
www.allitebooks.com

http://www.allitebooks.org

jQuery for Designers
Beginner's Guide

An approachable introduction to web design in jQuery
for non-programmers

Natalie MacLees

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

jQuery for Designers
Beginner's Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2012

Production Reference: 1180412

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-670-9

www.packtpub.com

Cover Image by Rakesh Shejwal (shejwal.rakesh@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Natalie MacLees

Reviewers

Mark Tapio Kines

Tammy C. Wilson

Acquisition Editor

Sarah Cullington

Lead Technical Editor

Chris Rodrigues

Technical Editors

Manasi Poonthottam

Ankita Shashi

Manali Mehta

Sakina Kaydawala

Copy Editor

Laxmi Subramanian

Project Coordinator

Kushal Bhardwaj

Proofreader

Steve Maguire

Indexers

Hemangini Bari

Tejal Daruwale

Production Coordinator

Prachali Bhiwandkar

Cover Work

Prachali Bhiwandkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Natalie MacLees is a frontend web developer and UI designer. She spends her days on
the product team at Geni (geni.com), a Los Angeles-based startup that is crowdsourcing
the creation of a single family tree of the world. Together with Noel Saw she heads up the
Southern California WordPress User's Group (socalwp.org), organizing WordPress meetups,
help sessions, and workshops. In 2010, she worked as a technical reviewer on WordPress 3
Complete by April Hodge Silver. She makes her online home at nataliemac.com.

Her obsession with the Web began when she bought her first computer in 1996 and
promptly used it to build her first website. She spends the few moments she manages to be
offline each day watching baseball, crafting, reading, baking, bellydancing, collecting Hello
Kitty items, and avoiding avocados and olives at all costs. She lives in Los Angeles in eternal
hope of developing so many freckles, they'll all touch and make a tan.

Gracious thanks first and foremost to John Resig and the rest of the jQuery team for creating
and sharing such a useful and elegant library with the rest of us. Thank you to Houman
Allahverdi for being patient while I spent so many hours at the computer, telling him to
turn off the TV so I could concentrate. Thank you to Anna Motzer, Mark Tapio Kines, Tammy
Wilson, Kimberly Wilkinson, Vanesa Rey, Marlene Angel, Trisha Marcy, Ed Doolittle, LeHang
Huynh, Marco Hernandez, McCabe Russell, Teresina Goheen, and Ninno DePatrick for their
support, advice, and cheerleading —I couldn't ask for better friends. Thank you to my sisters,
Stefanie Elder and Bethany MacLees for being properly impressed that somebody wanted
me to write a book. Thank you to my mom, Patricia Demby, and stepfather, John Demby, for
being proud of me no matter what. And finally, thank you to Diane Colella Jones for believing
in me, even before I did.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Mark Tapio Kines has been designing websites professionally since 1995. As a lead
designer/art director, his highly diverse client list includes Universal Pictures, Sega, Conan
O'Brien, Caltech, and the Internal Revenue Service. He was also the longtime art director
for Paramount Pictures' online division in Hollywood. Aside from web design, Mark is an
award-winning filmmaker, having written and directed two independent features and
several shorts. Today he maintains a busy freelance career as a writer, designer, filmmaker,
animator, and creative consultant.

Tammy Wilson has been programming in various languages for many years. She has been
creating websites since 2006, when she got tired of the corporate IT world and struck out
on her own. Tammy has been focusing on WordPress since Natalie MacLees introduced her
to the popular open-source platform. Tammy has a Bachelor of Science degree in Computer
Science from California State University, Fullerton.

When not working on websites, she enjoys training and competing with her dogs in agility
as well as teaching agility classes. She is also interested in writing iOS Apps.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Designer, Meet jQuery 7
What is jQuery? 7
Why is jQuery awesome for designers? 8

Uses CSS selectors you already know 8
Uses HTML markup you already know 8
Impressive effects in just a few lines of code 9
Huge plugin library available 9
Great community support 10

JavaScript basics 10
Progressive enhancement and graceful degradation 10
Gotta keep 'em separated 11

Content 11
Presentation 11
Behavior 11

Designer, meet JavaScript 12
Variables 12
Objects 12
Functions 13

Downloading jQuery and getting set up 15
Time for action – downloading and attaching jQuery 15
Another option for using jQuery 18
Your first jQuery script 19
Time for action – getting ready for jQuery 19

Adding a paragraph 20
Time for action – adding a new paragraph 20
Summary 22

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Enhancing Links 23
Opening links in a new window 23

Why not just use the target attribute? 24
Time for action – opening a link in a new window 24
Adding icons to links 29
Time for action – creating a list of links 30
Simple tabs 34
Time for action – creating simple tabs 34
Summary 40

Chapter 3: Making a Better FAQ Page 41
FAQ page markup 42
Time for action – setting up the HTML 42
Time for action – moving around an HTML document 45
Sprucing up our FAQ page 47
Time for action – making it fancy 48
We're almost there! 49
Time for action – adding some final touches 49
Summary 52

Chapter 4: Building Custom Scrollbars 53
Designer, meet plugins 54

Choosing a plugin 54
Setting up some scrollable HTML 55
Time for action – scrollable HTML 55
Adding custom scrollbars 57
Time for action – simple custom scrollbars 57
Adding arrow controls 64
Time for action – adding up and down arrows 64
Customizing the Scrollbar Style 66
Time for action – adding our own styles 68
Smooth scrolling 70
Time for action – setting up smooth scrolling 70
Summary 72

Chapter 5: Creating Custom Tooltips 73
Simple custom text tooltips 74
Time for action – simple text tooltips 74
Customizing qTip's appearance 80
Time for action – customizing qTips 80
Custom styles for tooltips 84
Time for action – writing custom tooltip styles 84

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Enhancing navigation with tooltips 87
Time for action – building a fancy navigation bar 87
Showing other content in tooltips 93
Time for action – building custom Ajax tooltips 93
Summary 105

Chapter 6: Building an Interactive Navigation Menu 107
Horizontal drop-down menu 108
Time for action – creating a horizontal drop-down menu 108
Time for action – improving the drop-down menu with jQuery 114
Vertical fly-out menu 115
Time for action – creating a vertical fly-out menu 115
Customizing the navigation menu 117

:hover and .sfHover 119
Cascading inherited styles 119

Vendor prefixes 120
Time for action – customizing Superfish menus 121

Custom animation 128
Time for action – incorporating custom animation 128
The hoverIntent plugin 128
Time for action – adding the hoverIntent plugin 129
Summary 130

Chapter 7: Navigating Asynchronously 131
Simple asynchronous navigation 131
Time for action – setting up a simple website 132
Time for action – adding Ajax magic 136
Deluxe asynchronous navigation 140
Time for action – building deluxe asynchronous navigation 141
Time for action – using the BBQ plugin 142
Time for action – highlighting the current page in the Navigation 145
Time for action – adding a loading animation 148
Summary 152

Chapter 8: Showing Content in Lightboxes 153
Simple photo gallery 154
Time for action – setting up a simple photo gallery 154
Customizing Colorbox's behavior 161

Transition 161
Time for action – using a custom transition 161

Fixed size 162
Time for action – setting a fixed size 162

innerWidth/innerHeight 163

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

InitialWidth/initialHeight 163
maxWidth/maxHeight 163

Creating a slideshow 163
Time for action – creating a slideshow 164
Fancy login 166
Time for action – creating a fancy login form 166
Video player 173
Time for action – showing a video in a lightbox 174
One-page web gallery 177
Time for action – creating a one-page web gallery 177
Summary 179

Chapter 9: Creating Slideshows 181
Planning a slideshow 181
Simple crossfade slideshow 182
Time for action – creating a simple crossfade slideshow 182
Nivo Slider 186
Time for action – creating a Nivo Slider slideshow 187
Galleriffic slideshow 193
Time for action – creating a Galleriffic slideshow 193
The CrossSlide plugin 201
Time for action – building a CrossSlide slideshow 201
Summary 210

Chapter 10: Featuring Content in Carousels and Sliders 211
Basic jCarousel 211
Time for action – creating a basic carousel 212
Animated news ticker 217
Time for action – creating an animated news ticker 217
Featured content slider 223
Time for action – creating a featured content slider 223

Pagination controls 227
Time for action – adding pagination controls 228

Next and previous buttons 233
Time for action – adding next and previous buttons 234
Carousel slideshow 238
Time for action – creating a thumbnail slideshow 239

Slideshow 241
Time for action – adding the slideshow 241

Next and previous buttons 249
Time for action – activating the Next and Previous Buttons 249
Summary 255

Table of Contents

[v]

Chapter 11: Creating an Interactive Data Grid 257
Basic data grid 257
Time for action – creating a basic data grid 258
Customizing the data grid 262
Time for action – customizing the data grid 262
Summary 271

Chapter 12: Improving Forms 273
An HTML5 web form 273
Time for action – setting up an HTML5 web form 274
Setting focus 283
Time for action – setting focus to the first field 283
Placeholder text 284
Time for action – adding placeholder text 284
Validating user entry 287
Time for action – validating form values on the fly 287
Improving appearance 294
Time for action – improving form appearance 295

Styling the unstylable 298
Time for action – adding uniform for styling the unstylable 298

Styles for all 302
Time for action – styling the styleable 303

Our own theme 307
Time for action – creating a custom uniform theme 307
Summary 309

Index 311

Preface
Thank you for reading jQuery for Designers. This book is intended for designers who have
a basic understanding of HTML and CSS, but want to advance their skill set by learning
some basic JavaScript. Even if you've never attempted to write JavaScript before, this book
will step you through the process of setting up some basic JavaScript and accomplishing
common tasks like collapsing content, drop-down menus, slideshows, and more, all thanks
to the jQuery library!

What this book covers
Chapter 1, Designer, Meet jQuery, is an introduction to the jQuery library and JavaScript.
You'll learn about jQuery's rise to fame, why it's so great for designers, and how it can help
you create some fancy special effects without having to learn a lot of code. This chapter
also includes a gentle and small introduction to JavaScript, and steps you through writing
your first JavaScript code.

Chapter 2, Enhancing Links, walks you through some basic enhancements to links. You'll
learn how to use jQuery to open a link in a new window, how to add icons to links, and
how to turn a list of links into a tabbed interface.

Chapter 3, Making a Better FAQ Page, will introduce you to collapsing and showing
content, as well as traversing an HTML document to move from one element to another.
In this chapter, we'll set up a basic FAQ list, then work on progressively enhancing it to
make it easier for our site visitors to use.

Chapter 4, Building Custom Scrollbars, is our first look at jQuery plugins. We'll use the
jScrollPane plugin to create custom scrollbars that work as expected in several different
browsers. We'll take a look at setting up scrollbars, customizing their appearance, and
implementing animated scrolling behavior.

Preface

[2]

Chapter 5, Creating Custom Tooltips, takes a look at using the qTip plugin to replace the
browser's default tooltips with custom tooltips. Then we take that a step further and create
custom tooltips to enhance a navigation bar and use the tooltips to show extra content.

Chapter 6, Building an Interactive Navigation Menu, steps you through setting up fully
functioning and visually stunning drop-down and fly-out menus. We step through the
complex CSS required to get these types of menus working, use the Superfish plugin to
fill in features missing from pure CSS solutions, and then take a look at customizing the
appearance of the menus.

Chapter 7, Navigating Asynchronously, introduces Ajax and shows how to turn a simple
website into a single page web app with a bit of jQuery. First, we set up a simple example,
then step through a more full-featured example that includes support for incoming links
and the back button.

Chapter 8, Showing Content in Lightboxes, will step you through showing photos and
slideshows in a lightbox using the Colorbox jQuery plugin. Once we get the basics down,
we'll also take a look at using the Colorbox plugin to create a fancy login, play a collection
of videos, and even set up a single-page website gallery.

Chapter 9, Creating Slideshows, walks you through several different approaches to creating
image slideshows. First, we step through a basic crossfade slideshow example built from
scratch. Then we'll look at using the CrossSlide plugin, the Nivo Slider plugin, and the
Galleriffic plugin to create different types of slideshows.

Chapter 10, Featuring Content in Carousels and Sliders, introduces carousels, news tickers,
and sliders, all built with the help of the jCarousel jQuery plugin. We'll create a horizontal
carousel, a vertical news ticker, and a featured content slider. Then, we'll take a look at
how plugins can be extended even further when we integrate a slideshow to be used
with a carousel.

Chapter 11, Creating an Interactive Data Grid, steps you through turning a simple HTML
table into a fully-interactive data grid, allowing your site visitors to page through the table,
search for entries, and sort by different columns.

Chapter 12, Improving Forms, takes a look at how forms can be improved. This chapter
walks you through properly setting up an HTML form using some of the latest HTML5
form elements. Then we enhance the form by placing the cursor in the first field, using
placeholder text, and validating the site visitor's form entries. Finally, we take a look at
the Uniform jQuery plugin which allows us to style even the most stubborn and challenging
form elements to achieve a consistent look for our forms across browsers.

Preface

[3]

What you need for this book
You'll need a text editor for creating HTML, CSS, and JavaScript. Some great free options
are TextWrangler for Mac or Notepad++ for Windows. There are also many other options
available and you can feel free to use your favorite text editor for any of the examples in
this book.

You'll also need a browser. My personal favorite is Google Chrome, which includes some
really helpful debugging tools for both CSS and JavaScript. Again, you can feel free to use
your favorite browser for the examples in the book.

If you want to create images for your own designs, then Adobe Photoshop and Adobe
Illustrator will be helpful, though they are not strictly necessary. Any images needed to
set up the examples used in this book are included in the sample code.

Who this book is for
This book is for designers who have the basic understanding of HTML and CSS, but want
to extend their knowledge by learning to use JavaScript and jQuery.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

Preface

[4]

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " The jQuery object's filter() method will
allow us to filter a previously selected set of elements."

A block of code is set as follows:

$('#tabs a').bind('click', function(e){
 $('#tabs a.current').removeClass('current');
 $('.tab-section:visible').hide();

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 $(this.hash).show();
 $(this).addClass('current');
 e.preventDefault;
 }).filter(':first').click();

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Some argue that
opening a link in a new window breaks the expected behavior of the Back button and
should be avoided."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us
with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

1
Designer, Meet jQuery

You might have heard quite a lot about jQuery over the past couple of
years—it's quickly become one of the most popular code packages in use
on the Web today. And you might have wondered what all the fuss was about.

Whether you've tried to figure out JavaScript before and have thrown up your
hands in frustration or have been too intimidated to even give it a go, you'll
find that jQuery is a wonderfully approachable and relatively easy to learn
approach to getting your feet wet with JavaScript.

In this chapter, we will cover:

 � What jQuery is and why it's ideal for designers

 � Progressive enhancement and graceful degradation

 � JavaScript basics

 � Downloading jQuery

 � Your first jQuery script

What is jQuery?
jQuery is a JavaScript library. That means that it's a collection of reusable JavaScript
code that accomplishes common tasks—web developers often find themselves solving
the same problems over and over again. Instead of engineering a solution from scratch
each time, it makes sense to collect up all those useful bits into a single package that can
be included and used in any project. The creators of jQuery have written code to smoothly
and easily handle the most common and most tedious tasks we want to accomplish with
JavaScript—and they've ironed out all the little differences that need to be worked out to
get the code working in different browsers.

www.allitebooks.com

http://www.allitebooks.org

Designer, Meet jQuery

[8]

It's important to remember that jQuery is JavaScript, not a language of its own. It has
all the same rules and is written the same way as JavaScript. Don't let that frighten you
away—jQuery really does make writing JavaScript much easier.

jQuery's official tag line is Write Less, Do More. That's an excellent and accurate description
of the jQuery library—you really can accomplish amazing things in just a few lines of code.
My own unofficial tag line for jQuery is Find Stuff and Do Stuff To It because finding and
manipulating different parts of an HTML document is extremely tedious with raw JavaScript
and requires lines and lines of code. jQuery makes that same task painless and quick. Thanks
to jQuery, you can not only quickly create a drop-down menu—you can create one that's
animated and works smoothly in many different browsers.

Why is jQuery awesome for designers?
So just what is it about jQuery that makes it so easy to learn, even if you have limited or no
experience with JavaScript?

Uses CSS selectors you already know
The first thing you'll often do in a jQuery script is select the elements you'd like to work with.
For example, if you're adding some effects to a navigation menu, you'll start by selecting the
items in the navigation menu. The tools you use for this job are selectors—ways to select
certain elements on the page you want to work with.

jQuery borrowed selectors from CSS all the way up through CSS3 and they work even in
browsers that don't support CSS3 selectors just yet.

Even though CSS offers a pretty robust set of selectors, jQuery adds a few more, all on its
own, to make just the elements you need easy to work with.

If you already know how to do things such as make all the level 1 headings blue or make all
the links green and underlined, then you'll easily learn how to select the elements you'd like
to modify with jQuery.

Uses HTML markup you already know
If you want to create new elements or modify existing elements with raw JavaScript, you
better crack your knuckles and get ready to write lots and lots of code—and it won't make
all that much sense, either.

Chapter 1

[9]

For example, if we wanted to append a paragraph to our page that said This page is powered
by JavaScript, we would have to first create the paragraph element, then assign the text that
should be inside the paragraph to a variable as a string, and finally append the string to the
newly created paragraph as a text node. And after all that, we would still have to append the
paragraph to the document. Phew! (Don't worry if you didn't understand all of that—it was
just to illustrate how much work and code is required to do something this simple.)

With jQuery, adding a paragraph to the bottom of our page is as simple as:

$('body').append('<p>This page is powered by jQuery.</p>');

That's right—you just append a bit of HTML directly to the body and you're all set. I bet that
without understanding JavaScript at all, you can read that line of code and grasp what it's
doing. This code is appending a paragraph that reads This page is powered by jQuery to the
body of my HTML document.

Impressive effects in just a few lines of code
You've got better things to do than to sit and write lines and lines of code to add fade in and
fade out effects. jQuery provides you with a few basic animations and the power to create
your own custom animations right out of the box. Let's say I wanted to make an image fade
into the page:

$('img').fadeIn();

Yep, that's it—one little line of code in which I select my image and then tell it to fade in.
We'll see later in the chapter exactly where this line of code will go in your HTML page.

Huge plugin library available
As I've said earlier, web developers often find themselves solving the same problems over
and over again. You're likely not the first person who wanted to build a rotating image
slideshow, an animated drop-down menu, or a news ticker.

jQuery has an impressively large library of scripts available freely—scripts to create tooltips,
slideshows, news tickers, drop-down menus, date pickers, character counters, and on and
on. You don't need to learn how to build all these things from scratch—you just have to learn
how to harness the power of plugins. We'll be covering some of the most popular jQuery
plugins in this book, and you'll be able to take what you've learned to use any plugin in the
jQuery plugin library.

Designer, Meet jQuery

[10]

Great community support
jQuery is an open source project—that means it's being collectively built by a team of
super-smart JavaScript coders and is freely available for anyone to use. The success or failure
of an open source project often depends on the community behind the project—and jQuery
has a large and active community supporting it.

That means that jQuery itself is being constantly improved and updated. And on top of that,
there are thousands of developers out there creating new plugins, adding features to existing
plugins, and offering up support and advice to newcomers—you'll find new tutorials, blog
posts and podcasts on a daily basis for just about anything you want to learn.

JavaScript basics
In this section, I am going to cover a few basics of JavaScript that will make things go more
smoothly. We're going to look at a little bit of code and work through how it works. Don't be
intimidated—this will be quick and painless and then we'll be ready to get on with actually
doing something with jQuery.

Progressive enhancement and graceful degradation
There are a few different schools of thought when it comes to enhancing your HTML pages
with JavaScript. Let's talk about some of the things we should consider before we dive into
the cool stuff.

Progressive enhancement and graceful degradation are essentially two sides of the
same coin. They both mean that our page with its impressive JavaScript animations and
special effects will still work for users who have less capable browsers or devices. Graceful
degradation means that we create our special effect and then make sure it fails gracefully if
JavaScript is not enabled. If we take the progressive enhancement approach, we'll first build
out a bare bones version of our page that works for everyone, and then enhance it by adding
on our JavaScript special effects. I tend to favor the progressive enhancement approach.

Why should we care about users who don't have JavaScript enabled? Well, one of the Web's
biggest users—search engines—do not have JavaScript capabilities. When search engines
are crawling and indexing your pages, they will not have access to any content that's being
loaded into your pages by JavaScript. That's often referred to as dynamic content, and it
won't be indexed or found by search engines if it can't be reached with JavaScript disabled.

We're also in an era where we can no longer count on users accessing the web pages we
build with a conventional desktop or laptop computer. We're quick to think of smart phones
and tablets as the next candidates, and while they are very popular, they still only account
for a tiny fraction of Internet access.

Chapter 1

[11]

People are accessing the Web from gaming consoles, e-book readers, Internet-enabled
televisions, a huge variety of mobile devices, and probably hundreds of other ways. Not all
of these devices are capable of executing JavaScript—some of them don't even have color
screens! Your number one priority should be making sure that your content is available to
anyone who asks for it, no matter what device they happen to
be using.

Gotta keep 'em separated
To accomplish this task of making our content available to as wide an audience as
possible, we have to think of our web pages in three separate and distinct layers:
content, presentation, and behavior.

Content
Content is the meat of our web page—it's the text or the audio or video that we're most
interested in presenting on our page, so this is where we start.

Mark up your content with clean, simple HTML code. Use HTML elements the way they
were intended to be used. Mark up headings with heading tags, paragraphs with paragraph
tags, lists with list tags, and save tables for tabular data.

Browsers have built-in styles for these basic HTML tags—headings will be larger type and
probably bolded. Lists will have bullets or numbers. It might not look very fancy, but it's
readable and accessible to anyone.

Presentation
The presentation layer is where we start to get fancy. This is where we introduce CSS and
start applying our own styles to the content we've created. As we style our page, we might
find that we have to go back into our HTML and add some new containers and markup to
make things such as multi-column layouts possible, but we should still strive to keep our
markup as simple and as straightforward as we can.

Behavior
Once our page has all of our content properly marked up and is styled to look the way we
like, now we can think about adding in some interactive behavior. This is where JavaScript
and jQuery come in. This layer includes animations, special effects, AJAX, and more.

Designer, Meet jQuery

[12]

Designer, meet JavaScript
JavaScript is a powerful and complex language—you can work with it for 10 years and still
have more to learn. But don't let that frighten you away, you don't have to know everything
about it to be able to take advantage of what it has to offer. In fact, you just have to get
down a few basics.

This section introduces some JavaScript basics and JavaScript syntax. Don't be scared away
by that developer word—syntax. Syntax just means the rules for writing a language, much
like we have rules of grammar for writing English.

Variables
Let's start with something simple:

var x = 5;

This is a sentence in JavaScript. In English, we end a sentence with a period or maybe a
question mark or exclamation point. In JavaScript we end our sentences with a semicolon.

In this sentence, we're creating a variable, x. A variable is just a container for holding
something. In this case, x is holding the number 5.

We can do math with JavaScript like this:

var x = 5;
var y = 2;
var z = x + y;

Just like algebra, our variable z is now holding the value of the number 7 for us.

But variables can hold things other than numbers. For example:

var text = 'A short phrase';

Here, we've named our variable text and it's holding some alphabetical characters for us.
This is called a string. A string is a set of alpha-numeric characters.

Objects
Objects might be the hardest thing for a newcomer to JavaScript to grasp, but that's often
because we overthink it, convinced it has to be more complicated than it actually is.

An object is just what it sounds like—a thing, anything. Just like a car, a dog, or a coffee
maker are objects.

Chapter 1

[13]

Objects have properties and methods. A property is a characteristic of an object. For
example—a dog could be tall or short, have pointy ears or floppy ears, and be brown
or black, or white. All of these are properties of a dog. A method is something an object
can do. For example a dog can run, bark, walk, and eat.

Let's take my dog, Magdelena von Barkington, as an example to see how we would deal
with objects, properties, and methods in JavaScript:

var dog = Magdelena von Barkington;

Here I've created a variable dog that I'm using as a container to hold my dog, mostly because
I don't want to have to type out her full name each time I refer to her in my code. Now let's
say I wanted to get my dog's color:

var color = dog.color;

I created a container called color and I'm using it to hold my dog's color property—color
is now equal to my dog's color.

Now, I've trained my dog very well, and I would like her to roll over. Here's how I would
tell her to roll over with JavaScript:

dog.rollOver();

rollOver is a method—something that my dog can do. After my dog rolls over, I might
like to reward her with a treat. Here's how my dog eats a treat with JavaScript:

dog.eat('bacon');

Wait, what's going on here? Let's take it one step at a time. We have dog, which we know
is a container for my dog, Magdelena von Barkington. We have the eat method, which
we know is something that my dog can do. But my dog can't just eat—she has to eat
something. We use the parentheses to say what it is that she is eating. In this case, my
lucky dog is eating bacon. In JavaScript speak, we would say we were passing bacon to the
eat method of the dog.

So you see, objects aren't so difficult—they're just things. Properties are like
adjectives—they describe traits or characteristics of an object. Methods are
like verbs—they describe actions that an object can do.

Functions
A function is a bit of reusable code that tells JavaScript to do something. For example:

function saySomething() {
 alert('Something!');
}

Designer, Meet jQuery

[14]

This function tells JavaScript to pop up an alert box that says Something!. We always start
a function with the word function then we name our function. That's followed by a set of
parentheses and a set of curly brackets. The lines of instruction go inside the curly brackets.

Now, my saySomething function won't actually do anything until it's called, so I need to
add a line of code to call my function:

function saySomething() {
 alert('Something!');
}
saySomething();

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

You might wonder what those parentheses are for. Remember how we could pass things
to a method by including them in parentheses?

dog.eat('bacon');

In this case, we passed bacon to say what the dog was eating. We can do much the same
thing for functions. In fact, methods actually are functions—they're just functions specialized
for describing what an object can do. Let's look at how we modify our saySomething
function so that we can pass text to it:

function saySomething(text) {
 alert(text);
}
saySomething('Hello there!');

In this case, when I wrote the saySomething function, I just left a generic container
in place. This is called a parameter—we'd say the saySomething function takes a text
parameter, since I've called my parameter text. I chose the name text because it's a short
and handy descriptor of what we're passing in. We can pass in any bit of text to this function,
so text is an appropriate name. You can name your parameter anything you'd like—but
you'll make your code easier to read and understand if you apply some commonsense rules
when you're selecting names for your parameters. A parameter behaves very much like a
variable—it's just a container for something.

Chapter 1

[15]

Downloading jQuery and getting set up
We're ready to include the magic of jQuery into a project, but first we need to download it
and figure out how to get it attached to an HTML page. Here, we'll walk through getting a
sample HTML file started, and all the associated files and folders we'll need to work through
a sample project set up. Once we're finished, you can use this as a template for all the future
exercises in the book.

Time for action – downloading and attaching jQuery
Earlier, I described the three layers of an HTML document—content, presentation, and
behavior. Let's take a look at how we can set up our files for these three layers:

1. First, let's set up a folder on your hard drive to hold all of your work as you work
through the lessons in this book. Find a good place on your hard drive and create
a folder called jQueryForDesigners.

2. Inside the folder, create a folder called styles. We'll use this folder to hold any CSS
we create. Inside the styles folder, create an empty CSS file called styles.css.

The styles represent our presentation layer. We'll keep all of our styles in this file
to keep them separate. Likewise, create a folder called images to hold any images
we'll use.

3. Next, create a folder called scripts to hold our JavaScript and jQuery code. Inside
the scripts folder, create an empty JavaScript file called scripts.js.

The JavaScript we write here represents our behavior layer. We'll keep all of our
JavaScript in this file to keep it separate from the other layers.

4. Now, inside the jQueryForDesigners folder, create a new HTML page—very basic
as follows:

<!DOCTYPE html>
<html>
 <head>
 <title>Practice Page</title>
 </head>
 <body>

 <!-- Our content will go here -->
 </body>
</html>

Designer, Meet jQuery

[16]

Save this file as index.html. The HTML file is our content layer—and arguably the
most important layer; as it's likely the reason site visitors are coming to our website
at all.

5. Next, we'll attach the CSS and JavaScript files that we made to our HTML page.
In the head section, add a line to include the CSS file:

<head>
 <title>Practice Page</title>
 <link rel="stylesheet" href="styles/styles.css"/>
</head>

And then head down to the bottom of the HTML file, just before the closing
</body> tag and include the JavaScript file:

 <script src="scripts/scripts.js"></scripts>
 </body>
</html>

As these files are just empty placeholders, attaching them to your HTML page
won't have any effect. But now we have a handy place to write our CSS and
JavaScript when we're ready to dive into an exercise.

Note that it's perfectly fine to self-close a <link> element, but a
<script> element always needs a separate closing </script>
tag. Without it, your JavaScript won't work.

Here's what my folder looks like at this point:

6. Now we have to include jQuery in our page. Head over to http://jquery.com
and hit the Download(jQuery); button:

Chapter 1

[17]

You'll notice you have two options under Choose Your Compression Level. You'll
always want to check the Production checkbox. This is the version that's ready to
use on a website. The Development version is for experienced JavaScript developers
who want to edit the source code of the jQuery library.

7. Clicking on the Download button will open the production jQuery file in your
browser window, and it looks a little bit scary, as follows:

www.allitebooks.com

http://www.allitebooks.org

Designer, Meet jQuery

[18]

8. Don't worry, you don't have to read it and you definitely don't have to understand
it. Just go to your browser's file menu and choose Save Page As... or right-click on
the page and select Save As and then save the file to your hard drive, inside the
scripts folder we created. By default, the script will have the version number in
the file name. I'm going to go ahead and rename the file to jquery.js to keep
things simple.

9. Now we just have to include our jQuery script in our page, just like we included our
empty JavaScript file. Go to the bottom of your practice HTML file, just before the
<script> tag we created earlier and add a line to include jQuery:

 <script src="scripts/jquery.js"></script>
 <script src="scripts/scripts.js"></script>
</body>
</html>

You won't notice any changes to your HTML page—jQuery doesn't do anything on its own.
It just makes its magic available for you to use.

Another option for using jQuery
There is nothing wrong with downloading and using your own copy of jQuery, but you do
have another option available that can help to improve the performance of your websites.
That's to use a CDN-hosted copy of jQuery.

In case you don't know, a CDN is a Content Delivery Network. The premise behind a CDN is
that files download faster from the servers that are physically closer to a site visitor's location.
So, for example, if you're in Los Angeles, California, a copy of jQuery that's on a server in
Phoenix, Arizona will download faster than a copy that's on a server in New York City. To help
this along, a CDN has a copy of the same file on lots of different servers all around the world.
Each time a site visitor requests a file, the CDN smartly routes their request to the closest
available server, helping to improve response times and overall site performance.

It won't make much of a difference for the relatively simple examples and pages that we'll
build in this book, but for a public-facing website, using a CDN-hosted copy of jQuery can
make a noticeable difference. There are a few options out there, but the most popular by far
is Google's Ajax API CDN. You can get the information on the latest version available and the
correct URL at http://code.google.com/apis/libraries/devguide.html#jquery.

http://code.google.com/apis/libraries/devguide.html#jquery

Chapter 1

[19]

If you would like to use the Google CDN-hosted version of jQuery in your files, it's as simple
as adding the following line of code to your HTML file, instead of the line we used previously
to include jQuery:

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.
min.js"></script>

No downloading the file, no saving your own copy, you can just point your <script> tag
directly at the copy of jQuery stored on Google's servers. Google will then take care of
sending jQuery to your site visitors from the closest available server.

Not only that, but as Google's CDN is so popular, there's a good chance that your site visitor
has already visited another site that's also using a Google CDN-hosted copy of jQuery and
that they'll have

jQuery cached in their browser. That means that your site visitor won't have to download
jQuery at all—it's already saved in their browser and available to be used. How's that for
improving performance?

Your first jQuery script
Alright, now that we understand a few basic things about JavaScript and we know how to
get our files and folders set up to build a sample exercise, let's build our first simple example
page and make it do something fancy with jQuery.

Time for action – getting ready for jQuery
1. Set up your files and folders just like we did in the previous exercise. Inside the

<body> of the HTML document, add a heading and a paragraph:

<body>
 <h1>My First jQuery</h1>

 <p>Thanks to jQuery doing fancy JavaScript stuff is easy.</p>

</body>

2. Feel free to create some CSS in the styles.css in the styles folder—style this
however you would like.

3. Next, open up that empty scripts.js file we created earlier and add this bit of
script to the file:

$(document).ready();

http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js

Designer, Meet jQuery

[20]

What just happened?
Let's take this statement one at a time—first a dollar sign? Really? What's that doing
in JavaScript?

The $ here is just a variable—that's all. It's a container for the jQuery function. Remember
how I said we might use a variable to save ourselves a few keystrokes? The clever writers of
jQuery have provided the $ variable to save us from having to write out jQuery every time
we want to use it. This code does the same thing:

jQuery(document).ready();

Except it takes longer to type. jQuery uses the $ as its short name because it's unlikely that
you'd call a variable $ on your own since it's an uncommon character. Using an uncommon
character reduces the chance that there would be some sort of conflict between some other
JavaScript being used on a page and the jQuery library.

So, in this case, we're passing document to the jQuery or $ method, because we want to
select our HTML document as the target of our code. When we call the jQuery function,
we get a jQuery object. In JavaScript speak, we would say that the jQuery function returns
a jQuery object. The jQuery object is what gives the jQuery library its power. The entire
jQuery library exists to give the jQuery object lots of properties and methods that make
our lives easier. We don't have to deal with lots of different sorts of objects—we just have
to deal with the jQuery object.

The jQuery object has a method called ready(). In this case, the ready method will be
called when the document is loaded into the browser, and is ready for us to work with.
So $(document).ready() just means, "when the document is ready".

Adding a paragraph
So now we're all set to do something when the document is ready, but what is it that
we'll do? Let's add a new paragraph to our page.

Time for action – adding a new paragraph
1. We need to tell jQuery what to do when the document is ready. As we want

something to happen, we'll pass in a function as follows:

$(document).ready(function(){
 // Our code will go here
});

We'll write what's going to happen inside this function.

Chapter 1

[21]

What about that line that starts with //? That's one way of writing a comment in
JavaScript. A // tells JavaScript to ignore everything else on that line because it's
a comment. Adding comments to your JavaScript is a great way to help yourself
keep track of what's happening on what line. It's also great for helping along other
developers who might need to work on your code. It can even be great for helping
yourself if you haven't looked at your own code in a few months.

2. Next, we'll add what we want to happen as soon as the document is ready:

$(document).ready(function(){
 $('body').append('<p>This paragraph was added with jQuery!</
 p>');

});

What just happened?
Our function is using the jQuery function again:

$('body')

Remember how I said that jQuery uses CSS selectors to find stuff? This is how we use those
CSS selectors. In this case, I want the <body> tag, so I'm going to pass 'body' to the jQuery
function. This returns the <body> tag wrapped in a jQuery object. Handily, the jQuery object
has an append() method that lets me add something new to the page:

$('body').append();

All I have to do now is pass the append method the thing I want to add to the page. In
quotes, I'll pass in a line of HTML that I'd like to add:

$('body').append('<p>This paragraph was added with jQuery!</p>');

And that's it! Now when I load my page in a browser, I'll see my heading followed by two
paragraphs—jQuery will add the second paragraph as soon as the document is loaded in
the browser:

Designer, Meet jQuery

[22]

Summary
In this chapter, you were introduced to the jQuery library and learned a few things about it.
We covered a bit of JavaScript basics and then we learned how to set up our files and folders
for the exercises in this book. Finally, we set up a simple HTML page that took advantage of
jQuery to add some dynamic content. Now let's take a look at how we can make links more
powerful with jQuery.

2
Enhancing Links

We take links for granted these days, but the truth of the matter is that
the humble link is the thing that revolutionized documents and made the
Web as we know it today possible. Being able to link a reader directly to
another document or to another place within a document had never been
possible before.

Because of this, you could say that hyperlinks are the backbone of the
Internet—without them search engines wouldn't be possible, nor would
most websites. Let's take a look at some ways we can make links work
even harder for us.

In this chapter, we will cover:

 � How to open links in a new window

 � How to add icons to links to identify what type of document we are linking to

 � How to turn a list of links into simple tabs

Opening links in a new window
As common as it is to open links in new windows, the practice itself is a little bit controversial.
Some argue that the site visitors themselves should decide if they want to open a link in a new
window, and many browsers make it easy for them to do just that. Some argue that opening a
link in a new window breaks the expected behavior of the Back button and should be avoided.
Others argue that not opening links in a new window is confusing and disorienting for the site
visitors when they suddenly find themselves on a different website.

Enhancing Links

[24]

Wherever you stand on the issue, it's a common request from clients and the practice
probably isn't going away any time soon, so it's important to know your options for handling
this kind of functionality. I'm going to assume that you're aware of the issues surrounding
opening a link in a new window and have carefully weighed all the options and presented an
informed argument to your client.

Why not just use the target attribute?
As you may know, HTML makes a target attribute available that can be used with links to
specify where a link should open. For example, the following code:

Link

will create a link that will do its best to open in a new window or a new tab, depending on
the preferences a user has set in their browser.

The W3C—the body that develops web standards such as HTML—deprecated the use of the
target attribute for strict document types, but have reintroduced the tag to the HTML5
specification. However, the target attribute was intended to be used with frames to control
how new pages were loaded into frames and iframes. It was not intended to be used to open
a link in a new window for pages that aren't using frames, so strictly speaking, using it for
that purpose is incorrect.

Instead, we can use a little bit of JavaScript to create the behavior that we want without
using invalid or deprecated code. Let's take a look at how to do that.

Time for action – opening a link in a new window
1. We'll get started with our basic HTML file and associated files and folders that

we created in Chapter 1, Designer, Meet jQuery. Inside the <body> of the HTML
document, we'll add some links as follows:

<h1>Opening Links in a New Window</h1>
<p>This link will open in a new window: <a href="http://packtpub.
com">New Window!</p>
<p>This link will not: Same
Window!</p>

This is just a heading and two simple paragraphs, each with a link—one that should
open in a new window and one that won't.

2. We need some way to select the link that should open in a new window. This
is similar to the situation we would have if we wanted to style one of the links
differently from the other with CSS.

Chapter 2

[25]

If we were using CSS, we could assign the link an ID or a class. An ID would be
pretty limiting, as an ID must be unique on a page—it would only apply to this one
particular link. A class would let us style any link that opens in a new window, so
that's what we're going to use. Add a class to the link that should open in a new
window as follows:

New Window!

3. Now we can use this class name for both CSS styling and to make the link open in a
new window with jQuery. It's a great idea to add an icon to this link—you can add
some padding to the left or right side of the link and then add a background image
to the link. Open up the empty styles.css file inside your styles folder and add
a bit of CSS as follows:

 a.new-window {
 padding-right: 18px;
 background: url('../images/new-window-icon.png') 100% 50%
no-repeat;

4. Next up, we'll open up the scripts.js file inside our scripts folder, and outside
of our document ready statement we'll start off by writing our function to get our
new-window links and make them open in a new window. Start off by declaring a
new function:

$(document).ready(function(){

});
 function externalLinks() {
 }

Here we've created a new function and named it externalLinks as that's a name
that makes sense for opening links in new windows. It's always helpful to give your
JavaScript functions and variables names that will help you remember what they do.

5. Next, we'll use jQuery to select all the links with the class new-window. We'll take
advantage of jQuery's CSS selectors to select those links just like we did when we
styled them with CSS.

function externalLinks() {
 $('a.new-window');
}

Enhancing Links

[26]

6. We've used the $ shortcut for the jQuery function and passed the CSS selector to
the function. It's important to remember to wrap the CSS selector in either single
quotes or double quotes. We don't want the link to open a new window until the
user clicks on the link, so our next step is to tell the link to run a function when it's
clicked on. jQuery makes this very easy. We can use the bind() method provided
by jQuery to bind a function to the link that will be called when the link is clicked.
That will look like this:

function externalLinks() {
 $('a.new-window').bind('click', function() {
 });
}

This bit of code binds a function to our link—when our link is clicked, any code we
write inside this new function will be called. But so far, our function is empty and
doesn't actually do anything.

7. What we need to do next is get the location the link is sending us to:

function externalLinks() {
 $('a.new-window').bind('click', function() {
 var location = $(this).attr('href');
 });
}

Let's examine this new line of code one bit at a time. First, we've declared a new
variable named location. As you remember, a variable is just a container. So we've
got a new empty container, so now let's look at what we've put inside our container.

$(this) is the jQuery way of referring to the jQuery object that we're currently
working with. In this case, we're selecting all links with a class of new-window and
we've attached this function to be called whenever a site visitor clicks the link. When
a site visitor clicks a link, we want to examine the link that was clicked to get the
location of where the link is going. A simple and quick way of referring to the current
link is to use $(this).

Next we use the attr() method to get an attribute of the link. The location where
a link is heading is contained in the href attribute, so we pass href to the attr()
method.

So our container that we've named location now contains the URL where the link
is pointing, or in this particular case, http://packtpub.com.

Chapter 2

[27]

8. Now that we know where we want to go, all we have to do is open that location in a
new window. Opening a new window in JavaScript is simple and straightforward:

function externalLinks() {
 $('a.new-window').bind('click', function() {
 var location = $(this).attr('href');
 window.open(location);
 });
}

window is a global object in JavaScript that is always available to us. The window
object has an open() method, and we just have to pass a location to that method
so that the browser knows what location to open in a new window.

9. Now, if you open this HTML page in a browser and try clicking the links, you might
be disappointed to see that our link does not open in a new window. It's like our
JavaScript isn't even on the page at all. We've written a very nice function, but it's
not working. That's because functions don't do anything until we tell them to. Telling
a function to do its thing in JavaScript speak is 'calling the function'.

We would like this function to fire up, find all the links with the class new-window,
and bind our new window function to them as soon as the page is loaded in the
browser window. That way, our links that should open in new windows will be ready
to fire off a new window as soon as our site visitor clicks on one of them.

We just have to add a line inside our document ready statement to call our function:

$(document).ready(function(){
 externalLinks();
});

function externalLinks() {
 $('a.new-window').bind('click', function() {
 var location = $(this).attr('href');
 window.open(location);
 });
}

This new bit of code will call our externalLinks function as soon as the page
loads up in the browser.

www.allitebooks.com

http://www.allitebooks.org

Enhancing Links

[28]

10. There's just one thing left to do. Right now if you load the page in a browser and
click on a link, you'll find that the link does indeed open in a new window, but it also
opens in the current window—so we end up with our new page loaded into two
different windows. Not exactly what we had in mind. What we need to do is cancel
the default behavior of the link—we've already taken care of opening the location
in a new window, so now we need to tell the browser that it can take a break and
it doesn't need to do anything when the site visitor clicks on the link. So let's add a
parameter to our function and a line of code to cancel the default link behavior.

function externalLinks() {
 $('a.new-window').bind('click', function(e) {
 var location = $(this).attr('href');
 window.open(location);
 e.preventDefault();
 });
}

You'll notice that the function we've attached to the click action on the link now has
an e inside the parentheses. This is a parameter that we're passing to this function.
In this case e represents the click event of the link.

The line of code we add to the function is:

e.preventDefault();

This tells the browser to stop the default behavior of the link. If you reload the page
in your browser and click on the link, you'll see that it correctly opens the destination
page in a new window, and it no longer opens the link in the current window:

Chapter 2

[29]

11. Now, what do you think will happen if we have a second link on the page that should
open in a new window? Let's go back to the <body> of the document and add a
second link that should open in a new window. After the other links, add a new
paragraph and link to a new page:

<p>This paragraph will open in a new window too: <a href="http://
nataliemac.com" class="new-window">New Window!</p>

Be sure to add the new-window class to your link.

Now, when you refresh the page in the browser, the new link appears on the page. Try clicking
it and you'll see that it opens in a new window too, just like the other new-window link.

What just happened?
We added a CSS class name to the links that we wanted to open in a new window. Now, any
link we create on our page with the new-window class will open in a new window—but how
does JavaScript know which page to open in a new window when there are multiple links?

The answer lies in our externalLinks function. We selected all links with the new-window
class and bound a function to fire when those links were clicked. Inside that function, we
captured the link's location. This function doesn't run until a link is clicked. Until then, it's just
sitting on the sidelines, waiting to be called into action. When a link with the new-window
class is clicked, our function springs into action, capturing the location of that specific link
and opening up a new window pointed at that link's location.

Adding icons to links
Adding icons to links is one of the simplest ways to communicate the link type to your site
visitor. You might have different icons for different sections of your site, or you might want
to provide some downloadable files to your site visitors—for example, a PDF or e-book that
you've written, the slides for a presentation you gave, or some stock icons or photography
that you've created. Adding icons to these types of links can help give a visual clue to your
site visitors so they know what to expect when they click on the link. Let's take a look at how
we can add appropriate icons to different link types with jQuery.

http://nataliemac.com/

Enhancing Links

[30]

Here's an example of what our page will look like after we've added icons to our links:

Time for action – creating a list of links
1. We'll get started with our basic HTML file and associated folders, like we created in

Chapter 1, Designer, Meet jQuery. We'll add a list of links to a few different types of
downloadable files to the <body> of the HTML document:

<h1>Adding Icons to Links</h1>
<p>Here's a list of downloadable files:</p>

 Presentation slides
 Video of presentation
 Notes for presentation
 Icon sprite

When we view this list in a browser, we'll see a bulleted list of links—there's no
visual indication what type of file lies behind each link—the user has to guess based
on the text of the link. Let's get all of our links and add an appropriate class name
to each one based on which file type the link is pointing to. To do this, we'll use
jQuery's attribute selectors.

Chapter 2

[31]

2. Next up, we'll get ready to add our JavaScript to our page. Open up the scripts.
js file inside the scripts folder.

Let's figure out how we can distinguish one type of link from another. The <a> link
has an href attribute. That href attribute tells us the URL of the page or file the
link is taking us to, but it also gives us the information that we need to select links
with different values in that attribute. Let's take a look at how jQuery attribute
selectors work:

$('a')

This will select all of the links on the page. If we wanted to get only the <a> tags
with an href attribute, we could modify our selector as follows:

$('a[href]')

We could take that a step further and get only the links where the attribute was
equal to a certain value:

$('a[href="video.mp4"]')

This selector is only going to select the link that links to the video.mp4 file. Note
the way that single and double quotes are nested here—I can use either single
or double quotes to wrap my selector, but if I need to quote something inside my
selector, I have to be careful to choose the other type of quotes.

We want to add a class name to each of these links so that we can style them with
CSS to add our icon as a background image. To do that, we'll use the .addClass()
method of the jQuery object. Using what we've learned so far, we could do
something like this inside of our document ready statement:

$(document).ready(function(){
 $('a[href="presentation.ppt"]').addClass('presentation');
 $('a[href="video.mp4"]').addClass('video');
 $('a[href="notes.pdf"]').addClass('pdf');
 $('a[href="icons.gif"]').addClass('image');
});

...but that's not very flexible. What if we wanted to add a second video or
another PDF file? We would have to adjust our jQuery to match. Instead, let's
make our links a little more flexible by simply looking at the file extension of
the link's href attribute. jQuery will allow us to check if an attribute begins with
certain characters, ends with certain characters, or contains certain characters.
You can get the full list of possible attribute selectors in the jQuery documentation
at http://api.jquery.com/category/selectors/.

Enhancing Links

[32]

To check if an attribute begins with certain characters, use ^= as follows:

$('a[href^="video"]')

To check if an attribute contains certain characters anywhere in the name,
use *= as follows:

$('a[href*="deo"]')

In this case, the file extension is always the last part of the link, so we'll use
the ends with attribute selector, which uses $= as follows:

$(document).ready(function(){
 $('a[href$="ppt"]').addClass('presentation');
 $('a[href$="mp4"]').addClass('video');
 $('a[href$="pdf"]').addClass('pdf');
 $('a[href$="gif"]').addClass('image');
});

3. Now, any links we add with a .pdf extension, for example, will automatically have
the pdf class given to them. If you refresh the page in a browser at this point, you
won't see any difference in the page, but if you inspect the DOM (Document Object
Model) using a browser inspection tool such as the ones built into Chrome and
WebKit or Firebug for Firefox, you'll see that the links have the class names assigned
to them. All that's left to do is to write the CSS to include the icons. Open up the
styles.css file inside the styles folder and add some lines of code as follows:

a {
 background: 0 50% no-repeat;
 padding-left: 20px;
 }

a.presentation {
 background-image: url(../images/presentation.gif);
 }

a.video {
 background-image: url(../images/video.gif);
 }

a.pdf {
 background-image: url(../images/pdf.gif);
 }

a.image {
 background-image: url(../images/image.gif);
 }

Chapter 2

[33]

You'll have to make sure that you place your icon images inside the images folder.
You can use the icon images included with the sample code for this chapter or
create your own.

