
www.allitebooks.com

http://www.allitebooks.org

qooxdoo
Beginner's Guide

Develop Rich Internet Applications (RIA) with qooxdoo

Rajesh Kumar Bachu

Mohamed Raffi

 BIRMINGHAM - MUMBAI

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

qooxdoo
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2011

Production Reference: 1161211

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-370-8

www.packtpub.com

Cover Image by Duraid Fatouhi (duraidfatouhi@yahoo.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors

Rajesh Kumar Bachu

Mohamed Raffi

Reviewers

Ehsun Behravesh

Liang Yuxian Eugene

Acquisition Editor

Dilip Venkatesh

Development Editor

Meeta Rajani

Technical Editors

Vrinda Amberkar

Kedar Bhat

Copy Editors

Brandt D'Mello

Leonard D'Silva

Project Coordinator

Michelle Quadros

Proofreaders

Mario Cecere

Aaron Nash

Indexer

Hemangini Bari

Graphics

Valentina D'Silva

Manu Joseph

Production Coordinators

Prachali Bhiwandar

Alwin Roy

Cover Work

Prachali Bhiwandar

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Rajesh Kumar Bachu has over six years experience in the design and development
of enterprise applications and mobile games. He is good at programming in Java and
J2EE technologies. He has worked extensively in qooxdoo application development
and has migrated an enterprise application to qooxdoo. You can find more about him
at http://in.linkedin.com/in/rajbachu.

I am pleased to acknowledge my colleagues with whom I worked and
learned qooxdoo, my co-author, Raffi, for bringing me on-board to write
this book and qooxdoo team, who have actually given me the pleasure to
write on qooxdoo.

My special thanks to my parents. I would like to thank all my friends who
directly or indirectly helped me to complete this book.

My thanks to all those who have been involved with this book, especially
to Mary Nadar, Dilip Venkatesh, Michelle Quadros, Meeta Rajani, Ehsun
Behravesh, Liang Yuxian Eugene, Vrinda Amberkar, and Kedar Bhat.

www.allitebooks.com

http://in.linkedin.com/in/rajbachu
http://www.allitebooks.org

Mohamed Raffi is an Enterprise Application Specialist. His area of work includes
architecture, design, development, training, and mentoring. He has over thirteen years of
product development experience in a variety of Java and JavaScript-based technologies and
frameworks. You can find more about him at http://in.linkedin.com/in/raffimd
and he writes his thoughts at http://thoughtstoblog.blogspot.com.

My sincere thanks to Packt Publishing for this opportunity. I would like to
thank my co-author Rajesh for sharing the effort of writing this book. I am
proud of the qooxdoo team for creating such a wonderful RIA framework.
Also, I would like to thank all my colleagues for all the learning they have
provided me with.

I appreciate all the support provided by my parents and my wife in writing
this book. My grandpa would be so proud (I wish he would have been here
to see this).

My thanks to all who were involved with this book, especially to Mary
Nadar, Dilip Venkatesh, Michelle Quadros, Meeta Rajani, Ehsun Behravesh,
Liang Yuxian Eugene, Vrinda Amberkar, and Kedar Bhat.

www.allitebooks.com

http://in.linkedin.com/in/raffimd
http://thoughtstoblog.blogspot.com
http://www.allitebooks.org

About the Reviewers

Ehsun Behravesh is a 28 year old post-graduate student at Universiti Putra,
Malaysia (http://www.upm.edu.my/). He is majoring in Distributed and Parallel
Computing. He is holds a bachelor's degree from the London Metropolitan University
(http://www.londonmet.ac.uk/). He started programming when he was in
high school and he has developed software systems for almost 10 years. He is a fan
of open source software and one of his open source projects, MyPasswords
(http://sourceforge.net/projects/mypasswords7/), won a comparison
competition on LinuxFormat, January 2011 magazine. He loves computer programming,
music, and animals.

I want to thank my wife who has always encouraged me to work and study.
I also want to thank my parents who helped me to study abroad.

www.allitebooks.com

http://sourceforge.net/projects/mypasswords7/
http://www.allitebooks.org

Liang Yuxian Eugene most recently completed an internship as a frontend engineer with
Yahoo!, Taiwan after completing a double degree in Business Administration and Computer
Science at National Cheng Chi University, Taipei, Taiwan.

He is also the author of JavaScript Testing Beginner's Guide, Packt Publishing.

Eugene enjoys solving difficult problems creatively in the form of building web applications
using Python/Django/Tornado Web and JavaScript/jQuery. He is also passionate about social
media, social network analysis, social computing, recommendation algorithms, link analysis,
data visualization, data mining, information retrieval, business intelligence, and intelligent
user interfaces.

Eugene seeks to solve business problems with Computer Science.

He can be reached at http://www.liangeugene.com.

Firstly, as a technical reviewer, I want to thank all the great folks at Packt
Publishing for giving me the opportunity to work with such a great team of
people.

Secondly, I want to thank my family and friends for their kind
understanding and putting up with my incredibly busy schedule.

Lastly, I want to thank all the people I have met and have helped me out
here-and-there along the way. It has been a great journey.

www.allitebooks.com

http://www.liangeugene.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: What is qooxdoo? 7
A feel of an RIA developed in qooxdoo 8
Time for action – play with the feed reader application 8
Architecture of qooxdoo SDK 12

Core layer 12
Browser Abstraction layer 12
Low-Level layer 13
GUI Toolkit layer 13
Data Binding 13
Internationalization 13

qooxdoo framework features 14
Language 14
Object-orientation 14
Programming 15
Internationalization 15
API reference 15
Testing 16
Deployment 16
Migration 16
Alternative programming models 17

Event-based rich UI programming 17
GUI widget library 18
Time for action – checking the demo browser and the playground applications 18

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Application to be developed in this book—Team Twitter 20
Time for action – checking the Team Twitter application 20
What you should know and what you don't need to know 23
Summary 24

Chapter 2: Say Hello to the qooxdoo World! 25
Installing qooxdoo tools 26
Time for action – installing qooxdoo tools 26

Installing ActivePython 26
Installing Cygwin 29

Installing qooxdoo SDK 35
Time for action – installing qooxdoo SDK 35
Creating a simple qooxdoo application 39
Time for action – creating a simple qooxdoo application 39
Passing data to the server 42

JSON standard format 43
Communicating with the server 46

Setting up an RPC connection 46
Making a call 46

Request 48
Response 48

Aborting a call 48
Error handling 49
Cross-domain calls 50
Parameter and result conversion 51

RPC servers 52
Integrating with the Java server 52
Time for action – integrating with the Java server 53

Working with Eclipse IDE 60
Summary 64

Chapter 3: Core Programming Concepts 65
Code comments and API documentation 66
Time for action – generating API documentation for Team Twitter 68
Object-oriented programming 69

Object and class 69
Encapsulation 69
Inheritance 70
Overriding 70
Abstraction 70
Polymorphism 70

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Table of Contents

[iii]

Interface 71
Members 71
Statics 71
Properties 71
Events 72

Class 73
Constructor and destructor 74
Members 74

Class members 74
Instance members 75

Types 77
Static class 77
Singleton class 77
Abstract class 77

Inheritance in qooxdoo 78
Overriding in qooxdoo 78

Mixin 81
Defining a mixin 82
Using a mixin in a class 82

Time for action – writing classes for Team Twitter 84
qooxdoo properties 91

Property initialization 92
Predefined methods 93
Property configurations 93

Apply 93
Check 94
Validate 96
Group 97
Event—property level 98

Property features 99
Value checks 99
Validation 99
Convenience 99
Notification 99
Advanced value handling 100
Performance 100
Memory management 100

Events—class level 102
Declaring events for a class 102
Adding listeners 102
Firing an event 102

Time for action – enhancing Team Twitter classes with properties 103
Summary 106

Table of Contents

[iv]

Chapter 4: Working with Layouts and Menus 109
Base classes for widgets 110

qx.core.Object 111
Object management 111
Event handling 111
Logging 112

qx.core.LayoutItem 112
qx.core.Widget 112

Widget properties 113

qx.application 115
Containers 117

Scroll 117
Stack 118
Resizer 119
Composite 119
Window 120
Tabview 121
Groupbox 122

Layout managers 123
Size hint of the widget and its parent widget 123
Layout properties 123
Auto sizing 124
Growing or shrinking 124
Overflow 124

Basic 125
Canvas 126
Dock 127
HBox 128
VBox 129
Flow 130
Grid 131

Time for action – designing layout managers for Team Twitter 132
Menu, MenuBar, and ToolBar 138

Menu 139
Menu creation 139

MenuBar 141
ToolBar 142

Summary 147

Chapter 5: Working with Widgets 149
Basic widgets 150

Label 150
Atom 151
Image 153

Table of Contents

[v]

Time for action – enhancing the server application 154
Form widgets 158

Interface hierarchy 160
IBooleanForm, INumberForm, IDateForm, IColorForm, and IStringForm 161
IForm 162
IExecutable 162
IRange 162
IModel 163
IModelSelection 163

Class hierarchy 164
qx.ui.form.TextField 164
qx.ui.form.TextArea 165
qx.ui.form.PasswordField 165
qx.ui.form.CheckBox 165
qx.ui.form.RadioButton 165
qx.ui.form.RadioButtonGroup 166
qx.ui.form.SelectBox 167
qx.ui.form.ComboBox 167
qx.ui.form.Spinner 167
qx.ui.form.List 168
qx.ui.form.ListItem 168
qx.ui.form.DateField 169
qx.ui.form.Button 170
qx.ui.form.ToggleButton 170
qx.ui.form.MenuButton 170
qx.ui.form.SplitButton 171
qx.ui.form.HoverButton 172
qx.ui.form.RepeatButton 173
qx.ui.form.Slider 174

Time for action – adding widgets into Team Twitter 174
Special widgets 179

The popup widgets 180
qx.ui.popup 180

The tooltip widgets 180
qx.ui.tooltip 180

The control widgets 182
qx.ui.control.ColorPopup 182
qx.ui.control.ColorSelector 182
qx.ui.control.DateChooser 183

Custom widgets 184
Time for action – adding a custom widget to Team Twitter 186
Inline widgets 189
The table widget 192

Class hierarchy 192
Table construction 193
Remote table model 194

Table of Contents

[vi]

The tree widget 195
Class hierarchy 195
Tree construction 196

The treevirtual widget 197
Class hierarchy 197
TreeVirtual construction 198

Summary 202

Chapter 6: Working with Forms and Data 203
Form handling 204

Validation 204
Synchronous 206
Asynchronous 208

Resetting 209
Rendering 210

Single column 211
Double column 211
Single column with placeholder 212

Serialization 212
Time for action – enhancing the UserSignUpForm 213
Object pooling 216
Data binding 216

Single value binding 218
Property binding 219
Event binding 219
Hierarchical data binding 219
Array binding 220

Options map 220

Data controller 221
Object controller 221
List controller 222
Form controller 223
Tree controller 224
Data stores 225

Time for action – enhancing the UserSignUpForm again 226
Summary 230

Chapter 7: Testing and Debugging 231
Unit testing 232
Time for action – performing unit test 234
Integration testing 241

Integration test setup 241
Writing test cases 242

Simulator API documentation 242

Table of Contents

[vii]

Simulator class hierarchy 243
Selenium Java Client Driver API documentation 244
Locating strategy 244

Time for action – performing integration test 246
Debugging 255

Logging statements in qooxdoo code 256
Console object 256
Trace 257
qx.dev.Debug 257
Variant qx.debug 258
Miscellaneous 258

Introduction to Firebug 259
Installing the Firebug add-on 259
IE developer tools 259
Tracing through AOP 260

Time for action – debugging 260
Summary 267

Chapter 8: Internationalization 269
Internationalization 269

Writing code to use internationalization 270
qx.locale.Manager 271
qx.locale.MTranslation 271
qx.locale.String, qx.locale.Number, qx.locale.Date, and qx.locale.Key 271

Writing PO files for various languages 275
Time for action – generating PO files for Team Twitter 276
Summary 284

Chapter 9: Working with Themes 285
Theme 286
Meta theme 287

Theme 288
Font 288
Color 288
Decoration 288
Appearance 289
Modern theme 289
Classic theme 290
Simple theme 291

Icon theme 292
Color theme 292
Font theme 293
Decoration theme 293

Aliases 294

Table of Contents

[viii]

Decorations 294
Decorator 295
Style 297
Writing new decorators 297

Appearance theme 297
Appearance selector (key) 299
Appearance entry (value) 299

Alias 300
Appearance map 301

Style entry in the appearance map 302
The include entry in the appearance map 303
The alias entry in the appearance map 303
Base calls 305

Performance 306
Appearance queue 306
Selector caching 306
Alias caching 307
Result caching 308

Time for action – customizing themes for Team Twitter 309
Summary 321

Chapter 10: Performance 323
Memory management 323
Object pooling 327
Profiling 328

Limitations 330
Compile-time tuning 331

Class optimizations 331
Strings 331
Variables 331
Private 331
Base calls 332

Identifying unused classes 332
Lint check 334

Improvements 335

Partitioning and lazy loading 335
Configuration 336
Coding to load parts on demand 337
Verification 337
Recent improvements 338

Part collapsing or merging 338
Remove dependencies from the part loader 338
Load packages in parallel 338
Error handling 339

Table of Contents

[ix]

Advantages 339
Time for action – partitioning 339
Good practices for performance 343

Restrict the data in certain widgets 343
Use filters 343
Pagination 344
.gz compression 344

Summary 346

Chapter 11: Miscellaneous 349
Configuration 349

config.json 350
Listing of keys in context 352

Job resolution 354
The extend key 355
The run key 358

Job shadowing and partial overriding 360
Migration 362
Time for action – migration 362
Back button support 367

Identify application states 367
Update history upon state change 367
Add the event listener to the history manager 368
Retrieve initial state 369

qooxdoo license 370
Summary 372

Appendix: Pop Quiz Answers 373

References 377

Index 379

Preface
Rich Internet Application (RIA) provides the capability to deliver feature-rich web
applications, enables you to develop web applications with most of the desktop application's
characteristics, and improves the usability of the web application. Over the last few years,
many frameworks have arrived and are available to develop the Rich Internet Applications in
different technologies.

qooxdoo is one of the comprehensive open source RIA frameworks. qooxdoo allows you
to develop cross-browser RIAs in object-oriented JavaScript, which helps greatly to re-use
application code, and hence reduces the application size. It provides a wide range of off-the-
shelf UI widgets. qooxdoo comes with a rich feature set when compared to most of the other
RIA frameworks. qooxdoo is completely based on JavaScript. It provides a variety of tools to
build, optimize, generate documentation, and more. qooxdoo framework supports multiple
browsers, multi-language deployment, custom look and feel, unit testing, automation
testing, and much more.

In the past few years, all the major Internet applications or enterprise applications have
been developed or migrated to RIA to support all the features that are provided in the
desktop applications. This helps the organizations to keep the customers happy and also
improves application deployment and maintenance.

qooxdoo is an open source framework. It has been there since 2005 and it is a quite
stable framework now. If you are watching and waiting for the right time to migrate your
application to qooxdoo, this is the right time, in my opinion.

What this book covers
Chapter 1, What is qooxdoo?, helps the developer to get an overview of the qooxdoo
framework, to get to know what the framework provides, to know the architecture of
the qooxdoo framework, and to get a feel of the RIA developed in qooxdoo.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

Chapter 2, Say Hello to qooxdoo World!, guides the developer in setting up the development
environment for the qooxdoo framework, to understand the communication with the server,
and to set up one of the RPC servers that comes as a contribution project.

Chapter 3, Core Programming Concepts, explains the core programming concepts of qooxdoo.
This chapter is a very important chapter as it explains the implementation syntax of basic
object-oriented concepts such as class, interface, and so on. This chapter will help the
developer to construct the application code in an object-oriented way.

Chapter 4, Working with Layouts and Menus, explains the layout design, toolbars, and
menu bars.

Chapter 5, Working with Widgets, helps the developer to know about the various widgets
available in the qooxdoo framework.

Chapter 6, Working with Forms and Data, explains form handling and data store support in
the qooxdoo framework.

Chapter 7, Testing and Debugging, explains how to test and debug the qooxdoo application,
as well as how to fix the identified issues.

Chapter 8, Internationalization, helps the developer to internationalize and localize the
qooxdoo application to multiple languages.

Chapter 9, Working with Themes, aids the developer in understanding the theme support
in qooxdoo and in designing a custom theme for the application.

Chapter 10, Performance, helps the developer to monitor and improve the performance
of the qooxdoo application.

Chapter 11, Miscellaneous, covers a few miscellaneous topics that complete your
understanding of qooxdoo.

Appendix, Pop Quiz Answers, contains the answers to all the pop quiz questions for all
the chapters.

References: It contains the references used in this book.

What you need for this book
qooxdoo is completely based on object-oriented JavaScript. So, what you should be well
versed in is just JavaScript. If you know the object-oriented concepts and have worked
with any object-oriented language, such as Java, it will really help you to understand the
qooxdoo programming concepts pretty quickly. Even if you haven't worked with any of
the object-oriented languages, it is okay; you can learn the object-oriented concepts
with qooxdoo.

Preface

[3]

Even though it is web development, you don't need to know HTML, DOM, CSS, and so on.
qooxdoo generates HTML in runtime from the JavaScript code that you have written.

Who this book is for
This book is intended for the client-side developers who design and develop Internet
web applications and enterprise web applications. If you want to start developing RIA in
qooxdoo, this book would be of great help to jump start your development. If you are
already developing qooxdoo applications, this book will help you to go through the qooxdoo
framework quickly to improve your contribution to your project.

This book helps the beginners in qooxdoo to easily set up the development environment and
explains the concepts in an order that can easily be grasped by beginners.

This book also provides an idea for the architects and lead developers to know about
qooxdoo and evaluate the framework.

This book is also intended for the desktop application developers who want to move into RIA
development and develop rich Internet applications and rich enterprise web applications.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

Preface

[4]

You will also find some other learning aids in the book, including:

Pop quiz
These are short multiple-choice questions intended to help you test your own understanding.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Besides regular classes, it offers abstract,
static, or singleton classes."

A block of code is set as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/
TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/>

Any command-line input or output is written as follows:

E:\>python

ActivePython 2.7.1.3 (ActiveState Software Inc.) based on

Python 2.7.1 (r271:86832, Feb 7 2011, 11:30:38) [MSC v.1500 32 bit
(Intel)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on the Add Feed menu
in the toolbar and add any feed that you want to put into the feed reader."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
What is qooxdoo?

This chapter introduces the qooxdoo framework to you, explains the
architecture, explores the framework features, briefs you about the GUI widget
library, and provides an overall understanding about the qooxdoo framework.
It takes you through an application developed in qooxdoo and also explains the
application that we are going to develop throughout this book.

In this chapter, we'll cover the following:

 � A feel of an RIA developed in qooxdoo

 � Architecture of the qooxdoo SDK

 � qooxdoo framework features

 � Event-based Rich UI Programming

 � GUI Library

 � The application to be developed in this book—Team Twitter

 � What you should know and what you don't need to know

By the end of this chapter, you will have an understanding of the qooxdoo RIA framework
and the programming languages or technologies required to develop an application
in qooxdoo.

Let's begin to understand qooxdoo.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

What is qooxdoo?

[8]

A feel of an RIA developed in qooxdoo
Before anything, let's get a feel for an application developed in qooxdoo. This will give
a rough idea about the things that you can develop, depending on the features in that
application. You can do more than that with qooxdoo. The following screenshot will give
you an overview of the feed reader application:

Time for action – play with the feed reader application
Go to the qooxdoo demo feed reader URL (http://demo.qooxdoo.org/current/
feedreader/), play with the feed reader application, and feel the qooxdoo application.
Perform all the operations available in the application; observe the AJAX behavior,
desktop-like features, and so on. Compare the behavior of this application with any
typical web application. You can perform the following operations:

http://demo.qooxdoo.org/current/feedreader/
http://demo.qooxdoo.org/current/feedreader/

Chapter 1

[9]

Adding a feed to the feed reader
Click on the Add Feed menu in the toolbar and add any feed that you want to put into the
feed reader. Let's add the feed to the Google Open Source Blog. Enter Google Open Source
Blog in the Title field and http://feeds.feedburner.com/GoogleOpenSourceBlog in the URL
field. Click on the Add button. This will add a feed to the User Feeds section:

You must have observed that the add feed action displayed a modal dialog box
without disturbing the existing content, and on add action, it just added a feed
under the User Feeds section. It did not reload the entire page displayed in the
browser. That is the beauty of AJAX applications.

Checking the feeds
Clicking on the RSS feed nodes on the tree panel will load the feeds on the right-hand side
panel. Once you click on a particular feed post on the top pane in the right-hand side panel,
it will load the details of that particular feed post on the bottom of the right-hand side panel.
Go to User Feeds | Google Open Source Blog and check the Google Open Source Blog feed.

What is qooxdoo?

[10]

If you observe closely, it just loads the required data on the respective content area without
disturbing user context or without reloading the entire page (as shown in the following
screenshot). This is done through AJAX. In AJAX applications, the application just sends and
receives the required data and updates only the impacted portion in the GUI. This helps to
retain the user context, improves performance because of less transfer of data between
client and server, and improves the usability of the GUI:

Try the following actions, too:

 � Reload

 � Preferences

 � Remove feed

Chapter 1

[11]

What just happened?
You played with a Rich Internet Application (RIA) developed in qooxdoo. Let's have a look
at the key aspects provided by an RIA developed in qooxdoo.

User context
AJAX-based RIA does not reload the whole page every time; instead it just loads the required
data in the respective content area. This is the main differentiating aspect in RIA. It holds the
user context all the time, thus the user experience is very much appreciated by the users.
RIA applications do not open multiple browser windows, as it is done in the traditional web
application using window.open(). Instead, it uses the modal dialog and avoids the floating
browser windows. RIA applications do not wipe out the whole page and reload the new
page, as it is done in traditional web applications; instead, they retain the user context, send
and receive only the necessary data, and update only the changed or impacted portion of
the screen. qooxdoo is an RIA framework based on AJAX.

Desktop characteristics
RIA provides rich features developed through the off-the-shelf widgets provided by RIA
frameworks such as qooxdoo. Because of this, RIA provides rich user experience. You have
seen the toolbar, split-pane, modal dialog, and so on in the feed reader application. There
are many more widgets provided by qooxdoo for various purposes that you'll come to know
about in the coming chapters.

GUI library
qooxdoo provides a wide range of widgets in the GUI library, which helps you to develop
your application pretty quickly with all the rich features. For example, qooxdoo provides
the Tree widget that does not come with the plain HTML, it supports column sorting on
the table and the remote data model for the table. There are many more widgets with very
nice features that are readily available for you. You don't have to spend time to develop
these things on your own in HTML and struggle between multiple browser implementations.
Instead, just focus on your application's functionalities.

www.allitebooks.com

http://www.allitebooks.org

What is qooxdoo?

[12]

Architecture of qooxdoo SDK
Architecture of the qooxdoo SDK is pretty neatly done to hide the modules that include
internal parts such as HTML rendering, multiple browser handling, and so on in different
layers and provide the GUI toolkit on top of all the layers.

Let's explore the architecture of the qooxdoo framework to know more about the framework
capability:

Widgets Layouts Themes

UI Core

Parts
HTML

Rendering
CSS

Selectors
Animation

Transport BOM DOM
Browser
Events

Low-Level

Browser
Abstraction

Object-oriented concepts Language
Extension Custom EventsCore

GUI
Toolkit

D
at

a
B

in
di

ng

l1
8n

Core layer
qooxdoo is an object-oriented framework and its working is based on event programming.
All the core framework modules are in this layer. You don't have to worry about this until
you contribute to the qooxdoo framework.

Browser Abstraction layer
This layer abstracts the document-object model, browser-based events, and so on. This
layer is also an internal layer; you don't have to worry about this until you contribute to the
qooxdoo framework.

Chapter 1

[13]

Low-Level layer
This layer contains all the modules that work over the Browser Abstraction layer to achieve
actual things on the browser. It contains the modules to render the HTML, select the CSS
based on the themes, to animate things, and so on. In addition to these, it has a module
called Parts, which helps to divide your application into multiple parts and load only the
necessary parts required at any point of time to improve the performance. You need to
know only about the Parts module in this layer; the rest of the modules are internal to the
qooxdoo implementation.

GUI Toolkit layer
This layer is exposed to the users. You should know all of the modules in this layer. It has a
separate module for core UI classes. The widgets and layouts are developed over the core UI.
qooxdoo provides a wide range of layouts and widgets for you. Once you know all the layouts
provided by the qooxdoo framework, it will be easy to pick the right layout for your needs.
It provides a full-blown set of widgets. You can learn the basic widgets first and the other
widgets as and when you need to use them. The qooxdoo framework separates the style
part into a separate module called Themes, which allows you to change the look and feel of
your application without touching the application logic code. This is based on JavaScript, not
CSS. The qooxdoo framework supports keyboard navigation, focus handling, tab handling,
and drag-and-drop functionalities.

Data Binding
This functionality is available across multiple layers. Basically, this provides a way to attach
the data source to the UI widget. The data could be fetched from a file, web server, or web
service, and the store will fetch the data from any of these sources and attach that to the
data model of the UI widget. The controller will make sure that the data is displayed in the
view part of the widget. One of the data sources can be YQL API or REST API from twitter.

Internationalization
This functionality is also available across multiple layers. qooxdoo supports the
internationalization of the application, so that you can localize your application to support
locale information for virtually every country in the world. You need to prepare your
application code to read from the locale files, and as you translate the texts to multiple
locales, your application will work as per the locale that is chosen in the application.

What is qooxdoo?

[14]

qooxdoo framework features
qooxdoo is an entirely object-oriented framework based on JavaScript. This framework is
properly organized on the basis of namespaces. It supports most of the modern browsers,
provides utilities to generate documentation based on javadocs such as comments, and
also supports themes and internationalization. In this section, you will learn about all
these features.

Let's check all the features provided by the qooxdoo framework. This will improve your
knowledge on qooxdoo and help you further understand the qooxdoo framework.

Language
 � The qooxdoo application runs in most of the modern web browsers, including:

 � Internet Explorer 6+

 � Firefox 2+

 � Opera 9+

 � Safari 3.0+

 � Chrome 2+

 � No plugins (ActiveX, Java, Flash, or Silverlight) are required. It is completely based
on JavaScript.

 � Non-critical modifications of the native JavaScript objects to allow for easy
integration with other libraries and custom code.

 � Cross-browser JavaScript 1.6 (string/array generics).

Object-orientation
 � Framework is fully class-based

 � Framework uses namespaces. It avoids the conflicts in global variables

 � Besides regular classes, it offers abstract, static, or singleton classes

 � Constructor and destructor support

 � Multiple access specifiers—public, protected, and private

 � Single inheritance and full polymorphism

 � Java-like interfaces

 � Ruby-like mixins

 � So-called dynamic properties, a very convenient and powerful way to have
optimized setter and getter methods generated from simple configuration

Chapter 1

[15]

Programming
 � Purely client-side JavaScript

 � No need to know HTML, DOM, or CSS

 � Complete support for event-based programming

 � Development of qooxdoo applications fully supported on all platforms;
for example, Windows, Linux, all flavors of Unix, and Mac OS X

 � Quick start for easy evaluation of the framework without the need to
install any software

 � Skeletons are pre-configured for full-featured custom applications

 � Many sample applications and examples

 � Designed for high performance

 � Framework has no issue of memory leak

 � Aids in developing memory-leak free user applications

 � Extensive logging capabilities (for example, different log appenders and
Firebug support)

 � Straightforward debugging (for example, object introspection and benchmarking)

 � Browser history management, that is, browser back/forward button, bookmarks

 � Cookies

 � Generic JavaScript pretty printer/code formatter for unified code style

Internationalization
 � Built-in internationalization (i18n) and localization (l10n) support

 � Support for all languages and locales, at least on this planet

 � Based on the comprehensive Common Language Data Repository (CLDR)

 � Internally using the mature GNU gettext tools

 � Well-known translation file format (.po)

 � Support by professional, free translation tools (PO editors) on all platforms

API reference
 � Extended javadoc-like source code comments

 � Full API reference for both framework and custom applications

 � Online (http://api.qooxdoo.org/) and offline API viewer applications

http://api.qooxdoo.org/

What is qooxdoo?

[16]

Testing
 � Integrated unit testing framework (test runner)

 � Integrated functional testing framework (simulator)

Deployment
 � Generation of a self-contained and easily-deployable build version

 � Complexity of the build process hidden behind user-friendly commands

 � JavaScript compression (removal of whitespaces, and so on)

 � Automatic dependency resolution of JavaScript classes; no need for manual
require() statements or tweaking a custom build

 � Automatic linking of JavaScript classes (JS linker)

 � Copying of required static resources like images or other external files into
a self-contained build

 � String extraction (tremendous performance improvement for IE6)

 � Shortening and obfuscating local variables and/or private members

 � Optional browser-specific variant for each supported browser (For example,
Firefox-only build)

 � Generation of build versions depending on user-defined variants, which allows
for different products from the same code base

 � Removal of debug statements within the application code before deployment

Migration
 � Support for easy migration of custom applications from one framework release

to another

 � Migration in the qooxdoo framework is painless as it is technically easy to carry out

 � Fully integrated into the regular build system

 � All non-ambiguous changes are done automatically for maximum convenience and
to avoid manual find/replace errors

 � All ambiguous or semantic changes that require some developer decision are put
into a comprehensive checklist

Chapter 1

[17]

Alternative programming models
In addition to the JavaScript programming model, you can also develop qooxdoo applications
using one of the following alternative programming models or development platforms.
Some are not quite stable, some are not active, and some are pretty new. This book focuses
only on the JavaScript programming model, which is the built-in development model of the
qooxdoo framework.

 � Java/Eclipse: Eclipse Rich Ajax Platform (RAP); for more information, see
http://eclipse.org/rap

 � Java: qooxdoo Web Toolkit (QWT); for more information, see
http://qooxdoo.org/contrib/project/qwt

 � QxWT: JSNI wrapper for the qooxdoo JavaScript library; for more information, see
http://www.ufacekit.org/index.php?cat=02_qooxdoo&page=01_QxWT

 � LISP (qooxlisp): LISP programming for web applications; for more information, see
https://github.com/kennytilton/qooxlisp/wiki/

 � XML: XML-based GUI description; for more information, see
http://qxtransformer.org/

The list of alternative programming models is growing. You can check the updated list at
http://qooxdoo.org/documentation/general/development_platforms

Event-based rich UI programming
qooxdoo provides complete support for event-based programming. If you have already
programmed in QT or Java Swing, you'll find qooxdoo very similar. qooxdoo separates out
the view widgets, model classes, and the controllers. Listeners observe the widget all the
time and fire the right event based on the action. The action could be a click, a key entry, a
selection of an item, mouse over the widget, change of the value in a table cell, and so on.
An example of event-based programming is shown in the following diagram:

Widget

Model / Data

Listener

UI

http://eclipse.org/rap
http://qooxdoo.org/contrib/project/qwt
http://qooxdoo.org/contrib/project/qwt

What is qooxdoo?

[18]

For example, you can add a listener for the Button widget to perform something on the
click of a button. You can even set a command, which will be called on the execute action
of the button-click event. qooxdoo provides lots of events for various widgets. For example,
the List widget has many events such as changeSelection, addItem, removeItem,
and so on.

GUI widget library
qooxdoo is on par with the desktop GUI toolkits such as QT, Java Swing, and so on. It
provides a whole lot of off-the-shelf widgets for the GUI development. The good thing with
the qooxdoo framework is the demo browser application, where you can see the behavior of
each widget even without setting up the qooxdoo environment.

Similar to the feed reader application, demo browser is another application that comes with
the qooxdoo framework. You can use this application to see the behavior of different widgets
and select the widget that you want to use in your application. This application demonstrates
various widgets, and it displays the widgets under neat categorizations such as widget,
layout, UI, and so on.

In addition to the demo browser application, the qooxdoo framework provides another
application called playground. As the playground application is linked with the demo
browser, you can select the widget that you want to use in the demo browser, take that
widget to the playground, change the code, run it, and see the behavior.

This makes it easy to select the widget in the demo browser; try it in the playground before
actually trying it in your application. You can access the online version of these applications
for the current qooxdoo version. You can also set these applications locally in your network
if you download the qooxdoo framework. We will explore the online version of these
applications in this section.

Time for action – checking the demo browser and the
playground applications

Let's check the supporting tools that qooxdoo provides to explore all the widgets in the
GUI Toolkit.

Demo browser
The demo browser allows you to browse through all the widgets provided by the qooxdoo
framework. Double-click the tree nodes in the left panel to see the behavior on the
right panel.

http://demo.qooxdoo.org/current/demobrowser/

Chapter 1

[19]

Go to the URL (http://demo.qooxdoo.org/current/demobrowser/#) and browse
through all the widgets shown in the demo. The demo browser application is shown in the
following screenshot:

Playground
You can change the sample code and play in the playground environment provided by the
qooxdoo framework. Run it immediately, and see the results. Even without setting the
qooxdoo development environment, you can do some coding in the playground environment
and try it. Either you can play with one of the samples in the playground environment or
select one of the widgets in the demo browser, take it to the playground, and play with it.

Go to the URL http://demo.qooxdoo.org/1.3/playground/# and play with the
widgets. The qooxdoo playground application is shown in the following screenshot:

http://demo.qooxdoo.org/1.3/playground/

What is qooxdoo?

[20]

What just happened?
You have browsed the demo and played in the playground of the qooxdoo framework. These
are the pretty cool features offered by the qooxdoo framework that allow you to explore
the widgets provided by the qooxdoo framework. As qooxdoo provides a lot of widgets
for different purposes, it is a nice idea to browse the demo and play in the playground
environment once in a while to know more about all these widgets. Another option is to
carry out this activity whenever you are looking for a widget for use in your application.

Application to be developed in this book—Team Twitter
To try out the qooxdoo framework, we will develop an application across this book as we
learn the framework. In this section, we'll define the high-level functional requirements of
the application that we are going to develop in this book.

The Team Twitter application allows the members of the team to read the tweets written
by the fellow team mates and tweet to the team. It supports tagging and filtering based on
team members.

Time for action – checking the Team Twitter application
Let's define some functional requirements for the Team Twitter application.

Reading team tweets
You can read all the tweets of a team in a reverse chronological order, search the tweets
for any specific keyword, or navigate through the tweets by the tags. In addition to this, you
can also filter the tweets by the team members. By default, tweets from all team members
are displayed:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 1

[21]

SearchTeam X

50 x 50

50 x 50

50 x 50

423 x 186

qooxdoo themes are really cool!
user2 at 14:00 Hrs on Nov 22 2010

qooxdoo 1.2 is available. Couple of new features are in.
user2 at 14:30 Hrs on Nov 20 2010

qooxdoo is a pretty good RIA framework

user1 at 15:00 Hrs on Nov 20 2010

...

Java Javascript
ooxdoo Spring

Eclipse RIA
Photography Tools
Travel Hiking
TV Shows

q

Who are you?

Tags

Team Members

User1
User2
User3
User4
User5
User6
User7
User8

Logging in to the Team Twitter application
To tweet in a team, one should log in to the application. If he or she is not already part of
the team, they can join the team.

SearchTeam X

50 x 50

50 x 50

50 x 50

423 x 186

qooxdoo themes are really cool!
user2 at 14:00 Hrs on Nov 22 2010

qooxdoo 1.2 is available. Couple of new features are in.
user2 at 14:30 Hrs on Nov 20 2010

qooxdoo is a pretty good RIA framework

user1 at 15:00 Hrs on Nov 20 2010

...

Java Javascript
Qooxdoo Spring
Eclipse RIA
Photography Tools
Travel Hiking
TV Shows

Who are you?

Tags

Team Members

User1
User2
User3
User4
User5
User6
User7
User8

Username

Sign In

Join Team

www.allitebooks.com

http://www.allitebooks.org

What is qooxdoo?

[22]

Tweeting to the team
One can tweet a text or video. One can tag the tweet to categorize it and all the tweets are
displayed in reverse chronological order.

SearchTeam X

50 x 50

50 x 50

423 x 186

qooxdoo 1.2 is available. Couple of new features are in.
user2 at 14:30 Hrs on Nov 20 2010

qooxdoo is a pretty good RIA framework

user1 at 15:00 Hrs on Nov 20 2010

...

Java Javascript
ooxdoo Spring

Eclipse RIA
Photography Tools
Travel Hiking
TV Shows

q

User1

Tags

Team Members

User1
User2
User3
User4
User5
User6
User7
User8

text

youtube video id

Tweet

What just happened?
We have seen the high-level functional requirements of the Team Twitter application. We'll
develop this application across the book as we learn more about the qooxdoo framework. In
this book, all code related to the user interface development of the team twitter application
will be explained in detail, but the server-side and the database part of the code will not be
explained, as it is not in the scope of this book. The code for the entire application can be
downloaded from the site.

Chapter 1

[23]

What you should know and what you don't need to know
qooxdoo is completely based on object-oriented JavaScript. So, what you should know
is just JavaScript. If you know the object-oriented concepts and have worked with any
object-oriented language such as Java, it will really help you to understand the qooxdoo
programming concepts pretty quickly. Even if you haven't worked with any object-oriented
language, it is okay. You can learn the object-oriented concepts with qooxdoo.

Even though it is a web development application, you don't need to know HTML, DOM,
CSS, and so on. qooxdoo generates the HTML at runtime from the JavaScript code that you
have written.

Pop quiz
1. qooxdoo is a

a. Browser-independent JavaScript framework

b. Framework that supports object-oriented programming

c. Event-based programming

d. All of the above

2. qooxdoo works on most of the web browsers

a. Yes

b. No

3. I need to install the following on the client machine to run the qooxdoo
application in a web browser

a. ActiveX

b. Java plugins

c. Flash

d. Silverlight

e. None of the above

4. The following are possible with qooxdoo programming

a. Code re-use through object-oriented programming

b. Modularize the application

c. Namespace and access control of the member variables

d. All of the above

What is qooxdoo?

[24]

5. I can do the following with qooxdoo

a. Develop an application, allow my country members to see it in their
language, and show it to the world in their language

b. Support personalization of the web application in qooxdoo

c. Pull data from multiple data source and bind it to the widget

d. All of the above

6. Playground allows you to

a. Just go through the widget behavior

b. Edit, run immediately, and see the widget behavior

Summary
We learned a lot in this chapter about the qooxdoo framework. Specifically, we:

 � Had a feel of RIA, developed in qooxdoo

 � Got to know the layers in the qooxdoo architecture and the layers or modules
that we need to learn for GUI development

 � Got an idea about the various features provided by the qooxdoo framework.
This broadens the understanding of the qooxdoo framework

 � Went through the widgets (if not all, as many as we could), with the help of the
demo browser and the playground utilities provided by the qooxdoo framework

 � Defined the functional requirements for the application that we are going to
develop in this book

We also discussed the things we should know and the things we don't need to know. Now
that we've got an overview of qooxdoo, we're ready to say "hello" to the qooxdoo world.

2
Say Hello to the qooxdoo World!

This chapter explains how to set up the environment for qooxdoo client
application development, how to create a client application, and how to build
and run the application. It also explains about the format of the data that
is passed between client and server, the transport protocol, and the various
servers supported by the qooxdoo framework.

In this chapter, you'll read about the following:

 � Installing qooxdoo tools (Python/Cygwin)

 � Installing qooxdoo SDK

 � Creating a simple application

 � Passing the data to the server using JavaScript Object Notation (JSON)

 � Communicating with the server using Remote Procedure Call (RPC)

 � RPC servers

 � Integrating with the Java server

By the end of this chapter, the user will have the development environment for Rich Internet
Applications (RIAs) based on qooxdoo. The user will also have an understanding of how the
end-to-end communication takes place from client to server.

Now, let's step into the qooxdoo world to say hello.

Say Hello to the qooxdoo World!

[26]

Installing qooxdoo tools
qooxdoo provides a lot of tools to perform many activities such as creating an application,
building the code, optimizing the code, generating documentation, and so on. All these tools
are written in Python. So, the Python environment is required to run these tools. You don't
have to know programming in Python to develop an application in qooxdoo.

Time for action – installing qooxdoo tools
For Windows OS, you can install Python from python.org, ActivePython from ActiveState,
or the Python package with Cygwin. Python, from python.org, needs additional manual
configuration. But the default installation of ActivePython works just fine. So, you have two
options now. Either go with ActivePython if you like the Windows development environment
or go with Cygwin and include the Python package if you want a Unix-like development
environment. It is recommended to use ActivePython because it is simple and works well.
The following sections discuss the installations for both these options.

Installing ActivePython
Go to the ActiveState website (http://www.activestate.com/activepython/
downloads), download the latest version of ActivePython (we used ActivePython 2.7.1
while writing this book), and install the program. The following steps will guide you through
the ActivePython installation:

1. Click on the Next button (see the following screenshot) to start
the ActivePython installation:

http://www.activestate.com/activepython/downloads
http://www.activestate.com/activepython/downloads

Chapter 2

[27]

2. The following screenshot shows the End-User License Agreement. Read and
agree to the license terms and click on the Next button:

3. The following screenshot displays the list of features that are installed through
this installer. Click on the Next button:

Say Hello to the qooxdoo World!

[28]

4. Now, the installer is ready to install the features of ActivePython. Click on the Install
button (see the following screenshot):

5. Once the installer has completed the ActivePython installation, you will see
something similar to the following screenshot. Click on the Finish button:

Chapter 2

[29]

6. To verify the ActivePython installation, open the command prompt and check
the Python setup. Type python on the console to see whether it takes you to
the Python environment. You will see the following output on your console:

E:\>python

ActivePython 2.7.1.3 (ActiveState Software Inc.) based on

Python 2.7.1 (r271:86832, Feb 7 2011, 11:30:38) [MSC v.1500 32
bit (Intel)] on win32

Type "help", "copyright", "credits" or "license" for more
information.

>>>

Installing Cygwin
Go to the Cygwin website (http://www.cygwin.com/setup.exe), download the
Cygwin setup file, and install Cygwin.

Cygwin is not required with the recent qooxdoo versions, as qooxdoo
completely moved the dependency to Python only. You can use Cygwin
with the Python package if you wish. However for the development in
Windows OS, it is recommended to go with ActivePython installation as
it is simple, does not require any configuration, and it works well. If you
are going with ActivePython, you can skip installing Cygwin.

Run setup.exe to install Cygwin. The following steps will guide you through the
Cygwin installation:

1. Click on the Next button to start installing Cygwin:

http://www.cygwin.com/setup.exe

Say Hello to the qooxdoo World!

[30]

2. The following screenshot displays the options to choose a download source for
the Cygwin packages. Choose the Install from Internet option and click on the
Next button. Make sure that you are connected to the Internet.

3. The following screen allows you to select the root directory for the Cygwin
installation. The default value is C:\cygwin. If you want to install Cygwin in a
different location, enter that location for the root directory. You can also specify
whether you want to set up Cygwin for all users or only for the logged-in user.
Select All Users and click on the Next button:

Chapter 2

[31]

4. The next screen allows you to select the Local Package Directory to store the
repository (see the following screenshot). Cygwin does not blow this directory
away after installation. Rather, it keeps the installation files in order to remember
your download choices, so that when you upgrade, you do not have to go through
the tedious package selection process again. The packages can be reused later
when you want to install Cygwin on another machine by selecting this directory
content as a local directory in step 2 and selecting the option Install from Local
Directory in step 2 to avoid downloading the packages from Internet. So, a non-
temporary directory is recommended. Click on the Next button:

www.allitebooks.com

http://www.allitebooks.org

Say Hello to the qooxdoo World!

[32]

5. The following screen allows you to provide details about your Internet connection.
If your internet connection is not using any proxy settings, select Direct Connection
option. If your internet connection is using any proxy settings, select Use HTTP/FTP
Proxy and provide the Proxy Host and Port details. Click on the Next button:

6. The following screen allows you to choose a download site. Select the download
site as http://sourceware.mirrors.tds.net (scroll down to see it in the list).
Click on the Next button:

http://sourceware.mirrors.tds.net/
http://sourceware.mirrors.tds.net/

Chapter 2

[33]

7. The following screen allows you to select the Cygwin packages. This step is
important! In addition to the packages selected by default, please select the
following packages required for qooxdoo. Expand the folders specified below,
and click on the Skip link once for each of the packages specified in the following
list to select the most recent version. If you click again after selection, it will be
deselected. For selection, make sure the checkbox is crossed. The package column
is sorted alphabetically as follows:

 � Archive

 � zip (release build support)

 � unzip (release build support)

 � Devel

 � gettext (needed for internationalization)

 � gettext-devel (needed for internationalization)

 � make (core build system)

 � subversion (needed for application include support)

 � Interpreters

 � python (core build system)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Say Hello to the qooxdoo World!

[34]

 � Net

 � curl (needed for internationalization)

 � rsync (support for publishing applications)

 � Utils

 � diffutils (needed for internationalization)

 � patch (support for patching files)

 � util-linux (general utilities)

 � Web

 � wget (needed for internationalization and application
include support)

Click on the Next button after selecting all of the specified packages.

Chapter 2

[35]

What just happened?
You have installed the tools required for the qooxdoo development environment. You can
choose one of the mentioned options (ActivePython or Cygwin). Once you have set up
the tools required, the next step is to install the qooxdoo SDK and start developing the
application in qooxdoo.

Installing qooxdoo SDK
qooxdoo SDK provides the environment to develop, build, and test the qooxdoo applications.
Once you install SDK, we are ready to develop the application.

Time for action – installing qooxdoo SDK
Go to the qooxdoo website (http://qooxdoo.org/download) and download the latest
stable software development kit. Extract the qooxdoo SDK to C:\qooxdoo-x.y-sdk. We
have used qooxdoo-1.2-sdk in the initial chapters and migrated to qooxdoo-1.4.1-sdk
in Chapter 11, Miscellaneous. You can use other versions as well.

If you want to download the qooxdoo-1.2-sdk version, you can
download it from http://sourceforge.net/projects/
qooxdoo/files/qooxdoo-current/. You can find all other
versions, too. If you could not download the qooxdoo SDK from the
default mirror site, use another mirror such as Japan Advanced Institute
of Science and Technology mirror site at the following URL:

http://sourceforge.net/projects/qooxdoo/files/
qooxdoo-current/1.2/qooxdoo-1.2-sdk.zip/
download?use_mirror=jaist

The directory structure looks something like the one shown in the screenshot that follows.

http://qooxdoo.org/download
http://qooxdoo.org/download

Say Hello to the qooxdoo World!

[36]

Application
The application directory contains all the applications that are included in the qooxdoo
SDK package. We have already explored some of these applications in the qooxdoo website.
You can also use these applications locally in your machine instead of accessing them from
the qooxdoo website. Accessing the applications locally is faster than accessing them over
the Internet. During development, use the local copy in SDK. You might have to build the
applications, they're not already built. You can also set up the qooxdoo SDK in one of the
development server machines and make these applications available to the team.

The following applications come with qooxdoo SDK and they are available under the
application directory:

 � demobrowser: This application allows you to browse through most of the widgets
to see the behavior of the widgets and select the one required for your application.

 � feedreader: This is a sample application that gets delivered with the qooxdoo SDK
for you to get a feel of the qooxdoo application.

 � playground: This application allows you to edit the sample code or example of the
widget and play with it before actually using the widget in your application. This is
one of the nice things in qooxdoo.

Chapter 2

[37]

 � portal: This is a simple application that demonstrates the low-level capabilities
through the Browser Object Model (BOM) layer available in the qx.bom.* package.
This application does not use any of the high-level widget classes. High-level widget
classes use these low-level BOM layers heavily to implement the widgets.

 � showcase: This application shows the main features of qooxdoo and provides
a good overview of the qooxdoo framework.

Component
The component directory contains all the components in qooxdoo SDK. Applications in
the application directory are meant for the end users, that is, the developers, and the
applications in the component directory are the internal applications used by the qooxdoo
framework. You can still use these components, if you understand their usage. You will use
some of the components such as inspector and simulator. But some components, such
as skeleton, are used internally by qooxdoo. The following directories come under the
component directory:

 � apiviewer: This component is used by the generate.py tool to generate the API
reference for your application when you run the generate.py api command.

 � inspector: This component is used by the generate.py tool to generate
the inspector instance for your application when you run the generate.py
inspector command. The inspector component is a powerful development
tool used for live debugging. It can inspect any of the applications that are
generated in inspector mode.

 � simulator: This component provides a testing and automation environment
for qooxdoo applications. It can be used to simulate the user interaction in an
actual web application. You can use simulator along with inspector to
automate the functional testing of your qooxdoo application.

 � skeleton: This component contains a template to create the qooxdoo
application. This component is used by the create-application.py
tool to create an application.

 � testrunner: This component provides the unit testing framework. This
component is used by the generate.py tool to generate the unit test code
structure for your application when you run the generate.py test or
generate.py test-source command.

 � testrunner2: This component is an experimental unit testing framework
delivered in qooxdoo 1.3 which will eventually replace the testrunner
component in the future. This is lighter and has an HTML-only interface.
You can run the test cases even on mobile devices.

Say Hello to the qooxdoo World!

[38]

Documentation
The documentation directory contains the manual for the qooxdoo framework. The
manual is in PDF as well as in HTML. You can refer to this manual to know more
about qooxdoo.

Framework
The framework directory is the main directory which contains code for the qooxdoo
framework. This code also follows the structure of the qooxdoo application. The directories
under the framework directory are as follows:

 � source: This directory contains the code for the qooxdoo framework. All the
classes of qooxdoo are kept under the class directory. The top-level namespace
or package of the qooxdoo framework is qx. All the qooxdoo framework resources
such as images are under the resource directory and all the localization files are
kept under the translation directory.

 � api: This directory contains the API reference for the qooxdoo framework. You will
need to refer to this most of the time. This is like javadoc for Java. Either you can use
the online version from the qooxdoo website or access it locally in your machine.

Tool
This directory contains all the tools used by the framework. The directories under the tool
directory are as follows:

 � bin: This directory contains many scripts, especially generate.py and
create-application.py

 � data: This directory contains a lot of data used by different tools for various
reasons such as localization, migration, and so on

 � doc: This directory contains internal documentation about the tools

 � pylib: This directory contains all the Python modules used by the qooxdoo
framework

 � test: This directory contains the code for unit testing of various tools

What just happened?
You have set up the qooxdoo software development kit and explored the directory structure
of the qooxdoo framework to get a brief understanding of the various components and
applications that come with qooxdoo.

Chapter 2

[39]

Creating a simple qooxdoo application
We have our development environment ready; let's go and create an application in qooxdoo!

Time for action – creating a simple qooxdoo application
qooxdoo is a client-side framework and allows you to create the client application only. The
qooxdoo framework also provides RPC API to communicate with the server. In this section,
we will learn how to create the client application and the following sections will explain how
the data is passed from client to server and how to communicate with the server.

1. Open a command window, go to C:\qooxdoo-1.2-sdk\tool\bin, and run
the create-application.py command. That will show you the usage and the
options of the create application script. If you have installed ActivePython, you can
just type create-application.py, as the .py file type is already associated
with Python application. If you have installed Python from any other source, that
is, either from Cygwin or from python.org, you will have to associate the .py
file type with the Python application or run Python with the .py file (python
create-application.py).

To avoid typing python every time, it is recommended to associate the
Python application with the .py files. You can do so by right-clicking and
opening a .py file. It will ask you to choose a program; just browse to the
Python location. If you have any issues, run the Python application for the
.py files. To avoid all this, it is recommended to use ActivePython.

Run the following command in the command prompt:

C:\qooxdoo-1.2-sdk\tool\bin>create-application.py

This will display a list of options of the create application script. Two of them are
explained as follows:

 � --name or the –n option is for the name of application

 � --out or –o is for the output location

Other options have default values. See the other options in the console output.

2. Now, let's create the Team Twitter application. For creating this application, you can
type any one of the following commands in the command prompt:

 � create-application.py --name teamtwitter --out C:\

 � create-application.py -n teamtwitter -o C:\

The preceding command creates the Team Twitter client application in the C drive.

Say Hello to the qooxdoo World!

[40]

3. Now, open the C:\teamtwitter\source\index.html page in the browser.
It will show you the message Application not yet ready!. We need to build the
application before running the application. In a command window, go to C:\
teamtwitter and run the generate.py source command. This generates the
development version of the application. Now, reload the C:\teamtwitter\
source\index.html page in the browser. You'll see the first button; click on
the button and say hello to qooxdoo world!

4. Now, let's generate the build version of the application. Go to C:\teamtwitter
and run the generate.py build. This generates the deployment version of the
application. Now load the page C:\teamtwitter\build\index.html in the
browser. You'll see the First Button button; click on this button and say hello to
qooxdoo world!

Now, let's explore the directory structure of the qooxdoo application:

What just happened?
We have created a simple application with qooxdoo, built it, and said hello to qooxdoo
world! Let's see the directories and important files that are generated on creation of
the application.

Chapter 2

[41]

Source
The source directory contains the development version of the application. The directories
and files that come under the source directory are as follows:

 � class: This directory contains all the code of the application. qooxdoo follows a
complete object-oriented programming approach with a proper namespace system.
You'll work under this directory most of the time to write the JavaScript classes for
the application.

 � resource: This directory contains the resource files, that is, the image files for the
application. Resources also follow namespace. You can use the images that come
with the qooxdoo framework. No need to copy those images from the qooxdoo
framework directory to this directory. Place only the additional resource files in
the application resource directory. qooxdoo framework images will be copied
automatically by the generator.

 � script: This directory contains the generated development version of the
JavaScript file. It is a loader file that includes all other JavaScript files. This is
generated when you run the generate.py source.

 � translation: This directory contains the localization files to support
internationalization of the application. If you are supporting multiple languages in
your application, you need to place the .po files for languages other than English.

 � index.html: This is the only HTML file (which is also simple) required for the entire
qooxdoo application. This HTML file just loads the generated application JavaScript
file under the script directory. The content of this file is as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.
w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
 <title>teamtwitter</title>
 <script type="text/javascript" src="script/teamtwitter.js"></
script>
</head>
<body></body>
</html>

www.allitebooks.com

http://www.allitebooks.org

Say Hello to the qooxdoo World!

[42]

Build
The build directory contains the deployment version of the application. This whole
directory's content is generated when you run the generate.py build. The directories
and files that come under the build directory are listed as follows:

 � resource: This directory contains the resource files. It contains the resources added
in the application and also the resources that came with the qooxdoo framework.

 � script: This directory contains the generated build version of the JavaScript file.
It will be a single, optimized JavaScript file that contains the content from all the
source JavaScript files. If your application is huge, you can split this one single
JavaScript file into many by modularizing your application into parts, which gets
loaded on demand.

 � index.html: This is identical to the development version.

Manifest.json
The Manifest.json file contains meta information about the application. This is in the
JavaScript Object Notation (JSON) format. It has two parts, namely, info, which is for the
human eye and provides, which is used by the generator for build processing.

config.json
The config.json file contains the configuration used by the generate.py script for the
build operations.

generate.py
The generate.py script is the proxy for the qooxdoo framework's generator.py script
located in the tool/bin directory. This script generates the development and deployment
version of the application.

Passing data to the server
qooxdoo uses the JSON format to transfer the data between the client browser and the web
server. JSON is a light-weight data interchange format. JSON is very light when compared to
the XML format. It is easy for humans to read and write. It is easy for machines to parse and
generate. We have mentioned the JSON standard format in this section. This information is
good enough to work with JSON. If you want to read more, you can visit the JSON website
(http://www.json.org/).

http://www.json.org/

Chapter 2

[43]

JSON standard format

Structure Syntax Description

object {}/{member} object has members separated by comma.

member pair A member is a pair.

pair string : value pair is a simple key and value separated by a
colon. Key is always a string and value is an object.

array []/[elements] array contains elements separated by comma.

element value An element is a simple value.

value string

number

object

array

true

false

null

A value can be a string, number,
object, array, or boolean values (true,
false, or null).

string " "

"<characters>"

A string literal contains space and characters. A
string is very much like a C or Java string.

char Contains any Unicode
character except " or \ or
any of the following control
characters:

 � \"

 � \\

 � \/

 � \b

 � \f

 � \n

 � \r

 � \t

 � \u (four
hexadecimal
digits)

character is any Unicode character except ", \,
or control character.

number int

int frac

int exp

int frac exp

number can be an integer, fraction, or exponential.
A number is very much like a C or Java number,
except that the octal and hexadecimal formats are
not used.

Say Hello to the qooxdoo World!

[44]

Structure Syntax Description

int <digit>

<digit> <1 to 9
digits>

<1 to 9 digits> may
include:

 � digit

 � <digit> <1 to 9
digits>

Integer is any positive or negative digits from
1 to 9 and 0.

frac . <digits> Fraction has the digits after the "."

exp e <digits> Exponential to the power of e. Power can be
any digits.

digits <digit> <digits> Digits can be multiple digits.

e It can take any one of the
following forms:

e

e+

e-

e-

e

e+

e-

Exponential can be positive or negative.

The Date object is an exception in the formatting as JavaScript does not have a literal syntax
for the Date object.

Date objects are sent as the following tokens:

 � The string—new Date (Date.UTC(

 � The year, integer; for example, 2006

 � A comma

 � The month, 0-relative integer; for example, 5 (that is, June)

 � A comma

 � The day of the month, integer, range: 1-31

 � A comma

 � The hour of the day on a 24-hour clock, integer, range: 0-23

 � A comma

 � The minute of the hour, integer, range: 0-59

Chapter 2

[45]

 � A comma

 � The second within the minute, integer, range: 0-59

 � A comma

 � The milliseconds within the second, integer, range: 0-999

 � The string—))

A resulting date representation might therefore be:

new Date(Date.UTC(2006,5,20,22,18,42,223))

While working with date strings, you must take care with the following:

 � Whitespace: The following points should be remembered:

 � When generating these date strings, implementations should not add
whitespace before, after, or between any of the fields within the date string.

 � When parsing these date strings, implementations should allow whitespace
before, after, or between any of the fields within the date string.

 � Numbers: The following points should be remembered:

 � When generating these date strings, implementations must not add leading
zeros to the numeric values in the date string. Doing so will cause them to
be parsed as octal values. Numbers must be passed in decimal (base 10)
notation without leading zeros.

 � When parsing these date strings, implementations must take the integer
value of numeric portions of the string as base 10 values, even if leading
zeros appear in the string representation of the numbers.

Within the JSON protocol and in JSON messages between peers, Date objects are always
passed in UTC format.

A sample JSON content to explain the file menu contents that contain the members, pairs,
values or strings, arrays, and so on in the JSON format is as follows:

{"menu": {
 "id": "file",
 "value": "File",
 "popup": {
 "menuitem": [
 {"value": "New", "onclick": "CreateNewDoc()"},
 {"value": "Open", "onclick": "OpenDoc()"},
 {"value": "Close", "onclick": "CloseDoc()"}
]
 }
}}

Say Hello to the qooxdoo World!

[46]

What just happened?
We got to know about the data format that is passed between client and server in
qooxdoo applications.

Communicating with the server
qooxdoo uses the Remote Procedure Call (RPC) mechanism to call the APIs that are
exposed on the server. qooxdoo RPC is based on JSON-RPC as the serialization and
method call protocol. qooxdoo provides all the necessary classes in the qx.io.remote
package. So, it is pretty simple to communicate with the server.

Setting up an RPC connection
To make remote calls, you need to create an instance of the Rpc class:

var rpc = new qx.io.remote.Rpc(
"http://localhost:8080/qooxdoo/.qxrpc",
"qooxdoo.test"
);

The first parameter is the URL of the server and the second is the name of the service you
want to call. Class name is the fully qualified name and is case sensitive.

Making a call
When you have the Rpc instance, you can make synchronous and asynchronous calls based
on your need:

// synchronous call
try {
var result = rpc.callSync("echo", "Test");
alert("Result of sync call: " + result);
} catch (exc) {
alert("Exception during sync call: " + exc);
}

Synchronous calls typically block the browser UI until the response comes back from the
server. A user cannot perform any action until the response comes back from the server.
So, try to avoid them as much as possible or use them sparingly. In synchronous calls, the
method name is the first parameter followed by the parameters of the server method as
mentioned in the preceding code.

Chapter 2

[47]

The following code demonstrates asyncronous call:

// asynchronous call
var handler = function(result, exc) {
if (exc == null) {
alert("Result of async call: " + result);
} else {
alert("Exception during async call: " + exc);
}
};
rpc.callAsync(handler, "echo", "Test");

An asynchronous call does not block the browser UI until the response comes back from the
server. Instead, it takes an additional first parameter that specifies a handler function that is
invoked when the result of the method call is available or when an exception occurs. You can
also use qooxdoo event listeners for asynchronous calls. To use qooxdoo event listeners, just
use callAsyncListeners instead of callAsync.

A sample which uses an asynchronous call via event listeners is as follows:

var rpc = new qx.io.remote.Rpc();
var methodName = "testMethod";
rpc.addListener("completed", function(e) {
 var result = e.getData();
 // do something..........
}, this);
rpc.addListener("failed", function(e) {
 // do something on failure
 this.warn("Method call failed "+e);
}, this);
rpc.addListener("timeout", function(e) {
 // do something on timeout.
 this.warn("Method call timed out "+e);
}, this);
var result = rpc.callAsyncListeners(false, methodName);

Finally, to summarize, one can communicate with the server by issuing an RPC call in three
different ways:

 � Synchronous (qx.io.remote.Rpc.callSync): It is dangerous as it blocks the
whole browser and it is not recommended to use it

 � Asynchronous (qx.io.remote.Rpc.callAsync): It returns the results via a call
back function

 � Asynchronous (qx.io.remote.Rpc.callAsyncListeners): It returns results
via event listeners

Say Hello to the qooxdoo World!

