
www.allitebooks.com

http://www.allitebooks.org

jQuery UI Cookbook

70 recipes to create responsive and engaging user
interfaces in jQuery

Adam Boduch

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

jQuery UI Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1120713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-218-6

www.packtpub.com

Cover Image by Jarek Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Adam Boduch

Reviewers
Hrishikesh Choudhari

Deepak Vohra

Acquisition Editor
Edward Gordon

Lead Technical Editor
Susmita Panda

Technical Editors
Shashank Desai

Worrell Lewis

Rikita Poojari

Amit Ramadas

Project Coordinator
Kranti Berde

Proofreaders
Lydia May Morris

Jonathan Todd

Indexer
Monica Ajmera Mehta

Production Coordinator
Aditi Gajjar

Cover Work
Aditi Gajjar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Adam Boduch has spent the last several years developing user interfaces for large-scale
software systems. Starting out as a backend Python developer, he was lured to the frontend
by tools like jQuery UI. Adam is passionate about readable code, and writes extensively
about jQuery UI widgets, including his previous book jQuery UI Themes Beginner's Guide,
Packt Publishing.

When Adam isn't coding, reading or writing, you will usually find him playing hockey, or
spending time with his family.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Hrishikesh Choudhari has been developing single page rich applications using a host of
client-side technologies. He has a special preference for JSON-emitting servers and delicious
interfaces on the frontend. He has worked on the backend for innovative social networks.

He is a professional data visualization expert, and builds his own visualization micro libraries
for SVG. He contributed to the book FusionCharts Beginner's Guide, Packt Publishing. He also
helped design dashboards for clients ranging from Fortune 10 companies to startups.

He works on his skills to be a full stack web architect. He graduated magna cum laude in
B.S. in Software Engineering from Champlain College, USA.

In his free time, he speed-reads, cooks, and goes for long walks. You can follow him on
Twitter at @hchoudhari or on LinkedIn in.linkedin.com/in/hrishikeshchoudhari.
His website can be found at http://hrishikeshchoudhari.com/.

Deepak Vohra is a consultant and a principal member of the NuBean.com software
company. He is a Sun Certified Java Programmer and Web Component Developer, and has
worked in the fields of XML and Java programming and J2EE for over five years. He is the
co-author of the book Pro XML Development with Java Technology, Apress, and was the
technical reviewer for the book WebLogic: The Definitive Guide, O'Reilly Media.

Deepak was also the technical reviewer for the book Ruby Programming for the Absolute
Beginner, Course Technology PTR and the Technical Editor for the book Prototype and
Scriptaculous in Action, Manning Publications. He is also the author of the books JDBC
4.0 and Oracle JDeveloper for J2EE Development, Processing XML Documents with Oracle
JDeveloper 11g, and EJB 3.0 Database Persistence with Oracle Fusion Middleware 11g,
Packt Publishing.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

For Ted

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Creating Accordions 5

Introduction 5
Section navigation using the Tab key 6
Dynamically changing the height style 9
Resizable content sections 13
Controlling spacing with themes 16
Sorting accordion sections 17
Dragging-and-dropping between accordions 20

Chapter 2: Including Autocompletes 27
Introduction 27
Styling the default input with themes 28
Building data sources using select options 30
Using multiple data sources 33
Remote autocomplete filtering 35
Custom data and categories 38
Applying effects to the drop-down menu 42

Chapter 3: Crafting Buttons 47
Introduction 47
Making simple checklists 48
Controlling the spacing with buttonsets 50
Filling space with buttons automatically 52
Sorting buttons within a group 57
Using effects with the button hover state 59
Button icons and hiding text 61

ii

Table of Contents

Chapter 4: Developing Datepickers 65
Introduction 65
Working with different date formats 65
Making a full-sized calendar widget 68
Displaying month-to-month effects 70
Appointment reminders as tooltips 71
Restricting the date range 74
Hiding the input field 77
Additional calendar data and controls 80

Chapter 5: Adding Dialogs 83
Introduction 83
Applying effects to dialog components 84
Waiting for API data to load 87
Using icons in the dialog title 91
Adding actions to the dialog title 93
Applying effects to dialog resize interactions 95
Using modal dialogs for messages 98

Chapter 6: Making Menus 103
Introduction 103
Creating sortable menu items 103
Highlighting the active menu item 107
Using effects with menu navigation 109
Building menus dynamically 112
Controlling the position of submenus 117
Applying themes to submenus 118

Chapter 7: Progress Bars 121
Introduction 121
Displaying file upload progress 121
Animating progress changes 124
Creating progressindicator widgets 129
Using states to warn about thresholds 134
Giving progressbars labels 136

Chapter 8: Using Sliders 143
Introduction 143
Controlling the size of the slider handle 144
Removing the handle focus outline 145
Using master sliders and child sliders 147
Marking step increments 154
Getting range values 156
Changing the slider orientation 159

iii

Table of Contents

Chapter 9: Using Spinners 161
Introduction 161
Removing the input focus outline 161
Formatting currencies for local cultures 164
Formatting time for local cultures 166
Controlling the step between values 169
Specifying the spin overflow 174
Simplifying the spinner buttons 178

Chapter 10: Using Tabs 181
Introduction 181
Working with remote tab content 182
Giving tabs an icon 186
Simplifying the tab theme 189
Using tabs as URL navigation links 193
Creating effects between tab transitions 196
Sorting tabs using the sortable interaction 197
Setting the active tab using href 202

Chapter 11: Using Tooltips 207
Introduction 207
Changing the tooltip state 208
Using custom markup in tooltips 212
Displaying the mouse movement 218
Applying effects to the tooltip display 222
Tooltips for selected text 225

Chapter 12: Widgets and More! 237
Introduction 237
Accordions to tabs, and back again 238
Building a custom widget from scratch 243
Building an observer widget 253
Using widgets with Backbone applications 260

Index 267

Preface
Creating user experiences that excite users is a fun and rewarding job. You're essentially
improving the lives of many people. Most UI developers have their eye on the finish line,
seeing their product put to use. The faster we get to that finish line without sacrificing
quality, the better. The tools we use to help get us there can make all the difference in
the world.

Part of what makes the jQuery Framework so popular among developers, the "write less,
do more" mantra, materializes in jQuery UI as well. The modern versions of HTML and CSS
standards have the tools required for assembling a robust, responsive user interface. Where
this idea falls apart—browser inconsistencies and lack of development conventions and
patterns across projects—jQuery UI steps in. The goal of jQuery UI isn't to reinvent the way
we write web applications, but rather, to fill in gaps and progressively enhance existing
browser components.

Like any framework, jQuery UI isn't for everyone, nor is it perfect for those that do use it. The
framework embraces this fact, and provides extensibility mechanisms for most situations you
might find yourself in. My goal with this book is to share with you some experiences I've had
with jQuery UI widgets. I've extended where possible, and hacked where necessary. I'm sure
you'll find the majority of the recipes in this book useful, no matter what kind of application
you're building.

What this book covers
Chapter 1, Creating Accordions, helps you learn how to drag-and-drop between accordion
widgets. In addition, you'll learn how to extend the accordion theme.

Chapter 2, Including Autocompletes, explains the autocomplete widget that shows how to
use multiple data sources. Turning select options into autocomplete widgets, and remote
data source filtering are covered too.

Chapter 3, Crafting Buttons, explains about modifying buttons for our application. Buttons
can be simple, modifying text and icon options. Or, buttons can be more involved, such as
when working with button sets. We'll look into spacing issues, and how to apply effects.

Preface

2

Chapter 4, Developing Datepickers, talks about datepicker, which is the most widely-used
widget, yet the most under-utilized. We'll uncover some potentials of the widget by using
some techniques to better integrate datepicker into your application.

Chapter 5, Adding Dialogs, discusses dialog widgets, which often rely on API data. We'll look
into loading data and dialog display issues. We also cover changing the dialog title bar, and
applying effects to the widget.

Chapter 6, Making Menus, helps you learn how to make sortable menu items. We'll address
theme concerns and highlighting the active menu item as well.

Chapter 7, Progress Bars, shows how to add labels to progress bars. We'll also extend the
progress bar to make a loading widget.

Chapter 8, Using Sliders, talks about the slider widget that doesn't display step increments.
Here, you will extend the widget to provide this capability. We also look into changing the
visual display of the slider handle.

Chapter 9, Using Spinners, explains spinners, which are often used in forms. So we deal
with formatting spinner values for local currencies and dates in this chapter. We'll also look
into addressing theme concerns with the widget.

Chapter 10, Using Tabs, introduces some new techniques in working with tabs, that is,
using each tab as a plain URL link. We also cover some more advanced tab navigation
usage—dynamic loading and reading the browser hash.

Chapter 11, Using Tooltips, explains tooltips, which can be applied to just about anything on
the page. In this chapter, we'll show you how to apply effects to the tooltip, change the tooltip
state, and apply tooltips to selected text.

Chapter 12, Widgets and More!, talks about widgets, which don't exist in a vacuum. They're
part of a larger application. This chapter covers the bigger jQuery UI development picture.
This includes building a widget from scratch, building your own development tools, and
working with Backbone.

What you need for this book
You will require the following:

 f A modern web browser for running the examples.

 f A text-editor for reading along and tweaking the examples.

 f All JavaScript dependencies included in the examples download.

 f Python (optional); some examples require a web server, and use the built-in Python
web server in the examples. The examples could use any web server with the
appropriate adjustments.

Preface

3

Who this book is for
This book is for the jQuery UI developer looking to improve their existing applications, extract
ideas for their new application, or to better understand the overall widget architecture. The
reader should at least have a rudimentary understanding of what jQuery UI is, and have written
some code that uses jQuery UI. The recipes in this book are targeted at the intermediate jQuery
UI developer. Depending on your needs, each recipe is self-contained enough to be useful on its
own, but connected enough to guide you to others.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text are shown as follows: "In this scenario, we're better off just changing the
default dateFormat value to something our application uses throughout."

A block of code is set as follows:

$(function() {
 $(".calendar").datepicker();
});

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: " Clicking on the no icons
link would result in the button icons being removed, and replaced with their text."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

Preface

4

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Creating Accordions

In this chapter, we will cover the following recipes:

 f Section navigation using the Tab key

 f Dynamically changing the height style

 f Resizable content sections

 f Controlling spacing with themes

 f Sorting accordion sections

 f Dragging-and-dropping between accordions

Introduction
In this chapter, we will explore the various ways in which we can extend the accordion widget
to accommodate a number of scenarios. The accordion widget offers a lot of out-of-the-box
functionality. For example, without any configuration, we get a themed container widget that
groups contents into sections.

We'll focus on use cases that shed light on the inner workings of the accordion widget.
Keyboard events are one way to navigate the page, and we can enhance the accordion's
support for these events. Some magic happens behind the scene to come up with each
section's height, when expanded. We'll see how we can work with these configurations,
especially when the section height changes on the fly.

Also on the topic of height, we can let the user control the height of individual sections, or,
from a theme perspective, we can control the space between the accordion components.
Finally, we'll look at some of the more advanced accordion usage where we give the user the
freedom to sort their accordion sections and to drag sections from one accordion to another.

www.allitebooks.com

http://www.allitebooks.org

Creating Accordions

6

Section navigation using the Tab key
In most desktop environments, the Tab key is a secret weapon in navigation—one tool that
many users are accustomed to. Likewise, we can utilize the Tab key in HTML5 applications
using the tabindex property. This tells the browser the order in which to focus elements,
each time the key is pressed.

Unfortunately, this isn't as straightforward as it looks with accordion widgets. We can't specify
a tabindex value in each section header and expect the Tab key events to work as expected.
Instead, the default widget implementation provides a different kind of key navigation—the up
and down arrow keys. Ideally, it would be useful to give users the ability to navigate through
the accordion sections using the Tab key that they're familiar with, while preserving the
default key navigation provided by the widget.

Getting ready
To get started, we'll want a basic accordion; ideally, something simple that has basic content
within each section, so that we can visually see how the Tab key behavior works before we
implement custom events, and afterward.

As a guide, here is my basic accordion markup:

<div id="accordion">
 <h3>Section 1</h3>
 <div>
 <p>Section 1 content</p>
 </div>
 <h3>Section 2</h3>
 <div>
 <p>Section 2 content</p>
 </div>
 <h3>Section 3</h3>
 <div>
 <p>Section 3 content</p>
 </div>
 <h3>Section 4</h3>
 <div>
 <p>Section 4 content</p>
 </div>
</div>

Chapter 1

7

And, here is the code used to instantiate the accordion widget:

$(function() {

 $("#accordion").accordion({
 collapsible: true
 });

});

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

We now have a basic collapsible accordion widget that we can look at in the browser. The
reason we're adding the collapsible option here is so that we can experiment with the
key navigation—we get a better view of which section is in focus when all are collapsed. You
can see how the up and down arrow keys allow the user to traverse through the accordion
sections while the Tab key has no effect. Let's change that.

How to do it...
We're going to extend the accordion widget to include an event handler for keypress events.
The default accordion implementation has keypress events for dealing with the up, down,
left, right, and Enter keys. We don't need to change that. Instead, we add our own handler
that understands what to do when the Tab key and Shift + Tab keys are pressed.

Look at the following code:

(function($, undefined) {

$.widget("ab.accordion", $.ui.accordion, {

 _create: function () {

 this._super("_create");
 this._on(this.headers, { keydown: "_tabkeydown" });

 },

Creating Accordions

8

 _tabkeydown: function (event) {

 if (event.altKey || event.ctrlKey) {
 return;
 }

 if (event.keyCode !== $.ui.keyCode.TAB) {
 return;
 }

 var headers = this.headers,
 headerLength = headers.length,
 headerIndex = headers.index(event.target),
 toFocus = false;

 if (event.shiftKey && headerIndex - 1 >= 0) {
 toFocus = headers[headerIndex - 1];
 }

 if (!event.shiftKey && headerIndex + 1 < headerLength) {
 toFocus = headers[headerIndex + 1];
 }

 if (toFocus) {

 $(event.target).attr("tabIndex", -1);
 $(toFocus).attr("tabIndex", 0);
 toFocus.focus();
 event.preventDefault();

 }

 }

});

})(jQuery);

$(function() {

 $("#accordion").accordion({
 collapsible: true
 });

});

Chapter 1

9

How it works...
We're creating a new accordion widget here by extending the default accordion widget. The
advantage to this approach of extending the accordion widget is that we're not tinkering with
instances of the widget; all accordion instances will acquire this new behavior.

The _create() method is replaced with our new implementation of it. The first thing we do in
this replacement method is call the original _create() method. We don't want to prevent the
default setup actions of the accordion widget from taking place. So, using _super() we're
able to do that. The next thing we do is bind our new tabkeydown() event handler to the
keydown event.

The tabkeydown() handler is a simplified version of the keydown event handler provided
in the original accordion implementation. If the Alt or the Ctrl key was pressed in combination
with another key, we ignore the event. If the key press was anything other than a Tab, we ignore
the event too, since we're only interested in altering the Tab key behavior when one of the
accordion headers is in focus.

The guts of the handler determine what should happen when the Tab key is pressed. In
which direction should we move the accordion header focus? When do we ignore the event
and let the default browser behavior take over? The trick is, figuring out our current index
position. If we're on the first header and the user presses Shift + Tab, meaning they want
to traverse backward, then we don't do anything. Likewise, if we're on the last header and
the user presses Tab, we pass control back to the browser so as not to interfere with the
expected functionality.

Dynamically changing the height style
Accordions are containers that are used to organize and display other UI elements. Thinking
about each accordion section as static content is a mistake. The contents of accordion
sections do change. For example, a user-triggered event might lead to the creation of a new
element within the section. In all likelihood, the components inside a section will change size
dynamically, and that's the part we need to be aware of. Why does it matter that accordion
contents change size? Since this is an accordion, we'll likely have several sections (or at
least a few). Does it make sense to have all of them with a uniform height? It does, until the
height of one section grows too large. Then the section heights are no longer uniform. When
this happens, we need to take a look at the accordion section height when they change, and
potentially adjust some of the height settings on the fly.

Creating Accordions

10

Getting ready
Let's use the following markup to create an accordion widget:

<div id="accordion">
 <h3>Section 1</h3>
 <div>
 <p>Section 1 content</p>
 </div>
 <h3>Section 2</h3>
 <div>
 <p>Section 2 content</p>
 </div>
 <h3>Section 3</h3>
 <div>
 <p>Section 3 content</p>
 </div>
 <h3>Section 4</h3>
 <div>

 First item
 Second item
 Third item
 Fourth item

 </div>
</div>

We'll create the accordion using all the default option values as follows:

$(function() {
 $("#accordion").accordion();
});

Now, this is where we'll notice a slight inconsistency with regards to height. Here is what
the first section looks like. It has minimal content, but uses more space than required.

Chapter 1

11

This is due to the default value of the heightStyle option, which says that the height of
every section in the accordion will be equal to that of the tallest section. Thus, we have
wasted space in the first section. Let's look at the fourth section in the following screenshot
to see why this happens:

We can see that the first section is as tall as the fourth section. This is due to the auto
value of heightStyle. In this particular example, the difference isn't all that great. That
is, the first section doesn't waste too much empty space. Therefore, it would probably make
sense to keep this accordion configuration where each section has the same height.

The challenge arises when we're dealing with an application that is dynamically feeding
content into a particular accordion section, and at some point where a certain threshold
is reached, it no longer makes sense to keep the auto heightStyle configuration.

Creating Accordions

12

How to do it...
Setting the heightStyle to auto solves the problem for us, as each section will only use the
height necessary to display the content. However, it would be nice if we were able to change
this property of the accordion when the height of the content itself changes.

(function($, undefined) {

$.widget("ab.accordion", $.ui.accordion, {

 refresh: function() {

 this._super("refresh");

 if (this.options.heightStyle !== "content") {
 return;
 }

 this.headers.next().each(function() {

 if ($(this).css("height")) {
 $(this).css("height", "");
 }

 });

 }

});

})(jQuery);

$(function() {

 $("#accordion").accordion();

 for (var i=0; i<20; i++){
 $("ul").append("nth item");
 }

 $("#accordion").accordion("option", "heightStyle", "content")
 .accordion("refresh");

});

Chapter 1

13

How it works...
What we've done here is extend the accordion widget's refresh() method to allow the
heightStyle option to be changed to content on the fly. The default implementation doesn't
allow this. To illustrate this idea, consider the code above where we're creating the accordion
widget and adding 20 new items to the last content section. We're using the default section
height here, that is, auto. So, had we not extended the refresh() method to allow this
behavior after populating the fourth section, we would have seen a scrollbar here.

Resizable content sections
Resizable content sections allow the user to adjust the height by dragging the bottom of the
section. This is a nice alternative having to rely on the heightStyle property. Thus, if each
section of the accordion can be adjusted by the user, they have the freedom to tailor the
accordion layout. For example, if the accordion has a tall section, with wasted space at the
bottom, the user might choose to shrink the height of that section to gain a better view of
the accordion, and other components of the UI for that matter.

How to do it...
We'll extend the default accordion's _create() method by making each content's div
within the accordion resizable using the resizable interaction widget.

(function($, undefined) {

$.widget("ab.accordion", $.ui.accordion, {

 _create: function () {

 this._super("_create");

 this.headers.next()
 .resizable({ handles: "s" })
 .css("overflow", "hidden");

 },

 _destroy: function () {

 this._super("_destroy");

 this.headers.next()
 .resizable("destroy")

Creating Accordions

14

 .css("overflow", "");

 }

});

})(jQuery);

$(function() {

 $("#accordion").accordion();

});

You'll see something similar to the following. Notice that the second section has been dragged
down and has the resize mouse cursor.

How it works...
Our new version of the _create() method works by first invoking the default accordion's
_create() method. Once that completes, we find all content sections of the accordion and
apply the resizable() widget. You'll notice, too, that we've told the resizable widget to only
show a south handle. This means that the user will only be able to drag any given content
section of the accordion up or down, using the cursor at the bottom of the section.

This specialization of an accordion also provides a new implementation of the _delete()
method. Once again, we're calling the original accordion's _delete(), after which we're
cleaning up the new resizable components we added. This includes removing the overflow
CSS property.

Chapter 1

15

There's more...
We can extend our resizable behavior within the accordion by providing a means to turn it off.
We'll add a simple resizable option to the accordion that checks whether or not to make
the accordion sections resizable.

(function($, undefined) {

$.widget("ab.accordion", $.ui.accordion, {

 options: {
 resizable: true
 },

 _create: function () {

 this._super("_create");

 if (!this.options.resizable) {
 return;
 }

 this.headers.next()
 .resizable({ handles: "s" })
 .css("overflow", "hidden");
 },

 _destroy: function () {

 this._super("_destroy");

 if (!this.options.resizable) {
 return;
 }

 this.headers.next()
 .resizable("destroy")
 .css("overflow", "");

 },

});

www.allitebooks.com

http://www.allitebooks.org

Creating Accordions

16

})(jQuery);

$(function() {

 $("#accordion").accordion({ resizable: false });

});

Controlling spacing with themes
The space between accordion sections is controlled by the CSS theme framework. In
particular, the visual structure for the accordion is defined by a set of CSS rules that can
be modified to control the spacing between accordion sections. We could override the
accordion theme CSS to adjust for more or less spacing between sections.