Now, if you refresh the page in the browser, you'll see each of the links show the
appropriate icon. If you add new links to these four file types to your page, they'll
all have the icons as well. We've created a flexible and easy solution for adding
icons to links.

What just happened?
We selected all the links on our page according to the file extension in the href attribute
and used that to add appropriate class names with jQuery. We then used those class names
in our CSS to add icons to each link type with some CSS styles. Site visitors without JavaScript
enabled will still be able to click the links and download the associated files. They'll just miss
out on the icons that tip them off to the file type behind each link.

Now you can see how jQuery and CSS can work together to add new functionality to your
pages. jQuery can modify elements' class names, and CSS can then be used to style those
elements according to their class name.

Enhancing Links

[34]

Simple tabs
If we have a large amount of information to present that might not be relevant to all site
visitors, we can compress the amount of space the information takes by hiding selected bits
of information until the site visitor requests it. One of the most common ways of making
all the information available but hidden until requested is tabs. Tabs echo the real-world
example of a tabbed notebook or labeled folders in a filing cabinet and are easy for site
visitors to understand. And believe it or not, they're also easy to implement with jQuery.

Here's an idea of what our page will look like after we've created our tabs:

Time for action – creating simple tabs
1. We'll get started with our basic HTML file and associated folders, like we created in

Chapter 1, Designer, Meet jQuery. Inside the <body> tag, we'll start by setting up
our simple example that will work even for users with JavaScript disabled: we'll put
a list of anchor links to different areas of the page at the top, then wrap each of our
content sections in a div with an id as follows:

<h1>Simple Tabs Product</h1>
<p>You should buy this, it's great!</p>

 Description
 Photos
 Details
 Customer Reviews

Chapter 2

[35]

 Related Items

<div id="description">
 <h2>Overview</h2>
 <p>This section contains a basic overview of our product.</p>
</div>

<div id="photos">
 <h2>Photos</h2>
 <p>This section contains additional photos of our product.</p>
</div>

<div id="details">
 <h2>Details</h2>
 <p>This is where we list out all the details of our product –
size, weight, color, materials, etc.</p>
</div>

<div id="reviews">
 <h2>Customer Reviews</h2>
 <p>Here's where we would list all of the glowing reviews our
customers had written</p>
</div>

<div id="related">
 <h2>Related Items</h2>
 <p>And here we would list out other super items that our
customers might also like to buy.</p>
</div>

If we view this HTML in a browser, we'll see a list of links at the top of the page that
when clicked, jump down the page to the appropriate section so that the site visitor
can easily find each section without scrolling on their own. We've basically created a
clickable table of contents for our page.

2. Now we want to enhance this for our site visitors that have JavaScript enabled. We'll
start by adding an id to the that contains our table of contents and we'll add
a class name to each of the <div>s that contain our sections of content—this will
make it easier for us to select just the pieces of the page we want with jQuery and
will also make it easier for us to style our tabs with CSS.

 <ul id="tabs">
 Description
 Photos
 Details
 Customer Reviews
 Related Items

Enhancing Links

[36]

 <div id="description" class="tab-section">
 <h2>Overview</h2>
 <p>This section contains a basic overview of our product.</p>
</div>
 <div id="photos" class="tab-section">
 <h2>Photos</h2>
 <p>This section contains additional photos of our product.</p>
</div>

 <div id="details" class="tab-section">
 <h2>Details</h2>
 <p>This is where we list out all the details of our product –
size, weight, color, materials, etc.</p>
</div>

 <div id="reviews" class="tab-section">
 <h2>Customer Reviews</h2>
 <p>Here's where we would list all of the glowing reviews our
customers had written</p>
</div>

 <div id="related" class="tab-section">
 <h2>Related Items</h2>
 <p>And here we would list out other super items that our
customers might also like to buy.</p>
</div>

3. Next, we'll use jQuery to hide all of our tab-sections. Open up the scripts.js
file inside your scripts folder and inside the document ready statement, select
the tab-sections and hide them:

$(document).ready(function(){
 $('.tab-section').hide();
});

Now when we load the page, we'll only see our table of contents.

4. Next, we need to show the appropriate section when one of our tabs is clicked.
We'll start by binding a function to the click event of the links inside our table of
contents—just like we did when we opened a link in a new window:

$(document).ready(function(){
 $('.tab-section').hide();

Chapter 2

[37]

 $('#tabs a').bind('click', function(e){
 e.preventDefault;
 });
});

With this bit of code, we've selected all of the links inside the with the
id of #tabs and bound a function to the links on click. So far, all this function
does is cancel the click—if you load the page in a browser at this point, you'll see
that clicking on the links does nothing—the page no longer jumps down to the
associated section.

5. Next, we want to select the appropriate section and show it. To do that, we'll use
the hash—or the part of the href attribute that includes the # symbol.

$('#tabs a').bind('click', function(e){
 $(this.hash).show();
 e.preventDefault;
});

When I pass this.hash to the jQuery function, the this I'm dealing with is the
link that was just clicked and this.hash is the value of the href attribute starting
with the # symbol and continuing to the end. If I were to click on the overview tab,
for example, passing this.hash to the jQuery function is the same as writing
the following:

$('#overview')

But of course, this is done in a much more flexible way—it will work for any tab
linked to any section of the page. So, for example, if I wanted to replace the
customer reviews tab with a shipping information tab, I wouldn't have to update my
JavaScript, only the HTML markup itself—the JavaScript is flexible enough to adjust
to changes.

6. So now when I click on one of the table of contents links, it will show me the
associated section, but if I keep clicking on links, the sections just keep showing up,
and after clicking all the links, all the sections are visible—that's not what we want.
We'll have to hide the visible section and show only the section we want. Let's add a
line to our code to select the visible tab-section and hide it before we show the
new section:

$('#tabs a').bind('click', function(e){
 $('.tab-section:visible').hide();
 $(this.hash).show();
 e.preventDefault;
});

www.allitebooks.com

http://www.allitebooks.org

Enhancing Links

[38]

You're probably familiar with pseudoclass selectors in CSS—they're often used
to select the hover, visited, and active states of links (a:hover, a:visited, and
a:active). jQuery makes a few additional pseudoclass selectors available to
us—there are pseudoclass selectors for buttons, empty elements, disabled form
fields, checkboxes, and more. You can check out all the available selectors for
jQuery in the jQuery documentation at http://api.jquery.com/category/
selectors/. Here, we're using the :visible pseudoclass to select the .tab-
section that's currently visible. Once we've selected the visible .tab-section,
we hide it and then find the correct tab-section and show it.

7. All we need now is some CSS to get our tabs styles to look like a tabbed section of
content. Open the styles.css file that's inside your styles folder, and add some
CSS styles as follows. Feel free to customize them to suit your own taste.

#tabs {
 overflow: hidden;
 zoom: 1;
 }

#tabs li {
 display: block;
 list-style: none;
 margin: 0;
 padding: 0;
 float: left;
 }

#tabs li a {
 display: block;
 padding: 2px 5px;
 border: 2px solid #ccc;
 border-bottom: 0 none;
 text-align: center;
 }

.tab-section {
 padding: 10px;
 border: 2px solid #ccc;
 }

Chapter 2

[39]

8. Now if you load this up in a browser, you'll see that there's a little something
missing—we should highlight the currently selected tab to make it obvious which
one is selected. We can do that by adding a CSS class to the current tab. Go back to
your scripts.js file and add a bit of code to add a class to the current tab and
remove the class from any non-current tabs as follows:

$('#tabs a').bind('click', function(e){
 $('#tabs a.current').removeClass('current');
 $('.tab-section:visible').hide();
 $(this.hash).show();
 $(this).addClass('current');
 e.preventDefault;
});

First, we'll find the tab that has the class current, and remove that class. Then
we'll get the tab that was just clicked and add the current class to it. That way,
we make sure that only one tab will be marked as the current tab at any given time.

9. Next, we'll add some styles in our CSS for our new class. Open up styles.css
and add a bit of code to distinguish the currently selected tab. Again, feel free to
customize this style to suit your own tastes:

#tabs li a.current {
 background: #fff;
 color: #000;
 }

10. So now our tabs are working the way we expect, and the only thing left to do is to
make the first tab active and show the first content section when the page is first
loaded instead of leaving them all hidden. We've already written the function to do
this, so now all we have to do is call it for our first tab:

$('#tabs a').bind('click', function(e){
 $('#tabs a.current').removeClass('current');
 $('.tab-section:visible').hide();
 $(this.hash).show();
 $(this).addClass('current');
 e.preventDefault;
 }).filter(':first').click();

Enhancing Links

[40]

The jQuery object's filter() method will allow us to filter a previously selected
set of elements—in this case we're dealing with all of the <a> tags inside the
with the id #tabs. We bind a click function to all of those links, then we'll filter
out just the first link using the :first pseudoclass made available to us in jQuery
and tell jQuery to click the first tab for us—this will run our function, adding the
current class to the first link, and showing the first .tab-section—just the way
we would expect the page to look when we load it.

What just happened?
We set up a set of simple tabs with jQuery. For site visitors with JavaScript disabled, the tabs
will function like a table of contents at the top of the document, jumping them down to the
various sections of content when they're clicked. For site visitors with JavaScript, though, the
sections of content will be completely hidden until needed. Clicking on each tab reveals the
content associated with that tab. This is a great way to save space in a UI—making all the
content available on demand in a small space.

We hid the tab contents with JavaScript instead of with CSS to be sure that users without
JavaScript enabled would still be able to access all of our content.

Summary
In this chapter, you learned how to take basic links—the backbone of the Internet—and
enhance them to add some new behaviors and capabilities. You learned how to make a link
open in a new window, how to add icons to links depending on which type of file was linked
to and how to set up a basic tabbed interface. These are all very common requirements for
websites and these will serve as great building blocks for you as you learn more about jQuery
and JavaScript.

3
Making a Better FAQ Page

The Frequently Asked Questions page has been a mainstay of all types of
websites since the dawn of the Web. It's used as a marketing page, as an
attempt to reduce the number of calls or e-mails to a customer service
department, and as a helpful tool for site visitors to learn more about the
company or organization they're dealing with or the products or services
they're interested in purchasing.

Though we'll be building an FAQ page for this example, this expand and
collapse technique will be useful in many different situations—a list of events
with event details, a listing of staff or members with bios, a list of products
with details—any situation where a listing of items should be quick and easy
for site visitors to scan, but where more information should be readily and
easily available upon demand when they find the thing they're looking for.

In this chapter, we'll learn:

 � How to traverse an HTML document with jQuery

 � How to show and hide elements

 � How to use simple jQuery animations

 � How to easily toggle a class name for an element

Making a Better FAQ Page

[42]

FAQ page markup
We'll get started by taking some extra care and attention with the way we mark up our FAQ list.
As with most things dealing with web development, there's no one right way of doing anything,
so don't take this approach as the only correct one. Any markup that makes sense semantically
and makes it easy to enhance your list with CSS and JavaScript is perfectly acceptable.

Time for action – setting up the HTML
1. We'll get started with our sample HTML file and associated files and folders, like we

set up in Chapter 1, Designer, Meet jQuery. In this case, our HTML is going to be a
definition list with the questions inside the <dt> tags and the answers wrapped in
<dd> tags. By default, most browsers will indent the <dd> tags which means the
questions hang into the left margin, making them easy to scan. Inside the <body>
of your HTML document, add a heading and a definition list as follows:

<h1>Frequently Asked Questions</h1>
<dl>
 <dt>What is jQuery?</dt>
 <dd>
 <p>jQuery is an awesome JavaScript library</p>
 </dd>

 <dt>Why should I use jQuery?</dt> <dd>
 <p>Because it's awesome and it makes writing
JavaScript faster and easier</p>
 </dd>

 <dt>Why would I want to hide the answers to my questions?
</dt>
 <dd>
 <p>To make it easier to peruse the list of available
questions - then you simply click to see the answer you're
interested in reading.</p>
 </dd>

 <dt>What if my answers were a lot longer and more
complicated than these examples?</dt>
 <dd>

Chapter 3

[43]

 <p>The great thing about the <dd> element is
that it's a block level element that can contain lots of other
elements.</p>
 <p>That means your answer could contain:</p>

 Unordered
 Lists
 with lots
 of items
 (or ordered lists or even another
definition list)

 <p>Or it might contain text with lots of
special formatting.</p>
 <h2>Other things</h2>
 <p>It can even contain headings. Your answers could
take up an entire screen or more all on their own - it doesn't
matter since the answer will be hidden until the user wants to see
it.</p>
 </dd>

 <dt>What if a user doesn't have JavaScript enabled?</dt>
 <dd>
 <p>You have two options for users with JavaScript
disabled - which you choose might depend on the content of your
page.</p>
 <p>You might just leave the page as it is - and
make sure the <dt> tags are styled in a way that makes them
stand out and easy to pick up when you're scanning down through
the page. This would be a great solution if your answers are
relatively short.</p>
 <p>If your FAQ page has long answers, it might be
helpful to put a table of contents list of links to individual
questions at the top of the page so users can click it to jump
directly to the question and answer they're interested in. This is
similar to what we did in the tabbed example, but in this case,
we would use jQuery to hide the table of contents when the page
loaded since users with JavaScript wouldn't need to see the table
of contents.</p>
 </dd>
</dl>

Making a Better FAQ Page

[44]

2. You can adjust the style of the page however you would like by adding in some CSS.
Here's how I've styled mine:

For users with JavaScript disabled, this page works fine as is. The questions hang into the
left margin and are bolder and darker than the rest of the text on the page, making them
easy to scan.

What just happened?
We set up a basic definition list to hold our questions and answers. The default style of the
definition list lends itself nicely to making the list of questions scannable for site visitors
without JavaScript. We can enhance that further with our own custom CSS to make the style
of our list match our site.

Chapter 3

[45]

Time for action – moving around an HTML document
1. We're going to keep working with the files we set up in the previous section. Open

up the scripts.js file that's inside your scripts folder. After the document
ready statement, write a new empty function called dynamicFaq:

function dynamicFaq() {
 //our FAQ code will go here
}

2. Let's think through how we would like this page to behave. We would like to have
all the answers to our questions hidden when the page is loaded, then when a user
finds the question they're looking for, we would like to show the associated answer
when they click the question.

That means the first thing we'll need to do is hide all the answers when the page
loads. That's as simple as selecting all of our <dd> elements and hiding them. Inside
your dynamicFaq function, add a line of code to hide the <dd> elements:

function dynamicFaq() {
 $('dd').hide();

}

You might be wondering why we didn't use CSS to set the display of the <dd>
tags to none. That would have hidden our answers, but it would have hidden
our answers for everyone—site visitors without JavaScript enabled wouldn't
have been able to access the answers, the most important part of our page!

It would also stop most search engines from indexing the content inside of our
answers, which could be helpful for people trying to find the answers to their
questions in a search engine. By using JavaScript to hide the answers, we can
be sure the answers will be available unless the user has JavaScript enabled
and is capable of showing them again.

Making a Better FAQ Page

[46]

3. Now, we need to show the answer when the site visitor clicks on a question. To do
that, we need to tell jQuery to do something whenever someone clicks on one of
the questions or <dt> tags. Inside the dynamicFaq function, add a line of code to
bind a click function to the <dt> tags:

function dynamicFaq() {
 $('dd').hide();

 $('dt').bind('click', function(){

 //Show function will go here

 });

}

4. When the site visitor clicks on a question, we want to get the answer to that
question and show it because our FAQ list is set up similar to the following code:

<dl>
 <dt>Question 1</dt>
 <dd>Answer to Question 1</dd>
 <dt>Question 2</dt>
 <dd>Answer to Question 2</dd>
 …
</dl>

...we know that the answer is the next node or element in the DOM after our
question. We'll start from the question. When a site visitor clicks a question,
we can get the current question by using jQuery's $(this) selector. The user
has just clicked on a question, and we say $(this) to mean the question they
just clicked on. Inside that new click function, add $(this) so we can refer
to the clicked question:

$('dt').bind('click', function(){
 $(this);

});

5. Now that we have the question that was just clicked, we need to get the next
thing or the answer to that question so that we can show it. This is called traversing
the DOM in JavaScript speak. It just means that we're moving to a different part
of the document.

jQuery gives us the next() method for moving to the next node in the DOM.
We'll select our answer by doing as follows:

$('dt').bind('click', function(){
 $(this).next();

});

Chapter 3

[47]

6. Now we've moved from the question to the answer. Now all that's left to do is show
the answer:

$('dt').bind('click', function(){
 $(this).next().show();
});

7. Don't forget that our dynamicFaq function won't do anything until we call it. Call
the dynamicFaq function inside your document ready statement:

$(document).ready(function(){
 dynamicFaq();
});

8. Now, if we load the page in the browser, you can see that all of our answers are
hidden until we click on the question. This is nice and useful, but it would be even
nicer if the site visitor could hide the answer again when they're done reading it to
get it out of their way. Luckily, this is such a common task, jQuery makes this very
easy for us. All we have to do is replace our call to the .show() method with a call
to the .toggle() method as follows:

$('dt').bind('click', function(){
 $(this).next().toggle();
});

Now when you refresh the page in the browser, you'll see that clicking the question once
shows the answer and clicking the question a second time hides the answer again.

What just happened?
Toggling the display of elements on a page is a common JavaScript task, so jQuery already
has built-in methods for handling it and making it simple and straightforward to get this up
and running on our page. That was pretty easy; just a few lines of code.

Sprucing up our FAQ page
That was so easy, in fact we have plenty of time left over for enhancing our FAQ page to
make it even better. This is where the power of jQuery becomes apparent—you can not only
create a show/hide FAQ page, but you can make it a fancy one and still meet your deadline.
How's that for impressing a client or your boss?

www.allitebooks.com

http://www.allitebooks.org

Making a Better FAQ Page

[48]

Time for action – making it fancy
1. Let's start with a little CSS to change the cursor to a pointer and add a little hover

effect to our questions to make it obvious to site visitors that the questions are
clickable. Open up the styles.css file that's inside the styles folder and add this
bit of CSS:

dt {
 color: #268bd2;
 font-weight: bold;
 cursor: pointer;
 margin: 0 0 1em 0;
 }

dt:hover {
 color: #2aa198;
 }

That definitely helps to communicate to the site visitor that the questions
are clickable.

2. When we click a question to see the answer, the change isn't communicated to the
site visitor very well – the jump in the page is a little disconcerting and it takes a
moment to realize what just happened. It would be nicer and easier to understand
if the question were to slide into view; the site visitor could literally see the question
appearing and would understand immediately what change just happened on
the screen.

jQuery makes it easy for us. We just have to replace our call to the .toggle()
method with a call to the .slideToggle() method.

$('dt').bind('click', function(){
 $(this).next().slideToggle();
});

Chapter 3

[49]

Now if you view the page in your browser, you can see that the questions slide smoothly into
and out of view when the question is clicked. It's easy to understand what's happening when
the page changes, and the animation is a nice touch.

What just happened?
We replaced our toggle() method with the slideToggle() method to animate the
showing and hiding of the answers. This makes it easier for the site visitor to understand
the change that's taking place on the page. We also added some CSS to make the questions
appear to be clickable to communicate the abilities of our page to our site visitors.

We're almost there!
jQuery made animating that show and hide so easy that we've still got time left over to
enhance our FAQ page even more. It would be nice to add some sort of indicator to our
questions to show that they're collapsed and can be expanded, and to add some sort of
special style to our questions once they're opened to show that they can be collapsed again.

Time for action – adding some final touches
1. Let's start with some simple CSS to add a small arrow icon to the left side of our

questions. Head back into style.css and modify the styles a bit to add an arrow
icon or an icon of your choosing. You can place the icon you choose inside your
images folder:

dt {
 color: #268bd2;
 font-weight: bold;
 cursor: pointer;
 margin: 0 0 1em 0;
 padding: 0 0 0 20px;
 background: url(../images/arrow.png) 0 0 no-repeat;
 line-height: 16px;
 }

dt:hover {
 color: #2aa198;
 background-position: 0 -32px;
 }

Making a Better FAQ Page

[50]

I'm using an image sprite for the arrows. As I'm changing the color of my questions
from blue to green when the mouse hovers over the questions, I've included both
the blue and green arrows in my sprite and am using a bit of CSS to show the green
arrow when the text turns green. That means only one image has to download and
there's no delay in downloading a new image to show when the mouse hovers over
my question. If you're unfamiliar with the CSS image sprite technique, I recommend
taking a look at Chris Coyier's article explaining it at http://css-tricks.com/
css-sprites/.

2. Now, we want to change the arrow to a different orientation when the question is
opened. All we have to do is use a new CSS class for the open state of our questions
and code the off and on states so the new arrow shape changes color as well. Again,
I've included these arrow images in the same sprite, so the only thing I have to
change is the background position:

dt.open {
 background-position: 0 -64px;
 }

dt.open:hover {
 background-position: 0 -96px;
 }

Just make sure to add these new classes after the other CSS
we're using to style our <dt> tags. That will ensure that the
CSS cascades the way we intended.

3. So we have our CSS to show our questions are open, but how do we actually get to
use it? We'll use jQuery to add the class to our question when it is opened, and to
remove the class when it's closed.

jQuery provides some nice methods for working with CSS classes. addClass() will
add a class to a jQuery object and removeClass() will remove a class. However,
we want to toggle our class just like we're toggling the show and hide of our
questions. jQuery's got us covered for that too. We want the class to change when
we click on the question, so we'll add a line of code inside our dynamicFaq function
that we're calling each time a <dt> is clicked:

$('dt').bind('click', function(){
 $(this).toggleClass('open');

 $(this).next().slideToggle();
});

Chapter 3

[51]

Now when you view the page, you'll see your open styles being applied to the <dt>
tags when they're open and removed again when they're closed. But we can actually
crunch our code to be a little bit smaller.

4. One of the most powerful features of jQuery is called chaining. We've already used
chaining in our code when we added slideToggle() to the next() method on
one line.

$(this).next().slideToggle();

Methods in jQuery can be chained. You can keep adding new methods to further
transform, modify or animate an element. This line of code gets the question,
traverses the DOM to the next node, which we know is our <dd>, and then toggles
the slide animation for that <dd>.

We can take advantage of chaining again. We have a bit of redundancy in our code
because we're starting two different lines with $(this). We can remove that extra
$(this) and just add our toggleClass() method to the chain we've already
started as follows:

$(this).toggleClass('open').next().slideToggle();

What just happened?
We created CSS styles to style the open and closed states of our questions, and then we
added a bit of code to our JavaScript to change the CSS class of the question to use our
new styles. jQuery provides a few different methods for updating CSS classes, which is
often a quick and easy way to update the display of our document in response to input
from the site visitor. In this case, since we wanted to add and remove a class, we used the
toggleClass() method. That saved us from having to figure out on our own if we needed
to add or remove the open class.

Making a Better FAQ Page

[52]

We also took advantage of chaining to simply add this new functionality to our existing line
of code, making the animated show and hide of the answer and the change of CSS class of
our question happen all in just one line of code. How's that for impressive power in a short
amount of code?

Summary
In this chapter, we learned how to set up a basic FAQ page that hides the answers to the
questions until the site visitor needs to see them. Because jQuery made that so simple, we
had plenty of time left over for enhancing our FAQ page even more, adding animations to
our show and hide of the questions, and taking advantage of CSS to style our questions with
special open and closed classes to communicate to our site visitors how our page works. And
we did all of that with just a few lines of code.

Next, we'll learn how to use custom scrollbars on our pages.

4
Building Custom Scrollbars

A common strategy for dealing with pages that have a lot of content is to hide
some of the content until the site visitor wants or needs it. There are many
approaches to this—you could use tabs, accordions, lightboxes, or the focus of
this chapter, scrollable areas.

Scrollable areas are easy for site visitors to understand and use, but they often
get ignored because some operating systems have unsightly scrollbars that ruin
the aesthetics of your carefully-tuned design. Browsers offer few, if any, options
for customizing the appearance of scrollbars, and no official means of doing so
has ever been included in any HTML or CSS specification.

Some designers have turned to Flash to create custom scrollbars, and I'm
sure you've come across samples of these Flash scrollbars online – more often
than not, they're unwieldy and break common conventions for dealing with
scrollable areas. For example, you're rarely able to use your mouse's scrollwheel
to scroll through a Flash scrollable area.

In this chapter, we'll learn:

 � How to download and use jQuery plugins to do even more with jQuery

 � How to use a plugin's built-in customization options to customize how
a plugin works

 � How to use CSS to customize a plugin even further

 � How to set up custom-designed scrollbars that work just as your site
visitors expect

 � How to use the jScrollPane plugin to smoothly scroll between different
bits of content in our scrollable area

Building Custom Scrollbars

[54]

Designer, meet plugins
We've already talked about how programmers solve the same problems over and over
again. It's these common tasks that jQuery simplifies so that we can accomplish these
tasks with a minimum amount of code. But what about the tasks that are only somewhat
common, like the desire for beautiful custom scrollbars that work?

That's where the jQuery community becomes important. Developers in the jQuery
community are able to write code that extends the functionality of jQuery to simplify
tasks that are only somewhat common. These bits of code are called Plugins and they
are used in conjunction with the jQuery library to make coding complex interactions,
widgets, and effects as simple as using the features already built into jQuery.

You'll find a library of hundreds of jQuery plugins on the official jQuery site. In addition
to those, there are literally thousands more available from sites across the Web for just
about any task you want to accomplish.

To create custom scrollbars, we'll be using Kelvin Luck's jScrollPane plugin. You'll learn
how to install the plugin on your page and how to configure the CSS and options to
make your scrollbars look and work the way you want.

Choosing a plugin
Recently, the jQuery team has started supporting a small number of official jQuery plugins,
and you can use those confidently, knowing that they have the same level of expertise,
documentation, and support behind them that jQuery itself has. All other jQuery plugins
are provided by various members of the jQuery community, and those authors are solely
responsible for documentation and support for their own plugins. Writing and providing
jQuery plugins is a bit of a free-for-all, and sadly you will come across a fair number of jQuery
plugins which are poorly documented, poorly supported, and even worse, poorly written.
What kinds of things should you, as a newcomer to jQuery, look for when choosing a plugin?

 � A recent update to the plugin. Frequent updates mean that a plugin is well-
supported and that the author is keeping the plugin up to date as jQuery and
browsers evolve.

 � Thorough and easy-to-understand documentation. Before attempting to download
and use a plugin, take a look through the plugin's documentation and make sure
you understand how to implement the plugin and how to use any options the plugin
makes available to you.

 � Browser support. Great plugins generally have the same browser support as the
jQuery library itself.

Chapter 4

[55]

 � Working demo. Most plugin authors will offer one or more working demos of their
plugin in action. Check out the demo(s) in as many different browsers as possible
to be sure the plugin works as advertised.

 � Reviews and ratings. You won't find reviews and ratings for all plugins, but if you can
find some, they can be helpful indicators of the quality and reliability of the plugin.

Setting up some scrollable HTML
Let's take a look at how to set up a simple HTML page that contains a scrollable area.
Once we've got that out of the way, we'll look at how to replace the default scrollbars
with custom ones.

Time for action – scrollable HTML
Follow these steps to set up a simple HTML page with a scrollable area:

1. We'll start off with setting up a basic HTML page and associated files and folders,
just like we did in Chapter 1, Designer, Meet jQuery. We need to have an area of
content that's large enough to scroll, so we'll add several paragraphs of text to the
body of the HTML document:

<!DOCTYPE html>
<html>
<head>
 <title>Custom Scrollbars</title>
 <link rel="stylesheet" href="styles/styles.css"/>
</head>
<body>

<h2>We don't want this box of content to get too long, so we'll
make it scroll:</h2>
<p>Lorem ipsum dolor sit amet...
Include several paragraphs of lorem ipsum here
...mollis arcu tincidunt.</p>
<script src="scripts/jquery.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

I have not included it all, but I have included five long paragraphs of lorem ipsum
text on my page to add some length and give us something to scroll. In case you're
not aware, lorem ipsum is simply dummy filler text. You can generate some random
lorem ipsum text for yourself to fill your page at http://lipsum.com.

Building Custom Scrollbars

[56]

2. Now, we need to make our text scroll. To do that, I'm going to wrap all those
paragraphs of lorem ipsum in a div and then use CSS to set a height on the div
and set the overflow to auto:

<h2>We don't want this box of content to get too long, so we'll
make it scroll:</h2>
<div id="scrolling">
 <p>Lorem ipsum dolor sit amet...
 Include several paragraphs of lorem ipsum here
 ...mollis arcu tincidunt.</p>
</div>

3. Next, open your empty styles.css file, and add this bit of CSS to make our text
area scrollable:

#scrolling {
 width:500px;
 height:300px;
 overflow:auto;
 }

Feel free to add some additional CSS to style your text any way you'd like.

Now, when I view my page in a browser, I'll see that the browser has added some
(ugly) scrollbars for my text:

Chapter 4

[57]

Adding custom scrollbars
In most cases, the appearance of the scrollbars is determined by the operating system your
site visitor is using instead of their browser. So it doesn't matter if you're using Firefox, Safari,
Chrome, or some other browser on a Mac—you'll always see those trademark shiny blue
scrollbars. On a PC, you'll always see chunky squarish scrollbars in whatever color scheme
you've set in your Windows options.

Time for action – simple custom scrollbars
You can see that the operating system's default scrollbars stick out like a sore thumb in the
middle of our nicely designed page. Let's fix that, shall we?

1. First, we've got to get our hands on the plugin we'd like to use to create our custom
scrollbars. Head over to http://jscrollpane.kelvinluck.com/ and click on
the Download link in the navigation menu:

www.allitebooks.com

http://www.allitebooks.org

Building Custom Scrollbars

[58]

This will jump you down to the Download section of the site, where you'll see
Kelvin Luck is using Github to host his code. Github is a social coding hub – a sort
of Facebook for developers – where the main focus is on writing, sharing, and
discussing code. Hosting jQuery plugins and other open source code projects with
Github is becoming more and more common these days as Github offers developers
an easy way to share and collaborate on their code with others.

Don't worry – downloading a plugin from Github is simple. I'll walk you through it.

2. First, click the Github link on Kelvin Luck's site:

Chapter 4

[59]

3. That will take you to the jScrollPane project's home page on Github. On the right
side of the page, you'll see a Downloads button:

4. After you click on the Downloads button, you'll get a modal dialog window showing
all the available download packages for the project. Keep it simple, just click on the
Download .zip button to get the latest version:

Building Custom Scrollbars

[60]

5. The ZIP download will kick off automatically. Once it's done, we're done at Github.
I told you it was easy. Now, let's unzip the package and see what's inside.

Wow! That's a lot of files! What are we supposed to do with all of these?

It looks a little scary and confusing, but most of these files are examples and
documentation about how to use the plugin. All we need to do is find the JavaScript
files that make up the plugin. We'll find those inside the script folder.

Chapter 4

[61]

6. Inside the script folder, we'll find more like what we expected. Let's figure out
what these files are.

 � demo.js is sample code. It's what Kelvin Luck used to put together the
assorted demos in the zip file. It might be useful to look at for examples if
we get stuck, but we don't need it for our own project.

 � jquery.jscrollpane.js is the source code for the jScrollPane plugin.
If we wanted to modify the way the plugin works or dig through the source
code, we could use this file, but we're not expert coders just yet, so we can
leave this one alone for now. Why does the filename begin with jquery.?
It's a common practice to add the jquery. in front of the file name to
mark it as a jQuery plugin. It can make finding the jQuery plugins much
easier in large projects that could be using a dozen or more jQuery plugins
along with other JavaScript files.

 � jquery.jscrollpane.min.js is the compressed version of the plugin.
It's the same code as jquery.jscrollpane.js except it's been minified.
That just means all the extra spaces, tabs, and so on have been removed
to make the file smaller – and you can see that it was pretty effective. The
minified file is only 16 KB as opposed to 45 KB for the regular file. We won't
be able to read this file easily if we open it, but that's fine. We don't need
to be able to read it, and it's more important that we serve up the smallest
files possible to our site visitors.

Building Custom Scrollbars

[62]

 � jquery.mousewheel.js is the other plugin that we'll be using for our
custom scrollbars. It's the plugin that will let our mouse's scrollwheel work
just as it should in our scrollable areas

 � mwheelintent.js is yet another plugin. Looking through Kelvin Luck's
documentation, we see that this plugin is used for making sure our
scrollable areas work as we expect when we nest scrollable areas inside
one another. We won't be needing that for now.

7. Copy jquery.jscrollpane.min.js and jquery.mousewheel.js and
put them in your scripts folder inside your own project, right next to the
jquery.js file.

8. Next, we need to include these two files in our page, just like we did with jQuery.
Go down to the bottom of your page, and attach the new files between the jQuery
<script> tag and your own <script> tag:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.mousewheel.js"></script>
<script src="scripts/jquery.jscrollpane.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

Anytime you are using jQuery plugins, you want to make sure that you put your
<script> tags in the correct order. The jQuery <script> tag should always
be first, any plugins will come next. And finally any script that you're writing
that's using jQuery or the plugins will come last. This is because the browser
will load these scripts in the order we specify. The plugin files need to be loaded
after jQuery because they are using the jQuery library and rely on it being
available before they can work. In JavaScript-speak, we call this a dependency.
The plugin code is dependent on jQuery. And in turn, our own code is dependent
on both the plugin code and the jQuery library itself, so it needs to be loaded
after those are available.

In this case, we have an additional dependency that we need to be aware of.
The jScrollPane plugin is dependent on the MouseWheel plugin. For this reason,
we need to make sure that we load up the MouseWheel plugin first, and then
the jScrollPane plugin. If you ever have problems getting jQuery or a plugin to
work, it's a good idea to check your script order – a missing or out-of-order
dependency is often to blame.

Chapter 4

[63]

We're almost ready to get our scrollbars set up, but there's one more file that we'll
need to include. The jScrollPane plugin actually works by hiding the browser's native
scrollbars and constructing replacements from ordinary <div>s and s.
That means we'll need some CSS to style those <div>s and s to look like
a scrollbar. Later on, we'll look at how we can write our own CSS to make our
scrollbars look any way we want, but for now, we'll use the CSS that Kelvin Luck has
supplied with his plugin to keep things simple.

9. Go back into the files we downloaded from Github and find the style folder. Inside
the folder, you'll find two files: demo.css and jquery.jscrollpane.css. Just like
with the script files, the demo.css file is special code that was written just for the
examples, but jquery.jscrollpane.css is the file that will style our scrollbars.
Copy that file to your own styles folder and then inside the <head> section of your
document, attach the new stylesheet before your own styles.css file:

<head>
 <title>Custom Scrollbars</title>
 <link rel="stylesheet" href="styles/jquery.jscrollpane.css"/>
 <link rel="stylesheet" href="styles/styles.css"/>
</head>

10. Phew! We've done a lot of work already, but we still need to add our custom
scrollbars to our page. No worries, in true jQuery style, it's just a couple of lines of
code. Open up your scripts.js file and add this bit of code:

$(document).ready(function(){
 $('#scrolling').jScrollPane();
});

Now, if you refresh the page, you'll see our scrollable area now has a jScrollPane-style scrollbar.

Building Custom Scrollbars

[64]

What just happened?
Let's pick that last bit of code apart to understand what's happening there.

We're already familiar with this:

$(document).ready();

That's the ready method of the jQuery object being called on the document. That means
that we'll run our code as soon as the document is ready. As usual, we've told jQuery what
should happen as soon as the document is ready by passing a function to this method:

$(document).ready(function(){
 //our code will go here
});

So the only really new thing we have to look at is the line of code we wrote inside the function:

$('#scrolling').jScrollPane();

But even this we can understand at least a bit. We know that $('#scrolling') will
select the item on the page with the id of scrolling. Remember, we wrapped <div
id="scrolling"></div> around the paragraphs of text that we wanted to scroll. Then
we used a couple lines of CSS to limit the height of the #scrolling div and show the
browser's scrollbar.

Then we can see that we're calling the jScrollPane() method. Most jQuery plugins
will work this way – by adding a new method that you can call. How do you know what
the new method is named? You'll usually find it in the documentation for the plugin.
jScrollPane is exceptionally well documented with piles of examples for you to pick apart,
learn from, and modify.

Adding arrow controls
Okay, now that we've got the basics of using plugins under our belts, now we can take a look
at how we can take it further.

Time for action – adding up and down arrows
Let's add top and bottom buttons to our scrollbars so our scrollbars look and behave more
like native scrollbars.

1. Let's go back to that line of code in our scripts.js file where we called the
jScrollPane() method to create the custom scrollbars:

$('#scrolling').jScrollPane();

Chapter 4

[65]

Remember how we could pass things to methods and functions by putting them
inside the parentheses? We had the following example:

dog.eat('bacon');

where we wanted to say that the dog was eating bacon. So, in JavaScript-speak we
passed bacon to the eat method of the dog.

Well, in this case, we can pass a set of options to the jScrollPane method to
control how our scrollbars look and act. We want to show the top and bottom
arrows on our scrollbars, and we can do that by setting the showArrows option to
true. We just have to make a simple modification to our line of code as follows:

$('#scrolling').jScrollPane({showArrows:true});

2. Now when you refresh the page, you'll see boxes at the top and bottom of your
scrollbars, just where top and bottom arrows would appear.

If you click on these boxes, you'll see that they behave just like the up and down arrows on a
regular scrollbar. They're just a little plain – we can style those up with some CSS to look any
way we'd like.

What just happened?
We set the showArrows option of the jScrollPane method to true. There's a rather long
list of advanced options available with this plugin, but luckily, we don't have to learn or know
them all to be able to make good use of it.

How do we know that there's a showArrows option? We'll find it in the documentation for
the plugin. Once you get better at understanding JavaScript and jQuery, you'll be able to read
the plugin files themselves to see what options and methods the plugin is providing for you.

Building Custom Scrollbars

[66]

To pass one option to a method, you'll wrap it in curly braces. Then you'll type the name of
the option you're setting (in this case, showArrows), then a colon, and then the value that
you're setting the option to (in this case, true to show the arrows). Just like we did before:

$('#scrolling').jScrollPane({showArrows:true});

If you want to pass more than one option to a method, you'll do everything the same, except
you'll need to put a comma between the options. For example, if I wanted to add a little
breathing room between my text and the scrollbar, I could do that by setting a value for the
verticalGutter option:

$('#scrolling').jScrollPane({ showArrows:true,verticalGutter:20});

Now, you can see that if I were setting a dozen or more options, this line of code would
get long and hard to read. For that reason, it's common practice to break options out onto
separate lines as follows:

$('#scrolling').jScrollPane({
 showArrows: true,
 verticalGutter: 20
});

You can see that the content and order are the same, only this example is easier for a human
being to read and understand. A computer doesn't care one way or the other.

Be careful not to add an extra comma after the last option/value pair.
Most browsers will handle that error gracefully, but Internet Explorer
will throw an error and your JavaScript won't work.

Customizing the Scrollbar Style
Now we've got top and bottom buttons on our scrollbars, so let's make them look just
the way we want. We can do this by writing our own CSS to style the scrollbars.

If you've spent any time at all debugging CSS, then you already know about the tools
available to you in your favorite browser to do so. Just in case you haven't, I highly
recommend you take a look at the Firebug extension for Firefox, or the developer tools
built into Opera, Chrome, Safari, and IE9. A quick Google search for 'your browser developer
tools tutorial' should yield plenty of results where you can learn how to take advantage of
what these tools have to offer.

If you're using an older version of IE, then take a look at the Debug Bar program available
as an extension to IE that will be helpful for troubleshooting problems with CSS. It is free
for personal use.

Chapter 4

[67]

I tend to use Google Chrome when I'm developing new pages. To access the developer tools
in Chrome, click the wrench icon at the far right of the toolbar, then select Tools | Developer
Tools. Here's an example of the CSS information I can get by using the built-in tools:

On the left, you can see the DOM for my document – all the HTML elements that make
up the document tree. I can interact with it – each node can be expanded or collapsed to
show or hide the elements that are nested inside. In this case, the highlighted element is
the container for our jScrollPane scrollbar.

On the right, I can see the CSS that applies to the element I've selected on the left. I can
also see which file that particular CSS appears in, and on what line. In this case, most
of the CSS that's styling my scrollbar container can be found on line 20 of the jquery.
jscrollpane.css file.

Digging into the DOM and CSS this way is a quick and easy way to figure out which lines
of CSS we need to modify to get the appearance that we want.

We have a couple of options for customizing the CSS for the scrollbars. Either we can
modify the jquery.jscrollpane.css file directly, or we can copy those styles to our
own stylesheet and make the changes there. It's a matter of personal preference, but if
you opt to modify the jquery.jscrollpane.css file directly, as I'm going to do here,
then I highly recommend you to make a separate copy of it to keep so that you can refer
to it or easily restore it without having to re-download it again.

Building Custom Scrollbars

[68]

Time for action – adding our own styles
1. Open jquery.jscrollpane.css. Around line 56, you'll find the CSS that styles

.jspTrack. This is the track for our scrollbar – the background area you might say.
The default style for it is a pale lavender color.

.jspTrack
{
 background: #dde;
 position: relative;
}

We don't want to mess with the position, since our scrollbar is relying on that to
work correctly, but you can feel free to change the background color to any color,
gradient, or image you'd like. I'm going to make mine pale pink:

.jspTrack
{
 background: #fbebf3;
 position: relative;
}

The next style I'd like to change is for .jspDrag. This is the
actual scrollbar handle. I'm going to make it bright pink:
.jspDrag
{
 background: #D33682;
 position: relative;
 top: 0;
 left: 0;
 cursor: pointer;
}

2. Next, I'll tackle the top and bottom buttons. I have not only a default style, but
also a disabled style. For example, when the scroll area is all the way to the top
the top button is disabled since I can't possibly scroll any higher. If I examine the
buttons with my developer tools, I can also see that there's an additional class name
on the buttons that's not styled in the default CSS – the top button has a class of
jspArrowUp and the bottom button has a class of jspArrowDown. That will let me
set a different style for the up and down buttons – I'm going to use an image of an
upward pointing arrow as a background for the top arrow, and a downward-pointing
arrow for the bottom button to make their function clear to my site visitors.

Chapter 4

[69]

Here's my CSS for styling those:

.jspArrow
{
 text-indent: -20000px;
 display: block;
 cursor: pointer;
}

.jspArrow.jspDisabled
{
 cursor: default;
 background-color: #999;
}

.jspArrowUp
{
 background: #d6448b url(../images/arrows.png) 0 0 no-repeat;
}

.jspArrowDown
{
 background: #d6448b url(../images/arrows.png) 0 -16px no-repeat;
}

What just happened?
Now when you refresh the browser, you can see that the scrollbars are styled pink – just the
way I wanted them. We modified the CSS that was supplied by the plugin developer to make
the scrollbars appear just the way we wanted. We were able to use the developer tools built
into our browser to target the file and line numbers of the code that needed to be updated
to change the appearance of the scrollbars.

Have a go hero – style the scrollbars the way you want
Now, you might not care for bright pink scrollbars, and you might think my example is a little
bit plain, and you'd be right. But you can get creative with background colors, gradients,
images, rounded corners, and more, to style your scrollbars just the way you'd like. You can
mimic the scrollbars of your favorite operating system so that all of your site visitors see
them the way you like, or you can create an entirely new style. Experiment with the CSS to
create your own scrollbar style.

Building Custom Scrollbars

[70]

Smooth scrolling
jScrollPane is a mature and full-featured plugin. If you poke through the examples and
documentation, you'll find all kinds of fun options to play with. I'll walk you through setting
up one of my favorites: animated scrolling inside the scrollable area.

Time for action – setting up smooth scrolling
You could place any kind of content you'd like inside a scrollable area—a list of news stories,
a gallery of photos, or a long article with several sections, headings, and subheadings, for
example. Here's how you can set up a control to smoothly scroll from one section to another:

1. The first thing we'll need to do is assign an ID to each of our paragraphs. I have five
paragraphs of lorem ipsum in my scrollable area, so I'm going to assign them ids of
para1, para2, para3, para4, and para5. You can choose whatever ids you like,
but keep in mind that an id cannot begin with a number. So now my code looks like
this (I've truncated the text to save space):

<div id="scrolling">
 <p id="para1">Lorem ipsum...</p>
 <p id="para2">...</p>
 <p id="para3">...</p>
 <p id="para4">...</p>
 <p id="para5">...</p>
</div>

2. Now, let's add in some internal links above our scrollable area to jump to each
of these paragraphs. After the heading and before the scrollable area, add the
following code:

<h2>We don't want this box of content to get too long, so we'll
make it scroll:</h2>
<p>Scroll to a paragraph:
 1,
 2,
 3,
 4,
 5
</p>
<div id="scrolling">

Chapter 4

[71]

3. If we have JavaScript disabled, these links work; they will scroll the scrollable area
down to the paragraph in question making it visible to our site visitor. But we want
them to work with our fancy custom scrollbars. So we just have to pass a new option
to our jScrollPane method:

$(document).ready(function(){
 $('#scrolling').jScrollPane({
 showArrows: true,
 verticalGutter: 30,
 hijackInternalLinks: true
 });
});

This new option is to keep the browser from attempting its default behavior
when the internal links are clicked. Refresh the page, and try out the links to the
paragraphs.

4. It works, but it's not exactly pretty, and it can be a little disconcerting when that
scrollable area jumps suddenly like that—our site visitor might not realize exactly
what's happened. Let's make it obvious by smoothly animating that jump to the
different paragraphs. All we have to do is add another option to our code:

$(document).ready(function(){
 $('#scrolling').jScrollPane({
 showArrows: true,
 verticalGutter: 30,
 hijackInternalLinks: true,
 animateScroll: true
 });
});

Now, when you refresh the page and click the paragraph links, you'll see that the
scrollable area smoothly scrolls to the proper paragraph. It's easy to understand
what's happening and where you are on the page and in the scrollable area.

What just happened?
We took advantage of one of the features of the jScrollPane plugin and made smooth
scrolling to any bit of content inside our scrollable container possible. The options and values
available to us are all documented in the plugin's documentation and examples. You can see
how easy it was to customize this plugin to add this nice bit of behavior, thanks to the plugin
author's hard work in making tough stuff easy for us.

Building Custom Scrollbars

[72]

Summary
Phew! This was quite a chapter. We learned about jQuery plugins, how to use them, and
how to use the options they make available to customize them. We learned about
dependencies and inserting multiple scripts into our file in the correct order. We used
Kelvin Luck's excellent jScrollPane plugin to replace our boring operating system scrollbars
with fancy custom ones of our own design. And the bonus is, they work just like browser
scrollbars – our site visitors can click on the track, on the up and down buttons, they can
drag the handle, or they can use their mousewheel to navigate up and down the scrollable
areas we've set up. It's a win for both aesthetics and usability.

Finally, we learned how to smoothly scroll to an anchor inside the scrollable area – this
allows our site visitors to easily get to individual bits of content inside the scrollable area,
and communicates what's happening clearly.

Next up, we'll take a look at overriding the browser's default tooltips with nicely designed
tooltips of our own and we'll learn how to make them work even harder for us by adding
extra content.

5
Creating Custom Tooltips

Now that we've seen how powerful plugins are and how easy they make
advanced functionality, let's see how we can take advantage of another
plugin to make custom tooltips.

Browsers automatically create tooltips when you include the title
attribute—usually on a link or an image. When your site visitor hovers their
mouse cursor over the item or moves focus to the item by tabbing to it, the
tooltip will appear—usually as a small yellow box that appears to be floating
over the page. Tooltips are a great way to add a little additional information
to your page. Screen reader software reads out tooltip text for site visitors
with disabilities who are using assistive technology, making them useful for
enhancing accessibility. Furthermore, title attributes on images and links can
help search engines index your content more effectively.

In this chapter, we'll learn:

 � How to use Craig Thompson's qTip plugin to replace the browser's default tooltips

 � How to customize the appearance of the qTip tooltips

 � How to enhance a navigation bar with custom tooltips

 � How to display Ajax content in custom tooltips

Creating Custom Tooltips

[74]

Simple custom text tooltips
I hope I've convinced you that title attributes are great for enhancing both the usability
and accessibility of your site. The only problem with tooltips is that they can't be customized
in any way. Each browser has its own style of tooltip and that style is not customizable
via CSS. Sometimes this is fine, but sometimes it's nice to have more control over the
appearance of tooltips.