[48]

Request
RPC request contains a service which maps to the remote service. It also contains the
method to be invoked in that remote service, ID of the request, and the parameters to
pass as arguments to the remote service method.

{
"service":"qooxdoo.test",
"method":"echo",
"id":1,
"params":["Hello to Qooxdoo World!"]
}

Response
RPC response contains the ID to map the request call and the result of the request.

{
 "id":"1",
 "result":"Client said: Hello to Qooxdoo World!"
}

Aborting a call
If the user of the system changes his or her mind, the user can abort an asynchronous
call while it's still being performed. See the following code snippet for aborting the
asynchronous call:

// Rpc instantiation and handler function left out for brevity
var callref = rpc.callAsync(handler, "echo", "Test");
// ...
rpc.abort(callref);
// the handler will be called with an abort exception

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Chapter 2

[49]

Error handling
When you make a synchronous call, you can catch an exception to handle the errors. The
exception object contains rpcdetails that describes the error in detail. The same details
are also available in the second parameter in an asynchronous handler function, as well as
in the events fired by callAsyncListeners. The following code snippet demonstrates
error handling:

//creation of the Rpc instance left out for brevity
//error handling for sync calls
try {
var result = rpc.callSync("echo", "Test");
} catch (exc) {
showDetails(exc.rpcdetails);
}
// error handling for async calls
var handler = function(result, exc) {
if (exc != null) {
 showDetails(exc);
}
};
rpc.callAsync(handler, "echo", "Test");
//method to display error details
var showDetails = function(details) {
alert(
"origin: " + details.origin +
"; code: " + details.code +
"; message: " + details.message
);
};

The exception origin can be one of the following four:

 � qx.io.remote.Rpc.origin.server: This occurs on the server (for example,
when a non-existing method is called)

 � qx.io.remote.Rpc.origin.application: This occurs inside the server
application (for example, during a method call in a non-qooxdoo code)

 � qx.io.remote.Rpc.origin.transport: This occurs in the communication
layer (for example, when the Rpc instance was constructed with a URL where no
backend is deployed, resulting in an HTTP 404 error)

 � qx.io.remote.Rpc.origin.local: This occurs locally (for example, when the
call timed out or when it was aborted)

Say Hello to the qooxdoo World!

[50]

The exception code depends on the origin. For the server and application origins, the
possible code is defined by the backend implementation. For transport errors, it's the
HTTP status code. For local errors, the following code is defined:

 � qx.io.remote.Rpc.localError.timeout: A time-out occurred

 � qx.io.remote.Rpc.localError.abort: The call was aborted

Cross-domain calls
Using the qooxdoo RPC implementation, you can also make calls across domain boundaries.
On the client side, all you have to do is specify the correct destination URL in the Rpc
constructor and set the setcrossDomain property to true. See the following code snippet:

var rpc = new qx.io.remote.Rpc("http://targetdomain.com/appname/.
qxrpc");
rpc.setCrossDomain(true);

On the server side, you need to configure the backend to accept cross-domain calls (Refer
the documentation of the various backend implementations).

The origin is determined through a combination of protocol, host, and port. The localhost
and 127.0.0.1 are treated as two different hosts. Therefore, if you access the application
using http//localhost:8080/teamtwitter, then to access the server without enabling
the cross-domain, you will have to use the following URL for the RPC calls:

http://localhost:8080/teamtwitter/.qxrpc

Similarly, if you access the application using http//127.0.0.1:8080/teamtwitter, then
to access the server without enabling the cross-domain, you will have to use the following
URL for the RPC calls:

http://127.0.0.1:8080/teamtwitter/.qxrpc

It is advisable to get the protocol, host, and port from the URL typed in the browser and
construct the URL for the RPC calls that are sent to the same server.

If you really want to make cross-domain calls, you will have to set the cross-domain flag in
the RPC call from the client and make sure the server running on the different host accepts
the cross-domain calls.

Chapter 2

[51]

Parameter and result conversion
All method parameters and result values are automatically converted between JavaScript
and the server implementation language. During the data transfer between the client and
server, the data is transferred in JSON format. So, the data gets converted from JavaScript to
JSON and then to Java or any other server implementation language and vice versa. Using
the Java RPC Server, you can even have overloaded methods. The correct one will be picked
on basis of the provided parameters. The following table lists the JavaScript types and the
corresponding JSON types and Java types at the server.

JavaScript
type

JSON type Java type

Number number int, long, double,
Integer, Long,
Double

Boolean true, false boolean, Boolean

String String String

Date The Date object is an exception in the JSON
formatting as JavaScript does not have literal syntax
for date. Date objects are sent as the following
tokens:

new Date(Date.
UTC(2006,5,20,22,18,42,223))

java.util.Date

Array Array java.util.Array

Object Object java.util.Map

Object Object JavaBean

All primitive data types are self explanatory. JavaScript has the Date object, which is
translated to the java.util.Date object. JavaScript supports the Array object, which is
translated to the java.util.Array object. Other than Number, Boolean, String, Date,
and Array type are objects in JavaScript. If a JavaScript object is passed for the java.util.
Map parameter in the server side, all the member variables of the object are converted to
the key-value pair of the map. Similarly, when a java.util.Map is returned from the server
side, all key-value pairs are translated to member variables of the JavaScript object.

JavaBeans are converted in a similar way. The properties of JavaBeans become JavaScript
properties and vice versa. If a JavaScript object contains properties for which no
corresponding setters exist in the JavaBeans, they are ignored. For performance reasons,
recursive conversion of JavaBean and Map objects is performed without checking for cycles!
If there's a reference cycle somewhere, you end up with a StackOverflowException.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

Say Hello to the qooxdoo World!

[52]

The same is true when you try to send a JavaScript object to the server. If it (indirectly)
references itself, you get a recursion error in the browser. Besides the fully-automatic
conversions, there's also a class hinting mechanism. You can use it in case you need to
send a specific sub-class to the server. However, it can't be used to instantiate classes
without a default constructor yet. Future qooxdoo versions may provide more extensive
class hinting support.

What just happened?
We got an understanding of how to communicate with the server from the qooxdoo client
applications. We have learnt how to make synchronous and asynchronous calls, handle
the error, abort the asynchronous call, and so on. We have also understood the data type
mapping between the JavaScript, JSON, and the server implementation language.

RPC servers
qooxdoo is a server-agnostic framework. The qooxdoo client can communicate with any
server implemented in languages such as Java, Python, Perl, PHP, and so on, provided
the implementation abides by the qooxdoo JSON-RPC server guidelines. qooxdoo already
provides many RPC server implementations in the contribution projects. If you don't find
the server implementation in your favorite language, you can write one yourself by following
the qooxdoo JSON-RPC server guidelines. The available contribution projects for the RPC
Server implementation in different languages can be found at the following website. Refer
to the backend projects at http://qooxdoo.org/contrib/project.

To know more on writing your own RPC server, you can check the following URL:

http://manual.qooxdoo.org/1.2.x/pages/communication/rpc_server_
writer_guide.html

Integrating with the Java server
qooxdoo is a client framework and it works with any server obeying qooxdoo JSON-RPC server
guidelines. We'll focus on client application development in most of this book. In this section,
we will set up the server environment with the qooxdoo contribution project—RPCJava. We'll
use the same for the development of our book application (Team Twitter). As the scope of this
book is qooxdoo client applications, in other sections, we will focus on the client application
development. The complete code of the application to be developed in this book will be
available for download from the publisher's website.

http://qooxdoo.org/contrib/project
http://manual.qooxdoo.org/1.2.x/pages/communication/rpc_server_writer_guide.html
http://manual.qooxdoo.org/1.2.x/pages/communication/rpc_server_writer_guide.html
http://manual.qooxdoo.org/1.2.x/pages/communication/rpc_server_writer_guide.html

Chapter 2

[53]

Time for action – integrating with the Java server
One of the qooxdoo contribution projects is RPCJava (http://qooxdoo.org/contrib/
project#rpcjava). In early versions of qooxdoo, the server components were also
bundled as the backend in the qooxdoo SDK. As it evolved, the server components have
been separated into contribution projects to allow those components to grow independently
from the qooxdoo client framework.

Let's set up the server development environment. To do so, just follow these steps:

1. Create the following directories:

 � C:\teamtwitter-server

 � C:\teamtwitter-server\src

 � C:\teamtwitter-server\lib

 � C:\teamtwitter-server\classes

 � C:\teamtwitter-server\dist

 � C:\teamtwitter-server\webapp

2. Download the GNU tarball of RPCJava from the SourceForge website
(http://qooxdoo-contrib.svn.sourceforge.net/viewvc/qooxdoo-
contrib/trunk/qooxdoo-contrib/RpcJava/) and extract qooxdoo-
contrib-RpcJava.tar.gz to C:\.

3. Set up RPCJava in the server environment:

 � Go to C:\RPCjava

 � Copy the contents of C:\RpcJava\trunk\lib to C:\teamtwitter-
server\lib

 � Copy the contents of C:\RpcJava\trunk\rpc to C:\teamtwitter-
server\src

 � Copy the contents of C:\RpcJava\trunk\webapp to C:\teamtwitter-
server\webapp

 � Copy C:\RpcJava\trunk\build.properties.sample to C:\
teamtwitter-server\build.properties.sample

 � Copy C:\RpcJava\trunk\build.xml to C:\teamtwitter-server\
build.xml

 � Copy C:\teamtwitter-server\build.properties.sample to C:\
teamtwitter-server\build.properties

http://qooxdoo.org/contrib/project#rpcjava
http://qooxdoo.org/contrib/project#rpcjava
http://qooxdoo-contrib.svn.sourceforge.net/viewvc/qooxdoo-contrib/trunk/qooxdoo-contrib/RpcJava/
http://qooxdoo-contrib.svn.sourceforge.net/viewvc/qooxdoo-contrib/trunk/qooxdoo-contrib/RpcJava/
http://qooxdoo-contrib.svn.sourceforge.net/viewvc/qooxdoo-contrib/trunk/qooxdoo-contrib/RpcJava/

Say Hello to the qooxdoo World!

[54]

4. Download the following tools or software required for the server project and
install them:

 � Download the Ant tool to run the build file. Either you can download
Ant from http://ant.apache.org/ and install it or use the Ant
plugin that comes with Eclipse.

 � Download the latest stable Java Development Kit (JDK) from
http://www.oracle.com/technetwork/java/javase/
downloads/index.html and install it.

 � Download the latest stable version of Tomcat from http://tomcat.
apache.org/ and install it.

5. Set the following environment variables in My Computer | Properties |
Advanced | Environment Variables:

 � Set the ANT_HOME environment variable, as shown in the
following screenshot:

 � Set the JAVA_HOME environment variable, as shown in the
following screenshot:

 � Append the bin directory of Ant (C:\apache-ant-1.8.2\bin)
in the PATH environment variable.

http://ant.apache.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://tomcat.apache.org/
http://tomcat.apache.org/

Chapter 2

[55]

6. In C:\teamtwitter-server, edit build.properties to set your details.
The following details may differ for your system:

applicationName = teamtwitter
deployDir = C:/softwares/tomcat5.5/webapps
qooxdooDir = C:/qooxdoo-1.2-sdk
clientApplicationDir = C:/teamtwitter

7. In C:\teamtwitter-server, edit the build.xml file to add the necessary
targets to build the Team Twitter client source and server source. The build.
xml file reads the properties from build.properties and sets the value for
the various directories such as build.dir, dist.dir, application.dist.dir,
and web.dir.

The target clean wipes out the old classes and creates classes and dist
directories.

The target compile compiles the team twitter server code with the libraries
kept under the lib directory. All the output classes are saved under the
classes directory.

The following content is from the build.xml file:

<?xml version='1.0'?>
<project name="teamtwitter" default="help" basedir=".">

 <property file="build.properties" />
 <property name="build.dir" value="${basedir}" />
 <property name="dist.dir" value="${basedir}/dist" />
 <property name="application.dist.dir" value="${dist.
dir}/${applicationName}" />
 <property name="web.dir" value="${basedir}/web" />
 <target name="clean">
 <delete dir="classes" />
 <mkdir dir="classes" />
 <delete dir="${dist.dir}" />
 <mkdir dir="${dist.dir}" />
 <mkdir dir="${application.dist.dir}" />
 </target>
 <target name="compile">
 <mkdir dir="classes" />
 <javac srcdir="src" destdir="classes" debug="true"
target="1.5" source="1.5">
 <classpath>
 <fileset dir="lib">
 <include name="**.jar" />
 </fileset>

Say Hello to the qooxdoo World!

[56]

 </classpath>
 </javac>
 </target>

 <target name="client.generate-source">
 <exec executable="python" dir="${clientApplicationDir}">
 <arg value="generate.py" />
 <arg value="source" />
 </exec>
 </target>

 <target name="client.generate-build">
 <exec executable="python" dir="${clientApplicationDir}">
 <arg value="generate.py" />
 <arg value="build" />
 </exec>
 </target>

 <target name="copy.web" depends="compile, client.generate-
build">
 <!-- copy client application -->
 <copy todir="${application.dist.dir}">
 <fileset dir="${clientApplicationDir}/build">
 </fileset>
 </copy>

 <mkdir dir="${application.dist.dir}/WEB-INF" />

 <!-- copy lib -->
 <copy todir="${application.dist.dir}/WEB-INF/lib">
 <fileset dir="${build.dir}/lib">
 <exclude name="servlet-api.jar" />
 </fileset>
 </copy>

 <!-- copy classes -->
 <mkdir dir="${application.dist.dir}/WEB-INF/classes" />
 <copy todir="${application.dist.dir}/WEB-INF/classes">
 <fileset dir="${build.dir}/classes">
 <include name="**/*.class" />
 <exclude name="**/*Test.class" />
 <exclude name="**/*Tests.class" />
 </fileset>
 </copy>

Chapter 2

[57]

 <!-- copy WE-INF -->
 <copy todir="${application.dist.dir}/WEB-INF">
 <fileset dir="${build.dir}/webapp/WEB-INF">
 <include name="**/*" />
 </fileset>
 </copy>
 </target>

 <target name="dist" depends="copy.web">
 <war destfile="${dist.dir}/${applicationName}.war"
webxml="${application.dist.dir}/WEB-INF/web.xml">
 <fileset dir="${application.dist.dir}" />
 </war>
 </target>

 <target name="deploy">
 <copy todir="${deployDir}/${applicationName}">
 <fileset dir="${application.dist.dir}">
 </fileset>
 </copy>
 </target>
 <target name="help">
 <echo message="targets available in this build file are:" />
 <echo message="clean" />
 <echo message="compile" />
 <echo message="client.generate-source" />
 <echo message="client.generate-build" />
 <echo message="copy.web" />
 <echo message="dist" />
 <echo message="deploy" />
 </target>
</project>

The target client.generate-source generates the development version
of the Team Twitter client application.

The target client.generate-build generates the deployment version
of the Team Twitter client application.

The target copy.web depends on targets compile and client.
generate-source.

Say Hello to the qooxdoo World!

[58]

After completing the dependency targets, it copies the Team Twitter client
application deployment version into the dist directory, creates the WEB-INF
directory in the dist directory, copies all the library files except servlet-api.jar
under the WEB-INF/lib directory, copies the Team Twitter server classes under
the WEB-INF/classes directory, and copies the web.xml under WEB-INF. The
servlet-api.jar file will be available in the Tomcat common/lib directory.

The target dist depends on the copy.web target. After completing the dependency
target, it creates the Web application ARchive (WAR) file which contains both the
client application and server code for the Team Twitter application.

The target deploy deploys the dist directory in the Tomcat webapps directory.

8. Now, let's build the Team Twitter application. Run the following build command:

C:\teamtwitter-server>ant dist

The preceding build command will build everything and generate the web application
directory as well as the WAR file. Now, we have the server development environment.

9. Let's make changes in the Team Twitter client application to integrate with
the server code. RPCJava comes with a qooxdoo.test remote service, which
implements all the test methods of the qooxdoo RPC server. We can call the echo
method from the test remote service to verify the client server communication.

Open the Team Twitter client application JavaScript file (C:\teamtwitter\
source\class\teamtwitter\Application.js).

Edit the listener implementation for the button and add the following code to
integrate with the RPCJava server.

// Add an event listener
button1.addListener("execute", function(e) {
 var rpc = new qx.io.remote.Rpc();
 rpc.setCrossDomain(false);
 rpc.setTimeout(1000);

 var host = window.location.host;
 var proto = window.location.protocol;
 var webURL = proto + "//" + host + "/teamtwitter/.qxrpc";
 rpc.setUrl(webURL);
 rpc.setServiceName("qooxdoo.test");

 rpc.callAsync(function(result, ex, id){
 if (ex == null) {

Chapter 2

[59]

 alert(result);
 }
 else
 {
 alert("Async(" + id + ") exception: " + ex);
 }
 }, "echo", "Hello to qooxdoo World!");
});

10. Now, run the build again to rebuild the application:

C:\teamtwitter-server>ant dist

The dist target builds the client application code, compiles the server code,
and builds the web application.

Now, run the following command to deploy the Team Twitter web application
in Tomcat.

Let's deploy the application:

C:\teamtwitter-server>ant deploy

11. Now, start Tomcat by running the following command (<TOMCAT_HOME> is
where you installed the Tomcat server):

<TOMCAT_HOME>\bin\startup.bat

Say Hello to the qooxdoo World!

[60]

12. Let's check the application from the browser. Once the Tomcat server is up and
running, try to access the primitive Team Twitter application by accessing the
following URL:

http://localhost:8080/teamtwitter/

Click on the First Button button; you'll get a response from the Team Twitter server.
The server method just echoes whatever the client passed with the prefix Client said.

In the JSON-RPC call, the following data is sent as the request and received in
the response.

The data sent in the request to the server is as follows:

{"service":"qooxdoo.test","method":"echo","id":1,"params":["Hello
to qooxdoo World!"]}

The data received in response from the server is as follows:

{"id":"1","result":"Client said: Hello to qooxdoo World!"}

Working with Eclipse IDE
If you want to use any IDE such as Eclipse IDE, carry out the following steps (you can
download the Eclipse IDE from http://www.eclipse.org/):

http://localhost:8080/teamtwitter/
http://localhost:8080/teamtwitter/
http://localhost:8080/teamtwitter/

Chapter 2

[61]

1. Create a Java project and set the project name as teamtwitter-server. Set the
location as C:\teamtwitter-server, which was created earlier in step 1 in the Time
for action – integrating with the Java server section. Click on the Finish button. It
will automatically set everything for the project.

Say Hello to the qooxdoo World!

[62]

2. Now, set up the Ant view. If you have not enabled the Ant view, enable it by going
to Window | Show View | Ant. In the Ant view of Eclipse, add the build.xml file,
which is present in C:\teamtwitter-server. Then, you can run the Ant targets
from the Eclipse IDE. The Ant tasks in the server application also build the client
application based on the build.properties configuration, generates the final
web application, and deploys it in Tomcat:

What just happened?
We have set up the RPCJava server and the server development environment. We have
integrated the client application with the server, built the code, deployed the web
application, and tested it.

Chapter 2

[63]

Pop quiz
1. qooxdoo needs the following tools

a. ActivePython and Cygwin

b. ActivePython or Cygwin

2. Components in the qooxdoo SDK are

a. The qooxdoo applications for the end users

b. The qooxdoo internal applications used by the framework

3. Applications in the qooxdoo SDK are

a. The qooxdoo applications for the end users

b. The qooxdoo internal applications used by the framework

4. qooxdoo is a

a. Client-side framework

b. Server-side framework

c. Both

5. qooxdoo prefers to send the data for communication between the client and the
server in the format of

a. XML

b. Text

c. JSON

6. The qooxdoo client application can communicate with the server implemented in

a. Java only

b. Java, Python, and Perl

c. Any language abiding to the qooxdoo JSON-RPC server guidelines

Say Hello to the qooxdoo World!

[64]

Summary
We have set up the development environment in this chapter.

Specifically, we covered the following:

 � We have set up the required tools for the qooxdoo framework

 � We have set up qooxdoo SDK and explored the structure of the qooxdoo SDK

 � We have created an application in qooxdoo and explored the structure of
the application

 � We have learnt how the data is passed between client and server

 � We have learnt how communication takes place between client and server

 � We have set up the Java RPC server and integrated the client code with the server

Now that we have the development environment ready, we can start learning the
programming techniques in qooxdoo in the next chapter.

3
Core Programming Concepts

This chapter explains basic object-oriented features (class, object, interface,
inheritance, and so on) and how these features are achieved with JavaScript
in the qooxdoo framework. This chapter also explains the basic syntax of the
qooxdoo programming.

JavaScript is a prototype-based scripting language that is dynamically typed and that
supports object-oriented language. qooxdoo allows you to write the code in object-oriented
fashion, by providing the basic syntax for each object-oriented concept. In addition to the
object-oriented support, qooxdoo gives more flexibility to ease coding in JavaScript. qooxdoo
framework provides many reusable components too. Let's learn the core programming
concepts of qooxdoo framework, in this chapter.

In this chapter, we shall cover the following topics:

 � Code comments and API documentation

 � Object-oriented programming

 � Interface, class, and mixin

 � qooxdoo properties

 � Events

 � Team Twitter classes

We have already said "hello" to the qooxdoo world. Now, it is time to dive into the qooxdoo
world and pick up the object-oriented programming concepts.

Core Programming Concepts

[66]

Code comments and API documentation
Let's learn about the comments and API documentation in qooxdoo programming before
learning any other programming concepts.

The comments are non-compiled statements in the code. qooxdoo allows three different
types of comments:

 � Single-line comment: A // (double slash) is used for single-line comments, in the
code. The content after the double slash, till the end of the line, is a comment. It
can be used as in the following code snippet:

var emp = new Employee();//declared to store the employee info

 � Multi-line comment: The content embedded between /* and */ is called a multi-line
comment and can include multiple lines. It can be used as mentioned here:

/*
Line of comment
Another line of comment
*/

 � Doc comment: Documentation (doc) comment is used for documenting the
qooxdoo API. These are similar to javadoc or JSDoc comments. It can be used
as mentioned below:

/**
 Documentation for the code. This will appear in API doc.
 */

One of the usages of the doc comment is mentioned as follows:

/** member functions definition */
members :{

 /** function for getting the employee data */
 getEmpInfo : function() {

 // do some thing………
 }
}

The class description is taken as the first comment that starts with /**, in the file.

Chapter 3

[67]

qooxdoo supports few HTML tags and few predefined attributes inside the doc comments,
for better structure. Supported attributes are:

 � @param: This attribute describes the parameter of a method or constructor. The
@param attribute is followed by the name of the parameter, and type, in curly
brackets, followed by a description. When the parameter is optional, the curly
brackets include the default value, in addition to the type. It can be used as follows:

@param message {string} the message to show
@param flag {Boolean ? true}

 � @return: This attribute describes the return value of a method. It can be used
as follows:

@return {boolean} validity of the data

 � @throws: This attribute describes the exception thrown by a method or constructor.
It can be used as follows:

@throws if the search criteria is not entered completely

 � @see: This attribute describes cross references to other structures (class, property,
method, or constant). It can be used as follows:

@see com.xyz.Decorator

 � @link: This is similar to the @see attribute but is used to link the other structures
within description text. It can be used as follows:

<code>this.self(arguments)</code> ({@link qx.core.Object#self})

A sample method with the documentation is mentioned in the following
code snippet:

/**
 @param name {string} the name of the object
 @param flag {Boolean ? true}
 @return {boolean} validity of the data
 @throws on the failure condition
 @see qx.core.Object
 */
 testMethod : function(name, flag) {
 if(!flag)
 {
 throw new qx.core.ValidationError("failure", "Condition
failed");
 }
 return true;
 }

Core Programming Concepts

[68]

Time for action – generating API documentation for Team
Twitter

Let's generate the API documentation for our Team Twitter application.

1. Generate a nice API documentation for the Team Twitter application by running
the following command in the client application directory, C:\teamtwitter:

generate.py api

The api job in the generator analyzes the code tree and generates the qooxdoo
API documentation. When you run this job in your application directory, it creates
a directory named api, under the application directory, and generates the API
documentation for all the application classes, and the qooxdoo classes as well. In
our case, it will be C:\teamtwitter\api.

2. Check the generated API documentation for the application. Open the file
C:\teamtwitter\api\index.html. It will open the API viewer application
for the Team Twitter application. The entire API is searchable and cross-linked.

All the qooxdoo classes fall under the qx package, and our application classes fall
under the teamtwitter package:

Chapter 3

[69]

What just happened?
We generated the API documentation for the Team Twitter application and viewed the API
documentation. Whenever you add new classes or modify classes, you should regenerate
the API documentation to get the updated API documentation.

Object-oriented programming
Object-oriented programming is a way of organizing the code as a collection of objects that
incorporate both data structure and behavior. In the real world, it is better to place the data
and related methods in a class, rather than having the data structure separate from the
behaviors. If you keep it separate, it will lead to data corruption, increase the complexity,
and create lot of confusion, especially if the project runs on a million lines of code.

Object and class
An object is an instance of the class that models the related data structure and behaviors
into a discrete unit. For example, Animal is a class that consolidates the properties of the
animal, such as, name, age, weight, type, and so on, into data structures, and the behaviors,
such as, eat, move, talk, and so on, defined in the class. You can instantiate the class and
set the specific values for the instance. The instance with specific values stored in the data
structure, and with behaviors defined in the class, is known as an object. You can create
many objects from the class template and assign a different set of values for each object.

On the other hand, object-oriented programming allows you to place the related data and
behavior in a class, encapsulate it, and expose only necessary behaviors to the outside of
the class, through the use of access types (such as, private, protected, and public).
Interfaces allow you to abstract the implementation of the classes. With the combination
of interfaces and classes, you can achieve the runtime polymorphism. You can reuse the
code through inheritance of the classes.

Encapsulation
Encapsulation means bringing the related data structure and behaviors in a class and
exposing only the necessary behaviors to the members outside the class.

One can restrict the visibility of the data structure and behaviors by using the access
modifiers namely, private, protected, and public. We can discuss more about access
modifiers, while we learn about classes and members in the following sections.

Encapsulation reduces the interdependency between various parts of the code to avoid the
massive ripple effects, even for a small change. The code becomes cleaner and maintainable.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Core Programming Concepts

[70]

Inheritance
Inheritance is the sharing of properties and behaviors among the classes, based on a
hierarchical relationship. A class that inherits a class is termed a subclass. The subclass
incorporates or inherits all the properties and behaviors from the super class, the one
that is extended. It is like inheriting all wealth and characteristics from your parents.

Inheritance allows code reuse among the classes, through the class hierarchy.

Overriding
You can inherit all the properties and behaviors from the super class, but you may need
to have a different behavior for a few methods implemented in the super class. You can
change those behaviors by overriding the implementations. In the example mentioned
earlier, implementation for the move() behavior in the Animal class may be a default
implementation that might use walk as a mode of movement. Dogs normally run and fish
actually swim, so, the move() behavior is overridden in the sub classes, as per the need.

Abstraction
Abstraction is the representation of a complex system in a simple interface. In system
development, abstraction means focusing on what an object is and what it does, before
deciding how it should be implemented.

Abstraction exposes a simple interface to the world and preserves the freedom to make
decisions for as long as possible, by avoiding premature commitments to the details.

Polymorphism
Polymorphism means the same operation may behave differently on different classes, based
on the implementation in each class. With the examples mentioned earlier, when you call
move() on the dog instance, it will walk or run on the ground and when you call move() on
the fish instance, it will swim in water.

The behavior is decided in runtime, based on the object on which the operation is invoked.

We have learnt the basic principles of object-oriented programming. We'll see, in the
following sections, how that is achieved in qooxdoo.

Chapter 3

[71]

Interface
Interface is a simple concept but plays a vital role. It provides abstraction on
implementations and polymorphism. It is said in the basic design principles that:

 � Code to an interface, rather than to an implementation

 � Follow the dependency inversion principle (depend upon abstractions, not
on concretions)

An interface is a contract. Interface can be implemented by any class, from any inheritance
tree. One class can implement many interfaces for different purposes. Interface allows you
to give a common characteristic for different classes. For example, a class that implements
an interface called Validator will have the validation behavior implemented. Let's see
how to define this contract in qooxdoo.

In qooxdoo, the items (in the contract) that can be included in an interface are discussed in
the following sections.

Members
A member function of the interface can have either an empty definition or a set of
preconditions to be checked. These preconditions are validated before calling the actual
implementation of the class. The predefined assert functions are defined in qx.core.
Assert. The class implementing the interface must provide the implementation for all
the member functions defined in the interface.

Statics
Only constants are allowed here. The static variables are accessed through the fully qualified
name (for example, org.test.MyInterface.PI, where PI is the static declared in the
org.test.MyInterface interface).

Properties
The properties of the interface are just a name with empty map values. The class
implementing the interface must have all the properties defined in the interface.
Properties are discussed in more detail in the qooxdoo properties section in this chapter.

Core Programming Concepts

[72]

Events
The class implementing the interface must declare all the events defined in the interface.
Events are discussed in more detail in the Events—class level section in this chapter.

An interface can be defined with the qx.Interface.define(<name>,<config>) method.
qooxdoo allows an interface to extend one or more interfaces. Let's define an interface:

qx.Interface.define("org.test.MyInterface",
{
 extend : org.test.MySuperInterface,

 properties : {
 "name" : {},
 "contact" : {}
 },

 members : {
 Foo1 : function() {},
 Foo2 : function(x, y){
 this.assertArgumentsCount(arguments, 2, 2);
 this.assertString(x);
 }
 },

 events : {
 "changeValue" : "qx.event.type.Data"
 },

 statics : {
 PI : 3.14
 }
});

One of the basic design principles is "Code to an interface instead of coding to a class". We
have learnt how to define an interface in qooxdoo and what contract items it can contain.
Now, we can code an interface, first, and then implement it in the classes.

Extended Backus-Naur Form (EBNF) is the most popularly-used notation for describing
context-free grammar or formal languages and is very easy to understand. You can refer to
the EBNF-like syntax for interface in qooxdoo at http://manual.qooxdoo.org/1.4/
pages/core/interface_quickref.html

Chapter 3

[73]

Class
Class is the main concept and a basic unit in object-oriented programming. Effective
organization of the code into proper class hierarchy improves the reusability of the code and
its maintainability. You need to understand this section thoroughly to write better code.

Classes implement the methods in the interfaces. A class is a template that describes the
state and behavior of the object, while the object is an instance of the class that holds
the data (that is, its own state) and access to all the behaviors defined in the class. As with
any other object-oriented programming language, qooxdoo allows you to define a class
in JavaScript.

A class can be defined with the qx.Class.define(<name>,<map>) method. The first
parameter is a fully qualified class name, and the second parameter is the map that contains
all the details of the object such as constructor, destructor, members that contain instance
variables, behaviors, or methods, and so on. The keys in the map are predefined in qooxdoo,
and key name directly explains the object detail, namely, construct (for constructor),
destruct (for destructor), members, properties, events, and so on. The allowed keys
can be seen in the class syntax section.

You can extend the classes to inherit the variables and methods. Let's define a class:

qx.Class.define("org.test.MyClass", {
 // constructors, properties, members, and so on
});

As the whole definition is given in qx.Class.define(), it is called a closed form of
class declaration. You can encapsulate the data structure and the related actions in a class,
expose only the necessary actions to the members outside the class, and keep the rest of
the actions (and all the data structure) as private to the class. You can create an object for
the class, as follows:

var myObj = new org.test.Myclass();

The new operator is used to create an object for the class template.

Core Programming Concepts

[74]

Constructor and destructor
The key for the constructor in the class map is construct. Similarly, the key for the
destructor in the class map is destruct. The constructor is invoked on creation of an
object from the class whereas the destructor is invoked on disposal of the object. Let's
add a constructor and destructor to the class map.

qx.Class.define("org.test.MyClass", {

// define constructor
 construct : function(){

 /* lets give info level debug statement here.
 To see that the constructor is invoked
 on creation of the class. */
 this.info("Am in Constructor of MyClass");
},

destruct : function() {
 this.info("Am in the destructor");
}
});

Members
Members in a qooxdoo class are the state/variable and the behaviors/methods of a class.
There are two types of members, namely, class members and instance members. You can
design the members as one of these types, based on the necessity.

Class members
Class members are common to all the instances of the class. They are also known as static
members. A class member or static member can be a class variable or class method. The key
for the class members in the class map is statics. A static member definition or declaration
is similar to the other methods or variables. The best naming convention for a class or static
variable is to use the uppercase notation to distinguish from instance members. Uppercase
notation is only for class or static variables and not for class or static methods. Let's add a
couple of class or static variables and a class or static method to the class.

qx.Class.define("org.test.MyClass", {

 // All class level variables and methods declared under statics
 statics : {
 //class or static variables declared here in uppercase notation
 FOO : value,
 CLASS_TYPE : "SIMPLE",

Chapter 3

[75]

 //class or static methods declared here
 testMethod: function(){
 // do something on the class method.
 }
}
});

We have seen how to declare class or static members. Let's see how to use them.

The class variable or class method can be accessed only with the fully qualified class name. As
the class method is common to all the instances of the class, you need not create an instance
to access the class method. You can access the class method or class variable directly from the
class, with the fully qualified class name, as shown in the following code snippet:

org.test.MyClass.FOO = 456;
var x = org.test.MyClass.CLASS_TYPE;
org.test.MyClass.testMethod();

Instance members
A copy of the instance variable is created for each instance or object of the class, and the
value is not common across all the instances of the class. Instance methods are invoked
against the instance or the object of the class. The key for the class members in the class
map is members. Let's add an instance variable and an instance method. To access the
instance variable or instance method, you need to create an object of the class. Only a public
instance variable or a public instance method can be accessed through the object reference.

qx.Class.define("org.test.MyClass", {

 members : {

 foo : value,

 testMethod : function(){
 // do something on the class members.
 }
}

});

var myClass = new org.test.MyClass();
myClass.foo = 456;
myClass.testMethod();

Core Programming Concepts

[76]

We have seen the declaration of the instance members. Now, we'll learn how to encapsulate
the instance members to expose only the necessary members to the outside of the class
and hide the rest of the instance members in the class. This can be achieved by controlling
the visibility for the instance members declared inside the class. As with all object-oriented
languages, qooxdoo also supports three types of access type. As the JavaScript does not
support a strong enforcing mechanism for access protection, qooxdoo uses certain coding
conventions instead of the access type keywords:

 � Private: Private members can be accessed within the defined class only. A private
member name should start with a double underscore (__).

 � Protected: Protected members can be accessed within the defined class and its
derived classes. A protected member name should start with a single underscore (_).

 � Public: Public members can be accessed even outside the class and anywhere in
the code. No coding conventions to be followed for a public member name.

The following code snippet explains the declaration of instance variables with each of the
access types.

 members : {
 __privateVariable : null,
 _protectedVariable : null,
 publicVariable : null
}

To access the static members inside instance methods, you have to use this.
self(arguments), thus:

qx.Class.define("org.test.MyClass", {

 statics : {
 FOO : 456;
},

members : {
 testMethod : function(){
 alert("inside test function:" + this.self(arguments).FOO);
 // do something on the instance method.
 }
}
});

Static members can access other static members directly through the this keyword but
cannot access the instance members directly.

Chapter 3

[77]

Types
There are different types of classes, such as, static class, singleton class, and abstract class.
The key for the class type in the class map is type, with the possible values as regular (no
specific type defined), static, singleton, or abstract.

We have already seen a few regular classes; let's see the other types of classes.

Static class
A utility class can be defined with the static value for the type key. A static class can
have static members, static variables, and static methods, only.

qx.Class.define("org.test.MyClass", {
 type : "static",
 statics : {
 // variables & functions
 }
});

Singleton class
A singleton class can be defined with the singleton value for the type key. Only one
instance of this class is allowed at any point of time. An instance of the singleton class
cannot be created with the new operator. Instead, use the static method getInstance()
to create and return the singleton class object. The following code snippet shows how to
define a singleton class in qooxdoo:

qx.Class.define("org.test.MySingleton", {
 type : "singleton",
 // ……
});

Abstract class
An abstract class can be defined with the abstract value for the type key. The abstract
class is used to provide the implementation code for the common methods in the class
and leave the specific methods without any implementation. An abstract class can be
extended to give the implementation for the specific methods and reuse the common
methods implementation. A subclass that implements all the specific methods left without
implementation, in an abstract class, can be termed as a concrete class. You cannot create
instances of an abstract class. You can create instances of a concrete class only:

qx.Class.define("org.test.Animal", {
 type : "abstract",
// ……
});

Core Programming Concepts

[78]

Inheritance in qooxdoo
Similar to java, qooxdoo also supports single inheritance and does not allow multiple
inheritance, that is, a class can inherit from a single super class only. As a substitute for
multiple inheritance, a class can implement one or more interfaces and include one or more
mixins. This inheritance is achieved with the extend configuration key in the class map:

Class A

Class B

qx.Class.define(“org.test.ClassA”, {

construct : function() {
// do some thing....

}
});

qx.Class.define(“org.test.ClassB”, {
/* Extend the class A to

inherit the ClassA features. */
extend : “org.test.ClassA”,

construct : function(x,y) {

/*You can call the
super class constructor */

this.base(arguments,x,y);
}

});

Overriding in qooxdoo
qooxdoo allows you to override the methods in a derived class. It also allows you to call an
overridden super class method implementation, from the overriding subclass method, just
like calling super(), in Java.

qooxdoo allows two ways to call a super class method, mentioned as follows:

 � this.base(arguments, x, y …);: This internally uses or wraps around the
second method

 � Arguments.callee.base.apply(this, arguments);: This is a JavaScript
native implementation, so it's very efficient

Chapter 3

[79]

Both of these ways are implemented in the following code snippet:

qx.Class.define("org.test.ClassA", {

 members : {
 baseFunction : function(x, y) {
 // do some thing……
 // Am inside base function
 }
 }
});

qx.Class.define("org.test.ClassB", {

 /* Extend the class A to inherit the ClassA features. */
 extend : "org.test.ClassA",

 members : {
 baseFunction : function(x,y) {
 // do some thing before calling base class implementation.

 /* You can call the super class constructor */
 this.base(arguments,x,y);
 // or
 Arguments.calle.base.apply(this, x, y) ;
 // do some thing after calling base class implementation.

 }
 }
});

We have learnt the main concept for object-oriented programming. Now, we know how
to create a class, what it can contain, how to encapsulate the members, and how to create
different types of classes for different purposes.

We have also learnt how to create objects from the class and how to access the instance
members and class members.

You can refer to the EBNF-like syntax for classes in qooxdoo, at the following location:

http://manual.qooxdoo.org/1.4/pages/core/class_quickref.html

Now, it's time to create a class and to implement an interface.

Core Programming Concepts

[80]

Let's define a class and implement the MyInterface interface that we defined in the
earlier section.

qx.Interface.define("org.test.MyClass",
{
 /* Implement the interface */
 implement : org.test.MyInterface,

 members : {

 /**
 * Some implementation for the method
 */
 foo1 : function() {
 // do something……….
 },

 foo2 : function(x, y){

 // do something……….

 },

 _applyName : function(oldValue, newValue){

 }
},

 properties : {
 "name" : {
 check : "String",
 apply: "_applyName"
 },

 "contact" : {
 check : "String",
 validate : qx.util.Validate.email()
 }

 },

 events : {
 "changeValue" : "qx.event.type.Data"
 }
});

Chapter 3

[81]

We have implemented the MyInterface interface in MyClass by abiding by the contracts
defined in the interface. The implementing class gives the implementations for all the abstract/
interface methods and declares all the properties and events defined in the interface.

Mixin
This concept is pulled from the Ruby programming language. qooxdoo supports single
inheritance, like Java and Ruby do. The concept of modules, known as categories in
Objective-C, is used to substitute the multiple inheritance features in Ruby. A module is a
collection of methods. Classes can mix in a module and receive all of its methods. It is a kind
of lateral merging to the inheritance hierarchy.

A mixin is a collection of members, variables, and methods; it can be merged into other
classes. In qooxdoo, a mixin is very similar to a class but cannot be instantiated. Unlike
interfaces, they do contain implementation code. Typically, a mixin is made up of only a
few members that allow for a generic implementation of some very specific functionality.
Mixins are used to share functionality, without using inheritance, and to extend/patch the
functionality of existing classes. A mixin is especially used when you don't want to change
the object hierarchy and just want to add few members laterally to the classes.

You can:

 � Add a mixin to the definition of a class—all members of the mixin are added to the
class definition.

 � Add a mixin to a class after the class is defined. This enhances the functionality but
is not allowed to overwrite existing members.

 � Patch existing classes—change the implementation of existing methods. This should
normally be avoided but, as some projects may need to patch qooxdoo, we should
define a clean way to do so.

As with a class, a mixin can be defined with qx.Mixin.define(<mixin name>, <mixin
config map>). A mixin can include one or more mixins but cannot implement an interface,
as it doesn't allow the inheritance and method overriding.

Core Programming Concepts

[82]

Defining a mixin
Let's define a mixin:

qx.Mixin.define("org.test.MyMixin", {
 include : org.test.MyMixin1,

 /**
 * This constructor will be called on creating an object of the
 * class for which this mixin is included.
 */
 construct : function() {

 },

 /**
 * The member functions will be added to the class.
 */
members : {

 testFunction : function(){
 alert(" Am in the mixin.");
 // do something on the class members.
 }
}

});

Using a mixin in a class
Let's use a mixin in one of the classes. In the following code snippet, the org.test.
MyAnotherClass class inherits the org.test.MyClass class and uses an org.test.
MyMixin mixin:

qx.Class.define("org.test.MyAnotherClass", {
 extend: org.test.MyClass,
 include: org.test.MyMixin,

 members: {
 testMethod2: function() {
 // do something here…
 }
 }
}

Chapter 3

[83]

We have learnt the supplementary feature, mixin, of the object-oriented concept. In
recent object-oriented programming languages, this concept substitutes for the multiple
inheritance concept. We have also learnt how to define and use a mixin.

You can refer to the EBNF-like syntax for mixin in qooxdoo, at the following location:

http://manual.qooxdoo.org/1.4/pages/core/mixin_quickref.html

As we have learnt about interface, class, and mixin, let's summarize the different
configurations that can be defined in the configuration or map. The following table
describes the key used in the configuration or map, what it is used for, where it is
used, and a brief description of the configuration:

Configuration key Type Used in Description

include Mixin or
Mixin[]

Class or
mixin

Adds the included mixins'
functionalities into the class or mixin

type String Class Allows defining the type of the class.
Possible string values are abstract,
static, or singleton

extend Class or
Class[]

Class or
interface

Allows extending a single parent class
when used in a class. When used in
an interface, allows single or multiple
interfaces to be extended.

implement Interface or
Interface[]

Class Allows implementing one or more
interfaces.

statics Map Class,
interface,
or mixin

Static properties' map

properties Map Class,
interface,
or mixin

Properties' definitions

events Map Class,
interface,
or mixin

Events' map

members Map Class,
interface,
or mixin

Member functions and variables

construct Function Class or
mixin

Optional function called while
instantiating the class

destruct Function Class or
mixin

Optional function called while disposing
of the class instance

Core Programming Concepts

[84]

Time for action – writing classes for Team Twitter
Now that we have learnt the basics of object-oriented concepts of the qooxdoo framework,
let's write a few classes for our Team Twitter application.

1. To start building our Team Twitter application, let's first identify the widgets that
we need to develop. Let's start our coding with the following items for our Team
Twitter application:

 � UserLoginForm (creates the UI for the login form)

 � SignUpForm (creates the UI for the signup form)

 � Tweet widget or form

2. Let's decide how these forms should finally look. This section shows the screenshots
of the forms that we need to develop. We will write the classes in step 3 to develop
the Login form, the Sign Up Form, and the tweet widget or form.

Chapter 3

[85]

3. We had a look at a few screenshots for our Team Twitter application. Now, let's
write a few interfaces and classes to develop these screens.

As we are developing the initial classes only for now, we will be learning more about
the reusable components and predefined widgets, in the following chapters. As we
learn more, we will improve these classes by adding more details. You will not be able
to see these screens until we design the layouts, add the widgets, and assemble it with
the application. We will add more details to these screens in the following chapters.

Let's write one class for each form. Let's name the class for user login
form UserLoginForm. This form extends one of the predefined container
classes—GroupBox. We will learn more on the containers in Chapter 4,
Working with Layouts and Menus.

Create the UserLoginForm.js file under C:\teamtwitter\source\class\
teamtwitter\ui and write the following code. This code is also available as in the
978-1-849513-70-8_03_01.txt file under Chapter 3 in the support files for
this book:

qx.Class.define("teamtwitter.ui.UserLoginForm", {
 extend : qx.ui.groupbox.GroupBox,

 /**
 * Constructor
 */
 construct : function(){
 this.base(arguments);
 this._initLayout();
 },

 /**
 * MEMBERS
 */
 members : {

 /**
 * create the layout for the form.
 * @returns
 */
 _initLayout : function() {
 /* For actual layout design and adding form elements into
the form as shown in the expected screen shot */

 },

 /**
 * Should take the entered values and has to perform user
login by validating into db.

Core Programming Concepts

[86]

 * @returns
 */
 loginUser : function() {

 },

 /**
 * To focus on to user name field.
 * @returns
 */
 focusOnUserName : function() {

 },

 /**
 * create the layout for the form.
 * @param Exception
 * @returns
 */
 openUserSignUpForm : function(e){

 /* planned a method for opening the form, on button click or
on firing an event. */
 }
 }
});

Now, let's write the class for the user signup form. Let's name the class for the
signup form UserSignUpForm.

Create the UserSignUpForm.js file under C:\teamtwitter\source\class\
teamtwitter\ui and write the following code. This code is also available as in the
978-1-849513-70-8_03_02.txt file under Chapter 3 in the support files for
this book.

As this form should look like a window, we can extend predefined Window class, thus:

qx.Class.define("teamtwitter.ui.UserSignUpForm", {
 extend : qx.ui.window.Window,

 /**
 * Constructor
 */
 construct : function(){

 },

 /**

Chapter 3

[87]

 * MEMBERS
 *
 */
 members : {

 /**
 * create the layout for the form.
 * @returns
 */
 _initLayout : function() {

 },

 /**
 * For validating user entered data
 * @param Exception
 * @returns
 */
 formValidator : function(items){

 },

 /**
 * To register user or to save user into Database, on register
button click.
 * @param Exception
 * @returns
 */
 register : function(e){

 },

 /**
 * For resetting whole form, on reset button click
 * @param Exception
 * @returns
 */
 resetForm : function(items){

 }

 }
});

Core Programming Concepts

[88]

Similarly, you can write the class for the tweet widget.

Create the tweetWidget.js file under C:\teamtwitter\source\class\
teamtwitter\ui and write the class. The code mentioned next gives you an idea
and skeleton. You can fill the code blanks for the tweetWidget class by extending
the required class and writing all the required methods:

qx.Class.define("_________________________________", {
 extend : _____________________________,
 /**
 * Constructor
 */
 _____________ : function(){
 },

 members : {

 /**
 * create the layout for the form.
 * @returns
 */
 ____________ : function(________) {

 },

 _________ : function(_____) {

 },

 _________ : function(_____) {

 },

 ____________ : function(______) {
 },

 ___________ : function(______) {
 }
 }
});

Chapter 3

[89]

Also, write the API documents. This gives an idea about the purpose of the method,
details of the input parameters and return value, and the exception thrown in the
method. Other developers can read the API document to understand the purpose of
the method and its usage, and what exception has to be handled.

Similarly, identify the required classes for our Team Twitter application, as per the
functional requirements mentioned in Chapter 1, What is qooxdoo?, and code them
by creating new files for each, in the respective packages. Identifying the classes is
itself a great skill in object-oriented programming. You will develop it as you gain
experience in object-oriented programming.

Just concentrate on the individual forms, first; later, we can place each form at
the right place, wherever we actually need it. Once we code the preceding classes
properly, you can try to add them into the application and see how it looks (see the
following screenshot). If you can do that, it is great, otherwise wait until Chapter 4,
Working with Layouts and Menus, where you'll learn more on the containers and
layout managers:

4. Now try compiling your classes to identify any syntax errors in the code. For this,
use either of the following commands:

 � <teamTwitterHome>generate.py build

 � <teamTwitter-ServerHome>ant client.generate-build

Core Programming Concepts

[90]

Correct all the syntax errors, if any. Sample build and successful compilation is
shown in the following screenshot:

What just happened?
To start the development of our Team Twitter application, we had identified three screens
or widgets, namely, the login form, the signup form, and the tweet widget. Then, we wrote
the basic classes, following the qooxdoo programming syntax, and had successfully built the
client application. These classes are just the beginning; we will enhance these classes and
add more classes, as we learn more concepts in this book.

By now, you must have a good understanding of the client application environment—where
to place client classes, how to build the client application, and so on.

Pop quiz-I
1. qooxdoo allows you to

a. Write single line comments only

b. Write single line and multiline comments

c. Write documentation in the doc and generate the API documentation

d. All of the above

2. In qooxdoo, interface contract includes

a. Members

b. Statics

c. Properties

d. Events

e. All of the above

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

[91]

3. In qooxdoo, method declaration in the member section of an interface allows you to

a. Just declare the method definition

b. Declare the method definition and add assert statements and preconditions
to be called before calling the implementation

4. qooxdoo supports

a. Single inheritance only

b. Single inheritance and multiple inheritances

c. Single inheritance and mixins

5. A mixin is

a. A class

b. A collection of members, variables and methods; it can be merged
into other classes laterally.

6. You would create an instance of

a. An interface

b. A mixin

c. An abstract class

d. A class that implements all the methods

7. In qooxdoo, you can do one or more of the following (you can select
multiple options)

a. Implement only one interface

b. Implement one or more interfaces

c. Extend only one class

d. Extend one or more classes

e. Include only one mixin

f. Include one or more mixins

qooxdoo properties
A qooxdoo property management system is a very convenient mechanism, and it simplifies
the code and improves the maintainability of the code. It perfectly demonstrates the
framework's three virtues—elegance, power, and speed.

Core Programming Concepts

[92]

A qooxdoo property is a dynamic property; the framework provides a lot of in-built features
for the qooxdoo properties. This is different from the variables of the object. If you want
to use all the features of the qooxdoo property, go for it; otherwise, go for the member
variables. Eventually, a qooxdoo property will get converted to member variables and
extra supporting member functions, both provided by the qooxdoo framework. For these
properties, the qooxdoo framework initializes the properties and provides few predefined
methods to access the properties instead of giving direct access to the property. It reduces
the overhead in writing type checks, firing change value events, validations, performance
optimizations, and so on.

Let's define a couple of properties. The key for the properties in the class map is
properties. For each property, you can configure the property features, such as,
nullable, init, check, inheritable, apply, and so on. The following code snippet
configures two properties, foo and bar, for the class Sample:

qx.Class.define("Sample", {
 ………
 properties : {
 foo : {
 init : 10,
 check : "Number"
 },
 bar : {
 nullable : true
 }
 }
 …………
});

Property initialization
Each property must be configured with one of the three configurations—nullable, init,
or inheritable. This configuration of the property is used by the qooxdoo framework
for initialization of the property. If it is nullable, qooxdoo initializes the property value
as null. If it is init, it initializes the property with the value provided for the init key. If
it is inheritable, the subclass will configure the value for that property. If you have not
configured one of these configurations for each property, qooxdoo framework will not know
how to initialize the property and it will raise an exception.

Chapter 3

[93]

Predefined methods
qooxdoo framework provides the following predefined methods for properties. You can just
use the predefined methods on the class reference where you declared the property:

 � setXXX(<value>): Sets a value to the property, for example, this.setFoo(10)

 � getXXX(): Returns the value of the property, for example, this.getFoo()

 � initXXX(<value>): Initializes the value of the property, for example, this.
initFoo(10)

 � isXXX(): Similar to getXXX(), available only for the Boolean property, for
example, this.isAvailable()

 � toggleXXX(): Toggles the property value between true and false; available
only for the Boolean property, for example, this.toggleAvailable()

 � resetXXX(<value>): Used to transfer values from parent to child widgets in
the inheritance hierarchy; available only for the inheritable property

 � setThemedXXX(<value>): Used to store a separate value for the appearance
of the property; available if the appearance is enabled for properties

 � resetThemedXXX(<value>): Used to reset the separate value for the appearance
of this property; available if the appearance is enabled for properties

Property configurations
Let's look at configurations other than the init configuration.

Apply
Apply is an optional configuration, and the configuration key is apply. On modification
of the property, except for the initialization, qooxdoo framework invokes the method
configured for the apply key. The new and old values of the property are passed to this
method. The configured method must be defined in the members section of the same class.

The best practice is to declare the apply method as protected, to avoid calling this method
directly. The return value for this method is ignored. Mainly, this method is used to carry out
an operation, when the value of the property is modified, except during initialization.

The following code snippet implements the apply configuration of the property:

qx.Class.define("Employee", {

 properties: {

 name : {
 apply : "_applyName"

Core Programming Concepts

[94]

 },
 modified : {
 init : false
 }
 },

members : {

 /* This function is invoked on change of the property value.
 The second argument old is optional to define. */

 _applyName : function(new, old) {
 this.setModified(true);
 }

 }

});

Check
Check is an optional configuration, and the configuration key is check. This configuration is
used to check the property value for many things, such as, data types, enumerated values,
and to check whether regular expressions match, whether an object is an instance of a class,
and whether an interface is implemented. The check configuration key is also used to check
if a class is a Mixin type or a Theme type. You can also configure condition checks, or even
check functions.

The following snippet of the code demonstrates the check configuration of the properties:

qx.Class.define("Employee", {

 properties: {

 name : {
 init : "",
 check : "String",
 apply : "_applyName"
 },
 modified : {
 check : "Boolean",
 init : false
 },
 designation : {
 init : "Assistant"
 /* Enumerated list of possible values */

Chapter 3

[95]

 check : ["Assistant", "Programmer", "Manager"]
 }
 },

members : {

 /* This function is invoked on change of the property value.
 The second argument old is optional to define. */

 _applyName : function(new, old) {
 this.setModified(true);
 }

 }

});

You can check against one of these predefined or user-defined types:

 � Boolean, String, Number, Integer, Float, and Double

 � Object, Array, and Map

 � Error, RegExp, Function, Date, Node, Element, Document, Window, and
Event

 � Class (incoming value must be an instance of the class)

 � Interface (incoming value must be an instance of the class that implements the
interface)

 � Mixin and Theme

In addition to the check against all the types, you can check the ranges or any conditions.
We can use custom checks by configuring a function for the property, as mentioned in the
following code snippet. The return value of the function should be Boolean, returning true
to indicate validity of the check, and false otherwise.

empid : {
 init : 0,
 check : function(value) {
 return (!isNaN(value) && value >= 0 && value <= 100);
 }
}

Core Programming Concepts

[96]

The same thing can be achieved by configuring the condition to be checked. This is more
efficient, as it omits the function call.

empid : {
 init : 0,
 check : "!isNaN(value) && value >= 0 && value <= 100"
 }
}

These checks are only applied in the development (source) version
of the application. qooxdoo framework removes this code in the
deployment (build) version through performance optimization. Just like
assertions in Java, which can be enabled or disabled in the production
code, these checks will be disabled in the deployment version.

Validate
Validate is an optional configuration and the configuration key is validate. Property
value is validated at runtime, before setting the value to the property and, if found invalid,
the value will not be assigned. Instead, the function will throw a validation error. qooxdoo
framework provides some default validate functions in the qx.util.Validate class. As
the functions are static functions, you can use them directly, without creating an instance
for the Validate class.

The following code snippet demonstrates the validate configuration of a property:

properties : {
 contactmail : {
 validate : qx.util.Validate.email()
 }
}

The most-used functions in the qx.util.Validate class are:

 � qx.util.Validate.range(<min>, <max>): Range validation

 � qx.util.Validate.number(<errMessage>): Checks if the value is a number

 � qx.util.Validate.url(<errMessage>): Checks if the value is a URL

 � qx.util.Validate.string(<errMsg>): Checks if the value is a valid string

 � qx.util.Validate.inArray(<array>, <errMsg>): Checks if the value is in
the array

 � qx.util.Validate.regExp(<regExp>, <errMsg>): Checks if the value
satisfies the regular expression

 � qx.util.Validate.color(<errMsg>): Checks if the value is a valid color

Chapter 3

[97]

Custom validations can be done by configuring a function. You can define the function
directly or provide the reference of the function that is declared in the members section of
the same class. If the value of the property is not valid, the validate function will throw a
validation error.

The following snippet of code demonstrates configuration of the user-defined validate
function:

properties : {
 myProperty : {
 validate : function(value) {
 if(value > 10) {
 throw new qx.core.ValidationError("Invalid Value. Value
should be less than 10");
 }
 }
 },

 myProperty1 : {
 validate : "_testValue"
 }
},

members : {

 _testValue : function(value) {
 // throw validation error based on the condition……..
 }
}

Group
Group is an optional configuration, and the configuration key is group. This is a convenient
way to define a family or a set of properties into a group.

The following snippet of code demonstrates the configuration of group:

properties : {
 left : {
 init: 0
 },
 top : {
 init : 0
 },

 location :
 group : { "left", "top"}
 }
}

Core Programming Concepts

[98]

The group key is used only to group a set of properties, so that you can set all the
variables at once. You still need to configure each property individually, at least for
the init configuration.

The group property can be accessed as follows:

Obj.setLocation(40,50); //this sets the values 40 for left & 50
for top.

The preceding call is equivalent to the following calls:

obj.setLeft(40) ;
obj.setTop(50);

As shown in the preceding sample, qooxdoo framework generates all the setters, getters,
and resetters for the entire group.

Event—property level
Event is an optional configuration, and the configuration key is event. These events are
mainly used to perform some operation on the change of the property value. qooxdoo
framework invokes the event on the change of the property value. You can add a listener to
carry out an operation on an event, whenever that event is invoked. The best practice is to
name the event change<Property Name>. As qooxdoo provides a proper event-handling
mechanism, it is well-known for event-based programming. In addition to property-level
events, it also provides events at the class level, which we'll see in the Events—class level
section, in this chapter.

The following snippet of code explains the qooxdoo events:

qx.Class.define("MyClass", {

 properties : {
 foo : {
 init : 0,
 /* Event "changeFoo" invoked on change of value */
 event : "changeFoo"
 }
 }

 Construct : function() {
 this.getFoo(); // returns 0
 this.setFoo(6); /* value changed. "changeFoo" event will be
fired. */
 this.getFoo(); // returns 6
 this.setFoo(6); // no change in value. So no event is fired.

 }
});

Chapter 3

[99]

One can add a listener, as shown in the following code snippet. This adds a listener to the
event, and that will occur on invocation of the change value event:

var obj = new MyClass();
obj.addListener ("changeFoo", function (e) {
 // do something……..
});

Property features
The major features of qooxdoo properties are discussed in the following sections.

Value checks
 � Runtime checks in the development version only

 � Built-in types for most common things

 � Instance checks by simply defining the name of the class to check for (always use
an instance of operation, as a real name is not available anymore)

 � Custom checks by simply attaching a function to the declaration

 � Custom checks (defined by a string) will be compiled into the resulting setters
(faster than the preceding variant)

 � Defines multiple possible (primitive) values, using an array

Validation
 � Validation in both the development and build version

 � Predefined validators for default validation

 � Throws a special validation error

Convenience
 � Provides accessor (getter) and mutator (setter) methods

 � Toggle method for Boolean properties

 � After you create an instance, qooxdoo automatically initializes properties with
the nullable and init attributes defined

Notification
 � Support for a custom apply routine

 � Event-firing with a custom-named event

Core Programming Concepts

[100]

Advanced value handling
 � Multivalue support—support to store different values for initialization, inheritance,

style, and user, including an automatic fallback mechanism between them.

 � Inheritance support—inheritance of properties defined by a parent widget; for
example, inheritance enabled from a groupbox to all form elements. qooxdoo
uses inheritance if the computed value is undefined or explicitly set to inherit.
The getter method simply returns inherit for inheritable properties that are
otherwise unset.

 � Blocks unintentionally undefined values in all setters with an exception—to reset a
value one must use the reset or unstyle methods that are in-built.

 � Overriding a value by setting a property explicitly to null.

 � Properties must be explicitly configured as nullable (as in .Net). The default is
false, which means that incoming null values will result in an exception.

 � Accessing nullable properties with undefined values will result in a normalization
to null.

Performance
qooxdoo provides automatic optimization of all the setter methods to get an optimal and
highly-tuned result code.

Setter methods are generated by the framework on
the first call of the setter method. So, just after the
definition, you won't see the setter methods available.

Memory management
qooxdoo provides an automatic memory management mechanism. All the qooxdoo
properties that contain complex data objects are disposed automatically with object
disposal. The affected built-in types are already auto-configured in this way. Also, all
properties that need an instance of a class, defined by using a class name in the check
condition, are automatically handled.