How to do it...
We're going to supply an additional CSS module to our UI—one that overrides the accordion
structure supplied in the theme we happen to be using. There's no need to fret, however, our
change is a simple one. We're going to update the margin-top property. In a new CSS file
called theme.accordion.css, let's add the following style rules:

.ui-accordion .ui-accordion-header {
 margin-top: 4px;
}

Now that we have the CSS, we need to include it in our HTML header. It should look something
like this:

Chapter 1

17

How it works...
We're copying the same CSS selector as is found in any jQuery UI theme. The particular
property we've just changed alters the space between the accordion sections. Since we're
overriding the default theme value, it's important to include our CSS files after the default
theme file. This allows us to override the default theme instead of the default theme overriding
our modifications.

Sorting accordion sections
Using the sortable interaction widget, we're able to transform a static accordion section
layout into something specified by the user. That is, sortable interaction widgets take a
container element, and allow all child elements to be sorted in place. The user does this
by dragging the element to the desired order.

We'll look at how we can extend the accordion capabilities so that the sortable section
functionality is encapsulated, and can be switched on by a configuration option at the
time of creation.

How to do it...
We have to perform several actions when the accordion widget is created, and when the
accordion is destroyed. Here is how we extend the widget:

(function($, undefined) {

$.widget("ab.accordion", $.ui.accordion, {

 options: {
 sortable: false
 },

 _create: function () {

 this._super("_create");

 if (!this.options.sortable) {
 return;
 }

 this.headers.each(function() {
 $(this).next()
 .addBack()
 .wrapAll("<div/>");

Creating Accordions

18

 });

 this.element.sortable({
 axis: "y",
 handle: "h3",
 stop: function(event, ui) {
 ui.item.children("h3")
 .triggerHandler("focusout");
 }
 });

 },

 _destroy: function () {

 if (!this.options.sortable) {
 this._super("_destroy");
 return;
 }

 this.element.sortable("destroy");

 this.headers.each(function () {
 $(this).unwrap("<div/>");
 });

 this._super("_destroy");

 }

});

})(jQuery);

$(function() {

 $("#accordion").accordion({ sortable: true });

});

With our new accordion widget marked as sortable, users now have the ability to drag
header sections around within the accordion. For instance, if the first accordion section
belongs to the bottom, the user just drags it to the bottom.

Chapter 1

19

How it works...
With the help of the sortable() interaction widget, we're able to extend the default
accordion widget implementation to include sorting capabilities. As with any jQuery UI
widget enhancements, we don't actually need to extend the widget in question; the new
capabilities can always be tacked-on after the widget has been instantiated. However, as
you'll see throughout this book, the best practice is to encapsulate customizations and
present them to the widget client as a set of options.

Here, we've extended the set of available accordion options to include a sortable option. This
is how we turn our customization on or off (it is a boolean value). The customized version of
_create() that we've implemented will call the default version of the accordion's _create()
method. Afterward, we'll see if the sortable behavior is turned off (in which case we have nothing
to do, and so return). Likewise, our custom _delete() function checks if the sortable behavior
has been turned on after calling the original delete functionality.

The tricky part of implementing sortable accordion sections is the fact that we have to make
a slight DOM manipulation inside the accordion element. This is necessary in order to use the
sortable interaction widget. Accordion widget markup is structured such that all sections are
adjacent to one another. That is, we have an h3 element, followed by a div element. This is
one section, and is followed by another h3 and another div, and so on. It is a flat structure.
There are two ways to deal with this: alter the markup required to create the widget, or inject
some slight DOM modifications, and the widget client is none-the-wiser. We're going the latter
route and not requiring the client to change their code. This is another best practice, to keep
the existing widget client code functional when providing customizations.

In our customized version of _create(), we're iterating over each accordion header and
wrapping the header element and the corresponding content element in a div element so
as to bundle them together. This way, the sortable widget knows how to move this bundle
around. Had we not done this, the user would only be able to move the header section, thus
severing it from its content. Finally, we're creating the sortable widget, restricting movement
to the y-axis and setting the movable handle as the accordion header.

Creating Accordions

20

Our customized _destroy() function undoes our modifications before calling the original
_destroy() method. This entails unwrapping our new div element and destroying the
sortable widget.

Dragging-and-dropping between accordions
Some applications require a more fluid layout than others, not just from a screen resolution
perspective, but from a functional one too. The accordion widget is a static grouping
component that is used to organize smaller components into sections. We can hide all the
irrelevant material simply by expanding the section we're interested in. As we have seen in
the Sorting accordion sections recipe, we can provide an accordion whose structure can be
manipulated by the user. Indeed, this has become the expectation of the users en masse—UI
configuration by drag-and-drop.

The sortable accordion focuses on a single accordion. In the spirit of giving users freedom
within the confines of the application of course, why don't we see if we can support moving
an accordion section to a new accordion?

Getting ready
For this experiment, we'll need two basic accordions. The markup should assume a form along
the lines of the following:

<div id="target-accordion" style="width: 30%">
 <h3>Section 1</h3>
 <div>
 <p>Section 1 content</p>
 </div>
 <h3>Section 2</h3>
 <div>
 <p>Section 2 content</p>
 </div>
 <h3>Section 3</h3>
 <div>
 <p>Section 3 content</p>
 </div>
</div>
<p></p>
<div id="accept-accordion" style="width: 30%">
 <h3>Section 4</h3>
 <div>
 <p>Section 4 content</p>
 </div>
 <h3>Section 5</h3>

Chapter 1

21

 <div>
 <p>Section 5 content</p>
 </div>
 <h3>Section 6</h3>
 <div>
 <p>Section 6 content</p>
 </div>
</div>

How to do it...
With that in place, let's turn this markup into two accordions. We'll first extend the accordion
widget with some fancy drag-and-drop behavior. The intent is to allow the user to drag
accordion sections from the first widget to the second. Here is how it's done:

(function($, undefined) {

$.widget("ui.accordion", $.ui.accordion, {

 options: {
 target: false,
 accept: false,
 header: "> h3, > div > h3"
 },

 _teardownEvents: function(event) {

 var self = this,
 events = {};

 if (!event) {
 return;
 }

 $.each(event.split(" "), function(index, eventName) {
 self._off(self.headers, eventName);
 });

 },

 _createTarget: function() {

 var self = this,
 draggableOptions = {

Creating Accordions

22

 handle: "h3",
 helper: "clone",
 connectToSortable: this.options.target,
 };

 this.headers.each(function() {
 $(this).next()
 .addBack()
 .wrapAll("<div/>")
 .parent()
 .draggable(draggableOptions);
 });
 },

 _createAccept: function() {

 var self = this,
 options = self.options,
 target = $(options.accept).data("uiAccordion");

 var sortableOptions = {

 stop: function (event, ui) {

 var dropped = $(ui.item),
 droppedHeader = dropped.find("> h3"),
 droppedClass = "ui-draggable",
 droppedId;

 if (!dropped.hasClass(droppedClass)) {
 return;
 }

 // Get the original section ID, reset the cloned ID.
 droppedId = droppedHeader.attr("id");
 droppedHeader.attr("id", "");

 // Include dropped item in headers
 self.headers = self.element.find(options.header)

 // Remove old event handlers
 self._off(self.headers, "keydown");
 self._off(self.headers.next(), "keydown");
 self._teardownEvents(options.event);

Chapter 1

23

 // Setup new event handlers, including dropped item.
 self._hoverable(droppedHeader);
 self._focusable(droppedHeader);
 self._on(self.headers, { keydown: "_keydown" });
 self._on(self.headers.next(), { keydown: "_
panelKeyDown" });
 self._setupEvents(options.event);

 // Perform cleanup
 $("#" + droppedId).parent().fadeOut("slow",
function() {
 $(this).remove();
 target.refresh();
 });

 dropped.removeClass(droppedClass);

 }

 };

 this.headers.each(function() {
 $(this).next()
 .addBack()
 .wrapAll("<div/>");
 });

 this.element.sortable(sortableOptions);

 },

 _create: function() {

 this._super("_create");

 if (this.options.target) {
 this._createTarget();
 }

 if (this.options.accept) {
 this._createAccept();
 }

Creating Accordions

24

 },

 _destroy: function() {

 this._super("_destroy");

 if (this.options.target || this.options.accept) {

 this.headers.each(function() {
 $(this).next()
 .addBack()
 .unwrap("<div/>");
 });
 }
 }

});

})(jQuery);

$(function() {

 $("#target-accordion").accordion({
 target: "#accept-accordion"
 });

 $("#accept-accordion").accordion({
 accept: "#target-accordion"
 });

});

We now have two basic-looking accordion widgets. However, if the user is so inclined, they can
drag a section of the first accordion into the second.

Chapter 1

25

How it works...
This might seem like a lot of code at the first glance, but for relatively little (approximately 130
lines), we're able to drag accordion sections out of one accordion and into another. Let's break
this down further.

We're adding two accordion options with this widget extension: target and accept. Target
allows us to specify the destination of sections of this accordion. In the example, we used
the second accordion as the target for the first accordion, meaning that we can drag from
target-accordion and drop into accept-accordion. But, in order to make that happen,
the second accordion needs to be told where to accept sections from; in this case, it is
target-accordion. We're essentially using these two options to establish a drag-and-drop
contract between the two widgets.

This example uses two interaction widgets: draggable and sortable. target-accordion
uses draggable. If the target option was specified, the _createTarget() method gets
called. The _createTarget() method goes through the accordion sections, wraps them
in a div element, and creates a draggable() widget. This is how we're able to drag sections
out of the first accordion.

If the accept option was specified, the _createAccept() method gets called. This
follows the same pattern of wrapping each accordion header with its content in a div
element. Except here, we're making the entire accordion widget sortable().

www.allitebooks.com

http://www.allitebooks.org

Creating Accordions

26

This may seem counterintuitive. Why would we make the second accordion that wants to accept
new sections into sortable? Would it not make more sense to use droppable? We could go down
that route, but it would involve a lot of work where we're utilizing the connectToSortable
option instead. This is a draggable option specified in _createTarget() where we say that
we would like to drop these draggable items into a sortable widget. In this example, sortable is
the second accordion.

This solves the problem of deciding on where exactly to drop the accordion section relative
to other sections (the sortable widget knows how to handle that). However, an interesting
constraint with this approach is that we must clone the dragged item. That is, the section
that ultimately gets dropped into the new accordion is just a clone, not the original. So we
must deal with that at drop time.

As part of the sortable options defined in _createAccept(), we provide a stop callback.
This callback function is fired when we've dropped a new accordion section into the accordion.
Actually, this gets fired for any sorting activity, including new sections being dropped. So, we
must take care to check what we're actually working with. We do so by checking whether the
item has a draggable class attached to it, and if so, we can assume we're dealing with a
new accordion section.

Keep in mind that this newly dropped accordion section is simply a clone of the original, so
some interesting things need to happen before we can start inserting it into the accordion.
First, this new section has the same ID as the original. Eventually, we're going to remove the
original from the first accordion, so we store that ID for later use. Once we have it, we can get
rid of the dropped section's ID so as to avoid duplicates.

With that taken care of, we have the new DOM element in place, but the accordion widget
knows nothing about it. This is where we reload the headers, including the newly-dropped
header. The new accordion section still isn't functional because it doesn't handle events
properly, so expanding the new section will not work, for example. To avoid strange behavior,
we turn off all event handlers and rebind them. This puts the new accordion in its new context
while the events are turned on.

We now have a new section in accept-accordion. But we can't forget about the original
section. It still needs to be removed. Recall that we stored the original section's DOM ID,
and we can now safely remove that section and refresh the accordion to adjust the height.

2
Including

Autocompletes

In this chapter, we will cover:

 f Styling the default input with themes

 f Building data sources using select options

 f Using multiple data sources

 f Remote autocomplete filtering

 f Custom data and categories

 f Applying effects to the drop-down menu

Introduction
The main purpose of the autocomplete widget is to augment the capabilities of the standard
HTML form input element. Instead of the user having to type out the full value of the input
field each time, the autocomplete widget offers suggestions as to what the value might be.
For example, let's say you're adding a new product. The product field could be a text input, a
select input, and so on. In this scenario, one would use the existing product in the system as
the source for an autocomplete widget. Chances are, the user who is entering the product, or
another user for that matter, has entered that product before. With autocompletes, users have
some assurance that they're providing valid inputs.

Including Autocompletes

28

Styling the default input with themes
The default autocomplete implementation doesn't change anything visual about the input
element. Functionally speaking, we don't want the input element changed. All we need is
the drop-down component once the user starts typing. But let's see if we can go ahead and
change the virtual appearance of the autocomplete input element using components from
the widget framework and the theme framework.

Getting ready
We'll use the following markup for our example, a simple label element and a simple
input element:

<div>
 <label for="autocomplete">Items: </label>
 <input id="autocomplete"/>
</div>

How to do it...
We'll use the following code to extend the autocomplete widget with the CSS classes from the
theme framework we'd like applied. We're introducing a minor behavioral tweak with regards
to focus events.

(function($, undefined) {

$.widget("ab.autocomplete", $.ui.autocomplete, {

 inputClasses: "ui-widget ui-widget-content ui-corner-all",

 _create: function() {

 this._super("_create");
 this._focusable(this.element);
 this.element.addClass(this.inputClasses);

 },

 _destroy: function() {

 this._super("_destroy");
 this.element.removeClass(this.inputClasses);

Chapter 2

29

 }

});

})(jQuery);

$(function() {

 var source = [
 'First Item',
 'Second Item',
 'Third Item',
 'Fourth Item'
];

 $("#autocomplete").autocomplete({ source: source });

});

The last thing we need to complete the stylization of our autocomplete's input element is
a new CSS stylesheet with a couple of rules. The stylesheet should be included in the main
HTML where the input markup is defined.

input.ui-autocomplete-input {
 padding: 2px;
}

input.ui-autocomplete-input:focus {
 outline: none;
}

Here is what our newly-styled autocomplete widget looks like without focus.

Here is what the autocomplete looks like when it has the focus, and with the drop-down
menu expanded.

Including Autocompletes

30

How it works...
When the document loads, we're creating a simple autocomplete using the #autocomplete
input element.

The first thing you'll notice is the inputClasses attribute. This string represents the three
classes from the theme framework we want to apply to the widget: ui-widget, ui-widget-
content, and ui-corner-all. The ui-widget class doesn't do much aside from handling
fonts, it's good practice to apply this class to themed elements. The ui-widget-content
class fixes the input's border for us while the ui-corner-all class applies nice rounded
corners for us. The reason we've defined this string as an attribute of the widget is because
there are two places these classes are used, and this makes for easy maintenance.

The _create() method we're overriding here just calls the original implementation of
the autocomplete's _create() method. Once this completes, we're making the input
element focusable by calling _focusable(). This is a handy utility method defined by the
widget factory and inherited by all widgets. It takes care of making the element focusable
by applying the ui-state-focus CSS class from the theme framework when the element
is focused. It also removes the class when the element loses focus. Perhaps, the best part
about _focusable() is that the widget factory machinery will clean up any focus event
handlers for us when the widget is destroyed. The last job of our customized implementation
of _create() is to add the CSS classes from inputClasses to the input element.

As always, we need to make sure we clean up after ourselves when we're finished borrowing
from the autocomplete widget. This means extending _delete() to ensure that the
inputClasses attributes are removed from the input element.

Our miniscule CSS rules that we've used to extend the theme framework do two things. The
first change is to add a little padding to the input element—this is purely aesthetic since
the other changes we've made make the text look a little tight inside the input. The second
change removes the outline that surrounds the input element when focused. This only
applies to certain browsers, like Chrome, where an automatic outline is applied.

Normally, removing the outline isn't advised since accessibility is at stake.
But, our changes have taken the focused input into account, so this is fine.

Building data sources using select options
Sometimes, using an array as the source of data for autocomplete widgets isn't the best
option. For example, if we already have a select element in our user interface, it would make
sense to reuse the options in that element to make an autocomplete. Otherwise, we would
have to not only design some new code to build the array data source, but we would also have
to remove the existing select element.

Chapter 2

31

Getting ready
Let's put together some basic markup for this example. Typically, the autocomplete widget
expects an input as its element. Instead, we're going to give it a select element with
some simple options.

<div>
 <label for="autocomplete">Items: </label>
 <select id="autocomplete">
 <option>First Item</option>
 <option>Second Item</option>
 <option>Third Item</option>
 <option>Fourth Item</option>
 </select>
</div>

How to do it...
We'll go ahead and extend the capabilities of the autocomplete widget so that it knows how
to handle the select elements. After which, we're able to target our select element with
the autocomplete widget.

(function($, undefined) {

$.widget("ab.autocomplete", $.ui.autocomplete, {

 inputClasses: "ui-widget ui-widget-content ui-corner-all",

 _create: function() {

 if (this.element.is("select")) {

 var self = this;
 this.original = this.element.hide();
 this.element = $("<input/>").insertAfter(this.original
);

 this.options.source = function(request, response) {

 var filter = $.ui.autocomplete.filter,
 options = self.original.find("option"),
 result = options.map(function() {
 return $(this).val();

Including Autocompletes

32

 });

 response(filter(result, request.term));

 };

 }

 this._super("_create");

 },

 _destroy: function() {

 this._super("_destroy");
 this.element.remove();
 this.original.show();

 }

});

})(jQuery);

$(function() {
 $("#autocomplete").autocomplete();
});

Now you should see something that looks like a plain old autocomplete—no select element
in sight. Further, if you try using the autocomplete, you'll see that the options presented are
the same as those in the select element's options.

How it works...
Here, we need to add support to the autocomplete widget for select elements; we do
this at the beginning of our custom _create() implementation. If we're dealing with a
select element, the first thing we do is hide it and store a reference to it in the original
attribute. Remember, we're only interested in the data source the select element has
to offer by means of its options—we don't want to actually display the select. Instead,
we're replacing the select with an input element since this is how the user types and the
widget completes.

Chapter 2

33

The source option of the autocomplete widget is how we're able to specify a custom function
that returns the source data to be used. In our case, we're providing a function that grabs the
values from each select option. Recall that the select element was stored in the original
attribute earlier. We're using the jQuery map() utility function here to turn the select options
into an array that autocomplete can use. The filter() function gets applied, and the
response() function is sent to the drop-down menu.

When the widget is destroyed, we'd like to restore the original select element, since this
is what we replaced. The original element gets displayed once again in our customized
implementation of _delete()—this happens after calling the original _delete() method
to perform routine cleanup tasks. The input element we created is also destroyed here.

Using multiple data sources
Sometimes, an autocomplete widget doesn't map directly to one data source. Take video for
instance. Imagine the user needs to pick a video, but the two data sources are DVD and Blu-
ray. If we were to use autocomplete to select a video, we would need a way to assign multiple
data sources. Furthermore, the mechanism would need to be extensible enough to support
adding more data sources, especially since there is a new video format born every other year.

How to do it...
The default implementation of the autocomplete widget is expecting a single data source – an
array or an API endpoint string. We'll give the widget a new sources option to allow for this
behavior. This is how we'll extend autocomplete and create an instance of the widget that has
two video data sources – one for DVDs, and one for Blu-ray discs.

(function($, undefined) {

$.widget("ab.autocomplete", $.ui.autocomplete, {

 options: {
 sources: []
 },

 _create: function() {

 var sources = this.options.sources;

 if (sources.length) {

 this.options.source = function (request, response) {

 var merged = [],

Including Autocompletes

34

 filter = $.ui.autocomplete.filter;

 $.each(sources, function (index, value) {
 $.merge(merged, value);
 });

 response(filter(merged, request.term));

 };

 }

 this._super("_create");

 },

 _destroy: function() {
 this._super("_destroy");
 }

});

})(jQuery);

$(function() {
 var s1 = [
 "DVD 1",
 "DVD 2",
 "DVD 3"
],
 s2 = [
 "Blu-ray 1",
 "Blu-ray 2",
 "Blu-ray 3"
];

 $("#autocomplete").autocomplete({
 sources: [s1, s2]
 });
});

Chapter 2

35

As you can see, if you were to start searching for the video 1, you'd get versions from each
data source in the drop-down menu.

How it works...
Rather than merging our two data sources into one before it gets passed to the autocomplete,
we're extending the capabilities of the widget to handle that task for us. In particular, we've
added a new sources option that can accept several arrays. In the example, we're passing
both the DVD and the Blu-ray sources to our widget.

Our customized version of _create() checks to see if multiple sources have been supplied
by checking the length of the sources option. If there are multiple data sources, we use the
merge() jQuery utility function to create a new array and apply the filter() function to it.
A good feature of this approach is that it doesn't care how many data sources there are—we
could pass a few more to our implementation down the road should the application require it.
The merging of these data sources is encapsulated behind the widget.

Remote autocomplete filtering
The autocomplete filtering capabilities aren't just limited to the default implementation,
which searches for objects in array sources. We can specify a custom source() function
that will retrieve only data the user is looking for. This is the ideal approach if you're looking
to use autocomplete on a data source with thousands of items. Otherwise, filtering gets too
demanding on the browser—the large data set to download, followed by a large array search
with each keystroke.

How to do it...
We'll use the GitHub API as the data source for our autocomplete widget. This is a good
example since it is much too large to use in the browser memory.