Time for action – simple text tooltips
We'll start off working with tooltips by making a simple replacement for the browser's
default tooltip that we can style any way we'd like:

1. Set up a basic HTML file and associated files and folders like we did in Chapter 1,
Designer, Meet jQuery. Our HTML file should contain a set of links that each have
a title attribute like this:

<p>Here's a list of links:</p>

 <a href="home.html" title="An introduction to who we are
and what we do">Home
 <a href="about.html" title="Learn more about our
company">About
 <a href="contact.html" title="Send us a message. We'd love
to hear from you!">Contact
 <a href="work.html" title="View a portfolio of the work
we've done for our clients">Our Work

2. Open that page in a browser and move your mouse over the links. You'll see the
text contained in the title attribute shown in a tooltip. Exactly where the tooltip
appears and exactly what it looks like will depend on your browser, but here's how
it looks in mine (Google Chrome on Mac OS):

Chapter 5

[75]

3. Now, let's spruce that up a bit by replacing the default browser tooltip with our
own styled one. First, we'll need to download Craig Thompson's qTip plugin. It's
available from http://craigsworks.com/projects/qtip2. His site has a list
of features, several sample demos, the documentation you'll need to learn to use
the plugin, a forum where you can get help, and the files needed are available for
download. Head to the download page, and you'll see a checklist of options to help
you download the right version.

Creating Custom Tooltips

[76]

Let's walk through this page one section at a time:

4. Step 1 gives us a number of options for downloading the script. In the section titled
Version, I'm going to select Stable version so that I get the latest version of the
script that has been tested thoroughly. Those wanting to experiment with and test
the plugin as the developer works on it, can select the nightly build.

5. In the Extras section, I'm going to uncheck jQuery 1.5 since I have already
downloaded jQuery and attached it to my project. If you're starting a new project
and haven't yet downloaded jQuery, you can leave this checked to download jQuery
simultaneously with the plugin.

6. In the Styles section, I'm going to leave all three sets of styles selected, since I want
as many options as possible for styling my tooltips. Likewise, I'm going to leave all
options selected in the Plugins section since I'll be working on a variety of different
types of tooltips and taking advantage of these different features. If you wanted to
simply create simple text-based tooltips, you could uncheck all of these extras and
get a much smaller download file. These extras are only needed if you're going to be
taking advantage of the extra features. It's a nice feature of this plugin that we can
pick and choose just the functionality we want in order to keep our JavaScript files
as small as possible.

7. Step 2 offers an automatic converter for anyone who is updating their code that
might have previously used an earlier version of the plugin. We can ignore this step
since we're newcomers to the qTip plugin.

Chapter 5

[77]

8. Step 3 gives us the opportunity to tell the plugin developer about our site that
uses the plugin in exchange for a chance to be featured on the plugin's home page
gallery. Since we're only doing some practice exercises in this chapter, we won't use
this now, but it may be something for you to consider for your own projects later on.

9. Step 4 requires us to accept the terms of the license. This plugin is licensed under
the open source MIT and GPLv2 licenses, which makes it free for us to use, modify
and even redistribute the code, provided the license or link to the license is included
in the files. The license is already included in the plugin files when you download
them, so as long as you don't edit those files to remove the license, you'll be fine.

10. Finally, we can click the Download qTip button, and your browser will download
a ZIP file for you. Unzip it and examine its contents. Inside, we'll find two CSS files
and two JavaScript files. (You might have an extra JavaScript file if you elected to
download jQuery as well as the plugin script).

11. Let's start with the two CSS files. We have jquery.qtip.css and jquery.
qtip.min.css. These two files have exactly the same content. The difference
between them is that the second file is minified, making it smaller and ideal for use
in production. The other file is the development version that we could easily edit
ourselves or use as an example if we wanted to write our own styles for our tooltips
instead of using the prebuilt styles. You'll select one of the files and attach it to your
page. In this example, I'm going to use the minified version of the file to keep the
file as small as possible since I don't want to write my own styles at this point. Copy
jquery.qtip.min.css to your own styles folder, and then attach the file to
your HTML document in the <head> section:

<head>
 <title>Chapter 5: Creating Custom Tooltips</title>

 <link rel="stylesheet" href="styles/jquery.qtip.min.css"/>
 <link rel="stylesheet" href="styles/styles.css"/>
</head>

I'm attaching the qTip stylesheet before my own styles.css to make it easier for
me to override styles in the qTip stylesheet if I want to.

Creating Custom Tooltips

[78]

12. Next, let's look at the JavaScript files. We have jquery.qtip.js and jquery.
qtip.min.js. Just like the CSS files, these are two different versions of the same
file, and we simply have to pick one and attach it to our HTML document. The first
file, jquery.qtip.js, is the development version of the file, and the largest file
at 94K. The second file is minified and weighs in at only 41K. Since we don't need
to edit the plugin and are going to be using it as is, let's select the minified version.
Copy jquery.qtip.min.js to your own scripts folder and attach it at the
bottom of your HTML file, in between jQuery and our own scripts.js file:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.qtip.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

13. The last thing we need to do is call the plugin code. Open your scripts.js file
and add the document ready statement and function:

$(document).ready(function(){
});

14. Inside the function, select all links in the document that have title attributes
and call the qtip() method on those links:

$(document).ready(function(){
 $('a[title]').qtip();
 });

Chapter 5

[79]

15. Now, when you view the page in the browser and move your mouse over the links
with title attributes, you'll see the qTip-styled tooltips instead of the browser's
default tooltips:

Even better, these tooltips will appear with this same style, no matter which
browser and operating system we're using.

Creating Custom Tooltips

[80]

What just happened?
We downloaded the qTip plugin and attached one CSS file and one JavaScript file to
our HTML document. Then we added just a couple of lines of jQuery code to activate
the custom tooltips.

We selected all the link elements on the page that had a title attribute. We did this
by taking advantage of jQuery's attribute selectors:

$('a[title]')

Putting title in brackets after our element selector means that we only want those
links on the page that have a title attribute.

Once we've selected those links, all that's left to do is to call the qtip() method that
the qTip plugin provided for us. The qtip() method takes care of all the actions that
need to be done to replace the default tooltip with a custom one. But what if we want
to use some of the other styles included with qTip?

Customizing qTip's appearance
You've undoubtedly noticed that the top-left corner of the qTip aligns with the
bottom-right corner of the link when the mouse hovers over the link, and that the
tooltip appears as a yellow box with a small arrow on the side. The qTip plugin offers
lots of options for customizing where the tooltip appears and what it looks like and
it does so in a straightforward and easy to understand way.

Time for action – customizing qTips
Let's take a look at the options we have for customizing the appearance of qTip's tooltips:

1. Let's say that we want to change the position of the tooltip. qTip gives us plenty
of options for positioning our tooltips on our page.

2. We can match up any of these points on the tooltip to any of these points on the link:

Chapter 5

[81]

3. In this example, we'll match up the middle of the link's right side with the middle of
the tooltip's left side, so that the tooltip appears directly to the right of the link. We
simply need to pass some additional information to the qTip() method. We'll keep
working with the files we set up in the last example. Open your scripts.js file
and pass this additional information to the qtip() method:

$('a[title]').qtip({
 position: {
 my: 'center left',
 at: 'center right'
}
});

The developer's goal was for this to make sense in plain language. Speaking from the
tooltip's point of view, we're going to align my center-left at the link's center-right.
As you can see when we refresh the page in the browser, the tooltip now appears
directly to the right of the link.

Creating Custom Tooltips

[82]

4. In addition to changing the position of the tooltip, we can change the appearance
of the tooltip itself. The CSS included with the plugin includes several color schemes
and styles. These different colors and styles are applied by adding CSS classes to our
tooltip. Let's take a look at how we add these CSS classes.

$('a[title]').qtip({
 position: {
 my: 'center left',
 at: 'center right'
 },
 style: {
 classes: 'ui-tooltip-blue'
 }
});

Now when we view our tooltip in the browser, we see that it's blue:

Chapter 5

[83]

5. The color schemes provided with qTip include:

 � ui-tooltip (the default yellow color scheme)

 � ui-tooltip-light (black text on a white tooltip)

 � ui-tooltip-dark (white text on a dark grey tooltip)

 � ui-tooltip-red

 � ui-tooltip-green

 � ui-tooltip-blue

You can add any one of these classes to your tooltips to adjust the color scheme.

6. For CSS3-capable browsers, qTip also offers some fancier styles. These styles won't
be seen in browsers that don't support the CSS3 specification, but in most cases,
that should be fine. These styles can be considered as progressive enhancement for
the browsers that can display them. Site visitors using a less capable browser will
still be able to see and read the tooltips without any trouble. They just won't see
the fancier styles applied. The available styles are as follows:

Creating Custom Tooltips

[84]

7. Just like with the color schemes, we can take advantage of these styles by adding
CSS classes to our tooltips. Multiple CSS classes can be added to a tooltip like so:

$('a[title]').qtip({
 position: {
 my: 'center left',
 at: 'center right'
 },
 style: {
 classes: 'ui-tooltip-blue ui-tooltip-shadow'
 }
});

This code creates a tooltip that is blue and has a shadow.

What just happened?
We saw how we can pass position and style values to the qTip method to customize the
appearance of our tooltips. We learned the color schemes and styles that are included
with the qTip plugin, and learned how we can use those styles in our own pages to
customize the qTip tooltips.

Custom styles for tooltips
We can also write our own color schemes and styles for our tooltips if none of the available
options are quite right for our site.

Time for action – writing custom tooltip styles
Let's take a look at how we can write our own custom styles for qTip's tooltips by writing a
new purple color scheme:

1. We'll get started by examining the CSS that codes up the red tooltip style that
comes with qTip. You'll find this bit of CSS inside the jquery.qtip.css file that
was included with the qTip download. Here are all the CSS styles that affect the
red tooltips:

/*! Red tooltip style */
.ui-tooltip-red .ui-tooltip-titlebar,
.ui-tooltip-red .ui-tooltip-content{
 border-color: #D95252;
 color: #912323;
}

Chapter 5

[85]

 .ui-tooltip-red .ui-tooltip-content{
 background-color: #F78B83;
 }
 .ui-tooltip-red .ui-tooltip-titlebar{
 background-color: #F06D65;
 }
 .ui-tooltip-red .ui-state-default .ui-tooltip-icon{
 background-position: -102px 0;
 }
 .ui-tooltip-red .ui-tooltip-icon{
 border-color: #D95252;
 }
 .ui-tooltip-red .ui-tooltip-titlebar .ui-state-hover{
 border-color: #D95252;
}

2. From examining this CSS, we can see that all we need to do to create a new color
scheme is to create a new class name and four shades of purple to create a new
style. Here's the CSS for my purple color scheme. Open your styles.css file and
add these styles:

/*! Purple tooltip style */
.ui-tooltip-purple .ui-tooltip-titlebar,
.ui-tooltip-purple .ui-tooltip-content{
 border-color: #c1c3e6;
 color: #545aba;
}
 .ui-tooltip-purple .ui-tooltip-content{
 background-color: #f1f2fa;
 }
 .ui-tooltip-purple .ui-tooltip-titlebar{
 background-color: #d9daf0;
 }
 .ui-tooltip-purple .ui-state-default .ui-tooltip-icon{
 background-position: -102px 0;
 }
 .ui-tooltip-purple .ui-tooltip-icon{
 border-color: #c1c3e6;
 }
 .ui-tooltip-purple .ui-tooltip-titlebar .ui-state-hover{
 border-color: #c1c3e6;
}

Creating Custom Tooltips

[86]

3. Now, to take advantage of our new purple tooltip style, we simply have to adjust our
jQuery code to add the newly created ui-tooltip-purple class to our tooltips.
Open scripts.js and adjust the classes being added to the tooltips:

$('a[title]').qtip({
 position: {
 my: 'center left',
 at: 'center right'
 },
 style: {
 classes: 'ui-tooltip-purple'
 }
});

Now, when you preview the link in the browser, you will see a purple tooltip, as
shown in the following screenshot:

Chapter 5

[87]

What just happened?
Using one of the CSS classes provided with qTip, we wrote our own custom style and applied
it to our tooltips. You can use any CSS styles you'd like to create a custom appearance for the
qTip tooltips. There's virtually no limit to the possibilities for styles when you start mixing in
color and font choices, background images, border styles, and so on.

Have a go hero – create a tooltip of your own design
Try writing your own CSS class to style the tooltips. Try a new color scheme, new font styles
and sizes, text shadows, box shadows—anything you can think of to make the tooltips match
the design of a site or really stand out.

Enhancing navigation with tooltips
Once you know how to make custom tooltips, you'll find there are lots of possible uses for
them. Let's take a look at enhancing a standard navigation bar with custom tooltips using the
qTip plugin.

Time for action – building a fancy navigation bar
Let's take a look at how we can use custom-designed tooltips to add a little progressively
enhanced punch to a basic navigation bar:

1. Let's start by setting up a basic HTML page with associated folders and files just as
we did in Chapter 1, Designer, Meet jQuery. In the body of the document, include a
simple navigation bar like this:

<ul id="navigation"> <a href="home.html" title="An
introduction to who we are and what we do">Home
<a href="about.html" title="Learn more about our
company">About
<a href="contact.html" title="Send us a message. We'd love to
hear from you!">Contact
<a href="work.html" title="View a portfolio of the work we've
done for our clients">Our Work

Creating Custom Tooltips

[88]

2. Next, we'll add some CSS styles to our navigation bar. There's a lot of CSS here
because I'm using a gradient as a background and it requires a lot of different CSS
for different browsers right now. Add these lines of CSS to your styles.css file. If
you prefer a different style, feel free to customize the CSS to suit your own taste:

#navigation {

 background: rgb(132,136,206); /* Old browsers */
 background: -moz-linear-gradient(top, rgba(132,136,206,1) 0%,
rgba(72,79,181,1) 50%, rgba(132,136,206,1) 100%); /* FF3.6+ */

 background: -webkit-gradient(linear, left top, left
bottom, color-stop(0%,rgba(132,136,206,1)), color-
stop(50%,rgba(72,79,181,1)), color-stop(100%,rg
ba(132,136,206,1))); /* Chrome,Safari4+ */

 background: -webkit-linear-gradient(top, rgba(132,136,206,1)
0%,rgba(72,79,181,1) 50%,rgba(132,136,206,1) 100%); /*
Chrome10+,Safari5.1+ */

 background: -o-linear-gradient(top, rgba(132,136,206,1)
0%,rgba(72,79,181,1) 50%,rgba(132,136,206,1) 100%); /* Opera11.10+
*/
 background: -ms-linear-gradient(top, rgba(132,136,206,1)
0%,rgba(72,79,181,1) 50%,rgba(132,136,206,1) 100%); /* IE10+ */

 filter: progid:DXImageTransform.Microsoft.gradient(
startColorstr='#8488ce', endColorstr='#8488ce',GradientType=0);
/* IE6-9 */

 background: linear-gradient(top, rgba(132,136,206,1)
0%,rgba(72,79,181,1) 50%,rgba(132,136,206,1) 100%); /* W3C */

 list-style-type: none;
 margin: 100px 20px 20px 20px;
 padding: 0;
 overflow: hidden;
 -webkit-border-radius: 5px;
 -moz-border-radius: 5px;
 border-radius: 5px;
}

#navigation li {
 margin: 0;
 padding: 0;

Chapter 5

[89]

 display: block;
 float: left;
 border-right: 1px solid #4449a8;
}

#navigation a {
 color: #fff;
 border-right: 1px solid #8488ce;
 display: block;
 padding: 10px;
}

#navigation a:hover {
 background: #859900;
 border-right-color: #a3bb00;
}

3. Now we have a navigation bar horizontally across our page, like this:

4. I've included title attributes on my links and when I move my mouse over the
navigation links, those are visible. I'd like to replace these boring browser default
tooltips with friendly-looking conversation bubbles below my navigation.

5. Just like we did in the previous example, we're going to copy the qTip CSS and
JavaScript to our own styles and scripts folders and attach them to the HTML
document:

<!DOCTYPE html>
<html>
<head>
 <title>Chapter 5: Creating Custom Tooltips</title>
 <link rel="stylesheet" href="styles/jquery.qtip.min.css"/>

<script src="../scripts/jquery.js"></script>
<script src="scripts/jquery.qtip.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

Creating Custom Tooltips

[90]

6. Next, open your scripts.js file so we can call the qtip() method and pass in
our customizations. We'll start off nearly the same way as last time, except that we'll
use a different selector, since we only want to select links inside the navigation bar:

$(document).ready(function(){
 $('#navigation a').qtip();
});

Now the default tooltips are replaced with qTip-styled tooltips.

7. Next, we're going to create our own style for the navigation tooltips, so we'll write
some new CSS to make them look like speech bubbles. Add these styles to your
styles.css file:

.ui-tooltip-conversation .ui-tooltip-titlebar,

.ui-tooltip-conversation .ui-tooltip-content{
 border: 3px solid #555;
 filter: none; -ms-filter: none;
}

.ui-tooltip-conversation .ui-tooltip-titlebar{
 background: #859900;
 color: white;
 font-weight: normal;
 font-family: serif;
 border-bottom-width: 0;
}

.ui-tooltip-conversation .ui-tooltip-content{
 background-color: #F9F9F9;
 color: #859900;
 -moz-border-radius: 9px;
 -webkit-border-radius: 9px;
 border-radius: 9px;
 padding: 10px;
}

.ui-tooltip-conversation .ui-tooltip-icon{
 border: 2px solid #555;
 background: #859900;
}

.ui-tooltip-conversation .ui-tooltip-icon .ui-icon{
 background-color: #859900;
 color: #555;
 }

Chapter 5

[91]

8. Now that we've got a new CSS style for our tooltips ready to go, we just have to
add this new class to the tooltips. Go back to scripts.js and add the new class
to the JavaScript:

$('#navigation a').qtip({
 style: {
 classes: 'ui-tooltip-conversation'
 }
});

9. Next, let's position the speech bubbles so that they appear underneath each
of the navigation links. In scripts.js, pass the position information to the
qtip() method:

$('#navigation a').qtip({
 position: {
 my: 'top center',
 at: 'bottom center'
 },
 style: {
 classes: 'ui-tooltip-conversation',
 width: '150px'
 }
});

10. Now, we need to control the width of the tooltips so they don't appear too wide.
We'll set the width to 150px:

$('#navigation a').qtip({
 position: {
 my: 'top center',
 at: 'bottom center'
 },
 style: {
 classes: 'ui-tooltip-conversation',
 width: '150px'
 }
});

Creating Custom Tooltips

[92]

11. Now the last thing we'll do is change the way the tooltips appear and disappear
from the page. By default, the qTip plugin uses a very quick and subtle fade in
and fade out. Let's change that, so that the tooltips slide into view and slide back
out of view:

$('#navigation a').qtip({
 position: {
 my: 'top center',
 at: 'bottom center'
 },
 show: {
 effect: function(offset) {
 $(this).slideDown(300);
 }
 },
 hide: {
 effect: function(offset) {
 $(this).slideUp(100);
 }
 },
 style: {
 classes: 'ui-tooltip-conversation',
 width: '150px'
 }
});

12. Now when you view the page in a browser, you can see the conversation bubbles
slide into view underneath each navigation link when you move your mouse over
the link, and slide back out of view when you move your mouse off the link.

What just happened?
We reviewed how to create and attach a custom CSS style to qTip's tooltips and how to
position the tooltip wherever you'd like it to appear. We also learned how to control the
width of the tooltips to ensure we get a uniform size.

Then we saw how to override the default show and hide behaviors and replace them
with custom animations. In this case, we used jQuery's slideDown() effect to show
the tooltips. We passed a value of 300 to the slideDown() method, which means the
animation will take 300 milliseconds to complete, or about a third of a second. I've found
that if an animation takes much longer than that, site visitors get impatient waiting for it.

Chapter 5

[93]

Next, we overrode the default hide behavior with jQuery's slideUp() method. I passed a
value of 100, meaning the animation will complete rather quickly in about one-tenth of a
second. When this animation runs, the site visitor has already decided to move on, so it's
best to get the information out of their way as quickly as possible.

Showing other content in tooltips
So far we've seen how we can customize the appearance of qTip's tooltips, controlling their
appearance, animation, and position. However, we've only used the tooltips to show text,
namely the text we've placed inside a link's title attribute. We have a lot of more powerful
options, though. We can load just about any content we'd like into our tooltips. We can also
make sure the tooltips appear when an item is clicked instead of hovered over. Let's take a
look at how we can load in content from another HTML page into our tooltips when we click
on a link.

In this section, we'll dive into using Ajax for the first time. In case you aren't familiar, Ajax is
a method for fetching some new content from the server and displaying it to the site visitor
without having to completely refresh the page. Because the browser is only getting and
displaying just the bit of information the site visitor needs, it's often much faster and snappier.

Just a quick note before we dive into Ajax for the first time. Modern browsers have several
security rules for Ajax requests. You won't be able to simply view your ajaxified HTML files
in a browser as we've been doing up until this point. In order to view the Ajax in action,
you'll either have to upload your files to a server before viewing them, or you'll have to set
up a server on your own computer. If you're a Mac user, I highly recommend MAMP, which
has both a free and a premium paid version. You can get more information and download
MAMP from http://www.mamp.info. If you're on Windows, I highly recommend
WampServer, which is free. You can get more information and download WampServer
from http://www.wampserver.com.

Time for action – building custom Ajax tooltips
Follow these steps to set up some tooltips that display Ajax content:

1. We'll get started by creating an HTML document and associated files and folders
like we did in Chapter 1, Designer, Meet jQuery. Our HTML page should contain a
couple paragraphs of text that have some links to further information. My first HTML
document looks like the following:

<!DOCTYPE html>
<html>
<head>
 <title>Pittsburgh, Pennsylvania</title>
 <link rel="stylesheet" href="styles/styles.css"/>

Creating Custom Tooltips

[94]

</head>
<body>

<h2>Pittsburgh, Pennsylvania</h2>

<p>Pittsburgh is the second-largest city in the US Commonwealth of
Pennsylvania and the county seat of Allegheny County. Regionally,
it anchors the largest urban area of Appalachia and the Ohio
River Valley, and nationally, it is the 22nd-largest urban area
in the United States. The population of the city in 2010 was
305,704 while that of the seven-county metropolitan area stood at
2,356,285. Downtown Pittsburgh</
a> retains substantial economic influence, ranking at 25th in the
nation for jobs within the urban core and 6th in job density.</p>

<p>The characteristic shape of Pittsburgh's central business
district is a triangular tract carved by the confluence of the
Allegheny and Monongahela rivers, which form the Ohio River. The
city features 151 high-rise buildings, 446 bridges, two inclined
railways, and a pre-revolutionary fortification. Pittsburgh is
known colloquially as "The City of Bridges" and "The Steel City"
for its many bridges and
former steel manufacturing base.</p>

<p>The warmest month of the year in Pittsburgh is July, with a
24-hour average of 72.6°F. Conditions are often humid, and
combined with the 90°F (occurring on an average of 8.4 days
per annum), a considerable heat
index arises.</p>

<script src="scripts/jquery.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

2. We need an easy way to select the three more information links, so we'll add a CSS
class to each one like this:

Downtown
Pittsburgh

3. Next, we need to create a set of short pages that each contain a photo and a
caption for each of the links in my previous text. Here's a sample of one of my
short HTML pages:

<!DOCTYPE html>
<html>
<head>
 <title>Downtown Pittsburgh</title>
</head>

Chapter 5

[95]

<body>

 <p>Downtown Pittsburgh</p>
</body>
</html>

As you can see, the file is extremely small and simple.

4. Create an infoboxes directory alongside the main page. Save your simple HTML
file to this directory, and then create more simple files—one for each link in the
main document.

5. Now, if you open the main page in a browser and click the links in the text, you'll
see that these short, plain pages load up in the browser. We've got the basic
functionality down, so next we'll move on to progressively enhancing our page
for those with JavaScript enabled.

6. We'll use the purple color scheme that we set up earlier in the chapter for
our tooltips, so let's add the CSS for the ui-tooltip-purple class to the
styles.css file:

/*! Purple tooltip style */
.ui-tooltip-purple .ui-tooltip-titlebar,
.ui-tooltip-purple .ui-tooltip-content{
 border-color: #c1c3e6;
 color: #545aba;
}
 .ui-tooltip-purple .ui-tooltip-content{
 background-color: #f1f2fa;
 }
 .ui-tooltip-purple .ui-tooltip-titlebar{
 background-color: #d9daf0;
 }
 .ui-tooltip-purple .ui-state-default .ui-tooltip-icon{
 background-position: -102px 0;
 }
 .ui-tooltip-purple .ui-tooltip-icon{
 border-color: #c1c3e6;
 }
 .ui-tooltip-purple .ui-tooltip-titlebar .ui-state-hover{
 border-color: #c1c3e6;
 }

Creating Custom Tooltips

[96]

7. Now that we've got our HTML and CSS all set up, let's dive into the JavaScript.
Attach the qTip plugin at the bottom of the page, between jQuery and your
scripts.js file:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.qtip.min.js"></script>
<script src="scripts/scripts/js"></script>
</body>
</html>

8. Next, open scripts.js and we'll get started with our document ready function:

 $(document).ready(function(){
 });

9. Next, we're going to call the qtip() method in a slightly different way than we have
before. Inside the qtip() method, we need to easily get to the information about
just the link we're working with, so we're going to use jQuery's each() method to
loop through them one at a time. That will look like this:

$(document).ready(function(){
 $('a.infobox').each(function(){
 $(this).qtip()
 });
});

10. Now, if you refresh the page in your browser, you'll see that nothing happens when
you hover over the links. This is because our links don't have title attributes, and
that's what the qTip plugin is looking for by default. However, we can override that
default to insert any content we'd like into our tooltips.

11. We're going to be displaying those simple HTML pages we set up inside our tooltips.
Even though Ajax requests tend to be quick, there could still be a bit of a delay, so
let's get ready to use Ajax by adding a loading message that will display for our site
visitors while they wait for the real content to show up:

$(document).ready(function(){
 $('a.infobox').each(function(){
 $(this).qtip({
 content: {
 text: 'Loading...'
 }
 });
 })
});

Chapter 5

[97]

Now when you refresh the page in the browser, you'll see the tooltips contain the
Loading... text.

12. We want to switch the behavior of the tooltips so that they show up when the link is
clicked instead of when the mouse hovers over. We also want to make sure that only
one tooltip is visible on the page at a time. If the site visitor opens a tooltip while
another is already open, the first one should close so they don't end up with many
tooltips open all over the screen. This is how we'll do that:

$(document).ready(function(){
 $('a.infobox').each(function(){
 $(this).qtip({
 content: {
 text: 'Loading...'
 },
 show: {
 event: 'click',
 solo: true
 },
 });
 })
});

13. Now if you refresh the page in a browser, you'll see that the tooltip no longer
appears when we hover over the links.

14. However, when we click on the links right now, we're taken to the short simple
HTML page we set up. We have to tell the browser to ignore the link because we
have other plans in mind. We can cancel the default behavior by adding this line
of code above our earlier code and inside the document ready statement:

$(document).ready(function(){
$('a.infobox').bind('click', function(e){e.preventDefault()});
 $('a.infobox').each(function(){

15. What we're doing here is binding a function that fires when the links are clicked.
Our function is pretty simple. We pass the current link to the function (e in this
case for brevity, but we could have named it almost anything), and then we tell
the browser to prevent the default link behavior.

Now if you refresh the page in the browser, you'll see that the tooltips appear when
we click on the links—clicking the links no longer takes us off to a new page.

Creating Custom Tooltips

[98]

16. But we could write our code in a more succinct way. Remember that jQuery allows
us to chain methods, one right after the other. In this case, we can chain the bind()
method directly to the end of the each() method we wrote earlier. The new
JavaScript will look like this:

$(document).ready(function(){
 $('a.infobox').each(function(){
 $(this).qtip({
 content: {
 text: 'Loading...'
 },
 show: {
 event: 'click',
 solo: true
 },
 });
 }).bind('click', function(e){e.preventDefault()});
});

17. Next, let's adjust the style of our tooltips by adding a drop shadow and applying
the purple color scheme we wrote to our tooltips:

$(document).ready(function(){
 $('a.infobox').each(function(){
 $(this).qtip({
 content: {
 text: 'Loading...',
 },
 show: {
 event: 'click',
 solo: true
 },
 style: {
 classes: 'ui-tooltip-purple ui-tooltip-shadow'
 }
 });
 }).bind('click', function(e){e.preventDefault();});
});

Now when you refresh the page in the browser, you'll see that we have purple
tooltips that have a drop shadow. We're getting closer.

Chapter 5

[99]

18. Next, let's add in the Ajax magic to load our simple HTML pages into the tooltips.
Remember, this will only work from a server, so to see this step in action, you'll
either have to upload your files to a server, or else set up a server on your own
computer.

To tell the tooltips to fetch content via Ajax, all we have to do is pass the URL of the
content we'd like to fetch. In this case, we've already linked out to that content. We
just have to grab the link URL from each link. That's easily accessible to us by using
the attr() method of jQuery. That will look like this:

$(this).attr('href')

In this case, $(this) is referring to the current link. I call the attr() method and
pass that method the attribute I would like to fetch, in this case the href attribute
of the link contains the information that I want. The attr() method can be used to
fetch any attribute—an src attribute of an image, a title attribute of any element,
a cellspacing attribute of a table, and so on:

$('img').attr('src')
$('p').attr('title')
$('table').attr('cellspacing')

19. Now that we know how to get the href attribute of our link, we'll use that to tell
the tooltip which URL to use to get the content for our tooltip:

 $(document).ready(function(){
 $('a.infobox').each(function(){
 $(this).qtip({
 content: {
 text: 'Loading...',
 ajax: {
 url: $(this).attr('href')
 }
 },
 show: {
 event: 'click',
 solo: true
 },
 style: {
 classes: 'ui-tooltip-purple ui-tooltip-shadow'
 }
 });
 }).bind('click', function(e){e.preventDefault()});
 });

Creating Custom Tooltips

[100]

20. Refresh your browser and click on one of the links—you'll see the purple tooltip
pop up with the HTML content from our simple HTML pages. Pretty amazing that
fetching content with Ajax can be that simple, isn't it?

Now, let's make a couple of other final tweaks to the tooltips to make them
even better.

21. First, we'll add a title bar to the tooltips. To get some custom text for this, let's go
back to each of the links in the index.html file and add a title attribute that
contains the text to display at the top of the tooltips:

<a href="infoboxes/downtown.html" class="infobox" title="Downtown
Pittsburgh">Downtown Pittsburgh
...
<a href="infoboxes/bridges.html" class="infobox" title="Pittsburgh
Bridges">many bridges

<a href="infoboxes/heatindex.html" class="infobox" title="Beating
the Heat">heat index

22. Now, we can fetch the title attribute of these links in much the same way that
we fetched the URL of the href attribute and pass it to qTip as the title text for
the tooltip. While we're at it, we can also pass in a true value for button to show
a small close button at the top-right of the tooltip:

$(document).ready(function(){
 $('a.infobox').each(function(){
 $(this).qtip({
 content: {
 text: 'Loading...',
 ajax: {
 url: $(this).attr('href')
 },
 title: {
 text: $(this).attr('title'),
 button: true
 }
 },
 show: {
 event: 'click',
 solo: true
 },

Chapter 5

[101]

 style: {
 classes: 'ui-tooltip-purple ui-tooltip-shadow'
 }
 });
 }).bind('click', function(e){e.preventDefault()});
});

Now when you refresh the browser, you'll see a darker title bar with a close button
appear at the top of each tooltip.

23. However, if you try to move your mouse over to click the close button, you'll see
that the tooltip disappears before you can get there. We changed the show value of
the tooltip to show on a click instead of on a mouse hover, but we never changed
the hide value—the tooltip is still being hidden when we move our mouse off the
link. This is a little bit awkward, so I'm going to change the hide value to unfocus
so that the tooltip will be hidden when the link loses focus or when the site visitor
clicks the close button on the tooltip:

$(document).ready(function(){
 $('a.infobox').each(function(){
 $(this).qtip({
 content: {
 text: 'Loading...',
 ajax: {
 url: $(this).attr('href')
 },
 title: {
 text: $(this).attr('title'),
 button: true
 }
 },
 show: {
 event: 'click',
 solo: true
 },
 hide: 'unfocus',
 style: {
 classes: 'ui-tooltip-purple ui-tooltip-shadow'
 }
 });
 }).bind('click', function(e){e.preventDefault()});
});

Creating Custom Tooltips

[102]

24. Refresh your browser and you'll see that the interaction is much better now. Our
site visitor doesn't have to carefully leave their mouse over the link in order to view
the content inside our tooltip. And our tooltip is still easy to remove—the site visitor
can click the close button, or click anywhere outside the tooltip on the page and the
tooltips hide.

25. Now, there's just one thing left to do, and that's to position the tooltips right where
we'd like them to appear. I want to show my tooltips centered below the links, so I'll
match up the top-center of the tooltip with the bottom-center of the link:

$(document).ready(function(){
 $('a.infobox').each(function(){
 $(this).qtip({
 content: {
 text: 'Loading...',
 ajax: {
 url: $(this).attr('href')
 },
 title: {
 text: $(this).attr('title'),
 button: true
 }
 },
 position: {
 my: 'top center',
 at: 'bottom center'
 },
 show: {
 event: 'click',
 solo: true
 },
 hide: 'unfocus',
 style: {
 classes: 'ui-tooltip-purple ui-tooltip-shadow'
 }
 });
 }).bind('click', function(e){e.preventDefault()});
});

Now, if you refresh the page in the browser and click the links, you'll see the tooltips
slide into place from their default position.

Chapter 5

[103]

26. Our tooltips are looking good, but we still have a couple of problems. One is that
the animation of the tooltip from the bottom corner to the middle of the tooltip
is a little bit distracting. To work around this, let's set the effect value to false.
That way the tooltip will show up where it's supposed to without the animation of
sliding into place. The other problem is that, depending on the size of your browser
window, sometimes the tooltips are cut off and display outside the screen area. To
make sure this doesn't happen, we'll set the viewport value to the window like
the following:

$(document).ready(function(){
 $('a.infobox').each(function(){
 $(this).qtip({
 content: {
 text: 'Loading...',
 ajax: {
 url: $(this).attr('href')
 },
 title: {
 text: $(this).attr('title'),
 button: true
 }
 },
 position: {
 my: 'top center',
 at: 'bottom center',
 effect: false,
 viewport: $(window)
 },
 show: {
 event: 'click',
 solo: true
 },
 hide: 'unfocus',
 style: {
 classes: 'ui-tooltip-purple ui-tooltip-shadow'
 }
 });
 }).bind('click', function(e){e.preventDefault()});
});

Creating Custom Tooltips

[104]

27. Now you'll see when you reload the page in the browser, that the tooltip will display
centered below the link if possible, but if that would put it outside the window
area, then the tooltip will adjust its position to the best possible place for display
in relation to the link. We lose a bit of control over just where the tooltip appears,
but we can make sure that our site visitors will always be able to see the tooltip's
content, which is more important.

Chapter 5

[105]

Summary
We covered a lot of ground in this chapter. We learned how to use the qTip plugin to
replace the browser's default tooltips with custom-designed tooltips. We saw how to
take the customization a bit further by adding speech-bubble tooltips to a navigation
bar. And finally, we used Ajax to pull in some external content, customizing not only the
appearance of the tooltip, but also pulling in custom content, adding a title bar and close
button, ensuring the tooltip would always be visible, and customizing the show and hide
behaviors of the tooltip. I hope that you can see how flexible the qTip plugin is and how
many uses it can have beyond just customizing the appearance of tooltips. Have fun
experimenting with all the different settings listed in the plugin's documentation and
see how creative you can be in customizing the appearance of your tooltips.

Next up, we'll take a look at creating nicely designed and animated dropdown
navigation menus.

6
Building an Interactive

Navigation Menu

In 2003, an article published on A List Apart (http://alistapart.com)
called Suckerfish Dropdowns showed how HTML and CSS alone (with just
a little JavaScript help for IE6) could be used to build a complex multilevel
drop-down menu. The Suckerfish name derived from the gorgeously
designed demo of the technique which featured illustrations of remoras
and sharksuckers. While useful, the original requires that the site visitor
not move their mouse outside the menu area while navigating or the
menu disappears. Over the years, the Suckerfish Dropdowns have inspired
a lot of spinoffs—Son of Suckerfish, Improved Suckerfish, and so on—that
attempt to address the shortcomings of the original. Since jQuery can
make everything better, we'll build on this idea using the Superfish jQuery
plugin to make the menu easier to use.

The developer of the Superfish plugin, Joel Birch, says that most support issues with the
plugin come from people not understanding the CSS for the menu. To be sure you have
a firm grasp on the CSS, I highly recommend reading the original Suckerfish Dropdowns
article on A List Apart at http://www.alistapart.com/articles/dropdowns.

To get started with this plugin, we'll build on a basic Suckerfish menu. Since that menu
only requires CSS, we still get an interactive menu if we have JavaScript disabled. The
menu is just improved for users with JavaScript enabled.

Building an Interactive Navigation Menu

[108]

In this chapter, we'll learn the following topics:

 � Using the Superfish jQuery plugin to create a horizontal drop-down menu

 � Creating vertical flyout menu with the Superfish plugin

 � Customizing the drop-down and flyout menus created with the Superfish plugin

Horizontal drop-down menu
The horizontal drop-down menu was long a common item in desktop software but
challenging if not impossible to implement in websites until CSS and JavaScript finally
arrived on the scene to make them possible.

Time for action – creating a horizontal drop-down menu
Let's take a look at how we can use the Superfish plugin to create a horizontal
drop-down menu:

1. To get started, we'll create a simple HTML page and the associated folders and files
like we created in Chapter 1, Designer, Meet jQuery. The body of our HTML file will
contain a navigation menu that consists of nested unordered lists as follows:

<ul id="sfNav" class="sf-menu">
 Papilionidae

 Common Yellow Swallowtail
 Spicebush Swallowtail
 Lime Butterfly
 Ornithoptera

 Queen Victoria's Birdwing
 Wallace's Golden Birdwing
 Cape York Birdwing

 Pieridae

 Small White
 Green-veined White
 Common Jezebel

Chapter 6

[109]

 Lycaenidae

 Xerces Blue
 Karner Blue
 Red Pierrot

 Riodinidae

 Duke of Burgundy
 Plum Judy

 Nymphalidae

 Painted Lady
 Monarch
 Morpho

 Sunset Morpho
 Godart's Morpho

 Speckled Wood

 Hesperiidae

 Mallow Skipper
 Zabulon Skipper

Note that we've added an id of sfNav and a class of sf-menu to the
that contains our menu. This will make it easy for us to select and style the menu
the way we'd like.

Building an Interactive Navigation Menu

[110]

If you view your page in the browser, it will look similar to the following screenshot:

As you can see, we've organized our links into a hierarchy. This is useful for finding
the information that we want, but it takes up quite a lot of space. This is where we
can use a technique of hiding extra information until it's needed.

2. Next, we need a copy of the Superfish plugin. Head over to http://users.tpg.
com.au/j_birch/plugins/superfish/ where you'll find Joel Birch's Superfish
plugin available for download along with documentation and examples.

Chapter 6

[111]

In Joel's Quick Start Guide, we see that there are three simple steps to
implementing the Superfish plugin:

 � Write the CSS to create a Suckerfish-style drop-down menu

 � Link to the superfish.js file

 � Call the superfish() method on the element that contains your menu

Lucky for us, Joel also includes a sample CSS file, so we can get started quickly. We'll
look at customizing the appearance of our menu later, but for now, we'll go ahead
and use the CSS included with the plugin.

3. Click on the Download & Support tab.

The first link in the Download section is the link to download the ZIP file.
Underneath that, we see a bulleted list of all the files included in the ZIP and
links are provided to download each of them separately. We'll go ahead and
download the entire ZIP file since we're going to make use of several of these
files. Click on the Superfish-1.4.8.zip link and save the file to your computer.

Building an Interactive Navigation Menu

[112]

4. Unzip the folder and take a look inside:

We'll find the files nicely organized into subdirectories by type along with an
example HTML file we can examine to see the plugin at work.

5. The first file we'll need from the Download section is the superfish.css file
from the css folder. Copy that file to your own styles folder.

6. Next, we'll edit our HTML file to include the superfish.css file in the head of
the document:

<head>
 <title>Chapter 6: Building an Interactive Navigation Menu
</title>
 <link rel="stylesheet" href="styles/superfish.css"/>
 <link rel="stylesheet" href="styles/styles.css"/>
</head>

We're attaching the superfish.css file before our styles.css file to make
it easier for us to override any styles in the superfish.css file we want to
change later.

Chapter 6

[113]

7. Now, if you refresh the page in a browser, you'll see a working Suckerfish
drop-down menu:

When I move my mouse over the first link, the nested becomes visible. If I move
my mouse down to the last link in the drop down, the nested at the third level
becomes visible.

Building an Interactive Navigation Menu

[114]

Keep in mind, all of this is accomplished without JavaScript— just CSS. If you spend a few
moments using the menu, you'll probably quickly recognize some shortcomings. First, if I
want to move my mouse from the Ornithoptera link to the Cape York Birdwing link, my
natural inclination is to move my mouse diagonally. However, as soon as my mouse leaves
the blue menu area, the menu closes and disappears. I have to adjust to move my mouse
directly right onto the submenu, then down to the link I'm interested in.

This is awkward and makes the menu feel fragile. If my mouse moves even 1 pixel outside
the menu, the menu collapses and disappears. Another problem is that the menu opens
as soon as the mouse hovers over it. If I am moving my mouse over the menu moving
from one part of the page to another, the menu opens and closes quickly, which can be
distracting and unexpected.

This is a great place for jQuery to step in and make things a bit better and more usable.

Time for action – improving the drop-down menu with jQuery
Follow these steps to improve the usability of the drop-down menu with jQuery:

1. We'll begin by attaching the Superfish plugin to our HTML page at the bottom of our
file, between jQuery and our scripts.js file:

<script src="scripts/jquery.js"></script>
<script src="scripts/superfish.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

2. Next, open scripts.js, where we will write our code calling the superfish()
method. As usual, we'll get started with the document ready statement so that our
script runs as soon as the page is loaded into the browser:

 $(document).ready(function(){
 // Our code will go here.
 });

Chapter 6

[115]

3. Looking at the documentation for the Superfish plugin, we see that we only have to
select the element or elements that we'd like to apply the behavior to and then call
the superfish() method. Inside our ready() method, we'll add the following
code:

 $(document).ready(function(){
 $('#sfNav').superfish();
 });

Now, if you refresh the page in the browser, you'll see the menu still looking very similar, but
with much improved behavior. The Superfish JavaScript and CSS work together to add arrows
to the menu items that have nested children. If you move your mouse off of the menu, it
does not disappear immediately, making it possible to move the mouse diagonally to nested
menu items. There's also a subtle fade in animation when the menu items appear. And a
background color change to each menu item on hover, making it easy to see which item is
currently active.

What just happened?
We set up a navigation menu consisting of a set of nested lists, forming a hierarchy. Next,
we attached a CSS file to add a simple drop-down functionality to our menu. However, that
CSS-only menu had a few shortcomings. So we attached the Superfish plugin to take care
of those and make our menu more user friendly.

Vertical fly-out menu
We saw how the addition of the Superfish plugin enhanced the user experience of our
drop-down menu, but what if we wanted to create a vertical fly-out menu instead?

Time for action – creating a vertical fly-out menu
Switching from a horizontal drop-down menu to a vertical fly-out menu couldn't be easier.
We'll use the same HTML markup and our JavaScript code will stay the same. The only
change we'll need to make is to add some new CSS to make our menu display vertically
instead of horizontally. We can keep working with the same files we used in the last example.

1. In the css folder of the Superfish download, you'll find a file named superfish-
vertical.css. Copy that file to your own styles folder. In the head section
of the HTML file, we'll attach the new CSS file. Between superfish.css and
styles.css, add the new CSS file:

<link rel="stylesheet" href="styles/superfish.css"/>
 <link rel="stylesheet" href="styles/superfish-vertical.css"/>
<link rel="stylesheet" href="styles/styles.css"/>

Building an Interactive Navigation Menu

[116]

2. Now, in the HTML we'll add an sf-vertical class to the list that contains
our menu.

<ul id="sfNav" class="sf-menu sf-vertical">

3. Now when you refresh the page in a browser, you'll see the menu displayed
vertically with fly-outs:

What just happened?
The only difference between the horizontal drop-down menu and the vertical fly-out menu
is the CSS and a class name added to the menu container. By simply adding a new CSS file
and a new CSS class, it's possible to create a vertical fly-out menu instead of a horizontal
drop-down menu.

Chapter 6

[117]

Customizing the navigation menu
The included CSS with the Superfish plugin makes creating an interactive navigation menu
quick and simple, but a soft blue menu isn't going to fit into every design, so let's take a look
at how we can customize the menu.

We're going to take a look at how we can customize the look of the menu by writing our own
CSS, customize the animation for showing the nested menus, highlight the current page, and
enhance the hover behavior of the menu.

We're going to get started by writing some CSS to create a custom look for our menus. We're
going to use the Suckerfish Dropdown approach to create a menu that will work for our
site visitors who don't have JavaScript enabled. I'd like to create a soft gradient background
and have my menu items appear to be ribbons floating over the top of this background. My
menu will look similar to the following screenshot:

Building an Interactive Navigation Menu

[118]

I'm going to really take advantage of the newer CSS3 properties available for use in modern
browsers. I'm using gradients, box shadows, and rounded corners. I've carefully selected
these options because even without these extras, the menu will still look okay and will be
usable. The following is an example of how the menu will appear in the older browsers:

You can see that it's missing some of the extra styling from the modern browser example,
but that it's still perfectly usable and generally pleasing to the eye. If it were really important
for the menu to look the same in all browsers, then we could apply the same effects using
images instead of CSS3 to get the final effect. However, we'd likely need to add some extra
markup, and we'd definitely need to add images and extra lines of CSS, all adding weight to
our pages overall. Whether you decide to allow your menu to degrade gracefully for older
browsers or you decide to write the extra code and create the extra images to make the
menu appear the same in all browsers is a decision you'll need to make based on the client's
expectations, the target audience for the website, and the importance of building speedy
and lightweight pages.

Chapter 6

[119]

Here are some things to keep in mind as you write custom CSS for a drop-down or
fly-out menu:

:hover and .sfHover
In order to make your menu work without JavaScript, you'll need to take advantage of the
:hover pseudo-class for the list items. Make sure to also create a CSS selector for the same
element with a .sfHover class, which will be used by the JavaScript. For example:

.sf-menu li.sfHover ul,

.sf-menu li:hover ul {
 left: -1px;
 top: 70px; /* match top ul list item height */
 z-index: 99;
 }

This bit of code makes the nested menu visible on the screen when the parent list item
is hovered over. Including the li:hover selector ensures the menu works without
JavaScript. Also including the li.sfHover selector ensures the JavaScript menu will
apply the same code.

Cascading inherited styles
It's the very nature of CSS for styles to cascade down the DOM and be applied to all children
of the selector as well as the selector itself. So, if you write code to style the list items of the
first-level menu like this:

ul.sf-menu li {
 background: #cc0000; /* Dark red background */
}

All of the s in your menu are going to have a dark red background, no matter which
level of the menu they appear in. If you want to apply different styles to different menu
levels, you'll have to override the cascade in other lines of code. For example, if I wanted to
make the second menu level have a dark blue background, I'd add this snippet of CSS after
the preceding code:

ul.sf-menu li li {
 background: #0000cc; /* Dark blue background */
}

Building an Interactive Navigation Menu

[120]

That means for a inside another , the background will be blue. Keep in mind that
now this style will in turn cascade down to other menu levels, so if you want a dark green
background for the third-level menu, you'll need to add another bit of CSS:

ul.sf-menu li li li {
 background: #00cc00; /* Dark green background */
}

In some cases, making use of direct descendent selectors in your CSS can help to prevent you
from having to write too many lines of CSS overriding styles written for elements higher up in
the DOM. For example:

ul.sf-menu > li {
 background: #cc0000; /* Dark red background */
}

This bit of CSS takes advantage of a direct descendent selector (>). The dark red background
in this case will only apply to the elements nested directly inside with a class of
sf-menu. It will not cascade down to the second- or third-level menus.

Vendor prefixes
If you'd like to experiment with the new CSS3 properties, you'll have to be sure to prepend
your properties with vendor-specific prefixes. While these properties are supported by most
modern browsers, they are still under development and may be implemented in slightly
different ways in different browsers. Take for example, this bit of CSS, which rounds the
bottom two corners:

.sf-menu ul li:last-child a {
 -webkit-border-bottom-right-radius: 7px;
 -webkit-border-bottom-left-radius: 7px;
 -moz-border-radius-bottomright: 7px;
 -moz-border-radius-bottomleft: 7px;
 border-bottom-right-radius: 7px;
 border-bottom-left-radius: 7px;
 }

You can see that the property for the bottom-left and bottom-right corners is slightly
different between webkit-based browsers (Safari and Chrome, mainly) and Mozilla
browsers (mainly Firefox). After the vendor-specific code, include the general CSS3
code for any browsers that support that to make sure your code is future-proof.