Chapter 3

[101]

This mechanism does not actually call dispose() on the object but
just removes the property value, that is it dereferences the object.
You still need to call dispose(), if necessary.

For all other properties that contain complex data, the developer
must add a dispose key with the value true to the property
declaration. For example, if there is no check defined, or if the check
definition points to a function.

This is not needed for primitive types such as String and Number.

We have read about the overwhelming features provided by the dynamic qooxdoo
properties and also about their rich feature set. Now, you know when to use the qooxdoo
properties and when to use the member variables in a qooxdoo class. Let's see how to
declare a property in the qooxdoo class.

You can refer to the EBNF-like syntax for properties in qooxdoo at the following location:

http://manual.qooxdoo.org/1.4/pages/core/properties_quickref.html

Let's summarize the different attributes allowed in the properties section and
their significance:

Attribute or key Value Description

nullable true/false Whether null values are allowed.

event String Event name.

init Value Initialization value for the property. qooxdoo
maintains these values separately, so that it can use
the same values while resetting the property.

check Type check Available only in developer version. Refer to the
Check section (under Property configurations
section), in this chapter, for more information.

inheritable true/false Whether the property is inheritable from the super
class.

themeable true/false Ability to attach theme for the property.

group [<properties>] Groups the properties into one group.

validate Validator function Validates the value.

mode shorthand Modifies the incoming data before calling the setter
method of each group member. Refer to the qooxdoo
manual (http://manual.qooxdoo.org) for
more information.

refine true/false Redefines the init value of the property derived
from the super class.

Core Programming Concepts

[102]

Events—class level
qooxdoo supports event-based programming. It also supports user-defined events. It's a kind
of Observer-Observable design pattern. An observable is nothing but the event defined, and
the observer is the listener registered for the observable.

This is an optional configuration in the class, and the configuration key is events; for
example, value-changed event on any variable, selection-changed event on list, table row
selection event, mouse-click event, drag-and-drop event, key-press event on text field, and
so on. One can define one or more events in the events section in class definition.

Declaring events for a class
The following code snippet illustrates the event declaration for a class:

events : {
 /** Fired when the widget is clicked. */
"click": "qx.event.type.MouseEvent",
/** Fired when some thing modified in the class */
"dirty" : "qx.event.type.Data"
}

Adding listeners
The following code snippet illustrates how to add listeners for events:

// method syntax -addListener("click", <functionCall> , <context>);
addListener("click", this.onClickFunction , this);
addListener("dirty", this.makeDirty , this);

Firing an event
The following code snippet illustrates how to fire events:

this.fireDataEvent("dirty", value, old);

We have learnt about class-level events. Now, we know how to declare class-level events,
how to add listeners to those events, and how to fire those events.

Chapter 3

[103]

Time for action – enhancing Team Twitter classes with
properties

Let's implement what we have learnt and enhance the Team Twitter classes:

1. Identify the required properties for each class. For tweetWidget, we can add
the following properties. This code is also available as in the 978-1-849513-70-
8_03_03.txt file under Chapter 3 in the support files for this book:

 � userName: This should be a valid username and be of type String only

 � Time and date: For time and date, we can have two separate properties,
and both should be of String type

2. Open the C:\teamtwitter\source\class\teamtwitter\ui\tweetWidget.
js file that you created earlier in this chapter, and add the properties as mentioned
in the following code snippet:

qx.Class.define("teamtwitter.ui.tweetWidget", {
 extend : qx.ui.groupbox.GroupBox,
 /**
 * Constructor
 */
 construct: function(){

 },

 /**
 * Properties
 */
properties : {
 userName : {
 check : "String",
 init : " "
 },
 time : {
 check : "String",
 init : "15:40 Hrs"
 },
 date : {
 check : "String",
 init : "Nov 20 2010"
 }
 },

 members : {

 //
 }
});

Core Programming Concepts

[104]

3. Now, try compiling the updated classes to identify any syntax errors in the code.
For this, use either of the following commands:

 � <teamTwitterHome>generate.py build

 � <teamTwitter-ServerHome>ant client.generate-build

Correct all the syntax errors, if any.

In the chapters that follow, as we learn more, we can enhance the classes and add
more classes.

What just happened?
We have identified certain properties of the tweet widget and enhanced the tweet widget
class by adding properties as per the qooxdoo properties syntax.

After enhancing the class, we rebuilt the client application. As we modify the classes or add
more classes into the client application, we will have to rebuild the client application.

Pop quiz-II
This is the second quiz in this chapter. This quiz focuses on qooxdoo properties and events.

1. When should you go for qooxdoo properties instead of member variables

a. When I need the in-built features supported by qooxdoo

b. When I need just the setter and getter methods

c. I can always go for qooxdoo properties instead of member variables

2. qooxdoo property features support one or more of the following

a. Proper initialization to property

b. Change value events as the property value changes

c. Property validations

d. Value checks only in the development versions

e. All of the above

3. qooxdoo properties support inheritance

a. True

b. False
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

[105]

4. Which configuration allows you to inherit a property

a. inheritable

b. check

c. init

d. themeable

5. Which configuration allows property initialization

a. inheritable

b. check

c. init

d. nullable

6. Which configuration allows you to validate values on runtime

a. nullable

b. validate

c. check

7. Identify the issues in the following code snippet

qx.Class.define("Student", {
 properties: {
 name : {
 init : "",
 check : "String",
 apply : "_applyName"
 },
 rollNumber : {
 check : "Number",
 init : 0,
 validate : function(value){
 return value >= 100;
 }
 }
 },

members : {
 }
});

a. The _applyName() method in members is missing

b. The comma is missing at the end of Line 6 and 13

Core Programming Concepts

[106]

c. There are no issues

d. The validate configuration function must raise validationError
on invalid value

8. Identify the issues in the following code snippet

qx.Class.define("Item", {
 properties: {
 paddingLeft : {
 init : 0
 },
 paddingRight : {
 init : 0
 },
 Padding : {
 Group : { paddingLeft, paddingRight, paddingTop, paddingBottom
 }
 }
 },
});

a. The paddingTop property definition is missing

b. The paddingBottom property definition is missing

c. The group configuration value is a set of strings

d. There are no issues

Summary
We have learnt about the core programming concepts of qooxdoo framework, in
this chapter.

Specifically, we covered:

 � Code and API doc comments

 � Fundamentals of object-oriented programming

 � Interface contracts in qooxdoo

 � Class structure and the types of classes supported in qooxdoo

 � Mixin support in qooxdoo

 � Features of qooxdoo properties

 � Class-level events

Chapter 3

[107]

After learning the programming concepts, we wrote a few classes for our Team
Twitter application.

This chapter is the basic foundation for qooxdoo programming. As you learn about
widgets in the following chapters, you'll make use of these programming concepts
for designing your user interface and also for building custom widgets.

4
Working with Layouts and Menus

This chapter focuses on the layout designs of graphical user interfaces, menu
bars, and toolbars. Basically, you will learn about available layouts in qooxdoo
and learn to choose the layout for the purpose of the screen. qooxdoo provides
different layouts (flow, dock, grid, and so on) for different purposes, containers
and menus (menu bar, toolbar, context menu, and so on).

In the last chapter, we learnt the core programming concepts, coding syntax, and
object-oriented features of the qooxdoo framework. This chapter teaches you to lay out
the screens for effective use of space, based on component placement, to design a layout
that looks better on the addition or removal of components to the screen and resizing the
screen, and so on. qooxdoo has a rich and convenient set of user interface components
and also provides different layouts to place the GUI components on the screen.

In this chapter, we'll cover the following topics:

 � Widgets

 � Containers

 � Panels

 � Layout managers

 � Layouts

 � Menus

Working with Layouts and Menus

[110]

qooxdoo uses the generic terminology of the graphical user interface. So, it is very easy
to understand the concepts involved in it.. The basic building block in qooxdoo is termed
a widget. Each widget (GUI component) is a subclass of the Widget class. A widget also
acts as a container to hold more widgets. Wherever possible, grouping of the widgets to
form a reusable component or custom widget is a good idea. This allows you to maintain
consistency across your application and also helps you to build the application quicker
than the normal time. It also increases maintainability, as you need to fix the defect at
only one place. qooxdoo provides a set of containers too, to carry widgets, and provides
public methods to manage.

Let's start with the framework's class hierarchy:

Base classes for widgets
qooxdoo framework abstracts the common functionalities required by all the widgets into a
few base classes, so that it can be reused by any class through object inheritance. Let's start
with these base classes.

Chapter 4

[111]

qx.core.Object
Object is the base class for all other qooxdoo classes either directly or indirectly. The
qx.core.Object class has the implementation for most of the functionalities, such as,
object management, logging, event handling, object-oriented features, and so on.

A class can extend the qx.core.Object class to get all the functionalities defined in the
this class. When you want to add any functionality to your class, just inherit the Object
class and add the extra functionalities in the subclass.

The major functionalities of the Object class are explained in the sections that follow.

Object management
The Object class provides the following methods for object management, such as, creation,
destruction, and so on:

 � base(): This method calls base class method

 � dispose(): This method disposes or destroys the object

 � isDisposed(): This method returns a true value if the object is disposed

 � toString(): This method returns the object in string format

 � toHashCode(): This method returns hash code of the object

Event handling
The Object class provides the following methods for event creation, event firing, event
listener, and so on:

 � addListener(): This method adds the listener on the event target and returns
the ID of the listener

 � addListenerOnce(): This method adds the listener and listens only to the first
occurrence of the event

 � dispatchEvent(): This method dispatches the event

 � fireDataEvent(): This method fires the data event

 � fireEvent(): This method fires the event

 � removeListener(): This method removes the listener

 � removeListenerById(): This method removes the listener by its ID, given by
addListener()

Working with Layouts and Menus

[112]

Logging
The Object class provides the following methods to log the message at different levels:

 � warn(): Logs the message at warning level

 � info(): Logs the message at information level

 � error(): Logs the message at error level

 � debug(): Logs the message at the debugging level

 � trace(): Logs the message at the tracing level

Also, the Object class provides the methods for setters and getters for properties, and
so on.

qx.core.LayoutItem
LayoutItem is the super most class in the hierarchy. You can place only the layout items
in the layout manager. LayoutItem is an abstract class. The LayoutItem class mainly
provides properties, such as, height, width, margins, shrinking, growing, and many more,
for the item to be drawn on the screen. It also provides a set of public methods to alter
these properties. Check the API documentation for a full set of class information.

qx.core.Widget
Next in the class hierarchy is the Widget class, which is the base class for all the GUI
components. Widget is the super class for all the individual GUI components, such as,
button, text field, combobox, container, and so on, as shown in the class hierarchy diagram.
There are different kinds of widgets, such as, containers, menus, toolbars, form items, and
so on; each kind of widgets are defined in different namespaces. We will see all the different
namespaces or packages, one-by-one, in this chapter and the following chapters.

A widget consists of at least three HTML elements. The container element, which is added
to the parent widget, has two child elements—the decoration and the content element.
The decoration element decorates the widget. It has a lower z-index and contains markup
to render the widget's background and border styles, using an implementation of the
qx.ui.decoration.IDecorator interface The content element is positioned inside the
container element, with the padding, and contains the real widget element.

Chapter 4

[113]

container

decoration

content

Widget properties
Common widget properties include:

 � Visibility: This property controls the visibility of the widget. The possible values for
this property are:

 � visible: Makes the widget visible on screen.

 � hidden: Hides the widget, but widget space will be occupied in the parent
widget's layout. This is similar to the CSS style visibility:hidden.

 � exclude: Hides the widget and removes from the parent widget's layout,
but the widget is still a child of its parent's widget. This is similar to the CSS
style display:none.

The methods to modify this property are show(), hide(), and exclude(). The
methods to check the status are isVisible(), isHidden(), and isExcluded().

 � Tooltip: This property displays the tooltip when the cursor is pointing at the widget.
This tooltip information consists of toolTipText and toolTipIcon.

The different methods available to alter this property are:

 � setToolTip()/getToolTip(): Sets or returns the qx.ui.tooltip.
ToolTip instance. The default value is null.

 � setToolTipIcon()/getToolTipIcon(): Sets or returns the URL for the
icon. The default value is null.

 � setToolTipText()/getToolTipText(): Sets or returns the string text.
It also supports the HTML markup. Default value is null.

 � Text color: The textColor property sets the frontend text color of the widget. The
possible values for this property are any color or null.

Working with Layouts and Menus

[114]

 � Padding: This property is a shorthand group property for paddingTop,
paddingRight, paddingBottom and paddingLeft of the widget.

The available methods are setPadding() and resetPadding(), which sets
values for top, right, bottom, and left padding, consecutively. If any values are
missing, the opposite side values will be taken for that side.

Also, set/get methods for each padding side are also available.

 � Tab index: This property controls the traversal of widgets on the Tab key press.
Possible values for this property are any integer or null. The traversal order is from
lower value to higher value. By default, tab index for the widgets is set in the order
in which they are added to the container. If you want to provide a custom traversal
order, set the tab index accordingly.

The available methods are setTabIndex() and getTabIndex(). These methods,
respectively set and return the integer value (0 to 32000) or null.

 � Font: The Font property defines the font for the widget. The possible value is either
a font name defined in the theme, or an instance of qx.bom.Font, or null.

The available methods are:

 � setFont(): Sets the font

 � getFont(): Retrieves the font

 � initFont(): Initializes the font

 � resetFont(): Resets the font

 � Enabled: This property enables or disables the widget for user input.

Possible values are true or false (Boolean value). The default value is true.

The widget invokes all the input events only if it is in the enabled state. In the
disabled state, the widget will be grayed out and no user input is allowed. The only
events invoked in the disabled state are mouseOver and mouseOut. In the disabled
state, tab index and widget focus are ignored. The tab traversal focus will go to the
next enabled widget.

setEnabled()/getEnabled() are the methods to set or get a Boolean value,
respectively.

 � Selectable: This property says whether the widget contents are selectable. When
a widget contains text data and the property is true, native browser selection can
be used to select the contents. Possible values are true or false. The default
value is false.

setSelectable(), getSelectable(), initSelectable(),
resetSelectable(), and toggleSelectable() are the methods available to
modify the Selectable property.

Chapter 4

[115]

 � Appearance: This property controls style of the element and identifies the theme for
the widget. Possible values are any string defined in the theme; the default
value is widget.

setAppearence(), getAppearence(), initAppearence(), and
resetAppearence() are the methods to alter the appearance.

 � Cursor: This property specifies which type of cursor to display on mouse over
the widget. The possible values are any valid CSS2 cursor name defined by W3C
(any string) and null. The default value is null. Some of the W3C-defined cursor
names are default, wait, text, help, pointer, crosshair, move, n-resize,
ne-resize, e-resize, se-resize, s-resize, sw-resize, w-resize, and
nw-resize.

setCursor(), getCursor(), resetCursor(), and initCursor() are the
methods available to alter the cursor property.

qx.application
The starting point for a qooxdoo application is to write a custom application class by
inheriting one of the qooxdoo application classes in the qx.application namespace or
package. Similar to the main method in Java, the qooxdoo application also starts from the
main method in the custom application class.

qooxdoo supports three different kinds of applications:

 � Standalone: Uses the application root to build full-blown, standalone qooxdoo
applications.

 � Inline: Uses the page root to build traditional web page-based applications, which
are embedded into isles in the classic HTML page.

 � Native: This class is for applications that do not involve qooxdoo's GUI toolkit.
Typically, they only make use of the IO (AJAX) and BOM functionality (for example,
to manipulate the existing DOM).

Whenever a user creates an application with the Python script, a custom application class
gets generated with a default main method. Let's see the custom application class generated
for our Team Twitter application. After generation, the main function code is edited to add
functionality to communicate to the RPC server and say "hello" to the qooxdoo world, as we
discussed in Chapter 2, Say Hello to the qooxdoo World! The following code is the content of
the Application.js class file with an RPC call to communicate with the server:

/**
 * This is the main application class of your custom application
"teamtwitter"
 */
qx.Class.define("teamtwitter.Application",

Working with Layouts and Menus

[116]

{
 extend : qx.application.Standalone,

 members :
 {
 /**
 * This method contains the initial application code and gets
called during startup of the application
 * @lint ignoreDeprecated(alert)
 */
 main : function()
 {
 // Call super class
 this.base(arguments);
 // Enable logging in debug variant
 if (qx.core.Variant.isSet("qx.debug", "on")) {
 // support native logging capabilities, e.g. Firebug for
Firefox qx.log.appender.Native;
 // support additional cross-browser console. Press F7 to
toggle visibility qx.log.appender.Console;
 }
 /*
 Below is your actual application code...
 */
 // Create a button
 var button1 = new qx.ui.form.Button("First Button",
"teamtwitter/test.png");
 // Document is the application root
 var doc = this.getRoot();
 // Add button to document at fixed coordinates
 doc.add(button1, {left: 100, top: 50});
 // Add an event listener
 button1.addListener("execute", function(e) {
 var rpc = new qx.io.remote.Rpc();
 rpc.setCrossDomain(false);
 rpc.setTimeout(1000);
 var host = window.location.host;
 var proto = window.location.protocol;
 var webURL = proto + "//" + host + "/teamtwitter/.qxrpc";
 rpc.setUrl(webURL);
 rpc.setServiceName("qooxdoo.test");
 rpc.callAsync(function(result, ex, id){
 if (ex == null) {
 alert(result);
 } else {

Chapter 4

[117]

 alert("Async(" + id + ") exception: " + ex);
 }
 }, "echo", "Hello to qooxdoo World!");
 });
 }
 }
});

We've had an overview of the class hierarchy of the qooxdoo framework and got to know
the base classes for the widgets. Now, we have an idea of the core functionalities available
for the widgets, the core properties of the widgets, and the methods to manage those
properties. We've received more information on the application in the qooxdoo framework.

Now, it is time to learn about the containers.

Containers
A container is a kind of widget. It holds multiple widgets and exposes public methods
to manage their child widgets. One can configure a layout manager for the container to
position all the child widgets in the container. qooxdoo provides different containers for
different purposes.

Let's check different containers provided by the qooxdoo framework and understand the
purpose of each container. Once you understand the purpose of each container, you can
select the right container when you design your application.

Scroll
Whenever the content widget size (width and height) is larger than the container size
(width and height), the Scroll container provides vertical, or horizontal, or both scroll
bars automatically. You have to set the Scroll container's size carefully to make it work
properly. The Scroll container is used most commonly if the application screen size is large.

The Scroll container has a fixed layout and it can hold a single child. So, there is no need
to configure the layout for this container.

The following code snippet demonstrates how to use the Scroll container:

 // create scroll container
 var scroll = new qx.ui.container.Scroll().set({
 width: 300,
 height: 200
 });
 // adding a widget with larger widget and height of the scroll
 scroll.add(new qx.ui.core.Widget().set({

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Working with Layouts and Menus

[118]

 width: 600,
 minWidth: 600,
 height: 400,
 minHeight: 400
 })); // add to the root widget.
 this.getRoot().add(scroll);

The GUI look for the preceding code is as follows:

Stack
The Stack container puts a widget on top of an old widget. This container displays only the
topmost widget. The Stack container is used if there are set of tasks to be carried out in a
flow. An application user can work on each user interface one-by-one in order.

The following code snippet demonstrates how to use the Stack container:

 // create stack container
 var stack = new qx.ui.container.Stack();
 // add some children
 stack.add(new qx.ui.core.Widget().set({
 backgroundColor: "red"
 }));
 stack.add(new qx.ui.core.Widget().set({
 backgroundColor: "green"
 }));
 stack.add(new qx.ui.core.Widget().set({
 backgroundColor: "blue"
 }));
 this.getRoot().add(stack);

The GUI look for the preceding code is as follows:

Chapter 4

[119]

Resizer
Resizer is a container that gives flexibility for resizing at runtime. This container should be
used only if you want to allow the application user to dynamically resize the container.

The following code snippet demonstrates how to use the Resizer container:

 var resizer = new qx.ui.container.Resizer().set({
 marginTop : 50,
 marginLeft : 50,
 width: 200,
 height: 100
 });
 resizer.setLayout(new qx.ui.layout.HBox());
 var label = new qx.ui.basic.Label("Resize me
I'm resizable");
 label.setRich(true);
 resizer.add(label);
 this.getRoot().add(resizer);

The GUI look for the preceding code is as follows:

Composite
This is a generic container. If you do not want any of the specific features, such as, resize on
runtime, stack, scroll, and so on, but just want a container, you can use this container. This is
one of the mostly used containers.

The following code snippet demonstrates the Composite container usage. A horizontal
layout is configured to the Composite container. A label and a text field are added to the
container. The horizontal layout manager places them horizontally:

 // create the composite
 var composite = new qx.ui.container.Composite()
 // configure a layout.

Working with Layouts and Menus

[120]

 composite.setLayout(new qx.ui.layout.HBox());
 // add some child widgets
 composite.add(new qx.ui.basic.Label("Enter Text: "));
 composite.add(new qx.ui.form.TextField());
 // add to the root widget.
 this.getRoot().add(composite);

The GUI look for the preceding code is as follows:

Window
Window is a container that has all features, such as, minimize, maximize, restore, and close.
The icons for these operations will appear on the top-right corner. Different themes can be
set to get the look and feel of a native window within a browser. This window is best used
when an application requires Multiple Document Interface (MDI) or Single Document
Interface (SDI).

The following code snippet demonstrates a window creation and display:

var win = new qx.ui.window.Window("First Window");
win.setWidth(300);
win.setHeight(200);
// neglecting minimize button
win.setShowMinimize(false);
this.getRoot().add(win, {left:20, top:20});
win.open();

The GUI look for the preceding code is as follows:

Chapter 4

[121]

Tabview
The Tabview container allows you to display multiple tabs, but only one tab is active
at a time. The Tabview container simplifies the GUI by avoiding the expansive content
spreading to multiple pages, with a scroll. Instead, the Tabview container provides the tab
title buttons to navigate to other tabs. You can group the related fields into each tab and
try to avoid the scroll by keeping the most-used tab as the first tab and making it active.
Application users can move to other tabs, if required.

Tabview is the best example for the stack container usage. It stacks all pages one over the
other and displays one page at a time. Each page will have a button at the top, in a button
bar, to allow switching the page. Tabview allows positioning the button bar on top, bottom,
left, or right. Tabview also allows adding pages dynamically; a scroll appears when the page
buttons exceed the size.

The following code snippet demonstrates the usage of Tabview:

var tabView = new qx.ui.tabview.TabView();
// create a page
var page1 = new qx.ui.tabview.Page("Layout", "icon/16/apps/utilities-
terminal.png");
// add page to tabview
tabView.add(page1);
var page2 = new qx.ui.tabview.Page("Notes", "icon/16/apps/utilities-
notes.png");
page2.setLayout(new qx.ui.layout.VBox());
page2.add(new qx.ui.basic.Label("Notes..."));
tabView.add(page2);
var page3 = new qx.ui.tabview.Page("Calculator", "icon/16/apps/
utilities-calculator.png");
tabView.add(page3);
this.getRoot().add(tabView, {edge : 0});

The GUI look for the preceding code is as follows:

Working with Layouts and Menus

[122]

Groupbox
Groupbox groups a set of form widgets and shows an effective visualization with the use of
a legend, which supports text and icons to describe the group. As with the container, you can
configure any layout manager and allow adding a number of form widgets to the Groupbox.
Additionally, it is possible to use checkboxes or radio buttons within the legend. This allows
you to provide group functionalities such as selecting or unselecting all the options in the
group. This feature is most important for complex forms with multiple choices.

The following code snippet demonstrates the usage of Groupbox:

// group box
var grpBox = new qx.ui.groupbox.GroupBox("I am a box");
this.getRoot().add(grpBox, {left: 20, top: 70});
// radio group box
var rGrpBox = new qx.ui.groupbox.RadioGroupBox("I am a box");
rGrpBox.setLayout(new qx.ui.layout.VBox(4));
rGrpBox.add(new qx.ui.form.RadioButton("Option1"));
rGrpBox.add(new qx.ui.form.RadioButton("Option2"));
this.getRoot().add(rGrpBox, {left: 160, top: 70});
// check group box
var cGrpBox = new qx.ui.groupbox.CheckGroupBox("I am a box");
this.getRoot().add(cGrpBox, {left: 300, top: 70});

The GUI look for the preceding code is as follows:

We got to know the different containers available in the qooxdoo framework. Each container
provides a particular functionality. Based on the information displayed on the GUI, you
should choose the right container to have better usability of the application.

Containers are the outer-most widgets in the GUI. Once you decide on the containers for
your user interface, the next thing to do is to configure the layout manager for the container.
Layout manager places the child widgets in the container, on the basis of the configured
layout manager's policies. Now, it's time to learn how to place and arrange widgets inside
the container, that is, how to lay out the container.

Chapter 4

[123]

Layout managers
Layout managers control the position, size, and arrangement of all the widgets inside
the container. The qooxdoo framework provides different layout managers for different
purposes, for example, to arrange widgets horizontally or vertically, to place the widgets in
rows and columns such as in a grid, to place the widgets at the corners, to place the widgets
at fixed points, and so on.

When a user resizes the web page, the qooxdoo layout engine prompts the layout manager
to recalculate and reposition the widgets in the container.

The different criteria or properties involved in laying out the screen are discussed in the
sections that follow.

Size hint of the widget and its parent widget
Size hint is nothing but a map of boundaries, widths, and heights, and it's been calculated
based on the widgets' internal widgets. qooxdoo provides two different methods to calculate
and get the size hints of a widget, mentioned next:

 � getSizeHint(Boolean compute): This default value for compute is true,
so it automatically computes and returns the result. Otherwise, it returns the
cached values.

 � computeSizeHint(): This computes the size hints of the layout and returns
the result. One can override this protected method in order to redesign the
default algorithm.

Layout properties
The layout properties are the properties which are related to the widget's layout.
These properties are pixel, flex, and percentage of width. One can set a map of all
layout properties for an individual widget while adding the widget. To set this, use the
setLayoutProperties() method and specify the map. Map supports different key
values, such as, left, right, top, bottom, width, height, flex, and so on; values for
all these properties can be given in terms of fixed pixels (integer values), or percentages
(string values). Some layout-specific properties also can be given in this map. One such
property is clearLayoutProperties(). This property clears the stored map of properties.

Flex is another property, which specifies the priority for the children to occupy space in
the total available space. This defines the flexibility of the widget. A higher flex value gives
more space for that widget. For example, if two widgets are placed in a widget such as split
pane and if the first widget's flex is 1 and the second widget's flex is 2, the total space of the
split pane is considered as three parts; the first widget will occupy one part and the second
widget will occupy two parts.

Working with Layouts and Menus

[124]

Auto sizing
By default, widgets are configured with some computed values for all the layout properties.
So, the qooxdoo framework doesn't force the developer to set the values for any property. A
developer can just create a widget and add it to the container. Most of the time, the widgets
look good. If that requires any modification, the developer can modify the properties
so that the layout manager takes them into consideration during the computation. For
example, the widget's default value for allowGrowX or allowGrowY is true. So, the widget
automatically gets resized based on the available room.

Growing or shrinking
The GUI should be dynamic; it should get adjusted within the available space. If the available
room is less, the widgets should automatically shrink, and if more, they should grow
according to the available room (see the following screenshot):

Overflow
Consider a scenario where the widget size is larger than the available room and the widget
cannot shrink. In this scenario, the overflow property is used. If the overflow property is set
to true, qooxdoo displays the whole widget by providing the required scroll bar.

Chapter 4

[125]

qooxdoo framework provides a different set of layouts. The basic implementation is given
in an abstract class (qx.ui.layout.Abstract). All the custom layouts must derive
from the Abstract layout class and provide implementation for the getSizeHint(),
renderLayout() and invalidateLayoutCache() methods. All the layouts provided
by qooxdoo are in the qx.ui.layout package:

Let's check different layout managers provided by the qooxdoo framework and understand
the purpose of each layout manager. Once you understand the purpose of each layout
manager, you can select the right layout managers when you design your application.

Basic
This layout is very simple and is the first layout given in the qooxdoo framework. Basic
layout is used to position the children in the top and left coordinates of the container.

To add any widget into a container configured with Basic layout, you should specify a map
with the left and top properties. The default value for each of the properties is 0.

The following code snippet demonstrates the Basic layout. To differentiate the added
widgets, let's set a different background color for each widget. For the main container, let's
set white as the background color. Now, we will try adding a widget at the (100,100)
position and another at the default values:

var container = new qx.ui.container.Composite(new qx.ui.layout.
Basic());
// adds a widget at (100,100) point.
container.add(new qx.ui.core.Widget().set({backgroundColor : "blue"}),
{left: 100, top: 100});
// adds a widget at (0,0) point.
container.add(new qx.ui.core.Widget().set({backgroundColor :
"green"}));
container.set({backgroundColor : "white"});

Working with Layouts and Menus

[126]

Features of the Basic layout are as follows:

 � Basic positioning using the left and top properties

 � Respects minimum and maximum dimensions without shrinking/growing

 � Margins for top and left side (including negative ones)

 � Respects right and bottom margins in the size hint

 � Auto sizing

Canvas
This layout is also a simple layout and it provides extended features to the Basic layout.
With this layout manager, you can position a widget relative to top, left, right, and
bottom coordinates. It also allows setting the widget sizes (width and height), in terms
of percentages.

The following code snippet demonstrates the Canvas layout:

var container = new qx.ui.container.Composite(new qx.ui.layout.
Canvas());
// simple positioning
container.add(new qx.ui.core.Widget().set({backgroundColor : "blue"}),
{top: 10, left: 10});
// stretch vertically with some pixel distance to the parent's top
// and bottom border
container.add(new qx.ui.core.Widget().set({backgroundColor :
"black"}), {top: 40, right: 50, bottom: 10});
// percent positioning and size
container.add(new qx.ui.core.Widget().set({backgroundColor :
"green"}), {left: "50%", top: "50%", width: "25%", height: "40%"});
container.set({backgroundColor : "white"});

Features of the Canvas layout are:

 � Pixel dimensions and locations

 � Percent dimensions and locations

 � Stretching between left/right and top/bottom

 � Minimum and maximum dimensions

 � Children automatically shrink to minimum dimensions if not enough space available

 � Auto sizing (ignoring percent values)

 � Margins (also negative ones)

 � In both Basic and Canvas layouts the spacing between the widgets cannot be
specified and the overlapping of widgets is possible

Chapter 4

[127]

Dock
The Dock layout allows you to add the widgets at the four edges of the container and the
center of the container. This layout is very similar to the border layout in Java Swing. The
different properties allowed in the map are edge, width, and height. The width and
height properties support only the percentage values; the possible values for the edge
property are north, east, west, south, and center.

The following sample code snippet demonstrates how to create and use the Dock layout:

var layout = new qx.ui.layout.Dock();
var w1 = new qx.ui.core.Widget();
var w2 = new qx.ui.core.Widget();
var w3 = new qx.ui.core.Widget();
var w4 = new qx.ui.core.Widget();
var w5 = new qx.ui.core.Widget();
w1.set({backgroundColor : "blue"});
w2.set({backgroundColor : "black"});
w3.set({backgroundColor : "green"});
w4.set({backgroundColor : "red"});
w5.set({backgroundColor : "orange"});
var container = new qx.ui.container.Composite(layout);
// add w1 in north edge
container.add(w1, {edge:"north"});
// add w2 in south edge
container.add(w2, {edge:"west"});
// add w3 in center
container.add(w3, {edge:"center"});
// add w4.in south edge
container.add(w4, {edge:"south"});
// add w5 in east side
container.add(w5, {edge:"east"});
container.set({backgroundColor : "white"});
 this.getRoot().add(container);

The Dock layout adds the widget on the edge of the container and utilizes maximum
available space on that edge, while adding widgets into the container. Thus, the following
widget takes the remaining space. To have a clear understanding, just change the order of
adding w1, w2, w3, w4, and w5, and check the output alignment of the widgets.

There is no restriction on the number of widgets on each side; the user can add any number
of widgets on each side.

Working with Layouts and Menus

[128]

Features of the Dock layout are:

 � Percent width for left-/right-/center-attached child widgets

 � Percent height for top-/bottom-/center-attached child widgets

 � Minimum and maximum dimensions

 � Prioritized growing/shrinking (flex)

 � Auto sizing

 � Margins and spacings

 � Alignment in orthogonal axis (For example, alignX of north-attached)

 � Different sort options for children

HBox
This layout allows you to add the widgets horizontally to container from left to right in a row.
The properties map for this layout can have two properties, namely, width and flex, where
width is percentage value and the flex is an integer value to specify the flexibility of the
widget. You can specify the spacing between the widgets in this layout.

The following code snippet demonstrates how to create and configure the HBox layout with
spacing of 4 between the widgets:

var layout = new qx.ui.layout.HBox();
layout.setSpacing(4); // apply spacing
var container = new qx.ui.container.Composite(layout);
container.add(new qx.ui.core.Widget().set({backgroundColor :
"blue"}));
container.add(new qx.ui.core.Widget().set({backgroundColor :
"black"}));
container.add(new qx.ui.core.Widget().set({backgroundColor :
"green"}));
container.set({backgroundColor : "white"});
 this.getRoot().add(container);

Features of the HBox layout are:

 � Minimum and maximum dimensions

 � Prioritized growing/shrinking (flex)

 � Margins (with horizontal collapsing)

 � Auto sizing (ignoring percent values)

 � Percent widths (not relevant for size hint)

 � Alignment (child property, qx.ui.core.LayoutItem.alignX, is ignored)

 � Horizontal spacing (collapsed with margins)

Chapter 4

[129]

 � Reversed children layout (from last to first)

 � Vertical children stretching (respecting size hints)

Similarly, the tweet information contains the username and time of the tweet. Those two
labels were added in HBox. The username label allows clicking on it, so that the application
displays the user information.

The following code snippet demonstrates the HBox layout in our Team Twitter application:

// create user label
var user = new qx.ui.basic.Label("<a style = 'color: rgb(126, 26,
26);'>" + this.getUserName() + "");
user.setRich(true);
user.setSelectable(true);
user.setCursor("pointer");
user.addListener("click", this.userNameClicked, this);

// create time label
var dateTime = new qx.ui.basic.Label(" at " + this.getTime() + " on "+
this.getDate());
//create HBox layout manager and those two labels
var tweetInfo = new qx.ui.container.Composite();
tweetInfo.setLayout(new qx.ui.layout.HBox());
tweetInfo.add(user);
tweetInfo.add(dateTime);

VBox
Similar to HBox layout, the VBox layout manager allows you to add the widgets vertically to
container from top to bottom in a column. You can specify the spacing between the widgets
in this layout.

The following code snippet demonstrates how to create and configure the VBox layout with
a spacing of 4 between the widgets:

var layout = new qx.ui.layout.VBox();
layout.setSpacing(4); // apply spacing

var container = new qx.ui.container.Composite(layout);
container.add(new qx.ui.core.Widget().set({backgroundColor :
"blue"}));
container.add(new qx.ui.core.Widget().set({backgroundColor :
"black"}));
container.add(new qx.ui.core.Widget().set({backgroundColor :
"green"}));
container.set({backgroundColor : "white"});
this.getRoot().add(container);

Working with Layouts and Menus

[130]

Features of the VBox layout are:

 � Minimum and maximum dimensions

 � Prioritized growing/shrinking (flex)

 � Margins (with vertical collapsing)

 � Auto sizing (ignoring percent values)

 � Percent heights (not relevant for size hint)

 � Alignment (child property, qx.ui.core.LayoutItem#alignY, is ignored)

 � Vertical spacing (collapsed with margins)

 � Reversed children layout (from last to first)

 � Horizontal children stretching (respecting size hints)

Flow
The Flow layout positions the widgets in a flow manner or wraps the widgets within the
available space. This layout manager follows the HBox layout initially, and, when the layout
manager cannot accommodate the added widget horizontally adjacent to the previously
added widget, the added widget will be placed in the next line; the same algorithm is
followed for all the horizontal lines. This layout manager is useful when you want to add
dynamic content in a container or to add multiple widgets of same type in a container.

The properties map for this layout supports only the lineBreak property, which breaks
the line and places the following widgets in a new line. The Flow layout also supports the
individual widgets alignment properties and the spacing between the widgets.

The following code snippet demonstrates the Flow layout:

this.tagCloud = new qx.ui.container.Composite();
// setting a Flow layout to the composite container
this.tagCloud.setLayout(new qx.ui.layout.Flow(5,5));
for (var i=0; i<this.tagsArray.length; i++) {
// create tag label
var tagLabel = new qx.ui.basic.Label("<a style = 'color: rgb(126, 26,
26); text-decoration:underline'>" + this.tagsArray[i] + "");
tagLabel.setRich(true);
tagLabel.setSelectable(true);
tagLabel.setCursor("pointer");
tagLabel.addListener("click", this.tagClicked, this);
this.tagCloud.add(tagLabel);
}

file:///D:qooxdoo-1.2-sdk�rameworkapiindex.html#qx.ui.core.LayoutItem#alignY
file:///D:qooxdoo-1.2-sdk�rameworkapiindex.html#qx.ui.core.LayoutItem#alignY

Chapter 4

[131]

Features of the Flow layout are:

 � Reversing children order

 � Manual line breaks

 � Horizontal alignment of lines

 � Vertical alignment of individual widgets within a line

 � Margins with horizontal margin collapsing

 � Horizontal and vertical spacing

 � Height–for-width calculations

 � Auto sizing

Grid
The Grid layout places the widgets in terms of two-dimensional rows and columns. It also
supports the spanning of multiple rows or columns. This is one of the most useful layouts to
prepare any form with labels and the input text fields, and so on.

The property map for this layout supports the row, column with row index, and column index
consecutively; rowSpan and colSpan specify the number of rows or columns to span.

The following code snippet demonstrates the usage of the Grid layout:

// setting a grid layout to the composite container
this.setLayout(new qx.ui.layout.Grid(5,5));
// adding the created fields
this.add(userImg, {row : 0, column:0, rowSpan : 2});
this.add(this.twtData, {row : 0, column:1, colSpan : 2});
this.getLayout().setColumnWidth(1, 300);
this.add(hbox, {row : 1, column:1});
this.add(more, {row : 1, column:2});

Features of the Grid layout are:

 � Flex values for rows and columns

 � Minimal and maximal column and row sizes

 � Manual setting of column and row sizes

 � Horizontal and vertical alignment

 � Horizontal and vertical spacing

 � Column and row spans

 � Auto sizing

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Working with Layouts and Menus

[132]

qooxdoo framework provides a wide range of layout managers from a simple to a complex
layout manager. We have learnt the different layout managers, layout manager features,
and usage of each layout manager.

Time for action – designing layout managers for Team Twitter
Now that we have learnt the different containers and layout managers provided by the
qooxdoo framework, let's design the layouts for our Team Twitter application.

1. Set the layout manager to the UserLoginForm class. Identify the correct layout
manager and set the layout manager for the user login form. The user login form
should take the input of username and password, validate the credentials, and
allow the user to login. It should also allow the user to go to the registration form.
To place those created widgets into the form, we can go for a Grid layout, where
we can show the fields in terms of rows and columns. So, the best suitable layout
for this form is the Grid layout. It will look good if we display a border with a title
for the login form, therefore the best container for this widget is the GroupBox
container. We had already created the <TeamTwitterHomeDir>\source\class\
teamtwitter\ui\UserLoginForm.js class. Let's set the layout manager, as
shown in the following code snippet:

_initLayout : function() {
 this.setLegend(this.tr("Login Form"));
 // setting a grid layout to the composite container
 this.setLayout(new qx.ui.layout.Grid(5,5));
}

After your attempt, compare your code with the code in the 978-1-849513-70-
8_04_01.txt file under Chapter 4 folder in the support files for this book.

2. Let's develop the widget for searching tweets. It should allow you to select the
team, enter the search text, and search tweets. We also should have links for logging
in and out. As this widget does not need any special features, such as, scroll, group
box, and so on, the best container for this widget is the Composite container.

As all the fields discussed above should appear horizontally, the best layout
manager for this widget is HBox layout manager. Let's create the class and use the
Composite container and set the HBox layout manager.

Chapter 4

[133]

Create the TweetSearchWidget.js file under C:\teamtwitter\source\
class\teamtwitter\ui and set the layout manager, as shown in the following
code snippet:

_initLayout : function() {
 // setting a grid layout to the composite container
 this.setLayout(new qx.ui.layout.HBox());
}

After your attempt, compare your code with the code in the 978-1-849513-70-
8_04_02.txt file under Chapter 4 folder in the support files for this book.

3. Let's set the layout manager to the tweetWidget class. In our Team Twitter
application, for each tweet, we need to display the tweet text, user picture,
tweet information, and so on. The best layout manager for this widget is the
Grid layout manager.

As we display multiple tweets in the tweet display area, it will be good to have a
border, and optionally display the group title. The container which provides this
functionality is called GroupBox. You can extend the qx.ui.groupbox.GroupBox
class to use that container.

Let's add the Grid layout for the tweetWidget that we created in the
previous chapter. The following code just sets the Grid layout manager for
the tweetWidget, located at <TeamTwitterHomeDir>\source\class\
teamtwitter\ui\TweetWidget.js:

_initLayout : function() {
 // setting a grid layout to the composite container
 this.setLayout(new qx.ui.layout.Grid(5,5));
}

After your attempt, compare your code with the code in the 978-1-849513-70-
8_04_03.txt file under Chapter 4 folder in the support files for this book.

4. Let's develop the widget to display tags. In our Team Twitter application, the tags are
dynamic content, and there are multiple tweets on the same tag. The best layout
manager for the tags widget is the Flow layout manager. As the content is dynamic,
we never know how many tags we need to display. So, it is better to use the Scroll
container for the Tags panel and extend it from the Composite container. Let's
develop the tags widget.

Working with Layouts and Menus

[134]

As the widget should allow the selection and deselection of the tags, it is a good
idea to allow the selection and deselection of all tags at once. This functionality is
provided by the enhanced version of GroupBox, CheckGroupBox. Let's use the
CheckGroupBox container for the outer panel. Create the TagsWidget.js class
under C:\teamtwitter\source\class\teamtwitter\ui and set the layout
manager, as shown in the following code snippet:

_initLayout : function() {
 this.mainPanel = new qx.ui.groupbox.CheckGroupBox("Tags");
 this.mainPanel.addListener("changeValue", this.tagsClicked);
 // setting a Flow layout to the composite container
 this.mainPanel.setLayout(new qx.ui.layout.Flow(5,5));
 var scroll = new qx.ui.container.Scroll();
 scroll.set({
 allowShrinkY: false
 });
 scroll.add(this.mainPanel);
 this.add(scroll, {edge : "center"});
}

After your attempt, compare your code with the code in the 978-1-849513-70-
8_04_04.txt file under Chapter 4 folder in the support files for this book.

5. Let's develop the widget to display the team members. This widget should display
the list of users in the team. It should allow you to select multiple users.

As we display users in lists, vertically, the best layout manager is the VBox layout
manager. It is a good idea to give a title and border; this functionality is provided by
the GroupBox container. As the widget should allow the selection and deselection
of the users, it is a good idea to allow the selection and deselection of all users
at once. This functionality is provided by the enhanced version of GroupBox,
CheckGroupBox. Let's use the CheckGroupBox container for this widget. Create
the UsersListWidget.js file under C:\teamtwitter\source\class\
teamtwitter\ui and set the layout manager, as shown in the following code:

qx.Class.define("teamtwitter.ui.UsersListWidget", {
 extend : qx.ui.groupbox.CheckGroupBox,

 construct : function(){
 this.base(arguments);
 this.setLayout(new qx.ui.layout.VBox());
 this._initLayout();
 this.addListener("changeValue", this.usersClicked);
 },

Chapter 4

[135]

 members : {
 _initLayout : function() {
 this.setLegend(this.tr("Team Members"));
 },
 usersClicked : function(e) {
 // <TODO> select or unselect all the users
 },
 setTeamMembers : function(teamId) {
 // <TODO> get the members of the team and display
 }
 }
});

After your attempt, compare your code with the code in the 978-1-849513-70-
8_04_05.txt file under Chapter 4 folder in the support files for this book.

6. Let's develop the widget that first allows you to enter the tweet text, video ID,
and tag, and then to submit the tweet. As this widget does not need any special
features, such as, scroll, group box, and so on, the best container for this widget
is the Composite container. As we need to display many widgets in rows and
columns, the best layout manager for this widget is Grid layout manager. Let's
create the class, use the Composite container, and set the Grid layout manager.

Create the TweetInput.js file under C:\teamtwitter\source\class\
teamtwitter\ui and set the layout manager, as mentioned in the following
code snippet:

_initLayout : function() {
 // setting a grid layout to the composite container
 var g = new qx.ui.layout.Grid(4,5);
 g.set({
 spacingX : 10
 });
 this.setLayout(g);
}

After your attempt, compare your code with the code in the 978-1-849513-70-
8_04_06.txt file under Chapter 4 folder in the support files for this book.

7. Let's design TweetDisplayWidget to display the tweets. We have developed the
tweet widget already. TweetDisplayWidget just displays multiple tweet widgets
vertically. The best layout manager for this widget is VBox layout manager. It is a
good idea to display a title and border for this widget. Therefore, we can use the
GroupBox container for this widget.

Working with Layouts and Menus

[136]

Create the TweetsDisplayWidget.js file under C:\teamtwitter\source\
class\teamtwitter\ui and set the layout shown in the following code snippet:

_initLayout : function() {
 this.setLegend(this.tr("Tweets"));
 // setting a grid layout to the composite container
 this.setLayout(new qx.ui.layout.VBox());
}

After your attempt, compare your code with the code in the 978-1-849513-70-
8_04_07.txt file under Chapter 4 folder in the support files for this book.

8. We have written a few widgets and set the container and layout manager. Let's
assemble these widgets to form MainWidget.

Create the MainWidget.js file under C:\teamtwitter\source\class\
teamtwitter\ui and try to code for the same screen as the one shown in the
screenshot that follows.

To improve the usability and make use of AJAX in our application, we would like
to display the login form overlapped on the home screen of the Team Twitter
application, which helps to retain the context of the application. This is possible in
the Canvas layout manager which allows you to position a widget relative to top,
left, right, and bottom coordinates, or in percentages, and allows you to display
overlapped content at any location. The Basic layout manager also supports
overlapping of widgets, but the Canvas layout manager is an extended version of the
Basic layout manager. So, we picked the Canvas layout manager over the Basic
layout manager for the main widget. It is a good idea to display a title and set border
for this widget. Therefore, we can use the GroupBox container for this widget.

In the Canvas layout, add the TweetSearchWidget first, so that it is displayed
on the top. Provide two percent space on the left hand side. Create an instance of
the GroupBox container for the Content panel and set the Dock layout manager
for the content panel, which supports adding the widgets on the four edges and
the center of the container. Add the content panel next in the main canvas layout,
leaving some space on the top for the TweetSearchWidget. If you do not leave
space, the content panel will be rendered over the TweetSearchWidget, which
was added earlier.

In the Content panel, add the TweetDisplayWidget at the center of the Dock
layout. As we'll display many tweets in this widget, add this widget into a scroll
container and then add the scroll on the center of the Dock layout.

Chapter 4

[137]

Create a Composite container and set the VBox layout manager. Add TagsWidget
first, and then add UsersListWidget. Add this container on the east of the Dock
layout. (You can refer the 978-1-849513-70-8_04_08.txt file in the support
files for writing code for the MainWidget):

9. Let's update our application class to remove the hello world button and add the
main widget of the Team Twitter application. Edit the Application.js file under
C:\teamtwitter\source\class\teamtwitter\ and update the code to add
MainWidget into the application, as mentioned in the following code snippet:

// Document is the application root
var doc = this.getRoot();
doc.add(new teamtwitter.ui.MainWidget(), {
 left : 0,
 top : 0
});

After your attempt, compare your code with the code in the 978-1-849513-70-
8_04_09.txt file under Chapter 4 folder in the support files for this book.

10. Now, try compiling your classes to identify any syntax errors in the code and fix them
all. For this, use either of the following commands:

 � C:/teamtwitter>generate.py build

 � C:/teamtwitter-server>ant client.generate-build

Working with Layouts and Menus

[138]

11. Generate the complete web application distribution by running the
following command:

C:/teamtwitter-server>ant dist

12. Deploy the updated web application by running the following command:

C:/teamtwitter-server>ant deploy

13. Open the Team Twitter web application in the browser and check the appearance
by entering the following URL:

http://localhost:8080/teamtwitter/index.html

What just happened?
We have learnt how to select the right container and right layout manager based on the
requirement.

From step 1 to step 7, we wrote a few classes for our Team Twitter application. For all those
classes, we selected the right container, based on the requirement. We also selected the
right layout manager for each class based on the requirement. In step 8, we assembled
all the classes into a main widget. In step 9, we updated Application.js to display the
main widget. In step 10, we built the client application. In step 11, we built the whole web
application, including the server application. In step 12, we deployed the web application.
In step 13, we checked the updated Team Twitter application from the web browser.

Now, let's learn the menus and toolbars to complete this chapter.

Menu, MenuBar, and ToolBar
A menu allows users to perform an action from the list of actions available in an application.
It saves the space by displaying the list in pop-up or pull-down kind of widgets. A menu
usually appears in a menu bar, toolbar, or as a context menu. qooxdoo provides two more
components to display a menu directly in a form. Those components are MenuButton
and SplitButton. When a user chooses or clicks on a menu item, the appropriate event
fires and the menu item disappears. Pull-down menus or pop-up menus save space as they
display menu items and sub menus over the widgets.

Chapter 4

[139]

All menu-related classes are shown in the following screenshot:

Let's explore the classes used for creating Menu, Menubar, and Toolbar.

Menu
A menu can be constructed with one or more different menu items, such as, Button,
CheckBox, RadioButton, and Separator. All these items are given under the qx.ui.
menu namespace and are listed as follows:

 � Button is used to perform an action; mostly, it will bring a new screen or a dialog

 � Checkbox is used to just select multiple options; it will not bring any screen or
dialog

 � RadioButton is used to just select a single option; it will not bring any screen or
dialog

 � Separator is used to make a separation between menu items

Menu creation
For creating a Menu object, follow these steps:

1. Create the qx.ui.menu.Menu object:

var menu = new qx.ui.menu.Menu();

Working with Layouts and Menus

[140]

2. Create the following menu items:

 � Button: This can be added as follows:

var btn = new qx.ui.menu.Button (<name>, <icon>, <command>,
<submenuRef>);

<icon>, <command> and <submenuRef> are optional.

 � CheckBox: This can be added as follows:

var chBox = new qx.ui.menu.CheckBox (<name>, <submenuRef>);

<submenuRef> is optional.

 � RadioButton: Like with CheckBox, you can add RadioButton also.
qx.ui.form.RadioGroup is helpful in grouping the radio buttons.
RadioGroup restricts the user from selecting more than one option
from the group.

3. Follow the same procedure to create a submenu, as follows:

var subMenu = new qx.ui.menu.Menu();
var sub1Button = new qx.ui.menu.Button("Sub Option1");
var sub2Button = new qx.ui.menu.Button("Sub Option2");
subMenu.add(sub1Button);
subMenu.add(sub2Button);

4. Add all the individual menu items and the submenus to the main qx.ui.menu.
Menu object, thus:

menu.add(btn);
menu.add(chBox);
menu.add(rdBtn);
menu.add(submenu);

One can add a separator between the menus by using the addSeparator() method.

5. Display the menu. Menu can be displayed on screen in different ways:

 � Displaying directly: A menu can be displayed on the screen at any place just
by setting the position using either placeToMouse() or placeToPoint(),
and by using show() to show the menu at the selected point.

menu.placeToPoint({"left" : 20, "top" : 30});
menu.show();

 � By adding the menu to qx.ui.form.MenuButton: This adds the menu to
a button and the menu is displayed whenever the user clicks on the button.

var button = new qx.ui.form.MenuButton("Menu Button", "icon/
testicon.png", menu);
// add to container
this.add(button);

Chapter 4

[141]

 � Like with MenuButton, one can add the menu to a SplitButton too.

var button = new qx.ui.form.SplitButton("Split Button",
"icon/22/apps/preferences-users.png", menu);
// add to container
this.add(button);

 � Displaying as a context menu: A widget has some methods available to set
the menu as the context menu, where the menu pops up on right-click over
the widget added. The methods available are setContextMenu() and
resetContextMenu().

 � Adding menu to a MenuBar button: A menu can be added to a MenuBar
button, which has to be added to a menu bar. We will learn about the menu
bar in the MenuBar section.

 � Adding a menu to a toolbar: We will learn about the toolbar in the Toolbar
section.

Features of the Menu object are:

 � On-demand scrolling, if the menu doesn't fit on the screen

 � Menu items with text and/or icon.

 � Each menu item can have a command for keyboard support.

 � Menu items can have submenus.

 � The menu can contain different item types:

 � Normal buttons (menu.Button)

 � Checkboxes (menu.CheckBox)

 � Radio buttons (menu.RadioButton)

 � Separators (menu.Separator) and

 � Submenus (menu.Menu)

MenuBar
MenuBar is a widget and is a container for the menu bar buttons. A menu bar contains one
or more pull-down menus named with the buttons, where the menu displays whenever
a user clicks on the button. Usually, a menu bar appears on top of a window. It's better
to make the menu bar growable and place it on the north side of the Dock layout. It
automatically adjusts whenever the user minimizes, maximizes or resizes the window.

Working with Layouts and Menus

[142]

A typical menu bar look, with the submenus popped up, is shown in the following
screenshot:

ToolBar
ToolBar is a widget and gives quick access to most commonly-used commands or actions
in the application. Like with the Menu widget, all the buttons, checkboxes, radio buttons, and
separators can be added. You can group some of the actions and can make them into a part
of the toolbar.

The class associations for ToolBar are shown in the following diagram:

ToolBar

Part

Button CheckBox PartHandle RadioButton Separator

*

* * * * * * * *
1

Chapter 4

[143]

As shown in the following screenshot, a toolbar button can be shown in three ways: Icon
only, Label only, or Icon and Label:

The following code snippet demonstrates the usage of the toolbar button:

 // create the toolbar
 toolbar = new qx.ui.toolbar.ToolBar();
 this.getRoot().add(toolbar, { edge: 0 });
 // create and add Part 1 to the toolbar
 var part1 = new qx.ui.toolbar.Part();
 var newButton = new qx.ui.toolbar.Button("New", "icon/22/
actions/document-new.png");
 var copyButton = new qx.ui.toolbar.Button("Copy", "icon/22/
actions/edit-copy.png");
 var cutButton = new qx.ui.toolbar.Button("Cut", "icon/22/
actions/edit-cut.png");
 var pasteButton = new qx.ui.toolbar.Button("Paste", "icon/22/
actions/edit-paste.png");
 part1.add(newButton);
 part1.add(new qx.ui.toolbar.Separator());
 part1.add(copyButton);
 part1.add(cutButton);
 part1.add(pasteButton);
 toolbar.add(part1);
 // create and add Part 2 to the toolbar
 var part2 = new qx.ui.toolbar.Part();
 var checkBtn = new qx.ui.toolbar.CheckBox("Toggle", "icon/22/
actions/format-text-underline.png");
 part2.add(checkBtn);
 toolbar.add(part2);
 // create and add Part 3 to the toolbar
 var part3 = new qx.ui.toolbar.Part();

Working with Layouts and Menus

[144]

 var radioButton1 = new qx.ui.toolbar.RadioButton("Left",
"icon/22/actions/format-justify-left.png");
 var radioButton2 = new qx.ui.toolbar.RadioButton("Center",
"icon/22/actions/format-justify-center.png");
 var radioButton3 = new qx.ui.toolbar.RadioButton("Right",
"icon/22/actions/format-justify-right.png");
 part3.add(radioButton1);
 part3.add(radioButton2);
 part3.add(radioButton3);
 toolbar.add(part3);
 // Manager for part 3 (Radio example)
 var radioGroup = new qx.ui.form.RadioGroup(radioButton1,
radioButton2, radioButton3);
 radioGroup.setAllowEmptySelection(true);
 // create Help Button and add it to the toolbar
 toolbar.addSpacer();
 var helpButton = new qx.ui.toolbar.Button("Help", "icon/22/
actions/help-contents.png");
 toolbar.add(helpButton);

All ToolBar related classes are shown in the following screenshot:

We have learnt about the various widgets used in the menu bar and toolbar and also learnt
how to construct menu bar and toolbar. Menu bars group all the main actions or operations
available in the application and toolbars display the most-used actions or operations;
sometimes, they display all actions or operations. Toolbars, in most applications, use only
icons with tooltips, to save space, but you can use labels, if required.

Chapter 4

[145]

Pop quiz
1. The starting point of a qooxdoo application is

a. the main method in the custom application class

b. a static method inside the custom application class

c. a custom Widget class

2. Inline applications allow embedding into classic HTML pages

a. True

b. False

3. The base class for all the qooxdoo widgets is

a. qx.ui.core.Widget

b. qx.ui.lang.Object

c. qx.ui.core.Object

d. qx.ui.core.LayoutItem

4. The base class for all the qooxdoo classes is

a. qx.ui.core.Widget

b. qx.ui.lang.Object

c. qx.ui.core.Object

d. qx.ui.core.LayoutItem

5. Which container scales every widget to the available space and puts one over
another?

a. Stack

b. Composite

c. TabView

d. SplitPane

6. SplitPane divides available space into two panes and allows resizing

a. True

b. False

Working with Layouts and Menus

[146]

7. Possible values for visibility are

a. visible

b. hidden

c. exclude

d. All of the above

8. Which layout allows adding widgets in rows and columns?

a. Flow

b. HBox

c. VBox

d. Grid

9. Which layout allows adding widgets at the edges of the container?

a. Dock

b. HBox

c. VBox

d. Grid

10. Which layout allows adding widgets at exact pixel values?

a. Canvas

b. Basic

c. Grid

d. Both a and b

e. All of the above

11. Which layouts allow overlapping of the widgets?

a. Canvas

b. Basic

c. Grid

d. Both a and b

e. All of the above

Chapter 4

[147]

Summary
In the first three chapters, we learnt about the qooxdoo framework, feature support, syntax,
and so on. In this chapter, we started learning about the graphical user interface programming.

We especially covered the following:

 � We learnt about the base classes for the widgets.

 � We got an idea of different containers available in the qooxdoo framework.

 � We learnt about the layout manager and got a thorough understanding of different
layout managers; this enables us to select the right layout manager for each
container in the graphical user interface.

 � We also learnt how to construct the menu bar and toolbar for the application.
qooxdoo also supports the context menus that appear on the right-click action.

We have applied the knowledge gained from this chapter to lay out the screens for our Team
Twitter application. Now, we know how to select the right container, how to configure the
right layout manager for the container, and how to construct the menu bar and the toolbar.

Now, let's learn about the various widgets available in the qooxdoo framework, so that we
can build the screens for our Team Twitter application. The next chapter explains the various
widgets available in the qooxdoo framework.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

5
Working with Widgets

Widgets or layout items are the basic building blocks of a graphical user
interface. qooxdoo provides most of the commonly used widgets off the shelf
in the framework and it also allows a user to create user-defined widgets with
various themes and styles. This chapter demonstrates the usage of predefined
widgets and also explaining the procedure to create user defined widgets.

In the last chapter, we learnt about graphical user interface layout designing with the
qooxdoo-provided containers and layout managers. Also, we learnt the creation and usage
of Menu, MenuBar, and Toolbar. This chapter explains the GUI components and widgets to
design the individual elements in the screen. One can use a framework effectively only when
one knows more about the existing widgets in the framework. To make use of the qooxdoo
framework effectively, in this chapter, we mainly concentrate on the various widgets such as,
labels, text fields, buttons, tables, trees, and so on, available in the qooxdoo framework.

In this chapter, we will cover the following topics:

 � Basic widgets

 � Form widgets

 � Special widgets

 � Custom widgets

 � Inline widgets

 � The table widget

 � The tree widget

 � The treevirtual widget

Working with Widgets

[150]

qooxdoo has a long list of off-the-shelf UI widgets. In this chapter, we will explore the various
widgets available to build the graphical user interface. One can extend any of the existing
widgets and can enhance the existing features too. We will learn how inheritance helps
in creating brand new custom widgets. You can group all these widgets to create forms.
qooxdoo framework allows you to access these form widgets generically.

Basic widgets
The basic widgets defined in the qooxdoo framework are Label, Atom, and Image. These
widgets help in displaying the basic components such as the label or a rich HTML content
label, images, icons, or icon and label together, and so on. These are defined under the
qx.ui.basic package.

The basic package and the classes under it are as shown in the following screenshot:

Label
The Label widget is used to display the text as normal text or rich text. A user cannot edit
the text as it is a read-only widget. Label can be displayed in the following two modes:

 � Text mode: This mode allows displaying normal text in different fonts, font sizes,
and different styles such as bold, italic, underlined, and so on. By default, label
displays normal text.

The following code snippet demonstrates the usage of Label in normal mode:

var label5 = new qx.ui.basic.Label("Big Long Label with user
defined font").set({
 font : new qx.bom.Font(28, ["Verdana", "sans-serif"])
});

The GUI look for the preceding code is as follows:

Chapter 5

[151]

 � Rich mode: This mode allows the display of HTML code with different tags including
normal text. To allow these HTML tags in the label, one should set the rich property
on the label to true.

