through the concepts behind Rails via an extended

example; we build a simple online store. It doesn’t take you one by one through

each component of Rails (“here is a chapter on models, here is a chapter on

views,” and so forth). These components are designed to work together, and

each chapter in this section tackles a specific set of related tasks that involve

a number of these components working together.

Most folks seem to enjoy building the application along with the book. If you

don’t want to do all that typing, you can cheat and download the source code

(a compressed tar archive or a zip file).2 This download contains separate sets

of source code for Rails 3.0, Rails 3.1, Rails 3.2, and Rails 4.0. As you will be

using Rails 4.0, the files you want are in the rails40 directory. See the README-
FIRST file for more details.

Be careful if you ever choose to copy files directly from the download into your

application, as the server won’t know that it needs to pick up these changes

if the timestamps on the file are old. You can update the timestamps using

the touch command on either Mac OS X or Linux, or you can edit the file and

save it. Alternately, you can restart your Rails server.

Part III, Rails in Depth, on page 259 surveys the entire Rails ecosystem. This

starts with the functions and facilities of Rails that you will now be familiar

with. It then covers a number of key dependencies that the Rails framework

makes use of that contribute directly to the overall functionality that the Rails

framework delivers. Finally, there is a survey of a number of popular plugins

that augment the Rails framework and make Rails an open ecosystem rather

than merely a framework.

Along the way, you’ll see various conventions we’ve adopted.

Ruby Tips

Although you need to know Ruby to write Rails applications, we realize

that many folks reading this book will be learning both Ruby and Rails

at the same time. You will find a (very) brief introduction to the Ruby

language in Chapter 4, Introduction to Ruby, on page 37. When we use a

2. http://pragprog.com/titles/rails4/source_code has the links for the downloads.

report erratum • discuss

Introduction • xv

http://pragprog.com/titles/rails4/source_code
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Ruby-specific construct for the first time, we’ll cross-reference it to that

chapter.

:name

↪ on page 38

For example, this paragraph contains a gratuitous use of :name, a Ruby

symbol. In formats that support margins, you’ll see a reference to where

symbols are explained.

Live Code

Most of the code snippets we show come from full-length, running exam-

ples that you can download.

To help you find your way, if a code listing can be found in the download,

there’ll be a bar before the snippet (just like the one here).

Download rails40/demo1/app/controllers/say_controller.rb

class SayController < ApplicationController
➤

end
def hello

➤

def goodbye
end

end

This contains the path to the code within the download. If you’re reading

the ebook version of this book and your ebook viewer supports hyperlinks,

you can click the bar, and the code should appear in a browser window.

Some browsers may mistakenly try to interpret some of the HTML tem-

plates as HTML. If this happens, view the source of the page to see the

real source code.

And in some cases involving the modification of an existing file where the

lines to be changed may not be immediately obvious, you will also see

some helpful little triangles on the left of the lines that you will need to

change. Two such lines are indicated in the previous code.

David Says…

Every now and then you’ll come across a “David Says…” sidebar. Here’s

where David Heinemeier Hansson gives you the real scoop on some par-

ticular aspect of Rails—rationales, tricks, recommendations, and more.

Because he’s the fellow who invented Rails, these are the sections to read

if you want to become a Rails pro.

Joe Asks…

Joe, the mythical developer, sometimes pops up to ask questions about

stuff we talk about in the text. We answer these questions as we go along.

Introduction • xvi

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/demo1/app/controllers/say_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

This book isn’t meant to be a reference manual for Rails. Our experience is

that reference manuals are not the way most people learn. Instead, we show

most of the modules and many of their methods, either by example or narra-

tively in the text, in the context of how these components are used and how

they fit together.

Nor do we have hundreds of pages of API listings. There’s a good reason for

this—you get that documentation whenever you install Rails, and it’s guaran-

teed to be more up-to-date than the material in this book. If you install Rails

using RubyGems (which we recommend), simply start the gem documentation

server (using the command gem server), and you can access all the Rails APIs

by pointing your browser at http://localhost:8808. You will find out in A Place for

Documentation, on page 265 how to build even more documentation and guides.

In addition, you will see that Rails helps you by producing responses that

clearly identify any error found, as well as traces that tell you not only the

point at which the error was found but also how you got there. You can see

an example in Figure 25, Our application spills its guts., on page 124. If you

need additional information, peek ahead to Section 10.2, Iteration E2: Handling

Errors, on page 124 to see how to insert logging statements.

Should you get really stuck, there are plenty of online resources to help. In

addition to the code listings mentioned, there is a forum,3 where you can ask

questions and share experiences; an errata page,4 where you can report bugs;

and a wiki,5 where you can discuss the exercises found throughout the book.

These resources are shared resources. Feel free to post not only questions

and problems to the forum and wiki but also any suggestions and answers

you may have to questions that others may have posted.

Let’s get started! The first steps are to install Ruby and Rails and to verify

the installation with a simple demonstration.

3. http://forums.pragprog.com/forums/148

4. http://www.pragprog.com/titles/rails4/errata

5. http://www.pragprog.com/wikis/wiki/RailsPlayTime

report erratum • discuss

Introduction • xvii

http://forums.pragprog.com/forums/148
http://www.pragprog.com/titles/rails4/errata
http://www.pragprog.com/wikis/wiki/RailsPlayTime
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Part I

Getting Started

http:///

CHAPTER 1

Installing Rails

In Part I of this book, we’ll introduce you to both the Ruby language and the

Rails framework. But we can’t get anywhere until you’ve installed both and

verified that they are operating correctly.

To get Rails running on your system, you’ll need the following:

• A Ruby interpreter. Rails is written in Ruby, and you’ll be writing your

applications in Ruby too. Rails 4.0 recommends Ruby version 2.0.0 but

will run on 1.9.3. It will not work on Ruby versions 1.8.7 or Ruby 1.9.2.

• Ruby on Rails. This book was written using Rails version 4.0 (specifically

Rails 4.0.0).

• A JavaScript interpreter. Both Microsoft Windows and Mac OS X have

JavaScript interpreters built in, and Rails will use the version already on

your system. On other operating systems, you may need to install a

JavaScript interpreter separately.

• Some libraries, depending on the operating system.

• A database. We’re using both SQLite 3 and MySQL 5.5 in this book.

For a development machine, that’s about all you’ll need (apart from an editor,

and we’ll talk about editors separately). However, if you are going to deploy

your application, you will also need to install a production web server (as a

minimum) along with some support code to let Rails run efficiently. We have

a whole chapter devoted to this, starting in Chapter 16, Task K: Deployment

and Production, on page 233, so we won’t talk about it more here.

So, how do you get all this installed? It depends on your operating system....

In this chapter, we’ll see
• installing Ruby, RubyGems, SQLite3, and Rails; and
• development environments and tools.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

1.1 Installing on Windows

The easiest way to install Rails on Windows is by using the RailsInstaller1

package. At the time of this writing, the latest version of RailsInstaller is

version 2.2.1, which includes Ruby 1.9.3 and Rails 3.2. Until a new version

is released that supports Rails 4.0.0 or Ruby 2.0, feel free to use version 2.1

of RailsInstaller to get you started.

Base installation is a snap. After you download, click Run and then click

Next. Select “I accept all of the Licenses” (after reading them carefully of

course) and then click Next, Install, and Finish.

This opens a command window and prompts you for your name and email.

This is only to set up the git version control system. For the purposes of the

exercises in this book, you won’t need to worry about the ssh key that is

generated.

Close this window and open a new command prompt. On Windows 8, type

cmd on the tile-based Start screen and press Enter. On versions of Windows

prior to Windows 8, select Windows Start, select Run..., enter cmd, and click

OK.

Windows 8 users need to perform the additional step of installing node.js.2

Once this is complete, close the command window and open a new one for

the changes to %PATH% to take effect. Verify that the installation is correct by

entering the command node -v.

If you have trouble, try looking for suggestions on the Troubleshooting page

on the RubyInstaller site.3

As long as the version of RailsInstaller you used installed a version of Ruby

that is 1.9.3 or greater, there is no need to upgrade to a newer version of

Ruby. Please skip to Section 1.4, Choosing a Rails Version, on page 8 to

ensure that the version of Rails you have installed matches the version

described in this edition. See you there.

1.2 Installing on Mac OS X

Since Mac OS X ships with Ruby 1.8.7, you’ll need to download a newer ver-

sion of Ruby that works with Rails 4.0. The easiest way to do this is to use

RailsInstaller, which at the time of this writing installs Ruby 1.9.3. A second

1. http://railsinstaller.org/

2. http://nodejs.org/download/

3. https://github.com/oneclick/rubyinstaller/wiki/Troubleshooting

Chapter 1. Installing Rails • 4

report erratum • discusswww.allitebooks.com

http://railsinstaller.org/
http://nodejs.org/download/
https://github.com/oneclick/rubyinstaller/wiki/Troubleshooting
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///
http://www.allitebooks.org

way to do this is to use the newest development version of RVM, which you

can use to install Ruby 2.0.0. Ruby 2.0 is what the Rails core team recom-

mends and is noticeably faster than Ruby 1.9.3, but either can be used with

this book. Both approaches are described here. The choice is up to you.

Before you start, go to your Utilities folder and drag the Terminal application

onto your dock. You’ll be using this during the installation and then frequently

as a Rails developer.

Installing via RailsInstaller

Start by going to the RailsInstaller4 and clicking the big green Download the

Kit button.

Once the download is complete, double-click the file to uncompress it. Before

clicking the app file that is produced, hold down the Control key. Select the

“open” option. Opening the app in this way gives you the option to install a

program from a developer who isn’t known to the app store. From here there

are a few questions (such as your name, which will be used to configure git),
and installation will proceed.

Now open the Terminal application, and at the prompt enter the following

command:

$ ruby -v

You should see the following result:

ruby 1.9.3p392 (2013-02-22 revision 39386) [x86_64-darwin11.4.0]

Next, update Rails to the version used by this book with the following

command:

$ gem install rails --version 4.0.0 --no-ri --no-rdoc

You’re ready to go! Skip forward to join the Windows users in Section 1.4,

Choosing a Rails Version, on page 8.

Installing Using RVM

First, download and install the latest (January 2013) Command Line Tools

for Xcode for your operating system (OS X Lion or OS X Mountain Lion) using

the "Downloads" preference pane within XCode.

Now open the Terminal application, and at the prompt enter the following

command to install the development version of RVM:

4. http://railsinstaller.org/

report erratum • discuss

Installing on Mac OS X • 5

http://railsinstaller.org/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

$ curl -L https://get.rvm.io | bash -s stable

Check for, and follow, any upgrade notes in the output from that command.

Once you complete those instructions, you can proceed to install the Ruby

interpreter.

$ rvm install 2.0.0 --autolibs=enable

The preceding step will take a while as it downloads, configures, and compiles

the necessary executables. Once it completes, use that environment, and install
rails.

$ rvm use 2.0.0
$ gem install rails --version 4.0.0 --no-ri --no-rdoc

With the exception of the rvm use statement, each of the previous instructions

needs to be done only once. The rvm use statement needs to be repeated each

time you open a shell window. The use keyword is optional, so you can

abbreviate this to rvm 2.0.0. You can also choose to make it the default Ruby

interpreter for new terminal sessions with the following command:

$ rvm --default 2.0.0

You can verify successful installation using the following command:

$ rails -v

If you have trouble, try the suggestions listed under the “Troubleshooting

Your Install” heading on the rvm site.5

OK, you OS X users are done. You can skip forward to join the Windows users

in Section 1.4, Choosing a Rails Version, on page 8. See you there.

1.3 Installing on Linux

Start with your platform’s native package management system, be it apt-get,
dpkg, portage, rpm, rug, synaptic, up2date, or yum.

The first step is to install the necessary dependencies. The following instruc-

tions are for Ubuntu 13.04 (Raring Ringtail); if you’re on a different operating

system, you may need to adjust both the command and the package names.

$ sudo apt-get install apache2 curl git libmysqlclient-dev mysql-server nodejs

You’ll be prompted for a root password for your mysql server. If you leave it blank,

you’ll be prompted multiple times. If you specify a password, you’ll need to use

that password when you create a database in Iteration K1 on page 239.

5. https://rvm.io/rvm/install

Chapter 1. Installing Rails • 6

report erratum • discuss

https://rvm.io/rvm/install
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

While the Rails core team recommends Ruby 2.0 for use with Rails 4.0, if you

want to use a system-installed version of Ruby, you can use Ruby 1.9.3. This

will get you up and running quickly.

Starting with Ubuntu 12.04, you can install Ruby 1.9.3 and Rails 4.0 with

the following commands:

$ sudo apt-get install ruby1.9.3
$ sudo gem install rails --version 4.0.0 --no-ri --no-rdoc

If this works for you, you are done with the necessary installation steps and

can proceed to Section 1.4, Choosing a Rails Version, on page 8.

Many people prefer instead to have a separate installation of Ruby on their

machine dedicated to support their application, and therefore they choose to

download and build Ruby. The easiest way we’ve found to do this is to use

RVM. Installing RVM is described on the RVM site.6 An overview of the steps

is included here.

First, install RVM.

$ curl -L https://get.rvm.io | bash -s stable

Next, select the “Run command as login shell” checkbox in the Gnome Termi-

nal Profile Preference. Refer to the Integrating RVM with gnome-terminal page

for instructions.7

Exit your command window or Terminal application and open a new one.

This causes your .bash_login to be reloaded.

Execute the following command, which installs the necessary prerequisites

needed for your specific operating system:

$ rvm requirements --autolibs=enable

Once this is complete, you can proceed to install the Ruby interpreter.

$ rvm install 2.0.0

This step will take a while as it downloads, configures, and compiles the

necessary executables. Once it completes, use that environment, and install rails.

$ rvm use 2.0.0
$ gem install rails --version 4.0.0 --no-ri --no-rdoc

With the exception of the rvm use statement, each of the previous instructions

needs to be done only once. The rvm use statement needs to be repeated each

6. https://rvm.io/rvm/install

7. https://rvm.io/integration/gnome-terminal/

report erratum • discuss

Installing on Linux • 7

https://rvm.io/rvm/install
https://rvm.io/integration/gnome-terminal/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

time you open a shell window. The use keyword is optional, so you can

abbreviate this to rvm 2.0.0. You can also choose to make it the default Ruby

interpreter for new Terminal sessions with the following command:

$ rvm --default 2.0.0

You can verify successful installation using the following command:

$ rails -v

If you have trouble, try the suggestions listed under the “Troubleshooting

Your Install” heading on the RVM site.8

At this point, we’ve covered Windows, Mac OS X, and Linux. Instructions

after this point are common to all three operating systems.

1.4 Choosing a Rails Version

The previous instructions helped you install the version of Rails used in the

examples by this book. But occasionally you might not want to run that

version. For example, there may be a newer version with some fixes or new

features. Or perhaps you are developing on one machine but intending to

deploy on another machine that contains a version of Rails that you don’t

have any control over.

If either of these situations applies to you, you need to be aware of a few

things. For starters, you can find out all the versions of Rails you have

installed using the gem command.

$ gem list --local rails

You can also verify what version of Rails you are running as the default by

using the rails --version command. It should return 4.0.0.

If it does not, insert the version of Rails surrounded by underscores before

the first parameter of any rails command. Here’s an example:

$ rails _4.0.0_ --version

This is particularly handy when you create a new application, because once you

create an application with a specific version of Rails, it will continue to use that

version of Rails—even if newer versions are installed on the system—until you

decide it is time to upgrade. To upgrade, simply update the version number in

the Gemfile that is in the root directory of your application and run bundle install. We

will cover this command in greater depth in Section 24.3, Managing Dependencies

with Bundler, on page 397.

8. https://rvm.io/rvm/install

Chapter 1. Installing Rails • 8

report erratum • discuss

https://rvm.io/rvm/install
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

1.5 Setting Up Your Development Environment

The day-to-day business of writing Rails programs is pretty straightforward.

Everyone works differently; here’s how we work.

The Command Line

We do a lot of work at the command line. Although there are an increasing

number of GUI tools that help generate and manage a Rails application, we

find the command line is still the most powerful place to be. It’s worth

spending a little while getting familiar with the command line on your operat-

ing system. Find out how to use it to edit commands that you’re typing, how

to search for and edit previous commands, and how to complete the names

of files and commands as you type.

So-called tab completion is standard on Unix shells such as Bash and zsh.

It allows you to type the first few characters of a filename, hit Tab , and have

the shell look for and complete the name based on matching files.

Version Control

We keep all our work in a version control system (currently Git). We make a

point of checking a new Rails project into Git when we create it and committing

changes once we have passed the tests. We normally commit to the repository

many times an hour.

If you’re working on a Rails project with other people, consider setting up a

continuous integration (CI) system. When anyone checks in changes, the CI

system will check out a fresh copy of the application and run all the tests.

It’s a simple way to ensure that accidental breakages get immediate attention.

You can also set up your CI system so that your customers can use it to play

with the bleeding-edge version of your application. This kind of transparency

is a great way of ensuring that your project isn’t going off the tracks.

Editors

We write our Rails programs using a programmer’s editor. We’ve found over

the years that different editors work best with different languages and envi-

ronments. For example, Dave originally wrote this chapter using Emacs

because he thinks that its Filladapt mode is unsurpassed when it comes to

neatly formatting XML as he types. Sam updated the chapter using Vim. But

many think that neither Emacs nor Vim is ideal for Rails development.

Although the choice of editor is a personal one, here are some suggestions of

features to look for in a Rails editor:

report erratum • discuss

Setting Up Your Development Environment • 9

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• Support for syntax highlighting of Ruby and HTML. Ideally support for

.erb files (a Rails file format that embeds Ruby snippets within HTML).

• Support of automatic indentation and reindentation of Ruby source. This

is more than an aesthetic feature: having an editor indent your program

as you type is the best way of spotting bad nesting in your code. Being

able to reindent is important when you refactor your code and move stuff.

(TextMate’s ability to reindent when it pastes code from the clipboard is

very convenient.)

• Support for insertion of common Ruby and Rails constructs. You’ll be

writing lots of short methods, and if the IDE creates method skeletons

with a keystroke or two, you can concentrate on the interesting stuff

inside.

• Good file navigation. As you’ll see, Rails applications are spread across

many files; for example, a newly created Rails application enters the world

containing forty-six files spread across thirty-four directories. That’s before

you’ve written a thing.

You need an environment that helps you navigate quickly between these.

You’ll add a line to a controller to load a value, switch to the view to add

a line to display it, and then switch to the test to verify you did it all right.

Something like Notepad, where you traverse a File Open dialog box to

select each file to edit, just won’t cut it. We prefer a combination of a tree

view of files in a sidebar, a small set of keystrokes that help us find a file

(or files) in a directory tree by name, and some built-in smarts that know

how to navigate (say) between a controller action and the corresponding

view.

• Name completion. Names in Rails tend to be long. A nice editor will let

you type the first few characters and then suggest possible completions

to you at the touch of a key.

We hesitate to recommend specific editors because we’ve used only a few in

earnest and we’ll undoubtedly leave someone’s favorite editor off the list.

Nevertheless, to help you get started with something other than Notepad,

here are some suggestions:

• TextMate was once the Mac OS X de facto standard text editor for Ruby

on Rails.9

9. http://macromates.com/

Chapter 1. Installing Rails • 10

report erratum • discuss

http://macromates.com/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• Sublime Text10 is a cross-platform alternative that some see as the de

facto successor for TextMate.

• Aptana Studio 311 is an integrated Rails development environment that

runs in Eclipse. It runs on Windows, Mac OS X, and Linux. Originally

known as RadRails, it won an award for being the best open source

developer tool based on Eclipse in 2006, and Aptana became the home

for the project in 2007.

• jEdit12 is a fully featured editor with support for Ruby. It has extensive

plugin support.

• Komodo13 is ActiveState’s IDE for dynamic languages, including Ruby.

• RubyMine14 is a commercial IDE for Ruby and is available for free to

qualified educational and open source projects. It runs on Windows, Mac

OS X, and Linux.

• NetBeans Ruby and Rails plugin15 is an open source plugin for the popular

NetBeans IDE.

Ask experienced developers who use your kind of operating system which

editor they use. Spend a week or so trying alternatives before settling in.

The Desktop

We’re not going to tell you how to organize your desktop while working with

Rails, but we will describe what we do.

Most of the time, we’re writing code, running tests, and poking at an applica-

tion in a browser. So, our main development desktop has an editor window

and a browser window permanently open. We also want to keep an eye on

the logging that’s generated by the application, so we keep a terminal window

open. In it, we use tail -f to scroll the contents of the log file as it’s updated.

We normally run this window with a very small font so it takes up less

space—if we see something interesting flash by, we zoom it up to investigate.

We also need access to the Rails API documentation, which we view in a

browser. In the introduction, we talked about using the gem server command

to run a local web server containing the Rails documentation. This is

10. http://www.sublimetext.com/

11. http://www.aptana.com/products/studio3

12. http://www.jedit.org/

13. http://www.activestate.com/komodo-ide

14. http://www.jetbrains.com/ruby/features/index.html

15. http://plugins.netbeans.org/plugin/38549

report erratum • discuss

Setting Up Your Development Environment • 11

http://www.sublimetext.com/
http://www.aptana.com/products/studio3
http://www.jedit.org/
http://www.activestate.com/komodo-ide
http://www.jetbrains.com/ruby/features/index.html
http://plugins.netbeans.org/plugin/38549
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Where’s My IDE?

If you’re coming to Ruby and Rails from languages such as C# and Java, you may

be wondering about IDEs. After all, we all know that it’s impossible to code modern

applications without at least 100MB of IDE supporting our every keystroke. For you

enlightened ones, here’s the point in the book where we recommend you sit

down—ideally propped up on each side by a pile of framework references and 1,000-

page Made Easy books.

It may surprise you to know that most Rails developers don’t use fully fledged IDEs

for Ruby or Rails (although some of the environments come close). Indeed, many Rails

developers use plain old editors. And it turns out that this isn’t as much of a problem

as you might think. With other, less expressive languages, programmers rely on IDEs

to do much of the grunt work for them, because IDEs do code generation, assist with

navigation, and compile incrementally to give early warning of errors.

With Ruby, however, much of this support just isn’t necessary. Editors such as

TextMate and BBEdit give you 90 percent of what you’d get from an IDE but are far

lighter weight. Just about the only useful IDE facility that’s missing is refactoring

support.

convenient, but it unfortunately splits the Rails documentation across a

number of separate documentation trees. If you’re online, you can use

http://api.rubyonrails.org/ to see a consolidated view of all the Rails docu-

mentation in one place.

1.6 Rails and Databases

The examples in this book were written using SQLite 3 (version 3.7.4 or there-

abouts). If you want to follow along with our code, it’s probably simplest if you

use SQLite 3 too. If you decide to use something else, it won’t be a major problem.

You may have to make minor adjustments to any explicit SQL in our code, but

Rails pretty much eliminates database-specific SQL from applications.

If you want to connect to a database other than SQLite 3, Rails also works

with DB2, MySQL, Oracle, Postgres, Firebird, and SQL Server. For all but

SQLite 3, you’ll need to install a database driver, a library that Rails can use

to connect to and use your database engine. This section contains links to

instructions to get that done.

The database drivers are all written in C and are primarily distributed in

source form. If you don’t want to bother building a driver from source, take

a careful look at the driver’s website. Many times you’ll find that the author

also distributes binary versions.

Chapter 1. Installing Rails • 12

report erratum • discuss

http://api.rubyonrails.org/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Creating Your Own Rails API Documentation

You can create your own local version of the consolidated Rails API documentation.

Just type the following commands at a command prompt:

rails_apps> rails new dummy_app
rails_apps> cd dummy_app
dummy_app> rake doc:rails

The last step takes a while. When it finishes, you’ll have the Rails API documentation

in a directory tree starting at doc/api. We suggest moving this folder to your desktop

and then deleting the dummy_app tree.

To view the Rails API documentation, open the location doc/api/index.html with your

browser.

If you can’t find a binary version or if you’d rather build from source anyway,

you’ll need a development environment on your machine to build the library.

Under Windows, this means having a copy of Visual C++. Under Linux, you’ll

need gcc and friends (but these will likely already be installed).

Under OS X, you’ll need to install the developer tools (they come with the

operating system but aren’t installed by default). You’ll also need to install

your database driver into the correct version of Ruby. If you installed your

own copy of Ruby, bypassing the built-in one, it is important to remember to

have this version of Ruby first in your path when building and installing the

database driver. You can use the command which ruby to make sure you’re not

running Ruby from /usr/bin.

The following are the available database adapters and the links to their

respective home pages:

http://raa.ruby-lang.org/project/ruby-db2

or http://rubyforge.org/projects/rubyibm

DB2

http://rubyforge.org/projects/fireruby/Firebird

http://www.tmtm.org/en/mysql/ruby/MySQL

http://rubyforge.org/projects/ruby-oci8Oracle

https://bitbucket.org/ged/ruby-pg/wiki/HomePostgres

https://github.com/rails-sqlserverSQL Server

https://github.com/luislavena/sqlite3-rubySQLite

MySQL and SQLite adapters are also available for download as RubyGems

(mysql2 and sqlite3, respectively).

report erratum • discuss

Rails and Databases • 13

http://raa.ruby-lang.org/project/ruby-db2
http://rubyforge.org/projects/rubyibm
http://rubyforge.org/projects/fireruby/
http://www.tmtm.org/en/mysql/ruby/
http://rubyforge.org/projects/ruby-oci8
https://bitbucket.org/ged/ruby-pg/wiki/Home
https://github.com/rails-sqlserver
https://github.com/luislavena/sqlite3-ruby
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

What We Just Did

• We installed (or upgraded) the Ruby language.

• We installed (or upgraded) the Rails framework.

• We installed (or upgraded) the SQLite3 and MySQL databases.

• We selected an editor.

Now that we have Rails installed, let’s use it. It’s time to move on to the next

chapter where we create our first application.

Chapter 1. Installing Rails • 14

report erratum • discusswww.allitebooks.com

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///
http://www.allitebooks.org

CHAPTER 2

Instant Gratification

Let’s write a simple application to verify we have Rails snugly installed on our

machines. Along the way, we’ll get a peek at the way Rails applications work.

2.1 Creating a New Application

When you install the Rails framework, you also get a new command-line tool,

rails, that is used to construct each new Rails application you write.

Why do we need a tool to do this? Why can’t we just hack away in our favorite

editor and create the source for our application from scratch? Well, we could

just hack. After all, a Rails application is just Ruby source code. But Rails

also does a lot of magic behind the curtain to get our applications to work

with a minimum of explicit configuration. To get this magic to work, Rails

needs to find all the various components of your application. As we’ll see later

(in Section 18.1, Where Things Go, on page 261), this means we need to create

a specific directory structure, slotting the code we write into the appropriate

places. The rails command simply creates this directory structure for us and

populates it with some standard Rails code.

To create your first Rails application, pop open a shell window, and navigate

to a place in your filesystem where you want to create your application’s

directory structure. In our example, we’ll be creating our projects in a direc-

tory called work. In that directory, use the rails command to create an application

called demo. Be slightly careful here—if you have an existing directory called

demo, you will be asked whether you want to overwrite any existing files. (Note:

if you want to specify which Rails version to use, as described in Section 1.4,

Choosing a Rails Version, on page 8, now would be the time to do so.)

rubys> cd work
work> rails new demo
create
create README.rdoc

In this chapter, we’ll see
• creating a new application,
• starting the server,
• accessing the server from a browser,
• producing dynamic content,
• adding hypertext links, and
• passing data from the controller to the view.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

create Rakefile
create config.ru

: : :
create vendor/assets/stylesheets
create vendor/assets/stylesheets/.keep

run bundle install
Fetching gem metadata from https://rubygems.org/...........

: : :
Your bundle is complete!
Use `bundle show [gemname]` to see where a bundled gem is installed.
work>

The command has created a directory named demo. Pop down into that

directory, and list its contents (using ls on a Unix box or using dir under

Windows). You should see a bunch of files and subdirectories.

work> cd demo
demo> ls -p
app/ config/ db/ Gemfile.lock log/ Rakefile test/ vendor/
bin/ config.ru Gemfile lib/ public/ README.rdoc tmp/

All these directories (and the files they contain) can be intimidating to start

with, but we can ignore most of them for now. In this chapter, we’ll use only

one of them directly: the app directory, where we’ll write our application.

Examine your installation using the following command:

demo> rake about

If you get a Rails version other than 4.0.0, please reread Section 1.4, Choosing

a Rails Version, on page 8.

This command will also detect common installation errors. For example, if it

can’t find a JavaScript runtime, it will provide you with a link to available

runtimes.

If you see a bunch of messages concerning already initialized constants or a

possible conflict with an extension, consider deleting the demo directory, cre-

ating a separate RVM gemset,1 and starting over. If that doesn’t work, use

bundle exec2 to run rake commands.

Once you get rake about working, you have everything you need to start a stand-

alone web server that can run our newly created Rails application. So, without

further ado, let’s start our demo application.

1. https://rvm.io/gemsets/basics/

2. http://gembundler.com/v1.3/bundle_exec.html

Chapter 2. Instant Gratification • 16

report erratum • discuss

https://rvm.io/gemsets/basics/
http://gembundler.com/v1.3/bundle_exec.html
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

demo> rails server
=> Booting WEBrick
=> Rails 4.0.0 application starting in development on http://0.0.0.0:3000
=> Run `rails server -h` for more startup options
=> Ctrl-C to shutdown server
[2013-04-18 20:22:16] INFO WEBrick 1.3.1
[2013-04-18 20:22:16] INFO ruby 2.0.0 (2013-02-24) [x86_64-linux]
[2013-04-18 20:22:16] INFO WEBrick::HTTPServer#start: pid=25170 port=3000

Which web server is run depends on what servers you have installed. WEBrick

is a pure-Ruby web server that is distributed with Ruby itself and therefore

is guaranteed to be available. However, if another web server is installed on

your system (and Rails can find it), the rails server command may use it in

preference to WEBrick. You can force Rails to use WEBrick by providing an

option to the rails command.

demo> rails server webrick

As the last line of the startup tracing indicates, we just started a web server

on port 3000. The 0.0.0.0 part of the address means that WEBrick will accept

connections on all interfaces. On Dave’s OS X system, that means both local

interfaces (127.0.0.1 and ::1) and his LAN connection. We can access the

application by pointing a browser at the URL http://localhost:3000. The

result is shown in Figure 1, Newly created Rails application, on page 18.

If you look at the window where you started the server, you’ll see tracing

showing you started the application. We’re going to leave the server running

in this console window. Later, as we write application code and run it via our

browser, we’ll be able to use this console window to trace the incoming

requests. When the time comes to shut down your application, you can press

Ctrl-C in this window to stop WEBrick. (Don’t do that yet—we’ll be using this

particular application in a minute.)

At this point, we have a new application running, but it has none of our code

in it. Let’s rectify this situation.

2.2 Hello, Rails!

We can’t help it—we just have to write a “Hello, World!” program to try a new

system. Let’s start by creating a simple application that sends our cheery

greeting to a browser. After we get that working, we will embellish it with the

current time and links.

As we’ll explore further in Chapter 3, The Architecture of Rails Applications,

on page 29, Rails is a Model-View-Controller framework. Rails accepts

incoming requests from a browser, decodes the request to find a controller,

report erratum • discuss

Hello, Rails! • 17

http://localhost:3000
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 1—Newly created Rails application

and calls an action method in that controller. The controller then invokes a

particular view to display the results to the user. The good news is that Rails

takes care of most of the internal plumbing that links all these actions. To

write our simple “Hello, World!” application, we need code for a controller and

a view, and we need a route to connect the two. We don’t need code for a

model, because we’re not dealing with any data. Let’s start with the controller.

In the same way that we used the rails command to create a new Rails appli-

cation, we can also use a generator script to create a new controller for our

project. This command is called rails generate. So, to create a controller called

say, we make sure we’re in the demo directory and run the command, passing

in the name of the controller we want to create and the names of the actions

we intend for this controller to support.

Chapter 2. Instant Gratification • 18

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

demo> rails generate controller Say hello goodbye
create app/controllers/say_controller.rb
route get "say/goodbye"
route get "say/hello"
invoke erb
create app/views/say
create app/views/say/hello.html.erb
create app/views/say/goodbye.html.erb
invoke test_unit
create test/controllers/say_controller_test.rb
invoke helper
create app/helpers/say_helper.rb
invoke test_unit
create test/helpers/say_helper_test.rb
invoke assets
invoke coffee
create app/assets/javascripts/say.js.coffee
invoke scss
create app/assets/stylesheets/say.css.scss

The rails generate command logs the files and directories it examines, noting

when it adds new Ruby scripts or directories to your application. For now,

we’re interested in one of these scripts and (in a minute) the .html.erb files.

The first source file we’ll be looking at is the controller. You’ll find it in the

defining classes

↪ on page 45

file app/controllers/say_controller.rb. Let’s take a look at it:

Download rails40/demo1/app/controllers/say_controller.rb

class SayController < ApplicationController
def hello
end

def goodbye
end

end

Pretty minimal, eh? SayController is a class that inherits from ApplicationController,
so it automatically gets all the default controller behavior. What does this

code have to do? For now, it does nothing—we simply have empty action

methods named hello() and goodbye(). To understand why these methods are

named this way, we need to look at the way Rails handles requests.

Rails and Request URLs

Like any other web application, a Rails application appears to its users to be

associated with a URL. When you point your browser at that URL, you are

talking to the application code, which generates a response to you.

report erratum • discuss

Hello, Rails! • 19

http://media.pragprog.com/titles/rails4/code/rails40/demo1/app/controllers/say_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Let’s try it now. Navigate to the URL http://localhost:3000/say/hello in a

browser. You’ll see something that looks like this:

Our First Action

At this point, we can see not only that we have connected the URL to our

controller but also that Rails is pointing the way to our next step, namely, to

tell Rails what to display. That’s where views come in. Remember when we

ran the script to create the new controller? That command added several files

and a new directory to our application. That directory contains the template

files for the controller’s views. In our case, we created a controller named say,
so the views will be in the directory app/views/say.

By default, Rails looks for templates in a file with the same name as the action

it’s handling. In our case, that means we need to replace a file called

hello.html.erb in the directory app/views/say. (Why .html.erb? We’ll explain in a

minute.) For now, let’s just put some basic HTML in there.

Download rails40/demo1/app/views/say/hello.html.erb

<h1>Hello from Rails!</h1>

Save the file hello.html.erb, and refresh your browser window. You should see

it display our friendly greeting.

In total, we’ve looked at two files in our Rails application tree. We looked at

the controller, and we modified a template to display a page in the browser.

Chapter 2. Instant Gratification • 20

report erratum • discuss

http://localhost:3000/say/hello
http://media.pragprog.com/titles/rails4/code/rails40/demo1/app/views/say/hello.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

These files live in standard locations in the Rails hierarchy: controllers go

into app/controllers, and views go into subdirectories of app/views. See the following

figure:

Figure 2—Standard locations for controllers and views

Making It Dynamic

So far, our Rails application is pretty boring—it just displays a static page.

To make it more dynamic, let’s have it show the current time each time it

displays the page.

To do this, we need to change the template file in the view—it now needs to

include the time as a string. That raises two questions. First, how do we add

dynamic content to a template? Second, where do we get the time from?

Dynamic Content

There are many ways of creating dynamic templates in Rails. The most com-

mon way, which we’ll use here, is to embed Ruby code in the template. That’s

why we named our template file hello.html.erb; the .html.erb suffix tells Rails to

expand the content in the file using a system called ERB.

ERB is a filter that is installed as part of the Rails installation that takes an

.erb file and outputs a transformed version. The output file is often HTML in

Rails, but it can be anything. Normal content is passed through without being

changed. However, content between <%= and %> is interpreted as Ruby code

and executed. The result of that execution is converted into a string, and that

report erratum • discuss

Hello, Rails! • 21

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

value is substituted in the file in place of the <%=…%> sequence. For example,

change hello.html.erb to display the current time.

Download rails40/demo2/app/views/say/hello.html.erb

<p>
<h1>Hello from Rails!</h1>

➤

➤

</p>
It is now <%= Time.now %>

➤

When we refresh our browser window, we see the time displayed using Ruby’s

standard format.

Notice that if you hit Refresh in your browser, the time updates each time

the page is displayed. It looks as if we’re really generating dynamic content.

Adding the Time

Our original problem was to display the time to users of our application. We

now know how to make our application display dynamic data. The second

issue we have to address is working out where to get the time from.

We’ve shown that the approach of embedding a call to Ruby’s Time.now() method

in our hello.html.erb template works. Each time we access this page, the user

will see the current time substituted into the body of the response. And for

our trivial application, that might be good enough. In general, though, we

probably want to do something slightly different. We’ll move the determination

of the time to be displayed into the controller and leave the view with the

simple job of displaying it. We’ll change our action method in the controller

instance variable

↪ on page 46

to set the time value into an instance variable called @time.

Download rails40/demo3/app/controllers/say_controller.rb

class SayController < ApplicationController
def hello

➤ @time = Time.now
end

def goodbye
end

end

Chapter 2. Instant Gratification • 22

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/demo2/app/views/say/hello.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/demo3/app/controllers/say_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Making Development Easier

You might have noticed something about the development we’ve been doing so far.

As we’ve been adding code to our application, we haven’t had to restart the running

application. It has been happily chugging away in the background. And yet each

change we make is available whenever we access the application through a browser.

What gives?

It turns out that the Rails dispatcher is pretty clever. In development mode (as opposed

to testing or production), it automatically reloads application source files when a new

request comes along. That way, when we edit our application, the dispatcher makes

sure it’s running the most recent changes. This is great for development.

However, this flexibility comes at a cost—it causes a short pause after you enter a

URL before the application responds. That’s caused by the dispatcher reloading stuff.

For development it’s a price worth paying, but in production it would be unacceptable.

Because of this, this feature is disabled for production deployment (see Chapter 16,

Task K: Deployment and Production, on page 233).

In the .html.erb template, we’ll use this instance variable to substitute the time

into the output.

Download rails40/demo3/app/views/say/hello.html.erb

<h1>Hello from Rails!</h1>
<p>

➤ It is now <%= @time %>
</p>

When we refresh our browser window, we will again see the current time,

showing that the communication between the controller and the view was

successful.

Why did we go to the extra trouble of setting the time to be displayed in the

controller and then using it in the view? Good question. In this application,

it doesn’t make much difference, but by putting the logic in the controller

instead, we buy ourselves some benefits. For example, we may want to extend

our application in the future to support users in many countries. In that case,

we’d want to localize the display of the time, choosing a time appropriate to

their time zone. That would be a fair amount of application-level code, and it

would probably not be appropriate to embed it at the view level. By setting

the time to display in the controller, we make our application more flexible—we

can change the time zone in the controller without having to update any view

that uses that time object. The time is data, and it should be supplied to the

view by the controller. We’ll see a lot more of this when we introduce models

into the equation.

report erratum • discuss

Hello, Rails! • 23

http://media.pragprog.com/titles/rails4/code/rails40/demo3/app/views/say/hello.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The Story So Far

Let’s briefly review how our current application works.

1. The user navigates to our application. In our case, we do that using a

local URL such as http://localhost:3000/say/hello.

2. Rails then matches the route pattern, which it previously split into two

parts and analyzed.

The say part is taken to be the name of a controller, so Rails creates a new

instance of the Ruby class SayController (which it finds in app/controllers/
say_controller.rb).

3. The next part of the pattern, hello, identifies an action. Rails invokes a

method of that name in the controller. This action method creates a new

Time object holding the current time and tucks it away in the @time instance

variable.

4. Rails looks for a template to display the result. It searches the directory

app/views for a subdirectory with the same name as the controller (say) and

in that subdirectory for a file named after the action (hello.html.erb).

5. Rails processes this file through the ERB templating system, executing

any embedded Ruby and substituting in values set up by the controller.

6. The result is returned to the browser, and Rails finishes processing this

request.

This isn’t the whole story—Rails gives you lots of opportunities to override

this basic workflow (and we’ll be taking advantage of them shortly). As it

stands, our story illustrates convention over configuration, one of the funda-

mental parts of the philosophy of Rails. By providing convenient defaults and

by applying certain conventions on how a URL is constructed or in what file

a controller definition is placed and what class name and method names are

used, Rails applications are typically written using little or no external config-

uration—things just knit themselves together in a natural way.

2.3 Linking Pages Together

It’s a rare web application that has just one page. Let’s see how we can add

another stunning example of web design to our “Hello, World!” application.

Normally, each page in your application will correspond to a separate view.

In our case, we’ll also use a new action method to handle the page (although

that isn’t always the case, as we’ll see later in the book). We’ll use the same

Chapter 2. Instant Gratification • 24

report erratum • discusswww.allitebooks.com

http://localhost:3000/say/hello
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///
http://www.allitebooks.org

controller for both actions. Again, this needn’t be the case, but we have no

compelling reason to use a new controller right now.

We already defined a goodbye action for this controller, so all that remains

is to create a new template in the directory app/views/say. This time it’s called

goodbye.html.erb because by default templates are named after their associated

actions.

Download rails40/demo4/app/views/say/goodbye.html.erb

<h1>Goodbye!</h1>
<p>

It was nice having you here.
</p>

Fire up our trusty browser again, but this time point to our new view using

the URL http://localhost:3000/say/goodbye. You should see something like

this:

Figure 3—Our second action

Now we need to link the two screens. We’ll put a link on the hello screen that

takes us to the goodbye screen, and vice versa. In a real application, we might

want to make these proper buttons, but for now we’ll just use hyperlinks.

We already know that Rails uses a convention to parse the URL into a target

controller and an action within that controller. So, a simple approach would

be to adopt this URL convention for our links.

The file hello.html.erb would contain the following:

...
<p>

Say Goodbye!
</p>
...

And the file goodbye.html.erb would point the other way.

report erratum • discuss

Linking Pages Together • 25

http://media.pragprog.com/titles/rails4/code/rails40/demo4/app/views/say/goodbye.html.erb
http://localhost:3000/say/goodbye
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

...
<p>

Say Hello!
</p>
...

This approach would certainly work, but it’s a bit fragile. If we were to move

our application to a different place on the web server, the URLs would no

longer be valid. It also encodes assumptions about the Rails URL format into

our code; it’s possible a future version of Rails might change this.

Fortunately, these aren’t risks we have to take. Rails comes with a bunch of

helper methods that can be used in view templates. Here, we’ll use the helper

method link_to(), which creates a hyperlink to an action. (The link_to() method

can do a lot more than this, but let’s take it gently for now.) Using link_to(),
hello.html.erb becomes the following:

Download rails40/demo5/app/views/say/hello.html.erb

<p>

<h1>Hello from Rails!</h1>
<p>

It is now <%= @time %>
</p>

➤

➤ Time to say
➤

</p>
<%= link_to "Goodbye", say_goodbye_path %>!

➤

There’s a link_to() call within an ERB <%=…%> sequence. This creates a link to

a URL that will invoke the goodbye() action. The first parameter in the call to

link_to() is the text to be displayed in the hyperlink, and the next parameter

tells Rails to generate the link to the goodbye() action.

Let’s stop for a minute to consider how we generated the link. We wrote this:

link_to "Goodbye", say_goodbye_path

First, link_to() is a method call. (In Rails, we call methods that make it easier

to write templates helpers.) If you come from a language such as Java, you

might be surprised that Ruby doesn’t insist on parentheses around method

parameters. You can always add them if you like.

say_goodbye_path is a precomputed value that Rails makes available to application

views. It evaluates to the /say/goodbye path. Over time you will see that Rails

provides the ability to name all the routes that you will be using in your

application.

Chapter 2. Instant Gratification • 26

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/demo5/app/views/say/hello.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

OK, let’s get back to the application. If we point our browser at our hello page,

it will now contain the link to the goodbye page, as shown in the following

figure:

Figure 4—The Hello page with a link to the goodbye page

We can make the corresponding change in goodbye.html.erb, linking it back to

the initial hello page.

Download rails40/demo5/app/views/say/goodbye.html.erb

<p>

<h1>Goodbye!</h1>
<p>

It was nice having you here.
</p>

➤

➤

</p>
Say <%= link_to "Hello", say_hello_path %> again.

➤

At this point, we’ve completed our toy application and in the process verified

that our installation of Rails is functioning properly. After a brief recap, it is

now time to move on to building a real application.

What We Just Did

We constructed a toy application that showed us the following:

• How to create a new Rails application and how to create a new controller

in that application

• How to create dynamic content in the controller and display it via the

view template

• How to link pages together

report erratum • discuss

Linking Pages Together • 27

http://media.pragprog.com/titles/rails4/code/rails40/demo5/app/views/say/goodbye.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

This is a great foundation, and it didn’t really take much time or effort. This

experience will continue as we move on to the next chapter and build a much

bigger application.

Playtime

Here’s some stuff to try on your own:

• Experiment with the following expressions:

• Addition: <%= 1+2 %>
• Concatenation: <%= "cow" + "boy" %>
• Time in one hour: <%= 1.hour.from_now.localtime %>

• A call to the following Ruby method returns a list of all the files in the

current directory:

@files = Dir.glob('*')

Use it to set an instance variable in a controller action, and then write

the corresponding template that displays the filenames in a list on the

browser.

Hint: you can iterate over a collection using something like this:

<% for file in @files %>
file name is: <%= file %>

<% end %>

You might want to use a for the list.

(You’ll find hints at http://www.pragprog.com/wikis/wiki/RailsPlayTime.)

Cleaning Up

Maybe you’ve been following along and writing the code in this chapter. If so,

chances are that the application is still running on your computer. When we

start coding our next application in Chapter 6, Task A: Creating the Application,

on page 61, we’ll get a conflict the first time we run it because it will also try

to use the computer’s port 3000 to talk with the browser. Now would be a

good time to stop the current application by pressing Ctrl-C in the window

you used to start it. Microsoft Windows users may need to press Ctrl-Pause/

Break instead.

Now let’s move on to an overview of Rails.

Chapter 2. Instant Gratification • 28

report erratum • discuss

http://www.pragprog.com/wikis/wiki/RailsPlayTime
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 3

The Architecture of Rails Applications

One of the interesting features of Rails is that it imposes some fairly serious

constraints on how you structure your web applications. Surprisingly, these

constraints make it easier to create applications—a lot easier. Let’s see why.

3.1 Models, Views, and Controllers

Back in 1979, Trygve Reenskaug came up with a new architecture for devel-

oping interactive applications. In his design, applications were broken into

three types of components: models, views, and controllers.

The model is responsible for maintaining the state of the application. Some-

times this state is transient, lasting for just a couple of interactions with the

user. Sometimes the state is permanent and will be stored outside the appli-

cation, often in a database.

A model is more than just data; it enforces all the business rules that apply

to that data. For example, if a discount shouldn’t be applied to orders of less

than $20, the model will enforce the constraint. This makes sense; by putting

the implementation of these business rules in the model, we make sure that

nothing else in the application can make our data invalid. The model acts as

both a gatekeeper and a data store.

The view is responsible for generating a user interface, normally based on

data in the model. For example, an online store will have a list of products

to be displayed on a catalog screen. This list will be accessible via the model,

but it will be a view that formats the list for the end user. Although the view

may present the user with various ways of inputting data, the view itself

never handles incoming data. The view’s work is done once the data is dis-

played. There may well be many views that access the same model data, often

for different purposes. In the online store, there’ll be a view that displays

In this chapter, we’ll see
• models,
• views, and
• controllers.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

product information on a catalog page and another set of views used by

administrators to add and edit products.

Controllers orchestrate the application. Controllers receive events from the

outside world (normally user input), interact with the model, and display an

appropriate view to the user.

This triumvirate—the model, view, and controller—together form an architec-

ture known as MVC. To learn how the three concepts fit together, see the

following figure:

Database

Controller

View Model

 Browser sends request

 Controller interacts with model

 Controller invokes view

 View renders next browser screen

Figure 5—The Model-View-Controller architecture

The MVC architecture was originally intended for conventional GUI applica-

tions, where developers found the separation of concerns led to far less

coupling, which in turn made the code easier to write and maintain. Each

concept or action was expressed in just one well-known place. Using MVC

was like constructing a skyscraper with the girders already in place—it was

a lot easier to hang the rest of the pieces with a structure already there.

During the development of our application, we will be making heavy use of

Rails’ ability to generate scaffolding for our application.

Ruby on Rails is an MVC framework, too. Rails enforces a structure for your

application—you develop models, views, and controllers as separate chunks

of functionality, and it knits them together as your program executes. One

of the joys of Rails is that this knitting process is based on the use of intelligent

defaults so that you typically don’t need to write any external configuration

metadata to make it all work. This is an example of the Rails philosophy of

favoring convention over configuration.

In a Rails application, an incoming request is first sent to a router, which

works out where in the application the request should be sent and how the

request itself should be parsed. Ultimately, this phase identifies a particular

Chapter 3. The Architecture of Rails Applications • 30

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

method (called an action in Rails parlance) somewhere in the controller code.

The action might look at data in the request, it might interact with the model,

and it might cause other actions to be invoked. Eventually the action prepares

information for the view, which renders something to the user.

Rails handles an incoming request as shown in the following figure. In this

example, the application has previously displayed a product catalog page,

and the user has just clicked the Add to Cart button next to one of the products.

This button posts to http://localhost:3000/line_items?product_id=2, where

line_items is a resource in our application and 2 is our internal ID for the

selected product.

Database

 http://my.url/line_items?product_id=2

 Controller interacts with model

 Controller invokes view

 View renders next browser screenLine Items

Controller

Routing

Active

Record

Model

Line Items

View

Figure 6—Rails and MVC

The routing component receives the incoming request and immediately picks

it apart. The request contains a path (/line_items?product_id=2) and a method (this

button does a POST operation; other common methods are GET, PUT, PATCH,

and DELETE). In this simple case, Rails takes the first part of the path,

line_items, as the name of the controller and the product_id as the ID of a product.

By convention, POST methods are associated with create() actions. As a result

of all this analysis, the router knows it has to invoke the create() method in

the controller class LineItemsController (we’ll talk about naming conventions in

Section 18.2, Naming Conventions, on page 270).

The create() method handles user requests. In this case, it finds the current

user’s shopping cart (which is an object managed by the model). It also asks

the model to find the information for product 2. It then tells the shopping

cart to add that product to itself. (See how the model is being used to keep

track of all the business data? The controller tells it what to do, and the

model knows how to do it.)

report erratum • discuss

Models, Views, and Controllers • 31

http://localhost:3000/line_items?product_id=2
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Now that the cart includes the new product, we can show it to the user. The

controller invokes the view code, but before it does, it arranges things so that

the view has access to the cart object from the model. In Rails, this invocation

is often implicit; again, conventions help link a particular view with a given

action.

That’s all there is to an MVC web application. By following a set of conventions

and partitioning your functionality appropriately, you’ll discover that your

code becomes easier to work with and your application becomes easier to

extend and maintain. That seems like a good trade.

If MVC is simply a question of partitioning your code a particular way, you

might be wondering why you need a framework such as Ruby on Rails. The

answer is straightforward: Rails handles all of the low-level housekeeping for

you—all those messy details that take so long to handle by yourself—and lets

you concentrate on your application’s core functionality. Let’s see how.

3.2 Rails Model Support

In general, we’ll want our web applications to keep their information in a

relational database. Order-entry systems will store orders, line items, and

customer details in database tables. Even applications that normally use

unstructured text, such as weblogs and news sites, often use databases as

their back-end data store.

Although it might not be immediately apparent from the SQL1 you use to

access them, relational databases are actually designed around mathematical

set theory. Although this is good from a conceptual point of view, it makes it

difficult to combine relational databases with object-oriented (OO) program-

ming languages. Objects are all about data and operations, and databases

are all about sets of values. Operations that are easy to express in relational

terms are sometimes difficult to code in an OO system. The reverse is also

true.

Over time, folks have worked out ways of reconciling the relational and OO

views of their corporate data. Let’s look at the way that Rails chooses to map

relational data onto objects.

Object-Relational Mapping

ORM libraries map database tables to classes. If a database has a table called

orders, our program will have a class named Order. Rows in this table correspond

1. SQL, referred to by some as Structured Query Language, is the language used to query

and update relational databases.

Chapter 3. The Architecture of Rails Applications • 32

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

to objects of the class—a particular order is represented as an object of class Order
. Within that object, attributes are used to get and set the individual columns.

Our Order object has methods to get and set the amount, the sales tax, and so on.

In addition, the Rails classes that wrap our database tables provide a set of

class-level methods that perform table-level operations. For example, we might

need to find the order with a particular ID. This is implemented as a class

class method

↪ on page 45

method that returns the corresponding Order object. In Ruby code, this might

puts

↪ on page 39

look like this:

order = Order.find(1)
puts "Customer #{order.customer_id}, amount=$#{order.amount}"

iterating

↪ on page 44

Sometimes these class-level methods return collections of objects.

Order.where(name: 'dave').each do |order|
puts order.amount

end

Finally, the objects corresponding to individual rows in a table have methods

that operate on that row. Probably the most widely used is save(), the operation

that saves the row to the database.

Order.where(name: 'dave').each do |order|
order.pay_type = "Purchase order"
order.save

end

So, an ORM layer maps tables to classes, rows to objects, and columns to

attributes of those objects. Class methods are used to perform table-level

operations, and instance methods perform operations on the individual rows.

In a typical ORM library, you supply configuration data to specify the

mappings between entities in the database and entities in the program.

Programmers using these ORM tools often find themselves creating and

maintaining a boatload of XML configuration files.

Active Record

Active Record is the ORM layer supplied with Rails. It closely follows the

standard ORM model: tables map to classes, rows to objects, and columns

to object attributes. It differs from most other ORM libraries in the way it is

configured. By relying on convention and starting with sensible defaults,

Active Record minimizes the amount of configuration that developers perform.

To illustrate this, here’s a program that uses Active Record to wrap our orders
table:

report erratum • discuss

Rails Model Support • 33

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

require 'active_record'

class Order < ActiveRecord::Base
end

order = Order.find(1)
order.pay_type = "Purchase order"
order.save

This code uses the new Order class to fetch the order with an id of 1 and mod-

ify the pay_type. (We’ve omitted the code that creates a database connection

for now.) Active Record relieves us of the hassles of dealing with the underlying

database, leaving us free to work on business logic.

But Active Record does more than that. As you’ll see when we develop our

shopping cart application, starting in Chapter 5, The Depot Application, on

page 55, Active Record integrates seamlessly with the rest of the Rails

framework. If a web form sends the application data related to a business

object, Active Record can extract it into our model. Active Record supports

sophisticated validation of model data, and if the form data fails validations,

the Rails views can extract and format errors.

Active Record is the solid model foundation of the Rails MVC architecture.

3.3 Action Pack: The View and Controller

When you think about it, the view and controller parts of MVC are pretty

intimate. The controller supplies data to the view, and the controller receives

events from the pages generated by the views. Because of these interactions,

support for views and controllers in Rails is bundled into a single component,

Action Pack.

Don’t be fooled into thinking that your application’s view code and controller

code will be jumbled up just because Action Pack is a single component. Quite

the contrary; Rails gives you the separation you need to write web applications

with clearly demarcated code for control and presentation logic.

View Support

In Rails, the view is responsible for creating all or part of a response to be

displayed in a browser, to be processed by an application, or to be sent as an

email. At its simplest, a view is a chunk of HTML code that displays some

fixed text. More typically you’ll want to include dynamic content created by

the action method in the controller.

In Rails, dynamic content is generated by templates, which come in three

flavors. The most common templating scheme, called Embedded Ruby (ERB),

Chapter 3. The Architecture of Rails Applications • 34

report erratum • discusswww.allitebooks.com

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///
http://www.allitebooks.org

embeds snippets of Ruby code within a view document, in many ways similar

to the way it is done in other web frameworks, such as PHP or JSP. Although

this approach is very flexible, some are concerned that it violates the spirit

of MVC. By embedding code in the view, we risk adding logic that should be

in the model or the controller. As with everything, while judicious use in

moderation is healthy, overuse can become a problem. Maintaining a clean

separation of concerns is part of the job of the developer. (We look at HTML

templates in Section 24.2, Generating HTML with ERB, on page 395.)

You can also use ERB to construct JavaScript fragments on the server that

are then executed on the browser. This is great for creating dynamic Ajax

interfaces. We talk about these starting in Section 11.2, Iteration F2: Creating

an Ajax-Based Cart, on page 142.

Rails also provides XML Builder to construct XML documents using Ruby

code—the structure of the generated XML will automatically follow the

structure of the code. We discuss xml.builder templates starting in Section 24.1,

Generating XML with Builder, on page 393.

And the Controller!

The Rails controller is the logical center of your application. It coordinates

the interaction between the user, the views, and the model. However, Rails

handles most of this interaction behind the scenes; the code you write con-

centrates on application-level functionality. This makes Rails controller code

remarkably easy to develop and maintain.

The controller is also home to a number of important ancillary services.

• It is responsible for routing external requests to internal actions. It handles

people-friendly URLs extremely well.

• It manages caching, which can give applications orders-of-magnitude

performance boosts.

• It manages helper modules, which extend the capabilities of the view

templates without bulking up their code.

• It manages sessions, giving users the impression of ongoing interaction

with our applications.

We’ve already seen and modified a controller in Section 2.2, Hello, Rails!, on

page 17 and will be seeing and modifying a number of controllers in the

development of a sample application, starting with the products controller in

Section 8.1, Iteration C1: Creating the Catalog Listing, on page 91.

There’s a lot to Rails. But before going any further, let’s have a brief refresher

—and for some of you, a brief introduction—to the Ruby language.

report erratum • discuss

Action Pack: The View and Controller • 35

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 4

Introduction to Ruby

Many people who are new to Rails are also new to Ruby. If you are familiar

with a language such as Java, JavaScript, PHP, Perl, or Python, you will find

Ruby pretty easy to pick up.

This chapter is not a complete introduction to Ruby. It will not cover topics

such as precedence rules (like most other programming languages, 1+2*3==7

in Ruby). It is only meant to explain enough Ruby that the examples in the

book make sense.

This chapter draws heavily from material in Programming Ruby [TFH13]. If

you think you need more background on the Ruby language (and at the risk

of being grossly self-serving), we’d like to suggest that the best way to learn

Ruby and the best reference for Ruby’s classes, modules, and libraries is

Programming Ruby [TFH13] (also known as the PickAxe book). Welcome to

the Ruby community!

4.1 Ruby Is an Object-Oriented Language

Everything you manipulate in Ruby is an object, and the results of those

manipulations are themselves objects.

When you write object-oriented code, you’re normally looking to model con-

cepts from the real world. Typically during this modeling process you’ll discover

categories of things that need to be represented. In an online store, the concept

of a line item could be such a category. In Ruby, you’d define a class to rep-

resent each of these categories. You then use this class as a kind of factory

that generates objects—instances of that class. An object is a combination of

state (for example, the quantity and the product ID) and methods that use

that state (perhaps a method to calculate the line item’s total cost). We’ll show

how to create classes in Classes, on page 45.

In this chapter, we’ll see
• objects: names and methods;
• data: strings, arrays, hashes, and regular expressions;
• control: if, while, blocks, iterators, and exceptions;
• building blocks: classes and modules;
• YAML and marshaling; and
• common idioms that you will see used in this book.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Objects are created by calling a constructor, a special method associated with

a class. The standard constructor is called new(). Given a class called LineItem,

you could create line item objects as follows:

line_item_one = LineItem.new
line_item_one.quantity = 1
line_item_one.sku = "AUTO_B_00"

Methods are invoked by sending a message to an object. The message contains

the method’s name, along with any parameters the method may need. When

an object receives a message, it looks into its own class for a corresponding

method. Let’s look at some method calls:

"dave".length
line_item_one.quantity()
cart.add_line_item(next_purchase)
submit_tag "Add to Cart"

Parentheses are generally optional in method calls. In Rails applications,

you’ll find that most method calls involved in larger expressions will have

parentheses, while those that look more like commands or declarations tend

not to have them.

Methods have names, as do many other constructs in Ruby. Names in Ruby

have special rules, rules that you may not have seen if you come to Ruby

from another language.

Ruby Names

Local variables, method parameters, and method names should all start with

a lowercase letter or with an underscore: order, line_item, and xr2000 are all valid.

@name

↪ on page 46

Instance variables begin with an “at” (@) sign, such as @quantity and @product_id.
The Ruby convention is to use underscores to separate words in a multiword

method or variable name (so line_item is preferable to lineItem).

Class names, module names, and constants must start with an uppercase

letter. By convention they use capitalization, rather than underscores, to

distinguish the start of words within the name. Class names look like Object,
PurchaseOrder, and LineItem.

Rails uses symbols to identify things. In particular, it uses them as keys when

naming method parameters and looking things up in hashes. Here’s an example:

redirect_to :action => "edit", :id => params[:id]

As you can see, a symbol looks like a variable name, but it’s prefixed with a

colon. Examples of symbols include :action, :line_items, and :id. You can think of

Chapter 4. Introduction to Ruby • 38

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

symbols as string literals magically made into constants. Alternatively, you

can consider the colon to mean “thing named,” so :id is “the thing named id.”

Now that we have used a few methods, let’s move on to how they are defined.

Methods

Let’s write a method that returns a cheery, personalized greeting. We’ll invoke

that method a couple of times.

def say_goodnight(name)
result = 'Good night, ' + name
return result

end

Time for bed...
puts say_goodnight('Mary-Ellen') # => 'Goodnight, Mary-Ellen'
puts say_goodnight('John-Boy') # => 'Goodnight, John-Boy'

Having defined the method, we call it twice. In both cases, we pass the result

to the method puts(), which outputs to the console its argument followed by a

newline (moving on to the next line of output).

You don’t need a semicolon at the end of a statement as long as you put each

statement on a separate line. Ruby comments start with a # character and

run to the end of the line. Indentation is not significant (but two-character

indentation is the de facto Ruby standard).

Ruby doesn’t use braces to delimit the bodies of compound statements and

definitions (such as methods and classes). Instead, you simply finish the body

with the keyword end. The keyword return is optional, and if not present, the

results of the last expression evaluated will be returned.

4.2 Data Types

While everything in Ruby is an object, some of the data types in Ruby have

special syntax support, in particular for defining literal values. In these

examples, we’ve used some simple strings and even string concatenation.

Strings

The previous example also showed some Ruby string objects. One way to

create a string object is to use string literals, which are sequences of characters

between single or double quotation marks. The difference between the two

forms is the amount of processing Ruby does on the string while constructing

the literal. In the single-quoted case, Ruby does very little. With only a few

exceptions, what you type into the single-quoted string literal becomes the

string’s value.

report erratum • discuss

Data Types • 39

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

In the double-quoted case, Ruby does more work. First, it looks for substitu-

tions—sequences that start with a backslash character—and replaces them

with some binary value. The most common of these is \n, which is replaced

with a newline character. When you write a string containing a newline to

the console, the \n forces a line break.

Second, Ruby performs expression interpolation in double-quoted strings. In

the string, the sequence #{expression} is replaced by the value of expression.

We could use this to rewrite our previous method:

def say_goodnight(name)
"Good night, #{name.capitalize}"

end
puts say_goodnight('pa')

When Ruby constructs this string object, it looks at the current value of name
and substitutes it into the string. Arbitrarily complex expressions are allowed

in the #{…} construct. Here we invoked the capitalize() method, defined for all

strings, to output our parameter with a leading uppercase letter.

Strings are a fairly primitive data type that contain an ordered collection of

bytes or characters. Ruby also provides means for defining collections of

arbitrary objects via arrays and hashes.

Arrays and Hashes

Ruby’s arrays and hashes are indexed collections. Both store collections of

objects, accessible using a key. With arrays, the key is an integer, whereas

hashes support any object as a key. Both arrays and hashes grow as needed

to hold new elements. It’s more efficient to access array elements, but hashes

provide more flexibility. Any particular array or hash can hold objects of dif-

fering types; you can have an array containing an integer, a string, and a

floating-point number, for example.

You can create and initialize a new array object using an array literal—a set

of elements between square brackets. Given an array object, you can access

individual elements by supplying an index between square brackets, as the

next example shows. Ruby array indices start at zero.

a = [1, 'cat', 3.14] # array with three elements
a[0] # access the first element (1)
a[2] = nil # set the third element

array now [1, 'cat', nil]

You may have noticed that we used the special value nil in this example. In many

languages, the concept of nil (or null) means “no object.” In Ruby, that’s not the

case; nil is an object, just like any other, that happens to represent nothing.

Chapter 4. Introduction to Ruby • 40

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The method <<() is commonly used with arrays. It appends a value to its

receiver.

ages = []
for person in @people

ages << person.age
end

Ruby has a shortcut for creating an array of words.

a = ['ant', 'bee', 'cat', 'dog', 'elk']
this is the same:
a = %w{ ant bee cat dog elk }

Ruby hashes are similar to arrays. A hash literal uses braces rather than

square brackets. The literal must supply two objects for every entry: one for

the key, the other for the value. For example, you may want to map musical

instruments to their orchestral sections.

inst_section = {
:cello => 'string',
:clarinet => 'woodwind',
:drum => 'percussion',
:oboe => 'woodwind',
:trumpet => 'brass',
:violin => 'string'

}

The thing to the left of the => is the key, and that on the right is the corre-

sponding value. Keys in a particular hash must be unique—you can’t have

two entries for :drum. The keys and values in a hash can be arbitrary objects

—you can have hashes where the values are arrays, other hashes, and so on.

In Rails, hashes typically use symbols as keys. Many Rails hashes have been

subtly modified so that you can use either a string or a symbol interchangeably

as a key when inserting and looking up values.

The use of symbols as hash keys is so commonplace that starting with Ruby

1.9 there is a special syntax for it, saving both keystrokes and eyestrain.

inst_section = {
cello: 'string',
clarinet: 'woodwind',
drum: 'percussion',
oboe: 'woodwind',
trumpet: 'brass',
violin: 'string'

}

Doesn’t that look much better?

report erratum • discuss

Data Types • 41

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Feel free to use whichever syntax you like. You can even intermix usages in

a single expression. Obviously you’ll need to use the arrow syntax whenever

the key is not a symbol.

Hashes are indexed using the same square bracket notation as arrays.

inst_section[:oboe] #=> 'woodwind'
inst_section[:cello] #=> 'string'
inst_section[:bassoon] #=> nil

As the previous example shows, a hash returns nil when indexed by a key it

doesn’t contain. Normally this is convenient, because nil means false when

used in conditional expressions.

You can pass hashes as parameters on method calls. Ruby allows you to omit

the braces, but only if the hash is the last parameter of the call. Rails makes

extensive use of this feature. The following code fragment shows a two-element

hash being passed to the redirect_to() method. In effect, though, you can ignore

that it’s a hash and pretend that Ruby has keyword arguments.

redirect_to action: 'show', id: product.id

There is one more data type worth mentioning—the regular expression.

Regular Expressions

A regular expression lets you specify a pattern of characters to be matched

in a string. In Ruby, you typically create a regular expression by writing /pattern/
or %r{pattern}.

For example, you could write a pattern that matches a string containing the

text Perl or the text Python using the regular expression /Perl|Python/.

The forward slashes delimit the pattern, which consists of the two things we’re

matching, separated by a vertical bar (|). This bar character means “either the

thing on the left or the thing on the right,” in this case either Perl or Python. You

can use parentheses within patterns, just as you can in arithmetic expressions,

so you could also write this pattern as /P(erl|ython)/. Programs typically test strings

against regular expressions using the =~ match operator.

if line =~ /P(erl|ython)/
puts "There seems to be another scripting language here"

end

You can specify repetition within patterns. /ab+c/ matches a string containing an

a followed by one or more b’s, followed by a c. Change the plus to an asterisk,

and /ab*c/ creates a regular expression that matches one a, zero or more b’s, and

one c.

Chapter 4. Introduction to Ruby • 42

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Backward slashes start special sequences; most notably, \d matches any

digit, \s matches any whitespace character, and \w matches any alphanumeric

(word) character.

Ruby’s regular expressions are a deep and complex subject; this section

barely skims the surface. See the PickAxe book for a full discussion.

This book will make only light use of regular expressions.

With that brief introduction to data, let’s move on to logic.

4.3 Logic

Method calls are statements. Ruby also provides a number of ways to make

decisions that affect the repetition and order in which methods are invoked.

Control Structures

Ruby has all the usual control structures, such as if statements and while
loops. Java, C, and Perl programmers may well get caught by the lack of

braces around the bodies of these statements. Instead, Ruby uses the keyword

end to signify the end of a body.

if count > 10
puts "Try again"

elsif tries == 3
puts "You lose"

else
puts "Enter a number"

end

Similarly, while statements are terminated with end.

while weight < 100 and num_pallets <= 30
pallet = next_pallet()
weight += pallet.weight
num_pallets += 1

end

Ruby also contains variants of these statements. unless is like if except that it

checks for the condition to not be true. Similarly, until is like while except that

the loop continues until the condition evaluates to be true.

Ruby statement modifiers are a useful shortcut if the body of an if, unless, while,
or until statement is just a single expression. Simply write the expression, fol-

lowed by the modifier keyword and the condition.

puts "Danger, Will Robinson" if radiation > 3000
distance = distance * 1.2 while distance < 100

report erratum • discuss

Logic • 43

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Although if statements are fairly common in Ruby applications, newcomers

to the Ruby language are often surprised to find that looping constructs are

rarely used. Blocks and iterators often take their place.

Blocks and Iterators

Code blocks are just chunks of code between braces or between do…end. A
common convention is that people use braces for single-line blocks and do/
end for multiline blocks.

{ puts "Hello" } # this is a block

do ###
club.enroll(person) # and so is this
person.socialize #

end ###

To pass a block to a method, place the block after the parameters (if any) to

the method. In other words, put the start of the block at the end of the source

line containing the method call. For example, in the following code, the block

containing puts "Hi" is associated with the call to the method greet().

greet { puts "Hi" }

If a method call has parameters, they appear before the block.

verbose_greet("Dave", "loyal customer") { puts "Hi" }

A method can invoke an associated block one or more times using the Ruby

yield statement. You can think of yield as being something like a method call

that calls out to the block associated with the method containing the yield.
You can pass values to the block by giving parameters to yield. Within the

block, you list the names of the arguments to receive these parameters between

vertical bars (|).

Code blocks appear throughout Ruby applications. Often they are used in

conjunction with iterators: methods that return successive elements from

some kind of collection, such as an array.

animals = %w(ant bee cat dog elk) # create an array
animals.each {|animal| puts animal } # iterate over the contents

Each integer N implements a times() method, which invokes an associated

block N times.

3.times { print "Ho! " } #=> Ho! Ho! Ho!

The & prefix operator will allow a method to capture a passed block as a named

parameter.

Chapter 4. Introduction to Ruby • 44

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

def wrap &b
print "Santa says: "
3.times(&b)
print "\n"

end
wrap { print "Ho! " }

Within a block, or a method, control is sequential except when there is an

exception.

Exceptions

Exceptions are objects of class Exception or its subclasses. The raise method

causes an exception to be raised. This interrupts the normal flow through

the code. Instead, Ruby searches back through the call stack for code that

says it can handle this exception.

Both methods and blocks of code wrapped between begin and end keywords

intercept certain classes of exceptions using rescue clauses.

begin
content = load_blog_data(file_name)

rescue BlogDataNotFound
STDERR.puts "File #{file_name} not found"

rescue BlogDataFormatError
STDERR.puts "Invalid blog data in #{file_name}"

rescue Exception => exc
STDERR.puts "General error loading #{file_name}: #{exc.message}"

end

rescue clauses can be directly placed on the outermost level of a method defi-

nition without needing to enclose the contents in a begin/end block.

That concludes our brief introduction to control flow, and at this point we

have our basic building blocks upon which we can build larger structures.

4.4 Organizing Structures

There are two basic concepts in Ruby for organizing methods, namely, classes

and modules. We cover each in turn.

Classes

Here’s a Ruby class definition:

Line 1 class Order < ActiveRecord::Base
- has_many :line_items
- def self.find_all_unpaid

self.where('paid = 0')
end

-

5

report erratum • discuss

Organizing Structures • 45

www.allitebooks.com

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///
http://www.allitebooks.org

- def total
sum = 0-

line_items.each {|li| sum += li.total}-

- sum
10

end
end

-

Class definitions start with the keyword class followed by the class name (which

must start with an uppercase letter). This Order class is defined to be a subclass

of the class Base within the ActiveRecord module.

Rails makes heavy use of class-level declarations. Here has_many is a method

that’s defined by Active Record. It’s called as the Order class is being defined.

Normally these kinds of methods make assertions about the class, so in this

book we call them declarations.

Within a class body you can define class methods and instance methods.

Prefixing a method name with self. (as we do on line 3) makes it a class method;

it can be called on the class generally. In this case, we can make the following

call anywhere in our application:

to_collect = Order.find_all_unpaid

Objects of a class hold their state in instance variables. These variables, whose

names all start with @, are available to all the instance methods of a class.

Each object gets its own set of instance variables.

Instance variables are not directly accessible outside the class. To make them

available, write methods that return their values.

class Greeter
def initialize(name)
@name = name

end

def name
@name

end

def name=(new_name)
@name = new_name

end
end

g = Greeter.new("Barney")
g.name # => Barney
g.name = "Betty"
g.name # => Betty

Ruby provides convenience methods that write these accessor methods for

you (which is great news for folks tired of writing all those getters and setters).

Chapter 4. Introduction to Ruby • 46

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

class Greeter
attr_accessor :name # create reader and writer methods
attr_reader :greeting # create reader only
attr_writer :age # create writer only

end

A class’s instance methods are public by default; anyone can call them. You’ll

probably want to override this for methods that are intended to be used only

by other instance methods.

class MyClass
def m1 # this method is public
end
protected
def m2 # this method is protected
end
private
def m3 # this method is private
end

end

The private directive is the strictest; private methods can be called only from

within the same instance. Protected methods can be called both in the same

instance and by other instances of the same class and its subclasses.

Classes are not the only organizing structure in Ruby. The other organizing

structure is a module.

Modules

Modules are similar to classes in that they hold a collection of methods,

constants, and other module and class definitions. Unlike classes, you cannot

create objects based on modules.

Modules serve two purposes. First, they act as a namespace, letting you define

methods whose names will not clash with those defined elsewhere. Second,

they allow you to share functionality between classes—if a class mixes in a

module, that module’s instance methods become available as if they had been

defined in the class. Multiple classes can mix in the same module, sharing

the module’s functionality without using inheritance. You can also mix

multiple modules into a single class.

Helper methods are an example of where Rails uses modules. Rails automat-

ically mixes these helper modules into the appropriate view templates. For

example, if you wanted to write a helper method that would be callable from

views invoked by the store controller, you could define the following module

in the file store_helper.rb in the app/helpers directory:

report erratum • discuss

Organizing Structures • 47

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

module StoreHelper
def capitalize_words(string)
string.split(' ').map {|word| word.capitalize}.join(' ')

end
end

There is one module that is part of the standard library of Ruby that deserves

special mention given its usage in Rails, namely, YAML.

YAML

YAML1 is a recursive acronym that stands for YAML Ain’t Markup Language.

In the context of Rails, YAML is used as a convenient way to define the con-

figuration of things such as databases, test data, and translations. Here is

an example:

development:
adapter: sqlite3
database: db/development.sqlite3
pool: 5
timeout: 5000

In YAML, indentation is important, so this defines development as having a set

of four key-value pairs, separated by colons.

While YAML is one way to represent data, particularly when interacting with

humans, Ruby provides a more general way for representing data for use by

applications.

4.5 Marshaling Objects

Ruby can take an object and convert it into a stream of bytes that can be

stored outside the application. This process is called marshaling. This saved

object can later be read by another instance of the application (or by a totally

separate application), and a copy of the originally saved object can be

reconstituted.

There are two potential issues when you use marshaling. First, some objects

cannot be dumped. If the objects to be dumped include bindings, procedure

or method objects, instances of class IO, or singleton objects, or if you try to

dump anonymous classes or modules, a TypeError will be raised.

Second, when you load a marshaled object, Ruby needs to know the definition

of the class of that object (and of all the objects it contains).

1. http://www.yaml.org/

Chapter 4. Introduction to Ruby • 48

report erratum • discuss

http://www.yaml.org/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Rails uses marshaling to store session data. If you rely on Rails to dynamically

load classes, it is possible that a particular class may not have been defined

at the point it reconstitutes session data. For that reason, you’ll use the

model declaration in your controller to list all models that are marshaled. This

preemptively loads the necessary classes to make marshaling work.

Now that you have the Ruby basics down, let’s give what we learned a whirl

with a slightly larger, annotated example that pulls together a number of

concepts. We’ll follow that with a walk-through of special features that will

help you with your Rails coding.

4.6 Pulling It All Together

Let’s look at an example of how Rails applies a number of Ruby features

together to make the code you need to maintain more declarative. You will

see this example again in Generating the Scaffold, on page 62. For now, we

will focus on the Ruby-language aspects of the example.

class CreateProducts < ActiveRecord::Migration
def change
create_table :products do |t|
t.string :title
t.text :description
t.string :image_url
t.decimal :price, precision: 8, scale: 2

t.timestamps
end

end
end

Even if you didn’t know any Ruby, you would probably be able to decipher

that this code creates a table named products. The fields defined when creating

this table include title, description, image_url, and price as well as a few timestamps

(we’ll describe these in Chapter 22, Migrations, on page 367).

Now let’s look at the same example from a Ruby perspective. A class named

CreateProducts is defined, which inherits from the Migration class from the

ActiveRecord module. One method is defined named change(). This method calls

the create_table() method (defined in ActiveRecord::Migration), passing it the name

of the table in the form of a symbol.

The call to create_table() also passes a block that is to be evaluated before the

table is created. This block, when called, is passed an object named t, which

is used to accumulate a list of fields. Rails defines a number of methods on

this object—methods with names that are named after common data types.

report erratum • discuss

Pulling It All Together • 49

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

These methods, when called, simply add a field definition to the ever-accumu-

lating set of names.

The definition of decimal also accepts a number of optional parameters,

expressed as a hash.

To someone new to Ruby, this is a lot of heavy machinery thrown at solving

such a simple problem. To someone familiar with Ruby, none of this

machinery is particularly heavy. In any case, Rails makes extensive use of

the facilities provided by Ruby to make defining operations (for example,

migration tasks) as simple and as declarative as possible. Even small features

of the language, such as optional parentheses and braces, contribute to the

overall readability and ease of authoring.

Finally, there are a number of small features, or rather idiomatic combinations

of features, that are often not immediately obvious to people new to the Ruby

language. We close this chapter with them.

4.7 Ruby Idioms

A number of individual Ruby features can be combined in interesting ways,

and the meaning of such idiomatic usage is often not immediately obvious to

people new to the language. We use these common Ruby idioms in this book:

Methods such as empty! and empty?
Ruby method names can end with an exclamation mark (a bang method)

or a question mark (a predicate method). Bang methods normally do

something destructive to the receiver. Predicate methods return true or

false depending on some condition.

a || b
The expression a || b evaluates a. If it isn’t false or nil, then evaluation stops,

and the expression returns a. Otherwise, the statement returns b. This is a

common way of returning a default value if the first value hasn’t been set.

a ||= b
The assignment statement supports a set of shortcuts: a op= b is the same

as a = a op b. This works for most operators.

count += 1 # same as count = count + 1
price *= discount # price = price * discount
count ||= 0 # count = count || 0

So, count ||= 0 gives count the value 0 if count doesn’t already have a value.

obj = self.new
Sometimes a class method needs to create an instance of that class.

Chapter 4. Introduction to Ruby • 50

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

class Person < ActiveRecord::Base
def self.for_dave

Person.new(name: 'Dave')
end

end

This works fine, returning a new Person object. But later, someone might

subclass our class.

class Employee < Person
..

end

dave = Employee.for_dave # returns a Person

The for_dave() method was hardwired to return a Person object, so that’s

what is returned by Employee.for_dave. Using self.new instead returns a new

object of the receiver’s class, Employee.

lambda
The lambda operator converts a block into an object of type Proc. An alternate

syntax, introduced in Ruby 1.9, is ->. We will see both syntaxes used in

Scopes, on page 292.

require File.expand_path('../../config/environment', __FILE__)
Ruby’s require method loads an external source file into our application.

This is used to include library code and classes that our application relies

on. In normal use, Ruby finds these files by searching in a list of directo-

ries, the LOAD_PATH.

Sometimes we need to be specific about what file to include. We can do

that by giving require a full filesystem path. The problem is, we don’t know

what that path will be—our users could install our code anywhere.

Wherever our application ends up getting installed, the relative path

between the file doing the requiring and the target file will be the same.

Knowing this, we can construct the absolute path to the target by using

the File.expand_path() method, passing in the relative path to the target file,

as well as the absolute path to the file doing the requiring (available in

the special variable __FILE__).