$(function() {
 $("#autocomplete").autocomplete({
 minLength: 3,
 source: function(request, response) {
 $.ajax({
 url: "https://api.github.com/legacy/repos/search/:" +
request.term,
 dataType: "jsonp",
 success: function(resp) {
 var repositories = resp.data.repositories.splice(
0, 10);
 var items = $.map(repositories, function (item)
{

www.allitebooks.com

http://www.allitebooks.org

Including Autocompletes

36

 return {
 label: item.name + " (" +
 item.language + ")",
 value: item.name
 };
 });
 response(items);
 }
 });
 }
 });
});

Now if you look at the resulting widget in the browser and start typing, you'll see Github
repository data in the drop-down menu.

How it works...
Since we're using a large data source, we're telling this particular autocomplete widget that
the search for items should only be performed if there are at least three characters. This is
done using the minLength option. Otherwise, we would be asking the server to query based
on one or two characters which isn't what we're after.

The source option in our example specifies the data source that we're going to use – the
Github API. The function we've passed to the source performs an $.ajax() call against the
Github API. We're using jsonp as the format, which simply means that a callback function
from the API will be sent back. We're also passing some query data to the API.

Chapter 2

37

Our success callback function is executed once the API responds with data. We then pass
this data through the $.map() utility function in order to produce an array the autocomplete
widget understands. Our success function does a simple $.map() on the data to transform
it into an array of objects that the autocomplete can use.

There's more...
We can further cut back on the cost of network communication overheads by introducing a
term cache to the widget. A term cache, as the name suggests, would store locally the results
of performing a remote filter operation. This way, when the user inevitably does the exact
same thing with their keystrokes, we're not performing the exact same task with the remote
API call since we've already cached the result in the widget.

(function($, undefined) {

$.widget("ab.autocomplete", $.ui.autocomplete, {

 _cache: {},

 _search: function(value) {

 var response = this._response(),
 cache = this._cache;

 this.pending++;
 this.element.addClass("ui-autocomplete-loading");
 this.cancelSearch = false;

 if (value in cache) {
 response(cache[value]);
 }
 else {
 this.source({ term: value }, response);
 }

 }

});

})(jQuery);

$(function() {
 $("#autocomplete").autocomplete({
 minLength: 3,
 source: function(request, response) {

Including Autocompletes

38

 var self = this;
 $.ajax({
 url: "https://api.github.com/legacy/repos/search/:" +
request.term,
 dataType: "jsonp",
 success: function(resp) {
 var repositories = resp.data.repositories.splice(
0, 10);
 var items = $.map(repositories, function (item)
{
 return {
 label: item.name + " (" +
 item.language + ")",
 value: item.name
 };
 });
 self._cache[request.term] = items;
 response(items);
 }
 });
 }
 });
});

You can see where we've made changes in the preceding code to support caching the items
returned from the HTTP request. Now we're extending the widget to add the new _cache
attribute. We're also extending the _search() function, which is in charge of checking for
a cached value. If it finds one, the rendering response is called using the cached version
of the data. The source() function is responsible for storing cached results, but this is a
simple one-liner.

Custom data and categories
One approach to separating two categories of autocomplete data might be to have two distinct
fields, each with their own autocomplete widgets. Another would be to introduce the notion
of a category into the widget itself. When the drop-down menu appears to suggest items for
the user, they will also see the category the item belongs to. To do this in the autocomplete
widget, we need to change both how the widget understands the source data, and how the
menu items are rendered.

Chapter 2

39

How to do it...
We're going to extend the autocomplete widget in order to change how the menu items are
rendered. We also need to consider the data passed into the widget as the source.

(function($, undefined) {

$.widget("ab.autocomplete", $.ui.autocomplete, {

 _renderMenu: function(ul, items) {

 var that = this,
 currentCategory = "";

 items.sort(function(a, b) {
 return a.cat > b.cat
 });

 $.each(items, function(index, item) {

 if (item.cat != currentCategory) {
 that._renderCategory(ul, item);
 currentCategory = item.cat;
 }

 that._renderItemData(ul, item);

 });

 },

 _renderCategory: function(ul, item) {
 return $("").addClass("ui-autocomplete-category")
 .html(item.cat)
 .appendTo(ul);
 },

 _renderItem: function(ul, item) {
 return $("").addClass("ui-autocomplete-item")
 .append($("<a>")
 .append($("").html(item.label))
 .append($("").html(item.desc)))

Including Autocompletes

40

 .appendTo(ul);
 }

});

})(jQuery);

$(function() {

 var items = [
 {
 value: "First Item",
 label: "First Item",
 desc: "A description of the first item goes here",
 cat: "Completed"
 },
 {
 value: "Second Item",
 label: "Second Item",
 desc: "A description of the second item goes here",
 cat: "In Progress"
 },
 {
 value: "Third Item",
 label: "Third Item",
 desc: "A description of the third item goes here",
 cat: "Completed"
 }
];

 $("#autocomplete").autocomplete({source: items});

});

We're almost done. The changes we've made to the menu will not just magically work out,
we need to apply some styles. The following CSS code should be included on the page:

.ui-autocomplete-category {
 font-weight: bold;
 padding: .2em .4em;
 margin: .8em 0 .2em;
 line-height: 1.5;
}

.ui-autocomplete-item > a > span {
 display: block;
}

Chapter 2

41

.ui-autocomplete-item > a > span + span {
 font-size: .9em;
}

Now, if you start typing in the autocomplete, you'll notice a drop-down menu drastically
different from what we're used to as it contains both category and description information.

How it works...
The goal of this widget extension is to accept custom source data and to use that data in
the display of the drop-down menu. Specifically, the new data we're working with is the
category and the description. The category is a one-to-many relationship with the items
insofar, as several items we pass to the widget may have the same category string. Our
job is to figure out which items fall under any given category and to represent this structure
in the drop-down menu. Additionally, the description of the item is a one-to-one relationship,
so less work is required here but we nonetheless would like to include the description in the
drop-down menu.

The first method from the original implementation that we're overriding is _renderMenu().
The job of _renderMenu() is to alter the underlying HTML structure each time a suggestion
is made to the user. We keep track of the current category with currentCategory. We then
render each item with _renderItem().

The _renderCategory() function renders the category text as an . It also adds the
ui-autocomplete-category class. Likewise, our _renderItem() function renders the
item text, and it is here that we also make use of the desc attribute. The item also has the
ui-autocomplete-item class.

The new CSS styles we've included in our UI are a necessary component of the new version
of autocomplete that we've created. Without them, the description would be of the same
font size and would display on the same line as the item label. Likewise, the category needs
the newly-added styles to stand out as a category that groups other items instead of just
another item.

Including Autocompletes

42

There's more...
Whenever we extend the data used by the autocomplete widget, we have to tell the widget
how to work with it. Here, we've told autocomplete how to display the new data in the drop-down
menu. Alternatively, we could tell the widget to perform filtering on some data fields that the
user never actually sees in the drop down-menu. Or we could combine the two.

Here is how we would go about using both the category and the description, both non-
standard fields, in the filtering when the user starts typing.

$.ui.autocomplete.filter = function(array, term) {

 var matcher = new RegExp($.ui.autocomplete.escapeRegex(term),
"i");

 return $.grep(array, function(value) {
 return matcher.test(value.cat) ||
 matcher.test(value.desc) ||
 matcher.test(value.label)
 });

};

Here we're replacing the filter() function that autocomplete uses with our own
implementation. The two are similar, we're just adapting the RegExp.test() calls to the
desc and cat field. We would place this code just beneath the custom widget declaration
of autocomplete. The reason this is done externally to the customization specification is
because autocomplete.filter() is kind of like a static method. Where with other
methods, we're overriding on a per-instance basis.

Applying effects to the drop-down menu
By default, we get a fairly simplistic presentation of the drop-down menu containing
suggestions for completion based on what we type. The menu is simply displayed, without
much fuss. Which is fine, it gets the job done reliably. But, on the other hand, there is always
something we can do to make the UI look more polished. It could be as simple as changing
the autocomplete widget in your application to use some subtle effects while transitioning to
a visible state.

Getting ready
Since what we're after here is really more of a visual presentation aspect of the widget,
we're probably safe using any existing instance of the widget.

Chapter 2

43

How to do it...
Let's build on the default implementation of the autocomplete widget to include some subtle
animations for the drop-down menu.

(function($, undefined) {

$.widget("ab.autocomplete", $.ui.autocomplete, {

 _suggest: function(items) {

 this._resetMenu();
 this._renderMenu(this.menu.element, items);
 this.menu.refresh();

 this._resizeMenu();
 this._positionMenu();

 },

 _resetMenu: function() {

 this.menu.element
 .empty()
 .zIndex(this.element.zIndex() + 1);

 },

 _positionMenu: function() {

 var pos = $.extend({ of: this.element }, this.options.
position);
 this.menu.element.position(pos);

 },

 _resizeMenu: function() {

 var menu = this.menu,
 exclude = 0;
 target = Math.max(
 menu.element.width("").outerWidth() + 1,
 this.element.outerWidth()
),
 excludeCSS = [

Including Autocompletes

44

 'borderLeftWidth',
 'borderRightWidth',
 'paddingLeft',
 'paddingRight'
];

 if(menu.element.is(":hidden")) {
 menu.element.css({ display: "block", opacity: 0 });
 }

 $.each(excludeCSS , function(index, item) {
 exclude += parseFloat(menu.element.css(item));
 });

 if (menu.element.css("opacity") == 0) {
 menu.element.animate({
 width: target - exclude,
 opacity: 1
 }, 300);
 }
 else{
 menu.element.width(target - exclude);
 }

 },

 _close: function(event) {

 var menu = this.menu;

 if (menu.element.is(":visible")) {

 menu.element.fadeOut();
 menu.blur();
 this.isNewMenu = true;
 this._trigger("close", event);

 }

 }

});

})(jQuery);

Chapter 2

45

$(function() {
 var source = [
 "First Item",
 "Second Item",
 "Third Item",
 "Fourth Item"
];
 $("#autocomplete").autocomplete({
 source: source,
 });
});

If you start using this autocomplete widget by typing in the input element, you'll notice that the
drop-down menu glides smoothly into view instead of just popping out abruptly. Also, when the
menu is no longer needed, it fades out of existence.

How it works...
The autocomplete is being extended here so we can inject our customized animation
functionality. But this time around, the changes are a little more involved, we're not merely
extending _create() with a few lines of code. There are a few methods buried deep in the
autocomplete code that we need to extend. We've also introduced a few new methods of our
own in the autocomplete widget.

The first method we're overriding is _suggest(). The _suggest() method is called by the
autocomplete widget when the user has typed the minimum length of characters to perform
a search. The original method takes care of everything that needs to happen in terms of
rendering and displaying the drop-down menu. In our version of the method, we're just calling
other methods of the widget. The job of _suggest() is to orchestrate everything that takes
place when a search happens. There are two logical steps taken here. First, the menu is
rendered with the new content. Next, the menu is displayed, resized, and positioned. The
latter is where the animation takes place.

We won't drill into the details of the _resetMenu() and _positionMenu() methods as
those code snippets are taken from the original implementation for the most part. They just
empty and position the menu, respectively.

The _resizeMenu() method is where the actual animation takes place when the menu is
displayed. This is a longer method because we have to perform a few calculations to pass into
animate(). The original implementation of _resizeMenu() uses the outerWidth() jQuery
function to set the width of the menu. This is to get proper alignment with the input element.
However, we want to animate the width change. So we must manually compute the inner width.
The outer width values go in the exclude variable. The inner width is target - exclude.

www.allitebooks.com

http://www.allitebooks.org

Including Autocompletes

46

We check if the menu is already displayed before actually showing it, and before animating
it. If the element isn't visible, we change the display CSS property, but set the opacity
property to 0. The reason we do this is that we need the element's box model dimensions in
order to position it. But, we still haven't applied the animation effects to the menu. Here, we
check if the opacity property for the menu is at 0. If not, that means the menu is already
displayed and it would not make sense to re-animate it now. Otherwise, we execute the width
and opacity animation.

Finally, the _close() method replaces the original autocomplete _close() implementation.
The code is nearly the same as the original, except we do a basic fadeOut() when the menu
is closed, as opposed to merely hiding it.

This extension of the autocomplete does not implement an option that
will turn off this behavior. This is alright because the extension only does
one thing—apply effects to the drop-down menu. So, to disable these
effects, we can just disable extension. The extension of a widget is defined
inside a function that calls itself. When the script first loads, the function
is called, and the widget gets extended with the new behavior. We can
disable the behavior part of the function that invokes itself.

(function($, undefined) {
 // Code that extends a jQuery UI widget...
}); //(jQuery);

3
Crafting Buttons

In this chapter, we will cover:

 f Making simple checklists

 f Controlling the spacing within buttonsets

 f Filling space with buttons automatically

 f Sorting buttons within a group

 f Using effects with the button hover state

 f Button icons and hiding text

Introduction
The button widget is an easy way to decorate the HTML button and link elements in your
user interface. With a simple call to the button widget, we're able to decorate the standard
elements with the theme framework found in jQuery UI. Additionally, there are two types of
buttons. There is the singular notion of a button, the more popular use case. But there is
also the notion of a buttonset—used in cases where we would like to decorate checkboxes
and radio buttons found in typical HTML forms.

In this chapter, we take a much closer look at what the button entails, covering some usage
scenarios by example. We'll go from the simple usage, such as creating a checklist and sorting
buttons, to more advanced usage, such as applying effects and automatically filling space.
Along the way, you'll learn how the widget framework supports developers in extending the
button where it doesn't quite do what they need it to.

Crafting Buttons

48

Making simple checklists
Checklists are easy enough to do in plain old HTML, all you really need are some checkboxes
and some labels beside them. If you're using a widget framework such as jQuery UI, however,
we can enhance that list with ease. The button widget knows how to behave when applied
to an input element of type checkbox. So let's start off with a basic list and see how we
can apply the button widget to the input elements. We'll also see if we can take the user
interactivity a step further with some state and icon enhancements.

Getting ready
Let's start by creating a simple HTML div to hold our checklist. Inside, each item is
represented by an input element of type checkbox, along with a label for the element.

<div>
 <input type="checkbox" id="first" />
 <label for="first">Item 1</label>
 <input type="checkbox" id="second" />
 <label for="second">Item 2</label>
 <input type="checkbox" id="third" />
 <label for="third">Item 3</label>
 <input type="checkbox" id="fourth" />
 <label for="fourth">Item 4</label>
</div>

With this markup, we actually have a functioning checklist UI, albeit, a less-than-usable one.
We can use the toggling capability of the jQuery UI button widget to encapsulate the label
and the checkbox together as a checklist item.

How to do it...
We'll introduce the following JavaScript code to collect our checkbox inputs and use their
labels to assemble the toggle button widget.

$(function() {

 $("input").button({ icons: { primary: "ui-icon-bullet" } });

 $("input").change(function(e) {

 var button = $(this);

 if (button.is(":checked")) {

Chapter 3

49

 button.button("option", {
 icons: { primary: "ui-icon-check" }
 });

 }
 else {

 button.button("option", {
 icons: { primary: "ui-icon-bullet" }
 });

 }

 });

});

With that, you have a toggle-button checklist, complete with icons to assist in conveying the
state. When the user clicks on the toggle-button, it goes into "on" state, which is depicted by
the change in background color, and other theme properties. We've also added icons that
toggle along with the button state.

How it works...
Our event handler, fired when the DOM is ready, requires only one line of code to turn the
input elements on the page into toggle buttons. Within the button constructor, we're
specifying that the default icon to use is the ui-icon-bullet icon class from the theme
framework. The button widget knows that we're creating a toggle button because of the
underlying HTML element. Since these are checkboxes, the widget will change its behavior
when the button is clicked—in the case of a checkbox, we want the button to give the
appearance of toggling on and off. Additionally, the button widget knows which label
belongs to which button based on the for attribute. For example, the label for for="first"
will be assigned to the button with id="first".

Crafting Buttons

50

Next we apply the change event handler to all our buttons. This handler is the same for each
button, so we can bind it to all buttons at once. The job of this handler is to update the button
icon. We don't have to change anything else about the button state because the default
button implementation will do that for us. All we need to do in our event handler is check the
state on the checkbox itself. If checked, we show the ui-icon-check icon. Otherwise, we
show the ui-icon-bullet icon.

Controlling the spacing with buttonsets
The jQuery UI toolkit gives developers a container widget used for working with groups of
buttons called a buttonset. You would use a buttonset for things like groups of checkboxes
or groups of radio buttons—things that form a collaborative set.

The default appearance of the buttonset is of a unified whole. That is, the goal is to form
a seemingly single widget out of several buttons. By default, the buttonset widget has no
spacing controls for the developer. The buttons within the set, by default, are all stacked
up against one another. This may not be what we're after, depending on the context of the
buttonset widget in our overall user interface.

Getting ready
To better illustrate the spacing constraints we're presented with, let's build a buttonset widget
and look at the result before we go about trying to resolve the issue. We'll use the following
group of radio buttons as our markup:

<div>
 <input type="radio" id="first" name="items" />
 <label for="first">Item 1</label>
 <input type="radio" id="second" name="items" />
 <label for="second">Item 2</label>
 <input type="radio" id="third" name="items" />
 <label for="third">Item 3</label>
 <input type="radio" id="fourth" name="items"/>
 <label for="fourth">Item 4</label>
</div>

And we'll create the buttonset widget as follows:

$(function() {
 $("div").buttonset();
});

Chapter 3

51

Here is what our buttonset looks like. Notice that this widget still exhibits radio button
functionality. Here the third item is selected, but will become deselected if I were to click
elsewhere in the widget.

How to do it...
Now, there is nothing wrong with the default presentation of the buttonset widget. The
only potential challenge we might face is if we have a spacing theme happening elsewhere
in the application—the stacked against one another look of the widget just might not fit
in from an aesthetic perspective. We can tackle this issue with relatively little effort by
extending the widget with an option that allows us to "explode" the buttons so that they're
no longer touching.

We'll implement this new exploding buttonset capability by extending the buttonset widget
and adding a new option that will enable this behavior. The HTML stays the same as previous,
but here is the new JavaScript code.

(function($, undefined) {

$.widget("ab.buttonset", $.ui.buttonset, {

 options: {
 exploded: false
 },

 refresh: function() {

 this._super("refresh");

 if (!this.options.exploded) {
 return;
 }

 var buttons = this.buttons.map(function() {
 return $(this).button("widget")[0];
 });

 this.element.addClass("ui-buttonset-exploded");

Crafting Buttons

52

 buttons.removeClass("ui-corner-left ui-corner-right")
 .addClass("ui-corner-all");

 }

});

})(jQuery);

$(function() {
 $("div").buttonset({ exploded: true });
});

We'll want to include the following CSS on the page—including it via a new stylesheet is the
recommended practice here:

.ui-buttonset-exploded .ui-button {
 margin: 1px;
}

How it works...
Our extension of the buttonset widget adds the exploded option, allowing the programmer
using the widget to specify whether they would like the individual buttons separated from one
another or not. We also override the refresh() method here in order to alter the display if
the exploded option is true.

To do this, we create a jQuery object representing all the individual buttons in the buttonset.
The reason we're using map() here is because of a work-around required with checkbox and
radio buttons. The ui-buttonset-exploded class adds the margin that we're looking
for between the buttons—it explodes them outward. Next, we remove the ui-corner-left
and ui-corner-right classes from any of the buttons, and add the ui-corner-all class
to each button that gives them each their own independent borders.

Filling space with buttons automatically
The width of any given button widget is controlled by what goes inside it. What this amounts to
is either the primary or secondary icons, or neither, plus the text. The actual rendered width of
the button itself isn't concretely specified, but instead is determined by the browser. Of course,
this is a desirable feature of any widget—relying on the browser to compute dimensions. This
approach scales well when there are lots of widgets in the UI to consider, and when there are
lots of browser resolution configurations to consider.

Chapter 3

53

There are, however, a few cases where the automatic width set forth by the browser isn't
desirable. Think about several buttons in the same context, perhaps a div element. In all
likelihood, these buttons will not render as having the same width, when this is in fact a
desired property. Just because one button in the group has slightly more or slightly less
text doesn't mean that we don't want them to share a consistent width.

Getting ready
The goal here is to treat the widest button within a group of buttons as the target width.
The siblings of the group get notified when a new button is added, potentially creating a
new target width if it is the widest. Let's illustrate the problem further by looking at the
default button functionality and what it means in terms of width.

Here is the HTML we'll use to create the button widgets.

<div>
 <button style="display: block;">Button 1</button>
 <button style="display: block;">Button 2</button>
 <button style="display: block;">Button with longer text</button>
</div>

We're explicitly marking each button as a block-level element so we can easily contrast the
widths. Notice, too, that the buttons are all siblings.

The following JavaScript turns each button element into a button widget.

$(function() {
 $("button").button();
});

As you can see, the first two buttons are of the same length while the last button uses more
text and is the widest.

How to do it...
Let's now extend the button widget with some new behavior that allows the developer to
synchronize the width of each button within a group. The modified JavaScript code to extend
the button widget looks like this:

Crafting Buttons

54

(function($, undefined) {

$.widget("ab.button", $.ui.button, {

 options: {
 matchWidth: false
 },

 _create: function() {

 this._super("create");

 if (!this.options.matchWidth) {
 return;
 }

 this.element.siblings(":" + this.widgetFullName)
 .addBack()
 .button("refresh");

 },

 refresh: function() {

 this._super("refresh");

 if (!this.options.matchWidth) {
 return;
 }

 var widths = this.element
 .siblings(":" + this.widgetFullName)
 .addBack()
 .children(".ui-button-text")
 .map(function() {
 return $(this).width();
 }),
 maxWidth = Math.max.apply(Math, widths),
 buttonText = this.element.children(".ui-button-text");

 if (buttonText.width() < maxWidth) {
 buttonText.width(maxWidth);
 }

Chapter 3

55

 }

});

})(jQuery);

$(function() {
 $("button").button({ matchWidth: true });
});

Here you can see that the buttons communicate with one another to establish the correct
width for each sibling within the group. In other words, the first two buttons altered their
widths as a result of the last button being added to the group.