Chapter 6

[121]

Time for action – customizing Superfish menus
Customizing a Superfish menu mostly involves writing your own CSS to style the menu the
way you'd like. Here's how we'll create a custom look for the menu:

If you'll remember some web basics, you'll remember that CSS stands for Cascading
Style Sheets. The cascading features are what we'll focus on here. Any styles we write
for the top level of our menu are going to cascade down to the other levels of the menu.
We have to remember that and handle all the cases where we'd rather stop a style from
cascading downward.

1. Let's get started by styling the top level of our menu. Since I'm using new CSS3
features, we're going to have to be prepared to write a bit of extra code so that each
browser can handle our code gracefully. Here's the CSS we'll create for the top level
of the menu. Place this code inside your styles.css file:

/**** Level 1 ****/
.sf-menu,
.sf-menu * {
 list-style: none;
 margin: 0;
 padding: 0;
 }

.sf-menu {
 background: #f6f6f6; /* Old browsers */
 background: -moz-linear-gradient(top, rgba(0,0,0,1) 1%,
rgba(56,56,56,1) 16%, rgba(255,255,255,1) 17%, rgba(246,246,246,1)
47%, rgba(237,237,237,1) 100%); /* FF3.6+ */
 background: -webkit-gradient(linear, left top,
left bottom, color-stop(1%,rgba(0,0,0,1)), color-
stop(16%,rgba(56,56,56,1)), color-stop(17%,rgba(255,255,255,1)),
color-stop(47%,rgba(246,246,246,1)), color-stop(100%,rg
ba(237,237,237,1))); /* Chrome,Safari4+ */
 background: -webkit-linear-gradient(top, rgba(0,0,0,1)
1%,rgba(56,56,56,1) 16%,rgba(255,255,255,1)
17%,rgba(246,246,246,1) 47%,rgba(237,237,237,1) 100%); /*
Chrome10+,Safari5.1+ */
 background: -o-linear-gradient(top, rgba(0,0,0,1)
1%,rgba(56,56,56,1) 16%,rgba(255,255,255,1)
17%,rgba(246,246,246,1) 47%,rgba(237,237,237,1) 100%); /*
Opera11.10+ */
 background: -ms-linear-gradient(top, rgba(0,0,0,1)
1%,rgba(56,56,56,1) 16%,rgba(255,255,255,1)
17%,rgba(246,246,246,1) 47%,rgba(237,237,237,1) 100%); /* IE10+ */

Building an Interactive Navigation Menu

[122]

 filter: progid:DXImageTransform.Microsoft.gradient(
startColorstr='#000000', endColorstr='#ededed',GradientType=0);
/* IE6-9 */
 background: linear-gradient(top, rgba(0,0,0,1)
1%,rgba(56,56,56,1) 16%,rgba(255,255,255,1)
17%,rgba(246,246,246,1) 47%,rgba(237,237,237,1) 100%); /* W3C */
 float: left;
 font-family: georgia, times, 'times new roman', serif;
 font-size: 16px;
 line-height: 14px;
 margin: 28px 0 14px 0;
 padding: 0 14px;
 }

.sf-menu li {
 border-left: 1px solid transparent;
 border-right: 1px solid transparent;
 float: left;
 position: relative;
 }

.sf-menu li.sfHover,

.sf-menu li:hover {
 visibility: inherit; /* fixes IE7 'sticky bug' */
 }

.sf-menu li.sfHover,

.sf-menu li:hover {
 background: #DF6EA5;
 border-color: #a22361;
 -webkit-box-shadow: 3px 3px 3px rgba(0,0,0,0.2);
 -moz-box-shadow: 3px 3px 3px rgba(0,0,0,0.2);
 box-shadow: 3px 3px 3px rgba(0,0,0,0.2);
 }

.sf-menu a {
 border-left: 1px solid transparent;
 border-right: 1px solid transparent;
 color: #444;
 display: block;
 padding: 28px 14px;
 position: relative;
 width: 98px;

Chapter 6

[123]

 text-decoration: none;
 }

.sf-menu li.sfHover a,

.sf-menu li:hover a {
 background: #DF6EA5;
 border-color: #fff;
 color: #fff;
 outline: 0;
 }

.sf-menu a,

.sf-menu a:visited {
 color: #444;
 }

Phew! That seems like a lot of code, but much of it is the repeated gradient and
shadow declarations we have to use for each different type of browser. Keep your
fingers crossed that this requirement goes away soon and the browser vendors
eventually reach agreement on how gradients and drop shadows should be created
with CSS.

2. Next, let's take a look at how we'll style the next level of our menus. Add the
following CSS to your styles.css file to style the second level:

/***** Level 2 ****/
.sf-menu ul {
 background: rgb(223,110,165); /* Old browsers */
 background: -moz-linear-gradient(top, rgba(223,110,165,1) 0%,
rgba(211,54,130,1) 100%); /* FF3.6+ */
 background: -webkit-gradient(linear, left top, left
bottom, color-stop(0%,rgba(223,110,165,1)), color-
stop(100%,rgba(211,54,130,1))); /* Chrome,Safari4+ */
 background: -webkit-linear-gradient(top, rgba(223,110,165,1)
0%,rgba(211,54,130,1) 100%); /* Chrome10+,Safari5.1+ */
 background: -o-linear-gradient(top, rgba(223,110,165,1)
0%,rgba(211,54,130,1) 100%); /* Opera11.10+ */
 background: -ms-linear-gradient(top, rgba(223,110,165,1)
0%,rgba(211,54,130,1) 100%); /* IE10+ */
 filter: progid:DXImageTransform.Microsoft.gradient(
startColorstr='#df6ea5', endColorstr='#d33682',GradientType=0);
/* IE6-9 */
 background: linear-gradient(top, rgba(223,110,165,1)
0%,rgba(211,54,130,1) 100%); /* W3C */
 -webkit-border-bottom-right-radius: 7px;

Building an Interactive Navigation Menu

[124]

 -webkit-border-bottom-left-radius: 7px;
 -moz-border-radius-bottomright: 7px;
 -moz-border-radius-bottomleft: 7px;
 border-bottom-right-radius: 7px;
 border-bottom-left-radius: 7px;
 border: 1px solid #a22361;
 border-top: 0 none;
 margin: 0;
 padding: 0;
 position: absolute;
 top: -999em;
 left: 0;
 width: 128px;
 -webkit-box-shadow: 3px 3px 3px rgba(0,0,0,0.2);
 -moz-box-shadow: 3px 3px 3px rgba(0,0,0,0.2);
 box-shadow: 3px 3px 3px rgba(0,0,0,0.2);
 font-size: 14px;
 }

.sf-menu ul li {
 border-left: 1px solid #fff;
 border-right: 1px solid #fff;
 display: block;
 float: none;
 }

.sf-menu ul li:last-child {
 border-bottom: 1px solid #fff;
 -webkit-border-bottom-right-radius: 7px;
 -webkit-border-bottom-left-radius: 7px;
 -moz-border-radius-bottomright: 7px;
 -moz-border-radius-bottomleft: 7px;
 border-bottom-right-radius: 7px;
 border-bottom-left-radius: 7px;
 }

.sf-menu ul li:last-child a {
 -webkit-border-bottom-right-radius: 7px;
 -webkit-border-bottom-left-radius: 7px;
 -moz-border-radius-bottomright: 7px;
 -moz-border-radius-bottomleft: 7px;
 border-bottom-right-radius: 7px;

Chapter 6

[125]

 border-bottom-left-radius: 7px;
 }

.sf-menu li.sfHover li.sfHover,

.sf-menu li:hover li:hover {
 -webkit-box-shadow: none;
 -moz-box-shadow: none;
 box-shadow: none;
 }

.sf-menu li.sfHover li.sfHover {
 border-right-color: #cb2d79
 }

.sf-menu li li a {
 border: 0 none;
 padding: 14px;
 }

.sf-menu li li:first-child a {
 padding-top: 0;
 }

.sf-menu li li.sfHover a,

.sf-menu li li:hover a {
 background: transparent;
 border: 0 none;
 color: #f8ddea;
 outline: 0;
 }

.sf-menu li li a:hover {
 color: #f8ddea;
 }

.sf-menu li.sfHover li a,

.sf-menu li:hover li a {
 background: transparent;
 }

.sf-menu li.sfHover li.sfHover a {
 background: #cb2d79;
 }

Building an Interactive Navigation Menu

[126]

.sf-menu li.sfHover ul,

.sf-menu li:hover ul {
 left: -1px;
 top: 70px; /* match top ul list item height */
 z-index: 99;
 }

.sf-menu li li.sfHover,

.sf-menu li li:hover {
 background: transparent;
 border-color: #fff;
 }

Once again, this seems like a lot of CSS, but we still have that problem of having to
write our declarations for each individual browser. The second level of menu items
is also complicated by the need to override or undo any styles we applied to the
top level of the menu that we don't want to apply here. For example, we applied a
float property to all items at the top level of our menu, but we had to undo that
for the second level of the menu.

I'm sure you're starting to see why most of the support issues for the Superfish plugin
are CSS related, rather than JavaScript related. There's a lot to keep track of here.

3. Finally, we still have a third level of menu to style. Just like the second level, we need
to undo any cascading styles that we don't want to apply. Add the following styles to
your styles.css file:

/**** Level 3 ****/
ul.sf-menu li.sfHover li ul,
ul.sf-menu li:hover li ul {
 background: #cb2d79;
 top: -999em;
 -webkit-border-radius: 7px;
 -webkit-border-top-left-radius: 0;
 -moz-border-radius: 7px;
 -moz-border-radius-topleft: 0;
 border-radius: 7px;
 border-top-left-radius: 0;
 }

ul.sf-menu li.sfHover li ul li,
ul.sf-menu li:hover li ul li {
 background: transparent;
 border: 0 none;
 }

Chapter 6

[127]

ul.sf-menu li li.sfHover ul,
ul.sf-menu li li:hover ul {
 left: 9em; /* match ul width */
 top: 0;
 }

.sf-menu li.sfHover li.sfHover li a,

.sf-menu li:hover li:hover li a {
 background: transparent;
 }

.sf-menu li li li:first-child a {
 padding-top: 14px;
 }

.sf-menu li li li a:hover {
 background: transparent;
 color: #fff;
 }

/*** ARROWS ***/
.sf-sub-indicator {
 display: none;
 }

And take a deep breath, because we've finally reached the end of the CSS to create a
custom style for the menu. Don't worry, this was a particularly complex design using lots
of new CSS3 styles. If you pick something a bit simpler, it could be a lot less code that
you'll have to create to get the style working.

The bonus of this CSS is that it will work even without enabling JavaScript. The Superfish
plugin just enhances the menu and makes it more usable.

What just happened?
We wrote custom CSS to style our menu to match a design that we created. In order to get
hover states working correctly, we had to remember to style both the :hover pseudoclass
and the .sfHover class. We also had to dig into the cascading feature of CSS and decide
which styles should cascade down through all levels of the menu and which should not.
And finally, we had to keep in mind that newer CSS3 properties have to be declared in
different ways for different browsers—for now, at least. All of this adds up to a drop-down
menu requiring more custom CSS than you might expect at first. Just be patient and keep
the cascade in mind as you work down through the levels of the menu.

Building an Interactive Navigation Menu

[128]

Custom animation
Now that we've got the CSS for our custom style written, let's take a look at customizing the
animation that shows the submenus. A sliding animation would be better suited to my menu
style. The default animation is to fade the submenus in, but I'd rather override this default
behavior and replace it with a sliding animation.

Time for action – incorporating custom animation
Follow these steps to incorporate custom animations to your menu:

1. Fading the menu in means that the menu opacity is animating from 0 to 100
percent. I'd rather animate the height of the submenu, so that the submenu slides
into view. To do that, open your scripts.js file and we'll customize the animation
value inside the superfish() method:

 $(document).ready(function(){
 $('#sfNav').superfish({
 animation: {height:'show'}
 });
 });

Just adding a value here will override the default behavior of the plugin and replace
it with the animation we choose instead.

2. Now when you refresh the page in a browser, you'll see the submenus slide into
view instead of fade in, which is a much more fitting animation for the CSS I've used
to style the menus.

What just happened?
We took advantage of one of the customization options for the Superfish plugin to change
the show animation of the nested subnavigation links. There are more customization options
covered in the documentation of the Superfish menu.

The hoverIntent plugin
Earlier, I pointed out that one problem with our menu was how quickly the menu reacted
to the mouseover event. Any time the mouse is moved over the menu, the nested menus
open. While that might seem like a good thing at first, it might be disconcerting or surprising
to site visitors if they are simply moving their mouse on the screen and aren't intending to
use the drop-down or fly-out menu.

Chapter 6

[129]

The Superfish plugin has built-in support for the hoverIntent plugin. The hoverIntent plugin
sort of pauses the mouseover event and makes the page wait to see if the mouse slows
down or stops on an item to make sure it's what the site visitor intended to do. That way
if the site visitor just happens to roll his/her mouse over the drop-down menu on their
way to something else on the page, the submenus won't start appearing, throwing them
into confusion.

If you'll recall, the hoverIntent plugin was actually included in the ZIP file when we
downloaded the Superfish plugin.

Time for action – adding the hoverIntent plugin
Follow these steps to take advantage of the hoverIntent plugin for your menu:

1. In the Superfish download, locate the hoverIntent.js file inside the js folder
and copy the file to your own scripts folder.

2. Next, we need to attach the hoverIntent plugin to our HTML page.

Don't forget to keep dependencies in mind when attaching multiple
JavaScript files to a page. All jQuery plugins depend on jQuery
to operate, so jQuery needs to be attached to your page before
any plugins. In this case, the Superfish plugin depends upon the
hoverIntent plugin, so we need to make sure hoverIntent is added
to our page before the Superfish plugin.

3. Add the new <script> tag to the bottom of your page with the other scripts
as follows:

<script src="scripts/jquery.js"></script>
<script src="scripts/hoverIntent.js"></script>
<script src="scripts/superfish.js"></script>
<script src="scripts/scripts.js">
</script>
</body>
</html>

Now if you refresh the page in a browser, you'll see that there's a short pause when your
mouse moves over the menu before the nested submenu appears. And if you run your mouse
across the page quickly, crossing the menu, no unwanted submenus appear on the page.

Building an Interactive Navigation Menu

[130]

Have a go hero – set your own speed
Try using the different customization options for the Superfish plugin that are outlined in the
documentation to adjust the speed of the animation that shows the submenus.

Summary
Whew! That was a lot of work we just did, but I have to say we have a pretty impressive
navigation menu to show for our efforts. We learned how to use the Superfish jQuery plugin
to produce horizontal drop-down menus or vertical fly-out menus. And we learned how to
fully customize the look and feel of our menu to fit our site design perfectly. Being able to
hide subsections of the site until they're needed makes a complex navigation structure less
overwhelming for your site visitors. It's simple and clear to see what the main sections of the
site are, and they can easily drill down to just the content they want.

Next, we'll take a look at spiffing up our animation even more by super-powering it with Ajax.

7
Navigating Asynchronously

Websites are often set up so that all pages of the site share a common header
and footer with only the content in between changing from page to page.
Sometimes there is also one or more sidebars on the left and/or right side of
the main content area that stay the same throughout the site as well. Why
make our site visitors re-download the same header, footer, and sidebar
content over and over again while they browse our site?

In this chapter, we'll cover the following topics:

 � Setting up a website to navigate asynchronously

 � Enhancing asynchronous navigation to make it more user friendly

Simple asynchronous navigation
In the early days of the Web, one solution to the repeated identical content download
problem was frames. If you're too new to web development to remember, frames presented
a way to break a single-page view into several different HTML files—navigating through the
site involved reloading one or more of the frames while the others stayed the same. Frames
helped a website to load faster and made a site easier to maintain, but in the end, they
created more problems than they solved. Framed websites were easily broken, were difficult
for search engines to index, often broke the back and forward buttons, and made it difficult
or impossible for the site visitors to bookmark pages, share links, or print content. Because
of all these problems, the use of frames has fallen out of favor.

Navigating Asynchronously

[132]

More recently, single-page applications have started to become more popular. If you log
into your Twitter account and start clicking around, you'll notice that the whole page
refreshes only rarely—most of the interactions take place inside one page. If you visit any of
the Gawker Media sites, you'll notice that after the initial page loads, the entire page isn't
refreshed again as you browse around the site. Let's take a look at how we can accomplish
this same type of interaction on our own site in a progressively enhanced way to make sure
our site still works without JavaScript and can be easily indexed by search engines.

Time for action – setting up a simple website
We're going to get started by building out a small and simple website with a few pages.
They'll all share the same header, navigation, sidebar, and footer. They'll all have a main
content area where the unique content for each page will be displayed.

1. Get started by setting up an index.html file with all the associated files and folders
as we did in Chapter 1, Designer, Meet jQuery. The body of the index.html file will
contain our header, navigation, sidebar, and footer:

<div id="ajax-header">
 <h1>Miniature Treats</h1>
 <ul id="ajax-nav">
 Home
 Cupcakes
 Petits Fours
 Tea Cakes
 Muffins

</div>
<div id="main-col">
 <div id="main-col-wrap">
 <p>Welcome to the miniature treats roundup. We've got a
variety of miniature goodies to share with you.</p>
 <p>Don't be shy - just dive right in. Your mouth will water
with the possibilites.</p>
 <p>If it's tiny enough to be a single portion all on it's own,
we've included it here.</p>
 </div>
</div>
<div id="side-col">
 <div class="widget">
 <h4>More Information</h4>

Chapter 7

[133]

 Cupcakes
(Wikipedia)
 <a href="http://en.wikipedia.org/wiki/Petit_
fours">Petits Fours (Wikipedia)
 Tea
Cakes (Wikipedia)
 Muffins
(Wikipedia)

 </div>
 <div class="widget">
 <h4>Also Delicious</h4>

 <a href="http://en.wikipedia.org/wiki/Banana_
bread">Banana Bread
 <a href="http://en.wikipedia.org/wiki/Pumpkin_
bread">Pumpkin Bread
 Swiss
Roll
 <a href="http://en.wikipedia.org/wiki/
Cheesecake">Cheesecake
 Bundt
Cake

 </div>
</div>
<div id="ajax-foot">
 <p>Sample of progressively enhanced asynchronous navigation</p>
</div>

You'll notice one extra <div> that you may not have been expecting: inside <div>
with an id of main-col, I've added a <div> tag with an id of main-col-wrap.
This is not used for layout or CSS purposes, but will be used once we create our
JavaScript for asynchronously loading the content.

2. Next, we'll write some CSS to create a simple layout. Open your styles.css file
and add the following styles:

#ajax-header { margin: 40px 0 0 0; }
#ajax-header h1 { color:#859900;margin:0 0 10px 0;padding:0; }
#ajax-nav { background:#859900;margin:0;padding:0;overflow:hidd
en;zoom:1; }
#ajax-nav li { list-style-type:none;margin:0;padding:10px
20px;display:block;float:left; }
#ajax-nav a,

Navigating Asynchronously

[134]

#ajax-nav a:link,
#ajax-nav a:visited { color: #eee8d5; }
#ajax-nav a:hover,
#ajax-nav a:active { color: #fff; }
#main-col { float:left;width:60%; }
#side-col { float:right;width:35%; }
.widget { border:2px solid #859900;margin:10px 0; }
.widget h4 { margin:0 0 10px 0;padding:10px;background:#859900;co
lor:#FDF6E3; }
.float-right { float:right;margin:0 0 10px 10px; }
.float-left { float:left;margin:0 10px 10px 0; }
.source { font-size:12px; }
#ajax-foot { clear:both;margin:10px 0 40px 0;padding:5px;backgrou
nd:#859900;color:#f3f6e3; }
#ajax-foot p { margin:0;padding:0;font-size:12px;}

The final page will look similar to the following screenshot:

If you're feeling inspired, feel free to write some extra CSS to style your page to be a
bit fancier.

Chapter 7

[135]

3. Next, we'll create the other pages of the site, namely the pages for cupcakes, petits
fours, tea cakes, and muffins. The HTML will be exactly the same as the home page,
with the exception of the content inside <div> with an id of main-col-wrap. The
following is a sample of my content for the cupcakes page:

<div id="main-col-wrap">
 <h2>Cupcakes</h2>
 <p><img src="images/cupcakes.jpg" class="float-right" alt="Photo
of cupcakes"/>A cupcake is a small cake designed to serve one
person, frequently baked in a small, thin paper or aluminum cup.
As with larger cakes, frosting and other cake decorations, such as
sprinkles, are common on cupcakes.</p>
 <p>Although their origin is unknown, recipes for cupcakes have
been printed since at least the late 18th century.</p>
 <p>The first mention of the cupcake can be traced as far back
as 1796, when a recipe notation of "a cake to be baked in small
cups" was written in American Cookery by Amelia Simms.
The earliest documentation of the term cupcake was in
"Seventy-five Receipts for Pastry, Cakes, and Sweetmeats" in 1828
in Eliza Leslie's Receipts cookbook.</p>
 <p class="source">Text source: <a href="http://en.wikipedia.org/
wiki/Cupcakes">Wikipedia
Image source: <a href="http://
flickr.com/people/10506540@N07">Steven Depolo via <a
href="http://commons.wikimedia.org/wiki/File:Blue_cupcakes_for_
graduation,_closeup_-_Tiffany,_May_2008.jpg">Wikimedia Commons</
a></p>
</div>

Outside of this <div>, the rest of my page is exactly the same as the home page we
created earlier. Go ahead and create the pages for muffins, tea cakes, and petits fours in
a similar manner so that you have a five-page website with a shared header, navigation,
sidebar, and footer.

Don't forget that each page of your site should contain a link to the styles.css file in the
head section and a link to jQuery and the scripts.js file at the bottom of the document,
just before the closing </body> tag.

What just happened?
We set up a simple five-page website in HTML. Each page of our website shares the same
header, navigation, sidebar, and footer. Then we set up some simple CSS to style our page.
The only hint that something fancy is going to happen here is an extra <div> wrapped
around our main content area—the area of the page that contains different content from
page to page.

Navigating Asynchronously

[136]

Time for action – adding Ajax magic
If you click around this small and simple site in your browser, you'll see that we're reloading
the same header, navigation, sidebar, and footer over and over again. Only the content in the
main content area of the page is changing from page to page. Let's use the magic of jQuery
to fix that.

1. Just a reminder that these Ajax functions won't work unless your pages are being
served by a server. To see this code in action, you'll either have to upload your pages
to a server or create a server on your own computer. First, we'll open our scripts.
js file and set to work writing our code. We'll get started as we often do with the
document ready statement as follows:

$(document).ready(function(){
 // Our code will go here
});

2. We'll need to select all the links inside our navigation. That will look similar to this:

$(document).ready(function(){
 $('#ajax-nav a')
});

3. When those links are clicked by the site visitor, the browser responds by loading
the requested page. That's the behavior that we'd like to override, so we'll bind
a function to the links that overrides the link's click behavior as follows:

$(document).ready(function(){
 $('#ajax-nav a').bind('click', function(){
 // Our clicky code goes here
 });
});

4. The first thing we need to do when a site visitor clicks a link is cancel the default
behavior. We can do that by telling the function to return false:

$(document).ready(function(){
 $('#ajax-nav a').bind('click', function(){
 return false;
 });
});

Now if you reload your simple site in the browser, you'll see that clicking on the links
in the main navigation doesn't do anything. The page you requested no longer loads
into the browser. We've set the stage for our own code.

Chapter 7

[137]

5. If we're going to fetch a page from the server, we need to know which page we're
fetching. We need to know which URL we need to call. Luckily, our links already
contain this information in their href attributes. For example, by looking at the
HTML for our cupcakes link:

Cupcakes

we can see that the page we need to request to get information on cupcakes is
cupcakes.html.

We're going to use jQuery to get the href attribute of the link that was just clicked:

$(document).ready(function(){
 $('#ajax-nav a').bind('click', function(){
 var url = $(this).attr('href');
 return false;
 });
});

Now we have a variable called url that contains the href attribute of the link
that was clicked. Remember, variables are just containers. If our site visitor has just
clicked the cupcakes link, then the url variable will contain cupcakes.html. If the
site visitor has just clicked the muffins link on the other hand, then the url variable
contains muffins.html. This function gets called each time the site visitor clicks
on any of the links in the main navigation - $(this) will always refer to the link that
was just clicked.

6. Now that we know which page on the server contains the information the site visitor
has requested, what do we do with it? Luckily, jQuery provides us with the load()
method which makes loading content from the server into our page very easy. We're
going to select the element on the page where we'd like to load our content and
then call the load() method for that element. In this case, we're going to select the
<div> tag with the id of main-col, since that's the container of the content that
changes from page to page:

$(document).ready(function(){
 $('#ajax-nav a').bind('click', function(){
 var url = $(this).attr('href');
 $('#main-col').load();
 return false;
 });
});

Navigating Asynchronously

[138]

7. If you reload the page in the browser and click on links in the main navigation, you'll
see that nothing happens. No errors are reported by the browser—so what's the
problem?

Remember Maggie the dog who was eating bacon back in Chapter 1, Designer, Meet
jQuery Maggie had an eat method like this:

Maggie.eat();

However, remember, she couldn't just eat—she had to eat something. So we passed
bacon to the eat() method of Maggie as follows:

Maggie.eat('bacon');

The load method is similar. We can't just load—we have to load something. In this
case, we know what we need to load in—the content at the URL contained in our
url variable:

$(document).ready(function(){
 $('#ajax-nav a').bind('click', function(){
 var url = $(this).attr('href');
 $('#main-col').load(url);
 return false;
 });
});

Now if you refresh the browser and try clicking on the cupcakes link in the main
navigation, you'll see that the content of the cupcakes page is indeed loaded into
our #main-col div. However, it's not quite what we had in mind, because it's
loading up the entire page:

Chapter 7

[139]

Navigating Asynchronously

[140]

8. We don't want to get the whole page. We just need the content inside the
#main-col div. That's where that extra wrapper element, <div> with an id of
main-col-wrap comes in. We can tell jQuery to only load that <div> and its
content into #main-col <div> as follows:

$(document).ready(function(){
 $('#ajax-nav a').bind('click', function(){
 var url = $(this).attr('href');
 $('#main-col').load(url + ' #main-col-wrap');
 return false;
 });
});

This is sometimes referred to as jQuery's partial load method, since we're not
loading the entire contents of what we've fetched into the page, just the part
we care about. If you refresh the page in the browser and click through the main
navigation, you'll see that the content loads up as we expected now and only the
main content area of the page refreshes. The header, navigation, sidebar, and
footer remain on the page while the main content area reloads.

What just happened?
We used jQuery's powerful CSS-based selectors to select all the links in the main navigation.
We identified the click behavior of the links as the behavior we needed to override to get
the result that we wanted. We bound a click function to the links that would run each time
a link was called. We cancelled the link's default behavior of loading up a new page in the
browser window. Next, we examined the link to get the URL contained in the href attribute.
We selected the container on the page where we wanted to load up new content, and
used jQuery's load() method to call the content we needed. We passed a selector to the
load() method along with the URL so that jQuery would know we wanted only the content
inside that selected element to load rather than the entire page.

We turned our simple website into a single-page application. And we did it using progressive
enhancement so that site visitors who don't have JavaScript enabled will be able to use our
site without any problems. Search engines will also be able to index the content of our site.
And we did all that with just a few lines of JavaScript—thanks to jQuery!

Deluxe asynchronous navigation
You'd be downright pleased with yourself for taking an ordinary site and turning it into a
single-page application in just a few lines of code, but let's face it: our simple asynchronous
navigation leaves a little bit to be desired and could definitely use a bit of polish.

Chapter 7

[141]

Perhaps most obviously, we've broken the back and forward buttons in the browser. We can
no longer use them to navigate between the pages of our site. We've also taken away our
site visitor's ability to bookmark or share a link to a page of our site. We also don't give any
feedback to our site visitor that anything is happening after they've clicked a link in our main
navigation. Since our pages are short and simple, they should usually load up pretty quickly,
but the Internet is notoriously unpredictable in the speed department. Sometimes it could
take a half second, a full second, or more to load up our content—and our site visitor has no
idea their browser is hard at work trying to get the new content for them—it just looks like
nothing's happening.

There are a few other nice touches we can add to make the whole thing nicer and faster too,
so let's get started on the deluxe version of asynchronous navigation.

Time for action – building deluxe asynchronous navigation
To add some missing functionality to our asynchronous navigation, we're going to use Ben
Alman's excellent jQuery BBQ plugin. Even though that name might make you feel hungry,
BBQ stands for Back Button and Query in this case. We'll keep working with the files we
created in the last example.

1. First, we'll need to get a copy of the BBQ plugin to work with. Head over to
http://benalman.com/projects/jquery-bbq-plugin/ to get the
download file and the documentation and examples for the jQuery BBQ plugin.

Navigating Asynchronously

[142]

As usual, we're going to download the minified version of the plugin and drop it into
our scripts folder alongside jQuery and our scripts.js file.

2. Next, open up each of the HTML pages of your mini website and add the BBQ plugin,
after jQuery and before scripts.js:

<script type="text/javascript" src="scripts/jquery.js"></script>
<script type="text/javascript" src="scripts/jquery.ba-bbq.min.
js"></script>
<script type="text/javascript" src="scripts/scripts.js"></script>
</body>
</html>

Now we're ready to get to work on building the deluxe version of our asynchronous navigation.

What just happened?
We downloaded the jQuery BBQ plugin and attached it to each of our pages. So far, this
hasn't made a difference on our site—we've attached the BBQ plugin, but we aren't using
it to do anything. Next up, we'll take a look at how to put the BBQ plugin to use.

Time for action – using the BBQ plugin
Our first order of business is to get those back and forward buttons working, and allow our
site visitors to bookmark and share links to individual pages. That's why we've included the
jQuery BBQ plugin.

Chapter 7

[143]

1. We're going to write some new JavaScript, so erase the code we wrote earlier in
scripts.js and replace it with a simple document ready statement as follows:

$(document).ready(function(){
 // Our deluxe ajaxy code goes here
});

2. Next, we're going to select each of the links in our main navigation and replace the
URLs with hash links so that the browser thinks they are internal to our HTML page.

$(document).ready(function(){
 $('#ajax-nav a').each(function(){
 $(this).attr('href', '#' + $(this).attr('href'));
 });
});

We're selecting all the links in the main navigation, then looping through all of them
to add a # character at the front of the URL. For example, the cupcakes.html link
is now #cupcakes.html. If you refresh the page in the browser, you'll see that
clicking the links doesn't change anything on the page, but it does update the hash
in the URL in the browser's location bar.

3. Next, we're going to bind a function to the window's hashchange event. Modern
browsers have provided an event called hashchange that fires whenever the
URL's hash changes, just as it's doing when you click the main navigation links.
Older browsers don't support the hashchange event, but that's where the jQuery
BBQ plugin comes in. It provides support for a pseudo hashchange event in most
browsers so that we only have to write our code once without worrying about
browser differences. Here's how we bind a function to the hashchange event:

$(document).ready(function(){
 $('#ajax-nav a').each(function(){
 $(this).attr('href', '#' + $(this).attr('href'));
 });
 $(window).bind('hashchange', function(e) {
 // our function goes here
 });
});

Navigating Asynchronously

[144]

4. The function we write will now be called each time the window's hash changes,
which we know is going to happen each time the site visitor clicks on a link in our
main navigation. Now we can write the code to tell the browser what to do when
this happens.

$(document).ready(function(){
 $('#ajax-nav a').each(function(){
 $(this).attr('href', '#' + $(this).attr('href'));
 });
 $(window).bind('hashchange', function(e) {
 var url = e.fragment;
 $('#main-col').load(url + ' #main-col-wrap');
 });
});

First, we're setting up a variable called url and setting it equal to e.fragment.
The fragment property is made available by the jQuery BBQ plugin. It's equal to
the hash of the URL without the hash symbol. So if the window's hash changes to
#cupcakes.html, e.fragment will be equal to cupcakes.html.

The next line of code is the same as our basic Ajax navigation example. I'm going
to select the container on the page where I want to load my content, then call the
load() method. I'm going to pass the URL and jQuery selector for the part of the
page at that URL that I want to load into the browser.

If you refresh the page in the browser now, you'll see that our main navigation is again
working asynchronously. Clicking a link loads up only the main content area of the
page while the rest remains unchanged. There is one important difference, though—if
you click the back and forward buttons, they work. Once you've clicked through to the
cupcakes page, you can click the back button to return to the home page.

5. There's just one thing left to do to get our navigation optimized and that's to make
sure that our site visitors can bookmark and share links to our pages. If you click
on the cupcakes page, copy the URL from the browser's location bar, and open
either a new browser window or a new tab and paste in the URL, you'll see that
you get the site's home page rather than the cupcake page. If you look at the URL,
the #cupcakes.html hash is there, we just have to tell our code to look for it. The
simplest way to do that is to fire the window's hashchange event as soon as the
page loads in the browser. Here's how we do that:

$(document).ready(function(){
 $('#ajax-nav a').each(function(){
 $(this).attr('href', '#' + $(this).attr('href'));
 });
 $(window).bind('hashchange', function(e) {
 var url = e.fragment;

Chapter 7

[145]

 $('#main-col').load(url + ' #main-col-wrap');
 });
 $(window).trigger('hashchange');
});

Now, you can open up that cupcakes link in a new window and you'll see the cupcakes page
load up, just as it should. Our hashchange function fires as soon as the page is loaded,
which loads in the correct content.

What just happened?
We used jQuery to loop through each of our navigation links and replace them with internal
links or hash links. Why not just do this in HTML? Because we want to make sure that our
page continues to work for users with JavaScript disabled.

Then we used the jQuery BBQ plugin to change our asynchronous navigation to enable both
bookmarking and sharing of links and the back and forward buttons in the browser. This
allows our site to behave just like a single-page application without breaking the site visitor's
expected experience.

Time for action – highlighting the current page in the Navigation
We've already made our asynchronous navigation much better than our simple example, but
I think we can keep going and make it even better. Next up, we're going to highlight the page
currently being viewed in the navigation to make it easy for our site visitors to see which
page they're on.

Navigating Asynchronously

[146]

1. First up, let's open up styles.css again and write a .current CSS class for
the navigation:

#ajax-nav li.current{ background:#a3bb00; }

I've made my navigation bar green, so I'm going to make the .current class a
slightly lighter shade of green so that the current item is highlighted in the menu.
You can follow my example or create your own style—whatever suits your taste.

2. Now we just need to apply our .current class to the current navigation item.
We're going to add a few lines to the hashchange event function we wrote earlier.
We'll start by checking to see if there's a hash in the window location:

$(document).ready(function(){
 $('#ajax-nav a').each(function(){
 $(this).attr('href', '#' + $(this).attr('href'));
 });
 $(window).bind('hashchange', function(e) {
 var url = e.fragment;
 $('#main-col').load(url + ' #main-col-wrap');
 if (url) {
 // The code if there is a hash
 } else {
 // The code if there is not a hash
 }
 });
 $(window).trigger('hashchange');
});

3. Now, if there is a hash, then we want to find the link in my main navigation that
corresponds to the hash, find its parent container, and add the current class. That
sounds like a lot, but I can do that in one line:

 $(window).bind('hashchange', function(e) {
 var url = e.fragment;
 $('#main-col').load(url + ' #main-col-wrap');
 $('#ajax-nav li.current').removeClass('current');
 if (url) {
 $('#ajax-nav a[href="#' + url + '"]').parents('li').
addClass('current');
 } else {
 // The code if there is not a hash
 }
 });

Chapter 7

[147]

I'm using jQuery's powerful attribute selectors to select the link with the href
attribute equal to the window's hash. Then I'm using the parents() method to
get the link's parents. I'm passing li to the parents() method to tell jQuery I'm
only interested in one parent, the that contains my link. Then I'm using the
addClass() method to add my current class to the current link.

4. If there isn't a hash, then I want to highlight the home page, which is the first page
in our main navigation. I'll select the first and add the current class as shown
in the following code:

 $(window).bind('hashchange', function(e) {
 var url = e.fragment;
 $('#main-col').load(url + ' #main-col-wrap');
 $('#ajax-nav li.current').removeClass('current');
 if (url) {
 $('#ajax-nav a[href="#' + url + '"]').parents('li').
addClass('current');
 } else {
 $('#ajax-nav li:first-child').addClass('current');
 }
 });

5. Now, if you refresh the page in the browser and click through the pages, you'll see
that the current page is highlighted, but as you move through the site, more and
more of the navigation is highlighted—we're not removing the old highlight before
adding a new one. We'll add this line to remove the current highlight before adding
a new one:

 $(window).bind('hashchange', function(e) {
 var url = e.fragment;
 $('#main-col').load(url + ' #main-col-wrap');
 $('#ajax-nav li.current').removeClass('current');
 if (url) {
 $('#ajax-nav a[href="#' + url + '"]').parents('li').
addClass('current');
 } else {
 $('#ajax-nav li:first-child').addClass('current');
 }
 });

Refresh the page in the browser and you'll see that the highlight is now working as it should,
highlighting only the current page.

Navigating Asynchronously

[148]

What just happened?
We added a few lines of code to our hashchange function to add a highlight to the current
page in the navigation. This will help the site visitor orient themselves on the site and further
enforce their current location.

Time for action – adding a loading animation
Next, we'd like to show the site visitor that something is happening as soon as they click on the
link in the navigation. Remember that if the response from the server is slow, the site visitor
can't see that anything is happening. Even though the browser is hard at work fetching the
content for the new page, there's no indication to the site visitor that anything is happening.
Let's add in a little animation to make it obvious that something's happening on our page.

Loading animations can take many different forms: spinning daisies, animated progress bars,
blinking dots—anything that will communicate that there's an action in progress will help
make your site feel snappier and more responsive for your site visitors.

1. First, head over to http://ajaxload.info to create and download a loading
animation of your choice.

Chapter 7

[149]

2. Select the type, background color, and foreground color in the Generator box, then
click on the Generate It! button.

Navigating Asynchronously

[150]

3. You'll see a preview of your button in the Preview box along with a link to download
your button. Click on the Download It! link to download a copy of the loading
animation you just created.

4. After you've downloaded your button, drop it in your images folder along with the
other images you're using on your website.

5. Now, let's think through the modifications we have to make to our page. We want
to fade out the content that is currently shown in the #main-col div and show our
loading animation in its place until the server sends back the content for our new
page. As soon as we get that content back, we want to hide the loading animation
and display the content.

When we're ready to show the loading animation to our site visitors, we want it to
be visible immediately. It would be no good at all if we were to have to go and fetch
the image from the server—the actual page content might be returned before our
image. So we'll have to preload the image. Using jQuery, that's very simple. As soon
as the document has loaded into the browser, we'll create a new image element as
shown in the following code:

$(document).ready(function(){
 var loadingImage = $('');
 $('#ajax-nav a').each(function(){
...

Just creating this element is enough to preload the image into the browser's
cache. Now when we're ready to show the image, it will be available immediately
without waiting.

6. Next, we have to write a bit of CSS to handle how our loading image is displayed.
We'll wrap it in a simple paragraph tag to which we'll add a bit of padding and
center the image:

#loading { padding:20px;text-align:center;display:none; }

7. Note that we're also setting the display to none—that way we won't have the
image showing up until we're ready for it. We only want our animation to appear
if the URL has a hash, so inside our if/else statement, we'll append the loading
animation to the #main-col div:

...
 if (url) {
 $('#main-col').append('<p id="loading"></p>')
 $('#loading').append(loadingImage);
 $('#ajax-nav a[href="#' + url + '"]').parents('li').
addClass('current');
 } else {
...

Chapter 7

[151]

We've added a paragraph with the id of loading to the document and we've
appended our pre-loaded loading image to that paragraph. Remember, even
though it's there, it's not visible yet, since we've hidden it with CSS.

8. Next, we'll fade out the content that's currently showing on the page. In case our
content returns quickly from the server, we want to make sure we're not getting in
the way, so we'll tell the animation to complete quickly:

...
 if (url) {
 $('#main-col').append('<p id="loading"></p>')
 $('#loading').append(loadingImage);
 $('#ajax-nav a[href="#' + url + '"]').parents('li').
addClass('current');
 $('#main-col-wrap').fadeOut('fast');
 } else {
...

9. Finally, we want to show our loading animation, but we don't want it to appear until
after the content has faded out. To make sure it doesn't show up before then, we'll
add it as a callback function to the fadeOut() method. A callback function is a
function that's called after the animation completes. Here's how we add a callback
function to the fadeOut() method:

...
 if (url) {
 $('#main-col').append('<p id="loading"></p>')
 $('#loading').append(loadingImage);
 $('#ajax-nav a[href="#' + url + '"]').parents('li').
addClass('current');
 $('#main-col-wrap').fadeOut('fast', function(){
 $('#loading').show();
 });
 } else {
...

Now, when the site visitor clicks a link, the hash in the location bar will update. That will fire off
our code to fade the page's current content out, show a loading animation, and then replace
the loading animation with the new page content as soon as it's returned by the server. If
you're really lucky, your site visitor won't even get a chance to see the loading animation
because your server will return the new page content quickly. However, if there's a slowdown
anywhere along the way, your site visitor will get a clear message that something's happening
and they won't be left wondering or feeling like your site is slow and unresponsive.

Navigating Asynchronously

[152]

What just happened?
We added some animation effects to show the site visitor that something was happening
in the event that the server's response with the new page content was delayed more than
a fraction of a second. The site visitor will immediately see the content fade out and a
loading animation take its place until the server responds with the new page content.

If you're looking at your pages from your local computer using WAMP or MAMP, chances
are the new content will be returned so quickly you won't get a chance to see the loading
animation. However, if you upload your pages to a server and access them via the Internet,
you're almost guaranteed to see the loading animation for at least a fraction of a second
while the browser fetches the new content.

Summary
In this chapter, we learned how to set up a simple website and then we enhanced it to
behave like a single-page application without breaking it for search engines or site visitors
who have JavaScript disabled. First, we set up a simple version that might be suitable for
use in some simple cases. Then we took a look at setting up the deluxe version that allowed
for bookmarking and sharing of links, working back and forward buttons, current page
highlighting in the navigation, and smooth transition animations to show the site visitor
the browser was hard at work. All of this was relatively simple and straightforward thanks
to jQuery and the jQuery BBQ plugin.

Next up, we'll take a look at loading content into lightboxes.

8
Showing Content in Lightboxes

It has become common to see galleries of photos displayed in lightboxes on the
web. Lightboxes can be useful for other things too—playing videos, showing
additional information, displaying important information to site visitors, or even
showing other websites. In this chapter, we'll cover how to use the flexible and
adaptable Colorbox plugin to create lightboxes for a variety of purposes.

In this chapter, we'll take a look at how to use the Colorbox plugin to:

 � Create a simple photo gallery

 � Customize photo gallery settings

 � Build a fancy login box

 � Play a collection of videos

 � Create a one-page website portfolio

Showing Content in Lightboxes

[154]

Simple photo gallery
A simple photo gallery is probably the most common use for lightboxes. We'll set up a page
that shows thumbnails of each photo and displays the full-size image in a lightbox when the
thumbnail is clicked. To get started, you'll need a series of photographs with smaller size
thumbnails of each.

Here's an example of a photo displayed in a lightbox:

Time for action – setting up a simple photo gallery
We'll walk through creating a simple photo gallery with the Colorbox plugin:

1. We'll get started by setting up a basic HTML page and associated files and folders
just like we did in Chapter 1, Designer, Meet jQuery. The body of the HTML
document will contain a list of thumbnails:

<ul class="thumb-list">
 <a href="images/abandoned-house.jpg" title="Old
Abandoned House" rel="ireland"><img src="images/thumbs/
abandoned-house.jpg" alt="Abandoned House"/>

Chapter 8

[155]

 <a href="images/cemetary.jpg" title="Celtic Cemetary
with Celtic Crosses" rel="ireland"><img src="images/thumbs/
cemetary.jpg" alt="Celtic Cemetary"/>
 <a href="images/cliffs-of-moher.jpg" title="Cliffs of
Moher" rel="ireland"><img src="images/thumbs/cliffs-of-moher.jpg"
alt="Cliffs of Moher"/>
 <a href="images/dublin.jpg" title="River Liffey
in Dublin" rel="ireland"><img src="images/thumbs/dublin.jpg"
alt="Dublin"/>
 <a href="images/dun-aonghasa.jpg" title="Dun Aonghasa on
Inis More" rel="ireland"><img src="images/thumbs/dun-aonghasa.jpg"
alt="Dun Aonghasa"/>
 <a href="images/falling-in.jpg" title="Warning Sign"
rel="ireland"><img src="images/thumbs/falling-in.jpg" alt="Falling
In"/>
 <a href="images/guagan-barra.jpg" title="Guagan
Barra" rel="ireland"><img src="images/thumbs/guagan-barra.jpg"
alt="Guagan Barra"/>
 <a href="images/inis-more.jpg" title="Stone Fences on
Inis More" rel="ireland"><img src="images/thumbs/inis-more.jpg"
alt="Inis More"/>
 <a href="images/inis-more2.jpg" title="Cliffs on Inis
More's West Coast" rel="ireland"><img src="images/thumbs/inis-
more2.jpg" alt="Inis More Too"/>
 <a href="images/inis-more3.jpg" title="Inis More Fence"
rel="ireland"><img src="images/thumbs/inis-more3.jpg" alt="Inis
More Three"/>
 <a href="images/mizen-head.jpg" title="Crashing Waves
Near Mizen Head" rel="ireland"><img src="images/thumbs/mizen-head.
jpg" alt="Mizen Head"/>
 <a href="images/obriens-tower.jpg" title="O'Brien's
Tower at the Cliffs of Moher" rel="ireland"><img src="images/
thumbs/obriens-tower.jpg" alt="O'Brien's Tower"/>
 <a href="images/random-castle.jpg" title="Some Random
Castle" rel="ireland"><img src="images/thumbs/random-castle.jpg"
alt="Random Castle"/>
 <a href="images/turoe-stone.jpg" title="Turoe Stone"
rel="ireland"><img src="images/thumbs/turoe-stone.jpg" alt="Turoe
Stone"/>

Note that we've wrapped each thumbnail in a link to the full-size version of the
image. If you load the page in a browser, you'll see that the page works for users
with JavaScript disabled. Clicking a thumbnail opens the full-size image in the
browser. The back button takes you back to the gallery.

Showing Content in Lightboxes

[156]

Note that we've also included a title attribute on each link. This is helpful for our
site visitors as it will show a short description of the image in a tooltip when they
hover over the thumbnail with their mouse, but it will also be used later on for the
Colorbox plugin. We've also included a rel attribute on each link and set it equal to
ireland. This will make selecting our group of links to Ireland images easy when
we're ready to add the Colorbox plugin magic.

2. Next, we'll add a bit of CSS to lay our images out in a grid. Open your styles.css
file and add these styles:

ul.thumb-list { margin:20px 0;padding:0;text-align:center; }
ul.thumb-list li { margin:0;padding:0;display:inline-block; }

Feel free to play around a bit with the CSS to create a different layout for your image
thumbnails if you'd like.

3. Now, let's add the jQuery magic. We're going to be using Color Powered's Colorbox
plugin. Head over to http://jacklmoore.com/colorbox to find the downloads,
documentation, and demos. You'll find the download link in the Download section,
near the top of the page. Just click the current version number to download a ZIP file.

Chapter 8

[157]

4. Unzip the folder and have a look inside. You'll find the plugin script file itself, of
course, but a lot of other goodies as well.

Showing Content in Lightboxes

[158]

The plugin code itself is in the colorbox folder—you'll find both the development
and minified versions. The five example folders each contain an example file
(index.html) that shows the plugin in action. Why five different folders? Each
folder contains the same basic example, but with five different looks for the
Colorbox. These same examples can be viewed on the Colorbox website by clicking
numbers in the View Demos section on the website.

Right out of the box, the plugin's developers are providing us with five different
possibilities for our Colorbox's look and feel. And if that's not enough choice, they've
also included a colorbox.ai (Adobe Illustrator) file that contains all of the image
assets used to create these five different looks. You can customize them to your
heart's content and then export your new fully custom look from Illustrator to create
your own appearance. Changing colors and special effects is straightforward enough,
but remember that if you change the size and shape of the image assets, you'll have
to touch up the accompanying CSS file to accommodate the new sizes.

5. Try out each of the different examples, either on the website or using the example
files included in the ZIP download, and note that the appearance, size, placement
of the back and forward buttons, the close button, the caption, the pagination
indicator (image 1 of 3), and so on, are all controlled via CSS—not the plugin code
itself. This makes it very easy to customize the look and feel—it's all done via CSS
rather than in JavaScript.