In addition, there are many good resources on the Web showing Ruby idioms

and Ruby gotchas. Here are just a few:

• http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/

• http://en.wikipedia.org/wiki/Ruby_programming_language

• http://www.zenspider.com/Languages/Ruby/QuickRef.html

report erratum • discuss

Ruby Idioms • 51

http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/
http://en.wikipedia.org/wiki/Ruby_programming_language
http://www.zenspider.com/Languages/Ruby/QuickRef.html
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

By this point, we have a firm foundation upon which to build. We’ve installed

Rails, verified that we have things working with a simple application, covered

a brief description of what Rails is, and reviewed (or for some of you, learned

for the first time) the basics of the Ruby language. Now it is time to put this

knowledge in place to build a larger application.

Chapter 4. Introduction to Ruby • 52

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Part II

Building an Application

http:///

CHAPTER 5

The Depot Application

We could mess around all day hacking together simple test applications, but

that won’t help us pay the bills. So, let’s get our teeth into something meatier.

Let’s create a web-based shopping cart application called Depot.

Does the world need another shopping cart application? Nope, but that hasn’t

stopped hundreds of developers from writing one. Why should we be different?

More seriously, it turns out that our shopping cart will illustrate many of the

features of Rails development. We’ll see how to create simple maintenance

pages, link database tables, handle sessions, and create forms. Over the next

twelve chapters, we’ll also touch on peripheral topics such as unit testing,

security, and page layout.

5.1 Incremental Development

We’ll be developing this application incrementally. We won’t attempt to spec-

ify everything before we start coding. Instead, we’ll work out enough of a

specification to let us start and then immediately create some functionality.

We’ll try ideas, gather feedback, and continue with another cycle of mini-

design and development.

This style of coding isn’t always applicable. It requires close cooperation with

the application’s users because we want to gather feedback as we go along.

We might make mistakes, or the client might discover they asked for one

thing but really wanted something different. It doesn’t matter what the rea-

son—the earlier we discover we’ve made a mistake, the less expensive it will

be to fix that mistake. All in all, with this style of development, there’s a lot

of change as we go along.

Because of this, we need to use a toolset that doesn’t penalize us for changing

our minds. If we decide we need to add a new column to a database table or

In this chapter, we’ll see
• incremental development;
• use cases, page flow, data; and
• priorities.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

change the navigation between pages, we need to be able to get in there and

do it without a bunch of coding or configuration hassle. As you’ll see, Ruby

on Rails shines when it comes to dealing with change—it’s an ideal agile

programming environment.

Along the way, we will be building and maintaining a corpus of tests. These

tests will ensure that the application is always doing what we intend to do.

Not only does Rails enable the creation of such tests, but it actually provides

you with an initial set of tests each time you define a new controller.

On with the application.

5.2 What Depot Does

Let’s start by jotting down an outline specification for the Depot application.

We’ll look at the high-level use cases and sketch out the flow through the web

pages. We’ll also try working out what data the application needs (acknowl-

edging that our initial guesses will likely be wrong).

Use Cases

A use case is simply a statement about how some entity uses a system.

Consultants invent these kinds of phrases to label things we’ve known all

along—it’s a perversion of business life that fancy words always cost more

than plain ones, even though the plain ones are more valuable.

Depot’s use cases are simple (some would say tragically so). We start off by

identifying two different roles or actors: the buyer and the seller.

The buyer uses Depot to browse the products we have to sell, select some to

purchase, and supply the information needed to create an order.

The seller uses Depot to maintain a list of products to sell, to determine the

orders that are awaiting shipping, and to mark orders as shipped. (The seller

also uses Depot to make scads of money and retire to a tropical island, but

that’s the subject of another book.)

For now, that’s all the detail we need. We could go into excruciating detail

about what it means to maintain products and what constitutes an order

ready to ship, but why bother? If there are details that aren’t obvious, we’ll

discover them soon enough as we reveal successive iterations of our work to

the customer.

Talking of getting feedback, let’s get some right now—let’s make sure our

initial (admittedly sketchy) use cases are on the mark by asking our user.

Chapter 5. The Depot Application • 56

report erratum • discusswww.allitebooks.com

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///
http://www.allitebooks.org

Assuming the use cases pass muster, let’s work out how the application will

work from the perspectives of its various users.

Page Flow

We always like to have an idea of the main pages in our applications and to

understand roughly how users navigate between them. This early in the

development, these page flows are likely to be incomplete, but they still help

us focus on what needs doing and know how actions are sequenced.

Some folks like to mock up web application page flows using Photoshop,

Word, or (shudder) HTML. We like using a pencil and paper. It’s quicker, and

the customer gets to play too, grabbing the pencil and scribbling alterations

right on the paper.

The first sketch of the buyer flow is shown in the following figure.

Figure 7—Flow of buyer pages

It’s pretty traditional. The buyer sees a catalog page, from which he selects

one product at a time. Each product selected gets added to the cart, and the

cart is displayed after each selection. The buyer can continue shopping using

report erratum • discuss

What Depot Does • 57

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

the catalog pages or check out and buy the contents of the cart. During

checkout, we capture contact and payment details and then display a receipt

page. We don’t yet know how we’re going to handle payment, so those details

are fairly vague in the flow.

The seller flow, shown in the next figure, is also fairly simple. After logging

in, the seller sees a menu letting her create or view a product or ship existing

orders. Once viewing a product, the seller may optionally edit the product

information or delete the product entirely.

Figure 8—Flow of seller pages

The shipping option is very simplistic. It displays each order that has not yet

been shipped, one order per page. The seller may choose to skip to the next

or may ship the order, using the information from the page as appropriate.

The shipping function is clearly not going to survive long in the real world,

but shipping is also one of those areas where reality is often stranger than

you might think. Overspecify it up front, and we’re likely to get it wrong. For

now let’s leave it as it is, confident that we can change it as the user gains

experience using our application.

Data

Finally, we need to think about the data we’re going to be working with.

Chapter 5. The Depot Application • 58

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Notice that we’re not using words such as schema or classes here. We’re also

not talking about databases, tables, keys, and the like. We’re simply talking

about data. At this stage in the development, we don’t know whether we’ll

even be using a database.

Based on the use cases and the flows, it seems likely that we’ll be working

with the data shown in the following figure. Again, using pencil and paper

seems a whole lot easier than some fancy tool, but use whatever works for

you.

Figure 9—Initial guess at application data

Working on the data diagram raised a couple of questions. As the user buys

items, we’ll need somewhere to keep the list of products they bought, so we

added a cart. But apart from its use as a transient place to keep this product

list, the cart seems to be something of a ghost—we couldn’t find anything

meaningful to store in it. To reflect this uncertainty, we put a question mark

inside the cart’s box in the diagram. We’re assuming this uncertainty will get

resolved as we implement Depot.

Coming up with the high-level data also raised the question of what informa-

tion should go into an order. Again, we chose to leave this fairly open for

now—we will refine this further as we start showing our early iterations to

the customer.

Finally, you might have noticed that we’ve duplicated the product’s price in

the line item data. Here we’re breaking the “initially, keep it simple” rule

slightly, but it’s a transgression based on experience. If the price of a product

changes, that price change should not be reflected in the line item price of

report erratum • discuss

What Depot Does • 59

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

General Recovery Advice

Everything in this book has been tested. If you follow along with this scenario precisely,

using the recommended version of Rails and SQLite3 on Linux, Mac OS X, or Windows,

then everything should work as described. However, deviations from this path may

occur. Typos happen to the best of us, and not only are side explorations possible,

but they are positively encouraged. Be aware that this might lead you to strange

places. Don’t be afraid: specific recovery actions for common problems appear in the

specific sections where such problems often occur. A few additional general suggestions

are included here.

You should only ever need to restart the server in the few places where doing so is

noted in the book. But if you ever get truly stumped, restarting the server might be

worth trying.

A “magic” command worth knowing, explained in detail in Part III, is rake db:migrate:redo.
It will undo and reapply the last migration.

If your server won’t accept some input on a form, refresh the form on your browser

and resubmit it.

currently open orders, so each line item needs to reflect the price of the

product at the time the order was made.

Again, at this point we’ll double-check with the customer that we’re still on

the right track. (The customer was most likely sitting in the room with us

while we drew these three diagrams.)

5.3 Let’s Code

So, after sitting down with the customer and doing some preliminary analysis,

we’re ready to start using a computer for development! We’ll be working from

our original three diagrams, but the chances are pretty good that we’ll be

throwing them away fairly quickly—they’ll become outdated as we gather

feedback. Interestingly, that’s why we didn’t spend too long on them; it’s

easier to throw something away if you didn’t spend a long time creating it.

In the chapters that follow, we’ll start developing the application based on

our current understanding. However, before we turn that page, we have to

answer just one more question: what should we do first?

We like to work with the customer so we can jointly agree on priorities. In

this case, we’d point out to her that it’s hard to develop anything else until

we have some basic products defined in the system, so we suggest spending

a couple of hours getting the initial version of the product maintenance

functionality up and running. And, of course, the client would agree.

Chapter 5. The Depot Application • 60

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 6

Task A: Creating the Application

Our first development task is to create the web interface that lets us maintain

our product information—create new products, edit existing products, delete

unwanted ones, and so on. We’ll develop this application in small iterations,

where small means “measured in minutes.” Typically, our iterations involve

multiple steps, as in iteration C, which has steps C1, C2, C3, and so on. In

this case, the iteration has two steps. Let’s get started.

6.1 Iteration A1: Creating the Products Maintenance Application

At the heart of the Depot application is a database. Getting this installed and

configured and tested before proceeding further will prevent a lot of headaches.

If you aren’t sure what you want, take the defaults, and it will go easy. If you

know what you want, Rails makes it easy for you to describe your configuration.

Creating a Rails Application

In Section 2.1, Creating a New Application, on page 15, we saw how to create a

new Rails application. We’ll do the same thing here. Go to a command prompt,

and type rails new followed by the name of our project. In this case, our project is

called depot, so make sure you are not inside an existing application directory and

type this:

work> rails new depot

We see a bunch of output scroll by. When it has finished, we find that a new

directory, depot, has been created. That’s where we’ll be doing our work.

work> cd depot
depot> ls -p
app/ config/ db/ Gemfile.lock log/ Rakefile test/ vendor/
bin/ config.ru Gemfile lib/ public/ README.rdoc tmp/

Windows users will need to use dir /w instead of ls -p.

In this chapter, we’ll see
• creating a new application,
• configuring the database,
• creating models and controllers,
• adding a stylesheet, and
• updating a layout and a view.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Creating the Database

For this application, we’ll use the open source SQLite database (which you’ll

need if you’re following along with the code). We’re using SQLite version 3

here.

SQLite 3 is the default database for Rails development and was installed along

with Rails in Chapter 1, Installing Rails, on page 3. With SQLite 3 there are

no steps required to create a database, and there are no special user accounts

or passwords to deal with. So, now you get to experience one of the benefits

of going with the flow (or, convention over configuration, as Rails folks say...ad

nauseam).

If it’s important to you to use a database server other than SQLite 3, the

commands you’ll need to create the database and grant permissions will be

different. You will find some helpful hints in the Getting Started Rails Guide.1

Generating the Scaffold

In Figure 9, Initial guess at application data, on page 59, we sketched out the

basic content of the products table. Now let’s turn that into reality. We need to

create a database table and a Rails model that lets our application use that

table, a number of views to make up the user interface, and a controller to

orchestrate the application.

So, let’s create the model, views, controller, and migration for our products
table. With Rails, you can do all that with one command by asking Rails to

generate what is known as a scaffold for a given model. Note that on the

name mapping

↪ on page 270

command line that follows, we use the singular form, Product. In Rails, a

model is automatically mapped to a database table whose name is the plural

form of the model’s class. In our case, we asked for a model called Product, so

Rails associated it with the table called products. (And how will it find that

table? The development entry in config/database.yml tells Rails where to look for it.

For SQLite 3 users, this will be a file in the db directory.)

Note that command is too wide to fit comfortably on the page. To enter a

command on multiple lines, simply put a backslash as the last character on

all but the last line, and you’ll be prompted for more input. Windows users

will need to substitute a caret (^) for the backslash.

depot> rails generate scaffold Product \
title:string description:text image_url:string price:decimal

invoke active_record
create db/migrate/20121130000001_create_products.rb

1. http://guides.rubyonrails.org/getting_started.html#configuring-a-database

Chapter 6. Task A: Creating the Application • 62

report erratum • discuss

http://guides.rubyonrails.org/getting_started.html#configuring-a-database
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

create app/models/product.rb
invoke test_unit
create test/models/product_test.rb
create test/fixtures/products.yml
invoke resource_route
route resources :products
invoke jbuilder_scaffold_controller
create app/controllers/products_controller.rb
invoke erb
create app/views/products
create app/views/products/index.html.erb
create app/views/products/edit.html.erb
create app/views/products/show.html.erb
create app/views/products/new.html.erb
create app/views/products/_form.html.erb
invoke test_unit
create test/controllers/products_controller_test.rb
invoke helper
create app/helpers/products_helper.rb
invoke test_unit
create test/helpers/products_helper_test.rb
invoke jbuilder
exist app/views/products
create app/views/products/index.json.jbuilder
create app/views/products/show.json.jbuilder
invoke assets
invoke coffee
create app/assets/javascripts/products.js.coffee
invoke scss
create app/assets/stylesheets/products.css.scss
invoke scss
create app/assets/stylesheets/scaffolds.css.scss

The generator creates a bunch of files. The one we’re interested in first is the

migration one, namely, 20121130000001_create_products.rb.

A migration represents a change we want to make to the data, expressed in a

source file in database-independent terms. These changes can update both the

database schema and the data in the database tables. We apply these migrations

to update our database, and we can unapply them to roll our database back. We

have a whole section on migrations starting in Chapter 22, Migrations, on page

367. For now, we’ll just use them without too much more comment.

The migration has a UTC-based timestamp prefix (20121130000001), a name

(create_products), and a file extension (.rb, because it’s Ruby code).

The timestamp prefix you will see will be different. In fact, the timestamps

used in this book are clearly fictitious. Typically your timestamps will not be

consecutive; instead, they will reflect the time the migration was created.

report erratum • discuss

Iteration A1: Creating the Products Maintenance Application • 63

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Applying the Migration

Although we have already told Rails about the basic data types of each

property, let’s refine the definition of the price to have eight digits of signifi-

cance and two digits after the decimal point.

Download rails40/depot_a/db/migrate/20121130000001_create_products.rb

class CreateProducts < ActiveRecord::Migration
def change
create_table :products do |t|
t.string :title
t.text :description
t.string :image_url
t.decimal :price, precision: 8, scale: 2➤

t.timestamps
end

end
end

Now that we are done with our changes, we need to get Rails to apply this

migration to our development database. We do this using the rake command.

Rake is like having a reliable assistant on hand all the time: you tell it to do

some task, and that task gets done. In this case, we’ll tell Rake to apply any

unapplied migrations to our database.

depot> rake db:migrate
== CreateProducts: migrating ===
-- create_table(:products)

-> 0.0027s
== CreateProducts: migrated (0.0023s) ==

And that’s it. Rake looks for all the migrations not yet applied to the database

and applies them. In our case, the products table is added to the database

defined by the development section of the database.yml file.

OK, all the groundwork has been done. We set up our Depot application as

a Rails project. We created the development database and configured our

application to be able to connect to it. We created a products controller and

a Product model and used a migration to create the corresponding products table.

And a number of views have been created for us. It’s time to see all this in

action.

Seeing the List of Products

With three commands we have created an application and a database (or a

table inside an existing database, if you chose something besides SQLite 3).

Chapter 6. Task A: Creating the Application • 64

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_a/db/migrate/20121130000001_create_products.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Before we worry too much about just what happened behind the scenes here,

let’s try our shiny new application.

First, we’ll start a local server, supplied with Rails.

depot> rails server
=> Booting WEBrick
=> Rails 4.0.0 application starting in development on http://0.0.0.0:3000
=> Run `rails server -h` for more startup options
=> Ctrl-C to shutdown server
[2013-04-18 17:45:38] INFO WEBrick 1.3.1
[2013-04-18 17:45:38] INFO ruby 2.0.0 (2013-02-24) [x86_64-linux]
[2013-04-18 17:45:43] INFO WEBrick::HTTPServer#start: pid=24649 port=3000

Just as it did with our demo application on page 15, this command starts a

web server on our local host, port 3000. If you get an error saying Address already
in use when you try to run the server, that simply means you already have a

Rails server running on your machine. If you’ve been following along with the

examples in the book, that might well be the “Hello, World!” application from

Chapter 4. Find its console, and kill the server using Ctrl-C. If you are running

on Windows, you may see the prompt Terminate batch job (Y/N)?. If so, respond

with y.

Let’s connect to our application. Remember, the URL we give to our browser

contains both the port number (3000) and the name of the controller in low-

ercase (products).

That’s pretty boring. It’s showing us an empty list of products. Let’s add some.

Click the New Product link, and a form should appear as shown in Figure

10, Form for adding new products, on page 66.

These forms are simply HTML templates, just like the ones you created in

Section 2.2, Hello, Rails!, on page 17. In fact, we can modify them. Let’s change

the number of lines in the description field.

report erratum • discuss

Iteration A1: Creating the Products Maintenance Application • 65

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 10—Form for adding new products

Download rails40/depot_a/app/views/products/_form.html.erb

<%= form_for(@product) do |f| %>
<% if @product.errors.any? %>
<div id="error_explanation">

<h2><%= pluralize(@product.errors.count, "error") %>
prohibited this product from being saved:</h2>

<% @product.errors.full_messages.each do |msg| %>

<%= msg %>
<% end %>

</div>
<% end %>

<div class="field">
<%= f.label :title %>

<%= f.text_field :title %>

</div>
<div class="field">
<%= f.label :description %>

<%= f.text_area :description, rows: 6 %>➤

</div>
<div class="field">
<%= f.label :image_url %>

<%= f.text_field :image_url %>

</div>

Chapter 6. Task A: Creating the Application • 66

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_a/app/views/products/_form.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<div class="field">
<%= f.label :price %>

<%= f.text_field :price %>

</div>
<div class="actions">
<%= f.submit %>

</div>
<% end %>

We will explore this more in Chapter 8, Task C: Catalog Display, on page 91.

But for now, we’ve adjusted one field to taste, so let’s fill it in.

Figure 11—Creating our first product

Click the Create button, and you should see the new product was successfully

created. If you now click the Back link, you should see the new product in

the list, as shown in Figure 12, See the product as it appears in the database.,

on page 68.

Perhaps it isn’t the prettiest interface, but it works, and we can show it to

our client for approval. She can play with the other links (showing details,

editing existing products, and so on). We explain to her that this is only a

first step—we know it’s rough, but we wanted to get her feedback early. (And

four commands probably count as early in anyone’s book.)

report erratum • discuss

Iteration A1: Creating the Products Maintenance Application • 67

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 12—See the product as it appears in the database.

At this point, you’ve accomplished a lot with only four commands. Before we

move on, let’s try one more command.

rake test

Included in the output should be two lines that each say 0 failures, 0 errors. This

is for the model and controller tests that Rails generates along with the scaf-

folding. They are minimal at this point, but simply knowing that they are

there and that they pass should give you confidence. As you proceed through

these chapters in Part II, you are encouraged to run this command frequently

because it will help you spot and track down errors. We will cover this more

in Section 7.2, Iteration B2: Unit Testing of Models, on page 82.

Note that if you’ve used a database other than SQLite3, this step may have

failed. Check your database.yml file, and see the notes in Section 23.1, A Stand-

Alone Application Using Active Record, on page 385.

6.2 Iteration A2: Making Prettier Listings

Our customer has one more request (customers always seem to have one

more request, don’t they?). The listing of all the products is ugly. Can we

“pretty it up” a bit? And, while we’re in there, can we also display the product

image along with the image URL?

We’re faced with a dilemma here. As developers, we’re trained to respond to

these kinds of requests with a sharp intake of breath, a knowing shake of the

head, and a murmured “You want what?” At the same time, we also like to

show off a bit. In the end, the fact that it’s fun to make these kinds of changes

using Rails wins out, and we fire up our trusty editor.

Chapter 6. Task A: Creating the Application • 68

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Before we get too far, though, it would be nice if we had a consistent set of

test data to work with. We could use our scaffold-generated interface and type

data in from the browser. However, if we did this, future developers working

on our codebase would have to do the same. And, if we were working as part

of a team on this project, each member of the team would have to enter their

own data. It would be nice if we could load the data into our table in a more

controlled way. It turns out that we can. Rails has the ability to import seed

data.

To start, we simply modify the file in the db directory named seeds.rb.

We then add the code to populate the products table. This uses the create!()
method of the Product model. The following is an extract from that file. Rather

download

↪ on page xvi

than type the file by hand, you might want to download the file from the

sample code available online.2

While you’re there, copy the images3 into the app/assets/images directory in your

application. Be warned: this seeds.rb script removes existing data from the

products table before loading the new data. You might not want to run it if

you’ve just spent several hours typing your own data into your application!

Download rails40/depot_a/db/seeds.rb

Product.delete_all
. . .
Product.create!(title: 'Programming Ruby 1.9 & 2.0',

description:
%{<p>

Ruby is the fastest growing and most exciting dynamic language
out there. If you need to get working programs delivered fast,
you should add Ruby to your toolbox.

</p>},
image_url: 'ruby.jpg',
price: 49.95)

. . .

(Note that this code uses %{…}. This is an alternative syntax for double-

quoted string literals, convenient for use with long strings. Note also that

because it uses Rails’ create!() method, it will raise an exception if records

cannot be inserted because of validation errors.)

To populate your products table with test data, run the following command:

depot> rake db:seed

2. http://media.pragprog.com/titles/rails4/code/rails40/depot_a/db/seeds.rb

3. http://media.pragprog.com/titles/rails4/code/rails40/depot_a/app/assets/images/

report erratum • discuss

Iteration A2: Making Prettier Listings • 69

http://media.pragprog.com/titles/rails4/code/rails40/depot_a/db/seeds.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_a/db/seeds.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_a/app/assets/images/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Now let’s get the product listing tidied up. There are two pieces to this:

defining a set of style rules and connecting these rules to the page by defining

an HTML class attribute on the page.

We need somewhere to put our style definitions. As you will continue to find

with Rails, there is a convention for this, and the generate scaffold command

that you previously issued has already laid all of the necessary groundwork.

As such, we can proceed to fill in the currently empty stylesheet products.css.scss
in the directory app/assets/stylesheets.

Download rails40/depot_a/app/assets/stylesheets/products.css.scss

// Place all the styles related to the Products controller here.
// They will automatically be included in application.css.
// You can use Sass (SCSS) here: http://sass-lang.com/

➤ .products {
➤ table {

border-collapse: collapse;➤

}➤

➤

➤ table tr td {
padding: 5px;➤

➤ vertical-align: top;
}➤

➤

➤ .list_image {
width: 60px;➤

➤ height: 70px;
}➤

➤

➤ .list_description {
width: 60%;➤

➤

➤ dl {
➤ margin: 0;

}➤

➤

dt {➤

color: #244;➤

➤ font-weight: bold;
font-size: larger;➤

}➤

➤

➤ dd {
➤ margin: 0;

}➤

.list_actions {

}➤

➤

➤

Chapter 6. Task A: Creating the Application • 70

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_a/app/assets/stylesheets/products.css.scss
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

font-size: x-small;➤

➤ text-align: right;
➤ padding-left: 1em;

}➤

➤

➤ .list_line_even {
background: #e0f8f8;➤

}➤

➤

➤ .list_line_odd {
background: #f8b0f8;➤

➤ }
}➤

If you choose to download this file, make sure that the timestamp on the file

is updated. If the timestamp is not updated, Rails won’t pick up the changes

until the server is restarted. You can update the timestamp by going into your

favorite editor and saving it. On Mac OS X and Linux, you can use the touch
command.

Look closely at this stylesheet and you will see that CSS rules are nested, in

that the rule for dl is defined inside the rule for .list_description, which itself is

defined inside the rule for products. This tends to make rules less repetitive

and therefore easier to read, write, understand, and maintain.

At this point you are familiar with files ending with erb being preprocessed

for embedded Ruby expressions and statements. If you note that this file ends

with scss, you might guess that this means that the file is preprocessed as

Sassy CSS
4 before being served as css. And you would be right!

Again, just like ERB, SCSS does not interfere with writing correct CSS. What

SCSS does is provide additional syntax that makes your stylesheets easier

to author and easier to maintain. All of this is converted for you by SCSS to

standard CSS that your browser understands. You can find out more about

SCSS in Pragmatic Guide to Sass [CC11].

Finally, we will need to define the products class used by this stylesheet. If you

look at the .html.erb files we’ve created so far, you won’t find any reference to

stylesheets. You won’t even find the HTML <head> section where such refer-

ences would normally live. Instead, Rails keeps a separate file that is used to

create a standard page environment for the entire application. This file, called

application.html.erb, is a Rails layout and lives in the layouts directory.

4. http://sass-lang.com/

report erratum • discuss

Iteration A2: Making Prettier Listings • 71

http://sass-lang.com/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_a/app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>

<title>Depot</title>
<%= stylesheet_link_tag "application", media: "all",
"data-turbolinks-track" => true %>

<body class='<%= controller.controller_name %>'>

<%= javascript_include_tag "application", "data-turbolinks-track" => true %>
<%= csrf_meta_tags %>

</head>
➤

<%= yield %>
</body>
</html>

Because Rails loads all of the stylesheets all at once, we need a convention

to limit controller-specific rules to pages associated with that controller. Using

the controller_name as a class name is an easy way to accomplish that and is

what we have done here.

Now that we have the stylesheets all in place, we will use a simple table-based

template, editing the file index.html.erb in app/views/products and replacing the

scaffold-generated view.

Download rails40/depot_a/app/views/products/index.html.erb

<h1>Listing products</h1>

<table>
<% @products.each do |product| %>

<tr class="<%= cycle('list_line_odd', 'list_line_even') %>">
<td>

<%= image_tag(product.image_url, class: 'list_image') %>
</td>
<td class="list_description">
<dl>

<dt><%= product.title %></dt>
<dd><%= truncate(strip_tags(product.description), length: 80) %></dd>

</dl>
</td>
<td class="list_actions">

<%= link_to 'Show', product %>

<%= link_to 'Edit', edit_product_path(product) %>

<%= link_to 'Destroy', product, method: :delete,

data: { confirm: 'Are you sure?' } %>
</td>

</tr>
<% end %>
</table>

Chapter 6. Task A: Creating the Application • 72

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_a/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_a/app/views/products/index.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<%= link_to 'New product', new_product_path %>

Even this simple template uses a number of built-in Rails features.

• The rows in the listing have alternating background colors. The Rails

helper method called cycle() does this by setting the CSS class of each row

to either list_line_even or list_line_odd, automatically toggling between the two

style names on successive lines.

• The truncate() helper is used to display just the first eighty characters of

the description. But before we call truncate(), we called strip_tags() in order

to remove the HTML tags from the description.

• Look at the link_to 'Destroy' line. See how it has the parameter data: { confirm:
'Are you sure?' }. If you click this link, Rails arranges for your browser to pop

up a dialog box asking for confirmation before following the link and

deleting the product. (Also, see the sidebar on page 75 for some inside

scoop on this action.)

We loaded some test data into the database, we rewrote the index.html.erb file
that displays the listing of products, we filled in the products.css.scss stylesheet,

and that stylesheet was loaded into our page by the layout file application.html.erb.
Now, let’s bring up a browser and point to http://localhost:3000/products;

the resulting product listing might look something like Figure 13, A slightly

prettier view, on page 74.

So, we proudly show our customer her new product listing, and she’s pleased.

Now it is time to create the storefront.

What We Just Did

In this chapter, we laid the groundwork for our store application.

• We created a development database.

• We used a migration to create and modify the schema in our development

database.

• We created the products table and used the scaffold generator to write an

application to maintain it.

• We updated an application-wide layout as well as a controller-specific

view in order to show a list of products.

What we’ve done did not require much effort, and it got us up and running

quickly. Databases are vital to this application but need not be scary—in fact,

report erratum • discuss

Iteration A2: Making Prettier Listings • 73

http://localhost:3000/products
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 13—A slightly prettier view

in many cases we can defer the selection of the database to later and simply

get started using the default that Rails provides.

Getting the model right is more important at this stage. As we will soon see,

simple selection of data types doesn’t always fully capture the essence of all

the properties of the model, even in this small application, so that’s what we

will tackle next.

Playtime

Here’s some stuff to try on your own:

• If you’re feeling frisky, you can experiment with rolling back the migration.

Just type the following:

depot> rake db:rollback

Your schema will be transported back in time, and the products table will

be gone. Calling rake db:migrate again will re-create it. You will also want to

reload the seed data. More information can be found in Chapter 22,

Migrations, on page 367.

• We mentioned version control in Version Control, on page 9, and now

would be a great point at which to save your work. Should you happen

to choose Git (highly recommended, by the way), there is a tiny bit of

Chapter 6. Task A: Creating the Application • 74

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

What’s with method: :delete?

You may have noticed that the scaffold-generated Destroy link includes the parameter

method: :delete. This determines which method is called in the ProductsController class and

also affects which HTTP method is used.

Browsers use HTTP to talk with servers. HTTP defines a set of verbs that browsers

can employ and defines when each can be used. A regular hyperlink, for example,

uses an HTTP GET request. A GET request is defined by HTTP to be used to retrieve

data; it isn’t supposed to have any side effects. Using this parameter in this way

indicates that an HTTP DELETE method should be used for this hyperlink. Rails uses

this information to determine which action in the controller to route this request to.

Note that when used within a browser, Rails will substitute the POST HTTP method

for PUT, PATCH, and DELETE methods and in the process tack on an additional

parameter so that the router can determine the original intent. Either way, the request

will not be cached or triggered by web crawlers.

configuration you need to do first; basically, all you need to do is provide

your name and email address.

depot> git config --global --add user.name "Sam Ruby"
depot> git config --global --add user.email rubys@intertwingly.net

You can verify the configuration with the following command:

depot> git config --global --list

Rails also provides a file named .gitignore, which tells Git which files are

not to be version controlled.

Download rails40/depot_a/.gitignore

See http://help.github.com/ignore-files/ for more about ignoring files.
#
If you find yourself ignoring temporary files generated by your text editor
or operating system, you probably want to add a global ignore instead:
git config --global core.excludesfile '~/.gitignore_global'

Ignore bundler config.
/.bundle

Ignore the default SQLite database.
/db/*.sqlite3
/db/*.sqlite3-journal

Ignore all logfiles and tempfiles.
/log/*.log
/tmp

report erratum • discuss

Iteration A2: Making Prettier Listings • 75

http://media.pragprog.com/titles/rails4/code/rails40/depot_a/.gitignore
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Note that because this filename begins with a dot, Unix-based operating

systems won’t show it by default in directory listings. Use ls -a to see it.

At this point, you are fully configured. The only tasks that remain are to

initialize a repository, add all the files, and commit them with a commit

message.

depot> git init
depot> git add .
depot> git commit -m "Depot Scaffold"

This may not seem very exciting at this point, but it does mean you are

more free to experiment. Should you overwrite or delete a file that you

didn’t mean to, you can always get back to this point by issuing a single

command.

depot> git checkout .

Chapter 6. Task A: Creating the Application • 76

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 7

Task B: Validation and Unit Testing

At this point, we have an initial model for a product, as well as a complete

maintenance application for this data provided for us by Rails scaffolding. In

this chapter, we are going to focus on making the model more bulletproof—as

in, making sure that errors in the data provided never get committed to the

database—before we proceed to other aspects of the Depot application in

subsequent chapters.

7.1 Iteration B1: Validating!

While playing with the results of iteration A1, our client noticed something.

If she entered an invalid price or forgot to set up a product description, the

application happily accepted the form and added a line to the database.

Although a missing description is embarrassing, a price of $0.00 actually

costs her money, so she asked that we add validation to the application. No

product should be allowed in the database if it has an empty title or descrip-

tion field, an invalid URL for the image, or an invalid price.

So, where do we put the validation? The model layer is the gatekeeper between

the world of code and the database. Nothing to do with our application comes

out of the database or gets stored into the database that doesn’t first go

through the model. This makes models an ideal place to put validations; it

doesn’t matter whether the data comes from a form or from some program-

matic manipulation in our application. If a model checks it before writing to

the database, then the database will be protected from bad data.

Let’s look at the source code of the model class (in app/models/product.rb):

class Product < ActiveRecord::Base
end

In this chapter, we’ll see
• performing validation and error reporting and
• unit testing.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Adding our validation should be fairly clean. Let’s start by validating that the

text fields all contain something before a row is written to the database. We

do this by adding some code to the existing model.

validates :title, :description, :image_url, presence: true

The validates() method is the standard Rails validator. It will check one or more

model fields against one or more conditions.

presence: true tells the validator to check that each of the named fields is present

and its contents are not empty. In the following figure we can see what hap-

pens if we try to submit a new product with none of the fields filled in. It’s

pretty impressive: the fields with errors are highlighted, and the errors are

summarized in a nice list at the top of the form. That’s not bad for one line

of code. You might also have noticed that after editing and saving the product.rb
file you didn’t have to restart the application to test your changes—the same

reloading that caused Rails to notice the earlier change to our schema also

means it will always use the latest version of our code.

Figure 14—Validating that fields are present

Chapter 7. Task B: Validation and Unit Testing • 78

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

We’d also like to validate that the price is a valid, positive number. We’ll use

the delightfully named numericality() option to verify that the price is a valid

number. We also pass the rather verbosely named :greater_than_or_equal_to option

a value of 0.01.

validates :price, numericality: {greater_than_or_equal_to: 0.01}

Now, if we add a product with an invalid price, the appropriate message will

appear, as shown in the following figure:

Figure 15—The price fails validation.

Why test against 1 cent, rather than zero? Well, it’s possible to enter a number

such as 0.001 into this field. Because the database stores just two digits after

the decimal point, this would end up being zero in the database, even though

it would pass the validation if we compared against zero. Checking that the

number is at least 1 cent ensures only correct values end up being stored.

report erratum • discuss

Iteration B1: Validating! • 79

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

We have two more items to validate. First, we want to make sure each product

has a unique title. One more line in the Product model will do this. The

uniqueness validation will perform a simple check to ensure that no other

row in the products table has the same title as the row we’re about to save.

validates :title, uniqueness: true

regular expression

↪ on page 42

Lastly, we need to validate that the URL entered for the image is valid. We’ll

do this using the format option, which matches a field against a regular

expression. For now we’ll just check that the URL ends with one of .gif, .jpg,
or .png.

validates :image_url, allow_blank: true, format: {
with: %r{\.(gif|jpg|png)\Z}i,
message: 'must be a URL for GIF, JPG or PNG image.'

}

Note that we used the allow_blank option to avoid getting multiple error messages

when the field is blank.

Later, we’d probably want to change this form to let the user select from a

list of available images, but we’d still want to keep the validation to prevent

malicious folks from submitting bad data directly.

So, in a couple of minutes we’ve added validations that check the following:

• The field’s title, description, and image URL are not empty.

• The price is a valid number not less than $0.01.

• The title is unique among all products.

• The image URL looks reasonable.

Your updated Product model should look like this:

Download rails40/depot_b/app/models/product.rb

class Product < ActiveRecord::Base
validates :title, :description, :image_url, presence: true
validates :price, numericality: {greater_than_or_equal_to: 0.01}
validates :title, uniqueness: true
validates :image_url, allow_blank: true, format: {
with: %r{\.(gif|jpg|png)\Z}i,
message: 'must be a URL for GIF, JPG or PNG image.'

}
end

Nearing the end of this cycle, we ask our customer to play with the application,

and she’s a lot happier. It took only a few minutes, but the simple act of

adding validation has made the product maintenance pages seem a lot more

solid.

Chapter 7. Task B: Validation and Unit Testing • 80

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_b/app/models/product.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Before we move on, we once again try our tests.

rake test

Uh-oh. This time we see failures. Two, actually—one in should create product and

one in should update product. Clearly something we did caused something to do

with the creation and updating of products to fail. This isn’t all that surprising.

After all, when you think about it, isn’t that the whole point of validation?

The solution is to give valid test data in test/controllers/products_controller_test.rb.

Download rails40/depot_b/test/controllers/products_controller_test.rb

require 'test_helper'
class ProductsControllerTest < ActionController::TestCase

setup do
@product = products(:one)
@update = {➤

title: 'Lorem Ipsum',➤

➤ description: 'Wibbles are fun!',
➤ image_url: 'lorem.jpg',

price: 19.95➤

}➤

end

test "should get index" do
get :index
assert_response :success
assert_not_nil assigns(:products)

end

test "should get new" do
get :new
assert_response :success

end

test "should create product" do
assert_difference('Product.count') do
post :create, product: @update➤

end

assert_redirected_to product_path(assigns(:product))
end

...
test "should update product" do
patch :update, id: @product, product: @update➤

assert_redirected_to product_path(assigns(:product))
end

...
end

report erratum • discuss

Iteration B1: Validating! • 81

http://media.pragprog.com/titles/rails4/code/rails40/depot_b/test/controllers/products_controller_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

After making this change, we rerun the tests, and they report that all is well.

But all that means is that we didn’t break anything. We need to do more than

that. We need to make sure the validation code that we just added not only

works now but will continue to work as we make further changes. We’ll cover

controller tests in more detail in Section 8.4, Iteration C4: Functional Testing

of Controllers, on page 101. As for now, it is time for us to write some unit tests.

7.2 Iteration B2: Unit Testing of Models

One of the real joys of the Rails framework is that it has support for testing

baked right in from the start of every project. As we have seen, from the

moment you create a new application using the rails command, Rails starts

generating a test infrastructure for you.

Let’s take a peek inside the models subdirectory to see what’s already there:

depot> ls test/models
product_test.rb

product_test.rb is the file that Rails created to hold the unit tests for the model

we created earlier with the generate script. This is a good start, but Rails can

help us only so much.

Let’s see what kind of test goodies Rails generated inside test/models/product_test.rb
when we generated that model:

Download rails40/depot_a/test/models/product_test.rb

require 'test_helper'

class ProductTest < ActiveSupport::TestCase
test "the truth" do
assert true
end

end

The generated ProductTest is a subclass of ActiveSupport::TestCase. The fact that

ActiveSupport::TestCase is a subclass of the MiniTest::Unit::TestCase class tells us that

Rails generates tests based on the MiniTest1 framework that comes preinstalled

with Ruby. This is good news because it means if we’ve already been testing

our Ruby programs with MiniTest tests (and why wouldn’t we be?), then we

can build on that knowledge to test Rails applications. If you’re new to

MiniTest, don’t worry. We’ll take it slow.

Inside this test case, Rails generated a single commented-out test called "the
truth". The test...do syntax may seem surprising at first, but here Active Support

1. http://www.ruby-doc.org/stdlib-2.0/libdoc/minitest/unit/rdoc/MiniTest.html

Chapter 7. Task B: Validation and Unit Testing • 82

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_a/test/models/product_test.rb
http://www.ruby-doc.org/stdlib-2.0/libdoc/minitest/unit/rdoc/MiniTest.html
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

is combining a class method, optional parentheses, and a block to make

defining a test method just the tiniest bit simpler for you. Sometimes it is the

little things that make all the difference.

The assert line in this method is an actual test. It isn’t much of one, though—all

it does is test that true is true. Clearly, this is a placeholder, one that is

intended to be replaced by your actual tests.

A Real Unit Test

Let’s get onto the business of testing validation. First, if we create a product

with no attributes set, we’ll expect it to be invalid and for there to be an error

associated with each field. We can use the model’s errors() and invalid?() methods

to see whether it validates, and we can use the any?() method of the error list

to see whether there is an error associated with a particular attribute.

Now that we know what to test, we need to know how to tell the test framework

whether our code passes or fails. We do that using assertions. An assertion

is simply a method call that tells the framework what we expect to be true.

The simplest assertion is the method assert(), which expects its argument to

be true. If it is, nothing special happens. However, if the argument to assert()
is false, the assertion fails. The framework will output a message and will

stop executing the test method containing the failure. In our case, we expect

that an empty Product model will not pass validation, so we can express that

expectation by asserting that it isn’t valid.

assert product.invalid?

Replace the test the truth with the following code:

Download rails40/depot_b/test/models/product_test.rb

test "product attributes must not be empty" do
product = Product.new
assert product.invalid?
assert product.errors[:title].any?
assert product.errors[:description].any?
assert product.errors[:price].any?
assert product.errors[:image_url].any?

end

We can rerun just the unit tests by issuing the command rake test:models. When

we do so, we now see the test executed successfully.

depot> rake test:models
.
Finished tests in 0.257961s, 3.8766 tests/s, 19.3828 assertions/s.
1 tests, 5 assertions, 0 failures, 0 errors, 0 skips

report erratum • discuss

Iteration B2: Unit Testing of Models • 83

http://media.pragprog.com/titles/rails4/code/rails40/depot_b/test/models/product_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Sure enough, the validation kicked in, and all our assertions passed.

Clearly at this point we can dig deeper and exercise individual validations.

Let’s look at just three of the many possible tests.

First, we’ll check that the validation of the price works the way we expect.

Download rails40/depot_c/test/models/product_test.rb

test "product price must be positive" do
product = Product.new(title: "My Book Title",

description: "yyy",
image_url: "zzz.jpg")

product.price = -1
assert product.invalid?
assert_equal ["must be greater than or equal to 0.01"],
product.errors[:price]

product.price = 0
assert product.invalid?
assert_equal ["must be greater than or equal to 0.01"],
product.errors[:price]

product.price = 1
assert product.valid?

end

In this code we create a new product and then try setting its price to -1, 0,

and +1, validating the product each time. If our model is working, the first

two should be invalid, and we verify the error message associated with the

price attribute is what we expect.

The last price is acceptable, so we assert that the model is now valid. (Some

folks would put these three tests into three separate test methods—that’s

perfectly reasonable.)

Next, we’ll test that we’re validating that the image URL ends with one of .gif,
.jpg, or .png.

Download rails40/depot_c/test/models/product_test.rb

def new_product(image_url)
Product.new(title: "My Book Title",

description: "yyy",
price: 1,
image_url: image_url)

end
test "image url" do

ok = %w{ fred.gif fred.jpg fred.png FRED.JPG FRED.Jpg
http://a.b.c/x/y/z/fred.gif }

bad = %w{ fred.doc fred.gif/more fred.gif.more }
ok.each do |name|
assert new_product(name).valid?, "#{name} should be valid"

Chapter 7. Task B: Validation and Unit Testing • 84

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_c/test/models/product_test.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_c/test/models/product_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

end
bad.each do |name|
assert new_product(name).invalid?, "#{name} shouldn't be valid"

end
end

Here we’ve mixed things up a bit. Rather than write the nine separate tests,

we’ve used a couple of loops—one to check the cases we expect to pass vali-

dation and the second to try cases we expect to fail. At the same time, we

factored out the common code between the two loops.

You’ll notice that we’ve also added an extra parameter to our assert method

calls. All of the testing assertions accept an optional trailing parameter

containing a string. This will be written along with the error message if the

assertion fails and can be useful for diagnosing what went wrong.

Finally, our model contains a validation that checks that all the product titles

in the database are unique. To test this one, we’re going to need to store

product data in the database.

One way to do this would be to have a test create a product, save it, then

create another product with the same title, and try to save it too. This would

clearly work. But there’s a much simpler way—we can use Rails fixtures.

Test Fixtures

In the world of testing, a fixture is an environment in which you can run a

test. If you’re testing a circuit board, for example, you might mount it in a

test fixture that provides it with the power and inputs needed to drive the

function to be tested.

In the world of Rails, a test fixture is simply a specification of the initial con-

tents of a model (or models) under test. If, for example, we want to ensure

that our products table starts off with known data at the start of every unit test,

we can specify those contents in a fixture, and Rails will take care of the rest.

You specify fixture data in files in the test/fixtures directory. These files contain

YAML

↪ on page 48

test data in YAML format. Each fixture file contains the data for a single

model. The name of the fixture file is significant; the base name of the file

must match the name of a database table. Because we need some data for a

Product model, which is stored in the products table, we’ll add it to the file called

products.yml.

Rails already created this fixture file when we first created the model.

report erratum • discuss

Iteration B2: Unit Testing of Models • 85

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_b/test/fixtures/products.yml

Read about fixtures at
http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html
one:

title: MyString
description: MyText
image_url: MyString
price: 9.99

two:
title: MyString
description: MyText
image_url: MyString
price: 9.99

The fixture file contains an entry for each row that we want to insert into the

database. Each row is given a name. In the case of the Rails-generated fixture,

the rows are named one and two. This name has no significance as far as the

database is concerned—it is not inserted into the row data. Instead, as we’ll

see shortly, the name gives us a convenient way to reference test data inside

our test code. They also are the names used in the generated integration tests,

so for now, we’ll leave them alone.

Inside each entry you’ll see an indented list of name-value pairs. Just like in

your config/database.yml, you must use spaces, not tabs, at the start of each of

the data lines, and all the lines for a row must have the same indentation.

Be careful as you make changes because you will need to make sure the

names of the columns are correct in each entry; a mismatch with the database

column names may cause a hard-to-track-down exception.

Let’s add some more data to the fixture file with something we can use to test

our Product model.

Download rails40/depot_c/test/fixtures/products.yml

ruby:
title: Programming Ruby 1.9
description:
Ruby is the fastest growing and most exciting dynamic
language out there. If you need to get working programs
delivered fast, you should add Ruby to your toolbox.

price: 49.50
image_url: ruby.png

Now that we have a fixture file, we want Rails to load the test data into the

products table when we run the unit test. And, in fact, Rails is already doing

this (convention over configuration for the win!), but you can control which

fixtures to load by specifying the following line in test/models/product_test.rb:

Chapter 7. Task B: Validation and Unit Testing • 86

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_b/test/fixtures/products.yml
http://media.pragprog.com/titles/rails4/code/rails40/depot_c/test/fixtures/products.yml
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

David says:

Picking Good Fixture Names

Just like the names of variables in general, you want to keep the names of fixtures

as self-explanatory as possible. This increases the readability of the tests when you’re

asserting that product(:valid_order_for_fred) is indeed Fred’s valid order. It also makes it a

lot easier to remember which fixture you’re supposed to test against without having

to look up p1 or order4. The more fixtures you get, the more important it is to pick good

fixture names. So, starting early keeps you happy later.

But what do we do with fixtures that can’t easily get a self-explanatory name like

valid_order_for_fred? Pick natural names that you have an easier time associating to a

role. For example, instead of using order1, use christmas_order. Instead of customer1, use

fred. Once you get into the habit of natural names, you’ll soon be weaving a nice little

story about how fred is paying for his christmas_order with his invalid_credit_card first, then

paying with his valid_credit_card, and finally choosing to ship it all off to aunt_mary.

Association-based stories are key to remembering large worlds of fixtures with ease.

class ProductTest < ActiveSupport::TestCase
➤ fixtures :products

#...
end

The fixtures() directive loads the fixture data corresponding to the given model

name into the corresponding database table before each test method in the test

case is run. The name of the fixture file determines the table that is loaded, so

using :products will cause the products.yml fixture file to be used.

Let’s say that again another way. In the case of our ProductTest class, adding

the fixtures directive means that the products table will be emptied out and then

populated with the three rows defined in the fixture before each test method

is run.

Note that most of the scaffolding that Rails generates doesn’t contain calls to

the fixtures method. That’s because the default for tests is to load all fixtures

before running the test. Because that default is generally the one you want,

there usually isn’t any need to change it. Once again, conventions are used

to eliminate the need for unnecessary configuration.

So far, we’ve been doing all our work in the development database. Now that

we’re running tests, though, Rails needs to use a test database. If you look

in the database.yml file in the config directory, you’ll notice Rails actually created

a configuration for three separate databases.

report erratum • discuss

Iteration B2: Unit Testing of Models • 87

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• db/development.sqlite3 will be our development database. All of our program-

ming work will be done here.

• db/test.sqlite3 is a test database.

• db/production.sqlite3 is the production database. Our application will use this

when we put it online.

Each test method gets a freshly initialized table in the test database, loaded

from the fixtures we provide. This is automatically done by the rake test com-

mand but can be done separately by running rake db:test:prepare.

Using Fixture Data

Now that we know how to get fixture data into the database, we need to find

ways of using it in our tests.

Clearly, one way would be to use the finder methods in the model to read the

data. However, Rails makes it easier than that. For each fixture it loads into

a test, Rails defines a method with the same name as the fixture. You can

use this method to access preloaded model objects containing the fixture

data: simply pass it the name of the row as defined in the YAML fixture file,

and it’ll return a model object containing that row’s data.

In the case of our product data, calling products(:ruby) returns a Product model

containing the data we defined in the fixture. Let’s use that to test the valida-

tion of unique product titles.

Download rails40/depot_c/test/models/product_test.rb

test "product is not valid without a unique title" do
product = Product.new(title: products(:ruby).title,

description: "yyy",
price: 1,
image_url: "fred.gif")

assert product.invalid?
assert_equal ["has already been taken"], product.errors[:title]

end

The test assumes that the database already includes a row for the Ruby book.

It gets the title of that existing row using this:

products(:ruby).title

It then creates a new Product model, setting its title to that existing title. It

asserts that attempting to save this model fails and that the title attribute has

the correct error associated with it.

Chapter 7. Task B: Validation and Unit Testing • 88

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_c/test/models/product_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

If you want to avoid using a hard-coded string for the Active Record error,

you can compare the response against its built-in error message table.

Download rails40/depot_c/test/models/product_test.rb

test "product is not valid without a unique title - i18n" do
product = Product.new(title: products(:ruby).title,

description: "yyy",
price: 1,
image_url: "fred.gif")

assert product.invalid?
assert_equal [I18n.translate('errors.messages.taken')],

product.errors[:title]
end

We will cover the I18n functions in Chapter 15, Task J: Internationalization,

on page 211.

Now we can feel confident that our validation code not only works but will

continue to work. Our product now has a model, a set of views, a controller,

and a set of unit tests. It will serve as a good foundation upon which to build

the rest of the application.

What We Just Did

In just about a dozen lines of code, we augmented that generated code with

validation.

• We ensured that required fields were present.

• We ensured that price fields were numeric and at least one cent.

• We ensured that titles were unique.

• We ensured that images matched a given format.

• We updated the unit tests that Rails provided, both to conform to the

constraints we have imposed on the model and to verify the new code we

added.

We show this to our customer, and although she agrees that this is something

an administrator could use, she says that it certainly isn’t anything that she

would feel comfortable turning loose on her customers. Clearly, in the next

iteration we are going to have to focus a bit on the user interface.

Playtime

Here’s some stuff to try on your own:

report erratum • discuss

Iteration B2: Unit Testing of Models • 89

http://media.pragprog.com/titles/rails4/code/rails40/depot_c/test/models/product_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• If you are using Git, now might be a good time to commit our work. You

can first see what files we changed by using the git status command.

depot> git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: app/models/product.rb
modified: test/fixtures/products.yml
modified: test/controllers/products_controller_test.rb
modified: test/models/product_test.rb
no changes added to commit (use "git add" and/or "git commit -a")

Since we modified only some existing files and didn’t add any new ones,

we can combine the git add and git commit commands and simply issue a

single git commit command with the -a option.

depot> git commit -a -m 'Validation!'

With this done, we can play with abandon, secure in the knowledge that

we can return to this state at any time using a single git checkout . command.

• The validation option :length checks the length of a model attribute. Add

validation to the Product model to check that the title is at least ten charac-

ters long.

• Change the error message associated with one of your validations.

(You’ll find hints at http://www.pragprog.com/wikis/wiki/RailsPlayTime.)

Chapter 7. Task B: Validation and Unit Testing • 90

report erratum • discuss

http://www.pragprog.com/wikis/wiki/RailsPlayTime
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 8

Task C: Catalog Display

All in all, it’s been a successful set of iterations. We gathered the initial

requirements from our customer, documented a basic flow, worked out a first

pass at the data we’ll need, and put together the maintenance page for the

Depot application’s products. It hasn’t even taken many lines of code. We

even have a small but growing test suite.

Thus emboldened, it’s on to our next task. We chatted about priorities with

our customer, and she said she’d like to start seeing what the application

looks like from the buyer’s point of view. Our next task is to create a simple

catalog display.

This also makes a lot of sense from our point of view. Once we have the

products safely tucked into the database, it should be fairly simple to display

them. It also gives us a basis from which to develop the shopping cart portion

of the code later.

We should also be able to draw on the work we just did in the product

maintenance task—the catalog display is really just a glorified product listing.

Finally, we will also need to complement our unit tests for the model with

some functional tests for the controller.

8.1 Iteration C1: Creating the Catalog Listing

We’ve already created the products controller, used by the seller to administer

the Depot application. Now it’s time to create a second controller, one that

interacts with the paying customers. Let’s call it Store.

depot> rails generate controller Store index
create app/controllers/store_controller.rb
route get "store/index"
invoke erb
create app/views/store

In this chapter, we’ll see
• writing our own views,
• using layouts to decorate pages,
• integrating CSS,
• using helpers, and
• writing functional tests.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

create app/views/store/index.html.erb
invoke test_unit
create test/controllers/store_controller_test.rb
invoke helper
create app/helpers/store_helper.rb
invoke test_unit
create test/helpers/store_helper_test.rb
invoke assets
invoke coffee
create app/assets/javascripts/store.js.coffee
invoke scss
create app/assets/stylesheets/store.css.scss

Just as in the previous chapter, where we used the generate utility to create a

controller and associated scaffolding to administer the products, here we’ve

asked it to create a controller (class StoreController in the file store_controller.rb)
containing a single action method, index().

While everything is already set up for this action to be accessed via http://

localhost:3000/store/index (feel free to try it!), we can do better. Let’s simplify

things for the user and make this the root URL for the website. We do this

by editing config/routes.rb.

Download rails40/depot_d/config/routes.rb

Depot::Application.routes.draw do
get "store/index"
resources :products

The priority is based upon order of creation:
first created -> highest priority.
See how all your routes lay out with "rake routes".

You can have the root of your site routed with "root"
➤ root 'store#index', as: 'store'

...
end

At the top of the file, you can see the lines added to support the store and

products controllers. We’ll leave those lines alone. Further along in the file

you will see a commented-out line that defines a root for the website. Either

uncomment out that line or add a new line immediately after that one. All we

are changing on that line is the name of the controller (from welcome to store)
and adding as: 'store'. The latter tells Rails to create a store_path accessor method.

We saw this before with say_goodbye_path on page 26.

Let’s try it. Point a browser at http://localhost:3000/, and up pops our web

page (Figure 16, Template not found, on page 93).

Chapter 8. Task C: Catalog Display • 92

report erratum • discuss

http://localhost:3000/store/index
http://localhost:3000/store/index
http://media.pragprog.com/titles/rails4/code/rails40/depot_d/config/routes.rb
http://localhost:3000/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 16—Template not found

It might not make us rich, but at least we know everything is wired together

correctly. The page even tells us where to find the template file that draws

this page.

Let’s start by displaying a simple list of all the products in our database. We

know that eventually we’ll have to be more sophisticated, breaking them into

categories, but this will get us going.

We need to get the list of products out of the database and make it available

to the code in the view that will display the table. This means we have to

change the index() method in store_controller.rb. We want to program at a decent

level of abstraction, so let’s just assume we can ask the model for a list of the

products we can sell.

Download rails40/depot_d/app/controllers/store_controller.rb

class StoreController < ApplicationController
def index

➤ @products = Product.order(:title)
end

end

We ask our customer whether she had a preference regarding the order things

should be listed in, and we jointly decided to see what happened if we dis-

played the products in alphabetical order. We do this by adding an order(:title)
call to the Product model.

Now we need to write our view template. To do this, edit the file index.html.erb
in app/views/store. (Remember that the path name to the view is built from the

name of the controller [store] and the name of the action [index]. The .html.erb
part signifies an ERB template that produces an HTML result.)

report erratum • discuss

Iteration C1: Creating the Catalog Listing • 93

http://media.pragprog.com/titles/rails4/code/rails40/depot_d/app/controllers/store_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_d/app/views/store/index.html.erb

<% if notice %>
<p id="notice"><%= notice %></p>
<% end %>

<h1>Your Pragmatic Catalog</h1>

<% @products.each do |product| %>
<div class="entry">
<%= image_tag(product.image_url) %>
<h3><%= product.title %></h3>
<%= sanitize(product.description) %>
<div class="price_line">

<%= product.price %>
</div>

</div>
<% end %>

Note the use of the sanitize() method for the description. This allows us to

safely add HTML stylings to make the descriptions more interesting for our

customers. Note that this decision opens a potential security hole,1 but

because product descriptions are created by people who work for our company,

we think that the risk is minimal.

We’ve also used the image_tag() helper method. This generates an HTML
tag using its argument as the image source.

Next we add a stylesheet, making use of the fact that in Iteration A2 on page

72 we set things up so that pages created by the StoreController will define an

HTML class by the name of store.

Download rails40/depot_d/app/assets/stylesheets/store.css.scss

// Place all the styles related to the Store controller here.
// They will automatically be included in application.css.
// You can use Sass (SCSS) here: http://sass-lang.com/

➤ .store {
➤ h1 {

margin: 0;➤

➤ padding-bottom: 0.5em;
➤ font: 150% sans-serif;
➤ color: #226;
➤ border-bottom: 3px dotted #77d;

}➤

➤

➤

.entry {
/* An entry in the store catalog */

➤

1. http://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29

Chapter 8. Task C: Catalog Display • 94

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_d/app/views/store/index.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_d/app/assets/stylesheets/store.css.scss
http://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

➤ overflow: auto;
➤ margin-top: 1em;
➤ border-bottom: 1px dotted #77d;

min-height: 100px;➤

➤

➤ img {
➤ width: 80px;
➤ margin-right: 5px;
➤ margin-bottom: 5px;
➤ position: absolute;

}➤

➤

➤ h3 {
➤ font-size: 120%;
➤ font-family: sans-serif;
➤ margin-left: 100px;
➤ margin-top: 0;
➤ margin-bottom: 2px;
➤ color: #227;

}➤

➤

➤ p, div.price_line {
➤ margin-left: 100px;
➤ margin-top: 0.5em;
➤ margin-bottom: 0.8em;

}➤

➤

➤ .price {
➤ color: #44a;
➤ font-weight: bold;
➤ margin-right: 3em;

}➤

➤ }
}➤

Hitting Refresh brings up the display shown in Figure 17, Our first (ugly)

catalog page, on page 96. It is still pretty basic, and it seems to be missing

something. The customer happens to be walking by as we ponder this, and

she points out that she’d also like to see a decent-looking banner and sidebar

on public-facing pages.

At this point in the real world, we’d probably want to call in the design

folks—we’ve all seen too many programmer-designed websites to feel comfort-

able inflicting another on the world. But Pragmatic Web Designer is off getting

inspiration on a beach somewhere and won’t be back until later in the year,

so let’s put a placeholder in for now. It’s time for another iteration.

report erratum • discuss

Iteration C1: Creating the Catalog Listing • 95

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 17—Our first (ugly) catalog page

8.2 Iteration C2: Adding a Page Layout

The pages in a typical website often share a similar layout—the designer will

have created a standard template that is used when placing content. Our job

is to modify this page to add decoration to each of the store pages.

So far, we’ve made only minimal changes to application.html.erb, namely, to add

a class attribute in Iteration A2 on page 71. As this file is the layout used for

all views for all controllers that don’t otherwise provide a layout, we can

change the look and feel of the entire site by editing just one file. This makes

us feel better about putting a placeholder page layout in for now; we can

update it when the designer eventually returns from the islands.

Let’s update this file to define a banner and a sidebar.

Download rails40/depot_e/app/views/layouts/application.html.erb

Line 1 <!DOCTYPE html>
-

<head>
<html>

-

<title>Pragprog Books Online Store</title>-

<%= stylesheet_link_tag5 "application", media: "all",
"data-turbolinks-track" => true %>-

-

<%= csrf_meta_tags %>
<%= javascript_include_tag "application", "data-turbolinks-track" => true %>

-

Chapter 8. Task C: Catalog Display • 96

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_e/app/views/layouts/application.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

-

<body class="<%= controller.controller_name %>">
</head>

10

<div id="banner">-

<%= image_tag("logo.png") %>-

<%= @page_title || "Pragmatic Bookshelf" %>-

-

<div id="columns">
</div>

15

<div id="side">-

-

Home-

Questions-

News20

Contact-

-

</div>-

<div id="main">-

<%= yield %>25

</div>-

- </div>
-

</html>
</body>

-

Apart from the usual HTML gubbins, this layout has three Rails-specific items.

Line 5 uses a Rails stylesheet_link_tag() helper method to generate a <link> tag

to our application’s stylesheet and specifies an option to enable turbolinks,2

which transparently works behind the scenes to speed up page changes

within your application. Similarly, line 7 generates a <link> to our application’s

scripts.

Finally, line 8 sets up all the behind-the-scenes data needed to prevent cross-

site request forgery attacks, which will be important once we add forms in

Chapter 12, Task G: Check Out!, on page 159.

On line 13, we set the page heading to the value in the instance variable

@page_title. The real magic, however, takes place on line 25. When we invoke

yield

↪ on page 44

yield, Rails automatically substitutes in the page-specific content—the stuff

generated by the view invoked by this request. Here, this will be the catalog

page generated by index.html.erb.

To make this all work, first rename the file application.css to application.css.scss. If
you didn’t opt to try Git as was suggested in Playtime, on page 74, now might

be a good time to do so. The command to rename a file using Git is git mv.
Once you have renamed this file, either through Git or using the underlying

operating system commands to do so, add the following lines:

2. https://github.com/rails/turbolinks

report erratum • discuss

Iteration C2: Adding a Page Layout • 97

https://github.com/rails/turbolinks
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_e/app/assets/stylesheets/application.css.scss

/*
* This is a manifest file that'll be compiled into application.css, which will
* include all the files listed below.
*
* Any CSS and SCSS file within this directory, lib/assets/stylesheets,
* vendor/assets/stylesheets, or vendor/assets/stylesheets of plugins, if any,
* can be referenced here using a relative path.
*
* You're free to add application-wide styles to this file and they'll appear
* at the top of the compiled file, but it's generally better to create a new
* file per style scope.
*
*= require_self
*= require_tree .
*/

➤ #banner {
➤ background: #9c9;
➤ padding: 10px;
➤ border-bottom: 2px solid;
➤ font: small-caps 40px/40px "Times New Roman", serif;
➤ color: #282;
➤ text-align: center;
➤

➤ img {
float: left;➤

➤ }
}➤

➤

➤ #notice {
➤ color: #000 !important;
➤ border: 2px solid red;
➤ padding: 1em;
➤ margin-bottom: 2em;
➤ background-color: #f0f0f0;
➤ font: bold smaller sans-serif;

}➤

➤

➤ #columns {
➤ background: #141;
➤

➤ #main {
margin-left: 17em;➤

➤ padding: 1em;
➤ background: white;

}➤

➤

➤ #side {
float: left;➤

Chapter 8. Task C: Catalog Display • 98

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_e/app/assets/stylesheets/application.css.scss
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

➤ padding: 1em 2em;
➤ width: 13em;

background: #141;➤

➤

➤ ul {
➤ padding: 0;
➤ li {
➤ list-style: none;
➤ a {

color: #bfb;➤

font-size: small;➤

}➤

}➤

}➤

➤ }
}➤

As explained in the comments, this manifest file will automatically include

all stylesheets available in this directory and in any subdirectory. This is

accomplished via the require_tree directive.

We could instead list the names of individual stylesheets we want to be linked

in the stylesheet_link_tag(), but because we are in the layout for the entire appli-

cation and because this layout is already set up to load all stylesheets, we’ll

leave it alone for now.

This page design consists of three primary areas on the screen: a banner

across the top, a main area on the bottom right, and a side area on the left.

Additionally, there is some provision for a notice should it appear. Each of

these has margins, padding, fonts, and colors—typical things you see in CSS.

The banner is also centered and specifies that the image is to be placed on

the left. Inside the side area, there is special styling for the list, namely, to

turn off padding and bullets and to specify a different font and color.

Again, we make heavy use of Sass, which is exactly what the file rename

enabled us to do. For example, there is an img selector nested inside the

#banner selector. There also is an a selector inside of the #side selector.

Hit Refresh, and the browser window looks something like Figure 18, Catalog

with layout added, on page 100. It won’t win any design awards, but it’ll show

our customer roughly what the final page will look like.

Looking at this page, we spot a minor problem with how prices are displayed. The

database stores the price as a number, but we’d like to show it as dollars and

cents. A price of 12.34 should be shown as $12.34, and 13 should display as

$13.00. We’ll tackle that next.

report erratum • discuss

Iteration C2: Adding a Page Layout • 99

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 18—Catalog with layout added

8.3 Iteration C3: Using a Helper to Format the Price

Ruby provides a sprintf() function that can be used to format prices. We could

place logic that makes use of this function directly in the view. For example,

we could say this:

<%= sprintf("$%0.02f", product.price) %>

This would work, but it embeds knowledge of currency formatting into the

view. Should we display prices of products in several places and want to

internationalize the application later, this would be a maintenance problem.

Instead, let’s use a helper method to format the price as a currency. Rails

has an appropriate one built in—it’s called number_to_currency().

Using our helper in the view is simple; in the index template, we change this:

<%= product.price %>

to the following:

Download rails40/depot_e/app/views/store/index.html.erb

<%= number_to_currency(product.price) %>

Sure enough, when we hit Refresh, we see a nicely formatted price, as in

Figure 19, Catalog with price formatted, on page 101.

Chapter 8. Task C: Catalog Display • 100

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_e/app/views/store/index.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 19—Catalog with price formatted

Although it looks nice enough, we are starting to get a nagging feeling that

we really should be running and writing tests for all this new functionality,

particularly after our experience of adding logic to our model.

8.4 Iteration C4: Functional Testing of Controllers

Now for the moment of truth. Before we focus on writing new tests, we need

to determine whether we have actually broken anything. Remembering our

experience after we added validation logic to our model, with some trepidation

we run our tests again.

depot> rake test

This time, all is well. We added a lot, but we didn’t break anything. That’s a

relief, but our work is not yet done; we still need tests for what we just added.

The unit testing of models that we did previously seemed straightforward

enough. We called a method and compared what it returned against what we

expected it to return. But now we are dealing with a server that processes

requests and a user viewing responses in a browser. What we will need is

functional tests that verify that the model, view, and controller work well

together. Never fear, Rails makes this easy too.

First, let’s take a look at what Rails generated for us.

report erratum • discuss

Iteration C4: Functional Testing of Controllers • 101

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_d/test/controllers/store_controller_test.rb

require 'test_helper'

class StoreControllerTest < ActionController::TestCase
test "should get index" do
get :index
assert_response :success

end

end

The should get index test gets the index and asserts that a successful response

is expected. That certainly seems straightforward enough. That’s a reasonable

beginning, but we also want to verify that the response contains our layout,

our product information, and our number formatting. Let’s see what that

looks like in code.

Download rails40/depot_e/test/controllers/store_controller_test.rb

require 'test_helper'

class StoreControllerTest < ActionController::TestCase
test "should get index" do
get :index
assert_response :success
assert_select '#columns #side a', minimum: 4➤

➤ assert_select '#main .entry', 3
➤ assert_select 'h3', 'Programming Ruby 1.9'
➤ assert_select '.price', /\$[,\d]+\.\d\d/

end

end

The four lines we added take a look into the HTML that is returned, using

CSS selector notation. As a refresher, selectors that start with a number sign

(#) match on id attributes, selectors that start with a dot (.) match on class

attributes, and selectors that contain no prefix at all match on element names.

So, the first select test looks for an element named a that is contained in an

element with an id with a value of side, which is contained within an element

with an id with a value of columns. This test verifies that there are a minimum

of four such elements. Pretty powerful stuff, assert_select(), eh?

The next three lines verify that all of our products are displayed. The first

verifies that there are three elements with a class name of entry inside the

main portion of the page. The next line verifies that there is an h3 element

with the title of the Ruby book that we had entered previously. The third line

Chapter 8. Task C: Catalog Display • 102

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_d/test/controllers/store_controller_test.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_e/test/controllers/store_controller_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

verifies that the price is formatted correctly. These assertions are based on

the test data that we had put inside our fixtures.

Download rails40/depot_e/test/fixtures/products.yml

Read about fixtures at
http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html
one:

title: MyString
description: MyText
image_url: MyString
price: 9.99

two:
title: MyString
description: MyText
image_url: MyString
price: 9.99

ruby:
title: Programming Ruby 1.9
description:
Ruby is the fastest growing and most exciting dynamic
language out there. If you need to get working programs
delivered fast, you should add Ruby to your toolbox.

price: 49.50
image_url: ruby.png

If you noticed, the type of test that assert_select() performs varies based on the

regular expression

↪ on page 42

type of the second parameter. If it is a number, it will be treated as a quantity.

If it is a string, it will be treated as an expected result. Another useful type

of test is a regular expression, which is what we use in our final assertion.

We verify that there is a price that has a value that contains a dollar sign

followed by any number (but at least one), commas, or digits; followed by a

decimal point; followed by two digits.

One final point before we move on: both validation and functional tests will

test the behavior of controllers only; they will not retroactively affect any

objects that already exist in the database or in fixtures. In the previous

example, two products contain the same title. Such data will cause no prob-

lems and will go undetected up to the point where such records are modified

and saved.

We’ve touched on only a few things that assert_select() can do. More information

can be found in the online documentation.3

3. http://api.rubyonrails.org/classes/ActionDispatch/Assertions/SelectorAssertions.

html

report erratum • discuss

Iteration C4: Functional Testing of Controllers • 103

http://media.pragprog.com/titles/rails4/code/rails40/depot_e/test/fixtures/products.yml
http://api.rubyonrails.org/classes/ActionDispatch/Assertions/SelectorAssertions.html
http://api.rubyonrails.org/classes/ActionDispatch/Assertions/SelectorAssertions.html
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

That’s a lot of verification in just a few lines of code. We can see that it works

by rerunning just the functional tests (after all, that’s all we changed).

depot> rake test:controllers

Now not only do we have something recognizable as a storefront, we have

tests that ensure that all of the pieces—the model, view, and controller—are

all working together to produce the desired result. Although this sounds like

a lot, with Rails it was easy. In fact, it was mostly HTML and CSS and not

much in the way of code or tests. Before moving on, let’s make sure that it

will stand up to the onslaught of customers we’re expecting.

8.5 Iteration C5: Caching of Partial Results

If everything goes as planned, this page will definitely be a high-traffic area

for the site. To respond to requests for this page, we would need to fetch every

product from the database and render each one. We can do better than that.

After all, the catalog doesn’t really change that often, so there is no need to

start from scratch on each request.

Just so we can see what we’re doing, the first thing we’re going to do is to

modify the configuration for the development environment to turn on caching.

Download rails40/depot_e/config/environments/development.rb

config.action_controller.perform_caching = true

As with all configuration changes, you need to restart your server.

Next we need to plan our attack. Thinking about it, we only need to re-render

things if a product changed, and even then we need to render only the prod-

ucts that actually changed. Focusing on the first part of the problem, we need

to add code that returns the most recently updated product.

Download rails40/depot_e/app/models/product.rb

def self.latest
Product.order(:updated_at).last

end

Next we mark the sections of our template that we need to update if any

product changes, and inside that section we mark the subsection that we

need in order to update any specific product that changed.

Download rails40/depot_e/app/views/store/index.html.erb

<% if notice %>
<p id="notice"><%= notice %></p>
<% end %>

<h1>Your Pragmatic Catalog</h1>

Chapter 8. Task C: Catalog Display • 104

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_e/config/environments/development.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_e/app/models/product.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_e/app/views/store/index.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<% cache ['store', Product.latest] do %>➤

<% end %>

<% @products.each do |product| %>
➤ <% cache ['entry', product] do %>

<div class="entry">
<%= image_tag(product.image_url) %>
<h3><%= product.title %></h3>
<%= sanitize(product.description) %>
<div class="price_line">

<%= number_to_currency(product.price) %>
</div>

</div>
➤ <% end %>

<% end %>
➤

In addition to bracketing the sections, we identify the components of the name

for each cache entry. We make the choice to call the overall cache entry store

and the individual cache entries entry. We also associate a product with each,

namely, the latest with the overall store and the individual product we are

rendering with the entry.

Bracketed sections can be nested to arbitrary depth, which is why those in

the Rails community have come to refer to this as Russian doll caching.4

With this, we’re done! Rails takes care of all of the rest, including managing

the storage and deciding when to invalidate old entries. If you’re really inter-

ested, there are all sorts of knobs you can turn and choices as to what

backing store to use for the cache. It’s nothing you need to worry about now,

but it might be worth bookmarking the overview page of Caching with Rails

in the RailsGuides.5

As far as verifying that this works, unfortunately there isn’t much to see. If

you go to that page, you should see nothing change, which in fact is the point!

The best you can do is to make a change to the template anywhere inside the

cache block without updating any product and verifying that you do not see

that update because the cached version of the page has not been updated.

Once you’re satisfied that caching is working, turn caching off in development

so that further changes to the template will always be visible immediately.

Download rails40/depot_f/config/environments/development.rb

config.action_controller.perform_caching = false

4. http://37signals.com/svn/posts/3113-how-key-based-cache-expiration-works

5. http://guides.rubyonrails.org/caching_with_rails.html

report erratum • discuss

Iteration C5: Caching of Partial Results • 105

http://media.pragprog.com/titles/rails4/code/rails40/depot_f/config/environments/development.rb
http://37signals.com/svn/posts/3113-how-key-based-cache-expiration-works
http://guides.rubyonrails.org/caching_with_rails.html
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Once again, restart the server, and verify that changes to the template once

again show up as quickly as you save them.

8.6 What We Just Did

We’ve put together the basis of the store’s catalog display. The steps were as

follows:

1. Create a new controller to handle customer-centric interactions.

2. Implement the default index() action.

3. Add a call to the order() method within the Store controller to control the

order in which the items on the website are listed.

4. Implement a view (an .html.erb file) and a layout to contain it (another

.html.erb file).

5. Use a helper to format prices the way we want.

6. Make use of a CSS stylesheet.

7. Write functional tests for our controller.

8. Implement fragment caching for portions of the page.

It’s time to check it all in and move on to the next task, namely, making a

shopping cart!

Playtime

Here’s some stuff to try on your own:

• Add a date and time to the sidebar. It doesn’t have to update; just show

the value at the time the page was displayed.

• Experiment with setting various number_to_currency helper method options,

and see the effect on your catalog listing.

• Write some functional tests for the product maintenance application using

assert_select. The tests will need to be placed into the test/controllers/products_con-
troller_test.rb file.

• Just a reminder—the end of an iteration is a good time to save your work

using Git. If you have been following along, you have the basics you need

at this point. We will pick things back up, in terms of exploring more Git

functionality, in Prepping Your Deployment Server, on page 242.

(You’ll find hints at http://www.pragprog.com/wikis/wiki/RailsPlayTime.)

Chapter 8. Task C: Catalog Display • 106

report erratum • discuss

http://www.pragprog.com/wikis/wiki/RailsPlayTime
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 9

Task D: Cart Creation

Now that we have the ability to display a catalog containing all our wonderful

products, it would be nice to be able to sell them. Our customer agrees, so

we’ve jointly decided to implement the shopping cart functionality next. This

is going to involve a number of new concepts, including sessions, relationships

between models, and adding a button to the view, so let’s get started.

9.1 Iteration D1: Finding a Cart

As users browse our online catalog, they will (we hope) select products to buy.

The convention is that each item selected will be added to a virtual shopping

cart, held in our store. At some point, our buyers will have everything they

need and will proceed to our site’s checkout, where they’ll pay for the stuff

in their cart.

This means that our application will need to keep track of all the items added

to the cart by the buyer. To do that, we’ll keep a cart in the database and

store its unique identifier, cart.id, in the session. Every time a request comes

in, we can recover the identity from the session and use it to find the cart in

the database.

Let’s go ahead and create a cart.

depot> rails generate scaffold Cart
...
depot> rake db:migrate
== CreateCarts: migrating ==
-- create_table(:carts)

-> 0.0012s
== CreateCarts: migrated (0.0014s) ===

Rails makes the current session look like a hash to the controller, so we’ll

store the ID of the cart in the session by indexing it with the symbol :cart_id.

In this chapter, we’ll see
• sessions and session management,
• adding relationships between models, and
• adding a button to add a product to a cart.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_f/app/controllers/concerns/current_cart.rb

module CurrentCart
extend ActiveSupport::Concern

private

def set_cart
@cart = Cart.find(session[:cart_id])

rescue ActiveRecord::RecordNotFound
@cart = Cart.create
session[:cart_id] = @cart.id

end
end

The set_cart() method starts by getting the :cart_id from the session object and

then attempts to find a cart corresponding to this ID. If such a cart record is

rescue

↪ on page 45

not found (which will happen if the ID is nil or invalid for any reason), then

this method will proceed to create a new Cart, store the ID of the created cart

into the session, and then return the new cart.

Note that we place the set_cart() method in a CurrentCart module and mark it as

private

↪ on page 47

private. This treatment allows us to share common code (even as little as a

single method!) between controllers and furthermore prevents Rails from ever

making it available as an action on the controller.

9.2 Iteration D2: Connecting Products to Carts

We’re looking at sessions because we need somewhere to keep our shopping

cart. We’ll cover sessions in more depth in Rails Sessions, on page 331, but

for now let’s move on to implement the cart.

Let’s keep things simple. A cart contains a set of products. Based on the Initial

guess at application data diagram on page 59, combined with a brief chat

with our customer, we can now generate the Rails models and populate the

migrations to create the corresponding tables.

depot> rails generate scaffold LineItem product:references cart:belongs_to
...
depot> rake db:migrate
== CreateLineItems: migrating ==
-- create_table(:line_items)

-> 0.0013s
== CreateLineItems: migrated (0.0014s) =======================================

The database now has a place to store the references between line items,

carts, and products. If you look at the generated definition of the LineItem class,

you can see the definitions of these relationships.

Chapter 9. Task D: Cart Creation • 108

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_f/app/controllers/concerns/current_cart.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_f/app/models/line_item.rb

class LineItem < ActiveRecord::Base
belongs_to :product
belongs_to :cart

end

At the model level, there is no difference between a simple reference and a

“belongs to” relationship. Both are implemented using the belongs_to() method.

In the LineItem model, the two belongs_to() calls tell Rails that rows in the line_items
table are children of rows in the carts and products tables. No line item can exist

unless the corresponding cart and product rows exist. There’s an easy way

to remember where to put belongs_to declarations: if a table has foreign keys,

the corresponding model should have a belongs_to for each.

Just what do these various declarations do? Basically, they add navigation

capabilities to the model objects. Because Rails added the belongs_to declaration

to LineItem, we can now retrieve its Product and display the book’s title.

li = LineItem.find(...)
puts "This line item is for #{li.product.title}"

To be able to traverse these relationships in both directions, we need to add

some declarations to our model files that specify their inverse relations.

Open the cart.rb file in app/models, and add a call to has_many().

Download rails40/depot_f/app/models/cart.rb

class Cart < ActiveRecord::Base
➤ has_many :line_items, dependent: :destroy

end

That has_many :line_items part of the directive is fairly self-explanatory: a cart

(potentially) has many associated line items. These are linked to the cart

because each line item contains a reference to its cart’s ID. The dependent:
:destroy part indicates that the existence of line items is dependent on the

existence of the cart. If we destroy a cart, deleting it from the database, we’ll

want Rails also to destroy any line items that are associated with that cart.

Now that the Cart is declared to have many line items, we can reference them

(as a collection) from a cart object.

cart = Cart.find(...)
puts "This cart has #{cart.line_items.count} line items"

Now, for completeness, we should add a has_many directive to our Product model.

After all, if we have lots of carts, each product might have many line items

referencing it. This time, we will make use of validation code to prevent the

removal of products that are referenced by line items.

report erratum • discuss

Iteration D2: Connecting Products to Carts • 109

http://media.pragprog.com/titles/rails4/code/rails40/depot_f/app/models/line_item.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_f/app/models/cart.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_f/app/models/product.rb

has_many :line_items
class Product < ActiveRecord::Base

➤

before_destroy :ensure_not_referenced_by_any_line_item➤

#...

private➤

➤ # ensure that there are no line items referencing this product
➤ def ensure_not_referenced_by_any_line_item
➤ if line_items.empty?
➤ return true

else➤

➤ errors.add(:base, 'Line Items present')
➤ return false

end➤

end➤

end

Here we declare that a product has many line items and define a hook method

named ensure_not_referenced_by_any_line_item(). A hook method is a method that

Rails calls automatically at a given point in an object’s life. In this case, the

method will be called before Rails attempts to destroy a row in the database.