How it works...
The extension to the button widget we've just added creates a new matchWidth option,
which, if true, will change the width of this button to match that of the widest in this group
if necessary.

Our extension of the _create() method calls the default _create() button
implementation, and then we tell all our siblings to refresh(). We include this button in the
list of siblings by using addBack()—the reason being, we might have to adjust our own width
if there is already someone bigger than us. Alternatively, if we're now the widest sibling, we
have to tell everyone so that they can adjust their widths.

The refresh() method calls the base refresh() implementation, then figures out whether
the width of this button should be updated or not. The first step is to generate a width array for
all siblings in the group, including ourselves. With an array of widths, we can pass it to Math.
max() to get the maximum width. If the current width of this button is less than the widest
button in the group, we adjust to the new width.

Notice that we're not actually collecting or changing the width of the button element itself,
but rather, the span element within. This span has the ui-button-text class, and is the
element of variable width we're interested in. If we took the other route of simply measuring
the button's width, we could end up with some messy margin issues that leave us in a state
worse than we were in to begin with.

www.allitebooks.com

http://www.allitebooks.org

Crafting Buttons

56

There's more...
You'll notice in the previous example that the text of the resized buttons remained centered.
We could, if so inclined, introduce a small CSS adjustment when making button width
changes that would keep the button text aligned.

(function($, undefined) {

$.widget("ab.button", $.ui.button, {

 options: {
 matchWidth: false
 },

 _create: function() {

 this._super("create");

 if (!this.options.matchWidth) {
 return;
 }

 this.element.siblings(":" + this.widgetFullName)
 .addBack()
 .button("refresh");

 },

 _destroy: function() {
 this._super();
 this.element.css("text-align", "");
 },

 refresh: function() {

 this._super("refresh");

 if (!this.options.matchWidth) {
 return;
 }

 var widths = this.element

Chapter 3

57

 .siblings(":" + this.widgetFullName)
 .addBack()
 .children(".ui-button-text")
 .map(function() {
 return $(this).width();
 }),
 maxWidth = Math.max.apply(Math, widths),
 buttonText = this.element.children(".ui-button-text");

 if (buttonText.width() < maxWidth) {
 buttonText.width(maxWidth);
 this.element.css("text-align", "left");
 }

 }

});

})(jQuery);

$(function() {
 $("button").button({ matchWidth: true });
});

Notice that within the _refresh() method, we're now stating that the text-align CSS
property is left. Additionally, we have to add a new _destroy() method to clean up this
property when the button is destroyed. The end result is the same as our previous example,
except now the button text is aligned.

Sorting buttons within a group
We can use the sortable() interaction widget to provide the user which some flexibility.
Why not let the user move buttons around? Especially given the small amount of code it takes.

Crafting Buttons

58

Getting ready
We'll use a list to organize our buttons, as follows:

 Button 1
 Button 2
 Button 3

We'll use the following CSS to fix the list layout to better display button widgets.

ul {
 list-style-type: none;
 padding: 0;
}

li {
 margin: 4px;
}

How to do it...
The JavaScript code to make this happen is actually quite miniscule—we create the buttons,
then we apply the sortable interaction widget.

$(function() {
 $("a").button();
 $("ul").sortable({
 opacity: 0.6
 });
});

At this point, we're able to drag-and-drop buttons—but only within the designated container
element, in this case, ul.

Chapter 3

59

How it works...
The first thing we're doing in this example, once the document is ready, is creating the button
widgets. We're using anchors as the underlying element, which works just as well as button
elements. You'll notice too, that we've structured the button widgets on the page inside of an
unordered list. The styles added to the page just remove the list indentation and the bullets.
But the ul element is what we're targeting for the sortable interaction. By default, the sortable
widget looks for all child elements and makes them the sortable items, in our case, these are
li elements. The opacity option specified in the example tells sortable to change the
visual opacity of the element being dragged.

Using effects with the button hover state
The button widget utilizes the various states found in the jQuery UI theme framework. For
example, when the user hovers over a button widget, this event triggers a handler inside
the button widget that applies the ui-state-hover class to the element, changing its
appearance. Likewise, when the mouse leaves the widget, a different handler removes
that class.

This default functionality of the button widget works fine—it just uses the addClass() and
removeClass() jQuery functions to apply the hover class. As the user moves around and
considers what he/she wants to do next, the mouse is likely to move in and out of button
widgets; this is where we tweak the experience by providing the user with some subtle effects.

Getting ready
For this example, we'll just create three simple button elements that will serve as the button
widgets. This way, we can experiment with moving the mouse pointer over several buttons.

<div>
 <button>Button 1</button>
 <button>Button 2</button>
 <button>Button 3</button>
</div>

How to do it...
Let's extend the capabilities of the default button widget to include a new option called
animateHover that when true, animates the addition and removal of the ui-state-
hover class.

(function($, undefined) {

$.widget("ab.button", $.ui.button, {

Crafting Buttons

60

 options: {
 animateHover: false
 },

 _create: function() {

 this._super("create");

 if (!this.options.animateHover) {
 return;
 }

 this._off(this.element, "mouseenter mouseleave");

 this._on({
 mouseenter: "_mouseenter",
 mouseleave: "_mouseleave"
 });

 },

 _mouseenter: function(e) {
 this.element.stop(true, true)
 .addClass("ui-state-hover", 200);
 },

 _mouseleave: function(e) {
 this.element.stop(true, true)
 .removeClass("ui-state-hover", 100);
 }

});

})(jQuery);

$(function() {
 $("button").button({ animateHover: true });
});

How it works...
We've added a new option to the button widget called animateHover. When true, buttons
will animate the addition or removal of the CSS properties found in ui-state-hover class.
This is all done by overriding the _create() method, called when the button widget is first
instantiated. Here, we're checking if the animateHover option is false, after we call the
original _create() method that performs routine button initialization tasks.

Chapter 3

61

If the option is set, the first job is unbinding the original mouseenter and mouseleave event
handlers from the button. These handlers are what, by default, simply add or remove the hover
class. This is exactly what we want to change, so once the original handlers are removed, we're
free to register our own using _on(). This is where we use the stop(), addClass(), and
removeClass() functions. The jQuery UI effects extensions apply to the addClass() and
removeClass() functions if a duration is given after the class name, which we've done here.
We want the adding of the ui-state-hover class to take 200 milliseconds and the removal of
the class to take 100 milliseconds since the initial hover is more noticeable by the user. Finally,
the stop(true, true) call is a common technique in jQuery for ensuring animations don't
overlap and cause jittery behavior from the user perspective.

Button icons and hiding text
With buttons, developers can choose to render icon-only buttons. This is accomplished by
telling the button we don't want the text displayed. This is easy enough to do and serves a
number of use cases—often, depending on context, an icon will suffice in explaining its action.
What's more, we can add the button label back any time we wish with a simple option change.
We can do this because the button text is part of the underlying HTML component. With icons,
however, things become a little trickier because they're an adornment on the button. We can't
turn the icons on and off as we can do with the text—the entire icon specification needs to be
applied once again.

Something to aim for, then, would be a method to specify the icons in the button constructor,
but remember them once turned off. This way, the icons will behave as though they're part of
the original DOM element.

Getting ready
We'll start with creating the structure necessary for three icon buttons. We'll also introduce
two links that alter the state of each button.

<div>
 <button class="play">Play</button>
 <button class="pause">Pause</button>
 <button class="stop">Stop</button>
</div>

<div>

 no icons

 icons
</div>

Crafting Buttons

62

How to do it...
We'll provide the button widget with our icon toggling capability by adding a new icon option.
The idea, remember, is to provide the same capability as the text option, except for icons.

(function($, undefined) {

$.widget("ab.button", $.ui.button, {

 options: {
 icon: true
 },

 _hiddenIcons: {},

 _setOption: function(key, value) {

 if (key != "icon") {
 this._superApply(arguments);
 return;
 }

 if (!value && !$.isEmptyObject(this.options.icons)) {
 this._hiddenIcons = this.options.icons;
 this._super("text", true);
 this._super("icons", {});
 }
 else if (value && $.isEmptyObject(this.options.icons)) {
 this._super("icons", this._hiddenIcons);
 }

 },

 _create: function() {

 if (!this.options.icon) {
 this._hiddenIcons = this.options.icons;
 this.options.icons = {};
 }

 this._superApply(arguments);

 }

Chapter 3

63

});

})(jQuery);

$(function() {

 $("a.no-icons").click(function(e) {
 e.preventDefault();
 $("button").button("option", "icon", false);
 });

 $("a.icons").click(function(e) {
 e.preventDefault();
 $("button").button("option", "icon", true);
 });

 $("button").button({text: false});

 $(".play").button("option", {
 icons: { primary: "ui-icon-play" }
 });

 $(".pause").button("option", {
 icons: { primary: "ui-icon-pause" }
 });

 $(".stop").button("option", {
 icons: { primary: "ui-icon-stop" }
 });

});

How it works...
Initially, the three buttons are created with text disabled, even though the button text still
exists as part of the underlying DOM element. Next, we set the icon option for each of the
three buttons. When the page first loads, you should just see icon buttons.

Crafting Buttons

64

The two links on the page, no icons and icons remove and add icons to the button widgets,
respectively. The function callback for each link does this by setting a value for the custom
icon option we've added to the button widget. Clicking on the no icons link would result
in the button icons being removed, and replaced with their text.

By clicking on the icons link, we're re-enabling the icons option we had set previously for
each button. This is done by changing our custom icon button, so if we click on that link
now, we can see that our icons are restored, without having to specify what icons were used.

You'll notice that by setting the icon value to true, we didn't hide the text, as was the case
in the original state of the buttons. We can still do this by manually setting text to false,
but that should be a manual process, and not a modification by our button extension.

Our extension adds a new _hiddenIcons attribute where we can store the value of the
icons option when the icon option is set to false. We perform the bulk of our work in _
setOption(), which is called any time a developer wants to set an option on the widget. We
only care about the new icon option we've added. First, we check if we're disabling the icons,
in which case, we store a copy of the icons option in the _hiddenIcons attribute so that
it can be restored at another time. We also set the text option to true, so that the text will
display if hidden. It would be a bad idea to hide the button icon and the text at the same time.
Finally, we actually hide the icons by unsetting the icons option.

If, on the other hand, we're enabling icons, we need to look them up in the _hiddenIcons
attribute and set them as the icons button option. The _create() implementation we're
overriding here simply stores the icons setting in _hiddenIcons and hides them if this has
been specified when the widget is first created.

4
Developing Datepickers

In this chapter, we will cover:

 f Working with different date formats

 f Making a full-sized calendar widget

 f Displaying month-to-month effects

 f Appointment reminders as tooltips

 f Restricting the date range

 f Hiding the input field

 f Additional data and controls

Introduction
The datepicker widget augments the typical text input form element by presenting the user
with a date selection utility. We see these types of inputs everywhere on the Web now. The
graphical nature of the datepicker is intuitive for most users because it closely resembles
a physical calendar. The datepicker widget also addresses the challenge of working with
consistent date formats, something users don't have to worry about.

Working with different date formats
The datepicker widget supports a variety of date string formats. The date string is the
value populated in the text input when the user makes a selection. More often than not,
applications will try to follow the same date format throughout the UI for consistency. So if
you're not happy with the default format provided by the widget, we can change it when the
widget is created using the dateFormat option.

Developing Datepickers

66

How to do it...
We'll start by creating two input fields where we require the date input from the user:

<div>
 <label for="start">Start:</label>
 <input id="start" type="text" size="30"/>
</div>

<div>
 <label for="stop">Stop:</label>
 <input id="stop" type="text" size="30"/>
</div>

Next, we'll create two datepicker widgets using the preceding input fields and by specifying
our custom format.

$(function() {

 $("input").datepicker({
 dateFormat: "DD, MM d, yy"
 });

});

How it works...
When we make a selection in either of the datepicker widgets, you'll notice the text input
value changes to the selected date, using the format we've chosen. The date format string
itself, "DD, MM d, yy", is modeled after those found in most other programming languages,
that is, there is no native JavaScript date formatting facilities for the datepicker to use. When
the user makes a selection in the drop-down calendar of the datepicker, a Date object is
created. The widget then uses the dateFormat option to format the Date object, and
populate the text input with the result.

Chapter 4

67

There's more...
If we're building a reasonably large user interface, we'll probably use several datepicker
widgets in several different places. To keep up with the date formatting consistency, we'll
have to specify the dateFormat option each time we create the datepicker widget. We will
likely have several calls to create the widget that use different selectors, so it becomes a little
tedious to always specify the same dateFormat option when it should just be the default.

In this scenario, we're better off just changing the default dateFormat value to something
our application uses throughout. This beats having to specify the same format, over and over,
while preserving the ability to change the date format on a case-by-case basis.

We'll use the same HTML structure as before—the two input fields are our datepicker
placeholders. But let's modify the JavaScript as follows:

(function($, undefined) {

$.widget("ui.datepicker", $.ui.datepicker, {
 options: $.extend(
 $.ui.datepicker.prototype.options,
 { dateFormat: "DD, MM d, yy" }
),
});

})(jQuery);

$(function() {

 $("#start").datepicker();
 $("#stop").datepicker();

});

Now, if you run this modified JavaScript, you'll get the same datepicker behavior as before.
What you'll notice, however, is that we're now making two calls to the datepicker()
constructor. Neither specifies the dateFormat option, because we've altered the default
value by customizing the datepicker widget and extending options. We still have the
option of providing a custom date format for each individual widget, and this route could
save us a lot of potentially repetitive dateFormat options.

Developing Datepickers

68

Making a full-sized calendar widget
The typical use for the datepicker widget is to augment a standard form input field. When
the field comes into focus, it's then that we want to display the actual datepicker for the user.
This makes sense if we're following the standard usage pattern for the widget—to pick dates.
This is why, after all, it's called a datepicker.

But we could, however, take advantage of some flexibility afforded by the theme framework
and perform a few minor tweaks to display a larger calendar. Not necessarily for the purpose
of picking a date as input, but as a large window into date/time related information. The
changes we need to make to the widget are merely to scale the inline display up in size.

Getting ready
The datepicker widget already knows how to display itself inline. We just need to call the
datepicker constructor on a div element instead of an input element. So we'll use this
basic markup:

<div class="calendar"></div>

And a plain old datepicker() invocation:

$(function() {
 $(".calendar").datepicker();
});

The rest of the work is performed in the theme adjustments.

How to do it...
The goal of adjusting the datepicker CSS is to make it scale up in size. The idea is to make
the widget look more like a calendar and less like a form input field helper. The calendar is
already displayed inline, so let's just include this new CSS on the page.

.ui-datepicker {
 width: 500px;
}

.ui-datepicker .ui-datepicker-title {
 font-size: 1.3em;
}

.ui-datepicker table {
 font-size: 1em;
}

Chapter 4

69

.ui-datepicker td {
 padding: 2px;
}

.ui-datepicker td span, .ui-datepicker td a {
 padding: 1.1em 1em;
}

With that, we have a scaled up calendar widget that still functions perfectly fine as a
datepicker, as we haven't altered any functionality with the widget.

How it works...
The first thing we're doing with these new style declarations is increasing the width of the
calendar display to 500px. This could be any number we choose that best fits the user
interface we happen to be developing. Next, we're upping the title section—the month and
the year—in terms of the font size. We're also increasing the font size of all the weekdays and
month numbers, as well as providing more padding between the month day slots. We have
the space now, we might as well use it. Finally, the padding set on the td span and td a
elements fixes the height of the entire calendar; otherwise, the aspect ratio would be way out
of whack. This is another number that we would want to fiddle with on a per-application basis
in order to get it right.

Developing Datepickers

70

Displaying month-to-month effects
When the datepicker selector is shown, we're typically displaying one month at a time for
the user. If the user needs to navigate backward through time, they do so using the previous
month button. Likewise, they can move forward through time using the next month button.
The datepicker widget just empties out the datepicker div when this happens, regenerates
some HTML for the calendar and inserts that. This all happens very quickly, essentially
instantaneously as far as the user is concerned.

Let's liven up this month-to-month navigation a little bit by injecting some effects into the
datepicker internals.

Getting ready
We can use any datepicker widget for this experiment, but it's probably more straightforward
to just use an inline datepicker display instead of using a text input. That way, the datepicker
is there when the page loads and we don't need to open it. Inline datepickers are created
using a div element.

<div class="calendar"></div>

How to do it...
We'll extend the datepicker widget as follows to allow for the jQuery fadeIn() and
fadeOut() functions to be applied while we're adjusting the the current month.

(function($, undefined) {

$.extend($.datepicker, {

 _updateDatepicker: function(inst) {

 var self = this,
 _super = $.datepicker.constructor.prototype;

 inst.dpDiv.fadeOut(500, function() {
 inst.dpDiv.fadeIn(300);
 _super._updateDatepicker.call(self, inst);
 });

 }

});

Chapter 4

71

})(jQuery);

$(function() {
 $(".calendar").datepicker();
});

Now when the user clicks on the next or previous arrow buttons at the top of the calendar,
we'll see that the widget fades out and fades back in with a new calendar month layout.

How it works...
The first thing you'll notice about this code is that it doesn't extend the datepicker widget
using the typical widget factory machinery. That's because the default implementation of
the datepicker hasn't yet moved over to the new widget factory way of doing things. But that
doesn't stop us from extending the widget to suit our needs.

The datepicker widget is complicated—much more so than most others
within the framework. There are many considerations the core jQuery
UI team must entertain before such a drastic change is introduced. The
plan, as of writing, is that the datepicker widget we'll be a product of the
widget factory, just like every other widget in a future release.

We're using the jQuery extend() function on the $.datepicker object. This object is a
singleton instance of the Datepicker class, which is what we're interested in for the sake of
brevity. The _updateDatepicker() method is what we're targeting in this customization.
The default datepicker implementation uses this method to update the contents of the
datepicker div. So we want to override it. In our version of the method, we're hiding inst.
dpDiv using fadeOut(). Once that completes, we call fadeIn(). The _super variable is
a reference to the Datepicker class used to defined the widget. As $.datepicker is an
instance, the only way to access the Datepicker prototype is through $.datepicker.
constructor.prototype. The reason we need the Datepicker prototype is so that we
can call the original _updateDatepicker() method once we've finished with our effects, as
it performs several other tasks related to configuring the display.

Appointment reminders as tooltips
Datepicker widgets help users select the proper date for an input field, or serve as a basic
display. In either case, wouldn't it be useful if we could provide the user with some more
context? That is, if I'm using the datepicker to select the date on a form, it would be helpful to
know that when I move the mouse pointer over a day in the calendar, I've got something going
on that day. Maybe I should pick something else.

Developing Datepickers

72

In this section, we'll look at extending the capabilities of the datepicker widget to allow
for specifying reminders that appear as tooltips. These get passed, as an option, to the
datepicker constructor and probably originated within the application somehow, perhaps from
the user's profile in the database.

How to do it...
We'll use a simple inline datepicker for this example with <div class="calendar"></
div> as the target markup.

Let's extend the datepicker's capabilities by accepting an array of reminder objects, and
creating tooltips for them. A reminder object is just a plain JavaScript object with date and
text fields. The date tells the datepicker where in the calendar the tooltip should be placed.

(function($, undefined) {

$.extend($.datepicker, {

 _updateDatepicker: function(inst) {

 var settings = inst.settings,
 days = "td[data-handler='selectDay']",
 $target = inst.dpDiv,
 _super = $.datepicker.constructor.prototype;

 _super._updateDatepicker.call(this, inst)

 if (!settings.hasOwnProperty("reminders")) {
 return;
 }

 $target.find(days).each(function(i, v) {

 var td = $(v),
 currentDay = new Date(
 td.data("year"),
 td.data("month"),
 td.find("a").html()
);

 $.each(settings.reminders, function(i, v) {

 var reminderTime = v.date.getTime(),
 reminderText = v.text,
 currentTime = currentDay.getTime();

 if (reminderTime == currentTime) {

Chapter 4

73

 td.attr("title", reminderText).tooltip();
 }

 });

 });

 }

});

})(jQuery);

$(function() {
 $(".calendar").datepicker({
 reminders: [
 {
 date: new Date(2013, 0, 1),
 text: "Happy new year!"
 },
 {
 date: new Date(2013, 0, 14),
 text: "Call in sick, case of the Mondays"
 },
 {
 date: new Date(2013, 1, 14),
 text: "Happy Valentine's Day!"
 }
]
 });
});

Now, when you move the mouse pointer over the provided reminder dates in the datepicker
widget, you should see the provided text as a tooltip:

Developing Datepickers

74

How it works...
Let's take a step back and think about the data passed to the reminders parameter, and
what we've done with it. The value passed is an array of objects, each with date and text
attributes. The text is what we want to display in the tooltip, and the date tells the datepicker
where to place the tooltip. So we take this value and compare it against the dates rendered in
the datepicker calendar.