6. Inside the ZIP download, in the colorbox folder, you'll find the plugin code – a file
named jquery.colorbox-min.js. Copy this file to your own scripts folder.

7. We'll get started by choosing one of the provided CSS skins. Pick your favorite, then
copy and paste its CSS file to your own styles folder. Open up the images folder
for that CSS skin and copy and paste the images from that folder to your own images
folder. Once you've chosen a skin, your own setup should look like the following:

Chapter 8

[159]

The index.html file contains the HTML with thumbnail images that link to full-size
versions. The images folder contains the images provided with my chosen Colorbox
skin, alongside my own images for my slideshow, both the thumbnail and full-size
versions. My scripts folder contains jQuery (jquery.js) and the Colorbox plugin
script (jquery.colorbox-min.js). My styles folder contains the CSS file for the
Colorbox skin I chose.

8. We do have to open up colorbox.css to make a minor set of edits. In the example
files, the CSS file is not in a styles or css folder, but rather sits at the top level
alongside the index.html file. We've chosen to follow our preferred convention
and store our CSS in our styles folder. This means that we'll have to open up the
colorbox.css file and update the references to images in the CSS. I'll have to
replace references like this:

#cboxTopLeft{width:21px; height:21px; background:url(images/
controls.png) no-repeat -100px 0;}

with references like this:

#cboxTopLeft{width:21px; height:21px; background:url(../images/
controls.png) no-repeat -100px 0;}

Showing Content in Lightboxes

[160]

I'm just telling the CSS to go up one level and then look for the images folder.
You should be able to replace all of these quickly by using the Find and Replace
functionality of your text editor.

9. Next, open up your index.html file and attach the colorbox.css file in the head
section, before your own styles.css:

<head>
 <title>Chapter 8: Showing Content in Lightboxes</title>
 <link rel="stylesheet" href="styles/colorbox.css"/>
 <link rel="stylesheet" href="styles/styles.css"/>
</head>

10. And then head down to the bottom of the file, just before the closing </body> tag,
and attach the Colorbox plugin, after jQuery and before your own scripts.js file:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.colorbox-min.js"></script>
<script src="scripts/scripts.js"></script>

11. Now, remember that rel="ireland" attribute we included on each of our links?
We're going to use that in our JavaScript to select all of our Ireland image links for
the Colorbox plugin. Open your scripts.js file and write the attribute selector
to select all links with a rel attribute equal to ireland inside of the document
ready statement:

$(document).ready(function(){
 $('a[rel="ireland"]')
});

12. The only thing left to do is call the colorbox() method on those links—the
Colorbox plugin will take care of everything else for us:

<script type="text/javascript">
 $('a[rel="ireland"]').colorbox();
</script>

Now if you open the page in the browser and click one of the thumbnail images, you'll
see the full-size image open up in a Colorbox. You can navigate through all of the
full-size images without having to close the lightbox, thanks to the back and forward
buttons included. You can also move between the images by pressing the left and right
arrow keys on your keyboard. The pagination indicator helps you to see where you
are in the collection of photos. You'll also notice that the title attribute included on
each link gets re-used as an image caption for each image. The Colorbox can be closed
by clicking the close button, clicking outside the Colorbox, or by hitting the Esc key on
your keyboard. All in all, it's a pretty nice experience right out of the box.

Chapter 8

[161]

What just happened?
We used the Colorbox jQuery plugin to turn a list of links to images into a lightbox that allows
site visitors to navigate through the full-size images without leaving the page. We used the
title attribute of the links to provide captions for the images. We used one of
 the five Colorbox styles provided with the plugin to create a nicely-designed lightbox.

Customizing Colorbox's behavior
If you take a look through the Settings section of the Colorbox website, you'll see that you
have plenty of options for customizing how the Colorbox behaves. Let's take a look at how
we can put some of these options to use. For this section, we'll keep working with the files
we set up in the previous section.

Transition
First up, we'll try out the different transition effects that are available. The default transition
is elastic. If your full-size images are all different sizes, you'll see that Colorbox uses a nice
resizing animation to transition between them. The other options for transitions are fade
and none. Let's take a look at how we can modify the transition.

Time for action – using a custom transition
Follow these steps to change the default transition between images:

1. For this example, we'll take a look at how to use the fade transition. Open your
scripts.js file. All we have to do is pass the fade value for the transition key to
the colorbox() method as follows:

$(document).ready(function(){
 $('a[rel="ireland"]').colorbox({transition:'fade'});
});

Note that we've added some curly braces inside the parentheses. Inside these
curly braces, we can pass in key/value pairs to customize different aspects of the
Colorbox. In this case, the key is transition and the value is 'fade'.

If you reload the page in the browser, click one of the thumbnails then click the next
and previous buttons to flip through the images, you'll see that the Colorbox fades
out and then back in between each image.

Showing Content in Lightboxes

[162]

2. What if we decided we'd rather get rid of the transitions altogether? We'd simply
have to change the value for the transition key to 'none':

$(document).ready(function(){
 $('a[rel="ireland"]').colorbox({transition:'none'});
});

Now if you refresh the page in the browser, you'll see that the images change
without any transition effect between them.

What just happened?
We saw how to take advantage of one of the available settings with the Colorbox plugin and
modified the transition between images as our site visitor moves through them.

Fixed size
In a case where the photos you're loading into the Colorbox are of widely varying different
sizes, you might decide that all the resizing is distracting to the site visitors and that you want
to set a fixed size for the Colorbox. That's easy to do as well, by passing in a couple more key/
value pairs. Looking through the documentation, you'll see that there are lots of settings for
controlling the width and height of the Colorbox. To keep things simple, we're going to use
width and height.

Time for action – setting a fixed size
Follow these steps to set a fixed width and height for the Colorbox:

1. Open up your scripts.js file. We're going to make a few changes to our code to
set a fixed width and height for the Colorbox:

$('a[rel="ireland"]').colorbox({
 transition: 'none',
 width: '90%',
 height: '60%'
});

Now if you refresh the page in the browser, you'll see that the Colorbox remains
the same size. No matter what size the images or the browser window is, the
Colorbox will always fill 90% of the width and 60% of the height of the browser
window. The images inside resize proportionally to fit into the available space if
they are too large.

Chapter 8

[163]

What just happened?
We set the width and height settings to percentage values. This is a really helpful option
if you have large photos that could potentially be larger than your site visitor's browser
window. Setting the width and height to percentage values ensures that in this case, the
Colorbox will be 90% of the width and 60% of the height of the site visitor's browser window,
no matter what size the browser window happens to be. That way if the browser window is
small, the site visitor will be able to see the complete photo.

Colorbox also provides some other settings for width and height:

innerWidth/innerHeight
These keys provide width and height values for the content inside the Colorbox instead
of for the Colorbox itself. This can be helpful in cases where you know the exact width and
height of the actual content, for example a video player.

InitialWidth/initialHeight
Colorbox is very flexible and can be used for a variety of different content (as we'll see
shortly). Setting an intialWidth and initialHeight allow you to control the size of the
Colorbox before any content is loaded in. If you load in content via Ajax, it can take a few
moments to load into the Colorbox. Setting initialWidth and initialHeight allows
you to specify how large the Colorbox should be while you wait for the content to load in.

maxWidth/maxHeight
These keys allow you to set a maximum width and maximum height for the Colorbox. If
the content is smaller, then the box will appear smaller on the screen. But when you're
loading in larger contents, they won't exceed the maxWidth and maxHeight values you
specify. For example, if you wanted to set up a Colorbox for images in a variety of sizes,
you could allow the Colorbox to resize with fade or elastic transitions between images,
but set a maxWidth and maxHeight to be sure that larger images wouldn't exceed the
site visitor's browser window.

Creating a slideshow
Colorbox also provides us with an option to automatically cycle through all the images so
the site visitor doesn't have to continually click the next button to see them all.

Showing Content in Lightboxes

[164]

Time for action – creating a slideshow
Here's how we can turn our lightbox image gallery into a slideshow:

1. Open scripts.js. We're going to add another key/value pair to our settings.
To create a slideshow inside our Colorbox, set the slideshow key to true:

$('a[rel="ireland"]').colorbox({
 transition: 'none',
 width: '90%',
 height: '60%',
 slideshow: true
});

Now if you refresh the page in the browser, you'll see that after you open the
Colorbox, it automatically cycles through the images, using whichever transition
effect you've chosen. A link is provided so that site visitors can stop the slideshow
at any time:

Chapter 8

[165]

2. Colorbox provides a few more keys we can use to control the slideshow. We can
provide a value for slideshowSpeed to set the number of milliseconds each photo
will be displayed. If we don't want the slideshow to automatically play, we can set
slideshowAuto to false. We can change the text that appears in the link to
start and stop the slideshow by passing in values for the slideshowStart and
slideshowStop keys, respectively. That would all look like this:

$('a[rel="ireland"]').colorbox({
 transition: 'none',
 width: '90%',
 height: '60%',
 slideshow: true,
 slideshowSpeed: 2000,
 slideshowAuto: false,
 slideshowStart: 'Let\'s get started!',
 slideshowStop: 'Ok, that\'s enough.'
});

With this code, we've set up our slideshow to show each photo for 2 seconds (2000
milliseconds), to not start the slideshow automatically, and to customize the text on
the links that start and stop the slideshow.

Note that each key/value pair is separated by a comma, but that there's no comma
after the last key/value pair. No comma after the last one is only important for
Internet Explorer—if you accidentally put a comma after the last key/value pair in
Internet Explorer, it will throw an error and none of your JavaScripts will work. Other
browsers will ignore the error and continue to work gracefully. Always test your
work in Internet Explorer before you make it available to the public.

Let's talk for a minute about the \' that appears in the text I want to use for the
link to start and stop the slideshow. Since these are strings, I have to wrap them in
quote marks, either 'single' quote or "double" quotes will work, and it's a matter
of personal preference which you choose. If I want to then use quote marks in my
string, I have to escape them—which is the JavaScript way of saying I have to tell
JavaScript that those are part of my string and not characters that JavaScript should
pay attention to.

If I were to write my string this way:

slideshowStart: 'Let's get started!'

this would cause an error. As far as JavaScript is concerned, the ' in Let's is the
closing single quote for the string – and JavaScript has no idea what to do with the
rest of the line.

Showing Content in Lightboxes

[166]

In this case, if my personal preference were for using double quotes for writing
strings, I wouldn't have to do anything at all. This would be perfectly acceptable:

slideshowStart: "Let's get started!"

Since we're using double quotes around our string, there's no chance that JavaScript
will accidentally read it as the end of our string. Once JavaScript sees an opening "
character, it automatically looks for the matching ending " character.

Now that we've got our slideshow customized, refresh the page in the browser and
click one of the image thumbnails to open the Colorbox. The only visible difference
is the addition of the Let's get started link. Clicking it kicks off the slideshow and
switches the link to say Ok, that's enough, so that we can stop the slideshow.

What just happened?
We saw how to create and customize a slideshow. We did this by taking the simple
lightbox photo gallery and customizing it by passing a series of key/value pairs to the
colorbox() method.

Fancy login
It's nice enough to be able to use a lightbox for displaying images and slideshows, but
Colorbox is more capable and flexible than that. In this section, we'll take a look at showing
a login form in a Colorbox. Note that our login form isn't hooked up to anything and won't
actually function in the sample case. But this same technique can be applied to a dynamic
site to allow your site visitors to view the login form in a lightbox.

Time for action – creating a fancy login form
Follow these steps to create a login form in a lightbox:

1. We'll get started by setting up an HTML page and associated files and folders like we
did in Chapter 1, Designer, Meet jQuery. Our HTML page will contain a header that
displays a login form. It's common for sites to enable people to login from any page
on the site:

<div id="example-header">
 <h1>Ireland: The Emerald Isle</h1>
 <form action="#" id="login-form">
 <div><label for="username">Username:</label> <input
type="text" id="username"/></div>
 <div><label for="password">Password:</label> <input
type="text" id="password"/></div>
 <div><input type="submit" value="Log In"/></div>

Chapter 8

[167]

 </form>
</div>

2. Next, we'll open styles.css and add some CSS, so that the header displays with
the title on the left and the form on the right:

#example-header { border-bottom:2px solid #586E75;
border-top:2px solid #586E75;overflow:hidden;zoom:1; }
#example-header h1 { float:left;padding:0;margin:0; }
#example-header #login-form { float:right;padding-top:15px; }
#example-header #login-form div { display:inline; }
#login-link { display:block;float:right;paddi
ng-top:15px; }
#login-link:focus { outline:none; }

If you view the page in a browser, you'll see the following:

This is perfectly acceptable for users without JavaScript enabled—they'll be able to
log into the site from any page. But I do think it's a bit cluttery. So if the site visitor
has JavaScript enabled, we will hide the login form, and show it in a Colorbox when
the site visitor is ready to log in.

3. Next, we'll get ready to use the Colorbox plugin the same way we did in the previous
section: choose one of the provided styles for the Colorbox and attach its stylesheet
to the head section of our document, move all the required images to your image
directory and update the path to the images in the CSS, and attach the Colorbox
plugin at the foot of the document, between jQuery and our scripts.js tag.

4. Once all that's out of the way, we're ready to write our JavaScript. Open up
scripts.js and write your document ready statement:

$(document).ready(function(){
 //Our code goes here
});

5. The first thing we'd like to do is hide the login form. We're going to do that using
JavaScript rather than CSS because we do want the login form to be visible for
the site visitors who don't have JavaScript enabled. We want to hide the form
immediately as soon as the page is loaded, so we'll write our hiding code inside
the ready() method for the document:

$(document).ready(function(){
 var form = $('#login-form');

Showing Content in Lightboxes

[168]

 form.hide()
});

You'll notice that we created a variable called form and used it to store the jQuery
selector for the form. We're going to have to refer to the login form several times
in our code. We could write $('#login-form') each time we wanted to select
the login form, but each time, jQuery would have to look through the DOM of the
page to find it anew. If we store it in a variable, our code will run faster and be more
efficient since jQuery will not have to find the login form each time we refer to it.

If you refresh the page in the browser, you'll see that the login form has disappeared.

6. But now we need a way for site visitors to be able to show it again to be able to log
in. We'll use jQuery to add a login link to the page, which will appear right where the
form was:

$(document).ready(function(){
 var form = $('#login-form');
 form.hide()
 form.before('Login</
a>');
});

Already, we're referring to the form again—inserting the login link before the form.
We already included some styles in the CSS to style the link and display it where
we'd like. If you refresh the page in the browser, you'll see the login form has been
replaced by a login link:

7. But clicking the login link doesn't do anything. Let's fix that by adding in some
Colorbox magic. We'll select our login link and call the colorbox() method as
follows:

$(document).ready(function(){
 var form = $('#login-form');
 form.hide()
 $('#login-form').before('<a href="#login-form" id="login-
link">Login');
 $('#login-link').colorbox();
});

Chapter 8

[169]

Refresh the page in the browser and try clicking the link. Hmmm...not really what
we had in mind, right? We have to tell Colorbox that we want to load up some
content that's already on the page.

8. We already put the reference to the login form in the href attribute of the link,
so we'll use that to our advantage. We'll pass a couple of key/value pairs to the
colorbox() method to tell Colorbox that we want to load some content that's
already on the page and exactly which content we want to show:

$(document).ready(function(){
 var form = $('#login-form');
 form.hide()
 $('#login-form').before('<a href="#login-form" id="login-
link">Login');
 $('#login-link').colorbox({
 inline: true,
 content: $(this).attr('href')
 });
});

Refresh the page in the browser and you'll see that the Colorbox opens, but it
appears to be empty. That's because we hid our form. It's been loaded into the
Colorbox, but it's hidden from view.

9. We'll use another key/value pair to tell Colorbox to show the form when the
Colorbox opens:

$(document).ready(function(){
 var form = $('#login-form');
 form.hide()
 $('#login-form').before('<a href="#login-form" id="login-
link">Login');
 $('#login-link').colorbox({
 inline: true,
 content: $(this).attr('href'),
 onOpen: function(){form.show();}
 });
});

Showing Content in Lightboxes

[170]

onOpen is one of the keys provided by the Colorbox plugin. It allows us to write a
function that will be run when the Colorbox opens. In this case, I'm going to find my
form and show it. Now if you refresh the page in the browser, you'll be able to see
the form in the ColorBox as follows:

10. This looks fine enough, and we'll touch this up with a bit of CSS in a moment to
make it look even better. But what happens when you close the Colorbox? That
pesky login form is visible again in the header. So we'll pass another key/value pair
to our colorbox() method to hide the form when the Colorbox closes:

$(document).ready(function(){
 var form = $('#login-form');
 form.hide()
 $('#login-form').before('<a href="#login-form" id="login-
link">Login');
 $('#login-link').colorbox({
 inline: true,
 content: $(this).attr('href'),
 onOpen: function(){form.show();},
 onCleanup: function(){form.hide();},
 });
});

That will make sure our form is hidden when the Colorbox is closed so it doesn't
show up in the header again.

11. Now, let's make our login form look a bit friendlier. Open up styles.css and add
some CSS that styles the login form inside the lightbox:

#cboxContent form div { padding:5px 0; }
#cboxContent label { display:block; }
#cboxContent input[type='text'] { font-size:1.2em;padding:5px
;width:342px;border:1px solid #ccc;box-shadow:inset 2px 2px 2px
#ddd;border-radius:5px; }

Chapter 8

[171]

#cboxContent input[type='submit'] { font-
size:1.2em;padding:10px; }

12. And we also want to make the login form box a bit wider, so we're going to pass a
width key to the colorbox() method as follows:

$(document).ready(function(){
 var form = $('#login-form');
 form.hide()
 form.before('Login</
a>');
 $('#login-link').colorbox({
 width: '400px',
 inline: true,
 content: $(this).attr('href'),
 onOpen: function(){form.show();},
 onCleanup: function(){form.hide();},
 });
});

Now, if you refresh the page in the browser, you'll see our Colorbox is indeed 400
pixels wide and our login form has taken on the nice chunky appearance we wanted
with our CSS, but there's still a bit of a problem. Our form is too tall for the Colorbox:

Showing Content in Lightboxes

[172]

The Colorbox script hasn't realized that our form has a different set of CSS once it's
displayed inside the Colorbox—it's still expecting the form to be of the same height
it was when it was displayed in the header. But that form is much smaller. If you put
your mouse over the login form and scroll down, you'll see the rest of the login form
is there—we just can't see it.

13. We don't want any scrolling in our Colorbox, so we'll turn that off and we'll tell the
Colorbox to resize itself to its content instead by passing a couple more key/value
pairs to the colorbox() method as follows:

$(document).ready(function(){
 var form = $('#login-form');
 form.hide()
 form.before('Login</
a>');
 $('#login-link').colorbox({
 width: '400px',
 inline: true,
 scrolling: false,
 content: $(this).attr('href'),
 onOpen: function(){form.show();},
 onComplete: function(){$.colorbox.resize();},
 onCleanup: function(){form.hide();},
 });
});

The scrolling key allows us to turn off any scrolling inside the Colorbox, and the
onComplete key is a callback function that's called as soon as content loads into
the Colorbox. As soon as the content loads into the Colorbox, we're going to call a
method that the Colorbox plugin has made available to us to resize the Colorbox to
accommodate its content.

Now, if you refresh the page in the browser, you'll see the Colorbox slide open to a
larger height to accommodate the new CSS for our form. Perfect!

Chapter 8

[173]

What just happened?
We learned how to take a simple header login form and change it to a login link that opens
a login form in a Colorbox when clicked. We worked through any potential problems caused
by this approach by passing in callback functions as values for keys specified in the Colorbox
plugin documentation. We learned how to call functions to run when the Colorbox opens,
when the content is loaded into the Colorbox, and when the Colorbox closes. We learned
that we can force the Colorbox to resize to accommodate its current contents by calling the
$.colorbox.resize() method.

Video player
Colorbox is flexible enough to be used to display a video player as content. We'll link out to
a YouTube video, then add some Colorbox magic to display the video in a Colorbox. Please
note that this example makes use of Ajax, and will therefore only work if you upload your
files to a server or if you create a server on your own computer.

Showing Content in Lightboxes

[174]

Time for action – showing a video in a lightbox
Follow these steps to set up Colorbox to play a set of videos:

1. We'll get started as we usually do, by setting up a basic HTML file and associated
files and folders, just like we did in Chapter 1, Designer, Meet jQuery. In the body of
our HTML document, we're going to include a link to a YouTube video:

<p><a href="http://www.youtube.com/embed/2_HXUhShhmY?autoplay=1"
id="video-link">Watch the video</p>

Note a couple of things about my video link. First, I'm using the embed URL for the
video rather than the link to YouTube's video page. For users without JavaScript
enabled, this will take them to a stand-alone video player page on YouTube's site.
For users with JavaScript enabled, it will ensure that only the video player is loaded
into the Colorbox rather than the full YouTube video page. Second, I'm adding a
parameter to the URL for the video, setting autoplay to 1. This is how you can
make embedded YouTube videos automatically play when the site visitor views your
page. It's generally a bad idea to have a video autoplay, but in this case, the user will
have already clicked a link that says Watch the video, so it seems like a safe bet that
they'll be expecting a video to play once they've clicked that link.

2. Next, just as with the other Colorbox examples so far, you'll need to attach your
chosen Colorbox skin CSS file in the head of your document, make sure the images
are available, update the path to the images in the CSS if necessary, and finally
attach the Colorbox plugin in the foot of the document.

3. Now, we'll open up our scripts.js file and get set to write up our custom
JavaScript. We'll get started with the document ready statement:

$(document).ready(function(){

});

4. Next, we'll select the video link and call the colorbox() method:

$(document).ready(function(){
 $('#video-link').colorbox();
});

But if we refresh the page in a browser and attempt to view the video, we get an
error. That's because we're attempting to load in the video via Ajax, and because of
browser security restrictions, we can't make asynchronous requests to a different
server. In this case, we're trying to make a call to http://youtube.com, but that's
not where our Colorbox page is hosted, so the browser blocks our request.

Chapter 8

[175]

5. Luckily, we can create an iframe and load our external content into the iframe.
And also luckily, Colorbox provides a way for us to do so easily. We'll just pass a key/
value pair to the colorbox() method setting iframe to true like the following:

$('#video-link').colorbox({
 iframe: true
});

Now our video loads into the Colorbox, but the Colorbox has no idea how large our
video can be, so we can't see it.

6. We'll have to tell Colorbox how big we expect our video player to be. We'll do this
by passing in key/value pairs for the innerWidth and innerHeight. We're using
innerWidth and innerHeight rather than width and height in this case because
we're passing in how large we want the video player (or content) to be, rather than
how large we want the Colorbox to be:

$('#video-link').colorbox({
 iframe: true,
 innerWidth: '640px',
 innerHeight: '480px'
});

7. We can also use the Colorbox to create a way for users to easily view several videos.
Let's go back into index.html and add a list of favorite videos to our page instead
of just one link to a video. We'll use a rel attribute set to favorites for each one
and provide a title attribute so our videos will display a caption underneath:

<h3>Favorite Videos</h3>

 <a href="http://www.youtube.com/embed/
itn8TwFCO4M?autoplay=1" rel="favorites" title="Louis CK and
Everything is Amazing">Everything is Amazing
 <a href="http://www.youtube.com/embed/
UN0A6h9Wc5c?autoplay=1" rel="favorites" title="All This Beauty by
The Weepies">All This Beauty
 <a href="http://www.youtube.com/embed/ZWtZA-
ZmOAM?autoplay=1" rel="favorites" title="ABC's That's
Incredible">That's Incredible

8. The only update we have to make to our JavaScript in scripts.js is to update the
selector. Instead of selecting one single link by ID, we're going to select our set of
favorites links by their rel attribute:

$('a[rel="favorites"]').colorbox({
 iframe:true,

Showing Content in Lightboxes

[176]

 innerWidth:'640px',
 innerHeight: '480px'
})

If you view the page in the browser, you'll see that you have a caption under the
video and next and previous buttons that allow you to navigate between the videos
without closing the Colorbox.

9. The only thing that's a bit awkward is that our pagination indicator says Image 1 of
3 when we're showing videos, not images. Luckily, Colorbox provides a way for us to
customize this text with the current key:

$('a[rel="favorites"]').colorbox({
 iframe:true,
 innerWidth:'640px',
 innerHeight: '480px',
 current: 'Video {current} of {total}'
})

Now, our pagination indicator correctly reads Video 1 of 3. Our site visitors can
easily move from video to video without having to close the Colorbox and each
video displays a caption:

Chapter 8

[177]

What just happened?
We learned how to create both a stand-alone video player and a multiple video player inside
a Colorbox. We learned how to pass in key/value pairs to tell the Colorbox to load in external
content in an iframe, working around cross-domain Ajax restrictions. We also learned
how to modify the pagination indicator text to fit our current content type. We used the
innerWidth and innerHeight keys to set the video player's size.

One-page web gallery
Next up, we'll take a look at how we can create a single-page web gallery to show off your
favorite sites or all the incredible sites you've designed yourself. Note that this example
makes use of Ajax, so you'll either have to upload your pages to a web server or create a web
server on your own computer to see it in action.

Time for action – creating a one-page web gallery
Follow these steps to create a one-page web gallery:

1. We'll get started by setting up a basic HTML file and associated files and folders,
just like we did in Chapter 1, Designer, Meet jQuery. Inside the body of our HTML
document, we'll create a list of links to the sites we want to include in our design
gallery:

<h3>One-Page Web Design Gallery</h3>

 Packt
Publishing
 <a href="http://nataliemac.com"
rel="gallery">NatalieMac
 Google</
li>

Note that I've added a rel attribute equal to gallery to each link.

2. Now, just as with the other Colorbox examples, choose a style and attach the
stylesheet in the header of the document, make all the necessary images available
to your page, update the path to the images in the CSS if necessary, and attach the
Colorbox plugin at the bottom of the page.

Showing Content in Lightboxes

[178]

3. Next, we'll open our scripts.js file and add our document ready statement:

$(document).ready(function(){

});

4. Next, we'll select all links with the rel attribute equal to gallery and call the
colorbox() method:

$(document).ready(function(){
 $('a[rel="gallery"]').colorbox();
});

5. Just as we did with the video example, we'll set the iframe key to true since we're
loading in content from other domains. I'm also going to set the width and height
of the ColorBox to 90%, so that it takes up nearly the entire browser window. I'm
also going to adjust the pagination indicator text to read Web Site instead of
Image:

$('a[rel="gallery"]').colorbox({
 iframe: true,
 width: '90%',
 height: '90%',
 current: 'Web Site {current} of {total}'
});

Now, if you refresh the page in the browser, you can see that clicking one of the links
opens a Colorbox and loads that website into the Colorbox. A site visitor can interact
with the loaded website just as they would if they had loaded it into a separate
browser window, browsing through pages, and so on. When finished with one site,
they can click the next arrow to visit the next website in the list and then hit the Esc
key on the keyboard or click the close button or anywhere outside the Colorbox to
close the Colorbox when they're finished.

Note that it is possible for website owners to block your ability
to load their sites into an iframe. If you have set up a local
server using MAMP or WAMP, then you might notice that the
Google example won't load into your page. It will, however, load
if you upload your code to an external server. Be sure to test all
the sites you want to use in your web gallery to ensure that they
work as expected.

Chapter 8

[179]

What just happened?
We used much of what we learned creating a Colorbox video player to display external
websites inside a Colorbox. This allows our site visitor to browse a collection of websites
without ever leaving our page. We once again told Colorbox to load our content into an
iframe to work around cross-domain Ajax restrictions. We customized the pagination
indicator text, and set a width and height for our Colorbox.

Summary
We've looked at several uses for the adaptable and flexible Colorbox plugin, which can
be used to display any kind of content in a lightbox. It can be used to create browsable
image galleries, give access to forms and video players without cluttering up the page with
clunky UI elements, and even to create a browsable website gallery. The ColorBox plugin is
completely styled with CSS, making it possible for the lightbox to have any appearance you
can dream up. The plugin even includes vector image assets that can be used as a starting
point for creating your own lightbox design. The behavior of the lightbox can be modified
by passing a series of key/value pairs to the colorbox() method, making the Colorbox
plugin suitable for any possible lightbox use.

Next up, we'll take a look at another common website task: creating slideshows.

9
Creating Slideshows

Traditionally created in Flash, slideshows are a great way to show off photos,
products, illustrations, portfolios, and more. Hands-down, creating slideshows
is one of the most common tasks for jQuery developers. In this chapter we'll
take a look at how to create a simple slideshow from scratch, and then we'll
explore three powerful plugins that create gorgeous, dynamic, and full-featured
slideshows.

In this chapter, we'll cover the following:

 � How to plan a slideshow

 � How to write a simple crossfading slideshow from scratch

 � How to use the CrossSlide plugin to create a panning and zooming slideshow

 � How to use the Nivo Slider plugin to create a slideshow with fun transition effects

 � How to use the Galleriffic plugin to create a thumbnail slideshow

Planning a slideshow
There are a few things to consider when you're preparing to build a jQuery slideshow.
They are as follows:

 � First, you have to decide what will be the experience for users who have JavaScript
disabled. The priority of the various pieces of content in the slideshow should be
your guide. If the slideshow is simply featuring bits of content available elsewhere
on the site, then it should be sufficient to simply show one photo or slide. If the
slideshow is the only way to access the content, then you'll have to be sure to
make that content available for users without JavaScript enabled. We'll take a
look at both strategies in the various examples in this chapter.

Creating Slideshows

[182]

 � Second, you have to determine if all items in your slideshow will be of the same
size or of different sizes. For obvious reasons, it's easiest to handle items that are
all the same size and aspect ratio, but sometimes, it's impractical or impossible to
identically size all items. I'll cover which slideshows are ideal for same-sized content
and which are ideal for variable-sized content as we go along.

 � Next, you need to consider if your site visitors need to have any kind of control
over the slideshow. Sometimes, it's handy to simply have your images on automatic
rotation. Other times, it's helpful to allow site visitors to pause the slideshow, or
manually move forward and backward through the slides. I'll tell you how much
control each of these slideshow approaches offers your site visitors.

Simple crossfade slideshow
In this section, you'll learn how to build a simple crossfade slideshow. This type of slideshow
is ideal for identically-sized images and can be displayed as a single image when JavaScript
is disabled. Finally, this type of slideshow offers no control over the slideshow to your site
visitors. They cannot pause the slideshow or manually move through the slides.

Time for action – creating a simple crossfade slideshow
Follow these steps to create a simple crossfading slideshow:

1. We'll get started by creating a basic HTML document and associated files and
folders just like we did in Chapter 1, Designer, Meet jQuery. In the body of the
HTML document, include a list of images. Each list item will contain an image,
which can optionally be wrapped in a link. Here's a sample of my image list:

<ul id="crossfade">

 <img
src="images/600/AguaAzul.jpg" alt="Agua Azul"/>

 <img
src="images/600/BurneyFalls.jpg" alt="Burney Falls"/>

 <img
src="images/600/Cachoeira_do_Pacheco.jpg" alt="Cachoeira do
Pacheco"/>

Chapter 9

[183]

2. Next, we'll write a few lines of CSS to style the slideshow. A slideshow shows just
one image at a time and the easiest way to show only one image is to stack the
images up on top of one another. If the site visitor has JavaScript disabled, they'll
just see the last slide in the list:

#crossfade { position:relative;margin:0;padding:0;list-style-type
:none;width:600px;height:400px;overflow:hidden; }
#crossfade li { position:absolute;width:600px;height:400px; }

If you view the page in a browser, you'll see that the last item in the slideshow is
visible, but none of the other items are—they are all stacked beneath the last item.
This is what our experience will be for site visitors with JavaScript disabled.

3. Next, open up scripts.js and we'll get started writing our JavaScript code.
This script will be a little bit different than scripts that we've set up before. Instead
of something happening just once when the document loads or when a site visitor
clicks a link, we actually want to set up a function that will happen on a timed
interval. For example, if we want each slide of our slideshow to be visible for
three seconds, we'll have to set up a function to switch slides, that gets called
every three seconds.

We've already got our slides stacked up on top of one another on the page with the
last item on top. Think about how you handle a stack of photographs. You view the
photograph on top, and then move it to the bottom of the stack to view the second
photo. Then you move the second photo to the bottom to view the third photo and
so on. We're going to apply the same principle to our slideshow.

Inside scripts.js, create a function called slideshow. This is the function that
we'll call every three seconds when we want to switch photos.

 function slideshow() {
 }

4. The first thing we need to do inside our function is select the first photo in the stack.

function slideshow() {
 $('#crossfade li:first')
}

5. Now we've got the first photo in the stack, we just need to move it to the bottom
of the stack to make the next photo visible. We can do that by using jQuery's
appendTo() method. This will remove the first photo from the beginning of the
list and append it to the end of the list.

function slideshow() {
 $('#crossfade li:first').appendTo('#crossfade');
}

Creating Slideshows

[184]

6. Our photo-flipping function is ready. Now all we have to do is some initial setup as
soon as our page loads. Then we'll set up a call to our photo-flipping function every
three seconds. We'll call the ready() method on the document.

$(document).ready(function(){
 // Document setup code will go here
});

function slideshow() {
 $('#crossfade li:first').appendTo('#crossfade');
}

7. As soon as our document is ready, we want to prepare our slideshow. We'll start
by selecting all the photos in the slideshow.

$(document).ready(function(){
 $('#crossfade li')
});

8. Next, we want to hide all the photos in the slideshow.

$(document).ready(function(){
 $('#crossfade li').hide();
});

9. Then, we'll filter that list of photos to get just the first one.

$(document).ready(function(){
 $('#crossfade li').hide().filter(':first');
});

10. And finally, we'll make that first photo visible. All other photos will remain hidden.

$(document).ready(function(){
 $('#crossfade li').hide().filter(':first').show();
});

11. At this point, if you refresh the page in the browser, you'll see that the last
slide visible without JavaScript enabled is now hidden and the first slide in the
list is now visible instead. Now, all that's left to do is to call our photo-flipping
function every three seconds. To do this, we'll use a JavaScript method called
setInterval(). This allows us to call a function at a regular interval. We pass
two values to setInterval: the name of the function to be called and the
number of milliseconds that should elapse between calls to the function. For
example, to call my slideshow function every three seconds (or 3000 milliseconds),
I'd write:

Chapter 9

[185]

$(document).ready(function(){
 $('#crossfade li').hide().filter(':first').show();
 setInterval(slideshow, 3000);
});

12. Now, we're calling our photo-flipping function every three seconds, so you'd expect
that if you refresh the page in the browser then you'd see the photos changing
every three seconds, but that doesn't appear to be the case. Reviewing the code, it's
easy to see what's gone wrong—even though the actual order of the stack of photos
is changing every three seconds, all the photos except the first one are invisible.
Whether the first photo is on top or not, it's the only photo visible, so it appears that
our slideshow isn't changing. We'll have to go back to our slideshow function and
modify it to make the current photo invisible and make the next photo in the stack
visible. Since we want the photos to switch with a nice, slow crossfading effect, we'll
call the fadeOut() method to fade the first photo to transparent, and we'll pass
slow to that method to ensure it takes its time:

function slideshow() {
 $('#crossfade li:first').fadeOut('slow').appendTo('#crossfade');
}

13. Now, we need to move to the next photo in the list which is currently invisible and
make it opaque. We're going to use the next() method to get the next item in the
list and then call the fadeIn() method to make it appear. Once again, since we
want a slow effect, we'll pass slow to the fadeIn() method:

function slideshow() {
 $('#crossfade li:first').fadeOut('slow').next().fadeIn('slow').
appendTo('#crossfade');
}

14. Finally, we've gotten ourselves into a little bit of trouble with our chaining of
jQuery methods. We started with the first photo in the stack, faded it out, then
moved to the second photo in the stack, and faded it in. However, when we call
the appendTo() method, we're appending the second photo in the stack to the
end—we're moving the second photo in the stack to the bottom instead of the first
one. Luckily, jQuery provides a method for us to return to our original selection—the
end() method. We can call the end() method after fading in the second photo
to make sure that it's the first photo that's getting appended to the bottom of the
photo stack:

function slideshow() {
 $('#crossfade li:first').fadeOut('slow').next().fadeIn('slow').
end().appendTo('#crossfade');
}

Creating Slideshows

[186]

What just happened?
If you refresh the page in the browser, you'll see that you've got a nice crossfading slideshow.
As one photo fades out, the next photo fades in, smoothly transitioning between each
photo. Since we're constantly moving the top photo in the stack to the bottom, we'll never
reach the end of the slideshow, just as you can continuously flip through a stack of photos.

We set up a slideshow function that selected the first photo in the stack, faded it out, and
moved it to the bottom of the stack. Simultaneously, we're finding the second photo in the
stack and fading it in. We used the power of jQuery chaining to accomplish all of that in one
line of code.

We set up an interval of three seconds and called our photo-flipping function at the end of
each three second interval.

Finally, we did a bit of set-up work as soon as the document is loaded—hiding all the photos
and then making the first one visible. This will ensure that the photos are always displayed in
order in our slideshow.

Next up, let's take a look at another plugin with some fancy transition effects.

Nivo Slider
In this section, we'll take a look at how to put the Nivo Slider plugin from Dev 7 Studios to
good use. Nivo Slider provides for some eye-popping transition effects between photos and
offers lots of configuration options. Nivo Slider is ideal for photos that are all identically-sized
and it's easy to display a single photo in place of the slideshow for users with JavaScript
disabled. Site visitors have the ability to manually advance forward and backward through
the slideshow and the slideshow pauses when the mouse is moved over it.

Nivo Slider is a little different than most of the plugins we'll take a look at in this book. The
plugin itself is open-source under the MIT license (http://nivo.dev7studios.com/
license/) and is free to download and use. There are also paid versions of the plugin
available for WordPress users that include support, automatic updates, and permission to
include the plugin with premium WordPress themes. The slideshow we create in this section
is using the free, open-source version of the plugin.

Chapter 9

[187]

Time for action – creating a Nivo Slider slideshow
Follow these steps to create an image slideshow with fancy transitions:

1. We'll get started by setting up a basic HTML file and associated files and folders just
like we did in Chapter 1, Designer, Meet jQuery. In the body of the HTML document,
Nivo Slider simply requires a set of images inside a container <div>.

We can optionally wrap each image in a link if we want each slide of our slideshow
to link off to another page or web location, but it's not required. Nivo will work
fine with unlinked images as well. The title attribute of the tag is used to
display captions for the slideshow.

<div id="slideshow">
 <img
src="images/600/AguaAzul.jpg" alt="Agua Azul" title="Agua Azul,
Mexico"/>
 <img
src="images/600/BurneyFalls.jpg" alt="Burney Falls" title="Burney
Falls, California, USA"/>
 <img
src="images/600/Cachoeira_do_Pacheco.jpg" alt="Cachoeira do
Pacheco" title="Cachoeira do Pacheco, Venezuela"/>
 <img
src="images/600/Deer_Leap_Falls.jpg" alt="Deer Leap Falls"
title="Deer Leap Falls, Pennsylvania, USA"/>
 <img
src="images/600/Fulmer_Falls.jpg" alt="Fulmer Falls" title="Fulmer
Falls, Pennsylvania, USA"/>
 <img
src="images/600/Hopetoun_Falls.jpg" alt="Hopetoun Falls"
title="Hopetoun Falls, Victoria, Australia"/>
 <img
src="images/600/Jonathans_Run.jpg" alt="Jonathan's Run"
title="Jonathan's Run, Pennsylvania, USA"/>
 <img
src="images/600/Kjosfossen.jpg" alt="Kjosfossen"
title="Kjosfossen, Norway"/>
 <img
src="images/600/KrimmlFalls.jpg" alt="Krimml Falls" title="Krimml
Falls, Salzburgerland, Austria"/>
 <img
src="images/600/Madhabkunda_Falls.jpg" alt="Madhabkunda Falls"
title="Madhabkunda Falls, Bangladesh"/>
 <img
src="images/600/Manavgat.jpg" alt="Manavgat Waterfall"
title="Manavgat Waterfall, Turkey"/>

Creating Slideshows

[188]

 <img
src="images/600/Niagara_Falls.jpg" alt="Niagara Falls"
title="Niagara Falls, USA and Canada"/>
 <img
src="images/600/Nymph_Falls.jpg" alt="Nymph Falls" title="Nymph
Falls, British Columbia, Canada"/>
</div>

2. Next, we'll add some CSS that will stack up the images on top of one another and
set a fixed width and height for our slideshow:

#slideshow { position:relative;width:600px;height:400px; }
#slideshow img { position:absolute;top:0;left:0; }

3. Now, head over to http://nivo.dev7studios.com/pricing/ to download
the Nivo Slider plugin. You'll find the Download link in the left box that's labeled
jQuery plugin.

Click the Download link and save the zip file to your computer.

Chapter 9

[189]

4. Unzip the folder and take a look inside.

There's a demo folder that contains a sample HTML file along with images, scripts,
and styles. There are two versions of the plugin—the source version and a packed
and minified version. There's a copy of the license, which is shorter and simpler than
you might expect, so feel free to take a look at it. There's a CSS file, and then there's
a themes folder that contains three other folders: default, orman, and pascal. These
are three sample themes included with the plugin. You choose one of these sample
themes, create your own, or modify one of the sample themes to suit your tastes.

Creating Slideshows

[190]

5. Let's get the necessary files copied over and ready to use. First, copy nivo-
slider.css to your own styles folder. Select one of the themes and copy
the entire folder to your own styles folder as well. Then copy jquery.nivo.
slider.pack.js to your own scripts folder alongside jQuery. Your setup
should look like the following image:

6. Next, we'll get our HTML file set up to use Nivo Slider. In the <head> section of
the document, include the nivo-slider.css file along with the CSS file for
the theme you've selected, before your styles.css file:

<head>
 <title>Chapter 9: Creating Slideshows</title>
 <link rel="stylesheet" href="styles/nivo-slider.css"/>
 <link rel="stylesheet" href="styles/default/default.css"/>
 <link rel="stylehseet" href="styles/styles.css"/>
</head>

7. At the bottom of the HTML document, just below the closing </body> tag, insert
the <script> tag to include the Nivo Slider plugin, between jQuery and your
scripts.js file:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.nivo.slider.pack.js"></script>
<script src="scripts/scripts.js"></script>
</body>

Chapter 9

[191]

8. Open scripts.js and call the ready() method on the document so that our
slideshow will start as soon as the page is loaded in the browser window:

$(document).ready(function(){
 //Nivo Slider code will go here
});

9. Next, we'll select the container element for our slideshow:

$(document).ready(function(){
 $('#slideshow');
});

10. And finally, we'll call the nivoSlider() method:

$(document).ready(function(){
 $('#slideshow').nivoSlider();
});

Now if you view the page in the browser, you'll see our slideshow has been created.
The default setting for the transition effect is to use a random different effect for
each transition, so if you watch for a few minutes, you'll get a good idea of the
different types of transition effects Nivo Slider includes.

You'll also notice that the value we've included as the title attribute for each
image is being displayed as the caption for each image.

11. Now let's take advantage of some of the customization options available with the
Nivo Slider plugin. The documentation for our options is available at http://nivo.
dev7studios.com/support/jquery-plugin-usage/

You'll find a list of the available transitions at the bottom of the documentation
page. My personal favorite transition is called boxRain. Let's set that up to be the
only transition effect used. We'll customize the Nivo Slider plugin by passing a set
of key/value pairs to the nivoSlider() method inside a set of curly brackets:

$(document).ready(function(){
 $('#slideshow').nivoSlider({
 effect: 'boxRain'
 });
});

12. We can specify the number of rows and columns the box animation should include.
By default, there are eight columns and four rows, but let's increase that so that the
boxRain transition uses more (smaller) boxes:

$(document).ready(function(){
 $('#slideshow').nivoSlider({
 effect: 'boxRain',

Creating Slideshows

[192]

 boxCols: 10,
 boxRows: 5
 });
});

13. We can also customize the animation speed and the amount of time each slide
is shown:

$(document).ready(function(){
 $('#slideshow').nivoSlider({
 effect: 'boxRain',
 boxCols: 10,
 boxRows: 5,
 animSpeed: 800,
 pauseTime: 4000
 });
});

I've set the animSpeed to 800 milliseconds so that the boxRain transition effect
will take 800 milliseconds to complete. I've also set the pauseTime to 4000, so
that each image in the slideshow is visible for 4000 milliseconds or four seconds.

What just happened?
We set up the Nivo Slider plugin to showcase a slideshow with impressive transition
effects. We learned how to set up the HTML document appropriately, how to call the
nivoSlider() method and how to customize some of the slideshow settings.

Have a go hero – customize the slideshow
In addition to the customization options we used, there are several other configuration
options available for the slideshow including the ability to show or hide next/previous
buttons, choices for setting up the pagination display or whether or not to show it at all,
and lots of callback functions for writing custom functionality for the slideshow. On top
of all that, you can completely customize the CSS and images used to create the slideshow
so that it looks any way you'd like.

Chapter 9

[193]

Try your hand at customizing a slideshow to match any design you'd like and experiment
with the other customization options the Nivo Slider makes available. Create a custom
slideshow of your own design.

Next up, we'll take a look at creating a thumbnail photo gallery.

Galleriffic slideshow
The Galleriffic slideshow by Trent Foley allows you to turn a list of links to full-size photos
into a photo slideshow. The approach is a bit different than the other galleries we've seen
so far, where the focus has been on inserting the full-size photos in the document and then
animating them into a slideshow. Galleriffic instead takes a list of links to the full-size photos
and turns that into a slideshow. The links remain on the page as one way to navigate through
the slideshow.

The Galleriffic slideshow can be used with a set of photos that vary somewhat in size and
aspect ratio, but if the difference between different photos is too great, getting the CSS set
up to handle the slideshow gracefully will be quite a challenge. The Galleriffic slideshow
makes it easy for your site visitor to manually navigate to any photo in the slideshow and
also provides next, previous, and a play/pause button for the slideshow. For site visitors with
JavaScript disabled, a list of links will be provided that will link them to the full-size versions
of the photos.

We're also going to explore a simple technique that you can use to apply different CSS to the
page depending on whether or not JavaScript is enabled. This technique can be applied in a
variety of circumstances to give you a bit more control over how your content is presented
for site visitors when they have JavaScript disabled.

Time for action – creating a Galleriffic slideshow
Follow these steps to create a slideshow using the Galleriffic plugin:

1. First up, we're going to make some extra effort to plan out how the slideshow will
appear for site visitors with and without JavaScript enabled. If the site visitor doesn't
have JavaScript, we'll present them with a grid of thumbnails with captions beneath.
Clicking on a thumbnail will show them the full-size version of the photo.

Creating Slideshows

[194]

The page will look like the following screenshot:

For users with JavaScript, though, I want to show a smaller grid of thumbnails beside
a main slideshow area like in the following screenshot:

The captions aren't important in the case of thumbnails because they'll be displayed
below the slideshow rather than below the photos.

Chapter 9

[195]

2. Keeping in mind how we want the page to appear, we'll get started by setting up an
HTML file and associated files and folders, just like we did in Chapter 1, Designer,
Meet jQuery. Create a set of 100x100 thumbnails for each photo and store them in a
thumbs folder inside your images folder. We'll use these thumbnails to create a list
of links to the full-size photos in the body of the HTML document.

<ul class="thumbs">

 <a class="thumb" title="Agua Azul, Mexico" href="images/600/
AguaAzul.jpg"><img src="images/thumbs/AguaAzul.png" alt="Agua
Azul"/>
 <div class="caption">Agua Azul, Mexico</div>

 <a class="thumb" title="Burney Falls, California, USA"
href="images/600/BurneyFalls.jpg"><img src="images/thumbs/
BurneyFalls.png" alt="Burney Falls"/>
 <div class="caption">Burney Falls, California, USA</div>

 <a class="thumb" title="Cachoeira do Pacheco, Venezuela"
href="images/600/Cachoeira_do_Pacheco.jpg"><img src="images/
thumbs/Cachoeira_do_Pacheco.png" alt="Cachoeira do Pacheco"/>
 <div class="caption">Cachoeira do Pacheco, Venezuela</div>

 <a class="thumb" title="Deer Leap Falls, Pennsylvania, USA"
href="images/600/Deer_Leap_Falls.jpg"><img src="images/thumbs/
Deer_Leap_Falls.png" alt="Deer Leap Falls"/>
 <div class="caption">Deer Leap Falls, Pennsylvania, USA</div>

We've included a title attribute on each link to ensure a tooltip
will show when the mouse hovers over each thumbnail with this brief
photo description. I've also included an alt attribute on each image
tag so that site visitors unable to see the images for any reason will
still have access to this description of the image.