If the hook method returns false, the row will not be destroyed.

Note that we have direct access to the errors object. This is the same place that

the validates() stores error messages. Errors can be associated with individual

attributes, but in this case we associate the error with the base object.

We’ll have more to say about intermodel relationships starting in Specifying

Relationships in Models, on page 282.

9.3 Iteration D3: Adding a Button

Now that that’s done, it is time to add an Add to Cart button for each product.

There is no need to create a new controller or even a new action. Taking a

look at the actions provided by the scaffold generator, you find index(), show(),
new(), edit(), create(), update(), and destroy(). The one that matches this operation

is create(). (new() may sound similar, but its use is to get a form that is used to

solicit input for a subsequent create() action.)

Once this decision is made, the rest follows. What are we creating? Certainly

not a Cart or even a Product. What we are creating is a LineItem. Looking at the

comment associated with the create() method in app/controllers/line_items_controller.rb,

Chapter 9. Task D: Cart Creation • 110

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_f/app/models/product.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

you see that this choice also determines the URL to use (/line_items) and the

HTTP method (POST).

This choice even suggests the proper UI control to use. When we added links

before, we used link_to(), but links default to using HTTP GET. We want to use

POST, so we will add a button this time; this means we will be using the

button_to() method.

We could connect the button to the line item by specifying the URL, but again

we can let Rails take care of this for us by simply appending _path to the con-

troller’s name. In this case, we will use line_items_path.

However, there’s a problem with this: how will the line_items_path method know

which product to add to our cart? We’ll need to pass it the ID of the product

corresponding to the button. That’s easy enough—all we need to do is add

the :product_id option to the line_items_path() call. We can even pass in the product
instance itself—Rails knows to extract the ID from the record in circumstances

such as these.

In all, the one line that we need to add to our index.html.erb looks like this:

Download rails40/depot_f/app/views/store/index.html.erb

<% if notice %>
<p id="notice"><%= notice %></p>
<% end %>

<h1>Your Pragmatic Catalog</h1>

<% cache ['store', Product.latest] do %>
<% @products.each do |product| %>
<% cache ['entry', product] do %>

<div class="entry">
<%= image_tag(product.image_url) %>
<h3><%= product.title %></h3>
<%= sanitize(product.description) %>
<div class="price_line">

<%= number_to_currency(product.price) %>
<%= button_to 'Add to Cart', line_items_path(product_id: product) %>➤

</div>
</div>

<% end %>
<% end %>

<% end %>

There’s one more formatting issue. button_to creates an HTML <form>, and that

form contains an HTML <div>. Both of these are normally block elements,

which will appear on the next line. We’d like to place them next to the price,

so we need to add a little CSS magic to make them inline.

report erratum • discuss

Iteration D3: Adding a Button • 111

http://media.pragprog.com/titles/rails4/code/rails40/depot_f/app/views/store/index.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_f/app/assets/stylesheets/store.css.scss

p, div.price_line {
margin-left: 100px;
margin-top: 0.5em;
margin-bottom: 0.8em;

➤ form, div {
display: inline;➤

➤ }
}

Now our index page looks like the following figure. But before we push the

button, we need to modify the create() method in the line items controller to

expect a product ID as a form parameter. Here’s where we start to see how

important the id field is in our models. Rails identifies model objects (and the

corresponding database rows) by their id fields. If we pass an ID to create(),
we’re uniquely identifying the product to add.

Figure 20—Now there’s an Add to Cart button!

Why the create() method? The default HTTP method for a link is a get, the

default HTTP method for a button is a post, and Rails uses these conventions

to determine which method to call. Refer to the comments inside the app/con-
trollers/line_items_controller.rb file to see other conventions. We’ll be making extensive

use of these conventions inside the Depot application.

Now let’s modify the LineItemsController to find the shopping cart for the current

session (creating one if there isn’t one there already), add the selected product

to that cart, and display the cart contents.

Chapter 9. Task D: Cart Creation • 112

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_f/app/assets/stylesheets/store.css.scss
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

We use the CurrentCart concern we implemented in Iteration D1 on page 108 to

find (or create) a cart in the session.

Download rails40/depot_f/app/controllers/line_items_controller.rb

class LineItemsController < ApplicationController
➤ include CurrentCart
➤ before_action :set_cart, only: [:create]

before_action :set_line_item, only: [:show, :edit, :update, :destroy]

GET /line_items
#...

end

We include the CurrentCart module and declare that the set_cart() method is to be

involved before the create() action. We explore action callbacks in depth in

Callbacks, on page 337, but for now all we need to know is that Rails provides

the ability to wire together methods that are to be called before, after, or even

around controller actions.

In fact, as you can see, the generated controller already uses this facility to

set the value of the @line_item instance variable before the show(), edit(), update(),
or destroy() actions are called.

Now that we know that the value of @cart is set to the value of the current

cart, all we need to modify is a few lines of code in the create() method in

app/controllers/line_items_controller.rb.1 to build the line item itself.

Download rails40/depot_f/app/controllers/line_items_controller.rb

def create
➤

@line_item = @cart.line_items.build(product: product)
product = Product.find(params[:product_id])

➤

respond_to do |format|
if @line_item.save
format.html { redirect_to @line_item.cart,➤

notice: 'Line item was successfully created.' }
format.json { render action: 'show',

status: :created, location: @line_item }
else
format.html { render action: 'new' }
format.json { render json: @line_item.errors,

status: :unprocessable_entity }
end

end
end

1. Some lines have been wrapped to fit on the page.

report erratum • discuss

Iteration D3: Adding a Button • 113

http://media.pragprog.com/titles/rails4/code/rails40/depot_f/app/controllers/line_items_controller.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_f/app/controllers/line_items_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

We use the params object to get the :product_id parameter from the request. The

params object is important inside Rails applications. It holds all of the param-

eters passed in a browser request. We store the result in a local variable

because there is no need to make this available to the view.

We then pass that product we found into @cart.line_items.build. This causes a

new line item relationship to be built between the @cart object and the product.
You can build the relationship from either end, and Rails will take care of

establishing the connections on both sides.

We save the resulting line item into an instance variable named @line_item.

The remainder of this method takes care of handling errors, which we will

cover in more detail in Section 10.2, Iteration E2: Handling Errors, on page

124, and handling JSON requests. But for now, we want to modify only one

more thing: once the line item is created, we want to redirect you to the cart

instead of back to the line item. Since the line item object knows how to find

the cart object, all we need to do is add .cart to the method call.

As we changed the function of our controller, we know that we will need to

update the corresponding functional test. We need to pass a product ID on

the call to create and change what we expect for the target of the redirect. We

do this by updating test/controllers/line_items_controller_test.rb.

Download rails40/depot_g/test/controllers/line_items_controller_test.rb

test "should create line_item" do
assert_difference('LineItem.count') do
post :create, product_id: products(:ruby).id➤

end

➤ assert_redirected_to cart_path(assigns(:line_item).cart)
end

While we haven’t talked about the assigns method to date, we have already

been using it because it is generated automatically by the scaffold command.

This method gives us access to the instance variables that have been (or can

be) assigned by controller actions for use in views.

We now rerun this set of tests.

depot> rake test test/controllers/line_items_controller_test.rb

Confident that the code works as intended, we try the Add to Cart buttons in

our browser.

And Figure 21, Confirmation that the request was processed, on page 115 shows

what we see.

Chapter 9. Task D: Cart Creation • 114

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_g/test/controllers/line_items_controller_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 21—Confirmation that the request was processed

This is a bit underwhelming. Although we have scaffolding for the cart, when we

created it, we didn’t provide any attributes, so the view doesn’t have anything to

show. For now, let’s write a trivial template (we’ll tart it up in a minute).

Download rails40/depot_f/app/views/carts/show.html.erb

<% if notice %>
<p id="notice"><%= notice %></p>
<% end %>

<h2>Your Pragmatic Cart</h2>

<% @cart.line_items.each do |item| %>
<%= item.product.title %>

<% end %>

So, with everything plumbed together, let’s go back and click the Add to Cart
button again and see our simple view displayed, as in Figure 22, Cart with

new item displayed, on page 116.

Go back to http://localhost:3000/, the main catalog page, and add a different

product to the cart. You’ll see the original two entries plus our new item in

your cart. It looks like we have sessions working. It’s time to show our cus-

tomer, so we call her over and proudly display our handsome new cart.

Somewhat to our dismay, she makes that tsk-tsk sound that customers make

just before telling you that you clearly don’t get something.

report erratum • discuss

Iteration D3: Adding a Button • 115

http://media.pragprog.com/titles/rails4/code/rails40/depot_f/app/views/carts/show.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 22—Cart with new item displayed

Real shopping carts, she explains, don’t show separate lines for two of the

same product. Instead, they show the product line once with a quantity of 2.

It looks like we’re lined up for our next iteration.

What We Just Did

It has been a busy, productive day so far. We’ve added a shopping cart to our

store, and along the way we’ve dipped our toes into some neat Rails features.

• We created a Cart object in one request and were able to successfully locate

the same cart in subsequent requests using a session object.

• We added a private method and placed it in a concern, making it accessible

to all of our controllers.

• We created relationships between carts and line items and relationships

between line items and products, and we were able to navigate using

these relationships.

• We added a button that caused a product to be posted to a cart, causing

a new line item to be created.

Playtime

Here’s some stuff to try on your own:

Chapter 9. Task D: Cart Creation • 116

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• Add a new variable to the session to record how many times the user has

accessed the store controller’s index action. Note that the first time this

page is accessed, your count won’t be in the session. You can test for this

with code like this:

if session[:counter].nil?
...

If the session variable isn’t there, you’ll need to initialize it. Then you’ll

be able to increment it.

• Pass this counter to your template, and display it at the top of the catalog

page. Hint: the pluralize helper (definition on page 354) might be useful when

forming the message you display.

• Reset the counter to zero whenever the user adds something to the cart.

• Change the template to display the counter only if it is greater than five.

(You’ll find hints at http://pragprog.com/wikis/wiki/RailsPlayTime.)

report erratum • discuss

Iteration D3: Adding a Button • 117

http://pragprog.com/wikis/wiki/RailsPlayTime
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 10

Task E: A Smarter Cart

Although we have rudimentary cart functionality implemented, we have much

to do. To start with, we will need to recognize when customers add multiples

of the same item to the cart. Once that’s done, we will also have to make sure

that the cart can handle error cases and communicate problems encountered

along the way to the customer or system administrator, as appropriate.

10.1 Iteration E1: Creating a Smarter Cart

Associating a count with each product in our cart is going to require us to

modify the line_items table. We’ve used migrations before; for example, we used

a migration in Applying the Migration, on page 64, to update the schema of

the database. While that was as part of creating the initial scaffolding for a

model, the basic approach is the same.

depot> rails generate migration add_quantity_to_line_items quantity:integer

Rails can tell from the name of the migration that you are adding one or more

columns to the line_items table and can pick up the names and data types for

each column from the last argument. The two patterns that Rails matches

on are add_XXX_to_TABLE and remove_XXX_from_TABLE, where the value of XXX is

ignored; what matters is the list of column names and types that appear after

the migration name.

The only thing Rails can’t tell is what a reasonable default is for this column.

In many cases, a null value would do, but let’s make it the value 1 for existing

carts by modifying the migration before we apply it.

Download rails40/depot_g/db/migrate/20121130000004_add_quantity_to_line_items.rb

class AddQuantityToLineItems < ActiveRecord::Migration
def change
add_column :line_items, :quantity, :integer, default: 1➤

end
end

In this chapter, we’ll see
• modifying the schema and existing data,
• error diagnosis and handling,
• the flash, and
• logging.

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_g/db/migrate/20121130000004_add_quantity_to_line_items.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Once complete, we run the migration.

depot> rake db:migrate

Now we need a smart add_product() method in our Cart, one that checks whether

our list of items already includes the product we’re adding; if it does, it bumps

the quantity, and if it doesn’t, it builds a new LineItem.

Download rails40/depot_g/app/models/cart.rb

def add_product(product_id)
current_item = line_items.find_by(product_id: product_id)
if current_item
current_item.quantity += 1

else
current_item = line_items.build(product_id: product_id)

end
current_item

end

The find_by() method is a streamlined version of the where() method. Instead of

returning an array of results, it returns either an existing LineItem or nil.

We also need to modify the line item controller to use this method.

Download rails40/depot_g/app/controllers/line_items_controller.rb

@line_item = @cart.add_product(product.id)

def create
product = Product.find(params[:product_id])

➤

respond_to do |format|
if @line_item.save
format.html { redirect_to @line_item.cart,

notice: 'Line item was successfully created.' }
format.json { render action: 'show',

status: :created, location: @line_item }
else
format.html { render action: 'new' }
format.json { render json: @line_item.errors,

status: :unprocessable_entity }
end

end
end

There’s one last quick change to the show view to use this new information.

Download rails40/depot_g/app/views/carts/show.html.erb

<% if notice %>
<p id="notice"><%= notice %></p>
<% end %>

<h2>Your Pragmatic Cart</h2>

Chapter 10. Task E: A Smarter Cart • 120

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_g/app/models/cart.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_g/app/controllers/line_items_controller.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_g/app/views/carts/show.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<% @cart.line_items.each do |item| %>
<%= item.quantity %> × <%= item.product.title %>➤

<% end %>

Now that all the pieces are in place, we can go back to the store page and hit

the Add to Cart button for a product that is already in the cart. What we are

likely to see is a mixture of individual products listed separately and a single

product listed with a quantity of two. This is because we added a quantity of

one to existing columns instead of collapsing multiple rows when possible.

What we need to do next is migrate the data.

We start by creating a migration.

depot> rails generate migration combine_items_in_cart

This time, Rails can’t infer what we are trying to do, so we can’t rely on the

generated change() method. What we need to do instead is to replace this

method with separate up() and down() methods. First here’s the up() method:

Download rails40/depot_g/db/migrate/20121130000005_combine_items_in_cart.rb

def up
replace multiple items for a single product in a cart with a single item
Cart.all.each do |cart|
count the number of each product in the cart
sums = cart.line_items.group(:product_id).sum(:quantity)

sums.each do |product_id, quantity|
if quantity > 1

remove individual items
cart.line_items.where(product_id: product_id).delete_all

replace with a single item
item = cart.line_items.build(product_id: product_id)
item.quantity = quantity
item.save!

end
end

end
end

This is easily the most extensive code we’ve seen so far. Let’s look at it in

small pieces:

•
iterating

↪ on page 44

We start by iterating over each cart.

• For each cart, we get a sum of the quantity fields for each of the line items

associated with this cart, grouped by product_id. The resulting sums will

be a list of ordered pairs of product_ids and quantity.

• We iterate over these sums, extracting the product_id and quantity from each.

report erratum • discuss

Iteration E1: Creating a Smarter Cart • 121

http://media.pragprog.com/titles/rails4/code/rails40/depot_g/db/migrate/20121130000005_combine_items_in_cart.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• In cases where the quantity is greater than one, we will delete all of the

individual line items associated with this cart and this product and replace

them with a single line item with the correct quantity.

Note how easily and elegantly Rails enables you to express this algorithm.

With this code in place, we apply this migration just like any other migration.

depot> rake db:migrate

We can immediately see the results by looking at the cart.

Figure 23—Three LineItems combined into one

Although we have reason to be pleased with ourselves, we are not done yet.

An important principle of migrations is that each step needs to be reversible,

so we implement a down() too. This method finds line items with a quantity of

greater than one; adds new line items for this cart and product, each with a

quantity of one; and finally deletes the line item. The following code accom-

plishes that:

Download rails40/depot_g/db/migrate/20121130000005_combine_items_in_cart.rb

def down
split items with quantity>1 into multiple items
LineItem.where("quantity>1").each do |line_item|
add individual items
line_item.quantity.times do
LineItem.create cart_id: line_item.cart_id,

product_id: line_item.product_id, quantity: 1
end

remove original item
line_item.destroy

end
end

Chapter 10. Task E: A Smarter Cart • 122

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_g/db/migrate/20121130000005_combine_items_in_cart.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

At this point, we can just as easily roll back our migration with a single

command.

depot> rake db:rollback

Rails provides a handy rake task to allow you to check the status of your

migrations.

depot> rake db:migrate:status
database: /home/rubys/work/depot/db/development.sqlite3

Status Migration ID Migration Name
--

up 20130407000001 Create products
up 20130407000002 Create carts
up 20130407000003 Create line items
up 20130407000004 Add quantity to line items
down 20130407000005 Combine items in cart

At this point you can modify and reapply the migration or even delete it

entirely. We can inspect the results of the rollback by moving the migration

to another directory and looking at the cart.

Figure 24—LineItems once again split apart

Once we move the migration file back and reapply the migration (with the rake
db:migrate command), we have a cart that maintains a count for each of the

products it holds, and we have a view that displays that count.

Happy that we have something presentable, we call our customer over and

show her the result of our morning’s work. She’s pleased—she can see the

site starting to come together. However, she’s also troubled, having just read

an article in the trade press on the way ecommerce sites are being attacked

and compromised daily. She read that one kind of attack involves feeding

report erratum • discuss

Iteration E1: Creating a Smarter Cart • 123

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

requests with bad parameters into web applications, hoping to expose bugs

and security flaws. She noticed that the link to the cart looks like carts/nnn,

where nnn is our internal cart ID. Feeling malicious, she manually types this

request into a browser, giving it a cart ID of wibble. She’s not impressed when

our application displays the page in Figure 25, Our application spills its guts.,

on page 124.

Figure 25—Our application spills its guts.

This seems fairly unprofessional. So, our next iteration will be spent making

the application more resilient.

10.2 Iteration E2: Handling Errors

Looking at the page displayed in the previous figure, it’s apparent that our

application raised an exception at line 67 of the carts controller.1 That turns

out to be this line:

@cart = Cart.find(params[:id])

1. Your line number might be different. We have some book-related formatting stuff in

our source files.

Chapter 10. Task E: A Smarter Cart • 124

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

If the cart cannot be found, Active Record raises a RecordNotFound exception,

which we clearly need to handle. The question arises—how?

We could just silently ignore it. From a security standpoint, this is probably

the best move, because it gives no information to a potential attacker. However,

it also means that should we ever have a bug in our code that generates bad

cart IDs, our application will appear to the outside world to be unrespon-

sive—no one will know there has been an error.

Instead, we’ll take two actions when an exception is raised. First, we’ll log the

fact to an internal log file using Rails’ logger facility.2 Second, we’ll redisplay

the catalog page along with a short message to the user (something along the

lines of “Invalid cart”) so they can continue to use our site.

Rails has a convenient way of dealing with errors and error reporting. It defines

a structure called a flash. A flash is a bucket (actually closer to a Hash) in
which you can store stuff as you process a request. The contents of the flash

are available to the next request in this session before being deleted automat-

ically. Typically the flash is used to collect error messages. For example, when

our show() method detects that it was passed an invalid cart ID, it can store

that error message in the flash area and redirect to the index() action to

redisplay the catalog. The view for the index action can extract the error and

display it at the top of the catalog page. The flash information is accessible

within the views by using the flash accessor method.

Why couldn’t we just store the error in any old instance variable? Remember

that after a redirect is sent by our application to the browser, the browser

sends a new request back to our application. By the time we receive that

request, our application has moved on—all the instance variables from previ-

ous requests are long gone. The flash data is stored in the session in order

to make it available between requests.

Armed with all this background about flash data, we can now create an

invalid_cart() method to report on the problem.

Download rails40/depot_h/app/controllers/carts_controller.rb

class CartsController < ApplicationController
before_action :set_cart, only: [:show, :edit, :update, :destroy]

➤ rescue_from ActiveRecord::RecordNotFound, with: :invalid_cart
GET /carts
...
private
...

2. http://guides.rubyonrails.org/debugging_rails_applications.html#the-logger

report erratum • discuss

Iteration E2: Handling Errors • 125

http://media.pragprog.com/titles/rails4/code/rails40/depot_h/app/controllers/carts_controller.rb
http://guides.rubyonrails.org/debugging_rails_applications.html#the-logger
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

➤ def invalid_cart
➤ logger.error "Attempt to access invalid cart #{params[:id]}"
➤ redirect_to store_url, notice: 'Invalid cart'

end➤

end

The rescue_from clause intercepts the exception raised by Cart.find(). In the han-

dler, we do the following:

• Use the Rails logger to record the error. Every controller has a logger
attribute. Here we use it to record a message at the error logging level.

• Redirect to the catalog display using the redirect_to() method. The :notice
parameter specifies a message to be stored in the flash as a notice. Why

redirect rather than just display the catalog here? If we redirect, the user’s

browser will end up displaying the store URL, rather than http://.../cart/wibble.
We expose less of the application this way. We also prevent the user from

retriggering the error by hitting the Reload button.

With this code in place, we can rerun our customer’s problematic query. This

time, when we enter the following URL:

http://localhost:3000/carts/wibble

we don’t see a bunch of errors in the browser. Instead, the catalog page is

displayed. If we look at the end of the log file (development.log in the log directory),

we’ll see our message.

Started GET "/carts/wibble" for 127.0.0.1 at 2013-01-29 09:37:39 -0500
Processing by CartsController#show as HTML

Parameters: {"id"=>"wibble"}
^[[1m^[[35mCart Load (0.1ms)^[[0m SELECT "carts".* FROM "carts" WHERE

"carts"."id" = ? LIMIT 1 [["id", "wibble"]]
➤ Attempt to access invalid cart wibble

Redirected to http://localhost:3000/
Completed 302 Found in 3ms (ActiveRecord: 0.4ms)

Figure 26, Much more user-oriented error message, on page 127 shows a better

way.

On Unix machines, we’d probably use a command such as tail or less to view this

file. On Windows, you could use your favorite editor. It’s often a good idea to keep

a window open showing new lines as they are added to this file. In Unix you’d

use tail -f. You can download a tail command for Windows3 or get a GUI-based tool.4

Finally, some OS X users use Console.app to track log files. Just say open name.log

at the command line.

3. http://gnuwin32.sourceforge.net/packages/coreutils.htm

4. http://tailforwin32.sourceforge.net/

Chapter 10. Task E: A Smarter Cart • 126

report erratum • discuss

http://gnuwin32.sourceforge.net/packages/coreutils.htm
http://tailforwin32.sourceforge.net/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 26—Much more user-oriented error message

This being the Internet, we can’t just worry about our published web forms;

we have to worry about every possible interface because malicious crackers

can get underneath the HTML we provide and attempt to provide additional

parameters. Invalid carts aren’t our biggest problem here; we also want to

prevent access to other people’s carts.

As always, your controllers are your first line of defense. Let’s go ahead and

remove cart_id from the list of parameters that are permitted.

Download rails40/depot_h/app/controllers/line_items_controller.rb

Never trust parameters from the scary internet, only allow the white
list through.
def line_item_params

➤ params.require(:line_item).permit(:product_id)
end

We can see this in action by rerunning our controller tests.

rake test:controllers

While no tests fail, a quick peek into our log/test.log reveals an attempt to breach

security that was thwarted.

report erratum • discuss

Iteration E2: Handling Errors • 127

http://media.pragprog.com/titles/rails4/code/rails40/depot_h/app/controllers/line_items_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Unpermitted parameters: cart_id

LineItemsControllerTest: test_should_update_line_item

^[[1m^[[36m (0.0ms)^[[0m ^[[1mbegin transaction^[[0m
^[[1m^[[35mLineItem Load (0.1ms)^[[0m SELECT "line_items".* FROM

"line_items" WHERE "line_items"."id" = ? LIMIT 1 [["id", 980190962]]
Processing by LineItemsController#update as HTML

Parameters: {"line_item"=>{"product_id"=>nil}, "id"=>"980190962"}
^[[1m^[[36mLineItem Load (0.1ms)^[[0m ^[[1mSELECT "line_items".* FROM

"line_items" WHERE "line_items"."id" = ? LIMIT 1^[[0m [["id", "980190962"]]
➤

^[[1m^[[35m (0.0ms)^[[0m SAVEPOINT active_record_1
^[[1m^[[36m (0.1ms)^[[0m ^[[1mRELEASE SAVEPOINT active_record_1^[[0m

Redirected to http://test.host/line_items/980190962
Completed 302 Found in 2ms (ActiveRecord: 0.2ms)

^[[1m^[[35m (0.0ms)^[[0m rollback transaction

Cleaning up that test case will make the problem go away.

Download rails40/depot_h/test/controllers/line_items_controller_test.rb

test "should update line_item" do
➤ patch :update, id: @line_item, line_item: { product_id: @line_item.product_id }

assert_redirected_to line_item_path(assigns(:line_item))
end

At this point, we clear the test logs and rerun the tests.

rake log:clear LOGS=test
rake test:controllers

A final scan of the logs identifies no further problems.

It makes good sense to review log files periodically—they have a lot of useful

information.

Sensing the end of an iteration, we call our customer over and show her that

the error is now properly handled. She’s delighted and continues to play with

the application. She notices a minor problem on our new cart display—there’s

no way to empty items out of a cart. This minor change will be our next iter-

ation. We should make it before heading home.

10.3 Iteration E3: Finishing the Cart

We know by now that in order to implement the “empty cart” function, we

have to add a link to the cart and modify the destroy() method in the carts

controller to clean up the session.

Let’s start with the template and again use the button_to() method to put a

button on the page.

Chapter 10. Task E: A Smarter Cart • 128

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_h/test/controllers/line_items_controller_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

David says:

Battle of the Routes: product_path vs. product_url

It can seem hard in the beginning to know when to use product_path and when to use

product_url when you want to link or redirect to a given route. In reality, it’s really quite

simple.

When you use product_url, you’ll get the full enchilada with protocol and domain name,

like http://example.com/products/1. That’s the thing to use when you’re doing redirect_to
because the HTTP spec requires a fully qualified URL when doing 302 Redirect and

friends. You also need the full URL if you’re redirecting from one domain to another,

like product_url(domain: "example2.com", product: product).

The rest of the time, you can happily use product_path. This will generate only the

/products/1 part, and that’s all you need when doing links or pointing forms, like link_to
"My lovely product", product_path(product).

The confusing part is that oftentimes the two are interchangeable because of lenient

browsers. You can do a redirect_to with a product_path and it’ll probably work, but it won’t

be valid according to spec. And you can link_to a product_url, but then you’re littering up

your HTML with needless characters, which is a bad idea too.

Download rails40/depot_h/app/views/carts/show.html.erb

<% if notice %>
<p id="notice"><%= notice %></p>
<% end %>
<h2>Your Pragmatic Cart</h2>

<% @cart.line_items.each do |item| %>
<%= item.quantity %> × <%= item.product.title %>

<% end %>

➤ <%= button_to 'Empty cart', @cart, method: :delete,
data: { confirm: 'Are you sure?' } %>➤

In the controller, we’ll modify the destroy() method to ensure that the user is

deleting their own cart (think about it!) and to remove the cart from the session

before redirecting to the index page with a notification message.

Download rails40/depot_h/app/controllers/carts_controller.rb

def destroy
➤ @cart.destroy if @cart.id == session[:cart_id]
➤ session[:cart_id] = nil

respond_to do |format|
➤ format.html { redirect_to store_url,
➤ notice: 'Your cart is currently empty' }

format.json { head :no_content }
end

report erratum • discuss

Iteration E3: Finishing the Cart • 129

http://media.pragprog.com/titles/rails4/code/rails40/depot_h/app/views/carts/show.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_h/app/controllers/carts_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

end

And we update the corresponding test in test/controllers/carts_controller_test.rb.

Download rails40/depot_i/test/controllers/carts_controller_test.rb

test "should destroy cart" do
assert_difference('Cart.count', -1) do
session[:cart_id] = @cart.id➤

delete :destroy, id: @cart
end

➤ assert_redirected_to store_path
end

Now when we view our cart and click the Empty cart button, we get taken back

to the catalog page, and a nice little message says this:

Figure 27—Flash alert: cart in need of products

We can also remove the flash message that is automatically generated when

a line item is added.

Download rails40/depot_i/app/controllers/line_items_controller.rb

def create
product = Product.find(params[:product_id])
@line_item = @cart.add_product(product.id)

respond_to do |format|
if @line_item.save
format.html { redirect_to @line_item.cart }➤

format.json { render action: 'show',
status: :created, location: @line_item }

else
format.html { render action: 'new' }
format.json { render json: @line_item.errors,

status: :unprocessable_entity }
end

end
end

And, finally, we’ll get around to tidying up the cart display. Rather than use

 elements for each item, let’s use a table. Again, we’ll rely on CSS to do

the styling.

Chapter 10. Task E: A Smarter Cart • 130

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_i/test/controllers/carts_controller_test.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_i/app/controllers/line_items_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_i/app/views/carts/show.html.erb

<% if notice %>
<p id="notice"><%= notice %></p>
<% end %>

➤

<table>
<h2>Your Cart</h2>

➤

<% @cart.line_items.each do |item| %>
<tr>➤

<td><%= item.quantity %>×</td>➤

<td><%= item.product.title %></td>➤

<td class="item_price"><%= number_to_currency(item.total_price) %></td>➤

</tr>➤

<% end %>

<tr class="total_line">➤

<td colspan="2">Total</td>➤

<td class="total_cell"><%= number_to_currency(@cart.total_price) %></td>➤

➤

</table>
</tr>

➤

<%= button_to 'Empty cart', @cart, method: :delete,
data: { confirm: 'Are you sure?' } %>

To make this work, we need to add a method to both the LineItem and Cart
models that returns the total price for the individual line item and entire cart,

respectively. Here’s the line item, which involves only simple multiplication:

Download rails40/depot_i/app/models/line_item.rb

def total_price
product.price * quantity

end

We implement the Cart method using Rails’ nifty Array::sum() method to sum

the prices of each item in the collection.

Download rails40/depot_i/app/models/cart.rb

def total_price
line_items.to_a.sum { |item| item.total_price }

end

Then we need to add a small bit to our carts.css.scss stylesheet.

Download rails40/depot_i/app/assets/stylesheets/carts.css.scss

.carts {

// Place all the styles related to the Carts controller here.
// They will automatically be included in application.css.
// You can use Sass (SCSS) here: http://sass-lang.com/

➤

➤ .item_price, .total_line {
text-align: right;➤

}➤

report erratum • discuss

Iteration E3: Finishing the Cart • 131

http://media.pragprog.com/titles/rails4/code/rails40/depot_i/app/views/carts/show.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_i/app/models/line_item.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_i/app/models/cart.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_i/app/assets/stylesheets/carts.css.scss
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

➤ .total_line .total_cell {
font-weight: bold;➤

➤ border-top: 1px solid #595;
➤ }
➤ }

Figure 28, Cart display with a total, on page 132 shows a nicer-looking cart:

Figure 28—Cart display with a total

What We Just Did

Our shopping cart is now something the client is happy with. Along the way,

we covered the following:

• Adding a column to an existing table, with a default value

• Migrating existing data into the new table format

• Providing a flash notice of an error that was detected

• Using the logger to log events

• Removing a parameter from the permitted list

• Deleting a record

• Adjusting the way a table is rendered, using CSS

But, just as we think we’ve wrapped up this functionality, our customer

wanders over with a copy of Information Technology and Golf Weekly. Appar-

ently, there’s an article about the “Ajax” style of browser interface, where stuff

gets updated on the fly. Hmmm…let’s look at that tomorrow.

Playtime

Here’s some stuff to try on your own:

Chapter 10. Task E: A Smarter Cart • 132

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• Create a migration that copies the product price into the line item, and

change the add_product() method in the Cart model to capture the price

whenever a new line item is created.

• Add unit tests that add unique products and duplicate products. Note

that you will need to modify the fixture to refer to products and carts by

name, for example product: ruby.

• Check products and line items for other places where a user-friendly error

message would be in order.

• Add the ability to delete individual line items from the cart. This will

require buttons on each line, and such buttons will need to be linked to

the destroy() action in the LineItemsController.

(You’ll find hints at http://www.pragprog.com/wikis/wiki/RailsPlayTime.)

report erratum • discuss

Iteration E3: Finishing the Cart • 133

http://www.pragprog.com/wikis/wiki/RailsPlayTime
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 11

Task F: Add a Dash of Ajax

Our customer wants us to add Ajax support to the store. But just what is

Ajax?

In the old days (up until 2005 or so), browsers were treated as really dumb

devices. When you wrote a browser-based application, you’d send stuff to the

browser and then forget about that session. At some point, the user would

fill in some form fields or click a hyperlink, and your application would get

woken up by an incoming request. It would render a complete page back to

the user, and the whole tedious process would start afresh. That’s exactly

how our Depot application behaves so far.

But it turns out that browsers aren’t really that dumb (who knew?). They can

run code. Almost all browsers can run JavaScript. And it turns out that the

JavaScript in the browser can interact behind the scenes with the application

on the server, updating the stuff the user sees as a result. Jesse James Garrett

named this style of interaction Ajax (which once stood for Asynchronous

JavaScript and XML but now just means “making browsers suck less”).

So, let’s Ajaxify our shopping cart. Rather than having a separate shopping

cart page, let’s put the current cart display into the catalog’s sidebar. Then,

we’ll add the Ajax magic that updates the cart in the sidebar without redis-

playing the whole page.

Whenever you work with Ajax, it’s good to start with the non-Ajax version of

the application and then gradually introduce Ajax features. That’s what we’ll

do here. For starters, let’s move the cart from its own page and put it in the

sidebar.

In this chapter, we’ll see
• using partial templates,
• rendering into the page layout,
• updating pages dynamically with Ajax and JavaScript,
• highlighting changes with jQuery UI,
• hiding and revealing DOM elements, and
• testing the Ajax updates.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

11.1 Iteration F1: Moving the Cart

Currently, our cart is rendered by the show action in the CartController and the

corresponding .html.erb template. What we’d like to do is to move that rendering

into the sidebar. This means it will no longer be in its own page. Instead, we’ll

render it in the layout that displays the overall catalog. And that’s easy using

partial templates.

Partial Templates

Programming languages let you define methods. A method is a chunk of code

with a name: invoke the method by the name, and the corresponding chunk

of code gets run. And, of course, you can pass parameters to a method, which

lets you write one piece of code that can be used in many different

circumstances.

You can think of Rails partial templates (partials for short) as a kind of method

for views. A partial is simply a chunk of a view in its own separate file. You

can invoke (render) a partial from another template or from a controller, and

the partial will render itself and return the results of that rendering. And,

just as with methods, you can pass parameters to a partial, so the same

partial can render different results.

We’ll use partials twice in this iteration. First, let’s look at the cart display:

Download rails40/depot_i/app/views/carts/show.html.erb

<% if notice %>
<p id="notice"><%= notice %></p>
<% end %>

<h2>Your Cart</h2>
<table>
<% @cart.line_items.each do |item| %>
<tr>

<td><%= item.quantity %>×</td>
<td><%= item.product.title %></td>
<td class="item_price"><%= number_to_currency(item.total_price) %></td>

</tr>
<% end %>

<tr class="total_line">
<td colspan="2">Total</td>
<td class="total_cell"><%= number_to_currency(@cart.total_price) %></td>

</tr>
</table>

<%= button_to 'Empty cart', @cart, method: :delete,
data: { confirm: 'Are you sure?' } %>

Chapter 11. Task F: Add a Dash of Ajax • 136

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_i/app/views/carts/show.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

It creates a list of table rows, one for each item in the cart. Whenever you find

yourself iterating like this, you might want to stop and ask yourself, is this

too much logic in a template? It turns out we can abstract away the loop

using partials (and, as we’ll see, this also sets the stage for some Ajax magic

later). To do this, we’ll make use of the fact that you can pass a collection to

the method that renders partial templates, and that method will automatically

invoke the partial once for each item in the collection. Let’s rewrite our cart

view to use this feature.

Download rails40/depot_j/app/views/carts/show.html.erb

<% if notice %>
<p id="notice"><%= notice %></p>
<% end %>

<h2>Your Cart</h2>
<table>
<%= render(@cart.line_items) %>➤

<tr class="total_line">
<td colspan="2">Total</td>
<td class="total_cell"><%= number_to_currency(@cart.total_price) %></td>

</tr>

</table>

<%= button_to 'Empty cart', @cart, method: :delete,
data: { confirm: 'Are you sure?' } %>

That’s a lot simpler. The render() method will iterate over any collection that

is passed to it. The partial template itself is simply another template file (by

default in the same directory as the object being rendered and with the name

of the table as the name). However, to keep the names of partials distinct

from regular templates, Rails automatically prepends an underscore to the

partial name when looking for the file. That means we need to name our

partial _line_item.html.erb and place it in the app/views/line_items directory.

Download rails40/depot_j/app/views/line_items/_line_item.html.erb

<tr>
<td><%= line_item.quantity %>×</td>
<td><%= line_item.product.title %></td>
<td class="item_price"><%= number_to_currency(line_item.total_price) %></td>

</tr>

There’s something subtle going on here. Inside the partial template, we refer

to the current object using the variable name that matches the name of the

template. In this case, the partial is named line_item, so inside the partial we

expect to have a variable called line_item.

report erratum • discuss

Iteration F1: Moving the Cart • 137

http://media.pragprog.com/titles/rails4/code/rails40/depot_j/app/views/carts/show.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_j/app/views/line_items/_line_item.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

So, now we’ve tidied up the cart display, but that hasn’t moved it into the

sidebar. To do that, let’s revisit our layout. If we had a partial template that

could display the cart, we could simply embed a call like this within the

sidebar:

render("cart")

But how would the partial know where to find the cart object? One way would

be for it to make an assumption. In the layout, we have access to the @cart
instance variable that was set by the controller. It turns out that this is also

available inside partials called from the layout. However, this is a bit like

calling a method and passing it some value in a global variable. It works, but

it’s ugly coding, and it increases coupling (which in turn makes your programs

brittle and hard to maintain).

Now that we have a partial for a line item, let’s do the same for the cart. First

we’ll create the _cart.html.erb template. This is basically our carts/show.html.erb
template but using cart instead of @cart, and without the notice. (Note that it’s

OK for a partial to invoke other partials.)

Download rails40/depot_j/app/views/carts/_cart.html.erb

<h2>Your Cart</h2>
<table>
<%= render(cart.line_items) %>➤

<tr class="total_line">
<td colspan="2">Total</td>
<td class="total_cell"><%= number_to_currency(cart.total_price) %></td>➤

</tr>

</table>

➤ <%= button_to 'Empty cart', cart, method: :delete,
data: { confirm: 'Are you sure?' } %>

As the Rails mantra goes, don’t repeat yourself (DRY). But we have just done

that. At the moment the two files are in sync, so there may not seem to be

much of a problem, but having one set of logic for the Ajax calls and another

set of logic to handle the case where JavaScript is disabled invites problems.

Let’s avoid all of that and replace the original template with code that causes

the partial to be rendered.

Download rails40/depot_k/app/views/carts/show.html.erb

<% if notice %>
<p id="notice"><%= notice %></p>
<% end %>

<%= render @cart %>➤

Chapter 11. Task F: Add a Dash of Ajax • 138

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_j/app/views/carts/_cart.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_k/app/views/carts/show.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Now we will change the application layout to include this new partial in the

sidebar.

Download rails40/depot_k/app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>

<title>Pragprog Books Online Store</title>
<%= stylesheet_link_tag "application", media: "all",
"data-turbolinks-track" => true %>

<%= javascript_include_tag "application", "data-turbolinks-track" => true %>
<%= csrf_meta_tags %>

</head>
<body class="<%= controller.controller_name %>">

<div id="banner">
<%= image_tag("logo.png") %>
<%= @page_title || "Pragmatic Bookshelf" %>

</div>
<div id="columns">
<div id="side">
<div id="cart">➤

➤ <%= render @cart %>
</div>➤

➤

Home
Questions
News
Contact

</div>
<div id="main">

<%= yield %>
</div>

</div>
</body>
</html>

Next we have to make a small change to the store controller. We’re invoking

the layout while looking at the store’s index action, and that action doesn’t

currently set @cart. That’s easy enough to remedy.

Download rails40/depot_k/app/controllers/store_controller.rb

class StoreController < ApplicationController
➤ include CurrentCart
➤ before_action :set_cart

def index
@products = Product.order(:title)

end
end

report erratum • discuss

Iteration F1: Moving the Cart • 139

http://media.pragprog.com/titles/rails4/code/rails40/depot_k/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_k/app/controllers/store_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Finally, we modify the style instructions—which currently apply only to the

output produced by the CartController—to also apply to the table when it appears

in the sidebar. Again, SCSS enables us to make this change in one place

because it will take care of all of the nested definitions.

Download rails40/depot_k/app/assets/stylesheets/carts.css.scss

// Place all the styles related to the Carts controller here.
// They will automatically be included in application.css.
// You can use Sass (SCSS) here: http://sass-lang.com/

.carts, #side #cart {➤

.item_price, .total_line {
text-align: right;

}

.total_line .total_cell {
font-weight: bold;
border-top: 1px solid #595;

}
}

While the data for the cart is common no matter where it is placed in the

output, there is no requirement that the presentation needs to be identical

independent of where this content is placed. In fact, black lettering on a green

background is rather hard to read, so let’s provide additional rules for this

table when it appears in the sidebar.

Download rails40/depot_k/app/assets/stylesheets/application.css.scss

#side {
float: left;
padding: 1em 2em;
width: 13em;
background: #141;

➤ form, div {
display: inline;➤

}➤

➤

➤ input {
font-size: small;➤

}➤

➤

➤ #cart {
font-size: smaller;➤

color: white;➤

➤

➤ table {
border-top: 1px dotted #595;➤

➤ border-bottom: 1px dotted #595;
margin-bottom: 10px;➤

Chapter 11. Task F: Add a Dash of Ajax • 140

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_k/app/assets/stylesheets/carts.css.scss
http://media.pragprog.com/titles/rails4/code/rails40/depot_k/app/assets/stylesheets/application.css.scss
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

}➤

}➤

➤

ul {
padding: 0;

li {
list-style: none;

a {
color: #bfb;
font-size: small;

}
}

}
}

If you display the catalog after adding something to your cart, you should see

something like the following figure. Let’s just wait for the Webby Award

nomination.

Figure 29—The cart is in the sidebar.

Changing the Flow

Now that we’re displaying the cart in the sidebar, we can change the way that

the Add to Cart button works. Rather than displaying a separate cart page, all

it has to do is refresh the main index page.

The change is pretty simple. At the end of the create action, we simply redirect

the browser back to the index.

report erratum • discuss

Iteration F1: Moving the Cart • 141

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_k/app/controllers/line_items_controller.rb

def create
product = Product.find(params[:product_id])
@line_item = @cart.add_product(product.id)

respond_to do |format|
if @line_item.save
format.html { redirect_to store_url }➤

format.json { render action: 'show',
status: :created, location: @line_item }

else
format.html { render action: 'new' }
format.json { render json: @line_item.errors,

status: :unprocessable_entity }
end

end
end

So, now we have a store with a cart in the sidebar. When we click to add an

item to the cart, the page is redisplayed with an updated cart. However, if

our catalog is large, that redisplay might take a while. It uses bandwidth, and

it uses server resources. Fortunately, we can use Ajax to make this better.

11.2 Iteration F2: Creating an Ajax-Based Cart

Ajax lets us write code that runs in the browser that interacts with our server-

based application. In our case, we’d like to make the Add to Cart buttons invoke

the server create action on the LineItems controller in the background. The

server can then send down just the HTML for the cart, and we can replace

the cart in the sidebar with the server’s updates.

Now, normally we’d do this by writing JavaScript that runs in the browser

and by writing server-side code that communicated with this JavaScript

(possibly using a technology such as JavaScript Object Notation [JSON]).

The good news is that, with Rails, all this is hidden from us. We can do

everything we need to do using Ruby (and with a whole lot of support from

some Rails helper methods).

The trick when adding Ajax to an application is to take small steps. So, let’s

start with the most basic one. Let’s change the catalog page to send an Ajax

request to our server application and have the application respond with the

HTML fragment containing the updated cart.

On the index page, we’re using button_to() to create the link to the create action.

We want to change this to send an Ajax request instead. To do this, we simply

add a remote: true parameter to the call.

Chapter 11. Task F: Add a Dash of Ajax • 142

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_k/app/controllers/line_items_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_l/app/views/store/index.html.erb

<% if notice %>
<p id="notice"><%= notice %></p>
<% end %>

<h1>Your Pragmatic Catalog</h1>

<% cache ['store', Product.latest] do %>
<% @products.each do |product| %>
<% cache ['entry', product] do %>

<div class="entry">
<%= image_tag(product.image_url) %>
<h3><%= product.title %></h3>
<%= sanitize(product.description) %>
<div class="price_line">

<%= number_to_currency(product.price) %>
<%= button_to 'Add to Cart', line_items_path(product_id: product),➤

remote: true %>➤

</div>
</div>

<% end %>
<% end %>

<% end %>

So far, we’ve arranged for the browser to send an Ajax request to our applica-

tion. The next step is to have the application return a response. The plan is

to create the updated HTML fragment that represents the cart and to have

the browser stick that HTML into the browser’s internal representation of the

structure and content of the document being displayed, namely, the Document

Object Model (DOM). By manipulating the DOM, we cause the display to

change in front of the user’s eyes.

The first change is to stop the create action from redirecting to the index display

if the request is for JavaScript. We do this by adding a call to respond_to() telling

it that we want to respond with a format of .js.

This syntax may seem surprising at first, but it is simply a method call that

is passing an optional block as an argument. Blocks are described in Blocks

and Iterators, on page 44. We will cover the respond_to() method in greater detail

in Selecting a Data Representation, on page 318.

Download rails40/depot_l/app/controllers/line_items_controller.rb

def create
product = Product.find(params[:product_id])
@line_item = @cart.add_product(product.id)

respond_to do |format|
if @line_item.save
format.html { redirect_to store_url }

report erratum • discuss

Iteration F2: Creating an Ajax-Based Cart • 143

http://media.pragprog.com/titles/rails4/code/rails40/depot_l/app/views/store/index.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_l/app/controllers/line_items_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

➤ format.js
format.json { render action: 'show',

status: :created, location: @line_item }
else
format.html { render action: 'new' }
format.json { render json: @line_item.errors,

status: :unprocessable_entity }
end

end
end

Because of this change, when create finishes handling the Ajax request, Rails

will look for a create template to render.

Rails supports templates that generate JavaScript—the JS stands for Java-

Script. A .js.erb template is a way of getting JavaScript on the browser to do

what you want, all by writing server-side Ruby code. Let’s write our first:

create.js.erb. It goes in the app/views/line_items directory, just like any other view

for line items.

Download rails40/depot_l/app/views/line_items/create.js.erb

$('#cart').html("<%= escape_javascript render(@cart) %>");

This simple template tells the browser to replace the content of the element

whose id="cart" with that HTML.

Let’s analyze how it manages to do that.

For simplicity and conciseness, the jQuery library is aliased to $, and most

usages of jQuery start there.

The first call—$('#cart')—tells jQuery to find the HTML element that has an id
of cart. The html() method1 is then called with a first argument of the desired

replacement for the contents of this element. This content is formed by calling

the render() method on the @cart object. The output of this method is processed

by a escape_javascript() helper method that converts this Ruby string into a format

acceptable as input to JavaScript.

Note that this script is executed in the browser. The only parts executed on

the server are the portions within the <%= and %> delimiters.

Does it work? Well, it’s hard to show in a book, but it sure does. Make sure

you reload the index page to get the remote version of the form and the

JavaScript libraries loaded into your browser. Then, click one of the Add to Cart
buttons. You should see the cart in the sidebar update. And you shouldn’t

1. http://api.jquery.com/html/

Chapter 11. Task F: Add a Dash of Ajax • 144

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_l/app/views/line_items/create.js.erb
http://api.jquery.com/html/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

see your browser show any indication of reloading the page. You’ve just cre-

ated an Ajax application.

Troubleshooting

Although Rails makes Ajax incredibly simple, it can’t make it foolproof. And,

because you’re dealing with the loose integration of a number of technologies,

it can be hard to work out why your Ajax doesn’t work. That’s one of the

reasons you should always add Ajax functionality one step at a time.

Here are a few hints if your Depot application didn’t show any Ajax magic:

• Does your browser have any special incantation to force it to reload

everything on a page? Sometimes browsers hold local cached versions of

page assets, and this can mess up testing. Now would be a good time to

do a full reload.

• Did you have any errors reported? Look in development.log in the logs direc-

tory. Also look in the Rails server window because some errors are

reported there.

• Still looking at the log file, do you see incoming requests to the action

create? If not, it means your browser isn’t making Ajax requests. If the

JavaScript libraries have been loaded (using View Source in your browser

will show you the HTML), perhaps your browser has JavaScript execution

disabled?

• Some readers have reported that they had to stop and start their applica-

tion to get the Ajax-based cart to work.

• If you’re using Internet Explorer, it might be running in what Microsoft

calls quirks mode, which is backward compatible with old Internet

Explorer releases but is also broken. Internet Explorer switches into

standards mode, which works better with the Ajax stuff, if the first line

of the downloaded page is an appropriate DOCTYPE header. Our layouts

use this:

<!DOCTYPE html>

The Customer Is Never Satisfied

We’re feeling pretty pleased with ourselves. We changed a handful of lines of

code, and our boring old Web 1.0 application now sports Web 2.0 Ajax speed

stripes. We breathlessly call the client over to come look. Without saying

anything, we proudly click Add to Cart and look at her, eager for the praise we

report erratum • discuss

Iteration F2: Creating an Ajax-Based Cart • 145

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

know will come. Instead, she looks surprised. “You called me over to show

me a bug?” she asks. “You click that button, and nothing happens.”

We patiently explain that, in fact, quite a lot happened. Just look at the cart

in the sidebar. See? When we add something, the quantity changes from 4

to 5.

“Oh,” she says, “I didn’t notice that.” And, if she didn’t notice the page update,

it’s likely our customers won’t either. It’s time for some user-interface hacking.

11.3 Iteration F3: Highlighting Changes

A number of JavaScript libraries are included with Rails. One of those libraries,

jQuery UI,2 lets you decorate your web pages with a number of visually

interesting effects. One of these effects is the (now) infamous Yellow Fade

Technique. This highlights an element in a browser: by default it flashes the

background yellow and then gradually fades it back to white. We can see the

Yellow Fade Technique being applied to our cart in the following figure; the

image at the back shows the original cart. The user clicks the Add to Cart
button, and the count updates to two as the line flares brighter. It then fades

back to the background color over a short period of time.

Figure 30—Our cart with the Yellow Fade Technique

2. http://jqueryui.com/

Chapter 11. Task F: Add a Dash of Ajax • 146

report erratum • discuss

http://jqueryui.com/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Installing the jQuery UI library is simple enough. First add one line to your

Gemfile.

Download rails40/depot_m/Gemfile

gem 'jquery-ui-rails'

Use jquery as the JavaScript library
gem 'jquery-rails'

➤

Install the gem by running the bundle install command.

$ bundle install

After this command completes, restart your server.

Now that we have the jQuery-UI libraryjQuery-UI library available to our application,

we need to pull in the effect that we want to use. We do that by adding one

line to app/assets/javascripts/application.js.

Download rails40/depot_m/app/assets/javascripts/application.js

// This is a manifest file that'll be compiled into application.js, which will
// include all the files listed below.
//
// Any JavaScript/Coffee file within this directory, lib/assets/javascripts,
// vendor/assets/javascripts, or vendor/assets/javascripts of plugins, if any,
// can be referenced here using a relative path.
//
// It's not advisable to add code directly here, but if you do, it'll appear at
// the bottom of the compiled file.
//
// Read Sprockets README
// (https://github.com/sstephenson/sprockets#sprockets-directives) for details
// about supported directives.
//
//= require jquery

➤ //= require jquery.ui.effect-blind
//= require jquery_ujs
//= require turbolinks
//= require_tree .

We saw assets/stylesheets/application.css in Iteration A2 on page 97. This file behaves

similarly but for JavaScripts instead of stylesheets. Be careful to use a dash

instead of an underscore in this line, as clearly not all authors of libraries

follow the same naming conventions.

Let’s use this library to add this kind of highlight to our cart. Whenever an

item in the cart is updated (either when it is added or when we change the

quantity), let’s flash its background. That will make it clearer to our users

that something has changed, even though the whole page hasn’t been

refreshed.

report erratum • discuss

Iteration F3: Highlighting Changes • 147

http://media.pragprog.com/titles/rails4/code/rails40/depot_m/Gemfile
http://media.pragprog.com/titles/rails4/code/rails40/depot_m/app/assets/javascripts/application.js
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The first problem we have is identifying the most recently updated item in

the cart. Right now, each item is simply a <tr> element. We need to find a way

to flag the most recently changed one. The work starts in the LineItemsController.
Let’s pass the current line item down to the template by assigning it to an

instance variable.

Download rails40/depot_m/app/controllers/line_items_controller.rb

def create
product = Product.find(params[:product_id])
@line_item = @cart.add_product(product.id)

respond_to do |format|
if @line_item.save
format.html { redirect_to store_url }
format.js { @current_item = @line_item }➤

format.json { render action: 'show',
status: :created, location: @line_item }

else
format.html { render action: 'new' }
format.json { render json: @line_item.errors,

status: :unprocessable_entity }
end

end
end

In the _line_item.html.erb partial, we then check to see whether the item we’re

rendering is the one that just changed. If so, we tag it with an ID of current_item.

Download rails40/depot_m/app/views/line_items/_line_item.html.erb

➤

<tr id="current_item">
<% if line_item == @current_item %>

➤

➤

<tr>
<% else %>

➤

<% end %>➤

<td><%= line_item.quantity %>×</td>
<td><%= line_item.product.title %></td>
<td class="item_price"><%= number_to_currency(line_item.total_price) %></td>

</tr>

As a result of these two minor changes, the <tr> element of the most recently

changed item in the cart will be tagged with id="current_item". Now we just need

to tell the JavaScript to change the background color to one that will catch

the eye and then to gradually change it back. We do this in the existing cre-
ate.js.erb template.

Download rails40/depot_m/app/views/line_items/create.js.erb

$('#cart').html("<%= escape_javascript render(@cart) %>");
➤

➤

animate({'background-color':'#114411'}, 1000);
$('#current_item').css({'background-color':'#88ff88'}).

➤

Chapter 11. Task F: Add a Dash of Ajax • 148

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_m/app/controllers/line_items_controller.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_m/app/views/line_items/_line_item.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_m/app/views/line_items/create.js.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

See how we identified the browser element that we wanted to apply the effect

to by passing '#current_item' to the $ function? We then called css() to set the

initial background color and followed up with a call to the animate() method to

transition back to the original color used by our layout over a period of 1000
milliseconds, more commonly known as one second.

With that change in place, click any Add to Cart button, and you’ll see that

the changed item in the cart glows a light green before fading back to merge

with the background.

11.4 Iteration F4: Hiding an Empty Cart

There’s one last request from the customer. Right now, even carts with

nothing in them are still displayed in the sidebar. Can we arrange for the cart

to appear only when it has some content? But of course!

In fact, we have a number of options. The simplest is probably to include the

HTML for the cart only if the cart has something in it. We could do this

totally within the _cart partial.

➤ <% unless cart.line_items.empty? %>
<div class="cart_title">Your Cart</div>
<table>

<%= render(cart.line_items) %>

<tr class="total_line">
<td colspan="2">Total</td>
<td class="total_cell"><%= number_to_currency(cart.total_price) %></td>

</tr>
</table>

<%= button_to 'Empty cart', cart, method: :delete,
confirm: 'Are you sure?' %>

<% end %>➤

Although this works, the user interface is somewhat brutal: the whole sidebar

redraws on the transition between a cart that’s empty and a cart with some-

thing in it. So, let’s not use this code. Instead, let’s smooth it out a little.

The jQuery UI library also provides transitions that make elements appear.

Let’s use the blind option on show(), which will smoothly reveal the cart, sliding

the rest of the sidebar down to make room.

Not surprisingly, we’ll again use our existing .js.erb template to call the effect.

Because the create template is invoked only when we add something to the

cart, we know that we have to reveal the cart in the sidebar whenever there

is exactly one item in the cart (because that means previously the cart was

empty and hence hidden). And, because the cart should be visible before we

report erratum • discuss

Iteration F4: Hiding an Empty Cart • 149

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

start the highlight effect, we’ll add the code to reveal the cart before the code

that triggers the highlight.

The template now looks like this:

Download rails40/depot_n/app/views/line_items/create.js.erb

➤ if ($('#cart tr').length == 1) { $('#cart').show('blind', 1000); }
➤

$('#cart').html("<%= escape_javascript render(@cart) %>");

$('#current_item').css({'background-color':'#88ff88'}).
animate({'background-color':'#114411'}, 1000);

We also have to arrange to hide the cart when it’s empty. There are two basic

ways of doing this. One, illustrated by the code at the start of this section, is

not to generate any HTML at all. Unfortunately, if we do that, then when we

add something to the cart and suddenly create the cart HTML, we see a

flicker in the browser as the cart is first displayed and then hidden and

slowly revealed by the blind effect.

A better way to handle the problem is to create the cart HTML but set the

CSS style to display: none if the cart is empty. To do that, we need to change

the application.html.erb layout in app/views/layouts. Our first attempt is something

like this:

<div id="cart"
<% if @cart.line_items.empty? %>

style="display: none"
<% end %>

>
<%= render(@cart) %>

</div>

This code adds the CSS style= attribute to the <div> tag, but only if the cart is

empty. It works fine, but it’s really, really ugly. That dangling > character

looks misplaced (even though it isn’t), and the way logic is interjected into

the middle of a tag is the kind of thing that gives templating languages a bad

name. Let’s not let that kind of ugliness litter our code. Instead, let’s create

an abstraction that hides it—we’ll write a helper method.

Helper Methods

Whenever we want to abstract some processing out of a view (any kind of

view), we should write a helper method.

If you look in the app directory, you’ll find six subdirectories.

depot> ls -p app
assets/ controllers/ helpers/ mailers/ models/ views/

Chapter 11. Task F: Add a Dash of Ajax • 150

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_n/app/views/line_items/create.js.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Not surprisingly, our helper methods go in the helpers directory. If you look

in that directory, you’ll find it already contains some files.

depot> ls -p app/helpers
application_helper.rb line_items_helper.rb store_helper.rb
carts_helper.rb products_helper.rb

The Rails generators automatically created a helper file for each of our con-

trollers (products and store). The Rails command itself (the one that created

the application initially) created the file application_helper.rb. If you like, you can

organize your methods into controller-specific helpers, but because this

method will be used in the application layout, let’s put it in the application

helper.

Let’s write a helper method called hidden_div_if(). It takes a condition, an

optional set of attributes, and a block. It wraps the output generated by the

block in a <div> tag, adding the display: none style if the condition is true. Use

it in the store layout like this:

Download rails40/depot_n/app/views/layouts/application.html.erb

<%= hidden_div_if(@cart.line_items.empty?, id: 'cart') do %>
<%= render @cart %>

<% end %>

We’ll write our helper so that it is visible to the store controller by adding it

to application_helper.rb in the app/helpers directory.

Download rails40/depot_n/app/helpers/application_helper.rb

module ApplicationHelper
➤ def hidden_div_if(condition, attributes = {}, &block)

if condition➤

➤ attributes["style"] = "display: none"
end➤

➤ content_tag("div", attributes, &block)
➤ end

end

This code uses the Rails standard helper, content_tag(), which can be used to

&block notation

↪ on page 44

wrap the output created by a block in a tag. By using the &block notation, we

get Ruby to pass the block that was given to hidden_div_if() down to content_tag().

And, finally, we need to stop setting the message in the flash that we used to

display when the user empties a cart. It really isn’t needed anymore, because

the cart clearly disappears from the sidebar when the catalog index page is

redrawn. But there’s another reason to remove it, too. Now that we’re using

Ajax to add products to the cart, the main page doesn’t get redrawn between

requests as people shop. That means we’ll continue to display the flash

message saying the cart is empty even as we display a cart in the sidebar.

report erratum • discuss

Iteration F4: Hiding an Empty Cart • 151

http://media.pragprog.com/titles/rails4/code/rails40/depot_n/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_n/app/helpers/application_helper.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_n/app/controllers/carts_controller.rb

def destroy
@cart.destroy if @cart.id == session[:cart_id]
session[:cart_id] = nil
respond_to do |format|

➤ format.html { redirect_to store_url }
format.json { head :no_content }

end
end

Now that we have added all this Ajax goodness, go ahead and empty your

cart and add an item.

Although this might seem like a lot of work, there really are only two essential

steps to what we did. First, we make the cart hide and reveal itself by making

the CSS display style conditional on the number of items in the cart. Second,

we provided JavaScript instructions to invoke the blind effect when the cart

went from being empty to having one item.

So far, these changes have been pretty but not functional. Let’s proceed to

changing the behavior of the page. How about we make clicking the image

cause an item to be added to the cart? It turns out that that’s easy too with

JQuery.

11.5 Iteration F5: Making Images Clickable

So far, we have been doing things only in response to a click and only on

things that are defined to be clickable (namely, buttons and links). In this

case, what we want to do is to handle the onClick event for the image and have

it execute some behavior that we define.

In other words, what we want to do is to have a script that executes when

the page loads and have it find all the images and associate logic with those

images to forward the processing of click events to the Add to Cart button for

the same entry.

First, we refresh our memory as to how the page in question is organized.

Download rails40/depot_n/app/views/store/index.html.erb

<% if notice %>
<p id="notice"><%= notice %></p>
<% end %>

<h1>Your Pragmatic Catalog</h1>

<% cache ['store', Product.latest] do %>
<% @products.each do |product| %>
<% cache ['entry', product] do %>

Chapter 11. Task F: Add a Dash of Ajax • 152

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_n/app/controllers/carts_controller.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_n/app/views/store/index.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<div class="entry">
<%= image_tag(product.image_url) %>
<h3><%= product.title %></h3>
<%= sanitize(product.description) %>
<div class="price_line">

<%= number_to_currency(product.price) %>
<%= button_to 'Add to Cart', line_items_path(product_id: product),

remote: true %>
</div>

</div>
<% end %>

<% end %>
<% end %>

Using this information, we proceed by modifying app/assets/javascripts/store.js.coffee.

Download rails40/depot_n/app/assets/javascripts/store.js.coffee

Place all the behaviors and hooks related to the matching controller here.
All this logic will automatically be available in application.js.
You can use CoffeeScript in this file: http://coffeescript.org/

$(document).on "ready page:change", ->➤

$('.store .entry > img').click ->➤

➤ $(this).parent().find(':submit').click()

CoffeeScript3 is another preprocessor that makes writing assets easier. In this

case, CoffeeScript helps you express JavaScript in a more concise form. Combined

with JQuery, you can produce significant effects with very little effort.

In this case, the first thing we want to do is to define a function that executes

on page load. That’s what the first line of this script does: it defines a function

using the -> operator and passes it to a function named on, which associates

the function with two events: ready and page:change. ready is the event that fires

if people navigate to your page from outside of your site, and page:change is the

event that Turbolinks4 fires if people navigate to your page from within your

site. Associating the script to both makes sure you are covered either way.

The second line finds all images that are immediate children of elements that

are defined with class="entry", which themselves are descendants of an element

with class="store". This last part is important because, just like with stylesheets,

Rails will by default combine all JavaScripts into a single resource. For each

image found, which could be zero when run against other pages in our

application, a function is defined that is associated with the click event for

that image.

3. http://jashkenas.github.com/coffee-script/

4. https://github.com/rails/turbolinks/blob/master/README.md#turbolinks

report erratum • discuss

Iteration F5: Making Images Clickable • 153

http://media.pragprog.com/titles/rails4/code/rails40/depot_n/app/assets/javascripts/store.js.coffee
http://jashkenas.github.com/coffee-script/
https://github.com/rails/turbolinks/blob/master/README.md#turbolinks
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The third and final line processes that click event. It starts with the element

on which the event occurred, namely, this. It then proceeds to find the parent

element, which will be the div that specifies class="entry". Within that element

we find the submit button, and we proceed to click it.

Proceeding to the browser, the page looks no different from it did in Figure

29, The cart is in the sidebar., on page 141. But it behaves differently. Click

the images to cause items to be added to the cart. Marvel in the fact that all

this was accomplished with a mere three lines of code.

Of course, you could have done all of this in JavaScript directly, but that

would have required five more sets of parentheses, two sets of braces, and

overall about 50 percent more characters. And this just barely scratches the

surface of what CoffeeScript can do. A good place to find out more on this

subject is CoffeeScript: Accelerated JavaScript Development [Bur11].

At this point, it occurs to us that we haven’t really done much with respect

to testing, but it doesn’t really feel like we’ve made much in the way of

functional changes, so we should be fine. But just to be sure, we run our

tests again.

depot> rake test
.....E...F.EEEE.........EEEE..

Oh dear. Failures and errors. This is not good. Clearly, we need to revisit our

approach to testing. In fact, we will do that next.

11.6 Testing Ajax Changes

We look at the test failures, and we see a number of errors that look like the

following:

ActionView::Template::Error: undefined method `line_items' for nil:NilClass

Since this error represents the majority of the problems reported, let’s address

it first so that we can focus on the rest. According to the test, we will have a

problem if we get the product index, and sure enough, when we point our

browser to http://localhost:3000/products/, we see the results shown in

Figure 31, An error in a layout can affect the entire application., on page 155.

This information is very helpful. The message identifies the template file that

was being processed at the point where the error occurs (app/views/layouts/appli-
cation.html.erb), the line number where the error occurred, and an excerpt from

the template of lines around the error. From this, we see that the expression

being evaluated at the point of error is @cart.line_items, and the message pro-

duced is undefined method `line_items' for nil.

Chapter 11. Task F: Add a Dash of Ajax • 154

report erratum • discuss

http://localhost:3000/products/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 31—An error in a layout can affect the entire application.

So, @cart is apparently nil when we display an index of our products. That

makes sense, because it is set only in the store controller. This is easy enough

to fix; all we need to do is avoid displaying the cart at all unless this value is

set.

Download rails40/depot_o/app/views/layouts/application.html.erb

<% if @cart %>➤

<%= hidden_div_if(@cart.line_items.empty?, id: 'cart') do %>
<%= render @cart %>

<% end %>
<% end %>➤

After this fix, we rerun the tests and see that we are down to one error. The

value of the redirect was not what was expected. This occurred on creating

a line item. Sure enough, we did change that on Changing the Flow, on page

141. Unlike the last change, which was entirely accidental, this change was

intentional, so we update the corresponding functional test case.

Download rails40/depot_o/test/controllers/line_items_controller_test.rb

test "should create line_item" do
assert_difference('LineItem.count') do
post :create, product_id: products(:ruby).id

end

➤ assert_redirected_to store_path
end

report erratum • discuss

Testing Ajax Changes • 155

http://media.pragprog.com/titles/rails4/code/rails40/depot_o/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_o/test/controllers/line_items_controller_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

With this change in place, our tests now once again pass. Just imagine what

could have happened. A change in one part of an application in order to

support a new requirement breaks a function we previously implemented in

another part of the application. If you are not careful, this can happen in a

small application like Depot. Even if you are careful, this will happen in a

large application.

But we are not done yet. We haven’t tested any of our Ajax additions, such as

what happens when we click the Add to Cart button. Rails makes that easy too.

We already have a test for should create line item, so let’s add another one

called should create line item via ajax.

Download rails40/depot_o/test/controllers/line_items_controller_test.rb

test "should create line_item via ajax" do
assert_difference('LineItem.count') do
xhr :post, :create, product_id: products(:ruby).id

end

assert_response :success
assert_select_jquery :html, '#cart' do
assert_select 'tr#current_item td', /Programming Ruby 1.9/

end
end

This test differs in the name of the test, in the manner of invocation from the

create line item test (xhr :post vs. simply post, where xhr stands for the XML-

HttpRequest mouthful), and in the expected results. Instead of a redirect, we

expect a successful response containing a call to replace the HTML for the

cart, and in that HTML we expect to find a row with an ID of current_item with

a value matching Programming Ruby 1.9. This is achieved by applying the

assert_select_jquery() to extract the relevant HTML and then processing that HTML

via whatever additional assertions you want to apply.

Finally, there is the CoffeeScript that we introduced. While testing code that

actually executes in the browser is outside the scope of this book, we should

test that the markup this script depends on is in place. And it is certainly

easy enough.

Download rails40/depot_o/test/controllers/store_controller_test.rb

test "markup needed for store.js.coffee is in place" do
get :index
assert_select '.store .entry > img', 3
assert_select '.entry input[type=submit]', 3

end

This way, should an exuberant web designer change the markup on the page

in a way that affects our logic, we will be alerted to this issue and be able to

Chapter 11. Task F: Add a Dash of Ajax • 156

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_o/test/controllers/line_items_controller_test.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_o/test/controllers/store_controller_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

make a change before the code goes into production. Note that :submit is a

jQuery-only extension to CSS; we simply need to spell out input[type=submit] in
our test.

Keeping tests up-to-date is an important part of maintaining your application.

Rails makes this easy to do. Agile programmers make testing an integral part

of their development efforts. Many even go so far as to write their tests first,

before the first line of code is written.

What We Just Did

In this iteration, we added Ajax support to our cart.

• We moved the shopping cart into the sidebar. We then arranged for the

create action to redisplay the catalog page.

• We used remote: true to invoke the LineItemsController.create() action using Ajax.

• We then used an ERB template to create JavaScript that will execute on

the client. This script made use of jQuery in order to update to the page

with just the cart’s HTML.

• To help the user see changes to the cart, we added a highlight effect, using

the jQuery-UI library.

• We wrote a helper method that hides the cart when it is empty and used

jQuery to reveal it when an item is added.

• We wrote a test that verifies not only the creation of a line item but also

the content of the response that is returned from such a request.

• We added a bit of CoffeeScript in order to cause items to be added to the

cart when an image is clicked.

The key point to take away is the incremental style of Ajax development. Start

with a conventional application and then add Ajax features, one by one. Ajax

can be hard to debug; by adding it slowly to an application, you make it eas-

ier to track down what changed if your application stops working. And, as

we saw, starting with a conventional application makes it easier to support

both Ajax and non-Ajax behavior in the same codebase.

Finally, we’ll give you a couple of hints. First, if you plan to do a lot of Ajax

development, you’ll probably need to get familiar with your browser’s Java-

Script debugging facilities and with its DOM inspectors, such as Firefox’s

Firebug, Internet Explorer’s Developer Tools, Google Chrome’s Developer

Tools, Safari’s Web Inspector, or Opera’s Dragonfly. And, second, the NoScript

plugin for Firefox makes checking JavaScript/no JavaScript a one-click breeze.

report erratum • discuss

Testing Ajax Changes • 157

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Others find it useful to run two different browsers when they are developing

—with JavaScript enabled in one and disabled in the other. Then, as new

features are added, poking at it with both browsers will make sure your

application works regardless of the state of JavaScript.

Playtime

Here’s some stuff to try on your own:

• The cart is currently hidden when the user empties it by redrawing the

entire catalog. Can you change the application to use the jQuery UI blind
effect instead?

• Add a button next to each item in the cart. When clicked, it should invoke

an action to decrement the quantity of the item, deleting it from the cart

when the quantity reaches zero. Get it working without using Ajax first

and then add the Ajax goodness.

(You’ll find hints at http://www.pragprog.com/wikis/wiki/RailsPlayTime.)

Chapter 11. Task F: Add a Dash of Ajax • 158

report erratum • discuss

http://www.pragprog.com/wikis/wiki/RailsPlayTime
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 12

Task G: Check Out!

Let’s take stock. So far, we’ve put together a basic product administration

system, we’ve implemented a catalog, and we have a pretty spiffy-looking

shopping cart. So, now we need to let the buyer actually purchase the contents

of that cart. Let’s implement the checkout function.

We’re not going to go overboard here. For now, all we’ll do is capture the

customer’s contact details and payment option. Using these, we’ll construct

an order in the database. Along the way, we’ll be looking a bit more at models,

validation, and form handling.

12.1 Iteration G1: Capturing an Order

An order is a set of line items, along with details of the purchase transaction.

Our cart already contains line_items, so all we need to do is add an order_id col-

umn to the line_items table and create an orders table based on the Initial guess

at application data diagram on page 59, combined with a brief chat with our

customer.

First we create the order model and update the line_items table.

depot> rails generate scaffold Order name address:text email pay_type
depot> rails generate migration add_order_to_line_item order:references

Note that we didn’t specify any data type for three out of the four columns.

This is because the data type defaults to string. This is yet another small way

in which Rails makes things easier for you in the most common case without

making things any more cumbersome when you need to specify a data type.

Now that we’ve created the migrations, we can apply them.

depot> rake db:migrate
== CreateOrders: migrating =======================================
-- create_table(:orders)

-> 0.0014s

In this chapter, we’ll see
• linking tables with foreign keys;
• using belongs_to, has_many, and :through;
• creating forms based on models (form_for);
• linking forms, models, and views; and
• generating a feed using atom_helper on model objects.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

== CreateOrders: migrated (0.0015s) ==============================

== AddOrderIdToLineItem: migrating ===============================
-- add_column(:line_items, :order_id, :integer)

-> 0.0008s
== AddOrderIdToLineItem: migrated (0.0009s) ======================

Because the database did not have entries for these two new migrations in

the schema_migrations table, the db:migrate task applied both migrations to the

database. We could, of course, have applied them separately by running the

migration task after creating the individual migrations.

Creating the Order Capture Form

Now that we have our tables and our models as we need them, we can start

the checkout process. First, we need to add a Checkout button to the shopping

cart. Because it will create a new order, we’ll link it back to a new action in

our order controller.

Download rails40/depot_o/app/views/carts/_cart.html.erb

<h2>Your Cart</h2>
<table>
<%= render(cart.line_items) %>

<tr class="total_line">
<td colspan="2">Total</td>
<td class="total_cell"><%= number_to_currency(cart.total_price) %></td>

</tr>

</table>

➤ <%= button_to "Checkout", new_order_path, method: :get %>
<%= button_to 'Empty cart', cart, method: :delete,

data: { confirm: 'Are you sure?' } %>

The first thing we want to do is check to make sure that there’s something

in the cart. This requires us to have access to the cart. Planning ahead, we’ll

also need this when we create an order.

Download rails40/depot_o/app/controllers/orders_controller.rb

class OrdersController < ApplicationController
➤ include CurrentCart
➤ before_action :set_cart, only: [:new, :create]

before_action :set_order, only: [:show, :edit, :update, :destroy]

GET /orders
#...

end

Chapter 12. Task G: Check Out! • 160

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_o/app/views/carts/_cart.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_o/app/controllers/orders_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Joe asks:

Where’s the Credit-Card Processing?

In the real world, we’d probably want our application to handle the commercial side

of checkout. We might even want to integrate credit-card processing. However,

integrating with back-end payment-processing systems requires a fair amount of

paperwork and jumping through hoops. And this would distract from looking at Rails,

so we’re going to punt on this particular detail for the moment.

We will come back to this in Section 25.1, Credit Card Processing with Active Merchant,

on page 411, where we will explore a plugin that can help us with this function.

Next we need to add the code that checks the cart. If there is nothing in the

cart, we redirect the user back to the storefront, provide a notice of what we

did, and return immediately. This prevents people from navigating directly

to the checkout option and creating empty orders. The return statement is

important here; without it you will get a double render error because your

controller will attempt to both redirect and render output.

Download rails40/depot_o/app/controllers/orders_controller.rb

def new
➤ if @cart.line_items.empty?

redirect_to store_url, notice: "Your cart is empty"➤

return
end

➤

➤

➤

@order = Order.new
end

And we add a test for requires item in cart and modify the existing test for

should get new to ensure that there is an item in the cart.

Download rails40/depot_o/test/controllers/orders_controller_test.rb

➤ test "requires item in cart" do
➤ get :new
➤ assert_redirected_to store_path
➤

end
assert_equal flash[:notice], 'Your cart is empty'

➤

test "should get new" do
➤ item = LineItem.new
➤ item.build_cart
➤ item.product = products(:ruby)
➤ item.save!
➤ session[:cart_id] = item.cart.id

get :new
assert_response :success

end

report erratum • discuss

Iteration G1: Capturing an Order • 161

http://media.pragprog.com/titles/rails4/code/rails40/depot_o/app/controllers/orders_controller.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_o/test/controllers/orders_controller_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Now we want the new action to present our user with a form, prompting them

to enter the information in the orders table: their name, address, email address,

and payment type. This means we will need to display a Rails template

containing a form. The input fields on this form will have to link to the corre-

sponding attributes in a Rails model object, so we’ll need to create an empty

model object in the new action to give these fields something to work with.

As always with HTML forms, the trick is populating any initial values into the

form fields and then extracting those values out into our application when

the user hits the submit button.

In the controller, the @order instance variable is set to reference a new Order
model object. This is done because the view populates the form from the data

in this object. As it stands, that’s not particularly interesting. Because it’s a

new model object, all the fields will be empty. However, consider the general

case. Maybe we want to edit an existing order. Or maybe the user has tried

to enter an order but their data has failed validation. In these cases, we want

any existing data in the model shown to the user when the form is displayed.

Passing in the empty model object at this stage makes all these cases consis-

tent—the view can always assume it has a model object available. Then, when

the user hits the submit button, we’d like the new data from the form to be

extracted into a model object back in the controller.

Fortunately, Rails makes this relatively painless. It provides us with a bunch

of form helper methods. These helpers interact with the controller and with

the models to implement an integrated solution for form handling. Before we

start on our final form, let’s look at a simple example:

<%= form_for @order do |f| %>Line 1

<p>2

<%= f.label :name, "Name:" %>3

<%= f.text_field :name, size: 40 %>
</p>

4

5

<% end %>6

There are two interesting things in this code. First, the form_for() helper on

line 1 sets up a standard HTML form. But it does more. The first parameter,

@order, tells the method the instance variable to use when naming fields and

when arranging for the field values to be passed back to the controller.

You’ll see that form_for sets up a Ruby block environment (this block ends on

line 6). Within this block, you can put normal template stuff (such as the <p>
tag). But you can also use the block’s parameter (f in this case) to reference

a form context. We use this context on line 4 to add a text field to the form.

Chapter 12. Task G: Check Out! • 162

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Because the text field is constructed in the context of the form_for, it is auto-

matically associated with the data in the @order object.

All these relationships can be confusing. It’s important to remember that

Rails needs to know both the names and the values to use for the fields

associated with a model. The combination of form_for and the various field-

level helpers (such as text_field) gives it this information. We can see this process

in the following figure:

controller: model object:

"Dave"

<%= form_for do |f| %>

<p>

<%= f.label :name, "Name:" %>

<%= f.text_field , size: 40 %>

</p>

<% end %>

@order

:name

Name: Dave

@order.namedef edit

@order = Order.find(...)

end

Figure 32—The names in form_for map to objects and attributes.

Now we can update the template for the form that captures a customer’s

details for checkout. It’s invoked from the new action in the order controller,

so the template is called new.html.erb, found in the directory app/views/orders.

Download rails40/depot_o/app/views/orders/new.html.erb

<div class="depot_form">
<fieldset>
<legend>Please Enter Your Details</legend>
<%= render 'form' %>

</fieldset>
</div>

This template makes use of a partial named _form.

Download rails40/depot_o/app/views/orders/_form.html.erb

<%= form_for(@order) do |f| %>
<% if @order.errors.any? %>

<div id="error_explanation">
<h2><%= pluralize(@order.errors.count, "error") %>
prohibited this order from being saved:</h2>

report erratum • discuss

Iteration G1: Capturing an Order • 163

http://media.pragprog.com/titles/rails4/code/rails40/depot_o/app/views/orders/new.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_o/app/views/orders/_form.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<% @order.errors.full_messages.each do |msg| %>

<%= msg %>
<% end %>

</div>
<% end %>

<div class="field">
<%= f.label :name %>

<%= f.text_field :name, size: 40 %>➤

</div>
<div class="field">
<%= f.label :address %>

<%= f.text_area :address, rows: 3, cols: 40 %>➤

</div>
<div class="field">
<%= f.label :email %>

<%= f.email_field :email, size: 40 %>➤

</div>
<div class="field">
<%= f.label :pay_type %>

<%= f.select :pay_type, Order::PAYMENT_TYPES,➤

prompt: 'Select a payment method' %>➤

</div>
<div class="actions">

➤ <%= f.submit 'Place Order' %>
</div>

<% end %>

Rails has form helpers for all the different HTML-level form elements. In the

previous code, we use text_field, email_field, and text_area helpers to capture the

customer’s name, email, and address. We cover form helpers in more depth

in Section 21.2, Generating Forms, on page 343.

The only tricky thing in there is the code associated with the selection list.

We’ve assumed that the list of available payment options is an attribute of

the Order model. We’d better define the option array in the model order.rb before

we forget.

Download rails40/depot_o/app/models/order.rb

class Order < ActiveRecord::Base
➤ PAYMENT_TYPES = ["Check", "Credit card", "Purchase order"]

end

In the template, we pass this array of payment type options to the select helper.