The following code snippet shows the usage of the Label widget in rich mode:

var label4 = new qx.ui.basic.Label().set({
 value: "A long label text with auto-wrapping. This also may
contain <b style='color:red'>rich HTML markup.",
 rich: true
});

The GUI look for the preceding code is as follows:

The features of the Label widget are listed as follows. It:

 � Allows normal text and HTML code

 � Allows configuring various fonts, font sizes and styles, text colors, text
alignments, and so on

 � Supports mnemonics for the actions

 � Supports auto-wrapped text. This is supported only in rich mode

 � Shows ellipsis (...), if the text doesn't fit in the available width

Atom
The Atom widget combines a label with an icon. It is one of the basic and base components
for different components such as qx.ui.form.Button, qx.ui.form.ListItem, qx.ui.
form.ToggleButton, and qx.ui.form.HoverButton. The iconPosition property
allows the label to be aligned in a different direction.

Working with Widgets

[152]

Icon is an image of a format such as PNG, BMP, JPG, GIF, and so on. All the image resources
have to be available in the source\resource folder and the required resources,
whichever we are using, should be mentioned under the assets' list for the main class,
where we can mention either a single image reference or the resource folder at once.
This is shown as follows:

/*
**
#asset(teamtwitter/*)
#asset(teamtwitterxx/image.png)
**
*/

The following code snippet illustrates how to create and display atoms:

this.add(new qx.ui.basic.Atom("Icon Left", "icon/32/actions/go-
previous.png").set({
 backgroundColor : "#E6FAED",
 iconPosition : "left",
 allowGrowY: false
}));

this.add(new qx.ui.basic.Atom("Icon Top", "icon/32/actions/go-up.
png").set({
 backgroundColor : "#E6FAED",
 iconPosition : "top",
 allowGrowY: false
}));

this.add(new qx.ui.basic.Atom("Icon Right", "icon/32/actions/go-next.
png").set({
 backgroundColor : "#E6FAED",
 iconPosition : "right",
 allowGrowY: false
}));

this.add(new qx.ui.basic.Atom("Icon Bottom", "icon/32/actions/go-down.
png").set({
 backgroundColor : "#E6FAED",
 iconPosition : "bottom",
 allowGrowY: false
}));

Chapter 5

[153]

The GUI look for the preceding code is as follows:

Features of the Atom widget are as follows:

 � It toggles display among Icon Only, Label Only, and Icon and Label types

 � Aligning the label on four directions (left, right, top, and bottom)

 � Configurable space between icon and label

 � Allows all the different features of label to be used

 � Supports event handling on changing icon, label, gap, and show properties

Image
The Image widget displays an image with the specified source. A source can point to any
local image in the qooxdoo application or image on the Internet, which is accessible through
the URL of the image. This image class is a base class for qx.ui.core.DragDropCursor
and qx.ui.tree.FolderOpenButton.

The following code snippet demonstrates the usage of the Image widget:

var big = new qx.ui.basic.Image("icon/32/actions/go-home.png");
big.setScale(true);
big.setWidth(64);
big.setHeight(64);
this.add(big);

var external = new qx.ui.basic.Image("http://resources.qooxdoo.org/
images/logo.gif");
this.add(external);

var big1 = new qx.ui.basic.Image("icon/32/actions/go-home.png");
big.setScale(true);
big.setWidth(64);
big.setHeight(64);
big.setEnabled(false);
this.add(big1);

var external1 = new qx.ui.basic.Image("http://resources.qooxdoo.org/
images/logo.gif");
external1.setEnabled(false);
this.add(external1);

Working with Widgets

[154]

The GUI look for the preceding code is as follows:

Features of the Image widget are as follows. It:

 � Supports clipping, scaling, growing, and shrinking

 � Is configurable and allows growing and shrinking on the x and y axes

 � Supports event handling on change source, image loaded, and load failed events

 � Supports different image formats such as PNG (with alpha transparency),
GIF, and so on

 � Enables or disables (shows in gray or blur) the image on display

 � Allows auto-sizing

To begin with, we have learnt the basic widgets. Just before moving on to the Form widgets,
let's have your Java server setup completed and then we will move on to the form widgets in
the following section.

Time for action – enhancing the server application
It's time to enhance the server application, so that it supports the functionalities of the
Team Twitter application. As the server application goes beyond this book's scope, we won't
explain the server application at code level. But, we will explain how to set up the necessary
libraries, provide the server code archive for the Team Twitter application, explain where to
extract the server code archive, how to compile the server application, how to install the
MySQL server, and how to create the database schema for the Team Twitter application.
After this section, the server application provides all the necessary support for the Team
Twitter client application. You can start making the RPC calls from the client to the server.

1. Let's download the required frameworks, database server, and libraries. We used
Hibernate framework and Spring framework to develop the server application.

Download Spring framework (spring-framework-2.5.6-with-
dependencies.zip) from http://static.springsource.org/downloads/
nightly/release-download.php?project=SPR.

Download the Hibernate framework, hibernate-distribution-3.6.5.Final-
dist.zip, from http://sourceforge.net/projects/hibernate/files/
hibernate3/3.6.5.Final/.

http://static.springsource.org/downloads/nightly/release-download.php?project=SPR
http://static.springsource.org/downloads/nightly/release-download.php?project=SPR
http://static.springsource.org/downloads/nightly/release-download.php?project=SPR
http://sourceforge.net/projects/hibernate/files/hibernate3/3.6.5.Final/
http://sourceforge.net/projects/hibernate/files/hibernate3/3.6.5.Final/

Chapter 5

[155]

Download the MySQL community server from http://dev.mysql.com/
downloads/mysql/. Choose the correct version based on your OS type and
32-bit/64-bit OS. Download the MSI Installer.

Download the MySQL Connector/J library, mysql-connector-java-5.1.17.zip,
from http://dev.mysql.com/downloads/connector/j/.

Download the Hibernate tools (hibernate-tools-3.2.4.jar) either from
JBoss tools, which provide much functionality including the Hibernate tools. These
days, they provide the JBoss tools in the form of the Eclipse plugin. Either you can
download JBoss tools as the Eclipse plugin and install it, or search in Google and you
might get a link where someone would have just shared this particular JAR file.

2. You will find a ZIP file named as teamtwitter-server.zip in the support files for
this book. Extract that file in a temporary location.

Copy the directories—conf, sql, src to C:/teamtwitter-server directory.

3. Now, let's set up the database server, create the Team Twitter database, and create
the Team Twitter database schema.

Install the downloaded MySQL server. Create the Team Twitter database using
the SQL script, create-db.sql, available in the C:\teamtwitter-server\
sql directory. The following command creates the database with the name as tt
and grants permission to the user ttlogin with the password as ttlogin. In the
following command, use the root password that you set while installing MySQL
server. In the command prompt, go to C:\teamtwitter-server\sql and enter
the following command:

mysql --user=root --password=<root password> < create-db.sql

Now, let's create the Team Twitter schema using the SQL scripts, ddl.sql and
initial-data.sql, available in the C:\teamtwitter-server\sql directory:

C:\teamtwitter-server\sql>mysql --user=ttlogin --password=ttlogin
tt < ddl.sql

C:\teamtwitter-server\sql>mysql --user=ttlogin --password=ttlogin
tt < initial-data.sql

Check whether the database is created successfully:

C:\teamtwitter-server\sql>mysql --user=ttlogin --password=ttlogin
tt

http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

Working with Widgets

[156]

Once you enter the preceding command, you'll get the following output:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 3

Server version: 5.1.57-community MySQL Community Server (GPL)

Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights
reserved.This software comes with ABSOLUTELY NO WARRANTY. This is
free software,and you are welcome to modify and redistribute it
under the GPL v2 license Type 'help;' or '\h' for help. Type '\c'
to clear the current input statement.

mysql>

Enter the show tables; command. This will list the tables created for the Team
Twitter application.

mysql> show tables;

+--------------+

| Tables_in_tt |

+--------------+

| team |

| team_ttuser |

| ttag |

| ttuser |

| ttweet |

| ttweet_ttag |

+--------------+

6 rows in set (0.01 sec)

mysql>

Enter exit to come out of the mysql prompt.

Now, the database for the Team Twitter application is ready.

4. Extract all the downloaded ZIP files in C:/. After the extraction, you should have
the following directories:

 � C:/hibernate-distribution-3.6.5.Final-dist

 � C:/spring-framework-2.5.6

 � C:/mysql-connector-java-5.1.17

Chapter 5

[157]

5. Let's copy the necessary JAR files to the Team Twitter server application.

Copy the following libraries from C:/hibernate-distribution-3.6.5.Final-
dist/hibernate3.jar to C:/teamtwitter-server/lib.

Copy the following libraries from C:/hibernate-distribution-3.6.5.Final-
dist/lib/required to C:/teamtwitter-server/lib.

 � antlr-2.7.6.jar

 � commons-collections-3.1.jar

 � dom4j-1.6.1.jar

 � javassist-3.12.0.GA.jar

 � jta-1.1.jar

 � slf4j-api-1.6.1.jar

As we have copied commons-collections-3.1.jar from Hibernate, delete the
library, C:/teamtwitter-server/lib/commons-collections-2.1.jar, that
we copied from the RPCJava.

Copy the following libraries from the C:/hibernate-distribution-
3.6.5.Final-dist/lib/bytecode/cglib/cglib-2.2.jar directory to the
C:/teamtwitter-server/lib directory.

Copy the library from the C:/hibernate-distribution-3.6.5.Final-dist/
lib/jpa/hibernate-jpa-2.0-api-1.0.0.Final.jar directory to the C:/
teamtwitter-server/lib directory.

Copy the following libraries from the C:/hibernate-distribution-
3.6.5.Final-dist/lib/optional/c3p0/c3p0-0.9.1.jar directory to the
C:/teamtwitter-server/lib directory.

Copy the library from the C:/spring-framework-2.5.6/dist/spring.jar
directory to the C:/teamtwitter-server/lib directory.

Copy the library from the C:/spring-framework-2.5.6/lib/jakarta-
commons/commons-logging.jar directory to C:/teamtwitter-server/
lib directory.

Copy the library from the C:/spring-framework-2.5.6/lib/freemarker/
freemarker.jar directory to the C:/teamtwitter-server/lib directory.

Copy the library from the C:/spring-framework-2.5.6/lib/junit/junit-
3.8.2.jar directory to the C:/teamtwitter-server/lib directory.

Copy the library from the C:/spring-framework-2.5.6/dist/modules/
spring-test.jar directory to the C:/teamtwitter-server/lib directory.

Working with Widgets

[158]

Copy the mysql-connector-java-5.1.17-bin.jar file from C:/mysql-
connector-java-5.1.17 to the C:/teamtwitter-server/lib directory.

Copy the downloaded hibernate-tools-3.2.4.jar file to the C:/
teamtwitter-server/lib directory.

6. Let's modify the build.xml file from C:/teamtwitter-server to copy all the
configuration files into WEB-INF/classes. To do this, add the following Ant script
into your copy.web target:

<copy todir="${application.dist.dir}/WEB-INF/classes">
 <fileset dir="${build.dir}/conf">
 <include name="**/*" />
 </fileset>
</copy>

The build.xml file is also available as a support file named 978-1-849513-70-
8_05_01.txt file under Chapter 5 folder in the support files for this book.

Generate the web application using the following command:

C:\teamtwitter-server>ant dist

Deploy the updated Team Twitter web application.

C:\teamtwitter-server>ant deploy

Now, your server application is ready to support all the Team Twitter functionalities
and you can make the provided RPC calls from the client application.

What just happened?
We have enhanced the Team Twitter server application to provide the necessary server
functionalities for the Team Twitter application. To achieve that, we have downloaded the
required frameworks, database server, and libraries. We also installed the database server,
copied the necessary JAR files to the teamtwitter-server application, compiled and
generated a web application, and deployed the Team Twitter application.

Form widgets
Form is used to collect the data from the user, for example, any of the registration forms, login
forms, signup forms on any website. A form is built with various form widgets such as text field,
text area, button, list, and so on. As most of the form widgets are available in qooxdoo, creating
complex screens is easy in qooxdoo. A form is useful to display the output information in an
effective way. All these form widgets are defined under the qx.ui.form package.

Chapter 5

[159]

This package consists of several components that look similar to the default HTML
components such as input, button, select-option list, checkbox, and so on, whereas the
qooxdoo-defined form widgets have a rich look with the possibility of configuring the themes
to have a different appearance. Also, these qooxdoo widgets have the same look across the
browser. The package helps to group all the widgets into a form and allows access to them in
a generic way.

Let's have a look at the different components defined under this package. The
following screenshot shows most of the form widgets. We will go through each
and every widget individually:

You need to use the most suitable widgets to collect the input from the user. You need to
consider space restrictions, usability, and so on. If you want to collect simple text, you can
use the TextField widget. If you want to collect more text, you can use the TextArea
widget. If you want to collect a date, you can use the DateField widget. If you want to
collect a single option from a set of choices, you can use the RadioButton widget with the
RadioGroup widget. If you want to collect multiple options, you can use the CheckBox
widget. If you want to collect multiple values from a list, you can use the List widget. If you
want to collect a single value from a list, you can use the SelectBox widget. If you want to
select a value from a range, you can use the Spinner or Slider widget.

Working with Widgets

[160]

This package defines the maximum number of interfaces for the best use of all widgets
and allows access to them generically. All the form classes implement interfaces as per
the requirements. Let's start evaluating more on this package with the defined classes,
interfaces, and their usage and functionality.

Interface hierarchy
To generalize and to access all the components inside a form in a generic manner, qooxdoo
provides a set of interfaces. Each interface defines the required methods and events required
for the supported functionalities. All the classes in the qx.ui.form package implement one
or more of these interfaces to implement and support the required functionalities that it
provides.

Some of the interfaces defined are based on the primary data types processed by the
implementing widget:

 � Number: qx.ui.form.INumberForm

 � Boolean: qx.ui.form.IBooeanForm

 � String: qx.ui.form.IStringForm

 � Color: qx.ui.form.IColorForm

 � Date: qx.ui.form.IDateForm

 � Executable: qx.ui.form.IExecutable

 � Form: qx.ui.form.IForm

 � Range: qx.ui.form.IRangeForm

 � RadioItem: qx.ui.form.IRadioItem

 � Model: qx.ui.form.IModel

 � Model selection: qx.ui.form.IModelSelection

These interfaces and the implementing classes are shown as follows:

Chapter 5

[161]

IBooleanForm, INumberForm, IDateForm, IColorForm, and IStringForm
All these interfaces provide essential methods and a changeValue event for all the widgets
dealing with simple data types. Each of these interfaces provides the same set of methods
and events with the respective data type supported by that interface. It allows operations
such as setting, getting, and resetting generically on all the widgets such as ColorSelector,
CheckBox, RadioButton, RadioGroup, Label, Spinner, and so on. In the following class
diagram, XXX represents the data type supported by the interface:

setValue(value : XXX) : void
getValue() : XXX
resetValue() : void

changeValue : Data

IXXXForm
<<interface>>

Working with Widgets

[162]

IForm
The qx.ui.form.IForm interface defines a set of methods and events for every visible
form widget. This interface allows us to set different properties in the methods such as
setEnabled, setRequired, setValid, setInvalidMessage, and so on. The defined
methods are shown in the following class diagram:

<<interface>>
IForm

changeEnabled : Data

setEnabled(enabled : boolean) : void
getEnabled() : boolean
setRequired(required : boolean) : void
getRequired() : boolean
setValid(valid : boolean) : void
getValid() : boolean
setInvalidMessage(message : string) : void
getInvalidMessage() : string

IExecutable
The qx.ui.form.IExecutable interface defines essential members for all executable
widgets such as Button, HoverButton, and so on. All the widgets that have an action to
execute will implement this interface. This interface provides methods for setting and getting
commands to the widget and also provides methods to execute the action. The defined
methods are shown in the following class diagram:

<<interface>>
IExecutable

execute : Data

setCommand(command : Command) : void
getCommand() : Command
execute() : void

IRange
The qx.ui.form.IRange interface defines the essential methods for setting the minimum
value, maximum value, and step value for all the widgets dealing with ranges.

Chapter 5

[163]

<<interface>>

IRange

setMinimum(min : number) : void
getMinimum() : number
setMaximum(max : number) : void
getMaximum() : number
setSingleStep(step : number) : void
getSingleStep() : number
setPageStep(step : number) : void
getPageStep() : number

IModel
The qx.ui.form.IModel interface defines the essential methods for setting the data for
the widget. The model is the property to store additional data that is represented by the
widget. The model can store references to objects, numbers, strings, and so on. For example,
qx.ui.form.ListItem implements the IModel interface. The class diagram for the
IModel interface is as follows:

<<interface>>
IModel

changeModel : Data

setModel(value : var) : void
getModel() ; var
resetModel() : void

IModelSelection
The qx.ui.form.IModelSelection interface defines the methods for setting and
retrieving the models of selected items in the widget. For example, qx.ui.form.List sets
and returns the models of all the selected qx.ui.form.ListItem items in List. The class
diagram for the IModelSelection interface is as follows:

<<interface>>
IModelSelection

setModelSelection(value : var) : void
getModelSelection() : var

We will learn the usage of these interfaces in the following section.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Working with Widgets

[164]

Class hierarchy
The form widget class implements the required interfaces and helps to build complex forms
with various user inputs.

The following screenshot shows a list of available classes in the qx.ui.form package:

Now, we will go through the form widget classes.

qx.ui.form.TextField
This TextField is one of the most-used form elements. This widget allows the user to
enter text in a single line. This widget is used to collect simple properties such as name. This
widget supports all keys on the keyboard including Backspace, Ctrl characters, and so on. It
also supports the right-click of a mouse. It fires two events: the input event, which is fired
on every keystroke, and the changeValue event, which is fired on text modification.

Features of the TextField widget are as follows:

 � Supports basic text alignment to left, center, or right.

 � Allows protecting user inputs through the enabled or the readOnly property.

 � Disabling the widget grays it out and makes it unresponsive for all types of
interactions. While the text field is read-only and the modification of the value is
prevented, it has no special visual indication when enabled.

 � Mouse and keyboard support.

Chapter 5

[165]

 � Supports configuration of fonts.

 � Allows restriction of text length entered in the widget.

 � Allows handling key strokes by writing listeners to the input event. A user
can stop the propagation of the event on a particular key press using the
stopPropagation() method of KeyEvent.

qx.ui.form.TextArea
TextArea widget is a multiline text input form element. This widget is mainly used to
collect larger text such as the description field.

Features of the TextArea widget are:

 � It supports all the features of the TextField element. Additionally, it supports
auto-wrapping of text.

 � It allows multiple line input.

qx.ui.form.PasswordField
The PasswordField widget is similar to the TextField widget, but it hides the entered
characters and displays asterisks or dots. This widget is mostly used to collect the password
from the user. It is one of the most useful fields in the login form for any application.

Features of the PasswordField widget are:

 � It supports all the features of the TextField element

 � It hides the entered text

 � It allows all special characters

qx.ui.form.CheckBox
The CheckBox widget represents a Boolean property, with a tick mark inside a box. This widget
is used to collect an option from the user. The user can check yes or no for that option.

Features of the CheckBox widget are:

 � It supports mouse and keyboard input

 � It supports the label features too

qx.ui.form.RadioButton
A radio button allows us to choose one of the multiple options. qx.ui.form.RadioGroup
is the class that groups the radio buttons that are added to it. RadioGroup restricts the user
to select only one of the radio buttons.

Working with Widgets

[166]

The following code snippet demonstrates the use of RadioButtons and RadioGroup:

// create radio buttons for male and female
var female = new qx.ui.form.RadioButton("female");
var male = new qx.ui.form.RadioButton("male");

// create a radiogroup
var mgr = new qx.ui.form.RadioGroup();
// Group the radiobuttons by adding them to the RadioGroup
mgr.add(female, male);

// add the RadioButtons into container.
this.getRoot().add(male, {left : 10, top : 10});
this.getRoot().add(female, {left : 10, top : 30});

Features of the RadioButton widget are:

 � It supports Boolean data type

 � It allows the selection of one among multiple options in a group

 � Mouse and keyboard support

 � It fires an event on change of a value

qx.ui.form.RadioButtonGroup
RadioButtonGroup is similar to RadioGroup. In addition to that, it provides a container
for the radio buttons. This widget takes care of laying out the radio buttons and adding them
into a group. It is enough to add the whole RadioButtonGroup into the layout. Similar to
the RadioGroup widget, the RadioButtonGroup widget also implements most of the form
interfaces such as qx.ui.form.IForm, qx.ui.form.ISingleSelection and qx.ui.
form.IModelSelection.

The following code snippet explains the easier way to create the preceding example:

// create radio buttons for male and female
var female = new qx.ui.form.RadioButton("female");
var male = new qx.ui.form.RadioButton("male");

// create a radioButtonGroup with a layout set.
var mgr = new qx.ui.form.RadioButtonGroup(new qx.ui.layout.VBox);
// Group the radiobuttons by adding them to the RadioGroup
mgr.add(female);
mgr.add(male);

// add the RadioButtons into container.
this.getRoot().add(mgr, {left : 10, top : 10});

Chapter 5

[167]

The features of the RadioButtonGroup widget are:

 � It supports Boolean data type

 � It allows the selection of one among multiple options in a group

 � Mouse and keyboard support

 � It fires an event on change of value

qx.ui.form.SelectBox
The SelectBox widget allows the user to select one of the items from a set of items. The
SelectBox widget acts like a ComboBox, except that the user cannot enter any data as an
input. Instead, the user is only allowed to select one of the items displayed in the SelectBox.

The features of the SelectBox widget are:

 � Mouse and keyboard support

 � Items can be plain text, with an icon associated with the text, or only an icon

 � Ellipsis and auto-scroll are supported

qx.ui.form.ComboBox
The ComboBox widget is a combination of a select box and a TextField widget. A user
can either type any value in the TextField or select one of the multiple values in the
drop-down list.

The features of the ComboBox widget are:

 � It supports the features of a TextField and SelectBox

 � Items can be plain text, with an icon associated with the text, or only an icon

 � Ellipsis (…) will be shown on the item, if the item cannot be accommodated
within the width

qx.ui.form.Spinner
The Spinner widget is a control that allows you to adjust a numerical value, typically
within an allowed range. For example, month of a year (ranges from 1 to 12).

The features of the Spinner widget are as follows:

 � Mouse and keyboard support

 � Supports number format

 � Configurable steps

Working with Widgets

[168]

qx.ui.form.List
The List widget is used for selecting one or more items from a given list. This widget is
very similar to the select and option tags in the HTML. qooxdoo List widget provides more
advantages than the HTML both in looks and functionality. The List widget's width and
height can be restricted, and if the entered height is more than the restricted height, then
the scroll bar is displayed by default.

List implements the form interfaces and gives flexibility in using the list inside a form to
handle it generically. The implemented interfaces are qx.ui.form.IMultiSelection,
qx.ui.form.IModelSelection, and qx.ui.form.IForm.

The different possible selection modes are:

 � single: Only one or none can be selected

 � multi: One, more, or none can be selected

 � addictive: The same selection mode like multi, but each item that the user clicks
on is added or removed from the selection

 � one: Same as the single mode; but one selection is must

The default selection mode is single. The methods allowed to manage this selection mode
are setSelectionMode() and getSelectionMode(). Each item in this list is a qx.ui.
form.ListItem instance. List can contain any number of the ListItems.

Features of the List widget are as follows:

 � Mouse and keyboard support

 � Supports special keys like Shift, Ctrl, and so on

 � Support for drag-and-drop

 � Context menu support on right-click

 � Supports different modes of selection, such as single, multi, addictive, and one

 � Items with plain text and/or icon

 � Resize and scroll support

qx.ui.form.ListItem
The ListItem widget is an item for the List widget. A user can also add the ListItem
widgets to list-like widgets such as SelectBox and ComboBox. A ListItem can store data
representative for the real item as text and/or icon. ListItem implements the IModel
interface and gives implementation for getModel(), setModel(), and resetModel().

Chapter 5

[169]

Features of the ListItem are as follows:

 � Mouse and keyboard support

 � Displays text and/or icon

 � Supports all the features of Atom, as the ListItem is inherited from Atom

qx.ui.form.DateField
The DateField widget allows you to type the date in the specified format and displays a
small, calendar icon. When you click on the calendar icon, it pops up the DateChooser
component. The date chooser allows a user to select a particular date from the GUI interface.

The following code snippet demonstrates the usage of DateField. The default format for
the DateField is <Month> dd, yyyy:

var date = new qx.ui.form.DateField();
this.getRoot().add(date);

The GUI's look for the preceding code is as follows:

Features of the DateField widget are as follows:

 � Allows adding the field in any of the forms

 � Supports mouse and keyboard input

 � Supports user-defined date format

Working with Widgets

[170]

qx.ui.form.Button
The Button widget fires a trigger on an action. A user can trigger it either by a mouse click,
or by pressing the Enter key or the space key on the keyboard. The Button widget is used
to perform an action, for example, submitting the form to save an object or retrieving some
values, and so on. In qooxdoo, a user can create a button by creating an instance of the
qx.ui.form.Button class. When the user presses the button, the Button widget fires
the execute event. It also runs the command attached to the button. But this command
is optional. So, the user has the choice to perform an activity either in the execute event
listener or in the command.

The following code snippet creates a button and attaches an execute event:

var button = new qx.ui.form.Button("Hello World");
button.addListener("execute", function(e) {
 alert("Button was clicked");
}, this);
this.getRoot().add(button, {left : 100,top : 50});

The features of the Button widget are as follows:

 � Supports displaying the image and text

 � Mouse click or Enter key and space key in the keyboard initiates the button events

 � Allows flexibility of the Atom and Label widgets

qx.ui.form.ToggleButton
The ToggleButton is a widget of the button type with exactly two states, namely, pressed
and not pressed. If the user presses the button by clicking on it or by pressing the Enter
or space key, the button toggles between the pressed and not pressed states. There is no
execute event; the only event available is the changeValue event. A command can also be
associated to execute while a button changes its state.

Features of the ToggleButton widget are as follows:

 � Supports both keyboard and mouse interaction

 � Supports all the features of the Atom widget, as it is inherited from the Atom widget.

qx.ui.form.MenuButton
On the click of a MenuButton button, the connected menu is opened or dropped down. A
menu should be added to the button.

Chapter 5

[171]

The following code snippet implements the MenuButton widget and its usage with the menu
created in the previous chapter:

var menu = new qx.ui.menu.Menu;
var cButton = new qx.ui.menu.RadioButton("C");
var csharpButton = new qx.ui.menu.RadioButton("C Sharp");
var objcButton = new qx.ui.menu.RadioButton("Objective C");
var cplusButton = new qx.ui.menu.RadioButton("C Plus Plus");
menu.add(cButton);
menu.add(csharpButton);
menu.add(objcButton);
menu.add(cplusButton);
var button = new qx.ui.form.MenuButton("Menu Button", "icon/testicon.
png", menu);
// Add button to document at fixed coordinates
this.getRoot().add(button, {top : 20, left : 20});

The GUI's look for the preceding code is as follows:

Features of the MenuButton widget are as follows:

 � Supports all the features of a button

 � Dynamically pulls down the added menu

 � Supports all the menu features too like scrolling, alignment, and so on

qx.ui.form.SplitButton
The SplitButton acts like a normal button and shows a menu on one of the sides to open
something like a history list. We have already seen the SplitButton and used it in the
menu creation part of our previous chapter.

Working with Widgets

[172]

Features of the SplitButton widget are as follows:

 � Keyboard and mouse support

 � Contains text and/or icon

 � Ellipsis and menu support

qx.ui.form.HoverButton
The HoverButton is a kind of widget that fires the execute event repeatedly while the
mouse is over it. HoverButton actually starts a timer once the user places the mouse
pointer over the widget and fires the execute event in regular intervals. This has many
properties to configure the event firing. The properties are:

 � firstInterval: Interval used for the first run of the timer. Usually, a greater value
than the interval property value, which results in a little delayed reaction the first
time. The default value is 200 milliseconds.

 � Interval: Interval used after the first run of the timer. Usually a smaller value than
the firstInterval property value, which is used to get a faster reaction. Default
value is 80 milliseconds.

 � minTimer: This configures the minimum value for the timer interval. The default
value is 20 milliseconds.

 � timeDecrease: This decreases the timer on each interval (for the next interval)
until the minTimer value is reached. The default value is 2.

The following code snippet explains the creation and usage of the HoverButton with all
the default values:

var button = new qx.ui.form.HoverButton("Hello World");
button.addListener("execute", function(e) {
 this.debug("Mouse pointer is over the widget");
}, this);
this.getRoot().add(button);

The GUI's look for the preceding code is as follows. The log at the bottom shows the
sequence of the execute event listener activity:

Chapter 5

[173]

The features of the HoverButton widget are as follows:

 � Contains text and/or icon, similar to a button

 � Event interval is configurable

 � Allows repetition of activities in a timer

qx.ui.form.RepeatButton
RepeatButton is a special button, repeatedly fires the execute event. This
RepeatButton starts firing an event when the user presses the button and continuously
fires until the user releases the button. Similar to the HoverButton, this RepeatButton
also provides the properties like interval to fire the event and other properties.

One of the best uses of the RepeatButton is seen at the ends of the scroll bars. On
clicking this button, the scroll bar scrolls until the button is released. Slider uses these
RepeatButton buttons internally.

The following is a sample code snippet to demonstrate the RepeatButton:

 var button = new qx.ui.form.RepeatButton("Hello World");
 button.addListener("execute", function(e) {
 this.debug("Button is Pressed");
 }, this);
 this.getRoot().add(button, {left: 10, top : 10});

Working with Widgets

[174]

The GUI's look for the preceding code is as follows:

The features of the RepeatButton widget are as follows:

 � Supports mouse

 � Displays text and/or icon

 � Adjustable event interval

qx.ui.form.Slider
The Slider widget is the classic widget for controlling a bounded value. It lets the user
move a slider handle along a horizontal or vertical groove. It translates the handle's position
into an integer value within the defined range. This widget is used to select a value from a
range, for example, percentage selection in an application.

The features of the Slider widget are as follows:

 � Mouse support

 � Horizontal or vertical orientations.

 � Configurable steps

Time for action – adding widgets into Team Twitter
As we have learnt the basic and form widgets, let's update the Team Twitter widgets to
add the basic or form widgets in the layout that we created in the previous chapters.

1. Let's create the necessary widgets for the TweetSearchWidget. Let's code the
initLayout method to create and add the widgets into the layout, the required
widgets for searching, and the links for user login and user signup forms. This will
enhance the TweetSearchWidget.js class under C:\teamtwitter\source\
class\teamtwitter\ui.

Chapter 5

[175]

First, create the widgets as per the following screen requirement and update the
class. Even if you cannot get it right, try it by yourself first without seeing the code
mentioned in the code files. By doing so, you'll apply the concepts that you learnt in
the earlier sections. Feel free to refer to the earlier sections when you need any help
on the concepts:

Once you update the code, you can build the client application, generate a web
application, deploy the web application, and check the web application as we did in
the previous chapter.

After you attempt this, compare your code with the 978-1-849513-70-8_05_02.
txt file under Chapter 5 folder in the support files for this book. If you missed
anything, update your class by referring to this code file. The methods in the
TweetSearchWidget class are mentioned and explained as follows:

 � _initLayout: Creates the layout for the form.

 � signIn: Displays the Login form.

 � signUp: Displays the Sign Up Form.

 � hideSignUpAndSignIn: Hides the Sign In and Sign Up links. This function
is called after the user logs in.

 � showSignUpAndSignIn: Shows the Sign In and Sign Up links. This function
is called after the user logs out.

 � getSearchText: Returns the search text entered by the user.

 � searchTweets: Searches the tweet based on the search text, team,
selected tags, and selected users.

Again, build the client application, generate a web application, deploy the web
application, and check the web application. Do this whenever you make changes
and whenever you want to see the changes in the application.

2. Once the user clicks on the Sign Up link, the user registration window should appear.
Let's create the necessary widgets and update the UserSignUpForm.js class
under C:\teamtwitter\source\class\teamtwitter\ui.

Working with Widgets

[176]

First, try by yourself to create the widgets, as per the following screen requirement,
and update the class:

Once you update the code, you can build the client application, generate a web
application, deploy the web application, and check the web application as we did
in the previous chapter.

Once you deploy the rebuilt application, reload the application in the browser
and click on the Sign Up link in TweetSearchWidget. It should display the user
registration window.

After you attempt this, compare your code with the one in the 978-1-849513-
70-8_05_03.txt file under Chapter 5. If you missed anything, update
your class by referring to this code file. The following are the methods in the
UserSignUpForm class:

 � _initLayout: Creates the layout for the form. The execute listener is
added for registerBtn to add the user

 � resetForm: Resets the form

Register a few users using the registration form in the Team Twitter application.

3. Once the user clicks on the Sign In link, a login form should appear. Let's create
the necessary widgets and update the UserLoginForm.js class under C:\
teamtwitter\source\class\teamtwitter\ui.

First, try by yourself to create the widgets, as per the following screen requirement,
and update the class:

Chapter 5

[177]

Once you update the code, you can build the client application, generate a web
application, deploy the web application, and check the web application as it is
mentioned in the previous chapter.

Once you deploy the rebuilt application, reload the application in the browser, click
on the Sign In link in TweetSearchWidget, and it should display the Login form.

After you attempt this, compare your code with the code in the code files. If you
missed anything, check the following code, and update your class. This code is also
available in the 978-1-849513-70-8_05_04.txt file under Chapter 5. If you
missed anything, update your class by referring to this code file. The methods in the
UserLoginForm class are as follows:

 � _initLayout: Creates the layout for the form

 � loginUser: Logs in the user

 � openUserSignUpForm: Closes the Login form and opens the user
Sign Up Form

 � focusOnUserName: Focuses on the username field in the Login form

4. Once you register a few users, all the users have to be displayed as a list in the
UserListWidget. Let's update the following UsersListWidget.js class under
C:\teamtwitter\source\class\teamtwitter\ui. We have to load all the
users from the database and display it in the list. You can use the respective RPC call
to get the user list for a team.

First, try by yourself to create the widgets, as per the following screen requirement,
and update the class. The list should allow multi selection. When you search the
tweets, you will see that the tweets are retrieved on the basis of the selected users:

Working with Widgets

[178]

Just to give you a hint, the creation of a List widget is shown in the following code
snippet. Try updating UsersListWidget:

 this._userList = new qx.ui.form.List();
 this._userList.setSelectionMode("multi");
 this._userList.addListener("changeSelection", this.
userClicked);
 this.add(this._userList);

After you attempt this, compare your code with the 978-1-849513-70-8_05_05.
txt file under Chapter 5. If you missed anything, update your class based on this
code file.

5. Once the user logs in to the application, he/she should be allowed to tweet on a
particular tag and a user can even attach a YouTube video ID to attach the YouTube
video to the tweet.

First, try by yourself to create the widgets, as per the following screen requirement,
and update the class:

This screen is created by adding text area, labels, text fields, and buttons into the
layout that we created in the previous chapter in the TweetInput.js file under
C:\teamtwitter\source\class\teamtwitter\ui.

After you attempt this, compare your code with the 978-1-849513-70-8_05_06.
txt file under Chapter 5. If you missed anything, update your class by referring to
this code file.

6. The next step is to create the Tags widget. All the tweet tags have to be displayed
in a flow layout, as shown in the following screenshot. Each tag should be associated
with a checkbox, so that you can filter the tweets based on the selected tags. Let's
update the TagsWidget.js class under C:\teamtwitter\source\class\
teamtwitter\ui.

First, try by yourself to create the widgets, as per the following screen requirement,
and update the class:

Chapter 5

[179]

Just to give you a hint, creation of the CheckBox widget is shown in the following
code snippet, which should be repeated in a for loop for all the tags in the database:

var tag = new qx.ui.form.CheckBox(result[i][0] + " (" + result[i]
[1] + ")");
tag.setValue(true);
tag.addListener("changeValue", _this.tagClicked, this);
_this.mainPanel.add(tag);

After you attempt this, compare your code with the code in the 978-1-849513-
70-8_05_07.txt file under Chapter 5. If you miss anything, update your class
by referring to this code file.

What just happened?
We have learnt the various interface defined in the qx.ui.form package and also learnt
about various form widgets and their usage. We have developed different widgets for the
Team Twitter application using some of the form widgets.

Let's learn about some special widgets to add more functionality to the applications.

Special widgets
Other than the basic and form widgets, the qooxdoo framework provides the most useful
widgets and controls in order to develop applications with good functionality in lesser time.
Framework reduces or saves the developer's time by avoiding the creation of controls such
as date chooser, color picker, and so on, and simplifies the code. This allows the developers
to concentrate more on the business logic than on creating the custom widgets.

Let's have a look at some of the special widgets supported in the qooxdoo framework. Some
of the special widgets are popup, tooltip, and control.

Working with Widgets

[180]

The popup widgets
The popup widgets are displayed over the application page and are rendered above
the existing content. The best examples for the popup widgets are Menu, ComboBox,
SelectBox, and tooltip.

Basically, popup is a composite container with the configurable layout. You can add
multiple widgets into the popup widget and the pop-up is displayed over the existing
content. The pop-up is normally hidden when the user is not pointing to the required place,
such as a menu. This behavior is controllable through the autoHide property. With the
bringToFront and sendToBack properties, the zIndex property of the popup widget
could be controlled in relation to other visible popup widgets.

The classes for the user-defined popup and tooltip widgets are shown in the
following screenshot:

qx.ui.popup
The qx.ui.popup package provides the following classes for the popup widget:

 � qx.ui.popup.Popup: The Popup class is used to display the popup widget on
top of the existing content in the application

 � qx.ui.popup.Manager: The popup.Manager is a singleton class and is used to
manage multiple instances of a popup widget and its states

The tooltip widgets
qooxdoo provides a set of classes to manage the tooltip widgets.

qx.ui.tooltip
The qx.ui.tooltip package provides the following classes for the tooltip widget:

 � qx.ui.tooltip.ToolTip: The ToolTip class provides additional information for
widgets when the user hovers over a widget. This tool tip information can contain
plain text, icons, and/or complex HTML code. Tool tip is shown for a particular time
period and automatically hidden after the time elapses.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 5

[181]

 � qx.ui.tooltip.Manager: The tooltip.Manager is also a singleton class and
is used to manage the tool tips of all widgets. This class will display the tool tip of a
particular widget and hide all other tool tips associated with other widgets. Tool tip
is shown only when a user hovers over a widget.

The following code snippet demonstrates the popup and tooltip widgets' creation
and display:

var button = new qx.ui.form.Button("Open Popup");
this.getRoot().add(button);

// popup creation
var popup = new qx.ui.popup.Popup(new qx.ui.layout.Canvas());
popup.add(new qx.ui.basic.Atom("Hello World #1", "icon/32/apps/media-
photo-album.png"));

button.addListener("click", function(e)
{
// displaying the popup by placing it to mouse
popup.placeToMouse(e);
popup.show();
}, this);

// tooltip creation
var tooltip = new qx.ui.tooltip.ToolTip("Opens a popup");
//associating the tooltip to button widget
button.setToolTip(tooltip);

The GUI look for the preceding code is as follows:

A tooltip widget is displayed when a user places the cursor on the button. A popup widget
is displayed when the user clicks on the button. The popup widget can be placed at a point
using the API placeToPoint() or it can be placed at the mouse pointer's position using the
API placeToMouse().

Working with Widgets

[182]

The control widgets
qooxdoo provides a collection of high-level GUI controls such as ColorSelector,
DataChooser, ColorPopup, and so on. These controls provide rich functionalities
to the application.

qx.ui.control.ColorPopup
The qx.ui.control.ColorPopup widget contains a palette of colors. You can use this
widget to choose a color from the basic colors for any purpose in your application. You can
also preset a color in the ColorPopup widget. This class is a subclass of the popup class and it
inherits all the features of a popup class. The ColorSelector will be hidden when the user
clicks on any other area in the application. ColorPopup allows selection of a color. Once you
select a color, the pop-up will automatically hide and return the selected color. If the basic
colors are not enough, you can launch the ColorSelector from the ColorPopup widget.

The following code snippet demonstrates the usage of ColorPopup:

var mypop = new qx.ui.control.ColorPopup();
mypop.setValue("#23F3C1");
mypop.show();

The GUI look for the preceding code is as follows:

qx.ui.control.ColorSelector
ColorSelector control allows you to choose any possible color, either through the Hex,
RGB, or HSB values. You can also use the visual control to choose a color, as you can see in
the following screenshot. This control looks very similar to the typical color selector in any
of the native applications.

Chapter 5

[183]

The following code snippet demonstrates the usage of ColorSelector:

var selector = new qx.ui.control.ColorSelector();
this.getRoot().add(selector, {left: 20, top: 20});

The GUI look for the preceding code is as follows:

qx.ui.control.DateChooser
The DateChooser control is a calendar component that allows you to choose a date. It has
a navigation bar to change the month. It displays columns for the calendar week and displays
the days of a month.

The following code snippet demonstrates the usage of DateChooser:

var chooser = new qx.ui.control.DateChooser();
this.getRoot().add(chooser, {left : 10, top : 300});

The GUI look for the preceding code is as follows:

Working with Widgets

[184]

We have learnt about the classes used for the popup and tooltip widgets. We have also
learnt the useful controls that provide rich functionalities to the applications and save time
in development.

For more samples on the popup and control widget, have a look at the qooxdoo demos
in the demo browser.

Custom widgets
Even though qooxdoo has a large set of widgets, its framework allows to inherit the existing
widgets and adding functionality to it. So, a user can easily build a custom widget just by
inheriting and adding more functionality to an existing widget.

qx.ui.core.Widget is the base class and every widget extends this widget directly or
indirectly and adds more functionalities. The framework itself reuses most of the simple
widgets and builds a new set of widgets.

For example, qx.ui.form.Spinner extends qx.ui.core.Widget and uses a text field
and two repeat buttons to create the functionality of a spinner. The layout used for the
Spinner class is the Grid layout and the methods modifying this layout are made private,
so that the layout cannot be modified outside, and it maintains the same look throughout
the application.

The most required method to override the widget is _createChildControlImpl(id).
This method is used to create any of the children, based on the ID and return value of the
child widget.

A user can override the method, as shown in the following code snippet:

// overridden
_createChildControlImpl : function(id, hash)
{
 var control;

 switch(id)
 {
 case "textfield":
 control = new qx.ui.form.TextField();
 control.setFilter(this._getFilterRegExp());
 control.addState("inner");
 control.setWidth(40);
 control.setFocusable(false);
 control.addListener("changeValue", this._onTextChange, this);

Chapter 5

[185]

 this._add(control, {column: 0, row: 0, rowSpan: 2});
 break;

 case "upbutton":
 control = new qx.ui.form.RepeatButton();
 control.addState("inner");
 control.setFocusable(false);
 control.addListener("execute", this._countUp, this);
 this._add(control, {column: 1, row: 0});
 break;

 case "xxx":
//……….
 break;
 }

 return control || this.base(arguments, id);
},

There are some other methods predefined to get the created child widget. A user can use
them and override them to provide extended functionality:

 � getChildControl(id, notCreate): Gets the new or existing child widget
with the id given, based on the notCreate Boolean value

 � _showChildControl(id): Used to show the child control

 � _excludeChildControl(id): Hides and excludes the child control

 � _isChildControlVisibile(id): Returns the true value, if the child control
is visible

 � _getChildren(): Returns all the children in an array

 � _add(), _addAt(), _addBefore(), _addAfter(): Adds a widget to the
children array, based on the configured layout

 � _remove(): Removes the widgets from the children array

 � _setLayout(): Configures the layout

 � _getLayout(): Returns the configured layout

A user can configure the theme for the custom widget, which you will see in Chapter 9,
Working with Themes.

Working with Widgets

[186]

Time for action – adding a custom widget to Team Twitter
1. Copy the user identity image, identity.png, from the support files for this book

to the following location: C:/teamtwitter/source/resource/teamtwitter.
And add the following asset information in the Application.js file under C:/
teamtwitter/source/class/teamtwitter. The updated Application.js is
available as the 978-1-849513-70-8_05_08.txt file under Chapter 5.

/*
**
#asset(teamtwitter/*)
**
*/

2. Let's create a custom widget for our tweet, which actually should show the user
image, tag name, tweet date, time, and the username.

Create the CTweet.js file under C:\teamtwitter\source\class\
teamtwitter\ui. First, try by yourself to create the custom widget, as per the
following screen requirement, and update the class. Follow the custom widget
creation in qooxdoo:

Just to give you a hint, the _createChildControlImpl implementation template
is illustrated in the following code snippet. Fill in the blanks with the proper controls,
add them to the widget container in the layout created in the previous chapters, and
make sure that you define the properties section:

//overridden
_createChildControlImpl : function(id, hash) {
 var control;
 switch(id) {
 case "userImg":
 //create user image and add to the widget layout
 // _____________________________
 break;
 case "tweetUser" :
 // create user label and add to the widget layout
 // ____________________________
 break;

Chapter 5

[187]

 case "tweetLog" :
 // create time label and add to the widget layout
 // _____________________________
 break;
 case "more":
 // create responses label and add to the widget layout
 // _______________________________
 break;
 }
 return control;
},

After you attempt this, compare your code with the 978-1-849513-70-8_05_09.
txt file under Chapter 5. If you miss anything, update your class by referring to
this code file.

3. Similar to the preceding widget, you can write one more custom widget that can
show the video widget. To do this, create the CVideoTweet.js class under C:\
teamtwitter\source\class\teamtwitter\ui, and you can either extend the
CTweet class or you can write your own widget from scratch.

First, by yourself, try to create the custom widget, as per the following screen
requirement, and update the class. Follow the custom widget creation, as we
mentioned in step 2:

Working with Widgets

[188]

Just to give you a hint, a YouTube video widget can be added just by embedding the
object code into an Html class, as mentioned in the following code snippet:

this.videoHTML = new qx.ui.embed.Html("");
control = this.videoHTML;
this._add(this.videoHTML, {row: 2, column : 0, colSpan : 4});

You can create the object code based on the YouTube sharing code, substitute the
video ID that is entered by the user, and set it to the control, as mentioned in the
following code snippet:

this.videoHTML.setHtml('<object width="425" height="315"><param
name="movie" value="http://www.youtube.com/v/' + value +
'?version=3&hl=en_US"></param><param name="allowFullScreen"
value="true"></param><param name="allowscriptaccess"
value="always"></param><embed src="http://www.youtube.com/v/' +
value + '?version=3&hl=en_US" type="application/x-shockwave-
flash" width="425" height="315" allowscriptaccess="always"
allowfullscreen="true"></embed></object>');

After you attempt this, compare your code with the 978-1-849513-70-8_05_10.
txt file under Chapter 5. If you miss anything, update your class by referring to
this code.

4. Now, we need to display the tweets in a widget. Let's implement the
TweetsDisplayWidget for that. We need to fetch the tweets based on the team,
selected tags, selected users, and the tweet search text. For each tweet, either
create a CTweet or a CVideoTweet widget, set the tweet information, and add it to
the layout created in the previous chapter.

Update the TweetsDisplayWidget.js class under C:\teamtwitter\source\
class\teamtwitter\ui to implement the loadTweets method.

Just to give you a hint, the following code checks one tweet and creates either the
CTweet or CVideoTweet widget. You have to do the following for each tweet that
you fetched:

var tweetData = result[i];

var tweet = null;
if (tweetData[4] != null && tweetData[4] != "") {
 tweet = new teamtwitter.ui.CVideoTweet();
 tweet.setVideoId(tweetData[4]);
} else {
 tweet = new teamtwitter.ui.CTweet();
}

Chapter 5

[189]

tweet.setTwtData(tweetData[0]);
tweet.setUserName(tweetData[1]);
tweet.setTime(tweetData[2]);
tweet.setDate(tweetData[3]);
_this.add(tweet);

After you attempt this, compare your code with the 978-1-849513-70-8_05_11.
txt file under Chapter 5. If you miss anything, update your class by referring to
this code file.

Generate the web application using the following command:

C:\teamtwitter-server>ant dist

Deploy the updated Team Twitter web application:

C:\teamtwitter-server>ant deploy

Good enough! Now, our application is ready. You can access your Team Twitter URL in the
browser and enjoy tweeting across the team. Now try adding users, tags, and tweets.

What just happened?
We have learnt how to create custom widgets from the basic widgets, and we have created
a couple of custom widgets for our Team Twitter application. This custom widget is reused
many times in our application.

Inline widgets
Inline widgets are a kind of small qooxdoo application, which can be integrated in any of the
existing HTML pages. Till now, we created standalone qooxdoo applications, whereas here
we will try to use the qooxdoo inline applications inside the HTML-dominated pages.

When a portal has many classic HTML pages, migration of a whole portal into a standalone
RIA application takes maximum time and development effort. So, in this kind of environment,
inline applications are very useful.

An inline application can be created with the Python create-application.py tool with
the –t attribute as inline. This tool is available inside the tool folder.

C:\qooxdoo-1.2-sdk\tool\bin> create-application.py –n <name> -t inline

Let's create a sample inline application, say dateChooser, using the following command:

C:\qooxdoo-1.2-sdk\tool\bin> create-application.py –n dateChooser -t
inline

Working with Widgets

[190]

This command creates a sample application skeleton using an Application class, as
shown in the following code snippet:

/**
 * This is the main application class of your custom application
"dateChooser"
 */
qx.Class.define("datechooser.Application",
{
 extend : qx.application.Inline,

 members :
 {
 /** This method contains the initial application code and gets
called during startup of the application
 * @lint ignoreDeprecated(alert)
 */
 main : function() {
 // Call super class
 this.base(arguments);

 // Enable logging in debug variant
 if (qx.core.Variant.isSet("qx.debug", "on")) {
 // support native logging capabilities, e.g. Firebug for
Firefox qx.log.appender.Native;
 // support additional cross-browser console. Press F7 to
toggle visibility qx.log.appender.Console;
 }
 /*
 Here is the actual application code...
 */
}
 }
});

A user can integrate the qooxdoo widget either by positioning absolutely at a pixel or by
adding the widget in the page flow using an existing Document Object Model (DOM) node
(just like a div tag), where these DOM nodes act as islands for the qooxdoo widgets.

Chapter 5

[191]

The code for absolute positioning is as follows:

// add a date chooser widget
var dateChooser = new qx.ui.control.DateChooser();
// add the date chooser widget to the page
this.getRoot().add(dateChooser, { left : 100, top : 100 });

The code for positioning at a DOM node is as follows:

// create the island by connecting it to the existing
// "dateChooser" DOM element of your HTML page.
// Typically this is a DIV as in <div id="dateChooser"></div>
var dateChooserIsle = new qx.ui.root.Inline(document.
getElementById("dateChooser"));
// create the date chooser widget and add it to the inline widget
(=island)
var dateChooser = new qx.ui.control.DateChooser();
dateChooserIsle.add(dateChooser);

The skeleton look on compiling is shown in the following screenshot:

We have learnt how to create inline widgets in qooxdoo and how to add them to the
HTML pages.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Working with Widgets

[192]

The table widget
The table widget allows you to display the records in rows and columns. Each row is a
record and all the columns in a row are the properties of that record. For example, you can
display the list of employee records in a table. qooxdoo provides many classes to provide
functionalities such as store the table data, render the cell, edit the cell, and so on.

All the table-related classes are under the package qx.ui.table. The class hierarchy of
the table classes is as follows:

Class hierarchy

The qx.ui.table.Table class is the table widget class. By default, all the cells are
rendered as text initially when the table is displayed, and on double-clicking a cell, the cell
value goes into edit mode if it is allowed to edit, and the default cell editor is the TextField
widget. The qx.ui.table.cellrenderer package provides various renderers for the cell
and the default cell renderer is qx.ui.table.cellrenderer.Default. Only if you want
to change the default cell renderer to a custom renderer, such as Image or Date for a cell,
can you create an instance of one of these renderers and set it as a cell renderer for that cell.

Chapter 5

[193]

Similarly, the qx.ui.table.celleditor package provides various editors for the cell
and the default cell editor is qx.ui.table.celleditor.TextField. Only if you want to
change the default cell editor to a custom renderer such as CheckBox, or ComboBox for a
cell, can you create an instance of one of these editors and set it as the editor for that cell.
The qx.ui.table.rowrenderer.Default renders alternate rows in two different colors.
You can restrict the row selection to a single row selection or to a set of continuous rows or
multiple sets of rows with intervals. This is set through the options in the qx.ui.table.
selection.Model class.

qooxdoo allows you to control the cell editing options at each column level and, by default,
all columns are not editable. qooxdoo supports sorting on the columns, based on the records
in the table model and, by default, all the columns are enabled for sorting. The table model
is used to store the table data. The qx.ui.table.model package provides various table
models and the most-used and normal table model is qx.ui.table.model.Simple.

Table construction
The following code snippet demonstrates the creation of the table model, setting the column
options, creation of the table, and customization of column rendering:

// get the data for the table
var rowData = this.getRecords();

// create the table model, set the data, and set the column options
var tableModel = this._tableModel = new qx.ui.table.model.Simple();
tableModel.setColumns(["Employee ID", "Bonus", "Joining Date",
"Trainee"]);
tableModel.setData(rowData);
tableModel.setColumnEditable(1, true);
tableModel.setColumnEditable(2, true);
tableModel.setColumnSortable(3, false);

// create the table and set the table model
var table = new qx.ui.table.Table(tableModel);
table.set({
width: 600,
height: 400,
 decorator : null
 });

//allow multiple row selection
table.getSelectionModel().setSelectionMode(
qx.ui.table.selection.Model.MULTIPLE_INTERVAL_SELECTION);

Working with Widgets

[194]

//customize the column rendering
var tcm = table.getTableColumnModel();
// Display a checkbox cell renderer in column 3
tcm.setDataCellRenderer(3, new qx.ui.table.cellrenderer.Boolean());

// Display icon in the header using header renderer for column 2
tcm.setHeaderCellRenderer(2, new qx.ui.table.headerrenderer.
Icon("icon/16/apps/office-calendar.png", "Joining Date"));

In the preceding code, we have allowed editing for the columns 1 and 2, and we have
disabled sorting on column 3. We have set the selection of multiple sets of rows with
intervals. We have set the checkbox renderer for column 3 and icon for the column 2 header.

The GUI look for the preceding code is as follows:

Remote table model
A simple table model stores all the records in the model class and renders only the visible
records, based on the available space for the table and the position of the scroll bar. If
the number of records is huge, retrieving all the data at a time and loading all the data in
the table model takes time and it is not a good idea. To handle the huge data with good
performance, either you could use the pagination technique to display one page at a time or
retrieve the data on demand as you scroll. To support the second option, qooxdoo provides
the RemoteTableModel class. This table model class loads only the data that has to be
displayed and the data nearer to that displayed data. On the scroll action, the required set of
data is retrieved asynchronously in the background and displayed in the table. The old data
that was used most recently is unloaded as the cache in the table model gets filled.

Features of the remote table model are as follows. It:

 � Allows editing and sorting of cells at the column level

 � Allows various row selection options

Chapter 5

[195]

 � Supports customization of cell and header rendering

 � Supports different table models including the RemoteTableModel class allowing
the hiding and showing of the columns in the table

We have learnt about the table widget, the related classes for rendering and editing the
cells, and model classes for storing the table data. We have learnt how to construct the table
widget using the classes in the qx.ui.table package.

The tree widget
The tree widget allows the display of the hierarchical structure. The first item is a root
element. A user can add multiple folders or files, and a folder can again contain multiple folders
or files, similar to the root node. Each and every folder or a file is termed as a node. Expanding
and collapsing of these nodes is handled automatically, and the tree widget gives flexibility
to do some activities on expanding and collapsing by firing events such as changeOpen,
changeOpenSymbolMode, and changeModel events on the node (TreeFolder).

Class hierarchy
All the tree-related classes are under the qx.ui.tree package. The following screenshot
displays the class hierarchy of the tree classes:

The tree-related classes are:

 � qx.ui.tree.Tree: This is the class for constructing a visual tree structure

 � qx.ui.tree.TreeFolder: This is the class used for creating a folder node

 � qx.ui.tree.TreeFile: This is the class used for creating leaf nodes

Working with Widgets

[196]

The API classes used to create a tree can be easily understood with the following Unified
Modeling Language (UML) diagram:

Tree

root
0..1

<<Abstract>>
AbstractTreeItem

TreeFolder TreeFile

parent children
0..1
*

Tree construction
The following steps describe how to construct a tree:

1. Create a tree reference:

var tree = new qx.ui.tree.Tree();

2. Create the TreeFolder node and set this as the root node for the tree:

var root = new qx.ui.tree.TreeFolder("root");
tree.setRoot(root);

3. Create the child nodes, either by using TreeFolder or TreeFile and add them to
the root node in a hierarchy:

// creating folder children
var ch1 = new qx.ui.tree.TreeFolder("Folder1");
var ch2 = new qx.ui.tree.TreeFolder("Folder2");

// Create leaf nodes
var ch1_1 = new qx.ui.tree.TreeFile("File1");
var ch1_2 = new qx.ui.tree.TreeFile("File2");
ch1.add(ch1_1, ch1_2);

// add children to root node
root.add(ch1, ch2);

Chapter 5

[197]

4. Add the tree into a container:

this.getRoot().add(tree);

The GUI look for the preceding code is as follows:

We have learnt about the tree widget and the tree-related classes and learnt to create the
tree widget. We have also learnt how to construct the tree widget by using the classes in
the qx.ui.tree package.

The treevirtual widget
The treevirtual widget allows you to create a virtual tree that looks like a tree and provides
the table features to store the data in columns, dynamically filling the tree with contents.

Class hierarchy
All the virtual tree-related classes are under the package qx.ui.treevirtual. The following
screenshot displays the class hierarchy of the classes under the treevirtual widget:

Working with Widgets

[198]

The TreeVirtual class also provides most of the implementations for the events such as
treeClose, treeOpenWhileEmpty, treeOpenWithContent, and so on, and most of the
methods to access data in terms of the tree are added into the class by adding mixins such as
qx.ui.treevirtual.MNode and qx.ui.treevirtual.MFamily.

This widget is very useful when the user is displaying hierarchical data to show in columns,
for example, to show the filesystem tree. If the user is interested in showing the file
permissions and last updated time for the files, then each row needs two more columns.
To have a clear understanding of this widget, check the sample code and the diagram in the
following section.

TreeVirtual construction
The following steps describe how to construct a virtual tree:

1. Create a virtual tree reference with the columns defined:

// tree
var tree = new qx.ui.treevirtual.TreeVirtual(
 [
 "Tree",
 "Permissions",
 "Last Accessed"
]);

2. Retrieve the data model to create the folder (branch) or file (leaf) nodes:

var dataModel = tree.getDataModel();

3. Add a root branch, use the addBranch on the data model, and specify the parent
node as null to add as a root node:

var te1 = dataModel.addBranch(null, "Desktop", true);

4. Create child nodes either as branches or leaf nodes and add them to the root node
in a hierarchy:

// creating a branch children
te1_1 = dataModel.addBranch(te1, "Workspace", true);
// creating a leaf node
var te = dataModel.addLeaf(te1_1, "Windows (C:)");

5. Set the column data:

dataModel.setColumnData(te, 1, "-rwxr-xr-x");
dataModel.setColumnData(te, 2, "2007-01-30 22:54:03");

Chapter 5

[199]

6. Call a setData() method on datamodel.

dataModel.setData();

7. Add the tree into the container

this.getRoot().add(tree);

The GUI look for the preceding code is as follows:

We have learnt about the treevirtual widget and the use of this widget. We have
learnt how to construct the treevirtual widget by using the classes under the qx.ui.
treevirtual package.

Pop quiz
1. Widgets layout can be modified

a. True

b. False

2. qooxdoo supports rich text in label, only if the rich property is set to true

a. True

b. False

3. To create a custom widget, the user class

a. Should extend qx.ui.Widget only

b. Can extend any of the predefined widgets

c. Should implement qx.ui.form.IForm

Working with Widgets

[200]

4. Type of widgets that allow embedding inside of a normal HTML page

a. Basic widgets

b. Special widgets

c. Inline widgets

d. Custom widgets

5. Widgets useful for taking input in a numeric range

a. Spinner

b. TextField

c. Slider

d. a and c

e. all of the above

6. qooxdoo widgets are

a. Browser compatible

b. Have mouse and keyboard support

c. Auto-sizing

d. Event mechanism

e. All the above

f. None

7. Which widget is useful to show inline help when a user points to the widget

a. Popup

b. ToolTip

c. Status

d. Label

8. Which widget is useful to show a list of data and allows a user to select
multiple items

a. List

b. ComboBox

c. SelectBox

d. table

Chapter 5

[201]

9. Which widget is better to use for displaying hierarchical data

a. tree

b. treevirtual

c. table

d. List

10. qooxdoo allows controlling cell editing options at _________ level

a. Column

b. Cell

c. Row

d. Table

11. The default cell editor for a cell in the table is

a. qx.ui.table.celleditor

b. qx.ui.table.celleditor.boolean

c. qx.ui.table.celleditor.textfield

d. qx.ui.table.celleditor.dynamic

12. To display rows in different colors, a renderer should be added at the _______ level

a. Column

b. Cell

c. Row

d. Table

13. To allow a user to select multiple choices for a question, you should use

a. Radio buttons

b. Radio buttons in a RadioGroup

c. Radio buttons in RadioButtonGroup

d. multiple checkboxes

14. If you want to allow the user to either select or enter text, you should use

a. SelectBox

b. ComboBox

c. list

d. TextField

Working with Widgets

[202]

Summary
In the previous chapters, we learnt more about qooxdoo framework support, various
features, basic class hierarchy, different layout managers, containers, and so on. In this
chapter, we explored the qooxdoo widgets.