Also inside each , I've included a <div> with a class of
caption that contains the caption that will appear beneath the
thumbnails or beneath the photos in the slideshow.

This is enough HTML to get the non-JavaScript version of the slideshow set up, but
the Galleriffic plugin requires a few more elements on the page.

Creating Slideshows

[196]

3. We need to wrap our list of images in a <div> with an id of thumbs like
the following:

<div id="thumbs">
 <ul class="thumbs">

 ...

</div>

4. We also need to add some empty elements to the page that will hold our
slideshow, slideshow caption, and slideshow controls.

<div id="thumbs">...</div>
<div id="gallery">
 <div id="controls"></div>
 <div id="slideshow-container">
 <div id="loading"></div>
 <div id="slideshow"></div>
 </div>
 <div id="caption"></div>
</div>

The exact position of these elements on the page is up to you—you can create
whatever layout you'd like and put the various parts of the slideshow on the
page wherever you'd like. For usability purposes, of course, the elements should
all be relatively close together.

Note that aside from the thumbs div that contains our list of thumbnails, the
other elements we've added to the page are empty. These elements will only
be used if the site visitor has JavaScript enabled, and all the content inside them
will be automatically generated by the Galleriffic plugin. This makes them invisible
unless they're being used.

5. Now, open your HTML file and find the opening <body> tag. Add a class of jsOff.

<body class="jsOff">

Chapter 9

[197]

6. Next, we'll set up the CSS styles for the thumbnails. Open your styles.css file
and add these styles:

.thumbs { margin:0;padding:0;line-height:normal; }

.thumbs li { display:inline-block;vertical-align:top;
 padding:0;list-style-type:none;margin:0; }

.jsOff .thumbs li { width:100px;margin-bottom:5px;background:#fff;
 border:5px solid #fff;box-shadow:1px 1px 2px rgba(0,0,0,0.1) }
.jsOff .caption { min-height:52px;font-size:12px;
 line-height:14px; }
.jsOff #gallery { display:none; }

The CSS has two sections here. The selectors that simply start with .thumbs
will apply to the thumbnails whether or not the site visitor has JavaScript enabled.
The selectors that start with .jsOff will only apply to site visitors who do not
have JavaScript enabled. This CSS creates the grid of thumbnails with captions
beneath them.

We've also selected the parent container for the slideshow and set it to not
display at all for site visitors without JavaScript. Since it's a set of empty <div>s
they shouldn't take up any space on the page anyway, but this is some extra
insurance that these extra elements won't cause any problems for site visitors
without JavaScript.

The non-JavaScript version of the page is complete.

7. Next, we'll set up the page for users who do have JavaScript enabled. We'll
get started by opening up the scripts.js file and inserting our document
ready statement:

 $(document).ready(function(){
 // This code will run as soon as the page loads
 });

8. Next, we'll write a bit of code to remove that jsOff class from the body and
replace it with a jsOn class.

$(document).ready(function(){
 $('body').removeClass('jsOff').addClass('jsOn');
});

If a site visitor has JavaScript, the jsOff class will be removed from the body
and replaced by a jsOn class.

Creating Slideshows

[198]

9. Now, we can write some CSS to apply to the list of thumbnails for site visitors who
do have JavaScript. Open your styles.css file and add these styles:

.jsOn .thumbs { width:288px; }

.jsOn .thumbs li { width:86px; }

.jsOn .thumbs img { border:3px solid #fff;max-
width:80px;opacity:0.6; }
.jsOn #thumbs { float:left; }

This CSS will only apply to site visitors with JavaScript enabled, since the jsOn class
can only be applied to the <body> if JavaScript is available to do the work.

10. Now, we'll write some styles for the bits that make up the slideshow—the controls,
the caption, and the slideshow area itself:

#gallery { float:left;width:600px;position:relative;backgroun
d:#fff;padding:10px;margin-bottom:20px;line-height:18px; }
.ss-controls { text-align:right;float:right;width:40%; }
.nav-controls { float:left:width:40%; }
#controls a { font-size:14px;color:#002B36;background:100%
0px no-repeat url(images/controls/sprite.png);padding-right:18px;
}
#controls a.pause { background-position: 100% -18px; }
#controls a.prev { background-position: 0 -36px;padding-
right:0;padding-left:18px;margin-right:10px; }
#controls a.next { background-position: 100% -54px; }
.caption { font-size:24px;padding:5px 0; }
.thumbs li.selected img { border-color:#000;opacity:1; }

I've created a small sprite that contains images for play, pause, previous, and next
that I'm applying to these controls.

11. Now that we're all set up to create an awesome slideshow, we just need our plugin
code. Head over to http://www.twospy.com/galleriffic/ where you'll find
the documentation and downloads for the Galleriffic plugin. You'll have to scroll
down the page nearly to the bottom to find the Download section.

Chapter 9

[199]

You'll notice that you have two options for the download—you can get a ZIP file that
includes some examples or just the plugin code by itself. Since we already know
what we want the slideshow to look like, we'll grab just the plugin code. Clicking the
link will open up the code itself in the browser window. Right click or select File |
Save As from the browser's menu to save the file to your own scripts folder.

12. Now that we've got the plugin, we want to include it in our HTML page. Go down to
the bottom of the your HTML page and insert the Galleriffic plugin between jQuery
and your scripts.js file:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.galleriffic.js"></script>
<script src="scripts/scripts.js">
</script>

Creating Slideshows

[200]

13. Next, we'll open scripts.js and select the container that's wrapped around our
list of thumbnails and call the galleriffic() method just after our line of code
that changes the class on the body:

$('body').removeClass('jsOff').addClass('jsOn');
$('#thumbs').galleriffic();

14. But if you view the page in the browser, you'll see that the slideshow isn't working.
This is because the Galleriffic plugin requires a bit of configuration to run. We're
going to pass a set of key/value pairs inside curly brackets to the galleriffic()
method so that our slideshow will run. We basically have to tell the plugin where to
show our slideshow, controls, and caption.

$('#thumbs').galleriffic({
 imageContainerSel: '#slideshow',
 controlsContainerSel: '#controls',
 captionContainerSel: '#caption',
 loadingContainerSel: '#loading',
 autoStart: true
});

The <div> with the id of slideshow is where we're going to show the full-
size images. Controls will be shown in the div with the id of controls. <div
id="caption"> will display the caption and the div we created with the id of
loading will display a loading animation while the slideshow initializes. I've also
set autoStart to true so that the slideshow will start playing automatically.

Now if you refresh the page in the browser, you'll see the slideshow in action.
Next and previous buttons allow you to flip through and a play/pause button
gives you control over the slideshow.

What just happened?
We set up our page with a display of image thumbnails optimized for site visitors with
JavaScript disabled. Then we used a line of JavaScript to change the body class so that we
could apply different styles for site visitors who had JavaScript enabled. We set up CSS to
display our slideshow and called the galleriffic() method to animate the slideshow.
Site visitors can manually move back and forward through the photos, can click a thumbnail
to load the corresponding full-size photo into the slideshow area, and can pause the
slideshow at any point.

Chapter 9

[201]

The CrossSlide plugin
The CrossSlide plugin, by Tobia Conforto, makes it possible to not just fade images in and
out, but to also animate panning and zooming. This plugin is ideal if you have a variety of
different image sizes. For best results, the only requirement is that all images are at least as
large as the slideshow viewing area. Images larger than the slideshow viewing area will be
cropped. For example, if the slideshow is 600 pixels wide by 400 pixels tall, then all images
used in the slideshow should be at least 600 pixels wide and 400 pixels tall.

With JavaScript disabled, the CrossSlide plugin displays whatever content you've placed
into the slideshow as a placeholder. This could be a single image, or it could be an image
accompanied by text, or any other sort of HTML content you'd like. The plugin will then
remove this placeholder content when the page loads and replace it with the slideshow.

It is possible to provide buttons that allow site visitors to stop and restart the slideshow.
However, site visitors cannot manually advance through the various slides.

Before we dive in, I do want to give a fair warning that you'll find the CrossSlide plugin a bit
less designer-friendly than some of the other plugins we've seen. A panning and zooming
slideshow is a complex task, and the plugin can only do so much to take that complexity out
of your hands. That said, I'm sure if you take your time and exercise a little patience, you'll be
able to get it figured out.

Time for action – building a CrossSlide slideshow
Follow these steps to set up a CrossSlide slideshow:

1. To get started, we'll set up a simple HTML document and associated files and
folders just like we did in Chapter 1, Designer, Meet jQuery. The body of the HTML
document will contain a container for your slideshow. Inside the container, place
any content you'd like to display for users with JavaScript disabled.

<div id="slideshow">

</div>

I'm going to simply show the first photo from the slideshow for users with JavaScript
disabled. I've given my container <div> an id of slideshow.

2. Open styles.css and add some CSS to define the width and height of the
slideshow:

#slideshow { width:600px;height:400px; }

Creating Slideshows

[202]

3. Next, head over to http://tobia.github.com/CrossSlide/ to get the
downloads and documentation for the CrossSlide plugin.

You'll find the Download minified link near the top of the page. The rest of the page
shows several examples of the CrossSlide plugin in action. Take a look through the
examples. You'll see that it can do everything from a simple crossfade slideshow
similar to what we built in the first section of this chapter to a fully animated
panning and zooming slideshow.

Now that you've had a look at some of the types of slideshows you can create with
the CrossSlide plugin, here are a few things to keep in mind:

 � First, because of the rendering limitations of some browsers (namely,
Internet Explorer), zooming in and out on photos can affect the quality of
the photo display. The plugin's author recommends keeping the zoom factor
at or below 1 to minimize this effect.

Chapter 9

[203]

 � Second, because browsers are limited to rendering full pixels, the panning
and zooming animation effects might be a bit less smooth than you'd
like, particularly for diagonal animations. You can minimize the 1-pixel
jumping effect by minimizing or avoiding diagonal animation or by
choosing a relatively high speed for the animations, which helps them
appear smoother.

 � Finally, the animations can be a bit CPU-intensive, particularly when using
the panning, zooming, and crossfading animations simultaneously, as we'll
do in this example. It's nothing that should trip up most newer computers,
but depending on your site's audience, you might want to avoid using all
possible animation effects at once. At the end of this tutorial, I'll show you
how to avoid the most CPU-intensive part of the slideshow if it's causing
problems on your own or your site visitor's computers.

4. When you click the Download minified link, the plugin script itself will open in a
browser window, just as jQuery itself does. Just right-click on the page or select File
| Save Page As from the browser's menu bar to save the file to your own computer.
Keep the file name, jquery.cross-slide.min.js and save the file in your
scripts folder.

5. Next, we just have to include the CrossSlide plugin file at the bottom of our HTML
page, between jQuery and scripts.js:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.cross-slide.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

6. Next, open your scripts.js file and we'll get started with the CrossSlide plugin
by selecting our slideshow container and calling the crossSlide() method:

 var slideshow = $('#slideshow');
 slideshow.crossSlide();

Recall that a variable is just a container for something. In this case, we've selected
the slideshow container and placed it in a variable called slideshow. We've done
this because we're going to reference the container several times in our script. By
saving the slideshow container in a variable, we're preventing jQuery from having to
query the DOM looking for the slideshow container each time we want to refer to it,
making our code more efficient.

Creating Slideshows

[204]

7. At this point, if you load the page in a browser, you'll see that calling the
crossSlide() method appears to have had no effect on our page. You'll still see
the placeholder content inside our slideshow container and there's no slideshow
happening. That's because we have to pass not only settings to the crossSlide()
method, but also the list of photos we'd like to show in our slideshow. Inside the
crossSlide() method's parentheses, insert a pair of curly brackets and we'll pass
in a key/value pair to configure the length of time the fade between photos will take
in seconds:

 var slideshow = $('#slideshow');
 slideshow.crossSlide({
 fade: 1
 });

Note that we're expressing the length of time in seconds, not
milliseconds. The CrossSlide plugin is set up to expect seconds as units
of time rather than the milliseconds that we usually find in JavaScript.

8. Next, after our configuration settings, we want to pass an array of photos to the
crossSlide() method. An array is wrapped in square brackets:

slideshow.crossSlide({
 fade: 1
 }, [
 //Our list of photos will go here.
]
);

9. Each photo will have its own set of key/value pairs describing the URL of the image,
the caption, and so on. Each photo will be wrapped in its own set of curly brackets.
We'll get started with the URL of the photo which is described in the src key:

slideshow.crossSlide({
 fade: 1
 }, [
 {
 src: 'images/1000/AguaAzul.jpg'
 }
]
);

Chapter 9

[205]

10. Next, we'll add the caption for the photo as another key/value pair:

slideshow.crossSlide({
 fade: 1
 }, [
 {
 src: 'images/1000/AguaAzul.jpg',
 alt: 'Agua Azul, Mexico'
 }
]
);

11. Now, we have to add two key/value pairs to describe the starting and ending points
of the panning and zooming animation. Let's say we want to pan across this photo
from the top left to the bottom right while zooming in. Here are the values we'll pass
the from and to keys:

slideshow.crossSlide({
 fade: 1
 }, [
 {
 src: 'images/1000/AguaAzul.jpg',
 alt: 'Agua Azul, Mexico',
 from: 'top left 1x',
 to: 'bottom right .8x'
 }
]
);

12. Finally, we want to specify how long the animation should take in seconds. I'll show
this photo animation for four seconds:

slideshow.crossSlide({
 fade: 1
 }, [
 {
 src: 'images/1000/AguaAzul.jpg',
 alt: 'Agua Azul, Mexico',
 from: 'top left 1x',
 to: 'bottom right .8x',
 time: 4
 }
]
);

Creating Slideshows

[206]

13. That's one photo for our slideshow. To add more, simply add another set of key/value
pairs inside curly brackets. Don't forget to separate each photo from the previous
photo with a comma. Remember not to put a comma after the last photo in the list.
Here's my example with three more photos added:

slideshow.crossSlide({
 fade: 1
 }, [
 {
 src: 'images/1000/AguaAzul.jpg',
 alt: 'Agua Azul, Mexico',
 from: 'top left 1x',
 to: 'bottom right .8x',
 time: 4
 },
 {
 src: 'images/1000/BurneyFalls.jpg',
 alt: 'Burney Falls, California, USA',
 from: 'top left 1.2x',
 to: 'bottom right .8x',
 time: 5
 },
 {
 src: 'images/1000/Cachoeira_do_Pacheco.jpg',
 alt: 'Cachoeira do Pacheco, Venezuela',
 from: '50% 0% 1.2x',
 to: '50% 60% .6x',
 time: 4
 },
 {
 src: 'images/1000/Deer_Leap_Falls.jpg',
 alt: 'Deer Leep Falls, Pennsylvania, USA',
 from: '50% 50% 1.2x',
 to: '50% 100% .8x',
 time: 3
 }
]
);

Note that I can choose how long each photo displays—allowing a
particularly stunning photo to linger on the page longer if I choose, or
moving a smaller or less interesting photo off the page more quickly.

Chapter 9

[207]

Now if you refresh the page in the browser, you'll see a panning and zooming
slideshow of your photos. We're getting closer!

14. Next, we'll use that caption value we passed into the crossSlide() method for
each photo to create a caption. First, I'm going to go back to my HTML markup and
add a container for the caption. You can style this with CSS however you'd like:

<div id="slideshow">

</div>
<div class="caption"></div>

Keep in mind that the container for your caption has to appear outside of the
slideshow container. If you place it inside, it will be removed when the CrossSlide
plugin replaces the slideshow container's content with the slideshow.

Now, we've got a place to display our caption, so we just need a way to put our
captions into that container. The crossSlide() method will accept a callback
method along with our settings and array of images. This callback function will be
called each time an image starts to crossfade into the next image, and it is called
again when the fade is complete.

slideshow.crossSlide({
 fade: 1
 }, [
 {
 src: 'images/1000/AguaAzul.jpg',
 alt: 'Agua Azul, Mexico',
 from: 'top left 1x',
 to: 'bottom right .8x',
 time: 4
 },
 {
 src: 'images/1000/BurneyFalls.jpg',
 alt: 'Burney Falls, California, USA',
 from: 'top left 1.2x',
 to: 'bottom right .8x',
 time: 4
 },
 {
 src: 'images/1000/Cachoeira_do_Pacheco.jpg',
 alt: 'Cachoeira do Pacheco, Venezuela',
 from: '50% 0% 1.2x',
 to: '50% 60% .6x',
 time: 4
 },

Creating Slideshows

[208]

 {
 src: 'images/1000/Deer_Leap_Falls.jpg',
 alt: 'Deer Leep Falls, Pennsylvania, USA',
 from: '50% 50% 1.2x',
 to: '50% 100% .8x',
 time: 3
 }
], function(index, img, indexOut, imgOut) {
 //our callback function goes here
 }
);

Our callback function is passed four possible values: the index of the current
image, the current image itself, the index of the previous image, and the previous
image itself. The index of the image is simply its place in the slideshow by number.
JavaScript, like other programming languages, starts counting at 0 instead of 1. So
the index of the first image in the slideshow is 0, the second image's index is 1, and
so on.

Remember I said the callback function is called once when the crossfade starts and
once again after the crossfade is finished? If the crossfade is starting, the callback
function will get all four values—the index of and the current image, and the index
of and the previous image. If the crossfade is finished, we'll only get two values: the
index of the current image and the current image itself.

15. We'll check to see if the crossfade is starting or finishing. If the crossfade is finished,
then we'll want to show the caption for the new photo. If the crossfade is just
starting, then we'll hide the caption for what will very soon be the previous image:

], function(index, img, indexOut, imgOut) {
 var caption = $('div.caption');
 if (indexOut == undefined) {
 caption.text(img.alt).fadeIn();
 } else {
 caption.fadeOut();
 }
 }

If the crossfade is finished, then indexOut will be undefined, since there won't
be a value for that variable passed to the callback function. It's easy to check if
that value is undefined to figure out if the crossfade animation is starting or
finishing. Then, we use jQuery's text() method to set the text of the caption to
the alt value we included with each image and fade the caption in. If the crossfade
animation is just starting on the other hand, we'll just fade the caption out.

Chapter 9

[209]

Now if you refresh the page in the browser, you'll see that the caption fades in with
each photo and fades out as the crossfade is starting. It's a nice smooth transition
from one caption to the next.

16. This last step is optional. If you find that the CrossSlide plugin with all animations
running at once, as we've set up in this example, is too CPU-intensive for your
computer or the computers of your site visitors, there's a simple configuration option
that will allow you to skip the most CPU-intensive part of the slideshow—namely,
when two photos are crossfading while panning and zooming. All you have to do is
pass another key/value pair to the configuration options setting variant to true:

slideshow.crossSlide({
 fade: 1,
 variant: true
 }, [
 {
 src: 'images/1000/AguaAzul.jpg',
...

This will change your slideshow so that each photo will complete panning and
zooming before starting the crossfade to the next photo.

What just happened?
Don't be worried if your head is spinning—the CrossSlide plugin is by far the most
developer-y plugin we've used yet. Although this plugin isn't super designer-friendly,
I hope you can see that even this type of plugin is within your reach if you have a little
patience and are willing to experiment a bit. Carefully studying the code for examples
will take you pretty far.

We set up a container which held our static content for users with JavaScript disabled.
Then we set up the CrossSlide plugin to replace that content with a dynamic panning and
zooming slideshow for the users with JavaScript enabled. We set the length of the crossfade
to 1 second, and then passed in our array of images, including the URL, caption, animation
starting point, animation ending point, and duration for each image. Finally, we took
advantage of the callback function provided by the CrossSlide plugin to fade in each photo's
caption and fade it back out when the photo itself starts to fade out. We also took a look
at how to make the slideshow a bit less CPU-intensive for those situations where it might
cause problems.

Creating Slideshows

[210]

Summary
We took a look at four different approaches to building photo slideshows with jQuery. We
started off with a simple crossfading slideshow that we built from scratch without a plugin.
We explored fancy transition effects with the Nivo Slider plugin. Then we learned how to set
up a thumbnail slideshow using the Galleriffic plugin. And finally, we took a look at building
a panning and zooming slideshow with the CrossSlide plugin.

Next up, we'll take a look at building sliders and carousels for all types of content on your site.

10
Featuring Content in

Carousels and Sliders

In addition to slideshows, we can also feature images and text in sliders and
carousels. One or more slides can be visible at one time and a sliding animation
is used for transition between the slides. Carousels are ideal for creating a
featured content slider or for making many images available in a small space.
We'll take a look at the flexible and customizable jCarousel plugin from Jan
Sorgalla and how it can be used to create several different types of carousel
and slider solutions.

In this chapter, we'll learn the following topics:

 � Using the jCarousel plugin to create a basic horizontal slider

 � Creating a vertical news ticker

 � Creating a featured content slider with external controls

 � Combining a slideshow with a thumbnail carousel

Basic jCarousel
Let's first take a look at creating a basic horizontal carousel of image thumbnails.
The jCarousel plugin includes two different skins, so setting up a basic carousel is
quick and easy.

Featuring Content in Carousels and Sliders

[212]

The following screenshot is a sample of a basic carousel using the tango skin that's included
with the plugin:

There are a dozen or so thumbnail images in the carousel. Clicking one of the side arrows
slides the carousel left or right to reveal the next set.

Time for action – creating a basic carousel
Follow these steps to set up a basic jCarousel of images:

1. As usual, we'll get started with our HTML. Set up a basic HTML document and
associated files and folders just like we did in Chapter 1, Designer, Meet jQuery. In
the body of the HTML document, create an unordered list of images. The carousel
works best when the images are of uniform size. I've made my images 200 pixels
wide by 150 pixels tall. Here's what my HTML looks like:

<ul id="thumb-carousel">
 <img src="images/thumbs/Switzerland.png"
alt="Switzerland"/>
 </
li>

 </
li>

 <img src="images/thumbs/SouthAfrica.png" alt="South
Africa"/>

Chapter 10

[213]

 </
li>
 </
li>

You can see that I've assigned an id of thumb-carousel to my unordered list,
and that the HTML is simple and straightforward: just a list of images.

2. Next, we'll need to download the jCarousel plugin. The plugin is available for
download from GitHub here: https://github.com/jsor/jcarousel.

To download the plugin, just click on the ZIP button.

Featuring Content in Carousels and Sliders

[214]

3. Next, unzip the folder and have a look inside.

Inside, we'll find a folder called examples, which contains many examples of
the jCarousel plugin in action. There's an index.html file that contains the
documentation for the plugin. A skins folder contains the two skins that are
included with the plugin along with the images that those skins require. And
finally, a lib folder contains jQuery, and two copies of the jCarousel plugin—one
minified and one not.

4. We're going to use the tango skin and the minified version of the plugin. Copy
jquery.jcarousel.min.js to your own scripts folder and copy the entire
tango folder to your own styles folder.

5. Next, we need to attach the CSS and JavaScript to our HTML file. In the <head>
section of the document, attach the tango skin's CSS file before your own styles.
css file:

<link rel="stylesheet" href="styles/tango/skin.css"/>
<link rel="stylesheet" href="styles/styles.css"/>

6. At the bottom of the document, just before the closing </body> tag, attach the
jCarousel plugin file after jQuery and before your own scripts.js:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.jcarousel.min.js"></script>
<script src="scripts/scripts.js"></script>

Chapter 10

[215]

7. The tango skin for the jCarousel slider is dependent on the jcarousel-skin-tango
class placed on a wrapper for the list. Wrap the list in a div tag and give the div the
appropriate class:

<div class="jcarousel-skin-tango">
 <ul id="thumb-carousel">
 ...

</div>

8. The next thing we'll do is set up our own JavaScript. Open your scripts.js
file. Call the ready method on the document, select the image list, and call the
jcarousel() method:

 $(document).ready(function(){
 $('#thumb-carousel').jcarousel();
 });

As usual, calling the jcarousel() method this way will load the carousel with all
of the default settings. Refresh the page in the browser and this is what you'll see:

Not exactly what we had in mind, but clicking the next arrow on the right will
advance the carousel. Let's take a look at getting some custom settings in place so
that we can view our complete images as intended.

9. The CSS for the tango skin assumes that our images are 75 pixels wide by 75 pixels
tall, but that's not the case with our carousel. We'll add a few lines of CSS to our
styles.css to adjust the size of our images. First, we'll specify the width and
height of a single item:

.jcarousel-skin-tango .jcarousel-item { width:200px;height:150px;}

Featuring Content in Carousels and Sliders

[216]

10. We'll also have to adjust the overall size of the carousel's container and
clip container:

.jcarousel-skin-tango .jcarousel-clip-horizontal {
width:830px;height:150px;}
.jcarousel-skin-tango .jcarousel-container-horizontal {
width:830px; }

You might wonder where that 830px-wide measurement came from. Each item
is 200 pixels wide, and there are 10 pixels between each image.

200 + 10 + 200 + 10 + 200 + 10 + 200 = 830

The total width of images and the gaps between them is 830 pixels.

11. Next, we'll need to bump the next and previous buttons down a bit since our
carousel is taller than the default and the buttons appear too high:

.jcarousel-skin-tango .jcarousel-prev-horizontal,

.jcarousel-skin-tango .jcarousel-next-horizontal { top:75px; }

Now the carousel looks just the way we'd like:

12. Finally, we'll make a few adjustments to the settings for the jCarousel plugin itself.
Like many other plugins, we can make customizations by passing a set of key/value
pairs to the jcarousel() method inside a pair of curly braces. First, let's change
the scroll value to 4 so that four items will scroll each time we press the next or
previous button. Go back to your scripts.js file and add the new key/value pair
to your script as follows:

$('#thumb-carousel').jcarousel({
 scroll: 4
});

Chapter 10

[217]

Next, the carousel currently reaches a hard stop at either the beginning or the end.
Instead, we'll make the carousel wrap—if the site visitor is viewing the last item in the
carousel and presses the next button, the carousel will wrap back to the beginning.
And vice versa if the back button is clicked while viewing the first item. We'll add a
'both' value for the wrap key so that the carousel will wrap at either end:

$('#thumb-carousel').jcarousel({
 scroll: 4,
 wrap: 'both'
});

Refresh the page in the browser and page through the carousel using either the next
or the previous button or any combination of the two. That's all there is to creating a
simple carousel with the jCarousel plugin.

What just happened?
We used the jCarousel plugin to create a basic animated image thumbnail carousel. We used
one of the default skins included with the plugin and made adjustments for the size of our
content with CSS. A few simple customizations were passed to the carousel to make sure it
worked just the way we wanted.

Animated news ticker
A horizontal image carousel is nice, but it has pretty limited use. Luckily, the jCarousel plugin
is flexible enough to be used for a variety of different purposes. In this section, we'll learn
how to create an animated news ticker.

Time for action – creating an animated news ticker
Follow these steps to set up a vertical news listing:

1. First, up, we'll set up a basic HTML file and associated files and folders like we did
in Chapter 1, Designer, Meet jQuery. In the body of the HTML document, create
an unordered list of news items. Each news item will have an image and a div that
contains a headline and an excerpt:

<ul id="news-carousel">

 <div class="info">
 <h4>Switzerland</h4>

Featuring Content in Carousels and Sliders

[218]

 <p>Switzerland, officially the Swiss Confederation, is a
federal republic consisting of 26 cantons, with Bern as the seat
of the federal authorities</p>
 </div>

 <div class="info">
 <h4>Costa Rica</h4>
 <p>Costa Rica, officially the Republic of Costa Rica, is a
country in Central America, bordered by Nicaragua to the north,
Panama to the south, the Pacific Ocean to the west and south and
the Caribbean Sea to the east.</p>
 </div>

 ...

I've created 12 items in total on my list, each with this same structure. Keep in mind
that each item in the carousel must be of the same width and height.

2. Next up, we'll open our styles.css file and add a few lines of CSS to get each
news item styled the way we'd like, with the image on the left and the headline and
excerpt on the right:

#news-carousel li { overflow:hidden;zoom:1;list-style-type:none;
}
#news-carousel li img { float:left; }
#news-carousel li .info { margin-left:210px; }
#news-carousel h4 { margin:0;padding:0; }
#news-carousel p { margin:0;padding:0;font-size:14px; }

Feel free to add some additional CSS to style the list to suit your own taste. If you
open the page in a browser, at this point, you can expect to see something similar
to the following screenshot:

Chapter 10

[219]

3. Just as in our simple carousel example, we'll attach the tango skin CSS in the <head>
section of the document, and the jCarousel plugin script at the bottom of the
document, between jQuery and our own scripts.js file.

4. Next, open your scripts.js file. We'll write our document ready statement, select
our news ticker, and call the jcarousel() method, just like we did in the previous
example.

 $(document).ready(function(){
 $('#news-carousel').jcarousel();
 });

Featuring Content in Carousels and Sliders

[220]

5. We'll pass some customization options to the jcarousel() method to adjust
our carousel to work the way that we'd like. First, it should be vertical rather than
horizontal, so pass true as a value for the vertical key:

$('#news-carousel').jcarousel({
 vertical:true
});

6. We'd also like to scroll only one item at a time:

$('#news-carousel').jcarousel({
 vertical:true,
 scroll:1
});

7. And, we'd like the list of news items to loop endlessly as follows:

$('#news-carousel').jcarousel({
 vertical:true,
 scroll:1,
 wrap:'circular'
});

8. We'd like the carousel to automatically advance through the news stories in true
news-ticker fashion. We'll advance the carousel every three seconds:

$('#news-carousel').jcarousel({
 vertical:true,
 scroll:1,
 wrap:'circular',
 auto: 3

});

9. And last but not least, we'll slow the animation down a bit so that it's less jarring in
case our site visitor is in the middle of reading when the animation is triggered. 600
milliseconds ought to be slow enough:

$('#news-carousel').jcarousel({
 vertical:true,
 scroll:1,
 wrap:'circular',
 auto: 3,
 animation: 600
});

Chapter 10

[221]

10. Now that we've got jCarousel configured just the way we'd like, all that's left to do is
customize the appearance of the carousel. We're currently using the default tango
skin, which is still assuming our individual items are 75 pixels wide by 75 pixels tall.
Open your styles.css file and we'll get started by adjusting the necessary widths
and heights as follows:

.jcarousel-skin-tango .jcarousel-item { width:475px;height:150px;
}
.jcarousel-skin-tango .jcarousel-clip-vertical {
width:475px;height:470px; }
.jcarousel-skin-tango .jcarousel-container-vertical {
height:470px;width:475px; }

We've set the size of an individual item to 475 pixels wide by 150 pixels tall. Then
the size of the container and clip container are adjusted to show three items. Just as
a reminder—since each item in our carousel is 150 pixels tall and there are 10 pixels
of space between items, we can calculate the height of the container as follows:

150 + 10 + 150 + 10 + 150 = 470px

We're using heights instead of widths for our calculations since our carousel is now
vertical rather than horizontal.

11. Next, we'll adjust the tango style a bit to fit in with my site's design. I'm going to
start by replacing the pale blue color scheme of the container with an orange color
scheme, and adjust the rounded corners to be a bit less round:

.jcarousel-skin-tango .jcarousel-container { -moz-border-radius:
5px;-webkit-border-radius:5px;border-radius:5px;border-color:#CB4B
16;background:#f9d4c5; }

12. Now, let's replace the small blue arrows of the tango skin with a long orange bar
that spans the full width of our carousel. I've created my own arrow graphic that I'll
show in the middle of each button:

.jcarousel-skin-tango .jcarousel-prev-vertical,

.jcarousel-skin-tango .jcarousel-next-vertical {
left:0;right:0;width:auto; }
.jcarousel-skin-tango .jcarousel-prev-vertical {
top:0;background:#cb4b16 url(images/arrows.png) 50% 0 no-repeat; }
.jcarousel-skin-tango .jcarousel-prev-vertical:hover,
.jcarousel-skin-tango .jcarousel-prev-vertical:focus {
background-color:#e6581d;background-position:50% 0; }
.jcarousel-skin-tango .jcarousel-next-vertical {
background:#cb4b16 url(images/arrows.png) 50% -32px no-
repeat;bottom:0; }

Featuring Content in Carousels and Sliders

[222]

.jcarousel-skin-tango .jcarousel-next-vertical:hover,

.jcarousel-skin-tango .jcarousel-next-vertical:focus { background-
color:#e6581d;background-position:50% -32px; }

Now, if you refresh the page in the browser, you'll see that the carousel is
re-designed a bit with a different color scheme and appearance:

Moving your mouse over the top or bottom bar will lighten the color a bit, and
clicking a bar will advance the carousel in that direction by one item.

Chapter 10

[223]

What just happened?
In this case, we used the jCarousel plugin to create a vertical news ticker. Our news ticker
automatically advances one item every three seconds. We slowed down the animation
to make for a smoother reading experience for our site visitors. We also saw how we can
customize the tango skin's CSS to customize the color scheme and appearance of the
carousel to fit our site's design. Next up, we'll take a look at how we can add some external
controls to the carousel.

Have a go hero – design your own carousel
Now that you've seen how to customize the appearance and behavior of the jCarousel
plugin, design your own carousel. It could be horizontal or vertical, contain text, images, or a
combination of both. Experiment with the settings that the jCarousel plugin makes available
to you—you'll find them all listed out and explained in the plugin's documentation.

Featured content slider
In addition to carousels that show multiple items at one time, jCarousel can also be used
to build content sliders that show just one item at a time. It's also possible to build external
controls that add some additional functionality to your carousels. Let's take a look at how to
create a single-slide featured content slider with external pagination controls.

Time for action – creating a featured content slider
We'll get started as usual by setting up our basic HTML file and associated files and folders,
just like we did in Chapter 1, Designer, Meet jQuery.

1. In the body of the HTML document, the HTML markup for our featured content
slider will be very similar to the HTML we set up for a news ticker. The only
difference is that I'm replacing the images with larger images since I want images
to be the main focus of the slider. I'm using images that are 600 pixels wide by 400
pixels tall. The following is a sample of the HTML:

<div class="jcarousel-skin-slider">
 <ul id="featured-carousel">

 <img src="images/600/Switzerland.jpg"
alt="Switzerland"/>
 <div class="info">
 <h4>Switzerland</h4>

Featuring Content in Carousels and Sliders

[224]

 <p>Switzerland, officially the Swiss Confederation, is a
federal republic consisting of 26 cantons, with Bern as the seat
of the federal authorities</p>
 </div>

 <img src="images/600/CostaRica.jpg" alt="Costa
Rica"/>
 <div class="info">
 <h4>Costa Rica</h4>
 <p>Costa Rica, officially the Republic of Costa Rica, is
a country in Central America, bordered by Nicaragua to the north,
Panama to the south, the Pacific Ocean to the west and south and
the Caribbean Sea to the east.</p>
 </div>

 ...

</div>

I have 12 items in total on my list, each marked up just the way you see here. Note
that I've wrapped my list in a div with the class jcarousel-skin-slider. We'll
be using this class to style our list with CSS.

2. Next up, we'll style our list of items. We'll overlay the headline and paragraph of text
on the photo, the header along the top, and the paragraph of text along the bottom.
The following is the CSS we can use to accomplish that:

#featured-carousel li { overflow:hidden;list-style-type:none;posi
tion:relative;width:600px;height:400px; }
#featured-carousel h4 { position:absolute;top:0;left:0;right:0;pa
dding:10px;margin:0;color:#000;font-size:36px;text-shadow:#fff 0 0
1px; }
#featured-carousel p { position:absolute;bottom:0;left:0;right:
0;padding:10px;margin:0;color:#fff;background:#000;background:rg
ba(0,0,0,0.7); }

Chapter 10

[225]

Now each item in my list looks similar to the following screenshot:

I want to draw your attention to a couple of handy CSS tricks I've put to use here.
First, notice that I've added a small white text-shadow to the headline and have
made the headline text black. Just in case this text happens to overlay a dark area of
the image, the subtle white outline around the text will help the text to stand out.
Then, note that I've added two background values for the short paragraph of text.
The first, a solid black, the second a transparent black color denoted with an rgba
value. The first value is for versions of Internet Explorer before IE9. Those browsers
will display a solid black background. Newer and more capable browsers will use the
second value—the rgba value—to display a slightly transparent black background
behind the text—allowing the image to show through a bit while making the text
more readable.

3. Now, we'll attach the jCarousel JavaScript at the bottom of the page, between
jQuery and our scripts.js file, just as we've done in the other examples in this
chapter.

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.jcarousel.min.js"></script>
<script src="scripts/scripts.js"></script>

Featuring Content in Carousels and Sliders

[226]

4. Now we're going to write a bit of CSS to customize the appearance of our content
slider. Open your styles.css file and add the following styles:

.jcarousel-skin-slider .jcarousel-container-horizontal { width:
600px; }
.jcarousel-skin-slider .jcarousel-clip { overflow: hidden; }
.jcarousel-skin-slider .jcarousel-clip-horizontal {
width:600px;height:425px; }
.jcarousel-skin-slider .jcarousel-item { width:600px;height:400px;
}

Yep, that's really it. Just a few lines. We'll set the width of an individual item, the
container, and the clip container to 600 pixels, the same as the width of one image.
The height of the individual item is also set to 400 pixels, but we're going to set
the clip container's height to 425 pixels to give us 25 pixels to add in some external
controls, which we'll be looking at in a minute.

5. Now, open up your scripts.js file. The first thing we want to do is select our list
and store it in a variable. This is because we're going to be using the list multiple
times, and we don't want jQuery to have to query the DOM looking for our list
each time.

 var slider = $('#featured-carousel');

6. Next, we'll set up our document ready statement and call the jcarousel()
method on the slider, and we'll tell it that we want to scroll one pane at a time:

var slider = $('#featured-carousel');

$(document).ready(function(){
 slider.jcarousel({
 scroll: 1
 });
});

7. We're going to be adding our own external controls, so we'll need to remove the
ones that the jcarousel() method creates on its own. Here's how we can do that:

$(document).ready(function(){
 slider.jcarousel({
 scroll: 1,
 buttonNextHTML: null,
 buttonPrevHTML: null
 });
});

Chapter 10

[227]

The buttonNextHTML and buttonPrevHTML keys are provided so that you can
specify your own HTML markup for those buttons. In this case, we're passing null
as the value for both keys which will prevent them from being created.

Now we've done the basics to set up our slider. If you look at the page in your browser, you'll
see the first slide. We haven't yet provided a way to navigate to the other slides, so let's
jump on that next.

Pagination controls
We've set up a basic slider that shows one item at a time, but you've no doubt noticed that
there isn't a way to get to view any slide other than the first one. We removed jCarousel's
default next and previous buttons, and we haven't provided any alternative yet. Let's add in
some pagination controls so our site visitors can get to any slide they like.

Featuring Content in Carousels and Sliders

[228]

Time for action – adding pagination controls
Next, we want to set up the function that will create the next button, previous button, and
pagination buttons and makes them work.

1. The jCarousel plugin provides a key called initCallback that will allow us to pass
in the name of a function that should be called when the carousel is created. Let's
get started by creating an empty function and calling it:

var slider = $('#featured-carousel');

function carouselInit(carousel) {
 // Our function goes here
}

$(document).ready(function(){
 slider.jcarousel({
 scroll: 1,
 buttonNextHTML: null,
 buttonPrevHTML: null,
 initCallback: carouselInit
 });
});

Whatever actions we write inside of our carouselInit() function, it will be
executed when the carousel is initialized or set up. Since any page numbers and
previous and next buttons would only be functional if JavaScript is enabled, we want
to create those buttons dynamically with JavaScript rather than coding them in our
HTML. Let's take a look at how we can create a list of page links to each slide in the
slider.

2. We'll get started by getting all of the slides in our slider. Remember that our slider is
an unordered list and each slide in the slider is an individual list item in the list. Since
we've already saved a reference to the slider itself, we can get all the slides inside of
it as follows:

function carouselInit(carousel) {
 var slides = slider.find('li');
}

3. We'll use these slides in a moment to create the page numbers. In the meantime
though, we need a place to put our page numbers, so let's create a couple of
containers before the slider so that our pagination will display just above the slider.
Here's how we insert two nested <div> tags just before the slider:

Chapter 10

[229]

function carouselInit(carousel) {
 var slides = slider.find('li');
 slider.before('</
span>');
}

4. Next, we'll need to refer to these two newly created containers a couple of times
in our code, so we'll store references to them in variables as shown in the following
code:

function carouselInit(carousel) {
 var slides = slider.find('li');
 slider.before('</
span>');
 var controls = $('#page-controls');
 var pages = $('#pages');
}

5. Now, we're going to get fancy and create a page number for each slide in the slider.
The following is the code we'll add:

function carouselInit(carousel) {
 var slides = slider.find('li');
 slider.before('</
span>');
 var controls = $('#page-controls');
 var pages = $('#pages');
 for (i=1; i<=slides.length; i++) {
 pages.append('' + i + '');
 }
}

We're starting with i = 1, because the first page number will be 1. Then we're
checking to see if i is less than or equal to the number of slides (slides.length is
the number of slides). If i is less than or equal to the number of slides, we're going
to increment i by one number—basically we're going to add 1 to i and i++ is a
JavaScript shortcut way of saying i = i+1.

Each time through the loop, we're going to append a link to the pages container we
created. It's a link wrapped around a page number, and i represents our page number.

Featuring Content in Carousels and Sliders

[230]

If you refresh the page in a browser at this point, you'll see numbers 1 to 12 linked
above the slideshow. They aren't styled, and clicking on them won't do anything,
because we haven't set that up yet—that's what we'll do next.

6. Next, we want to style the links so that they look the way we'd like. Open up your
styles.css file and add these few lines to the CSS:

#page-controls { line-height:25px;height:25px; }
#page-controls a { margin:0 4px 0 0;padding:0 5px;border:1px
solid #859900; }
#page-controls a:hover { border-color: #D33682; }
#page-controls a.current { color:#333;border-color:#333; }

This sets the height for our slider controls row to the 25 pixels that we allowed for
it previously. Then we put a green border around each link, which will turn to a pink
border when the link is hovered over. We adjusted margins and padding to get a
nicely spaced row of boxes. Finally, we added a .current class for our links to allow
us to mark the currently selected link in dark gray.

Chapter 10

[231]

7. Okay, we have our page numbers added to our document, so all we have to do is
make them work. We'll bind a click function to those links, since we want something
to happen when our site visitor clicks on the links. We'll get started as follows:

function carouselInit(carousel) {
 var slides = slider.find('li');
 slider.before('</
span>');
 var controls = $('#page-controls');
 var pages = $('#pages');
 for (i=1; i<=slides.length; i++) {
 pages.append('' + i + '');
 }

 pages.find('a').bind('click', function(){
 //click code will go here
 });
}

8. The first thing to do inside our function is to cancel the default action of the click so
that the browser doesn't try to do its own thing when the links are clicked.

function carouselInit(carousel) {
 var slides = slider.find('li');
 slider.before('</
span>');
 var controls = $('#page-controls');
 var pages = $('#pages');
 for (i=1; i<=slides.length; i++) {
 pages.append('' + i + '');
 }

 pages.find('a').bind('click', function(){
 return false;
 });
}

9. The jCarousel plugin offers us a nice way to scroll to a particular slide in the slider.
It looks as follows:

carousel.scroll($.jcarousel.intval(number));

The number near the end is where we would pass in which slide we want to scroll
to. For example, if we wanted to scroll to the sixth slide, we'd say:

carousel.scroll($.jcarousel.intval(6));

Featuring Content in Carousels and Sliders

[232]

In our case, the number slide we want to scroll to is the page number in our link.
For example, if I click on the following link:

3

That means I want to scroll to the third slide in the slider. I can get that number by
using jQuery's text() method as follows:

pages.find('a').bind('click', function(){
 carousel.scroll($.jcarousel.intval($(this).text()));
 return false;
});

If I click on the fourth link, $(this).text() will be equal to 4; on the seventh link,
it will be equal to 7, and so on.

Refresh the page in the browser, and you'll see that clicking on a numbered link will
scroll the slider to that slide.

10. Clicking on the page numbers, you probably noticed that the current page number
isn't highlighted in the pagination. We already wrote the CSS to highlight a link that
has the current class – now we just have to be sure we're adding that class to the
current link. Here's how we'll do that.

pages.find('a').bind('click', function(){
 carousel.scroll($.jcarousel.intval($(this).text()));
 $(this).addClass('current');
 return false;
});

Now if you refresh the page in the browser, you'll see that clicking a page number
applies the current class CSS to the link, highlighting it. However, clicking a second
page number highlights that link in addition to the previous link. We have to make
sure that we're removing the class from the old link too. Add the following line to
take care of that:

pages.find('a').bind('click', function(){
 carousel.scroll($.jcarousel.intval($(this).text()));
 $(this).siblings('.current').removeClass('current');
 $(this).addClass('current');
 return false;
});

This line checks all of the links' siblings for any that might have the class of current.
If it finds any, it removes the class.

Chapter 10

[233]

11. Now, we just have to make sure the first link is highlighted when the carousel is
initialized. The easiest way to do that is to simply click the first link in the pagination
when the carousel is created, as follows:

pages.find('a').bind('click', function(){
 carousel.scroll($.jcarousel.intval($(this).text()));
 $(this).siblings('.current').removeClass('current');
 $(this).addClass('current');
 return false;
}).filter(':first').click();

Remember that jQuery allows us to chain methods—even though we've got a whole
function written inside the bind() method, we can still chain the next method to
the end of it. We call the filter() method to narrow down the list of links to just
the first one, then call the click() method to fire off the click function we just
bound to the link.

Now if you refresh the page in the browser, you'll see that the first link is highlighted
with our current class CSS.

Next and previous buttons
Now we've got our slider set up and page numbers working, but we also want to have simple
next and previous buttons to make it easy to flip through the slides one at a time. We'll add
those at either end of the pagination controls.

Featuring Content in Carousels and Sliders

[234]

Time for action – adding next and previous buttons
Now all that's left to add is a next and a previous button.

1. We'll add the previous button at the beginning of the pagination, and the next
button at the end. Here's how we can use jQuery to insert those links in our
document:

function carouselInit(carousel) {
 var slides = slider.find('li');
 slider.before('</
span>');
 var controls = $('#page-controls');
 var pages = $('#pages');
 for (i=1; i<=slides.length; i++) {
 pages.append('' + i + '');
 }

 pages.find('a').bind('click', function(){
 carousel.scroll($.jcarousel.intval($(this).text()));
 $(this).siblings('.current').removeClass('current');
 $(this).addClass('current');
 return false;
 }).filter(':first').click();

 controls.prepend('«');
 controls.append('»');
}

I've used the prepend() method to insert the previous button before the page
numbers and the append() method to insert the next button after the page
numbers.

If you refresh the page in the browser, you'll see the next and previous buttons
show up along with our pagination buttons.

However, clicking them won't cause anything to happen—we have to hook up
those buttons so that they work. Let's start with the next button.

2. Just like with the pagination buttons, we need to bind a click event. Again, the
jCarousel plugin provides a nice way for us to advance to the next slide.

function carouselInit(carousel) {
 var slides = slider.find('li');

Chapter 10

[235]

 slider.before('</
span>');
 var controls = $('#page-controls');
 var pages = $('#pages');
 for (i=1; i<=slides.length; i++) {
 pages.append('' + i + '');
 }

 pages.find('a').bind('click', function(){
 carousel.scroll($.jcarousel.intval($(this).text()));
 $(this).siblings('.current').removeClass('current');
 $(this).addClass('current');
 return false;
 }).filter(':first').click();

 controls.prepend('«');
 controls.append('»');

 $('#next').bind('click', function() {
 carousel.next();
 return false;
 });
}

We're selecting the next button and binding a click event. We're canceling the
browser's default action so that the browser doesn't attempt to do anything when
the link is clicked. Then, all we have to do is call carousel.next() and jCarousel
will take care of advancing to the next slide for us.

Refresh the page in the browser, and you'll see that clicking the next button
advances the slider by one slide.

You'll also notice, however, that the currently highlighted page in the pagination
isn't updated. Let's take a look at how we can take care of that.

3. We'll get started by finding the currently highlighted page number as follows:

$('#next').bind('click', function() {
 carousel.next();
 var current = pages.find('.current');
 return false;
});

Here we're just looking inside our page numbers to find the one with the
current class.

Featuring Content in Carousels and Sliders

[236]

4. Next, we'll remove the current class, move to the next page number link, and add
the current class to that one as follows:

current.removeClass('current').next().addClass('current');

Ah, but not so fast, we only want to do that if there is a next link to go to. If there's
not, then we don't want to do anything at all. If we check current.next().
length, we can tell if there's a next link or not. So, we just have to wrap this bit of
code in an if statement as shown in the following code:

if (current.next().length) { current.removeClass('current').
next().addClass('current'); }

Now if you refresh the page in a browser, you'll see that the next button works as
expected. When we get to the last page, it does nothing, just as we'd expect.