We also pass the :prompt parameter, which adds a dummy selection containing

the prompt text.

Chapter 12. Task G: Check Out! • 164

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_o/app/models/order.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Add a little CSS magic:

Download rails40/depot_o/app/assets/stylesheets/application.css.scss

.depot_form {
fieldset {
background: #efe;

legend {
color: #dfd;
background: #141;
font-family: sans-serif;
padding: 0.2em 1em;

}
}

form {
label {

width: 5em;
float: left;
text-align: right;
padding-top: 0.2em;
margin-right: 0.1em;
display: block;

}

select, textarea, input {
margin-left: 0.5em;

}

.submit {
margin-left: 4em;

}

br {
display: none

}
}

}

We’re ready to play with our form. Add some stuff to your cart, and then click

the Checkout button. You should see something like Figure 33, Our checkout

screen, on page 166.

Looking good! Before we move on, let’s finish the new action by adding some

validation. We’ll change the Order model to verify that the customer enters

data for all the input fields.

We also validate that the payment type is one of the accepted values.

report erratum • discuss

Iteration G1: Capturing an Order • 165

http://media.pragprog.com/titles/rails4/code/rails40/depot_o/app/assets/stylesheets/application.css.scss
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 33—Our checkout screen

Some folks might be wondering why we bother to validate the payment type,

given that its value comes from a drop-down list that contains only valid

values. We do it because an application can’t assume that it’s being fed values

from the forms it creates. Nothing is stopping a malicious user from submitting

form data directly to the application, bypassing our form. If the user set an

unknown payment type, they might conceivably get our products for free.

Download rails40/depot_o/app/models/order.rb

class Order < ActiveRecord::Base
...

➤ validates :name, :address, :email, presence: true
➤ validates :pay_type, inclusion: PAYMENT_TYPES

end

Note that we already loop over the @order.errors at the top of the page. This will

report validation failures.

Since we modified validation rules, we need to modify our test fixture to match.

Download rails40/depot_o/test/fixtures/orders.yml

Read about fixtures at
http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html

one:
➤ name: Dave Thomas

address: MyText
➤

pay_type: Check
email: dave@example.org

➤

Chapter 12. Task G: Check Out! • 166

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_o/app/models/order.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_o/test/fixtures/orders.yml
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

two:
name: MyString
address: MyText
email: MyString
pay_type: MyString

Furthermore, for an order to be created, a line item needs to be in the cart,

so we need to modify the line items test fixture too.

Download rails40/depot_o/test/fixtures/line_items.yml

order: one

Read about fixtures at
http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html

one:
product: ruby

➤

two:
product: ruby
cart: one

Note that if you didn’t choose to do the optional exercises in Playtime, on page

132, you will need to modify all of the references to products and carts at this time.

Feel free to make other changes, but only the first is currently used in the

functional tests. For these tests to pass, we will need to implement the model.

Capturing the Order Details

Let’s implement the create() action in the controller. This method has to do the

following:

1. Capture the values from the form to populate a new Order model object.

2. Add the line items from our cart to that order.

3. Validate and save the order. If this fails, display the appropriate messages,

and let the user correct any problems.

4. Once the order is successfully saved, delete the cart, redisplay the catalog

page, and display a message confirming that the order has been placed.

We define the relationships themselves, first from the line item to the order:

Download rails40/depot_o/app/models/line_item.rb

class LineItem < ActiveRecord::Base
➤ belongs_to :order

belongs_to :product
belongs_to :cart
def total_price
product.price * quantity

end
end

report erratum • discuss

Iteration G1: Capturing an Order • 167

http://media.pragprog.com/titles/rails4/code/rails40/depot_o/test/fixtures/line_items.yml
http://media.pragprog.com/titles/rails4/code/rails40/depot_o/app/models/line_item.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

and then from the order to the line item, once again indicating that all line

items that belong to an order are to be destroyed whenever the order is

destroyed.

Download rails40/depot_o/app/models/order.rb

class Order < ActiveRecord::Base
➤ has_many :line_items, dependent: :destroy

...
end

The method itself ends up looking something like this:

Download rails40/depot_o/app/controllers/orders_controller.rb

@order.add_line_items_from_cart(@cart)

def create
@order = Order.new(order_params)

➤

respond_to do |format|
if @order.save

➤ Cart.destroy(session[:cart_id])
session[:cart_id] = nil➤

➤

➤ format.html { redirect_to store_url, notice:
➤ 'Thank you for your order.' }

format.json { render action: 'show', status: :created,
location: @order }

else
format.html { render action: 'new' }
format.json { render json: @order.errors,

status: :unprocessable_entity }
end

end
end

We start by creating a new Order object and initialize it from the form data.

The next line adds into this order the items that are already stored in the

cart—we’ll write the actual method to do this in a minute.

Next we tell the order object to save itself (and its children, the line items) to

the database. Along the way, the order object will perform validation (but we’ll

get to that in a minute).

If the save succeeds, we do two things. First, we ready ourselves for this

customer’s next order by deleting the cart from the session. Then, we redisplay

the catalog using the redirect_to() method to display a cheerful message. If,

instead, the save fails, we redisplay the checkout form with the current cart.

In the create action we assumed that the order object contains the method

add_line_items_from_cart(), so let’s implement that method now.

Chapter 12. Task G: Check Out! • 168

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_o/app/models/order.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_o/app/controllers/orders_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Joe asks:

Aren’t You Creating Duplicate Orders?

Joe is concerned to see our controller creating Order model objects in two actions: new
and create. He’s wondering why this doesn’t lead to duplicate orders in the database.

The answer is simple: the new action creates an Order object in memory simply to give

the template code something to work with. Once the response is sent to the browser,

that particular object gets abandoned, and it will eventually be reaped by Ruby’s

garbage collector. It never gets close to the database.

The create action also creates an Order object, populating it from the form fields. This object

does get saved in the database. So, model objects perform two roles: they map data into

and out of the database, but they are also just regular objects that hold business data.

They affect the database only when you tell them to, typically by calling save().

Download rails40/depot_p/app/models/order.rb

class Order < ActiveRecord::Base
...

➤ def add_line_items_from_cart(cart)
cart.line_items.each do |item|➤

➤ item.cart_id = nil
➤ line_items << item

end➤

➤ end
end

For each item that we transfer from the cart to the order, we need to do two

things. First we set the cart_id to nil in order to prevent the item from going

poof when we destroy the cart.

Then we add the item itself to the line_items collection for the order. Notice that we

didn’t have to do anything special with the various foreign key fields, such as

setting the order_id column in the line item rows to reference the newly created

order row. Rails does that knitting for us using the has_many() and belongs_to() dec-

larations we added to the Order and LineItem models. Appending each new line item

to the line_items collection hands the responsibility for key management over to

Rails. We will also need to modify the test to reflect the new redirect.

Download rails40/depot_p/test/controllers/orders_controller_test.rb

test "should create order" do
assert_difference('Order.count') do
post :create, order: { address: @order.address, email: @order.email,

name: @order.name, pay_type: @order.pay_type }
end

➤ assert_redirected_to store_path
end

report erratum • discuss

Iteration G1: Capturing an Order • 169

http://media.pragprog.com/titles/rails4/code/rails40/depot_p/app/models/order.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_p/test/controllers/orders_controller_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

So, as a first test of all of this, hit the Place Order button on the checkout page

without filling in any of the form fields. You should see the checkout page

redisplayed along with error messages complaining about the empty fields,

as shown in Figure 34, Full house! Every field fails validation., on page 171.

If we fill in some data (as shown at the top of Figure 35, Entering order infor-

mation produces a “Thanks!”, on page 171) and click Place Order , we should get

taken back to the catalog, as shown at the bottom of the figure. But did it

work? Let’s look in the database.

depot> sqlite3 -line db/development.sqlite3
SQLite version 3.7.4
Enter ".help" for instructions
sqlite> select * from orders;

id = 1
name = Dave Thomas

address = 123 Main St
email = customer@example.com

pay_type = Check
created_at = 2013-01-29 02:31:04.964785
updated_at = 2013-01-29 02:31:04.964785

sqlite> select * from line_items;
id = 10

product_id = 2
cart_id =

created_at = 2013-01-29 02:30:26.188914
updated_at = 2013-01-29 02:31:04.966057

quantity = 1
price = 36

order_id = 1
sqlite> .quit

Although what you see will differ on details such as version numbers and

dates (and price will be present only if you completed the exercises defined in

Playtime, on page 132), you should see a single order and one or more line

items that match your selections.

One Last Ajax Change

After we accept an order, we redirect to the index page, displaying the cheery

flash message “Thank you for your order.” If the user continues to shop and

they have JavaScript enabled in their browser, we’ll fill the cart in their sidebar

without redrawing the main page. This means the flash message will continue

to be displayed. We’d rather it went away after we add the first item to the

cart (as it does when JavaScript is disabled in the browser). Fortunately, the

fix is simple: we just hide the <div> that contains the flash message when we

add something to the cart.

Chapter 12. Task G: Check Out! • 170

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 34—Full house! Every field fails validation.

Figure 35—Entering order information produces a “Thanks!”

report erratum • discuss

Iteration G1: Capturing an Order • 171

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_p/app/views/line_items/create.js.erb

➤ $('#notice').hide();
➤

if ($('#cart tr').length == 1) { $('#cart').show('blind', 1000); }

$('#cart').html("<%= escape_javascript render(@cart) %>");

$('#current_item').css({'background-color':'#88ff88'}).
animate({'background-color':'#114411'}, 1000);

Note that when we come to the store for the first time, there’s nothing in the

flash, so the paragraph with an ID of notice isn’t displayed. Therefore, there’s

no tag with the ID of notice, and the call to jQuery matches no elements. This

is not a problem, as the call to hide() is applied to each matching element, so

nothing happens. This is exactly what we want to happen, so all is well.

Now that we’ve captured the order, it is time to alert the ordering department.

We will do that with feeds, specifically, an Atom-formatted feed of orders.

12.2 Iteration G2: Atom Feeds

Using a standard feed format, such as Atom, means you can immediately

take advantage of a wide variety of preexisting clients. Because Rails already

knows about IDs, dates, and links, it can free you from having to worry about

these pesky details and let you focus on producing a human-readable sum-

mary. We start by adding a new action to the products controller.

Download rails40/depot_p/app/controllers/products_controller.rb

def who_bought
@product = Product.find(params[:id])
@latest_order = @product.orders.order(:updated_at).last
if stale?(@latest_order)
respond_to do |format|

format.atom
end

end
end

In addition to fetching the product, we check to see whether the request is

stale. Remember in Section 8.5, Iteration C5: Caching of Partial Results, on

page 104 when we cached partial results of responses because the catalog

display was expected to be a high-traffic area? Well, feeds are like that, but

with a different usage pattern. Instead of a large number of different clients

all requesting the same page, we have a small number of clients repeatedly

requesting the same page. If you’re familiar with the idea of browser caches,

then the same thing holds true for feed aggregators.

Chapter 12. Task G: Check Out! • 172

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_p/app/views/line_items/create.js.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_p/app/controllers/products_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Joe asks:

Why Atom?

There are a number of different feed formats, most notably RSS 1.0, RSS 2.0, and

Atom, standardized in 2000, 2002, and 2005, respectively. These three are all widely

supported. To aid with the transition, a number of sites provide multiple feeds for

the same site, but this is no longer necessary, increases user confusion, and generally

is not recommended.

The Ruby language provides a low-level library, which can produce any of these for-

mats, as well as a number of other less common versions of RSS. For best results,

stick with one of the three main versions.

The Rails framework is all about picking reasonable defaults and has chosen Atom

as the default for feed formats. It is specified as an Internet standards–track protocol

for the Internet community by the IETF, and Rails provides a higher-level helper

named atom_feed that takes care of a number of details based on knowledge of Rails

naming conventions for things like IDs and dates.

The way this works is that the responses contain a bit of metadata that

identifies when the content was last modified and a hashed value called an

ETag. If a subsequent request provides this data back, this gives the server

the opportunity to respond with an empty response body and an indication

that the data has not been modified.

As is usual with Rails, you don’t need to worry about the mechanics. You just

need to identify the source of the content, and Rails will do the rest. In this

case, we use the last order. Inside the if statement, we process the request

normally.

By adding format.atom, we cause Rails to look for a template named who_bought.
atom.builder. Such a template can use the generic XML functionality that Builder

provides as well as using the knowledge of the Atom feed format that the

atom_feed helper provides.

Download rails40/depot_p/app/views/products/who_bought.atom.builder

atom_feed do |feed|
feed.title "Who bought #{@product.title}"

feed.updated @latest_order.try(:updated_at)

@product.orders.each do |order|
feed.entry(order) do |entry|

entry.title "Order #{order.id}"
entry.summary type: 'xhtml' do |xhtml|
xhtml.p "Shipped to #{order.address}"

report erratum • discuss

Iteration G2: Atom Feeds • 173

http://media.pragprog.com/titles/rails4/code/rails40/depot_p/app/views/products/who_bought.atom.builder
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

xhtml.table do
xhtml.tr do
xhtml.th 'Product'
xhtml.th 'Quantity'
xhtml.th 'Total Price'

end
order.line_items.each do |item|
xhtml.tr do

xhtml.td item.product.title
xhtml.td item.quantity
xhtml.td number_to_currency item.total_price

end
end
xhtml.tr do
xhtml.th 'total', colspan: 2
xhtml.th number_to_currency \
order.line_items.map(&:total_price).sum

end
end
xhtml.p "Paid by #{order.pay_type}"

end
entry.author do |author|

author.name order.name
author.email order.email

end
end

end
end

More information on Builder can be found in Section 24.1, Generating XML

with Builder, on page 393.

At the overall feed level, we need to provide only two pieces of information:

the title and the latest updated date. If there are no orders, the updated_at value

will be null, and Rails will supply the current time instead.

Then we iterate over each order associated with this product. Note that there

is no direct relationship between these two models. In fact, the relationship

is indirect. Products have many line_items, and line_items belongs to an order.

We could iterate and traverse, but by simply declaring that there is a relation-

ship between products and orders through the line_items relationship, we can

simplify our code.

Download rails40/depot_p/app/models/product.rb

class Product < ActiveRecord::Base
has_many :line_items

➤ has_many :orders, through: :line_items
#...

end

Chapter 12. Task G: Check Out! • 174

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_p/app/models/product.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

For each order, we provide a title, a summary, and an author. The summary

can be full XHTML, and we use this to produce a table of product titles,

quantity ordered, and total prices. We follow this table with a paragraph

containing the pay_type.

To make this work, we need to define a route. This action will respond to

HTTP GET requests and will operate on a member of the collection (in other

words, on an individual product) as opposed to the entire collection itself

(which in this case would mean all products).

Download rails40/depot_p/config/routes.rb

Depot::Application.routes.draw do
resources :orders
resources :line_items
resources :carts

get "store/index"
➤ resources :products do

get :who_bought, on: :member
end

➤

➤

The priority is based upon order of creation:
first created -> highest priority.
See how all your routes lay out with "rake routes".
You can have the root of your site routed with "root"
root 'store#index', as: 'store'
...

end

We can try it for ourselves.

depot> curl --silent http://localhost:3000/products/3/who_bought.atom
<?xml version="1.0" encoding="UTF-8"?>
<feed xml:lang="en-US" xmlns="http://www.w3.org/2005/Atom">

<id>tag:localhost,2005:/products/3/who_bought</id>
<link type="text/html" href="http://localhost:3000" rel="alternate"/>
<link type="application/atom+xml"

href="http://localhost:3000/info/who_bought/3.atom" rel="self"/>
<title>Who bought Programming Ruby 1.9</title>
<updated>2013-01-29T02:31:04Z</updated>
<entry>
<id>tag:localhost,2005:Order/1</id>
<published>2013-01-29T02:31:04Z</published>
<updated>2013-01-29T02:31:04Z</updated>
<link rel="alternate" type="text/html" href="http://localhost:3000/orders/1"/>
<title>Order 1</title>
<summary type="xhtml">

<div xmlns="http://www.w3.org/1999/xhtml">
<p>Shipped to 123 Main St</p>

report erratum • discuss

Iteration G2: Atom Feeds • 175

http://media.pragprog.com/titles/rails4/code/rails40/depot_p/config/routes.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<table>
...

</table>
<p>Paid by check</p>

</div>
</summary>
<author>

<name>Dave Thomas</name>
<email>customer@pragprog.com</email>

</author>
</entry>

</feed>

Looks good. Now we can subscribe to this in our favorite feed reader.

Best of all, the customer likes it. We’ve implemented product maintenance,

a basic catalog, and a shopping cart, and now we have a simple ordering

system. Obviously we’ll also have to write some kind of fulfillment application,

but that can wait for a new iteration. (And that iteration is one that we’ll skip

in this book; it doesn’t have much new to say about Rails.)

What We Just Did

In a fairly short amount of time, we did the following:

• We created a form to capture details for the order and linked it to a new

order model.

• We added validation and used helper methods to display errors to the user.

• We provided a feed so that the administrator can monitor orders as they

come in.

Playtime

Here’s some stuff to try on your own:

• Get HTML-, XML-, and JSON-formatted views working for who_bought
requests. Experiment with including the order information in the XML

view by rendering @product.to_xml(include: :orders). Do the same thing for JSON.

• What happens if you click the Checkout button in the sidebar while the

checkout screen is already displayed? Can you find a way to disable the

button in this circumstance?

• The list of possible payment types is currently stored as a constant in the

Order class. Can you move this list into a database table? Can you still

make validation work for the field?

(You’ll find hints at http://www.pragprog.com/wikis/wiki/RailsPlayTime.)

Chapter 12. Task G: Check Out! • 176

report erratum • discuss

http://www.pragprog.com/wikis/wiki/RailsPlayTime
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 13

Task H: Sending Mail

At this point, we have a website that will respond to requests and will provide

feeds that allow sales of individual titles to be checked periodically. At times

it makes sense to have something more than that. For those times, what we

need is the ability to actively target a message to somebody specific when an

event occurs. It could be wanting to notify a system administrator when an

exception occurs. It could be a user feedback form. In this chapter, we will

opt to simply send confirmation emails to people who have placed orders.

Once we complete that, we will create tests not only for the mail support that

we just added but for the entire user scenario we have created so far.

13.1 Iteration H1: Sending Confirmation Emails

There are three basic parts to sending email in Rails: configuring how email

is to be sent, determining when to send the email, and specifying what you

want to say. We will cover each of these three in turn.

Email Configuration

Email configuration is part of a Rails application’s environment and involves

a Depot::Application.configure block. If you want to use the same configuration for

development, testing, and production, add the configuration to environment.rb
in the config directory; otherwise, add different configurations to the appropriate

files in the config/environments directory.

Inside the block, you will need to have one or more statements. You first have

to decide how you want mail delivered.

config.action_mailer.delivery_method = :smtp

Alternatives to :smtp include :sendmail and :test.

In this chapter, we’ll see
• sending email and
• integration testing.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The :smtp and :sendmail options are used when you want Action Mailer to attempt

to deliver email. You’ll clearly want to use one of these methods in production.

The :test setting is great for unit and functional testing, which we will make

use of in Testing Email, on page 183. Email will not be delivered; instead, it

will be appended to an array (accessible via the attribute ActionMailer::Base.deliv-
eries). This is the default delivery method in the test environment. Interestingly,

though, the default in development mode is :smtp. If you want Rails to deliver

email during the development of your application, this is good. If you’d rather

disable email delivery in development mode, edit the file development.rb in the

directory config/environments, and add the following lines:

Depot::Application.configure do
config.action_mailer.delivery_method = :test

end

The :sendmail setting delegates mail delivery to your local system’s sendmail
program, which is assumed to be in /usr/sbin. This delivery mechanism is not

particularly portable, because sendmail is not always installed in this directory

on different operating systems. It also relies on your local sendmail supporting

the -i and -t command options.

You achieve more portability by leaving this option at its default value of :smtp.
If you do so, you’ll need also to specify some additional configuration to tell

Action Mailer where to find an SMTP server to handle your outgoing email.

This may be the machine running your web application, or it may be a separate

box (perhaps at your ISP if you’re running Rails in a noncorporate environ-

ment). Your system administrator will be able to give you the settings for

these parameters. You may also be able to determine them from your own

mail client’s configuration.

The following are typical settings for Gmail. Adapt them as you need.

Depot::Application.configure do
config.action_mailer.delivery_method = :smtp

config.action_mailer.smtp_settings = {
address: "smtp.gmail.com",
port: 587,
domain: "domain.of.sender.net",
authentication: "plain",
user_name: "dave",
password: "secret",
enable_starttls_auto: true

}
end

Chapter 13. Task H: Sending Mail • 178

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

As with all configuration changes, you’ll need to restart your application if

you make changes to any of the environment files.

Sending Email

Now that we have everything configured, let’s write some code to send emails.

By now you shouldn’t be surprised that Rails has a generator script to create

mailers. In Rails, a mailer is a class that’s stored in the app/mailers directory.

It contains one or more methods, with each method corresponding to an email

template. To create the body of the email, these methods in turn use views

(in just the same way that controller actions use views to create HTML and

XML). So, let’s create a mailer for our store application. We’ll use it to send

two different types of email: one when an order is placed and a second when

the order ships. The rails generate mailer command takes the name of the mailer

class, along with the names of the email action methods.

depot> rails generate mailer OrderNotifier received shipped
create app/mailers/order_notifier.rb
invoke erb
create app/views/order_notifier
create app/views/order_notifier/received.text.erb
create app/views/order_notifier/shipped.text.erb
invoke test_unit
create test/mailers/order_notifier_test.rb

Notice that we’ve created an OrderNotifier class in app/mailers and two template

files, one for each email type, in app/views/order_notifier. (We also created a test

file—we’ll look into this in Testing Email, on page 183.)

Each method in the mailer class is responsible for setting up the environment

for sending a particular email. Let’s look at an example before going into the

details. Here’s the code that was generated for our OrderNotifier class, with one

default changed:

Download rails40/depot_q/app/mailers/order_notifier.rb

class OrderNotifier < ActionMailer::Base
➤ default from: 'Sam Ruby <depot@example.com>'

Subject can be set in your I18n file at config/locales/en.yml
with the following lookup:
#
en.order_notifier.received.subject
#
def received
@greeting = "Hi"

mail to: "to@example.org"
end

report erratum • discuss

Iteration H1: Sending Confirmation Emails • 179

http://media.pragprog.com/titles/rails4/code/rails40/depot_q/app/mailers/order_notifier.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Subject can be set in your I18n file at config/locales/en.yml
with the following lookup:
#
en.order_notifier.shipped.subject
#
def shipped
@greeting = "Hi"

mail to: "to@example.org"
end

end

If you are thinking to yourself that this looks like a controller, it is because

it very much does. There is one method per action. Instead of a call to render(),
there is a call to mail(). Mail accepts a number of parameters including :to (as

shown), :cc, :from, and :subject, each of which does pretty much what you would

expect them to do. Values that are common to all mail calls in the mailer can

be set as defaults by simply calling default, as is done for :from at the top of this

class. Feel free to tailor this to your needs.

The comments in this class also indicate that subject lines are already enabled

for translation, a subject we cover in Chapter 15, Task J: Internationalization,

on page 211. For now, we will simply use the :subject parameter.

As with controllers, templates contain the text to be sent, and controllers and

mailers can provide values to be inserted into those templates via instance

variables.

Email Templates

The generate script created two email templates in app/views/order_notifier, one

for each action in the Notifier class. These are regular .erb files. We’ll use them

to create plain-text emails (we’ll see later how to create HTML email). As with

the templates we use to create our application’s web pages, the files contain

a combination of static text and dynamic content. We can customize the

template in received.text.erb; this is the email that is sent to confirm an order:

Download rails40/depot_q/app/views/order_notifier/received.text.erb

Dear <%= @order.name %>

Thank you for your recent order from The Pragmatic Store.

You ordered the following items:

<%= render @order.line_items -%>

We'll send you a separate e-mail when your order ships.

Chapter 13. Task H: Sending Mail • 180

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_q/app/views/order_notifier/received.text.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The partial template that renders a line item formats a single line with the

item quantity and the title. Because we’re in a template, all the regular helper

methods, such as truncate(), are available.

Download rails40/depot_q/app/views/line_items/_line_item.text.erb

<%= sprintf("%2d x %s",
line_item.quantity,
truncate(line_item.product.title, length: 50)) %>

We now have to go back and fill in the received() method in the OrderNotifier class.

Download rails40/depot_r/app/mailers/order_notifier.rb

def received(order)
@order = order

mail to: order.email, subject: 'Pragmatic Store Order Confirmation'
end

What we did here is add order as an argument to the method-received call,

add code to copy the parameter passed into an instance variable, and update

the call to mail() specifying where to send the email and what subject line to

use.

Generating Emails

Now that we have our template set up and our mailer method defined, we

can use them in our regular controllers to create and/or send emails.

Download rails40/depot_r/app/controllers/orders_controller.rb

def create
@order = Order.new(order_params)
@order.add_line_items_from_cart(@cart)

respond_to do |format|
if @order.save
Cart.destroy(session[:cart_id])
session[:cart_id] = nil
OrderNotifier.received(@order).deliver➤

format.html { redirect_to store_url, notice:
'Thank you for your order.' }

format.json { render action: 'show', status: :created,
location: @order }

else
format.html { render action: 'new' }
format.json { render json: @order.errors,

status: :unprocessable_entity }
end

end
end

And we need to update shipped() just like we did for received().

report erratum • discuss

Iteration H1: Sending Confirmation Emails • 181

http://media.pragprog.com/titles/rails4/code/rails40/depot_q/app/views/line_items/_line_item.text.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/mailers/order_notifier.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/controllers/orders_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_r/app/mailers/order_notifier.rb

def shipped(order)
@order = order

mail to: order.email, subject: 'Pragmatic Store Order Shipped'
end

At this point, we have enough of the basics in place that you can place an

order and have a plain email sent to yourself, presuming that you didn’t dis-

able the sending of email in development mode. Now let’s spice up the email

with a bit of formatting.

Delivering Multiple Content Types

Some people prefer to receive email in plain-text format, while others like the

look of an HTML email. Rails makes it easy to send email messages that

contain alternative content formats, allowing the user (or their email client)

to decide what they’d prefer to view.

In the preceding section, we created a plain-text email. The view file for our

received action was called received.text.erb. This is the standard Rails naming

convention. We can also create HTML-formatted emails.

Let’s try this with the order-shipped notification. We don’t need to modify any

code; we simply need to create a new template.

Download rails40/depot_r/app/views/order_notifier/shipped.html.erb

<h3>Pragmatic Order Shipped</h3>
<p>

This is just to let you know that we've shipped your recent order:
</p>

<table>
<tr><th colspan="2">Qty</th><th>Description</th></tr>

<%= render @order.line_items -%>
</table>

We don’t even need to modify the partial because the existing one we already

have will do just fine.

Download rails40/depot_r/app/views/line_items/_line_item.html.erb

<% if line_item == @current_item %>
<tr id="current_item">
<% else %>
<tr>
<% end %>

<td><%= line_item.quantity %>×</td>
<td><%= line_item.product.title %></td>
<td class="item_price"><%= number_to_currency(line_item.total_price) %></td>

</tr>

Chapter 13. Task H: Sending Mail • 182

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/mailers/order_notifier.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/views/order_notifier/shipped.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/views/line_items/_line_item.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

But, for email templates, there’s a little bit more naming magic. If you create

multiple templates with the same name but with different content types

embedded in their filenames, Rails will send all of them in one email,

arranging the content so that the email client will be able to distinguish each.

This means you will want to either update or delete the plain-text template

that Rails provided for the shipped notifier.

Testing Email

When we used the generate script to create our order mailer, it automatically

constructed a corresponding order_notifier_test.rb file in the application’s

test/mailers directory. It is pretty straightforward; it simply calls each action

and verifies selected portions of the email produced. As we have tailored the

email, let’s update the test case to match.

Download rails40/depot_r/test/mailers/order_notifier_test.rb

require 'test_helper'

class OrderNotifierTest < ActionMailer::TestCase
test "received" do
mail = OrderNotifier.received(orders(:one))➤

➤ assert_equal "Pragmatic Store Order Confirmation", mail.subject
➤ assert_equal ["dave@example.org"], mail.to
➤ assert_equal ["depot@example.com"], mail.from
➤ assert_match /1 x Programming Ruby 1.9/, mail.body.encoded

end

test "shipped" do
mail = OrderNotifier.shipped(orders(:one))➤

➤ assert_equal "Pragmatic Store Order Shipped", mail.subject
➤ assert_equal ["dave@example.org"], mail.to
➤ assert_equal ["depot@example.com"], mail.from
➤ assert_match /<td>1×<\/td>\s*<td>Programming Ruby 1.9<\/td>/,
➤ mail.body.encoded

end

end

The test method instructs the mail class to create (but not to send) an email,

and we use assertions to verify that the dynamic content is what we expect.

Note the use of assert_match() to validate just part of the body content. Your

results may differ depending on how you tailored the default :from line in your

Notifier.

At this point, we have verified that the message we intend to create is formatted

correctly, but we haven’t verified that it is sent when the customer completes

the ordering process. For that, we employ integration tests.

report erratum • discuss

Iteration H1: Sending Confirmation Emails • 183

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/test/mailers/order_notifier_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Joe asks:

Can I Also Receive Email?

Action Mailer makes it easy to write Rails applications that handle incoming email.

Unfortunately, you need to find a way to retrieve appropriate emails from your server

environment and inject them into the application; this requires a bit more work.

The easy part is handling an email within your application. In your Action Mailer

class, write an instance method called receive() that takes a single parameter. This

parameter will be a Mail::Message object corresponding to the incoming email. You can

extract fields, the body text, and/or attachments and use them in your application.

All the normal techniques for intercepting incoming email end up running a command,

passing that command the content of the email as standard input. If we make the

Rails runner script the command that’s invoked whenever an email arrives, we can

arrange to pass that email into our application’s email-handling code. For example,

using procmail-based interception, we could write a rule that looks something like

the example that follows. Using the arcane syntax of procmail, this rule copies any

incoming email whose subject line contains Bug Report through our runner script:

RUBY=/opt/local/bin/ruby
TICKET_APP_DIR=/Users/dave/Work/depot
HANDLER='IncomingTicketHandler.receive(STDIN.read)'

:0 c
* ^Subject:.*Bug Report.*
| cd $TICKET_APP_DIR && $RUBY bin/rails runner $HANDLER

The receive() class method is available to all Action Mailer classes. It takes the email

text, parses it into a Mail object, creates a new instance of the receiver’s class, and

passes the Mail object to the receive() instance method in that class.

13.2 Iteration H2: Integration Testing of Applications

Rails organizes tests into model, controller, and integration tests. Before

explaining integration tests, let’s briefly recap what we have covered so far.

Unit testing of models

Model classes contain business logic. For example, when we add a product

to a cart, the cart model class checks to see whether that product is already

in the cart’s list of items. If so, it increments the quantity of that item; if not,

it adds a new item for that product.

Functional testing of controllers

Controllers direct the show. They receive incoming web requests (typically

user input), interact with models to gather application state, and then respond

by causing the appropriate view to display something to the user. So when

we’re testing controllers, we’re making sure that a given request is answered

Chapter 13. Task H: Sending Mail • 184

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

with an appropriate response. We still need models, but we already have them

covered with unit tests.

The next level of testing is to exercise the flow through our application. In

many ways, this is like testing one of the stories that our customer gave us

when we first started to code the application.

For example, we might have been told the following:

A user goes to the store index page. They select a product, adding it to their cart.

They then check out, filling in their details on the checkout form. When they submit,

an order is created in the database containing their information, along with a single

line item corresponding to the product they added to their cart. Once the order has

been received, an email is sent confirming their purchase.

This is ideal material for an integration test. Integration tests simulate a continu-

ous session between one or more virtual users and our application. You can use

them to send in requests, monitor responses, follow redirects, and so on.

When you create a model or controller, Rails creates the corresponding unit

or functional tests. Integration tests are not automatically created, however,

but you can use a generator to create one.

depot> rails generate integration_test user_stories
invoke test_unit
create test/integration/user_stories_test.rb

Notice that Rails automatically adds _test to the name of the test.

Let’s look at the generated file.

require 'test_helper'

class UserStoriesTest < ActionDispatch::IntegrationTest
test "the truth" do
assert true
end

end

Let’s launch straight in and implement the test of our story. Because we’ll be

testing only the purchase of a product, we’ll need only our products fixture.

So, instead of loading all the fixtures, let’s load only this one:

fixtures :products

Now let’s build a test named buying a product. By the end of the test, we know

we’ll want to have added an order to the orders table and a line item to the

line_items table, so let’s empty them out before we start. And, because we’ll be

using the Ruby book fixture data a lot, let’s load it into a local variable.

report erratum • discuss

Iteration H2: Integration Testing of Applications • 185

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_r/test/integration/user_stories_test.rb

LineItem.delete_all
Order.delete_all
ruby_book = products(:ruby)

Let’s attack the first sentence in the user story: A user goes to the store index

page.

Download rails40/depot_r/test/integration/user_stories_test.rb

get "/"
assert_response :success
assert_template "index"

This almost looks like a functional test. The main difference is the get method.

In a functional test, we check just one controller, so we specify just an action

when calling get(). In an integration test, however, we can wander all over the

application, so we need to pass in a full (relative) URL for the controller and

action to be invoked.

The next sentence in the story goes They select a product, adding it to their

cart. We know that our application uses an Ajax request to add things to the

cart, so we’ll use the xml_http_request() method to invoke the action. When it

returns, we’ll check that the cart now contains the requested product.

Download rails40/depot_r/test/integration/user_stories_test.rb

xml_http_request :post, '/line_items', product_id: ruby_book.id
assert_response :success

cart = Cart.find(session[:cart_id])
assert_equal 1, cart.line_items.size
assert_equal ruby_book, cart.line_items[0].product

In a thrilling plot twist, the user story continues: They then check out…. That’s

easy in our test.

Download rails40/depot_r/test/integration/user_stories_test.rb

get "/orders/new"
assert_response :success
assert_template "new"

At this point, the user has to fill in their details on the checkout form. Once

they do and they post the data, our application creates the order and redirects

to the index page. Let’s start with the HTTP side of the world by posting the

form data to the save_order action and verifying we’ve been redirected to the

index. We’ll also check that the cart is now empty. The test helper method

post_via_redirect() generates the post request and then follows any redirects

returned until a nonredirect response is returned.

Chapter 13. Task H: Sending Mail • 186

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/test/integration/user_stories_test.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/test/integration/user_stories_test.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/test/integration/user_stories_test.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/test/integration/user_stories_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_r/test/integration/user_stories_test.rb

post_via_redirect "/orders",
order: { name: "Dave Thomas",

address: "123 The Street",
email: "dave@example.com",
pay_type: "Check" }

assert_response :success
assert_template "index"
cart = Cart.find(session[:cart_id])
assert_equal 0, cart.line_items.size

Next, we’ll wander into the database and make sure we’ve created an order

and corresponding line item and that the details they contain are correct.

Because we cleared out the orders table at the start of the test, we’ll simply

verify that it now contains just our new order.

Download rails40/depot_r/test/integration/user_stories_test.rb

orders = Order.all
assert_equal 1, orders.size
order = orders[0]

assert_equal "Dave Thomas", order.name
assert_equal "123 The Street", order.address
assert_equal "dave@example.com", order.email
assert_equal "Check", order.pay_type

assert_equal 1, order.line_items.size
line_item = order.line_items[0]
assert_equal ruby_book, line_item.product

Finally, we’ll verify that the mail itself is correctly addressed and has the

expected subject line.

Download rails40/depot_r/test/integration/user_stories_test.rb

mail = ActionMailer::Base.deliveries.last
assert_equal ["dave@example.com"], mail.to
assert_equal 'Sam Ruby <depot@example.com>', mail[:from].value
assert_equal "Pragmatic Store Order Confirmation", mail.subject

And that’s it. Here’s the full source of the integration test:

Download rails40/depot_r/test/integration/user_stories_test.rb

require 'test_helper'

class UserStoriesTest < ActionDispatch::IntegrationTest
fixtures :products

A user goes to the index page. They select a product, adding it to their
cart, and check out, filling in their details on the checkout form. When
they submit, an order is created containing their information, along with a
single line item corresponding to the product they added to their cart.

report erratum • discuss

Iteration H2: Integration Testing of Applications • 187

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/test/integration/user_stories_test.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/test/integration/user_stories_test.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/test/integration/user_stories_test.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/test/integration/user_stories_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

test "buying a product" do
LineItem.delete_all
Order.delete_all
ruby_book = products(:ruby)

get "/"
assert_response :success
assert_template "index"

xml_http_request :post, '/line_items', product_id: ruby_book.id
assert_response :success

cart = Cart.find(session[:cart_id])
assert_equal 1, cart.line_items.size
assert_equal ruby_book, cart.line_items[0].product

get "/orders/new"
assert_response :success
assert_template "new"

post_via_redirect "/orders",
order: { name: "Dave Thomas",

address: "123 The Street",
email: "dave@example.com",
pay_type: "Check" }

assert_response :success
assert_template "index"
cart = Cart.find(session[:cart_id])
assert_equal 0, cart.line_items.size

orders = Order.all
assert_equal 1, orders.size
order = orders[0]

assert_equal "Dave Thomas", order.name
assert_equal "123 The Street", order.address
assert_equal "dave@example.com", order.email
assert_equal "Check", order.pay_type

assert_equal 1, order.line_items.size
line_item = order.line_items[0]
assert_equal ruby_book, line_item.product

mail = ActionMailer::Base.deliveries.last
assert_equal ["dave@example.com"], mail.to
assert_equal 'Sam Ruby <depot@example.com>', mail[:from].value
assert_equal "Pragmatic Store Order Confirmation", mail.subject

end
end

Chapter 13. Task H: Sending Mail • 188

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Taken together, unit, functional, and integration tests give you the flexibility

to test aspects of your application either in isolation or in combination with

each other. In Section 25.4, Finding More at RailsPlugins.org, on page 418, we

will tell you where you can find add-ons that take this to the next level and

allow you to write plain-text descriptions of behaviors that can be read by

your customer and be verified automatically.

Speaking of our customer, it is time to wrap up this iteration and see what

functionality is next in store for Depot.

What We Just Did

Without much code and with just a few templates, we have managed to pull

off the following:

• We configured our development, test, and production environments for

our Rails application to enable the sending of outbound emails.

• We created and tailored a mailer that will send confirmation emails in

both plain-text and HTML formats to people who order our products.

• We created both a functional test for the emails produced and an integra-

tion test that covers the entire order scenario.

Playtime

Here’s some stuff to try on your own:

• Add a ship_date column to the orders table, and send a notification when

this value is updated by the OrdersController.

• Update the application to send an email to the system administrator,

namely, yourself, when there is an application failure such as the one we

handled in Section 10.2, Iteration E2: Handling Errors, on page 124.

• Add integration tests for both of the previous items.

report erratum • discuss

Iteration H2: Integration Testing of Applications • 189

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 14

Task I: Logging In

We have a happy customer—in a very short time we’ve jointly put together a

basic shopping cart that she can start showing to her users. There’s just one

more change that she’d like to see. Right now, anyone can access the

administrative functions. She’d like us to add a basic user administration

system that would force you to log in to get into the administration parts of

the site.

Chatting with our customer, it seems as if we don’t need a particularly

sophisticated security system for our application. We just need to recognize

a number of people based on usernames and passwords. Once recognized,

these folks can use all of the administration functions.

14.1 Iteration I1: Adding Users

Let’s start by creating a model and database table to hold our administrators’

usernames and passwords. Rather than store passwords in plain text, we

will store a digest hash value of the password. By doing so we ensure that

even if our database is compromised, the hash won’t reveal the original

password, so it can’t be used to log in as this user using the forms.

depot> rails generate scaffold User name:string password:digest

We declared the password as a digest type, which is another one of the nice

extra touches that Rails provides. Now run the migration as usual.

depot> rake db:migrate

Next we have to flesh out the user model.

Download rails40/depot_r/app/models/user.rb

class User < ActiveRecord::Base
➤ validates :name, presence: true, uniqueness: true

has_secure_password
end

In this chapter, we’ll see
• adding secure passwords to models,
• using more validations,
• adding authentication to a session,
• using rails console,
• using database transactions, and
• writing an Active Record hook.

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/models/user.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

We check that the name is present and unique (that is, no two users can have

the same name in the database).

Then there’s the mysterious has_secure_password().

You know those forms that prompt you to enter a password and then make

you reenter it in a separate field so they can validate that you typed what you

thought you typed? That’s exactly what has_secure_password() does for you: it

tells Rails to validate that the two passwords match. This line was added for

you because you specified password:digest when you generated your scaffold.

The next step is to uncomment out the bcrypt-ruby gem in your Gemfile.

Download rails40/depot_r/Gemfile

gem 'bcrypt-ruby', '~> 3.0.0'
Use ActiveModel has_secure_password

➤

Next, you need to install the gem.

depot> bundle install

Finally, you need to restart your server.

With this code in place, we have the ability to present both a password and

a password confirmation field in a form, as well as the ability to authenticate

a user given a name and a password.

Administering Our Users

In addition to the model and table we set up, we already have some scaffolding

generated to administer the model. Let’s go through it and make some tweaks

as necessary.

We start with the controller. It defines the standard methods: index(), show(),
new(), edit(), update(), and delete(). By default, Rails omits the unintelligible

password hash from the view. This means that in the case of users, there

isn’t really much to show(), except a name. So, let’s avoid the redirect to

String interpolation

↪ on page 40

showing the user after a create operation. Instead, let’s redirect to the user’s

index and add the username to the flash notice.

Download rails40/depot_r/app/controllers/users_controller.rb

def create
@user = User.new(user_params)

respond_to do |format|
if @user.save
format.html { redirect_to users_url,➤

➤ notice: "User #{@user.name} was successfully created." }
format.json { render action: 'show',

status: :created, location: @user }

Chapter 14. Task I: Logging In • 192

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/Gemfile
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/controllers/users_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

else
format.html { render action: 'new' }
format.json { render json: @user.errors,

status: :unprocessable_entity }
end

end
end

Let’s do the same for an update operation.

def update
respond_to do |format|
if @user.update(user_params)
format.html { redirect_to users_url,➤

➤ notice: "User #{@user.name} was successfully updated." }
format.json { head :no_content }

else
format.html { render action: 'edit' }
format.json { render json: @user.errors,

status: :unprocessable_entity }
end

end
end

While we are here, let’s also order the users returned in the index by name.

def index
➤ @users = User.order(:name)

end

Now that the controller changes are done, let’s attend to the view. As it stands

now, the index view doesn’t display notice information, so let’s add it.

Download rails40/depot_r/app/views/users/index.html.erb

<h1>Listing users</h1>
➤

<p id="notice"><%= notice %></p>
<% if notice %>

➤

<% end %>➤

<table>
<thead>
<tr>

<th>Name</th>
<th></th>
<th></th>
<th></th>

</tr>
</thead>

<tbody>
<% @users.each do |user| %>
<tr>

report erratum • discuss

Iteration I1: Adding Users • 193

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/views/users/index.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<td><%= user.name %></td>
<td><%= link_to 'Show', user %></td>
<td><%= link_to 'Edit', edit_user_path(user) %></td>
<td><%= link_to 'Destroy', user, method: :delete,
data: { confirm: 'Are you sure?' } %></td>

</tr>
<% end %>

</tbody>
</table>

<%= link_to 'New User', new_user_path %>

Finally, we need to update the form used both to create a new user and to

update an existing user. Note that this form is already set up to show the

password and password confirmation fields. To improve the appearance of

the page, we add legend and fieldset tags. And finally we wrap the output in

a <div> tag with a class that we previously defined in our stylesheet.

Download rails40/depot_r/app/views/users/_form.html.erb

<div class="depot_form">

<%= form_for @user do |f| %>
<% if @user.errors.any? %>

<div id="error_explanation">
<h2><%= pluralize(@user.errors.count, "error") %>

prohibited this user from being saved:</h2>

<% @user.errors.full_messages.each do |msg| %>

<%= msg %>
<% end %>

</div>
<% end %>

<fieldset>
<legend>Enter User Details</legend>

<div class="field">
<%= f.label :name, 'Name:' %>
<%= f.text_field :name, size: 40 %>

</div>

<div class="field">
<%= f.label :password, 'Password:' %>
<%= f.password_field :password, size: 40 %>

</div>

Chapter 14. Task I: Logging In • 194

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/views/users/_form.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<div class="field">
<%= f.label :password_confirmation, 'Confirm:' %>
<%= f.password_field :password_confirmation, size: 40 %>

</div>

<div class="actions">
<%= f.submit %>

</div>

</fieldset>
<% end %>

</div>

Let’s try it. Navigate to http://localhost:3000/users/new. For a stunning example of

page design, see the following figure:

Figure 36—Entering user details

After clicking Create User , the index is redisplayed with a cheery flash notice.

If we look in our database, you’ll see that we’ve stored the user details.

depot> sqlite3 -line db/development.sqlite3 "select * from users"
id = 1

name = dave
password_digest = $2a$10$lki6/oAcOW4AWg4A0e0T8uxtri2Zx5g9taBXrd4mDSDVl3rQRWRNi

created_at = 2013-01-29 14:40:06.230622
updated_at = 2013-01-29 14:40:06.230622

report erratum • discuss

Iteration I1: Adding Users • 195

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Like we have done before, we need to update our tests to reflect the validation

and redirection changes we have made. First we update the test for the create()
method.

Download rails40/depot_r/test/controllers/users_controller_test.rb

test "should create user" do
assert_difference('User.count') do
post :create, user: { name: 'sam', password: 'secret',➤

➤ password_confirmation: 'secret' }
end

➤ assert_redirected_to users_path
end

As the redirect on the update() method changed too, the update test also needs

to change.

test "should update user" do
patch :update, id: @user, user: { name: @user.name, password: 'secret',

password_confirmation: 'secret' }
➤ assert_redirected_to users_path

end

And we need to update the test fixtures to ensure that there are no duplicate

names.

Download rails40/depot_r/test/fixtures/users.yml

Read about fixtures at
http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html

one:
➤ name: dave

password_digest: <%= BCrypt::Password.create('secret') %>

two:
➤ name: susannah

password_digest: <%= BCrypt::Password.create('secret') %>

Note the use of dynamically computed values in the fixture, specifically for

the value of password_digest. This code was also inserted by the scaffolding

command and uses the same function that Rails1 uses to compute the

password.

At this point, we can administer our users; we need to first authenticate users

and then restrict administrative functions so they will be accessible only by

administrators.

1. https://github.com/rails/rails/blob/3-2-stable/activemodel/lib/active_mod-

el/secure_password.rb

Chapter 14. Task I: Logging In • 196

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/test/controllers/users_controller_test.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/test/fixtures/users.yml
https://github.com/rails/rails/blob/3-2-stable/activemodel/lib/active_model/secure_password.rb
https://github.com/rails/rails/blob/3-2-stable/activemodel/lib/active_model/secure_password.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

14.2 Iteration I2: Authenticating Users

What does it mean to add login support for administrators of our store?

• We need to provide a form that allows them to enter their username and

password.

• Once they are logged in, we need to record that fact somehow for the rest

of their session (or until they log out).

• We need to restrict access to the administrative parts of the application,

allowing only people who are logged in to administer the store.

We could put all of the logic into a single controller, but it makes more sense

to split it into two: a session controller to support logging in and out and a

controller to welcome administrators.

depot> rails generate controller Sessions new create destroy
depot> rails generate controller Admin index

The SessionsController#create action will need to record something in session to say

that an administrator is logged in. Let’s have it store the ID of their User object

using the key :user_id. The login code looks like this:

Download rails40/depot_r/app/controllers/sessions_controller.rb

def create
➤ user = User.find_by(name: params[:name])
➤ if user and user.authenticate(params[:password])

session[:user_id] = user.id➤

else
➤ redirect_to admin_url
➤

➤ redirect_to login_url, alert: "Invalid user/password combination"
➤ end

end

We are also doing something new here: using a form that isn’t directly asso-

ciated with a model object. To see how that works, let’s look at the template

for the sessions#new action.

Download rails40/depot_r/app/views/sessions/new.html.erb

<div class="depot_form">
<% if flash[:alert] %>
<p id="notice"><%= flash[:alert] %></p>

<% end %>
<%= form_tag do %>
<fieldset>

<legend>Please Log In</legend>
<div>
<%= label_tag :name, 'Name:' %>
<%= text_field_tag :name, params[:name] %>

</div>

report erratum • discuss

Iteration I2: Authenticating Users • 197

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/controllers/sessions_controller.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/views/sessions/new.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<div>
<%= label_tag :password, 'Password:' %>
<%= password_field_tag :password, params[:password] %>

</div>
<div>

<%= submit_tag "Login" %>
</div>

</fieldset>
<% end %>

</div>

This form is different from ones we saw earlier. Rather than using form_for, it
uses form_tag, which simply builds a regular HTML <form>. Inside that form,

it uses text_field_tag and password_field_tag, two helpers that create HTML <input>
tags. Each helper takes two parameters. The first is the name to give to the

field, and the second is the value with which to populate the field. This style

of form allows us to associate values in the params structure directly with form

fields—no model object is required. In our case, we chose to use the params
object directly in the form. An alternative would be to have the controller set

instance variables.

We also make use of the label_tag helpers to create HTML <label> tags. This

helper also accepts two parameters. The first contains the name of the field,

and the second contains the label to be displayed.

See Figure 37, Parameters flow between controllers, templates, and browsers.,

on page 199. Note how the value of the form field is communicated between

the controller and the view using the params hash: the view gets the value to

display in the field from params[:name], and when the user submits the form,

the new field value is made available to the controller the same way.

If the user successfully logs in, we store the ID of the user record in the session

data. We’ll use the presence of that value in the session as a flag to indicate

that an administrative user is logged in.

As you might expect, the controller actions for logging out are considerably

simpler.

Download rails40/depot_r/app/controllers/sessions_controller.rb

def destroy
➤ session[:user_id] = nil
➤ redirect_to store_url, notice: "Logged out"

end

Finally, it’s about time to add the index page, the first screen that administra-

tors see when they log in. Let’s make it useful—we’ll have it display the total

number of orders in our store. Create the template in the file index.html.erb in

Chapter 14. Task I: Logging In • 198

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/controllers/sessions_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<% form_tag do %>

 Name:

 <%= text_field_tag :name, params[:name] %>

 . . .

<% end %>

def login

 name = params[:name]

 . . .

end

Controller

Template

Figure 37—Parameters flow between controllers, templates, and browsers.

the directory app/views/admin. (This template uses the pluralize() helper, which in

this case generates the string order or orders depending on the cardinality of

its first parameter.)

Download rails40/depot_r/app/views/admin/index.html.erb

<h1>Welcome</h1>

It's <%= Time.now %>
We have <%= pluralize(@total_orders, "order") %>.

The index() action sets up the count.

Download rails40/depot_r/app/controllers/admin_controller.rb

class AdminController < ApplicationController
def index

➤ @total_orders = Order.count
end

end

report erratum • discuss

Iteration I2: Authenticating Users • 199

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/views/admin/index.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/controllers/admin_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

We have one more task to do before we can use this. Whereas previously we

relied on the scaffolding generator to create our model and routes for us, this

time we simply generated a controller because there is no database-backed

model for this controller. Unfortunately, without the scaffolding conventions

to guide it, Rails has no way of knowing which actions are to respond to GET

requests, which are to respond to POST requests, and so on, for this controller.

We need to provide this information by editing our config/routes.rb file.

Download rails40/depot_r/config/routes.rb

Depot::Application.routes.draw do
➤ get 'admin' => 'admin#index'
➤ controller :sessions do

get 'login' => :new➤

end

➤ post 'login' => :create
➤ delete 'logout' => :destroy
➤

get "sessions/create"
get "sessions/destroy"
resources :users
resources :orders
resources :line_items
resources :carts

get "store/index"
resources :products do
get :who_bought, on: :member

end

The priority is based upon order of creation:
first created -> highest priority.
See how all your routes lay out with "rake routes".
You can have the root of your site routed with "root"
root 'store#index', as: 'store'
...

end

We’ve touched this before, when we added a root statement in Section 8.1,

Iteration C1: Creating the Catalog Listing, on page 91. What the generate

command will add to this file are fairly generic get statements for each of the

actions specified. You can (and should) delete the routes provided for sessions/
new, sessions/create, and sessions/destroy.

In the case of admin, we will shorten the URL that the user has to enter (by

removing the /index part) and map it to the full action. In the case of session

actions, we will completely change the URL (replacing things like session/create
with simply login) as well as tailor the HTTP action that we will match. Note

Chapter 14. Task I: Logging In • 200

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/config/routes.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

that login is mapped to both the new and create actions, the difference being

whether the request was an HTTP GET or HTTP POST.

We also make use of a shortcut: wrapping the session route declarations in

a block and passing it to a controller() class method. This saves us a bit of typing

as well as makes the routes easier to read. We will describe all you can do in

this file in Section 20.1, Dispatching Requests to Controllers, on page 309.

With these routes in place, we can experience the joy of logging in as an

administrator. See the following figure:

Figure 38—Administrative interface

We need to replace the functional tests in the session controller to match

what we just implemented.

Download rails40/depot_r/test/controllers/sessions_controller_test.rb

require 'test_helper'

class SessionsControllerTest < ActionController::TestCase
test "should get new" do
get :new
assert_response :success

end

➤ test "should login" do
dave = users(:one)➤

end

➤ post :create, name: dave.name, password: 'secret'
➤ assert_redirected_to admin_url
➤ assert_equal dave.id, session[:user_id]
➤

➤ test "should fail login" do
dave = users(:one)➤

report erratum • discuss

Iteration I2: Authenticating Users • 201

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/test/controllers/sessions_controller_test.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

end

➤ post :create, name: dave.name, password: 'wrong'
➤ assert_redirected_to login_url
➤

➤ test "should logout" do
delete :destroy➤

➤ assert_redirected_to store_url
➤ end

end

We show our customer where we are, but she points out that we still haven’t

controlled access to the administrative pages (which was, after all, the point

of this exercise).

14.3 Iteration I3: Limiting Access

We want to prevent people without an administrative login from accessing

our site’s admin pages. It turns out that it’s easy to implement using the Rails

callback facility.

Rails callbacks allow you to intercept calls to action methods, adding your

own processing before they are invoked, after they return, or both. In our

case, we’ll use a before action callback to intercept all calls to the actions in

our admin controller. The interceptor can check session[:user_id]. If it’s set and

if it corresponds to a user in the database, the application knows an admin-

istrator is logged in, and the call can proceed. If it’s not set, the interceptor

can issue a redirect, in this case to our login page.

Where should we put this method? It could sit directly in the admin controller,

but, for reasons that will become apparent shortly, let’s put it instead in

ApplicationController, the parent class of all our controllers. This is in the file

application_controller.rb in the directory app/controllers. Note too that we chose to

restrict access to this method. This prevents it from ever being exposed to

end users as an action.

Download rails40/depot_r/app/controllers/application_controller.rb

before_action :authorize
class ApplicationController < ActionController::Base

➤

...
➤

➤ protected
➤

➤ def authorize
➤ unless User.find_by(id: session[:user_id])
➤ redirect_to login_url, notice: "Please log in"

end➤

end➤

end

Chapter 14. Task I: Logging In • 202

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/controllers/application_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The before_action() line causes the authorize() method to be invoked before every

action in our application.

This is going too far. We have just limited access to the store itself to admin-

istrators. That’s not good.

We could go back and change things so that we mark only those methods

that specifically need authorization. Such an approach is called blacklisting

and is prone to errors of omission. A much better approach is to “whitelist”

or list methods or controllers for which authorization is not required. We do

this simply by inserting a skip_before_action() call within the StoreController:

Download rails40/depot_r/app/controllers/store_controller.rb

skip_before_action :authorize
class StoreController < ApplicationController

➤

and again for the SessionsController class, like so:

Download rails40/depot_r/app/controllers/sessions_controller.rb

skip_before_action :authorize
class SessionsController < ApplicationController

➤

We’re not done yet; now we need to allow people to create, update, and delete

carts.

Download rails40/depot_r/app/controllers/carts_controller.rb

class CartsController < ApplicationController
➤ skip_before_action :authorize, only: [:create, :update, :destroy]

...
private
...

def invalid_cart
logger.error "Attempt to access invalid cart #{params[:id]}"
redirect_to store_url, notice: 'Invalid cart'

end
end

And we allow them to create line items:

Download rails40/depot_r/app/controllers/line_items_controller.rb

skip_before_action :authorize, only: :create
class LineItemsController < ApplicationController

➤

as well as create orders (which includes access to the new form):

Download rails40/depot_r/app/controllers/orders_controller.rb

skip_before_action :authorize, only: [:new, :create]
class OrdersController < ApplicationController

➤

report erratum • discuss

Iteration I3: Limiting Access • 203

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/controllers/sessions_controller.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/controllers/carts_controller.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/controllers/line_items_controller.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/controllers/orders_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

With the authorization logic in place, we can now navigate to http://local-

host:3000/products. The callback method intercepts us on the way to the

product listing and shows us the login screen instead.

Unfortunately, this change pretty much invalidates most of our functional

tests because most operations will now redirect to the login screen instead

of doing the function desired. Fortunately, we can address this globally by

creating a setup() method in the test_helper. While we are there, we also define

some helper methods to login_as() and logout() a user.

Download rails40/depot_r/test/test_helper.rb

class ActiveSupport::TestCase
...

Add more helper methods to be used by all tests here...
def login_as(user)
session[:user_id] = users(user).id

end

def logout
session.delete :user_id

end

def setup
login_as :one if defined? session

end
end

Note that the setup() method will call login_as() only if session is defined. This

prevents the login from being executed in tests that do not involve a controller.

We show our customer and are rewarded with a big smile and a request:

could we add a sidebar and put links to the user and product administration

stuff in it? And while we’re there, could we add the ability to list and delete

administrative users? You betcha!

14.4 Iteration I4: Adding a Sidebar, More Administration

Let’s start with adding links to various administration functions to the sidebar

in the layout and have them show up only if there is :user_id in the session.

Download rails40/depot_r/app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>

<title>Pragprog Books Online Store</title>
<%= stylesheet_link_tag "application", media: "all",
"data-turbolinks-track" => true %>

<%= javascript_include_tag "application", "data-turbolinks-track" => true %>

Chapter 14. Task I: Logging In • 204

report erratum • discuss

http://localhost:3000/products
http://localhost:3000/products
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/test/test_helper.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/views/layouts/application.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<%= csrf_meta_tags %>
</head>
<body class="<%= controller.controller_name %>">

<div id="banner">
<%= image_tag("logo.png") %>
<%= @page_title || "Pragmatic Bookshelf" %>

</div>

<div id="columns">
<div id="side">
<% if @cart %>

<%= hidden_div_if(@cart.line_items.empty?, id: 'cart') do %>
<%= render @cart %>

<% end %>
<% end %>

Home
Questions
News
Contact

➤

➤ <% if session[:user_id] %>
➤

<%= link_to 'Orders', orders_path %>➤

<%= link_to 'Products', products_path %>➤

<%= link_to 'Users', users_path %>➤

➤

➤ <%= button_to 'Logout', logout_path, method: :delete %>
➤ <% end %>

</div>
<div id="main">
<%= yield %>

</div>
</div>

</body>
</html>

Now it is all starting to come together. We can log in, and by clicking a link

on the sidebar, we can see a list of users. Let’s see whether we can break

something.

Would the Last Admin to Leave…

We bring up the user list screen that looks something like Figure 39, Listing

our users, on page 206; then we click the Destroy link next to dave to delete

that user. Sure enough, our user is removed. But to our surprise, we’re then

presented with the login screen instead. We just deleted the only administrative

report erratum • discuss

Iteration I4: Adding a Sidebar, More Administration • 205

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

user from the system. When the next request came in, the authentication

failed, so the application refused to let us in. We have to log in again before

using any administrative functions.

Figure 39—Listing our users

But now we have an embarrassing problem: there are no administrative users

in the database, so we can’t log in.

Fortunately, we can quickly add a user to the database from the command

line. If you invoke the command rails console, Rails invokes Ruby’s irb utility,

but it does so in the context of your Rails application. That means you can

interact with your application’s code by typing Ruby statements and looking

at the values they return.

We can use this to invoke our user model directly, having it add a user into

the database for us.

depot> rails console
Loading development environment.
>> User.create(name: 'dave', password: 'secret', password_confirmation: 'secret')
=> #<User:0x2933060 @attributes={...} ... >
>> User.count
=> 1

The >> sequences are prompts. After the first, we call the User class to create

a new user, and after the second, we call it again to show that we do indeed

Chapter 14. Task I: Logging In • 206

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

have a single user in our database. After each command we enter, rails console
displays the value returned by the code (in the first case, it’s the model object,

and in the second case, it’s the count).

Panic over. We can now log back in to the application. But how can we stop

this from happening again? There are several ways. For example, we could

write code that prevents you from deleting your own user. That doesn’t quite

work—in theory, A could delete B at just the same time that B deletes A.

Instead, let’s try a different approach. We’ll delete the user inside a database

transaction. If there are no users left after we’ve deleted the user, we’ll roll

the transaction back, restoring the user we just deleted.

To do this, we’ll use an Active Record hook method. We’ve already seen one

of these: the validate hook is called by Active Record to validate an object’s

state. It turns out that Active Record defines sixteen or so hook methods,

each called at a particular point in an object’s life cycle. We’ll use the

after_destroy() hook, which is called after the SQL delete is executed. If a method

by this name is publicly visible, it will conveniently be called in the same

transaction as the delete, so if it raises an exception, the transaction will be

rolled back. The hook method looks like this:

Download rails40/depot_s/app/models/user.rb

after_destroy :ensure_an_admin_remains

private
def ensure_an_admin_remains
if User.count.zero?
raise "Can't delete last user"

end
end

The key concept here is the use of an exception to indicate an error when

deleting the user. This exception serves two purposes. First, because it is

raised inside a transaction, it causes an automatic rollback. By raising the

exception if the users table is empty after the deletion, we undo the delete and

restore that last user.

Second, the exception signals the error back to the controller, where we use

a begin/end block to handle it and report the error to the user in the flash. If

you want only to abort the transaction but not otherwise signal an exception,

raise an ActiveRecord::Rollback exception instead, because this is the only exception

that won’t be passed on by ActiveRecord::Base.transaction.

Download rails40/depot_s/app/controllers/users_controller.rb

begin
def destroy

➤

@user.destroy➤

report erratum • discuss

Iteration I4: Adding a Sidebar, More Administration • 207

http://media.pragprog.com/titles/rails4/code/rails40/depot_s/app/models/user.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_s/app/controllers/users_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

➤ flash[:notice] = "User #{@user.name} deleted"
➤ rescue StandardError => e

flash[:notice] = e.message
end

➤

➤

respond_to do |format|
format.html { redirect_to users_url }
format.json { head :no_content }

end

This code still has a potential timing issue—it is still possible for two admin-

istrators each to delete the last two users if their timing is right. Fixing this

would require more database wizardry than we have space for here.

In fact, the login system described in this chapter is rather rudimentary. Most

applications these days use a plugin to do this.

A number of plugins are available that provide ready-made solutions that not

only are more comprehensive than the authentication logic shown here but

generally require less code and effort on your part to use. See Section 25.4,

Finding More at RailsPlugins.org, on page 418 for a couple of examples.

What We Just Did

By the end of this iteration, we’ve done the following:

• We used has_secure_password to store an encrypted version of the password

into the database.

• We controlled access to the administration functions using before action

callbacks to invoke an authorize() method.

• We saw how to use rails console to interact directly with a model (and dig

us out of a hole after we deleted the last user).

• We saw how a transaction can help prevent deleting the last user.

Playtime

Here’s some stuff to try on your own:

• Modify the user update function to require and validate the current

password before allowing a user’s password to be changed.

• When the system is freshly installed on a new machine, there are no

administrators defined in the database, and hence no administrator can

log on. But, if no administrator can log on, then no one can create an

administrative user.

Chapter 14. Task I: Logging In • 208

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Change the code so that if no administrator is defined in the database,

any username works to log on (allowing you to quickly create a real

administrator).

• Experiment with rails console. Try creating products, orders, and line items.

Watch for the return value when you save a model object—when validation

fails, you’ll see false returned. Find out why by examining the errors.

>> prd = Product.new
=> #<Product id: nil, title: nil, description: nil, image_url:
nil, created_at: nil, updated_at: nil, price:
#<BigDecimal:246aa1c,'0.0',4(8)>>
>> prd.save
=> false
>> prd.errors.full_messages
=> ["Image url must be a URL for a GIF, JPG, or PNG image",

"Image url can't be blank", "Price should be at least 0.01",
"Title can't be blank", "Description can't be blank"]

• Look up the authenticate_or_request_with_http_basic() method and utilize it in your

:authorize callback if the request.format is not Mime::HTML. Test that it works by

accessing an Atom feed.

curl --silent --user dave:secret \
http://localhost:3000/products/2/who_bought.atom

• While we have gotten our tests working by performing a login, we haven’t

yet written tests that verify that access to sensitive data requires login.

Write at least one test that verifies this by calling logout() and then

attempting to fetch or update some data that requires authentication.

(You’ll find hints at http://www.pragprog.com/wikis/wiki/RailsPlayTime.)

report erratum • discuss

Iteration I4: Adding a Sidebar, More Administration • 209

http://www.pragprog.com/wikis/wiki/RailsPlayTime
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 15

Task J: Internationalization

Now we have a basic cart working, and our customer starts to inquire about

languages other than English, noting that her company has a big push on

for expansion in emerging markets. Unless we can present something in a

language that visitors to our customer’s website will understand, our customer

will be leaving money on the table. We can’t have that.

The first problem is that none of us is a professional translator. The customer

reassures us that this is not something we need to concern ourselves with

because that part of the effort will be outsourced. All we need to worry about

is enabling translation. Furthermore, we don’t have to worry about the

administration pages just yet, because all the administrators speak English.

What we have to focus on is the store.

That’s a relief—but is still a tall order. We are going to need to define a way

to enable the user to select a language, we are going to have to provide the

translations themselves, and we are going to have to change the views to use

these translations. But we are up to the task, and armed with a bit of memory

of high-school Spanish, we set off to work.

15.1 Iteration J1: Selecting the Locale

We start by creating a new configuration file that encapsulates our knowledge

of what locales are available and which one is to be used as the default.

Download rails40/depot_s/config/initializers/i18n.rb

#encoding: utf-8
I18n.default_locale = :en

LANGUAGES = [
['English', 'en'],
["Español".html_safe, 'es']

]

In this chapter, we’ll see
• localizing templates and
• database design considerations for I18n.

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_s/config/initializers/i18n.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Joe asks:

If We Stick to One Language, Do We Need to Read

This Chapter?

The short answer is no. In fact, many Rails applications are for a small or homoge-

neous group and never need translating. That being said, pretty much everybody who

does find that they need translation agrees that it is best if this is done early. So,

unless you are sure that translation will not ever be needed, it is our recommendation

that you at least understand what would be involved so that you can make an informed

decision.

This code is doing two things.

The first thing it does is use the I18n module to set the default locale. I18n is
a funny name, but it sure beats typing out internationalization all the time.

Internationalization, after all, starts with an i, ends with an n, and has eighteen

letters in between.

Then it defines a list of associations between display names and locale names.

Unfortunately, all we have available at the moment is a U.S. keyboard, and

español has a character that can’t be directly entered via our keyboard. Dif-

ferent operating systems have different ways of dealing with this, and often

the easiest way is to simply copy and paste the correct text from a website.

If you do this, just make sure your editor is configured for UTF-8. Meanwhile,

we’ve opted to use the HTML equivalent of “n con tilde” character in Spanish.

If we didn’t do anything else, the markup itself would be shown. But by calling

html_safe, we inform Rails that the string is safe to be interpreted as containing

HTML.

To get Rails to pick up this configuration change, the server needs to be

restarted.

Since each page that is translated will have an en and es version (for now,

more will be added later), it makes sense to include this in the URL. Let’s

plan to put the locale up front, make it optional, and have it default to the

current locale, which in turn will default to English. To implement this cunning

plan, let’s start with modifying config/routes.rb.

Download rails40/depot_s/config/routes.rb

Depot::Application.routes.draw do
get 'admin' => 'admin#index'

controller :sessions do
get 'login' => :new

Chapter 15. Task J: Internationalization • 212

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_s/config/routes.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

post 'login' => :create
delete 'logout' => :destroy

end

get "sessions/create"
get "sessions/destroy"

resources :users

resources :products do
get :who_bought, on: :member

end

➤ scope '(:locale)' do
resources :orders
resources :line_items
resources :carts
root 'store#index', as: 'store', via: :all

➤ end
end

What we have done is nested our resources and root declarations inside a

scope declaration for :locale. Furthermore, :locale is in parentheses, which is

the way to say that it is optional. Note that we did not choose to put the

administrative and session functions inside this scope, because it is not our

intent to translate them at this time.

What this means is that both http://localhost:3000/ will use the default

locale, namely, English, and therefore be routed exactly the same as http://

localhost:3000/en. http://localhost:3000/es will route to the same controller

and action, but we will want this to cause the locale to be set differently.

At this point, we’ve made a lot of changes to config.routes, and with the nesting

and all the optional parts to the path, the gestalt might be hard to visualize.

Never fear: when running a server in development mode, Rails provides a

visual aid. All you need to do is navigate to http://local-

host:3000/rails/info/routes, and you’ll see a list of all your routes, as shown

in Figure 40, A list of all of the active routes, on page 214. More information on

the fields shown in this table can be found in the description of rake routes on

page 312.

With the routing in place, we are ready to extract the locale from the param-

eters and make it available to the application. To do this, we need to create

a before_action callback and to set the default_url_options. The logical place to do

both is in the common base class for all of our controllers, which is Application-
Controller.

report erratum • discuss

Iteration J1: Selecting the Locale • 213

http://localhost:3000/
http://localhost:3000/en
http://localhost:3000/en
http://localhost:3000/es
http://localhost:3000/rails/info/routes
http://localhost:3000/rails/info/routes
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 40—A list of all of the active routes

Download rails40/depot_s/app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
➤ before_action :set_i18n_locale_from_params

...
protected
def set_i18n_locale_from_params➤

➤ if params[:locale]
➤ if I18n.available_locales.map(&:to_s).include?(params[:locale])

I18n.locale = params[:locale]➤

else➤

flash.now[:notice] =➤

"#{params[:locale]} translation not available"➤

logger.error flash.now[:notice]➤

end➤

end➤

end➤

➤

➤ def default_url_options
➤ { locale: I18n.locale }

end➤

end

This set_i18n_locale_from_params does pretty much what it says: it sets the locale

from the params, but only if there is a locale in the params; otherwise, it

leaves the current locale alone. Care is taken to provide a message for both

the user and the administrator when there is a failure.

Chapter 15. Task J: Internationalization • 214

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_s/app/controllers/application_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

And default_url_options also does pretty much what it says, in that it provides a

hash of URL options that are to be considered as present whenever they aren’t

otherwise provided. In this case, we are providing a value for the :locale
parameter. This is needed when a view on a page that does not have the locale

specified attempts to construct a link to a page that does. We will see that in

use soon.

With this in place, we can see the results in the following figure:

Figure 41—English version of the front page

At this point, the English version of the page is available both at the root of

the website and at pages that start with /en. Additionally, a message on the

screen says that the translation is not available (as we can see in Figure 42,

Translation not available, on page 216), which will also leave a message in the

log indicating that the file wasn’t found. It might not look like it, but that’s

progress.

15.2 Iteration J2: Translating the Storefront

Now it is time to begin providing the translated text. Let’s start with the layout,

because it is pretty visible. We replace any text that needs to be translated

with calls to I18n.translate. Not only is this method conveniently aliased as I18n.t,
but there also is a helper provided named t.

The parameter to the translate function is a unique dot-qualified name. We

can choose any name we like, but if we use the t helper function provided,

names that start with a dot will first be expanded using the name of the

template. So, let’s do that.

report erratum • discuss

Iteration J2: Translating the Storefront • 215

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 42—Translation not available

Download rails40/depot_s/app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>

<title>Pragprog Books Online Store</title>
<%= stylesheet_link_tag "application", media: "all",
"data-turbolinks-track" => true %>

<%= javascript_include_tag "application", "data-turbolinks-track" => true %>
<%= csrf_meta_tags %>

</head>
<body class="<%= controller.controller_name %>">

<div id="banner">
<%= image_tag("logo.png") %>
<%= @page_title || t('.title') %>➤

</div>
<div id="columns">
<div id="side">
<% if @cart %>

<%= hidden_div_if(@cart.line_items.empty?, id: 'cart') do %>
<%= render @cart %>

<% end %>
<% end %>

<%= t('.home') %>➤

<%= t('.questions') %>➤

Chapter 15. Task J: Internationalization • 216

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_s/app/views/layouts/application.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<%= t('.news') %>➤

<%= t('.contact') %>➤

<% if session[:user_id] %>

<%= link_to 'Orders', orders_path %>
<%= link_to 'Products', products_path %>
<%= link_to 'Users', users_path %>

<%= button_to 'Logout', logout_path, method: :delete %>

<% end %>
</div>
<div id="main">
<%= yield %>

</div>
</div>

</body>
</html>

Since this view is named layouts/application.html.erb, the English mappings will

expand to en.layouts.application. Here’s the corresponding locale file:

Download rails40/depot_s/config/locales/en.yml

en:

layouts:
application:

title: "Pragmatic Bookshelf"
home: "Home"
questions: "Questions"
news: "News"
contact: "Contact"

Here it is in Spanish:

Download rails40/depot_s/config/locales/es.yml

es:

layouts:
application:

title: "Publicaciones de Pragmatic"
home: "Inicio"
questions: "Preguntas"
news: "Noticias"
contact: "Contacto"

YAML

↪ on page 48

The format is YAML, the same as the one used to configure the databases.

YAML simply consists of indented names and values, where the indentation

in this case matches the structure that we created in our names.

report erratum • discuss

Iteration J2: Translating the Storefront • 217

http://media.pragprog.com/titles/rails4/code/rails40/depot_s/config/locales/en.yml
http://media.pragprog.com/titles/rails4/code/rails40/depot_s/config/locales/es.yml
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

To get Rails to recognize that there are new YAML files, the server needs to

be restarted.

At this point, we can see in the following figure the actual translated text

appearing in our browser window:

Figure 43—Baby steps: translated titles and sidebar

Next to be updated is the main title as well as the Add to Cart button. Both

can be found in the store index template.

Download rails40/depot_s/app/views/store/index.html.erb

<h1><%= t('.title_html') %></h1>

<% if notice %>
<p id="notice"><%= notice %></p>
<% end %>

➤

<% cache ['store', Product.latest] do %>
<% @products.each do |product| %>
<% cache ['entry', product] do %>

<div class="entry">
<%= image_tag(product.image_url) %>
<h3><%= product.title %></h3>
<%= sanitize(product.description) %>
<div class="price_line">

<%= number_to_currency(product.price) %>
<%= button_to t('.add_html'), line_items_path(product_id: product),➤

remote: true %>
</div>

</div>
<% end %>

<% end %>
<% end %>

Chapter 15. Task J: Internationalization • 218

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_s/app/views/store/index.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

And here’s the corresponding updates to the locales files, first in English:

Download rails40/depot_s/config/locales/en.yml

en:

store:
index:

title_html: "Your Pragmatic Catalog"
add_html: "Add to Cart"

and then in Spanish:

Download rails40/depot_s/config/locales/es.yml

es:

store:
index:

title_html: "Su Catálogo de Pragmatic"
add_html: "Añadir al Carrito"

Note that since title_html and add_html end in the characters _html, we are free to

use HTML entity names for characters that do not appear on our keyboard.

If we did not name the translation key this way, what you would end up seeing

on the page is the markup. This is yet another convention that Rails has

adopted to make your coding life easier. Rails will also treat names that contain

html as a component (in other words, the string .html.) as HTML key names.

By refreshing the page in the browser window, we see the results shown in

Figure 44, Translated heading and button, on page 220.

Feeling confident, we move on to the cart partial.

Download rails40/depot_s/app/views/carts/_cart.html.erb

➤ <h2><%= t('.title') %></h2>
<table>

<%= render(cart.line_items) %>

<tr class="total_line">
<td colspan="2">Total</td>
<td class="total_cell"><%= number_to_currency(cart.total_price) %></td>

</tr>

</table>

➤ <%= button_to t('.checkout'), new_order_path, method: :get %>
➤ <%= button_to t('.empty'), cart, method: :delete,

data: { confirm: 'Are you sure?' } %>

And again, here are the translations:

report erratum • discuss

Iteration J2: Translating the Storefront • 219

http://media.pragprog.com/titles/rails4/code/rails40/depot_s/config/locales/en.yml
http://media.pragprog.com/titles/rails4/code/rails40/depot_s/config/locales/es.yml
http://media.pragprog.com/titles/rails4/code/rails40/depot_s/app/views/carts/_cart.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 44—Translated heading and button

Download rails40/depot_s/config/locales/en.yml

en:

carts:
cart:

title: "Your Cart"
empty: "Empty cart"
checkout: "Checkout"

Download rails40/depot_s/config/locales/es.yml

es:

carts:
cart:

title: "Carrito de la Compra"
empty: "Vaciar Carrito"
checkout: "Comprar"

Refreshing the page, we see the cart title and buttons have been translated

(Figure 45, Carrito bonita, on page 221).

We now notice our first problem. Languages are not the only thing that varies

from locale to locale; currencies do too. And the customary way that numbers

are presented varies too.

Chapter 15. Task J: Internationalization • 220

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_s/config/locales/en.yml
http://media.pragprog.com/titles/rails4/code/rails40/depot_s/config/locales/es.yml
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 45—Carrito bonita

So, first we check with our customer, and we verify that we are not worrying

about exchange rates at the moment (whew!), because that will be taken care

of by the credit card and/or wire companies, but we do need to display the

string “USD” or “$US” after the value when we are showing the result in

Spanish.

Another variation is the way that numbers themselves are displayed. Decimal

values are delimited by a comma, and separators for the thousands place are

indicated by a dot.

Currency is a lot more complicated than it first appears, and that’s a lot of

decisions to be made. Fortunately, Rails knows to look in your translations

file for this information; all we need to do is supply it. Here it is for en:

Download rails40/depot_s/config/locales/en.yml

en:

number:
currency:

format:
unit: "$"
precision: 2
separator: "."
delimiter: ","
format: "%u%n"

report erratum • discuss

Iteration J2: Translating the Storefront • 221

http://media.pragprog.com/titles/rails4/code/rails40/depot_s/config/locales/en.yml
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Here it is for es:

Download rails40/depot_s/config/locales/es.yml

es:

number:
currency:

format:
unit: "$US"
precision: 2
separator: ","
delimiter: "."
format: "%n %u"

We’ve specified the unit, precision, separator, and delimiter for number.currency.
format. That much is pretty self-explanatory. The format is a bit more involved:

%n is a placeholder for the number; is a nonbreaking space character,

preventing this value from being split across multiple lines; and %u is a

placeholder for the unit (see Figure 46, Mas dinero, por favor., on page 223).

15.3 Iteration J3: Translating Checkout

Now we feel that we are in the home stretch. The new order page is next.

Download rails40/depot_s/app/views/orders/new.html.erb

<div class="depot_form">
<fieldset>
<legend><%= t('.legend') %></legend>➤

<%= render 'form' %>
</fieldset>

</div>

Here is the form that is used by this page:

Download rails40/depot_s/app/views/orders/_form.html.erb

<%= form_for(@order) do |f| %>
<% if @order.errors.any? %>

<div id="error_explanation">

<h2><%= pluralize(@order.errors.count, "error") %>
prohibited this order from being saved:</h2>

<% @order.errors.full_messages.each do |msg| %>

<%= msg %>
<% end %>

</div>
<% end %>

Chapter 15. Task J: Internationalization • 222

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_s/config/locales/es.yml
http://media.pragprog.com/titles/rails4/code/rails40/depot_s/app/views/orders/new.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_s/app/views/orders/_form.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 46—Mas dinero, por favor.