All the customized work is done in our own implementation of the _updateDatepicker()
method. This method is called every time the calendar is rendered. This includes switching
from month to month. We use our reference to the original datepicker implementation in
_super to call the _updateDatepicker() method. Once that has completed, we can
perform our customizations. We first check if the reminders parameter has been supplied,
otherwise, our work is done.

Next, we find and iterate over each td element that represents a day in the currently-
displayed month. For each day, we construct a JavaScript Date object representative of the
table cell—we'll need this to compare against each reminder entry. Finally, we iterate over
each reminder object in the reminders parameter. If we're on the date that this reminder
should be displayed, we construct the tooltip widget after setting the title attribute of the
td element.

Restricting the date range
Your application may need to restrict allowable date selections for limiting the date range.
Perhaps this is predicated on some other condition being true or event being triggered.
Thankfully, we have enough flexibility to handle the most common selection-restricted
configurations of the widget.

Getting ready...
We'll use the basic input element markup for our datepicker widget:

<div>
 <label for="start">Start:</label>
 <input id="start" type="text" size="30"/>
</div>

Chapter 4

75

How to do it...
We'll create our datepicker widget as follows, using the minDate and maxDate options.

$(function() {

 $("input").datepicker({
 minDate: new Date(),
 maxDate: 14
 });

});

When we activate the datepicker widget by clicking on the input field, you'll notice that only a
specific range of days are selectable.

How it works...
Both the minDate and maxDate options accept a variety of formats. In our example here, we
gave the minDate option a Date object, representing today. This means that the user cannot
select any dates prior to today. Further, we don't want to allow the user to select any dates
past two weeks into the future. This is easy to specify by giving the maxDate option a delta of
14 days.

There's more...
The restricted date range of a given datepicker instance doesn't have to be statically defined.
The actual range might depend on something dynamic within the UI such as another
datepicker selection.

Developing Datepickers

76

Let's take a look at how we might go about restricting the date range depending on the
selection of another date. We'll create two datepicker widgets. When the user selects a date
in the first widget, the second widget is enabled with an updated range restriction. The user
cannot select a date before the first datepicker.

Here is the markup we'll use for the two datepickers:

<div>
 <label for="start">Start:</label>
 <input id="start" type="text" size="30"/>
</div>

<div>
 <label for="start">Stop:</label>
 <input id="stop" type="text" size="30"/>
</div>

And here is the code to create our two datepicker widgets:

$(function() {

 function change (e) {

 var minDate = $(this).datepicker("getDate");

 $("#stop").datepicker("enable");
 $("#stop").datepicker("option", "minDate", minDate);

 }

 $("#start").datepicker()
 .change(change);

 $("#stop").datepicker({ disabled: true });

});

By default, the #stop datepicker is disabled because we need to know what the minDate
value should be.

But once the user makes a selection in the #start datepicker, we can make a selection in
the #stop datepicker—we just can't select anything prior to the selection we made in the
#start datepicker.

Chapter 4

77

The #start datepicker enables and updates the #stop datepicker when a selection is made.
It enables the widget and passes the value of getDate as the minDate option. This forces
the user in one direction based on a prior selection.

Hiding the input field
The goal of the datepicker widget is to populate a text input element once the user makes a
selection. So the widget has two uses for the input element. First, it listens for focus events
on the input element. This is how it knows when to display the calendar selector. Second,
once the selection is made, the input element value is updated to reflect the date in the
chosen format.

Presenting the user with an input element would work fine in the majority of cases. But
perhaps for some reason, an input doesn't suit your UI well. Maybe we need a different
approach to displaying the calendar and storing/displaying the selection.

In this section, we'll look at an alternative approach to just using the datepicker input
element. We'll use a button widget to trigger the calendar display, and we'll disguise the
input element as being something else.

Getting ready
Let's use the following HTML for this example. We'll lay out four date sections where the user
needs to press a button in order to interact with the datepicker widget.

<div>

 <div class="date-section">
 <label>Day 1:</label>

Developing Datepickers

78

 <button>Day 1 date</button>
 <input type="text" readonly />
 </div>

 <div class="date-section">
 <label>Day 2:</label>
 <button>Day 2 date</button>
 <input type="text" readonly />
 </div>

 <div class="date-section">
 <label>Day 3:</label>
 <button>Day 3 date</button>
 <input type="text" readonly />
 </div>

 <div class="date-section">
 <label>Day 4:</label>
 <button>Day 4 date</button>
 <input type="text" readonly />
 </div>

</div>

How to do it...
The first thing we'll need to make our date sections work as expected is some CSS. This
is important not only for laying out the UI we're building, but also for disguising the input
element, so that the user doesn't know it's there.

div.date-section {
 padding: 5px;
 border-bottom: 1px solid;
 width: 20%;
}

div.date-section:last-child {
 border-bottom: none;
}

div.date-section label {
 font-size: 1.2em;
 font-weight: bold;
 margin-right: 2px;
}

Chapter 4

79

div.date-section input {
 border: none;
}

Now we'll write the JavaScript code necessary to instantiate the datepicker and button widgets.

$(function() {

 var input = $("div.date-section input"),
 button = $("div.date-section button");

 input.datepicker({
 dateFormat: "DD, MM d, yy"
 });

 button.button({
 icons: { primary: "ui-icon-calendar" },
 text: false
 });

 button.click(function(e) {
 $(this).next().datepicker("show")
 });

});

With that, we now have four date sections where the user can click on the date button to the
right of the label and get the calendar displayed. They pick a date, and the calendar is hidden.
You'll notice that our CSS styles have hidden the input element.

Developing Datepickers

80

How it works...
Most of the CSS style rules in this example are required for laying out the UI components,
label, buttons, and input. You'll notice that until a date is selected, the input isn't visible.
This is because it has no text value yet, and because we've removed border in our div.
date-section input CSS selector.

The first thing our JavaScript code does on page load is create datepicker widgets for each
input element. We pass a custom string along to the dateFormat option too. For each date
section, we have a button. We use the button widget here to create a calendar icon button
that when clicked, displays the calendar. We do this by calling datepicker("show").

Additional calendar data and controls
The datepicker widget has a variety of additional data and control options that may be
exposed by the developer using the widget. These are simple Boolean configuration options
that turn on the data or the control.

Getting started
Let's prepare two div elements with which we can create two inline datepicker instances.

<div>
 Regular:
 <div id="regular"></div>
</div>

<div>
 Expanded:
 <div id="expanded"></div>
</div>

How to do it...
Let's create the two datepicker widgets. We're creating two widgets so that we can contrast
the differences between a regular datepicker and one with expanded data and controls.

$(function() {

 $("#regular").datepicker();

 $("#expanded").datepicker({
 changeYear: true,
 changeMonth: true,

Chapter 4

81

 showButtonPanel: true,
 showOtherMonths: true,
 selectOtherMonths: true,
 showWeek: true
 });

});

Now you can see the differences between the two rendered datepickers. The latter has been
expanded with additional controls and data.

How it works...
All we've done with the expanded datepicker instance is turn on some features that are
turned off by default. These are as follows:

 f changeYear: This enables the year drop-down menu.

 f changeMonth: This enables the month drop-down menu.

 f showButtonPanel: This enables the Today and Done buttons at the bottom
of the calendar.

 f showOtherMonths: This enables days being displayed from adjacent months.

 f showWeek: This enables the week-of-the-year column in the calendar.

5
Adding Dialogs

In this chapter, we will cover the following recipes:

 f Applying effects to dialog components

 f Waiting for API data to load

 f Using icons in the dialog title

 f Adding actions to the dialog title

 f Applying effects to dialog resize interactions

 f Using modal dialogs for messages

Introduction
The dialog widget gives UI developers a tool with which they can present the user with forms
or other pieces of information without disrupting what is currently on the page; dialogs create
a new context. Out-of-the-box, developers can do a lot with dialog options, and many of these
capabilities are turned on by default. This includes the ability to resize the dialog, and move it
around on the page.

In this chapter, we'll address some common pitfalls of dialog usage typical in any web
application. There is often a need to adjust the controls of the dialog and its overall
appearance; we'll touch on a few of those. We'll also look at how interacting with API data
complicates dialog usage and the ways to deal with that. Finally, we can add some polish to
dialog widgets by looking at the various ways in which we can apply effects to them.

Adding Dialogs

84

Applying effects to dialog components
Out-of-the-box, the dialog widget allows developers to show animations when the dialog is
opened, as well as hide animations, when closed. This animation is applied to the dialog as
a whole. So, for example, if we were to specify that the show option is a fade animation, the
entire dialog will fade into view for the user. Likewise, if the hide option was fade, the dialog
would fade out of view instead of instantaneously disappearing. To liven up this show and
hide behavior, we could operate on individual dialog components. That is, instead of applying
show and hide effects to the dialog as a whole, we could apply them to the individual parts
inside the widget, like the title bar and the button pane.

How to do it...
The dialog we're going to create here is just about as simple as they come in terms of
content. That is, we're going to only specify some basic title and content strings for
the dialog in the HTML.

<div title="Dialog Title">
 <p>Basic dialog content</p>
</div>

In order to turn this idea of animating individual dialog components into reality, we'll have to
extend the dialog widget in a few places. In particular, we're going to animate the title bar, at
the top of the widget, as well as the button pane near the bottom. Here is what the JavaScript
code looks like:

(function($, undefined) {

$.widget("ab.dialog", $.ui.dialog, {

 _create: function() {

 this._super();

 var dialog = this.uiDialog;

 dialog.find(".ui-dialog-titlebar").hide();
 dialog.find(".ui-dialog-buttonpane").hide();

 },

 open: function() {

 this._super();

Chapter 5

85

 var dialog = this.uiDialog;

 dialog.find(".ui-dialog-titlebar").toggle("fold", 500);
 dialog.find(".ui-dialog-buttonpane").toggle("fold", 500);

 },

 close: function(event, isCallback) {

 var self = this,
 dialog = this.uiDialog;

 if (isCallback) {
 this._super(event);
 return;
 }

 dialog.find(".ui-dialog-titlebar").toggle("fold", 500);
 dialog.find(".ui-dialog-buttonpane").toggle("fold", 500,
function(){
 self.element.dialog("close", event, true);
 });

 }

});

})(jQuery);

$(function() {

 $("div").dialog({
 show: "fade",
 hide: "scale",
 buttons: {
 Cancel: function() {
 $(this).dialog("close");
 }
 }
 });

});

Adding Dialogs

86

When you open the page, you'll see the individual dialog components fade into view,
independent of the fade animation we've specified for the dialog as a whole. Once visible, the
dialog should look something like this:

You'll also notice that the scale effect isn't applied until the fade effect is applied to the title
bar and button panes.

How it works...
This code is one of those exceptions to the rule where we're not providing a mechanism
with which to turn off our new extended functionality. That is, we have hard-coded changes
in our custom implementation of some dialog methods that cannot be turned off by supplying
an option value. However, the exception is made in an effort to trade-off complexity for
desired functionality. Chances are that this type of custom animation work would happen
as part of a specific project requirement, and not as a generalized extension of the dialog
widget capabilities.

The first thing we change about the default dialog implementation is in the _create()
method, where we hide the .ui-dialog-titlebar and .ui-dialog-buttonpane
components. This is done after calling the _super() method, which is responsible for
creating the basic dialog components. Even if the dialog is set to open automatically with the
autoOpen option, the _create() method doesn't actually display it. So, we can hide the title
bar and button pane without the user noticing it.

The reason we've hidden the two components is because we would like to apply a display
effect once the dialog opens. The next method, open(), that we're overriding does exactly
that. It first calls the _super() method, which initiates the effect for displaying the dialog (in
our case, we've told it to fade on display). We then use the fold effect on the title bar and on
the button pane.

Chapter 5

87

You'll notice that we don't wait for any animations to complete before starting the next. The
dialog display animation is started, followed by the title bar and the button pane. All three
could be executing at the same time, potentially. The reason we've done it this way is to retain
the correct layout of the dialog. The last method to override is the close() method. This
introduces an interesting work-around we must use in order to get _super() to work in a
callback. Even with the self variable in the enclosing scope, we have problems calling the
_super() method inside the callback. So, we use the widget element and pretend like we're
calling .dialog("close") from outside of the widget. The isCallback argument tells
the close() method to call _super(), and return. The reason we need a callback to begin
with is that we don't actually want to execute the dialog hide animation until we've finished
animating the button pane.

Waiting for API data to load
More often than not, the dialog widget needs to load data from an API. That is, not all dialogs
are composed of static HTML. They need data from the API to construct some of the elements
using API data, such as select element options.

Loading data from the API and building the resultant elements isn't the issue; we do this
all the time. The challenge comes when we try to perform these activities within the dialog
context. We don't necessarily want to display the dialog until the data has been loaded from
the API, and the UI components used to display them inside the dialog components have been
built. Ideally, we would block the dialog from displaying until the components displayed by the
dialog are ready.

This is especially tricky with remote API functionally, where it is impossible to predict latency
issues. Furthermore, the dialog may depend on more than one API call, each populating its
own UI component in the dialog.

Getting ready...
To implement a solution for the API data problem, we'll need some basic HTML and CSS to
define the dialog and its content. We'll have two empty select elements in the dialog. This
is what the HTML looks like:

<div id="dialog" title="Genres and Titles">
 <div class="dialog-field">
 <label for="genres">Genres:</label>
 <select id="genres"></select>
 <div class="ui-helper-clearfix"></div>
 </div>

 <div class="dialog-field">
 <label for="titles">Titles:</label>

Adding Dialogs

88

 <select id="titles"></select>
 <div class="ui-helper-clearfix"></div>
 </div>
</div>

And, this is the supporting CSS for the previous code:

.dialog-field {
 margin: 5px;
}

.dialog-field label {
 font-weight: bold;
 font-size: 1.1em;
 float: left;
}

.dialog-field select {
 float: right;
}

How to do it...
We'll give the dialog widget the ability to block while waiting on API requests by extending the
widget with a new option. This option will allow us to pass in an array of deferred promises.
A promise is an object used to track the state of an individual Ajax call. With a collection of
promises, we're able to implement complex blocking behavior using simple code like this:

(function($, undefined) {

$.widget("ab.dialog", $.ui.dialog, {

 options: {
 promises: []
 },

 open: function(isPromise) {

 var $element = this.element,
 promises = this.options.promises;

 if (promises.length > 0 && !isPromise) {

 $.when.apply($, promises).then(function() {

Chapter 5

89

 $element.dialog("open", true);
 });

 }
 else {

 this._super();

 }

 },

});

})(jQuery);

$(function() {

 var repos = $.ajax({
 url: "https://api.github.com/repositories",
 dataType: "jsonp",
 success: function(resp) {
 $.each(resp.data, function(i, v) {
 $("<option/>").html(v.name)
 .appendTo("#repos");
 });
 },
 });

 var users = $.ajax({
 url: "https://api.github.com/users",
 dataType: "jsonp",
 success: function(resp) {
 $.each(resp.data, function(i, v) {
 $("<option/>").html(v.login)
 .appendTo("#users");
 });
 }
 });

 $("#dialog").dialog({
 width: 400,
 promises: [
 repos.promise(),

Adding Dialogs

90

 users.promise()
]
 });

});

Once the API data is returned, for both the calls, the dialog is displayed and should look
something like this:

How it works...
Let's start by looking at the document ready handler where we're actually instantiating the
dialog widget. The first two variables defined here, repos and users, are $.Deferred
objects. These represent two API calls we're making to the GitHub API. The objective of these
calls is to populate the #repos and the #users select elements, respectively. These
select elements make up part of our #dialog content. The success option specified in
each Ajax call is a callback that performs the work of creating the option elements, and
placing them in the select element.

Without customizing the dialog widget, these two API calls would work just fine. The dialog
would open, and eventually, the options would appear in the select elements (after the
dialog has already opened). You'll notice, however, that we're passing an array of deferred.
promise() objects to the dialog. This is a new capability we've given to the dialog widget. A
deferred object, simply put, allows developers to postpone the consequences of some action
that might take a while to complete, such as an Ajax call. A promise is something we get from
a deferred object that lets us compose some criteria that says when a complex sequence,
such as making multiple Ajax calls, is complete.

The custom promises option we've added to the dialog widget is used in our implementation
of the open() method. It is here that we can make use of these promises. Essentially, we're
making a transaction out of one or more promise objects passed to the dialog—once they've
all completed or resolved to use the jQuery terminology, we can open the dialog. We do so
by passing the array of promise objects to the $.when() function, which calls the open()
method on the dialog. However, a complication arises here that we must deal with. We can't
call _super() from within a callback function because the core widget machinery doesn't
understand how to find the parent widget class.

Chapter 5

91

So, we have to pretend as though we're calling open() from outside of the widget. We do this
by using self.element, and the additional isPromise parameter, instructing our custom
open() implementation on how to behave.

Using icons in the dialog title
With some dialogs, depending on the nature of the application and the content of the dialog
itself, it may be beneficial to place an icon beside the dialog title. This could be beneficial in
the sense that it provides additional context to the user. For example, an edit dialog might
have a pencil icon, whereas a user profile dialog might contain a person icon.

Getting ready...
To illustrate adding an icon to the title bar of the dialog widget, we'll use the following as our
basic HTML:

<div id="dialog" title="Edit">
 <div>
 <label>Field 1:</label>
 <input type="text"/>
 </div>
 <div>
 <label>Field 2:</label>
 <input type="text"/>
 </div>
</div>

How to do it...
The first thing we'll need to define is a custom CSS class used to properly align the icon once
we place it in the title bar of the dialog. The CSS looks like this:

.ui-dialog-icon {
 float: left;
 margin-right: 5px;
}

Next, we have our JavaScript code to customize the dialog widget by adding a new icon
option as well as creating an instance of the widget using our HTML as the source:

(function($, undefined) {

$.widget("ab.dialog", $.ui.dialog, {

 options: {

Adding Dialogs

92

 icon: false
 },

 _create: function() {

 this._super();

 if (this.options.icon) {

 var iconClass = "ui-dialog-icon ui-icon " +
 this.options.icon;

 this.uiDialog.find(".ui-dialog-titlebar")
 .prepend($("").addClass(iconClass
));

 }

 },

});

})(jQuery);

$(function() {

 $("#dialog").dialog({
 icon: "ui-icon-pencil",
 buttons: {
 Save: function() { $(this).dialog("close") }
 }
 });

});

The resulting dialog, when opened, should look something like the following:

Chapter 5

93

How it works...
For this particular dialog instance, we would like to display the pencil icon. Our icon option
we've added to the dialog widget allows the developer to specify an icon class from the theme
framework. In this case, it's ui-icon-pencil. The new icon option has a default value
of false.

We're overriding the default dialog implementation of the _create() method so that we
can inject a new span element into the dialog title bar if the icon option was provided. This
new span element gets the icon class passed as the new option value, in addition to the ui-
dialog-icon class, which is used to position the icon we defined earlier.

Adding actions to the dialog title
By default, the dialog widget provides the user with one action that doesn't require developer
intervention—the close button in the title bar. This is a universal action that applies to almost
any dialog, as users would expect to be able to close them. Additionally, it isn't by accident
that the close dialog action button is an icon positioned in the top-right corner of the dialog.
This is a standard location and action in graphical windowing environments as well, in addition
to other actions. Let's take a look at how we might go about extending the actions placed in
the title bar of the dialog widget.

How to do it...
For this demonstration, we only need the following basic dialog HTML:

<div id="dialog" title="Dialog Title">
 <p>Basic dialog content</p>
</div>

Next, we'll implement our dialog specialization that adds a new option and some code that
creates a new dialog instance using that option:

(function($, undefined) {

$.widget("ab.dialog", $.ui.dialog, {

 options: {
 iconButtons: false
 },

 _create: function() {

 this._super();

Adding Dialogs

94

 var $titlebar = this.uiDialog.find(".ui-dialog-titlebar");

 $.each(this.options.iconButtons, function(i, v) {

 var button = $("<button/>").text(v.text),
 right = $titlebar.find("[role='button']:last")
 .css("right");

 button.button({ icons: { primary: v.icon }, text: false }
)
 .addClass("ui-dialog-titlebar-close")
 .css("right", (parseInt(right) + 22) + "px")
 .click(v.click)
 .appendTo($titlebar);

 });

 }

});

})(jQuery);

$(function() {

 $("#dialog").dialog({
 iconButtons: [
 {
 text: "Search",
 icon: "ui-icon-search",
 click: function(e) {
 $("#dialog").html("<p>Searching...</p>");
 }
 },
 {
 text: "Add",
 icon: "ui-icon-plusthick",
 click: function(e) {
 $("#dialog").html("<p>Adding...</p>");
 }
 }
]
 });

});

Chapter 5

95

When this dialog is opened, we'll see the new action buttons we passed to the dialog in the
top-right corner, as shown in the following screenshot:

How it works...
We've created a new option for the dialog called iconButtons. This new option expects an
array of objects, where each object has attributes related to an action button. Things like the
text, the icon class, and the click event have to be executed when the user opens the dialog,
and clicks on the button.

The bulk of the work in this customization takes place in our version of the _create()
method. Here, we iterate over each button supplied in the iconButtons option. The first
thing we do when inserting a new button into the title bar is create the button element.
We also get the width of the last action button added using the .ui-dialog-titlebar
[role='button']:last selector (this is needed to compute the horizontal placement of
the action button).