5. Now we'll repeat that whole process with the previous button—the function is very
similar. The following is what it will look like:

$('#prev').bind('click', function(){
 carousel.prev();
 var current = pages.find('.current');
 if (current.prev().length) { current.removeClass('current').
prev().addClass('current'); }
 return false;
});

Here's what our complete carouselInit() function looks like:

function carouselInit(carousel) {
 var slides = slider.find('li');
 slider.before('</
span>');
 var controls = $('#page-controls');
 var pages = $('#pages');
 for (i=1; i<=slides.length; i++) {
 pages.append('' + i + '');
 }

 pages.find('a').bind('click', function(){
 carousel.scroll($.jcarousel.intval($(this).text()));
 $(this).siblings('.current').removeClass('current');
 $(this).addClass('current');
 return false;
 }).filter(':first').click();

 controls.prepend('«');

Chapter 10

[237]

 controls.append('»');

 $('#prev').bind('click', function(){
 carousel.prev();
 var current = pages.find('.current');
 if (current.prev().length) { current.removeClass('current').
prev().addClass('current'); }
 return false;
 });

 $('#next').bind('click', function() {
 carousel.next();
 var current = pages.find('.current');
 if (current.next().length) { current.removeClass('current').
next().addClass('current'); }
 return false;
 });
}

Now if you refresh the page in a browser, you'll see that the next and previous
buttons are both working as expected, along with the page numbers. You can
navigate to any slide in the slider by using these external controls.

Featuring Content in Carousels and Sliders

[238]

What just happened?
We set up jCarousel to display a single slide at a time. We made sure that jCarousel was
not creating its own next and previous buttons. We used jQuery to add next, previous, and
pagination buttons to our document, and then used jCarousel's helpful methods to control
the carousel from these external controls. We made sure the currently displayed slide is
highlighted in the pagination to make it easy for our site visitors to see where they are in
the slides.

Carousel slideshow
Now that we've learned how to set up external controls that control the carousel, let's take
things the other way as well, and set up our carousel to control a slideshow. In this section,
we'll be creating a simple crossfade slideshow that's controlled by a carousel of thumbnail
images. The following is a sample of what we'll be creating:

Clicking on any of the thumbnails inside the carousel will load up the large version of that
image in the slideshow area. I've also provided next and previous buttons near the slideshow
that allow the site visitor to advance one photo at a time through the slideshow without
having to click individual thumbnails. Let's take a look at how to put this together.

Chapter 10

[239]

Time for action – creating a thumbnail slideshow
Setting up the carousel thumbnail slideshow will be the trickiest thing we've done with
jCarousel yet. But don't worry, we'll take it one step at a time.

1. I bet you can guess how we're going to get started, can't you? That's right, by
setting up our simple HTML file and associated files and folders, just as we did
in Chapter 1, Designer, Meet jQuery. In this case, we want just a simple list of
thumbnails that are linked to the full-size version of the image. And we're going
to wrap that up in a <div> for styling purposes. Here's what my list looks like:

<div class="jcarousel-skin-slideshow">
 <ul id="thumb-carousel">
 <img src="images/
small/Switzerland.jpg" alt="Switzerland"/>
 <img src="images/small/
CostaRica.jpg" alt="Costa Rica"/>
 <img src="images/small/
Canada.jpg" alt="Canada"/>
 ...

</div>

I've got twelve items in my list total, and they're all marked up identically.

2. Next, we'll write the CSS for the carousel. It's a custom design, so we won't be
including one of the stylesheets provided with jCarousel. Open up your styles.
css file and add the following CSS:

.jcarousel-skin-slideshow .jcarousel-container { }

.jcarousel-skin-slideshow .jcarousel-container-horizontal {
width:760px;padding:0 48px; }
.jcarousel-skin-slideshow .jcarousel-clip { overflow:hidden; }
.jcarousel-skin-slideshow .jcarousel-clip-horizontal {
width:760px;height:75px; }
.jcarousel-skin-slideshow .jcarousel-item {
width:100px;height:75px; }
.jcarousel-skin-slideshow .jcarousel-item-horizontal { margin-
left:0;margin-right:10px; }
.jcarousel-skin-slideshow .jcarousel-item-placeholder {
background:#fff;color:#000; }
.jcarousel-skin-slideshow .jcarousel-next-horizontal { position:a
bsolute;top:0;right:0;width:38px;height:75px;cursor:pointer;backgr
ound:transparent url(images/arrow-right.png) no-repeat 0 0; }
.jcarousel-skin-slideshow .jcarousel-next-horizontal:hover,

Featuring Content in Carousels and Sliders

[240]

.jcarousel-skin-slideshow .jcarousel-next-horizontal:focus {
background-position:0 -75px; }
.jcarousel-skin-slideshow .jcarousel-next-horizontal:active {
background-position: 0 -75px; }
.jcarousel-skin-slideshow .jcarousel-prev-horizontal { position:ab
solute;top:0;left:0;width:38px;height:75px;cursor:pointer;backgrou
nd:transparent url(images/arrow-left.png) no-repeat 0 0; }
.jcarousel-skin-slideshow .jcarousel-prev-horizontal:hover,
.jcarousel-skin-slideshow .jcarousel-prev-horizontal:focus {
background-position: 0 -75px; }
.jcarousel-skin-slideshow .jcarousel-prev-horizontal:active {
background-position: 0 -75px; }

I've created an image sprite containing the images for my next and previous buttons
and that's what's being used as the background image for those. The rest of this
should look familiar—setting up the appropriate sizes for the individual items and
the carousel itself.

3. Now, we'll attach the jCarousel plugin at the bottom of the document, in between
jQuery and your scripts.js file:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.jcarousel.min.js"></script>
<script src="scripts/scripts.js"></script>

4. Open up your scripts.js file and we'll get the JavaScript started by getting our
thumbnail carousel up and running. Inside a document ready statement, select the
carousel and call the jcarousel() method as follows:

$(document).ready(function(){
 $('#thumb-carousel').jcarousel({
 scroll: 6,
 wrap: 'circular'
 });
});

We've assigned a value of 'circular' to the wrap key—that means the carousel
will have neither beginning nor end—it will just continuously wrap around as the
site visitor scrolls through.

The continuous wrapping is nice—our site visitors will be able to click either the forward or
back carousel buttons no matter where they are, which feels a little friendlier than disabled
buttons. However, continuous scrolling can make it a little more difficult for our site visitors
to keep track of where they are in the carousel. For that reason, we've set the scroll to 6,
even though our carousel is capable of displaying seven images.

Chapter 10

[241]

Let's say our site visitor is looking at our carousel and there's a photo of a gorgeous beach
scene in the first slot in the carousel. The site visitor clicks the previous button and that
gorgeous beach scene slides over to fill the last slot in the carousel. Seeing that same image
in a new position helps to communicate what just happened and ensures our site visitors
that they didn't miss anything.

What just happened?
We followed steps similar to what we've done in earlier jCarousel examples. Set up our
HTML, wrote some CSS styles for the carousel, and then used jQuery to select the list of
thumbs and called the jCarousel() method. Now, let's get more advanced and add a
slideshow to our carousel.

Slideshow
Now that we've got our simple carousel set up and styled the way that we'd like, let's dive
into adding the crossfade slideshow feature.

Time for action – adding the slideshow
The jCarousel plugin has taken care of setting up the carousel for us, but we want to get
fancy and also add a slideshow area.

1. We're on our own here, so we'll create a separate function for creating the
slideshow area. Then we'll call the new function inside our document ready
statement:

function slideshowInit() {
 // Slideshow setup goes here
}

$(document).ready(function(){
 slideshowInit();
 $('#thumb-carousel').jcarousel({
 scroll: 6,
 wrap: 'circular'
 });
});

Featuring Content in Carousels and Sliders

[242]

2. First up, we'll wrap a container around our thumbnail list to create the slideshow
area. We find ourselves already in need of referring to the thumbnail list again, so
let's store a reference to it in a variable and update the call to the jcarousel()
method as follows:

var thumbs = $('#thumb-carousel');

function slideshowInit() {
 // Slideshow setup goes here
}

$(document).ready(function(){
 slideshowInit();
 thumbs.jcarousel({
 scroll: 6,
 wrap: 'circular'
 });
});

3. Next, inside the slideshowInit() function, we'll call jQuery's wrap() method to
wrap the list in a <div>.

function slideshowInit() {
 thumbs.wrap('<div id="stage-wrap"></div>');
}

4. Next, we need to create the actual stage where the full-size images will be featured.
We also need to create the next and previous buttons. We're going to use the
prepend() method so that these elements are inserted into stage-wrap div
before the thumbs list.

function slideshowInit() {
 thumbs.wrap('<div id="stage-wrap"></div>');
 $('#stage-wrap').prepend('<div id="slideshow-next"></div><div
id="slideshow-prev"></div><div id="stage"></div>');
}

5. Now, we'll pop back into our styles.css file and add some styles for these new
elements as follows:

#stage-wrap { position:relative;width:856px; }
#stage { width:600px;height:400px;padding:0 0 20px
0;position:relative;text-align:center;margin:0 128px; }
#stage img { position:absolute;top:0;left:50%;margin-left:-300px;
}

Chapter 10

[243]

#slideshow-next { position:absolute;right:80px;top:160px;width:3
8px;height:75px;cursor:pointer;background:transparent url(images/
arrow-right.png) no-repeat 0 0; }
#slideshow-next:hover,
#slideshow-next:active { background-position:0 -75px; }
#slideshow-prev { position:absolute;left:80px;top:160px;width:38
px;height:75px;cursor:pointer;background:transparent url(images/
arrow-left.png) no-repeat 0 0; }
#slideshow-prev:hover,
#slideshow-prev:active { background-position:0 -75px; }

All of our full-size images are the same size, 600x400, so we can set that as the
width and height of the stage and position the next and previous image buttons
accordingly. If you view the page in a browser now, you should see a large blank
area left for the stage and the next and previous image buttons on either side of
it, all positioned above the thumbnail carousel.

6. We've got a carousel, we've got an empty stage, and we've got next and previous
buttons on either side of our stage. Next, we'll populate the stage with an image
slideshow. We'll get started by setting up a variable to refer to the stage and setting
the opacity of the stage to 0 as shown in the following code:

function slideshowInit() {
 thumbs.wrap('<div id="stage-wrap"></div>');
 $('#stage-wrap').prepend('<div id="slideshow-next"></div><div
id="slideshow-prev"></div><div id="stage"></div>');

Featuring Content in Carousels and Sliders

[244]

 var stage = $('#stage');
 stage.css('opacity',0);
}

We've hidden the stage from view so that we can load the images into it without the
site visitor seeing the images loading. This lets us have some control over how the
slideshow appears as it's being created. We're going to keep the stage invisible until
there's something to see.

7. Next, we'll need to get all the links to the full-size images and get ready to find the
URL for each full-size image as follows:

function slideshowInit() {
 thumbs.wrap('<div id="stage-wrap"></div>');
 $('#stage-wrap').prepend('<div id="slideshow-next"></div><div
id="slideshow-prev"></div><div id="stage"></div>');
 var stage = $('#stage');
 stage.css('opacity',0);
 var imageLinks = thumbs.find('a');
 var src;
}

The links to the full-size images are contained in the thumbnail list, which we can
refer to with the thumbs variable. We're just finding all of the links in that list and
storing them in a variable called imageLinks. Next, we're setting up an empty
container called src where we're going to store the url for the images. Though for
now, we're leaving that container empty. We'll fill it up in a moment.

8. We've got 12 links to full-size images. For each link, we need to create a new image
on the stage. We'll use jQuery's each() method to loop through each link and
create an image.

function slideshowInit() {
 thumbs.wrap('<div id="stage-wrap"></div>');
 $('#stage-wrap').prepend('<div id="slideshow-next"></div><div
id="slideshow-prev"></div><div id="stage"></div>');
 var stage = $('#stage');
 stage.css('opacity',0);
 var imageLinks = thumbs.find('a');
 var src;
 imageLinks.each(function(i) {
 // We'll create our images here
 });
}

This is the jQuery way of saying For each link, do this thing.

Chapter 10

[245]

9. Next, we'll create an image for each of the links. First up, we know that the src
attribute of the image is going to equal the href attribute of the link. In other
words, a link as follows:

Switzerland

will be used to create an image as follows:

So the first thing we'll do is get that empty src variable we created earlier and store
the URL for the image in it:

imageLinks.each(function(i) {
 src = $(this).attr('href');
});

Next, we're going to create an image with this src attribute. I'm going to store my
newly created image in a variable called img:

imageLinks.each(function(i) {
 src = $(this).attr('href');

 var img = $('', {
 src: src,
 css: {
 display: 'none'
 }
 });
});

We've set the display of the image to none, to hide all of the images created in this
way. We've set the src attribute of the image to the src variable that's holding the
URL of the image.

10. Now that the image is created, we'll add it to the stage.

imageLinks.each(function(i) {
 src = $(this).attr('href');
 var img = $('', {
 src: src,
 css: {
 display: 'none'
 }
 });
 img.appendTo(stage);
});

jQuery's appendTo() method lets us append the image to the stage.

Featuring Content in Carousels and Sliders

[246]

11. Now that the stage is full of images, let's go ahead and make it visible again.

function slideshowInit() {
 thumbs.wrap('<div id="stage-wrap"></div>');
 $('#stage-wrap').prepend('<div id="slideshow-next"></div><div
id="slideshow-prev"></div><div id="stage"></div>');
 var stage = $('#stage');
 stage.css('opacity',0);
 var imageLinks = thumbs.find('a');
 var src;
 imageLinks.each(function(i) {
 src = $(this).attr('href');
 var img = $('', {
 src: src,
 css: {
 display: 'none'
 }
 });
 img.appendTo(stage);
 });
 stage.css('opacity',1);
}

12. Next, we want to show the appropriate image in the stage when one of the
thumbnail links in the carousel is clicked. If you click the thumbnails now, you'll see
that it opens the full-size image in the browser, but we want the image to show in
the stage instead. We just need a way to reference a particular image in the stage
from an image in the carousel. There are several different ways we could go about
that—there's nearly always multiple ways to get something done. In this case, we're
going to take advantage of jQuery's data() method to store an index number in
each thumbnail link. I'll then use that index to find and show the appropriate image.

Basically, we're going to number the links in the list. You'd think they'd be numbered
1 through 12, but remember that JavaScript counting starts at 0, so the thumbnail
images will be numbered 0 through 11. When a thumbnail is clicked, we'll get the
index number of that thumbnail, find the image on the stage with that same index
and show it. So if our site visitor clicks thumbnail number 6, we'll find image number
6 on the stage and show it.

First up, we have to assign the index numbers to the thumbnails. Inside the
document ready statement, add a small function to loop through each thumbnail
and add an index number as follows:

$(document).ready(function(){
 thumbs.find('a').each(function(index){

Chapter 10

[247]

 $(this).data('index', (index));
 });
 slideshowInit();
 thumbs.jcarousel({
 scroll: 6,
 wrap: 'circular',
 initCallback: nextPrev
 });
});

13. Now that all of the thumbnail links are numbered, we can write a function that will
find the appropriate image on the stage and show it when the thumbnail is clicked.
Inside of the slideshowInit() function, we'll bind our function to the click event:

function slideshowInit() {
 thumbs.wrap('<div id="stage-wrap"></div>');
 $('#stage-wrap').prepend('<div id="slideshow-next"></div><div
id="slideshow-prev"></div><div id="stage"></div>');
 var stage = $('#stage');
 stage.css('opacity',0);
 var imageLinks = thumbs.find('a');
 var src;
 imageLinks.each(function(i) {
 src = $(this).attr('href');
 var img = $('', {
 src: src,
 css: {
 display: 'none'
 }
 });
 img.appendTo(stage);
 });
 stage.css('opacity',1);
 imageLinks.bind('click', function(){
 // Function to find and show an image goes here
 });
}

14. The first thing to do inside our new function is to cancel the browser's default
behavior. We don't want the link to open the image in the browser, so we'll return
false.

imageLinks.bind('click', function(){
 return false;
})

Featuring Content in Carousels and Sliders

[248]

15. Next, we need to get the number that we stored in our link. We'll use the data()
method again to find the number:

imageLinks.bind('click', function(){
 var index = $(this).data('index');
 return false;
})

16. Now, we need to search in the stage for the image with that index number. I'm
going to store the image in a variable called nextImage since it will be the next
image to show.

imageLinks.bind('click', function(){
 var index = $(this).data('index');
 var nextImage = stage.find('img:eq(' + index + ')');
})

jQuery allows us to find an element by its index number using the :eq selector.
For example, the $('img:eq(1)') selector would select the second image in a
list of images. (Remember, JavaScript counting starts at 0 instead of 1.) In this case,
I know which number image I want because it's the number stored in the link that
was just clicked.

17. Now that we've got the next image, we need to show it. We're going to fade it in
and add a class of active to it.

imageLinks.bind('click', function(){
 var index = $(this).data('index');
 var nextImage = stage.find('img:eq(' + index + ')');
 nextImage.fadeIn().addClass('active');
 return false;
})

18. But don't forget that there's already another image visible. We need to find that
one and fade it out. Since we're adding a class of active when the image is shown,
we can easily find the currently displayed image by looking for the one with the
class of active:

imageLinks.bind('click', function(){
 var index = $(this).data('index');
 var nextImage = stage.find('img:eq(' + index + ')');
 stage.find('img.active').fadeOut().removeClass('.active');
 nextImage.fadeIn().addClass('active');
 return false;
})

Chapter 10

[249]

Don't forget that we'll have to be sure to remove that active class so that only one
image will be marked active at a time.

If you refresh the page in the browser now, you'll see that clicking one of the thumbnail
links in the carousel loads up the corresponding image in the slideshow. One image fades
out while the next image fades in, in a nice smooth manner. Next, we'll get those next and
previous buttons working so that we can use them to easily flip from one image to the next.

What just happened?
Phew! I hope you're still with me because this is a pretty awesome way to present a
slideshow of images to your site visitors. I hope that you're starting to see that sometimes a
plugin can be simply a beginning—you can get creative and invent your own functionality to
layer on top of the default plugin behavior.

Next and previous buttons
We're definitely making some nice progress. Clicking the thumbnails loads up the full-size
version of the image in the slideshow, and we can use the carousel controls to scroll through
the thumbnails and see them all. Now, let's get the next and previous image buttons working.

Time for action – activating the Next and Previous Buttons
Next up, we'll get those next and previous buttons around the image working so that the site
visitor can easily flip through all the images.

1. Just like when we hooked up external controls to the carousel in the last example,
we'll get started by setting up a callback function for the carousel. We'll call the
function nextPrev and set it up as follows:

function nextPrev(carousel) {
}

thumbs.jcarousel({
 scroll: 6,
 wrap: 'circular',
 initCallback: nextPrev
});

Now the nextPrev function will be called when the carousel is initialized.

Featuring Content in Carousels and Sliders

[250]

2. Inside the nextPrev() function, we'll select the previous button and bind a
function to the click event:

function nextPrev(carousel) {
 $('#slideshow-prev').bind('click', function() {
 //Click code will go here
 });
}

3. When a site visitor clicks the previous button, we want to show the previous image
in the slideshow. As usual with JavaScript, there's more than one way to go about
that. Since we've already got a nice slide switch set up to happen when one of the
thumbnails in the carousel is clicked, let's just go ahead and re-use that.

When our site visitor clicks the previous button, we'll find the previous thumbnail in
the carousel and click it. That will kick off the image transition and allow us to re-use
the code we've already written.

So our first order of business is to find the currently selected thumbnail. However,
we haven't made it easy to find the current thumbnail. So let's go back inside our
slideshowInit() function and add a line of code to add a class to the current
thumbnail:

function slideshowInit() {
 thumbs.wrap('<div id="stage-wrap"></div>');
 $('#stage-wrap').prepend('<div id="slideshow-next"></div><div
id="slideshow-prev"></div><div id="stage"></div>');
 var stage = $('#stage');
 stage.css('opacity',0);
 var imageLinks = thumbs.find('a');
 var src;
 imageLinks.each(function(i) {
 src = $(this).attr('href');
 var img = $('', {
 src: src,
 css: {
 display: 'none'
 }
 });
 img.appendTo(stage);
 });
 stage.css('opacity',1);
 imageLinks.bind('click', function(){
 var index = $(this).data('index');

Chapter 10

[251]

 $(this).parents('li').addClass('current').siblings('.
current').removeClass('current');
 var nextImage = stage.find('img:eq(' + index + ')');
 stage.find('img.active').fadeOut().removeClass('.active');
 nextImage.fadeIn().addClass('active');
 return false;
 })

}

Here, we're adding a class of current to the tag that contains the clicked
thumbnail. Then we're checking all the siblings to remove the current class if it
exists somewhere else. This ensures that only one item in the carousel will have the
current class at any given time.

4. Now, if you'll humor me for a minute, we'll take a sidetrip to the CSS. Since we're
adding a class to the current thumbnail, we can make use of that for CSS purposes
to style the current thumbnail differently than the rest. Let's reduce the opacity of
the thumbnails and make the current one 100 percent opaque to make it stand out.
Open up styles.css and add some styles for this as follows:

#thumb-carousel img { opacity:.5; }
#thumb-carousel .current img { opacity:1; }

5. Back to the JavaScript! Now that we've got an easy way to select the current
thumbnail, we just have to find the one with the current class. Inside the
prevNext() function, we can get the current link this way:

function nextPrev(carousel) {
 $('#slideshow-prev').bind('click', function() {
 var currentSlide = thumbs.find('li.current');
 });
}

6. Since this is the function attached to the previous button, we'll need to find the
previous thumbnail in the list. I'll use jQuery's prev() method to find the previous
thumbnail in the carousel:

currentSlide.prev();

However, if the current slide is the first one, there isn't a previous slide to go to. In
this case, if the site visitor is on the first slide and clicks the previous button, I want
them to go to the last slide in the list so that it continues seamlessly. So, I'll first
check to see if there is a previous slide as follows:

function nextPrev(carousel) {
 $('#slideshow-prev').bind('click', function() {

Featuring Content in Carousels and Sliders

[252]

 var currentSlide = thumbs.find('li.current');
 var prevSlide = currentSlide.prev().length ? currentSlide.
prev() : thumbs.find('li:last');
 });
}

There are a couple of things to explain here. First, this line, translated into English
from JavaScript, says Is there a thumbnail before this one? If there is, then that's
where we're going. If there's not, then we're heading over to the last thumbnail.

The second thing to explain is a new way of writing this that we haven't seen before.
This is called a ternary operator and it's a shorthand way of writing this:

var prevSlide;
if (currentSlide.prev().length) {
 prevSlide = currentSlide.prev();
} else {
 prevSlide = thumbs.find('li:last');
}

Here's how a ternary operator works:

condition to check ? value if true : value if false

It starts with the condition that we're checking which is followed by a ?. After that,
we have the value if that condition is true followed by a :, and the value if the
condition is false.

7. Now that we've found the previous slide, all that's left to do is click the link inside as
follows:

function nextPrev(carousel) {
 $('#slideshow-prev').bind('click', function() {
 var currentSlide = thumbs.find('li.current');
 var prevSlide = currentSlide.prev().length? currentSlide.
prev() : thumbs.find('li:last');
 prevSlide.find('a').click();
 });
}

This will fire off the function we've written to change the slide in the browser. If
you reload the page in the browser at this point and click the previous button a few
times, you'll see that the image switches just as we'd expect.

However, there's not much going on with the carousel. It's just sitting there. And
right away the currently selected thumbnail is out of view. If I click the previous
button once, then scroll the carousel, I can finally see the highlighted thumbnail.
Ideally, the carousel would update itself to be sure that the current thumbnail was
always visible.

Chapter 10

[253]

8. The jCarousel plugin makes it easy for us to scroll to any slide in the carousel. We
only have to know which one we want to show. A part of the jCarousel's setup
script also assigns a jcarouselindex attribute to each list item in the carousel.
We can get that number and use it for scrolling purposes. First, let's figure out what
jcarouselindex of the prevSlide is, since that's where we want to scroll.

function nextPrev(carousel) {
 $('#slideshow-prev').bind('click', function() {
 var currentSlide = thumbs.find('li.current');
 var prevSlide = currentSlide.prev().length? currentSlide.
prev() : thumbs.find('li:last');
 var index = parseInt(prevSlide.attr('jcarouselindex'));
 prevSlide.find('a').click();
 });
}

I'm using parseInt() to make sure that I get a number instead of a string. If I get a
string back, it can mess up the scrolling in the carousel.

Now, all that's left to do is scroll to the right thumbnail:

function nextPrev(carousel) {
 $('#slideshow-prev').bind('click', function() {
 var currentSlide = thumbs.find('li.current');
 var prevSlide = currentSlide.prev().length? currentSlide.
prev() : thumbs.find('li:last');
 var index = parseInt(prevSlide.attr('jcarouselindex'));
 prevSlide.find('a').click();
 carousel.scroll(index);
 });
}

Now if you refresh the page in the browser, you'll see that clicking the previous
button updates the carousel—the carousel will scroll so that the currently
highlighted slide is the first one in the carousel. However, what if I decide I want
the currently highlighted slide to appear in the middle? Easy! I've got seven slides
showing. If the highlighted slide is in the middle, that means there will be three
slides before it (and three slides after it). All I have to do is tell the carousel to make
the slide three before the highlighted slide the first slide visible as follows:

function nextPrev(carousel) {
 $('#slideshow-prev').bind('click', function() {
 var currentSlide = thumbs.find('li.current');
 var prevSlide = currentSlide.prev().length? currentSlide.
prev() : thumbs.find('li:last');
 var index = parseInt(prevSlide.attr('jcarouselindex')) - 3;

Featuring Content in Carousels and Sliders

[254]

 prevSlide.find('a').click();
 carousel.scroll(index);
 });
}

Now, for example, when I click the previous button, if the next slide is slide number
5, slide number 2 will be shown first in the carousel, which means slide number 5
will be right in the middle of the carousel. Refresh the page in the browser and give
it a try. Nice, right?

9. All that's left to do is get the next button working as well as the previous one. The
function is almost identical with a few tweaks made.

function nextPrev(carousel) {
 $('#slideshow-prev').bind('click', function() {
 var currentSlide = thumbs.find('li.current');
 var prevSlide = currentSlide.prev().length? currentSlide.
prev() : thumbs.find('li:last');
 var index = parseInt(prevSlide.attr('jcarouselindex')) - 3;
 prevSlide.find('a').click();
 carousel.scroll(index);
 });
 $('#slideshow-next').bind('click', function() {
 var currentSlide = thumbs.find('li.current');
 var nextSlide = currentSlide.next().length ? currentSlide.
next() : thumbs.find('li:first');
 var index = parseInt(nextSlide.attr('jcarouselindex')) - 3;
 nextSlide.find('a').click();
 carousel.scroll(index);
 });
}

I'm using the next() method instead of the prev() method to get the next slide
rather than the previous one. Aside from that, the function is the same.

Now if you refresh the page in the browser, you'll see that the next and previous image
buttons both work—they show the correct image in the slideshow and scroll the carousel so
that the current image is highlighted right in the middle of the carousel.

What just happened?
We combined some external carousel controls with a slideshow to create a robust slideshow/
carousel combination. The slideshow can be controlled from the carousel—clicking a thumbnail
in the carousel will load up the full-size version of the image in the slideshow stage. And
clicking the next and previous buttons in the stage will update the carousel, scrolling it so that
the currently highlighted thumbnail appears in the middle of the carousel's viewable area.

Chapter 10

[255]

We started with some basic HTML, wrote a custom CSS skin for the carousel, and called
the jcarousel() method to get the carousel working. Next, we wrote a function to
dynamically create the slideshow stage and buttons. Finally, we made it all work together
with some fancy jQuery footwork.

Summary
We took a look at using the jCarousel plugin in a variety of situations—we created a
simple horizontal thumbnail carousel, a vertical news ticker, a featured content slider
with external controls, and finally, a carousel/slideshow combo that really showed off
the capabilities of the jCarousel plugin. Now you've added another powerful tool to
your toolbox—the jCarousel plugin is flexible, powerful, and can be customized to work
in a variety of different situations.

Next up, we'll take a look at creating an interactive data grid.

11
Creating an Interactive Data Grid

While you might not consider a data grid to be all that exciting, they do offer
a way for site visitors to interact with large amounts of data and understand
it in a way they might not be able to otherwise. One of the most exciting
developments in HTML5 is the introduction of a grid element, which allows us
to easily create an interactive data grid using only markup. However, it's one of
the new elements for which browser support is lagging—there is little, if any,
browser support for the time being, and it could be years before we're able to
make use of this new element. Luckily, we can use jQuery to fill in the gap until
the new grid element is ready for primetime.

In this chapter, we'll learn the following topics:

 � Turning an ordinary table into an interactive data grid using the DataTables jQuery
plugin from Allan Jardine

 � Customizing the appearance and behavior of the data grid with help from the jQuery
UI Themeroller

Basic data grid
We'll get started by using the DataTables plugin to create a basic data grid, keeping the
default settings and the styles provided with the data grid. Data grids are most helpful when
we have large amounts of data to present, and site visitors might want to filter and sort the
data in different ways to find the information they are looking for. Think, for example, of a list
of flights—one site visitor might be interested in sorting the flights by departure time to find
the earliest possible departure, while another site visitor might want to sort the flights by
duration to find the shortest possible flight.

Creating an Interactive Data Grid

[258]

Presenting the data in an interactive data grid allows each site visitor to quickly and easily
find just the information they're looking for in a sea of information. For site visitors with
JavaScript disabled, they'll simply see a large table of data and will never know that they're
missing out on the interactive features. All of the information will still be available to them.

Time for action – creating a basic data grid
Let's take a look at how to turn a basic HTML table into an interactive data grid:

1. We'll get started as usual with our basic HTML file and associated files and folders,
just like we did in Chapter 1, Designer, Meet jQuery. We'll fill the <body> of our
HTML document with the HTML markup for a large table of data. The DataTables
plugin does require that we are careful and correct with our table markup. We'll
need to be sure to use a <thead> element for the table's header, and a <tbody>
element for the table's body. A <tfoot> element for the table footer is optional.
Here's an abbreviated sample of the HTML markup for a table of the all-time best-
selling books:

<table id="book-grid">
 <thead>
 <tr>
 <th>Title</th>
 <th>Author</th>
 <th>Original Language</th>
 <th>First Published</th>
 <th>Approximate Sales</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>A Tale of Two Cities</td>
 <td>Charles Dickens</td>
 <td>English</td>
 <td>1859</td>
 <td>200 million</td>
 </tr>
 <tr>
 <td>Le Petit Prince (The Little Prince)</td>
 <td>Antoine de Saint-Exupéry</td>
 <td>French</td>
 <td>1943</td>

Chapter 11

[259]

 <td>200 million</td>
 </tr>
 ...
 </tbody>
</table>

I've added a total of 106 books to the table, each marked up just as these are. Note
that we've added an id of book-grid to the table element, and have used the
<th> elements for the heading of each column, and enclosed those in a <thead>
element. We've also used a <tbody> element to wrap all the rows in the table's
body.

2. Next, we'll download the DataTables plugin. Head over to http://datatables.
net where you'll find the plugin's downloads, documentation, and examples. Click
on the Download link in the header to download a ZIP file.

Creating an Interactive Data Grid

[260]

3. Unzip the folder and take a look inside.

There's a folder of examples with several different examples of the DataTables
plugin in action. A folder of extras provides extra functionality for advanced data
tables—we won't be using any of those here. There's a media folder that contains
images, css, js, and unit_testing resources. And finally a Readme.txt file
contains information on the plugin's creator and where to find the documentation,
and so on.

Finally, you'll find the licenses for the plugin, both BSD and GPL. You can read these
license files or visit Wikipedia to get the details on these licenses, but they're both
free software licenses allowing you to make use of the plugin code for free.

4. We're going to set up a basic example, so we'll just need a couple of things for our
own project. First, copy the contents of the images directory to your own images
directory. Open the css folder and copy demo_table.css to your own styles
directory. Be careful to select the proper CSS file—demo_table.css—because
there are a few CSS files in there. Finally, in the js folder, find the minified version
of the plugin, jquery.dataTables.min.js, and copy that to your own scripts
directory.

5. Next, we'll get all the necessary files attached to our HTML page that contains our
table. In the <head> section of the document, attach the CSS file, before your own
styles.css file:

<link rel="stylesheet" href="styles/demo_table.css"/>
<link rel="stylesheet" href="styles/styles.css"/>

Chapter 11

[261]

6. Next, at the bottom of the HTML document, attach the DataTables plugin in
between jQuery and your own scripts.js file:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.dataTables.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

7. Next, open your scripts.js file and inside a document ready statement, select
the table and call the dataTable() method as follows:

$(document).ready(function(){
 $('#book-grid').dataTable();
});

Now, if you refresh the page in the browser, you'll see that your table has been
transformed into a data grid. You can select how many items to view at one time,
type into the search box to find specific table entries, and use the pagination
controls at the bottom right to page through the data table's rows.

Creating an Interactive Data Grid

[262]

What just happened?
We set up a basic HTML table and turned it into an interactive data grid by attaching some
CSS and the DataTables plugin. We selected the table and called the dataTable() method
to activate the DataTables plugin.

That was pretty easy, wasn't it? Of course, chances are this lavender design doesn't fit the
design of your site, so let's take a look at how we can customize the appearance of the
data table.

Customizing the data grid
The DataTables plugin is the first plugin we've used that has support for the jQuery UI
Themeroller. jQuery UI is a collection of widgets and interactions that make building complex
applications easier and faster. Learning jQuery UI itself is beyond the scope of this book, but
we'll take a look at how to use the jQuery UI Themeroller to create a custom theme for our
data table. This same theme would apply to any jQuery UI widgets used on our page, as well
as any jQuery plugins being used that include support for the jQuery UI Themeroller.

Time for action – customizing the data grid
We'll pick up right where we left off with our data table. If you'd like to save your basic
example, just save a copy of the file. Then follow these steps to customize the appearance of
your data grid:

1. Head over to http://jqueryui.com/themeroller where we'll take a look at
the Themeroller. In the left column, you'll find the controls for selecting a predefined
theme or creating a custom theme, and the wide right column contains samples of
several different types of widgets.

Chapter 11

[263]

2. Click on the Gallery tab in the left column, and you'll see that you have dozens of
choices of pre-built Themeroller themes to choose from. As you click on different
samples, you'll see the sample widgets in the right column update to reflect that
style. I usually like to get started by selecting a prebuilt theme that's reasonably
close to the color scheme or appearance that I want, then I flip to the Roll Your
Own tab to tweak it to suit my needs. For this example, I'm going to start with the
Cupertino style.

Creating an Interactive Data Grid

[264]

After flipping to the Roll Your Own tab, you'll see that there are settings for fonts,
colors, corners, headers, and so on. Make whatever adjustments you'd like to get
the theme looking just the way you'd like. Feel free to play and experiment. If you go
too far and get to something you don't like, it's easy to flip back to the Gallery tab
and select the prebuilt theme again, stripped of any of your customizations, then
start again.

Keep in mind that any of your customizations will be lost if you re-select a prebuilt
theme. Once you get something you like, be sure to move on to step 3 to save it.

3. Once you've got your theme set up just the way you'd like, click on the Download
Theme button.

4. You'll find yourself on the Build Your Download page, which might seem a little
confusing. Note that jQuery UI is so large and has so many different features on
offer, the developers realize that forcing everyone to download the entire thing
would be overkill. If you only wanted to use one widget, there'd be no need for
downloading all the other widgets and effects. This page lets you pick and choose
different components of jQuery UI so that you don't have to download more than
you need.

Chapter 11

[265]

Since we're only here for a theme, we can go ahead and click on the Deselect all
components link near the top of the page.

Then, we'll leave the Theme and Version settings at their defaults and click on the
Download button to download a ZIP file.

Creating an Interactive Data Grid

[266]

5. Unzip the file and take a look inside. You'll see that even though we got the simplest
download we could, we still have quite a few files.

We've got a css folder that contains our theme folder with a CSS file and images
inside it. We've also got a development-bundle folder, an HTML file, and a js
folder that contains jQuery and a jQuery UI file.

All we need out of all of this is our theme. Copy your theme folder to the styles
directory of your own project. My theme folder is named cupertino since that's
the theme I chose. If you selected a different theme, your theme folder will be called
something else. It will be easy to find, though, as it will be the only folder inside the
css folder.

6. Next, we'll attach our theme CSS file to our HTML file. Inside the <head> section,
attach your theme CSS file before the demo_table.css file we attached in the
previous example.

<link rel="stylesheet" href="styles/cupertino/jquery-ui-1.8.16.
custom.css"/>
<link rel="stylesheet" href="styles/demo_table.css"/>

7. Now, unfortunately, our theme CSS file doesn't quite have all the styles we'll need
for a nicely styled data grid. After all, the jQuery UI developers have no way of
knowing all the different types of widgets and plugins people will want to use,
so there's no possible way they could cover every single case. Luckily, DataTables
plugin author Allan Jardine has already done some nice work for us in this area
and has provided a CSS file with the styles we'll need to get our themed data grid
looking its best.

Chapter 11

[267]

You can read up on styling the DataTables plugin in the documentation Allan Jardine
has made available at http://datatables.net/styling/.

Back inside the DataTables plugin files, look inside the css folder inside the media
folder to find the demo_table_jui.css file. Copy that to your own styles folder
and update your <link> tag to link to this version of the demo_table.css instead
as follows:

<link rel="stylesheet" href="styles/cupertino/jquery-ui-1.8.16.
custom.css"/>
<link rel="stylesheet" href="styles/demo_table_jui.css"/>

8. Now we just have to make a small update to our JavaScript code. We have to tell
the dataTable() method that we want to use jQuery UI. Head back into your
scripts.js file and we'll add a pair of curly brackets and pass a key/value pair to
enable jQuery UI styling for our data table:

$(document).ready(function(){
 $('#book-grid').dataTable({
 'bJQueryUI': true
 });
});

If you refresh the page in the browser now, you'll see that the data grid is now using
a style that's consistent with the widgets we saw on the jQuery UI Themeroller page:

However, you'll notice that the color scheme for the table rows is still lavender.

Creating an Interactive Data Grid

[268]

9. Let's make some adjustments to the color scheme. Open demo_table_jui.css.
There are just a couple of lines to update. First, we'll find line 281 where the colors
for the zebra-striping for the table are defined and update those to the colors we'd
like to use as follows:

tr.odd {
 background-color: #f1f7fb;
}

tr.even {
 background-color: white;
}

I'm going with a pale blue for odd rows and white for even rows to match the
Cupertino style I selected earlier. Feel free to choose colors that match your own
chosen theme.

10. Next, we'll change the color scheme for the currently sorted row. You'll find the CSS
for the sorted odd rows at line 380. I'm going to change mine to a medium blue as
follows:

tr.odd td.sorting_1 {
 background-color: #d6e7f4;
}

11. And finally, we can find the CSS for the sorted even row at line 392. I'm going to
change this to a light blue.

tr.even td.sorting_1 {
 background-color: #e4eff8;
}

You can select your own colors that coordinate with your own chosen theme.

Now, if you refresh the page in the browser, you'll see that the zebra-striping pattern
of the table fits with our Themeroller theme.

Chapter 11

[269]

12. Next up, we'll take a look at making a couple of other customizations to the data
grid. First, let's change those simple next and previous pagination buttons into
numbers. We'll pass another key/value pair to the dataTable method to replace
the buttons with pagination numbers as follows:

$(document).ready(function(){
 $('#book-grid').dataTable({
 'sPaginationType': 'full_numbers',
 'bJQueryUI': true
 });
});

Remember to separate each key/value pair with a comma, but not
to place a comma after the last key/value pair.

Creating an Interactive Data Grid

[270]

If you refresh the page in the browser, you'll see that the simple buttons have been
replaced by pagination numbers as shown in the following screenshot:

13. We might decide that for this particular data table, the search function doesn't make
sense. The DataTables plugin offers a way for us to disable individual features. To
disable the search box filtering, we'll pass another key/value pair as follows:

$(document).ready(function(){
 $('#book-grid').dataTable({
 'sPaginationType': 'full_numbers',
 'bJQueryUI': true,
 'bFilter': false
 });
});

Refresh the page in the browser and you'll see that the search box is gone.

Chapter 11

[271]

14. You've probably noticed that by default, the DataTables plugin is sorting our table by
the first column in ascending order, from A to Z. That might be fine in some cases,
but in this case since we're listing the all-time best-selling books, we probably want
to sort the table to show the books with the highest sales first. We'll pass in a new
key/value pair to specify which column should be used for the default sort and
which direction the sort should go.

$(document).ready(function(){
 $('#book-grid').dataTable({
 'sPaginationType': 'full_numbers',
 'bJQueryUI': true,
 'bFilter': false,
 'aaSorting': [[4, 'desc']]
 });
});

The key we're using is called 'aaSorting', and the value is the column number
and sort direction inside two sets of square brackets. Don't forget that JavaScript
starts counting at 0, not 1. So the fifth column in our table is actually column 4.
Then, we want the highest number at the top, so we pass 'desc' for descending
order.

Refresh the page in the browser and you'll see that the books are now in order from
highest sales to lowest sales. Note also that this default sort order doesn't affect
your site visitor's ability to sort the table by any of the other columns in any order
they'd like. The site visitor can still interact with your table. We're just re-defining
the default view in a way that makes the most sense for the data we're presenting.

What just happened?
We took our basic data grid and took it a step further by customizing the appearance and
behavior of the plugin. We learned how to use the jQuery UI Themeroller to create a custom
theme for our data grid. Then we learned how to replace the simple pagination buttons with
page numbers, disable searching the table, and how to set a default sort for the data grid.

Summary
In this chapter, we learned how to turn an ordinary HTML table into an interactive data grid.
Our site visitors can now take advantage of sorting different columns of the table to view
the data in different ways. Site visitors with JavaScript disabled simply see an ordinary HTML
table that contains all of the data. Data grids aren't terribly exciting, but they can make
dealing with large amounts of data worlds easier for your site visitors. Next up, we'll learn
how to make forms both prettier and easier to use.

12
Improving Forms

If you've ever tried to work with web forms, you know what a headache they
can be. Luckily, the authors of HTML5 are working hard to make sure that
experience improves. We're all waiting patiently for browsers to support those
nice new features, but in the meantime we have to build sites and turn out
beautiful functioning forms.

In this chapter, you'll learn the following topics:

 � Marking up a form with some of the new HTML5 attributes

 � Placing the cursor in the first form field

 � Using placeholder text in form fields

 � Validating your site visitors' form entries

 � Styling stubborn form elements such as file uploads and select drop downs

An HTML5 web form
We'll get started by taking advantage of some of the new attributes made available to us
in HTML5. The great thing about these additions is that they are completely backward
compatible. Browsers that don't know how to handle them will either ignore them or default
to a simple text input, and our site visitors on older browsers will be able to use our forms
without even knowing what they're missing.

First, a word of warning about web forms. A web form doesn't work by itself—it needs to
have some fancy backend programming on a server somewhere to collect the form entries
and process them, whether that means writing fields to the database or sending the form
information via e-mail. Because of this, the forms we build in this chapter won't actually
work—nothing will happen after clicking the Submit button on the form.

Improving Forms

[274]

If you want to add a functioning web form to a project, you have a few options. They are
as follows:

 � You can learn to do server-side programming to handle your form, but server-side
programming is well beyond the scope of this book.

 � You can use a CMS that will likely include form handling either in its core
functionality or as an add-on. Good candidates include Drupal, WordPress,
and Joomla!.

 � You can hire a server-side developer to get your form working. Or make friends with
one and barter your design skills for their coding skills.

 � You can use a web form service to handle all the server-side processing of your form.
My personal favorite is WuFoo, which I have used for years without a single hiccup.
(http://wufoo.com)

Any of these methods will help you create a working form to be included in your project.
However, let's take a look at how we can make the front end of our form the best it can be.

Time for action – setting up an HTML5 web form
1. We'll get started with a simple HTML document and the associated files and folders,

just like we set up in Chapter 1, Designer, Meet jQuery. We want to make sure to use
the HTML5 doctype in our document type declaration at the top of the document:

<!DOCTYPE html>

After all those long and convoluted document type declarations used by HTML 4 and
xHTML, this one is a breath of fresh air, isn't it?

2. Now, inside the <body> tag, open up a <form> tag as follows:

<form action="#" id="account-form">
</form>

The form tag needs an action attribute in order to work. Since our forms are just
dummy forms for scripting and styling purposes, we'll just use # as the value of
that attribute. The value of the action attribute is usually a URL—the place on the
server where we're going to send our form data for processing. We also added an id
attribute to make it easy to select the form for CSS and JavaScript purposes later.

3. Next up, we'll create a section for our site visitor to create a username and
password. We'll wrap these two fields up in a fieldset with a legend to group
them together.

<form action="#" id="account-form">
 <fieldset>

Chapter 12

[275]

 <legend>My Account</legend>
 <p>
 <label for="username">Username</label>
 <input type="text" name="username" id="username"/>
 </p>
 <p>
 <label for="password">Password</label>
 <input type="password" name="password" id="password"/>
 </p>
 </fieldset>
</form>

I've wrapped each field and its associated label in a paragraph tag (<p>). There is a
world of opinion out there on the best tags to use to mark up your form fields. Some
developers swear by simple <div> tags, others like to make the form a list ()
with each field a list item (). Others like to use a definition list (<dl>) and place
the labels inside the <dt> tags and the form fields inside the <dd> tag. At the end
of the day, any of these will do just fine and your form will work as expected for your
site visitors. Use whatever tags are your personal preference.

Look carefully at the HTML markup we've written so far for our form. There are
a few important things to note. They are as follows:

 � Each <input> has a type that is relevant to its purpose. Username has
a text type and Password has a password type.

 � Each <input> has a unique id. Remember that an id has to be unique
on the page, so select the id of your form inputs carefully.

 � Each <input> has a name attribute. This is passed to whatever code is
handling your form on the server side. It's a common practice to use the
same value for the name and id of a form element, but it's not compulsory.
You may easily select a different value for the id anytime you'd like, but
if you'd like to change the name value, you should first check with your
server-side developer to make sure the code he or she has written will
continue to work.

 � Each <label> has a for attribute that associates it with a particular
form element. The value in the for attribute is equal to the id of the
form element with which it is associated (not the name). This makes
some nice functionality available to our site visitors—clicking on a
label will bring focus to the associated form element. This behavior
is especially useful for checkbox and radio button inputs, which are
small and can be difficult to click.

Improving Forms

[276]

Each browser will have its own way of styling form elements, but here's what the
My Account section looks like for me (Google Chrome on Mac OSX):

4. Next up, we'll create an About Me section for our form.

<fieldset>
 <legend>About Me</legend>
 <p>
 <label for="name">Name</label>
 <input type="text" name="name" id="name"/>
 </p>
 <p>
 <label for="email">Email address</label>
 <input type="email" name="email" id="email"/>
 </p>
 <p>
 <label for="website">Website</label>
 <input type="url" name="website" id="website"/>
 </p>
 <p>
 <label for="birthdate">Birth Date</label>
 <input type="date" name="birthdate" id="birthdate"/>
 </p>
</fieldset>

Again, the text type was used for the Name input, since names are strings.
However, take a look at the type attribute for the Email, Website, and Birth
Date fields. We're using the new HTML5 input types here. In browsers where these
input types are not supported, these fields will look and work just like inputs with
a type of text. But in browsers where these input types are recognized, they'll
behave in a slightly different way. User input will automatically be validated by the
browser. For example, if a site visitor types an invalid e-mail address into an input
with the type email, the browser will warn them that they've entered an invalid
e-mail address.

Chapter 12

[277]

Also, on devices with soft keyboards, the keyboard keys will be altered to reflect the
characters necessary for entering that data type. For example, an input with a type
of email will open a keyboard with the . and the @ showing on an iPhone or an
iPad, making it easier for your site visitors on these devices to complete the required
information.

5. The next section in my form will be a section about beverage preferences. I want the
site visitor to select their favorite beverages from a list and then answer a question
about how many days per year they drink a beverage. Here's a sample of what my
list looks like:

<fieldset>
 <legend>Beverage Info</legend>
 <fieldset>
 <legend>Select your favorite beverages</legend>
 <p>Select at least three and no more than six beverages</p>

 <input type="checkbox" name="favorites[]" id="bev-water"
value="bev-water"/>
 <label for="bev-water">Water</label>

 <input type="checkbox" name="favorites[]" id="bev-juice"
value="bev-juice"/>
 <label for="bev-juice">Juice</label>

 </fieldset>
 <p>
 <label for="days">How many days per year do you drink a
beverage?</label>

Improving Forms

[278]

 <input type="number" name="days" id="days"/>
 </p>
</fieldset>

A few new things to note with the HTML we've used to mark up this section are
as follows:

 � Fieldsets can be nested. A fieldset is an excellent way to group a set
of checkboxes or radio buttons together, and we can use the legend of the
fieldset to create a header for our radio or checkbox group.