<div class="field">
➤ <%= f.label :name, t('.name') %>

<%= f.text_field :name, size: 40 %>
</div>

<div class="field">
➤ <%= f.label :address, t('.address_html') %>

<%= f.text_area :address, rows: 3, cols: 40 %>
</div>

<div class="field">
➤ <%= f.label :email, t('.email') %>

<%= f.email_field :email, size: 40 %>
</div>

<div class="field">
➤ <%= f.label :pay_type, t('.pay_type') %>

<%= f.select :pay_type, Order::PAYMENT_TYPES,
prompt: t('.pay_prompt_html') %>➤

</div>

<div class="actions">
➤ <%= f.submit t('.submit') %>

</div>
<% end %>

Here are the corresponding locale definitions:

report erratum • discuss

Iteration J3: Translating Checkout • 223

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_s/config/locales/en.yml

en:

orders:
new:

legend: "Please Enter Your Details"
form:

name: "Name"
address_html: "Address"
email: "E-mail"
pay_type: "Pay with"
pay_prompt_html: "Select a payment method"
submit: "Place Order"

Download rails40/depot_s/config/locales/es.yml

es:

orders:
new:

legend: "Por favor, introduzca sus datos"
form:

name: "Nombre"
address_html: "Dirección"
email: "E-mail"
pay_type: "Forma de pago"
pay_prompt_html: "Seleccione un método de pago"
submit: "Realizar Pedido"

See Figure 47, Ready to take your money—in Spanish, on page 225 for the

completed form.

All looks good until we hit the Realizar Pedido button prematurely and see the

results shown in Figure 48, Translation missing, on page 225. The error mes-

sages that Active Record produces can also be translated; what we need to

do is supply the translations.

Download rails40/depot_s/config/locales/es.yml

es:

activerecord:
errors:

messages:
inclusion: "no está incluido en la lista"
blank: "no puede quedar en blanco"

errors:
template:

body: "Hay problemas con los siguientes campos:"
header:

one: "1 error ha impedido que este %{model} se guarde"
other: "%{count} errores han impedido que este %{model} se guarde"

Chapter 15. Task J: Internationalization • 224

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_s/config/locales/en.yml
http://media.pragprog.com/titles/rails4/code/rails40/depot_s/config/locales/es.yml
http://media.pragprog.com/titles/rails4/code/rails40/depot_s/config/locales/es.yml
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 47—Ready to take your money—in Spanish

Figure 48—Translation missing

Note that messages with counts typically have two forms: errors.template.header.
one is the message that is produced when there is one error, and errors.template.
header.other is produced otherwise. This gives the translators the opportunity

to provide the correct pluralization of nouns and to match the verbs with the

nouns.

report erratum • discuss

Iteration J3: Translating Checkout • 225

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Since we once again made use of HTML entities, we will want these error

messages to be displayed as is (or in Rails parlance, raw). We will also need

to translate the error messages. So again, we modify the form.

Download rails40/depot_t/app/views/orders/_form.html.erb

<%= form_for(@order) do |f| %>
<% if @order.errors.any? %>

<div id="error_explanation">
➤ <h2><%=raw t('errors.template.header', count: @order.errors.count,
➤ model: t('activerecord.models.order')) %>.</h2>

<p><%= t('errors.template.body') %></p>➤

<% @order.errors.full_messages.each do |msg| %>

<%=raw msg %>➤

<% end %>

</div>
<% end %>

<!-- ... -->

Note that we are passing the count and model name (which is, itself, enabled

for translation) on the translate call for the error template header.

With these changes in place, we try again and see improvement in the following

figure:

Figure 49—English nouns in Spanish sentences

That’s better, but the names of the model and attributes bleed through the

interface. This is OK in English, because the names we picked work for

English. We need to provide translations for each.

Chapter 15. Task J: Internationalization • 226

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_t/app/views/orders/_form.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

This, too, goes into the YAML file.

Download rails40/depot_t/config/locales/es.yml

es:

activerecord:
models:

order: "pedido"
attributes:

order:
address: "Dirección"
name: "Nombre"
email: "E-mail"
pay_type: "Forma de pago"

Note that there is no need to provide English equivalents for this, because

those messages are built in to Rails.

We are pleased to see the model and attribute names translated in the follow-

ing figure; we fill out the form, we submit the order, and we get a “Thank you

for your order” message.

Figure 50—Model names are now translated too.

We need to update the flash messages.

Download rails40/depot_t/app/controllers/orders_controller.rb

def create
@order = Order.new(order_params)
@order.add_line_items_from_cart(@cart)

respond_to do |format|
if @order.save

report erratum • discuss

Iteration J3: Translating Checkout • 227

http://media.pragprog.com/titles/rails4/code/rails40/depot_t/config/locales/es.yml
http://media.pragprog.com/titles/rails4/code/rails40/depot_t/app/controllers/orders_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Cart.destroy(session[:cart_id])
session[:cart_id] = nil
OrderNotifier.received(@order).deliver
format.html { redirect_to store_url, notice:

➤ I18n.t('.thanks') }
format.json { render action: 'show', status: :created,
location: @order }

else
format.html { render action: 'new' }
format.json { render json: @order.errors,

status: :unprocessable_entity }
end

end
end

Finally, we provide the translations.

Download rails40/depot_t/config/locales/en.yml

en:

thanks: "Thank you for your order"

Download rails40/depot_t/config/locales/es.yml

es:

thanks: "Gracias por su pedido"

See the cheery message in the next figure:

Figure 51—Thanking the customer in Spanish

Chapter 15. Task J: Internationalization • 228

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_t/config/locales/en.yml
http://media.pragprog.com/titles/rails4/code/rails40/depot_t/config/locales/es.yml
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

15.4 Iteration J4: Add a Locale Switcher

We’ve completed the task, but we really need to advertise its availability more.

We spy some unused area in the top-right side of the layout, so we add a form

immediately before the image_tag.

Download rails40/depot_t/app/views/layouts/application.html.erb

<div id="banner">
<%= form_tag store_path, class: 'locale' do %>➤

➤ <%= select_tag 'set_locale',
➤ options_for_select(LANGUAGES, I18n.locale.to_s),
➤ onchange: 'this.form.submit()' %>
➤ <%= submit_tag 'submit' %>
➤ <%= javascript_tag "$('.locale input').hide()" %>
➤ <% end %>

<%= image_tag("logo.png") %>
<%= @page_title || t('.title') %>

</div>

The form_tag specifies the path to the store as the page to be redisplayed when

the form is submitted. A class attribute lets us associate the form with some

CSS.

The select_tag is used to define the one input field for this form, namely, locale.

It is an options list based on the LANGUAGES array that we set up in the config-

uration file, with the default being the current locale (also made available via

the I18n module). We also set up an onchange event handler, which will submit

this form whenever the value changes. This works only if JavaScript is enabled,

but it is handy.

Then we add a submit_tag for the cases when JavaScript is not available. To

handle the case where JavaScript is available and the submit button is

unnecessary, we add a tiny bit of JavaScript that will hide each of the input

tags in the locale form, even though we know that there is only one.

Next, we modify the store controller to redirect to the store path for a given

locale if the :set_locale form is used.

Download rails40/depot_t/app/controllers/store_controller.rb

def index
➤ if params[:set_locale]

redirect_to store_url(locale: params[:set_locale])
else

➤

➤

@products = Product.order(:title)
➤ end

end

Finally, we add a bit of CSS.

report erratum • discuss

Iteration J4: Add a Locale Switcher • 229

http://media.pragprog.com/titles/rails4/code/rails40/depot_t/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/depot_t/app/controllers/store_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_t/app/assets/stylesheets/application.css.scss

.locale {
float: right;
margin: -0.25em 0.1em;

}

For the actual selector, see the following figure. We can now switch back and

forth between languages with a single mouse click.

Figure 52—Locale selector in top right

At this point, we can now place orders in two languages, and our thoughts

turn to actual deployment. But because it has been a busy day, it is time to

put down our tools and relax. We will start on deployment in the morning.

What We Just Did

By the end of this iteration, we’ve done the following:

• We set the default locale for our application and provided a means for the

user to select an alternate locale.

• We created translation files for text fields, currency amounts, errors, and

model names.

• We altered layouts and views to call out to the I18n module by way of the

t() helper in order to translate textual portions of the interface.

Chapter 15. Task J: Internationalization • 230

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_t/app/assets/stylesheets/application.css.scss
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Playtime

Here’s some stuff to try on your own:

• Add a locale column to the products database, and adjust the index view

to select only the products that match the locale. Adjust the products

view so that you can view, enter, and alter this new column. Enter a few

products in each locale, and test the resulting application.

• Determine the current exchange rate between U.S. dollars and euros, and

localize the currency display to display euros when ES_es is selected.

• Translate the Order::PAYMENT_TYPES shown in the drop-down. You will need

to keep the option value (which is sent to the server) the same. Change

only what is displayed.

(You’ll find hints at http://www.pragprog.com/wikis/wiki/RailsPlayTime.)

report erratum • discuss

Iteration J4: Add a Locale Switcher • 231

http://www.pragprog.com/wikis/wiki/RailsPlayTime
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 16

Task K: Deployment and Production

Deployment is supposed to mark a happy point in the lifetime of our applica-

tion. It’s when we take the code that we’ve so carefully crafted and upload it

to a server so that other people can use it. It’s when the beer, champagne,

and hors d’oeuvres are supposed to flow. Shortly thereafter, our application

will be written about in Wired magazine, and we’ll be overnight names in the

geek community.

The reality, however, is that it often takes quite a bit of up-front planning in

order to pull off a smooth and repeatable deployment of your application.

By the time we are through with this chapter, our setup will look like the

following figure:

Gems Code

git

MySQL

Apache /

Passenger

git

WEBrick

User

SQLite3

Figure 53—Application deployment road map

In this chapter, we’ll see
• running our application in a production web server,
• configuring the database for MySQL,
• using Bundler and Git for version control, and
• deploying our application using Capistrano.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

At the moment, we’ve been doing all of our work on one machine, though

user interaction with our web server could be done on a separate machine.

In the figure, the user’s machine is in the center, and the WEBRick web

server is on the left. This server makes use of SQLite3, various gems you have

installed, and your application code. Your code may or may not have also

been placed in Git by this point; either way, it will be by the end of the chapter,

as will be the gems you are using.

This Git repository will be replicated on the production server, which again

could be another machine but need not be. This server will be running a

combination of Apache httpd and Phusion Passenger. This code will access

a MySQL database on what may yet be a fourth machine.

Capistrano will be the tool we use to update the deployment server(s)

remotely, safely, and repeatably from the comfort of our development machine.

That’s a lot of moving parts!

Instead of doing it all at once, we will do it in three iterations. Iteration K1

will get the Depot application up and running with Apache, MySQL, and

Passenger—a truly production-quality web server environment.

We will leave Git, Bundler, and Capistrano to a second iteration. These tools

will enable us to separate our development activities from our deployment

environment. This means that by the time we are done, we will be deploying

twice; but that’s only this first time and only to ensure that each part is

working independently. It also allows us to focus on a smaller set of variables

at any one time, which will simplify the process of untangling any problems

that we might encounter.

In a third iteration, we will cover various administrative and cleanup tasks.

Let’s get started!

16.1 Iteration K1: Deploying with Phusion Passenger and MySQL

So far, as we’ve been developing a Rails application on our local machine,

we’ve probably been using WEBrick when we run our server. For the most

part, it doesn’t matter. The rails server command will sort out the most appro-

priate way to get our application running in development mode on port 3000.

However, a deployed Rails application works a bit differently. We can’t just

fire up a single Rails server process and let it do all the work. Well, we could,

but it’s far from ideal. The reason for this is that Rails is single-threaded. It

can work on only one request at a time.

Chapter 16. Task K: Deployment and Production • 234

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Joe asks:

Can We Deploy to Microsoft Windows?

Although we can deploy applications to Windows environments, the overwhelming

amount of Rails tools and shared knowledge assumes a Unix-based operating system

such as Linux or Mac OS X. One such tool, Phusion Passenger, is highly recommended

by the Ruby on Rails development team and covered in this chapter.

The techniques described in this chapter can be used by those deploying to Linux or

Mac OS X.

The Web, however, is an extremely concurrent environment. Production web

servers, such as Apache, Lighttpd, and Zeus, can work on several requests

—even tens or hundreds of requests—at the same time. A single-process,

single-threaded Ruby-based web server can’t possibly keep up. Luckily, it

doesn’t have to keep up. Instead, the way we deploy a Rails application into

production is to use a front-end server, such as Apache, to handle requests

from the client. Then, you use the HTTP proxying of Passenger to send requests

that should be handled by Rails to one of any number of back-end application

processes.

Configuring a Second Machine

If you have a second machine you can use, that’s great. If not, you can use

a virtual machine. There’s plenty of free software you can use for this purpose,

such as VirtualBox1 and Ubuntu.2 If you go with Ubuntu, we recommend

12.04 LTS.

Configure this machine using the instructions in Chapter 1, Installing Rails,

on page 3. If you like, you can skip the step of installing Rails and instead

install Bundler.

$ gem install bundler

Next, copy your entire directory containing the Depot application from your

first machine to your second machine. On the second machine, change into

that directory and use Bundler to install all of your application’s dependencies.

$ bundle install

Verify that your installation is working using any combination of the following

commands:

1. https://www.virtualbox.org/

2. http://www.ubuntu.com/download/desktop

report erratum • discuss

Iteration K1: Deploying with Phusion Passenger and MySQL • 235

https://www.virtualbox.org/
http://www.ubuntu.com/download/desktop
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

$ rake about
$ rake test
$ rails server

At this point you should be able to launch a browser on either machine and

see your application. Once you’re satisfied that your application is running

correctly, stop the server.

These steps of copying directories and starting and stopping servers aren’t

generally something you want your application developers to be doing, and

by the time we’re done with this chapter this will all be automated. But for

now, knowing what the steps are and that the intermediate results are correct

has established the base upon which we can build our deployment.

Installing Passenger

The next step is to ensure that the Apache web server is installed and running

on our second machine. Linux users should have already installed Apache

in Section 1.3, Installing on Linux, on page 6. For Mac OS X users, it’s already

installed with the operating system, but you’ll need to enable it. For Mac OS

X releases prior to 10.8, this can be accomplished by going into System

Preferences > Sharing and enabling Web Sharing. Starting with Mac OS X

10.8, this needs to be done via the Terminal application.

$ sudo apachectl start
$ sudo launchctl load -w /System/Library/LaunchDaemons/org.apache.httpd.plist

The next step is to install Passenger.

$ gem install passenger --version 4.0.8
$ passenger-install-apache2-module

If the necessary dependencies are not met, the latter command will tell you

what you need to do. For example, on a Ubuntu 13.04 (Raring Ringtail), you

will find that you need to install libcurl4-openssl-dev, apache2-prefork-dev, libapr1-dev,
and libaprutil1-dev. If this happens, follow the provided instructions, and try the

Passenger install command again.

Once the dependencies are satisfied, this command causes a number of

sources to be compiled and the configuration files to be updated. During the

process, it will ask us to update our Apache configuration. The first will be

to enable your freshly built module and will involve adding lines such as the

following to our Apache configuration. (Note: Passenger will tell you the exact

lines to copy and paste into this file, so use those, not these. Also, we’ve had

to elide the path specification in the LoadModule line to make it fit the page. Be

sure to use the path specification that Passenger provided for you.)

Chapter 16. Task K: Deployment and Production • 236

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

LoadModule passenger_module /home/rubys/.rvm/.../ext/apache2/mod_passenger.so
PassengerRoot /home/rubys/.rvm/gems/ruby-2.0.0-p0/gems/passenger-4.0.1
PassengerDefaultRuby /home/rubys/.rvm/wrappers/ruby-2.0.0-p0/ruby

To find out where your Apache configuration file is, try issuing the following

command:

$ apachectl -V | grep HTTPD_ROOT
$ apachectl -V | grep SERVER_CONFIG_FILE

On some systems, the command name is apache2ctl; on others, it’s httpd.
Experiment until you find the correct command.

Instead of modifying this file directly, most modern systems have conventions

that allow you to maintain your extensions separately. On Mac OS X, for

example, you may see the following line at the end of your httpd.conf file:

Include /private/etc/apache2/other/*.conf

If you see this line in your httpd.conf, you can put the lines that Passenger

provided into a passenger.conf file in that directory. On Ubuntu you can put

these lines into /etc/apache2/conf.d/passenger.

Deploying Our Application Locally

The next step is to deploy our application. Whereas the previous step needs

to be done only once per server, this step is actually once per application.

Substitute your host’s name and your application’s directory path in the fol-

lowing ServerName line:

<VirtualHost *:80>
ServerName depot.yourhost.com
DocumentRoot /home/rubys/deploy/depot/public/
<Directory /home/rubys/deploy/depot/public>

AllowOverride all
Options -MultiViews
Order allow,deny
Allow from all

</Directory>
</VirtualHost>

Note that the DocumentRoot is set to our public directory in our Rails application

and that we mark the public directory as readable.

Again, your Apache installation may have conventions for the best place to

put these instructions. On Mac OS X, check your httpd.conf for the following

(possibly commented-out) line:

#Include /private/etc/apache2/extra/httpd-vhosts.conf

report erratum • discuss

Iteration K1: Deploying with Phusion Passenger and MySQL • 237

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

If this line is present, consider uncommenting the line and replacing the

dummy-host.example.com with your host.

On Ubuntu, the convention is to place these lines in a file in the /etc/apache2/sites-
available directory and then to separately enable the site. For example, if you

named the file depot, then the site can be enabled using the following command:

sudo a2ensite depot

If you have multiple applications, repeat this VirtualHost block once per application,

adjusting the ServerName and DocumentRoot in each block. You will also need to verify

that the following line is present in the configuration files already:

NameVirtualHost *:80

If this line is not present, add it before a line that contains the text Listen 80.

The final step is to restart our Apache web server.

$ sudo apachectl restart

You will now need to configure your client so that it maps the host name you

chose to the correct machine. This is done in a file named /etc/hosts. On

Windows machines, this file can be found in C:\windows\system32\drivers\etc\. To

edit this file, you will need to open the file as an administrator.

A typical /etc/hosts line will look like the following:

127.0.0.1 depot.yourhost.com

That’s it! We can now access our application using the host (or virtual host)

we specified. Unless we used a port number other than 80, there is no longer

any need for us to specify a port number on our URL.

There are a few things to be aware of.

• If when restarting your server you see a message that The address or port is
invalid, this means the NameVirtualHost line is already present, perhaps in

another configuration file in the same directory. If so, remove the line you

added because this directive needs to be present only once.

• If we want to run in an environment other than production, we can include

a RailsEnv directive in each VirtualHost in our Apache configuration.

RailsEnv development

• We can restart our application without restarting Apache at any time by

updating or creating a file named restart.txt in the tmp of our application.

$ touch tmp/restart.txt

Chapter 16. Task K: Deployment and Production • 238

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• The output of the passenger-install-apache2-module command will tell us where

we can find additional documentation.

Using MySQL for the Database

The SQLite website3 is refreshingly honest when it comes to describing what

this database is good at and what it is not good at. In particular, SQLite is

not recommended for high-volume, high-concurrency websites with large

datasets. And, of course, we want our website to be such a website.

There are plenty of alternatives to SQLite, both free and commercial. We will

go with MySQL. It is available via your native packaging tool in Linux, and

an installer is provided for OS X on the MySQL website.4

The Mac OS X ver. 10.7 (x86, 64-bit), DMG Archive version works fine on 10.8.

If you don’t want to sign up, look for the No thanks, just take me to the

downloads! link at the bottom of the page.

In addition to installing the MySQL database, you will also need to add the

mysql gem to the Gemfile.

Download rails40/depot_t/Gemfile

group :production do
gem 'mysql2'

end

By putting this gem in group production, it will not be loaded when running in

development or test. If you like, you can put the sqlite3 gem into (separate)

development and test groups.

Install the gem using bundle install. You may need to locate and install the

MySQL database development files for your operating system first. On

Ubuntu, for example, you will need to install libmysqlclient-dev.

You can use the mysql command-line client to create your database or if you’re

more comfortable with tools such as phpmyadmin or CocoaMySQL, go for it.

depot> mysql -u root
mysql> CREATE DATABASE depot_production DEFAULT CHARACTER SET utf8;
mysql> GRANT ALL PRIVILEGES ON depot_production.*

-> TO 'username'@'localhost' IDENTIFIED BY 'password';
mysql> EXIT;

3. http://www.sqlite.org/whentouse.html

4. http://dev.mysql.com/downloads/mysql/

report erratum • discuss

Iteration K1: Deploying with Phusion Passenger and MySQL • 239

http://media.pragprog.com/titles/rails4/code/rails40/depot_t/Gemfile
http://www.sqlite.org/whentouse.html
http://dev.mysql.com/downloads/mysql/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

If you picked a different database name, remember it, because you will need

to adjust the configuration file to match the name you picked. Let’s look at

that configuration file now.

The config/database.yml file contains information on database connections. It

contains three sections, one each for the development, test, and production

databases. The current production section contains the following:

production:
adapter: sqlite3
database: db/production.sqlite3
pool: 5
timeout: 5000

We replace that section with something like the following:

production:
adapter: mysql2
encoding: utf8
reconnect: false
database: depot_production
pool: 5
username: username
password: password
host: localhost

Change the username, password, and database fields as necessary.

Loading the Database

Next, we apply our migrations.

depot> rake db:setup RAILS_ENV="production"

One of two things will happen. If all is set up correctly, you will see output

like the following:

-- create_table("carts", {:force=>true})
-> 0.1722s

-- create_table("line_items", {:force=>true})
-> 0.1255s

-- create_table("orders", {:force=>true})
-> 0.1171s

-- create_table("products", {:force=>true})
-> 0.1172s

-- create_table("users", {:force=>true})
-> 0.1255s

-- initialize_schema_migrations_table()
-> 0.0006s

-- assume_migrated_upto_version(20121130000008, "db/migrate")
-> 0.0008s

Chapter 16. Task K: Deployment and Production • 240

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

If instead you see an error of some sort, don’t panic! It’s probably a simple

configuration issue. Here are some things to try:

• Check the name you gave for the database in the production: section of

database.yml. It should be the same as the name of the database you created

(using mysqladmin or some other database administration tool).

• Check that the username and password in database.yml match what you

used when you created the database on page 239.

• Check that your database server is running.

• Check that you can connect to it from the command line. If using MySQL,

run the following command:

depot> mysql depot_production
mysql>

• If you can connect from the command line, can you create a dummy table?

(This tests that the database user has sufficient access rights to the

database.)

mysql> create table dummy(i int);
mysql> drop table dummy;

• If you can create tables from the command line but rake db:migrate fails,

double-check the database.yml file. If there are socket: directives in the file,

try commenting them out by putting a hash character (#) in front of each.

• If you see an error saying No such file or directory… and the filename in the error

is mysql.sock, your Ruby MySQL libraries can’t find your MySQL database. This

might happen if you installed the libraries before you installed the database

or if you installed the libraries using a binary distribution and that distribution

made the wrong assumption about the location of the MySQL socket file. To

fix this, the best idea is to reinstall your Ruby MySQL libraries. If this isn’t

an option, double-check that the socket: line in your database.yml file contains

the correct path to the MySQL socket on your system.

• If you get the error Mysql not loaded, it means you’re running an old version

of the Ruby MySQL library. Rails needs at least version 2.5.

• Some readers also report getting the error message Client does not support authen-
tication protocol requested by server; consider upgrading MySQL client. To resolve this

incompatibility between the installed version of MySQL and the libraries used

to access it, follow the instructions at http://dev.mysql.

com/doc/mysql/en/old-client.html and issue a MySQL command such as

set password for 'some_user'@ 'some_host' = OLD_PASSWORD('newpwd');.

report erratum • discuss

Iteration K1: Deploying with Phusion Passenger and MySQL • 241

http://dev.mysql.com/doc/mysql/en/old-client.html
http://dev.mysql.com/doc/mysql/en/old-client.html
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• If you’re using MySQL under Cygwin on Windows, you may have problems

if you specify a host of localhost. Try using 127.0.0.1 instead.

• Finally, you might have problems in the format of the database.yml file. The

YAML library that reads this file is strangely sensitive to tab characters.

If your file contains tab characters, you’ll have problems. (And you thought

you’d chosen Ruby over Python because you didn’t like Python’s significant

whitespace, eh?)

Rerun the rake db:setup as many times as you need to in order to correct any

configuration issues you may have.

If all this sounds scary, don’t worry. In reality, database connections work

like a charm most of the time. And once you have Rails talking to the database,

you don’t have to worry about it again.

At this point, you are up and running. Nothing looks any different when you

are running as a single user. The differences become apparent only when you

have a large number of concurrent users or a large database.

The next step is to split our development from our production machine.

16.2 Iteration K2: Deploying Remotely with Capistrano

If you are a large shop, having a pool of dedicated servers that you administer

so that you can ensure that they are running the same version of the necessary

software is the way to go. For more modest needs, a shared server will do,

but we will have to take additional care to deal with the fact that the versions

of software installed may not always match the version that we have installed

on our development machine.

Don’t worry, we’ll talk you through it.

Prepping Your Deployment Server

Although putting our software under version control is a really, really, really

good idea during development, not putting our software under version control

when it comes to deployment is downright foolhardy—enough so that the

software that we have selected to manage your deployment, namely, Capistra-

no, all but requires it.

Plenty of software configuration management (SCM) systems are available.

Subversion, for example, is a particularly good one. But if you haven’t yet

chosen one, go with Git, which is easy to set up and doesn’t require a separate

server process. The examples that follow will be based on Git, but if you

Chapter 16. Task K: Deployment and Production • 242

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

picked a different SCM system, don’t worry. Capistrano doesn’t much care

which one you pick, just so long as you pick one.

The first step is to create an empty repository on a machine accessible by

your deployment servers. In fact, if we have only one deployment server, there

is no reason that it can’t do double duty as your Git server. So, log onto that

server, and issue the following commands:

$ mkdir -p ~/git/depot.git
$ cd ~/git/depot.git
$ git --bare init

The next thing to be aware of is that even if the SCM server and our web

server are the same physical machine, Capistrano will be accessing our SCM

software as if it were remote. We can make this smoother by generating a

public key (if you don’t already have one) and then using it to give ourselves

permission to access our own server.

$ test -e ~/.ssh/id_dsa.pub || ssh-keygen -t dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Test this by ssh’ing into your own server. Among other things, this will ensure

that your known_hosts file is updated.

While we are here, we have one last thing to attend to. Capistrano will insert

a directory named current between our application directory name and the

Rails subdirectories, including the public subdirectory. This means you will

have to adjust your DocumentRoot and Directory lines in your httpd.conf if you control

your own server or in a control panel for your shared host.

DocumentRoot /home/rubys/deploy/depot/current/public/
<Directory /home/rubys/deploy/depot/current/public>

Restart your Apache server. You will see a warning that the depot/current/public
directory doesn’t exist. That’s fine, because we will be creating it shortly.

Finally, ensure that the changes you made to your Gemfile and config/database.yml
are copied from the Depot application on your second machine to the Depot

application on your first machine.

That’s it for the server! From here on out, we will be doing everything from

your development machine.

Getting an Application Under Control

The first thing we are going to do is update our Gemfile to indicate that we are

using Capistrano.

report erratum • discuss

Iteration K2: Deploying Remotely with Capistrano • 243

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_t/Gemfile

gem 'rvm-capistrano', group: :development
Use Capistrano for deployment

➤

All users will need to uncomment out that one line. RVM users will need to

add the characters rvm- where indicated.

We can now install Capistrano using bundle install. We used this command in

Iteration G3 on page 192 to install the bcrypt-ruby gem.

If you haven’t already put your application under configuration control, do

so now.

$ cd your_application_directory
$ git init
$ git add .
$ git commit -m "initial commit"

This next step is optional but might be a good idea if either you don’t have

full control of the deployment server or you have many deployment servers

to manage. We are going to use a second feature of Bundler, namely, the

package command. What it does is put the version of the software that you are

dependent on into the repository.

$ bundle package
$ git add Gemfile.lock vendor/cache
$ git commit -m "bundle gems"

We will explain more of the features of Bundler in Section 24.3, Managing

Dependencies with Bundler, on page 397.

From here, it is a simple matter to push all your code out to the server.

$ git remote add origin ssh://user@host/~/git/depot.git
$ git push origin master

Be sure to substitute user and host with the name of your user and host on

the remote machine.

With these few steps, you have gained control over what is being deployed.

You control what is being committed to your local repository. You control

when this is being pushed out to your server. Next up, you will control putting

this code into production.

Deploying the Application Remotely

We previously deployed the application locally on a server. Now we are going

to do a second deployment, this time remotely.

Chapter 16. Task K: Deployment and Production • 244

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_t/Gemfile
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The prep work is now done. Our code is now on the SCM server where it can

be accessed by the app server. Again, it matters not whether these two servers

are the same; what is important here are the roles that are being performed.

To add the necessary files to the project for Capistrano to do its magic, execute

the following command:

$ capify .
[add] writing './Capfile'
[add] writing './config/deploy.rb'
[done] capified!

From the output, we can see that Capistrano set up two files. The first, Capfile,
is Capistrano’s analog to a Rakefile. You need to uncomment out one line. After

you do this, you won’t need to touch this file further.

Download rails40/depot_t/Capfile

load 'deploy'
Uncomment if you are using Rails' asset pipeline

➤ load 'deploy/assets'
load 'config/deploy' # remove this line to skip loading any of the default tasks

The second file, namely, config/deploy.rb, contains the recipes needed to deploy

our application. Capistrano will provide us with a minimal version of this file,

but the following is a somewhat more complete version that you can download

and use as a starting point.

Download rails40/depot_t/config/deploy.rb

require 'bundler/capistrano'

be sure to change these
set :user, 'rubys'
set :domain, 'depot.pragprog.com'
set :application, 'depot'

adjust if you are using RVM, remove if you are not
set :rvm_type, :user
set :rvm_ruby_string, 'ruby-2.0.0-p247'
require 'rvm/capistrano'

file paths
set :repository, "#{user}@#{domain}:git/#{application}.git"
set :deploy_to, "/home/#{user}/deploy/#{application}"

distribute your applications across servers (the instructions below put them
all on the same server, defined above as 'domain', adjust as necessary)
role :app, domain
role :web, domain
role :db, domain, :primary => true

report erratum • discuss

Iteration K2: Deploying Remotely with Capistrano • 245

http://media.pragprog.com/titles/rails4/code/rails40/depot_t/Capfile
http://media.pragprog.com/titles/rails4/code/rails40/depot_t/config/deploy.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

you might need to set this if you aren't seeing password prompts
default_run_options[:pty] = true

As Capistrano executes in a non-interactive mode and therefore doesn't cause
any of your shell profile scripts to be run, the following might be needed
if (for example) you have locally installed gems or applications. Note:
this needs to contain the full values for the variables set, not simply
the deltas.
default_environment['PATH']='<your paths>:/usr/local/bin:/usr/bin:/bin'
default_environment['GEM_PATH']='<your paths>:/usr/lib/ruby/gems/1.8'

miscellaneous options
set :deploy_via, :remote_cache
set :scm, 'git'
set :branch, 'master'
set :scm_verbose, true
set :use_sudo, false
set :normalize_asset_timestamps, false
set :rails_env, :production

namespace :deploy do
desc "cause Passenger to initiate a restart"
task :restart do
run "touch #{current_path}/tmp/restart.txt"

end

desc "reload the database with seed data"
task :seed do
deploy.migrations
run "cd #{current_path}; rake db:seed RAILS_ENV=#{rails_env}"

end
end

We will need to edit several properties to match our application. We certainly

will need to change the :user, :domain, and :application. The :repository matches

where we put our Git file earlier. The :deploy_to may need to be tweaked to

match where we told Apache it could find the public directory for the application.

We’ve also included a few lines to show how to instruct Capistrano to make

use of RVM.5

If RVM was installed as root on your deployment machine, change the set
:rvm_type line to specify :system instead of :user. Adjust the :rvm_ruby_string to match

the version of the Ruby interpreter that you have installed and want to use.

If you are not using RVM at all, remove these lines.

5. https://rvm.io/integration/capistrano/

Chapter 16. Task K: Deployment and Production • 246

report erratum • discuss

https://rvm.io/integration/capistrano/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The default_run_options and default_environment are to be used only if you have spe-

cific problems. The “miscellaneous options” provided are based on Git, and

they disable some of the asset processing logic that is meant for prior versions

of Rails.

Two tasks are defined. One tells Capistrano how to restart Passenger. The

other reloads that database with seed data. Feel free to adjust these tasks as

you see fit.

The first time we deploy our application, we have to perform an additional

step to set up the basic directory structure to deploy on the server.

$ cap deploy:setup

When we execute this command, Capistrano will prompt us for our server’s

password. If it fails to do so and fails to log in, we might need to uncomment

out the default_run_options line in our deploy.rb file and try again. Once it can

connect successfully, it will make the necessary directories. After this com-

mand is done, we can check out the configuration for any other problems.

$ cap deploy:check

As before, we might need to uncomment out and adjust the default_environment
lines in our deploy.rb. We can repeat this command until it completes success-

fully, addressing any issues it may identify.

One last task: we load the “seed” data containing our products.

$ cap deploy:seed

At this point, we should be off to the races.

Rinse, Wash, Repeat

Once we’ve gotten this far, our server is ready to have new versions of our

application deployed to it any time we want. All we need to do is check our

changes into the repository and then redeploy. At this point, we have two

Capistrano files that haven’t been checked in. Although they aren’t needed

by the app server, we can still use them to test the deployment process.

$ git add .
$ git commit -m "add cap files"
$ git push
$ cap deploy

The first three commands will update the SCM server. Once you become more

familiar with Git, you may want to have finer control over when and which

files are added, you may want to incrementally commit multiple changes

report erratum • discuss

Iteration K2: Deploying Remotely with Capistrano • 247

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

before deployment, and so on. It is only the final command that will update

our app, web, and database servers.

If for some reason we need to step back in time and go back to a previous

version of our application, we can use this:

$ cap deploy:rollback

We now have a fully deployed application and can deploy as needed to update

the code running on the server. Each time we deploy our application, a new

version of it is checked out onto the server, some symlinks are updated, and

the Passenger processes are restarted.

16.3 Iteration K3: Checking Up on a Deployed Application

Once we have our application deployed, we’ll no doubt need to check up on

how it’s running from time to time. We can do this in two primary ways. The

first is to monitor the various log files output by both our front-end web

server and the Apache server running our application. The second is to connect

to our application using rails console.

Looking at Log Files

To get a quick look at what’s happening in our application, we can use the

tail command to examine log files as requests are made against our application.

The most interesting data will usually be in the log files from the application

itself. Even if Apache is running multiple applications, the logged output for

each application is placed in the production.log file for that application.

Assuming that our application is deployed into the location we showed earlier,

here’s how we look at our running log file:

On your server
$ cd /home/rubys/deploy/depot/current
$ tail -f log/production.log

Sometimes, we need lower-level information—what’s going on with the data

in our application? When this is the case, it’s time to break out the most

useful live server debugging tool.

Using Console to Look at a Live Application

We’ve already created a large amount of functionality in our application’s

model classes. Of course, we created these to be used by our application’s

controllers. But we can also interact with them directly. The gateway to this

world is the rails console script. We can launch it on our server with this:

Chapter 16. Task K: Deployment and Production • 248

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

On your server
$ cd /home/rubys/deploy/depot/current/
$ rails console production
Loading production environment.
irb(main):001:0> p = Product.find_by(title: "CoffeeScript")
=> #<Product:0x24797b4 @attributes={. . .}
irb(main):002:0> p.price = 29.00
=> 29.0
irb(main):003:0> p.save
=> true

Once we have a console session open, we can poke and prod all the various

methods on our models. We can create, inspect, and delete records. In a way,

it’s like having a root console to your application.

Once you put an application into production, we need to take care of a few

chores to keep your application running smoothly. These chores aren’t auto-

matically taken care of for us, but, luckily, we can automate them.

Dealing with Log Files

As an application runs, it will constantly add data to its log file. Eventually,

the log files can grow extremely large. To overcome this, most logging solutions

can roll over log files to create a progressive set of log files of increasing age.

This will break up our log files into manageable chunks that can be archived

or even deleted after a certain amount of time has passed.

The Logger class supports rollover. We need to specify how many (or how often)

log files we want and the size of each, using a line like one of the following in

the file config/environments/production.rb:

config.logger = Logger.new(config.paths['log'].first, 'daily')

Or perhaps this:

require 'active_support/core_ext/numeric/bytes'
config.logger = Logger.new(config.paths['log'].first, 10, 10.megabytes)

Note that in this case an explicit require of active_support is needed because this

statement is processed early in the initialization of your application—before the

Active Support libraries have been included. In fact, one of the configuration

options that Rails provides is to not include Active Support libraries at all.

config.active_support.bare = true

Alternately, we can direct our logs to the system logs for our machine.

config.logger = SyslogLogger.new

report erratum • discuss

Iteration K3: Checking Up on a Deployed Application • 249

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Find more options at http://rubyonrails.org/deploy.

Moving On to Launch and Beyond

Once we’ve set up our initial deployment, we’re ready to finish the development

of our application and launch it into production. We’ll likely set up additional

deployment servers, and the lessons we learn from our first deployment will

tell us a lot about how we should structure later deployments. For example,

we’ll likely find that Rails is one of the slower components of our system—more

of the request time will be spent in Rails than in waiting on the database or

filesystem. This indicates that the way to scale up is to add machines to split

up the Rails load.

However, we might find that the bulk of the time a request takes is in the

database. If this is the case, we’ll want to look at how to optimize our database

activity. Maybe we’ll want to change how we access data. Or maybe we’ll need

to custom craft some SQL to replace the default Active Record behaviors.

One thing is for sure: every application will require a different set of tweaks

over its lifetime. The most important activity to do is to listen to it over time

and discover what needs to be done. Our job isn’t done when we launch our

application. It’s actually just starting.

While our job is just starting when we first deploy our application to produc-

tion, we have completed our tour of the Depot application. After we recap

what we did in this chapter, let’s look back at what we have accomplished in

remarkably few lines of code.

What We Just Did

We covered a lot of ground in this chapter. We took our code that ran locally

on our development machine for a single user and placed it on a different

machine, running a different web server, accessing a different database, and

possibly even running a different operating system.

To accomplish this, we used a number of products.

• We installed and configured Phusion Passenger and Apache httpd, a

production-quality web server.

• We installed and configured MySQL, a production-quality database server.

• We got our application’s dependencies under control using Bundler and

Git.

• We installed and configured Capistrano, which enables us to confidently

and repeatably deploy our application.

Chapter 16. Task K: Deployment and Production • 250

report erratum • discuss

http://rubyonrails.org/deploy
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Playtime

Here’s some stuff to try on your own:

• If we have multiple developers collaborating on development, we might

feel uncomfortable putting the details of the configuration of our database

(potentially including passwords!) into our configuration management

system. To address this, copy the completed database.yml into the shared
directory, and write a task instructing Capistrano to copy this file into

your current directory each time you deploy.

• While this chapter has focused on stable, tried and true, and perhaps

somewhat conservative deployment choices, the fact is that there is a lot

of innovation going on in this area. At the moment, Capistrano and Git

appear to be virtually uncontested choices. Everything else is up for grabs.

Here are some things to play with:

• Try replacing rvm with rbenv6 and ruby-build.7

• Try replacing mysql with PostgreSQL.8

• Try replacing both Phusion Passenger and Apache httpd with Unicorn9

and nginx.10

Being agile means more than making the right choices. It requires both

adaptive planning and rapid and flexible response to change.

(You’ll find hints at http://pragprog.com/wikis/wiki/RailsPlayTime.)

6. https://github.com/sstephenson/rbenv/#readme

7. https://github.com/sstephenson/ruby-build#readme

8. http://www.postgresql.org/

9. http://unicorn.bogomips.org/

10. http://wiki.nginx.org/Main

report erratum • discuss

Iteration K3: Checking Up on a Deployed Application • 251

http://pragprog.com/wikis/wiki/RailsPlayTime
https://github.com/sstephenson/rbenv/#readme
https://github.com/sstephenson/ruby-build#readme
http://www.postgresql.org/
http://unicorn.bogomips.org/
http://wiki.nginx.org/Main
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 17

Depot Retrospective

Congratulations! By making it this far, you have obtained a solid understand-

ing of the basics of every Rails application. There is much more to learn,

which we will pick back up again in Part III. For now, relax, and let’s recap

what we’ve seen in Part II.

17.1 Rails Concepts

In Chapter 3, The Architecture of Rails Applications, on page 29 we introduced

models, views, and controllers. Now let’s see how we applied each of these

concepts in the Depot application. Then let’s explore how we used configura-

tion, testing, and deployment.

Model

Models are where all of the persistent data retained by your application is

managed. In developing the Depot application, we created five models: Cart,
LineItem, Order, Product, and User.

By default, all models have id, created_at, and updated_at attributes. To our

models, we added attributes of type string (examples: title, name), integer (quantity),
text (description, address), and decimal (price), as well as foreign keys (product_id, cart_id).
We even created a virtual attribute that is never stored in the database,

namely, a password.

We created has_many and belongs_to relationships that we can use to navigate

between our model objects, such as from Carts to LineItems to Products.

We employed migrations to update the databases, not only to introduce new

schema information but also to modify existing data. We demonstrated that

they can be applied in a fully reversible manner.

In this chapter, we’ll see
• reviewing Rails concepts: model, view, controller, configura-

tion, testing, and deployment; and
• documenting what we have done.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The models we created were not merely passive receptacles for our data. For

starters, they actively validate the data, preventing errors from propagating.

We created validations for presence, inclusion, numericality, range, unique-

ness, format, and confirmation (and length too, if you completed the exercises).

We created custom validations for ensuring that deleted products are not

referenced by any line item. We used an Active Record hook to ensure that

an administrator always remains and used a transaction to roll back incom-

plete updates on failure.

We also created logic to add a product to a cart, add all line items from a cart

to an order, encrypt and authenticate a password, and compute various totals.

Finally, we created a default sort order for products for display purposes.

View

Views control the way our application presents itself to the external world.

By default, Rails scaffolding provides edit, index, new, and show, as well as a

partial named form that is shared between edit and new. We modified a number

of these, as well as created new partials for carts and line items.

In addition to the model-backed resource views, we created entirely new views

for admin, sessions, and the store itself.

We updated an overall layout to establish a common look and feel for the

entire site. We linked in a stylesheet. We made use of templates to generate

JavaScript that takes advantage of Web 2.0 technologies to make our website

more interactive.

We made use of a helper to determine when to hide the cart from the main

view.

We localized the customer views for display both in English and in Spanish.

While we focused primarily on HTML views, we also created plain-text views

and Atom views. Not all of the views were designed for browsers: we created

views for email too, and those views were able to share partials for displaying

line items.

Controller

By the time we were done, we created eight controllers: one each for the five

models and the three additional ones in order to support the views for admin,
sessions, and the store itself.

These controllers interacted with the models in a number of ways, from finding

and fetching data and putting it into instance variables to updating models and

Chapter 17. Depot Retrospective • 254

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

saving data entered via forms. When done, we either redirected to another action

or rendered a view. We rendered views in HTML, JSON, and Atom.

We limited the set of permitted parameters on the line item controller.

We created callback actions that were run before selected actions to find the

cart, set the language, and authorize requests. We placed logic common to a

number of controllers into a concern, namely, the CurrentCart module.

We managed sessions, keeping track of the logged-in user (for administrators)

and carts (for customers). We kept track of the current locale used for inter-

nationalization of our output. We captured errors, logged them, and informed

the user via notices.

We employed fragment caching on the storefront and page-level caching on

the Atom feeds.

We also sent confirmation emails on receipt of an order.

Configuration

While conventions keep to a minimum the amount of configuration required

for a Rails application, we did do a bit of customization.

We modified our database configuration in order to use MySQL in production.

We defined routes for our resources, our admin and session controllers, and

the root of our website, namely, our storefront. We defined a who_bought member

of our products resource in order to access Atom feeds that contain this

information.

We created an initializer for i18n purposes and updated the locales information

for both English (en) and Spanish (es).

We created seed data for our database.

We created a Capistrano script for deployment, including the definition of a

few custom tasks.

Testing

We maintained and enhanced tests throughout.

We employed unit tests to validation methods. We also tested increasing the

quantity on a given line item.

Rails provided basic tests for all our scaffolded controllers, which we main-

tained as we made changes. We added tests along the way for things such as

Ajax and ensuring that a cart has items before we create an order.

report erratum • discuss

Rails Concepts • 255

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

We used fixtures to provide test data to fuel our tests.

Finally, we created an integration test to test an end-to-end scenario involving

a user adding a product to a cart, entering an order, and receiving a confir-

mation email.

Deployment

We deployed our application to a production-quality web server (Apache httpd)

using a production-quality database server (MySQL). Along the way, we

installed and configured Phusion Passenger to run our application, Bundler

to track dependencies, and Git to configuration manage our code. Capistrano

was employed to orchestrate updating the deployed web server in production

from our development machine.

We made use of test and production environments to prevent our experimentation

during development from affecting production. Our development environment

made use of the lightweight SQLite database server and a lightweight web

server, most likely WEBrick. Our tests were run in a controlled environment

with test data provided by fixtures.

17.2 Documenting What We Have Done

To complete our retrospective, let’s take a look at the code from two new

perspectives.

Rails makes it easy to run Ruby’s RDoc1 utility on all the source files in an

application to create good-looking programmer documentation. But before

we generate that documentation, we should probably create a nice introduc-

tory page so that future generations of developers will know what our appli-

cation does.

To do this, edit the file README.rdoc, and enter anything you think might be

useful. This file will be processed using RDoc, so you have a fair amount of

formatting flexibility.

You can generate the documentation in HTML format using the rake command.

depot> rake doc:app

This generates documentation into the directory doc/app. (See Figure 54, Our

application's internal documentation, on page 257.)

1. http://rdoc.sourceforge.net/

Chapter 17. Depot Retrospective • 256

report erratum • discuss

http://rdoc.sourceforge.net/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 54—Our application’s internal documentation

Finally, we might be interested to see how much code we’ve written. There’s

a Rake task for that, too.

depot> rake stats
+----------------------+-------+-------+---------+---------+-----+-------+
| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |
+----------------------+-------+-------+---------+---------+-----+-------+
Controllers	622	382	9	56	6	4
Helpers	26	24	0	1	0	22
Models	112	72	5	7	1	8
Mailers	29	11	1	2	2	3
Javascripts	50	5	0	0	0	0
Libraries	0	0	0	0	0	0
Controller tests	404	283	8	0	0	0
Helper tests	32	24	8	0	0	0
Model tests	130	90	5	2	0	43
Mailer tests	25	18	1	0	0	0
Integration tests	198	138	2	9	4	13
+----------------------+-------+-------+---------+---------+-----+-------+						
Total	1628	1047	39	77	1	11
+----------------------+-------+-------+---------+---------+-----+-------+

Code LOC: 494 Test LOC: 553 Code to Test Ratio: 1:1.1

If you think about it, you have accomplished a lot and with not all that much

code. Furthermore, much of that code was generated for you. This is the

magic of Rails.

report erratum • discuss

Documenting What We Have Done • 257

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Part III

Rails in Depth

http:///

CHAPTER 18

Finding Your Way Around Rails

Having survived our Depot project, you are now prepared to dig deeper into

Rails. For the rest of the book, we’ll go through Rails topic by topic (which

pretty much means module by module). You have seen most of these modules

in action before. We will cover not only what each module does but also how

to extend or even replace the module and why you might want to do so.

The chapters in Part III cover all the major subsystems of Rails: Active Record,

Active Resource, Action Pack (including both Action Controller and Action

View), and Active Support. This is followed by an in-depth look at migrations.

Then we are going to delve into the interior of Rails and show how the compo-

nents are put together, how they start up, and how they can be replaced.

Having shown how the parts of Rails can be put together, we’ll complete this

book with a survey of a number of popular replacement parts, many of which

can be used outside of Rails.

We need to set the scene. This chapter covers all the high-level stuff you need

to know to understand the rest: directory structures, configuration, and

environments.

18.1 Where Things Go

Rails assumes a certain runtime directory layout and provides application

and scaffold generators, which will create this layout for you. For example, if

we generate my_app using the command rails newmy_app, the top-level directory

for our new application appears as shown in Figure 55, All Rails applications

have this top-level directory structure., on page 262. Let’s start with the text

files in the top of the application directory.

In this chapter, we’ll see
• the directory structure of a Rails application,
• naming conventions,
• generating documentation for Rails itself,
• adding Rake tasks, and
• configuration.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 55—All Rails applications have this top-level directory structure.

• config.ru configures the Rack Webserver Interface, either to create Rails

Metal applications or to use Rack Middlewares in your Rails application.

These are discussed further in the Rails Guides.1

• Gemfile specifies the dependencies of your Rails application. You have

already seen this in use when the bcrypt-ruby gem was added to the Depot

application. Application dependencies also include the database, web

server, and even scripts used for deployment.

1. http://guides.rubyonrails.org/rails_on_rack.html

Chapter 18. Finding Your Way Around Rails • 262

report erratum • discuss

http://guides.rubyonrails.org/rails_on_rack.html
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Joe asks:

So, Where’s Rails?

One of the interesting aspects of Rails is how componentized it is. From a developer’s

perspective, you spend all your time dealing with high-level modules such as Active

Record and Action View. There is a component called Rails, but it sits below the

other components, silently orchestrating what they do and making them all work

together seamlessly. Without the Rails component, not much would happen. But at

the same time, only a small part of this underlying infrastructure is relevant to

developers in their day-to-day work. We’ll cover the parts that are relevant in the rest

of this chapter.

Technically, this file is not used by Rails but rather by your application.

You can find calls to the Bundler2 in the config/application.rb and config/boot.rb
files.

• Gemfile.lock records the specific versions for each of your Rails application’s

dependencies. This file is maintained by Bundler and should be checked

into your repository.

• Rakefile defines tasks to run tests, create documentation, extract the current

structure of your schema, and more. Type rake -T at a prompt for the full

list. Type rake -D task to see a more complete description of a specific task.

• README contains general information about the Rails framework.

Now let’s look at what goes into each directory (although not necessarily in

order).

A Place for Our Application

Most of our work takes place in the app directory. The main code for the

application lives below the app directory, as shown in Figure 56, The main

code for our application lives in the app directory., on page 264. We’ll talk more

about the structure of the app directory as we look at the various Rails modules

such as Active Record, Action Controller, and Action View in more detail later

in the book.

A Place for Our Tests

As we have seen in Section 7.2, Iteration B2: Unit Testing of Models, on page

82, Section 8.4, Iteration C4: Functional Testing of Controllers, on page 101,

and Section 13.2, Iteration H2: Integration Testing of Applications, on page 184,

2. https://github.com/carlhuda/bundler

report erratum • discuss

Where Things Go • 263

https://github.com/carlhuda/bundler
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 56—The main code for our application lives in the app directory.

Rails has ample provisions for testing your application, and the test directory

is the home for all testing-related activities, including fixtures that define data

used by our tests.

Chapter 18. Finding Your Way Around Rails • 264

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

A Place for Documentation

While the doc directory is no longer part of the required directories, as we saw

in Section 17.2, Documenting What We Have Done, on page 256, Rails provides

a doc:app rake task to generate documentation, which it places in the doc/
directory. In addition to this command, Rails provides other tasks that gener-

ate documentation: doc:rails will provide documentation for the version of Rails

you are running, and doc:guides will provide usage guides. Before you build

the guides, you will need to add the gem redcarpet to your Gemfile and run bundle
install.

Rails also provides other document-related tasks. To see them all, enter the

command rake -T doc.

A Place for Supporting Libraries

The lib directory holds application code that doesn’t fit neatly into a model,

view, or controller. For example, you may have written a library that creates

PDF receipts that your store’s customers can download.3 These receipts are

sent directly from the controller to the browser (using the send_data() method).

The code that creates these PDF receipts will sit naturally in the lib directory.

The lib directory is also a good place to put code that’s shared among models,

views, or controllers. Maybe you need a library that validates a credit card

number’s checksum, that performs some financial calculation, or that works

out the date of Easter. Anything that isn’t directly a model, view, or controller

should be slotted into lib.

Don’t feel that you have to stick a bunch of files directly into the lib directory.

Feel free to create subdirectories in which you group related functionality

under lib. For example, on the Pragmatic Programmer site, the code that

generates receipts, customs documentation for shipping, and other PDF-for-

matted documentation is in the directory lib/pdf_stuff.

In previous versions of Rails, the files in the lib directory were automatically

require

↪ on page 51

included in the load path used to resolve require statements. This is now an

option that you need to explicitly enable. To do so, place the following in

config/application.rb:

config.autoload_paths += %W(#{Rails.root}/lib)

Once you have files in the lib directory and the lib added to your autoload

paths, you can use them in the rest of your application. If the files contain

3. ...which we did in the Pragmatic Programmer store.

report erratum • discuss

Where Things Go • 265

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

classes or modules and the files are named using the lowercase form of the

class or module name, then Rails will load the file automatically. For example,

we might have a PDF receipt writer in the file receipt.rb in the directory lib/pdf_stuff.
As long as our class is named PdfStuff::Receipt, Rails will be able to find and load

it automatically.

For those times where a library cannot meet these automatic loading condi-

require

↪ on page 51

tions, you can use Ruby’s require mechanism. If the file is in the lib directory,

you can require it directly by name. For example, if our Easter calculation

library is in the file lib/easter.rb, we can include it in any model, view, or con-

troller using this:

require "easter"

If the library is in a subdirectory of lib, remember to include that directory’s

name in the require statement. For example, to include a shipping calculation

for airmail, we might add the following line:

require "shipping/airmail"

A Place for Our Rake Tasks

You’ll also find an empty tasks directory under lib. This is where you can write

your own Rake tasks, allowing you to add automation to your project. This

isn’t a book about Rake, so we won’t go into it deeply here, but here’s a simple

example.

Rails provides a Rake task to tell you the latest migration that has been per-

formed. But it may be helpful to see a list of all the migrations that have been

performed. We’ll write a Rake task that prints the versions listed in the

schema_migration table. These tasks are Ruby code, but they need to be placed

into files with the extension .rake. We’ll call ours db_schema_migrations.rake.

Download rails40/depot_t/lib/tasks/db_schema_migrations.rake

namespace :db do
desc "Prints the migrated versions"
task :schema_migrations => :environment do
puts ActiveRecord::Base.connection.select_values(
'select version from schema_migrations order by version')

end
end

We can run this from the command line just like any other Rake task.

depot> rake db:schema_migrations
(in /Users/rubys/Work/...)
20121130000001
20121130000002
20121130000003

Chapter 18. Finding Your Way Around Rails • 266

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_t/lib/tasks/db_schema_migrations.rake
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

20121130000004
20121130000005
20121130000006
20121130000007

Consult the Rake documentation at http://rubyrake.org/ for more information

on writing Rake tasks.

A Place for Our Logs

As Rails runs, it produces a bunch of useful logging information. This is stored

(by default) in the log directory. Here you’ll find three main log files, called

development.log, test.log, and production.log. The logs contain more than just simple

trace lines; they also contain timing statistics, cache information, and

expansions of the database statements executed.

Which file is used depends on the environment in which your application is

running (and we’ll have more to say about environments when we talk about

the config directory in A Place for Configuration, on page 268).

A Place for Static Web Pages

The public directory is the external face of your application. The web server

takes this directory as the base of the application. In here you place static (in

other words, unchanging) files, generally related to the running of the server.

A Place for Script Wrappers

If you find it helpful to write scripts that are launched from the command

line and perform various maintenance tasks for your application, the bin
directory is the place to put wrappers that call those scripts. You can use

bundle binstubs to populate this directory.

This directory also holds the Rails script. This is the script that is run when

you run the rails command from the command line. The first argument you

pass to that script determines the function Rails will perform.

console
Allows you to interact with your Rails application methods.

dbconsole
Allows you to directly interact with your database via the command line.

destroy
Removes autogenerated files created by generate.

report erratum • discuss

Where Things Go • 267

http://rubyrake.org/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

generate
A code generator. Out of the box, it will create controllers, mailers, models,

scaffolds, and web services. Run generate with no arguments for usage

information on a particular generator; here’s an example:

rails generate migration

new
Generates Rails application code.

runner
Executes a method in your application outside the context of the Web.

This is the noninteractive equivalent of rails console. You could use this to

invoke cache expiry methods from a cron job or handle incoming email.

server
Runs your Rails application in a self-contained web server, using Mongrel

(if it is available on your box) or WEBrick. We’ve been using this in our

Depot application during development.

A Place for Temporary Files

It probably isn’t a surprise that Rails keeps its temporary files tucked in the

tmp directory. You’ll find subdirectories for cache contents, sessions, and

sockets in here. Generally these files are cleaned up automatically by Rails,

but occasionally if things go wrong, you might need to look in here and delete

old files.

A Place for Third-Party Code

The vendor directory is where third-party code lives. You can install Rails and

all of its dependencies into the vendor directory, as we saw in Getting an

Application Under Control, on page 243.

If you want to go back to using the system-wide version of gems, you can

delete the vendor/cache directory.

A Place for Configuration

The config directory contains files that configure Rails. In the process of

developing Depot, we configured a few routes, configured the database, created

an initializer, modified some locales, and defined deployment instructions.

The rest of the configuration was done via Rails conventions.

Before running your application, Rails loads and executes config/environment.rb
and config/application.rb. The standard environment set up automatically by these

Chapter 18. Finding Your Way Around Rails • 268

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

files includes the following directories (relative to your application’s base

directory) in your application’s load path:

• The app/controllers directory and its subdirectories

• The app/models directory

• The vendor directory and the lib contained in each plugin subdirectory

• The directories app, app/helpers, app/mailers, app/services, and lib

Each of these directories is added to the load path only if it exists.

In addition, Rails will load a per-environment configuration file. This file lives

in the environments directory and is where you place configuration options that

vary depending on the environment.

This is done because Rails recognizes that your needs, as a developer, are

very different when writing code, testing code, and running that code in pro-

duction. When writing code, you want lots of logging, convenient reloading

of changed source files, in-your-face notification of errors, and so on. In

testing, you want a system that exists in isolation so you can have repeatable

results. In production, your system should be tuned for performance, and

users should be kept away from errors.

The switch that dictates the runtime environment is external to your applica-

tion. This means that no application code needs to be changed as you move

from development through testing to production. In Chapter 16, Task K:

Deployment and Production, on page 233, we specified the environment on the

rake command using a RAILS_ENV parameter and to Phusion Passenger using a

RailsEnv line in our Apache configuration file. When starting WEBrick with the

rails server command, we use the -e option.

depot> rails server -e development
depot> rails server -e test
depot> rails server -e production

If you have special requirements, such as if you favor having a staging envi-

ronment, you can create your own environments. You’ll need to add a new

section to the database configuration file and a new file to the config/environments
directory.

What you put into these configuration files is entirely up to you. You can find

a list of configuration parameters you can set in the Configuring Rails Appli-

cations guide you generated with the rake doc:guides command in A Place for

Documentation, on page 265. This information is also available online.4

4. http://guides.rubyonrails.org/configuring.html

report erratum • discuss

Where Things Go • 269

http://guides.rubyonrails.org/configuring.html
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

18.2 Naming Conventions

Newcomers to Rails are sometimes puzzled by the way it automatically handles

the naming of things. They’re surprised that they call a model class Person and

Rails somehow knows to go looking for a database table called people. In this

section, you’ll learn how this implicit naming works.

The rules here are the default conventions used by Rails. You can override

all of these conventions using configuration options.

Mixed Case, Underscores, and Plurals

We often name variables and classes using short phrases. In Ruby, the con-

vention is to have variable names where the letters are all lowercase and

words are separated by underscores. Classes and modules are named differ-

ently: there are no underscores, and each word in the phrase (including the

first) is capitalized. (We’ll call this mixed case, for fairly obvious reasons.)

These conventions lead to variable names such as order_status and class names

such as LineItem.

Rails takes this convention and extends it in two ways. First, it assumes that

database table names, such as variable names, have lowercase letters and

underscores between the words. Rails also assumes that table names are

always plural. This leads to table names such as orders and third_parties.

On another axis, Rails assumes that files are named using lowercase with

underscores.

Rails uses this knowledge of naming conventions to convert names automat-

ically. For example, your application might contain a model class that handles

line items. You’d define the class using the Ruby naming convention, calling

it LineItem. From this name, Rails would automatically deduce the following:

• That the corresponding database table will be called line_items. That’s the

class name, converted to lowercase, with underscores between the words

and pluralized.

• Rails would also know to look for the class definition in a file called

line_item.rb (in the app/models directory).

Rails controllers have additional naming conventions. If our application has

a store controller, then the following happens:

• Rails assumes the class is called StoreController and that it’s in a file named

store_controller.rb in the app/controllers directory.

Chapter 18. Finding Your Way Around Rails • 270

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• Rails also looks for a helper module named StoreHelper in the file store_helper.rb
located in the app/helpers directory.

• It will look for view templates for this controller in the app/views/store
directory.

• It will by default take the output of these views and wrap them in the

layout template contained in the file store.html.erb or store.xml.erb in the

directory app/views/layouts.

All these conventions are shown in the following tables.

Model Naming

line_itemsTable

app/models/line_item.rbFile

LineItemClass

Controller Naming

http://../store/listURL

app/controllers/store_controller.rbFile

StoreControllerClass

listMethod

app/views/layouts/store.html.erbLayout

View Naming

http://../store/listURL

app/views/store/list.html.erb (or .builder)File

module StoreHelperHelper

app/helpers/store_helper.rbFile

There’s one extra twist. In normal Ruby code you have to use the require keyword

to include Ruby source files before you reference the classes and modules in those

files. Because Rails knows the relationship between filenames and class names,

require is normally not necessary in a Rails application. The first time you reference

a class or module that isn’t known, Rails uses the naming conventions to convert

the class name to a filename and tries to load that file behind the scenes. The net

effect is that you can typically reference (say) the name of a model class, and that

model will be automatically loaded into your application.

Grouping Controllers into Modules

So far, all our controllers have lived in the app/controllers directory. It is some-

times convenient to add more structure to this arrangement. For example,

our store might end up with a number of controllers performing related but

report erratum • discuss

Naming Conventions • 271

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

disjoint administration functions. Rather than pollute the top-level namespace,

we might choose to group them into a single admin namespace.

Rails does this using a simple naming convention. If an incoming request has

a controller named (say) admin/book, Rails will look for the controller called

book_controller in the directory app/controllers/admin. That is, the final part of the

controller name will always resolve to a file called name_controller.rb, and any

leading path information will be used to navigate through subdirectories,

starting in the app/controllers directory.

Imagine that our program has two such groups of controllers (say, admin/xxx

and content/xxx) and that both groups define a book controller. There’d be a

file called book_controller.rb in both the admin and content subdirectories of

app/controllers. Both of these controller files would define a class named BookCon-
troller. If Rails took no further steps, these two classes would clash.

To deal with this, Rails assumes that controllers in subdirectories of the

directory app/controllers are in Ruby modules named after the subdirectory.

Thus, the book controller in the admin subdirectory would be declared like

this:

class Admin::BookController < ActionController::Base
...

end

The book controller in the content subdirectory would be in the Content module:

class Content::BookController < ActionController::Base
...

end

The two controllers are therefore kept separate inside your application.

The templates for these controllers appear in subdirectories of app/views. Thus,

the view template corresponding to this request:

http://my.app/admin/book/edit/1234

will be in this file:

app/views/admin/book/edit.html.erb

You’ll be pleased to know that the controller generator understands the con-

cept of controllers in modules and lets you create them with commands such

as this:

myapp> rails generate controller Admin::Book action1 action2 ...

Chapter 18. Finding Your Way Around Rails • 272

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

David says:

Why Plurals for Tables?

Because it sounds good in conversation. Really. “Select a Product from products.”

And “Order has_many :line_items.”

The intent is to bridge programming and conversation by creating a domain language

that can be shared by both. Having such a language means cutting down on the

mental translation that otherwise confuses the discussion of a product description

with the client when it’s really implemented as merchandise body. These communica-

tions gaps are bound to lead to errors.

Rails sweetens the deal by giving you most of the configuration for free if you follow

the standard conventions. Developers are thus rewarded for doing the right thing, so

it’s less about giving up “your ways” and more about getting productivity for free.

What We Just Did

Everything in Rails has a place, and we systematically explored each of those

nooks and crannies. In each place, files and the data contained in them follow

naming conventions, and we covered that too. Along the way, we filled in a

few missing pieces.

• We generated both API and user guide documentation for Rails.

• We added a Rake task to print the migrated versions.

• We showed how to configure each of the Rails execution environments.

Next up are the major subsystems of Rails, starting with the largest, Active

Record.

report erratum • discuss

Naming Conventions • 273

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 19

Active Record

Active Record is the object-relational mapping (ORM) layer supplied with Rails.

It is the part of Rails that implements your application’s model.

In this chapter, we’ll build on the mapping data to rows and columns that

we did in Depot. Then we’ll look at using Active Record to manage table rela-

tionships and in the process cover create, read, update, and delete operations

(commonly referred to in the industry as CRUD methods). Finally, we will dig

into the Active Record object life cycle (including callbacks and transactions).

19.1 Defining Your Data

In Depot, we defined a number of models, including one for an Order. This

particular model has a number of attributes, such as an email address of type

String. In addition to the attributes that we defined, Rails provided an attribute

named id that contains the primary key for the record. Rails also provides

several additional attributes, including attributes that track when each row

was last updated. Finally, Rails supports relationships between models, such

as the relationship between orders and line items.

When you think about it, Rails provides a lot of support for models. Let’s

examine each in turn.

Organizing Using Tables and Columns

Each subclass of ActiveRecord::Base, such as our Order class, wraps a separate

database table. By default, Active Record assumes that the name of the table

associated with a given class is the plural form of the name of that class. If

the class name contains multiple capitalized words, the table name is assumed

to have underscores between these words.

In this chapter, we’ll see
• the establish_connection method;
• tables, classes, columns, and attributes;
• IDs and relationships;
• create, read, update, and delete operations; and
• callbacks and transactions.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Table NameClassname

ordersOrder

tax_agenciesTaxAgency

batchesBatch

diagnosesDiagnosis

line_itemsLineItem

peoplePerson

dataDatum

quantitiesQuantity

These rules reflect Rails’ philosophy that class names should be singular

while the names of tables should be plural.

Although Rails handles most irregular plurals correctly, occasionally you may

stumble across one that is not handled correctly. If you encounter such a

case, you can add to Rails’ understanding of the idiosyncrasies and inconsis-

tencies of the English language by modifying the inflection file provided.

Download rails40/depot_t/config/initializers/inflections.rb

Be sure to restart your server when you modify this file.

Add new inflection rules using the following format. Inflections
are locale specific, and you may define rules for as many different
locales as you wish. All of these examples are active by default:
ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.plural /^(ox)$/i, '\1en'
inflect.singular /^(ox)en/i, '\1'
inflect.irregular 'person', 'people'
inflect.uncountable %w(fish sheep)
end

These inflection rules are supported but not enabled by default:
ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.acronym 'RESTful'
end

ActiveSupport::Inflector.inflections do |inflect|
inflect.irregular 'tax', 'taxes'

end

If you have legacy tables you have to deal with or don’t like this behavior, you

can control the table name associated with a given model by setting the

table_name for a given class.

class Sheep < ActiveRecord::Base
self.table_name = "sheep"

end

Chapter 19. Active Record • 276

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_t/config/initializers/inflections.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

David says:

Where Are Our Attributes?

The notion of a database administrator (DBA) as a separate role from programmer

has led some developers to see strict boundaries between code and schema. Active

Record blurs that distinction, and no other place is that more apparent than in the

lack of explicit attribute definitions in the model.

But fear not. Practice has shown that it makes little difference whether we’re looking

at a database schema, a separate XML mapping file, or inline attributes in the model.

The composite view is similar to the separations already happening in the Model-

View-Control pattern—just on a smaller scale.

Once the discomfort of treating the table schema as part of the model definition has

dissipated, you’ll start to realize the benefits of keeping DRY. When you need to add

an attribute to the model, you simply have to create a new migration and reload the

application.

Taking the “build” step out of schema evolution makes it just as agile as the rest of

the code. It becomes much easier to start with a small schema and extend and change

it as needed.

Instances of Active Record classes correspond to rows in a database table.

These objects have attributes corresponding to the columns in the table. You

probably noticed that our definition of class Order didn’t mention any of the

columns in the orders table. That’s because Active Record determines them

dynamically at runtime. Active Record reflects on the schema inside the

database to configure the classes that wrap tables.

In the Depot application, our orders table is defined by the following migration:

Download rails40/depot_r/db/migrate/20121130000007_create_orders.rb

class CreateOrders < ActiveRecord::Migration
def change
create_table :orders do |t|
t.string :name
t.text :address
t.string :email
t.string :pay_type

t.timestamps
end

end
end

Let’s use the handy-dandy rails console command to play with this model. First,

we’ll ask for a list of column names.

report erratum • discuss

Defining Your Data • 277

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/db/migrate/20121130000007_create_orders.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

depot> rails console
Loading development environment (Rails 4.0.0)
>> Order.column_names
=> ["id", "name", "address", "email", "pay_type", "created_at", "updated_at"]

Then we’ll ask for the details of the pay_type column.

>> Order.columns_hash["pay_type"]
=> #<ActiveRecord::ConnectionAdapters::SQLite3Column:0x00000003618228

@name="pay_type", @sql_type="varchar(255)", @null=true, @limit=255,
@precision=nil, @scale=nil, @type=:string, @default=nil,
@primary=false, @coder=nil>

Notice that Active Record has gleaned a fair amount of information about the

pay_type column. It knows that it’s a string of at most 255 characters, it has

no default value, it isn’t the primary key, and it may contain a null value.

Rails obtained this information by asking the underlying database the first

time we tried to use the Order class.

The attributes of an Active Record instance generally correspond to the data

in the corresponding row of the database table. For example, our orders table

might contain the following data:

depot> sqlite3 -line db/development.sqlite3 "select * from orders limit 1"
id = 1

name = Dave Thomas
address = 123 Main St

email = customer@example.com
pay_type = Check

created_at = 2013-01-29 14:39:12.375458
updated_at = 2013-01-29 14:39:12.375458

If we fetched this row into an Active Record object, that object would have

seven attributes. The id attribute would be 1 (a Fixnum), the name attribute would

be the string "Dave Thomas", and so on.

We access these attributes using accessor methods. Rails automatically

constructs both attribute readers and attribute writers when it reflects on

the schema.

o = Order.find(1)
puts o.name #=> "Dave Thomas"
o.name = "Fred Smith" # set the name

Setting the value of an attribute does not change anything in the database—we

must save the object for this change to become permanent.

The value returned by the attribute readers is cast by Active Record to an

appropriate Ruby type if possible (so, for example, if the database column is

Chapter 19. Active Record • 278

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

a timestamp, a Time object will be returned). If we want to get the raw value

of an attribute, we append _before_type_cast to its name, as shown in the following

code:

product.price_before_type_cast #=> 34.95, a float
product.updated_at_before_type_cast #=> "2013-02-13 10:13:14"

Inside the code of the model, we can use the read_attribute() and write_attribute()
private methods. These take the attribute name as a string parameter.

We can see the mapping between SQL types and their Ruby representation

in the following table. Decimal and Boolean columns are slightly tricky.

Ruby ClassSQL Type

Fixnumint, integer

Floatfloat, double

BigDecimaldecimal, numeric

Stringchar, varchar, string

Dateinterval, date

Timedatetime, time

Stringclob, blob, text

See textboolean

Table 1—Mapping SQL types to Ruby types

Rails maps columns with Decimals with no decimal places to Fixnum objects;

otherwise, it maps them to BigDecimal objects, ensuring that no precision is

lost.

In the case of Boolean, a convenience method is provided with a question

mark appended to the column name.

user = User.find_by(name: "Dave")
if user.superuser?

grant_privileges
end

In addition to the attributes we define, there are a number of attributes that

either Rails provides automatically or have special meaning.

Additional Columns Provided by Active Record

A number of column names have special significance to Active Record. Here’s

a summary:

report erratum • discuss

Defining Your Data • 279

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

created_at, created_on, updated_at, updated_on
These are automatically updated with the timestamp of a row’s creation

or last update. Make sure the underlying database column is capable of

receiving a date, datetime, or string. Rails applications conventionally use

the _on suffix for date columns and the _at suffix for columns that include

a time.

id
This is the default name of a table’s primary key column (in Identifying

Individual Rows, on page 280).

xxx_id
This is the default name of a foreign key reference to a table named with

the plural form of xxx.

xxx_count
This maintains a counter cache for the child table xxx.

Additional plugins, such as acts_as_list,1 may define additional columns.

Both primary keys and foreign keys play a vital role in database operations

and merit additional discussion.

19.2 Locating and Traversing Records

In the Depot application, LineItems have direct relationships to three other

models: Cart, Order, and Product. Additionally, models can have indirect relation-

ships mediated by resource objects. The relationship between Orders and

Products through LineItems is an example of such a relationship.

All of this is made possible through IDs.

Identifying Individual Rows

Active Record classes correspond to tables in a database. Instances of a class

correspond to the individual rows in a database table. Calling Order.find(1), for

instance, returns an instance of an Order class containing the data in the row

with the primary key of 1.

If you’re creating a new schema for a Rails application, you’ll probably want

to go with the flow and let it add the id primary key column to all your tables.

However, if you need to work with an existing schema, Active Record gives

you a simple way of overriding the default name of the primary key for a table.

1. https://github.com/rails/acts_as_list

Chapter 19. Active Record • 280

report erratum • discuss

https://github.com/rails/acts_as_list
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

For example, we may be working with an existing legacy schema that uses

the ISBN as the primary key for the books table.

We specify this in our Active Record model using something like the following:

class LegacyBook < ActiveRecord::Base
self.primary_key = "isbn"

end

Normally, Active Record takes care of creating new primary key values for

records that we create and add to the database—they’ll be ascending integers

(possibly with some gaps in the sequence). However, if we override the primary

key column’s name, we also take on the responsibility of setting the primary

key to a unique value before we save a new row. Perhaps surprisingly, we still

set an attribute called id to do this. As far as Active Record is concerned, the

primary key attribute is always set using an attribute called id. The primary_key=
declaration sets the name of the column to use in the table. In the following

code, we use an attribute called id even though the primary key in the database

is isbn:

book = LegacyBook.new
book.id = "0-12345-6789"
book.title = "My Great American Novel"
book.save
...
book = LegacyBook.find("0-12345-6789")
puts book.title # => "My Great American Novel"
p book.attributes #=> {"isbn" =>"0-12345-6789",

"title"=>"My Great American Novel"}

Just to make life more confusing, the attributes of the model object have the

column names isbn and title—id doesn’t appear. When you need to set the pri-

mary key, use id. At all other times, use the actual column name.

Model objects also redefine the Ruby id() and hash() methods to reference the

model’s primary key. This means that model objects with valid IDs may be

used as hash keys. It also means that unsaved model objects cannot reliably

be used as hash keys (because they won’t yet have a valid ID).

One final note: Rails considers two model objects as equal (using ==) if they

are instances of the same class and have the same primary key. This means

that unsaved model objects may compare as equal even if they have different

attribute data. If you find yourself comparing unsaved model objects (which

is not a particularly frequent operation), you might need to override the ==
method.

As we will see, IDs also play an important role in relationships.

report erratum • discuss

Locating and Traversing Records • 281

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Specifying Relationships in Models

Active Record supports three types of relationship between tables: one-to-one,

one-to-many, and many-to-many. You indicate these relationships by adding

declarations to your models: has_one, has_many, belongs_to, and the wonderfully

named has_and_belongs_to_many.

One-to-One Relationships

A one-to-one association (or, more accurately, a one-to-zero-or-one relation-

ship) is implemented using a foreign key in one row in one table to reference

at most a single row in another table. A one-to-one relationship might exist

between orders and invoices: for each order there’s at most one invoice.

class Invoice < ActiveRecord::Base

 belongs_to :order

 # . . .

end

invoices

id

order_id

. . .

orders

id

name

. . .

class Order < ActiveRecord::Base

 has_one :invoice

 # . . .

end

As the example shows, we declare this in Rails by adding a has_one declaration

to the Order model and by adding a belongs_to declaration to the Invoice model.

There’s an important rule illustrated here: the model for the table that contains

the foreign key always has the belongs_to declaration.

One-to-Many Relationships

A one-to-many association allows you to represent a collection of objects. For

example, an order might have any number of associated line items. In the

database, all the line item rows for a particular order contain a foreign key

column referring to that order.

class LineItem < ActiveRecord::Base

 belongs_to :order

 # . . .

end

line_items

id

order_id

. . .

orders

id

name

. . .

class Order < ActiveRecord::Base

 has_many :line_items

 # . . .

end

Chapter 19. Active Record • 282

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

In Active Record, the parent object (the one that logically contains a collection

of child objects) uses has_many to declare its relationship to the child table,

and the child table uses belongs_to to indicate its parent. In our example, class

LineItem belongs_to :order, and the orders table has_many :line_items.

Note that, again, because the line item contains the foreign key, it has the

belongs_to declaration.

Many-to-Many Relationships

Finally, we might categorize our products. A product can belong to many

categories, and each category may contain multiple products. This is an

example of a many-to-many relationship. It’s as if each side of the relationship

contains a collection of items on the other side.

class Category< ActiveRecord::Base

 has_and_belongs_to_many :products

 # . . .

end

categories

id

name

. . .

products

id

name

. . .

class Product< ActiveRecord::Base

 has_and_belongs_to_many :categories

 # . . .

end

categories_products

category_id

product_id

In Rails we can express this by adding the has_and_belongs_to_many declaration

to both models.

Many-to-many associations are symmetrical—both of the joined tables declare

their association with each other using “habtm.”

Rails implements many-to-many associations using an intermediate join table.

This contains foreign key pairs linking the two target tables. Active Record

assumes that this join table’s name is the concatenation of the two target

table names in alphabetical order. In our example, we joined the table categories
to the table products, so Active Record will look for a join table named

categories_products.

We can also define join tables directly. In the Depot application, we defined

a LineItems join, which joined Products to either Carts or Orders. Defining it ourselves

also gave us a place to store an additional attribute, namely, a quantity.

Now that we have covered data definitions, the next thing you would naturally

want to do is access the data contained within the database, so let’s do that.

report erratum • discuss

Locating and Traversing Records • 283

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

19.3 Creating, Reading, Updating, and Deleting (CRUD)

Names such as SQLite and MySQL emphasize that all access to a database

is via the Structured Query Language (SQL). In most cases, Rails will take

care of this for you, but that is completely up to you. As you will see, you can

provide clauses or even entire SQL statements for the database to execute.

If you are familiar with SQL already, as you read this section take note of how

Rails provides places for familiar clauses such as select, from, where, group by,
and so on. If you are not already familiar with SQL, one of the strengths of

Rails is that you can defer knowing more about such things until you actually

need to access the database at this level.

In this section, we’ll continue to work with the Order model from the Depot

application for an example. We will be using Active Record methods to apply

the four basic database operations: create, read, update, and delete.

Creating New Rows

Given that Rails represents tables as classes and rows as objects, it follows

that we create rows in a table by creating new objects of the appropriate class.

We can create new objects representing rows in our orders table by calling

Order.new(). We can then fill in the values of the attributes (corresponding to

columns in the database). Finally, we call the object’s save() method to store

the order back into the database. Without this call, the order would exist only

in our local memory.

Download rails40/e1/ar/new_examples.rb

an_order = Order.new
an_order.name = "Dave Thomas"
an_order.email = "dave@example.com"
an_order.address = "123 Main St"
an_order.pay_type = "check"
an_order.save

Active Record constructors take an optional block. If present, the block is

invoked with the newly created order as a parameter. This might be useful if

you wanted to create and save an order without creating a new local variable.

Download rails40/e1/ar/new_examples.rb

Order.new do |o|
o.name = "Dave Thomas"
. . .
o.save

end

Chapter 19. Active Record • 284

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/new_examples.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Finally, Active Record constructors accept a hash of attribute values as an

optional parameter. Each entry in this hash corresponds to the name and

value of an attribute to be set. This is useful for doing things like storing

values from HTML forms into database rows.

Download rails40/e1/ar/new_examples.rb

an_order = Order.new(
name: "Dave Thomas",
email: "dave@example.com",
address: "123 Main St",
pay_type: "check")

an_order.save

Note that in all of these examples we did not set the id attribute of the new

row. Because we used the Active Record default of an integer column for the

primary key, Active Record automatically creates a unique value and sets the

id attribute as the row is saved. We can subsequently find this value by

querying the attribute.

Download rails40/e1/ar/new_examples.rb

an_order = Order.new
an_order.name = "Dave Thomas"
...
an_order.save
puts "The ID of this order is #{an_order.id}"

The new() constructor creates a new Order object in memory; we have to

remember to save it to the database at some point. Active Record has a con-

venience method, create(), that both instantiates the model object and stores

it into the database.

Download rails40/e1/ar/new_examples.rb

an_order = Order.create(
name: "Dave Thomas",
email: "dave@example.com",
address: "123 Main St",
pay_type: "check")

You can pass create() an array of attribute hashes; it’ll create multiple rows in

the database and return an array of the corresponding model objects.