In particular, we:

 � Got an idea about the different types of widgets available in the qooxdoo framework

 � Learnt about various basic widgets such as Label, Image, and Atom

 � Explored the form widgets and the form API

 � Learnt how to create a custom widget

 � Learnt more widgets such as tree, table, and so on and the controls
such as ColorPopup, DateChooser, and so on

 � Learnt how to make use of special widgets to add rich functionalities to
the application

We have applied the learning from this chapter in our Team Twitter application. We created
a new sign up form and created a custom widget to show tweet information. Now, we have
knowledge about most of the qooxdoo-provided widgets and their usage.

In the next chapter, we will explore more on form handling, creating simple forms, and
validating form data and the most advanced features like pooling, data binding, and so on.

6
Working with Forms and Data

In simple words, the qooxdoo framework makes form handling as simple and as
generic as possible.

The qooxdoo framework provides multiple components right from retrieving
the data to displaying the information on the screen. With the use of object
orientation, the qooxdoo framework separates the functionalities into multiple
components such as data store, model, data controller, and view.

In Chapter 4, Working with Layouts and Menus, we learnt how to choose the layout manager
and how to pick the container for a screen requirement in the application. In Chapter 5,
Working with Widgets, we went through different widgets and their respective classes. We
learnt how to create various widgets based on their purposes and how to use them. We
understood the widget's class hierarchy in the qx.ui.form package. Altogether, in the
previous two chapters, we learnt most of the basic graphical user interface development.

In this chapter, we will learn the built-in capabilities that the qooxdoo framework provides
for the form and data handling. These features are really useful for the applications and they
are readily available in the framework. It saves lot of time in the application development.

This chapter mainly concentrates on retrieving the data from the data store, storing the data
in the model, updating the information in the view (widget) using the controller, validating
the user entered data, resetting the form, and so on. We will also learn how to pool the
widgets in qooxdoo framework. With pooling, you can create the widget once and reuse it.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Working with Forms and Data

[204]

By binding a widget to another widget, on changing first widget's value, the qooxdoo
framework keeps the other widget visually updated always and reduces maximum efforts
of the developers. You do not have to code to do activities such as registering an event for
one widget, retrieving the value on the change event, and updating the value on the other
widget. All these activities are performed automatically by the qooxdoo framework if you
bind these two widgets. This feature is known as data binding.

In this chapter, we will concentrate on the following topics:

 � Form handling—covers validation, resetting, and rendering

 � Object pooling

 � Data binding—covers model, controllers, and stores

Form handling
Let's step into the qx.ui.form package again to know more on the easier ways to reset the
form, validate all the widgets on a single call or instantaneously upon changing focus out of
the widget, and render a form.

We have already learnt how to create the form widgets and render them in the layout. Now,
we will validate the introductory statement "qooxdoo framework makes form handling as
simple and as generic as possible". qooxdoo provides a class, qx.ui.form.Form, to support
this functionality. The generic activities that qooxdoo provides for the form objects are:

 � Validation

 � Resetting

 � Rendering or handling form layout

 � Serialization

Validation
Once a user entered the values into the input widgets of the form, the data should be validated
before saving it. The qooxdoo framework provides the best ways to do this and highlights the
widgets that have invalid user-entered values, clearly by making the borders red.

Chapter 6

[205]

The qooxdoo framework provides the qx.ui.form.validation.Manager class for this
feature. The methods and events available in this class are divided into three groups. They
are as follows:

 � Validation: The methods and events available for validation are:

 � getValid()/isValid(): This method returns the valid state of the
manager.

 � validate(): This method initiates the validation.

 � validator: This is a property to store the validator. To validate
synchronously, you can set a function reference and to validate
asynchronously, you can set an instance of qx.ui.form.validation.
AsyncValidator. The default value is null.

 � complete: It is an event, invoked on completion of the validations for all
the items.

 � changeValid: It is an event, invoked on change of the valid state of form.

 � Form item management: The method under this group is add(formItem,
validator, context), which adds a form item, corresponding validator,
and the context of the validator.

The form item should handle any invalid state and it should have an invalid message,
which is displayed if the user-entered value is invalid. Manager requires access to
the value of the form item. So, a value property should exist for the form item. In
brief, a form item has to implement the following interfaces:

 � qx.ui.form.IForm

 � One of following interfaces:

 � qx.ui.form.IBooleanForm

 � qx.ui.form.IColorForm

 � qx.ui.form.INumberForm

 � qx.ui.form.IDateForm

 � qx.ui.form.IStringForm

The validator function can be specified in the validator parameter whereas
context is an optional argument whose default value is null.

Reset() is another method under this group. It resets all the form items.

Working with Forms and Data

[206]

 � Invalid messages: The method and property under this group are as follows:

 � getInvalidMessages(): This method returns all the invalid messages in
an array

 � invalidMessage: This property says why a form validation failed

In the previous chapter, we went through various form items. You can add most of the form
items into the validation manager as most of them implement at least two interfaces, which
matches the earlier-mentioned criteria. So, we understood everything that is required for a
validation manager to validate. Now, let's learn how to write code for the validators.

In general, there are two different approaches in validation. The first approach is a client-
side validation, which is synchronous, mostly. On the other hand, a server-side validation is
asynchronous, in most cases.

Synchronous
Most of the client-side validations are done synchronously, for example, validating a field
across common formats such as e-mail address, regular expressions, numeric or only
character types, IP addresses (127.0.0.1), and non-empty fields.

 � Required field check: Validation against an empty field is nothing but checking that a
field is required. In qooxdoo, this is very easy. Just define the form item as a required
field and add that to the validation manager, as shown in the following code snippet.
The validation manager will take all the necessary steps to mark the field as invalid
as soon as the validate method is invoked, if the text field is empty:

var manager = new qx.ui.form.validation.Manager();
var textfield = new qx.ui.form.TextField();
textfield.setRequired(true);
manager.add(textfield);

A sample GUI screen, expecting a URL is as follows:

 � Default validator: Similar to the required field check, qooxdoo provides few default
validators for specific input types such as e-mail address, data type check, URLs
or regular expression, and so on. All the default validators are predefined as static
utility functions under the qx.util.Validate class.

Chapter 6

[207]

The following code snippet demonstrates how to use the default validators available
in the Validate class:

Manager.add(textfield, qx.util.Validate.url());

Different validator functions available in the qx.util.Validate class are:

 � email(): Validates an e-mail address

 � number(): Validates a number

 � string(): Validates a string

 � url(): Validates a URL

 � inArray(): Validates that the value is in the specified array

 � regExp(): Validates the given regular expression

qooxdoo also allows developers to write their own functions for validation, as per
the requirement.

 � Custom validator: A custom validator is nothing but a function returning a Boolean
value; either true or false based on the value check or it can throw a validation
error containing a message to display as the invalid message. If the function throws
a validation error, the invalid message will be displayed for the respective field. In
case the function returns a Boolean value, true indicates that there is no validation
error and false indicates that there is a validation error and displays the invalid
message set for that field. You can also set the invalid message upfront in the
initLayout when you create the field and just return the true or false value in
the validator. qooxdoo displays the invalid message that is already set for that field.
The validator function should have the arguments as value and item in the same
order. The following code snippet illustrates the sample validator method:

myValidator : function(value, item) {
 if(<condition>){
 item.setInvalidMessage("invalid data");"
 return false;
 }
// or
 if(<condition>){
 throw new qx.core.ValidationError("invalid data");
 }
 return true;
}
// adding above function as validator for textfield.
manager.add(textfield, this.myValidator);

Working with Forms and Data

[208]

Asynchronous
An asynchronous request doesn't keep the user in the waiting state until the request
is processed and replied. When a developer doesn't want the application to wait until
the validation of the particular item or widget completes, the developer can write the
validation to occur asynchronously. A subclass instance of qx.ui.form.validation.
AsyncValidator is an asynchronous validator. The only difference in coding to the
synchronous case is the wrapping of validator function in an AsyncValidator.

The following code snippet demonstrates an asynchronous validation:

manager.add(textField, new qx.ui.form.validation.AsyncValidator(
function(validator, value) {
 // here comes the async call
 window.setTimeout(function() {
 // callback the async validation
 validator.setValid(false);
 }, 1000);
}
));

Take a look at the following sequence diagram to get an insight on how the asynchronous
validation is handled:

event

sd:asyncValidate framework code user code

form:Manager t:TextField av:AsyncValidator validator:Function

validate()
getValue()

value

validate(t, value, callback, context) call(av, value, t)

callback.call(context, t, valid) setValid(valid, msg)

validation
Complete

validationDone(valid, msg)

setValid(valid)

Chapter 6

[209]

On invoking the validate() method, the manager calls the validator of each form item.
Once this validation is completed, the manager fires the validationComplete event. The
whole sequence goes, as shown in the preceding sequence diagram.

Till now, all the validators validate a single item in its own context. In a situation where we
need to validate multiple items for mutually depending data, the validator can be set to the
manager itself. This validator function should take the items array as an argument as we will
be using in the Team Twitter application in the following Time for action – enhancing the
UserSignUpForm section in this chapter.

Resetting
The resetting feature makes it easier to reset all the form items in a single method call.
This resets all the form items to its initial values. This is more helpful when we are reusing
the form. We can create the form once, use it, and then pool it for future use (the concept
of pooling is explained in the Object pooling section). Whenever we get the object from
the pool and display it, we need to reinitialize the whole form. This can be done in a single
method call.

The qooxdoo framework provides the qx.ui.form.Resetter class for this feature. The
Resetter class is very simple and it can handle all form items supplying a value property
and all widgets implementing the single selection-linked list or select box.

The methods available in the Resetter class are:

 � add(item): Adds the item to the list of items by storing the current value of the
item as the resetting value

 � redefine(): Redefines the resetting values of all the items with their latest values

 � reset(): Resets all the items with their stored reset values

 � redefineItem(item)/resetItem(Item): Redefines or resets the individual
item

The following code snippet demonstrates resetting the form items on clicking the
Reset button:

// create a textfield
var textField = new qx.ui.form.TextField("acb");
// create a checkbox
var checkBox = new qx.ui.form.CheckBox("box");
// create a list
var list = new qx.ui.form.List();
list.add(new qx.ui.form.ListItem("a"));
list.add(new qx.ui.form.ListItem("b"));
list.setSelection([list.getSelectables()[0]]);

Working with Forms and Data

[210]

// create the resetter
var resetter = new qx.ui.form.Resetter();
// add the form items
resetter.add(textField);
resetter.add(checkBox);
resetter.add(list);
// add a reset button
var resetButton = new qx.ui.form.Button("Reset");
resetButton.addListener("execute", function() {
resetter.reset();
});

The qooxdoo Form class, qx.ui.form.Form, also takes advantage of the qx.ui.form.
Resetter class and reduces the developers' efforts further. You don't have to create an
instance of the Resetter class and add form items into it separately. You just have to create
the form instance, which will provide all the generic activities. We'll see this in the code snippet
from our Team Twitter application. This will be demonstrated at the end of this section.

Rendering
The qooxdoo framework provides renderers, which give additional functionalities in addition
to the basic layouts for the forms. You can use these renderers for the forms instead of
building the form using multiple layout managers. These renderers add a group of widgets
at once with a title instead of adding them one-by-one. You can add the related widgets
grouped together with a title. All the classes related to the renderer are in the qx.ui.form.
renderer package:

The class hierarchy of the renderers is shown in the following diagram:

Chapter 6

[211]

qooxdoo provides an interface, qx.ui.form.renderer.IFormRenderer, which has the
following methods:

 � addItems(items : qx.ui.form.IForm[], names : String[], title :
String) : void: This method adds a group of form items with the corresponding
names. The names are displayed as hints for the user telling them what to do with the
form item. The title is optional and can be used as grouping for the given form items.

 � addButton(button : qx.ui.form.Button) : void: This method adds a button
into the form layout.

qooxdoo framework provides three different implementations for the IFormRenderer
interface, namely, single column, double column, and single column with placeholder. Let's
see each one of them in brief.

Single column
The single column renderer defines the vertical layout and renders the label and
corresponding input widgets in a row. While displaying a label, it adds a colon at the end of
every label and adds an asterisk to every required field-related label.

The qx.ui.form.renderer.Single class is used by default, which is inherited from
the AbstractRenderer class, where this AbstractRenderer class takes the form
object from the constructor and configures it by itself. So if you need to set some additional
information on your renderer before adding the widgets, be sure to do that before calling
this.base(arguments, form).

Using this single column renderer is very easy; just create the form, add all the items to the
form, pass this form into the renderer, and add the renderer object to the panel:

// create the form and add it to the document
var formView = new qx.ui.form.renderer.Single(form);
this.add(formView);

Double column
The double column renderer has the same features as the already-introduced single column
renderer, but renders the form items in two columns. The class defined for this purpose is
qx.ui.form.renderer.Double.

Working with Forms and Data

[212]

Using the double renderer is very similar to the single renderer and is illustrated in the
following code snippet:

// create the form and add it to the document
var formView = new qx.ui.form.renderer.Double(form);
this.add(formView);

Single column with placeholder
The single column with placeholder renderer displays the input fields in a single column and
in addition to that, it displays the placeholder in the input widgets. These placeholders act
as hints on the input fields. The class defined for this purpose is qx.ui.form.renderer.
SinglePlaceHolder.

This class is more of a demonstration class to show how easily you can implement your own
renderer. The only limitation with this renderer is that it doesn't support all the fields but
supports adding the fields with the placeholder property.

The following code snippet demonstrates the use of the single column with the
placeholder renderer:

// create the form and add it to the document
var formView = new qx.ui.form.renderer.SinglePlaceHolder(form);
this.add(formView);

Serialization
User-entered data is serialized before it is sent across the network to the server. The
qooxdoo framework ensures that it works well with form widgets and corresponding data
binding components. First, the values are retrieved from the widgets and set into the model
and then the model is serialized. In qooxdoo, you don't have to create separate model
classes for each form. Serializing the form data is very simple. Let's go through the following
steps to achieve this:

1. Create form widgets, as shown in the following code snippet:

// create the ui
var name = new qx.ui.form.TextField();
var password = new qx.ui.form.PasswordField();

2. Create the model object, as shown in the following code snippet:

// create the model
var model = qx.data.marshal.Json.createModel({name: "a", password:
"b"});

Chapter 6

[213]

3. Create the form controller and bind the form widgets' data to the model (we will go
through the form controller in detail in the Data controller section):

// create the controller and connect the form items
var controller = new qx.data.controller.Object(model);
controller.addTarget(name, "value", "name", true);
controller.addTarget(password, "value", "password", true);

4. Serialize the data as follows:

// serialize
qx.util.Serializer.toUriParameter(model);

The final result is name=a and password=b, as the initial values of the model are a and b.

Time for action – enhancing the UserSignUpForm
1. Let's apply the concepts of form handling in one of the widgets (UserSignUpForm)

of the Team Twitter application. You will come to know how easily you can develop
forms and how effective the form features are. Update the UserSignUpForm.
js class under C:\teamtwitter\source\teamtwitter\ui and use the form
features instead of doing everything, such as rendering, validating, and so on,
by yourself.

Add the elements of the widget into the form instead of adding it through a grid
layout. The following code snippet gives you a hint on the creation of the form and
addition of elements to it:

var form = new qx.ui.form.Form();
form.addGroupHeader(this.tr("User Info"));
var userNameField = new qx.ui.form.TextField();
userNameField.setRequired(true);
form.add(userNameField, this.tr("User Name"));
var emailField = new qx.ui.form.TextField();
emailField.setRequired(true);
form.add(emailField, this.tr("Email"), qx.util.Validate.email());

// Similarly add all the widgets in to the form
// _________________________________

Once you add the elements into the form, set the single or double renderer. As per
the UserSignUpForm widget requirement, we need to render the elements in two
columns, each column should display a label and the respective field. So, we can use
the double renderer.

Working with Forms and Data

[214]

The following code snippet creates the double renderer for the form and adds the
renderer to the layout of the widget.

var formView = new qx.ui.form.renderer.Double(form);
this.add(formView);

Our form is ready with all the fields. Now, we can perform the validations on
the fields.

2. Let's add validation to our Team Twitter signup form. The possible validations
include checking that the password and confirm password values are the same, the
date field is a valid date, the e-mail is valid, and the mobile number is a numeric
value. You don't have to create the validation manager and add all the fields. Form
already has the validation manager and adds all the form fields into the validated
manager. You just have to set the context and the validator method.

Update the UserSignUpForm.js class under C:\teamtwitter\source\
teamtwitter\ui for the validation, as shown in the following code snippet:

_initLayout : function() {
 // after adding all fields into the form
 // set the validator method for the form
 var manager = form.getValidationManager();
 manager.setContext(this);
 manager.setValidator(this.formValidator);
 //
},

formValidator : function(items){
 if(items[2].getValue() != items[3].getValue()){
 items[3].setValid(false);
 items[3].setInvalidMessage(this.tr("Not matching with password
Field. Re enter"));
 return false;
 }
 return true;
}

3. Perform the validation on the click event for the Register button.

Use the following code snippet inside the register button's execute button listener.

manager.validate();
if(manager.isValid()) {

 // make an rpc call to store the user information into db.
}

Chapter 6

[215]

4. Let's implement the execute listener method for the Reset button. You don't have
to create an instance of the Resetter class. The form already has the Resetter
instance and adds all the form fields into the Resetter. All you have to do is invoke
form.reset(), when you want to reset.

Use the following code snippet to reset the form:

resetBtn.addListener("execute", function(){
 form.reset();
});

5. Build and view the signup form. You can test and verify the data validation.

A form with invalid data shows the data validation error message, as shown in the
following screenshot:

After you attempt this, you can refer the code provided in the 978-1-849513-70-
8_06_01.txt file under Chapter 6 available with the support files for this book. This code
file uses some more features, which will be explained in the Time for action – enhancing the
UserSignUpForm again section.

What just happened?
We got to know the features provided by the qooxdoo framework for form handling such as
validation, resetting, and rendering. With all these features, we can build robust applications
in a short time. We refactored the UserSignUpForm widget by using the Form class and the
form features that we learnt.

Working with Forms and Data

[216]

Object pooling
Object pooling is the concept of reusing the created instances instead of destroying and
recreating. Object creation and laying out the screen is a slightly time consuming process.
To improve the performance of our application, you can pool the created instances, layouts,
and so on, and reuse the pooled objects whenever you need them again. This minimizes the
amount of browser memory usage by reusing window instances after they have been closed.
However, it could equally be used to pool instances of any Object type (except singletons).

It is the client's responsibility to ensure that the pooled objects are not referenced or used
from anywhere else in the application.

In qooxdoo, pooling objects is very simple and can be done with the qx.util.ObjectPool
class. This class provides different methods, which are listed as follows:

 � poolObject(Object obj): This method places an object in a pool of objects of its
type.

 � getObject(clazz): Returns an existing instance of the required class type in the
pool. If the instance is not available, a new instance will be created, pooled, and this
method will return the newly-created object.

Note that once an instance has been pooled, there are no means to get that exact instance
back. The instance may be discarded for garbage collection if the pool of its type is already
full. It is assumed that no other references exist to this object, and that it will not be used at
all while it is pooled.

Size is an integer property to represent the number of objects for each class that is pooled.
The default value for this is null, which means infinity. The setSize(), getSize(),
resetSize(), and initSize() methods are available to access this property.

We got to know the concept of object pooling in the qooxdoo framework. This can be used
to improve the performance of the application if certain widgets are repeatedly used at
different places.

Data binding
Data binding is a functionality that allows connecting data from a source to a target. qooxdoo
provides the best and simplest ways to transfer data between the server and the client.
The entire topic can be divided into a low-level part, called single value binding, and some
higher-level concepts involving stores and controllers.

Chapter 6

[217]

Data binding includes five major components and is best summarized by the following diagram:

Data Store Model Controller View

Backend Data Binding UI Data Binding

 � Data: This part is nothing but the raw data and can be a plain local file, database
data, a regular web server, or even a web service. All sources of data are possible,
depending on the implementation of the actual store.

 � Store: The store component is responsible for fetching the data from its source and
for including it into a data model of an application. Framework provides a JSON
store, which creates the data into a JSON format, which we will go through in detail
in the Data store section in this chapter. Most of these concepts are defined in two
packages, namely, qx.data.store and qx.data.marshal.

 � Model: This model holds data and acts as an integration point between store
and controller. Almost all models are plain qooxdoo classes holding the data in
properties, which are configured to fire events on every change. But there is no
need to manually write our own model classes for every data source you want to
work with. The stores provide a smart way to automatically create these classes
during runtime.

 � Controller: The main task of the controller components is to connect the data in
the model to the view components (widgets). This controller actually binds the data
with the widgets. The qooxdoo framework provides different controllers for object,
form, list, and tree under the qx.data.controller package.

 � View: The view component is a widget in qooxdoo terms and it can be any one
among the big list of qooxdoo widgets, depending on the type of controller.
qooxdoo's data binding is not limited to some predefined data-bound widgets.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Working with Forms and Data

[218]

The class hierarchy for the data binding is shown in the following screenshot:

The qx.data.Array class is a complementary array class, defined for data binding
purposes. This class mainly fires events when items are added or removed. This class
implements IListdata, where IListdata defines a minimum of functionality with
which the controllers need to work.

The first and foremost basic concept is single value binding.

Single value binding
The single value binding feature connects one property to another by binding or tying the
properties together. The only requirement is that the property should fire an event on every
value change. So, on every value change, the new value will be assigned to the tied property.
qooxdoo's single value binding feature simplifies the whole implementation of adding a
listener for the original property, and changing the tied property inside the listener. Instead,
just use a bind() method on the widget.

The connection is always in one direction, and still the reverse is also possible by creating
one more binding. But the developer has to take care to not form the loops. This is the basic
concept of all the controllers.

For achieving this binding, we need source, source property, target, and target
property. All these are the inputs for our bind() method, available in the qx.data.
SingleValueBinding class and the method is of the static type. So, a user can call
the method directly with the following class name:

qx.data.SingleValueBinding.bind (Object: source, String: source
property, Object: target, String: target property, map: options);

Chapter 6

[219]

But single value binding has a limitation, too. Both properties should have the qooxdoo
getter and setter methods, as usual. The source property also needs to fire change events
on every change of its value.

For the best usability, the bind() method is defined in the qx.core.Object class, which
is the base class for all qooxdoo classes. This bind method again calls the same static bind
method, defined in the SingleValueBinding class, by specifying the source object as this.

Property binding
By default, every property in a class will have the getter and setter methods. So, these can
be directly binded, and are shown clearly in the following code snippet:

var label1 = new qx.ui.basic.Label();
var label2 = new qx.ui.basic.Label();
label1.bind("value", label2, "value");

In the preceding code snippet, every change of the value property of lable1 will
automatically synchronize the value property of lable2.

Event binding
One can bind a data event with a property, as shown in the following code snippet, and the
method call is completely similar to the property binding. The only change is, instead of the
source property name, the developer has to give the event name.

var textField = new qx.ui.form.TextField();
var label = new qx.ui.basic.Label();
textField.bind("input", label, "value");

In the preceding code snippet, when the user enters some characters in the text field, these
characters can be viewed in the label, too.

Hierarchical data binding
It is also possible to bind the hierarchy of properties as a source. The parent child
relationship in the hierarchy is denoted by a dot in the property chain. For example, If
object a has a child property, which references to object b, then object b has a string
property named abc and the abc property has to be tied to another property. It should
be done as shown in the following code snippet:

qx.data.SingleValueBinding.bind(a, "child.abc", textfield, "value");

Working with Forms and Data

[220]

Array binding
This is possible only with the qooxdoo array, which is defined under the qx.data.Array
data package. Let's bind array elements with a label's content:

// bind the first array element to a label's value
a.bind("array[0]", labelFirst, "value");
// bind the last array element to a label's value
a.bind("array[last]", labelFirst, "value");

One can use any numeric value in the brackets or the string value last which maps to
length-1. Till now, we have seen different possible sources to bind to a target. Also, we
have some options to set while binding—to validate and to convert to some other format.

Options map
The options map is a Map object; with three valid keys that refer to three callback functions
to perform some operations such as conversion, validation, and so on:

 � converter: Converts the value to a user-defined format. This converter is a
function with two arguments, one is the data to convert and another is the
corresponding model object. This model object is available only when the controller
is used. The function should look as follows:

 function (data, modelObj){
 // do some thing…….
 return convertedData;
 }

 � onUpdate: This is a callback function called upon a successful update on the target
object. The function takes three parameters and the function should look as follows:

 function (source, target, data){
 // do some thing…….
 }

 � onSetFail: This function gets called upon the update's failure.

function (e) {
 // function on fail
}

Including this bind method, the SingleValueBinding class has many more managing
and logging methods. They are as follows:

 � getAllBindings() returns all the bindings in a map

 � getAllBindingsForObject(sourceObject) returns all the binding to the
source object

Chapter 6

[221]

 � removeAllBindings() removes all the bindings in the application

 � removeAllBindingsForObject(object) removes all the bindings of
the object given

 � removeBindingFromObject(bindingId) removes the particular binding
from the source object

 � showBindinginLog(object, id) logs the binding

 � showAllBindingsInLog() logs all the bindings

Data controller
Controller connects a view component to a set of data stored in a model. The qooxdoo
framework provides four different controllers for different view components. The different
controllers are listed as follows:

 � Object controller (qx.data.controller.Object)

 � List controller (qx.data.controller.List)

 � Form controller (qx.data.controller.Form)

 � Tree controller (qx.data.controller.Tree)

The class hierarchy of the controller is under the qx.data.controller package:

Controllers do contain a selection array, which contains the currently selected model
items. When using this selection array, there is no need to deal with view widgets such
as ListItems. It is also possible to change the array in place and add/remove something
from the selection. As it is a data array, you can use all the methods defined for the array
to manipulate the selection of the corresponding controller.

Object controller
This Object controller is a very simple and lightweight controller. Object controller binds
one model object containing one or more properties with the view objects quite easily. Every
property in the model can be bound to one or more targets properties. The bindings will be
for atomic types (Number, String, Map, and so on) only.

Working with Forms and Data

[222]

A sample code snippet to explain the Object controller with the basic
SingleValueBinding, which we learnt earlier, is as follows:

// create two sliders
var slider1 = new qx.ui.form.Slider();
var slider2 = new qx.ui.form.Slider();
// create a controller and use the first slider as a model
var controller = new qx.data.controller.Object(slider1);
// add the second slider as a target
controller.addTarget(slider2, "value", "value");

The features of the Object controller are as follows:

 � It manages the bindings between the model properties and the different targets

 � There is no need for the user to take care of the binding IDs

 � It can create a bi-directional binding (read-/write-binding)

 � It handles model changing, which means adding the old targets

List controller
The List controller is responsible for synchronizing every list-like widget with a data array.
It does not matter if the array contains atomic values such as strings or complete objects
where one property holds the value for the label and another property holds the icon's URL.

The currently supported list widgets are:

 � qx.ui.form.SelectBox

 � qx.ui.form.ComboBox

 � qx.ui.form.List

The following code snippet shows how to bind an array of strings to a list widget:

// create the model
var model = new qx.data.Array(["a", "b", "c", "d", "e"]);
// create a list widget
var list = new qx.ui.form.List();
// create the controller
var listController = new qx.data.controller.List(model, list);

Features of the List controller are as follows:

 � It synchronizes the model and the target

 � Labels and icons are "bindable"

 � It takes care of the selection

Chapter 6

[223]

 � It passes on the options used by the bindings

 � It allows filtering too and user-defined filtered function

Form controller
The Form controller is responsible for connecting a form to a model and vice versa. The
same created model can also be used for serialization. Internally, each and every form widget
binds with the model using the qx.data.controller.Object class.

The following code snippet uses a controller and creates a model object with the data
entered in the form:

 // form
 var form = new qx.ui.form.Form();

 // add the form items
 var nameTextfield = new qx.ui.form.TextField();
 nameTextfield.setRequired(true);
 nameTextfield.setWidth(200);
 form.add(nameTextfield, "First Name", null, "firstName");
 form.add(new qx.ui.form.TextField(), "Last Name", null,
"lastName");
 form.add(new qx.ui.form.TextField(), "Company");
 form.add(new qx.ui.form.TextField(), "Email");
 form.add(new qx.ui.form.DateField(), "Date");

 // buttons
 var saveButton = new qx.ui.form.Button("Save");
 saveButton.setWidth(70);
 form.addButton(saveButton);
 var cancelButton = new qx.ui.form.Button("Cancel");
 cancelButton.setWidth(70);
 form.addButton(cancelButton);

 // create the view
 groupBox.add(new qx.ui.form.renderer.Single(form));

 // binding /////////////////////////
 var controller = new qx.data.controller.Form(null, form);
 var model = controller.createModel();

Features of the Form controller:

 � Connects a form to a model (bi-directional)

 � Creates a model for a given form

Working with Forms and Data

[224]

Tree controller
The Tree controller is responsible for tree widgets. The supported widget is qx.ui.tree.
Tree. The major responsibility is creating and adding the folders or leaves to the target tree,
based on the model given.

The code snippet to explain the tree controller usage is as follows:

 var nodes = [];
 for (var i = 0; i < 50; i++) {
 nodes[i] = new demobrowser.demo.data.model.Node();
 nodes[i].setName("Item " + i);
 nodes[i].setName2("Thing " + i);
 // if its not the root node
 if (i != 0) {
 // add the children in some random order
 nodes[parseInt(Math.random() * i)].getChildren().
push(nodes[i]);
 }
 }

 // create the tree
 var tree = new qx.ui.tree.Tree();
 tree.setSelectionMode("multi");
 this.getRoot().add(tree, {left: 10, top: 100});
 tree.setWidth(250);
 tree.setHeight(300);

 // bind the widget to the data with the controller
 var treeController = new qx.data.controller.Tree(nodes[0],
tree, "children", "name");

 // open the root node
 tree.getRoot().setOpen(true);

The features of the Tree controller are as follows:

 � It synchronizes the model and the target

 � Labels and icons are "bindable"

 � It takes care of the selection

 � It passes on the options used by the bindings

Chapter 6

[225]

Data stores
The main purpose of the store components is to load data from a source and convert that
data into a model. The task of loading data and converting the data into a model has been
split up. The store itself takes care of loading the data but delegates the creation of model
classes and instances to a marshaler.

The class hierarchy is shown in the following screenshot:

The classes responsible for the loading and converting the data are as follows:

 � qx.data.store: Responsible for fetching data

 � qx.data.marshal: Responsible for parsing data into qooxdoo classes and objects

 � qx.data.store.Json: Class used for fetching the JSON data from a URL

 � qx.data.marshal.Json: The loaded data will be parsed and saved into qooxdoo
objects, with actual data as the properties in the object

JSON store
The JSON store takes a URL, fetches the given data from that URL, and converts the data
using the JSON marshaler to qooxdoo model instances, which will be available in the model
property after loading. The state of the loading process is mapped to a state property. For
the loading of the data, a qx.io.remote.Request will be used in the store. After setting
the URL during the creation process, the loading will begin immediately.

The following code snippet shows how to use the JSON data store:

var url = "json/data.json";
var store = new qx.data.store.Json(url);
store.getModel();

Working with Forms and Data

[226]

JSONP store
The JSONP store is based on the JSON store, but uses a script tag for loading the data.
Therefore, a parameter name for the callback and a URL must be specified. After setting
the URL and the callback parameter name during the creation process, the loading will
begin immediately.

The following code snippet shows how to use the JSONP data store.

var url = "json/data.json";
var store = new qx.data.store.Jsonp(url, null, "CallbackParamName");

YQL store
YQL is the Yahoo! Query Language. YQL is an SQL-like language that lets you query, filter, and
join data across Web services. Based on the JSONP store, qooxdoo offers a YQL store, where
you can specify the YQL queries and qooxdoo handles the rest. This store lets you fetch the
data over the Internet, based on the query.

The following code demonstrates how to fetch some twitter messages:

var query = "select * from twitter.user.timeline where
id='wittemann'";
var store = new qx.data.store.YQL(query);

Time for action – enhancing the UserSignUpForm again
In the previous chapter, when we wrote the userSignUpForm class, we handled all the
fields individually. It requires a lot of coding to add the fields individually on the layout, to
gather the data from the fields individually before sending the data to the server, and so on.
In this chapter, we have already used the form and the features such as renderer, resetter,
and validator in the Time for action – enhancing the UserSignUpForm section.

1. Let's use the form controller now to gather the data generically from all the fields in
the form and send the data to the server through an RPC call.

In the UserSignUpForm.js class, update the register button's executing listener,
after the validation is completed successfully:

var controller = new qx.data.controller.Form(null, form);
var model = controller.createModel();
var user = qx.lang.Json.parse(qx.util.Serializer.toJson(model));

Chapter 6

[227]

2. Now, let's perform the user registration call to the server through an RPC call. Pass
the user model that you got in step 1.

Update the UserSignUpForm.js register button's executing listener, after
gathering the user model.

var rpc = new qx.io.remote.Rpc();
rpc.setCrossDomain(false);
rpc.setTimeout(10000);
var webURL = "http://localhost:8080/teamtwitter/.qxrpc";
rpc.setUrl(webURL);
rpc.setServiceName("teamtwitter.ui.handler.TweetHandler");
//rpc.setServiceName("qooxdoo.test");
var _this = this;
rpc.callAsync(function(result, ex, id){
 if (ex == null) {
 alert(result);
 _this.close();
 } else {
 alert("Async(" + id + ") exception: " + ex);
 }
}, "registerUser", user);

3. Now, compile and deploy the Team Twitter web application into Tomcat and check
the registration screen.

What just happened?
qooxdoo separates out the different functionalities in data binding into different components
and provides a pretty neat design. We got to know the various components provided
by the qooxdoo framework for the data binding process. These concepts help us to
implement certain functionalities very easily by spending very little effort. We enhanced the
UserSignUpForm widget to make use of the form controller, serialized the data in the JSON
format, and sent it to the server through RPC.

Working with Forms and Data

[228]

Pop quiz
1. qooxdoo form features is/are

a. Resetter

b. Validation

c. Renderer

d. All the above

2. The validation class that helps in validating all the items of a form asynchronously is

a. qx.ui.form.validation.Asyncvalidator

b. qx.ui.form.validation.Validator

c. qx.ui.form.validation.Manager

d. qx.ui.form.Form

3. Validation functions provided by the qooxdoo framework are in the class

a. qx.ui.form.validation.Asyncvalidator

b. qx.ui.form.validation.Validator

c. qx.ui.form.validation.Manager

d. qx.ui.form.Form

4. Resetter resets all the added widgets with its initial values of the widgets

a. true

b. false

5. The allowed form widgets in the SinglePlaceHolder renderer are

a. TextField

b. SelectBox

c. ListItem

d. TextArea

e. Spinner

f. Button

g. Both a and d

Chapter 6

[229]

6. Which process is carried out on the data before passing the data over the network
to the server

a. Validation

b. Data binding

c. Controlling

d. Serialization

7. The process of tying a source property to a target property is

a. Data binding

b. Serialization

c. Data stores

d. Marshalling

8. With data binding, you can

a. bind a property to a property

b. bind an event to a property

c. bind a hierarchical property to a property

d. bind an array element to a property

e. all of the above

9. Converting the model data into qooxdoo objects is the responsibility of

a. SingleValueBinding

b. Data controller

c. Data store

d. Marshal

10. Fetching data from a URL is the responsibility of

a. SingleValueBinding

b. Data controller

c. Data store

d. Marshal

Working with Forms and Data

[230]

Summary
In the previous chapters, we explored the various qooxdoo-provided widgets, forms, and
so on.

In this chapter, especially, we covered slightly more advanced features:

 � We learnt about the qooxdoo form object and its handling

 � We learnt easy and simple ways to create a form and to validate form data

 � We got an idea on serializing form data

 � We got good ideas on data handling, converting model objects to view controls,
fetching data from a URL, and so on

We have applied the learning from this chapter in our Team Twitter application. We created
a new signup form with validations and used the double renderer to have a nice signup form.
By now, we learnt more about application creation or development.

From the next chapter onwards, we will start learning about application testing and debugging
of any issues. We will explore qooxdoo-provided features for debugging and logging, as well as
different debugging tools available for debugging the qooxdoo applications.

7
Testing and Debugging

This chapter explains the qooxdoo framework support for the unit testing and
integration tests. It also explains logging and debugging qooxdoo applications
using Firebug and IE developer tools.

Up to the last chapter, we have learnt how to develop the graphical user interface using the
qooxdoo framework. In this chapter, we will learn to write and run unit test cases for the
qooxdoo classes, to write and run integration test cases for qooxdoo applications, to log
messages in qooxdoo applications, and to use debugging tools on qooxdoo applications.
We will learn tools provided by the qooxdoo framework for testing and also a few external
tools for debugging the qooxdoo applications.

In this chapter, we will cover the following topics:

 � Unit testing:

 � Generating unit test setup

 � Writing, building, and running unit tests

 � Integration testing:

 � Writing integration tests

 � Running integration tests

 � Debugging:

 � Logging statements in qooxdoo code

 � Tracing through AOP

Testing and Debugging

[232]

 � Introduction to the Firebug add-on

 � Placing breakpoints, inspecting objects, and interactive debugging

 � IE developer tools

The qooxdoo framework provides a lot of support for testing and encourages having
automated tests for the qooxdoo applications. We will learn how to test and debug
qooxdoo applications.

Unit testing
The qooxdoo framework provides a set of classes and internal tools for unit testing the
qooxdoo classes. Unit testing is nothing but cross-checking the implementation of the source
code in terms of small units, to see whether each unit is satisfying and performing its basic
intention or requirement. A unit is the smallest testable part of an application and, in object-
oriented programming, the smallest unit is considered as a method.

It is the developer's responsibility to make sure that any new changes do not affect the
working code. Creating some unit tests and continuously executing them identifies software
breakage at an early stage. The qooxdoo framework provides a good environment to
create unit test cases easily. The testrunner tool is also provided to run the test cases.
The qooxdoo framework provides a separate package named qx.dev.unit, with a set of
classes, where these classes provide an interface to qooxdoo's unit test framework.

The class hierarchy for unit testing is shown in the following screenshot:

On creating a new application, the qooxdoo framework generates a DemoTest.js test class
file under <application-home>/source/class/application-name/test, which
contains a couple of sample test cases, namely, testSimple and testAdvanced:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7

[233]

The generated DemoTest.js test class looks like this:

qx.Class.define("teamtwitter.test.DemoTest",
{
 extend : qx.dev.unit.TestCase,

 members :
 {
 /**
 * Here are some simple tests
 */
 testSimple : function()
 {
 this.assertEquals(4, 3+1, "This should never fail!");
 this.assertFalse(false, "Can false be true?!");
 },

 /**
 * Here are some more advanced tests
 */
 testAdvanced: function ()
 {
 var a = 3;
 var b = a;
 this.assertIdentical(a, b, "A rose by any other name is still a
rose");
 this.assertInRange(3, 1, 10, "You must be kidding, 3 can never
be outside [1,10]!");
 }
 }
});

To create more unit test classes, create classes extending the qx.dev.unit.TestCase
class and add methods with names starting with test. You can place all the unit test
classes under the <application-home>/source/class/application-name/test
directory. You can use assertion methods inherited from the TestCase class to ease the
implementation process. The qx.dev.unit.TestCase class is the base class for all unit
tests and contains all the assert methods required for unit testing.

The unit test framework provides certain methods, namely, the setup() and tearDown()
methods, to set up certain things before the test case and to clear certain things after the
test case. Both of these methods are optional; you can override the respective method and
write your code.

Testing and Debugging

[234]

Framework exceptions are used to communicate the test results back to the test runner. If
it does not throw any exception, the test is successful. Throwing an exception from the test
method signals a failure. Return values from the test methods are not evaluated.

Developers can test the AJAX calls also, by using asynchronous test cases, where the
test cases have to be wrapped under the AsyncWrapper class. This qx.dev.unit.
AsyncWrapper class stores the information needed to instruct a running test to wait
until either the test case function successfully completes or an exception is thrown.

Once you write the unit test cases, you need to compile the test cases and generate
the updated TestRunner application before running the unit test cases. The following
command generates the updated TestRunner application:

C:/teamtwitter> generate.py test

If you have the unit tests only testing the qooxdoo UI classes, you can run the Test
Runner by opening index.html under the test directory. The DemoTest and
TagsWidgetTest classes can be run without deploying the application, by opening
the following file in the browser:

file:///C:/teamtwitter/test/index.html#

If you have any test case calling the server to test any function, you need to deploy the
application to test those test cases. As we have added a couple of test cases to test the
handler functionalities, we need to run the test against the deployed version of the
application. The LoginUserTest class can be run only in the deployed version:

http://localhost:8080/teamtwitter/test/index.html#

Time for action – performing unit test
1. Generate the unit test setup for the Team Twitter application by running the

generate.py script with the option test. Open a command prompt and change
your current directory to the Team Twitter application home directory and run the
following command:

C:\teamtwitter> generate.py test

Chapter 7

[235]

This command creates the entire test environment, which includes the resources
and scripts required, as shown in the following screenshot:

 � test: This directory contains the unit test environment for the application.
This whole directory content is generated when you run the generate.py
test command.

 � resource: This directory contains the resource files. It contains the
resources required for the testrunner tool.

 � script: This directory contains the JavaScript files required for the
TestRunner application. This directory has two JavaScript files, namely,
testrunner.js and tests.js. You do not have to touch these files.
These are used to render the testrunner tool, which will execute the
unit tests written for the application.

 � index.html: This HTML file brings up the testrunner tool for the
application. It reads all the unit test cases written for the application and
displays those cases in the tool for execution.

Testing and Debugging

[236]

2. Let's write couple of unit test classes for our Team Twitter application. Let's
create a test class to test our tags widget with some static values. Create the
TagsWidgetTest.js class under C:\teamtwitter\source\teamtwitter\
test, extending the qx.dev.unit.TestCase class and implementing the
testTagsWidget method, as mentioned in the following code snippet:

 testTagsWidget : function() {
 var tagsWidget = new teamtwitter.ui.TagsWidget();
 var tags = "Java;Javascript;qooxdoo;Spring;Eclipse;Database;Or
acle;SQL;PLSQL;RIA;Photography;Tools;Travel;Hiking;TV Shows;";
 tagsWidget.setDelimitedTags(tags);
 var tagsArray = tagsWidget.getTagsArray();
 var valueArray = tags.split(";");
 for (var i=0; i<tagsArray.length; i++) {
 this.assertInArray(tagsArray[i], valueArray, "Not a valid
tag");
 }
 }

After your attempt, you can compare your code with the code in the
978-1-849513-70-8_07_01.txt file under Chapter 7 folder in the
support files for this book.

3. Now, let's write a test case for our user login form. Here, let's have two test cases to
check for a valid user, and another for checking an invalid user. As this is a server call
to check for users against the database, it is better to write these as asynchronous
test cases. Create the LoginUserTest.js class under C:\teamtwitter\
source\class\teamtwitter\test, extending the qx.dev.unit.TestCase
class and implementing the testLoginUser and testLoginInValidUser
methods, as mentioned in the following code snippet. The test code assumes that
there is already a user raj, with the password raj. Before running this test, register
a user with the same details, or update the test code with an existing user's details,
as shown in the following code:

 testLoginUser : function() {
 var rpc = new qx.io.remote.Rpc();
 rpc.setCrossDomain(false);
 rpc.setTimeout(10000);
 var webURL = "http://localhost:8080/teamtwitter/.qxrpc";
 rpc.setUrl(webURL);
 rpc.setServiceName("teamtwitter.ui.handler.TweetHandler");
 var _this = this;

Chapter 7

[237]

 rpc.callAsync(function(result, ex, id){
 _this.resume(function() {
 if (ex == null) {
 _this.assertNotEquals(result, 0, "InValid User");
 }
 }, this);

 }, "loginUser", "raj", "raj");
 this.wait(10000);
 },

 testLoginInValidUser : function() {
 var rpc = new qx.io.remote.Rpc();
 rpc.setCrossDomain(false);
 rpc.setTimeout(10000);
 var webURL = "http://localhost:8080/teamtwitter/.qxrpc";
 rpc.setUrl(webURL);
 rpc.setServiceName("teamtwitter.ui.handler.TweetHandler");
 var _this = this;
 rpc.callAsync(function(result, ex, id){
 _this.resume(function() {
 if (ex == null) {
 _this.assertEquals(result, 0, "Allowed to login with
wrong password");
 }
 }, this);

 }, "loginUser", "raj", "wrongpassword");
 this.wait(10000);
 }

Note that the wait method should always be the last call in the asynchronous
wrapper method, as this informs the test runner to wait for a resume call. You can
find this code in the 978-1-849513-70-8_07_02.txt file under Chapter 7.

The preceding two user login test cases gets validated against the database, for
which the data in the database should be populated before running test cases.

Testing and Debugging

[238]

4. Let's redefine the test cases defined in step 3 by writing the setup() method to
create an rpc instance, and the teardown() method to clear the rpc instance,
as mentioned in the following code snippet. Once you add the setup() and
teardown() methods, you can remove the repetitive rpc instance creation in
each test case. You can use setup() and teardown() for such purposes. Before
invoking any test case, Test Runner will call setup() and, after invoking any test
case, Test Runner will call the teardown() method.

members :
{
 rpc : null,

 setUp : function() {
 this.rpc = new qx.io.remote.Rpc();
 this.rpc.setCrossDomain(false);
 this.rpc.setTimeout(10000);
 var webURL = "http://localhost:8080/teamtwitter/.qxrpc";
 this.rpc.setUrl(webURL);
 this.rpc.setServiceName("teamtwitter.ui.handler.
TweetHandler");
 },

 tearDown : function() {

 this.rpc = null;
 }
}

5. We need to deploy the source version of the Team Twitter application to enable us
to debug and write the test cases. If we want to deploy the source version of the
application, we need to deploy the qooxdoo SDK along with the application.

Copy the qooxdoo SDK directory to the teamtwitter application directory
(C:/teamtwitter/qooxdoo-1.2-sdk).

Update the reference in C:/teamtwitter/config.json. As you have the
qooxdoo SDK right under the Team Twitter application, you can just mention the
qooxdoo SDK directory name:

"let" :
 {
 "APPLICATION" : "teamtwitter",
 "QOOXDOO_PATH" : "qooxdoo-1.2-sdk",
 // ...
}

Chapter 7

[239]

Update the reference in C:/teamtwitter/generate.py, as follows:

QOOXDOO_PATH = 'qooxdoo-1.2-sdk'

Update the reference in C:/teamtwitter-server/build.properties,
as follows:

applicationName=teamtwitter
deployDir=C:/apache-tomcat-7.0.14/webapps
qooxdooDir=C:/teamtwitter/qooxdoo-1.2-sdk
clientApplicationDir=C:/teamtwitter
qooxdooSDKName=qooxdoo-1.2-sdk

6. Let's update the build.xml file to add a few more targets required for testing
and debugging. As we wrote one test class to test UI and one test class to test the
handler functionalities, we need to run the test cases on the deployed version. Add
couple of targets in the build.xml file, to generate the test runner and to deploy
the test runner inside the deployed web application, as mentioned in the following
code snippet:

<target name="client.generate-test">
 <exec executable="python" dir="${clientApplicationDir}">
 <arg value="generate.py" />
 <arg value="test" />
 </exec>
</target>
<target name="deploy.client.test" depends="client.generate-test">
 <copy todir="${deployDir}/${applicationName}/test">
 <fileset dir="${clientApplicationDir}/test">
 </fileset>
 </copy>
</target>
<target name="deploy.sdk">

 <copy todir="${deployDir}/${applicationName}/${qooxdooSDKName}">
 <fileset dir="${qooxdooDir}">
 </fileset>
 </copy>
</target>

Testing and Debugging

[240]

In addition to that, update the build.xml file to copy the source version and
build version of the Team Twitter application, and the test runner setup in the
copy.web target. Also, add a target to deploy SDK under the Team Twitter web
application. As this task not required every time, add this target seperately to avoid
copying the huge directory every time. The updated build.xml file is available as
a support file, named 978-1-849513-70-8_07_03.txt under Chapter 7, for
this book.

As we are deploying the source version and build version of the Team Twitter
application, add a file, index.html, under C:/teamtwitter-server/webapp,
just to have links to the source version and the build version of the application. The
index.html file is available as a file named 978-1-849513-70-8_07_04.txt
under Chapter 7.

7. Now, let's clean the Team Twitter deployment and redeploy the Team Twitter web
application. To do this, stop the Tomcat server, delete the teamtwitter directory
under the C:/apache-tomcat-7.0.14/webapps directory, run the following
targets in the ANT build.xml to regenerate the Team Twitter web application,
and deploy it on the web server:

C:\teamtwitter-server>ant clean

C:\teamtwitter-server>ant dist

C:\teamtwitter-server>ant deploy

C:\teamtwitter-server>ant deploy.sdk

C:\teamtwitter-server>ant deploy.client.test

Start the Tomcat server now.

8. Open the URL http://localhost:8080/teamtwitter/test/index.html#
and run the tests:

Chapter 7

[241]

What just happened?
We have learnt the qooxdoo framework support for the unit tests. We have generated the
unit tests setup for the application, written a few unit tests, and run those unit tests in the
deployed location.

Integration testing
qooxdoo always encourages testing. It provides a few tools to help the developers and
testers to write integration testing. In qooxdoo 1.3, the qooxdoo team experimented with a
few features and tools for the GUI automation testing. These features and tools were outside
of SDK until qooxdoo 1.4. In qooxdoo 1.4, the qooxdoo team integrated those features and
tools into qooxdoo SDK. Let's see how to set up the environment, write integration tests, and
run the automation tests on the GUI.

We will make use of the features available in qooxdoo 1.4, instead of setting up each
component separately. As of now, we'll create a separate application in qooxdoo 1.4 to
write the integration tests and run them against the Team Twitter application created in
qooxdoo 1.2. We'll cover the migration of the application to a newer version of qooxdoo
in Chapter 11, Miscellaneous.

Integration test setup
JavaScript is the programming language for qooxdoo. It encourages you to write the GUI
automated tests also in JavaScript, following the qooxdoo object-oriented programming
syntax. qooxdoo uses the Mozilla Rhino JavaScript framework and runs the scripts on the
Selenium RC server. The following diagram explains the flow of the test code execution:

Integration tests in qooxdoo

Rhino

Selenium server

qooxdoo application

Testing and Debugging

[242]

Writing test cases
You should write all the automated test cases in the teamtwitter_tests.simulation
package, where teamtwitter_tests is the application's namespace or package.
When you generate an application in qooxdoo, it generates the simulation package for
the application namespace and generates the DemoSimulation class, as shown in the
following code snippet:

qx.Class.define("teamtwitter_tests.simulation.DemoSimulation", {
 extend : simulator.unit.TestCase,
 members :
 {
 /** Check if a widget is present (part of the DOM) */
 testButtonPresent : function()
 {
 this.assertNotNull(this.getSimulation().getWidgetOrNull("qxh=qx.
ui.form.Button"), "Button widget not present!");
 },
 /** Click a button and check if an alert box pops up */
 testButtonClick : function()
 {
 this.getQxSelenium().qxClick("qxh=qx.ui.form.Button");
 this.assertEquals("true", String(this.getQxSelenium().
isAlertPresent()));
 }
 }
});

All the simulation test classes must inherit simulator.unit.TestCase, to make use of
the assert statements, to check any details in the test.

Simulator API documentation
The simulator component of the qooxdoo framework provides a few APIs to write the
automated tests in JavaScript. The qooxdoo API document does not contain the simulator
APIs. Let's generate the API for the simulator component:

C:\qooxdoo-1.4.1-sdk\component\simulator>generate.py api

After generating the API, you can access the simulator API in the browser, using the
location file:///C:/qooxdoo-1.4.1-sdk/component/simulator/api/index.
html#simulator. For more details, refer to the Time for action – performing integration
test section, in this chapter.

Chapter 7

[243]

Simulator class hierarchy
The class hierarchy of the simulator component is shown in the following screenshot:

The main API classes you'll be using most of the time are as follows:

 � simulator.Simulation: Simulates the automated GUI test of a qooxdoo
application using QxSelenium. Provides access to the AUT's log messages and any
exceptions caught by qooxdoo's global error handling. Also supports event testing.

 � simulator.QxSelenium: Adapter between the qooxdoo simulator and
the Selenium Java Client Driver. If simulator.threadsafe is set in the
qooxdoo configuration, it uses com.thoughtworks.selenium.grid.
tools.ThreadSafeSeleniumSessionStorage; otherwise, it uses com.
thoughtworks.selenium.QxSelenium. This class extends DefaultSelenium
and adds additional qooxdoo related methods.

 � simulator.unit.TestCase: This is the base class for integration tests. It provides
different assert methods to check the values within the jobs and also the fail()
method to force a test case fail. This class has the instance of both Simulation and
QxSelenium classes. You just have to extend this class to write a new test class and
you can access the Simulation and QxSelenium classes, through this class.

Testing and Debugging

[244]

Selenium Java Client Driver API documentation
In addition to the simulator API provided by the qooxdoo framework, refer to the Selenium
Java client driver API, at the following location:

file:///C:/selenium-remote-control-1.0.3/selenium-java-client-
driver-1.0.1/javadoc/index.html.

Locating strategy
To locate the widget to perform the automated tests, first, the widget has to be identified.
There are different strategies to identify the widget. But, it is not as easy as using normal
web GUI automation tools.

Selenium locators
The Selenium locators are:

 � ID locators: Widgets are identified based on the id property of the widget. Recent
versions of qooxdoo do not assign the id property to the widget. If you want to use
the ID locator strategy, the developer should set the ID for each widget, as shown in
the following code snippet:

registerButton.getContainerElement().getDomElement().id =
"registerButton";

 � XPath locators: This strategy is not well suited to the qooxdoo applications, as the
DOM structures of qooxdoo applications may change during the runtime, as the
content is generated dynamically.

 � DOM locators: Same issues as XPath locators.

 � CSS locators: Same issues as XPath locators.

So, the ID strategy may only work, if you put in the effort to set the id property for
each widget.

qooxdoo locators
The following locating strategies are specifically designed for the qooxdoo applications:

 � qxh locators: This locator searches the widget in a hierarchy. It uses syntax similar to
the XPath locators, but differs significantly. This locator has a series of location steps
separated by the forward slash (/) character. No leading or trailing / is allowed. All
searches begin from the root object. Each of the following search steps searches the
result of the previous location step. There is no restriction that each locator step
should result in a single match. If there are multiple children matches to the search
condition, the first match wins. You can specify each location step in one of the
following ways:

Chapter 7

[245]

 � qxh=<string>—Searches for the JavaScript property on the current
object. The following locator step looks for the JavaScript mytoolbar
property on the current object:

qxh=mytoolbar

 � qxh=<classname>—Searches for the instance of the given class on the
child widgets of the root object or on the child widgets of the result from
the previous locator step. The following locator step looks for the instance
of qx.ui.form.Button:

qxh=qx.ui.form.Button

 � qxh=child[n]—Searches for the nth child widget of the result from
the previous locator step. The following qxh locater searches for the
third child widget:

qxh=child[3]

 � qxh=[@attrib{=val}]—Searches for the child that has a qooxdoo
or JavaScript property attrib, with the value val. You can use regular
expressions to match the property value:

qxh=[@label="RegisterButton"]
qxh=[@label=".*Label$"]

 � qxh=<wildcard_operator>—Special token (*) acts as a wildcard
operator. This will recursively search all the levels in the hierarchy until
the next locator step is matched. The following locator step searches all
the levels in the hierarchy, from root object, for the widget with a label
property with the value Sign Up. As it searches all the levels recursively,
it is not an effective search and takes more time:

qxh=*/[@label="Sign Up"]

Try to avoid using only one locator step that has a wildcard search directly from the
root object. But, you can use this for relatively few levels of search and mix with
specific locators, as mentioned in the following example:

qxh=*/[@label="Section 3"]/[@page]/*/[@label="First Button"]

This searches recursively from the root for an object with label Section 3, and
then, assuming it is a ButtonView widget, which has a page property, navigates to
the corresponding page, where it again searches recursively for an item with label
First Button. This is much more effective than searching the entire object space
with */[@label="First Button"].

Testing and Debugging

[246]

 � qxh=<specific operators>—Three special operators at the beginning
of a locator specify which object space to search:

 � app: Signifies the object space down from qx.core.Init.
getInstance().getApplication()

 � inline: Signifies the object space down from the root widget of a
"qooxdoo isle" in an inline application

 � doc: Signifies the object space down from the application's root
widget, that is, qx.core.Init.getApplication().getRoot()

 � qxhv locators: The qxhv= locator searches in the widget hierarchy in a manner
similar to the qxh locator, except that it searches only visible widgets that have the
visibility property set to visible. Sometimes, it may give unexpected results.
One of the scenarios is the root node of the qx.ui.tree.Tree class being set to
invisible, in many of the qooxdoo applications. The qxhv locator will never find
any descendants of the tree's root node, even though they are visible in the GUI.

 � qxidv locators: The qxidv= locator searches for an HTML element and finds the
related qooxdoo widget, only if the widget is visible.

 � qxhybrid locators: The qxhybrid= locator allows you to combine different locator
strategies separated by &&. Each sub locator applies the locator strategy on the
DOM element returned by previous locator. The first locator in the locator series
can be any of the qooxdoo locators or Selenium locators and the following locators
can be any of the qooxdoo locators or XPath locators. The qxhybrid locator is used
especially if you assign the id property for the container elements and if you don't
assign the id property for the child form elements.

qxhybrid=users&&qxh=[@label=Foo]

This locator searches first for the widget with the id property set to users, and
then uses the qxh locator to search for any child widgets with the Foo label.

Time for action – performing integration test
1. Let's set up the software required for the integration testing. qooxdoo 1.4 integrates

some of qooxdoo's internal tools into the SDK itself, so let's download qooxdoo 1.4
SDK from http://sourceforge.net/projects/qooxdoo/files/qooxdoo-
current/1.4.1/ and extract it to the C:/ directory.

Download the Mozilla Rhino framework from http://www.mozilla.org/
rhino/download.html (download version 1.7R1 or later). Extract the ZIP file
to the C:/ directory.

Chapter 7

[247]

Download the Selenium RC server from the following URL (download version 1.0.3):

http://code.google.com/p/selenium/downloads/
detail?name=selenium-remote-control-1.0.3.zip&can=2&q=

Create a selenium-remote-control-1.0.3 directory under C:/, and extract
the ZIP file to it.

2. The normal practice is to write the automated test cases in the Team Twitter
application code itself. As we have used qooxdoo 1.2 for the Team Twitter
application and have not migrated yet, let's create a separate application for the
automated test cases. You can run the tests against the Team Twitter application
developed in qooxdoo 1.2. You can maintain the test cases in a separate code
base, if the quality assurance team writes these test cases. In that case too, you
can create a separate application for the test cases.

Let's create a qooxdoo application for writing the automated test cases. In the
command prompt, go to C:\qooxdoo-1.4.1-sdk\tool\bin and run the
following command:

create-application.py --name teamtwitter_tests --out C:\

If you are already using qooxdoo 1.4 for the application, and you
want to maintain the automated test cases in the application code
base, you don't have to create a separate application. Skip this step
and use your Team Twitter application for test cases, instead of the
teamtwitter_tests application.

3. As qooxdoo integrated the simulator component in the SDK itself, it provides
a couple of jobs, namely, simulation-build and simulation-run, in the
generator tool.

As we use two external tools, Rhino and Selenium, we need to configure qooxdoo
for those tools.

The qooxdoo application has all the configurations required for the
generate.py tool in the config.json file. This basically inherits the
application.json configuration from the qooxdoo framework. If you
want to set some configuration or override some configuration, you can
do that in the config.json file for the application. Let's set a few details
for the external tools in the teamtwitter_tests configuration.

Testing and Debugging

[248]

Edit the config.json file in the C:\teamtwitter_tests directory:

"let" :
 {
 "APPLICATION" : "teamtwitter_tests",
 "QOOXDOO_PATH" : "../qooxdoo-1.4.1-sdk",
 "QXTHEME" : "teamtwitter_tests.theme.Theme",
 "API_EXCLUDE" : ["qx.test.*", "${APPLICATION}.theme.*",
"${APPLICATION}.test.*", "${APPLICATION}.simulation.*"],
 "LOCALES" : ["en"],
 "CACHE" : "${TMPDIR}/qx${QOOXDOO_VERSION}/cache",
 "ROOT" : ".",
 "SIMULATOR_CLASSPATH" : ["../selenium-remote-control-1.0.3/
selenium-java-client-driver-1.0.1/selenium-java-client-driver.
jar", "../rhino1_7R3/js.jar"]
 },

 "jobs" :
 {
 "simulation-run" :
 {
 "environment" :
 {
 "simulator.testBrowser" : "*firefox3",
 "simulator.selServer" : "localhost",
 "simulator.selPort" : 4444,
 "simulator.autHost" : "http://localhost",
 "simulator.autPath" : "/${APPLICATION}/source/index.html"
 }
 }
 }

Add the SIMULATOR_CLASSPATH value in the let section. This configures the
libraries for Rhino and Selenium Java Client. Make sure you add the comma (,)
at the end of the previous line.