Next, we bind the click event as specified in the button configuration. For each button in the
array that we're adding, we want it placed to the left of the previous button. So when we first
start iterating over the iconButtons array, the default close action is the last button in the
title bar. Since the CSS structure requires a fixed right value, we have to compute it. And to do
that, we need the value of the last button in the list.

Applying effects to dialog resize
interactions

By default, the dialog widget allows users to resize by dragging the resize handle. The actual
resize capability is provided by the resizable() interaction widget setup internally by the
dialog when the resizable option is true. Let's take a look at how to gain access to the
internal resizable component, so that we can use the animate feature. This option, when set
on a resizable component, delays the redrawing of the resized component until the user has
stopped dragging the resize handle.

Adding Dialogs

96

Getting ready...
We only need simple dialog HTML for this demonstration, like this:

<div id="dialog" title="Dialog Title">
 <p>Basic dialog content</p>
</div>

How to do it...
Let's add a new option to the dialog widget called animateResize. When this option is
true, we'll turn on the animate option of the internal resizable interaction widget.

(function($, undefined) {

$.widget("ab.dialog", $.ui.dialog, {

 options: {
 animateResize: false
 },

 _makeResizable: function(handles) {
 handles = (handles === undefined ? this.options.resizable :
handles);
 var that = this,
 options = this.options,
 position = this.uiDialog.css("position"),
 resizeHandles = typeof handles === 'string' ?
 handles:
 "n,e,s,w,se,sw,ne,nw";

 function filteredUi(ui) {
 return {
 originalPosition: ui.originalPosition,
 originalSize: ui.originalSize,
 position: ui.position,
 size: ui.size
 };
 }

 this.uiDialog.resizable({
 animate: this.options.animateResize,
 cancel: ".ui-dialog-content",
 containment: "document",
 alsoResize: this.element,

Chapter 5

97

 maxWidth: options.maxWidth,
 maxHeight: options.maxHeight,
 minWidth: options.minWidth,
 minHeight: this._minHeight(),
 handles: resizeHandles,
 start: function(event, ui) {
 $(this).addClass("ui-dialog-resizing");
 that._trigger("resizeStart", event, filteredUi(ui)
);
 },
 resize: function(event, ui) {
 that._trigger("resize", event, filteredUi(ui));
 },
 stop: function(event, ui) {
 $(this).removeClass("ui-dialog-resizing");
 options.height = $(this).height();
 options.width = $(this).width();
 that._trigger("resizeStop", event, filteredUi(ui)
);
 if (that.options.modal) {
 that.overlay.resize();
 }
 }
 })
 .css("position", position)
 .find(".ui-resizable-se")
 .addClass("ui-icon ui-icon-grip-diagonal-se");
 }

});

})(jQuery);

$(function() {

 $("#dialog").dialog({
 animateResize: true
 });

});

When this dialog is created and displayed, you'll be able to resize the dialog, observing that
the actual resize is now animated.

Adding Dialogs

98

How it works...
We've added the animateResize option to the dialog and provided it with a default
value of false. To actually perform this capability, we've completely overwritten the _
makeResizable() method, which the dialog widget uses internally when the dialog is
created. In fact, we've taken the internal code for _makeResizable() and changed only one
thing about it—animate: this.options.animateResize.

This is slightly redundant, copying all this code for turning on a simple feature like animating
the dialog resize interaction. Indeed, it isn't the ideal solution. A better approach would be
to call the _super() version of _makeResizable(), then just turn on animate by calling
this.uiDialog.resizable("option", "animate", true). But at the time of
this writing, this doesn't behave as expected. Our alternative route, even though it involves
redundant code, just goes to show the flexibility of the widget factory. If this animation quality
were a real requirement of a user interface, we quickly found a work-around with a negligible
trade-off.

Using modal dialogs for messages
The dialog widget has a modal option reserved for when we need to focus the user's attention
on just one thing. This option displays the dialog while preventing the user from interacting
with the rest of the user interface. They have no choice but to take notice. This goes without
saying, the modal dialog should be used sparingly, especially if you want to use it to broadcast
messages to the user.

Let's look at how we can strip down the dialog in order to construct a generic notification
tool in our application. It is a modal dialog in essence that is used for those cases where we
cannot let the user continue what they're doing without ensuring they've seen our message.

Chapter 5

99

Getting ready...
Here is what the HTML we'll need for this example looks like. Notice that the #notify div,
which will become a dialog widget, has no content as our new notify widget will supply some.

<div id="notify"></div>

<button id="show-info">Show Info</button>
<button id="show-error">Show Error</button>

How to do it...
Let's go ahead and define a new notify widget, capable of displaying both error and
information messages to the user like this:

(function($, undefined) {

$.widget("ab.notify", $.ui.dialog, {

 options: {
 modal: true,
 resizable: false,
 draggable: false,
 minHeight: 100,
 autoOpen: false,
 error: false
 },

 open: function() {

 var error = this.options.error,
 newClass = error ? "ui-state-error" :
 "ui-state-highlight",
 oldClass = error ? "ui-state-highlight" :
 "ui-state-error";

 this.element.html(this.options.text);

 this.uiDialog.addClass(newClass)
 .removeClass(oldClass)
 .find(".ui-dialog-titlebar")
 .removeClass("ui-widget-header ui-corner-all");

 this._super();

Adding Dialogs

100

 },

});

})(jQuery);

$(function() {

 $("#notify").notify();

 $("#show-info, #show-error").button();

 $("#show-info").click(function(e) {

 $("#notify").notify("option", {
 error: false,
 text: "Successfully completed task"
 });

 $("#notify").notify("open");

 });

 $("#show-error").click(function(e) {

 $("#notify").notify("option", {
 error: true,
 text: "Failed to complete task"
 });

 $("#notify").notify("open");

 })

The two buttons we've created here are used for demonstrating the notify widget's capabilities.
If you click the #show-info button, you'll see the following informational message:

Chapter 5

101

If you click the #show-error button, you'll see this error message:

How it works...
The notify widget we've just created inherits all of the dialog widget's capabilities. The
first thing we define in our widget is the available options. In this case, we're extending the
options object of the dialog widget, and adding some new options. You'll notice, too, that
we're providing some updated default values for the dialog options such as turning modal on
and turning draggable off. Every notify instance will share these defaults, so it doesn't make
much sense to have to define them each and every time.

The open() method belongs to the dialog widget, and we're overriding it here to implement
custom functionality that inserts the text of the notification message into the dialog content.
We also set the state of the dialog based on the error option. If this is an error message, we
apply the ui-state-error class to the entire dialog. If the error option is false, we apply
the ui-state-highlight class. Finally, the dialog title bar component is stripped down by
removing some classes, since we're not using it in the message display.

In the application code, the first thing we're creating is an instance of the notify widget. We
then create the demo buttons and bind the click event to the functionality that will display
an error message or an informational one, depending on which button is clicked.

6
Making Menus

In this chapter, we will cover:

 f Creating sortable menu items

 f Highlighting the active menu item

 f Using effects with menu navigation

 f Building menus dynamically

 f Controlling the position of submenus

 f Applying themes to submenus

Introduction
The jQuery UI menu widget takes a list of links and presents them as a cohesive menu to
the user by handling navigation in submenus, as well as applying classes from the theme
framework. We can customize the menu to a certain degree, using just the default options
available. In other cases, such as when we would like the menu items sortable, we can easily
extend the widget.

Creating sortable menu items
The menu widget, by default, preserves the order of the listed elements used to create the
menu items. It means that if the creator of the HTML used in the menu widget were to change
the ordering, this would be reflected in the rendered menu. This is good for the developers
because it gives us control over how we would like the items to be presented to the user. But,
perhaps the user has a better idea on how the menu items should be ordered.

Making Menus

104

By combining the menu widget with the sortable interaction widget, we can provide the user
with that flexibility. However, with this new capability, we will have to address another question;
preserving the order chosen by the user. It is great if they can arrange the menu items how
they see fit, but it is not so great if they have to repeat the same process every time the page
loads. So we'll look, as well, at preserving the sorted menu order in a cookie.

Getting ready
Let's use the following HTML code for our menu widget. This will create a menu with four
items, all at the same level:

<ul id="menu">
 <li id="first">First Item
 <li id="second">Second Item
 <li id="third">Third Item
 <li id="fourth">Fourth Item

How to do it...
Let's now look at the JavaScript used to extend the menu widget in order to provide the
sortable behavior..

(function($, undefined) {

$.widget("ab.menu", $.ui.menu, {

 options: {
 sortable: false
 },

 _create: function() {

 this._super();

 if (!this.options.sortable) {
 return;
 }

 var $element = this.element,
 storedOrder = $.cookie($element.attr("id")),
 $items = $element.find(".ui-menu-item");
 if (storedOrder) {

Chapter 6

105

 storedOrder = storedOrder.split(",");

 $items = $items.sort(function(a, b) {

 var a_id = $(a).attr("id"),
 b_id = $(b).attr("id"),
 a_index = storedOrder.indexOf(a_id),
 b_index = storedOrder.indexOf(b_id);

 return a_index > b_index;

 });

 $items.appendTo($element);

 }

 $element.sortable({

 update: function(e, ui) {

 var id = $(this).attr("id"),
 sortedOrder = $(this).sortable("toArray")
 .toString();

 $.cookie(id, sortedOrder);

 }

 });

 },

});

})(jQuery);

$(function() {
 $("#menu").menu({ sortable: true });

});

Making Menus

106

If you look at this menu in the browser, you'll notice that you can drag the menu items into
any order you like. Additionally, if you were to refresh the page, you'll see that the ordering has
been preserved.

How it works...
The menu instance we're creating in this example is given a sortable option value of
true. This is a new option we've added to the menu widget. The bulk of our extension work
is performed in our own rendition of the _create() method. The first thing we do here is
call the original implementation of the method since we want the menu to be created as
usual; we do it by using the _super() method. From here on out, we're maintaining the
sort order of the menu items.

If the sortable option doesn't evaluate to true, we exit, not having anything to do. In the
event that this option is true, and we need to sort our menu items, we attempt to load a
cookie, using the ID of this menu. The value of this cookie is stored in a variable called the
storedOrder, because that's exactly what it represents; the stored order as dictated by the
user. If the user has sorted the menu, we store the order of the menu items in the cookie. For
example, the cookie value might look like second,fourth,first,third. These are the
IDs of the menu items. When we split the comma-separated list, we have an array of menu
items, in the correct order.

Finally, we have to apply the sortable interaction widget to the menu. We pass the sortable
configuration a function that is used when the sort order is updated. It is here that we use
the toArray() method of the sortable widget to serialize the sort order of the menu items
and it is here that we update the cookie value, using the menu ID.

There are two things to note about the use of cookies in this example. First, we're using the
cookie jQuery plugin. This plugin is small and in widespread use around the internet. However,
it is worth mentioning that the plugin does not ship with jQuery or jQuery UI and your project
will have to manage this dependency.

The second thing to note is with regards to the localhost domain. The cookie storage
functionality will not work locally in all browsers. In other words, it works fine if viewed from
a web server. If you really need to test this code in the Google Chrome browser, you can get
around it as I did using Python. In an operating system console, run the following code:

python -m SimpleHTTPServer

Chapter 6

107

Highlighting the active menu item
With menu widgets, depending on how the items are configured, the only way to tell if an
item is active is when the page URL changes as a result of an item being clicked on. The menu
items don't give any obvious indication that anything has actually happened. For example, the
item in a menu, once clicked, could change the visual state. This is especially helpful if the
developer is using the menu widget as a navigational tool in the user interface. Let's look at
how we can extend the capabilities of the menu widget in order to provide this functionality
using parts from the theme framework.

Getting ready
We'll use the following HTML code for our menu example here. Notice that this particular
menu has a nested submenu:

<ul id="menu">
 First Item
 Second Item
 Third Item

 Fourth Item

 Fifth
 Sixth

 </li

How to do it...
In order to highlight the active menu item, we're going to need to extend the theme framework
with a few additional rules.

.ui-menu .ui-menu-item {
 margin: 1px 0;
 border: 1px solid transparent;
}

.ui-menu .ui-menu-item a.ui-state-highlight {
 font-weight: normal;
 margin: -px;
}

Making Menus

108

Next, we'll extend the menu widget itself with a new highlight option and the
necessary functionality.

(function($, undefined) {

$.widget("ab.menu", $.ui.menu, {

 options: {
 highlight: false
 },

 _create: function() {

 this._super();

 if (!this.options.highlight) {
 return;
 }

 this._on({
 "click .ui-menu-item:has(a)": "_click"
 });

 },

 _click: function(e) {

 this.element.find(".ui-menu-item a")
 .removeClass("ui-state-highlight");

 $(e.target).closest(".ui-menu-item a")
 .addClass("ui-state-highlight ui-corner-all");

 }

});

})(jQuery);

$(function() {
 $("#menu").menu({ highlight: true });
});

Chapter 6

109

If you were to look at this menu, you'd notice that once you select a menu item it would
remain in the highlighted state.

How it works...
The CSS rules we've defined here are necessary for the ui-state-highlight class to
function properly when applied to a menu item. First, with the .ui-menu .ui-menu-item
selector, we're setting the margin to something that will appropriately align the menu item
once the ui-state-highlight class is applied. We're also giving each menu item an invisible
border so that the mouse enter and mouse leave events don't nudge the menu items out of
place. The next selector, .ui-menu .ui-menu-item a.ui-state-highlight, applies to
our menu items once we've applied the ui-state-highlight class to them. The rules also
control positioning, and prevent the menu from becoming misaligned.

Moving over to the JavaScript code, you can see that we've provided the menu widget with a
new highlight option. In our custom implementation of the _create() method, we call the
original implementation of the same method before proceeding to add our event handlers. The
_on() method, defined by the base jQuery UI widget, is used here to bind our event handler
to the click .ui-menu-item:has(a) event; the same event used internally in the menu
widget. Inside this handler, we remove the ui-state-highlight class from any menu items
it might already be applied to. Finally, we add the ui-state-highlight class to the menu
item just clicked on, along with the ui-corner-all class, which gives the element rounded
corners as defined by the theme properties.

Using effects with menu navigation
There are several approaches we could take when it comes to applying effects to the menu
widget. Where could we apply effects in the menu widget? The user hovers their mouse
pointer over the menu items, which results in a state change. The user expands a submenu.
These two actions are the main interactions we could improve visually with some animation.
Let's look at how we can address these effects using as little JavaScript as possible in favor
of using CSS transitions. Transitions are an emerging CSS standard in so far, that not all
browsers support them using standard syntax yet. In the spirit of progressive enhancement,
however, applying CSS in this way means that the basic menu functionality will work just fine
even in browsers that don't support it. And we can side-step having to write an overwhelming
amount of JavaScript to animate the menu navigation.

Making Menus

110

Getting ready
For this example, we can use any standard menu HTML code. Ideally, it should have a
submenu so we can observe the transitions applied to their expansion.

How to do it...
First, let's define the CSS required for the transitions we want to be applied to the menu
items and submenus as they change state.

.ui-menu-animated > li > ul {
 left: 0;
 transition: left 0.7s ease-out;
 -moz-transition: left .7s ease-out;
 -webkit-transition: left 0.7s ease-out;
 -o-transition: left 0.7s east-out;
}

.ui-menu-animated .ui-menu-item a {
 border-color: transparent;
 transition: font-weight 0.3s,
 color 0.3s,
 background 0.3s,
 border-color 0.5s;
 -moz-transition: font-weight 0.3s,
 color 0.3s,
 background 0.3s,
 border-color 0.5s;
 -webkit-transition: font-weight 0.3s,
 color 0.3s,
 background 0.3s,
 border-color 0.5s;
 -o-transition: font-weight 0.3s,
 color 0.3s,
 background 0.3s,
 border-olor 0.5s;
}

Next, we'll introduce some modifications to the menu widget itself, necessary to control
the animation capabilities of any given menu instance.

(function($, undefined) {

$.widget("ab.menu", $.ui.menu, {

Chapter 6

111

 options: {
 animate: false
 },

 _create: function() {

 this._super();

 if (!this.options.animate) {
 return;
 }

 this.element.find(".ui-menu")
 .addBack()
 .addClass("ui-menu-animated");

 },

 _close: function(startMenu) {

 this._super(startMenu);

 if (!this.options.animate) {
 return;
 }

 if (!startMenu) {
 startMenu = this.active ? this.active.parent() : this.
element;
 }

 startMenu.find(".ui-menu").css("left", "");

 }

});

})(jQuery);

$(function() {
 $("#menu").menu({ animate: true });
});

Making Menus

112

Now, if you were to look at this menu in your browser and start interacting with it, you would
notice the smooth transitions in applying the hover state. You'd also notice that the transition
applied to the submenus appears to slide them to the right when expanded.

How it works...
First, let's consider the CSS rules that define the transitions we're seeing applied to the menu
widget. The .ui-menu-animated > li > ul selector applies transitions to submenus.
The first property declared, left: 0, is merely an initializer that allows a certain browser to
work better with transitions. The next four lines define the transition itself of the left property.
The menu widget, when expanding submenus, uses the position utility widget, which sets the
left CSS property on the submenu. The transition we've defined here will apply changes to the
left property over a span of 0.7 seconds, and will ease out of the transition.

The reason we have multiple transition definitions is that some browsers support their own
vendor-prefixed version of the rule. So we start with the generic version, followed by the
browser-specific versions. This is a common practice, and when the browser-specific rules
become superfluous, we can remove them.

Following it comes the .ui-menu-animated .ui-menu-item a selector, which applies
to each menu item. You can see that the transition here involves several properties. Each
property in this transition is part of the ui-state-hover that we would like to be animated.
The duration of the border-color transition is slightly longer as a result of our tweaks.

Now let's look at the JavaScript that puts this CSS to use. We've extended the menu widget by
adding a new animate option, which will apply the above defined transitions to the widget.
In our version of the _create() method, we call the original implementation of _create()
then apply the ui-menu-animated class to the main ul element, and any submenus.

The extension of the _close() method is necessary for one reason only. This is called when
a submenu is closed. However, when a submenu is first displayed, the left CSS property is
computed by the position utility. The next time it is displayed, it doesn't have to compute
the left property. This is a problem, for obvious reasons, if we're trying to animate a change
in the left property value. So all we do to fix this is set the left property back to a value of
0 when the menu is closed.

Building menus dynamically
Often, the menus change during interaction with a user. In other words, we may need to
extend the structure of the menu after the menu has been instantiated. Alternatively, we
might not have all the necessary information available to us when building the HTML that
ultimately becomes the menu widget; the menu data may only be available in JavaScript
Object Notation (JSON) format, for instance. Let's look at how we can go about building
menus dynamically.

Chapter 6

113

Getting ready
We will start with the following basic menu HTML structure. Our JavaScript code will extend this.

<ul id="menu">
 First Item
 Second Item
 Third Item

How to do it...
Let's create the menu widget, and then we'll extend the structure of the menu DOM.

$(function() {

 var $menu = $("#menu").menu(),
 $submenu = $("").appendTo($menu);

 $submenu.prepend($("<a/>").attr("href", "#")
 .text("Fourth Item"));

 $submenu.find("ul").append(
$("Fifth Item"))
 .append($("Sixth Item"));

 $menu.menu("refresh");

});

Instead of just the three initial items we started off with, when you view this menu, you are
now presented with the three new items we have just added.

Making Menus

114

How it works...
If we don't keep adding the new menu items in our JavaScript code, we would only see
the original three items. However, we are using the core jQuery DOM manipulation tools to
construct and insert a submenu. Afterward, we have to call the refresh() menu method,
which adds the appropriate CSS classes and event handlers to the new menu items. If, for
example, we moved the DOM insertion code to before the menu widget is instantiated, we
would have no reason to call refresh() since the menu constructor invokes it directly.

There's more...
The above approach of inserting new items in a menu does have its drawbacks. The
obvious one being that the DOM insertion code that actually constructs the new menu
items and submenu isn't maintainable. Our example has hard-coded the structure, which
most applications never do. Instead, we typically have at least one data source, from an API
perhaps. It would be nice, if instead of hard-coding the structure, we could pass the menu
widget a data source, with a standard format. The menu widget would then take care of the
low-level details that we've implemented above.

Let's try and modify the code so that we shift more responsibility to the menu widget itself.
We'll aim for the exact same outcome as the code above, but we'll do so by extending the
menu widget, and passing in a data object that represents the menu structure. We'll use
the exact same HTML structure. Here is the new JavaScript code:

(function($, undefined) {

$.widget("ab.menu", $.ui.menu, {

 options: {
 data: false
 },

 _create: function() {

 this._super();

 if (!this.options.data) {
 return;
 }

 var self = this;

 $.each(this.options.data, function(i, v) {
 self._insertItem(v, self.element);

Chapter 6

115

 });

 this.refresh();

 },

 _insertItem: function(item, parent) {

 var $li = $("").appendTo(parent);

 $("<a/>").attr("id", item.id)
 .attr("href", item.href)
 .text(item.text)
 .appendTo($li);

 if (item.data) {

 var $ul = $("").appendTo($li),
 self = this;

 $.each(item.data, function(i, v) {
 self._insertItem(v, $ul);
 });

 }

 }

});

})(jQuery);

$(function() {

 $("#menu").menu({
 data: [
 {
 id: "fourth",
 href: "#",
 text: "Fourth Item"
 },
 {
 id: "fifth",
 href: "#",

Making Menus

116

 text: "Fifth Item",
 data: [
 {
 id: "sixth",
 href: "#",
 text: "Sixth Item"
 },
 {
 id: "seventh",
 href: "#",
 text: "Seventh Item"
 }
]
 }
]
 });

});

If you run this modified code, you'll see no change in outcome compared to the original code
we've written above. This improvement is purely a re-factoring, turning unmaintainable code
into something with a longer shelf life.