Download rails40/e1/ar/new_examples.rb

orders = Order.create(
[{ name: "Dave Thomas",

email: "dave@example.com",
address: "123 Main St",
pay_type: "check"

},
{ name: "Andy Hunt",

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 285

http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/new_examples.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

email: "andy@example.com",
address: "456 Gentle Drive",
pay_type: "po"

}])

The real reason that new() and create() take a hash of values is that you can

construct model objects directly from form parameters.

@order = Order.new(order_params)

If you think this line looks familiar, it is because you have seen it before. It

appears in orders_controller.rb in the Depot application.

Reading Existing Rows

Reading from a database involves first specifying which particular rows of

data you are interested in—you’ll give Active Record some kind of criteria,

and it will return objects containing data from the row(s) matching the criteria.

The simplest way of finding a row in a table is by specifying its primary key.

Every model class supports the find() method, which takes one or more primary

key values. If given just one primary key, it returns an object containing data

for the corresponding row (or throws an ActiveRecord::RecordNotFound exception).

If given multiple primary key values, find() returns an array of the corresponding

objects. Note that in this case a RecordNotFound exception is raised if any of the

IDs cannot be found (so if the method returns without raising an error, the

length of the resulting array will be equal to the number of IDs passed as

parameters).

an_order = Order.find(27) # find the order with id == 27

Get a list of product ids from a form, then
find the associated Products
product_list = Product.find(params[:product_ids])

Often, though, you need to read in rows based on criteria other than their

primary key value. Active Record provides additional methods enabling you

to express more complex queries.

SQL and Active Record

To illustrate how Active Record works with SQL, let’s pass a simple string to

the where() method call corresponding to a SQL where clause. For example, to

return a list of all orders for Dave with a payment type of “po,” we could use

this:

pos = Order.where("name = 'Dave' and pay_type = 'po'")

Chapter 19. Active Record • 286

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

David says:

To Raise or Not to Raise?

When you use a finder driven by primary keys, you’re looking for a particular record.

You expect it to exist. A call to Person.find(5) is based on our knowledge of the people
table. We want the row with an ID of 5. If this call is unsuccessful—if the record with

the ID of 5 has been destroyed—we’re in an exceptional situation. This mandates the

raising of an exception, so Rails raises RecordNotFound.

On the other hand, finders that use criteria to search are looking for a match. So,

Person.where(name: 'Dave').first is the equivalent of telling the database (as a black box)

“Give me the first person row that has the name Dave.” This exhibits a distinctly dif-

ferent approach to retrieval; we’re not certain up front that we’ll get a result. It’s

entirely possible the result set may be empty. Thus, returning nil in the case of finders

that search for one row and an empty array for finders that search for many rows is

the natural, nonexceptional response.

The result will be an ActiveRecord::Relation object containing all the matching

rows, each neatly wrapped in an Order object.

That’s fine if our condition is predefined, but how do we handle it when the

name of the customer is set externally (perhaps coming from a web form)?

One way is to substitute the value of that variable into the condition string.

get the name from the form
name = params[:name]
DON'T DO THIS!!!
pos = Order.where("name = '#{name}' and pay_type = 'po'")

As the comment suggests, this really isn’t a good idea. Why? It leaves the

database wide open to something called a SQL injection attack, which the

Rails Guides that you generated in A Place for Documentation, on page 265,

describe in more detail. For now, take it as a given that substituting a string

from an external source into a SQL statement is effectively the same as pub-

lishing your entire database to the whole online world.

Instead, the safe way to generate dynamic SQL is to let Active Record handle

it. Doing this allows Active Record to create properly escaped SQL, which is

immune from SQL injection attacks. Let’s see how this works.

If we pass multiple parameters to a where() call, Rails treats the first parameter

as a template for the SQL to generate. Within this SQL, we can embed

placeholders, which will be replaced at runtime by the values in the rest of

the array.

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 287

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

One way of specifying placeholders is to insert one or more question marks

in the SQL. The first question mark is replaced by the second element of the

array, the next question mark by the third, and so on. For example, we could

rewrite the previous query as this:

name = params[:name]
pos = Order.where(["name = ? and pay_type = 'po'", name])

We can also use named placeholders. We do that by placing placeholders of

the form :name into the string and by providing corresponding values in a

hash, where the keys correspond to the names in the query.

name = params[:name]
pay_type = params[:pay_type]
pos = Order.where("name = :name and pay_type = :pay_type",

pay_type: pay_type, name: name)

We can take this a step further. Because params is effectively a hash, we can

simply pass it all to the condition. If we have a form that can be used to enter

search criteria, we can use the hash of values returned from that form

directly.

pos = Order.where("name = :name and pay_type = :pay_type",
params[:order])

We can take this even further. If we pass just a hash as the condition, Rails

generates a where clause using the hash keys as column names and the hash

values as the values to match. Thus, we could have written the previous code

even more succinctly.

pos = Order.where(params[:order])

Be careful with this latter form of condition: it takes all the key-value pairs

in the hash you pass in when constructing the condition. An alternative would

be to specify which parameters to use explicitly.

pos = Order.where(name: params[:name],
pay_type: params[:pay_type])

Regardless of which form of placeholder you use, Active Record takes great

care to quote and escape the values being substituted into the SQL. Use these

forms of dynamic SQL, and Active Record will keep you safe from injection

attacks.

Using Like Clauses

We might be tempted to do something like the code on the next page to use

parameterized like clauses in conditions.

Chapter 19. Active Record • 288

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Doesn't work
User.where("name like '?%'", params[:name])

Rails doesn’t parse the SQL inside a condition and so doesn’t know that the

name is being substituted into a string. As a result, it will go ahead and add

extra quotes around the value of the name parameter. The correct way to do

this is to construct the full parameter to the like clause and pass that

parameter into the condition.

Works
User.where("name like ?", params[:name]+"%")

Of course, if we do this, we need to consider that characters such as percent

signs, should they happen to appear in the value of the name parameter, will

be treated as wildcards.

Subsetting the Records Returned

Now that we know how to specify conditions, let’s turn our attention to the

various methods supported by ActiveRecord::Relation, starting with first() and all().

As you may have guessed, first() returns the first row in the relation. It returns

nil if the relation is empty. Similarly, to_a() returns all the rows as an array.

ActiveRecord::Relation also supports many of the methods of Array objects, such

as each() and map(). It does so by implicitly calling the all() first.

It’s important to understand that the query is not evaluated until one of these

methods is used. This enables us to modify the query in a number of ways,

namely, by calling additional methods, prior to making this call. Let’s look at

these methods now.

order

SQL doesn’t require rows to be returned in any particular order unless we

explicitly add an order by clause to the query. The order() method lets us specify

the criteria we’d normally add after the order by keywords. For example, the

following query would return all of Dave’s orders, sorted first by payment type

and then by shipping date (the latter in descending order).

orders = Order.where(name: 'Dave').
order("pay_type, shipped_at DESC")

limit

We can limit the number of rows returned by calling the limit() method. Gener-

ally when we use the limit method, we’ll probably also want to specify the

sort order to ensure consistent results. For example, the following returns

the first ten matching orders:

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 289

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

orders = Order.where(name: 'Dave').
order("pay_type, shipped_at DESC").
limit(10)

offset

The offset() method goes hand in hand with the limit() method. It allows us to

specify the offset of the first row in the result set that will be returned.

The view wants to display orders grouped into pages,
where each page shows page_size orders at a time.
This method returns the orders on page page_num (starting
at zero).
def Order.find_on_page(page_num, page_size)

order(:id).limit(page_size).offset(page_num*page_size)
end

We can use offset in conjunction with limit to step through the results of a query

n rows at a time.

select

By default, ActiveRecord::Relation fetches all the columns from the underlying

database table—it issues a select * from... to the database. Override this with

the select() method, which takes a string that will appear in place of the * in
the select statement.

This method allows us to limit the values returned in cases where we need

only a subset of the data in a table. For example, our table of podcasts might

contain information on the title, speaker, and date and might also contain a

large BLOB containing the MP3 of the talk. If you just wanted to create a list

of talks, it would be inefficient to also load the sound data for each row. The

select() method lets us choose which columns to load.

list = Talk.select("title, speaker, recorded_on")

joins

The joins() method lets us specify a list of additional tables to be joined to the

default table. This parameter is inserted into the SQL immediately after the

name of the model’s table and before any conditions specified by the first

parameter. The join syntax is database-specific. The following code returns

a list of all line items for the book called Programming Ruby:

LineItem.select('li.quantity').
where("pr.title = 'Programming Ruby 1.9'").
joins("as li inner join products as pr on li.product_id = pr.id")

Chapter 19. Active Record • 290

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

readonly

The readonly() method causes ActiveRecord::Resource to return Active Record objects

that cannot be stored back into the database.

If we use the joins() or select() method, objects will automatically be marked

readonly.

group

The group() method adds a group by clause to the SQL.

summary = LineItem.select("sku, sum(amount) as amount").
group("sku")

lock

The lock() method takes an optional string as a parameter. If we pass it a

string, it should be a SQL fragment in our database’s syntax that specifies a

kind of lock. With MySQL, for example, a share mode lock gives us the latest

data in a row and guarantees that no one else can alter that row while we

hold the lock. We could write code that debits an account only if there are

sufficient funds using something like the following:

Account.transaction do
ac = Account.where(id: id).lock("LOCK IN SHARE MODE").first
ac.balance -= amount if ac.balance > amount
ac.save

end

If we don’t specify a string value or we give lock() a value of true, the database’s

default exclusive lock is obtained (normally this will be "for update"). We can

often eliminate the need for this kind of locking using transactions (discussed

starting in Section 19.5, Transactions, on page 304).

Databases can do more than simply find and reliably retrieve data; they can

also do a bit of data reduction analysis. Rails provides access to these methods

too.

Getting Column Statistics

Rails has the ability to perform statistics on the values in a column. For

example, given a table of orders, we can calculate the following:

average = Order.average(:amount) # average amount of orders
max = Order.maximum(:amount)
min = Order.minimum(:amount)
total = Order.sum(:amount)
number = Order.count

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 291

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

These all correspond to aggregate functions in the underlying database, but

they work in a database-independent manner.

As before, methods can be combined.

Order.where("amount > 20").minimum(:amount)

These functions aggregate values. By default, they return a single result,

producing, for example, the minimum order amount for orders meeting some

condition. However, if you include the group method, the functions instead

produce a series of results, one result for each set of records where the

grouping expression has the same value. For example, the following calculates

the maximum sale amount for each state:

result = Order.group(:state).maximum(:amount)
puts result #=> {"TX"=>12345, "NC"=>3456, ...}

This code returns an ordered hash. You index it using the grouping element

("TX", "NC", … in our example). You can also iterate over the entries in order

using each(). The value of each entry is the value of the aggregation function.

The order and limit methods come into their own when using groups.

For example, the following returns the three states with the highest orders,

sorted by the order amount:

result = Order.group(:state).
order("max(amount) desc").
limit(3)

This code is no longer database independent—in order to sort on the aggre-

gated column, we had to use the SQLite syntax for the aggregation function

(max, in this case).

Scopes

As these chains of method calls grow longer, making the chains themselves

available for reuse becomes a concern. Once again, Rails delivers. An Active

lambda

↪ on page 51

Record scope can be associated with a Proc and therefore may have arguments:

class Order < ActiveRecord::Base
scope :last_n_days, lambda { |days| where('updated < ?' , days) }

end

Such a named scope would make finding the worth of last week’s orders a

snap.

orders = Order.last_n_days(7)

Simpler scopes may have no parameters at all.

Chapter 19. Active Record • 292

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

class Order < ActiveRecord::Base
scope :checks, -> { where(pay_type: :check) }

end

Scopes can also be combined. Finding the last week’s worth of orders that

were paid by check is just as easy.

orders = Order.checks.last_n_days(7)

In addition to making your application code easier to write and easier to read,

scopes can make your code more efficient. The previous statement, for

example, is implemented as a single SQL query.

ActiveRecord::Relation objects are equivalent to an anonymous scope.

in_house = Order.where('email LIKE "%@pragprog.com"')

Of course, relations can also be combined.

in_house.checks.last_n_days(7)

Scopes aren’t limited to where conditions; we can do pretty much anything

we can do in a method call: limit, order, join, and so on. Just be aware that Rails

doesn’t know how to handle multiple order or limit clauses, so be sure to use

these only once per call chain.

In nearly every case, the methods we have been describing are sufficient. But

Rails is not satisfied with only being able to handle nearly every case, so for

cases that require a human-crafted query, there is an API for that too.

Writing Our Own SQL

Each of the methods we have been looking at contributes to the construction

of a full SQL query string. The method find_by_sql() lets our application take

full control. It accepts a single parameter containing a SQL select statement

(or an array containing SQL and placeholder values, as for find()) and returns

an array of model objects (that is potentially empty) from the result set. The

attributes in these models will be set from the columns returned by the query.

We’d normally use the select * form to return all columns for a table, but this

isn’t required.

Download rails40/e1/ar/find_examples.rb

orders = LineItem.find_by_sql("select line_items.* from line_items, orders " +
" where order_id = orders.id " +
" and orders.name = 'Dave Thomas' ")

Only those attributes returned by a query will be available in the resulting

model objects. We can determine the attributes available in a model object

using the attributes(), attribute_names(), and attribute_present?() methods. The first

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 293

http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/find_examples.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

returns a hash of attribute name-value pairs, the second returns an array of

names, and the third returns true if a named attribute is available in this

model object.

Download rails40/e1/ar/find_examples.rb

orders = Order.find_by_sql("select name, pay_type from orders")
first = orders[0]
p first.attributes
p first.attribute_names
p first.attribute_present?("address")

This code produces the following:

{"name"=>"Dave Thomas", "pay_type"=>"check"}
["name", "pay_type"]
false

find_by_sql() can also be used to create model objects containing derived column

data. If we use the as xxx SQL syntax to give derived columns a name in the

result set, this name will be used as the name of the attribute.

Download rails40/e1/ar/find_examples.rb

items = LineItem.find_by_sql("select *, " +
" products.price as unit_price, " +
" quantity*products.price as total_price, " +
" products.title as title " +
" from line_items, products " +
" where line_items.product_id = products.id ")

li = items[0]
puts "#{li.title}: #{li.quantity}x#{li.unit_price} => #{li.total_price}"

As with conditions, we can also pass an array to find_by_sql(), where the first

element is a string containing placeholders. The rest of the array can be either

a hash or a list of values to be substituted.

Order.find_by_sql(["select * from orders where amount > ?",
params[:amount]])

In the old days of Rails, people frequently resorted to using find_by_sql(). Since

then, all the options added to the basic find() method mean you can avoid

resorting to this low-level method.

Reloading Data

In an application where the database is potentially being accessed by multiple

processes (or by multiple applications), there’s always the possibility that a

fetched model object has become stale—someone may have written a more

recent copy to the database.

Chapter 19. Active Record • 294

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/find_examples.rb
http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/find_examples.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

David says:

But Isn’t SQL Dirty?

Ever since developers first wrapped relational databases with an object-oriented layer,

they’ve debated the question of how deep to run the abstraction. Some object-relational

mappers seek to eliminate the use of SQL entirely, hoping for object-oriented purity

by forcing all queries through an OO layer.

Active Record does not. It was built on the notion that SQL is neither dirty nor bad,

just verbose in the trivial cases. The focus is on removing the need to deal with the

verbosity in those trivial cases (writing a ten-attribute insert by hand will leave any

programmer tired) but keeping the expressiveness around for the hard queries—the

type SQL was created to deal with elegantly.

Therefore, you shouldn’t feel guilty when you use find_by_sql() to handle either perfor-

mance bottlenecks or hard queries. Start out using the object-oriented interface for

productivity and pleasure and then dip beneath the surface for a close-to-the-metal

experience when you need to do so.

To some extent, this issue is addressed by transactional support (which we

describe in Section 19.5, Transactions, on page 304). However, there’ll still be

times where you need to refresh a model object manually. Active Record makes

this easy—simply call its reload() method, and the object’s attributes will be

refreshed from the database.

stock = Market.find_by(ticker: "RUBY")
loop do

puts "Price = #{stock.price}"
sleep 60
stock.reload

end

In practice, reload() is rarely used outside the context of unit tests.

Updating Existing Rows

After such a long discussion of finder methods, you’ll be pleased to know that

there’s not much to say about updating records with Active Record.

If you have an Active Record object (perhaps representing a row from our

orders table), you can write it to the database by calling its save() method. If

this object had previously been read from the database, this save will update

the existing row; otherwise, the save will insert a new row.

If an existing row is updated, Active Record will use its primary key column

to match it with the in-memory object. The attributes contained in the Active

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 295

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Record object determine the columns that will be updated—a column will be

updated in the database only if its value has been changed. In the following

example, all the values in the row for order 123 can be updated in the database

table:

order = Order.find(123)
order.name = "Fred"
order.save

However, in the following example, the Active Record object contains just the

attributes id, name, and paytype—only these columns can be updated when the

object is saved. (Note that you have to include the id column if you intend to

save a row fetched using find_by_sql().)

orders = Order.find_by_sql("select id, name, pay_type from orders where id=123")
first = orders[0]
first.name = "Wilma"
first.save

In addition to the save() method, Active Record lets us change the values of

attributes and save a model object in a single call to update().

order = Order.find(321)
order.update(name: "Barney", email: "barney@bedrock.com")

The update() method is most commonly used in controller actions where it

merges data from a form into an existing database row.

def save_after_edit
order = Order.find(params[:id])
if order.update(order_params)
redirect_to action: :index

else
render action: :edit

end
end

We can combine the functions of reading a row and updating it using the

class methods update() and update_all(). The update() method takes an id parameter

and a set of attributes. It fetches the corresponding row, updates the given

attributes, saves the result to the database, and returns the model object.

order = Order.update(12, name: "Barney", email: "barney@bedrock.com")

We can pass update() an array of IDs and an array of attribute value hashes,

and it will update all the corresponding rows in the database, returning an

array of model objects.

Chapter 19. Active Record • 296

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Finally, the update_all() class method allows us to specify the set and where
clauses of the SQL update statement. For example, the following increases the

prices of all products with Java in their title by 10 percent:

result = Product.update_all("price = 1.1*price", "title like '%Java%'")

The return value of update_all() depends on the database adapter; most (but

not Oracle) return the number of rows that were changed in the database.

save, save!, create, and create!

It turns out that there are two versions of the save and create methods. The

variants differ in the way they report errors.

• save returns true if the record was saved; it returns nil otherwise.

• save! returns true if the save succeeded; it raises an exception otherwise.

• create returns the Active Record object regardless of whether it was suc-

cessfully saved. You’ll need to check the object for validation errors if you

want to determine whether the data was written.

• create! returns the Active Record object on success; it raises an exception

otherwise.

Let’s look at this in a bit more detail.

Plain old save() returns true if the model object is valid and can be saved.

if order.save
all OK

else
validation failed

end

It’s up to us to check on each call to save() to see that it did what we expected.

The reason Active Record is so lenient is that it assumes save() is called in the

context of a controller’s action method and that the view code will be present-

ing any errors back to the end user. And for many applications, that’s the

case.

However, if we need to save a model object in a context where we want to

make sure to handle all errors programmatically, we should use save!(). This

method raises a RecordInvalid exception if the object could not be saved.

begin
order.save!

rescue RecordInvalid => error
validation failed

end

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 297

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Deleting Rows

Active Record supports two styles of row deletion. First, it has two class-level

methods, delete() and delete_all(), that operate at the database level. The delete()
method takes a single ID or an array of IDs and deletes the corresponding

row(s) in the underlying table. delete_all() deletes rows matching a given condi-

tion (or all rows if no condition is specified). The return values from both calls

depend on the adapter but are typically the number of rows affected. An

exception is not thrown if the row doesn’t exist prior to the call.

Order.delete(123)
User.delete([2,3,4,5])
Product.delete_all(["price > ?", @expensive_price])

The various destroy methods are the second form of row deletion provided by

Active Record. These methods all work via Active Record model objects.

The destroy() instance method deletes from the database the row corresponding

to a particular model object. It then freezes the contents of that object, pre-

venting future changes to the attributes.

order = Order.find_by(name: "Dave")
order.destroy
... order is now frozen

There are two class-level destruction methods, destroy() (which takes an ID or

an array of IDs) and destroy_all() (which takes a condition). Both methods read

the corresponding rows in the database table into model objects and call the

instance-level destroy() method of those objects. Neither method returns any-

thing meaningful.

Order.destroy_all(["shipped_at < ?", 30.days.ago])

Why do we need both the delete and destroy class methods? The delete methods

bypass the various Active Record callback and validation functions, while the

destroy methods ensure that they are all invoked. In general, it is better to use

the destroy methods if you want to ensure that your database is consistent

according to the business rules defined in your model classes.

We covered validation in Chapter 7, Task B: Validation and Unit Testing, on

page 77. We cover callbacks next.

19.4 Participating in the Monitoring Process

Active Record controls the life cycle of model objects—it creates them, monitors

them as they are modified, saves and updates them, and watches sadly as

they are destroyed. Using callbacks, Active Record lets our code participate

Chapter 19. Active Record • 298

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

in this monitoring process. We can write code that gets invoked at any signif-

icant event in the life of an object. With these callbacks we can perform

complex validation, map column values as they pass in and out of the

database, and even prevent certain operations from completing.

Active Record defines sixteen callbacks. Fourteen of these form before/after

pairs and bracket some operation on an Active Record object. For example,

the before_destroy callback will be invoked just before the destroy() method is

called, and after_destroy will be invoked after. The two exceptions are after_find
and after_initialize, which have no corresponding before_xxx callback. (These two

callbacks are different in other ways, too, as we’ll see later.)

In the following figure we can see how Rails wraps the sixteen paired callbacks

around the basic create, update, and destroy operations on model objects.

Perhaps surprisingly, the before and after validation calls are not strictly

nested.

before_validation
validation operations

after_validation

before_save
before_update

after_update
after_save

before_validation
validation operations
after_validation

before_save
before_create

after_create
after_save

before_destroy

after_destroy

insert operation update operation delete operation

model.save() model.destroy()
new record existing record

Figure 57—Sequence of Active Record callbacks

The before_validation and after_validation calls also accept the on: :create or on: :update
parameter, which will cause the callback to be called only on the selected

operation.

In addition to these sixteen calls, the after_find callback is invoked after any

find operation, and after_initialize is invoked after an Active Record model object

is created.

report erratum • discuss

Participating in the Monitoring Process • 299

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

To have your code execute during a callback, you need to write a handler and

associate it with the appropriate callback.

There are two basic ways of implementing callbacks.

The preferred way to define a callback is to declare handlers. A handler can

be either a method or a block. You associate a handler with a particular event

using class methods named after the event. To associate a method, declare

it as private or protected, and specify its name as a symbol to the handler

declaration. To specify a block, simply add it after the declaration. This block

receives the model object as a parameter.

class Order < ActiveRecord::Base
before_validation :normalize_credit_card_number
after_create do |order|
logger.info "Order #{order.id} created"

end
protected
def normalize_credit_card_number
self.cc_number.gsub!(/[-\s]/, '')

end
end

You can specify multiple handlers for the same callback. They will generally

be invoked in the order they are specified unless a handler returns false (and

it must be the actual value false), in which case the callback chain is broken

early.

Alternately, you can define the callback instance methods using callback

objects, inline methods (using a proc), or inline eval methods (using a string).

See the online documentation for more details.2

Grouping Related Callbacks Together

If you have a group of related callbacks, it may be convenient to group them

into a separate handler class. These handlers can be shared between multiple

models. A handler class is simply a class that defines callback methods

(before_save(), after_create(), and so on). Create the source files for these handler

classes in app/models.

In the model object that uses the handler, you create an instance of this

handler class and pass that instance to the various callback declarations. A

couple of examples will make this clearer.

2. http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html#label-

Types+of+callbacks

Chapter 19. Active Record • 300

report erratum • discuss

http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html#label-Types+of+callbacks
http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html#label-Types+of+callbacks
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

If our application uses credit cards in multiple places, we might want to share

our normalize_credit_card_number() method across multiple models. To do that, we’d

extract the method into its own class and name it after the event we want it

to handle. This method will receive a single parameter, the model object that

generated the callback.

class CreditCardCallbacks

Normalize the credit card number
def before_validation(model)
model.cc_number.gsub!(/[-\s]/, '')

end
end

Now, in our model classes, we can arrange for this shared callback to be

invoked.

class Order < ActiveRecord::Base
before_validation CreditCardCallbacks.new
...

end

class Subscription < ActiveRecord::Base
before_validation CreditCardCallbacks.new
...

end

In this example, the handler class assumes that the credit card number is

held in a model attribute named cc_number; both Order and Subscription would

have an attribute with that name. But we can generalize the idea, making

the handler class less dependent on the implementation details of the classes

that use it.

For example, we could create a generalized encryption and decryption handler.

This could be used to encrypt named fields before they are stored in the

database and to decrypt them when the row is read back. You could include

it as a callback handler in any model that needed the facility.

The handler needs to encrypt a given set of attributes in a model just before

that model’s data is written to the database. Because our application needs

to deal with the plain-text versions of these attributes, it arranges to decrypt

them again after the save is complete. It also needs to decrypt the data when

a row is read from the database into a model object. These requirements mean

we have to handle the before_save, after_save, and after_find events. Because we

need to decrypt the database row both after saving and when we find a new

row, we can save code by aliasing the after_find() method to after_save()—the same

method will have two names.

report erratum • discuss

Participating in the Monitoring Process • 301

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/e1/ar/encrypt.rb

class Encrypter
We're passed a list of attributes that should
be stored encrypted in the database
def initialize(attrs_to_manage)
@attrs_to_manage = attrs_to_manage

end

Before saving or updating, encrypt the fields using the NSA and
DHS approved Shift Cipher
def before_save(model)
@attrs_to_manage.each do |field|
model[field].tr!("a-z", "b-za")

end
end

After saving, decrypt them back
def after_save(model)
@attrs_to_manage.each do |field|
model[field].tr!("b-za", "a-z")

end
end

Do the same after finding an existing record
alias_method :after_find, :after_save

end

This example uses trivial encryption—you might want to beef it up before

using this class for real.

We can now arrange for the Encrypter class to be invoked from inside our orders

model.

require "encrypter"
class Order < ActiveRecord::Base

encrypter = Encrypter.new([:name, :email])
before_save encrypter
after_save encrypter
after_find encrypter

protected
def after_find
end

end

We create a new Encrypter object and hook it up to the events before_save,
after_save, and after_find. This way, just before an order is saved, the method

before_save() in the encrypter will be invoked, and so on.

So, why do we define an empty after_find() method? Remember that we said

that for performance reasons after_find and after_initialize are treated specially.

Chapter 19. Active Record • 302

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/encrypt.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

One of the consequences of this special treatment is that Active Record won’t

know to call an after_find handler unless it sees an actual after_find() method in

the model class. We have to define an empty placeholder to get after_find pro-

cessing to take place.

This is all very well, but every model class that wants to use our encryption

handler would need to include some eight lines of code, just as we did with

our Order class. We can do better than that. We’ll define a helper method that

does all the work and make that helper available to all Active Record models.

To do that, we’ll add it to the ActiveRecord::Base class.

Download rails40/e1/ar/encrypt.rb

class ActiveRecord::Base
def self.encrypt(*attr_names)
encrypter = Encrypter.new(attr_names)

before_save encrypter
after_save encrypter
after_find encrypter

define_method(:after_find) { }
end

end

Given this, we can now add encryption to any model class’s attributes using

a single call.

class Order < ActiveRecord::Base
encrypt(:name, :email)

end

A simple driver program lets us experiment with this.

o = Order.new
o.name = "Dave Thomas"
o.address = "123 The Street"
o.email = "dave@example.com"
o.save
puts o.name

o = Order.find(o.id)
puts o.name

On the console, we see our customer’s name (in plain text) in the model object.

ar> ruby encrypt.rb
Dave Thomas
Dave Thomas

report erratum • discuss

Participating in the Monitoring Process • 303

http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/encrypt.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

In the database, however, the name and email address are obscured by our

industrial-strength encryption.

depot> sqlite3 -line db/development.sqlite3 "select * from orders"
id = 1

user_id =
name = Dbwf Tipnbt

address = 123 The Street
email = ebwf@fybnqmf.dpn

Callbacks are a fine technique, but they can sometimes result in a model

class taking on responsibilities that aren’t really related to the nature of the

model. For example, in Section 19.4, Participating in the Monitoring Process,

on page 298, we created a callback that generated a log message when an order

was created. That functionality isn’t really part of the basic Order class—we

put it there because that’s where the callback executed.

When used in moderation, such an approach doesn’t lead to significant

problems. If, however, you find yourself repeating code, consider using Con-

cerns3 instead.

19.5 Transactions

A database transaction groups a series of changes in such a way that either

the database applies all of the changes or it applies none of the changes. The

classic example of the need for transactions (and one used in Active Record’s

own documentation) is transferring money between two bank accounts. The

basic logic is simple.

account1.deposit(100)
account2.withdraw(100)

However, we have to be careful. What happens if the deposit succeeds but

for some reason the withdrawal fails (perhaps the customer is overdrawn)?

We’ll have added $100 to the balance in account1 without a corresponding

deduction from account2. In effect, we’ll have created $100 out of thin air.

Transactions to the rescue. A transaction is something like the Three Muske-

teers with their motto “All for one and one for all.” Within the scope of a

transaction, either every SQL statement succeeds or they all have no effect.

Putting that another way, if any statement fails, the entire transaction has

no effect on the database.

In Active Record we use the transaction() method to execute a block in the context

of a particular database transaction. At the end of the block, the transaction

3. http://37signals.com/svn/posts/3372-put-chubby-models-on-a-diet-with-concerns

Chapter 19. Active Record • 304

report erratum • discuss

http://37signals.com/svn/posts/3372-put-chubby-models-on-a-diet-with-concerns
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

is committed, updating the database, unless an exception is raised within

the block, in which case the database rolls back all of the changes. Because

transactions exist in the context of a database connection, we have to invoke

them with an Active Record class as a receiver.

Thus, we could write this:

Account.transaction do
account1.deposit(100)
account2.withdraw(100)

end

Let’s experiment with transactions. We’ll start by creating a new database

table. (Make sure your database supports transactions, or this code won’t

work for you.)

Download rails40/e1/ar/transactions.rb

create_table :accounts, force: true do |t|
t.string :number
t.decimal :balance, precision: 10, scale: 2, default: 0

end

Next, we’ll define a simple bank account class. This class defines instance

methods to deposit money to and withdraw money from the account. It also

provides some basic validation—for this particular type of account, the balance

can never be negative.

Download rails40/e1/ar/transactions.rb

class Account < ActiveRecord::Base
validates :balance, numericality: {greater_than_or_equal_to: 0}
def withdraw(amount)
adjust_balance_and_save!(-amount)

end
def deposit(amount)
adjust_balance_and_save!(amount)

end
private
def adjust_balance_and_save!(amount)
self.balance += amount
save!

end
end

Let’s look at the helper method, adjust_balance_and_save!(). The first line simply

updates the balance field. The method then calls save! to save the model data.

(Remember that save!() raises an exception if the object cannot be saved—we

use the exception to signal to the transaction that something has gone wrong.)

report erratum • discuss

Transactions • 305

http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/transactions.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

So, now let’s write the code to transfer money between two accounts. It’s

pretty straightforward.

Download rails40/e1/ar/transactions.rb

peter = Account.create(balance: 100, number: "12345")
paul = Account.create(balance: 200, number: "54321")

Account.transaction do
paul.deposit(10)
peter.withdraw(10)

end

We check the database, and, sure enough, the money got transferred.

depot> sqlite3 -line db/development.sqlite3 "select * from accounts"
id = 1

number = 12345
balance = 90

id = 2
number = 54321
balance = 210

Now let’s get radical. If we start again but this time try to transfer $350, we’ll

run Peter into the red, which isn’t allowed by the validation rule. Let’s try it:

Download rails40/e1/ar/transactions.rb

peter = Account.create(balance: 100, number: "12345")
paul = Account.create(balance: 200, number: "54321")

Download rails40/e1/ar/transactions.rb

Account.transaction do
paul.deposit(350)
peter.withdraw(350)

end

When we run this, we get an exception reported on the console.

.../validations.rb:736:in `save!': Validation failed: Balance is negative
from transactions.rb:46:in `adjust_balance_and_save!'

: : :
from transactions.rb:80

Looking in the database, we can see that the data remains unchanged.

depot> sqlite3 -line db/development.sqlite3 "select * from accounts"
id = 1

number = 12345
balance = 100

id = 2
number = 54321
balance = 200

Chapter 19. Active Record • 306

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/transactions.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

However, there’s a trap waiting for you here. The transaction protected the

database from becoming inconsistent, but what about our model objects? To

see what happened to them, we have to arrange to intercept the exception to

allow the program to continue running.

Download rails40/e1/ar/transactions.rb

peter = Account.create(balance: 100, number: "12345")
paul = Account.create(balance: 200, number: "54321")

Download rails40/e1/ar/transactions.rb

begin
Account.transaction do
paul.deposit(350)
peter.withdraw(350)

end
rescue

puts "Transfer aborted"
end

puts "Paul has #{paul.balance}"
puts "Peter has #{peter.balance}"

What we see is a little surprising.

Transfer aborted
Paul has 550.0
Peter has -250.0

Although the database was left unscathed, our model objects were updated

anyway. This is because Active Record wasn’t keeping track of the before and

after states of the various objects—in fact, it couldn’t, because it had no easy

way of knowing just which models were involved in the transactions.

Built-in Transactions

When we discussed parent and child tables in Specifying Relationships in

Models, on page 282, we said that Active Record takes care of saving all the

dependent child rows when you save a parent row. This takes multiple SQL

statement executions (one for the parent and one each for any changed or

new children).

Clearly, this change should be atomic, but until now we haven’t been using

transactions when saving these interrelated objects. Have we been negligent?

Fortunately, no. Active Record is smart enough to wrap all the updates and

inserts related to a particular save() (and also the deletes related to a destroy())
in a transaction; either they all succeed or no data is written permanently to

the database. You need explicit transactions only when you manage multiple

SQL statements yourself.

report erratum • discuss

Transactions • 307

http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails4/code/rails40/e1/ar/transactions.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

While we have covered the basics, transactions are actually very subtle. They

exhibit the so-called ACID properties: they’re Atomic, they ensure Consistency,

they work in Isolation, and their effects are Durable (they are made permanent

when the transaction is committed). It’s worth finding a good database book

and reading up on transactions if you plan to take a database application

live.

What We Just Did

We learned the relevant data structures and naming conventions for tables,

classes, columns, attributes, IDs, and relationships. We saw how to create,

read, update, and delete this data. Finally, we now understand how transac-

tions and callbacks can be used to prevent inconsistent changes.

This, coupled with validation as described in Chapter 7, Task B: Validation

and Unit Testing, on page 77, covers all the essentials of Active Record that

every Rails programmer needs to know. If you have specific needs beyond

what is covered here, look to the Rails Guides that you generated in A Place

for Documentation, on page 265, for more information.

The next major subsystem to cover is Action Pack, which covers both the view

and controller portions of Rails.

Chapter 19. Active Record • 308

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 20

Action Dispatch and Action Controller

Action Pack lies at the heart of Rails applications. It consists of three Ruby

modules: ActionDispatch, ActionController, and ActionView. Action Dispatch routes

requests to controllers. Action Controller converts requests into responses.

Action View is used by Action Controller to format those responses.

As a concrete example, in the Depot application, we routed the root of the

site (/) to the index() method of the StoreController. At the completion of that

method, the template in app/views/store/index.html.erb was rendered. Each of these

activities was orchestrated by modules in the Action Pack component.

Working together, these three submodules provide support for processing

incoming requests and generating outgoing responses. In this chapter, we’ll

look at both Action Dispatch and Action Controller. In the next chapter, we

will cover Action View.

When we looked at Active Record, we saw it could be used as a freestanding

library; we can use Active Record as part of a nonweb Ruby application. Action

Pack is different. Although it is possible to use it directly as a framework, you

probably won’t. Instead, you’ll take advantage of the tight integration offered

by Rails. Components such as Action Controller, Action View, and Active

Record handle the processing of requests, and the Rails environment knits

them together into a coherent (and easy-to-use) whole. For that reason, we’ll

describe Action Controller in the context of Rails. Let’s start by looking at

how Rails applications handle requests. We’ll then dive down into the details

of routing and URL handling. We’ll continue by looking at how you write code

in a controller. Finally, we will cover sessions, flash, and callbacks.

20.1 Dispatching Requests to Controllers

At its simplest, a web application accepts an incoming request from a

browser, processes it, and sends a response.

In this chapter, we’ll see
• Representational State Transfer (REST);
• defining how requests are routed to controllers;
• selecting a data representation;
• testing routes;
• the controller environment;
• rendering and redirecting; and
• sessions, flash, and callbacks.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The first question that springs to mind is, how does the application know

what to do with the incoming request? A shopping cart application will receive

requests to display a catalog, add items to a cart, create an order, and so on.

How does it route these requests to the appropriate code?

It turns out that Rails provides two ways to define how to route a request: a

comprehensive way that you will use when you need to and a convenient way

that you will generally use whenever you can.

The comprehensive way lets you define a direct mapping of URLs to actions

based on pattern matching, requirements, and conditions. The convenient

way lets you define routes based on resources, such as the models that you

define. And because the convenient way is built on the comprehensive way,

you can freely mix and match the two approaches.

In both cases, Rails encodes information in the request URL and uses a

subsystem called Action Dispatch to determine what should be done with that

request. The actual process is very flexible, but at the end of it Rails has

determined the name of the controller that handles this particular request,

along with a list of any other request parameters. In the process, either one

of these additional parameters or the HTTP method itself is used to identify

the action to be invoked in the target controller.

Rails routes support the mapping between URLs and actions based on the

contents of the URL and on the HTTP method used to invoke the request.

We’ve seen how to do this on a URL-by-URL basis using anonymous or named

routes. Rails also supports a higher-level way of creating groups of related

routes. To understand the motivation for this, we need to take a little diversion

into the world of Representational State Transfer.

REST: Representational State Transfer

The ideas behind REST were formalized in Chapter 5 of Roy Fielding’s 2000

PhD dissertation.1 In a REST approach, servers communicate with clients

using stateless connections. All the information about the state of the inter-

action between the two is encoded into the requests and responses between

them. Long-term state is kept on the server as a set of identifiable resources.

Clients access these resources using a well-defined (and severely constrained)

set of resource identifiers (URLs in our context). REST distinguishes the

content of resources from the presentation of that content. REST is designed

to support highly scalable computing while constraining application architec-

tures to be decoupled by nature.

1. http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Chapter 20. Action Dispatch and Action Controller • 310

report erratum • discuss

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

There’s a lot of abstract stuff in this description. What does REST mean in

practice?

First, the formalities of a RESTful approach mean that network designers

know when and where they can cache responses to requests. This enables

load to be pushed out through the network, increasing performance and

resilience while reducing latency.

Second, the constraints imposed by REST can lead to easier-to-write (and

maintain) applications. RESTful applications don’t worry about implementing

remotely accessible services. Instead, they provide a regular (and simple)

interface to a set of resources. Your application implements a way of listing,

creating, editing, and deleting each resource, and your clients do the rest.

Let’s make this more concrete. In REST, we use a simple set of verbs to

operate on a rich set of nouns. If we’re using HTTP, the verbs correspond to

HTTP methods (GET, PUT, PATCH, POST, and DELETE, typically). The nouns

are the resources in our application. We name those resources using URLs.

The Depot application that we produced contained a set of products. There

are implicitly two resources here. First, there are the individual products.

Each constitutes a resource. There’s also a second resource: the collection of

products.

To fetch a list of all the products, we could issue an HTTP GET request against

this collection, say on the path /products. To fetch the contents of an individual

resource, we have to identify it. The Rails way would be to give its primary

key value (that is, its ID). Again we’d issue a GET request, this time against

the URL /products/1.

To create a new product in our collection, we use an HTTP POST request

directed at the /products path, with the post data containing the product to

add. Yes, that’s the same path we used to get a list of products. If you issue

a GET to it, it responds with a list, and if you do a POST to it, it adds a new

product to the collection.

Take this a step further. We’ve already seen you can retrieve the content of

a product—you just issue a GET request against the path /products/1. To update

that product, you’d issue an HTTP PUT request against the same URL. And,

to delete it, you could issue an HTTP DELETE request, again using the same

URL.

Take this further. Maybe our system also tracks users. Again, we have a set

of resources to deal with. REST tells us to use the same set of verbs (GET,

report erratum • discuss

Dispatching Requests to Controllers • 311

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

POST, PATCH, PUT, and DELETE) against a similar-looking set of URLs (/users,
/users/1, and so on).

Now we see some of the power of the constraints imposed by REST. We’re

already familiar with the way Rails constrains us to structure our applications

a certain way. Now the REST philosophy tells us to structure the interface to

our applications too. Suddenly our world gets a lot simpler.

Rails has direct support for this type of interface; it adds a kind of macro

route facility, called resources. Let’s take a look at how the config/routes.rb file
might have looked back in Creating a Rails Application, on page 61.

Depot::Application.routes.draw do
➤ resources :products

end

The resources line caused seven new routes to be added to our application.

Along the way, it assumed that the application will have a controller named

ProductsController, containing seven actions with given names.

You can take a look at the routes that were generated for us. We do this by

making use of the handy rake routes command.

Prefix Verb URI Pattern
Controller#Action

products GET /products(.:format)
{:action=>"index", :controller=>"products"}

POST /products(.:format)
{:action=>"create", :controller=>"products"}

new_product GET /products/new(.:format)
{:action=>"new", :controller=>"products"}

edit_product GET /products/:id/edit(.:format)
{:action=>"edit", :controller=>"products"}

product GET /products/:id(.:format)
{:action=>"show", :controller=>"products"}

PATCH /products/:id(.:format)
{:action=>"update", :controller=>"products"}

DELETE /products/:id(.:format)
{:action=>"destroy", :controller=>"products"}

All the routes defined are spelled out in a columnar format. The lines will

generally wrap on your screen; in fact, they had to be broken into two lines

per route to fit on this page. The columns are (optional) route name, HTTP

method, route path, and (on a separate line on this page) route requirements.

Fields in parentheses are optional parts of the path. Field names preceded

by a colon are for variables into which the matching part of the path is placed

for later processing by the controller.

Chapter 20. Action Dispatch and Action Controller • 312

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Now let’s look at the seven controller actions that these routes reference.

Although we created our routes to manage the products in our application,

let’s broaden this to talk about resources—after all, the same seven methods

will be required for all resource-based routes.

index
Returns a list of the resources.

create
Creates a new resource from the data in the POST request, adding it to

the collection.

new
Constructs a new resource and passes it to the client. This resource will

not have been saved on the server. You can think of the new action as

creating an empty form for the client to fill in.

show
Returns the contents of the resource identified by params[:id].

update
Updates the contents of the resource identified by params[:id] with the data

associated with the request.

edit
Returns the contents of the resource identified by params[:id] in a form

suitable for editing.

destroy
Destroys the resource identified by params[:id].

You can see that these seven actions contain the four basic CRUD operations

(create, read, update, and delete). They also contain an action to list resources

and two auxiliary actions that return new and existing resources in a form

suitable for editing on the client.

If for some reason you don’t need or want all seven actions, you can limit the

actions produced using :only or :except options on your resources.

resources :comments, except: [:update, :destroy]

Several of the routes are named routes enabling you to use helper functions

such as products_url and edit_product_url(id:1).

Note that each route is defined with an optional format specifier. We will

cover formats in more detail in Selecting a Data Representation, on page 318.

Let’s take a look at the controller code:

report erratum • discuss

Dispatching Requests to Controllers • 313

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_a/app/controllers/products_controller.rb

class ProductsController < ApplicationController
before_action :set_product, only: [:show, :edit, :update, :destroy]
GET /products
GET /products.json
def index
@products = Product.all

end

GET /products/1
GET /products/1.json
def show
end

GET /products/new
def new
@product = Product.new

end

GET /products/1/edit
def edit
end

POST /products
POST /products.json
def create
@product = Product.new(product_params)

respond_to do |format|
if @product.save

format.html { redirect_to @product,
notice: 'Product was successfully created.' }

format.json { render action: 'show', status: :created,
location: @product }

else
format.html { render action: 'new' }
format.json { render json: @product.errors,
status: :unprocessable_entity }

end
end

end

PATCH/PUT /products/1
PATCH/PUT /products/1.json
def update
respond_to do |format|
if @product.update(product_params)

format.html { redirect_to @product,
notice: 'Product was successfully updated.' }

format.json { head :no_content }

Chapter 20. Action Dispatch and Action Controller • 314

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_a/app/controllers/products_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

else
format.html { render action: 'edit' }
format.json { render json: @product.errors,
status: :unprocessable_entity }

end
end

end

DELETE /products/1
DELETE /products/1.json
def destroy
@product.destroy
respond_to do |format|

format.html { redirect_to products_url }
format.json { head :no_content }

end
end

private
Use callbacks to share common setup or constraints between actions.
def set_product

@product = Product.find(params[:id])
end

Never trust parameters from the scary internet, only allow the white
list through.
def product_params

params.require(:product).permit(:title, :description, :image_url, :price)
end

end

Notice how we have one action for each of the RESTful actions. The comment

before each shows the format of the URL that invokes it.

Notice also that many of the actions contain a respond_to() block. As we saw

in Chapter 11, Task F: Add a Dash of Ajax, on page 135, Rails uses this to

determine the type of content to send in a response. The scaffold generator

automatically creates code that will respond appropriately to requests for

HTML or JSON content. We’ll play with that in a little while.

The views created by the generator are fairly straightforward. The only tricky

thing is the need to use the correct HTTP method to send requests to the

server. For example, the view for the index action looks like this:

Download rails40/depot_a/app/views/products/index.html.erb

<h1>Listing products</h1>

<table>
<% @products.each do |product| %>

<tr class="<%= cycle('list_line_odd', 'list_line_even') %>">

report erratum • discuss

Dispatching Requests to Controllers • 315

http://media.pragprog.com/titles/rails4/code/rails40/depot_a/app/views/products/index.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<td>
<%= image_tag(product.image_url, class: 'list_image') %>

</td>
<td class="list_description">
<dl>

<dt><%= product.title %></dt>
<dd><%= truncate(strip_tags(product.description), length: 80) %></dd>

</dl>
</td>
<td class="list_actions">

<%= link_to 'Show', product %>

<%= link_to 'Edit', edit_product_path(product) %>

<%= link_to 'Destroy', product, method: :delete,

data: { confirm: 'Are you sure?' } %>
</td>

</tr>
<% end %>
</table>

<%= link_to 'New product', new_product_path %>

The links to the actions that edit a product and add a new product should

both use regular GET methods, so a standard link_to works fine. However, the

request to destroy a product must issue an HTTP DELETE, so the call includes

the method: :delete option to link_to.

Adding Additional Actions

Rails resources provide you with an initial set of actions, but you don’t need

to stop there. In Section 12.2, Iteration G2: Atom Feeds, on page 172, we added

an interface to allow people to fetch a list of people who bought any given

product. To do that with Rails, we use an extension to the resources call.

Depot::Application.routes.draw do
resources :products do
get :who_bought, on: :member

end
end

That syntax is straightforward. It says “We want to add a new action named

who_bought, invoked via an HTTP GET. It applies to each member of the collec-

tion of products.”

Instead of specifying :member, if we instead specified :collection, then the route

would apply to the collection as a whole. This is often used for scoping; for

example, you may have collections of products on clearance or products that

have been discontinued.

Chapter 20. Action Dispatch and Action Controller • 316

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Nested Resources

Often our resources themselves contain additional collections of resources.

For example, we may want to allow folks to review our products. Each review

would be a resource, and collections of review would be associated with each

product resource.

Rails provides a convenient and intuitive way of declaring the routes for this

type of situation.

resources :products do
resources :reviews

end

This defines the top-level set of product routes and additionally creates a set

of subroutes for reviews. Because the review resources appear inside the

products block, a review resource must be qualified by a product resource.

This means that the path to a review must always be prefixed by the path to

a particular product. To fetch the review with ID 4 for the product with an ID

of 99, you’d use a path of /products/99/reviews/4.

The named route for /products/:product_id/reviews/:id is product_review, not simply

review. This naming simply reflects the nesting of these resources.

As always, you can see the full set of routes generated by our configuration

by using the rake routes command.

Routing Concerns

So far, we have been dealing with a fairly small set of resources. On a larger

system there may be types of objects for which a review may be appropriate

or to which a who_bought action might reasonably be applied. Instead of

repeating these instructions for each resource, consider refactoring your

routes using concerns to capture the common behavior.

concern :reviewable do
resources :reviews

end

resources :products, concern: :reviewable
resources :users, concern: :reviewable

The preceding definition of the products resource is equivalent to the one in the

previous section.

Shallow Route Nesting

At times, nested resources can produce cumbersome URLs. A solution to this

is to use shallow route nesting.

report erratum • discuss

Dispatching Requests to Controllers • 317

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

resources :products, shallow: true do
resources :reviews

end

This will enable the recognition of the following routes:

/products/1 => product_path(1)
/products/1/reviews => product_reviews_index_path(1)
/reviews/2 => reviews_path(2)

Try the rake routes command to see the full mapping.

Selecting a Data Representation

One of the goals of a REST architecture is to decouple data from its represen-

tation. If a human uses the URL path /products to fetch some products, they

should see nicely formatted HTML. If an application asks for the same URL,

it could elect to receive the results in a code-friendly format (YAML, JSON,

or XML, perhaps).

We’ve already seen how Rails can use the HTTP Accept header in a respond_to
block in the controller. However, it isn’t always easy (and sometimes it’s plain

impossible) to set the Accept header. To deal with this, Rails allows you to

pass the format of response you’d like as part of the URL. As you have seen,

Rails accomplishes this by including a field called :format in your route defini-

tions. To do this, set a :format parameter in your routes to the file extension

of the MIME type you’d like returned.

GET /products(.:format)
{:action=>"index", :controller=>"products"}

Because a full stop (period) is a separator character in route definitions, :format
is treated as just another field. Because we give it a nil default value, it’s an

optional field.

Having done this, we can use a respond_to() block in our controllers to select

our response type depending on the requested format.

def show
respond_to do |format|
format.html
format.xml { render xml: @product.to_xml }
format.yaml { render text: @product.to_yaml }

end
end

Given this, a request to /store/show/1 or /store/show/1.html will return HTML content,

while /store/show/1.xml will return XML, and /store/show/1.yaml will return YAML.

You can also pass the format in as an HTTP request parameter.

Chapter 20. Action Dispatch and Action Controller • 318

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

GET HTTP://pragprog.com/store/show/123?format=xml

The routes defined by resources have this facility enabled by default.

Although the idea of having a single controller that responds with different

content types seems appealing, the reality is tricky. In particular, it turns out

that error handling can be tough. Although it’s acceptable on error to redirect

a user to a form, showing them a nice flash message, you have to adopt a

different strategy when you serve XML. Consider your application architecture

carefully before deciding to bundle all your processing into single controllers.

Rails makes it simple to develop an application that is based on resource-

based routing. Many claim it greatly simplifies the coding of their applications.

However, it isn’t always appropriate. Don’t feel compelled to use it if you can’t

find a way of making it work. And you can always mix and match. Some

controllers can be resource based, and others can be based on actions. Some

controllers can even be resource based with a few extra actions.

20.2 Processing of Requests

In the previous section, we worked out how Action Dispatch routes an

incoming request to the appropriate code in your application. Now let’s see

what happens inside that code.

Action Methods

When a controller object processes a request, it looks for a public instance

method with the same name as the incoming action. If it finds one, that

method is invoked. If it doesn’t find one and the controller implements

method_missing(), that method is called, passing in the action name as the first

parameter and an empty argument list as the second. If no method can be

called, the controller looks for a template named after the current controller

and action. If found, this template is rendered directly. If none of these things

happens, an AbstractController::ActionNotFound error is generated.

Controller Environment

The controller sets up the environment for actions (and, by extension, for the

views that they invoke). Many of these methods provide direct access to

information contained in the URL or request.

action_name
The name of the action currently being processed.

report erratum • discuss

Processing of Requests • 319

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

cookies
The cookies associated with the request. Setting values into this object

stores cookies on the browser when the response is sent. Rails support

for sessions is based on cookies. We discuss sessions in Rails Sessions,

on page 331.

headers
A hash of HTTP headers that will be used in the response. By default,

Cache-Control is set to no-cache. You might want to set Content-Type headers for

special-purpose applications. Note that you shouldn’t set cookie values

in the header directly—use the cookie API to do this.

params
A hash-like object containing request parameters (along with pseudopa-

rameters generated during routing). It’s hash-like because you can index

entries using either a symbol or a string—params[:id] and params['id'] return

the same value. Idiomatic Rails applications use the symbol form.

request
The incoming request object. It includes these attributes:

• request_method returns the request method, one of :delete, :get, :head, :post,
or :put.

• method returns the same value as request_method except for :head, which

it returns as :get because these two are functionally equivalent from

an application point of view.

• delete?, get?, head?, post?, and put? return true or false based on the request

method.

• xml_http_request? and xhr? return true if this request was issued by one

of the Ajax helpers. Note that this parameter is independent of the

method parameter.

• url(), which returns the full URL used for the request.

• protocol(), host(), port(), path(), and query_string(), which return components

of the URL used for the request, based on the following pattern: proto-
col://host:port/path?query_string.

• domain(), which returns the last two components of the domain name

of the request.

• host_with_port(), which is a host:port string for the request.

Chapter 20. Action Dispatch and Action Controller • 320

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• port_string(), which is a :port string for the request if the port is not the

default port (80 for HTTP, 443 for HTTPS).

• ssl?(), which is true if this is an SSL request; in other words, the request

was made with the HTTPS protocol.

• remote_ip(), which returns the remote IP address as a string. The string

may have more than one address in it if the client is behind a proxy.

• env(), the environment of the request. You can use this to access values

set by the browser, such as this:

request.env['HTTP_ACCEPT_LANGUAGE']

• accepts(), which is an array with Mime::Type objects that represent the

MIME types in the Accept header.

• format(), which is computed based on the value of the Accept header,

with Mime::HTML as a fallback.

• content_type(), which is the MIME type for the request. This is useful for

put and post requests.

• headers(), which is the complete set of HTTP headers.

• body(), which is the request body as an I/O stream.

• content_length(), which is the number of bytes purported to be in the

body.

Rails leverages a gem named Rack to provide much of this functionality.

See the documentation of Rack::Request for full details.

response
The response object, filled in during the handling of the request. Normally,

this object is managed for you by Rails. As we’ll see when we look at

callbacks in Callbacks, on page 337, we sometimes access the internals

for specialized processing.

session
A hash-like object representing the current session data. We describe this

in Rails Sessions, on page 331.

In addition, a logger is available throughout Action Pack.

Responding to the User

Part of the controller’s job is to respond to the user. There are basically four

ways of doing this.

report erratum • discuss

Processing of Requests • 321

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• The most common way is to render a template. In terms of the MVC

paradigm, the template is the view, taking information provided by the

controller and using it to generate a response to the browser.

• The controller can return a string directly to the browser without invoking

a view. This is fairly rare but can be used to send error notifications.

• The controller can return nothing to the browser. This is sometimes used

when responding to an Ajax request. In all cases, however, the controller

returns a set of HTTP headers, because some kind of response is expected.

• The controller can send other data to the client (something other than

HTML). This is typically a download of some kind (perhaps a PDF docu-

ment or a file’s contents).

A controller always responds to the user exactly one time per request. This

means you should have just one call to a render(), redirect_to(), or send_xxx ()
method in the processing of any request. (A DoubleRenderError exception is thrown

on the second render.)

Because the controller must respond exactly once, it checks to see whether

a response has been generated just before it finishes handling a request. If

not, the controller looks for a template named after the controller and action

and automatically renders it. This is the most common way that rendering

takes place. You may have noticed that in most of the actions in our shopping

cart tutorial we never explicitly rendered anything. Instead, our action

methods set up the context for the view and return. The controller notices

that no rendering has taken place and automatically invokes the appropriate

template.

You can have multiple templates with the same name but with different

extensions (for example, .html.erb, .xml.builder, and .js.coffee). If you don’t specify

an extension in a render request, Rails assumes html.erb.

Rendering Templates

A template is a file that defines the content of a response for our application. Rails

supports three template formats out of the box: erb, which is embedded Ruby

code (typically with HTML); builder, a more programmatic way of constructing

XML content; and RJS, which generates JavaScript. We’ll talk about the contents

of these files starting in Section 21.1, Using Templates, on page 341.

By convention, the template for action action of controller controller will be in the

file app/views/controller/action.type.xxx (where type is the file type, such as html, atom, or

js; and xxx is one of erb, builder, coffee or scss). The app/views part of the name is the

default. You can override this for an entire application by setting this:

Chapter 20. Action Dispatch and Action Controller • 322

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

ActionController.prepend_view_path dir_path

The render() method is the heart of all rendering in Rails. It takes a hash of

options that tell it what to render and how to render it.

It is tempting to write code in our controllers that looks like this:

DO NOT DO THIS
def update

@user = User.find(params[:id])
if @user.update(user_params)
render action: show

end
render template: "fix_user_errors"

end

It seems somehow natural that the act of calling render (and redirect_to) should

somehow terminate the processing of an action. This is not the case. The

previous code will generate an error (because render is called twice) in the case

where update succeeds.

Let’s look at the render options used in the controller here (we’ll look separately

at rendering in the view starting in Partial-Page Templates, on page 363):

render()
With no overriding parameter, the render() method renders the default

template for the current controller and action. The following code will

render the template app/views/blog/index.html.erb:

class BlogController < ApplicationController
def index

render
end

end

So will the following (as the default behavior of a controller is to call render()
if the action doesn’t):

class BlogController < ApplicationController
def index
end

end

And so will this (because the controller will call a template directly if no

action method is defined):

class BlogController < ApplicationController
end

report erratum • discuss

Processing of Requests • 323

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

render(text: string)
Sends the given string to the client. No template interpretation or HTML

escaping is performed.

class HappyController < ApplicationController
def index

render(text: "Hello there!")
end

end

render(inline: string, [type: "erb"|"builder"|"coffee"|"scss"], [locals: hash])
Interprets string as the source to a template of the given type, rendering

the results back to the client. You can use the :locals hash to set the values

of local variables in the template.

The following code adds method_missing() to a controller if the application

is running in development mode. If the controller is called with an invalid

action, this renders an inline template to display the action’s name and

a formatted version of the request parameters.

class SomeController < ApplicationController

if RAILS_ENV == "development"
def method_missing(name, *args)

render(inline: %{
<h2>Unknown action: #{name}</h2>
Here are the request parameters:

<%= debug(params) %> })

end
end

end

render(action: action_name)
Renders the template for a given action in this controller. Sometimes folks

use the :action form of render() when they should use redirects. See the

discussion starting in Redirects, on page 327, for why this is a bad idea.

def display_cart
if @cart.empty?
render(action: :index)

else
...

end
end

Note that calling render(:action...) does not call the action method; it simply

displays the template. If the template needs instance variables, these

must be set up by the method that calls the render() method.

Chapter 20. Action Dispatch and Action Controller • 324

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Let’s repeat this, because this is a mistake that beginners often make:

calling render(:action...) does not invoke the action method. It simply renders

that action’s default template.

render(template: name, [locals: hash])
Renders a template and arranges for the resulting text to be sent back to

the client. The :template value must contain both the controller and action

parts of the new name, separated by a forward slash. The following code

will render the template app/views/blog/short_list:

class BlogController < ApplicationController
def index

render(template: "blog/short_list")
end

end

render(file: path)
Renders a view that may be entirely outside of your application (perhaps

one shared with another Rails application). By default, the file is rendered

without using the current layout. This can be overridden with layout: true.

render(partial: name, …)
Renders a partial template. We talk about partial templates in depth in

Partial-Page Templates, on page 363.

render(nothing: true)
Returns nothing—sends an empty body to the browser.

render(xml: stuff)
Renders stuff as text, forcing the content type to be application/xml.

render(json: stuff, [callback: hash])
Renders stuff as JSON, forcing the content type to be application/json.
Specifying :callback will cause the result to be wrapped in a call to the

named callback function.

render(:update) do |page| ... end
Renders the block as an RJS template, passing in the page object.

render(:update) do |page|
page[:cart].replace_html partial: 'cart', object: @cart
page[:cart].visual_effect :blind_down if @cart.total_items == 1

end

All forms of render() take optional :status, :layout, and :content_type parameters.

The :status parameter provides the value used in the status header in the HTTP

report erratum • discuss

Processing of Requests • 325

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

response. It defaults to "200 OK". Do not use render() with a 3xx status to do

redirects; Rails has a redirect() method for this purpose.

The :layout parameter determines whether the result of the rendering will be

wrapped by a layout. (We first came across layouts in Section 8.2, Iteration

C2: Adding a Page Layout, on page 96. We’ll look at them in depth starting

in Section 21.6, Reducing Maintenance with Layouts and Partials, on page 358.)

If the parameter is false, no layout will be applied. If set to nil or true, a layout

will be applied only if there is one associated with the current action. If the

:layout parameter has a string as a value, it will be taken as the name of the

layout to use when rendering. A layout is never applied when the :nothing option

is in effect.

The :content_type parameter lets you specify a value that will be passed to the

browser in the Content-Type HTTP header.

Sometimes it is useful to be able to capture what would otherwise be sent to

the browser in a string. The render_to_string() method takes the same parameters

as render() but returns the result of rendering as a string—the rendering is not

stored in the response object and so will not be sent to the user unless you

take some additional steps.

Calling render_to_string does not count as a real render. You can invoke the real

render method later without getting a DoubleRender error.

Sending Files and Other Data

We’ve looked at rendering templates and sending strings in the controller.

The third type of response is to send data (typically, but not necessarily, file

contents) to the client.

send_data

Sends a string containing binary data to the client.

send_data(data, options…)

Sends a data stream to the client. Typically the browser will use a combination

of the content type and the disposition, both set in the options, to determine

what to do with this data.

def sales_graph
png_data = Sales.plot_for(Date.today.month)
send_data(png_data, type: "image/png", disposition: "inline")

end

Chapter 20. Action Dispatch and Action Controller • 326

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Options:

Suggests to the browser that the file should be displayed inline (option

inline) or downloaded and saved (option attachment, the default).

string:disposition

A suggestion to the browser of the default filename to use when saving

this data.

string:filename

The status code (defaults to "200 OK").string:status

The content type, defaulting to application/octet-stream.string:type

If true and :filename are not set, this option prevents Rails from providing

the basename of the file in the Content-Disposition header. Specifying

boolean:url_based_filename

the basename of the file is necessary in order to make some browsers

handle i18n filenames correctly.

send_file

Sends the contents of a file to the client.

send_file(path, options…)

Sends the given file to the client. The method sets the Content-Length, Con-

tent-Type, Content-Disposition, and Content-Transfer-Encoding headers.

Options:

The amount sent to the browser in each write if streaming is enabled (:stream
is true).

number:buffer_size

Suggests to the browser that the file should be displayed inline (option inline)
or downloaded and saved (option attachment, the default).

string:disposition

A suggestion to the browser of the default filename to use when saving the

file. If not set, defaults to the filename part of path.

string:filename

The status code (defaults to "200 OK").string:status

If false, the entire file is read into server memory and sent to the client.

Otherwise, the file is read and written to the client in :buffer_size chunks.

true or false:stream

The content type, defaulting to application/octet-stream.string:type

You can set additional headers for either send_ method by using the headers
attribute in the controller.

def send_secret_file
send_file("/files/secret_list")
headers["Content-Description"] = "Top secret"

end

We show how to upload files starting in Section 21.4, Uploading Files to Rails

Applications, on page 348.

Redirects

An HTTP redirect is sent from a server to a client in response to a request. In

effect, it says, “I’m done processing this request, and you should go here to

report erratum • discuss

Processing of Requests • 327

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

see the results.” The redirect response includes a URL that the client should

try next along with some status information saying whether this redirection

is permanent (status code 301) or temporary (307). Redirects are sometimes

used when web pages are reorganized; clients accessing pages in the old

locations will get referred to the page’s new home. More commonly, Rails

applications use redirects to pass the processing of a request off to some

other action.

Redirects are handled behind the scenes by web browsers. Normally, the only

way you’ll know that you’ve been redirected is a slight delay and the fact that

the URL of the page you’re viewing will have changed from the one you

requested. This last point is important—as far as the browser is concerned,

a redirect from a server acts pretty much the same as having an end user

enter the new destination URL manually.

Redirects turn out to be important when writing well-behaved web applica-

tions. Let’s look at a simple blogging application that supports comment

posting. After a user has posted a comment, our application should redisplay

the article, presumably with the new comment at the end.

It’s tempting to code this using logic such as the following:

class BlogController
def display
@article = Article.find(params[:id])

end

def add_comment
@article = Article.find(params[:id])
comment = Comment.new(params[:comment])
@article.comments << comment
if @article.save
flash[:note] = "Thank you for your valuable comment"

else
flash[:note] = "We threw your worthless comment away"

end
DON'T DO THIS
render(action: 'display')

end
end

The intent here was clearly to display the article after a comment has been

posted. To do this, the developer ended the add_comment() method with a call

to render(action:'display'). This renders the display view, showing the updated article

to the end user. But think of this from the browser’s point of view. It sends

a URL ending in blog/add_comment and gets back an index listing. As far as the

browser is concerned, the current URL is still the one that ends in

Chapter 20. Action Dispatch and Action Controller • 328

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

blog/add_comment. This means that if the user hits Refresh or Reload (perhaps

to see whether anyone else has posted a comment), the add_comment URL will

be sent again to the application. The user intended to refresh the display, but

the application sees a request to add another comment. In a blog application,

this kind of unintentional double entry is inconvenient. In an online store, it

can get expensive.

In these circumstances, the correct way to show the added comment in the

index listing is to redirect the browser to the display action. We do this using

the Rails redirect_to() method. If the user subsequently hits Refresh, it will

simply reinvoke the display action and not add another comment.

def add_comment
@article = Article.find(params[:id])
comment = Comment.new(params[:comment])
@article.comments << comment
if @article.save
flash[:note] = "Thank you for your valuable comment"

else
flash[:note] = "We threw your worthless comment away"

end
➤ redirect_to(action: 'display')

end

Rails has a simple yet powerful redirection mechanism. It can redirect to an

action in a given controller (passing parameters), to a URL (on or off the cur-

rent server), or to the previous page. Let’s look at these three forms in turn.

redirect_to(action: ..., options…)
Sends a temporary redirection to the browser based on the values in the

options hash. The target URL is generated using url_for(), so this form of

redirect_to() has all the smarts of Rails routing code behind it.

redirect_to(path)
Redirects to the given path. If the path does not start with a protocol (such

as http://), the protocol and port of the current request will be prepended.

This method does not perform any rewriting on the URL, so it should not

be used to create paths that are intended to link to actions in the applica-

tion (unless you generate the path using url_for or a named route URL

generator).

def save
order = Order.new(params[:order])
if order.save
redirect_to action: "display"

else
session[:error_count] ||= 0

report erratum • discuss

Processing of Requests • 329

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

session[:error_count] += 1
if session[:error_count] < 4
self.notice = "Please try again"

else
Give up -- user is clearly struggling
redirect_to("/help/order_entry.html")

end
end

end

redirect_to(:back)
Redirects to the URL given by the HTTP_REFERER header in the current

request.

def save_details
unless params[:are_you_sure] == 'Y'

redirect_to(:back)
else

...
end

end

By default all redirections are flagged as temporary (they will affect only the

current request). When redirecting to a URL, it’s possible you might want to

make the redirection permanent. In that case, set the status in the response

header accordingly.

headers["Status"] = "301 Moved Permanently"
redirect_to("http://my.new.home")

Because redirect methods send responses to the browser, the same rules

apply as for the rendering methods—you can issue only one per request.

So far, we have been looking at requests and responses in isolation. Rails

also provides a number of mechanisms that span requests.

20.3 Objects and Operations That Span Requests

While the bulk of the state that persists across requests belongs in the

database and is accessed via Active Record, some other bits of state have

different life spans and need to be managed differently. In the Depot applica-

tion, while the Cart itself was stored in the database, knowledge of which cart

is the current cart was managed by sessions. Flash notices were used to

communicate simple messages such as “Can’t delete the last user” to the next

request after a redirect. And callbacks were used to extract locale data from

the URLs themselves.

In this section, we will explore each of these mechanisms in turn.

Chapter 20. Action Dispatch and Action Controller • 330

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Rails Sessions

A Rails session is a hash-like structure that persists across requests. Unlike

raw cookies, sessions can hold any objects (as long as those objects can be

marshal

↪ on page 48

marshaled), which makes them ideal for holding state information in web

applications. For example, in our store application, we used a session to hold

the shopping cart object between requests. The Cart object could be used in

our application just like any other object. But Rails arranged things such

that the cart was saved at the end of handling each request and, more

important, that the correct cart for an incoming request was restored when

Rails started to handle that request. Using sessions, we can pretend that our

application stays around between requests.

And that leads to an interesting question: exactly where does this data stay

around between requests? One choice is for the server to send it down to the

client as a cookie. This is the default for Rails 4. It places limitations on the

size and increases the bandwidth but means that there is less for the server

to manage and clean up. Note that the contents are (by default) encrypted,

which means that users can neither see nor tamper with the contents.

The other option is to store the data on the server. There are two parts to this.

First, Rails has to keep track of sessions. It does this by creating (by default)

a 32-hex character key (which means there are 1632 possible combinations).

This key is called the session ID, and it’s effectively random. Rails arranges

to store this session ID as a cookie (with the key _session_id) on the user’s

browser. Because subsequent requests come into the application from this

browser, Rails can recover the session ID.

Second, Rails keeps a persistent store of session data on the server, indexed

by the session ID. When a request comes in, Rails looks up the data store

using the session ID. The data that it finds there is a serialized Ruby object.

It deserializes this and stores the result in the controller’s session attribute,

where the data is available to our application code. The application can add

to and modify this data to its heart’s content. When it finishes processing

each request, Rails writes the session data back into the data store. There it

sits until the next request from this browser comes along.

What should you store in a session? You can store anything you want, subject

to a few restrictions and caveats.

• There are some restrictions on what kinds of object you can store in a

session. The details depend on the storage mechanism you choose (which

we’ll look at shortly). In the general case, objects in a session must be

report erratum • discuss

Objects and Operations That Span Requests • 331

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

David says:

The Wonders of a Cookie-Based Session

The default Rails session store sounds like a crazy idea when you hear it at first.

You’re going to actually store the values on the client?! But what if I want to store

the nuclear launch codes in the session and I can’t have the client actually knowing

them?

Yes, the default store is not suitable for storing secrets you need to keep from the

client. But that’s actually a valuable constraint that’ll lead you to avoid the perils of

keeping complex objects that can go out of date in the session. And the paper dragon

of the nuclear launch codes is pretty much never a real, relevant concern.

Neither is the size constraint. Cookies can be only about 4KB big, so you can’t stuff

them with all sorts of malarkey. That again fits the best practices of storing only ref-

erences, like a cart_id, not the actual cart.

The key security concern you should be worried about is whether the client is actu-

ally able to change the session. You want to ensure the integrity of the values that

you put. It’d be no good if the client could change his cart_id from a 5 to an 8 and get

someone else’s cart. Thankfully, Rails protects you against exactly this case by signing

the session and raising an exception that warns of the tampering if it doesn’t match.

The benefits you get back is that there is no load on the database from fetching and

saving the session on every request, and there are no cleanup duties either. If you

keep your session on the filesystem or in the database, you’ll have to deal with how

to clean up stale sessions, which is a real hassle. No one likes to be on cleanup duty.

The cookie-based sessions know how to clean up after themselves. What’s not to love

about that?

serialize

↪ on page 48

serializable (using Ruby’s Marshal functions). This means, for example, that

you cannot store an I/O object in a session.

• If you store any Rails model objects in a session, you’ll have to add model
declarations for them. This causes Rails to preload the model class so

that its definition is available when Ruby comes to deserialize it from the

session store. If the use of the session is restricted to just one controller,

this declaration can go at the top of that controller.

class BlogController < ApplicationController

model :user_preferences

. . .

However, if the session might get read by another controller (which is

likely in any application with multiple controllers), you’ll probably want

to add the declaration to application_controller.rb in app/controllers.

Chapter 20. Action Dispatch and Action Controller • 332

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• You probably don’t want to store massive objects in session data—put

them in the database, and reference them from the session. This is par-

ticularly true for cookie-based sessions, where the overall limit is 4KB.

• You probably don’t want to store volatile objects in session data. For

example, you might want to keep a tally of the number of articles in a

blog and store that in the session for performance reasons. But, if you do

that, the count won’t get updated if some other user adds an article.

It is tempting to store objects representing the currently logged-in user

in session data. This might not be wise if your application needs to be

able to invalidate users. Even if a user is disabled in the database, their

session data will still reflect a valid status.

Store volatile data in the database, and reference it from the session

instead.

• You probably don’t want to store critical information solely in session

data. For example, if your application generates an order confirmation

number in one request and stores it in session data so that it can be saved

to the database when the next request is handled, you risk losing that

number if the user deletes the cookie from their browser. Critical informa-

tion needs to be in the database.

There’s one more caveat, and it’s a big one. If you store an object in session

data, then the next time you come back to that browser, your application will

end up retrieving that object. However, if in the meantime you’ve updated

your application, the object in session data may not agree with the definition

of that object’s class in your application, and the application will fail while

processing the request. There are three options here. One is to store the object

in the database using conventional models and keep just the ID of the row

in the session. Model objects are far more forgiving of schema changes than

the Ruby marshaling library. The second option is to manually delete all the

session data stored on your server whenever you change the definition of a

class stored in that data.

The third option is slightly more complex. If you add a version number to

your session keys and change that number whenever you update the stored

data, you’ll only ever load data that corresponds with the current version of

the application. You can potentially version the classes whose objects are

stored in the session and use the appropriate classes depending on the session

keys associated with each request. This last idea can be a lot of work, so you’ll

need to decide whether it’s worth the effort.

report erratum • discuss

Objects and Operations That Span Requests • 333

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Because the session store is hash-like, you can save multiple objects in it,

each with its own key.

There is no need to also disable sessions for particular actions. Because ses-

sions are lazily loaded, simply don’t reference a session in any action in which

you don’t need a session.

Session Storage

Rails has a number of options when it comes to storing your session data.

Each has good and bad points. We’ll start by listing the options and then

compare them at the end.

The session_store attribute of ActionController::Base determines the session storage

mechanism—set this attribute to a class that implements the storage strategy.

This class must be defined in the ActiveSupport::Cache::Store module. You use

symbols to name the session storage strategy; the symbol is converted into

a CamelCase class name.

session_store = :cookie_store
This is the default session storage mechanism used by Rails, starting

with version 2.0. This format represents objects in their marshaled form,

which allows any serializable data to be stored in sessions but is limited

to 4KB total. This is the option we used in the Depot application.

session_store = :active_record_store
You can use the activerecord-session_store gem2 to store your session data in

your application’s database using ActiveRecordStore.

session_store = :drb_store
DRb is a protocol that allows Ruby processes to share objects over a net-

work connection. Using the DRbStore database manager, Rails stores

session data on a DRb server (which you manage outside the web appli-

cation). Multiple instances of your application, potentially running on

distributed servers, can access the same DRb store. DRb uses Marshal to
serialize objects.

session_store = :mem_cache_store
memcached is a freely available, distributed object caching system main-

tained by Dormando.3 memcached is more complex to use than the other

alternatives and is probably interesting only if you are already using it

for other reasons at your site.

2. https://github.com/rails/activerecord-session_store#installation

3. http://memcached.org/

Chapter 20. Action Dispatch and Action Controller • 334

report erratum • discuss

https://github.com/rails/activerecord-session_store#installation
http://memcached.org/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

session_store = :memory_store
This option stores the session data locally in the application’s memory.

Because no serialization is involved, any object can be stored in an

in-memory session. As we’ll see in a minute, this generally is not a good

idea for Rails applications.

session_store = :file_store
Session data is stored in flat files. It’s pretty much useless for Rails

applications, because the contents must be strings. This mechanism

supports the additional configuration options :prefix, :suffix, and :tmpdir.

Comparing Session Storage Options

With all these session options to choose from, which should you use in your

application? As always, the answer is “It depends.”

There are few absolutes when it comes to performance, and everyone’s context

is different. Your hardware, network latencies, database choices, and possibly

even the weather will impact how all the components of session storage

interact. Our best advice is to start with the simplest workable solution and

then monitor it. If it starts to slow you down, find out why before jumping

out of the frying pan.

If you have a high-volume site, keeping the size of the session data small and

going with cookie_store is the way to go.

If we rule out memory store as being too simplistic, file store as too restrictive,

and memcached as overkill, the server-side choices boil down to CookieStore,

Active Record store, and DRb-based storage. Should you need to store more

in a session than you can with cookies, we recommend you start with an

Active Record solution. If, as your application grows, you find this becoming

a bottleneck, you can migrate to a DRb-based solution.

Session Expiry and Cleanup

One problem with all the server-side session storage solutions is that each

new session adds something to the session store. This means you’ll eventually

need to do some housekeeping or you’ll run out of server resources.

There’s another reason to tidy up sessions. Many applications don’t want a

session to last forever. Once a user has logged in from a particular browser,

the application might want to enforce a rule that the user stays logged in only

as long as they are active; when they log out or some fixed time after they

last use the application, their session should be terminated.

report erratum • discuss

Objects and Operations That Span Requests • 335

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

You can sometimes achieve this effect by expiring the cookie holding the

session ID. However, this is open to end-user abuse. Worse, it is hard to

synchronize the expiry of a cookie on the browser with the tidying up of the

session data on the server.

We therefore suggest you expire sessions by simply removing their server-side

session data. Should a browser request subsequently arrive containing a

session ID for data that has been deleted, the application will receive no ses-

sion data; the session will effectively not be there.

Implementing this expiration depends on the storage mechanism being used.

For Active Record–based session storage, use the updated_at columns in the

sessions table. You can delete all sessions that have not been modified in the

last hour (ignoring daylight saving time changes) by having your sweeper task

issue SQL such as this:

delete from sessions
where now() - updated_at > 3600;

For DRb-based solutions, expiry takes place within the DRb server process.

You’ll probably want to record timestamps alongside the entries in the session

data hash. You can run a separate thread (or even a separate process) that

periodically deletes the entries in this hash.

In all cases, your application can help this process by calling reset_session() to
delete sessions when they are no longer needed (for example, when a user

logs out).

Flash: Communicating Between Actions

When we use redirect_to() to transfer control to another action, the browser

generates a separate request to invoke that action. That request will be han-

dled by our application in a fresh instance of a controller object—instance

variables that were set in the original action are not available to the code

handling the redirected action. But sometimes we need to communicate

between these two instances. We can do this using a facility called the flash.

The flash is a temporary scratchpad for values. It is organized like a hash

and stored in the session data, so you can store values associated with keys

and later retrieve them. It has one special property. By default, values stored

into the flash during the processing of a request will be available during the

processing of the immediately following request. Once that second request

has been processed, those values are removed from the flash.

Chapter 20. Action Dispatch and Action Controller • 336

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Probably the most common use of the flash is to pass error and informational

strings from one action to the next. The intent here is that the first action

notices some condition, creates a message describing that condition, and

redirects to a separate action. By storing the message in the flash, the second

action is able to access the message text and use it in a view. An example of

such usage can be found in Iteration E1 on page 125.

It is sometimes convenient to use the flash as a way of passing messages into

a template in the current action. For example, our display() method might want

to output a cheery banner if there isn’t another, more pressing note. It doesn’t

need that message to be passed to the next action—it’s for use in the current

request only. To do this, it could use flash.now, which updates the flash but

does not add to the session data.

While flash.now creates a transient flash entry, flash.keep does the opposite,

making entries that are currently in the flash stick around for another request

cycle. If you pass no parameters to flash.keep, then all the flash contents are

preserved.

Flashes can store more than just text messages—you can use them to pass

all kinds of information between actions. Obviously, for longer-term informa-

tion you’d want to use the session (probably in conjunction with your database)

to store the data, but the flash is great if you want to pass parameters from

one request to the next.

Because the flash data is stored in the session, all the usual rules apply. In

particular, every object must be serializable. We strongly recommend passing

only simple objects in the flash.

Callbacks

Callbacks enable you to write code in your controllers that wrap the processing

performed by actions—you can write a chunk of code once and have it be

called before or after any number of actions in your controller (or your con-

troller’s subclasses). This turns out to be a powerful facility. Using callbacks,

we can implement authentication schemes, logging, response compression,

and even response customization.