Add the jobs section and set the details for the simulator-run job. Make
sure that you add a comma after the let section.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7

[249]

It configures the environment for Selenium. If you want to test in Internet Explorer,
you can set the simulator.testBrowser value to *iexplore. You can set the
application details in the simulator.autHost and simulator.autPath values.
If you writing the automated test cases in the application code base itself, these
settings will work. If you are testing these test cases against an application running
on some other machine, you can set the details in these parameters.

4. The job simulation-build generates the simulation application based on the
written automated tests. After adding new test cases or modifying existing test
cases in the simulation package, you need to execute this job before running the
automated test cases:

C:\teamtwitter_tests>generate.py simulation-build

If you see the application directory C:\teamtwitter_tests, you will see a new
simulator directory. These generated scripts are used to execute the test cases
when you run the simulation-run job.

5. You need to provide the qooxdoo simulator user extension file to the Selenium
server while starting. I would suggest you create the start.bat batch file under
C:/selenium-remote-control-1.0.3/selenium-server-1.0.3, with the
following content:

java -jar selenium-server.jar -userExtensions C:/qooxdoo-1.4.1-
sdk/component/simulator/tool/user-extensions/user-extensions.js

Go to C:\selenium-remote-control-1.0.3\selenium-server-1.0.3 and
start the Selenium server, using the start.bat file that you created just now:

C:\selenium-remote-control-1.0.3\selenium-server-1.0.3>start.bat

Make sure that you set the following environment variables:

PATH: C:\Program Files\java\jdk1.6.0_26\bin

JAVA_HOME: C:\Program Files\java

6. Let's build the inspector component in the qooxdoo framework and deploy
it in Tomcat:

C:\qooxdoo-1.4.1-sdk\component\inspector>generate.py build

Copy the build version of inspector as the inspector web application in Tomcat.
To do this, copy the build directory of inspector component to the webapps
directory of Tomcat, and rename the directory from build to inspector.

Testing and Debugging

[250]

Stop Tomcat and then start it again, using the following command:

C:\apache-tomcat-7.0.14\bin>startup.bat

Check whether you can access the Team Twitter application from the browser.
Enter the URL http://localhost:8080/teamtwitter/:

You can access the build version to use the application, and the source version to
debug the application. The build version is optimized by the qooxdoo framework
and used for production deployment. The source version refers to the qooxdoo SDK
and loads all the JavaScript to allow the developer to debug the JavaScript code of
the application.

Open the Inspector application and enter /teamwitter/ in the textbox at the
top-right corner:

We used Firefox 3.6 to test this application.

Chapter 7

[251]

7. Let's try the operations that we want to test in the Inspector application. Inspector
provides the hierarchical locator for all the inspected widgets. Sometimes, it is not
robust, as the DOM structure might change at runtime. You should try the default
locator generated by the Inspector a few times; if it does not always work, you
should use one of the qooxdoo locator strategies and tweak the locator generated
by the Inspector to make sure it works all the time. Once you get the hang of the
locators, as you write many integration test cases, you might write the test cases
using one or many locator strategies directly, without the help of the inspector
component. But, the inspector component is very useful to inspect the widget,
to find out the widget properties, to find out the widget hierarchy, and also to know
the hierarchical locator path. Inspector allows you to debug the locating strategies
and see which locator step is the issue and change the locator strategy for that
particular locator step.

Open the Inspector application and access the /teamtwitter/build/index.
html page, as shown in the following screenshot:

Testing and Debugging

[252]

Click on the Selenium button in the qooxdoo Inspector toolbar displayed at the top.
It displays the Selenium window of the inspector component. Click on the Options
icon at the top-right corner of the Selenium window, click on the Use default URI
button, and click on the OK button, as shown in the following screenshot:

If you do not have Internet access to connect to the default
source, or if you do not want to connect to the external
source, you can host the Selenium core in your local web
server and configure it in the Selenium window.

After configuring the Selenium core location, all the icons will get enabled in the
Selenium window.

Click on the Record icon (the red circle) to automatically record the commands for
the inspected widgets. Then, start inspecting the widgets to perform the necessary
actions for the tests.

Now, let's register, log in, tweet, and log out.

8. Let's write a test case to register a user. Make sure that you have executed the Time
for action sections of Chapter 6, Working with Forms and Data, where we enhanced
the UserSignUpForm class to use the features of the Form class. The integration
testing is performed on that version.

Click on the Record icon, click on Inspect widget, and click on the required widget.
Inspect the following widgets in the Inspector, edit the commands, and enter the
values in the Selenium window of Inspector:

Widget Command Value

Sign Up qxClick

User Name in Sign up form qxType user1

Email in Sign up form qxType user1@gmail.com

Chapter 7

[253]

Widget Command Value

Password in Sign up form Type Test

Confirm Password in Sign up form Type test

Register button in Sign up form qxClick

Try running those steps in Inspector, update the qxh locators with different
location strategies, find out the correct strategy that works always, and convert
it into a test case method. Create a simulation test class by extending it from
simulator.unit.TestCase. Create the TeamTwitter.js class under the
C:/teamtwitter_tests/source/class/teamtwitter_tests/simulation/
folder and add the testRegister() method, following the Simulator API and
Selenium Java client API. Restrict the use of child[n] locators.

9. Let's write a test case to log in as the user that we created in the previous test case.
Inspect the following widgets in the Inspector, edit the commands, and enter the
values in the Selenium window of Inspector:

Widget Command Value

Sign In qxClick

User Name in the login form qxType User1

Password in the login form Type t

Sign In button in login form qxClick

Text Area in Tweet Input widget qxClick

Add the testLogin() method to the Team Twitter test class.

10. Let's write a test case to tweet after login. Inspect the following widgets in the
Inspector, edit the commands, and enter the values in the Selenium window
of the Inspector:

Widget Command Value

Text Area in Tweet Input widget qxType Testing 123...

Tweet Button

Add the testTweet() method to the Team Twitter test class.

11. Let's write a test case to log out. Inspect the following widget in the Inspector:

Widget Command Value

logout qxClick

Testing and Debugging

[254]

Add the testLogout() method to the Team Twitter test class.

After your attempt, you can compare your code with the code in the 978-1-
849513-70-8_07_05.txt file under Chapter 7. Before running the Team
Twitter automated GUI tests, configure the qooxdoo framework for the Team Twitter
application details in the config.json file, under C:\teamtwitter_tests:

"jobs" :
 {
 "simulation-run" :
 {
 "environment" :
 {
 "simulator.testBrowser" : "*firefox3",
 "simulator.selServer" : "localhost",
 "simulator.selPort" : 4444,
 "simulator.autHost" : "http://localhost:8080",
 "simulator.autPath" : "/teamtwitter/build/index.html"
 }
 }
 }

12. Always, before running the automated GUI tests in qooxdoo, run the simulation-
build job to make sure the generated simulator setup picks up the latest test cases:

C:\teamtwitter_tests>generate.py simulation-build

Then, run the test cases by running the simulation-run job:

C:\teamtwitter_tests>generate.py simulation-run

==

 EXECUTING: SIMULATION-RUN

==

>>> Initializing cache...

>>> Running Simulation...

>>> Loading Simulator...

>>> Load runtime: 125ms

>>> Simulator run on Thu, 06 Oct 2011 16:09:18 GMT

>>> Application under test: http://localhost:8080/teamtwitter/
build/index.html

>>> Platform: Windows 7

Chapter 7

[255]

>>> User agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US;
rv:1.9.2.23) Gecko/20110920 Firefox/3.6.23

>>> PASS teamtwitter_tests.simulation.TeamTwitter:testRegister

>>> PASS teamtwitter_tests.simulation.TeamTwitter:testLogin

>>> PASS teamtwitter_tests.simulation.TeamTwitter:testTweet

>>> PASS teamtwitter_tests.simulation.TeamTwitter:testLogout

>>> Simulator run finished in: 2 minutes 22 seconds.

>>> Main runtime: 142140ms

>>> Finalize runtime: 0ms

C:\teamtwitter_tests>

What just happened?
We have downloaded necessary software and set up the environment for integration testing.
We have explored the simulator and inspector components in the qooxdoo framework.
We learnt different widget-locating strategies used by the simulator component and used
the Inspector application to identify the locators for the widgets. Based on the locators that are
identified by the Inspector, and by tweaking the location strategy, we wrote the test cases for
the Team Twitter application and ran those test cases through the simulator component.

Debugging
Debugging is a process of going through the code, analyzing it, and identifying the defect in the
code. Analysis can be done either with the logs or by checking the code, line by line, while it is
executing the function. To check the logs, first of all, you should add the debugging statements
in the code. The qooxdoo framework supports different log levels, such as, debug, info, warn,
and error. Based on the log level set, qooxdoo generates the log messages.

If you cannot pinpoint the issue on the code, you can do active debugging by placing
breakpoints in the code and checking the code execution in the flow. There are different
tools available to help us to debug the JavaScript in the browser. Firebug is one of the most
popular add-ons for the Mozilla Firefox browser, and IE developer tools is one of the more
popular tools for Internet Explorer.

Whenever you get an error for an operation, the first thing to check is the log. Normally, the
production application runs with error log levels. You can check if the application generates
an error log for that operation. Sometimes, the issue may be straightforward and easily
interpretable from the error log. If you cannot interpret directly from the error log, and if you
need more detail, you can run the application in debug mode and get the log messages at
the debug level, too.

Testing and Debugging

[256]

Logging statements in qooxdoo code
Similar to log4j, the qooxdoo framework includes four different logging methods, and
all these logging methods are defined in the qx.core.Object class. Therefore, these
methods are directly available for use inside any class, as any class can be inherited from
the qx.core.Object class.

The logging methods are:

 � debug(String message): Fine-grained informational events that are most
useful to debug an application

 � info(String message): Informational messages that highlight the progress
of the application at coarse-grained level

 � warn(String message): Potentially harmful situations

 � error(String message): Error events

Debug level is the lowest log level—it produces all log messages till the debug-level; the
error level is the highest log level—it produces only the error log messages.

To use these methods, one can call the method directly with this reference and the argument
as either a string message or an object; if an object is passed, its dump will be displayed.

this.debug("Value of x:" + x);

Console object
The console is an object attached to the window object in the web page. In Firebug for
Firefox, the object is attached only if the Console panel is enabled. The console.log()
method allows one to inspect the object that is passed.

In contrast to the debug() method, the developer can pass any object to console.log().
Firebug allows the developer to inspect the object in a structured way. This is much easier to
navigate than to skim through pages of source output.

The console object supports the following patterns in string formatting:

Pattern Type

%s String

%i Numeric formatting (not yet supported)

%f Floating point number (numeric formatting is not yet supported)

%o Object hyperlink

%c Style formatting

Chapter 7

[257]

In addition to the log method, the console object provides many more methods, such as,
debug, info, warn, error, and so on.

You can measure the time taken for certain operations by using the time() and timeEnd()
methods. For example:

console.time("operation1");

console.timeEnd("operation1");

If you want detailed reports in the JavaScript profiler, you can use the console.profile()
and console.profileEnd() methods.

Trace
The trace method logs the current stack trace, by using the defined logger. This can be
useful to inspect from which method the current function was called.

qx.dev.Debug
Including all the earlier mentioned methods, qooxdoo provides the qx.dev.Debug class—a
static class with some static methods to debug an object recursively or up to a certain level
of recursion:

var myTest = {a:1, b:[2,3], c:4}
qx.dev.Debug.debugObject(myTest)

This will display the following output:

1665905: Object, count=3:

a: 1

b: Array

0: 2

1: 3

c: 4

Testing and Debugging

[258]

Variant qx.debug
A developer normally wants to have some debugging statements in the development cycle, but
these debugging statements should not get delivered in the build version. To control this, the
qooxdoo framework provides a variant named qx.debug. Possible values for this variant are
on and off. By default, it is set to on in the source version, and to off in the build version. You
can make use of this variant while writing the debug statements in the code, as follows:

If (qx.core.variant.isSet("qx.debug","on")) {
 This.debug("x : " + x);
}

Miscellaneous
qooxdoo provides some more good features to debug the disposal of the objects and remote
AJAX communication just by setting some properties, such as qx.disposerDebugLevel,
qx.ioRemoteDebug, and qx.ioRemoteDebugData. All these properties can be defined
in config.json on the particular jobs. For example, qx.disposerDebugLevel takes
an integer value, which specifies 1 as to provide debug information for all the qooxdoo
objects and 2 as to provide some of the non qooxdoo objects, too. As the debug level value
increases, more debug information is printed.

{
"jobs" :
 {
 // existing jobs ...
 "source-disposerDebug" :
 {
 "desc" : "source version with qx.disposerDebugLevel, for
 destruct support",
 "extend" : ["source"],
 "settings" :
 {
 "qx.disposerDebugLevel" : "1"
 }
 }
 }
}

Chapter 7

[259]

Introduction to Firebug
Firebug is advanced, powerful, and the most popular web development tool. There is an
add-on for the Mozilla Firefox browser. For other browsers, Firefox Lite can be used. Firebug
provides multiple tabs, such as console, HTML, CSS, Script, DOM, and so on, to support
many features. It has many configuration parameters to configure what types of errors are to
be displayed and which are to be ignored.

The best features provided by Firebug are as follows:

 � Quickly find errors in JavaScript, CSS, and so on.

 � Inspect HTML and modify style and layout in real-time.

 � Use the most advanced JavaScript debugger available for any browser. This allows
step-by-step debugging, similar to the debugging tools of an IDE.

 � Accurately analyzes network usage and performance.

 � Supports extending this Firebug to add your own features.

 � Stack display of method calls at any break point.

 � Excellent display of DOM and objects on watch.

 � Provides a command line interceptor to run any JavaScript command.

For more information on Firebug, have a look at getfirebug.com.

Installing the Firebug add-on
If you are using the Mozilla Firefox browser, go to Tools | Add-ons. It pops up the Add-
ons window. Click on the Extensions tab, check whether you have the Firebug (Web
development Evolved) add-on already installed. If not, go to the Get Add-ons tab, search
for Firebug, select the Firebug add-on, and add it to Firefox. Make sure you have Internet
access, to enable Firefox to search for the add-on.

Alternatively, you can download the Firebug add-on (firebug-x.y.z.xpi) from the site
http://getfirebug.com/ and install it in Firefox.

IE developer tools
The IE developer tools provide similar functionalities for the Internet Explorer browser. From
IE8, these tools is integrated with the Internet Explorer browser.

Testing and Debugging

[260]

Tracing through AOP
qooxdoo supports aspect-oriented programming too. qooxdoo provides the base class
qx.core.Aspect to attach functions (aspects) before or after each function call of all
functions defined in a class.

The methods include:

 � addAdvice (Function funRef, String position, String type, String/
RegExp name): Adds the advice, where:

 � funRef is the function to be called before or after the function name given.

 � position tells when to call the function just mentioned. Possible values
are before or after. The default value is after.

 � type is the function type. Possible values are member, static,
constructor, destructor, property and null or *. The default
is null.

 � name: Name of the function to be wrapped.

 � wrap (String fullName, function funRef, String type): Returns the
wrapped function, where:

 � fullName is the full name of the function and includes the class name, too

 � funRef is the function to be wrapped

 � type is the type of the wrapped function

One can enable or disable the aspects by setting the variant qx.aspects to on or off, in
the jobs description, under variants. Other possible variants are:

 � qx.client: Specifies type of browser; this is an auto-detected variant

 � qx.debug: You can turn on or off the debug statements; defaults to on

 � qx.dynlocale: Dynamic locale switches on or off; defaults to on

The output log statements are displayed on the console.

Time for action – debugging
1. Web development tools, such as Firebug, provide lots of useful functionalities to

debug the applications in real-time. You can place breakpoints, inspect the object,
do interactive debugging, and so on. We will explore those features now. You should
load the source version of the Team Twitter application to debug the application.
You can do this by entering the following in your browser:

http://localhost:8080/teamtwitter/source/index.html

Chapter 7

[261]

2. In the Team Twitter application, after login, you have to remove the login form
and display the tweet input section. In the C:/teamtwitter/source/class/
teamtwitter/ui/UserLoginForm.js file, intentionally create an issue by
changing the code in the loginUser() method, as mentioned in the following
code snippet. Replace _this.getLayoutParent().getLayoutParent().
refreshLayoutAfterLogin(); with _this.getLayoutParent().
refreshLayoutAfterLogin();.

Let's see how to debug and identify the issue. Rebuild the Team Twitter application
and deploy it by running following commands:

ant dist

ant deploy

3. Let's debug the login operation in the Team Twitter application. Open the Team
Twitter source version and enable all panels of Firebug. Firebug has many panels,
namely, Console, HTML, CSS, Script, DOM, and Net. It also allows you to add a
custom panel, if you want to extend Firebug. Some of the tabs are:

 � Console tab: Displays JavaScript log messages. You can enter JavaScript
commands after the >>> at the bottom of the Console tab. You can see
the error for the issue in the following screenshot. It says TypeError: _this.
getLayoutParent().refreshLayoutAfterLogin is not a function. Sometimes,
these error messages will give a direct clue to fix the issue. Sometimes, you
need to debug further in the Script tab. In this case, let's debug further in
the Script tab to pinpoint the issue:

Testing and Debugging

[262]

 � HTML tab: Shows HTML as an indented hierarchy of DOM nodes, which
you can open and close to see or hide child nodes. This even displays the
structures that were generated in runtime.

 � CSS tab: CSS inspector that allows you to view all loaded style sheets, to
modify styles on the fly.

4. The Script tab shows the JavaScript files and the calling document. You can see the
list of included JavaScript files and select one to view from this pane, by clicking
on the drop-down list on the top of the Firebug window. You can select the drop-
down list and type in to filter the list of JavaScript files. In the following screenshot,
searching for user, it shows all the JavaScript files starting with "user". You can set
the breakpoints and conditions under which the break points appear to examine the
flow. To analyze the issue further, let's open the UserLoginForm.js file and add a
breakpoint for the login operation to debug the issue:

Place a couple of breakpoints in the userLoginForm.js file, including the
breakpoint at the exact line of error. When you log in now, the execution flow will
stop at the breakpoint. You can use the debugging operations:

 � continue (F8): Continues the flow and stops at the next breakpoint, if
there is one

 � step into (F11): Gets into the method to check the execution flow inside
the method

 � step over (F10): Goes to the next line of execution

 � step out (Shift + F11): Comes out of the current method and stops on
the next line

Chapter 7

[263]

As the error in the preceding screenshot is complaining about the function, the
function might have been called on a wrong reference.

5. After reaching the exact error location, let's inspect the references in the Watch
window. Inspect a few references in the Watch section. Inspection of _this.
getLayoutParent() shows this as qx.ui.container.Composite. You are supposed
to call the refreshLayoutAfterLogin() method on teamtwitter.
ui.MainWidget. It is confirmed that you are calling on a wrong reference. Now,
you need to find the correct reference. Inspect different objects and references
to find out the MainWidget class. The reference _this.getLayoutParent().
getLayoutParent() shows this as teamtwitter.ui.mainWidget:

Testing and Debugging

[264]

Now replace the code line, _this.getLayoutParent().
refreshLayoutAfterLogin(); in the UserLoginForm.js file with _this.
getLayoutParent().getLayoutParent().refreshLayoutAfterLogin();.

Rebuild the Team Twitter application and deploy and check it. You will find that the
issue is resolved and the layout is refreshed, after login.

The DOM tab shows all the page objects and properties of the window object.
As variables are properties of the window object, Firebug displays all JavaScript
variables and their values.

The Net tab shows all the downloads, how long each resource took to download,
the HTTP request headers, and the server response sent for each resource. The
XHR sub tab available in the Net tab is very useful for AJAX debugging.

6. Let's trace the Team Twitter application throwing AOP. Add a couple of methods,
in Application.js, that you want to call before and after the execution of
the method:

beforeAdvice : function(e) {
 this.debug("before calling method:"+ e);
},

afterAdvice : function(e) {
 this.debug("after calling method:"+ e);
},

Set the following advices in Application.js:

qx.core.Aspect.addAdvice(this.beforeAdvice, "before", "*",
"teamtwitter.ui.*");
qx.core.Aspect.addAdvice(this.afterAdvice, "after", "*",
"teamtwitter.ui.*");

The updated Application.js is available as a file named 978-1-849513-70-
8_07_06.txt under Chapter 7.

Update the C:/teamtwitter/config.json file to enable the aspects:

 "jobs" :
 {
 "source" :
 {
 "require" :
 {
 "qx.Class" : ["aspects.Aop"]
 },

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7

[265]

 "variants" :
 {
 "qx.aspects" : ["on"],
 "qx.debug" : ["on"]
 },
 "settings":
 {
 "qx.enableAspect" : true
 }
 }
 }

The updated config.json is available as a file named 978-1-849513-70-
8_07_07.txt under Chapter 7

Rebuild the Team Twitter application and deploy and check it. You will see the
tracing information in the console, as mentioned in the following screenshot:

What just happened?
We have learnt the qooxdoo framework support for debugging the applications. We have
also learnt various ways to write debug statements in the code and to prevent sending the
debug messages in the production version. We have learnt to add aspects to the qooxdoo
code. We have learnt how to install the Firebug add-on for the Mozilla Firefox browser,
explored the development features supported by Firebug, and used those features to debug
an issue in the Team Twitter application.

Pop quiz
1. Unit test case class should inherit from the class

a. qx.dev.unit.TestCase

b. simulator.unit.TestCase

c. Either one

Testing and Debugging

[266]

2. What are the components of the qooxdoo framework used in integration testing

a. testrunner

b. simulator

c. inspector

d. All of the above

3. The qooxdoo framework provides the following jobs to support integration tests

a. simulation-configure

b. simulation-build

c. simulation-run

d. All of the above

4. Integration test case classes should be under which namespace or package

a. aplication-namespace.test

b. aplication-namespace.simulation

5. The qooxdoo framework uses which client driver of Selenium RC server

a. Java client driver

b. Perl client driver

c. Python client driver

d. PHP client driver

e. Ruby client driver

6. Which locator strategy is best for qooxdoo applications

a. XPath locators

b. DOM locators

c. CC locators

d. qooxdoo locators

7. Which is the lowest level in logging

a. info

b. debug

c. error

d. warn

Chapter 7

[267]

8. What are the variants supported by the qooxdoo framework

a. qx.client

b. qx.debug

c. qx.aspects

d. qx.dynlocale

e. All of the above

Summary
In this chapter, we have learnt how to perform unit test and integration test, and debug
the qooxdoo applications. We tested and debugged our Team Twitter application.

We especially:

 � Created the environment for unit test, wrote a few unit test classes, and ran those
classes against the Team Twitter application

 � Created the environment for integration test

 � Learned the widget-locating strategy for qooxdoo applications

 � Wrote few integration test classes and ran them against Team Twitter application

 � Learned to write debugging statements in qooxdoo code

 � Learned to add advices through AOP programming in qooxdoo

 � Learned to use the powerful web development tool, Firebug

 � Debugged an issue in the Team Twitter application using Firebug

We have learned about testing and debugging for qooxdoo applications and tried the
concepts in our Team Twitter application. Now, we can debug and resolve issues and
write test cases to validate any change in the application.

In the next chapter, we will learn to internationalize qooxdoo applications and make
our application, Team Twitter, available in other languages including English.

8
Internationalization

This chapter explains the framework support for adapting qooxdoo applications
to different languages and regions.

Up until the previous chapter, we have learnt to develop, debug, and test qooxdoo
applications, and we even created our Team Twitter application and wrote some unit-test
cases and automated-test cases. Now, it is time to learn to localize the application to multiple
languages and regions. qooxdoo allows the translation of a new or an existing application to
multiple languages, just by following some simple steps or an internationalization process. We
will learn how to extract and translate messages into different languages and locales easily,
without any code changes.

In this chapter, we shall cover the following topics:

 � Introduction to qooxdoo internationalization

 � Writing code for internationalization

 � Writing PO files for various languages

 � Running applications in multiple languages

Let us learn how to deliver qooxdoo applications in multiple languages and regions.

Internationalization
i18n is a standard industry abbreviation for internationalization (because there are 18
letters between i and n). Similarly, localization can be abbreviated as l10n.

Internationalization

[270]

Internationalization is a process of adapting the applications or software to different
languages and regions. In qooxdoo, internationalization is divided into two distinct areas,
namely, localization and translation.

Localization is the process of displaying the date (whether 03/28/1999 or 28/03/1999), time
(the 24-hour or the A.M. /P.M. clock), number formats (decimal separator), and so on. Based
on the region, qooxdoo supports all languages and locales, where locale defines the language,
country, currency, time, and any specific variant preferences. en, en_US, and en_UK are three
different locales that are used in English-speaking countries and differ, based on the regions.
All these three locales inherit from the en locale, and each locale defines the deviation from
the en locale. qooxdoo supports the fallback chain of locale settings; it looks up in the specific
locale (that is, en_US), then in en, and then in C, which is the ancestor to all locales. To
achieve the same, qooxdoo uses data from Common Locale Data Repository (CLDR).

Translation is the process of translating the visible text, such as labels, headings, help
messages, and so on, into the specific language. qooxdoo provides tools to simplify the tasks
in the process.

There are a few things we need to do to deliver the qooxdoo applications in multiple
languages. We will see all those things one by one.

Writing code to use internationalization
qooxdoo framework makes the translation to other languages very easy by identifying all
the localizable or translatable strings in the code and creates a separate .po file for each
language, where the .po file allows for editing the localized strings.

To simplify the translation process, the framework provides a set of classes under the
qx.locale package; it includes many of the static classes, such as, String, Number, Key,
Date, a Manager class, and so on, to set or reset the language preferences or locale. The
whole set of classes are listed in the following screenshot, for reference:

Chapter 8

[271]

qx.locale.Manager
The Manager locale provides static translation methods, such as, tr(), trn(), and so on.
It also provides general locale API to set or reset the locale, language, and so on. It mainly
manages internationalization and changes the translation map, based on the change of the
locale; for this purpose, manager has the methods, addTranslation(), addLocale(),
and others.

The following code snippet will retrieve the information on all languages that are present in
the application:

// log language and locale related info
var manager = qx.locale.Manager.getInstance();
this.info("Available locales:"+
 manager.getAvailableLocales());
this.info("Language:" + manager.getLanguage());
this.info("Locale:" + manager.getLocale());

The output of this code snippet will be:

Available locales: ["de", "en", "fr"]

Language: "en"

Locale: "en_us"

The Manager locale allows the developer to set the language or locale, add the translation
map to a language, and so on. Refer to the API documentation for more information.

qx.locale.MTranslation
This is a mixin. It provides methods for marking the translatable strings in the classes. We
can go through the methods in this mixin in detail in the later section.

qx.locale.String, qx.locale.Number, qx.locale.Date, and qx.locale.Key
All these are static classes. They provide methods to get: locale-dependent string formatting
information (such as quotation signs), locale-dependent number formatting (such as decimal
separators), locale-dependent date information (such as names of weekdays, A.M. /P.M.,
start of the week, and so on).

Internationalization

[272]

To know more on these classes, please go through the demo browser for localization. A set
of statements are as follows for your reference:

info[(i++ * 2) + 1] = this.tr("Date format short:");
info[(i++ * 2) + 1] = qx.locale.Date.getDateFormat("short");
info[(i++ * 2) + 1] = this.tr("Date short:");
info[(i++ * 2) + 1] = (new qx.util.format.DateFormat
 (qx.locale.Date.getDateFormat("short"))).format(new Date());

info[(i++ * 2) + 1] = this.tr("Date format medium:");
info[(i++ * 2) + 1] = qx.locale.Date.getDateFormat("medium");
info[(i++ * 2) + 1] = this.tr("Date medium:");
info[(i++ * 2) + 1] = (new qx.util.format.DateFormat
 (qx.locale.Date.getDateFormat("medium"))).
 format(new Date());

info[(i++ * 2) + 1] = this.tr("Date format long:");
info[(i++ * 2) + 1] = qx.locale.Date.getDateFormat("long");
info[(i++ * 2) + 1] = this.tr("Date long:");
info[(i++ * 2) + 1] = (new qx.util.format.DateFormat
 (qx.locale.Date.getDateFormat("long"))).format(new Date());

info[(i++ * 2) + 1] = this.tr("Date format full:");
info[(i++ * 2) + 1] = qx.locale.Date.getDateFormat("full");
info[(i++ * 2) + 1] = this.tr("Date full:");
info[(i++ * 2) + 1] = (new qx.util.format.DateFormat
 (qx.locale.Date.getDateFormat("full"))).format(new Date());

info[(i++ * 2) + 1] = this.tr("Time format short:");
info[(i++ * 2) + 1] = qx.locale.Date.getTimeFormat("short");
info[(i++ * 2) + 1] = this.tr("Time short:");
info[(i++ * 2) + 1] = (new qx.util.format.DateFormat
 (qx.locale.Date.getTimeFormat("short"))).format(new Date());

info[(i++ * 2) + 1] = this.tr("Time format long:");
info[(i++ * 2) + 1] = qx.locale.Date.getTimeFormat("long");
info[(i++ * 2) + 1] = this.tr("Time long:");
info[(i++ * 2) + 1] = (new qx.util.format.DateFormat
 (qx.locale.Date.getTimeFormat("long"))).format(new Date());

Chapter 8

[273]

info[(i++ * 2) + 1] = this.tr("Week start:");
info[(i++ * 2) + 1] = qx.locale.Date.getDayName("wide",
 qx.locale.Date.getWeekStart());

info[(i++ * 2) + 1] = this.tr("Format of %1:", 10000.12);
info[(i++ * 2) + 1] =
 qx.util.format.NumberFormat.getInstance().format(10000.12);

The result of this code is displayed, with all the locale-related information, as shown in the
following screenshot. To view the information for different locales, use the Firebug console
and run the locale set method on locale manager.

qx.locale.Manager.setLocale("fr");

On refreshing the browser, the information related to the fr locale is as shown in the
following screenshot:

Let us get into the classes, in detail, to perform the translation.

A developer should identify the translatable strings using any of the following methods
available in the qx.locale.MTranslation mixin. Only then can the qooxdoo framework
recognize the strings to translate. Instead of hard coding the strings in the code, you should
use one of the following methods while dealing with translatable strings.

Internationalization

[274]

The methods available in the mixin are:

 � tr(String msgId, Object varargs): Marks the message for translation,
translates, and then returns a localized string object. The toString() method of
the returned object performs the actual translation, based on the current locale.
Variable arguments will be the parameter.

For example, see the following code snippet:

// this.tr usage
var userNameLab = new qx.ui.basic.Label
 (this.tr("User Name:"));

...
var passwordLab = new qx.ui.basic.Label(this.tr("Password:"));

// this.tr with variable args
alert(this.tr("Email address: %1, is not valid",
 emailField.getValue());

Variable arguments can be displayed easily, either by concatenating multiple strings
or by formatting the string with the % character. As sentences in different languages
can have different structures, it is always better to use the format string over string
concatenation. This is why all the translation methods support format strings such
as Email address: %1, is not valid as messages, and a variable number
of additional arguments. The additional arguments are converted to strings and
inserted into the original message. % is used as an escape character and the number
following % references the corresponding additional argument. These variable
arguments and formatting strings are common in all the translation methods
available in this MTranslation mixin.

 � trn(String singularMsgId, String PluralMsgId, int count, Object
varargs): Marks the messages for translation and translates and displays the
message as per the count; if count is greater than 1, then it is a plural message,
otherwise it is singular message. Having variable arguments is an optional
parameter.

For example, see the following code snippet:

var count = 2;
var label = new qx.ui.basic.Label(this.trn("Copied one file.",
 "Copied %1 files.", count, count));

Chapter 8

[275]

 � trc(String hint, String msgId, Object varargs): Translates a message
with an additional comment that can be used to add some contextual information
for the translator. This meaningful comment, hopefully, helps the translator in
finding the correct translation for the given string. Having variable arguments is an
optional parameter.

For example, see the following code snippet:

var label = new qx.ui.basic.Label(this.trc("Helpful comment
 for the translator", "Hello World"));

 � marktr(String msgId): Marks the message to translate and returns the
original message.

For example, see the following code snippet:

var label = new qx.ui.basic.label(this.marktr("Hello world"));

By default, this MTranslation mixin is included in many classes. The classes
that include the mixin by default are qx.ui.core.Widget, qx.ui.table.
columnmodel.Resize, and qx.application.AbstractGui. So, if the user
wants to identify the messages from any of the listed classes, they can directly
accesses methods available in the MTranslation mixin. In other cases, just
include the MTranslation, as shown in the following code snippet:

qx.class.define("UserClass", {
 extend : qx.core.Object,
 include : qx.locale.MTranslation,

……..
 members : {
 test : function() {
 this.tr("Good morning");
 }
 }
}

Use the methods in our Team Twitter application to identify the translatable strings in the
application, and generate the .po files for the desired languages, by following the steps in
the next section.

Writing PO files for various languages
qooxdoo provides tools to identify all the marked strings and generate the PO files for all the
languages that you support in your application. After generating the PO files, you can edit
those PO files using one of the many po-aware editors.

Internationalization

[276]

Time for action – generating PO files for Team Twitter
1. Identify all the string literals that you want to localize, and mark them using the

qooxdoo APIs. We will explain, here, with one of the widgets—UserSignUpForm—as
an example, and you can do it yourself, for the rest of the widgets. Update the file
C:\teamtwitter\source\class\teamtwitter\ui\UserSignUpForm.js,
to mark the string that you want to localize, as mentioned in the following code
snippet. This code is also available in the 978-1-849513-70-8_08_01.txt file
under Chapter 8.

_initLayout : function() {

 // setting a grid layout to the composite container
 this.setLayout(new qx.ui.layout.Grid(5,5));

 // creating the required fields with the headings as labels
 var userNameLab = new qx.ui.basic.Label
 (this.tr("User Name:"));
 var userNameField = new qx.ui.form.TextField();
 var emailLab = new qx.ui.basic.Label(this.tr("Email:"));
 var emailField = new qx.ui.form.TextField();
 var passwordLab = new qx.ui.basic.Label
 (this.tr("Password:"));
 var passwordField = new qx.ui.form.PasswordField();
 var confirmLab = new qx.ui.basic.Label
 (this.tr("Confirm Pass-word:"));
 var confirmField = new qx.ui.form.PasswordField();
 var contactNumLab = new qx.ui.basic.Label
 (this.tr("Mobile:"));
 var contactNumField = new qx.ui.form.TextField();
 var dobLab = new qx.ui.basic.Label(this.tr("DOB:"));
 var dob = new qx.ui.form.DateField();
 var genderLab = new qx.ui.basic.Label(this.tr("Gender:"));
 var radioGroup = new qx.ui.form.RadioButtonGroup();
 var male = new qx.ui.form.RadioButton(this.tr("Male"));
 radioGroup.add(male);
 var female = new qx.ui.form.RadioButton(this.tr("Female"));
 radioGroup.add(female);
 var remarksLab = new qx.ui.basic.Label(this.tr("Remarks:"));

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 8

[277]

 var remarks = new qx.ui.form.TextArea();
 var entryLab = new qx.ui.basic.Label(this.tr("Team:"));
 var entryList = new qx.ui.form.SelectBox();
 var lsItem = new qx.ui.form.ListItem("Team A", null, "1");
 lsItem.setUserData("value", "1");
 entryList.add(lsItem);

 // creating the action buttons
 var registerBtn = new qx.ui.form.Button(this.tr("Register"));
 var resetBtn = new qx.ui.form.Button(this.tr("Reset"));

2. Configure the required languages in the LOCALES macro, inside the let section of
your application's config.json file, thus:

"let" : {
 ……..
 "LOCALES" : ["en", "fr", "de"]
}

3. Once we mark all the translatable strings, .po files have to be generated for each
locale, where each .po file consists of locale-specific translated strings with the
locale's key. These .po files can be generated by running the translation job in
the generate.py as follows:

C:\teamtwitter\generate.py translation

Add the following target into our build.xml file, so that we can run from our ant
build, directly. Update the C:\teamtwitter-server\build.xml file, thus:

<target name="client.generate-translation">
 <exec executable="python" dir="${clientApplicationDir}">
 <arg value="generate.py" />
 <arg value="translation" />
 </exec>
</target>

Now, you can run the target client.generate-translation, as follows:

C:\teamtwitter-server> ant client.generate-translation

Internationalization

[278]

This command generates .po files for all the languages specified in the config.json
file in the LOCALES macro, within the global let section.

This adds English, French, and German translations to the project.

The generate translation command generates the locale-specific .po files.
In this case, it generates en.po, fr.po, and de.po, under the source\
translation folder.

All the language-related .po files were created under the translation folder, for
all the marked strings in the qooxdoo classes.

4. After generating the PO files, we need to edit them with the language-specific
translations. These .po files are the actual files with all the translated messages.
A developer can edit or add language-specific translated messages. As qooxdoo
internally uses well-established tools and formats for internationalization ("getText"
through polib), any po-aware editor, or a normal text editor, can be used to edit
these .po files.

If you use a normal text editor, you should make sure that the UTF-8
character set is used. If UTF-8 character set is not used, localization
will not work properly. So, it is advisable to use a po-aware editor.

A sample .po file for French, opened in a text editor, is as follows:

#
msgid ""
msgstr ""
"Project-Id-Version: 1.0\n"
"Report-Msgid-Bugs-To: you@your.org\n"
"POT-Creation-Date: 2011-06-16 12:32+0500\n"
"PO-Revision-Date: 2011-06-16 12:32+0500\n"
"Last-Translator: you <you@your.org>\n"
"Language-Team: Team <yourteam@your.org>\n"
"MIME-Version: 1.0\n" "Content-Type: text/plain; charset=utf-8\n"

Chapter 8

[279]

"Content-Transfer-Encoding: 8bit\n"
#: teamtwitter/ui/UserLoginForm.js:49
msgid "Login Form"
msgstr "Login Form"
#: teamtwitter/ui/UserLoginForm.js:54
msgid "User Name:"
msgstr "Nom d'utilisateur:"
#: teamtwitter/ui/UserLoginForm.js:57
msgid "Password:"
msgstr "Mot de passe:"
#: teamtwitter/ui/UserLoginForm.js:71
msgid "Sign In"
msgstr "Ouvrir une session"
#: teamtwitter/ui/UserLoginForm.js:72
msgid "Sign Up"
msgstr "Inscription"
#: teamtwitter/ui/UserSignUpForm.js:23
msgid "Sign Up Form"
msgstr "Inscription Formulaire"
#: teamtwitter/ui/UserSignUpForm.js:40
msgid "User Info"
msgstr "Infos utilisateurs"
#: teamtwitter/ui/UserSignUpForm.js:44
msgid "User Name"

Each translation string is a set of three-line blocks, and each block consists of a
comment as the first line; this is a hint containing the class file and line number
where the string is used. The second line holds the identifier we used in our
application. The third line currently holds an empty string. This is the place where
the translation should go for that specific string.

Some of the po-aware editors are:

 � KBabel (Linux)

 � Poedit (Linux, Windows, Mac OS X)

 � LocFactory Editor (Mac OS X)

http://kbabel.kde.org/
http://www.poedit.net/
http://www.triplespin.com/en/products/locfactoryeditor.html
http://www.triplespin.com/en/products/locfactoryeditor.html

Internationalization

[280]

To translate our Team Twitter application, let us start translating the text
using Poedit.

Poedit allows the user to load the languages in to translation DB and automatically
translates the strings to a new language. Another way to translate is to manually
edit the translated strings using any of the online translators, such as, Google
Translate, Yahoo Babel Fish, and others.

Chapter 8

[281]

After editing and saving the .po files, generate.py source run integrates the
translations into the application's source version and generate.py build run
integrates the translations into the application's build version. To get the effect of
the new translations, it can be simply reloaded within the browser.

generate.py translation run generates .po files for the first time, and later on,
the same command adds or merges the translatable strings in the existing .po files
and similarly updates the de (German) language strings into de.po file.

5. Once you edit the PO files and regenerate the application source version, or build
version, you can display the application in any of the locales that it supports. If
your browser uses, by default, the locale you added, you should already see the
application in the locale-specific language; otherwise, the developer can configure
qooxdoo's qx.locale.Manager to switch the locale. A developer can set this
locale in an application or use a Firebug console or IE developer console:

qx.locale.Manager.getInstance().setLocale("fr");
// or the locale you added

Internationalization

[282]

To dynamically change the languages in our Team Twitter application, we will add
a list of all supported languages in a list at the top-right corner. When the user
changes the language, the respective locale will be set to the locale Manager as
shown in the following code snippet. Update the file C:\teamtwitter\source\
class\teamtwitter\Application.js.

var langList = new qx.ui.form.SelectBox();
langList.add(new qx.ui.form.ListItem("English", null, "en"));
langList.add(new qx.ui.form.ListItem("French", null, "fr"));
langList.add(new qx.ui.form.ListItem("Italy", null, "it"));
langList.addListener("changeSelection", this.changeLanguage,
 this);

var layout= new qx.ui.layout.HBox();
layout.setSpacing(5); // apply spacing

var hBox = new qx.ui.container.Composite(layout);

hBox.add(new qx.ui.basic.Label(this.tr("Language:")));
hBox.add(langList);
hBox.set({
 alignX : "right",
 alignY : "middle"
});
doc.add(hBox, {
 left : 500,
 top : 0
});
doc.add(new teamtwitter.ui.MainWidget(), {
 left : 0,
 top : 25
});

changeLanguage : function(e) {
 var data = e.getData();
 qx.locale.Manager.getInstance().setLocale(data[0].
 getModel());
}

6. Compile, deploy, and run the application. A sample application screenshot,
on selecting the French language, is as follows. We have demonstrated the
internationalization only for the user registration form. So, change the language
to French and check the signup link.

Chapter 8

[283]

What just happened?
We learnt how to internationalize a qooxdoo application and localize the application for
multiple languages. We followed the procedure and commands for internationalization
and localized the Team Twitter application to different languages.

Pop quiz
1. The job available to generate or merge the .po files

a. generate.py build

b. generate.py source

c. generate.py translation

d. generate.py localize

Internationalization

[284]

2. The marktr() method marks and translates the given string

a. True

b. False

3. The mixin that provides functionalities to the tr, trn, trc, marktr functions is

a. qx.locale.String

b. qx.locale.Number

c. qx.locale.MTranslation

d. qx.locale.Manager

4. The MTranslation mixin was included, by default, in the classes

a. qx.ui.core.Widget

b. qx.ui.table.columnmodel.Resize

c. qx.application.AbstracGui

d. qx.core.Object

5. .po files that can be modified with normal text editors may be prone to UTF-8
character set issues

a. True

b. False

Summary
We learned a lot in this chapter about translation and localization.

Specifically, we covered:

 � Built-in internationalization and location support in qooxdoo

 � Editing PO files and online language translations

 � We also localized our Team Twitter application to the French (fr) and
German (de) languages

9
Working with Themes

This chapter explains the theme feature in qooxdoo framework. Themes
enable you to change the look and feel of the application. You can use one
of the themes available in the qooxdoo framework or you can customize the
theme for your requirement. You don't need to know CSS, as the theme is
configured in the qooxdoo classes. qooxdoo allows you to customize the
styles through themes.

In the last chapter, we internationalized the Team Twitter application and localized it to
multiple languages. Now, let us change the look and feel. In this chapter, we will explore the
Themes feature, change the themes to the different available themes in qooxdoo framework,
and then customize the theme for the Team Twitter application.

In this chapter, we will look at the following:

 � Meta theme

 � Color theme

 � Font theme

 � Decoration theme

 � Appearance theme

Let us explore the theme feature of the qooxdoo framework.

Working with Themes

[286]

Theme
qooxdoo allows you to keep the styles of the graphical user interface separately in the
themes feature, so that the style can be changed at any point of time, by changing the
theme and without needing to change the application code. The styles have to be defined in
qooxdoo-specific syntax, which will be internally converted to DOM style for the application.
For the style properties, you can refer to the respective classes. For instance, the possible
font properties are defined in the qx.bom.Font class.

qooxdoo framework provides a set of classes to manage themes in the application and
provides three different themes. It allows you to use one of them for your application (even
at runtime), or to customize the theme for your application, and enables you to develop your
own theme.

Class hierarchy of the theme package is shown in the following screenshot:

qooxdoo framework delivers three sets of themes, within the framework. They are the
Classic, Modern, and Simple themes. The Simple theme is introduced in qooxdoo 1.4.
The default theme set for any application is the Modern theme.

Chapter 9

[287]

Meta theme
When you create a qooxdoo application, qooxdoo framework creates a namespace or
package <application-namespace>.theme, with some auto-generated classes
extending the Modern theme classes to the application theme. One can check the directory
teamtwitter\source\class\teamtwitter\theme to see the classes Appearance,
Color, Decoration, Font, and Theme created, as shown in the following screenshot:

This theme allows you to define the meta configuration for each theme, namely, Font,
Color, Icon, Decoration, and Appearance. Each theme plays a specific role in the
application theme. As it allows you to configure all the themes in meta configuration, it
is also called as the Meta theme.

The generated classes for Font, Color, Decoration, and Appearance classes extend
respective classes from the package qx.theme.modern. The theme class sets the inherited
classes in the meta configuration. The code snippets in the following sections show the
generated theme classes for the application.

Working with Themes

[288]

Theme
qx.Theme.define("teamtwitter.theme.Theme",
{
 meta :
 {
 color : teamtwitter.theme.Color,
 decoration : teamtwitter.theme.Decoration,
 font : teamtwitter.theme.Font,
 icon : qx.theme.icon.Tango,
 appearance : teamtwitter.theme.Appearance
 }
});

Font
qx.Theme.define("teamtwitter.theme.Font",
{
 extend : qx.theme.modern.Font,

 fonts :
 {
 }
});

Color
qx.Theme.define("teamtwitter.theme.Color",
{
 extend : qx.theme.modern.Color,

 colors :
 {
 }
});

Decoration
qx.Theme.define("teamtwitter.theme.Decoration",
{
 extend : qx.theme.modern.Decoration,

 decorations :
 {
 }
});

Chapter 9

[289]

Appearance
qx.Theme.define("teamtwitter.theme.Appearance",
{
 extend : qx.theme.modern.Appearance,

 appearances :
 {
 }
});

You can change the theme from Modern to Classic by inheriting the classes from the
package qx.theme.classic. In qooxdoo 1.4 SDK, you can also change your theme to
the Simple theme, by inheriting the classes from the package qx.theme.simple.

Modern theme
The Modern theme is a graphically-rich theme, as shown in the following screenshot:

Working with Themes

[290]

To customize or change the theme, you have to edit the Font, Color, Decoration, and
Appearance classes, in the teamtwitter.theme package.

The following code snippet changes the Font class to use the Classic theme font. Similarly,
you have to inherit the Classic theme classes for other classes in the theme package.

qx.Theme.define("teamtwitter.theme.Font",
{
 extend : qx.theme.classic.Font,

 fonts :
 {
 }
});

Classic theme
The Classic theme is a MS Windows-oriented theme, as shown in the following screenshot:

Chapter 9

[291]

If you do not like a particular setting, either in the Font, Color, Decoration, or
Appearance theme, in the theme that you are inheriting, you can simply override it by
changing a setting in the application theme class. We will see that in the following sections.

When you create a custom widget, and you need to set the styles for the custom widget and
its child controls, you can define those in the theme classes and let the qooxdoo framework
apply the styles for you. This is something similar to defining styles in CSS and using them in
the HTML element. But, here, you need to define in the theme classes.

If you want to create a unique theme for your application from scratch, you can do that as
well. To do that, you need to define all the styles that are required by the qooxdoo framework,
in your theme. You can take a look at the classes of one of the themes in the qooxdoo
framework, and you can define your own style for all the configurations required for your
framework. In addition to the required configurations for your framework to function, you
can add your additional styles with your configuration keys and use them in your widgets.

Simple theme
The Simple theme is a lightweight theme and appears more like a website. It is available
with qooxdoo 1.4 and is shown in the following screenshot:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Working with Themes

[292]

You can change the theme at runtime, by calling the following API:

qx.theme.manager.Meta.getInstance().setTheme(qx.theme.Classic);

But changing the theme at runtime does not refresh the user interface perfectly, because
of the heavy caching and optimization in the theme feature. It is advisable to set a specific
theme for your application up front and to customize it as you wish.

Icon theme
qooxdoo provides two sets of icons in the qooxdoo framework. They are qx.theme.icon.
Oxygen and qx.theme.icon.Tango. Based on the icon in the meta configuration of the
theme, it uses the resources either from qooxdoo-sdk/framework/source/resource/
qx/icon/Oxygen or from qooxdoo-sdk/framework/source/resource/qx/icon/
Tango, as follows:

qx.Theme.define("teamtwitter.theme.Theme",{
 meta : {
 color : teamtwitter.theme.Color,
 decoration : teamtwitter.theme.Decoration,
 font : teamtwitter.theme.Font,
 icon : qx.theme.icon.Tango,
 appearance : teamtwitter.theme.Appearance
 }
}

Color theme
The Color theme defines all the colors used for various widgets in the framework. Each
color is defined by a unique key and a value, either in Hex (for example, #A7A6AA), RGB (for
example, 242, 242, 242), or in named colors (for example, white, black, and so on). The
unique key can be used at the places where you want to set the color for any widget, in the
qooxdoo framework and in your application.

The named colors in the qooxdoo framework are black, white, silver, gray, maroon,
red, purple, fuchsia, green, lime, olive, yellow, navy blue, teal, aqua, orange,
and brown. These named colors are defined in the class qx.util.ColorUtil.

Chapter 9

[293]

Font theme
The Font theme defines all the font types or variants used in the framework. It is quite
compact, as it defines a limited number of font types or variants. Both the Classic theme and
Simple theme use the same font style for a particular font type or variant, in any OS, but the
Modern theme uses different font styles for a particular font type or variant, based on the OS.

Decoration theme
Decorations are used to style the widget. In qooxdoo framework, decoration is an independent
layer around the widget content, so that the decorations, such as background image, color,
border, and so on, can be changed without any code change in the widget class.

The following schematic diagram illustrates the concept of decoration:

Widget (Container Element)

Decoration

Content

<div>, <input>, <image>, ...

Decorations are set to the shadow and decorator properties of the widget. They could
be applied separately or together; there is no dependency between them.

To make use of the decoration feature, you should avoid creating separate decorations
inside the application code; instead, create the decorations property inside the theme
and use it in the application code. This way, you can reuse the decorations for multiple
widgets and also maintain an independent layer in the theme.

Working with Themes

[294]

The following code snippet shows the definition for the selected decoration in
the Modern theme:

qx.Theme.define("qx.theme.modern.Decoration",{
 aliases : {
 decoration : "qx/decoration/Modern"
 },

 decorations : {

 "selected" : {
 decorator : qx.ui.decoration.Background,
 style : {
 backgroundImage : "decoration/selection.png",
 backgroundRepeat : "scale"
 }
 },
 //--------
 //--------
 }
}

This code snippet has two sections, namely aliases and decorations.

Aliases
The aliases section has an entry for the decoration with the value qx/decoration/
Modern. This adds an alias entry in the AliasManager class and verifies that the images
are found by the ResourceManager class. If you look further in the decorations
section, the backgroundImage property is set to decoration/selection.png. This
entry uses the decoration alias defined in the aliases section. The backgroundImage
property is finally resolved to qx/decoration/Modern/selection.png, in the
resource section of the application.

Decorations
The decorations section defines all the decorations that can be used in the qooxdoo
framework. Each decoration is defined against the decorator name, which is set to the
decorator property of the widget. It is recommended to define the decorator in the
Decoration theme and set the decorator in the Appearance theme, instead of setting
it directly in the application code of the widget. By doing so, you maintain the theme of
the application.

Each decoration definition in the theme contains two entries, namely, decorator and style.

Chapter 9

[295]

Decorator
The decorator key defines which decorator to use. Qooxdoo framework provides a set
of pre-defined decorator classes and mixins in the package qx.ui.decoration. You can
specify one of the decorator classes or set of mixins, based on the decoration requirement.

In the earlier code snippet, the decoration definition for "selected" uses the decorator
qx.ui.decoration.Background to set the background image of the selected item.
This is used in the Appearance theme of qx.ui.form.ListItem. There are different
decorators available for different purposes.

The class hierarchy of the decoration package is shown in the following screenshot:

Working with Themes

[296]

Available decorators in qooxdoo framework 1.4 are described as follows:

 � Background: Renders a background image or color.

 � Uniform: Similar to the Background decorator, but adds support for a uniform
border that is identical for all edges.

 � Single: Similar to the Background decorator, but adds support for separate borders
for each edge.

 � Double: Similar to the Single decorator, but with the ability to add two separate
borders to each edge.

 � Beveled: Pseudo (lightweight) rounded border with support for inner glow. May
contain a background image/gradient.

 � HBox: Uses three images in a row with a center image that is stretched horizontally.
Useful for widgets, with a fixed height, that can be stretched horizontally.

 � VBox: Uses three images in a column with a center image that is stretched vertically.
Useful for widgets, with a fixed width, that can be stretched vertically.

 � Grid: A complex decorator based on nine images. Allows much-customized styles
(rounded borders, alpha transparency, gradients, and so on). Optionally makes use
of image sprites to reduce image number.

If you want to write a custom decorator, you can either extend one of these decorators and
customize it or write one yourself from scratch, adhering to the interface of a decorator.

In addition to all these decorators, qooxdoo supplies a set of mixins that supply separate
features for decorators. All feature mixins can be used in combination to get an individual
decorator. The mixins also include some of the following features that are not available in
the standalone decorators:

 � MBackgroundColor: For drawing a background color

 � MBackgroundImage: For drawing a background image

 � MDoubleBorder: For drawing two borders around a widget

 � MSingleBorder: For drawing a single border

 � MBorderRadius: For adding a CSS radius to the corners

 � MBoxShadow: For adding a CSS box shadow to the widget (does not use the
shadow property)

 � MLinearBackgroundGradient: For drawing a linear gradient in the background

The last three mixins do not work cross-browser due to the fact that they rely on CSS
properties that are not available in all browsers.

Chapter 9

[297]

Style
The style key defines the values for the properties of the selected decorators or
mixins. In the earlier code snippet, the style map sets the backgroundImage and
backgroundRepeat properties of the decorator qx.ui.decoration.Background.

Writing new decorators
If the available decorators are not enough, you can write new decorators by implementing
the following interface methods:

 � getInsets: Returns a map of insets (space the decorator needs), for example, the
border width.

 � getMarkup: Returns the initial markup needed to build the decorator. This is
executed by each widget using the decorator. This method may not be used by some
decorators, and so is defined as an empty method.

 � init: Normally used to initialize the given element using getMarkup, it is only
executed once per widget.

 � resize: Resizes the given element to the given dimensions. Directly works on the
DOM to manipulate the content of the element.

 � tint: Applies the given background color or optionally resets it to the locally-defined
background color. This method may not be used by some decorators, and so is defined
as an empty method.

The resize and tint methods are the most-executed or are called many times (for
example, hover effects). Therefore, these method implementations should be light. The
getMarkup and init methods are called only once. Most of the things should be done in
these methods for performance reasons. Decorators are immutable; once they are used
somewhere, you cannot change them. qooxdoo framework creates only one instance for
each decoration configured. That instance is created on the first use.

Appearance theme
The Appearance theme describes the appearance of every widget, and its child widgets, to
which a theme can be applied. As the basic styling is done through the Decoration theme,
Color theme, Font theme, and Icon theme, the Appearance theme uses the definitions
of all the other themes. It is the central meeting point where all other themes (Decoration,
Font, Color, and Icon) get together. Whenever you want to customize a theme, the
Appearance theme is the first place to look for the widget style. You can customize the style
either in this theme itself or change the relevant item in the Decoration theme or Color
theme. As we should know about all the other themes to understand the Appearance
theme, we have covered them prior to this one.

Working with Themes

[298]

The following code snippet shows a couple of appearance definitions in the Modern theme:

qx.Theme.define("qx.theme.classic.Appearance",
{
 appearances :
 {

 "menu-button" :
 {
 alias : "atom",

 style : function(states)
 {
 return {
 backgroundColor : states.selected ?
 "background-selected" : undefined,
 textColor : states.selected ? "text-selected" : undefined,
 padding : [2, 6]
 };
 }
 },

 "menu-button/icon" :
 {
 include : "image",

 style : function(states)
 {
 return {
 alignY : "middle"
 };
 }
 },

 "menu-button/label" :
 {
 include : "label",

 style : function(states)
 {
 return {
 alignY : "middle",
 padding : 1
 };
 }
 }

 }
});

Chapter 9

[299]

All the appearance styles are defined under the appearances section of the Appearance
theme. Each appearance is defined against a key, which is the selector to identify the
appearance for the widget. This selector is basically matched with the appearance property
of the widget.

Appearance selector (key)
For the widgets, the selector key is matched with the appearance property of the widget.
This is not applicable to the child controls. For the child controls, the appearance property
of the parent widget and the ID of the child control are used to match the selector key.

For the qx.ui.menu.Button widget, the appearance property is set to "menu-button",
which is matched against the selector in the appearances. The Menu Button widget has four
child controls, namely, icon, label, shortcut, and arrow. For these child controls, the
appearance selector is a combination of the appearance property of the parent widget,
that is, "menu-button", and the ID of the child control, that is, icon, label, and so on.
Therefore, the appearance selector for the icon of the menu button is "menu-button/
icon" and for the label of the menu button is "menu-button/label". The separator
between the identifiers is the forward slash. This hierarchical selector continues to create
multiple levels, as the child control contains another child control within it, for example,
"tabview-page/button/label".

Another example is the Spinner widget. This widget contains a TextField property
and two RepeatButton properties. These three properties are created as child controls
with the IDs textfield, upbutton, and downbutton. Therefore, the selectors for these
child controls are "spinner/textfield", "spinner/upbutton", and "spinner/
downbutton", respectively.

For the appearance, you do not have to set anything explicitly on the widget. qooxdoo
framework automatically matches the appearance property of the widget, or the
hierarchical ID of the child control, with the appearance key in the Appearance theme
and applies the appearance style to the widget. You need to make sure the corresponding
appearance property is defined in the Appearance theme. Selectors for all the widgets
and child controls must be defined in the Appearance theme of the application. Otherwise,
a warning about the missing selectors is displayed.

Appearance entry (value)
The entry value in the appearances against the selector key can be defined in two different
ways, namely, string (alias) and map.

Working with Themes

[300]

Alias
The string value against the selector key is known as alias. This is basically a string that
redirects to another selector in the appearances property.

The following code snippet explains the alias in the Appearance theme:

qx.Theme.define("qx.theme.classic.Appearance",
{
 appearances :
 {

 "label" :
 {
 style : function(states)
 {
 return {
 textColor : states.disabled ? "text-disabled" : undefined
 };
 }
 },

 "image" :
 {
 style : function(states)
 {
 return {
 opacity : !states.replacement && states.disabled ?
 0.3 : undefined
 }
 }
 },

 "atom" : {},
 "atom/label" : "label",
 "atom/icon" : "image"
 }
});

The atom widget has two child controls, namely, label and icon. It reuses the
appearance style of generic Label and Image widgets. In the earlier code snippet,
it uses the following alias to define the same:

"atom/label" : "label",
"atom/icon" : "image"

Chapter 9

[301]

Appearance map
The map value against the selector key contains several key and value pairs. All the key and
value pairs in the map are optional.

qx.Theme.define("qx.theme.classic.Appearance",
{
 appearances :
 {

 "spinner" :
 {
 style : function(states)
 {
 return {
 decorator : states.focused ? "focused-inset" : "inset",
 textColor : states.disabled ? "text-disabled" : undefined
 };
 }
 },

 "spinner/textfield" :
 {
 include : "textfield",

 style : function(states)
 {
 return {
 decorator : undefined,
 padding: [2, 3]
 };
 }
 },

 "spinner/upbutton" :
 {
 alias : "button",
 include : "button",

 style : function(states)
 {
 return {
 icon : "decoration/arrows/up-small.gif",
 padding : states.pressed ? [2, 2, 0, 4] : [1, 3, 1, 3],
 backgroundColor : states.hovered ?
 "button-hovered" : "button"
 }
 }
 }
 }
});

Working with Themes

[302]

Style entry in the appearance map
Style entry is a method that returns a set of properties to be applied to the target widget.
This method takes a few parameters. The states parameter is a map that contains the
widget state keys, such as, focused, disabled, hovered, selected, and so on, and the
Boolean value to indicate the state of the widget. This parameter is passed always to the
style method, to react based on the state of the widget.

It is required that all the properties applied in one state be applied in all other states also.

The following snippet of code demonstrates an incorrect way of coding:

style : function(states)
{
 var result = {};
 if (states.hovered) {
 result.backgroundColor = "red";
 }
 // BAD: backgroundColor missing when widget isn't hovered!
 return result;
}

Instead, you should always define the else case and set it to undefined, as shown:

style : function(states)
{
 var result = {};
 if (states.hovered) {
 result.backgroundColor = "red";
 } else
 {
 //GOOD: There should be a setting for all possible states
 result.backgroundColor = undefined;
 }
 return result;
}

The undefined value means that no value should be applied. When
qooxdoo runs through the returned map, it calls the reset method for
properties with a value of undefined. In most cases, it would also be
perfectly valid to use null instead of undefined, but keep in mind that
null is stored using the setter (explicit null), and so it overrides values
given through the inheritance or through the init values. In short, this
means that undefined is the better choice in almost all cases.