 � A set of checkboxes are identified as such because they will all share the
same name. As a site visitor can select more than one item in a set of
checkboxes, we add square brackets ([]) to the end of the name so that the
server will collect all of the answers into an array.

 � Each checkbox in the set has its own unique id and value. The id and
value do not necessarily have to match, but it's often easy to make them
the same.

 � Finally, the number of days per year is given an input type of number,
since only a number would be acceptable here. Be careful with this input
type. It is very strict and will not accept any non-numeric characters. Some
bits of data appear to be numbers, but are actually strings—for example,
telephone numbers and credit card numbers. If you wouldn't do some sort
of math with your number then it shouldn't be the number input type.

Chapter 12

[279]

6. The next section we'll add to our form is a payment information section:

<fieldset>
 <legend>Payment Info</legend>
 <fieldset>
 <legend>Credit Card Type</legend>

 <input type="radio" name="cc-type" id="cc-visa" value="cc-
visa"/>
 <label for="cc-visa">Visa</label>

 <input type="radio" name="cc-type" id="cc-mastercard"
value="cc-mastercard"/>
 <label for="cc-mastercard">Mastercard</label>

 <input type="radio" name="cc-type" id="cc-amex" value="cc-
amex"/>
 <label for="cc-amex">American Express</label>

 <input type="radio" name="cc-type" id="cc-discover"
value="cc-discover"/>
 <label for="cc-discover">Discover</label>

 </fieldset>
 <p>
 <label for="cc-number">Credit card number</label>
 <input type="text" name="cc-number" id="cc-number"/>
 </p>
</fieldset>

Much like the checkboxes, we've grouped a set of radio controls inside a fieldset
with the legend acting as the header for this section. Just like checkboxes, a set of
radio controls all share the same name, but each has its own unique id and value.
However, in the case of radio buttons, only one can be selected at a time, so there is
no need to mark them as an array.

Improving Forms

[280]

We've also added a field for collecting our site visitor's credit card number. Note that
we've assigned an input type of text to this field. Even though a credit card number
appears to be a number, we want to store it just as it is, and won't ever be adding
to or subtracting from this number. Also, customers may wish to type spaces or
hyphens in their credit card number.

7. Finally, we'll add a checkbox for our site visitor to accept our terms of service and a
submit button for them to submit the form information to us.

<fieldset>

 <input type="checkbox" name="tos" id="tos" value="tos"/>
 <label for="tos">Click here to accept our terms of service</
label>

 <p>
 <input type="submit" value="Sign me up!"/>
 </p>
</fieldset>

Chapter 12

[281]

The only new thing here is the Submit button. By default, an input with a type of
submit will read Submit. We can change that by adding a value attribute with the
text we'd like to actually appear on the button.

8. The only thing left to do is to style our form with a bit of CSS. The following is the
CSS I've used for my simple form:

fieldset { width:400px;margin:0;padding:10px;border:1px solid
#c1c3e6;background:#f1f2fa;margin-top:10px; }
fieldset fieldset { border:0 none;border-top:1px solid
#c1c3e5;border-bottom:1px solid #c1c3e5;width:380px;margin-
bottom:10px; }
legend { padding:3px 5px;color:#6c71c4;font-weight:bold;font-
size:1.2em; }
fieldset fieldset legend { font-size:1em;font-weight:normal; }
fieldset p { margin: 0 0 10px 0; }
fieldset ul { margin:0;padding:0;list-style:none; }
label { display:inline-block;width:150px; }
ul label { display:inline;width:auto; }
input[type="text"],
input[type="password"],
input[type="email"],
input[type="url"],
input[type="date"],
input[type="number"] { width:150px;border:1px solid
#c1c3e6;padding:4px; }

Note that the type attribute of our inputs can be used to select them for styling. In
this case, I've styled them all identically, but it would also be possible to give each
one its own set of styles if desired.

Improving Forms

[282]

Here's how the form looks with my CSS. Feel free to get creative and write your own
styles for the form.

Chapter 12

[283]

What just happened?
We took a look at some of the new HTML5 input types and how to use them properly to
put together a web form. We saw how to use fieldsets and legends to group fields together
under a heading and how to associate labels with form elements. We learned the proper use
of the text, password, e-mail, URL, date, checkbox, radio, and number input types.

Setting focus
If you head over to http://google.com, you'll see that they've made it really easy for
you to conduct a web search—as soon as the page is loaded up in the browser, the cursor
is blinking in the search field. There are other sites on the web that behave this way too,
making it quick and easy to get started filling in a form.

Any time you have a page where the site visitor's main task on the page will be completing
a form, you can make things easy on your site visitor by placing the cursor into the first form
field so they can just start typing. And it's wicked easy with jQuery. Here's how to do it.

Time for action – setting focus to the first field
We'll keep working with the sample form we set up in the last example. Here's how to set
the focus to the first field in the form.

1. Open up your empty scripts.js file and add a document ready statement.

 $(document).ready(function(){
 //code goes here
 });

2. Next up, we want to select the first field in our form. There are many different ways
to go about that. In this case, I'm going to use the id of the first form element.

 $(document).ready(function(){
 $('#username');
 });

3. All that's left to do is call the focus() method for that element.

 $(document).ready(function(){
 $('#username').focus();
 });

Now if you refresh the page in the browser, you'll see that the cursor is blinking in
the Username field of the form—the very first field.

Improving Forms

[284]

What just happened?
We used a couple of lines of jQuery to move focus to the first field in our form to make it
easy for our site visitors to jump right into completing our form. It was as simple as selecting
the first form element and then calling the focus() method for that element.

Placeholder text
Isn't it nice when you visit a site, and there's some soft grayed-out text in a form field giving
you a hint about what you're supposed to put there? There are umpteen different jQuery
plugins that have been written over the past several years to handle this because it can be a
bit of a hassle.

However, I'm here with good news. HTML5 provides a placeholder attribute that can be
used to create this kind of text in form fields automatically without any help from JavaScript.
Of course, as with any other cutting-edge technology, browser support can be a bit lacking.
We don't have the luxury of waiting years for browser support for this new feature to be
universal—we have to build functioning websites now. You could continue using all those old
jQuery plugins, but why not take advantage of support for the placeholder attribute if it's
there and only use jQuery to fill in the gaps for those browsers that don't recognize it yet?

This type of script is called a polyfill. It's used to fill in functionality that might be missing
from some browsers. If a browser does support the placeholder attribute, the polyfill
script does nothing, and just lets the browser handle the placeholders. For all those site
visitors without support for the placeholder attribute, the script springs into action,
providing the placeholder text functionality for everyone.

Time for action – adding placeholder text
Follow these steps to add placeholder text to your form fields for as many of your site visitors
as possible, whether or not their browser supports the new HTML5 placeholder attribute.

1. We'll keep using the same form that we've built in the last two sections. The first
thing we'll do is revisit each form field and add a placeholder attribute where it
makes sense. Here are some examples from my form:

<p>
 <label for="username">Username</label>
 <input type="text" name="username" id="username" placeholder="At
least 5 characters long"/>
</p>

Chapter 12

[285]

Here, I've added a hint about the required length of the username.

<p>
 <label for="password">Password</label>
 <input type="password" name="password" id="password"
class="required" placeholder="Choose a secure password"/>
</p>

Because you can never say it too much, here I've reminded my site visitor to create a
secure password.

<p>
 <label for="website">Website</label>
 <input type="url" name="website" id="website" placeholder="Don't
forget the http://"/>
</p>

It can be helpful to remind site visitors that valid URLs include the protocol at the
beginning.

<p>
 <label for="birthdate">Birth Date</label>
 <input type="date" name="birthdate" id="birthdate"
placeholder="yyyy-mm-dd"/>
</p>

Anytime a field requires special formatting, placeholder text can give a hint to
the site visitor what that should be.

When you're finished adding placeholder text, view your page in Safari or Chrome
to see the placeholder text in action.

Now we need to add support for those browsers that don't yet support
placeholder text.

Improving Forms

[286]

2. We'll use Dan Bentley's Placeholder polyfill. To download it, just head over to
https://github.com/danbentley/placeholder. Just like the other plugins
we've downloaded from GitHub, click on the ZIP button to download a zipped folder.

3. Unzip the folder and take a look inside. It's a pretty simple and straightforward plugin.

You've got a sample index.html file, a style.css file, and a jquery.
placeholder.js file, along with a license and a readme.

4. The good news about this plugin is that it works its magic just by being on the page.
Copy jquery.placeholder.js to your own scripts folder. Then head down to
the bottom of your page and attach the script to the page after jQuery and before
your own scripts.js file:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.placeholder.js"></script>
<script src="scripts/scripts.js"></script>

Chapter 12

[287]

Now, if you open the page in a browser that doesn't support placeholder attributes,
you'll see placeholders working. Those browsers are Firefox 3.6 and lower, Safari 3
and lower, Internet Explorer 9 and lower, and Opera 10 and lower.

What just happened?
We used Dan Bentley's Placeholder polyfill to add placeholder support to browsers where
it is lacking. We added placeholder attributes to the form fields where appropriate, then
included Dan's script on our page to get those placeholder attributes working in as many
browsers as possible.

Validating user entry
Sometimes it can feel frustrating for a site visitor when they have to submit a form several
times over, correcting errors that they've made filling it out. Without JavaScript, the only way
to validate the information the site visitor has entered is to wait for them to submit the form,
then identify the issues on the server, and send back a page that contains the form along
with any error messages that might help the site visitor correct the problem.

Showing errors as soon as they happen goes a long way toward making your form feel
snappy and responsive and helping your site visitors submit the form correctly on the first
try. In this section, we'll learn how to use the Validation plugin from Jörn Zaefferer. This
plugin is powerful and flexible and can handle validation in several different ways. We'll
take a look at the most straightforward way of adding client-side validation to your form.

Time for action – validating form values on the fly
We'll continue working with the form we've been creating through the last three sections.
Follow these steps to validate user entry into the form:

1. The first thing we'll do is download the Validation plugin and get it attached to
our page.

Improving Forms

[288]

Head over to http://bassistance.de/jquery-plugins/jquery-plugin-
validation/ and click on the Download button in the Files section to download a
ZIP file.

Chapter 12

[289]

2. Open up the ZIP file and take a look at what we've got.

There's a lot going on here. Several different JavaScript files, a changelog, and so
on. Remember how I said this plugin is powerful and can handle lots of different
approaches to validation? That's what all this is for. Handling form validation in
just about any old crazy situation you might find yourself in.

Luckily, though, our situation is pretty simple, so we don't have to do anything
complicated.

3. Copy jquery.validate.min.js to your own scripts folder and attach it
to your page.

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.placeholder.js"></script>
<script src="scripts/jquery.validate.min.js"></script>

In this case, there's no dependency between the placeholder script and the
validation script, so it doesn't matter which order they appear in, as long as
they're both after jQuery itself.

Improving Forms

[290]

4. Next, we're going to go back through our form and add some information that the
Validation plugin will use. Let's start with the username field:

<p>
 <label for="username">Username</label>
 <input type="text" name="username" id="username" placeholder="At
least 5 characters long" minlength="5" maxlength="20"
class="required"/>
</p>

This is a required field—any site visitor who completes this form must select a
username, so I'll simply add a class of required. I can use that class name to
create a special style for this form field with CSS if I'd like. Even if I don't, Validation
will use this to make sure this field is filled in.

Next, all usernames must be between 5 and 20 characters long. So I've added a
minlength and maxlength attribute.

5. Next up is the password field, which is also required. So I'll add the required class.

<p>
 <label for="password">Password</label>
 <input type="password" name="password" id="password"
class="required" placeholder="Choose a secure password"/>
</p>

While I'm at it, I'll add the required class to the e-mail field too.

<p>
 <label for="email">Email address</label>
 <input type="email" name="email" id="email" placeholder="you@
example.com" class="required"/>
</p>

6. Next, let's take a look at that list of favorite beverages. Remember we had a note
on there for the site visitor to select at least three but no more than six? We can
actually enforce that with the Validation plugin. Go to the first checkbox in the series
and add minlength and maxlength attributes as follows:

 <input type="checkbox" name="favorites[]" id="bev-water"
value="bev-water" maxlength="6" minlength="3"/>
 <label for="bev-water">Water</label>

We only have to add this on the first checkbox, not all of them. Validation is smart
enough to figure out that we're talking about this set of checkboxes.

Chapter 12

[291]

7. Now, let's take a look at the field where we ask the site visitor how many days per
year they drink a beverage. Obviously, since there are only 365 days in a year, that's
the highest number they could enter in this field. So we'll add a max attribute to
specify the highest possible number.

<p>
 <label for="days">How many days per year do you drink a
beverage?</label>
 <input type="number" name="days" id="days" max="365"/>
</p>

8. And that brings us to the payment section. Whatever we're selling, it's not free, so
we're going to require both the credit card type and credit card number. To require
entry for radio buttons, we just have to add the required class to the first radio
button in the set.

 <input type="radio" name="cc-type" id="cc-visa" value="cc-visa"
class="required"/>
 <label for="cc-visa">Visa</label>

We don't have to make any other changes to the radio button series.

9. Now, let's handle the credit card number itself. We need to add the required class.
We also need to add a creditcard class to validate that the number entered is, in
fact, a valid credit card number.

<p>
 <label for="cc-number">Credit card number</label>
 <input type="text" name="cc-number" id="cc-number"
placeholder="xxxxxxxxxxxxxxxx" class="creditcard required"/>
</p>

10. And at the bottom of our form, we have our Terms of Service checkbox. This is
required too, so we'll add the required class.

 <input type="checkbox" name="tos" id="tos" class="required"
value="tos"/>
 <label for="tos">Click here to accept our terms of service</
label>

Improving Forms

[292]

11. Now, we just need to call the validate() method that Validation makes
available to us. Inside your document ready statement, select the form and
call the validate() method.

$(document).ready(function(){
 $('#username').focus();
 $('#account-form').validate();
});

12. Now if you refresh the page in the browser, you'll see that you can't submit the form
without filling anything in—the required fields will be marked with an error message
saying the field is required. If you try to type an invalid URL or e-mail address into
the Website or Email address fields, you'll get an error message letting you know
there's a problem to be corrected. Just one problem—those error messages are sort
of in a weird place for our checkboxes and radio buttons.

That doesn't really help people understand exactly what's going on. Luckily,
Validation allows us to add our own error messages to the page wherever
we'd like them to display.

13. We're going to add an error message after the list of credit card type radio buttons.

 <input type="radio" name="cc-type" id="cc-discover"
value="cc-discover"/>
 <label for="cc-discover">Discover</label>

 <label for="cc-type" class="error">Select a credit card type!</
label>
</fieldset>

We'll add a <label>. The for attribute will refer to the name of the field—in this
case, all the radio buttons share the cc-type name. We'll add a class of error, and
add whatever error message we'd like inside.

Chapter 12

[293]

Note that for this case, the for attribute of our label is referring to the name of
the field rather than the ID. This is a special case created by the Validation plugin. If
you're not using custom error messages with the Validation plugin, then your label's
for attribute should always reference the id of the form element.

14. Next, we don't want those error messages showing up on the page unless they're
needed. We'd also like them to display in red so they stick out and are easy to find.
Open your styles.css file and add some styles for the error message:

label.error { display:none;width:360px;color:#dc522f;margin-
top:5px; }

We're adding a width since I've set my other labels to be short and floated to the
left. And we're adding a little margin for some space between the error message
and the field it's referring to.

Now if you refresh the browser and try to submit the form without selecting a credit
card type, you'll get the error message in a much better place as follows:

15. Next we need to do the same thing for our favorite beverages and our Terms of
Service checkbox: Here's what we'll add for favorite beverages:

 <input type="checkbox" name="favorites[]" id="bev-wine"
value="bev-wine"/>
 <label for="bev-wine">Wine</label>

 <label for="favorites[]" class="error">Please select at least
three and no more than six favorite beverages</label>
</fieldset>

And here's what we'll add for Terms of Service:

<fieldset>

Improving Forms

[294]

 <input type="checkbox" name="tos" id="tos"
class="required"/>
 <label for="tos">Click here to accept our terms of service</
label>

 <label for="tos" class="error">You must accept our terms of
service</label>
 <p>
 <input type="submit"/>
 </p>
</fieldset>

Now, if you refresh the page in the browser and try to submit the form without completing
required fields or try to enter invalid information in the form, you'll get an appropriate error
message as soon as the problem is detected.

What just happened?
We used the Validation plugin to add some simple client-side validation to our form. The
simplest way to use the Validation plugin is to simply add some class names and attributes to
your form elements. Validation will take care of the rest—it's smart enough to recognize the
HTML5 input types and validate those and offers some other useful validation rules such as
required fields, a maximum number value, minimum and maximum lengths, and credit card
numbers. We dropped in a line of CSS to style the error messages the way we wanted.

Improving appearance
If you've tried styling web forms with CSS, then you've probably discovered that some form
elements, like text inputs and buttons, are pretty easy to style. There are a few quirks, but
once you get those figured out, you can get those form elements looking just about any
way you'd like. Other form elements, however, are much more stubborn and don't respond
much, if at all, to CSS styles. It's so frustrating to design a lovely form only to realize that it's
technically impossible.

These troublesome form elements are:

<select>
<input type="file">
<input type="checkbox">
<input type="radio">

Not only are these four form elements impossible to style with CSS, they also look radically
different from one browser and operating system to another, leaving us with little control over
the appearance of our form. Let's see how Pixel Matrix's Uniform plugin can help us out.

Chapter 12

[295]

Time for action – improving form appearance
Follow these steps to take advantage of the styling options made possible by the
Uniform plugin:

1. We'll get started with a basic HTML file and associated files and folders, just like
we set up in Chapter 1, Designer, Meet jQuery. For this example, in the body of the
HTML document, we're going to set up a simple form with examples of each type of
hard-to-style form element. Get started with a <form> tag:

<form id="pretty-form" action="#">
</form>

2. Then, inside our form we'll add our form elements. We'll start off with a select
drop down:

<fieldset>
 <legend>Select your favorite juice</legend>
 <p>
 <label for="juice">Favorite Juice</label>
 <select id="juice" name="juice">
 <option>Select one</option>
 <option value="orange">Orange Juice</option>
 <option value="grape">Grape Juice</option>
 <option value="grapefruit">Grapefruit Juice</option>
 <option value="cranberry">Cranberry Juice</option>
 <option value="tomato">Tomato Juice</option>
 <option value="pineapple">Pineapple Juice</option>
 <option value="apple">Apple Juice</option>
 </select>
 </p>
</fieldset>

We're following all the same rules we followed for the last form, making sure the
form works properly and is accessible.

Exactly what this <select> looks like will depend on your browser and operating
system, but here's how mine looks in Chrome on Mac OSX:

Improving Forms

[296]

3. Next, we'll add a file input.

<fieldset>
 <legend>Fruit Picture</legend>
 <p>
 <label for="fruit-photo">Upload a photo of your favorite
fruit</label>
 <input type="file" id="fruit-photo" name="fruit-photo"/>
 </p>
</fieldset>

Hard to believe this innocent-looking little tag could be the source of so much styling
headache, but there you are. Here's how it looks in Chrome on Mac OSX:

4. Next up, let's add a few checkboxes as follows:

<fieldset>
 <legend>Which hot beverages do you enjoy?</legend>

 <input type="checkbox" name="hot-bevs[]" id="hot-coffee">
 <label for="hot-coffee">Coffee</label>

 <input type="checkbox" name="hot-bevs[]" id="hot-chocolate">
 <label for="hot-chocolate">Hot Chocolate</label>

 <input type="checkbox" name="hot-bevs[]" id="hot-tea">
 <label for="hot-tea">Tea</label>

</fieldset>

Chapter 12

[297]

5. And then some radio buttons.

<fieldset>
 <legend>Select your favorite soft drink</legend>

 <input type="radio" name="soft-drinks" id="soda"/>
 <label for="soda">Soda</label>

 <input type="radio" name="soft-drinks" id="sparkling-
water"/>
 <label for="sparkling-water">Sparkling water</label>

 <input type="radio" name="soft-drinks" id="iced-tea"/>
 <label for="iced-tea">Iced Tea</label>

 <input type="radio" name="soft-drinks" id="lemonade"/>
 <label for="lemonade">Lemonade</label>

</fieldset>

6. And the last thing we'll add to our form is just a few easily styleable elements,
so that we can learn how to style these to match our Uniform styles:

<fieldset>
 <legend>Some other stuff about me</legend>
 <p>
 <label for="name">My name</label>
 <input type="text" id="name" name="name"/>
 </p>
 <p>

Improving Forms

[298]

 <label for="about-me">About me</label>
 <textarea rows="10" cols="40" id="about-me" name="about-me"></
textarea>
 </p>
</fieldset>
<p class="buttons">
 <input type="submit"/>
 <input type="reset"/>
</p>

What just happened?
Now we've got our unstyled form set up. Exactly what our form looks like will depend on
your browser and operating system. We followed all the rules established earlier in this
chapter for setting up a correct and accessible form. Except this time, we've included some
difficult-to-style form elements. Let's take a look now at how we can use the Uniform plugin
to get our form looking consistent across as many browsers as possible.

Styling the unstylable
If you want to take a little time out and try writing some CSS to style these form elements,
you'll see that there's not much that touches them. Some of them don't seem to be affected
by CSS at all, and when they are, it's not always in the way that you'd expect. No wonder
these form fields give everyone so much trouble. JQuery to the rescue.

Time for action – adding uniform for styling the unstylable
Follow these steps to use the Uniform plugin to gain styling control over your form elements:

1. Let's get the Uniform plugin and take a look at how that works. Head over to
http://uniformjs.com/ and click on the big Download Uniform button.

Chapter 12

[299]

2. Unzip the folder and take a look inside.

Improving Forms

[300]

This is pretty straightforward, right? Some styles, a demo, some images, and two
versions of the Uniform plugin—one minified and one not. We've seen this before.

By default, Uniform comes with a default stylesheet and images. However, other
styles are available. Back on uniformjs.com, if you click on Themes in the
navigation, you'll see the themes that are currently available. I really like the look of
Aristo, so I'm going to download that.

This gets me a simple ZIP file with just some css and images inside:

3. Next, we need to get these files into our own project and attached to our HTML
page. Let's start with the JavaScript. Copy jquery.uniform.min.js to your
own scripts folder and attach the Uniform script between jQuery and your own
scripts.js file:

Chapter 12

[301]

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.uniform.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>

4. Now copy the CSS file for the theme you'd like to use to your own styles folder
and attach it in the head of the document:

<head>
 <title>Chapter 12: Improving Forms</title>
 <link rel="stylesheet" href="styles/uniform.aristo.css"/>
 <link rel="stylesheet" href="styles/styles.css"/>

5. The last thing we need to grab is the associated images. Copy the contents of your
chosen theme's images folder to your own images folder. Your own project's
structure should now look similar to the following screenshot:

6. Now, we're ready to call the uniform() method to style our unstylable form
elements. Open up your scripts.js file, and insert a document ready statement:

$(document).ready(function(){
 //our code will go here
});

7. Uniform allows us to pick and choose which form elements we'd like to style. In this
case, we want to style all four stubborn elements, so our selector will be:

$(document).ready(function(){
 $('select, input:checkbox, input:radio, input:file');
});

Improving Forms

[302]

8. Then, all that's left to do is call the uniform() method:

$(document).ready(function(){
 $('select, input:checkbox, input:radio, input:file').uniform();
});

Now if you refresh the page in the browser, you'll see these stubborn and unstylable
form elements now match the Uniform theme that you've selected.

There are still some funky CSS things to take care of, and our fieldsets, legends,
buttons, and text inputs don't match. Let's write a bit of CSS to bring it all together.

Styles for all
We still have some CSS things to clean up—our lists of checkboxes and radio buttons still
have their bullets and our text inputs, buttons, fieldsets, and so on are still unstyled. Let's
style everything to match the Uniform theme we've selected.

Chapter 12

[303]

Time for action – styling the styleable
1. Open up your styles.css file. We'll start off by styling the fieldsets and legends:

fieldset {
 background: #fff;
 border: 1px dotted #83b0ca;
 margin: 10px 20px 0 20px;
 padding:10px;
 }

legend {
 background: #bed6e3;
 border:1px solid #8fb7cf;
 color: #1C4257;
 padding: 0 5px;
 box-shadow:2px 2px 2px rgba(0,0,0,0.2);
 }

I've selected shades of blue that match the Aristo theme that I selected. If you
chose a different theme, feel free to use different colors and styles to match your
chosen theme.

2. Next, we'll style some of the container elements we're using in the form:

fieldset p {
 margin: 0 0 10px 0;
 }

fieldset ul {
 list-style: none;
 margin: 0;
 padding: 0;
 }

label {
 display: block;
 }

ul label {
 display: inline;
 width: auto;
 }

p.buttons {
 margin: 20px;
 }

Improving Forms

[304]

3. Next, we'll add some styles to that text input and textarea so they match our Aristo
form elements:

input[type="text"],
textarea {
 border: 1px solid #ccc;
 border-radius: 3px;
 box-shadow: inset 0 0 4px rgba(0,0,0,0.3);
 moz-border-radius: 3px;
 moz-box-shadow: inset 0 0 4px rgba(0,0,0,0.3);
 padding: 4px;
 webkit-border-radius: 3px;
 webkit-box-shadow: inset 0 0 4px rgba(0,0,0,0.3);
 width: 250px;
 }

4. And last, but not least, we'll style our buttons. The Aristo theme makes use of a nice
blue gradient, so I'm going to use a gradient for my buttons. I'll have to write quite a
lot of code for supporting all the browsers, but here it is:

input[type='submit'],
input[type='reset'] {
 background: rgb(185,224,245);
 background: linear-gradient(top, rgba(185,224,245,1)
0%,rgba(131,176,202,1) 100%);
 background: -moz-linear-gradient(top, rgba(185,224,245,1) 0%,
rgba(131,176,202,1) 100%);
 background: -ms-linear-gradient(top, rgba(185,224,245,1)
0%,rgba(131,176,202,1) 100%);
 background: -o-linear-gradient(top, rgba(185,224,245,1)
0%,rgba(131,176,202,1) 100%);
 background: -webkit-gradient(linear, left top, left bottom,
color-stop(0%,rgba(185,224,245,1)), color-stop(100%,rg
ba(131,176,202,1)));
 background: -webkit-linear-gradient(top, rgba(185,224,245,1)
0%,rgba(131,176,202,1) 100%);
 border: solid 1px #6e93b0;
 border-radius: 2px;
 box-shadow: rgba(0,0,0,0.15) 0px 1px 3px;
 color: #1C4257;
 cursor: pointer;
 display: inline-block;

Chapter 12

[305]

 filter: progid:DXImageTransform.Microsoft.gradient(
startColorstr='#b9e0f5', endColorstr='#83b0ca',GradientType=0);
 filter: progid:DXImageTransform.Microsoft.gradient(
startColorstr='#eef3f8', endColorstr='#96b9d4',GradientType=0);
 font-size: 1em;
 font-weight: bold;
 height: 27px;
 line-height: 26px;
 margin-right: 5px;
 moz-border-radius: 2px;
 moz-box-shadow: rgba(0,0,0,0.15) 0px 1px 3px;
 padding: 0 10px;
 text-shadow: rgba(255,255,255,0.5) 0px 1px 0px;
 webkit-border-radius: 2px;
 webkit-box-shadow: rgba(0,0,0,0.15) 0px 1px 3px;
 }

input[type='submit']:hover,
input[type='reset']:hover {
 color: #0b1b24;
 }

input[type='submit']:active,
input[type='reset']:active {
 background: rgb(131,176,202);
 background: linear-gradient(top, rgba(131,176,202,1)
0%,rgba(185,224,245,1) 100%);
 background: -moz-linear-gradient(top, rgba(131,176,202,1) 0%,
rgba(185,224,245,1) 100%);
 background: -ms-linear-gradient(top, rgba(131,176,202,1)
0%,rgba(185,224,245,1) 100%);
 background: -o-linear-gradient(top, rgba(131,176,202,1)
0%,rgba(185,224,245,1) 100%);
 background: -webkit-gradient(linear, left top, left bottom,
color-stop(0%,rgba(131,176,202,1)), color-stop(100%,rg
ba(185,224,245,1)));
 background: -webkit-linear-gradient(top, rgba(131,176,202,1)
0%,rgba(185,224,245,1) 100%);
 filter: progid:DXImageTransform.Microsoft.gradient(
startColorstr='#83b0ca', endColorstr='#b9e0f5',GradientType=0);
 }

Improving Forms

[306]

I'm adding a subtle text color change on hover and reversing the gradient when the
buttons are clicked. Now, refresh the page in the browser and take a look at our
beautiful form.

Chapter 12

[307]

What just happened?
We used the Pixelmatrix's Uniform jQuery plugin to style formerly stubborn and unstyleable
form elements. We chose one of the pre-made themes and attached all relevant CSS and
images to our page, then selected each type of form element we wanted to style and called
the uniform() method. We then used our CSS skills to style the other form elements, a
simple text input, a textarea, and some buttons, to match the theme we selected. The result
is a gorgeous form that will look consistent across different browsers and will still work
perfectly for users with JavaScript disabled.

Our own theme
Sure, this Aristo theme is nice, but what if it doesn't match our site? Do we have any other
option? Of course we do! If none of the prebuilt themes match your site, you can make your
own theme using your own styles and colors to match any site you'd like. In fact, Pixelmatrix
has made it super easy. Here's how you do it:

Time for action – creating a custom uniform theme
1. Start off by downloading the theme kit from Pixelmatrix. It's available in the themes

section on uniformjs.com:

Improving Forms

[308]

2. Unzip the folder and inside you'll find two PSD files—sprite.psd and sprites.
psd. Open up sprite.psd in Photoshop and style the form elements to your
heart's content. You can change the sizes of the elements if you'd like to have larger
or smaller form elements. Sprites.psd is only for explaining what each style is for.
You can use it as a reference to make sure you get all the possibilities covered, but
you won't actually need to use it to create your theme.

3. When your sprite is ready, head over to http://uniformjs.com/themer.html.

Chapter 12

[309]

Fill out the form with height of your select sprite, the width and height of your
checkboxes and radio buttons, and the height of your file input. Then click Generate
code. The CSS that you'll need to have Uniform work with your sprite will be
generated for you. Copy and paste it into a CSS file and save it to your project.

4. Attach your new CSS file to your HTML document and save your sprite as a PNG
file to the images folder in your project, and you should be all set. You might find
a few things that need some minor tweaks, but setting up a custom Uniform theme
is that straightforward.

If you'd like to contribute your theme back to the Uniform
community for other designers and developers to use, you
can submit it to Pixelmatrix by e-mailing a zip of your theme
to josh@pixelmatrixdesign.com.

What just happened?
We learned how to use the theme kit and custom theme CSS generator provided by
Pixelmatrix to quickly and easily create our own Uniform theme.

Summary
Well, that wraps up the chapter on forms. We learned how to use the new HTML5 form
elements properly to create a form that functions perfectly and is accessible to boot.
We learned how to focus the first field in the form, use placeholder text in all browsers,
validate our site visitor's form input and style those stubborn and notoriously unstyleable
form elements. Now you've got an arsenal of tools on your side to create gorgeous-looking
forms that enhance your site visitors' experience on your site. And best of all, they all
degrade gracefully for users with JavaScript disabled since we approached our forms with
the progressive enhancement mindset—first building out a working form, then layering in
enhancements for those site visitors whose browsers support them.

I know that JavaScript can be a scary subject for designers. Kudos to you for sticking with me
to the end of the book! I hope now that you have a basic understanding of jQuery and feel
sure that you'll be able to tackle your next JavaScript challenge with confidence. You know
how to put the jQuery library to good use to enhance your sites. You know how to find good
plugins to make coding up interactions quick and easy. You know how CSS and JavaScript can
work together to enhance the site visitor's experience on your site. And you know that there
is no shortage of tutorials, resources, help forums, articles, and discussions online to help
you along if you get stuck.

Improving Forms

[310]

For its part, jQuery gets better with every release—sleeker, faster, and more capable. The
jQuery team is careful to keep the documentation updated so you'll always be able to figure
out just how to use each method. The jQuery team is smart and quick, and new jQuery
updates are being announced on a regular schedule. All of this points to a lively and useful
library that will only continue to grow in popularity across the Web. It's a favorite of many
coders, from experienced hackers to beginners like you.

I hope that you've enjoyed this book and that it's given you many new ideas for interactive
elements you can design and build for your sites. Be sure to stay connected to the jQuery
community—it will be your best resource moving forward with further improving and
growing your JavaScript skills.

Index
Symbols
<a> link 31
</body> tag 16, 135, 190
<body> tag 34, 274
<dd> tags 42
<dt> tags 42
<form> tag 274
:hover class 119
 tag 187
<link> element 16
<script> element 16
</script> tag 16
<script> tag 129, 190
.sfHover class 119
.show() method 47
<tbody> element 258
<tfoot> element 258
<thead> element 258
.toggle() method 47

A
aaSorting 271
addClass() method 50, 147
Ajax 93
Ajax API CDN 18
Ajax magic

adding 136, 137
animated news ticker

creating 217-222

append() method 21
appendTo() method 183, 245
arrow controls

adding 6466
attr() method 26, 99

B
Back button 23
basic data grid

about 257
creating 258-262

BBQ plugin 142
behavior, JavaScript basics 11
bind() method 26, 98
boxRain 191

C
carouselInit() function 228, 236
carousel.next() 235
carousels

about 211
designing 223

carousel slideshow
about 238
Next and Previous Buttons, activating 249-254
slideshow, adding 241-248
thumbnail slideshow, creating 239-241

CDN 18
CDN-hosted copy

using 18

[312]

cellspacing attribute 99
click function 46
color 13
Colorbox behavior

customizing 161
custom transition, using 161
fixed size, setting 162
initialWidth/initialHeight 163
innerWidth/innerHeight 163
maxWidth/maxHeight 163
slideshow, creating 163, 165

colorbox() method 166
Colorbox plugin

about 153
used, for creating simple photo gallery 154-161

community support 10
Content Delivery Network. See CDN
content, JavaScript basics 11
creditcard class 291
crossSlide() method 203
CrossSlide plugin 201
CrossSlide slideshow

creating 201-209
CSS image sprite technique 50
CSS selectors 8
current page

highlighting, in navigation 145, 146
custom Ajax tooltips

building 93-104
custom-designed tooltips

using 87-92
custom scrollbars

adding 57-64
custom styles

adding 66-69
custom text tooltips

creating 74-79
custom tooltips

creating 73
custom Ajax tooltips 93
custom-designed tooltips, using 87
custom text tooltips 74
custom tooltip styles 84
qTip’s tooltips 80

custom tooltip styles
writing 84-86

custom transition
used, in Colorbox customization 161

custom uniform theme, HTML5 web form
creating 307-09

D
data grid

customizing 262-271
dataTable() method 261
Debug Bar program 66
delux asynchronous navigation

about 140, 141
BBQ plugin, using 142-145
building 141, 142
current page, highlighting 145-147
loading animation, adding 148-152

demo.js 61
demo_table_jui.css file 267
Dev 7 Studios 186
Document Object Model. See DOM
DOM 32
dynamicFaq function 45

E
each() method 96
eat() method 13, 138
end() method 185
externalLinks function 27, 29

F
fadeIn() method 185
fadeOut() method 151, 185
fancy login form

creating 166-173
FAQ page

final touches, adding 49-51
sprucing up 47, 48

FAQ page markup
about 42
HTML document, working with 45-47
HTML, setting up 42, 44

featured content slider
creating 223-227
pagination controls 227

[313]

filter() method 40
focus

setting, to first field 283, 284
focus() method 283, 284
functions, JavaScript syntax 13, 14

G
galleriffic() method 200
Galleriffic slideshow

about 193
creating 193-200

graceful degradation 10

H
hashchange event 143
horizontal drop-down menu

creating, Superfish plugin used 108115
hoverIntent plugin

about 128, 129
custom animation, incorporating 128

href attribute 26, 31, 99
HTML5 web form

about 273, 274
appearance, improving 294-297
custom uniform theme, creating 307-309
focus, setting to first field 283, 284
placeholder text, adding 284-287
setting up 274-281
styleable, styling 302-305
unstylable, styling 298-302
user entry, validating 287-294

HTML5 web form appearance
improving 294-297

HTML document
working with 45, 46

HTML markup 8, 9

I
icons

adding, to links 29
index.html file 100
infoboxes directory 95
initCallback 228

initialWidth/initialHeight, Colorbox 163
innerWidth/innerHeight, Colorbox 163

J
JavaScript 12
JavaScript basics

about 10
behavior 11
content 11
graceful degradation 10
presentation 11
progressive enhancement 10

JavaScript syntax
about 12
functions 13, 14
objects 12, 13
variables 12

jcarousel() method 215
jCarousel plugin

about 211
basic carousel, creating 211-217
downloading 213

jcarousel-skin-tango class 215
jQuery

about 7, 8
animations 9
basic data grid 257
basic data grid, creating 258-261
CDN-hosted copy, using 18
community support 10
CSS selectors, using 8
custom tooltips, creating 73
data grid, customizing 262-271
deluxe asynchronous navigation 140
downloading 15
features 8
HTML markup, using 8, 9
HTML5 web form 273
Navigation Menu, building 107
plugin library 9
simple asynchronous navigation 131
simple photo gallery, creating 154
slideshow, planning 181, 182
setting up 15-18
URL 16

[314]

jQuery BBQ plugin 142, 144
jQueryForDesigners 15
jquery.jscrollpane.js 61
jquery.jscrollpane.min.js 61
jquery.mousewheel.js 62
jQuery plugins

about 54
scrollable HTML, setting up 55, 56
selecting 54, 55
URL 54

jquery.qtip.css 77
jquery.qtip.min.css 77
jQuery script

about 19
paragraph, adding 20

jScrollPane() method 64
jScrollPane plugin 54, 63
jsOff class 197
jsOn class 198
jspArrowDown 68

L
lightboxes

about 153
video, displaying 174-177

lightbox image gallery
turning, into slideshow 164, 165

li:hover selector 119
links

icons, adding to 29
opening, in new window 23-29

li.sfHover selector 119
List Apart

URL 107
list of links

creating 30-33
loading animation

adding 148151
load() method 137
lorem ipsum 55

M
MAMP

about 93
URL 93

maxWidth/maxHeight, Colorbox 163
mouseover event 128
multiple video player

creating 173-177
mwheelintent.js 62

N
navigation menu

:hover class 119
.sfHover class 119
cascading inherited styles 119, 120
customizing 117, 118
horizontal drop-down menu, creating 108
vertical fly-out menu, creating 115

new-window class 29
next and previous buttons

adding 234-237
next() method 185
nextPrev() function 249, 250
Nivo Slider

about 186
URL 186

nivoSlider() method 191
Nivo Slider slideshow

creating 187192
customizing 192

O
objects, JavaScript syntax 12, 13
one-page web gallery

creating 177, 178
open() method 27

P
pagination controls

about 227
adding 228-233

parents() method 147
partial load method 140
placeholder attribute 284
placeholder text

adding, to HTML5 web form 283-286
plugin library 9
plugins 54

[315]

polyfill 284
prepend() method 242
presentation, JavaScript basics 11
Progressive enhancement 10
pseudoclass selectors 38

Q
qtip() method 78
qTip plugin

URL 75
qTips tooltips

color schemes 83
customizing 80-84
ui-tooltip-blue color scheme 83
ui-tooltip color scheme 83
ui-tooltip-dark color scheme 83
ui-tooltip-green color scheme 83
ui-tooltip-light color scheme 83
ui-tooltip-red color scheme 83

R
ready() method 20, 115, 184, 191
removeClass() 50
rollOver 13

S
saySomething function 14
scripts.js file 39
scrollable HTML

setting up 55, 56
setInterval() method 184
showArrows option 65
simple asynchronous navigation

about 131
Ajax magic, adding 136-140
simple website, setting up 132-135

simple crossfade slideshow
creating 182-186

simple HTML page
setting up 55, 56

simple photo gallery
about 154
setting up, Colorbox plugin used 154-160

simple website
setting up 132, 133

single-page web gallery
creating 177, 178

slideDown() method 92
slideshow

CrossSlide slideshow, creating 201-209
Galleriffic slideshow, creating 193-200
Nivo Slider slideshow, creating 186-192
planning 181, 182
simple crossfade slideshow, creating 182-186

slideshow function 185
slideshowInit() function 242, 250
slideToggle() method 49, 51
smooth scrolling

setting up 70, 71
stand-alone video player

creating 173-177
standard navigation bar

enhancing, with custom tooltips 87-92
string 12
styleable, HTML5 web form

styling 302-305
styles.css 15
superfish.css file 112
Superfish menus

customizing 121-127
superfish() method 111, 114
Superfish plugin

about 107
used, for creating horizontal

drop-down menu 108-115
syntax 12

T
tabs

about 34
creating 34-40

target attribute 24
Themeroller theme 268
thumbnail photo gallery

creating 193
thumbnail slideshow

creating 239, 240

[316]

title attribute 74
toggleClass() method 51

U
ui-tooltip-purple class 86
uniform() method 301
Uniform plugin

adding 298
unstylable, HTML5 web form

styling 298-302
user entry

validating, in HTML5 web form 287-294

V
validate() method 292
variables, JavaScript syntax 12
vendor prefixes 120
vertical fly-out menu

creating 115, 116

W
W3C 24
WampServer

about 93
URL 93

window
links, opening in 23-29

word function 14
WuFoo 274

Thank you for buying
jQuery for Designers Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

jQuery UI 1.8
ISBN: 978-1-84951-652-5 Paperback: 424 pages

Build highly interactive with applications with
ready-to-use widgets from the jQuery User
Interface Library

1. Packed with examples and clear explanations of
how to easily design elegant and powerful front-
end interfaces for your web applications

2. A section covering the widget factory including an
in-depth example on how to build a custom jQuery
UI widget

3. Updated code with significant changes and fixes to
the previous edition

jQuery UI Themes Beginner's Guide
ISBN: 978-1-84951-044-8 Paperback: 268 pages

Create new themes for your jQuery site with this
step-by-step guide

1. Learn the details of the jQuery UI theme framework
by example

2. No prior knowledge of jQuery UI or theming
frameworks is necessary

3. The CSS structure is explained in an easy-to-
understand and approachable way

4. Numerous examples, no unnecessary long
explanations, lots of screenshots and diagrams

Please check www.PacktPub.com for information on our titles

jQuery Mobile First Look
ISBN: 978-1-84951-590-0 Paperback: 216 pages

Discover the endless possibilities offered by jQuery
Mobile for rapid mobile web development

1. Easily create your mobile web applications from
scratch with jQuery Mobile

2. Learn the important elements of the framework and
mobile web development best practices

3. Customize elements and widgets to match your
desired style

4. Step-by-step instructions on how to use jQuery
Mobile

jQuery 1.4 Animation Techniques: Beginners Guide
ISBN: 978-1-84951-330-2 Paperback: 344 pages

Quickly master all of jQuery's animation methods
and build a toolkit of ready-to-use animations using
jQuery 1.4

1. Create both simple and complex animations using
clear, step-by-step instructions, accompanied with
screenshots

2. Walk through jQuery's built-in animation methods
and see in detail how each one can be used

3. Over 50 detailed examples of different types of web
page animations

4. Attractive pictures and screenshots that show
animations in progress and how the examples
should finally appear

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Designer, Meet jQuery
	What is jQuery?
	Why is jQuery awesome for designers?
	Uses CSS selectors you already know
	Uses HTML markup you already know
	Impressive effects in just a few lines of code
	Huge plugin library available
	Great community support

	JavaScript basics
	Progressive enhancement and graceful degradation
	Gotta keep 'em separated
	Content
	Presentation
	Behavior

	Designer, meet JavaScript
	Variables
	Objects
	Functions

	Downloading jQuery and getting set up
	Time for action – downloading and attaching jQuery
	Another option for using jQuery
	Your first jQuery script
	Time for action – getting ready for jQuery
	Adding a paragraph

	Time for action – adding a new paragraph
	Summary

	Chapter 2: Enhancing Links
	Opening links in a new window
	Why not just use the target attribute?

	Time for action – opening a link in a new window
	Adding icons to links
	Time for action – creating a list of links
	Simple tabs
	Time for action – creating simple tabs
	Summary

	Chapter 3: Making a Better FAQ Page
	FAQ page markup
	Time for action – setting up the HTML
	Time for action – moving around an HTML document
	Sprucing up our FAQ page
	Time for action – making it fancy
	We're almost there!
	Time for action – adding some final touches
	Summary

	Chapter 4: Building Custom Scrollbars
	Designer, meet plugins
	Choosing a plugin

	Setting up some scrollable HTML
	Time for action – scrollable HTML
	Adding custom scrollbars
	Time for action – simple custom scrollbars
	Adding arrow controls
	Time for action – adding up and down arrows
	Customizing the Scrollbar Style
	Time for action – adding our own styles
	Smooth scrolling
	Time for action – setting up smooth scrolling
	Summary

	Chapter 5: Creating Custom Tooltips
	Simple custom text tooltips
	Time for action – simple text tooltips
	Customizing qTip's appearance
	Time for action – customizing qTips
	Custom styles for tooltips
	Time for action – writing custom tooltip styles
	Enhancing navigation with tooltips
	Time for action – building a fancy navigation bar
	Showing other content in tooltips
	Time for action – building custom Ajax tooltips
	Summary

	Chapter 6: Building an Interactive Navigation Menu
	Horizontal drop-down menu
	Time for action – creating a horizontal drop-down menu
	Time for action – improving the drop-down menu with jQuery
	Vertical fly-out menu
	Time for action – creating a vertical fly-out menu
	Customizing the navigation menu
	:hover and .sfHover
	Cascading inherited styles

	Vendor prefixes
	Time for action – customizing Superfish menus
	Custom animation

	Time for action – incorporating custom animation
	The hoverIntent plugin
	Time for action – adding the hoverIntent plugin
	Summary

	Chapter 7: Navigating Asynchronously
	Simple asynchronous navigation
	Time for action – setting up a simple website
	Time for action – adding Ajax magic
	Deluxe asynchronous navigation
	Time for action – building deluxe asynchronous navigation
	Time for action – using the BBQ plugin
	Time for action – highlighting the current page in the Navigation
	Time for action – adding a loading animation
	Summary

	Chapter 8: Showing Content in Lightboxes
	Simple photo gallery
	Time for action – setting up a simple photo gallery
	Customizing Colorbox's behavior
	Transition

	Time for action – using a custom transition
	Fixed size

	Time for action – setting a fixed size
	innerWidth/innerHeight
	InitialWidth/initialHeight
	maxWidth/maxHeight

	Creating a slideshow

	Time for action – creating a slideshow
	Fancy login
	Time for action – creating a fancy login form
	Video player
	Time for action – showing a video in a lightbox
	One-page web gallery
	Time for action – creating a one-page web gallery
	Summary

	Chapter 9: Creating Slideshows
	Planning a slideshow
	Simple crossfade slideshow
	Time for action – creating a simple crossfade slideshow
	Nivo Slider
	Time for action – creating a Nivo Slider slideshow
	Galleriffic slideshow
	Time for action – creating a Galleriffic slideshow
	The CrossSlide plugin
	Time for action – building a CrossSlide slideshow
	Summary

	Chapter 10: Featuring Content in Carousels and Sliders
	Basic jCarousel
	Time for action – creating a basic carousel
	Animated news ticker
	Time for action – creating an animated news ticker
	Featured content slider
	Time for action – creating a featured content slider
	Pagination controls

	Time for action – adding pagination controls
	Next and previous buttons

	Time for action – adding next and previous buttons
	Carousel slideshow
	Time for action – creating a thumbnail slideshow
	Slideshow

	Time for action – adding the slideshow
	Next and previous buttons

	Time for action – activating the Next and Previous Buttons
	Summary

	Chapter 11: Creating an Interactive Data Grid
	Basic data grid
	Time for action – creating a basic data grid
	Customizing the data grid
	Time for action – customizing the data grid
	Summary

	Chapter 12: Improving Forms
	An HTML5 web form
	Time for action – setting up an HTML5 web form
	Setting focus
	Time for action – setting focus to the first field
	Placeholder text
	Time for action – adding placeholder text
	Validating user entry
	Time for action – validating form values on the fly
	Improving appearance
	Time for action – improving form appearance
	Styling the unstylable

	Time for action – adding uniform for styling the unstylable
	Styles for all

	Time for action – styling the styleable
	Our own theme

	Time for action – creating a custom uniform theme
	Summary

	Index