Rails supports three types of callbacks: before, after, and around. Such call-

backs are called just prior to and/or just after the execution of actions.

Depending on how you define them, they either run as methods inside the

controller or are passed the controller object when they are run. Either way,

they get access to details of the request and response objects, along with the

other controller attributes.

report erratum • discuss

Objects and Operations That Span Requests • 337

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Before and After Callbacks

As their names suggest, before and after callbacks are invoked before or after

an action. Rails maintains two chains of callbacks for each controller. When

a controller is about to run an action, it executes all the callbacks on the

before chain. It executes the action before running the callbacks on the after

chain.

Callbacks can be passive, monitoring activity performed by a controller. They

can also take a more active part in request handling. If a before action callback

returns false, then processing of the callback chain terminates, and the action

is not run. A callback may also render output or redirect requests, in which

case the original action never gets invoked.

We saw an example of using callbacks for authorization in the administration

part of our store example in Section 14.3, Iteration I3: Limiting Access, on

page 202. We defined an authorization method that redirected to a login screen

if the current session didn’t have a logged-in user. We then made this method

a before action callback for all the actions in the administration controller.

Callback declarations also accept blocks and the names of classes. If a block

is specified, it will be called with the current controller as a parameter. If a

class is given, its filter() class method will be called with the controller as a

parameter.

By default, callbacks apply to all actions in a controller (and any subclasses

of that controller). You can modify this with the :only option, which takes one

or more actions on which the callback is invoked, and the :except option, which

lists actions to be excluded from callback.

The before_action and after_action declarations append to the controller’s chain of

callbacks. Use the variants prepend_before_action() and prepend_after_action() to put

callbacks at the front of the chain.

After callbacks can be used to modify the outbound response, changing the

headers and content if required. Some applications use this technique to

perform global replacements in the content generated by the controller’s

templates (for example, by substituting a customer’s name for the string

<customer/> in the response body). Another use might be compressing the

response if the user’s browser supports it.

Around callbacks wrap the execution of actions. You can write an around

callback in two different styles. In the first, the callback is a single chunk of

code. That code is called before the action is executed. If the callback code

Chapter 20. Action Dispatch and Action Controller • 338

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

invokes yield, the action is executed. When the action completes, the callback

code continues executing.

Thus, the code before the yield is like a before action callback, and the code

after the yield is the after action callback. If the callback code never invokes

yield, the action is not run—this is the same as having a before action callback

return false.

The benefit of around callbacks is that they can retain context across the

invocation of the action.

As well as passing around_action the name of a method, you can pass it a block

or a filter class.

If you use a block as a callback, it will be passed two parameters: the controller

object and a proxy for the action. Use call() on this second parameter to invoke

the original action.

A second form allows you to pass an object as a callback. This object should

implement a method called filter(). This method will be passed the controller

object. It yields to invoke the action.

Like before and after callbacks, around callbacks take :only and :except
parameters.

Around callbacks are (by default) added to the callback chain differently: the

first around action callback added executes first. Subsequently added around

callbacks will be nested within existing around callbacks.

Callback Inheritance

If you subclass a controller containing callbacks, the callbacks will be run

on the child objects as well as in the parent. However, callbacks defined in

the children will not run in the parent.

If you don’t want a particular callback to run in a child controller, you can

override the default processing with the skip_before_action and skip_after_action
declarations. These accept the :only and :except parameters.

You can use skip_action to skip any action callback (before, after, and around).

However, it works only for callbacks that were specified as the (symbol) name

of a method.

We made use of skip_before_action in Section 14.3, Iteration I3: Limiting Access,

on page 202.

report erratum • discuss

Objects and Operations That Span Requests • 339

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

What We Just Did

We learned how Action Dispatch and Action Controller cooperate to enable

our server to respond to requests. The importance of this can’t be emphasized

enough. In nearly every application, this is the primary place where the cre-

ativity of your application is expressed. While Active Record and Action View

are hardly passive, our routes and our controllers are where the action is.

We started this chapter by covering the concept of REST, which was the

inspiration for the way in which Rails approaches the routing of requests. We

saw how this provided seven basic actions as a starting point and how to add

more actions. We also saw how to select a data representation (for example,

JSON or XML). And we covered how to test routes.

We then covered the environment that Action Controller provides for your

actions, as well as the methods it provides for rendering and redirecting.

Finally, we covered sessions, flash, and callbacks, each of which is available

for use in your application’s controllers.

Along the way, we showed how these concepts were used in the Depot appli-

cation. Now that you have seen each in use and have been exposed to the

theory behind each, how you combine and use these concepts is limited only

by your own creativity.

In the next chapter, we will cover the remaining component of Action Pack,

namely, Action View, which handles the rendering of results.

Chapter 20. Action Dispatch and Action Controller • 340

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 21

Action View

We’ve seen how the routing component determines which controller to use

and how the controller chooses an action. We’ve also seen how the controller

and action between them decide what to render to the user. Normally that

rendering takes place at the end of the action, and typically it involves a

template. That’s what this chapter is all about. Action View encapsulates all

the functionality needed to render templates, most commonly generating

HTML, XML, or JavaScript back to the user. As its name suggests, Action

View is the view part of our MVC trilogy.

In this chapter, we will start with templates, for which Rails provides a range

of options. We will then cover a number of ways in which users provide input:

forms, file uploads, and links. We will complete this chapter by looking at a

number of ways to reduce maintenance using helpers, layouts, and partials.

21.1 Using Templates

When you write a view, you’re writing a template: something that will get

expanded to generate the final result. To understand how these templates

work, we need to look at three areas.

• Where the templates go

• The environment they run in

• What goes inside them

Where Templates Go

The render() method expects to find templates in the app/views directory of the

current application. Within this directory, the convention is to have a separate

subdirectory for the views of each controller. Our Depot application, for

instance, includes products and store controllers. As a result, our application

In this chapter, we’ll see
• templates,
• forms including fields and uploading files,
• helpers, and
• layouts and partials.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

has templates in app/views/products and app/views/store. Each directory typically

contains templates named after the actions in the corresponding controller.

You can also have templates that aren’t named after actions. You render such

templates from the controller using calls such as these:

render(action: 'fake_action_name')
render(template: 'controller/name')
render(file: 'dir/template')

The last of these allows you to store templates anywhere on your filesystem.

This is useful if you want to share templates across applications.

The Template Environment

Templates contain a mixture of fixed text and code. The code in the template

adds dynamic content to the response. That code runs in an environment

that gives it access to the information set up by the controller.

• All instance variables of the controller are also available in the template.

This is how actions communicate data to the templates.

• The controller object’s flash, headers, logger, params, request, response, and session
are available as accessor methods in the view. Apart from the flash, view

code probably should not use these directly, because the responsibility

for handling them should rest with the controller. However, we do find

this useful when debugging. For example, the following html.erb template

uses the debug() method to display the contents of the session, the details

of the parameters, and the current response:

<h4>Session</h4> <%= debug(session) %>
<h4>Params</h4> <%= debug(params) %>
<h4>Response</h4> <%= debug(response) %>

• The current controller object is accessible using the attribute named con-
troller. This allows the template to call any public method in the controller

(including the methods in ActionController::Base).

• The path to the base directory of the templates is stored in the attribute

base_path.

What Goes in a Template

Out of the box, Rails supports four types of templates.

• Builder templates use the Builder library to construct XML responses.

We talk more about Builder in Section 24.1, Generating XML with Builder,

on page 393.

Chapter 21. Action View • 342

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• CoffeeScript templates create JavaScript, which can change both the

presentation and the behavior of your content in the browser.

• ERB templates are a mixture of content and embedded Ruby. They are

typically used to generate HTML pages. We talk more about ERB in Section

24.2, Generating HTML with ERB, on page 395.

• SCSS templates create CSS stylesheets to control the presentation of your

content in the browser.

By far, the one that you will be using the most will be ERB. In fact, you made

extensive use of ERB templates in developing the Depot application.

So far in this chapter, we have focused on producing output. In Chapter 20,

Action Dispatch and Action Controller, on page 309, we focused on processing

input. In a well-designed application, these two are not unrelated: the output

we produce contains forms, links, and buttons that guide the end user to

producing the next set of inputs. As you might expect by now, Rails provides

a considerable amount of help in this area too.

21.2 Generating Forms

HTML provides a number of elements, attributes, and attribute values that

control how input is gathered. You certainly could hand-code your form

directly into the template, but there really is no need to do that.

In this section, we will cover a number of helpers that Rails provides that

assist with this process. In Section 21.5, Using Helpers, on page 351, we will

show you how you can create your own helpers.

HTML provides a number of ways to collect data in forms. A few of the more

common means are shown in Figure 58, Some of the common ways to enter

data into forms, on page 345. Note that the form itself is not representative of

any sort of typical use; in general, you will use only a subset of these methods

to collect data.

Let’s look at the template that was used to produce that form:

Download rails40/views/app/views/form/input.html.erb

Line 1

<p>
<%= form_for(:model) do |form| %>

-

- <%= form.label :input %>
- <%= form.text_field :input, :placeholder => 'Enter text here...' %>
5

<p>
</p>

-

- <%= form.label :address, :style => 'float: left' %>
-

</p>
<%= form.text_area :address, :rows => 3, :cols => 40 %>

-

report erratum • discuss

Generating Forms • 343

http://media.pragprog.com/titles/rails4/code/rails40/views/app/views/form/input.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<p>10

- <%= form.label :color %>:
- <%= form.radio_button :color, 'red' %>
- <%= form.label :red %>
- <%= form.radio_button :color, 'yellow' %>

15 <%= form.label :yellow %>
- <%= form.radio_button :color, 'green' %>
-

</p>
<%= form.label :green %>

-

<p>
-

20

- <%= form.label 'condiment' %>:
- <%= form.check_box :ketchup %>
- <%= form.label :ketchup %>
- <%= form.check_box :mustard %>

25 <%= form.label :mustard %>
- <%= form.check_box :mayonnaise %>
-

</p>
<%= form.label :mayonnaise %>

-

<p>
-

30

- <%= form.label :priority %>:
-

</p>
<%= form.select :priority, (1..10) %>

-

<p>
-

35

- <%= form.label :start %>:
-

</p>
<%= form.date_select :start %>

-

<p>
-

40

- <%= form.label :alarm %>:
-

</p>
<%= form.time_select :alarm %>

-

<% end %>-

In that template, you will see a number of labels, such as the one on line 3.

You use labels to associate text with an input field for a specified attribute.

The text of the label will default to the attribute name unless you specify it

explicitly.

You use the text_field() and text_area() helpers (on lines 4 and 8, respectively) to

gather single-line and multiline input fields. You may specify a placeholder,
which will be displayed inside the field until the user provides a value. Not

every browser supports this function, but those that don’t simply will display

an empty box. Since this will degrade gracefully, there is no need for you to

design to the least common denominator—make use of this feature, because

those who can see it will benefit from it immediately.

Chapter 21. Action View • 344

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 58—Some of the common ways to enter data into forms

Placeholders are one of the many small “fit and finish” features provided with

HTML5, and once again, Rails is ready even if the browser your users have

installed is not. You can use the search_field(), telephone_field(), url_field(), email_field(),
number_field(), and range_field() helpers to prompt for a specific type of input. How

the browser will make use of this information varies. Some may display the

field slightly differently in order to more clearly identify its function. Safari

on Mac, for example, will display search fields with rounded corners and will

insert a little x for clearing the field once data entry begins. Some may provide

added validation. For example, Opera will validate URL fields prior to submis-

sion. The iPad will even adjust the virtual onscreen keyboard to provide ready

access to characters such as the @ sign when entering an email address.

Although the support for these functions varies by browser, those that don’t

provide extra support for these functions simply display a plain, unadorned

input box. Once again, nothing is gained by waiting. If you have an input field

that’s expected to contain an email address, don’t simply use text_field()—go

ahead and start using email_field() now.

Lines 12, 22, and 32 demonstrate three different ways to provide a constrained

set of options. Although the display may vary a bit from browser to browser,

these approaches are all well supported across all browsers. The select() method

is particularly flexible—it can be passed a simple Enumeration as shown here,

an array of pairs of name-value pairs, or a Hash. A number of form options

report erratum • discuss

Generating Forms • 345

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

helpers1 are available to produce such lists from various sources, including

the database.

Finally, lines 37 and 42 show prompts for a date and time, respectively. As

you might expect by now, Rails provides plenty of options here too.2

Not shown in this example are hidden_field() and password_field(). A hidden field is

not displayed at all, but the value is passed back to the server. This may be

useful as an alternative to storing transient data in sessions, enabling data

from one request to be passed onto the next. Password fields are displayed,

but the text entered in them is obscured.

This is more than an adequate starter set for most needs. Should you find

that you have additional needs, you are quite likely to find a helper or gem

is already available for you. A good place to start is with the Rails Guides.3

Meanwhile, let’s explore how the data forms submit is processed.

21.3 Processing Forms

In the following figure we can see how the various attributes in the model

pass through the controller to the view, on to the HTML page, and back again

into the model. The model object has attributes such as name, country, and

password. The template uses helper methods to construct an HTML form to let

the user edit the data in the model. Note how the form fields are named. The

country attribute, for example, maps to an HTML input field with the name

user[country].

When the user submits the form, the raw POST data is sent back to our

application. Rails extracts the fields from the form and constructs the params hash.

Simple values (such as the id field, extracted by routing from the form action) are

stored directly in the hash. But, if a parameter name has brackets in it, Rails

assumes that it is part of more structured data and constructs a hash to hold

the values. Inside this hash, the string inside the brackets acts as the key. This

process can repeat if a parameter name has multiple sets of brackets in it.

ParamsForm Parameters

{ id: "123" }id=123
{ user: { name: "Dave" }}user[name]=Dave
{ user: { address: { city: "Wien" }}}user[address][city]=Wien

1. http://api.rubyonrails.org/classes/ActionView/Helpers/FormOptionsHelper.html

2. http://api.rubyonrails.org/classes/ActionView/Helpers/DateHelper.html

3. http://guides.rubyonrails.org/form_helpers.html

Chapter 21. Action View • 346

report erratum • discuss

http://api.rubyonrails.org/classes/ActionView/Helpers/FormOptionsHelper.html
http://api.rubyonrails.org/classes/ActionView/Helpers/DateHelper.html
http://guides.rubyonrails.org/form_helpers.html
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

@params = {

 :id => 1234,

 :user => {

 :name => " ... ",

 :country => " ... ",

 :password => " ... " }

}

<form action="/myapp/save/1234">

 <input name="user[name]" ... >

 <input name="user[country]" ... >

 <input name="user[password]" ... >

 . . .

</form>

<% form_for :user,

 :url => { :action => 'save', :id => @user } do |f| %>

. . .

<% end %>

def save

 if user.update_attributes(params[:user])

 ...
 end
end

myapp_controller.rb

edit.html.erb

def edit

end

The application receives a request

to edit a user. It reads the data into

a new User model object.

The edit.html.erb template is

called. It uses the information in

the user object to generate...

the HTML is sent to the browser.

When the response is received...

the parameters are extracted into a

nested hash.

The save action uses the

and update it.

Figure 59—Models, controllers, and views work together.

In the final part of the integrated whole, model objects can accept new attribute

values from hashes, which allows us to say this:

user.update(user_params)

Rails integration goes deeper than this. Looking at the .html.erb file in the pre-

ceding figure, we can see that the template uses a set of helper methods to

create the form’s HTML; these are methods such as form_for() and text_field().

Before moving on, it is worth noting that params may be used for more than

simple text. Entire files can be uploaded. We’ll cover that next.

report erratum • discuss

Processing Forms • 347

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

21.4 Uploading Files to Rails Applications

Your application may allow users to upload files. For example, a bug-reporting

system might let users attach log files and code samples to a problem ticket,

or a blogging application could let its users upload a small image to appear

next to their articles.

In HTTP, files are uploaded as a multipart/form-data POST message. As the

name suggests, forms are used to generate this type of message. Within that

form, you’ll use one or more <input> tags with type="file". When rendered by a

browser, this tag allows the user to select a file by name. When the form is

subsequently submitted, the file or files will be sent back along with the rest

of the form data.

To illustrate the file upload process, we’ll show some code that allows a user

to upload an image and display that image alongside a comment. To do this,

we first need a pictures table to store the data.

Download rails40/e1/views/db/migrate/20121130000004_create_pictures.rb

class CreatePictures < ActiveRecord::Migration
def change
create_table :pictures do |t|
t.string :comment
t.string :name
t.string :content_type
If using MySQL, blobs default to 64k, so we have to give
an explicit size to extend them
t.binary :data, :limit => 1.megabyte

end
end

end

We’ll create a somewhat artificial upload controller just to demonstrate the

process. The get action is pretty conventional; it simply creates a new picture

object and renders a form.

Download rails40/e1/views/app/controllers/upload_controller.rb

class UploadController < ApplicationController
def get
@picture = Picture.new

end
. . .
private
Never trust parameters from the scary internet, only allow the white
list through.
def picture_params

params.require(:picture).permit(:comment, :uploaded_picture)
end

end

Chapter 21. Action View • 348

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/e1/views/db/migrate/20121130000004_create_pictures.rb
http://media.pragprog.com/titles/rails4/code/rails40/e1/views/app/controllers/upload_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The get template contains the form that uploads the picture (along with a

comment). Note how we override the encoding type to allow data to be sent

back with the response.

Download rails40/e1/views/app/views/upload/get.html.erb

<%= form_for(:picture,
url: {action: 'save'},
html: {multipart: true}) do |form| %>

Comment: <%= form.text_field("comment") %>

Upload your picture: <%= form.file_field("uploaded_picture") %>

<%= submit_tag("Upload file") %>
<% end %>

The form has one other subtlety. The picture uploads into an attribute called

uploaded_picture. However, the database table doesn’t contain a column of that

name. That means that there must be some magic happening in the model.

Download rails40/e1/views/app/models/picture.rb

class Picture < ActiveRecord::Base

validates_format_of :content_type,
with: /^image/,
message: "must be a picture"

def uploaded_picture=(picture_field)
self.name = base_part_of(picture_field.original_filename)
self.content_type = picture_field.content_type.chomp
self.data = picture_field.read

end

def base_part_of(file_name)
File.basename(file_name).gsub(/[^\w._-]/, '')

end
end

We define an accessor called uploaded_picture=() to receive the file uploaded by

the form. The object returned by the form is an interesting hybrid. It is file-

like, so we can read its contents with the read() method; that’s how we get the

image data into the data column. It also has the attributes content_type and

original_filename, which let us get at the uploaded file’s metadata. Accessor

methods pick all this apart, resulting in a single object stored as separate

attributes in the database.

Note that we also add a simple validation to check that the content type is of

the form image/xxx. We don’t want someone uploading JavaScript.

The save action in the controller is totally conventional.

report erratum • discuss

Uploading Files to Rails Applications • 349

http://media.pragprog.com/titles/rails4/code/rails40/e1/views/app/views/upload/get.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/e1/views/app/models/picture.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/e1/views/app/controllers/upload_controller.rb

def save
@picture = Picture.new(picture_params)
if @picture.save
redirect_to(action: 'show', id: @picture.id)

else
render(action: :get)

end
end

So, now that we have an image in the database, how do we display it? One

way is to give it its own URL and simply link to that URL from an image tag.

For example, we could use a URL such as upload/picture/123 to return the image

for picture 123. This would use send_data() to return the image to the browser.

Note how we set the content type and filename—this lets browsers interpret

the data and supplies a default name should the user choose to save the

image.

Download rails40/e1/views/app/controllers/upload_controller.rb

def picture
@picture = Picture.find(params[:id])
send_data(@picture.data,

filename: @picture.name,
type: @picture.content_type,
disposition: "inline")

end

Finally, we can implement the show action, which displays the comment and

the image. The action simply loads the picture model object.

Download rails40/e1/views/app/controllers/upload_controller.rb

def show
@picture = Picture.find(params[:id])

end

In the template, the image tag links back to the action that returns the picture

content. In Figure 60, Uploading a file, on page 351, we can see the get and

show actions in all their glory.

Download rails40/e1/views/app/views/upload/show.html.erb

<h3><%= @picture.comment %></h3>

<img src="<%= url_for(:action => 'picture', :id => @picture.id) %>"/>

If you’d like an easier way of dealing with uploading and storing images, take

a look at thoughtbot’s Paperclip4 or Rick Olson’s attachment_fu5 plugins.

4. https://github.com/thoughtbot/paperclip#readme

5. https://github.com/technoweenie/attachment_fu

Chapter 21. Action View • 350

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/e1/views/app/controllers/upload_controller.rb
http://media.pragprog.com/titles/rails4/code/rails40/e1/views/app/controllers/upload_controller.rb
http://media.pragprog.com/titles/rails4/code/rails40/e1/views/app/controllers/upload_controller.rb
http://media.pragprog.com/titles/rails4/code/rails40/e1/views/app/views/upload/show.html.erb
https://github.com/thoughtbot/paperclip#readme
https://github.com/technoweenie/attachment_fu
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 60—Uploading a file

Create a database table that includes a given set of columns (documented on

Rick’s site), and the plugin will automatically manage storing both the

uploaded data and the upload’s metadata. Unlike our previous approach, it

handles storing the uploads in either your filesystem or a database table.

Forms and uploads are just two examples of helpers that Rails provides. Next

we will show you how you can provide your own helpers and introduce you

to a number of other helpers that come with Rails.

21.5 Using Helpers

Earlier we said that it’s OK to put code in templates. Now we’re going to

modify that statement. It’s perfectly acceptable to put some code in tem-

plates—that’s what makes them dynamic. However, it’s poor style to put too

much code in templates.

There are three main reasons for this. First, the more code you put in the

view side of your application, the easier it is to let discipline slip and start

adding application-level functionality to the template code. This is definitely

poor form; you want to put application stuff in the controller and model layers

so that it is available everywhere. This will pay off when you add new ways

of viewing the application.

The second reason is that html.erb is basically HTML. When you edit it, you’re

editing an HTML file. If you have the luxury of having professional designers

report erratum • discuss

Using Helpers • 351

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

create your layouts, they’ll want to work with HTML. Putting a bunch of Ruby

code in there just makes it hard to work with.

The final reason is that code embedded in views is hard to test, whereas code

split out into helper modules can be isolated and tested as individual units.

Rails provides a nice compromise in the form of helpers. A helper is simply a

module containing methods that assist a view. Helper methods are output-

centric. They exist to generate HTML (or XML, or JavaScript)—a helper extends

the behavior of a template.

Your Own Helpers

By default, each controller gets its own helper module. Additionally, there is

an application-wide helper named application_helper.rb. It won’t be surprising to

learn that Rails makes certain assumptions to help link the helpers into the

controller and its views. While all view helpers are available to all controllers,

it often is good practice to organize helpers. Helpers that are unique to the

views associated with the ProductController tend to be placed in a helper module

called ProductHelper in the file product_helper.rb in the app/helpers directory. You don’t

have to remember all these details—the rails generate controller script creates a

stub helper module automatically.

In Section 11.4, Iteration F4: Hiding an Empty Cart, on page 149, we created

such a helper method named hidden_div_if(), which enabled us to hide the cart

under specified conditions. We can use the same technique to clean up the

application layout a bit. Currently we have the following:

<h3><%= @page_title || "Pragmatic Store" %></h3>

Let’s move the code that works out the page title into a helper method. Because

we’re in the store controller, we edit the file store_helper.rb in app/helpers.

module StoreHelper
def page_title
@page_title || "Pragmatic Store"

end
end

Now the view code simply calls the helper method.

<h3><%= page_title %></h3>

(We might want to eliminate even more duplication by moving the rendering

of the entire title into a separate partial template, shared by all the controller’s

views, but we don’t talk about partial templates until Partial-Page Templates,

on page 363.)

Chapter 21. Action View • 352

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Helpers for Formatting and Linking

Rails comes with a bunch of built-in helper methods, available to all views. In

this section, we’ll touch on the highlights, but you’ll probably want to look at the

Action View RDoc for the specifics—there’s a lot of functionality in there.

Formatting Helpers

One set of helper methods deals with dates, numbers, and text.

<%= distance_of_time_in_words(Time.now, Time.local(2013, 12, 25)) %>
4 months

<%= distance_of_time_in_words(Time.now, Time.now + 33, include_seconds: false) %>
1 minute

<%= distance_of_time_in_words(Time.now, Time.now + 33, include_seconds: true) %>
Half a minute

<%= time_ago_in_words(Time.local(2012, 12, 25)) %>
7 months

<%= number_to_currency(123.45) %>
$123.45

<%= number_to_currency(234.56, unit: "CAN$", precision: 0) %>
CAN$235

<%= number_to_human_size(123_456) %>
120.6 KB

<%= number_to_percentage(66.66666) %>
66.667%

<%= number_to_percentage(66.66666, precision: 1) %>
66.7%

<%= number_to_phone(2125551212) %>
212-555-1212

<%= number_to_phone(2125551212, area_code: true, delimiter: " ") %>
(212) 555 1212

<%= number_with_delimiter(12345678) %>
12,345,678

<%= number_with_delimiter(12345678, delimiter: "_") %>
12_345_678

<%= number_with_precision(50.0/3, precision: 2) %>
16.67

report erratum • discuss

Using Helpers • 353

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The debug() method dumps out its parameter using YAML and escapes the

result so it can be displayed in an HTML page. This can help when trying to

look at the values in model objects or request parameters.

<%= debug(params) %>

--- !ruby/hash:HashWithIndifferentAccess
name: Dave
language: Ruby
action: objects
controller: test

Yet another set of helpers deals with text. There are methods to truncate

strings and highlight words in a string.

<%= simple_format(@trees) %>
Formats a string, honoring line and paragraph breaks. You could give it

the plain text of the Joyce Kilmer poem Trees, and it would add the HTML

to format it as follows.

<p> I think that I shall never see
A poem lovely as a tree.</p> <p>A

tree whose hungry mouth is prest
Against the sweet earth’s flowing

breast; </p>

<%= excerpt(@trees, "lovely", 8) %>
...A poem lovely as a tre...

<%= highlight(@trees, "tree") %>
I think that I shall never see A poem lovely as a <strong class="high-

light">tree. A <strong class="highlight">tree whose

hungry mouth is prest Against the sweet earth’s flowing breast;

<%= truncate(@trees, length: 20) %>
I think that I sh...

There’s a method to pluralize nouns.

<%= pluralize(1, "person") %> but <%= pluralize(2, "person") %>
1 person but 2 people

If you’d like to do what the fancy websites do and automatically hyperlink

URLs and email addresses, there are helpers to do that. There’s another that

strips hyperlinks from text.

Back in Iteration A2 on page 73, we saw how the cycle() helper can be used to

return the successive values from a sequence each time it’s called, repeating the

sequence as necessary. This is often used to create alternating styles for the rows

in a table or list. The current_cycle() and reset_cycle() methods are also available.

Chapter 21. Action View • 354

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Finally, if you’re writing something like a blog site or you’re allowing users to

add comments to your store, you could offer them the ability to create their

text in Markdown (BlueCloth)6 or Textile (RedCloth)7 format. These are simple

formatters that take text with very simple, human-friendly markup and convert

it into HTML.

Linking to Other Pages and Resources

The ActionView::Helpers::AssetTagHelper and ActionView::Helpers::UrlHelper modules contain

a number of methods that let you reference resources external to the current

template. Of these, the most commonly used is link_to(), which creates a

hyperlink to another action in your application.

<%= link_to "Add Comment", new_comments_path %>

The first parameter to link_to() is the text displayed for the link. The next is a

string or hash specifying the link’s target.

An optional third parameter provides HTML attributes for the generated link.

<%= link_to "Delete", product_path(@product),
{ class: "dangerous", method: 'delete' }

%>

This third parameter also supports two additional options that modify the

behavior of the link. Each requires JavaScript to be enabled in the browser.

The :method option is a hack—it allows you to make the link look to the appli-

cation as if the request were created by a POST, PUT, PATCH, or DELETE,

rather than the normal GET method. This is done by creating a chunk of

JavaScript that submits the request when the link is clicked—if JavaScript

is disabled in the browser, a GET will be generated.

The :data parameter allows you to set custom data attributes. The most com-

monly used one is the :confirm option, which takes a short message. If present,

an unobtrusive JavaScript driver will display the message and get the user’s

confirmation before the link is followed.

<%= link_to "Delete", product_path(@product),
method: :delete,
data: { confirm: 'Are you sure?' }

%>

The button_to() method works the same as link_to() but generates a button in a

self-contained form, rather than a straight hyperlink. This is the preferred

6. https://github.com/rtomayko/rdiscount

7. http://redcloth.org/

report erratum • discuss

Using Helpers • 355

https://github.com/rtomayko/rdiscount
http://redcloth.org/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

method of linking to actions that have side effects. However, these buttons

live in their own forms, which imposes a couple of restrictions: they cannot

appear inline, and they cannot appear inside other forms.

Rails has conditional linking methods that generate hyperlinks if some condi-

tion is met or just return the link text otherwise. link_to_if() and link_to_unless()
take a condition parameter, followed by the regular parameters to link_to. If
the condition is true (for link_to_if) or false (for link_to_unless), a regular link will be

created using the remaining parameters. If not, the name will be added as

plain text (with no hyperlink).

The link_to_unless_current() helper creates menus in sidebars where the current

page name is shown as plain text and the other entries are hyperlinks.

<% %w{ create list edit save logout }.each do |action| %>

<%= link_to_unless_current(action.capitalize, action: action) %>

<% end %>

The link_to_unless_current() helper may also be passed a block that is evaluated

only if the current action is the action given, effectively providing an alternative

to the link. There also is a current_page() helper method that simply tests

whether the current request URI was generated by the given options.

As with url_for(), link_to() and friends also support absolute URLs.

<%= link_to("Help", "http://my.site/help/index.html") %>

The image_tag() helper creates tags. Optional :size parameters (of the form

widthxheight) or separate width and height parameters define the size of the image.

<%= image_tag("/assets/dave.png", class: "bevel", size: "80x120") %>
<%= image_tag("/assets/andy.png", class: "bevel",

width: "80", height: "120") %>

If you don’t give an :alt option, Rails synthesizes one for you using the image’s

filename. If the image path doesn’t start with a / character, Rails assumes

that it lives under the app/assets/images directory.

You can make images into links by combining link_to() and image_tag().

<%= link_to(image_tag("delete.png", size: "50x22"),
product_path(@product),
data: { confirm: "Are you sure?" },
method: :delete)

%>

Chapter 21. Action View • 356

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The mail_to() helper creates a mailto: hyperlink that, when clicked, normally

loads the client’s email application. It takes an email address, the name of

the link, and a set of HTML options. Within these options, you can also use

:bcc, :cc, :body, and :subject to initialize the corresponding email fields. Finally,

the magic option encode: "javascript" uses client-side JavaScript to obscure the

generated link, making it harder for spiders to harvest email addresses from

your site. Unfortunately, it also means your users won’t see the email link if

they have JavaScript disabled in their browsers.

<%= mail_to("support@pragprog.com", "Contact Support",
subject: "Support question from #{@user.name}",
encode: "javascript") %>

As a weaker form of obfuscation, you can use the :replace_at and :replace_dot
options to replace the at sign and dots in the displayed name with other

strings. This is unlikely to fool harvesters.

The AssetTagHelper module also includes helpers that make it easy to link to

stylesheets and JavaScript code from your pages and to create autodiscovery

Atom feed links. We created links in the layouts for the Depot application

using the stylesheet_link_tag() and javascript_link_tag() methods in the head.

Download rails40/depot_r/app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>

<title>Pragprog Books Online Store</title>
<%= stylesheet_link_tag "application", media: "all",
"data-turbolinks-track" => true %>

<%= javascript_include_tag "application", "data-turbolinks-track" => true %>
<%= csrf_meta_tags %>

</head>

The javascript_include_tag() method takes a list of JavaScript filenames (assumed

to live in assets/javascripts) and creates the HTML to load these into a page. In

addition to :all, javascript_include_tag accepts as a parameter the value :defaults,
which acts as a shortcut and causes Rails to load jQuery.js.

An RSS or Atom link is a header field that points to a URL in our application.

When that URL is accessed, the application should return the appropriate

RSS or Atom XML.

<html>
<head>
<%= auto_discovery_link_tag(:atom, products_url(format: 'atom')) %>

</head>
. . .

report erratum • discuss

Using Helpers • 357

http://media.pragprog.com/titles/rails4/code/rails40/depot_r/app/views/layouts/application.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Finally, the JavaScriptHelper module defines a number of helpers for working

with JavaScript. These create JavaScript snippets that run in the browser to

generate special effects and to have the page dynamically interact with our

application.

By default, image and stylesheet assets are assumed to live in the images and

stylesheets directories relative to the application’s assets directory. If the path

given to an asset tag method starts with a forward slash, then the path is

assumed to be absolute, and no prefix is applied. Sometimes it makes sense

to move this static content onto a separate box or to different locations on

the current box. Do this by setting the configuration variable asset_host.

config.action_controller.asset_host = "http://media.my.url/assets"

Although this list of helpers may seem to be comprehensive, Rails provides

many more, new helpers are introduced with each release, and a select few

are retired or moved off into a plugin where they can be evolved at a different

pace than Rails. Now would be a good time to review the online documentation

that you produced in A Place for Documentation, on page 265, to see what

other goodies Rails provides for you.

21.6 Reducing Maintenance with Layouts and Partials

So far in this chapter we’ve looked at templates as isolated chunks of code

and HTML. But one of the driving ideas behind Rails is honoring the DRY

principle and eliminating the need for duplication. The average website,

though, has lots of duplication.

• Many pages share the same tops, tails, and sidebars.

• Multiple pages may contain the same snippets of rendered HTML (a blog

site, for example, may display an article in multiple places).

• The same functionality may appear in multiple places. Many sites have

a standard search component or a polling component that appears in

most of the sites’ sidebars.

Rails provides both layouts and partials that reduce the need for duplication

in these three situations.

Layouts

Rails allows you to render pages that are nested inside other rendered pages.

Typically this feature is used to put the content from an action within a

standard site-wide page frame (title, footer, and sidebar). In fact, if you’ve

Chapter 21. Action View • 358

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

been using the generate script to create scaffold-based applications, then you’ve

been using these layouts all along.

When Rails honors a request to render a template from within a controller,

it actually renders two templates. Obviously, it renders the one you ask for

(or the default template named after the action if you don’t explicitly render

anything). But Rails also tries to find and render a layout template (we’ll talk

about how it finds the layout in a second). If it finds the layout, it inserts the

action-specific output into the HTML produced by the layout.

Let’s look at a layout template:

<html>
<head>
<title>Form: <%= controller.action_name %></title>
<%= stylesheet_link_tag 'scaffold' %>

</head>
<body>

<%= yield :layout %>

</body>
</html>

The layout sets out a standard HTML page, with the head and body sections.

It uses the current action name as the page title and includes a CSS file. In

the body, there’s a call to yield. This is where the magic takes place. When the

template for the action was rendered, Rails stored its content, labeling it :layout.
Inside the layout template, calling yield retrieves this text. In fact, :layout is the

default content returned when rendering, so you can write yield instead of yield
:layout. We personally prefer the slightly more explicit version.

If the my_action.html.erb template contained this:

<h1><%= @msg %></h1>

the browser would see the following HTML:

<html>
<head>
<title>Form: my_action</title>
<link href="/stylesheets/scaffold.css" media="screen"

rel="Stylesheet" type="text/css" />
</head>
<body>

<h1>Hello, World!</h1>

</body>
</html>

report erratum • discuss

Reducing Maintenance with Layouts and Partials • 359

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Locating Layout Files

As you’ve probably come to expect, Rails does a good job of providing defaults

for layout file locations, but you can override the defaults if you need some-

thing different.

Layouts are controller-specific. If the current request is being handled by a

controller called store, Rails will by default look for a layout called store (with

the usual .html.erb or .xml.builder extension) in the app/views/layouts directory. If

you create a layout called application in the layouts directory, it will be applied

to all controllers that don’t otherwise have a layout defined for them.

You can override this using the layout declaration inside a controller. At its

simplest, the declaration takes the name of a layout as a string. The following

declaration will make the template in the file standard.html.erb or standard.xml.builder
the layout for all actions in the store controller. The layout file will be looked

for in the app/views/layouts directory.

class StoreController < ApplicationController

layout "standard"

...
end

You can qualify which actions will have the layout applied to them using the

:only and :except qualifiers.

class StoreController < ApplicationController

layout "standard", except: [:rss, :atom]

...
end

Specifying a layout of nil turns off layouts for a controller.

Sometimes you need to change the appearance of a set of pages at runtime.

For example, a blogging site might offer a different-looking side menu if the

user is logged in, or a store site might have different-looking pages if the site

is down for maintenance. Rails supports this need with dynamic layouts. If

the parameter to the layout declaration is a symbol, it’s taken to be the name

of a controller instance method that returns the name of the layout to be

used.

class StoreController < ApplicationController

layout :determine_layout
...
private

Chapter 21. Action View • 360

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

def determine_layout
if Store.is_closed?
"store_down"

else
"standard"

end
end

end

Subclasses of a controller use the parent’s layout unless they override it using

the layout directive. Finally, individual actions can choose to render using a

specific layout (or with no layout at all) by passing render() the :layout option.

def rss
render(layout: false) # never use a layout

end
def checkout

render(layout: "layouts/simple")
end

Passing Data to Layouts

Layouts have access to all the same data that’s available to conventional

templates. In addition, any instance variables set in the normal template will

be available in the layout (because the regular template is rendered before

the layout is invoked). This might be used to parameterize headings or menus

in the layout. For example, the layout might contain this:

<html>
<head>
<title><%= @title %></title>
<%= stylesheet_link_tag 'scaffold' %>

</head>
<body>
<h1><%= @title %></h1>
<%= yield :layout %>

</body>
</html>

An individual template could set the title by assigning to the @title variable.

<% @title = "My Wonderful Life" %>
<p>

Dear Diary:
</p>

<p>
Yesterday I had pizza for dinner. It was nice.

</p>

report erratum • discuss

Reducing Maintenance with Layouts and Partials • 361

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

In fact, we can take this further. The same mechanism that lets us use yield
:layout to embed the rendering of a template into the layout also lets you gen-

erate arbitrary content in a template, which can then be embedded into any

other template.

For example, different templates may need to add their own template-specific

items to the standard page sidebar. We’ll use the content_for mechanism in

those templates to define content and then use yield in the layout to embed

this content into the sidebar.

In each regular template, use a content_for to give a name to the content ren-

dered inside a block. This content will be stored inside Rails and will not

contribute to the output generated by the template.

<h1>Regular Template</h1>

<% content_for(:sidebar) do %>

this text will be rendered
and saved for later
it may contain <%= "dynamic" %> stuff

<% end %>

<p>
Here's the regular stuff that will appear on
the page rendered by this template.

</p>

Then, in the layout, you use yield :sidebar to include this block into the page’s

sidebar.

<!DOCTYPE >
<html>

<body>
<div class="sidebar">

<p>
Regular sidebar stuff

</p>

<div class="page-specific-sidebar">
➤ <%= yield :sidebar %>

</div>
</div>

</body>
</html>

This same technique can be used to add page-specific JavaScript functions

into the <head> section of a layout, create specialized menu bars, and so on.

Chapter 21. Action View • 362

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Partial-Page Templates

Web applications commonly display information about the same application

object or objects on multiple pages. A shopping cart might display an order

line item on the shopping cart page and again on the order summary page.

A blog application might display the contents of an article on the main index

page and again at the top of a page soliciting comments. Typically this would

involve copying snippets of code between the different template pages.

Rails, however, eliminates this duplication with the partial-page templates

(more frequently called partials). You can think of a partial as a kind of

subroutine. You invoke it one or more times from within another template,

potentially passing it objects to render as parameters. When the partial tem-

plate finishes rendering, it returns control to the calling template.

Internally, a partial template looks like any other template. Externally, there’s

a slight difference. The name of the file containing the template code must

start with an underscore character, differentiating the source of partial tem-

plates from their more complete brothers and sisters.

For example, the partial to render a blog entry might be stored in the file

_article.html.erb in the normal views directory, app/views/blog.

<div class="article">
<div class="articleheader">
<h3><%= article.title %></h3>

</div>
<div class="articlebody">

<%= article.body %>
</div>

</div>

Other templates use the render(partial:) method to invoke this.

<%= render(partial: "article", object: @an_article) %>
<h3>Add Comment</h3>
. . .

The :partial parameter to render() is the name of the template to render (but

without the leading underscore). This name must be both a valid filename

and a valid Ruby identifier (so a-b and 20042501 are not valid names for partials).

The :object parameter identifies an object to be passed into the partial. This

object will be available within the template via a local variable with the same

name as the template. In this example, the @an_article object will be passed to

the template, and the template can access it using the local variable article.
That’s why we could write things such as article.title in the partial.

report erratum • discuss

Reducing Maintenance with Layouts and Partials • 363

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

You can set additional local variables in the template by passing render() a
:locals parameter. This takes a hash where the entries represent the names

and values of the local variables to set.

render(partial: 'article',
object: @an_article,
locals: { authorized_by: session[:user_name],

from_ip: request.remote_ip })

Partials and Collections

Applications commonly need to display collections of formatted entries. A blog

might show a series of articles, each with text, author, date, and so on. A

store might display entries in a catalog, where each has an image, a descrip-

tion, and a price.

The :collection parameter to render() works in conjunction with the :partial
parameter. The :partial parameter lets us use a partial to define the format of

an individual entry, and the :collection parameter applies this template to each

member of the collection.

To display a list of article model objects using our previously defined _arti-
cle.html.erb partial, we could write this:

<%= render(partial: "article", collection: @article_list) %>

Inside the partial, the local variable article will be set to the current article from

the collection—the variable is named after the template. In addition, the

variable article_counter will have its value set to the index of the current article

in the collection.

The optional :spacer_template parameter lets you specify a template that will be

rendered between each of the elements in the collection. For example, a view

might contain the following:

Download rails40/e1/views/app/views/partial/_list.html.erb

<%= render(partial: "animal",
collection: %w{ ant bee cat dog elk },
spacer_template: "spacer")

%>

This uses _animal.html.erb to render each animal in the given list, rendering the

partial _spacer.html.erb between each. If _animal.html.erb contains this:

Download rails40/e1/views/app/views/partial/_animal.html.erb

<p>The animal is <%= animal %></p>

and _spacer.html.erb contains this:

Chapter 21. Action View • 364

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/e1/views/app/views/partial/_list.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/e1/views/app/views/partial/_animal.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/e1/views/app/views/partial/_spacer.html.erb

<hr />

your users would see a list of animal names with a line between each.

Shared Templates

If the first option or :partial parameter to a render call is a simple name, Rails

assumes that the target template is in the current controller’s view directory.

However, if the name contains one or more / characters, Rails assumes that

the part up to the last slash is a directory name and the rest is the template

name. The directory is assumed to be under app/views. This makes it easy to

share partials and subtemplates across controllers.

The convention among Rails applications is to store these shared partials in

a subdirectory of app/views called shared. Render shared partials using statements

such as these:

<%= render("shared/header", locals: {title: @article.title}) %>
<%= render(partial: "shared/post", object: @article) %>
. . .

In this previous example, the @article object will be assigned to the local variable

post within the template.

Partials with Layouts

Partials can be rendered with a layout, and you can apply a layout to a block

within any template.

<%= render partial: "user", layout: "administrator" %>

<%= render layout: "administrator" do %>
...

<% end %>

Partial layouts are to be found directly in the app/views directory associated

with the controller, along with the customary underbar prefix, such as

app/views/users/_administrator.html.erb.

Partials and Controllers

It isn’t just view templates that use partials. Controllers also get in on the

act. Partials give controllers the ability to generate fragments from a page

using the same partial template as the view. This is particularly important

when you are using Ajax support to update just part of a page from the

controller—use partials, and you know your formatting for the table row or

line item that you’re updating will be compatible with that used to generate

its brethren initially.

report erratum • discuss

Reducing Maintenance with Layouts and Partials • 365

http://media.pragprog.com/titles/rails4/code/rails40/e1/views/app/views/partial/_spacer.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Taken together, partials and layouts provide an effective way to make sure

that the user interface portion of your application is maintainable. But being

maintainable is only part of the story; doing so in a way that also performs

well is also crucial.

What We Just Did

Views are the public face of Rails applications, and we have seen that Rails

delivers extensive support for what you need to build robust and maintainable

user and application programming interfaces.

We started with templates, of which Rails provides built-in support for four

types: ERB, Builder, CoffeeScript, and SCSS. Templates make it easy for us

to provide HTML, XML, CSS, and JavaScript responses to any request. We

will discuss adding another option in Section 25.2, Beautifying Our Markup

with Haml, on page 413.

We dove into forms, which are the primary means by which users will interact

with your application. Along the way, we covered uploading files.

We continued with helpers, which enable us to factor out complex application

logic to allow our views to focus on presentation aspects. We explored a

number of helpers that Rails provides, ranging from simple formatting to

hypertext links, which are the final way in which users interact with HTML

pages.

We completed our tour of Action View by covering two related ways of factoring

out large chunks of content for reuse. We use layouts to factor out the outer-

most layers of a view and provide a common look and feel. We use partials

to factor out common inner components, such as a single form or table.

That covers how a user with a browser will access our Rails application. Next

up: covering how we define and maintain the schema of the database our

application will use to store data.

Chapter 21. Action View • 366

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 22

Migrations

Rails encourages an agile, iterative style of development. We don’t expect to

get everything right the first time. Instead, we write tests and interact with

our customers to refine our understanding as we go.

For that to work, we need a supporting set of practices. We write tests to help

us design our interfaces and to act as a safety net when we change things,

and we use version control to store our application’s source files, allowing us

to undo mistakes and to monitor what changes day to day.

But there’s another area of the application that changes, an area that we

can’t directly manage using version control. The database schema in a Rails

application constantly evolves as we progress through the development: we

add a table here, rename a column there, and so on. The database changes

in step with the application’s code.

With Rails, each of those steps is made possible through the use of a migration.

You saw this in use throughout the development of the Depot application,

starting when we created the first products table in Generating the Scaffold, on

page 62, and when we performed such tasks as adding a quantity to the

line_items table in Section 10.1, Iteration E1: Creating a Smarter Cart, on page

119. Now it is time to dig deeper into how migrations work and what else you

can do with them.

22.1 Creating and Running Migrations

A migration is simply a Ruby source file in your application’s db/migrate direc-

tory. Each migration file’s name starts with a number of digits (typically

fourteen) and an underscore. Those digits are the key to migrations, because

they define the sequence in which the migrations are applied—they are the

individual migration’s version number.

In this chapter, we’ll see
• naming migration files,
• renaming and columns,
• creating and renaming tables,
• defining indices and keys, and
• using native SQL.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The version number is the Coordinated Universal Time (UTC) timestamp at

the time the migration was created. These numbers contain the four-digit

year, followed by two digits each for the month, day, hour, minute, and second,

all based on the mean solar time at the Royal Observatory in Greenwich,

London. Because migrations tend to be created relatively infrequently and

the accuracy is recorded down to the second, the chances of any two people

getting the same timestamp is vanishingly small. And the benefit of having

timestamps that can be deterministically ordered far outweighs the miniscule

risk of this occurring.

Here’s what the db/migrate directory of our Depot application looks like:

depot> ls db/migrate
20121130000001_create_products.rb
20121130000002_create_carts.rb
20121130000003_create_line_items.rb
20121130000004_add_quantity_to_line_items.rb
20121130000005_combine_items_in_cart.rb
20121130000006_create_orders.rb
20121130000007_add_order_id_to_line_item.rb
20121130000008_create_users.rb

Although you could create these migration files by hand, it’s easier (and less

error prone) to use a generator. As we saw when we created the Depot appli-

cation, there are actually two generators that create migration files.

• The model generator creates a migration to in turn create the table asso-

ciated with the model (unless you specify the --skip-migration option). As the

example that follows shows, creating a model called discount also creates

a migration called yyyyMMddhhmmss_create_discounts.rb:

depot> rails generate model discount
invoke active_record
create db/migrate/20121113133549_create_discounts.rb➤

create app/models/discount.rb
invoke test_unit
create test/models/discount_test.rb
create test/fixtures/discounts.yml

• You can also generate a migration on its own.

depot> rails generate migration add_price_column
invoke active_record
create db/migrate/20121113133814_add_price_column.rb➤

Later, starting in Anatomy of a Migration, we’ll see what goes in the migration

files. But for now, let’s jump ahead a little in the workflow and see how to

run migrations.

Chapter 22. Migrations • 368

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Running Migrations

Migrations are run using the db:migrate Rake task.

depot> rake db:migrate

To see what happens next, let’s dive down into the internals of Rails.

The migration code maintains a table called schema_migrations inside every Rails

database. This table has just one column, called version, and it will have one

row per successfully applied migration.

When you run rake db:migrate, the task first looks for the schema_migrations table.

If it doesn’t yet exist, it will be created.

The migration code then looks at all the migration files in db/migrate and skips

from consideration any that have a version number (the leading digits in the

filename) that is already in the database. It then proceeds to apply the

remainder of the migrations, creating a row in the schema_migrations table for

each.

If we were to run migrations again at this point, nothing much would happen.

Each of the version numbers of the migration files would match with a row

in the database, so there would be no migrations to apply.

However, if we subsequently create a new migration file, it will have a version

number not in the database. This is true even if the version number was

before one or more of the already applied migrations. This can happen when

multiple users are using a version control system to store the migration files.

If we then run migrations, this new migration file—and only this migration

file—will be executed. This may mean that migrations are run out of order,

so you might want to take care and ensure that these migrations are indepen-

dent. Or you might want to revert your database to a previous state and then

apply the migrations in order.

You can force the database to a specific version by supplying the VERSION=
parameter to the rake db:migrate command.

depot> rake db:migrate VERSION=20121130000009

If the version you give is greater than any of the migrations that have yet to

be applied, these migrations will be applied.

If, however, the version number on the command line is less than one or more

versions listed in the schema_migrations table, something different happens. In

these circumstances, Rails looks for the migration file whose number

matches the database version and undoes it. It repeats this process until

report erratum • discuss

Creating and Running Migrations • 369

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

there are no more versions listed in the schema_migrations table that exceed the

number you specified on the command line. That is, the migrations are

unapplied in reverse order to take the schema back to the version that you

specify.

You can also redo one or more migrations.

depot> rake db:migrate:redo STEP=3

By default, redo will roll back one migration and rerun it. To roll back multiple

migrations, pass the STEP= parameter.

22.2 Anatomy of a Migration

Migrations are subclasses of the Rails class ActiveRecord::Migration. When neces-

sary, migrations can contain methods up() and down().

class SomeMeaningfulName < ActiveRecord::Migration
def up
...

end

def down
...

end
end

The name of the class, after all uppercase letters are downcased and preceded

by an underscore, must match the portion of the filename after the version

number. For example, the previous class could be found in a file named

20121130000017_some_meaningful_name.rb. No two migrations can contain classes

with the same name.

The up() method is responsible for applying the schema changes for this

migration, while the down() method undoes those changes. Let’s make this

more concrete. Here’s a migration that adds an e_mail column to the orders
table:

class AddEmailToOrders < ActiveRecord::Migration
def up
add_column :orders, :e_mail, :string

end

def down
remove_column :orders, :e_mail

end
end

See how the down() method undoes the effect of the up() method?

Chapter 22. Migrations • 370

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

You can also see that there is a bit of duplication here. In many cases, Rails

can detect how to automatically undo a given operation. For example, the

opposite of add_column() is clearly remove_column(). In such cases, by simply

renaming up() to change(), you can eliminate the need for a down().

class AddEmailToOrders < ActiveRecord::Migration
def change
add_column :orders, :e_mail, :string

end
end

Now isn’t that much cleaner?

Column Types

The third parameter to add_column specifies the type of the database column. In

the previous example, we specified that the e_mail column has a type of :string. But

just what does this mean? Databases typically don’t have column types of :string.

Remember that Rails tries to make your application independent of the

underlying database; you could develop using SQLite 3 and deploy to Postgres

if you wanted, for example. But different databases use different names for

the types of columns. If you used a SQLite 3 column type in a migration, that

migration might not work if applied to a Postgres database. So, Rails migra-

tions insulate you from the underlying database type systems by using logical

types. If we’re migrating a SQLite 3 database, the :string type will create a col-

umn of type varchar(255). On Postgres, the same migration adds a column with

the type char varying(255).

The types supported by migrations are :binary, :boolean, :date, :datetime, :decimal,
:float, :integer, :string, :text, :time, and :timestamp. The default mappings of these

types for the database adapters in Rails are shown in Table 2, Default map-

pings of types for database adapters, part 1, on page 372 and Table 3, Default

mappings of types for database adapters, part 2, on page 372. Using these

tables, you could work out that a column declared to be :integer in a migration

would have the underlying type integer in SQLite 3 and number(38) in Oracle.

There are three options you can use when defining most columns in a

migration; decimal columns take an additional two options. Each of these

options is given as a key: value pair. The common options are as follows:

null: true or false
If false, the underlying column has a not null constraint added (if the

database supports it). Note: this is independent of any presence: true valida-

tion, which may be performed at the model layer.

report erratum • discuss

Anatomy of a Migration • 371

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

oracleopenbasemysqldb2

blobobjectblobblob(32768):binary

number(1)booleantinyint(1)decimal(1):boolean

datedatedatedate:date

datedatetimedatetimetimestamp:datetime

decimaldecimaldecimaldecimal:decimal

numberfloatfloatfloat:float

number(38)integerint(11)int:integer

varchar2(255)char(4096)var-

char(255)

varchar(255):string

clobtexttextclob(32768):text

datetimetimetime:time

datetimestampdatetimetimestamp:timestamp

Table 2—Default mappings of types for database adapters, part 1

sybasesqlserversqlitepostgresql

imageimageblobbytea:binary

bitbitbooleanboolean:boolean

datetimedatedatedate:date

datetimedatetimedatetimetimestamp:datetime

decimaldecimaldecimaldecimal:decimal

float(8)float(8)floatfloat:float

intintintegerinteger:integer

varchar(255)varchar(255)varchar(255)(note 1):string

texttexttexttext:text

timetimedatetimetime:time

timestampdatetimedatetimetimestamp:timestamp

Table 3—Default mappings of types for database adapters, part 2

Chapter 22. Migrations • 372

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

limit: size
This sets a limit on the size of the field. This basically appends the string

(size) to the database column type definition.

default: value
This sets the default value for the column. As this is performed by the

database, you don’t see this in a new model object when you initialize it

or even when you save it. You have to reload the object from the database

to see this value. Note that the default is calculated once, at the point the

migration is run, so the following code will set the default column value

to the date and time when the migration was run:

add_column :orders, :placed_at, :datetime, default: Time.now

In addition, decimal columns take the options :precision and :scale. The :precision
option specifies the number of significant digits that will be stored, and the

:scale option determines where the decimal point will be located in these digits

(think of the scale as the number of digits after the decimal point). A decimal

number with a precision of 5 and a scale of 0 can store numbers from -99,999

to +99,999. A decimal number with a precision of 5 and a scale of 2 can store

the range -999.99 to +999.99.

The :precision and :scale parameters are optional for decimal columns. However,

incompatibilities between different databases lead us to strongly recommend

that you include the options for each decimal column.

Here are some column definitions using the migration types and options:

add_column :orders, :attn, :string, limit: 100
add_column :orders, :order_type, :integer
add_column :orders, :ship_class, :string, null: false, default: 'priority'
add_column :orders, :amount, :decimal, precision: 8, scale: 2

Renaming Columns

When we refactor our code, we often change our variable names to make them

more meaningful. Rails migrations allow us to do this to database column

names, too. For example, a week after we first added it, we might decide that

e_mail isn’t the best name for the new column. We can create a migration to

rename it using the rename_column() method.

class RenameEmailColumn < ActiveRecord::Migration
def change
rename_column :orders, :e_mail, :customer_email

end
end

report erratum • discuss

Anatomy of a Migration • 373

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

As rename_column() is reversible, separate up() and down() methods are not required

in order to use it.

Note that the rename doesn’t destroy any existing data associated with the

column. Also be aware that renaming is not supported by all the adapters.

Changing Columns

Use the change_column() method to change the type of a column or to alter the

options associated with a column. Use it the same way you’d use add_column,
but specify the name of an existing column. Let’s say that the order type col-

umn is currently an integer, but we need to change it to be a string. We want

to keep the existing data, so an order type of 123 will become the string "123".
Later, we’ll use noninteger values such as "new" and "existing".

Changing from an integer column to a string is easy.

def up
change_column :orders, :order_type, :string
end

However, the opposite transformation is problematic. We might be tempted

to write the obvious down() migration.

def down
change_column :orders, :order_type, :integer
end

But if our application has taken to storing data like "new" in this column, the

down() method will lose it—"new" can’t be converted to an integer. If that’s

acceptable, then the migration is acceptable as it stands. If, however, we want

to create a one-way migration—one that cannot be reversed—we’ll want to

stop the down migration from being applied. In this case, Rails provides a

special exception that we can throw.

class ChangeOrderTypeToString < ActiveRecord::Migration
def up
change_column :orders, :order_type, :string, null: false

end

def down
raise ActiveRecord::IrreversibleMigration

end
end

ActiveRecord::IrreversibleMigration is also the name of the exception that Rails will

raise if you attempt to call a method that can’t be automatically reversed from

within a change() method.

Chapter 22. Migrations • 374

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

22.3 Managing Tables

So far we’ve been using migrations to manipulate the columns in existing

tables. Now let’s look at creating and dropping tables.

class CreateOrderHistories < ActiveRecord::Migration
def change
create_table :order_histories do |t|
t.integer :order_id, null: false
t.text :notes

t.timestamps
end

end
end

create_table() takes the name of a table (remember, table names are plural) and

a block. (It also takes some optional parameters that we’ll look at in a minute.)

The block is passed a table definition object, which we use to define the

columns in the table.

Generally the call to drop_table() is not needed, as add_table() is reversible.

drop_table() accepts a single parameter, which is the name of the table to drop.

The calls to the various table definition methods should look familiar—they’re

similar to the add_column method we used previously except these methods

don’t take the name of the table as the first parameter, and the name of the

method itself is the data type desired. This reduces repetition.

Note that we don’t define the id column for our new table. Unless we say oth-

erwise, Rails migrations automatically add a primary key called id to all tables

they create. For a deeper discussion of this, see Primary Keys, on page 378.

The timestamps method creates both the created_at and updated_at columns, with

the correct timestamp data type. Although there is no requirement to add these

columns to any particular table, this is yet another example of Rails making

it easy for a common convention to be implemented easily and consistently.

Options for Creating Tables

You can pass a hash of options as a second parameter to create_table. If you specify

force: true, the migration will drop an existing table of the same name before creating

the new one. This is a useful option if you want to create a migration that forces

a database into a known state, but there’s clearly a potential for data loss.

The temporary: true option creates a temporary table—one that goes away when

the application disconnects from the database. This is clearly pointless in the

context of a migration, but as we will see later, it does have its uses elsewhere.

report erratum • discuss

Managing Tables • 375

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The options: "xxxx" parameter lets you specify options to your underlying

database. They are added to the end of the CREATE TABLE statement, right after

the closing parenthesis. Although this is rarely necessary with SQLite 3, it

may at times be useful with other database servers. For example, some ver-

sions of MySQL allow you to specify the initial value of the autoincrementing

id column. We can pass this in through a migration as follows:

create_table :tickets, options: "auto_increment = 10000" do |t|
t.text :description
t.timestamps

end

Behind the scenes, migrations will generate the following DDL from this table

description when configured for MySQL:

CREATE TABLE "tickets" (
"id" int(11) default null auto_increment primary key,
"description" text,
"created_at" datetime,
"updated_at" datetime

) auto_increment = 10000;

Be careful when using the :options parameter with MySQL. The Rails MySQL

database adapter sets a default option of ENGINE=InnoDB. This overrides any local

defaults you may have and forces migrations to use the InnoDB storage engine

for new tables. However, if you override :options, you’ll lose this setting; new tables

will be created using whatever database engine is configured as the default for

your site. You may want to add an explicit ENGINE=InnoDB to the options string to

force the standard behavior in this case. You probably want to keep using InnoDB

if you’re using MySQL, because this engine gives you transaction support. You

might need transaction support in your application, and you’ll definitely need it

in your tests if you’re using the default of transactional test fixtures.

Renaming Tables

If refactoring leads us to rename variables and columns, then it’s probably

not a surprise that we sometimes find ourselves renaming tables, too.

Migrations support the rename_table() method.

class RenameOrderHistories < ActiveRecord::Migration
def change
rename_table :order_histories, :order_notes

end
end

Rolling back this migration undoes the change by renaming the table back.

Chapter 22. Migrations • 376

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Problems with rename_table

There’s a subtle problem when we rename tables in migrations.

For example, let’s assume that in migration 4 we create the order_histories table

and populate it with some data.

def up
create_table :order_histories do |t|
t.integer :order_id, null: false
t.text :notes

t.timestamps
end

order = Order.find :first
OrderHistory.create(order_id: order, notes: "test")

end

Later, in migration 7, we rename the table order_histories to order_notes. At this

point we’ll also have renamed the model OrderHistory to OrderNote.

Now we decide to drop our development database and reapply all migrations.

When we do so, the migrations throw an exception in migration 4: our appli-

cation no longer contains a class called OrderHistory, so the migration fails.

One solution, proposed by Tim Lucas, is to create local, dummy versions of

the model classes needed by a migration within the migration. For example,

the following version of the fourth migration will work even if the application

no longer has an OrderHistory class.

class CreateOrderHistories < ActiveRecord::Migration

➤

class OrderHistory < ActiveRecord::Base; end
class Order < ActiveRecord::Base; end

➤

def change
create_table :order_histories do |t|
t.integer :order_id, null: false
t.text :notes

t.timestamps
end

order = Order.find :first
OrderHistory.create(order: order_id, notes: "test")
end

end

This works as long as our model classes do not contain any additional func-

tionality that would have been used in the migration—all we’re creating here

is a bare-bones version.

report erratum • discuss

Managing Tables • 377

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Defining Indices

Migrations can (and probably should) define indices for tables. For example,

we might notice that once our application has a large number of orders in

the database, searching based on the customer’s name takes longer than

we’d like. It’s time to add an index using the appropriately named add_index()
method.

class AddCustomerNameIndexToOrders < ActiveRecord::Migration
def change
add_index :orders, :name

end
end

If we give add_index the optional parameter unique: true, a unique index will be

created, forcing values in the indexed column to be unique.

By default the index will be given the name index_table_on_column. We can

override this using the name: "somename" option. If we use the :name option when

adding an index, we’ll also need to specify it when removing the index.

We can create a composite index—an index on multiple columns—by passing

an array of column names to add_index. In this case, only the first column name

will be used when naming the index.

Indices are removed using the remove_index() method.

Primary Keys

Rails assumes every table has a numeric primary key (normally called id) and

ensures the value of this column is unique for each new row added to a table.

We’ll rephrase that.

Rails really doesn’t work too well unless each table has a numeric primary

key. It is less fussy about the name of the column. So, for your average Rails

application, our strong advice is to go with the flow and let Rails have its id
column.

If you decide to be adventurous, you can start by using a different name for

the primary key column (but keeping it as an incrementing integer). Do this

by specifying a :primary_key option on the create_table call.

create_table :tickets, primary_key: :number do |t|
t.text :description

t.timestamps
end

Chapter 22. Migrations • 378

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

This adds the number column to the table and sets it up as the primary key.

$ sqlite3 db/development.sqlite3 ".schema tickets"
CREATE TABLE tickets ("number" INTEGER PRIMARY KEY AUTOINCREMENT
NOT NULL, "description" text DEFAULT NULL, "created_at" datetime
DEFAULT NULL, "updated_at" datetime DEFAULT NULL);

The next step in the adventure might be to create a primary key that isn’t an

integer. Here’s a clue that the Rails developers don’t think this is a good idea:

migrations don’t let you do this (at least not directly).

Tables with No Primary Key

Sometimes we may need to define a table that has no primary key. The most

common case in Rails is for join tables—tables with just two columns where

each column is a foreign key to another table. To create a join table using

migrations, we have to tell Rails not to automatically add an id column.

create_table :authors_books, id: false do |t|
t.integer :author_id, null: false
t.integer :book_id, null: false

end

In this case, you might want to investigate creating one or more indices on

this table to speed navigation between books and authors.

22.4 Advanced Migrations

Most Rails developers use the basic facilities of migrations to create and

maintain their database schemas. However, every now and then it’s useful

to push migrations just a bit further. This section covers some more advanced

migration usage.

Using Native SQL

Migrations give you a database-independent way of maintaining your applica-

tion’s schema. However, if migrations don’t contain the methods you need to

be able to do what you need to do, you’ll need to drop down to database-

specific code. Rails provides two ways to do this. One is with options arguments

to methods like add_column(). The second is the execute() method.

When you use options or execute(), you might well be tying your migration to a

specific database engine, because any SQL you provide in these two locations

uses your database’s native syntax.

A common example in our migrations is the addition of foreign key constraints

to a child table.

report erratum • discuss

Advanced Migrations • 379

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

We could do this by adding a method such as the following to our migration

source file:

def foreign_key(from_table, from_column, to_table)
constraint_name = "fk_#{from_table}_#{to_table}"
execute %{
CREATE TRIGGER #{constraint_name}_insert
BEFORE INSERT ON #{from_table}
FOR EACH ROW BEGIN

SELECT
RAISE(ABORT, "constraint violation: #{constraint_name}")

WHERE
(SELECT id FROM #{to_table} WHERE
id = NEW.#{from_column}) IS NULL;

END;
}
execute %{
CREATE TRIGGER #{constraint_name}_update
BEFORE UPDATE ON #{from_table}
FOR EACH ROW BEGIN

SELECT
RAISE(ABORT, "constraint violation: #{constraint_name}")

WHERE
(SELECT id FROM #{to_table} WHERE
id = NEW.#{from_column}) IS NULL;

END;
}
execute %{
CREATE TRIGGER #{constraint_name}_delete
BEFORE DELETE ON #{to_table}
FOR EACH ROW BEGIN

SELECT
RAISE(ABORT, "constraint violation: #{constraint_name}")

WHERE
(SELECT id FROM #{from_table} WHERE
#{from_column} = OLD.id) IS NOT NULL;

END;
}

end

Within the up() migration, we can call this new method using this:

def up
create_table ... do
end
foreign_key(:line_items, :product_id, :products)
foreign_key(:line_items, :order_id, :orders)

end

Chapter 22. Migrations • 380

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

However, we may want to go a step further and make our foreign_key() method

available to all our migrations. To do this, create a module in the application’s

lib directory, and add the foreign_key() method.

This time, however, make it a regular instance method, not a class method.

module MigrationHelpers

def foreign_key(from_table, from_column, to_table)
constraint_name = "fk_#{from_table}_#{to_table}"

execute %{
CREATE TRIGGER #{constraint_name}_insert
BEFORE INSERT ON #{from_table}
FOR EACH ROW BEGIN

SELECT
RAISE(ABORT, "constraint violation: #{constraint_name}")

WHERE
(SELECT id FROM #{to_table} WHERE id = NEW.#{from_column}) IS NULL;

END;
}

execute %{
CREATE TRIGGER #{constraint_name}_update
BEFORE UPDATE ON #{from_table}
FOR EACH ROW BEGIN

SELECT
RAISE(ABORT, "constraint violation: #{constraint_name}")

WHERE
(SELECT id FROM #{to_table} WHERE id = NEW.#{from_column}) IS NULL;

END;
}

execute %{
CREATE TRIGGER #{constraint_name}_delete
BEFORE DELETE ON #{to_table}
FOR EACH ROW BEGIN

SELECT
RAISE(ABORT, "constraint violation: #{constraint_name}")

WHERE
(SELECT id FROM #{from_table} WHERE #{from_column} = OLD.id) IS NOT NULL;

END;
}

end
end

We can now add this to any migration by adding the following lines to the top

of our migration file:

require "migration_helpers"➤

class CreateLineItems < ActiveRecord::Migration

extend MigrationHelpers➤

report erratum • discuss

Advanced Migrations • 381

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The require line brings the module definition into the migration’s code, and the

extend line adds the methods in the MigrationHelpers module into the migration

as class methods. We can use this technique to develop and share any number

of migration helpers.

(And, if you’d like to make your life even easier, someone has written a plugin1

that automatically handles adding foreign key constraints.)

Custom Messages and Benchmarks

Although not exactly an advanced migration, something that is useful to do

within advanced migrations is to output our own messages and benchmarks.

We can do this with the say_with_time() method.

def up
say_with_time "Updating prices..." do
Person.all.each do |p|
p.update_attribute :price, p.lookup_master_price

end
end

end

say_with_time() prints the string passed before the block is executed and prints

the benchmark after the block completes.

22.5 When Migrations Go Bad

Migrations suffer from one serious problem. The underlying DDL statements

that update the database schema are not transactional. This isn’t a failing in

Rails—most databases just don’t support the rolling back of create table, alter
table, and other DDL statements.

Let’s look at a migration that tries to add two tables to a database:

class ExampleMigration < ActiveRecord::Migration
def change
create_table :one do ...
end
create_table :two do ...
end

end
end

In the normal course of events, the up() method adds tables, one and two, and

the down() method removes them.

1. https://github.com/matthuhiggins/foreigner

Chapter 22. Migrations • 382

report erratum • discuss

https://github.com/matthuhiggins/foreigner
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

But what happens if there’s a problem creating the second table? We’ll end

up with a database containing table one but not table two. We can fix whatever

the problem is in the migration, but now we can’t apply it—if we try, it will

fail because table one already exists.

We could try to roll the migration back, but that won’t work. Because the

original migration failed, the schema version in the database wasn’t updated,

so Rails won’t try to roll it back.

At this point, you could mess around and manually change the schema

information and drop table one. But it probably isn’t worth it. Our recommen-

dation in these circumstances is simply to drop the entire database, re-create

it, and apply migrations to bring it back up-to-date. You’ll have lost nothing,

and you’ll know you have a consistent schema.

All this discussion suggests that migrations are dangerous to use on produc-

tion databases. Should you run them? We really can’t say. If you have

database administrators in your organization, it’ll be their call. If it’s up to

you, you’ll have to weigh the risks. But, if you decide to go for it, you really

must back up your database first. Then, you can apply the migrations by

going to your application’s directory on the machine with the database role

on your production servers and executing this command:

depot> RAILS_ENV=production rake db:migrate

This is one of those times where the legal notice at the start of this book kicks

in. We’re not liable if this deletes your data.

22.6 Schema Manipulation Outside Migrations

All the migration methods described so far in this chapter are also available

as methods on Active Record connection objects and so are accessible within

the models, views, and controllers of a Rails application.

For example, you might have discovered that a particular long-running report

runs a lot faster if the orders table has an index on the city column. However,

that index isn’t needed during the day-to-day running of the application, and

tests have shown that maintaining it slows the application appreciably.

Let’s write a method that creates the index, runs a block of code, and then

drops the index. This could be a private method in the model or could be

implemented in a library.

report erratum • discuss

Schema Manipulation Outside Migrations • 383

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

def run_with_index(*columns)
connection.add_index(:orders, *columns)
begin
yield

ensure
connection.remove_index(:orders, *columns)

end
end

The statistics-gathering method in the model can use this as follows:

def get_city_statistics
run_with_index(:city) do
.. calculate stats

end
end

What We Just Did

While we had been informally using migrations throughout the development

of the Depot application and even into deployment, in this chapter we saw

how migrations are the basis for a principled and disciplined approach to

configuration management of the schema for your database.

You learned how to create, rename, and delete columns and tables; to manage

indices and keys; to apply and back out entire sets of changes; and even to

mix in your own custom SQL into the mix, all in a completely reproducible

manner.

At this point we’ve covered the externals of Rails. The next few chapters are

going to delve deeper. We are going to show you how to take Rails apart and

put it back together. The first stop along the way is to show you how to use

select Rails classes and methods outside the context of a web server.

Chapter 22. Migrations • 384

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 23

Nonbrowser Applications

Previous chapters focused primarily on server-to-human communications,

mostly via HTML. But not all web interactions need to directly involve a person.

This chapter focuses on accessing your Rails application and data from

within a stand-alone script.

There are a variety of reasons why you might want to access portions of your

Rails application from outside a browser. For example, you may desire to

have your database loaded or synchronized periodically using a background

job kicked off by a utility like cron. You may have existing applications, perhaps

even Rails applications, that want to directly access the data in (another)

Rails application, possibly even on a different machine. You might just want

a command-line interface, not because it is required but just because.

Whatever your reasons, Rails is there for you. As you will see, you will be able

to pull in as little or as much of Rails as you need to get your job done.

We will start with the assumption that your application is on the same

machine as your installation of Rails and your data, and then we will proceed

to describing how you can do the same things on a remote machine.

23.1 A Stand-Alone Application Using Active Record

One of the first things you will want unfettered access to is your data. You

will be pleased to know that you can make full use of Active Record from

within a stand-alone application. First, we will show you the “hard” way to

do so (the “scare quotes” is because it isn’t all that hard—remember it is Rails

we are talking about here, after all). Then we will show you the easy way.

We will start with a stand-alone program that uses Active Record to wrap a

table of orders in a SQLite 3 database. After finding the order with a particular

In this chapter, we’ll see
• invoking Rails methods,
• accessing Rails application data, and
• manipulating databases remotely.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

id, it modifies the purchaser’s name and saves the result in the database,

updating the original row.

require "active_record"

ActiveRecord::Base.establish_connection(adapter: "sqlite3",
database: "db/development.sqlite3")

class Order < ActiveRecord::Base
end

order = Order.find(1)
order.name = "Dave Thomas"
order.save

That’s all there is to it—in this case no configuration information (apart from

the database connection stuff) is required. Active Record figured out what we

needed based on the database schema and took care of all the necessary

details.

Now that you have seen the “hard” way, let’s see the easy way—the one where

Rails will handle the connection for you and load all of your models.

require "config/environment.rb"
order = Order.find(1)
order.name = "Dave Thomas"
order.save

For this to work, Ruby will need to find the config/environment.rb file for the

application you want to load. You can do this by specifying the full path to

this file on the require statement or by including the path in the RUBYLIB
environment variable. Another environment variable to watch out for is

RAILS_ENV, which is used to select from the development, test, and production

environments.

Once we have required this one file, we have access to roughly the same parts

of our applications as we did when we used rails console in Would the Last Admin

to Leave…, on page 205.

That was done all with a single require. It couldn’t be easier. But believe it or

not, at times you will want to access only a portion of the features that Rails

provides, outside the context of a Rails application. We cover that next.

23.2 A Library Function Using Active Support

Active Support is a set of libraries shared by all Rails components. Some of

what’s in there is intended for Rails’ internal use; however, all of it is available

for use by non-Rails applications.

Chapter 23. Nonbrowser Applications • 386

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

This could be important if you develop a Rails application and in the course

of that development you produce a set of classes or even just a set of methods

that you would like to make use of in a non-Rails application. You start by

copying and pasting this code into a separate file and then find out that it

doesn’t run—not because this logic is dependent on your application in any

way but because it uses other methods and classes that Rails provides.

We will start with a brief survey of some of the most important of these and

along the way show how they can be made available to your application.

Core Extensions (core-ext)

Active Support extends some of Ruby’s built-in classes in interesting and

useful ways. In this section, we’ll quickly list the most popular of these core

extensions.

• Array: second(), third(), fourth(), fifth(), and forty_two(). These complement the

first() and last() methods provided by Ruby.

• CGI: escape_skipping_slashes(). As the name implies, it differs from escape() in
that it doesn’t escape slashes.

• Class: Accessors for class attributes, delegating accessors, inheritable

readers and writers, and descendants (aka subclasses). These methods

are too numerous to enumerate; see the documentation for details.

• Date: yesterday(), future?(), next_month(), and many, many more.

• Enumerable: group_by(), sum(), each_with_object(), index_by(), many?(), and exclude?().

• File: atomic_write() and path().

• Float: Adds an optional precision argument to round().

• Hash: deep_merge(), except(), stringify_keys(), symbolize_keys(), reverse_merge(), and

slice(). Many of these methods also have variants ending in an exclamation

point.

• Integer: ordinalize(), multiple_of?(). months(), years(). See also Numeric.

• Kernel: debugger(), breakpoint(). silence_warnings(), enable_warnings().

• Module: Accessors for module attributes, aliasing support, delegation,

deprecation, internal readers and writers, synchronization, and parentage.

• Numeric: bytes(), kilobytes(), megabytes(), and so on; seconds(), minutes(), hours(),
and so on.

report erratum • discuss

A Library Function Using Active Support • 387

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• Object: blank?(), present?(), duplicable?(), instance_values(), instance_variable_() names(),
returning(), and try().

• String: exclude?(), pluralize(), singularize(), camelize(), titleize(), underscore(), dasherize(),
demodulize(), parameterize(), tableize(), classify(), humanize(), foreign_key(), constantize(),
squish(), mb_chars(), at?(), from(), to(), first(), last(), to_time(), to_date(), and try().

• Time: yesterday(), future?(), advance(), and many, many more.

As you can see, this is a fairly long list. These methods tend to be fairly small;

many are only a single line of code. Although you will probably only ever use

a small percentage of these methods, all of them are available for use in your

Rails application.

As you can also see, there is a lot there. Most of it you won’t ever directly use.

However, you’ll quickly find yourself adopting a small portion of these addi-

tional methods as if they were part of the Ruby language. Although all of these

methods are documented online,1 the best way to learn is often to experiment

directly by using rails console. Here are a few things to try:

• 2.years.ago
• [1,2,3,4].sum
• 5.gigabytes
• "man".pluralize
• String.methods.sort

Because there is no one best way to identify what subset works for you,

simply be aware that these methods exist, and check the documentation when

you find yourself with what seems to be a common need because the Rails

developers may have already added the method that you find missing.

Additional Active Support Classes

In addition to extending the base objects provided by Ruby, Active Support

provides plenty of additional functionality. More so than with the core exten-

sions, these classes tend to support specific needs of other Rails components,

but you are welcome to make use of these functions directly.

• Benchmarkable: Measures the execution time of a block in a template and

records the results to the log.

• Cache::Store: Offers various implementations of caches, based on files or

memory; with synchronized or compressed as options.

1. http://api.rubyonrails.org/classes/ActiveSupport.html

Chapter 23. Nonbrowser Applications • 388

report erratum • discuss

http://api.rubyonrails.org/classes/ActiveSupport.html
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

David says:

Why Extending Base Classes Doesn’t Lead to the

Apocalypse

The awe that seeing 5.months + 30.minutes for the first time is usually replaced by a state

of panic shortly thereafter. If everyone can just change how integers work, won’t that

lead to an utterly unmaintainable spaghetti land of hell? Yes, if everyone did that all

the time, it would. But they don’t, so it doesn’t.

Don’t think of Active Support as a collection of random extensions to the Ruby lan-

guage that invites everyone and their brother to add their own pet feature to the string

class. Think of it as a dialect of Ruby spoken universally by all Rails programmers.

Because Active Support is a required part of Rails, you can always rely on that 5.months
will work in any Rails application. That negates the problem of having a thousand

personal dialects of Ruby.

Active Support gives us the best of both worlds when it comes to language extensions.

It’s contextual standardization.

• Callbacks: Provide hooks into the life cycle of an object.

• Concern and Dependencies: Help manage dependencies in a modular way.

• Configurable: Provides a config Hash class variable.

• Deprecation: Provides behavior, reporting, and wrapping to support dep-

recation of methods.

• Duration: Offers additional methods such as ago() and since().

• Gzip: Offers convenience methods to compress() and decompress() a String.

• HashWithIndifferentAccess: Allows both params[:key] and params['key'].

• I18n: Provides internationalization support.

• Inflections: Handles English’s inconsistent rules for pluralization.

• JSON: Provides JavaScript Object Notation encoding and decoding methods.

• LazyLoadHooks: Provides support for deferred initialization of modules.

• MessageEncryptor: Encrypts values that are to be stored someplace

untrustworthy.

• MessageVerifier: Generates and verifies signed messages (to prevent

tampering).

• MultiByte: Provides encoding support (primarily for Ruby 1.8.7).

report erratum • discuss

A Library Function Using Active Support • 389

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

• Notifications: Offers an instrumentation API.

• OptionMerger: Offers deep merge lambda expressions.

• OrderedHash and OrderedOptions: Provides ordered hash support (primar-

ily for Ruby 1.8.7).

• Railtie: Defines core objects that the rest of the framework can depend on.

• Rescueable: Eases exception handling.

• StringInquirer: Provides a prettier way to test for equality.

• TestCase: Provides a variety of methods for testing rubygems and gem-

related behavior in a secure sandbox.

• Time and TimeWithZone: Offer even more support for time calculations

and conversions.