Chapter 9

[303]

The include entry in the appearance map
alias applies all the styles of the referred appearance to the current appearance. In case
you want to use most of the style from an existing appearance and slightly change one
property, you can use an include key to use the styles of an existing appearance and,
optionally, you can overwrite few properties in the style method of appearance.

In qooxdoo framework 1.4, for the Modern theme, there is an optional second parameter,
superStyles, for the style method. This parameter is only available if an include key is
specified in the appearance. This parameter contains the styles of the included appearance.
This is very handy if you just want to overwrite certain properties, instead of completely
writing the styles again. To overwrite a property in superStyles, declare that property in
the style method and set the new value. To remove a property in superStyles, declare
that property in the style method and set it to undefined.

You don't have to return the edited superStyles. Appearance manager in the qooxdoo
framework automatically merges the superStyles parameter with the styles returned by
the style method. On merging, the styles returned by the style method get precedence
over the superStyles parameter; that is how it overwrites the values in superStyles.

You can just include an existing appearance without overwriting any styles in the style
method. This has the same effect of referring to the appearance with alias. In this case,
alias is the better choice, as it performs well compared to include.

The include entry does not affect child controls. It just affects the current selector.

The alias entry in the appearance map
Child control aliases are compared to the normal aliases mentioned earlier; they just define
aliases for the child controls. They do not redirect the local selector to the selector defined
by the alias.

An example to make this clearer is given as follows:

qx.Theme.define("qx.theme.modern.Appearance",
{
 appearances :
 {
 [...],
 "spinner/upbutton" :
 {
 alias : "button",
 style : function(states) {

Working with Themes

[304]

 return {
 padding : 2,
 icon : "decoration/arrows/up.gif"
 }
 }
 },
 [...]
 }
});

The result mapping would be similar to the following:

"spinner/upbutton" => "spinner/upbutton"

"spinner/upbutton/icon" => "button/image"

"spinner/upbutton/label" => "button/label"

As you can see, spinner/upbutton is kept in its original state. This allows one to just
refine a specific outer part of a complex widget, instead of the whole widget. It is also
possible to include the original part of the button in spinner/upbutton, as well. This is
useful to override just a few properties, as seen in the following example:

qx.Theme.define("qx.theme.modern.Appearance",
{
 appearances :
 {
 [...],
 "spinner/upbutton" :
 {
 alias : "button",
 include : "button",
 style : function(states)
 {
 return {
 padding : 2,
 icon : "decoration/arrows/up.gif"
 }
 }
 },
 [...]
 }
});

Chapter 9

[305]

The result mapping would be similar to the following:

"spinner/upbutton" => "button" + styles overridden in style method.

"spinner/upbutton/icon" => "button/image"

"spinner/upbutton/label" => "button/label"

When alias and include are identically pointing to the same selector, the result is
identical to the alias string value mentioned against the selector key, as we mentioned in
the alias section under Appearance entry (value) section in this chapter. Optionally, you can
override a few properties in the style method of appearance.

Base calls
In the functions of qooxdoo classes, we call this.base(<arguments>) to call the
overwritten function of the super class. Similarly, in the Appearance theme, you can enable
the base flag to include the definitions of this selector key from the derived theme. In the
following code snippet, the myapp Appearance theme extends the classic Appearance
theme. For the "spinner/textfield" selector key, if you set true for the base flag, it
includes all the definitions of the "spinner/textfield" selector key from the classic
Appearance theme.

qx.Theme.define("myapp.theme.Appearance",
{
 extend : qx.theme.classic.Appearance,
 appearances : {
 [...],
 "spinner/textfield" : {
 base : true,
 style : function(states) {
 return {
 property : states.hovered ? value1 : value2
 };
 }
 },
 [...]
 }
}

Working with Themes

[306]

So, user can define the appearance definitions through one of the following options:

 � Define locally through style method

 � Include the definitions through include key

 � Enable base flag to include the definitions from the extended Appearance theme

While merging the definitions from these three definitions, the preference is given in the
same order as it is mentioned above.

Performance
The appearance of each widget is rendered on change of the widget's state. As the
appearance is updated every time a widget's state changes, the theme feature is quite
expensive, and even a small variation has tremendous impact on the whole application's
performance. So, the qooxdoo framework has taken more care and improved performance
by implementing some impressive caching ideas.

The different caching techniques implemented in qooxdoo framework will be discussed now.

Appearance queue
This is the first and foremost improvement in theme handling. The improvement is made at
the display level. It depends on the visibility of the widget and on the visibility of the parent
widget. The qooxdoo framework queues up all the state changes of the visible widgets
and of the widget placed in a visible parent widget, delays the updates until the widget
gets visible again, and updates the screen once to avoid multiple updates. So, this queue
minimizes the effect of multiple state changes when they happen one after another and
combines all changes to a widget into one lookup in the theme.

For example, the hovered and focused state changes happen one after another. These
two updates are queued and the screen is updated once instead of twice. This queue really
improves the performance in heavy themes such as the Modern theme, because each click on
the GUI influences a few widgets at once, and, in each widget, a few state changes at once.

Selector caching
Secondly, selector caching caches all the detected and validated selectors for all the widgets.
As detection of the selector is quite complex with iterations up to the parent chain, the
framework caches all the resulting selectors of each widget. The cached selector gets
updated with any change in the appearance property of the widget. If the user sets the
appearance directly in the code instead of defining the appearance inside the theme classes,
qooxdoo framework has to redetect the selector with all iterations up to the parent chain.
This is repeated every time when the code is executed, basically when the appearance is set.

Chapter 9

[307]

So, the qooxdoo framework suggests not setting the appearance dynamically in the code and
suggests the use of the Appearance theme, to make use of the selector cache. The system
benefits more with child widgets, as these are never moved outside the parent, and the
cached selector can be used for a lifetime, for child widgets.

Alias caching
The next one is alias caching. The support for aliases is resolved once per application load.
So, after a while, all aliases are resolved to their final destination. This process is lazy and fills
the redirection map with selector usage. This is a relatively complex process. So, this process
of resolving all aliases is done only once and they are stored in the Appearance theme's
aliasMap map object. The developer can have a look at this map for all the resolved aliases,
just by typing qx.theme.manager.Appearance.getInstance().__aliasMap in the
interactive javascript console of Firebug. It just contains the fully resolved alias (aliases
may redirect to each other as well). The output looks similar to the following screenshot:

Working with Themes

[308]

Result caching
The final caching implemented in the framework for themes is the result caching for a
specific set of states. This may be the most massive source of performance tweaks in the
system. On first usage, qooxdoo caches the appearance based on state. For example, the
result of the button with the hovered and focused states. The result is used for any further
requests for an Appearance theme with the identical set of states. This caching is, by the
way, the most evident reason why the appearance property has no access to the individual
widget. The result caching also reduces the overhead of the include and base statements,
which are quite intensive tasks because of the map merge character with which they have
been implemented. As with alias caching, result caching can be seen by typing the following
in the interactive javascript console of Firebug—qx.theme.manager.Appearance.
getInstance().__styleCache—where this style cache stores all the resulting styles of
each widget. A sample style cache is shown in the following screenshot:

Chapter 9

[309]

Time for action – customizing themes for Team Twitter
1. Update the Team Twitter theme classes under the following directory, to use the

Classic theme:

C:\teamtwitter\source\class\teamtwitter\theme

teamtwitter.theme.Font extends qx.theme.classic.Font
teamtwitter.theme.Color extends qx.theme.classic.Color
teamtwitter.theme.Decoration extends qx.theme.classic.Decoration
teamtwitter.theme.Appearance extends qx.theme.classic.Appearance

Rebuild the application (dist), deploy it (deploy), and check the look and feel of
the Team Twitter application.

2. Change the background color scheme for the Team Twitter application. You should
know the correct keys to set the color used by the qooxdoo framework. A few
keys may be different in different themes, based on the theme requirement. The
background color is used to set the background color of the root pane and most
of the container widgets. The background-selected color is used to set the
background color of the selected item in the List or SelectBox.

The following code snippet sets a couple of background color theme configurations:

qx.Theme.define("teamtwitter.theme.Color",
{
 extend : qx.theme.classic.Color,

 colors :
 {
 "background" : "teal",
 "background-selected" : [0, 75, 75]
 }
});

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Working with Themes

[310]

Rebuild the application (dist), deploy it (deploy), and check the look and feel of
the Team Twitter application.

3. Increase the font size and change the font families in the Font theme for the Team
Twitter application.

The following code snippet overrides font definition for the default and bold font
types or variants. The updated copy of the file Font.js is available as code file 978-
1-849513-70-8_09_01.txt under Chapter 9 in the support files for this book.

qx.Theme.define("teamtwitter.theme.Font",
{
 extend : qx.theme.classic.Font,

 fonts :
 {
 "default" :
 {
 size : 12,
 lineHeight : 1.4,
 family : ["Helvetica"]
 },

Chapter 9

[311]

 "bold" :
 {
 size : 13,
 lineHeight : 1.4,
 family : ["Lucida Grande"],
 bold : true
 }
 }
});

You can set values for all the properties in the qx.bom.Font class. The properties
available are bold, color, decoration, family, italic, lineHeight, and size.

Rebuild the application (dist), deploy it (deploy), and check the look and feel of
the Team Twitter application.

4. As the default qx.ui.groupbox.GroupBox border does not suit the Color
theme, let us customize that in our decoration theme to match our color scheme.
If you check the appearance theme for the qx.ui.groupbox.GroupBox, you will
find that it uses the "groove" decorator. Let us customize that decorator.

The following code snippet customizes the "groove" decorator:

qx.Theme.define("teamtwitter.theme.Decoration",
{
 extend : qx.theme.classic.Decoration,

 decorations :
 {
 "groove" :
 {
 decorator : qx.ui.decoration.Double,

 style :
 {
 width : 2,
 innerWidth: 1,
 color : ["border-dark-shadow", "border-light",
 "border-light", "border-dark-shadow"],
 innerColor : ["border-light", "border-dark-shadow",
 "border-dark-shadow", "border-light"]
 }
 }
 }
});

This code just changes the width of the "groove" decorator to 2, keeping the
innerWidth as 1.

Working with Themes

[312]

5. Update the Color theme further to change the colors to match the color scheme.
Also, we will change the colors of the text fields and buttons to match the color
scheme.

The following code snippet customizes the Color theme, again:

qx.Theme.define("teamtwitter.theme.Color",
{
 extend : qx.theme.classic.Color,

 colors :
 {
 "background" : "teal",
 "background-selected" : [0, 75, 75],

 "border-light" : "#00E1E1",
 "border-dark-shadow" : "#003232",

 „background-field" : „#96FFFF",
 „background-focused" : „#78FFFF",

 „button" : „#00C8C8",
 „button-hovered" : „#00A0A0"
 }
});

Rebuild the application (dist), deploy it (deploy), and check the look and feel
of the Team Twitter application. After the customization, the screen of the Team
Twitter appears as shown in the following screenshot:

Chapter 9

[313]

6. Let us update the appearance for the custom widget, CTweet.js, under C:/
teamtwitter/source/class/teamtwitter/ui. We have already created the
style in the inline code of our CTweet class. Now, we can move these styles into
the theme, so that the style can be changed just by changing the theme instead of
having to touch the code.

Working with Themes

[314]

The following snippet of code shows the creation of child controls in
the CTweet widget:

// overridden
_createChildControlImpl : function(id, hash)
{
 var control;
 switch(id)
 {
 case "userImg":
 //create user image
 var control = new
 qx.ui.basic.Image("teamtwitter/identity.png");
 control.set({
 width : 50,
 height : 50,
 scale : true
 });
 this._add(control, {row : 0, column:0, rowSpan : 2});
 break;

 case "tweetLog" :
 // create user label
 this.userLabel = new qx.ui.basic.Label("<a style = 'color:
 rgb(126, 26, 26);text-decoration:underline'>" +
 this.getUserName() + "");
 this.userLabel.setRich(true);
 this.userLabel.setSelectable(true);
 this.userLabel.setCursor("pointer");
 this.userLabel.addListener("click", this.userNameClicked,
 this);
 // time label
 this.dateTimeLabel = new qx.ui.basic.Label(" at " +
 this.getTime() + " on "+ this.getDate());
 control = new qx.ui.container.Composite();
 control.setLayout(new qx.ui.layout.HBox());
 control.add(this.userLabel);
 control.add(this.dateTimeLabel);
 this._add(control, {row : 1, column:1});
 break;

 case "tweetData" :
 // creating the required fields with the headings as labels
 control = new qx.ui.basic.Label("");

Chapter 9

[315]

 control.setRich(true);
 control.setSelectable(true);
 // adding the created fields
 this._add(control, {row : 0, column:1, colSpan : 2});
 break;

 case "more":
 // create responses label
 control = new qx.ui.basic.Label("<a style = 'color:
 rgb(126, 26, 26);text-decoration:underline'>
 More Responses");
 control.set ({
 rich : true,
 selectable : true,
 cursor : "pointer",
 alignX : "right"
 });
 control.addListener("click", this.moreClicked, this);
 this._add(control, {row : 1, column:2});
 break;
 }
 return control;
}

The above code is setting styles on the controls. It is recommended to set all styles
in the themes, so that you maintain the styles on a separate layer.

The following code snippet shows the updated code that does not set styles directly
in the code. It is better to separate the tweetLog child control into two, namely,
tweetUser and tweetLog, so that separate styles can be used for those two child
controls. The updated copy of the file CTweet.js is available as code file 978-1-
849513-70-8_09_02.txt under Chapter 9 in the support files for this book.

_createChildControlImpl : function(id, hash) {
 var control;
 switch(id) {
 case "userImg":
 //create user image
 var control = new
 qx.ui.basic.Image("teamtwitter/identity.png");
 this._add(control, {row : 0, column:0, rowSpan : 2});
 break;

 case "tweetUser" :
 // create user label

Working with Themes

[316]

 this.userLabel = new qx.ui.basic.Label("<a style =
 'text-decoration:underline'>" + this.getUserName() +
 "");
 this.userLabel.set ({
 rich : true
 });
 this.userLabel.addListener("click", this.userNameClicked,
 this);
 control = this.userLabel;
 this._add(control, {row : 1, column:1});
 break;

 case "tweetLog" :
 // time label
 this.dateTimeLabel = new qx.ui.basic.Label(" at " +
 this.getTime() + " on "+ this.getDate());
 control = this.dateTimeLabel;
 this._add(control, {row : 1, column:2});
 break;

 case "tweetData" :
 // creating the required fields with the headings as labels
 control = new qx.ui.basic.Label("");
 this._add(control, {row : 0, column:1, colSpan : 3});
 break;

 case "more":
 // create responses label
 control = new qx.ui.basic.Label("<a style =
 'text-decoration:underline'>More Responses");
 control.set ({
 rich : true
 });
 control.addListener("click", this.moreClicked, this);
 this._add(control, {row : 1, column:3});
 break;
 }
 return control;
}

To create these styles in the theme, the following changes are made to the
Appearance theme. The updated copy of the file Appearance.js is available as code
file 978-1-849513-70-8_09_03.txt under Chapter 9 in the support files for
this book.

qx.Theme.define("teamtwitter.theme.Appearance",
{
 extend : qx.theme.classic.Appearance,

Chapter 9

[317]

 appearances :
 {
 "tweet" : {
 style : function(states)
 {
 return {
 decorator : "tweet"
 };
 }
 },

 "tweet/userImg" : {
 include : "image",
 style : function(states)
 {
 return {
 width : 50,
 height : 50,
 scale : true
 }
 }
 },

 "tweet/tweetUser" : {
 include : "label",
 style : function(states)
 {
 return {
 textColor : "teamtwitter-link-text",
 cursor : "pointer",
 alignX : "right"
 }
 }
 },

 "tweet/tweetLog" : {
 include : "label",
 style : function(states)
 {
 return {
 alignX : "left"
 }
 }
 },

 "tweet/tweetData" : "label",

Working with Themes

[318]

 "tweet/more" : {
 include : "label",
 style : function(states)
 {
 return {
 textColor : "teamtwitter-link-text",
 cursor : "pointer",
 alignX : "right"
 }
 }
 }
 }
});

7. Now, add the decorator that is used in our Appearance theme. In the tweet
appearance, we used a decorator to add the border for the tweet widget. The
definition of that decorator should go into the Decoration theme, as mentioned
in the following code snippet. The updated copy of the file Decoration.js is
available as code file 978-1-849513-70-8_09_04.txt under Chapter 9.

"tweet" :
{
 decorator: qx.ui.decoration.Uniform,

 style :
 {
 width : 1,
 color : "border-tweet"
 }
}

8. During the process of customizing, we added a couple of colors in the Color theme,
as mentioned in the following code snippet. The updated copy of the file Color.js
is available as code file 978-1-849513-70-8_09_05.txt under Chapter 9 in
the support files for this book.

"teamtwitter-link-text" : [126, 26, 26],
"border-tweet" : "#003333"

After these customizations in the themes, the screen of the Team Twitter application
will appear as shown in the following screenshot:

Chapter 9

[319]

As said before, the Appearance theme is the first theme to start customization.
To start customization, look for the selector key of the Appearance theme based
on: the appearance value of the widget (for example, "button"), the hierarchical
ID, or the parent widget's appearance value and the child control IDs (for example,
"spinner/upbutton"). Once you have identified the selector key in the Appearance
theme, you can either customize the style in the Appearance theme itself or
change the relevant item in the Decoration theme or Color theme as required.

When you write a new appearance for your new custom widget, write the
appearance first, and then write the decorations and colors, as required, or reuse
the existing decorations and colors.

What just happened?
We learnt the theme feature of the qooxdoo framework. We have learned about the Meta
theme and various themes in the theme system. We have also customized each theme—Icon
theme, Color theme, Font theme, Decoration theme, and Appearance theme—for our
Team Twitter application.

Working with Themes

[320]

Pop quiz
1. What are the themes provided in qooxdoo framework 1.4

a. Simple

b. Classic

c. Classy

d. Modern

e. Matt

2. Which theme is lightweight and looks like a website

a. Simple

b. Classic

c. Classy

d. Modern

e. Matt

3. What are the icon sets provided in the qooxdoo framework

a. Tango

b. Simple

c. Aqua

d. Oxygen

4. What are the ways you can define a color in the Color theme

a. Hex (for example, #A7A6AA)

b. RGB (for example, 242, 242, 242)

c. Named color (for example, white)

d. All of the above

5. Which theme uses different font styles based on OS

a. Simple

b. Classic

c. Classy

d. Modern

e. Matt

Chapter 9

[321]

6. Which theme is the starting point to look for any customization

a. Icon

b. Color

c. Font

d. Decoration

e. Appearance

7. Can you configure a decoration in the decoration theme just with the mixins

a. Yes

b. No

Summary
In this chapter, we have learnt about the themes feature in the qooxdoo framework and
customized the theme for our Team Twitter application.

Specifically, we have covered:

 � The class hierarchy of the theme package

 � The Meta theme in qooxdoo

 � The Icon theme—we came to know about the Icon themes that are supported
by default in the qooxdoo framework

 � The Color theme—we customized it for our Team Twitter application

 � The Font theme—we customized it for our Team Twitter application

 � The Decoration theme—we customized it for our Team Twitter application

 � The Appearance theme—we customized it for our Team Twitter application

In the next chapter, we will learn some different ways to improve performance for the
qooxdoo applications.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

10
Performance

This chapter explains the various ways to analyze and improve the performance
of the qooxdoo application. The qooxdoo framework provides certain features
to support this.

Upto the previous chapter, we learnt about the qooxdoo framework and developed,
debugged, tested, localized, and customized the themes of the qooxdoo application. In any
typical application, performance is the key to success. In this chapter, we will learn various
features that are provided by the qooxdoo framework to analyze and improve performance
of the application.

In this chapter, we will cover the following topics:

 � Memory management

 � Object pooling

 � Profiling

 � Compile-time tuning

 � Partitioning and lazy loading

 � Good practices for performance

Memory management
Performance comes with better memory management; an inefficient memory management
with lots of memory leaks causes serious problems and affects the performance to the
maximum extent. It may lead to crashing of the application on continuous usage. To avoid
that, a developer should make sure that the memory is managed properly, either internally
by the qooxdoo framework or by making explicit calls in the code.

Performance

[324]

qooxdoo manages the browser memory very efficiently and takes care of most of the
issues around object disposals. All the browsers, such as Internet Explorer (IE), Firefox,
and Google Chrome, implement very good garbage-collector algorithms to collect all the
out-of-scope garbage and release the memory for future use. One such famous algorithm
is a "mark-and-sweep", either generational or non-generational algorithm. The whole point
of implementing this garbage collector in the browser is to make the developer not worry
about the object life cycle. If the developer still sees issues, then he might be using a wrong
tool that doesn't free the connections to an object.

Normally, JavaScript automatically cleans up all the unused objects, as mentioned earlier,
with the browser's in-built garbage collector. A browser usually differentiates the JavaScript
objects to the DOM objects and sweeps out the objects with different garbage collectors for
each. A problem arises when objects create links between the JavaScript objects and DOM
objects. Another issue is of circular references, which cannot be easily resolved, especially if
the algorithms depend on a reference counter.

qooxdoo solves this issue by including dispose or destruct methods, which can be
overridden by each class. qooxdoo helps in differentiating the complex objects from the
normal primitive types. A developer can explicitly dispose of the complex objects such as
instances of maps, arrays, and other object instances, and doesn't have to dispose of
primitive types such as strings, Booleans, and numbers.

A sample destructor is given as follows:

destruct : function()
{
 this._data = this._moreData = null;
 this._disposeObjects("_buttonOk", "_buttonCancel");
 this._disposeArray("_children");
 this._disposeMap("_registry");
}

The methods used are as follows:

 � _disposeObjects: Disposes the objects (qooxdoo objects) under each key and
finally deletes the key from the instance. Supports multiple arguments.

 � _disposeArray: Disposes the array under the given key, but disposes all entries
in this array first. It must contain instances of qx.core.Object only.

 � _disposeMap: Disposes the map under the given key, but disposes all entries in
this map first. It must contain instances of qx.core.Object only.

Chapter 10

[325]

These methods dispose the objects of respective object types. To see the logs, a developer
can set the qx.disposerDebugLevel variant with any of the integer values, where the
higher integer value gives more debug statements or more verbose while disposing the
objects. The default value for this is 0. While using this property, make sure you have already
enabled the qx.debug variant by setting it to on.

Part of the config.json to set the variants section of the source job is given as follows:

"jobs" :
{

 "source" :
 {

 "variants" :
 {
 "qx.disposerDebugLevel" : "9",
 "qx.debug" : ["on"]
 }
 }
}

A sample verbose log is shown in the following screenshot, with the qx.disposerDebugLevel
set to 9, where all the objects were disposed. If the value is 1, it shows all the not disposed
objects. With the value 2, it shows the non-qooxdoo objects too.

The output logs are as shown in the following screenshot. This was created while doing a soft
shutdown of the application.

Performance

[326]

To understand more, let us take the window object. In the Team Twitter application, just
open and close the signup window multiple times and check the final disposed object count.
The number of objects might be in multiples of the actual objects. Every time the window is
opened, a window object and its children are created. To resolve the memory issue, dispose
the window and its children in the window close event. This can be done as shown in the
following code snippet:

// add close event, call the dispose method, on close of the window.
this.addListener("close", function() {
 this.debug("window close method called.. ");
 this.close();
 qx.core.Init.getApplication().getRoot().remove(this);
 qx.event.Timer.once(function(){
 this.debug("calling dispose method.. ");
 this.dispose();
 }, this, 5);
}, this);

After adding this code, view the final disposed objects after opening the signup form
multiple times. Observe the difference in the destroyed object count. To get a clearer
picture of the current objects in the application, a developer can use the inspector (which is
explained in Chapter 7, Testing and Debugging in the Writing test cases section) and observe
the objects list on opening the window multiple times or observe the objects in qx.core.
ObjectRegistry.getRegistry().

To test whether you added proper destructors, you can set the qx.disposerDebugLevel
to 1 and qx.debug to on and try the operations in your application, as shown in the
following code snippet:

"variants" :
{
 "qx.disposerDebugLevel" : "1",
 "qx.debug" : ["on"]
}

A typical log message looks as: Missing destruct definition for _abc in <classname>.
These messages will help you to identify the items to dispose of. As we said before, make sure
you dispose the complex objects such as maps, arrays, and other instances.

A developer can manually call the shutdown() method available in the ObjectRegistry
in order to remove all the objects and carry out a soft shutdown of the application by using
the following code snippet:

qx.core.ObjectRegistry.shutdown();

Chapter 10

[327]

We have learnt the memory management in qooxdoo applications. We learnt how to
explicitly dispose the widgets, array, map, and so on in the destruct function. We learnt
the various settings to check the object's memory management.

Object pooling
Object pooling is a well-known technique to minimize the creation of objects that take a
considerable amount of time in the construction and that consume heavy resources.

Creating complex widgets is very expensive as it takes maximum computation time and
consumes much memory. Disposing of such widgets is also very cumbersome, and it is
time-consuming to dispose of all the internal widgets of the complex widget. Furthermore,
object disposing in JavaScript does not guarantee that the used memory is freed in a
timely manner. Especially, IE is known to run the garbage collector only on certain events
such as minimizing the browser window and so on. To reduce these timings, all the
reusable objects should be pooled for better performance.

qooxdoo provides a utility class called qx.util.ObjectPool for managing objects in
the pool. ObjectPool is mainly used to pool and reuse the window object or a well
designed form object. However, it could also be used to pool instances of any type of the
object except singletons.

While creating the object pool, the constructor takes the size and number of instances to
maintain in the pool for each class type: ObjectPool(integer size).

The methods available in qx.util.ObjectPool are as follows:

 � poolObject (object obj)

This method puts an object into the pool. It is assumed that no other references
exist to this object, and that it will not be used at all while it is pooled. Note that
once an instance has been pooled, there is no means to get that exact instance
back. The instance may be discarded for garbage collection if the pool of its type
is already full.

 � getObject (class clazz)

This method gets an object from the pool. It returns an instance of clazz from the
pool; if not available in the pool, it creates a new object for the pool and returns the
newly created object instance. Note that the pool determines which instance (if any)
to return to the client. The client cannot get a specific instance from the pool.

We have learnt about object pooling in qooxdoo applications and learnt about the APIs to
create and use an object pool.

Performance

[328]

Profiling
Profiler is a good tool to identify or measure each method call in the qooxdoo classes.

The profiler measures the time taken to execute a method and the total call count of the
method. The qooxdoo framework provides this profiler by default and we need to enable
this option, if required.

Enabling this profiling feature is very simple. As its implementation is based on the
aspects, the developer should set the qx.aspects to on and include qx.dev.Profile
in the first class in the include list, either by using the #use directive on the application
or by including in the let include property. We have set the following line in the
Application.js:

#use(qx.dev.Profile)

qx.dev.Profile is a static class and provides all the methods for profiling at a particular
duration of time. As this has been implemented purely in the JavaScript, this profiler
supports all the different browsers and it is a cross-browser tool. The different methods that
are available and help in profiling are as follows:

 � start(): It starts profiling.

 � stop(): It stops profiling.

 � showResults(maxLength): It shows the results in a separate window.
maxLength is an integer value and shows the given number of results. The
default value is 100. A sample result is shown in the following screenshot:

Chapter 10

[329]

 � getProfileData(): It returns the profile data as a JSON data structure, as shown
in the following screenshot:

 � normalizeProfileData(): It normalizes profiling data by subtracting the
overhead of wrapping from the function's own time.

Similar to the aspect's method after and method before, we can execute some code
either profile after or profile before by using any of these methods.

 � profileAfter/profileBefore(String fullFuncName, function func,
String funcType, Arguments args, var returnValue):

 � fullFuncName: It is a full function name, including the class name
and namespace.

 � func: It is the function to execute.

 � funcType: It is function type (default: null). It specifies the type of the
wrapped function. It can have any one of these values: member, static,
constructor, destructor, property, or *. The null value is handled
in the similar way as the * value.

 � args: It is the arguments passed to the wrapped function.

 � returnValue: It is a return value of the wrapped function.

Finally, profiler data helps in finding the hot spots and time-consuming code. The developer
can identify and reduce the complexities on the specific time-consuming code. But, this
profiler has some limitations. To trust these statistics, the developer should be aware of the
limitations and one has to re-calculate based on those limitations.

Performance

[330]

Limitations
The following are the limitations:

 � The application is slowed down because profiling is done by wrapping each function.
Profiling should always be turned off in production code before development.

 � The profiler adds some overhead to each function call and this overhead is
considered when calculating of the own time, but there can still be some inaccuracy.

 � The Date() function used for time calculation has a granularity of about 10 ms on
many platforms.

 � Turning on profiling currently breaks in some browsers due to a very limited maximum
recursion depth of some limited value. This is because the call stack is doubled.

There are some external debuggers which give the best statistical and profile information
easily. Firebug is one such tool that allows finding the timing and profiling information very
easily, without even changing any code or settings. Firebug has a separate profile button in
the console tab. On clicking it for the first time, the profiling starts. On clicking it the next
time, profiling ends and prepares and displays all the timing and method call count in a
tabular format, as shown in the following screenshot:

Chapter 10

[331]

We have learnt how to profile the qooxdoo applications and to identify the time consuming
methods, so that the developer can reduce the complexity and improve the performance of
the application.

Compile-time tuning
qooxdoo provides certain jobs to tune the application for best performance while compiling
the application itself. The jobs such as lint, which validates the JavaScript source code, and
log with classes-unused set to the root package and identifies the unused classes in the
package optimizing the classes, and so on.

Let us see the optimization that we can carry out at the qooxdoo application's
compilation time.

Class optimizations
Currently, qooxdoo performs and allows optimization in four categories in the JavaScript
classes while creating the build version.

The four categories are as follows:

Strings
String optimization reduces the repetitive references to the same string literal. qooxdoo
framework extracts all the string literals inside the class definition, creates lexical variables,
and replaces the strings with lexical variables.

Variables
Variable optimization mainly concentrates on the JavaScript's physical size, where all the
long variable names are replaced with generated variable names with one or two characters.
These variable name optimizations are performed on all the local and static lexical variables
only, so that all the public variables remain with the same name and they can be used as
they are. Depending on the original code, this can result in significant space being saved.
This improves the data transfer time in the browser, resulting in quick page load.

Private
The private optimization is a bit tricky and mainly concentrates on restricting the private
variables to the private scope only. This optimization is performed on all the private
members of a class (member variable names beginning with __). Similar to the variable
optimization, all those private variables are also replaced with shorter variable names and
are substituted throughout the class.

Performance

[332]

In addition to that, the qooxdoo framework restricts the usage of these references in other
classes. When a user explicitly uses these private variable references in other classes, all
these references will not be updated and may fail to initialize—creating a runtime error. So,
it is better to make sure that the private variables are used in the private scope only.

Base calls
This category reduces the method calls on the stack. Calls to the base class methods such as
this.base() method calls are in-lined, that is, the superclass method content is inserted in
place of the this.base() call. This is something similar to the method's in-line feature,
available in some of the IDEs.

All these four categories, by default, will be enabled on the build version. To alter these, one
should override the optimize property on the compile-options job, as shown in the
following code snippet:

"compile-options" :
{
 "code" :
 {
 "optimize" : ["variables", "basecalls", "strings"]
 }
}

All these compile options mainly reduce the size of the .js file, which in turn reduces
the initial JavaScript loading time on the browser and reduces the network bandwidth
as it transfers less bytes. Finally, this reduces the GUI initialization time of the qooxdoo
application.

To further reduce the final size of the generated JavaScript file, the developer can identify
the unused classes and remove those classes.

Identifying unused classes
On building the source code with the build job, qooxdoo generates a single .js file
by including all the qooxdoo classes defined. Even though qooxdoo creates the .js file
after doing a lot of compressions, it is still better to identify the unused classes and remove
those classes; the developer can reduce the final .js file size as much as possible. But it
may be a big problem to identify the unused classes by going through each and every file
in a step-by-step process. The qooxdoo framework simplifies this process. If you set the
classes-unused property in the log setting of the source job, the qooxdoo framework
directly lists out all the unused classes. You should set the packages to search for the unused
classes. Typically, you can set the root package of the application to search all the classes.

Chapter 10

[333]

The following code snippet is a part of the config.json file to set classes-unused in
the log section of the source job:

"source" :
{
 "variants" :
 {
 "qx.disposerDebugLevel" : "9",
 "qx.aspects" : ["on"],
 "qx.debug" : ["on"]
 },

 "log" :
 {
 "classes-unused" : ["teamtwitter.*"]
 }
}

The preceding configuration identifies the unused classes inside the teamtwitter
package. On running the source target on our Team Twitter application, we can find out
all the unused classes such as User, Composite, Menu, TextField, and so on, which
are not used anywhere in the application. Just by removing these files, we can reduce the
generated teamtwitter.js file's size a lot, and thus reduce the initial application's loading
time. When you run the source job with the earlier mentioned configurations, the output
displays all the unused classes, as shown in the following screenshot. You should remove
those unused classes identified by the job to reduce the application's loading time.

Performance

[334]

Lint check
qooxdoo, by default, provides a lint job within the framework to validate the application's
source code against most common mistakes such as missing semicolons, missing braces for
single line if blocks, undefined variables, global references, use of deprecated identifiers,
and so on. By following the lint check instructions, we can improve the application's
performance slightly.

Let us run the lint job with the default options and find what information it gives. The
developer can run the lint job by using one of the following two ways—.\generater.py
lint or run the client.generate-lint target from our ant file.

The resultant lint-check output is shown in the following screenshot:

qooxdoo includes its own JavaScript validator—Ecmalint. Using that, application developers
can check their source. Still, developers have the choice to particularly ignore some warnings
by using the following specific doc comment statements:

 � @lint ignoreUnused(x,y): It ignores the lint warnings for unused variables
statements on x and y

 � @lint ignoreDeprecated(alert): It ignores displaying the alert deprecated
statements

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 10

[335]

 � @lint ignoreUndefined(button1, foo): It ignores displaying the undefined
statements for button1 and foo

 � @lint ignorereferencedField(x): It ignores displaying the cross referenced
filed statements on x

 � @lint ignoreGlobal(qx): It ignores displaying the global reference warnings
on the variable qx

All the doc comments should be written inside the API documentation for the particular
methods, classes, or variable declarations. Before lint prints a warning, it searches the
AST and looks for the next enclosing API doc comment. Usually these comments should
be placed in the method's JsDoc comments or in the class comment.

By removing all these lint warnings, we can overcome most of the errors at the early stages
of application development.

Improvements
The following are the improvements:

 � Unused variables can be reduced.

 � Proper code formation by identifying the blocks with braces.

 � Identifying the global references, where the scope for these variables will be at the
application level, so that the developer could redefine the scope for those variables,
if those variables are not required to be global. If you redefine it to the local variables
(if possible), you will get the compile time optimization for the local variables.

 � Points out the use of deprecated items such as deprecated variables or
method calls.

We have learnt the techniques to configure specific jobs, identify certain things, and optimize
the application code on compilation. By doing so, the application code is optimized and the
final .js file size is reduced, which reduces the application's loading time. We have learnt
how to identify unused classes, to remove those classes, and improve performance. We have
learnt how to check the application with the lint job and fix the reported issues.

Partitioning and lazy loading
Package is the concept of grouping related information or classes. Simply, packages allow
you to partition your application physically. It is a good idea to load the required information
as needed, instead of loading everything in the beginning. The major advantage of loading
each partition on demand is reduction in the initial application's startup time.

Performance

[336]

Note that this feature is not completely implemented in older releases of qooxdoo and it is
fully implemented in qooxdoo 1.4+ versions. We will see what are the major issues that have
been fixed and improvements in this feature.

A developer can partition the application into any number of partitions and the developer
can load each partition as and when it is required in the application. In our Team Twitter
application, we have the teamtwitter functionalities and we have also included the
samples that contain all the experimental samples that we have featured in this book to
explain various concepts. Here, the teamtwitter and samples are two physical parts. It
is not a good idea to load both of them on initializing the application. Instead, we can
create two partitions, one for the Team Twitter application-related classes and one for the
samples-related classes and load the partition as required. On loading the application,
only the Team Twitter partition is loaded, and on clicking the samples button, the samples
partition is loaded. This is a typical example for the partition feature. You can create one
partition for each of the modules in the application and load that partition when a user tries
to use the features from that module.

Configuration
Let us configure our Team Twitter application by defining parts in config.json as follows:

"my-parts-config":
{
 "packages" :
 {
 "parts" :
 {
 "boot" :
 {
 "include" : ["${QXTHEME}", "${APPLICATION}.Application"]
 },
 "samples" :
 {
 "include" : ["${APPLICATION}.Samples"]
 }
 }
 }
}

Chapter 10

[337]

On running either the source or build target, the total application is split into two
partitions, namely, boot and samples. When a user opens the application in a browser,
first the boot part will be loaded. The boot part contains all the qooxdoo framework classes
completely and the initial application classes that are required to start the application. The
samples part remain in the server itself and will be loaded lazily as and when required.

Coding to load parts on demand
Lazy loading can be done with the qx.io.PartLoader API available in the framework.
This PartLoader is a singleton class and it knows about all the parts and packages in the
application. This class contains the functions to load the parts and to retrieve part instances.

The following are the different methods available:

 � getPart(String partName): It returns the part instance of the given part name,
where part name is the name defined in the config.json file.

 � getParts(): It returns all the parts in a map instance.

 � hasPart(String partName): It checks if the part with the partName method
defined is available.

 � Require(String/String[] partName(s), func callback, Object self): It
loads one or more parts asynchronously. The callback function is called after all
the parts and their dependencies are fully loaded. If the parts are already loaded,
the callback is called immediately.

As this is a singleton class, a static getInstance() method is provided to get the single
instance. A static require method is also provided to serve the same require (member
function) functionality.

Verification
Generate the build version and check the number of final .js files created. You
can observe that two .js files are generated, as we defined exactly two parts in our
configuration. Let us observe when exactly the second .js file was loaded on the browser.

Observe the scripts loaded in the Firebug Script tab.

Performance

[338]

Recent improvements
In the newer versions of qooxdoo, this part loading feature has improved a lot on some of
the areas. The different areas include:

Part collapsing or merging
This area is enhanced to avoid issues with class dependencies during the process. The
generator now employs new constraints that take better care of dependencies between
packages. At the same time, the part verifier has been augmented with additional checks to
test for violations of these dependencies. It will now raise an exception when a violation is
detected (rather than just issue warnings). However, this behavior can be toggled with the
packages/verifier-bombs-on-error configuration setting.

Sometimes packages derived with the basic procedure turn out to be too small; this may
cause too much fragmentation of classes over packages. Such situations are good examples
of where part collapsing is useful and packages are merged into one another. Thus a part size
is being maintained and this merging can be done in two ways, namely, based on the size
and based on the load order.

Remove dependencies from the part loader
Some applications use the part loader at a very early state. So, the first Bootstrap class
should be as minimal as possible. By rewriting the part loader using only functionality
provided by qx.Bootstrap, we were able to shrink the size by a factor of 5! Now a package
containing a part loader is usually smaller than 20 KB. As a result, the application startup
time is reduced.

Load packages in parallel
The framework loads the parts or classes in two phases. In the first phase, the framework
evaluates all the classes, as specified in the order, and this should be in the correct order.
In the second phase, the framework loads the evaluated classes, once there are no issues.
Otherwise, the framework doesn't load the classes failed in the evaluation phase. These
evaluated packages (set of classes) can be loaded in parallel.

Chapter 10

[339]

Error handling
An issue with the old implementation came up recently. An application had unexpected
errors in IE, which seemed to be related to part loading but were very hard to track. It turned
out that the server was busy and occasionally could not deliver a JavaScript file. To load the
scripts, we dynamically insert script tags, but Opera and Internet Explorer do not fire an error
event to signal server errors. As each package now calls a global notify function once it is
loaded, we can simply start a timer when we start loading a file and stop the timer once the
global function is called. If the timer is not stopped, we will assume that loading the file failed
and we fire an error event. This way, we have proper error handling in all supported browsers.

Advantages
The following are the advantages:

 � Reduces initial application loading time. Physical partitions can be loaded at any
point of time, as the package requires.

 � A partLoader checks if any of the classes in that package have already been loaded
before loading the package. If so, the partLoader won't load any of the already
loaded classes. It loads all the remaining classes and completes the part loading.

 � The framework provides features for part collapsing and merging too.

 � In the newer versions, the part loading is improved a lot and loads all the packages
in part in parallel. A developer can tell the part loader to pre-load a part from the
server without evaluating the code until it is actually required.

Time for action – partitioning
Let us include a few samples as a separate component and link that to the Team Twitter
application as a part and load that part only when the samples module is opened.

1. We have provided the set of samples in the samples.zip file. Create the directory
C:/teamtwitter/source/class/teamtwitter/samples and extract
samples.zip under the samples directory.

2. One class, teamtwitter.Samples, has been written to display all the samples that
have been developed during the course of the Team Twitter application development.
That class is available in the file 978-1-849513-70-8_10_01.txt under Chapter
10. You can copy that code file into teamtwitter as C:/teamtwitter/source/
class/teamtwitter/Samples.js.

Performance

[340]

3. As mentioned in the configuration section, let us configure two parts for the
Team Twitter application; one for the main Team Twitter application and another
one for samples. The updated config.json is available as a file 978-1-849513-
70-8_10_02.txt.

"my-parts-config":
{
 "packages" :
 {
 "parts" :
 {
 "boot" :
 {
 "include" : ["${QXTHEME}", "${APPLICATION}.Application"]
 },
 "samples" :
 {
 "include" : ["${APPLICATION}.Samples"]
 }
 }
 }
},

"build" :
{
 "extend" : ["my-parts-config"]
},

"source" :
{
 "extend" : ["my-parts-config"],
 "variants" :
 {
 "qx.disposerDebugLevel" : "9",
 "qx.aspects" : ["on"],
 "qx.debug" : ["on"]
 },

 "log" :
 {
 "classes-unused" : ["teamtwitter.*"]
 }
}

Chapter 10

[341]

4. Add a button in Team Twitter's Application.js file to display the samples.
On loading the samples, inform that you require the samples part. Updated
Application.js is available as a file 978-1-849513-70-8_10_03.txt.

var samples = new qx.ui.form.Button(this.tr("Samples"));
samples.addListener("execute", function(){
 qx.io.PartLoader.require(["samples"], function(){
 // if the window is not created
 if (!this.__samples) {
 // create it
 this.__samples = new qx.ui.window.Window("Samples");
 this.__samples.setLayout(new qx.ui.layout.Dock());
 this.__samples.add(new teamtwitter.Samples());
 this.getRoot().add(this.__samples);
 }
 // open the window
 this.__samples.center();
 this.__samples.open();
 }, this);
}, this);

5. Compile, deploy, run the application, and verify the parts. You will observe that two
.js files were generated, as we defined exactly two parts in our configuration. Let
us observe when exactly the second .js file is loaded on the browser.

Access the Team Twitter application in the browser. After the GUI is initialized and
before loading the samples part, check the Firebug's Script tab. Only one .js file,
the teamtwitter part of the application, should get loaded and the second part
shouldn't get loaded. If you run the source version, you can search for the Samples
class, which cannot be found because that part is not yet loaded.

Performance

[342]

In the following screenshot, you can see only one .js file, namely, teamtwitter.js
loaded. This is a build version snapshot.

Now, click on the Samples button and observe the loaded scripts again to check
the newly loaded part that is loaded on demand. In the following screenshot, you
can see two .js files, teamtwitter.js and teamtwitter-0.js, loaded. The
teamtwitter.js file is loaded on initialization and the teamtwitter-0.js file
is loaded on demand, on click of the Samples button.

Chapter 10

[343]

What just happened?
We just learnt how to partition the application and load each part as required, lazily.
We understood how this part loading improves the application. We implemented this
partitioning in our Team Twitter application, created a part for samples, and verified
the part loading in operation.

Good practices for performance
In a few applications, you may have to handle huge data sets. You need to follow certain
good practices from the beginning of the application development to avoid any failure in the
application after deploying it.

While developing the application, you should design it to reduce the data set handled
at any point of time using good design principles. Let us see a few of the good practices
in this section.

Restrict the data in certain widgets
Certain widgets in qooxdoo do not scale to handle huge data. It is not a good idea to load
more than a certain number of items (say 500 or 1000 items) in widgets such as ComboBox,
SelectBox, List, and so on. It takes a lot of time to load these items into the widget and it
also takes time to remove all the items from the widget. Either you avoid the data by adding
filters at different levels, or if you cannot avoid the number of items, you should design
custom widgets to display the limited data, either with search or some way to navigate and
see all the data.

Use filters
When the data set is huge, the performance of the application goes down and it will also
lead to information overload. The user of the application cannot go through the information
that easily. So use the filter wherever possible.

In our application, the first level of the filter is a team. In a team, the number of team members
will be countable. The tweets from the members of a team are considerably less when
compared to the tweets from an organization or compared to tweets from the entire world.

Even within a team, the number of tweets may be more. So the second level of filters
are tags and team members. A user of the application can filter by the tags that they are
interested in, by the team members whose tweets the user wants to read, or a combination
of tags and the team members.

Performance

[344]

With all those filters, you can still filter the tweets by searching for any text in a tweet search.

Pagination
Use pagination to navigate through the large data set. We can implement the pagination
for the Tweets display widget. We haven't implemented that yet in the Team Twitter
application. The logic is to have a page size and retrieve one page of tweets matching all the
filter conditions and provide some links to navigate to the next and previous pages, if there
are any.

You can also make use of RemoteTableModel.

.gz compression
To optimize at the transport level, one can compress the generated files and zip the script
file. This reduces the network bandwidth usage and improves efficiency. But this again
should be supported on the web server too, for example, jetty or Tomcat 7. Both of these by
default supports .gz files.

We have learnt a few good practices to follow to get better performance in the application.

Chapter 10

[345]

Pop quiz
1. How to identify unused classes in the qooxdoo application

a. Fire a bug while running application

b. Profiling

c. log setting of the source job in config.json file

d. All of the above

2. Is lazy loading of the partition possible

a. True

b. False

3. Packages inside the parts can be loaded in parallel

a. True

b. False

4. lint check gives information on

a. Unused classes

b. Unused variables

c. Global references

d. Use of deprecated variables

e. Common coding mistakes

f. All the above

5. Which parameters does the qooxdoo framework optimize during compilation

a. Strings

b. Variables

c. Privates

d. Base calls

e. Method calls

6. Which API class helps in maintaining Object pooling

a. ObjectRegistry

b. Object

c. ObjectPool

d. Pool

Performance

[346]

7. Which API class helps in profiling

a. Profile

b. ObjectRegistry

c. ObjectPool

d. Aspect

8. Part collapsing is possible based on

a. Part size

b. Load order

c. None of them

d. Both of them

9. qooxdoo profiling gives statistical information on

a. Method call type

b. Method call count

c. Method name

d. Average and actual method execution time

10. One of the famous garbage collector algorithms

a. Generational mark-and-sweep

b. Non-generational mark-and-sweep

c. Not applicable

Summary
In this chapter, we have learnt various ways to improve the performance of the qooxdoo
application and the various tools provided with the qooxdoo framework that help to identify
the performance hurdles in the application.

In particular, we have covered:

 � The object life cycle and the efficient way of managing the browser memory.
Disposing of the objects without failure.

 � Object pooling is a very good concept where the user has a pool of objects, where
object-creation time can be avoided by reusing a pooled object.

 � Various ways to have statistical profile information.

Chapter 10

[347]

 � Compile-time settings to optimize the application and find the unused classes
during the compilation process itself.

 � Partitioning the application, where each chunk can be loaded lazily.

 � Some best practices to implement in the application for best performance.

We have learnt and implemented most of the techniques on our Team Twitter application
and have improved the initial loading time as well as the application's overall performance.

11
Miscellaneous

This chapter explains a few things, without which this book is incomplete.

Up to the last chapter, we have learnt about most of the things that we should know about
developing the qooxdoo application. In this chapter, we will learn about few extra things
without which our learning on the qooxdoo framework is not complete.

In this chapter, we shall discuss the following topics:

 � Configuration

 � Migration

 � Back button support

 � qooxdoo license

Configuration
In various chapters, we used generate.py to perform jobs to create a qooxdoo application,
to compile the code, to translate, to optimize, and so on. For these jobs, a developer can
configure many parameters. The qooxdoo framework allows the developer to configure these
details in JSON files. We had already learnt about the JSON file format in the beginning of this
book. In this section, we will mainly concentrate on how to define and configure the jobs.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Miscellaneous

[350]

A developer can configure many parameters in the JSON files and these various
parameters include class selection, variants or environment, parts, internationalization,
themes, compile-time cache support, API data, and so on. These parameters are
configured in the config.json file, which will be available in the application's root
folder. This application configuration file imports framework configuration files, by default,
which contain a default implementation for some of the common activities such as build,
compile, localize, and so on.

config.json
A sample config.json file that is generated on creation of the qooxdoo application
is shown in the following blocks of code. The qooxdoo application is created using the
create-application.py tool:

{
 "name" : "testAPP",

 // Includes the application.json from the qooxdoo framework
 //This imports set of jobs and environments from the framework
 "include" :
 [
 {
 "path" : "${QOOXDOO_PATH}/tool/data/config/application.json"
 }
],

 "export" :
 [
 "api",
 "api-data",
 "build",
 "clean",
 "distclean",
 "fix",
 "info",
 "inspector",
 "lint",
 "migration",
 "pretty",
 "profiling",
 "source",
 "source-all",
 "test",
 "test-source",
 "translation"
],

Chapter 11

[351]

 "let" :
 {
 "APPLICATION" : "testapp",
 "QOOXDOO_PATH" : "../bkup/teamtwitter/qooxdoo-1.2-sdk",
 "QXTHEME" : "testapp.theme.Theme",
 "API_EXCLUDE" : ["qx.test.*", "${APPLICATION}.theme.*",
 "${APPLICATION}.test.*"],
 "LOCALES" : ["en"],
 "CACHE" : "${TMPDIR}/cache",
 "ROOT" : "."
 }

// You only need to edit the remainder of this file, if you want to
// customize specific jobs, or add your own job definitions.

 /*
 "jobs" :
 {
// Uncomment the following entry to add a contrib or library to your
// project; make sure to adapt the path to the Manifest.json; if you
// are using a contrib: library, it will be downloaded into the path
// specified by the 'cache/downloads' config key
 "libraries" :
 {
 "library" :
 [
 {
 "manifest" :
 "contrib://SkeletonApplication/trunk/Manifest.json"
 }
]
 },

// If you want to tweak a job setting, see the following sample where
// the "format" feature of the "build-script" job is overridden.
// To see a list of available jobs, invoke 'generate.py x'.
 "build-script" :
 {
 "compile-options" :
 {
 "code" :
 {
 "format" : false
 }
 }
 }
 }
 */
}

Miscellaneous

[352]

A developer can configure a new job or override any of the existing jobs. To override an existing
job, one should know the possible job keys, its purpose, and usability. Each job has to be placed
under job keys. All the possible keys were grouped into the following five categories:

 � Structure-changing keys: These are the keys that influence or change the
configuration itself; for example, re-using the existing jobs, inheriting, overriding,
changing the job structure, job queue, and so on. The different keys include extend,
include, run, let, jobs, and many more.

 � Action keys: These keys trigger certain actions to carry out in the generator, which
usually results in some output; for example, cleaning files, generating API, combining
or copying images, packing resources, compiling source, and so on. The different
keys include api, clean-files, copy-images, compile, and many more.

 � IO-setting keys: These keys help in setting input and output options such as path
settings, library, classes to create, packaging, and so on. The possible keys include
add-script, asset-let, compile-options, dependencies, use, and more.

 � Runtime-setting keys: These keys pertain to the working needs of the generator;
for example, cache and log.

 � Miscellaneous keys: All the remaining keys; for example, desc, name, and more.

Listing of keys in context
This section describes the complete possible contents of the top-level configuration map in
the configuration file. Further information is linked to the respective keys.

Key Description

name A name or descriptive text for the configuration file.

include Includes external configuration files.

let Defines the default macros. This let map is included
automatically in every job run. There is no explicit reference
to it, so be aware of side effects.

export List of jobs to be exported if this configuration file is included
by another.

default-job The name of a job to be run as the default setting, that is,
when invoking the generator without job arguments.

jobs Map of jobs. Each key is the name of a job. Each job's value is a
map describing the job.

Chapter 11

[353]

The job-describing map can have any number of the following keys:

Key Description

add-script A list of URIs that will be loaded first thing when the app starts.

api Triggers the generation of a custom API viewer application.

asset-let Defines macros that will be replaced in #asset hints in source files.

cache Defines the path to cache directories, most importantly, to the
compile cache.

clean-files Triggers the clean-up of files and directories within a project and the
framework; for example, deletion of generated files, cache contents,
and so on.

collect-
environment-
info

Collects information about the qooxdoo environment, such as version,
cache, and more and prints it to the console.

combine-
images

Triggers the creation of a combined image file that contains
various images.

compile Triggers the generation of a source or build version of the application.

compile-
options

Defines various options that influence compile runs of both the source
and build version.

copy-files Triggers the files/directories to be copied, usually between the source
and build version.

copy-
resources

Triggers the copying of resources, usually between the source and
build version.

dependencies Fine-tunes the processing of class dependencies.

desc A string describing the job.

environment Defines key-value pair environment settings for the application,
covering settings, variants, and features.

exclude Lists classes to be excluded from the job. Takes an array of class
specifiers.

extend Extends the current job with other jobs. Takes an array of job
names. The information of these jobs is merged into the current job
description, so the current job sort of "inherits" their settings.

fix-files Fixes white space in source files.

include Lists classes to be processed in the job. Takes an array of
class specifiers.

let Defines macros. Takes a map where each key defines a macro and
the value defines its expansion.

Miscellaneous

[354]

Key Description

library Defines libraries to be taken into account for this job. Takes an array of
maps, each map specifying one library to consider. The most important
part therein is the "manifest" specification.

lint-check Checks source code with a lint-like utility.

log Tailors the log output of the job.

migrate-files Migrates source code to the current qooxdoo version.

packages Defines packages for the application.

pretty-print Triggers code beautification of source class files. An empty map value
triggers default formatting, but further keys can tailor the output.

provider Collects classes, resources, and dependency information and puts them
in a specific directory structure under the provider root.

require Defines prerequisite classes needed at load time. Takes a map of
where the keys are class names and where the values are lists of
prerequisite classes.

run Defines a list of jobs to run in place of the current job.

settings Defines qooxdoo settings for the generated application.

shell Triggers the execution of one or more external command(s).

simulate Triggers the execution of a GUI test (simulated interaction) suite.

slice-images Triggers cutting images into regions.

translate Regenerates .po files from source classes.

use Defines prerequisite classes needed at runtime. Takes a map
where the keys are class names and where the values are lists of
prerequisite classes.

variants Defines variants for the generated application.

Job resolution
Let us further understand how the generator resolves jobs, when multiple jobs are
defined or redefined in one or more configuration files. Each configuration file describes
and defines a few jobs and imports one or more configuration files. Hence the application's
config.json will have few local job definitions and zero to many imported job definitions.
All the precedence and overwriting has to be resolved among all the jobs before running any
job. To refer to a job from another job, a same level job can be referenced directly by its job
name, whereas the other level or inner level jobs can be referenced as the parent job name,
followed by /, and then the required job name.

Chapter 11

[355]

The extend key
The extend key allows us to extend one or more jobs. This key takes an array of job names.
These will be resolved by merging all the job information into the current job. A sample
usage of this key is as follows:

extend : ["job1", "job2"]

Where job1 and job2 are two different jobs defined either in the local configuration file or
in other configuration files.

Now, how exactly does the job (let us call this the primary job) treat the extended jobs (let us
call this the secondary jobs)? Here is what happens:

 � The primary job provides a sort of a master definition for the resulting job. All its
definitions take precedence.

 � The secondary job is searched in the context of the current "jobs" map.

 � Keys of the secondary job that are not available in the primary job are just added to
the job definition.

 � Keys of the secondary job that are already present in the primary job and have a
scalar value (string, number, boolean) are discarded.

 � Keys of the secondary job that are already present in the primary job and have a
list or map value are merged. The extending rules are applied on the element level
recursively, that is, scalar elements are blocked, new elements are added, and
composed elements are merged.

 � There is a way of preventing this kind of merge behaviour; if you prefix a job key
with an equal sign (=), then no subsequent merging will be done on this key. That
means all following jobs that are merged into the current job will not be able to alter
the value of this key anymore.

 � Obviously, each secondary job extends itself before being processed in this way, so
it brings in its own full definition. As stated before, it is important to note that this
extending is done in the secondary job's own context, which is not necessarily the
context of the primary job.

 � If there is more than one job in the extend list, the process is re-applied iteratively
with all the remaining jobs in the list. This also means that the list of secondary jobs
defines a precedence list—settings in jobs earlier in the list take precedence over
those coming later, so order matters.

Miscellaneous

[356]

As an example, let us take some sample jobs that are defined under base.json of the
qooxdoo framework:

"libraries" :
{
 "desc" : "includer job, to hold the essential libraries
 for the compile jobs",

 "library" :
 [
 {
 "manifest" : "${QOOXDOO_PATH}/framework/Manifest.json"
 },

 {
 "manifest" : "${ROOT}/Manifest.json"
 }
]
},

"cache" :
{
 "cache" : "${CACHE_KEY}"
},

"includes" :
{
 "include" :
 [
 "${APPLICATION_MAIN_CLASS}",
 "${QXTHEME}"
]
},

"common" :
{
 "desc" : "common settings for base.json jobs",

 "extend" : ["libraries", "includes", "cache"],

 "settings" :
 {
 "qx.version" : "${QOOXDOO_VERSION}",
 "qx.theme" : "${QXTHEME}",
 "qx.application" : "${APPLICATION_MAIN_CLASS}"
 },

Chapter 11

[357]

 "asset-let" :
 {
 "qx.icontheme" : "${QXICONTHEME}"
 }
},

Here, the common job extends library, includes, and cache. As per the above-
mentioned resolution rules on the extend key, the common's scalar property, desc, is given
precedence over the desc in the library job, and all the other properties will be merged.
So finally, it is completely equivalent to the job defined as follows:

"common" :
{
 "desc" : "common settings for base.json jobs",

 "include" :
 [
 "${APPLICATION_MAIN_CLASS}",
 "${QXTHEME}"
]

 "cache" : "${CACHE_KEY}"

 "library" :
 [
 {
 "manifest" : "${QOOXDOO_PATH}/framework/Manifest.json"
 },

 {
 "manifest" : "${ROOT}/Manifest.json"
 }
]

 "settings" :
 {
 "qx.version" : "${QOOXDOO_VERSION}",
 "qx.theme" : "${QXTHEME}",
 "qx.application" : "${APPLICATION_MAIN_CLASS}"
 },

 "asset-let" :
 {
 "qx.icontheme" : "${QXICONTHEME}"
 }
}

Miscellaneous

[358]

The run key
The run job simply runs or invokes an array of jobs in a specified sequence. When a run
key is encountered in a job, for each sub-job in the run list, a new job is generated with an
auto-generated name, where the actual job name is a prefix for this job. As for the contents,
the initial job's definition is used as a template for the new job. The extend key is set to the
name of the current sub-job (it is assumed that the initial job has been expanded before),
so the settings of the sub-job will eventually be included and the run key is removed. All
other settings from the initial job remain unaffected. This means that all sub-jobs inherit the
settings of the initial job (this is significant when sub-jobs evaluate the same key, and may
be do so in a different manner). In the overall queue of jobs to be performed, the initial job
is replaced by the list of new jobs just generated. This process is repeated until there are no
more run jobs in the job queue, and none with any unresolved extend key.

A good example for this is to split the build job into sub-jobs and call those sub-jobs in the
order that we run them, which can be specified in the run key as a sequential array of sub-jobs.

// -- build jobs --

"build-script" :
{
 "desc" : "create build script of current application",

 "extend" : ["common"],

 "variants" :
 {
 "qx.debug" : ["off"]
 },

 "compile-options" :
 {
 "paths" :
 {
 "file" : "${BUILD_PATH}/script/${APPLICATION}.js"
 },
 "uris" :
 {
 "script" : "script",
 //"resource" : "resource",
 "add-nocache-param" : false
 },
 "code" :
 {
 "format" : true,
 "locales" : "${LOCALES}",
 "optimize" : "${OPTIMIZE}"

Chapter 11

[359]

 }
 },

 "compile" : { "type" : "build" }
},

"build-files" :
{
 "desc" : "copy files of current application to build dir",

 "extend" : ["common"],

 "copy-files" :
 {
 "files" :
 [
 "index.html"
],

 "source" : "${ROOT}/source",
 "target" : "${BUILD_PATH}"
 }
},

"build-resources":
{
 "desc" : "copy necessary resources for current application
 to build dir",

 "extend" : ["common"],

 "copy-resources" :
 {
 "target" : "${BUILD_PATH}",
 "resource-filter" : true
 }
},

"build" :
{
 "desc" : "create build version of current application",

 "run" :
 [
 "build-resources",
 "build-script",
 "build-files"
]
}

Miscellaneous

[360]

The include key
The include key allows re-using external configuration files. One can simply re-use jobs
defined in some other applications and components. For example, if a user wants to use the
jobs defined in some other applications or components such as API viewer, Test Runner, Test
Simulator, and others, this include key takes a list of maps, where each map specifies an
external configuration file and options how to include those jobs.