The new option we've introduced here, data, expects an array of menu items. The item is an
object with the following attributes:

 f id: It is the id for the menu item

 f href: It is the href of the menu item link

 f text: It is the item label

 f data: It is a nested submenu

The last option is simply a nested array of menu items representing a submenu. Our
modifications to the _create() method will iterate over the data option array, if provided,
and call _insertItem() on each object. The _insertItem() method is something new
we've introduced, and does not override any existing menu functions. Here, we're creating the
necessary DOM elements for the passed in menu data. If this object has a nested data array,
a submenu, then we create a ul element and recursively call _inserItem(), passing the ul
as the parent.

The data we pass to the menu is significantly more readable and maintainable than the
previous version. Passing API data, for instance, would take relatively little work now.

Chapter 6

117

Controlling the position of submenus
The menu widget uses the position widget to control the destination of any submenus when
visible. The default is to place the top left of the submenu to the right of the menu item that
expands the submenu. But depending on the size of our menu, the depth of the submenus,
and other constraints around size in our UI, we might want to use different defaults for the
submenu positions.

Getting ready
We will use the following HTML structure for this submenu positioning demonstration:

<ul id="menu">
 First Item
 Second Item
 Third Item

 Fourth Item

 Fifth

 Sixth

 Seventh
 Eighth

 </ul

How to do it...
When we instantiate this menu, we will pass it a position option as follows:

<ul id="menu">
 First Item
 Second Item
 Third Item

 Fourth Item

 Fifth

Making Menus

118

 Sixth

 Seventh
 Eighth

With all the submenus expanded our menu will look similar to that shown in the
following screenshot:

How it works...
The position options that we're passing to the menu widget in the preceding example
are the same options we would pass directly to the position widget. The of option, which
the position utility expects, is the active menu item or the parent of the submenu. All these
options are passed to the position utility inside the _open() method, which is responsible for
expanding submenus.

Applying themes to submenus
When the menu widget displays submenus, there is no discernible difference in appearance.
That is, visually, they look just like the main menu. We wanted to present the user with a little
contrast between the main menu and its children; we can do so by extending the widget to
allow for custom classes to be applied to the submenus.

Getting ready
Let's use the following markup to create our menu widget with a couple submenus:

Chapter 6

119

<ul id="menu">
 First Item
 Second Item
 Third Item

 Fourth Item

 Fifth

 Sixth

 Seventh
 Eighth

How to do it...
We will extend the menu widget by adding a new submenuClass option and apply that class
to submenus as shown in the following code:

(function($, undefined) {

$.widget("ab.menu", $.ui.menu, {

 options: {
 submenuClass: false
 },

 refresh: function() {

 if (this.options.submenuClass) {

 this.element.find(this.options.menus + ":not(.ui-menu)")
 .addClass(this.options.submenuClass);

 }

 this._super();

 }

Making Menus

120

});

})(jQuery);

$(function() {
 $("#menu").menu({ submenuClass: "ui-state-highlight });
});

Here is what the submenu looks like:

How it works...
Here, we are extending the menu widget with a new submenuClass option. The idea being
that we want to apply this class only to the submenus of the widget if supplied. We do this
by overriding the refresh() menu method. We look for all the submenus and apply the
submenuClass to them. You'll notice that we apply this class before calling the_super()
method in the original implementation of this method. This is because we are searching for
menus that do not have the ui-menu class yet. These are our submenus.

7
Progress Bars

In this chapter, we will cover the following recipes:

 f Displaying file upload progress

 f Animating progress changes

 f Creating progress indicator widgets

 f Using states to warn about thresholds

 f Giving progressbars labels

Introduction
The progressbar widget is quite simple—in that it doesn't have many moving parts. In
fact, it has exactly one moving part, that is, the value bar. But simplicity doesn't make the
progressbar any less powerful than other widgets. We'll look at how we can leverage this
simplicity throughout this chapter. The progressbar can express anything from file upload
progress to server-side processes to capacity utilization.

Displaying file upload progress
It would be nice if there was a straightforward way to display the progress of a file upload
using the progressbar widget. Unfortunately, we are afforded no such luxury. The uploading
of a file happens between the transitions of pages. However, the necessary hacks to display
the upload progress using the progressbar widgets have shrunk in size, thanks to the modern
standards and browsers. Let's take a look at how we can take advantage of the onprogress
event of the XML HTTP Request object in Ajax requests.

Progress Bars

122

Getting ready
For this demonstration, we will create a simple form with a simple file field. Inside the form,
we'll create some HTML for displaying the progressbar widget. It'll be hidden until the user
initiates a file upload.

<form action="http://127.0.0.1:8000/" method="POST">
 <input type="file" name="fileupload"/>

 <input type="submit" value="Upload"/>
 <div id="upload-container" class="ui-helper-hidden">
 <strong id="upload-value">Uploading...
 <div id="upload-progress"></div>
 </div>
</form>

How to do it...
The bulk of the work required to update the progressbar widget during a file upload is actually
performed in the Ajax request machinery and in the onprogress event handler. The following
code is a really good illustration of why widget designers should aim for simplicity. The
resulting widget is applicable to a wide variety of contexts.

$(function() {

 $("#upload-progress").progressbar();

 $("form").submit(function(e) {

 e.preventDefault();

 $.ajax({
 url: $(this).attr("action"),
 type: "POST",
 data: new FormData(this),
 cache: false,
 contentType: false,
 processData: false,
 xhr: function() {

 xhr = $.ajaxSettings.xhr();

 if (xhr.upload) {
 xhr.upload.onprogress = onprogress;
 }

Chapter 7

123

 return xhr;

 }

 });

 return false;

 });

 var onprogress = function(e) {

 var uploadPercent = (e.loaded / e.total * 100).toFixed();

 $("#upload-container").show();
 $("#upload-value").text("Uploading..." + uploadPercent +
"%");
 $("#upload-progress").progressbar("option", "max", e.total
)
 .progressbar("value", e.loaded);

 };

});

If you run this example and actually upload a file locally at http://127.0.0.1:8000/,
you'll want to use a large file. Smaller files will upload too fast and in too short a time. A
larger file upload will enable you to see something like the following during an upload.

Accompanying the code in this book is a minimal Python server that will
serve this demo upload page and will process the file upload requests.
The example can be rearranged without much effort to work with any
upload server, but the Python server supplied only requires that Python
be installed. Again, this isn't a requirement, but it's just a handy server if
you're eager to see the client code in action.

http://127.0.0.1:8000/

Progress Bars

124

How it works...
The goal of this example is to update the progressbar widget in real time, as the file upload
progress changes. There are several plugins that will provide this capability, but if you're writing a
jQuery UI application, you might as well standardize on the progressbar widget. The first thing we
do, once the document is ready, is create the progressbar widget used to display the file upload
progress. #upload-container is initially hidden using the ui-helper-hidden class, as we
don't need to display the progress of an upload until an upload is actually taking place.

Next, we set up our event handler for the submit event of our upload form. This handler,
before doing anything else, prevents the default form submission from taking place. We're
essentially substituting our own behavior for the default form submission implemented by
the browser. The reason we need to override this behavior is so that we stay on the page,
and apply updates to our progressbar widget.

Next, we set up the $.ajax() call that actually sends our selected files to the server. We
take the url argument from the form itself. The next several arguments are prerequisites
to sending multipart form data, including selected files, as part of an Ajax request. The
xhr option is where we supply a function that returns the xhr object used internally by the
$.ajax() function. This is our opportunity to hijack the xhr object and attach additional
behavior to it. We're mainly interested in adding new behavior to the onprogress event.

After we've made sure that the upload object, an instance of XMLHttpRequestUpload,
actually exists, we can define our onprogress event handler function.

Firstly, we calculate the actual upload percentage, using the loaded and total properties
of the event. Next, we show the progress container and update the percentage label using
the value in uploadPercent. Finally, we make sure that the max option of the upload
progressbar widget is set to total, and we set the current value of the progressbar using the
value() method.

Animating progress changes
The progressbar widget changes its visual appearance each time the value or the max
option is set. For example, the default value for value is 0 and the default value for max is
100. So when the progressbar widget is displayed with these values, we don't actually see
the graphical bar, yet that depicts the progress percentage. However, setting the value
option will update this bar. If the bar is already visible, a change in the value option results
in a change of the width for the progressbar. These changes, using the default progressbar
implementation, simply change the widget instantaneously. Let's look at how we can modify
the widget to support a smooth transition between progressbar values.

Chapter 7

125

How to do it...
We'll use the following simple markup as the basis of our progressbar widget instance:

<div id="progress"></div>

And, here is the JavaScript used to customize the progressbar widget in order to support
animating changes in progress:

(function($, undefined) {

$.widget("ab.progressbar", $.ui.progressbar, {

 options: {
 animate: false
 },

 _refreshValue: function() {

 if (!this.options.animate) {
 return this._super();
 }

 var value = this.value(),
 percentage = this._percentage();

 if (this.oldValue !== value) {
 this.oldValue = value;
 this._trigger("change");
 }

 this.valueDiv.toggle(value > this.min)
.toggleClass("ui-corner-right",
value === this.options.max)
 .stop(true, true)
 .animate({ width: percentage.toFixed(0
) + "%" }, 200);

 this.element.attr("aria-valuenow", value);

 }

});

})(jQuery);

Progress Bars

126

$(function() {

 $("#progress").progressbar({ animate: true });

 var timer;

 var updater = function() {

 var value = $("#progress").progressbar("value") + 10,
 maximum = $("#progress").progressbar("option", "max");

 if (value >= maximum) {
 $("#progress").progressbar("value", maximum);
 return;
 }

 $("#progress").progressbar("value", value);
 timer = setTimeout(updater, 700);

 };

 timer = setTimeout(updater, 700);

});

This example includes an updater that will increment the progressbar value at every 0.7
seconds interval. You'll notice the smooth width transition applied as the value changes. To
contrast this change with the default behavior, set the animate option to false. You'll now
start to really notice the visual jumps the bar makes each time the value is updated.

How it works...
Our example code extends the progressbar widget by adding a new animate option. The new
animate option defaults to false. The other change we're introducing to the progressbar
widget is the new implementation of the _refreshValue() method, which is called internally
by the widget any time the value option changes. This method is responsible for making the
visual width change on the div element progress. This is representative of the progress
between value and max.

Much of this code is borrowed from the original implementation of _refreshValue(), as we're
only making minor changes. First, we check if the animate option we've added to the widget
has a true value. If not, we just continue with the original implementation. Otherwise, we use
the same code, but make a slight adjustment with how the width is applied. Then, we're calling
stop(true, true) to complete the current animation and to clear the animation queue.
Next, instead of using the width() function as does the original implementation, we're setting
the width by calling animate().

Chapter 7

127

There's more...
As always, we're not limited to using the jQuery animate() function to apply effects to
the visual transitions between progressbar values. Instead of the animate() function,
we could apply CSS transitions to progressbar values. Of course, the drawback is that
not all browsers support CSS transitions, and we get into vendor-specific style rules.
Nonetheless, let's compare the previous approach with that of using the CSS styles to
animate the progressbar.

We will use the same markup, but we'll introduce the following styles into the page:

.ui-progressbar-animated > .ui-progressbar-value {
 transition: width 0.7s ease-out;
 -moz-transition: width .7s ease-out;
 -webkit-transition: width 0.7s ease-out;
 -o-transition: width 0.7s east-out;
}

And, here are the necessary changes to the JavaScript code. It looks similar to the
previous code.

(function($, undefined) {

$.widget("ab.progressbar", $.ui.progressbar, {

 options: {
 animate: false
 },

 _create: function() {

 this._super();

 if (!this.options.animate) {
 return;
 }

 this.element.addClass("ui-progressbar-animated");

 }

});

})(jQuery);

Progress Bars

128

$(function() {

 $("#progress").progressbar({ animate: true });

 var timer;

 var updater = function() {

 var value = $("#progress").progressbar("value") + 10,
 maximum = $("#progress").progressbar("option", "max");

 if (value >= maximum) {
 $("#progress").progressbar("value", maximum);
 return;
 }

 $("#progress").progressbar("value", value);
 timer = setTimeout(updater, 700);

 };

 timer = setTimeout(updater, 700);

});

Running this example will not look all that different from the previous implementation of the
animate option. The transition will behave much in the same way. The key difference here
is that we are extending the theme framework. We have introduced a new CSS class for the
progressbar widget—ui-progressbar-animated. The selector, .ui-progressbar-
animated > .ui-progressbar-value, applies to the progressbar value div, the one
that changes width. And, this is exactly what our new styles do. They transition width property
value changes over a span of 0.7 seconds.

The JavaScript code is the chief benefactor of this approach simply because there is less change
in the progressbar widget. For instance, we're no longer overriding the _refreshValue()
method. Instead, we're overriding _create(), and adding the ui-progressbar-animated
class to the element if the animated option is true. This is how our new styles are put into
action. The rest of the JavaScript that instantiates the widget and the value updater is no
different from the previous example.

Chapter 7

129

Creating progressindicator widgets
The progressbar widget is intended to show the progress of some process. The end goal is
the max option specified when creating the widget, which defaults to 100. If we know the size
of the data we are processing ahead of time, we would use the max option to reflect this end
goal. However, we are sometimes faced with the scenario where we have some processing
to do on the client; or, we are waiting for some backend process to complete and send a
response back to the client. For example, the user has initiated a backend task using the API,
and they're now waiting for a response. The bottom line is, we want to illustrate to the user
that progress is being made, and we just don't know how much progress has been made.

To display the fact that progress is being made, despite not knowing how much progress,
we need an indicator widget. We can write our own widget to achieve this, extending the
progressbar widget, since we can reuse many components there.

How to do it...
For our progressindicator widget, we will use the same HTML as we would for a basic
progressbar widget.

<div id="indicator"></div>

Next, we have some slight adjustments to make in the progressbar CSS styles. These apply to
the value bar inside the progressbar div. We're removing the border and the margin since
this looks better when sliding the value bar back and forth.

.ui-progressbar > .ui-progressbar-value {
 border: none;
 margin: 0px;
}

Now, we come to the implementation of the progressindicator widget. This code will also
create an instance of our progressindicator widget.

(function($, undefined) {

$.widget("ab.progressindicator", $.ui.progressbar, {

 _create: function() {

 this._super();
 this.value(40);
 this.element.removeClass("ui-corner-all");
 this.valueDiv.removeClass("ui-corner-right ui-corner-left");

Progress Bars

130

 var self = this,
 margin = (this.element.innerWidth() - this.valueDiv.
width()) + "px";

 var _right = function() {

 self.valueDiv.animate(
 { "margin-left": margin },
 { duration: 1000, complete: _left }
);

 };

 var _left = function() {

 self.valueDiv.animate(
 { "margin-left": "0px" },
 { duration: 1000, complete: _right }
);

 };

 _right();

 },

 _destroy: function() {

 this.valueDiv.stop(true, true);
 this._super();

 }

});

})(jQuery);

$(function() {

 $("#indicator").progressindicator();

});

Chapter 7

131

If you look at this progressindicator widget in the browser, you will see that it animates the
value bar of the progressbar widget by sliding it back and forth, indicating that something
is happening.

How it works...
We have created a new progressindicator widget that inherits the progressbar widget
capabilities. The goal behind the progressindicator widget is to take the progress value
bar div, set a width on it, and slide it back and forth within the progressbar container
div. Visually, this indicates that something is taking place behind the scene. This type
of graphical depiction of an activity is universally reassuring to users, as it gives the
sense that something is happening, and the application isn't broken.

The first method we're overriding in the definition of the new progressindicator widget is
the _create() method of the progressbar. Here, we're calling the original constructor
of the progressbar widget, since we need all the UI components in place before we start
making changes. Next, we use the value() method to give the value bar div a width.
We're hardcoding this value in the progressindicator() constructor simply because
the developer using this widget has no need to change it; we only need to set the width
of the element. To further simplify this widget, we're removing the corner classes from the
elements. We could leave them, but then we would have to handle several corner cases
when it comes to animating the bar, as we're after a simple widget here, one that requires
no configuration on behalf of the developer using the widget.

Still inside the _create() method, we define two utility functions for executing animation.
As you may have guessed, the _right() function slides the progress value bar to the right
while the _left() function slides it to the left. We're calling the animate() jQuery function
on the valueDiv property of this widget. The _right() function slides the value div to the
right by updating the margin-left value. You'll notice that the margin variable is defined
locally inside _create(). This is done by calculating how much space we have to the right of
the value div, which means that we set this value as the margin-left to slide it over to the
right. To slide it back to the left again, we simply set the margin-left CSS property back to
0px in the _left() function.

The animation is bootstrapped by calling _right() at the bottom of the _create()
method. The progress indicator animation loop happens by passing _left() as a callback
to the initial animation. Likewise, we pass _right() as the animation completion callback
inside the _left() function. This process will continue until the widget is destroyed. The
_destroy() method is overridden by our widget simply to make sure that all animations
stop immediately. This includes any queued animations waiting to execute. We then continue
destroying the widget by calling the original _destroy() implementation.

Progress Bars

132

There's more...
One advantage to our progressindicator widget is that it provides a very simple API. You can
create and destroy the widget as needed, without having to deal with any intermediary steps.
Ideally, this widget would have a very short lifespan, perhaps as little as one second (barely
enough time to see one animation cycle). Sometimes, however, things may take a little longer.
If this widget were to display for an extended period of time, it could pose a problem to the
application. The jQuery animate() function wasn't designed to run animations in an infinite
loop. Nor is our widget designed to be displayed for extended periods of time. The problem is
that animate() uses timers and can really eat away at the CPU cycles on the client. Not only
could this be disruptive to our application, but for others running on the user's machine too.

Despite this being a relatively minor concern, let's look at an alternative implementation of
our progressindicator widget, one that uses CSS animations. Here is how we would define our
animations in the CSS:

.ui-progressindicator > .ui-progressbar-value {
 border: none;
 margin: 0px;
 animation: indicator 2s ease-in-out infinite;
 -moz-animation: indicator 2s ease-in-out infinite;
 -webkit-animation: indicator 2s ease-in-out infinite;
}

@keyframes indicator {
 0% { margin-left: 0px; }
 50% { margin-left: 108px; }
 100% { margin-left: 0px; }
}

@-moz-keyframes indicator {
 0% { margin-left: 0px; }
 50% { margin-left: 108px; }
 100% { margin-left: 0px; }
}

@-webkit-keyframes indicator {
 0% { margin-left: 0px; }
 50% { margin-left: 108px; }
 100% { margin-left: 0px; }
}

@-o-keyframes indicator {
 0% { margin-left: 0px; }
 50% { margin-left: 108px; }
 100% { margin-left: 0px; }
}

Chapter 7

133

And, here is the modified JavaScript implementation of our progressindicator widget that
knows how to make use of the previous CSS:

(function($, undefined) {

$.widget("ab.progressindicator", $.ui.progressbar, {

 _create: function() {

 this._super();
 this.value(40);
 this.element.addClass("ui-progressindicator")
 .removeClass("ui-corner-all");
 this.valueDiv.removeClass("ui-corner-right ui-corner-left");

 },

 _destroy: function() {

 this.element.removeClass("ui-progressindicator");
 this._super();

 }

});

})(jQuery);

$(function() {

 $("#indicator").progressindicator();

});

Now, if you view this modified version of the widget in your browser, you should see a nearly
identical result when compared with the previous implementation. The key difference of
course being that the animation is specified in the CSS and executed directly by the browser.
The browser can handle these types of CSS animations much more efficiently than the
JavaScript based counterparts. The browser only needs to read the animation specification
once, and then it runs the animation internally, using native code as opposed to executing
JavaScript, and directly manipulating the DOM. We could run this version all day, and the
browser would happily chug along.

Progress Bars

134

But this version of progressindicator isn't without its pitfalls. Firstly, let's take a closer look at
the CSS. The very fact that we're relying on CSS animations to begin with isn't the best bet
given the disparity in browser adoption. Here, we're getting ourselves into a browser vendor
prefix mess with our style. Support, in general, isn't too bad though, as IE is the only browser
that doesn't support CSS animations; but the definition of the animations are straightforward.
In the .ui-progressindicator > .ui-progressbar-value selector, we are specifying
that the indicator animation will run for 2 seconds and will repeat infinitely. The @keyframes
indicator animation specifies how the margin-left property itself changes.

In JavaScript, you will notice that the code itself is much simpler. This is because it now has
much less responsibility. Mainly, it needs to add the ui-progressindicator class to
the widget's DOM element on creation, and remove the class on destruction. You will also
notice that there is no longer a margin calculation taking place in the JavaScript code that
implements the widget. We have instead moved these numbers to the CSS that defines
the widget animation as hard-coded values. Again, this is simply a trade-off that the widget
designer must consider. We are exchanging higher maintenance costs in the CSS for more
efficient animations, and questionable browser support for our widget for simpler JavaScript.