Although this book will not go into the (currently) forty-nine methods and

more that, for example, TimeWithZone alone provides, the previous list will enable

you to find the functions you need in the guides and API documentation. But

what this book will do is show you how you can use these methods in your

stand-alone application.

require "active_support/time"
Time.zone = 'Eastern Time (US & Canada)'
puts Time.zone.now

If you, like most people, find yourself addicted to one or more of these

extensions, you can simply require what you need (for example, require "active_
support/basic_object" or require "active_support/core_ext") or pull in everything with require
"active_support/all".

Using Action View Helpers

Although this doesn’t exactly fall under the category of Active Support, it is

close enough. What applies to Active Support also applies to other parts of

Rails, though most routing, controllers, and Action View methods tend to be

relevant only to the processing of an active web request.

One notable exception is some of the Action View helpers. Here’s an example

of how you can access an Action View helper from a stand-alone application:

require "action_view"
require "action_view/helpers"
include ActionView::Helpers::DateHelper
puts distance_of_time_in_words_to_now(Time.parse("December 25"))

Chapter 23. Nonbrowser Applications • 390

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

All in all, this is only slightly more work than getting access to the much more

commonly needed Active Support methods, but it’s still quite doable.

What We Just Did

Finally, we broke free from the constraints of the browser and accessed Active

Support, Action View, and Active Record methods directly from stand-alone

scripts. This enables us to produce scripts that can be run from the command

line, integrated into existing applications, or run periodically and automati-

cally using facilities such as cron.

Next up, we will explore other separately installable components that are

included in the bundle when you install Rails.

report erratum • discuss

A Library Function Using Active Support • 391

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 24

Rails’ Dependencies

At this point, we have covered base Rails. But there is much more to the

story. Much of what makes Rails great is functionality provided by components

that Rails builds upon.

These components should be familiar, because you have used each one. Atom

templates, HTML templates, rake db:migrate, bundle install, and rails server were all

used in the development of the Depot application.

Although this chapter goes beyond your normal day-to-day activities and

shows how each component can be used in isolation, it is not meant to be an

exhaustive description of any of these components. Each component requires

a small book in itself to do it justice. Instead, the intent of this chapter is to

introduce you to a number of key components in order to provide the back-

ground necessary for you to begin self-directed explorations.

We start by introducing you to a number of such dependencies, beginning

with the underlying templating engines that power views. Then we will explore

Bundler, which is the component that is used to manage dependencies.

Finally, we will show how these pieces are put together using Rack and Rake.

24.1 Generating XML with Builder

Builder is a freestanding library that lets you express structured text (such

as XML) in code. A Builder template (in a file with an .xml.builder extension)

contains Ruby code that uses the Builder library to generate XML.

Here’s a simple Builder template that outputs a list of product names and

prices in XML:

In this chapter, we’ll see
• using XML and HTML templates,
• managing application dependencies,
• scripting tasks, and
• interfacing with a web server.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_t/app/views/products/index.xml.builder

xml.div(class: "productlist") do

xml.timestamp(Time.now)

@products.each do |product|
xml.product do

xml.productname(product.title)
xml.price(product.price, currency: "USD")

end
end

end

If this reminds you of the template you created for use with the Atom helper

in Section 12.2, Iteration G2: Atom Feeds, on page 172, that’s because the Atom

helper is built upon the functionality of Builder.

With an appropriate collection of products (passed in from the controller), the

template might produce something such as this:

<div class="productlist">
<timestamp>2013-01-29 09:42:07 -0500</timestamp>
<product>
<productname>CoffeeScript</productname>
<price currency="USD">36.0</price>

</product>
<product>
<productname>Programming Ruby 1.9</productname>
<price currency="USD">49.5</price>

</product>
<product>
<productname>Rails Test Prescriptions</productname>
<price currency="USD">43.75</price>

</product>
</div>

Notice how Builder has taken the names of methods and converted them to

XML tags; when we said xml.price, it created a tag called <price> whose contents

were the first parameter and whose attributes were set from the subsequent

hash. If the name of the tag you want to use conflicts with an existing method

name, you’ll need to use the tag!() method to generate the tag.

xml.tag!("id", product.id)

Builder can generate just about any XML you need. It supports namespaces,

entities, processing instructions, and even XML comments. Take a look at

the Builder documentation for details.

Chapter 24. Rails’ Dependencies • 394

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_t/app/views/products/index.xml.builder
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Although HTML looks superficially a lot like XML, it is enough of a different

beast that a different templating engine is generally used to produce HTML.

We cover that next.

24.2 Generating HTML with ERB

At its simplest, an ERB template is just a regular HTML file. If a template

contains no dynamic content, it is simply sent as is to the user’s browser.

The following is a perfectly valid html.erb template:

<h1>Hello, Dave!</h1>
<p>

How are you, today?
</p>

However, applications that just render static templates tend to be a bit boring

to use. We can spice them up using dynamic content.

<h1>Hello, Dave!</h1>
<p>

It's <%= Time.now %>
</p>

If you’re a JSP programmer, you’ll recognize this as an inline expression. ERB

evaluates any code between <%= and %> and converts the results into a string

using to_s(), escapes HTML special characters, and finally substitutes the

resulting string into the resulting page. The expression inside the tags can

be arbitrary code.

<h1>Hello, Dave!</h1>
<p>

It's <%= require 'date'
DAY_NAMES = %w{ Sunday Monday Tuesday Wednesday

Thursday Friday Saturday }
today = Date.today
DAY_NAMES[today.wday]

%>
</p>

Putting lots of business logic into a template is generally considered to be a

Very Bad Thing, and you’ll risk incurring the wrath of the coding police should

you get caught. We discussed a much better way of handling this with helpers

in Section 21.5, Using Helpers, on page 351.

Sometimes you need code in a template that doesn’t directly generate any

output. If you leave the equals sign off the opening tag, the contents are exe-

cuted, but nothing is inserted into the template. We could have written the

previous example as follows:

report erratum • discuss

Generating HTML with ERB • 395

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

<% require 'date'
DAY_NAMES = %w{ Sunday Monday Tuesday Wednesday

Thursday Friday Saturday }
today = Date.today

%>
<h1>Hello, Dave!</h1>
<p>

It's <%= DAY_NAMES[today.wday] %>.
Tomorrow is <%= DAY_NAMES[(today + 1).wday] %>.

</p>

In the JSP world, this is called a scriptlet. Again, many folks will chastise you

if they discover you adding code to templates. Ignore them—they’re falling

prey to dogma. There’s nothing wrong with putting code in a template. Just

don’t put too much code in there (and especially don’t put business logic in

a template). As we have already seen, you can use helper methods to success-

fully resist this temptation.

You can think of the HTML text between code fragments as if each line were

being written by a Ruby program. The <%…%> fragments are added to that

same program. The HTML is interwoven with the explicit code that you write.

As a result, code between <% and %> can affect the output of HTML in the

rest of the template.

For example, consider this template:

<% 3.times do %>
Ho!

<% end %>

When you insert a value using <%=…%>, the results will be HTML escaped

before being placed directly into the output stream. This is generally what

you want.

If, however, the text you’re substituting contains HTML that you want to be

interpreted, this will cause the HTML tags to be escaped—if you create a string

containing hello and then substitute it into a template, the user will

see hello rather than hello. Rails provides a number of helpers to

address this case. The following are a few examples.

The raw() method will cause the string to pass right on through to the output

without escaping. This provides the most amount of flexibility, as well as the

least amount of security.

The raw() method will HTML escape items in the array that are not HTML

safe, join the results with the provided string, and return an HTML-safe result.

Chapter 24. Rails’ Dependencies • 396

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The sanitize() method offers some protection. It takes a string containing HTML

and cleans up dangerous elements: <form> and <script> tags are escaped, and

on= attributes and links starting javascript: are removed.

The product descriptions in our Depot application were rendered as HTML

(that is, they were marked as safe using the raw() method). This allowed us to

embed formatting information in them. If we allowed people outside our

organization to enter these descriptions, it would be prudent to use the sanitize()
method to reduce the risk of our site being attacked successfully.

These two templating engines are just two of the many gems that Rails

depends on. At this point, it makes sense to talk about how such dependencies

are managed.

24.3 Managing Dependencies with Bundler

Dependency management is a deceptively hard problem. During development,

you may choose to install updated versions of gems that you depend on. Once

you do this, you may find yourself not being able to reproduce problems that

occur in production because your runs are picking up different versions of

the gems your application depends on. Or perhaps you see problems that

don’t exist in production.

It turns out that dependencies are every bit as important to manage as your

application source code or database schemas. If you are developing as part

of a team, you want every member of the team to be using the same version

of the dependencies. When you deploy, you want to ensure that the version

of the dependencies that you tested with are installed on the target machine

and are the ones actually used in production.

Bundler1 takes care of this, based on a file named Gemfile that is placed in the

top of your application directory. In this file, you list the dependencies of your

application. Let’s take a closer look at the Gemfile for the Depot application:

Download rails40/depot_u/Gemfile

source 'https://rubygems.org'
Bundle edge Rails instead: gem 'rails', github: 'rails/rails'
gem 'rails', '4.0.0'

Use sqlite3 as the database for Active Record
gem 'sqlite3'
group :production do

gem 'mysql2'
end

1. http://gembundler.com/

report erratum • discuss

Managing Dependencies with Bundler • 397

http://media.pragprog.com/titles/rails4/code/rails40/depot_u/Gemfile
http://gembundler.com/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Use SCSS for stylesheets
gem 'sass-rails', '~> 4.0.0'

Use Uglifier as compressor for JavaScript assets
gem 'uglifier', '>= 1.3.0'

Use CoffeeScript for .js.coffee assets and views
gem 'coffee-rails', '~> 4.0.0'

See https://github.com/sstephenson/execjs#readme for more supported runtimes
gem 'therubyracer', platforms: :ruby

Use jquery as the JavaScript library
gem 'jquery-rails'
gem 'jquery-ui-rails'

Turbolinks makes following links in your web application faster.
Read more: https://github.com/rails/turbolinks
gem 'turbolinks'

Build JSON APIs with ease. Read more: https://github.com/rails/jbuilder
gem 'jbuilder', '~> 1.2'

group :doc do
bundle exec rake doc:rails generates the API under doc/api.
gem 'sdoc', require: false

end

Use ActiveModel has_secure_password
gem 'bcrypt-ruby', '~> 3.0.0'

Use unicorn as the app server
gem 'unicorn'

Use Capistrano for deployment
gem 'rvm-capistrano', group: :development

Use debugger
gem 'debugger', group: [:development, :test]

The first line specifies where to find new gems and new versions of existing

gems. Feel free to repeat this line in order to list your own private gem

repositories.

The next line lists what version of Rails to load. Note that it specifies a specific

version. After this is a comment that you could use as an alternative in order

to run the latest version of Rails.

The remaining lines list a few gems that you are using and a few gems that

you might consider using. Some are placed in groups named :development, :test,

Chapter 24. Rails’ Dependencies • 398

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

or :production and will be made available only in those environments. Others

include an optional :require parameter, which specifies the name to use on a

require statement for the cases where it differs from the gem name.

On the line for sass-rails you see a version specifier that is preceded by a com-

parison operator. Although Gemfile files support a number of such operators,

only two are commonly used. >= is for the unfortunately all too rare condition

where the author of the Gemfile can be trusted to maintain strict backward

compatibility so all that is needed to be specified is a minimum version

number.

~> is more widely recommended. Essentially all of the parts of the version,

with the exception of the last part, must be matched exactly, and the last

part specifies a minimum. So, ~> 3.1.4 matches any version that starts with

a 3.1 and is not less than 3.1.4. Similarly, ~> 3.0 means any version string that

starts with a 3..

A Gemfile has a companion file, named Gemfile.lock. This second file is generally

updated by one of two commands: bundle install and bundle update. The difference

between the two is rather subtle.

Before proceeding, it is helpful to look at a Gemfile.lock file. Here is a small

excerpt:

GEM
remote: https://rubygems.org/
specs:
actionmailer (4.0.0)

actionpack (= 4.0.0)
mail (~> 2.5.3)

actionpack (4.0.0)
activesupport (= 4.0.0)
builder (~> 3.1.0)
erubis (~> 2.7.0)
rack (~> 1.5.2)
rack-test (~> 0.6.2)

activemodel (4.0.0)
activesupport (= 4.0.0)
builder (~> 3.1.0)

bundle install will use the Gemfile.lock as a starting point, and it will install only

the versions of the various gems as specified in this file. For this reason, it is

important that this file gets checked into your version control system, because

this will ensure that your colleagues and deployment targets will all be using

the same configuration.

report erratum • discuss

Managing Dependencies with Bundler • 399

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

bundle update will (unsurprisingly) update one or more named gems and will

update the Gemfile.lock accordingly. If you want to use a specific version of a

particular gem, the workflow would be to edit the Gemfile to express your

constraints and then run bundle update listing the gems that you want to update.

If you don’t specify a list of gems, Bundler will attempt to update all gems—this

is generally not recommended, particularly when close to deployment.

Bundler also has a runtime component that is used to ensure that your

application strictly loads only the versions of the gems listed in Gemfile.lock.
We will explore that further by looking into how the server operates.

24.4 Interfacing with the Web Server with Rack

Rails runs your application in the context of a web server. So far, we have

used two separate web servers: WEBRick, which comes built into the Ruby

language, and Phusion Passenger, which integrates with the Apache HTTP

web server.

A number of other choices are available, including Mongrel, Lighttpd, Unicorn,

and Thin.

Based on this, you might come to the conclusion that Rails has code that

allows it to plug into each of these web servers. In earlier releases of Rails,

this was true; as of Rails 2.3, this integration was delegated to a gem named

Rack.

So, Rails integrates with Rack, Rack integrates with (for example) Passenger,

and Passenger integrates with Apache httpd.

Although generally this integration is invisible and taken care of for you when

you run the command rails server, a file named config.ru is provided that allows

you to directly start your application under Rack.

Download rails40/depot_u/config.ru

This file is used by Rack-based servers to start the application.

require ::File.expand_path('../config/environment', __FILE__)
run Rails.application

You can use this file to start your Rails server with the following command:

rackup

Starting your server in this way is completely equivalent to running rails server.
To demonstrate the power of what you can do with Rack alone, let’s start over

with a bare-bones Rack application.

Chapter 24. Rails’ Dependencies • 400

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_u/config.ru
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Download rails40/depot_u/app/store.rb

require 'builder'
require 'active_record'

ActiveRecord::Base.establish_connection(
adapter: 'sqlite3',
database: 'db/development.sqlite3')

class Product < ActiveRecord::Base
end

class StoreApp
def call(env)
x = Builder::XmlMarkup.new :indent=>2

x.declare! :DOCTYPE, :html
x.html do
x.head do

x.title 'Pragmatic Bookshelf'
end
x.body do

x.h1 'Pragmatic Bookshelf'

Product.all.each do |product|
x.h2 product.title
x << " #{product.description}\n"
x.p product.price

end
end

end

response = Rack::Response.new(x.target!)
response['Content-Type'] = 'text/html'
response.finish

end
end

In this application, we are taking advantage of a number of things we have

learned so far. The first thing we do is to directly require active_record and builder.
Then we establish a connection with our database and define a class for our

Product. We won’t need to do any of this once we integrate this application with

our Rails application, but for now we are going totally bare-bones.

Then comes the application. It is a simple class that defines a single method

named call(). This method accepts a single parameter named env that contains

information about the request and is not used by this application.

This application uses Builder to create a simple HTML rendering of a product

list and then builds a response, sets the content type, and calls finish().

report erratum • discuss

Interfacing with the Web Server with Rack • 401

http://media.pragprog.com/titles/rails4/code/rails40/depot_u/app/store.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

By creating a new rackup file, we can run this as a stand-alone application.

Download rails40/depot_u/store.ru

require 'rubygems'
require 'bundler/setup'

require './app/store'

use Rack::ShowExceptions

map '/store' do
run StoreApp.new

end

The first thing this script does is to initialize Bundler, which will make avail-

able the right versions of all the gems that will be required. Then it requires

the store application.

Next, it pulls one of the standard middleware classes provided with Rack;

this one formats a stack traceback when things go wrong. Middleware in Rack

is like filters in Rails—both can inspect requests and adjust the responses

produced.

You can see the list of middlewares that Rails provides for Rails applications

using the command rake middleware.

Finally, we map the store URI to this application.

We can start this application using the rackup command.

rackup store.ru

By default, this rackup starts servers using port 9292 instead of port 3000.

You can select the port using the -p option.

Visiting this page using your browser results in the rather plain rendering of

the product listings, as shown in Figure 61, A minimal, but workable, product

listing, on page 403.

The disadvantage of a native Rack application as compared to a Rails appli-

cation is that less is taken care of for it. The primary advantage is that it is

possible to avoid some of the overhead of Rails and therefore process more

requests per second.

In most cases, you won’t want to create a completely stand-alone application

but will want to have portions of your site bypass Rails’ controller processing.

You do this by defining a route.

Chapter 24. Rails’ Dependencies • 402

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_u/store.ru
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 61—A minimal, but workable, product listing

Download rails40/depot_u/config/routes.rb

➤ require './app/store'
Depot::Application.routes.draw do

➤ match 'catalog' => StoreApp.new, via: :all
get 'admin' => 'admin#index'
controller :sessions do
get 'login' => :new
post 'login' => :create
delete 'logout' => :destroy

end
get "sessions/create"
get "sessions/destroy"

resources :users
resources :products do
get :who_bought, on: :member

end

scope '(:locale)' do
resources :orders
resources :line_items
resources :carts
root 'store#index', as: 'store', via: :all

end
end

report erratum • discuss

Interfacing with the Web Server with Rack • 403

http://media.pragprog.com/titles/rails4/code/rails40/depot_u/config/routes.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The server is not the only place where Rails components are used. We complete

this chapter with a description of a tool you can use to orchestrate the execu-

tion of tasks.

24.5 Automating Tasks with Rake

Rake is a program that often is taken for granted. It is used to automate tasks,

particularly tasks that may have a number of dependencies. The tasks are

defined by the Rakefile that you will find in your application’s root directory.

db:setup is an example of such a task. To see what subtasks are involved, run

Rake with the --trace and --dry-run options.

$ rake --trace --dry-run db:setup
(in /home/rubys/work/depot)
** Invoke db:setup (first_time)
** Invoke db:create (first_time)
** Invoke db:load_config (first_time)
** Invoke rails_env (first_time)
** Execute (dry run) rails_env
** Execute (dry run) db:load_config
** Execute (dry run) db:create
** Invoke db:schema:load (first_time)
** Invoke environment (first_time)
** Execute (dry run) environment
** Execute (dry run) db:schema:load
** Invoke db:seed (first_time)
** Invoke db:abort_if_pending_migrations (first_time)
** Invoke environment
** Execute (dry run) db:abort_if_pending_migrations
** Execute (dry run) db:seed
** Execute (dry run) db:setup

Executing the right steps in the right order is vital for repeatable deployments;

that’s why this particular task was used in Loading the Database, on page

240.

You can see a list of available tasks using rake --tasks. The tasks that Rails

provides are just a starter set; you are welcome to create more tasks. You do

so simply by creating new files in the lib/tasks directory containing Ruby code.

Here’s an example that will back up the production database:

Download rails40/depot_u/lib/tasks/db_backup.rake

namespace :db do

desc "Backup the production database"
task :backup => :environment do
backup_dir = ENV['DIR'] || File.join(Rails.root, 'db', 'backup')

Chapter 24. Rails’ Dependencies • 404

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_u/lib/tasks/db_backup.rake
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

source = File.join(Rails.root, 'db', "production.db")
dest = File.join(backup_dir, "production.backup")

makedirs backup_dir, :verbose => true

require 'shellwords'
sh "sqlite3 #{Shellwords.escape source} .dump > #{Shellwords.escape dest}"

end

end

The first line contains a namespace. We put this backup task in the db
namespace.

The second line contains a description. This description will show up when

you list tasks. If you run the rake --tasks command again, you will see that your

new task is included along with the ones that Rails provided.

The next line contains the task as well as any dependencies it might have.

Depending on environment is roughly equivalent to loading everything that rails
console provides.

The block passed to the task is standard Ruby code. In our example, we

determine the source and destination directories (where the destination will

default to db/backup but can be overridden by a DIR parameter on the command

line), then proceed to make the backup directory (if necessary), and finally

execute the sqlite3 dump command.

Note that we take care to escape arguments passed to the shell. This is

important in case any of the directories in question have a space in their

name.

24.6 Survey of Rails’ Dependencies

You can find a list of your Rails dependencies in the Gemfile.lock file. Some of

the names you find in there will be obvious; others will not. To assist with

this exploration, the following is a brief description of the names you will find

in there.

Of course, as Rails evolves, this list will inevitably change. But by knowing

the name of the component, you have the starting point for further exploration.

A good way to find out more given the name is to go to RubyGems.org,2 enter

the gem name in the search field, select the gem, and then click either the

Documentation or Homepage link.

2. http://rubygems.org

report erratum • discuss

Survey of Rails’ Dependencies • 405

http://rubygems.org
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

actionmailer

Part of Rails; see Chapter 13, Task H: Sending Mail, on page 177

actionpack

Part of Rails; see Chapter 20, Action Dispatch and Action Controller, on

page 309

activemodel

Support for Active Record and Active Resource

activerecord

Part of Rails; see Chapter 19, Active Record, on page 275

activesupport

Part of Rails; see Section 23.2, A Library Function Using Active Support,

on page 386

rails

Container for the entire framework

railties

Part of Rails; see Section 25.4, Finding More at RailsPlugins.org, on page

418 for links to more information on the subject

arel

A relational algebra; used by Active Record

atomic

Provides an Atomic class that guarantees atomic updates to its contained

value

bcrypt-ruby

Secure hash algorithm; used by Active Model

builder

A simple way to create XML markup; see Section 24.1, Generating XML

with Builder, on page 393

capistrano

Welcome to easy deployment; see Section 16.2, Iteration K2: Deploying

Remotely with Capistrano, on page 242

coffee-script

Bridge to the JS CoffeeScript compiler

erubis

The implementation of ERB that Rails uses; see Section 24.2, Generating

HTML with ERB, on page 395

Chapter 24. Rails’ Dependencies • 406

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

execjs

Lets you run JavaScript code from Ruby; used by coffee-script

highline

I/O library for command-line interfaces

hike

Finds files in a set of paths; used by sprockets

i18n

Internationalization support; see Chapter 15, Task J: Internationalization,

on page 211

jquery-rails

Provides jQuery and the jQuery-ujs driver

jbuilder

Provides a simple DSL for declaring JSON structures that beats massaging

giant hash structures

json

An implementation of the JSON specification according to RFC 4627

mail

Mail support; see Chapter 13, Task H: Sending Mail, on page 177

mime-types

Determines file type based on extension, used by mail

multi-json

Provides swappable JSON backends

mysql

Production database supported by Active Record; see Using MySQL for

the Database, on page 239

minitest

Provides a complete suite of testing facilities supporting TDD, BDD,

mocking, and benchmarking

net-scp

Copies files securely

net-sftp

Transfers files securely

net-ssh

Connects to remote servers securely

report erratum • discuss

Survey of Rails’ Dependencies • 407

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

net-ssh-gateway

Tunneling connections over SSH

nokogiri

An HTML, XML, SAX, and Reader parser

polyglot

Custom language loaders

rack

Interface between Rails and web servers; see Section 24.4, Interfacing

with the Web Server with Rack, on page 400

rack-test

Testing API for routes

rake

Task automation; see Section 24.5, Automating Tasks with Rake, on page

404

sass

Provides extensions to CSS3

sass-rails

Generator and Asset support for Sass

sprockets

Preprocesses and concatenates JavaScript source files

thread_safe

A collection of thread-safe versions of common core Ruby classes

tilt

Generic interface to multiple Ruby template engines; used by sprockets

sqlite3

Development database supported by Active Record

thor

Scripting framework used by the rails command

treetop

Text parsing library, used by mail

tzinfo

Time zone support

uglifier

Compresses JavaScript files

Chapter 24. Rails’ Dependencies • 408

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

What We Just Did

We explored a small number of Rails’ dependencies and then showed how

dependencies themselves can be managed, integrated with a web server, and

finally orchestrated from the command line. Along the way, we finally found

out what the Rakefile, Gemfile, and Gemfile.lock files are that are in the top of our

application directory.

Now that we have gone deeper into Rails, the next place to go is to branch

out and to cover external plugins that can be used to extend the base Rails

package that you get when you install Rails.

report erratum • discuss

Survey of Rails’ Dependencies • 409

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 25

Rails Plugins

Since the beginning of this book, we’ve talked incessantly about convention

over configuration in that Rails has sensible defaults for just about everything.

And more recently in the book, we’ve described Rails in terms of the underlying

gems that you get when you install Rails. Now it is time to put those two

thoughts together and reveal that the initial set of gems that Rails provides

you with is a sensible set of defaults—a group of gems that you can both add

to and change.

With Rails, gems are the primary way in which you plug in new functionality.

Instead of describing this in the abstract, we will select a few plugins and use

them to illustrate different aspects of how plugins are installed and what

plugins can do. The fact that many of these plugins turn out to be immediately

useful for your day-to-day work is simply a bonus!

Let’s start with a simple plugin that can make you money.

25.1 Credit Card Processing with Active Merchant

In Iteration G1 on page 161 we mentioned that we were temporarily punting

on handling credit cards. Being able to charge a customer is clearly an

important part of taking an order. Although this functionality isn’t built into

the core of Rails, there is a gem that provides this.

You’ve already seen how you control what gems get loaded by your application;

you do this by editing your Gemfile. Since we are going to cover a number of such

gems in this chapter, let’s add all of the ones that we’ll cover at once. You can

add these any place you like; we’ve chosen to do so at the end of the file.

Download rails40/depot_v/Gemfile

gem 'activemerchant', '~> 1.31'
gem 'haml', '~> 4.0'
gem 'kaminari', '~> 0.14'

In this chapter, we’ll see
• adding new classes to your application and
• adding a new templating language.

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_v/Gemfile
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

You will note that we follow best practices by specifying a minimum version

and effectively specifying an upper bound on the version number so that this

demo will pick a version that is unlikely to contain an incompatible change.

As for the gems we added, we will cover each in a separate section. This section

will focus on Active Merchant.1

With this in place, we can use the bundle command to install our dependencies.

depot> bundle install

Depending on your operating system and your setup, you may need to run

this command as root.

The bundle command will actually do much more. It will cross-check gem

dependencies, find a configuration that works, and download and install

whatever components are necessary. But this needn’t concern us now; we

added only one component, and we can rest assured that this one is included

in the gems that the bundler installed.

We must do one last thing after updating or installing a new gem: restart the

server. Although Rails does a good job of detecting and keeping up with your

latest changes to your application, it is impossible to predict what needs to

be done when an entire gem is added or replaced. We won’t be using the

server in this section but will shortly. Make sure that the server is running

the Depot application.

To demonstrate this functionality, we will create a small script, which we will

place in the script directory.

Download rails40/depot_v/script/creditcard.rb

credit_card = ActiveMerchant::Billing::CreditCard.new(
number: '4111111111111111',
month: '8',
year: '2009',
first_name: 'Tobias',
last_name: 'Luetke',
verification_value: '123'

)

puts "Is #{credit_card.number} valid? #{credit_card.valid?}"

There is not much to this script. It creates an instance of an ActiveMerchant::
Billing::CreditCard class and then calls valid?() on this object. Let’s run it.

$ rails runner script/creditcard.rb
Is 4111111111111111 valid? false

1. http://www.activemerchant.org/

Chapter 25. Rails Plugins • 412

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_v/script/creditcard.rb
http://www.activemerchant.org/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

There’s not much to it; it just worked. Note that no require statements were

necessary; simply listing the gem you want in your Gemfile makes the function

available to your application.

At this point, you should be able to see how you could use this functionality

in the Depot application. You know how to add a field to the Orders table via

a migration. You know how to add that field to the view. You know how to

add validation logic to your model, which calls the valid?() method that we used

earlier. If you go to the merchant site, you can even find out how to authorize()
and capture() a payment, though this does require you to have a login and a

password with an existing commerce gateway. Once that is set up, you know

how to call this logic from your controller.

Just think: all of that was made possible by the addition of a single line to

your Gemfile.

As we stated at the beginning of this chapter, adding gems to your Gemfile is
the preferred way to extend Rails. The advantages of doing so are numerous:

all of your dependencies are tracked by Bundler, are all preloaded for imme-

diate use by your application, and can be packed for easy deployment.

This was a very simple addition. Let’s move on to something more significant,

something that provides a clear alternative to one of the gems that Rails

depends on.

25.2 Beautifying Our Markup with Haml

Let’s take a look once again at a simple view that we use in the Depot appli-

cation, in this case, one that presents our storefront:

Download rails40/depot_u/app/views/store/index.html.erb

<% if notice %>
<p id="notice"><%= notice %></p>
<% end %>

<h1><%= t('.title_html') %></h1>

<% cache ['store', Product.latest] do %>
<% @products.each do |product| %>
<% cache ['entry', product] do %>

<div class="entry">
<%= image_tag(product.image_url) %>
<h3><%= product.title %></h3>
<%= sanitize(product.description) %>
<div class="price_line">

<%= number_to_currency(product.price) %>
<%= button_to t('.add_html'), line_items_path(product_id: product),
remote: true %>

report erratum • discuss

Beautifying Our Markup with Haml • 413

http://media.pragprog.com/titles/rails4/code/rails40/depot_u/app/views/store/index.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

</div>
</div>

<% end %>
<% end %>

<% end %>

This code gets the job done. It contains the basic HTML, with interspersed

bits of Ruby code enclosed in <% and %> markup. Inside that markup, an

equal sign is used to indicate that the value of the expression is to be converted

to HTML and displayed.

This is not only an adequate solution to the problem at hand; it is also all

that is really needed for a large number of Rails applications. Additionally, it

is an ideal place to start for books—like this one—where some knowledge of

HTML may be presumed, but many of the readers are new to Rails and often

to Ruby. The last thing you would want to do in that situation is to introduce

yet another new language.

But now that you are past that learning curve, let’s explore a new lan-

guage—one that more closely integrates the production of markup with Ruby

code, namely, HTML Abstraction Markup Language (Haml).

To start with, let’s remove the file we just looked at.

$ rm app/views/store/index.html.erb

In its place, let’s create a new file.

Download rails40/depot_v/app/views/store/index.html.haml

- if notice
%p#notice= notice

%h1= t('.title_html')

- cache ['store', Product.latest] do
- @products.each do |product|
- cache ['entry', product] do

.entry
= image_tag(product.image_url)
%h3= product.title
= sanitize(product.description)
.price_line
%span.price= number_to_currency(product.price)
= button_to t('.add_html'), line_items_path(product_id: product),

remote: true

Note the new extension: .html.haml. This indicates that the template is a Haml

template instead of an ERB template.

Chapter 25. Rails Plugins • 414

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_v/app/views/store/index.html.haml
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The first thing you should notice is that the file is considerably smaller. Here’s

a quick overview of what is going on, based on what the first character is on

each line:

• Dashes indicate a Ruby statement that does not produce any output

• Percent signs (%) indicate an HTML element.

• Equal signs (=) indicate a Ruby expression that does produce output to

be displayed. This can be used either on lines by themselves or following

HTML elements.

• Dots (.) and hash (#) characters may be used to define class and id
attributes, respectively. This can be combined with percent signs or used

stand-alone. When used by itself, a div element is implied.

• A comma at the end of a line containing an expression implies a continu-

ation. In the previous example, the button_to() call is continued across two

lines.

An important thing to note is that indentation is important in Haml. Returning

to the same level of indentation closes the if statement, loop, or tag that is

currently open. In this example, the paragraph is closed before the h1, the h1
is closed before the first div, but the div elements nest, with the first containing

an h3 element and the second containing both a span and a button_to().

As you can also see, all of your familiar helpers are available, things like t(),
image_tag(), and button_to(). In every meaningful way, Haml is as integrated into

your application as ERB is. You can mix and match: you can have some

templates using ERB and others using Haml.

As you have already installed the Haml gem, there truly is nothing more you

need to do. To see this in action, all you need to do is to visit your storefront.

What you should see should match Figure 62, Storefront using Haml, on page

416.

If that looks unremarkable, that’s because it should look exactly like it did

before. And that, if you think about it, is all the more remarkable because

the application layout continues to be implemented as an ERB template and

the index is implemented using Haml. Despite this, everything integrates

seamlessly and effortlessly.

Although this clearly is a deeper level of integration than simply adding a

task or a helper, it still is an addition. Next, let’s explore a plugin that changes

a core object in Rails.

report erratum • discuss

Beautifying Our Markup with Haml • 415

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Figure 62—Storefront using Haml

25.3 Pagination

At the moment, we have a few products, a few carts at any one time, and a

few line items per cart or order, but we can have essentially an unlimited

number of orders, and we hope to have many—enough so that displaying all

of them on an orders page will quickly become unwieldy. Enter the kaminari
plugin. This plugin extends Rails to provide this much-needed function.

Now let’s generate some test data. We could click repeatedly on the buttons

we have, but computers are good at this. This isn’t exactly seed data, simply

something done once and thrown away. Let’s create a file in the script directory.

Download rails40/depot_v/script/load_orders.rb

Order.transaction do
(1..100).each do |i|
Order.create(name: "Customer #{i}", address: "#{i} Main Street",

email: "customer-#{i}@example.com", pay_type: "Check")
end

end

This will create a hundred orders with no line items in them. Feel free to

modify the script to create line items if you are so inclined. Note that this

code does all this work in one transaction. This isn’t precisely required for

this activity but does speed up the processing.

Note that we don’t have any require statements or initialization to open or close

the database. We will allow Rails to take care of this for us.

rails runner script/load_orders.rb

Chapter 25. Rails Plugins • 416

report erratum • discuss

http://media.pragprog.com/titles/rails4/code/rails40/depot_v/script/load_orders.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Now that the setup is done, we are ready to make the changes necessary to

our application. First, we modify our controller to call paginate(), passing it in

the page and the order in which we want the results displayed.

Download rails40/depot_v/app/controllers/orders_controller.rb

def index
➤ @orders = Order.order('created_at desc').page(params[:page])

end

Next, we add links to the bottom of our index view.

Download rails40/depot_v/app/views/orders/index.html.erb

<p><%= paginate @orders %></p>

<h1>Listing orders</h1>

<table>
<thead>
<tr>

<th>Name</th>
<th>Address</th>
<th>Email</th>
<th>Pay type</th>
<th></th>
<th></th>
<th></th>

</tr>
</thead>

<tbody>
<% @orders.each do |order| %>
<tr>

<td><%= order.name %></td>
<td><%= order.address %></td>
<td><%= order.email %></td>
<td><%= order.pay_type %></td>
<td><%= link_to 'Show', order %></td>
<td><%= link_to 'Edit', edit_order_path(order) %></td>
<td><%= link_to 'Destroy', order, method: :delete,

data: { confirm: 'Are you sure?' } %></td>
</tr>

<% end %>
</tbody>

</table>

<%= link_to 'New Order', new_order_path %>
➤

And that is all there is to it! The default is to show thirty entries per page,

and the links will show up only if there are more than one page of orders.

report erratum • discuss

Pagination • 417

http://media.pragprog.com/titles/rails4/code/rails40/depot_v/app/controllers/orders_controller.rb
http://media.pragprog.com/titles/rails4/code/rails40/depot_v/app/views/orders/index.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

The controller specifies the number of orders to display on a page using the

:per_page option. See the following figure:

Figure 63—Showing ten orders out of more than a hundred

What We Just Did

Although this chapter did cover a few plugins, the purpose of this chapter

wasn’t to cover any particular plugin in depth but to introduce you to some

of the capabilities that plugins can provide.

If we include the gems that we saw in previous chapters, we have seen plugins

that simply add new features (Active Merchant and Capistrano), add some

methods to model objects (kaminari), add a new templating language (Haml),

and even add an interface to a new database (mysql).

If you think about it, there really isn’t all that much that a plugin can’t do.

25.4 Finding More at RailsPlugins.org

At this point, we have covered three plugins. Here are a few more to explore,

grouped by categories:

• Some plugins implement behavior that was previously in the core of Rails

and has since been moved out. As an example, instead of jQuery, the

Prototype library was the one supported by default by previous versions

Chapter 25. Rails Plugins • 418

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

of Rails. This has moved into a plugin named prototype-rails.2 Others, like

acts_as_tree,3 have thrived as plugins. And still others, like rails_xss,4 backport

essential functionality from future versions of Rails in order to help with

migration.

• Some plugins actually implement significant pieces of common application

logic and even user interface. The devise5 and authlogic6 plugins implement

user authentication and session management. We implemented these

functions ourselves in Depot, but this is generally something we don’t

recommend. We’ve found that laziness pays: if somebody else has written

a plugin for a function that you need to implement, that’s all the more

time you can spend on your application.

• Some plugins replace large portions of rails. For example, datamapper7

replaces ActiveRecord. The combination of cucumber,8 rspec,9 and webrat10

can be used separately or together to replace test scripts with plain test

stories, specifications, and browser simulation.

• airbrake11 and exception_notification12 will help you monitor errors in your

deployed servers.

Of course, this is but a small fraction of the set of plugins available. And this

list is continually growing; there undoubtedly will be many more available by

the time you read this.

Finally, you can obviously create your own plugins. Although doing so is

beyond the scope of this book, you can find out more in the Rails Guides13

and documentation.14

2. https://github.com/rails/prototype-rails#readme

3. https://github.com/rails/acts_as_tree#readme

4. https://github.com/rails/rails_xss

5. https://github.com/plataformatec/devise#readme

6. https://github.com/binarylogic/authlogic#readme

7. http://datamapper.org/

8. http://cukes.info/

9. http://rspec.info/

10. https://github.com/brynary/webrat#readme

11. https://airbrakeapp.com/pages/home

12. https://github.com/rails/exception_notification#readme

13. http://guides.rubyonrails.org/plugins.html

14. http://api.rubyonrails.org/classes/Rails/Railtie.html

report erratum • discuss

Finding More at RailsPlugins.org • 419

https://github.com/rails/prototype-rails#readme
https://github.com/rails/acts_as_tree#readme
https://github.com/rails/rails_xss
https://github.com/plataformatec/devise#readme
https://github.com/binarylogic/authlogic#readme
http://datamapper.org/
http://cukes.info/
http://rspec.info/
https://github.com/brynary/webrat#readme
https://airbrakeapp.com/pages/home
https://github.com/rails/exception_notification#readme
http://guides.rubyonrails.org/plugins.html
http://api.rubyonrails.org/classes/Rails/Railtie.html
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

CHAPTER 26

Where to Go from Here

Congratulations! We’ve covered a lot of ground together.

In Part I, you installed Rails, verified the installation using a simple applica-

tion, got exposed to the architecture of Rails, and got acquainted (or maybe

reacquainted) with the Ruby language.

In Part II, you iteratively built an application, built up test cases along the

way, and ultimately deployed it using Capistrano. We designed this application

to touch on all of the aspects of Rails that every developer needs to be aware

of.

Whereas Parts I and II of this book each served a single purpose, Part III of

this book served a dual role.

For some of you, Part III methodically filled in the gaps and covered enough

for you to get real work done. For others, this will be the first steps of a much

longer journey.

For most of you, the real value is a bit of both. A firm foundation is required

in order for you to be able to explore further. And that’s why we started this

part with a chapter that not only covered the convention and configuration

of Rails but also covered the generation of documentation.

Then we proceeded to devote a chapter each to the model, views, and con-

troller, which are the backbone of the Rails architecture. We covered topics

ranging from database relationships to the REST architecture to HTML forms

and helpers.

We covered migration as an essential maintenance tool for the deployed

application’s database.

Finally, we split Rails apart and explored the concept of gems from a number

of perspectives, from making use of individual Rails components separately

In this chapter, we’ll see
• reviewing Rails concepts: model, view, controller, configura-

tion, testing, and deployment; and
• links to places for further exploration.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

to making full use of the foundation upon which Rails is built and finally to

building and extending the framework to suit your needs.

At this point, you have the necessary context and background to explore

deeper whatever areas suit your fancy or are needed to solve that vexing

problem you face. We recommend you start by visiting the Ruby on Rails site1

and exploring each of the links across the top of that page. Some of this will

be quick refreshers of materials presented in this book, but you will also find

plenty of links to current information on how report problems, learn more,

and keep up-to-date.

Additionally, please continue to contribute to the wiki and forums mentioned

in the book’s introduction.

Pragmatic Bookshelf has more books on related Ruby and Rails subjects.2

There also are plenty of related categories that go beyond Ruby and Rails,

such as Agile Practices; Testing, Design, and Cloud Computing; and Tools,

Frameworks, Languages. You can find these and other categories at http://

www.pragprog.com/categories.

We hope you have enjoyed learning about Ruby on Rails as much as we have

enjoyed writing this book!

1. http://rubyonrails.org/

2. http://www.pragprog.com/categories/ruby_and_rails

Chapter 26. Where to Go from Here • 422

report erratum • discuss

http://www.pragprog.com/categories
http://www.pragprog.com/categories
http://rubyonrails.org/
http://www.pragprog.com/categories/ruby_and_rails
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

APPENDIX 1

Bibliography

[Bur11] Trevor Burnham. CoffeeScript: Accelerated JavaScript Development. The

Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2011.

[CC11] Hampton Catlin and Michael Lintorn Catlin. Pragmatic Guide to Sass. The

Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2011.

[TFH13] David Thomas, Chad Fowler, and Andrew Hunt. Programming Ruby: The

Pragmatic Programmer’s Guide. The Pragmatic Bookshelf, Raleigh, NC and

Dallas, TX, Fourth Edition, 2013.

report erratum • discuss

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4
http:///

Index

SYMBOLS
! suffix, 50

#, 39

#{…}, 40

%r{…}, 42

%{…}, 69

& prefix, 44

/…/, 42

: prefix, 38

<%=…%>, 21

<%=…>, 395

<<, 41

=>, 41

=~, 42

? suffix, 50

[’a’,’b’,’c’], 41

[…], 40, 42

{…}, 41

|, 42

||, 50

||=, 50

A
accepts attribute, 321

ACID properties, 308

Action Controller, 309, 319–
330
action_name attribute, 319
after_action, 338
asset_host (config), 358
before_action, 203, 338
flash attribute, 342
headers attribute, 320,

327, 330, 342
layout method, 360
logger attribute, 321, 342

method_missing, 319, 324
model method, 332
params attribute, 114,

288, 320, 342, 346
redirect_to, 126, 322, 329
render, 137, 322–323,

341, 361, 363
render_to_string, 326
request attributes, 320–

321, 342
respond_to, 315, 318
response attribute, 321,

342
send_data, 265, 326
send_file, 327
session attribute, 321,

331, 342
template_root (config), 322

Action Dispatch, 309–319

Action Mailer, 177–183
delivery_method (config), 177
receive, 184
smtp_settings (config), 178

action methods, 319

Action Pack, 34, 309

:action parameter, 324

Action View, 341–366
base_path attributes, 342
button_to, 128, 355
controller attributes, 342
link_to, 355
link_to_if, 356
link_to_unless, 356
link_to_unless_current, 356
using Action View

helpers, 390

action_name attribute, 319

Active Merchant, 411–413

Active Record, 275–308
after_create method, 299
after_destroy method, 207,

299
after_find method, 299, 302
after_initialize method, 299
after_save method, 299
after_update method, 299
after_validation method, 299
attribute_names, 293
attribute_present?, 293
attributes, 293
average, 291
before_create method, 299
before_destroy method, 299
before_save method, 299
before_update method, 299
before_validation method,

299
belongs_to method, 282–

283
count, 291
create, 285, 297
create!, 297
creating new rows, 284–

286
custom SQL queries, 293
data validation, 77–82,

165
delete, 298
delete_all, 298
deleting rows, 298
destroy, 298, 307
destroy_all, 298
find, 286
find_by_sql, 293–295
group method, 291
has_and_belongs_to_many

method, 283
has_many method, 109,

283

http:///

has_one method, 282
hook methods, 207
joins method, 290
lock method, 291
maximum, 291
minimum, 291
object-relational map-

ping, 33–34
offset method, 290
order method, 289
plugin to replace, 419
primary keys, 275, 280–

281
primary_key= method, 281
read_attribute, 279
readonly method, 291
RecordNotFound exception,

125
reload, 295
save, 284, 295, 297, 307
save!, 297, 305
scopes, 292
select method, 290
and SQL, 286–298
in stand-alone applica-

tions, 385–386
sum, 291
tables, 275–283
transaction, 304
update, 296
update_all, 296
updating rows, 295–297
write_attribute, 279

Active Support libraries, 386–
390

adapters, database, 13

add_column method, 370

add_index method, 378

add_table method, 375

after callbacks, 338

after_action method, 338
:except parameter, 338
:only parameter, 338

after_create method, 299

after_destroy method, 207, 299

after_find method, 299, 302

after_initialize method, 299

after_save method, 299

after_update method, 299

after_validation method, 299

Agile Manifesto, xiii

Ajax
coining of, 135
request to application,

142

response from applica-
tion, 143–144

testing, 154–157
troubleshooting, 145

animate method, 149

Apache web server, 236–239

app/ directory, 263

application.html.erb, 71, 96

applications
analysis and design, 56–

60
basic workflow, 24
creating, 15, 61
deployment, 233–250
directory structure, 262,

264
documentation, 256
exception handling, 124–

126
integration testing, 184–

189
internationalization of,

211–230
monitoring, 248
nonbrowser, 385–391
performance tweaking,

250
reloading code, 23
RESTful, 310
URL of, 19, 24, 92

around callbacks, 338–339

assert method, 83

assert_select method, 102

assertions, 83–84

asset_host (config), 358

assigns method, 114

Atom feeds, 172–176, 357

attachment_fu plugin, 350

attribute_names method, 293

attribute_present? method, 293

attributes, 277–280
accepts (request object),

321
action_name (Action Con-

troller), 319
base_path (Action View),

342
body (request object), 321
content_length (request ob-

ject), 321
content_type (request ob-

ject), 321
controller (Action View), 342
domain (request object),

320
env (request object), 321

flash (Action Controller),
342

format (request object),
321

headers (Action Controller),
320, 327, 330, 342

headers (request object),
321

host (request object), 320
host_with_port (request ob-

ject), 320
logger (Action Controller),

321, 342
method (request object),

320
params (Action Controller),

114, 288, 320, 342,
346

path (request object), 320
port (request object), 320
port_string (request object),

321
protocol (request object),

320
query_string (request ob-

ject), 320
remote_ip (request object),

321
request (Action Controller),

320–321, 342
request_method (request ob-

ject), 320
response (Action Con-

troller), 342
session (Action Controller),

321, 331, 342
ssl? (request object), 321
url (request object), 320

attributes method, 293

authlogic plugin, 419

auto_discovery_link_tag method,
357

average method, 291

B
:back parameter, 330

bang methods, 50

base_path attributes, 342

:bcc parameter, 357

before action, 202

before callbacks, 338

before_action method, 203, 338
:only parameter, 338

before_create method, 299

before_destroy method, 299

before_save method, 299

Index • 426

http:///

before_update method, 299

before_validation method, 299

belongs_to method, 282–283

bin/ directory, 267

blind effect, 149

BlueCloth, 355

body attribute, 321

:body parameter, 357

browsers
disabling JavaScript, 145
DOM inspectors, 158
Firefox NoScript plugin,

158
Internet Explorer quirks

mode, 145
reloading pages, 144

:buffer_size parameter, 327

Builder templates, 342, 393

Bundler
for dependency manage-

ment, 397–400
installing Capistrano,

244
pack command, 244
update command, 400

button_to method, 128, 355

C
callbacks, 202–204, 298–

304, 337–339
sequence, 299
skipping, in child con-

trollers, 203, 339

Capistrano, 242–248

:cc parameter, 357

change method, 371

change_column method, 374

class methods, 46

classes, 37, 45–47
in Active Record, 276
automatic loading, 271
naming conventions, 270

CoffeeScript, 153–154, 156,
343

:collection parameter, 137, 316,
364

command line
learning, 9
multiple-line commands,

62
tab completion, 9

config.ru, 262, 400

config/ directory, 268

configuration parameters
asset_host (Action Con-

troller), 358
delivery_method (Action

Mailer), 177
smtp_settings (Action Mail-

er), 178
template_root (Action Con-

troller), 322

:confirm parameter, 355

console window, 17

console, Rails, 206, 248, 267

constructors, 38

content_length attributes, 321

content_tag helper, 151

content_type attribute, 321

:content_type parameter, 326

continuous integration sys-
tem, 9

controller attributes, 342

controllers
accessing request infor-

mation, 319–321
and Action Controller,

319–330
action methods, 319
callbacks, 202–204, 337–

339
default behavior, 19
defined, 30
in Depot application, 254
error logging, 126
flash data, 336
functional testing, 185
generating, 18
grouping into modules,

271
helper methods, 352–358
layout declaration, 360
model declaration, 49
naming conventions, 270
and partial templates,

365
in Rails, 35
redirects, 126, 129, 327–

330
responding to user, 321–

330
returning files, 326
standard location, 21

convention over configura-
tion, xii, 255

cookies, 320, 332

count method, 291

create method, 285, 297

create! method, 297

create_table method, 375

credit card processing, 411–
413

cross-site request forgery at-
tacks, 97

CRUD methods, 275, 284

css method, 149

CSS stylesheets
Sassy CSS, 71, 99, 140
selector notation, 102
standard location, 70
tables, 130

currency
converting numbers to,

100, 353
localizing, 221

current_page method, 356

cycle method, 73, 354

D
data types

database columns, 371–
373

in Ruby, 39–43
SQL to Ruby mappings,

279

data validation
in models, 77–82, 165
unit testing, 83–89

databases, see also Active
Record

adapters for Rails, 13
column types, 371–373
configuration trou-

bleshooting, 241
creating, 62–64
development vs. produc-

tion, 239
foreign keys, 109, 169,

282, 379–382
importing seed data, 69
join tables, 283
managing tables, 375–

379
model-table mappings,

62, 277–280
object-relational map-

ping, 32–34
preconfigured by Rails,

87
primary keys, 275, 280
rollback, 207, 382
row locking, 291
supported by Rails, 12–

13

Index • 427

http:///

table names, 270, 273–
275

transactions, 304–308

datamapper plugin, 419

DB2, 13

debug method, 342, 354

declarations
after_create (Active Record),

299
after_destroy (Active

Record), 299
after_find (Active Record),

299
after_initialize (Active

Record), 299
after_save (Active Record),

299
after_update (Active Record),

299
after_validation (Active

Record), 299
before_create (Active

Record), 299
before_destroy (Active

Record), 299
before_save (Active Record),

299
before_update (Active

Record), 299
before_validation (Active

Record), 299
belongs_to (Active Record),

282–283
has_and_belongs_to_many (Ac-

tive Record), 283
has_many (Active Record),

283
has_one (Active Record),

282
layout (Action Controller),

360
model (Action Controller),

332
primary_key= (Active

Record), 281

default_url_options, 213, 215

delete method, 298

delete? method, 320

delete_all method, 298

delivery_method (config), 177

:dependent parameter, 109

deployment, 233–250
deployment servers, 242–

244

Depot application
access control, 202–204

analysis, 56–60
cart design, 59
cart, basic, 107–115,

119–123, 128–132
cart, in sidebar, 136–142
cart, with Ajax, 142–152
catalog display, 91–106
checkout, 159–172
credit card processing,

411–413
data analysis, 58–59
data validation, 77–82
data, seed, 69
deployment, 233–250
development approach,

55, 60
directory structure, 264
emails, 177–183
error handling, 124–128
functional testing, 101–

106, 130, 154–157,
169–170, 183, 201

integration testing, 184–
189

internationalization of,
211–230

MVC architecture, 253–
255

order creation, 159–172
order reporting, 172
page flows, 57–58
page layout, 96–99
pagination, 416–417
prices, 59, 100, 131
product listing, 70–73
products database, 62–64
products maintenance

application, 61–73
quantities, 119–123
unit (model) testing, 82–

89
use cases, 56
users, administering,

192–196, 204–208
users, authenticating,

197–204
users, logging in, 191–

192

destroy method, 298, 307

destroy_all method, 298

development
development database,

88
environment, 9–13
incremental, 55, 61
recover actions, 60
reloading application

code, 23

runtime environment
setting, 269

use cases, 56

devise plugin, 419

directory listing, 16

:disposition parameter, 326–327

distance_of_time_in_words method,
353

doc/ directory, 265

DOCTYPE header, 145

documentation
application, 256
for Rails, xvii, 13, 265

DOM inspectors, 158

DOM manipulation, 143

domain attribute, 320

down method, 122, 370

drop_table method, 375

DRY (Don’t Repeat Yourself),
xii

E
editors, 9–11

Emacs, 9

email
creating mailers, 179
delivery method, 177–178
multiple content types,

182
receiving, 184
sending, 179–182
SMTP settings, 178
templates, 180

:encode parameter, 357

encryption, using callback
handler, 301–304

entity names, 212, 219, 226

env attribute, 321

environments, runtime
custom, 269
development, 23
and email delivery, 177–

178
and Gemfile, 239, 399
purpose of, 269
switching, 256, 269

ERB (Embedded Ruby) tem-
plates, 21, 24, 35, 343,
395–397

.erb extension, 21

error messages
comparing to built-in, 89
errors object, 110
logging, in controller, 126

Index • 428

http:///

testing, 84
translating, 224–228
using flash, 125, 337

:except parameter, 338

exception handling
in Active Record search-

es, 287
automatic rollback, 207
in Rails applications,

124–126
rescue statement, 45, 126
in Ruby, 45

excerpt method, 354

execute method, 379

F
feeds, 172–176

file_field method, 349

:filename parameter, 326–327

files
returning, 326
uploading, 348–351

filter method, 338

find method, 286
:order parameter, 289
:select parameter, 290

find_by_sql method, 293–295

Firebird, 13

fixtures, 85–89

fixtures method, 87

flash attributes, 342

flash data, 336
sending error messages,

125
translating messages,

227

form_for method, 162

form_tag method, 198
:multipart parameter, 349

format attribute, 321

:format parameter, 318

format.atom, 173

forms
data flows, 199
data validation, 165
file_field, 349
form helpers, 162, 343–

346
form_for, 162–163
form_tag, 198, 229
label_tag, 198
login page, 198
password_field_tag, 198

processing submitted da-
ta, 346–347

select_tag, 229
submit_tag, 229
text_area, 164
text_field, 162
text_field_tag, 198
translating, 222–224

G
gem server, xvii

Gemfile, 8, 239, 262, 397–400

Gemfile.lock, 263

gems, 397–400, 405, 411–412

generator scripts
controller, 18, 91
integration_test, 185
mailer, 179
migration, 368
model, 368
scaffold, 62, 110

get method, 186

get? method, 320

Git
for deployment, 242–244
for development, 74
.gitignore file, 75

Gmail SMTP settings, 178

:greater_than_or_equal_to parame-
ter, 79

H
Haml, 413–415

handler classes, 300–304

has_and_belongs_to_many method,
283

has_many method, 109, 168,
283

has_one method, 282

has_secure_password method, 192

head? method, 320

headers attribute, 320–321,
327, 330, 342

helper methods, 26
default, 352
for emailing, 357
for formatting, 353–355
for forms, 343–346
for JavaScript, 358
for linking, 355–357
location of, 151, 264, 352
as modules, 47
writing, 150–151, 352

helpers
auto_discovery_link_tag, 357

current_page, 356
cycle, 73, 354
debug, 342, 354
distance_of_time_in_words, 353
excerpt, 354
highlight, 354
image_tag, 94, 356
j, 144
javascript_include_tag, 357
javascript_link_tag, 357
link_to, 26
mail_to, 357
number_to_currency, 100, 353
number_to_human_size, 353
number_to_percentage, 353
number_to_phone, 353
number_with_delimiter, 353
number_with_precision, 353
pluralize, 354
raw, 396
safe_join, 396
sanitize, 94, 397
simple_format, 354
strip_tags, 73
stylesheet_link_tag, 97, 357
time_ago_in_words, 353
truncate, 73, 354

highlight method, 354

hook methods, 110, 207

host attribute, 320

host name mapping, 238

host_with_port attribute, 320

HTML Abstraction Markup
Language (Haml), 413–415

HTML entity names, 212,
219, 226

html method, 144

.html.erb files, 21, 136

html_safe, 212

HTTP
Content-Type header, 326
file uploading, 348
method selection, 75,

111, 200–201
redirects, 129, 327–330
Status header, 326

hyperlinks, generate with
link_to, 26

I
I18n module, 212–215

IDEs, 11–12

image_tag method, 94, 356

inflections.rb, 276

:inline parameter, 324

Index • 429

http:///

installation, 3–8

instance methods, 46–47

instance variables, 38, 46

integration testing, 184–189

internationalization, 211–230

J
j method, 144

jEdit, 11

jQuery
alias to $, 144
html, 144
loading, 357

jQuery-UI library, 146–147
animate, 149
blind effect, 149
show, 149

JavaScript
and Ajax, 135
helper methods, 358
JSON, 142, 325, 389
RJS templates, 325

javascript_include_tag method,
357

javascript_link_tag method, 357

joins method, 290

.js.erb files, 144

JSON (JavaScript Object No-
tation), 142, 325, 389

K
kaminari plugin, 416

keys
foreign, 109, 169, 282,

379–382
primary, 275, 280, 378

Komodo IDE, 11

L
label_tag method, 198

language translation, 211–
230

layout method, 360

:layout parameter, 326, 361

layouts, 96–99, 358–362, 365

lib/ directory, 265

limit method, 289

link_to method, 26, 355
:confirm parameter, 355
:method parameter, 75,

316, 355

link_to_if method, 356

link_to_unless method, 356

link_to_unless_current method,
356

Linux
commands, multiple-line,

62
installing Rails, 6–8
log file viewing, 126

locale files, 217–222

locales
defining, 211
switching, 229–230

localization, 211–230

lock method, 291

log files
rolling over, 249
standard location, 267
viewing, 126, 248

log/ directory, 267

logger, 321, 342

logging in (users), 191–204

M
Mac OS X

commands, multiple-line,
62

enabling Apache, 236
installing MySQL, 239
installing Rails, 4–6
log file viewing, 126

mail_to method, 357
:bcc parameter, 357
:cc parameter, 357
:encode parameter, 357

mailers, 179–181

maximum method, 291

method attribute, 320

:method parameter, 75, 316,
355

method_missing method, 319,
324

methods (HTTP), 75, 111,
200–201

methods (Ruby), 38–39, 46–
47

private, 47, 108

migrations
add_column, 370
add_index, 378
adding columns, 119,

159
applying, 64, 369
change method, 371, 374
change_column, 374
column types, 371–373
create_table, 375

creating, 368
creating tables, 375–376
custom messages, 382
defined, 63
defining indices, 378
down, 370–371
execute, 379
irreversible, 374
naming convention, 367
and primary keys, 378
remove_column, 370
remove_index, 378
rename_column, 373
rename_table, 376
rolling back, 123, 369,

383
serious problem with,

382
up, 370
up vs. change, 371
using SQL, 379–382

MIME types, 318

minimum method, 291

MiniTest framework, 82

model method, 332

models
data validation, 77–82
defined, 29
in Depot application, 253
foreign keys, 109, 169,

282
mapping to forms, 162–

163
mapping to tables, 62
marshaling, 48
model object comparison,

281
naming conventions, 270
in Rails, 32–34
relationships between,

109, 282–283
scaffolds for, 62–63
standard location, 264
testing, 82–89
translating names, 226

modules, 47
grouping controllers into,

271
mixing in, 47

:multipart parameter, 349

MVC (Model-View-Controller),
29–30

in Depot application,
253–255

MySQL
adapter for, 13

Index • 430

http:///

and InnoDB storage en-
gine, 376

installing, 239
loading migrations, 240

N
naming conventions, 270–271

modifying the inflection
file, 276

:nothing parameter, 325

number_to_currency method,
100, 353

number_to_human_size method,
353

number_to_percentage method,
353

number_to_phone method, 353

number_with_delimiter method,
353

number_with_precision method,
353

numbers
formatting and convert-

ing, 100, 353
localizing, 221
precision, 353, 373
validating, 79

O
objects, 37

marshaling, 48

:only parameter, 338

Oracle, 13

:order parameter, 289

ORM (Object-Relational Map-
ping), 32, 275

P
page flows, 57

page layouts, 96–99, 358–362

pagination, 416–417

Paperclip plugin, 350

parameters
:action (render), 324
:back (redirect_to), 330
:bcc (mail_to), 357
:body (subject), 357
:buffer_size (send_file), 327
:cc (mail_to), 357
:collection (render), 137,

364
:collection (resources), 316
:confirm (link_to), 355
:content_type (render), 326

:disposition (send_data),
326–327

:disposition (send_file), 327
:encode (mail_to), 357
:except (after_action), 338
:filename (send_data), 326–

327
:filename (send_file), 327
:format (resource), 318
:inline (render), 324
:layout (render), 326, 361
:method (link_to), 75, 316,

355
:multipart (form_tag), 349
:nothing (render), 325
:only (after_action), 338
:only (before_action), 338
:order (find), 289
:partial (render), 137, 325,

363–365
:select (find), 290
:spacer_template (render),

364
:status (render), 325
:status (send_data), 327
:streaming (send_file), 327
:template (render), 325
:text (render), 324
:type (send_data), 326–327
:type (send_file), 327
:update (render), 325
:url_based_filename

(send_data), 327
:xml (render), 325

params attribute, 342, 346

params object, 114, 199, 288,
320, 346

:partial parameter, 137, 325,
363–365

partial-page templates, 136–
141, 363–366

with layouts, 365
shared, 365

Passenger, 236

password_field_tag method, 198

passwords
confirmation, 192, 194
obscuring, 346

_path, 26, 111, 129

path attribute, 320

Phusion Passenger, 236

placeholders, 345

plugins, 411–419
finding more, 418
Haml, 413–415

pluralize method, 354

port attribute, 320

port_string attribute, 321

post? method, 320

post_via_redirect method, 186

Postgres, 13

predicate methods, 50

prepend_after_action method, 338

prepend_before_action method,
338

:presence parameter, 78

primary_key= method, 281

private methods, 47, 108

production, see deployment

:prompt parameter, 164

protected methods, 47

protocol attribute, 320

Prototype, 419

public/ directory, 267

put? method, 320

Q
query_string attribute, 320

R
Rack, 262, 400–404

rackup command, 400, 402

Rails
agile practices in, xiii
application directory

structure, 16, 262
basic workflow, 24
dependency list, 405–409
documentation, xiii, xvii,

13, 256, 265
editors for, 9–11
IDEs for, 11–12
installing, 3–8
MVC architecture, xi, 17,

23, 30–35
naming conventions,

270–271
nonbrowser applications,

385–391
origin of, xiii
plugins, 411–419
README, 263
REST support, 312–315
test infrastructure, xi,

68–69
trends in use of, xi
using Rails methods,

386–390
versions, 8

Index • 431

http:///

rails commands
test controllers, 104
test models, 83

rails scripts
console, 206, 248, 267
dbconsole, 267
destroy, 267
generate, 268
new, 15
runner, 268, 416
server, 17, 268–269

RAILS_ENV environment vari-
able, 240, 324, 386

rails_xss plugin, 419

RailsInstaller, 4

Rake
documentation for, 267
listing available tasks,

404
Rakefile, 263
writing tasks for, 266,

404

rake commands
db:migrate, 64, 369
db:schema_migrations, 266
db:seed, 69
doc:app, 256
doc:guides, 265
doc:rails, 265
middleware, 402
routes, 312
stats, 257
test, 68

Rakefile, 404

raw method, 396

RDoc, 256

read_attribute method, 279

README.rdoc, 256

readonly method, 291

receive method, 184

RecordNotFound exception, 286

redcarpet, 265

RedCloth, 355

redirect_to method, 126, 322,
329
:back parameter, 330

redirects (HTTP), 126, 129,
327–330

reload method, 295

:remote parameter, 142

remote_ip attribute, 321

remove_column method, 370

remove_index method, 378

rename_column method, 373

rename_table method, 376

render method, 137, 322–323,
341, 361, 363
:action parameter, 324
:collection parameter, 137,

364
:content_type parameter,

326
:inline parameter, 324
:layout parameter, 326,

361
:nothing parameter, 325
:partial parameter, 137,

325, 363–365
:spacer_template parameter,

364
:status parameter, 325
:template parameter, 325
:text parameter, 324
:update parameter, 325
:xml parameter, 325

render_to_string method, 326

request attributes
accepts, 321
body, 321
content_length, 321
content_type, 321
delete?, 320
domain, 320
env, 321
format, 321
get?, 320
head?, 320
headers, 321
host, 320
host_with_port, 320
method, 320
path, 320
port, 320
port_string, 321
post?, 320
protocol, 320
put?, 320
query_string, 320
remote_ip, 321
request_method, 320
ssl?, 321
url, 320
xhr?, 320
xml_http_request?, 320

requests
handling, 30–32
processing by controllers,

319–330
response object, 321
routing to applications,

309–319
session object, 321

require, 266

rescue statement, 45, 126

resource method
:collection parameter, 316
:format parameter, 318

resources
controller actions, 313–

316
defined, 311
nested, 317
routes generated, 312

respond_to method, 315, 318

response attribute, 342

response object, 321

REST (Representational State
Transfer), 310

Rails support for, 312–
315

verbs, 311

RJS templates, 325

routes
and locale, 213
editing config/routes.rb, 92,

200, 212
feeds, 175
HTTP method selection,

75, 111, 200–201
MIME types in, 318
nesting, 317
_path, 26, 129
redirect, 126, 129
resource-based, 312–319
selecting data representa-

tion, 318
set root URL, 92
_url, 129
URL parsing, 24, 31

RSS feeds, 173, 357

Ruby
accessors, 46
array literals, 40
arrays, 40–42
assignment shortcuts, 50
bang methods, 50
class methods, 46
classes, 45–47
code blocks, 44
collections, 40–42
comments, 39
compound statements,

39
conditional evaluation, 50
control structures, 43–45
data types, 39–43
declarations, 46
do, 44
end, 43

Index • 432

http:///

exceptions, 45
expression interpolation,

40
hash literals, 41
hashes, 40–42
idioms and gotchas, 50–

52
if, 43
indentation, 39
installing, 4–7
instance methods, 46–47
instance variables, 46
iterators, 44
lambda, 51
marshaling objects, 48
methods, 39, 46–47
modules, 47
names, 38, 270
nil, 40
object orientation, 37–38
predicate methods, 50
private methods, 47
protected methods, 47
Rails core extensions to,

387–388
RDoc utility, 256
regular expressions, 42
require, 51, 266
rescue statement, 45, 126
scope declaration, 213
self.new, 50
sprintf, 100
statement modifiers, 43
string literals, 39, 69
strings, 39
symbols, 38
unless, 43
until, 43
while, 43
yield statement, 44, 97,

359

RubyGems, xvii

RUBYLIB environment variable,
386

RubyMine IDE, 11

RVM (Ruby Version Manager),
4–8, 246

S
safe_join method, 396

sanitize method, 94, 397

save method, 284, 295, 297,
307

save! method, 297, 305

scaffolds, 62–63, 110

schemas
manipulating in applica-

tions, 383
vs. models, 277
primary keys, 280
updating, 63, 119, 370,

382

scopes
Active Record, 292
Ruby, 213

scriptlets, 396

SCSS (Sassy CSS), 71, 99,
140, 343

security
application access con-

trol, 202–204
cross-site request at-

tacks, 97
exception handling, 124–

126
form data validation, 166
SQL injection attack, 287
user authentication, 191–

204

seeds.rb, 69

:select parameter, 290

select_tag helper, 229

send_data method, 265, 326
:disposition parameter, 326–

327
:filename parameter, 326–

327
:status parameter, 327
:type parameter, 326–327
:url_based_filename parame-

ter, 327

send_file method, 327
:buffer_size parameter, 327
:disposition parameter, 327
:filename parameter, 327
:streaming parameter, 327
:type parameter, 327

sendmail, 178

session attributes, 342

session object, 321, 331

sessions, 331–336
and cookies, 332
expiry and cleanup, 335
flash data storage, 125
login support, 197–201
and model declaration, 49
session object, 321, 331
shopping cart implemen-

tation, 107–108
storage options, 331,

334–335

show method, 149

simple_format method, 354

skip_before_action, 203

SMTP, 178

smtp_settings (config), 178

:spacer_template parameter, 364

SQL (Structured Query Lan-
guage), 286–298, 379–382

data types, mapping to
ruby, 279

SQL Server, 13

SQLite 3
adapter, 13
advantages, 62
limitations, 239

ssl? method, 321

:status parameter, 325, 327

:streaming parameter, 327

strip_tags method, 73

Struts, xi

stylesheet_link_tag method, 97,
357

subject method, 357

submit_tag helper, 229

Subversion, 242

sum method, 291

T
tables

column statistics, 291
columns and migrations,

119, 159, 371–374
columns and models,

277–280
creating, 62–64
creating rows, 284–286
defining indices, 378
deleting rows, 298
derived columns, 294
join tables, 283
managing with migra-

tions, 375–379
names of, 270, 273–275
object-relational map-

ping, 32–34
without primary key, 379
primary keys, 280
queries by primary key,

286
reading, 286–294
relationships between,

282–283
renaming, 376
updating rows, 295–297

Tapestry, xi

Index • 433

http:///

tasks/ directory, 266

:template parameter, 325

template_root (config), 322

templates
accessing controller ob-

ject, 342
Builder, 342, 393
CoffeeScript, 153–154,

343
and collections, 364
drawbacks of code in,

351
email, 180
environment of, 342
ERB, 21, 24, 35, 343,

395–397
file uploading, 348–351
form helpers, 343–346
Haml, 413–415
HTML, 20, 65–67
layouts, 96–99, 358–362
location of, 341
partial, 136–141, 363–

366
rendering, 322–326, 363–

366
RJS, 325
SCSS, 71, 99, 140, 343
translating, 215–220
XML, 393

test/ directory, 263

testing
assert, 83
assertions, 83–84
automatic test genera-

tion, 68
controller tests, 81
in Depot application, 255
fixtures, 85–89
functional tests, 101–

106, 130, 154–157,
201

get, 186
integration tests, 184–

189
model unit tests, 82–89
post_via_redirect, 186
runtime environment

setting, 178
test database, 88
xml_http_request, 186

:text parameter, 324

text_area method, 164

text_field method, 162

text_field_tag method, 198

TextMate, 10, 12

time
calculations and conver-

sions, 353, 390
displaying, 22–23

time_ago_in_words method, 353

tmp/ directory, 268

transaction method, 304

transactions, 304–308

truncate method, 73, 354

:type parameter, 326–327

U
:uniqueness parameter, 80

unit testing, 82–89

up method, 370

update method, 296

:update parameter, 325

update_all method, 296

_url, 313

url attribute, 320

:url_based_filename parameter,
327

URLs
of applications, 19, 24
default_url_options, 213, 215
redirect, 126, 129
setting website root, 92
_url vs. _path, 129
validating, 80

use cases, 56

user authentication, 191–204

V
validates method, 78

vendor/ directory, 268

version control system, 9
Git, 74

views
adding buttons, 110–

112, 128
defined, 29
in Depot application, 254
dynamic page updates,

142–144
HTML forms, 162–166,

198, 343–347
location of, 341
pathnames to, 93
in Rails, 34–35
rendering templates,

322–326
for RESTful actions, 315

standard location, 21
static HTML templates,

20, 65–67
writing helper methods,

150–151

Vim, 9

visual effects
blind effect, 149
hide/reveal items, 149–

151
highlight changes, 146–

149

W
Web 2.0, xi

web server
development vs. produc-

tion, 236
Rails interface to, 400–

404
restarting, 60
starting, 17, 65, 268
stopping, 17

WEBrick, 17
-e environment option,

269

Windows
commands, multiple-line,

62
Cygwin and MySQL, 242
installing Rails, 4
log file viewing, 126
tail command, 126

write_attribute method, 279

X
xhr? method, 320

XML
request response types,

318
templates, 393

:xml parameter, 325

xml_http_request method, 186

xml_http_request? method, 320

Y
YAML

defined, 48
for test data, 85–86
for locale files, 217
request response types,

318
tab sensitivity, 242

yield statement, 44, 97, 359

Index • 434

http:///

The Modern Web
Get up to speed on the latest HTML, CSS, and JavaScript techniques.

HTML5 and CSS3 are more than just buz-

zwords—they’re the foundation for today’s web appli-

cations. This book gets you up to speed on the HTML5

elements and CSS3 features you can use right now in

your current projects, with backwards compatible so-

lutions that ensure that you don’t leave users of older

browsers behind. This new edition covers even more

new features, including CSS animations, IndexedDB,

and client-side validations.

Click Watch Me for a free screencast on Web Workers.

Brian P. Hogan

(300 pages) ISBN: 9781937785598. $38

http://pragprog.com/book/bhh52e

With the advent of HTML5, front-end MVC, and

Node.js, JavaScript is ubiquitous—and still messy.

This book will give you a solid foundation for managing

async tasks without losing your sanity in a tangle of

callbacks. It’s a fast-paced guide to the most essential

techniques for dealing with async behavior, including

PubSub, evented models, and Promises. With these

tricks up your sleeve, you’ll be better prepared to

manage the complexity of large web apps and deliver

responsive code.

Trevor Burnham

(104 pages) ISBN: 9781937785277. $17

http://pragprog.com/book/tbajs

http://pragprog.com/book/bhh52e
http://pragprog.com/book/tbajs
http:///

Put the “Fun” in Functional
and Dive Deeper into Rails
Elixir puts the “fun” back into functional programming. And by the creator of Elixir: go

further into the depths of Rails itself.

You want to explore functional programming, but are

put off by the academic feel (tell me about monads just

one more time). You know you need concurrent appli-

cations, but also know these are almost impossible to

get right. Meet Elixir, a functional, concurrent language

built on the rock-solid Erlang VM. Elixir’s pragmatic

syntax and built-in support for metaprogramming will

make you productive and keep you interested for the

long haul. This book is the introduction to Elixir for

experienced programmers.

Dave Thomas

(240 pages) ISBN: 9781937785581. $36

http://pragprog.com/book/elixir

Get ready to see Rails as you’ve never seen it before.

Learn how to extend the framework, change its behav-

ior, and replace whole components to bend it to your

will. Eight different test-driven tutorials will help you

understand Rails’ inner workings and prepare you to

tackle complicated projects with solutions that are

well-tested, modular, and easy to maintain.

This second edition of the bestselling Crafting Rails

Applications has been updated to Rails 4 and discusses

new topics such as streaming, mountable engines, and

thread safety.

José Valim

(200 pages) ISBN: 9781937785550. $36

http://pragprog.com/book/jvrails2

http://pragprog.com/book/elixir
http://pragprog.com/book/jvrails2
http:///

The Joy of Math and Healthy Programming
Rediscover the joy and fascinating weirdness of pure mathematics, and learn how to take

a healthier approach to programming.

Mathematics is beautiful—and it can be fun and excit-

ing as well as practical. Good Math is your guide to

some of the most intriguing topics from two thousand

years of mathematics: from Egyptian fractions to Tur-

ing machines; from the real meaning of numbers to

proof trees, group symmetry, and mechanical compu-

tation. If you’ve ever wondered what lay beyond the

proofs you struggled to complete in high school geom-

etry, or what limits the capabilities of the computer on

your desk, this is the book for you.

Mark C. Chu-Carroll

(282 pages) ISBN: 9781937785338. $34

http://pragprog.com/book/mcmath

To keep doing what you love, you need to maintain

your own systems, not just the ones you write code

for. Regular exercise and proper nutrition help you

learn, remember, concentrate, and be creative—skills

critical to doing your job well. Learn how to change

your work habits, master exercises that make working

at a computer more comfortable, and develop a plan

to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for

those wishing to know more about health issues. In no

way is this book intended to replace, countermand, or

conflict with the advice given to you by your own

healthcare provider including Physician, Nurse Practi-

tioner, Physician Assistant, Registered Dietician, and

other licensed professionals.

Joe Kutner

(254 pages) ISBN: 9781937785314. $36

http://pragprog.com/book/jkthp

http://pragprog.com/book/mcmath
http://pragprog.com/book/jkthp
http:///

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers will

be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page

http://pragprog.com/book/rails4
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with

our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available

for purchase at our store: http://pragprog.com/titles/rails4

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

http://pragprog.com/book/rails4
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/titles/rails4
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us
http:///

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	Rails Simply Feels Right
	Rails Is Agile
	Who This Book Is For
	How to Read This Book

	Part 1—Getting Started
	1. Installing Rails
	Installing on Windows
	Installing on Mac OS X
	Installing on Linux
	Choosing a Rails Version
	Setting Up Your Development Environment
	Rails and Databases

	2. Instant Gratification
	Creating a New Application
	Hello, Rails!
	Linking Pages Together

	3. The Architecture of Rails Applications
	Models, Views, and Controllers
	Rails Model Support
	Action Pack: The View and Controller

	4. Introduction to Ruby
	Ruby Is an Object-Oriented Language
	Data Types
	Logic
	Organizing Structures
	Marshaling Objects
	Pulling It All Together
	Ruby Idioms

	Part 2—Building an Application
	5. The Depot Application
	Incremental Development
	What Depot Does
	Let's Code

	6. Task A: Creating the Application
	Iteration A1: Creating the Products Maintenance Application
	Iteration A2: Making Prettier Listings

	7. Task B: Validation and Unit Testing
	Iteration B1: Validating!
	Iteration B2: Unit Testing of Models

	8. Task C: Catalog Display
	Iteration C1: Creating the Catalog Listing
	Iteration C2: Adding a Page Layout
	Iteration C3: Using a Helper to Format the Price
	Iteration C4: Functional Testing of Controllers
	Iteration C5: Caching of Partial Results

	9. Task D: Cart Creation
	Iteration D1: Finding a Cart
	Iteration D2: Connecting Products to Carts
	Iteration D3: Adding a Button

	10. Task E: A Smarter Cart
	Iteration E1: Creating a Smarter Cart
	Iteration E2: Handling Errors
	Iteration E3: Finishing the Cart

	11. Task F: Add a Dash of Ajax
	Iteration F1: Moving the Cart
	Iteration F2: Creating an Ajax-Based Cart
	Iteration F3: Highlighting Changes
	Iteration F4: Hiding an Empty Cart
	Iteration F5: Making Images Clickable
	Testing Ajax Changes

	12. Task G: Check Out!
	Iteration G1: Capturing an Order
	Iteration G2: Atom Feeds

	13. Task H: Sending Mail
	Iteration H1: Sending Confirmation Emails
	Iteration H2: Integration Testing of Applications

	14. Task I: Logging In
	Iteration I1: Adding Users
	Iteration I2: Authenticating Users
	Iteration I3: Limiting Access
	Iteration I4: Adding a Sidebar, More Administration

	15. Task J: Internationalization
	Iteration J1: Selecting the Locale
	Iteration J2: Translating the Storefront
	Iteration J3: Translating Checkout
	Iteration J4: Add a Locale Switcher

	16. Task K: Deployment and Production
	Iteration K1: Deploying with Phusion Passenger and MySQL
	Iteration K2: Deploying Remotely with Capistrano
	Iteration K3: Checking Up on a Deployed Application

	17. Depot Retrospective
	Rails Concepts
	Documenting What We Have Done

	Part 3—Rails in Depth
	18. Finding Your Way Around Rails
	Where Things Go
	Naming Conventions

	19. Active Record
	Defining Your Data
	Locating and Traversing Records
	Creating, Reading, Updating, and Deleting (CRUD)
	Participating in the Monitoring Process
	Transactions

	20. Action Dispatch and Action Controller
	Dispatching Requests to Controllers
	Processing of Requests
	Objects and Operations That Span Requests

	21. Action View
	Using Templates
	Generating Forms
	Processing Forms
	Uploading Files to Rails Applications
	Using Helpers
	Reducing Maintenance with Layouts and Partials

	22. Migrations
	Creating and Running Migrations
	Anatomy of a Migration
	Managing Tables
	Advanced Migrations
	When Migrations Go Bad
	Schema Manipulation Outside Migrations

	23. Nonbrowser Applications
	A Stand-Alone Application Using Active Record
	A Library Function Using Active Support

	24. Rails' Dependencies
	Generating XML with Builder
	Generating HTML with ERB
	Managing Dependencies with Bundler
	Interfacing with the Web Server with Rack
	Automating Tasks with Rake
	Survey of Rails' Dependencies

	25. Rails Plugins
	Credit Card Processing with Active Merchant
	Beautifying Our Markup with Haml
	Pagination
	Finding More at RailsPlugins.org

	26. Where to Go from Here

	A1. Bibliography
	Index