Practically, there are two steps involved in using external jobs:

 � You have to include the external configuration file that contains the relevant job
definitions. So, all the external jobs are added to the list of jobs of your local
configuration. This can be done as follows:

"include" :
 [
 {
 "path" : "./base.json"
 }
],

 � You can run the following command to get a list of all available jobs; the external
jobs will be among this list:

generator.py

There are now two ways to utilize these jobs:

 � You can invoke them directly from the command line, passing them as arguments
to the generator

 � You can define local jobs that extend the external jobs

Job shadowing and partial overriding
One can define a job with the same name as defined before in any of the imported
configuration files. Such a job shadows the imported job. Here, in such a case, the local job
takes precedence and the imported job gets automatically added to the local job's extend
list. As we already know how the generator resolves the extended job, this shadowed job
also does the same.

In a simple way, the local job is used to modify or add whichever specific keys are
required and the remaining keys will be merged from the shadowed job from the imported
configuration file.

Chapter 11

[361]

For example, if we define the build job in the application's config.json (local), this
build job shadows the imported build job from the qooxdoo framework. The local
build job automatically extends the imported build job and merges the local changes
defined in config.json. Let us just define the variants in the new build job and analyze
how the generator resolves this:

"build" :
{
 "variants" :
 {
 "qx.debug" : ["on"],
 "qx.aspects" : ["on"]
 },
}

This is exactly equivalent to the following one:

"build" :
{
 "desc" : "create build version of current application",
 "variants" :
 {
 "qx.debug" : ["on"],
 "qx.aspects" : ["on"]
 },

 "run" :
 [
 "build-resources",
 "build-script",
 "build-files"
]
}

You can again use = to control the merging. Selectively, block the merging of features by
using = in front of the key name. This is shown as follows:

...
{
 "=open-curly" : ...,
...
}
...

Miscellaneous

[362]

Override an imported job entirely by guarding the local job with =, shown as follows:

"jobs" : {
 "=build-script" : {...},
...
}

We have learnt the internal details of how to configure the jobs in the config.json,
which is used by the qooxdoo generator. We have learnt to define the jobs or to override
the existing jobs, learnt how the job is resolved, and learnt how the job is shadowed.

Migration
The qooxdoo framework is one of the fastest growing frameworks. The qooxdoo team
publishes weekly news on their website and they release the new version of the framework
every few months to add more features, improve the existing features, and more. There
might be changes in the API while moving from one version to another. To support the
existing customers, the qooxdoo team provides the migration tools in the framework which
will help the customers to move into the new version of the qooxdoo framework.

Time for action – migration
If you want to migrate from any release equal to or later than qooxdoo 1.0, you can migrate
directly to the target version, say qooxdoo 1.4.2.

Any release equal or prior to qooxdoo 0.8.3 is considered as a qooxdoo legacy release.
If you are migrating from any release prior to qooxdoo 0.8.3 to a newer version, say
qooxdoo 1.4.2, then firstly you should migrate to the version qooxdoo 0.8.3 and then
migrate to the target version, that is, qooxdoo 1.4.2. You can download this version from
http://sourceforge.net/projects/qooxdoo/files/qooxdoo-current/1.4.2/.

1. The qooxdoo migration tool updates the source files and cleans/deletes certain
directories. To be on the safe side, let us make a backup of the whole application
before migrating to the newer version.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 11

[363]

2. Let us update the configuration files to refer to the new version of qooxdoo SDK.
In the Team Twitter application, we are referring to qooxdoo 1.2 SDK. The qooxdoo
team has released a few releases by now. Let us migrate to one of the new
releases—qooxdoo 1.4.2 SDK. Download the new qooxdoo SDK and set QOOXDOO_
PATH to the new qooxdoo SDK. To enable us to deploy the source version in the web
server, we are keeping the SDK inside the Team Twitter application directory. That is
why the QOOXDOO_PATH is just set to the qooxdoo SDK directory name; otherwise
the QOOXDOO_PATH will have a relative path (for example, /qooxdoo-1.2-sdk).
Remove the old SDK directory and copy the new SDK directory under the Team
Twitter application. Update the configuration files mentioned as follows to refer to
the new version of qooxdoo SDK.

Each application will have the reference to the qooxdoo framework in the let
section of the config.json file. In the config.json file, change the QOOXDOO_
PATH, as shown in the following code snippet:

"let" :
{
 "APPLICATION" : "teamtwitter",
 "QOOXDOO_PATH" : "qooxdoo-1.4.2-sdk",
 "QXTHEME" : "teamtwitter.theme.Theme",
 "API_EXCLUDE" : ["qx.test.*", "teamtwitter.theme.*",
 "teamtwitter.test.*"],
 "LOCALES" : ["en", "fr", "de"],
 "CACHE" : "${TMPDIR}/cache",
 "ROOT" : ".",
 "APPLICATION_MAIN_CLASS" : "${APPLICATION}.Application",
 "include": ["qx.dev.Profile"]
}

In the generate.py file also, change the QOOXDOO_PATH, as shown in the
following code snippet:

import sys, os, re, subprocess

CMD_PYTHON = 'python'
QOOXDOO_PATH = 'qooxdoo-1.4.2-sdk'

The migration process just updates the source code; it does not migrate the
config.json file. You need to update the config.json file, if required. Check
the release notes of all the versions from your current qooxdoo version to the
target qooxdoo version. Release notes of all the qooxdoo versions are available at
http://qooxdoo.org/about/release_notes.

Miscellaneous

[364]

In qooxdoo 1.4, as per the release notes (http://qooxdoo.org/about/
release_notes/1.4), the new environment implementation replaces the
old variants implementation. Let us update the variants section to the
environment section in the Team Twitter's config.json, which is mentioned
as follows. The qooxdoo framework also supports the variants section to have
backward compatibility:

"source" :
{
 "extend" : ["my-parts-config"],

 "environment" :
 {
 "qx.disposerDebugLevel" : "9",
 "qx.aspects" : true,
 "qx.debug" : true
 },

 "log" :
 {
 "classes-unused" : ["teamtwitter.*"]
 }
}

3. We have set up the new SDK and configured it. Now, let us run the following
command to migrate the application code to the target version of the qooxdoo SDK:

C:\teamtwitter>generate.py migration

Chapter 11

[365]

It will ask for the current qooxdoo version. Enter the version that you used to
develop the application. Once you enter the current version, the migration path
will be shown to you as follows:

Miscellaneous

[366]

It is advisable to run the distclean job before the migration. If you say yes, it will
execute the distclean job, which will delete the compile cache, download cache,
the test folder, the simulator folder, the inspector folder, build, the api
folder, and the clean-up source. You can recreate this content after the migration by
running the corresponding jobs.

After running the distclean job, it will ask for confirmation to migrate the
application. If you say yes, it will migrate the application following the migration
path. All the migration details at each migration step are printed in the console and
also logged in the file migration.log.

In qooxdoo 1.4, the qx.debug variant is moved to the environment section. In the
upgrade 1.4 migration step, the migration process updates the code to use the new
API, which can be observed in the migration.log file, mentioned as follows:

- File: E:\test2\source\class\teamtwitter\Application.js

 - E:\test2\source\class\teamtwitter\Application.js:45
Replacing match 'qx.core.Variant.isSet("qx.debug", "on")' to '(qx.
core.Environment.get("qx.debug"))'

 - E:\test2\source\class\teamtwitter\Application.js has been
modified. Storing modifications ...

Chapter 11

[367]

What just happened?
We have learnt to migrate a qooxdoo application from one SDK version to another SDK
version. We have also migrated our application, Team Twitter, from qooxdoo 1.2 SDK to
qooxdoo 1.4.2 SDK.

Back button support
In AJAX applications, for most of the actions, the URL does not change in the browser.
Because of this, the browser back button might not work as it works in traditional web
applications. qooxdoo provides a way to work with the browser back button.

If there is a requirement, we may need to make the browser back button functional. A good
example is the API viewer component in the qooxdoo framework. The qooxdoo framework
provides an API to manage the history and navigate through the various states through the
browser's "forward" and "back" buttons.

Identify application states
Each point that we want to navigate through the browser's "back" button has to be identified
as a state with the respective title. state and title strings. The state string must be
an encoded string that will be set as the fragment identifier of the URL after the # character.
When we click on the browser's "back" and "forward" buttons, this state is fetched by the
qooxdoo history manager to act accordingly in the application.

It is up to us to decide what states we want to remember, based on the application's
requirements . It could be coarse-grained or fine-grained, depending on requirements.

In the case of the API viewer component, each node click on the API tree is a state. The
state string can be the node name itself, so that it is easy to select the node on the browser
button actions.

Update history upon state change
In the qooxdoo application, whenever we reach a state that we want to remember in the
history and navigate back to it later, we should register that state in the history manager by
calling the following API:

qx.bom.History.getInstance().addToHistory(state, title);

The state is used in the qooxdoo application code and the title is set as the browser title
for that state.

Miscellaneous

[368]

In the case of the API viewer component, whenever we click on the node in the API tree, it
is a state. We should register it in the history manager. If we take a look at the API viewer
class (C:\qooxdoo-1.4.2-sdk\component\apiviewer\source\class\apiviewer\
Controller.js), the method _updateHistory() updates the history manager. This
method is called upon click of the node.

The following code snippet from the API viewer component registers the state in the history
manager:

/**
* Push the class to the browser history
* @param className {String} name of the class
*/
_updateHistory : function(className)
{
 var newTitle = className + " - " + this._titlePrefix;
 qx.bom.History.getInstance().addToHistory(
 this.__encodeState(className), newTitle);
}

Add the event listener to the history manager
In the previous steps, we have identified states and registered the states in the history
manager. Now, we need to act on the event. On the browser's "back" and "forward" actions,
the history manager dispatches a request event. In the listener method, based on the state
of the event, we have to do the application-specific update.

The following code snippet from the API viewer component adds a listener to the history
manager:

__bindHistory : function()
{
 this._history.addListener("request", function(evt) {
 var state = e.getData();

 //Do application specific state update
 var item = this.__decodeState(state);
 if (item) {
 this.__selectItem(item);
 }

 }, this);
}

Chapter 11

[369]

Retrieve initial state
In addition to the browser's "back" and "forward" buttons, the bookmarks in the browser
should work. When a user loads the bookmark, the application should interpret the state
that is bookmarked and load that state. We can get the state from the history manager using
the following API:

var state = qx.bom.History.getInstance().getState();

In the API viewer component, if we have bookmarked the URL and loaded it again from the
bookmark (http://api.qooxdoo.org#qx.bom.History), it should load that particular
class based on the state.

The following code snippet from the API viewer component identifies and loads the state:

load : function(url)
{

 qx.event.Timer.once(function()
 {
 // Handle bookmarks
 var state = this._history.getState();
 if (state)
 {
 this.__selectItem(this.__decodeState(state));
 }
 else
 {
 // Load the first package if nothing is selected.
 var firstPackage = this.__getFirstPackage(treeData);
 var fullName = firstPackage.attributes.fullName;
 this.__selectItem(fullName);
 }
 }, this, 0);

}

We have learnt about the history support in the qooxdoo framework and learnt how to
support the browser's "back" button, "forward" button, and bookmarks in the qooxdoo
application. We have learnt how the history manager is used in the API viewer component of
the qooxdoo framework.

Miscellaneous

[370]

qooxdoo license
qooxdoo may be used under the terms of either one of the following two licenses:

 � GNU Lesser General Public License (LGPL):
http://www.gnu.org/licenses/lgpl.html

 � Eclipse Public License (EPL):
http://www.eclipse.org/org/documents/epl-v10.php

As a recipient of qooxdoo, you may choose which license to receive the code under. Certain
files or entire directories may not be covered by this dual license, but are subject to licenses
compatible to both LGPL and EPL. License exceptions are explicitly declared in all relevant
files or in a LICENSE file in the relevant directories.

Legacy version 0.6.4 and below are licensed solely under GNU Lesser General Public
License (LGPL).

Pop quiz
1. The qooxdoo legacy version is until

a. 0.7.0

b. 0.8.3

c. 1.2.2

2. qooxdoo migration updates the configuration (config.json) too

a. True

b. False

3. Generator configurations are written in which file format

a. Ant

b. JSON

c. Properties

d. Normal text files

e. None

Chapter 11

[371]

4. Which key triggers the execution of one or more external command(s)

a. run

b. shell

c. simulate

d. command

5. Which key allows you to configure a list of classes to be processed in the job

a. include (top-level)

b. include (inside job)

c. classes

d. library

6. Which key exports a list of jobs, if the configuration is imported in another

a. combine

b. export

c. import

d. dependencies

7. Which key triggers the generation of the custom API viewer for the application

a. compile

b. api

c. generate

d. translate

8. Which key allows you to define user environment settings

a. environment

b. let

c. let (inside job)

d. export

9. The command generate.py ? displays all the exported jobs, even from the
imported configuration

a. True

b. False

Miscellaneous

[372]

10. Which key allows splitting application into pieces

a. packages

b. parts

c. combine

d. run

11. qooxdoo supports the browser's "back" and "forward" button

a. Without any additional code

b. Coding through the history manager

12. qooxdoo is available under the following licenses

a. GNU Lesser General Public License (LGPL)

b. Apache License 2.0 (Apache-2.0)

c. Eclipse Pubic License (EPL)

d. Open Software License 3.0 (OSL-3.0)

Summary
In this chapter, we have learnt about the miscellaneous items that complete this book.

In particular, we have covered:

 � The configuration of the qooxdoo application

 � How to migrate to a newer version of qooxdoo SDK and we migrated the Team
Twitter application to qooxdoo 1.4.2 SDK

 � How to support the browser's "back" and "forward" buttons

 � The license of qooxdoo

In this book, we have learnt about the qooxdoo framework. We have also learnt most of
the concepts by applying them in the Team Twitter application.

Pop Quiz Answers

Chapter 1: What is qooxdoo?

1 2 3 4 5 6

d a e d d b

Chapter 2: Say Hello to the qooxdoo World!

1 2 3 4 5 6

b b a a c c

Chapter 3: Core Programming Concepts

Pop quiz-I

1 2 3 4 5 6 7

d e b c b d b, c, and f

Pop Quiz Answers

[374]

Pop quiz-II

1 2 3 4 5 6 7 8

a e a a c b a and d a, b, and c

Chapter 4: Working with Layouts and Menus

1 2 3 4 5 6

a a c b a a

7 8 9 10 11

d d a d d

Chapter 5: Working with Widgets

1 2 3 4 5 6 7

b a a and b c d e b

8 9 10 11 12 13 14

a a and b a c c d b

Chapter 6: Working with Forms and Data

1 2 3 4 5 6 7 8 9 10

d a c a g d a e b c

Chapter 7: Testing and Debugging

1 2 3 4 5 6 7 8

a b and c b and c b a d b e

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Appendix

[375]

Chapter 8: Internationalization

1 2 3 4 5

c b c d a

Chapter 9: Working with Themes

1 2 3 4 5 6 7

a, b, and d a a and d d d e a

Chapter 10: Performance

1 2 3 4 5 6 7 8 9 10

c a a f a, b, c,
and d

c a d a, b, c,
and d

a

Chapter 11: Miscellaneous

1 2 3 4 5 6

b b b b a b

7 8 9 10 11 12

b a a b b a and c

References
The following sources have been referred to, for this book:

 � The qooxdoo framework website: http://qooxdoo.org/

 � The JavaScript Object Notation (JSON) website: http://www.json.org/

 � The Selenium framework website: http://seleniumhq.org/

 � The Firebug website: http://getfirebug.com/

 � “Object-Oriented Modeling and Design” by James Rumbaugh, Michael Blaha,
William Premerlani, Frederick Eddy, and William Lorensen, Prentice-Hall

Index
Symbols
_addAfter() method 185
_addAt() method 185
_addBefore() method 185
_add() method 185
_createChildControlImpl(id) method 184
_disposeArray method 324
_disposeMap method 324
_disposeObjects method 324
_excludeChildControl(id) method 185
_getChildren() method 185
_getLayout() method 185
.gz compression 344
_isChildControlVisibile(id) method 185
@link attribute 67
@param attribute 67
_remove() method 185
@return attribute 67
@see attribute 67
_setLayout() method 185
_showChildControl(id) method 185
-t attribute 189
@throws attribute 67

A
abstract class 77
abstraction 70
AbstractRenderer class 211
action keys 352
ActivePython

downloading 26
installing 26-29

ActiveState website
URL 26

addAdvice() method 260
addBranch 198
addButton() method 211
addItem event 18
add(item) method 209
addItems() method 211
addListener() method 111
addListenerOnce() method 111
addLocale() method 271
addTranslation() method 271
advanced value handling

inheritance support 100
multivalue support 100
overriding 100

advantages, part loading 339
alias 300
alias caching 307
alias entry, appearance map 303, 304
aliases section, decoration theme 294
aliasMap map object 307
alternative programming models

Java/Eclipse 17
LISP (qooxlisp) 17
qooxdoo Web Toolkit (QWT) 17
QxWT 17
XML 17

Animal class 69
AOP

tracing, through 260
API classes, simulator component

simulator.QxSelenium 243

[380]

simulator.Simulation 243
simulator.unit.TestCase 243

api directory 38
API documentation

generating, for Team Twitter 68
API placeToMouse() 181
API placeToPoint() 181
API reference, qooxdoo features

about 15
URL 15

apiviewer directory, component directory 37
appearance

about 115
defining options 306

appearance entry (value)
about 299
alias 300
map 301

appearance map 301
appearance queue, performance 306
appearance selector (key) 299
appearance theme

about 297
alias entry 303, 304
appearance entry (value) 299
appearance selector (key) 299
base calls 305
code snippet 289, 298
nclude entry 303
style entry 302

application directory
about 36
demobrowser application 36
feedreader application 36
playground application 36
portal application 37
showcase application 37

Application.js class 115
apply configuration 93
architecture, qooxdoo SDK 12
Archive package, Cygwin 33
array binding

about 220
options map 220

Array object 51
asynchronous validation

about 208, 209

code snippet 208
Atom widget

about 151
code snippet 152
features 153
iconPosition property 151

attributes, properties section
check 101
event 101
group 101
inheritable 101
init 101
mode 101
nullable 101
redefine 101
themeable 101
validate 101

B
back button support

about 367
application states, identifying 367
event listener, adding to history manager 368
history, updating 367, 368
initial state, retrieving 369

background decorator 296
base calls 305
base calls optimization 332
base classes, widgets

qx.application 115
qx.core.LayoutIte 112
qx.core.Widget 112

base() method 111
Basic layout

about 125
features 126

basic widgets
about 150
Atom widget 151
Image widget 153, 154
Label widget 150

beveled decorator 296
bin directory 38
bind() method 218, 219
browser abstraction layer 12
Browser Object Model (BOM) layer 37

[381]

build directory
about 42
index.html directory 42
resource directory 42
script directory 42

build job 332
build.xml file 55
Button, menu 139
ButtonView widget 245
Button widget

about 18, 162, 170
code snippet 170
features 170

C
callAsync 47
callAsyncListeners 47, 49
Canvas layout

about 126
features 126

categories 81
changeSelection event 18
changeValid event 205
changeValue event 161, 164, 170
Checkbox, menu 139
CheckBox widget

about 161, 165, 179
features 165

check configuration key 94
class

about 69, 73
closed form 73
construct 74
destruct 74
members 74
types 77

class directory, source directory 41
class hierarchy, qooxdoo 110
class hierarchy, data controller 221
class hierarchy, data stores

about 225
qx.data.marshal 225
qx.data.marshal.Json 225
qx.data.store 225
qx.data.store.Json 225

class hierarchy, decoration package 295

class hierarchy, form widgets
about 164
qx.ui.form.Button 170
qx.ui.form.CheckBox 165
qx.ui.form.ComboBox 167
qx.ui.form.DateField 169
qx.ui.form.HoverButton 172
qx.ui.form.List 168
qx.ui.form.ListItem 168
qx.ui.form.MenuButton 170
qx.ui.form.PasswordField 165
qx.ui.form.RadioButton 165
qx.ui.form.RadioButtonGroup 166
qx.ui.form.RepeatButton 173
qx.ui.form.SelectBox 167
qx.ui.form.Slider 174
qx.ui.form.Spinner 167
qx.ui.form.SplitButton 171
qx.ui.form.TextArea 165
qx.ui.form.TextField 164
qx.ui.form.ToggleButton 170

class hierarchy, simulator component 243
class hierarchy, table widget 192
class hierarchy, themes 286
class hierarchy, treevirtual widget 197
class hierarchy, tree widget

about 195
qx.ui.tree.Tree class 195
qx.ui.tree.TreeFile class 195
qx.ui.tree.TreeFolder class 195
Unified Modeling Language (UML) diagram 196

classic theme 286, 290, 291
class level events

about 102
declaring 102

class members 74
class optimizations

about 331
base calls 332
private optimization 331, 332
string optimization 331
variable optimization 331

clearLayoutProperties() 123
client.generate-build 57
code, for internationalization

qx.locale.Date 271
qx.locale.Key 271

[382]

qx.locale.Manager 271
qx.locale.MTranslation 271
qx.locale.Number 271
qx.locale.String 271
writing 270

ColorPopup widget
about 182
code snippet 182

ColorSelector widget
about 161, 182
code snippet 183

color theme
about 292
code snippets 288

ComboBox widget
about 167
features 167

comments
about 66
multi-line comment 66
single-line comment 66

Common Language Data Repository (CLDR) 15
Common Locale Data Repository (CLDR) 270
compile-time tuning

about 331
class optimizations 331
lint check 334
unused classes, identifying 332, 333

complete event 205
complex widgets

creating 327
component directory

about 37
apiviewer application 37
inspector application 37
simulator application 37
skeleton application 37
testrunner2 application 37
testrunner application 37

Composite container 119
computeSizeHint() 123
comtroller component 217
concrete class 77
config.json file 42, 350, 351
configuration keys

construct 83
destruct 83

events 83
extend 83
implement 83
include 83
members 83
properties 83
statics 83
type 83

console.log() method 256
console object

about 256
string formatting 256

console.profileEnd() method 257
console.profile() method 257
Console tab 261
constructor, class 74
containers

about 117
Composite container 119
Groupbox container 122
Resizer container 119
Scroll container 117
Stack container 118
Tabview container 121
Window container 120

control widgets
about 182
ColorPopup widget 182
ColorSelector widget 182
DateChooser widget 183

convenience 99
converter function 220
core layer 12
create-application.py tool 189
cross-domain calls 50
CSS locators 244
CSS tab 262
CTweet widget 188
cursor 115
custom widgets

about 184
adding, to Team Twitter 186-189

CVideoTweet widget 188
Cygwin

downloading 29
installing 29-34
URL 29

[383]

Cygwin packages
Archive 33
Devel 33
Interpreters 33
Net 34
Utils 34
Web 34

Cygwin Setup
about 29
Direct Connection option 32
Install from Internet option 30
Install from Local Directory 31
Local Package Directory 31

D
data binding

about 13, 204, 216
array binding 220
class hierarchy 218
components 217
data controller 221
event binding 219
hierarchical data binding 219
property binding 219
single value binding 216, 218

data binding, components
controller 217
data 217
model 217
store 217
view 217

data component 217
data controller

about 221
class hierarchy 221
data stores 225
Form controller 223
List controller 222
Object controller 221
Tree controller 224
UserSignUpForm, enhancing 226, 227

data directory 38
data stores

about 225
class hierarchy 225
JSONP store 226

JSON store 225
YQL store 226

DateChooser component 169
DateChooser widget

about 183
code snippet 183

DateField widget
about 169
code snippet 169
features 169

Date object 51 44
debugging

about 255
Firebug 259
Firebug add-on, installing 259
IE developer tools 259
logging methods 256
team twitter application 260-265
tracing, AOP used 260

debugging operations
continue (F8) 262
step into (F11) 262
step out (Shift + F11) 262
step over (F10) 262

debug() method 112
decoration package

class hierarchy 295
decorations section, decoration theme

about 294
decorator key 295
new decorator, writing 297
style key 297

decoration theme
about 293
aliases section 294
code snippets 288, 294
decorations section 294
schematic diagram 293
using 293

decorator key 295
decorators

background 296
beveled 296
double 296
grid 296
HBox 296
single 296

[384]

uniform 296
VBox 296

demobrowser application, application directory
36

demo browser, GUI widget library
about 18
URL 19

DemoSimulation class 242
deployment, qooxdoo features 16
desktop characteristics, RIA 11
destruct method 324
destructor, class 74
Devel package, Cygwin 33
directory structure, qooxdoo SDK

application directory 36
component directory 37
documentation directory 38
framework directory 38
tool directory 38

dispatchEvent() method 111
dispose() method 111, 324
dist target 59
doc comment statements

@lint ignoreDeprecated(alert) 334
@lint ignoreGlobal(qx) 335
@lint ignorereferencedField(x) 335
@lint ignoreUndefined(button1, foo) 335
@lint ignoreUnused(x,y) 334

doc directory 38
Dock layout

about 127
features 128

documentation directory 38
Document Object Model (DOM) node 190
DOM locators 244
double column renderer 211
double decorator 296

E
EBNF-like syntax

URL 79, 83
Eclipse IDE

about 60
URL 60
working with 60, 62

Eclipse Public License (EPL)
URL 370

Eclipse Rich Ajax Platform (RAP)
about 17
URL 17

Ecmalint 334
en 270
enabled 114
encapsulation 69
en_UK 270
en_US 270
error handling 49
error() method 112
event-based rich UI programming

about 17, 18
diagrammatic representation 17

event binding 219
event configuration 98
event handling methods, Object class

addListener() 111
addListenerOnce() 111
dispatchEvent() 111
fireDataEvent() 111
fireEvent() 111
removeListener() 111
removeListenerById() 111

events
about 102
declaring 102
firing 102

exclude() method 113
execute event 170
Extended Backus-Naur Form (EBNF) 72
extend key 355, 357

F
fail() method 243
features, mixin

MBackgroundColor 296
MBackgroundImage 296
MBorderRadius 296
MBoxShadow 296
MDoubleBorder 296
MLinearBackgroundGradient 296
MSingleBorder 296

[385]

features, qooxdoo properties
advanced value handling 100
convenience 99
memory management 100, 101
notification 99
performance 100
validation 99
value checks 99

feed reader application, in qooxdoo
about 8, 36
demo 8
feed, adding to feed reader 9
feeds, checking 9, 10
overview 8
URL 8

filters
using 343

Firebug
about 259
features 259
installing 259
URL 377

fireDataEvent() method 111
fireEvent() method 111
Flow layout

about 130
features 131

Flow layout manager 133
font 114
font theme

about 293
code snippets 288

Form controller
about 223
code snippet 223
features 223

form handling
about 204
rendering 210
resetting 209
serialization 212
validation 204

form item management
about 205
interfaces 205
Reset() method 205

form widgets

about 158, 159
class hierarchy 164
interface hierarchy 160

framework directory
about 38
api directory 38
source directory 38

G
garbage-collector algorithms

implementing 324
generate.py build 281
generate.py script 42
generate.py source 281
generate.py translation 281
generate translation command 278
getAllBindingsForObject(sourceObject)

method 220
getAllBindings() method 220
getAppearence() method 115
getChildControl(id, notCreate) method 185
getCursor() method 115
getEnabled() method 114
getFont() method 114
getInsets method 297
getInstance() method 337
getInvalidMessages() method 206
getMarkup method 297
getModel() method 168
getObject(clazz) method 216
getParts() method 337
getProfileData() method 329
getSelectable() method 114
getSelectionMode() method 168
getSizeHint(Boolean compute) 123
getSize() method 216
getTabIndex() method 114
getToolTipIcon() method 113
getToolTip() method 113
getToolTipText() method 113
getValid() method 205
getXXX() method 93
GNU gettext tools 15
GNU Lesser General Public License (LGPL)

URL 370
grid decorator 296

[386]

Grid layout
about 131
features 131

Groupbox container 122, 133
group property 98
GUI library, RIA 11
GUI Toolkit layer 13
GUI widget library

about 18
demo browser, checking 18
playground, checking 19

H
hasPart(String partName) method 337
HBox decorator 296
HBox layout

about 128
features 128, 129

HBox layout manager 132
Hibernate framework

downloading 154
Hibernate tools

downloading 155
hide() method 113
hierarchical data binding 219
HoverButton widget 162

about 172
code snippet 172
features 173
properties 172

HTML tab 262

I
i18n. See internationalization
IBooleanForm interface 161
IColorForm interface 161
iconPosition property 151
icon theme 292
IDateForm interface 161
ID locators 244
IE Developer tools 259
IExecutable interface 162
IForm interface 162
IListdata class 218
Image widget

about 153

code snippet 153
features 154
server application, enhancing 154-158

IModel interface 163
IModelSelection interface 163
include entry, appearance map 303
include key 360
index.html directory, build directory 42
index.html directory, source directory 41
info() method 112
inheritance 70, 78
inheritance hierarchy 81
initAppearence() method 115
initCursor() method 115
initFont() method 114
initLayout method 174
init method 297
initSelectable() method 114
initSize() method 216
initXXX() method 93
inline widgets 189-191
input event 164
inspector component 249
inspector directory, component directory 37
installation

qooxdoo SDK 35
qooxdoo tools 26

instance members
about 75
encapsulating 76
private members 76
protected members 76
public members 76

instance variable
accessing 75

integration test
performing 246-254

integration testing
test cases, writing 242

interface
about 71
events 72
member function 71
properties 71
statics 71

interface hierarchy, form widgets
about 160

[387]

IBooleanForm 161
IColorForm 161
IDateForm 161
IExecutable 162
IForm 162
IModel 163
IModelSelection 163
INumberForm 161
IRange 162
IStringForm 161

internationalization
about 13, 15, 270
localization 270
translation 270

Interpreters package, Cygwin 33
INumberForm interface 161
invalidMessage method 206
IO-setting keys 352
IRange interface 162
isDisposed() method 111
isExcluded() method 113
isHidden() method 113
IStringForm interface 161
isValid() method 205
isVisible() method 113
isXXX() method 93

J
Java Development Kit (JDK)

downloading 54
JavaScript types

Array 51
Boolean 51
Date 51
Number 51
Object 51
String 51

Java server
integrating with 52-60

Java server integration
about 52
server development environment, setting up 53

java.util.Date object 51
job resolution

about 354
extend key 355, 357

include key 360
run key 358, 359

job shadowing 360-362
JSON

about 42
URL 42

JSON files
configuring 350

JSON format
array 43
char 43
digits 44
e 44
element 43
exp 44
frac 44
int 44
member 43
number 43
object 43
pair 43
string 43
value 43

JSONP store
about 226
code snippet 226

JSON-RPC 46
JSON store

about 225
code snippet 225

JSON website
URL 377

K
KBabel (Linux) 279
keys, job-describing map

add-script 353
api 353
asset-let 353
cache 353
clean-files 353
collect-environment-info 353
combine-images 353
compile 353
compile-options 353
copy-files 353

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[388]

copy-resources 353
dependencies 353
desc 353
environment 353
exclude 353
extend 353
fix-files 353
include 353
let 353
library 354
lint-check 354
log 354
migrate-files 354
packages 354
pretty-print 354
provider 354
require 354
run 354
settings 354
shell 354
simulate 354
slice-images 354
translate 354
use 354
variants 354

keys, top-level configuration map
default-job 352
export 352
include 352
jobs 352
let 352
name 352

L
l10n. See localization
Label widget 161

about 150
features 151
rich mode 151
text mode 150

language, qooxdoo features 14
LayoutItem class. See qx.core.LayoutItem
layout managers

about 123
auto sizing 124
developing, forTeam Twitter

application 132-137

growing or shrinking 124
layout properties 123
overflow 124
size hint 123

layouts
Basic 125
Canvas 126
dock 127
Flow layout 130
Grid layout 131
HBox 128
VBox 129

lazy loading 336
limitations, profiling 330
lint check output

about 334
improvements 335

lint job
checking 334

LISP (qooxlisp)
about 17
URL 17

List controller
code snippet 222
features 222, 223
list widgets 222

listeners
adding 102

ListItem widget
about 168
features 169

List widget
about 18, 168
features 168
selection modes 168

localization 270
logging methods

debug() 256
error() 256
info() 256
warn() 256

logging methods, Object class
debug() 112
error() 112
info() 112
trace() 112
warn() 112

[389]

logging statements, qoooxdoo code
about 256
console object 256
qx.dev.Debug class 257
trace method 257
variant qx.debug 258

loginUser() method 261
low-level layer 13

M
MainWidget class 263
Manager locale 271
Manifest.json file 42
map valuet 301
marktr() method 275
MBackgroundColor 296
MBackgroundImage 296
MBorderRadius 296
MBoxShadow 296
MDoubleBorder 296
members, class

about 74
class members 74
instance members 75, 76

memory management 323-326
menu

about 138
Button 139
CheckBox 139
displaying 140
RadioButton 139
Separator 139

MenuBar 141
MenuButton 138
MenuButton widget

about 170, 299
code snippet 171
features 171

Menu object
creating 139, 140
features 141

meta theme 287
methods, qx.io.PartLoader

getParts() 337
getPart(String partName) 337

hasPart(String partName) 337
Require() 337

methods, Resetter class
add(item) 209
redefine() 209
redefineItem(item)/resetItem(Item) 209
reset() 209

methods, SingleValueBinding class
getAllBindings() 220
getAllBindingsForObject(sourceObject) 220
removeAllBindings() 221
removeAllBindingsForObject(object) 221
removeBindingFromObject(bindingId) 221
showAllBindingsInLog() 221
showBindinginLog(object, id) 221

methods, validation
getValid() 205
isValid() 205
validate() 205

migration, qooxdoo features 16, 362-366
miscellaneous keys 352
mixin

about 81
classes, writing for Team Twitter 84-89
configuration keys 83
defining 82
features 296
using, in class 82

MLinearBackgroundGradient 296
model component 217
modern theme

about 286, 289
code snippet 290
customizing 290

module 81
move() behavior 70
MSingleBorder 296
MTranslation mixin 275
multi-line comment 66
Multiple Document Interface (MDI) 120
MyInterface interface 80, 81
MySQL community server

downloading 155
MySQL Connector/J library

downloading 155
mysql prompt 156

[390]

N
Net package, Cygwin 34
new decorators

writing 297
normalizeProfileData() method 329
notification 99
Numbers 45

O
object 69
Object class. See qx.core.Object class
Object controller

about 221
code snippet 222
features 222

object management methods, Object class
base() 111
dispose() 111
isDisposed() 111
toHashCode() 111
toString() 111

object-orientation, qooxdoo features 14
Object-oriented programming

about 69
abstraction 70
class 69
encapsulation 69
inheritance 70
object 69
overriding 70
polymorphism 70

object pool
creating 327

object pooling 216, 327
onSetFail function 220
onUpdate function 220
options map

about 220
converter function 220
onSetFail function 220
onUpdate function 220

org.test.MyAnotherClass class 82
org.test.MyClass class 82
overriding 70, 78, 79

P
package 335
padding 114
pagination

using 344
partial overriding 360-362
partitioning 336, 339
PartLoader 337
part loading feature

advantages 339
improvements 338

part loading feature, improvements
dependencies, removing from part loader 338
error handling 339
packages, loading in parallel 338
part collapsing or merging 338

PasswordField widget
about 165
features 165

performance
.gz compression 344
about 306, 323
alias caching 307
appearance queue 306
data, restricting in widgets 343
filters, using 343
pagination, using 344
practices 343
result caching 308
selector caching 306, 307

placeToMouse() 140
playground application, application directory 36
playground, GUI widget library

about 19
URL 19

po-aware editors
KBabel (Linux) 279
LocFactory Editor (Mac OS X) 279
Poedit (Linux, Windows, Mac OS X) 279

Poedit 279, 280
PO files

generating, for Team Twitter 276-283
writing 275

polymorphism 70
poolObject(Object obj) method 216

[391]

popup widgets
about 180
autoHide property 180
bringToFront property 180
ComboBox 180
Menu 180
SelectBox 180
sendToBack property 180
tooltip 180
zIndex property 180

portal application, application directory 37
predefined methods, qooxdoo properties

about 93
getXXX() 93
initXXX() 93
isXXX() 93
resetThemedXXX() 93
resetXXX() 93
setThemedXXX() 93
setXXX() 93
toggleXXX() 93

private optimization 331, 332
profileAfter/profileBefore() method 329
profiler 328
profiling

about 328
enabling 328
limitations 330, 331

programming, qooxdoo features 15
properties, HoverButton

firstInterval 172
Interval 172
minTimer 172
timeDecrease 172

property binding 219
property configurations

apply 93
check 94, 95
event 98
group 97
validate 96

property initialization 92
pylib directory 38

Q
qooxdoo

API documentation 66

architecture 12
back button support 367
base classes, for widgets 110
basic widgets 150
class hierarchy 110
code comments 66
compile-time tuning 331
configuration 349
custom widgets 184
data binding 204, 216
data, passing to server 42
debugging 255
event-based rich UI programming 17, 18
form handling 204
form widgets 158
inheritance 78
inline widgets 189
layouts 124
licenses 370
memory management 323-326
migration 362
Object-oriented programming 69
object pooling 216, 327
overriding 78, 79
profiling 328
performance 306
simulator component 242
special widgets 179
table widget 192
themes 286
treevirtual widget 197
tree widget 195
widgets 110, 150

qooxdoo application
code, writing for using internationalization 270
config.json file 42
creating 39, 40
generate.py script 42
internationalization 269
localization 270
Manifest.json file 42
migrating 362-366
PO files, writing for languages 275
simple application, creating 39, 40
source directory 41

qooxdoo framework features
about 14

[392]

alternative programming models 17
API reference 15
deployment 16
internationalization 15
language 14
migration 16
object-orientation 14
programming 15
testing 16

qooxdoo framework website
URL 377

qooxdoo JSON-RPC server guidelines 52
qooxdoo licenses

about 370
Eclipse Public License (EPL) 370
GNU Lesser General Public License (LGPL) 370

qooxdoo locators
about 244
qxh locators 244
qxhv locators 246
qxhybrid locators 246
qxidv locators 246

QOOXDOO_PATH 363
qooxdoo properties

about 91
configurations 93
defining 92
features 92, 99
initializing 92
predefined methods 93

qooxdoo RPC 46
qooxdoo SDK

directory structure 35
installing 35

qooxdoo SDK architecture
about 12
browser abstraction layer 12
core layer 12
data binding 13
development model 17
diagrammatic representation 12
GUI Toolkit layer 13
internationalization 13
low-level layer 13

qooxdoo SDK directory structure. See directory
structure, qooxdoo SDK

qooxdoo tools

ActivePython 26
Cygwin 29
installing 26

qooxdoo Web Toolkit (QWT)
about 17
URL 17

qx.application
about 117
inline 115
native 115
standalone 115

qx.application class 115
qx.bom.Font class 311
qx.bom.* package 37
qx.client variant 260
qx.core.Assert 71
qx.core.LayoutItem class 112
qx.core.Object class

about 111
event handling 111
logging 112
object management 111

qx.core.Widget class
about 112
widget properties 113

qx.data.Array class 218
qx.data.controller package 217
qx.data.marshal class 225
qx.data.marshal.Json class 225
qx.data.marshal package 217
qx.data.SingleValueBinding class 218
qx.data.store.Json class 225
qx.data.store package 217
qx.debug variant 260
qx.dev.Debug class 257
qx.dev.Profile class

about 328
getProfileData() method 329
methods 328
normalizeProfileData() method 329
profileAfter/profileBefore() method 329
showResults() method 328
start() method 328
stop() method 328

qx.disposerDebugLevel property 258
qx.disposerDebugLevel variant 325
qx.dynlocale variant 260

[393]

qxh locators
about 244
qxh=[@attrib{=val}] 245
qxh=child[n] 245
qxh=<classname> 245
qxh=<specific operators> 246
qxh=<string> 245
qxh=<wildcard_operator> 245

qxhv locators 246
qxhybrid locators 246
qxidv locators 246
qx.io.PartLoader

about 337
methods 337

qx.ioRemoteDebugData property 258
qx.ioRemoteDebug property 258
qx.io.remote package 46
qx.io.remote.Rpc.localError.abort 50
qx.io.remote.Rpc.localError.timeout 50
qx.io.remote.Rpc.origin.application 49
qx.io.remote.Rpc.origin.local 49
qx.io.remote.Rpc.origin.server 49
qx.io.remote.Rpc.origin.transport 49
qx.locale.Date 271
qx.locale.Key 271
qx.locale.MTranslation 271
qx.locale.Number 271
qx.locale.String 271
qx.ui.core.Widget class 184
qx.ui.form.Button class 170
qx.ui.form.CheckBox class 165
qx.ui.form.ComboBox class 167
qx.ui.form.DateField class 169
qx.ui.form.HoverButton class 172
qx.ui.form.IExecutable interface 162
qx.ui.form.IForm interface

about 162
setEnabled 162
setInvalidMessage 162
setRequired 162
setValid 162

qx.ui.form.IModel interface 163
qx.ui.form.IModelSelection interface 163
qx.ui.form.IRange interface 162
qx.ui.form.List class 168
qx.ui.form.ListItem class 168

qx.ui.form.MenuButton class 170
qx.ui.form.PasswordField class 165
qx.ui.form.RadioButton class 165
qx.ui.form.RadioButtonGroup class 166
qx.ui.form.renderer.Double class 211
qx.ui.form.renderer.Single class 211
qx.ui.form.renderer.SinglePlaceHolder class 212
qx.ui.form.RepeatButton class 173
qx.ui.form.SelectBox class 167
qx.ui.form.Slider class 174
qx.ui.form.Spinner class 167, 184
qx.ui.form.SplitButton class 171
qx.ui.form.TextArea class 165
qx.ui.form.ToggleButton class 170
qx.ui.form.validation.Manager class 205
qx.ui.groupbox.GroupBox 311
qx.ui.menu.Button widget 299
qx.ui.popup package

about 180
qx.ui.popup.Manager class 180
qx.ui.popup.Popup class 180

qx.ui.table.celleditor package 193
qx.ui.table package 192
qx.ui.table.selection.Model class 193
qx.ui.tooltip package

about 180
qx.ui.tooltip.Manager class 181
qx.ui.tooltip package class 180

qx.util.ObjectPool class
about 216
getObject(class clazz) method 327
getObject(clazz) method 216
methods 216, 327
poolObject (object obj) method 327
poolObject(Object obj) method 216

qx.util.Validate class
qx.util.Validate.color() function 96
qx.util.Validate.inArray() function 96
qx.util.Validate.number() function 96
qx.util.Validate.range() function 96
qx.util.Validate.regExp() function 96
qx.util.Validate.string() function 96
qx.util.Validate.url() function 96

QxWT
about 17
URL 17

[394]

R
RadioButton 139
RadioButtonGroup widget

about 166
code snippet 166
features 167

RadioButton widget 161
about 165
code snippet 166
features 166

RadioGroup widget 161
redefineItem(item)/resetItem(Item) method

209
redefine() method 209
refreshLayoutAfterLogin() method 263
Remote Procedure Call (RPC) mechanism

about 46
call, aborting 48
call, making 46, 47
cross-domain calls 50
error handling 49
RPC connection, setting up 46

remote table model
about 194
features 194

RemoteTableModel class 194
removeAllBindings() method 221
removeAllBindingsForObject(object) method

221
removeBindingFromObject(bindingId) method

221
removeItem event 18
removeListenerById() method 111
removeListener() method 111
renderers

about 210
class hierarchy 210
double column renderer 211
single column renderer 211
single column with placeholder renderer 212

rendering 210
RepeatButton widget

about 173
code snippet 173
features 174

request event 368
Require() method 337
require() statement 16
resetAppearence() method 115
resetContextMenu() method 141
resetCursor() method 115
resetFont() method 114
reset() method 209
resetModel() method 168
resetPadding() method 114
resetSelectable() method 114
resetSize() method 216
Resetter class

about 209
methods 209

resetThemedXXX() method 93
resetting 209
resetXXX() method 93
resize method 297
Resizer container 119
resource directory, build directory 42
resource directory, source directory 41
result caching 308
RIA, developed in qooxdoo

demo 8
desktop characteristics 11
GUI library 11
key aspects 11
user context 11

rich mode, Label widget 151
RPC call

aborting 48
asynchronous 47
cross-domain calls 50
making 46
RPC request 48
RPC response 48
synchronous 47

RPC connection
setting up 46

rpcdetails 49
RPC request 48
RPC response 48
RPC servers 52
run key 358, 359
Runtime-setting keys 352

[395]

S
script directory, build directory 42
script directory, source directory 41
Script tab 261
Scroll container 117
selectable 114
SelectBox widget

about 167
features 167

selection modes, List widget
addictive 168
multi 168
one 168
single 168

selector cache 307
selector caching, performance 306
Selenium framework website

URL 377
Selenium Java Client Driver API documentation

244
Selenium locators

about 244
CSS locators 244
DOM locators 244
ID locators 244
XPath locators 244

Separator 139
serialization

about 212
UserSignUpForm. enhancing 213-215

serSignUpForm
enhancing 213-215

server
communicating with 46
JavaScript types 51
Java types 51
JSON types 51
parameter and result conversion 51

server application
enhancing 154-158

setAppearence() method 115
setContextMenu() method 141
setCursor() method 115
setData() method 199
setEnabled() method 114
setFont() method 114

setLayoutProperties() method 123
setModel() method 168
setPadding() method 114
setSelectable() method 114
setSelectionMode() method 168
setSize() method 216
setTabIndex() method 114
setThemedXXX() method 93
setToolTipIcon() method 113
setToolTip() method 113
setToolTipText() method 113
setXXX() method 93
showAllBindingsInLog() method 221
showBindinginLog(object, id) method 221
showcase application, application directory 37
show() method 113
showResults() method 328
shutdown() method 326
simple theme 286, 291, 292
simulation-build job 247
simulator.QxSelenium class 243
simulation-run job 247
simulator API documentation 242
SIMULATOR_CLASSPATH value 248
simulator component

about 242
API classes 243
API, generating 242
class hierarchy 243

simulator directory, component directory 37
simulator.Simulation class 243
simulator.unit.TestCase class 242, 243
single column renderer 211
single column with placeholder renderer 212
single decorator 296
Single Document Interface (SDI) 120
single-line comment 66
singleton class 77
SingleValueBinding class

about 216, 218
methods 220

size hint 123
skeleton directory, component directory 37
Slider widget

about 174
features 174

source directory 38

[396]

about 41
class directory 41
index.html directory 41
resource directory 41
script directory 41
translation directory 41

source job 332
special widgets

about 179
control widgets 182
popup widgets 180
tooltip widgets 180

spinner/upbutton 304
Spinner widget 161, 299

about 167
features 167

SplitButton 138
SplitButton widget

about 171
features 172

Spring framework
downloading 154

Stack container 118
start() method 328
states parameter 302
static class 77
static members 74
static translation methods

tr() 271
trn() 271

stop() method 328
store component 217
string optimization 331
structure-changing keys 352
style entry, appearance map 302
style key 297
style method 303
subclass 70
superStyles parameter 303
synchronous validation

about 206
custom validator 207
default validator 206, 207
required field check 206

T
tab index 114

table widget
about 192
class hierarchy 192
remote table model 194
table, creating 193

Tabview container 121
Tags panel 133
team tweets

reading 20
Team Twitter application

about 20, 58
API documentation, generating 68
configuring 336, 337
debugging 260-265
developing 20
functional requirements 20
layout managers, developing 132-137
lazy loading 336
load parts, coding 337
logging in to 21
packaging 336
partitioning 336-342
team, tweeting to 22
team tweets, reading 20
themes, customizing 309-319
verification 337
widgets, adding 174-178

Team Twitter classes
enhancing, with properties 103, 104

Team Twitter test class
testLogin() method, adding 253
testLogout() method, adding 254
testTweet() method, adding 253

teamtwitter_tests 242
teamtwitter_tests.simulation package 242
test cases, integration testing

integration test, performing 246-254
Selenium Java client driver API 244
simulator API documentation 242
simulator class hierarchy 243
strategy, locating 244
writing 242

test directory 38
testing, qooxdoo features 16
testLogin() method 253
testLogout() method 254
testRegister() method 253

[397]

testrunner2 directory, component directory 37
testrunner directory, component directory 37
testTweet() method 253
TextArea widget

about 165
features 165

textColor property 113
TextField element 165
TextField widget

about 164
changeValue event 164
features 164
input event 164

text mode, Label widget 150
themes

about 286
appearance theme 297
class hierarchy 286
classic theme 286
code snippets 288
color theme 292
customizing 309-319
decoration theme 293
font theme 293
icon theme 292
meta theme 287
modern theme 286
simple theme 286

timeEnd() method 257
time() method 257
tint method 297
ToggleButton widget

about 170
features 170

toggleSelectable() method 114
toggleXXX() method 93
toHashCode() method 111
ToolBar

about 142-144
diagrammatic representation 142

tool directory
about 38
bin 38
data 38
doc 38
pylib 38
test 38

tooltip 113
tooltip widgets

about 180, 181
code snippet 181

toString() method 111 274
trace() method 112
translation 270
translation directory, source directory 41
trc() method 275
Tree controller

about 224
code snippet 224
features 224

TreeVirtual class 198
treevirtual widget

about 197
class hierarchy 197, 198
TreeVirtual construction 198, 199

tree widget
about 195
class hierarchy 195
tree construction 196, 197

Tree widget 11
tr() method 271, 274
trn() method 271, 274
TweetsDisplayWidget 188, 344
TweetSearchWidget 136
TweetSearchWidget class

_initLayout method 175
about 174, 175
getSearchText method 175
hideSignUpAndSignIn method 175
searchTweets method 175
showSignUpAndSignIn method 175
signIn method 175
signUp method 175

tweetWidget class 88, 133
type key 77
types, class

abstract class 77
singleton class 77
static class 77

U
undefined value 302
uniform decorator 296

[398]

unused classes
identifying 332, 333

user context, RIA 11
user-defined types 95
UserLoginForm class

about 85, 132
focusOnUserName method 177
_initLayout method 177
loginUser method 177
openUserSignUpForm method 177

UserLoginForm.js file 262
UserSignUpForm class

about 86, 176, 252
_initLayout method 176
resetForm method 176

UsersListWidget.js class 137, 177
Utils package, Cygwin 34

V
validate configuration 96
validate() method 97, 205
validation 99

about 204
asynchronous 208
changeValid event 205
complete event 205
synchronous 206
validator property 205

Validator 71
validator property 205
value checks 99
variable optimization 331
variant qx.debug 258
VBox decorator 296
VBox layout

about 129
features 130

verification 337
view component 217
visibility 113

W
warn() method 112
Web application ARchive (WAR) file 58
Web package, Cygwin 34
Whitespace 45

Widget class. See qx.core.Widget class
widget properties

about 113
appearance 115
cursor 115
enabled 114
font 114
padding 114
selectable 114
tab index 114
text color 113
tooltip 113
visibility 113

widgets
about 110
adding, to Team Twitter 174-178
base classes 110
basic widgets 150
custom widgets 184
form widgets 158
inline widgets 189
locating 244
special widgets 179
table widget 192
treevirtual widget 197
tree widget 195

widget state keys
disabled 302
focused 302
hovered 302
selected 302

Window container 120
window object 264
window.open() 11
wrap() method 260

X
XML

about 17
URL 17

XPath locators 244

Y
YQL store

about 226
code snippet 226

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Thank you for buying
qooxdoo Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Learning jQuery, Third Edition
ISBN: 978-1-84951-654-9 Paperback: 428 pages

Create better interaction, design, and web
development with simple JavaScript techniques

1. An introduction to jQuery that requires minimal
programming experience

2. Detailed solutions to specific client-side problems

3. Revised and updated version of this popular jQuery
book

Squid Proxy Server 3.1: Beginner's Guide
ISBN: 978-1-84951-390-6 Paperback: 332 pages

Improve the performance of your network using the
caching and access control capabilities of Squid

1. Get the most out of your network connection by
customizing Squid's access control lists and helpers

2. Set up and configure Squid to get your website
working quicker and more efficiently

3. No previous knowledge of Squid or proxy servers
is required

4. Part of Packt's Beginner's Guide series: lots of
practical, easy-to-follow examples accompanied
by screenshots

Please check www.PacktPub.com for information on our titles

Liferay Beginner's Guide
ISBN: 978-1-84951-700-3 Paperback: 396 pages

Quick and easy techniques to build, deploy, and
maintain your own Liferay portal

1. Detailed steps for installing Liferay portal and
getting it running, for people with no prior
experience of building portals

2. Follow the example of building a neighbourhood
site with pre-installed portlets and custom portlets

3. Create your own communities, organizations and
user groups, and learn how to add users to them

Apache Solr 3.1 Cookbook
ISBN: 978-1-84951-218-3 Paperback: 300 pages

Over 100 recipes to discover new ways to work with
Apache's Enterprise Search Server

1. Improve the way in which you work with Apache
Solr to make your search engine quicker and more
effective

2. Deal with performance, setup, and configuration
problems in no time

3. Discover little-known Solr functionalities and
create your own modules to customize Solr to your
company's needs

4. Part of Packt's Cookbook series; each chapter covers
a different aspect of working with Solr

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: What is qooxdoo?
	A feel of an RIA developed in qooxdoo
	Time for action – play with the feed reader application
	Architecture of qooxdoo SDK
	Core layer
	Browser Abstraction layer
	Low-Level layer
	GUI Toolkit layer
	Data Binding
	Internationalization

	qooxdoo framework features
	Language
	Object-orientation
	Programming
	Internationalization
	API reference
	Testing
	Deployment
	Migration
	Alternative programming models

	Event-based rich UI programming
	GUI widget library
	Time for action – checking the demo browser and the
	playground applications
	Application to be developed in this book—Team Twitter
	Time for action – checking the Team Twitter application
	What you should know and what you don't need to know
	Summary

	Chapter 2: Say Hello to the qooxdoo World!
	Installing qooxdoo tools
	Time for action – installing qooxdoo tools
	Installing ActivePython
	Installing Cygwin

	Installing qooxdoo SDK
	Time for action – installing qooxdoo SDK
	Creating a simple qooxdoo application
	Time for action – creating a simple qooxdoo application
	Passing data to the server
	JSON standard format

	Communicating with the server
	Setting up an RPC connection
	Making a call
	Request
	Response

	Aborting a call
	Error handling
	Cross-domain calls
	Parameter and result conversion

	RPC servers
	Integrating with the Java server
	Time for action – integrating with the Java server
	Working with Eclipse IDE

	Summary

	Chapter 3: Core Programming Concepts
	Code comments and API documentation
	Time for action – generating API documentation for Team
	Twitter
	Object-oriented programming
	Object and class
	Encapsulation
	Inheritance
	Overriding
	Abstraction
	Polymorphism

	Interface
	Members
	Statics
	Properties
	Events

	Class
	Constructor and destructor
	Members
	Class members
	Instance members

	Types
	Static class
	Singleton class
	Abstract class

	Inheritance in qooxdoo
	Overriding in qooxdoo

	Mixin
	Defining a mixin
	Using a mixin in a class

	Time for action – writing classes for Team Twitter
	qooxdoo properties
	Property initialization
	Predefined methods
	Property configurations
	Apply
	Check
	Validate
	Group
	Event—property level

	Property features
	Value checks
	Validation
	Convenience
	Notification
	Advanced value handling
	Performance
	Memory management

	Events—class level
	Declaring events for a class
	Adding listeners
	Firing an event

	Time for action – enhancing Team Twitter classes with
	properties
	Summary

	Chapter 4: Working with Layouts and Menus
	Base classes for widgets
	qx.core.Object
	Object management
	Event handling
	Logging

	qx.core.LayoutItem
	qx.core.Widget
	Widget properties

	qx.application

	Containers
	Scroll
	Stack
	Resizer
	Composite
	Window
	Tabview
	Groupbox

	Layout managers
	Size hint of the widget and its parent widget
	Layout properties
	Auto sizing
	Growing or shrinking
	Overflow
	Basic
	Canvas
	Dock
	HBox
	VBox
	Flow
	Grid

	Time for action – designing layout managers for Team Twitter
	Menu, MenuBar, and ToolBar
	Menu
	Menu creation

	MenuBar
	ToolBar

	Summary

	Chapter 5: Working with Widgets
	Basic widgets
	Label
	Atom
	Image

	Time for action – enhancing the server application
	Form widgets
	Interface hierarchy
	IBooleanForm, INumberForm, IDateForm, IColorForm, and IStringForm
	IForm
	IExecutable
	IRange
	IModel
	IModelSelection

	Class hierarchy
	qx.ui.form.TextField
	qx.ui.form.TextArea
	qx.ui.form.PasswordField
	qx.ui.form.CheckBox
	qx.ui.form.RadioButton
	qx.ui.form.RadioButtonGroup
	qx.ui.form.SelectBox
	qx.ui.form.ComboBox
	qx.ui.form.Spinner
	qx.ui.form.List
	qx.ui.form.ListItem
	qx.ui.form.DateField
	qx.ui.form.Button
	qx.ui.form.ToggleButton
	qx.ui.form.MenuButton
	qx.ui.form.SplitButton
	qx.ui.form.HoverButton
	qx.ui.form.RepeatButton
	qx.ui.form.Slider

	Time for action – adding widgets into Team Twitter
	Special widgets
	The popup widgets
	qx.ui.popup

	The tooltip widgets
	qx.ui.tooltip

	The control widgets
	qx.ui.control.ColorPopup
	qx.ui.control.ColorSelector
	qx.ui.control.DateChooser

	Custom widgets
	Time for action – adding a custom widget to Team Twitter
	Inline widgets
	The table widget
	Class hierarchy
	Table construction
	Remote table model

	The tree widget
	Class hierarchy
	Tree construction

	The treevirtual widget
	Class hierarchy
	TreeVirtual construction

	Summary

	Chapter 6: Working with Forms and Data
	Form handling
	Validation
	Synchronous
	Asynchronous

	Resetting
	Rendering
	Single column
	Double column
	Single column with placeholder

	Serialization

	Time for action – enhancing the UserSignUpForm
	Object pooling
	Data binding
	Single value binding
	Property binding
	Event binding
	Hierarchical data binding
	Array binding
	Options map

	Data controller
	Object controller
	List controller
	Form controller
	Tree controller
	Data stores

	Time for action – enhancing the UserSignUpForm again
	Summary

	Chapter 7: Testing and Debugging
	Unit testing
	Time for action – performing unit test
	Integration testing
	Integration test setup
	Writing test cases
	Simulator API documentation
	Simulator class hierarchy
	Selenium Java Client Driver API documentation
	Locating strategy

	Time for action – performing integration test
	Debugging
	Logging statements in qooxdoo code
	Console object
	Trace
	qx.dev.Debug
	Variant qx.debug
	Miscellaneous

	Introduction to Firebug
	Installing the Firebug add-on
	IE developer tools
	Tracing through AOP

	Time for action – debugging
	Summary

	Chapter 8: Internationalization
	Internationalization
	Writing code to use internationalization
	qx.locale.Manager
	qx.locale.MTranslation
	qx.locale.String, qx.locale.Number, qx.locale.Date, and qx.locale.Key

	Writing PO files for various languages

	Time for action – generating PO files for Team Twitter
	Summary

	Chapter 9: Working with Themes
	Theme
	Meta theme
	Theme
	Font
	Color
	Decoration
	Appearance
	Modern theme
	Classic theme
	Simple theme

	Icon theme
	Color theme
	Font theme
	Decoration theme
	Aliases
	Decorations
	Decorator
	Style
	Writing new decorators

	Appearance theme
	Appearance selector (key)
	Appearance entry (value)
	Alias
	Appearance map

	Style entry in the appearance map
	The include entry in the appearance map
	The alias entry in the appearance map
	Base calls

	Performance
	Appearance queue
	Selector caching
	Alias caching
	Result caching

	Time for action – customizing themes for Team Twitter
	Summary

	Chapter 10: Performance
	Memory management
	Object pooling
	Profiling
	Limitations

	Compile-time tuning
	Class optimizations
	Strings
	Variables
	Private
	Base calls

	Identifying unused classes
	Lint check
	Improvements

	Partitioning and lazy loading
	Configuration
	Coding to load parts on demand
	Verification
	Recent improvements
	Part collapsing or merging
	Remove dependencies from the part loader
	Load packages in parallel
	Error handling

	Advantages

	Time for action – partitioning
	Good practices for performance
	Restrict the data in certain widgets
	Use filters
	Pagination
	.gz compression

	Summary

	Chapter 11: Miscellaneous
	Configuration
	config.json
	Listing of keys in context

	Job resolution
	The extend key
	The run key

	Job shadowing and partial overriding

	Migration
	Time for action – migration
	Back button support
	Identify application states
	Update history upon state change
	Add the event listener to the history manager
	Retrieve initial state

	qooxdoo license
	Summary

	Appendix: Pop Quiz Answers
	References
	Index