Using states to warn about thresholds
The progressbar widget isn't restricted to marking the progression toward some end point. It
can also be used as a marker for utilization of some resource. For example, your application
might allow the user to store 100 MB worth of image data. It might make sense to show
them how much of this capacity is currently in use. The progressbar widget is an ideal
solution for graphically depicting resource utilization scenarios such as these. Taking things
a step further, we might also want to warn the user about utilization thresholds. That is, at
a certain percentage, the resource is getting near capacity, but the user still has time to do
something about it.

Getting ready
For this demonstration, we will create two simple div elements for the two progressbar
widgets we want to display:

CPU:
<div id="cpu-utilization"></div>
Memory:
<div id="memory-utilization"></div>

How to do it...
Here is the JavaScript code that extends the progressbar widget, providing a new option for
specifying threshold values:

Chapter 7

135

(function($, undefined) {

$.widget("ab.progressbar", $.ui.progressbar, {

 options: {
 threshold: 0
 },

 _percentage: function() {

 var percentage = this._super(),
 threshold = this.options.threshold;

 if (threshold <= 0) {
 return percentage;
 }

 if (percentage > threshold) {
 this.valueDiv.addClass("ui-state-error");
 }
 else {
 this.valueDiv.removeClass("ui-state-error");
 }

 return percentage;

 },

});

})(jQuery);

$(function() {

 $("#cpu-utilization").progressbar({ threshold: 80 });
 $("#memory-utilization").progressbar({ threshold: 85 });

 setInterval(function() {
 var cpu = Math.floor((Math.random() * 100) + 1),
 memory = Math.floor((Math.random() * 100) +1);

 $("#cpu-utilization").progressbar("value", cpu);
 $("#memory-utilization").progressbar("value", memory);

 }, 1300);

});

Progress Bars

136

We instantiate two progressbar widgets here and launch a basic timer interval that changes
the value of both the progressbar widgets after every 1.30 seconds. If you look at this example
in your browser, you will notice that one or both progressbar widgets will enter the error state
because the value has surpassed the supplied threshold value.

How it works...
The new threshold option we've added to the progressbar widget is a number expressed as a
percentage. This is the threshold of the progressbar at which the state changes in order to give
the user a visual warning. This is achieved by overriding the _percentage() method. Here, we
get the actual percentage value by calling the original implementation of _percentage() and
storing it in percentage. We then make sure that the threshold value is nonzero and that
the calculated percentage is greater than the threshold value. The _percentage() method
is called internally by the progressbar widget each time the value is updated, and the visual
display changes. So in our implementation of _percentage(), if we're over the threshold,
we add the ui-state-error class to the valueDiv element, the graphical bar inside the
progress bar that moves from left to right. Otherwise, we're below the threshold, and must be
sure to remove the ui-state-error class.

Once we've created the two widgets, we're using setInterval() to continuously assign
a random value to both the progressbars. You can sit back and watch how the progressbar
widgets change state depending on whether the data fed into them crosses over the thresholds
that we've specified. In this case, the #cpu-utilization progressbar has a threshold of 80
percent, while the #memory-utilization progressbar has a threshold of 85%.

Giving progressbars labels
The graphical bar that changes width to reflect the progress percentage does a fine job. The
power of the progressbar widget is in the ability to see, at a glance, how much progress has
been made, or how much of a resource is being utilized. But there are times when we could use
some accuracy with regard to the percentage, that is, a label showing the underlying percentage.

The progressbar widget has the ability to display the label inside the progressbar container,
which is more intuitive than displaying the percentage label outside of the widget. Let's look
at how we can extend the theme CSS, supply additional markup to the widget, and extend the
progressbar to take advantage of these new additional features in order to display the label.

Chapter 7

137

How to do it...
We'll create the HTML for our two progressbar widgets first.

Network:
<div id="network-utilization">
 <div class="ui-progressbar-label"></div>
</div>
Storage:
<div id="storage-utilization">
 <div class="ui-progressbar-label"></div>
</div>

Next, we'll add the CSS class required by the progressbar label.

.ui-progressbar-label {
 float: left;
 width: 100%;
 text-align: center;
 margin-top: 5px;
 font-weight: bold;
}

Finally, we'll extend the progressbar widget itself, tying together this new HTML and the
new CSS.

(function($, undefined) {

$.widget("ab.progressbar", $.ui.progressbar, {

 _create: function() {
 this.$label = this.element.find(".ui-progressbar-label");
 this._super();

 },

 _destroy: function() {

 this.$label.remove();

 this._super();

 },

 _refreshValue: function() {

Progress Bars

138

 this.$label.text(this._percentage().toFixed(0) + "%");
 this._super();

 },

});

})(jQuery);

$(function() {

 $("#network-utilization").progressbar({
 value: 746586112,
 max: 1073741824
 });

 $("#storage-utilization").progressbar({
 value: 24696061952,
 max: 107374182400
 });

});

You can now view these two progressbars in the browser, and you'll notice that the two labels,
showing the percentage value, are positioned in the center of the widget.

How it works...
By default, the progressbar widget does not support labels, and so we have to place the label
div inside the progressbar div. We also give this new label div the ui-progressbar-label
class, which is consistent with the jQuery UI theme naming convention. This class actually
serves two purposes: inside the widget customizations that we have introduced, we use this
class to search for the label div and to apply label styles.

The CSS rules specified in ui-progressbar-label help to position the label text in the
middle of the progressbar element. We give the label div a width of 100% and align the
text horizontally using the text-align property. Finally, we make the font-weight of the
label bold in order to stand out; otherwise, it is difficult to see it against the background of
the progressbar.

Chapter 7

139

The customized JavaScript implementation of the progressbar widget that we've introduced
here overrides the _create() method. We create a new instance variable called labelDiv,
which stores a reference to our new element. We then call the original _create()
implementation and the constructor carries on as normal, creating the value div beside
our new label element. We're also overriding the _refreshValue() method in order
to update the content of the labelDiv. The _refreshValue() method gets invoked
internally by the widget any time the value changes and the progressbar widget needs to
update the value display. We're extending this behavior by updating the labelDiv value
using the _percentage() number, before resuming with the original implementation of
_refreshValue().

There's more...
One potential issue we may encounter with this approach to implementing progressbar
labels is the fact that we have to change the HTML structure. This violates the DRY principle,
because every label div we are adding, for each progressbar widget we create, is exactly the
same. Further, we may want to apply labels to progressbar widgets that already exist in an
application. Altering the HTML in an already functional widget is not the best approach. Let's
think about how we can improve the previous code.

The CSS we have created that positions and styles the label element is fine. It follows the
correct naming conventions and it applies to all progressbar widget instances. What we want
to change is the necessary markup used to instantiate a progressbar widget with a label
displayed. The question is how. Ideally, through an option that lets the developer toggle the
label on and off. The widget itself would then be responsible for inserting the label div where
necessary since it is the same for all instances of the widget, which in turn means minimal
JavaScript code.

Let's take a look at the simplified markup, following the same previous example:

Network:
<div id="network-utilization"></div>
Storage:
<div id="storage-utilization"></div>

We are now back to the original markup that the progressbar widget expects before we
introduced our modifications. Now let's update the widget code to make use of this markup
by adding a new option.

(function($, undefined) {

$.widget("ab.progressbar", $.ui.progressbar, {

 options: {
 label: false

Progress Bars

140

 },

 _create: function() {

 if (!this.options.label) {
 return this._super();
 }

 this.$label = $("<div/>").addClass("ui-progressbar-label")
 .appendTo(this.element);

 this._super();

 },

 _destroy: function() {

 if (!this.options.label) {
 return this._super();
 }

 this.$label.remove();

 this._super();

 },

 _refreshValue: function() {

 if (!this.options.label) {
 return this._super();
 }

 this.$label.text(this._percentage().toFixed(0) + "%");

 this._super();

 },

});

})(jQuery);

$(function() {

Chapter 7

141

 $("#network-utilization").progressbar({
 value: 746586112,
 max: 1073741824,
 label: true
 });

 $("#storage-utilization").progressbar({
 value: 24696061952,
 max: 107374182400
 });

});

Here, we're extending the progressbar widget with the new label option, which defaults to
false. The idea is that when this value is true, we insert the label div into the progressbar
container. Our modifications to the _create() and _refreshValue() methods are largely
the same as the previous code, except now we're checking if the label option is turned on
before executing our custom behavior. As you can see, we're supplying this new label option
to the #network-utilization div, but not the #storage-utilization div.

8
Using Sliders

In this chapter, we will cover:

 f Controlling the size of the slider handle

 f Removing the handle focus outline

 f Using master sliders and child sliders

 f Marking step increments

 f Getting range values

 f Changing the slider orientation

Introduction
The slider widget is almost like a progress bar that the user can manipulate. The slider gives
the user a handle that can be dragged along a plane in order to produce the desired value.
This is especially useful in working with form values. The slider widget, by default, has useful
options such as the ability to change orientation and letting the user select a value range. In
this chapter, we'll look at some of the various ways we can tweak the slider widget by adding
new options, or by attaching even handler functions. We'll also look at some visual tweaks,
and how slider instances can communicate with one another.

Using Sliders

144

Controlling the size of the slider handle
The slider handle used to control the position of the slider, dragged by the mouse, is a square
shape. That is, the width is the same as the height, and we may want a different shape for
the slider handle. In the case of a horizontal slider, the default orientation, let's look at how
we can override widget CSS styles to alter the shape of the slider handle in order to meet the
needs of our application.

Getting ready...
The HTML we'll create is for two slider widgets. We'll also give them a label and wrap them
each with container div elements to control the layout.

<div class="slider-container">
 Treble:
 <div id="treble"></div>
</div>
<div class="slider-container">
 Bass:
 <div id="bass"></div>
</div>

How to do it...
Here is the CSS used to customize the slider handle. This overrides values defined in the
widget CSS, and so should be included in the page after the jQuery UI stylesheet:

.ui-slider-horizontal .ui-slider-handle {
 width: 0.8em;
 height: 1.6em;
 top: -0.48em;
}

And here is the JavaScript code used to create two instances of the slider widget:

$(function() {

 $("#treble").slider();
 $("#bass").slider();

});

Chapter 8

145

As a reference, here is what the two slider widgets look like before applying our custom CSS:

And here are the same two slider widgets with our custom CSS applied:

How it works...
As you can see, the handle is taller, extending farther beyond the boundary of the slider
borders. This gives the user a larger surface area to click and drag the slider handle around.
The exact size changes we've introduced are arbitrary, and can be tweaked on a per-
application basis.

The .ui-slider-horizontal .ui-slider-handle selector overrides three properties
defined in the widget CSS. The width is changed to 0.8em, which makes it slightly thinner.
The height property's value is changed to 1.6em, which makes it taller. When we make the
handle taller using the height property, we push it downward so that it no longer aligns with
the slider. To compensate for the change in height, we pull it back up by decreasing the top
value to -0.48em.

Removing the handle focus outline
Most browsers display a dotted or solid outline around an element when they receive the
focus. This isn't part of the user interface style, but rather a built-in accessibility feature of the
browser. This forced visual display around elements, such as the slider handle, isn't always
desirable. Let's look at how we can go about removing this default browser behavior from the
slider handle.

Using Sliders

146

How to do it...
We can use any basic div element to base our sample slider widget on. So let's jump right to
our custom slider widget CSS.

.ui-slider-handle-no-outline {
 outline: 0;
}

And, now we have our customized implementation of the slider widget and an instance of our
customized slider.

(function($, undefined) {

$.widget("ab.slider", $.ui.slider, {

 options: {
 handleOutline: true
 },

 _create: function() {

 this._super();

 if (this.options.handleOutline) {
 return;
 }

 this.handles.addClass("ui-slider-handle-no-outline");

 }

});

})(jQuery);

$(function() {

 $("#slider").slider({
 handleOutline: false,
 });

});

Chapter 8

147

Before we applied our changes to the slider widget, the handle had an outline that looked
something like this after being dragged:

After our changes have been applied to the slider widget, our slider instance looks like this
after the handle is dragged:

How it works...
We've added a new option to the slider widget called handleOutline. We've set this option to
true by default because it's always a good idea to support native browser behavior out of the
box. This option, when set to false, turns off this native border outline functionality. It does so
by adding the ui-slider-handle-no-outline class to each handle element in the slider.
There can be many handles in one slider, for example, a range slider. So in the _create()
method, we check if the handleOutline option is true, and if so, we use the handles jQuery
object stored as a property of this widget to apply the new class we've created.

The class itself is simple in that it only changes one property. In fact, we could have simply
added the outline property with a value of 0 to the ui-slider-handle class instead of
creating a new one. However, our chosen approach allows us to keep the native widget styles
intact, which allows the outline browser functionality to toggle on or off for each instance of
our widget. You'll also notice that the handle, even without the native browser outline, doesn't
lose any accessibility because the jQuery UI state classes take care of this for us.

Using master sliders and child sliders
It is possible that your application will use some quantity that can be further decomposed
into smaller values. Additionally, the user may need to control these smaller values and not
just the aggregate. If we decide to use the slider widget for this purpose, we can think of the
child sliders observing the changing value of the master slider. Let's take a look at how we
might go about implementing such a group of sliders. We'll design an interface that allows us
to allocate how much of the CPU this application is allowed to use. This is the master slider.
We'll assume a quad-core architecture, and so we'll have four subsequent sliders that depend
on, and observe, the main CPU slider.

Using Sliders

148

How to do it...
Here is the HTML used to define the layout of our five sliders. Each slider has its own div
container, mainly used to define widths and margins. Inside the div container, we have a
label of each CPU, their current MHz allotment, and the maximum. This is where each slider
widget is placed too.

<div class="slider-container">
 <h2 class="slider-header">CPU Allocation:</h2>
 <h2 class="slider-value ui-state-highlight"></h2>
 <div class="ui-helper-clearfix"></div>
 <div id="master"></div>
</div>

<div class="slider-container">
 <h3 class="slider-header">CPU 1:</h3>
 <h3 class="slider-value ui-state-highlight"></h3>
 <div class="ui-helper-clearfix"></div>
 <div id="cpu1"></div>
</div>

<div class="slider-container">
 <h3 class="slider-header">CPU 2:</h3>
 <h3 class="slider-value ui-state-highlight"></h3>
 <div class="ui-helper-clearfix"></div>
 <div id="cpu2"></div>
</div>

<div class="slider-container">
 <h3 class="slider-header">CPU 3:</h3>
 <h3 class="slider-value ui-state-highlight"></h3>
 <div class="ui-helper-clearfix"></div>
 <div id="cpu3"></div>
</div>

<div class="slider-container">
 <h3 class="slider-header">CPU 4:</h3>
 <h3 class="slider-value ui-state-highlight"></h3>
 <div class="ui-helper-clearfix"></div>
 <div id="cpu4"></div>
</div>

Chapter 8

149

Next, we have some CSS styles to help align and position these components.

.slider-container {
 width: 200px;
 margin: 5px;
}

.slider-header {
 float: left;
}

.slider-value {
 float: right;
}

Finally, we have our JavaScript code that extends the slider widget to provide developers using
it with two new options, parent and percentage. When the document loads, we instantiate
our CPU slider widgets and establish the appropriate relations between them using our new
slider capabilities.

(function($, undefined) {

$.widget("ui.slider", $.ui.slider, {

 options: {
 parent: null,
 percentage: null
 },

 _create: function() {

 this._super();

 var parent = this.options.parent,
 percentage = this.options.percentage,
 $parent;

 if (!(parent && percentage)) {
 return;
 }

 $parent = $(parent);

 this._reset($parent.slider("value"));

Using Sliders

150

 this._on($parent , {
 slidechange: function(e, ui) {
 this._reset(ui.value);
 }
 });

 },

 _reset: function(parentValue) {

 var percentage = (0.01 * this.options.percentage),
 newMax = percentage * parentValue,
 oldMax = this.option("max"),
 value = this.option("value");

 value = (value / oldMax) * newMax;

 this.option("max", newMax);
 this.option("value", value);

 }

});

})(jQuery);

$(function() {

 function updateLabel(e, ui) {

 var maxValue = $(this).slider("option", "max")
 .toFixed(0),
 value = $(this).slider("value")
 .toFixed(0) + " MHz" +
 " / " +
 maxValue +
 "MHz";

 $(this).siblings(".slider-value").text(value);

 }

 $("#master").slider({
 range: "min",

Chapter 8

151

 value: 379,
 min: 1,
 max: 2400,
 create: updateLabel,
 change: updateLabel
 });

 $("#cpu1").slider({
 parent: "#master",
 percentage: 25,
 range: "min",
 min: 0,
 create: updateLabel,
 change: updateLabel
 });

 $("#cpu2").slider({
 parent: "#master",
 percentage: 35,
 range: "min",
 min: 0,
 create: updateLabel,
 change: updateLabel
 });

 $("#cpu3").slider({
 parent: "#master",
 percentage: 15,
 range: "min",
 min: 0,
 create: updateLabel,
 change: updateLabel
 });

 $("#cpu4").slider({
 parent: "#master",
 percentage: 25,
 range: "min",
 min: 0,
 create: updateLabel,
 change: updateLabel
 });

});

Using Sliders

152

Take a look at the resulting slider widgets in the browser and adjust some of the child
CPU values. You'll notice that the label updates have changed and that each CPU has
its own CPU allotment.

Now, leaving the CPU values as they are, try adjusting the master CPU allocation slider. You'll
notice that the current and maximum values for each child CPU slider change, but the ratio is
preserved. This means that if we've set up CPU 1 to use 10 percent of the overall CPU allocation,
it will continue to use 10 percent even if the overall allocation increases or decreases.

Chapter 8

153

How it works...
In each container div element we've created for CPU sliders, we have a header, slider-
value, used to display both the current value of the slider in addition to the maximum value.
This is an important addition we need to consider in most cases while using the slider widget.
The widget is great for allowing the user to change values, but they need specific feedback
that shows the result of their actions. In this example, changing the master slider updates five
labels, further highlighting the need to label specific slider values outside the widget where
the user can see them.

We've added two new options to the slider widget, parent and percentage. The two options
are related to each other and basically translate to "the maximum value of this slider is this
percentage of this parent slider value". In the _create() method, we're checking if both
these options have an actual value before continuing, as they default to null. If not, we've
already called the original slider constructor using the _super() method, and so it's safe for
us to simply return.

If, on the other hand, we've been given a parent slider widget and a percentage, we call the
_reset() method, passing it the current value of our parent slider. This will potentially update
both the maximum and the current value of this widget. Once that is done, we set up our
observer that watches the parent slider for changes. This is done using the _on() method,
where we pass parent as the element we're listening for events on and the configuration
object. This object has a slidechange event, which is the event we're interested in, and the
callback function. Inside the callback function, we're simply calling our _reset() method using
the updated value from the parent. It is worth noting that we must use _on() to register our
event handler. If the child slider is destroyed, the event handler is removed from the parent.

The _reset() method takes a value from the parent slider and resets both the value and
max options of this child slider. We're using this method both when the child is first created
and when the parent value changes. The goal is to preserve the current value/max ratio. This
is where the percent option comes into play. Since this is passed to the widget as an integer,
we must multiply it by 0.01. This is how we calculate that new maximum for this child. Once
we have the new maximum value, we can scale the current value either up or down.

Finally, in the document-ready event handler where we instantiate each of the five slider
widgets, we've defined a generic callback function used to update the label in each CPU div.
This gets passed to the create and change options of each slider widget. We're also using
values for our newly-defined options here. Each child slider has a unique percentage value
of the overall CPU allocation, and each child is using #master as its parent.

Using Sliders

154

Marking step increments
The slider widget can be passed a step value, which determines the increments by which the
user can slide the handle. If unspecified, the step option is 1, and the handle slides smoothly
back and forth. On the other hand, if the step value were more pronounced, let's say 10,
we would notice the handle snapping into position as we move it. Let's take a look at how we
might extend the slider widget to give the user a better feel for where these increments lie.
We'll mark the increments visually using ticks.

How to do it...
We'll jump right into the custom CSS used for this widget enhancement. The underlying div
element used for the slider element can be as simple as <div></div>.

.ui-slider-tick {
 position: absolute;
 width: 2px;
 height: 15px;
 z-index: -1;
}

And here is our JavaScript code that extends the slider and creates an instance of the widget
using the new ticks option:

(function($, undefined) {

$.widget("ab.slider", $.ui.slider, {

 options: {
 ticks: false
 },

 _create: function() {

 this._super();

 if (!this.options.ticks || this.options.step < 5) {
 return;
 }

 var maxValue = this.options.max,
 cnt = this.options.min + this.options.step,
 background = this.element.css("border-color"),
 left;

Chapter 8

155

 while (cnt < maxValue) {

 left = (cnt / maxValue * 100).toFixed(2) + "%";

 $("<div/>").addClass("ui-slider-tick")
 .appendTo(this.element)
 .css({ left: left,
 background: background });

 cnt += this.options.step;

 }

 }

});

})(jQuery);

$(function() {

 $("#slider").slider({
 min: 0,
 max: 200,
 step: 20,
 ticks: true
 });

});

Looking at this slider widget, we can see that the step value we've specified, 20, is depicted
using tick marks underneath the slider.

Using Sliders

156

How it works...
Let's examine the additional capability we've introduced into the slider widget. We've added
the ticks Boolean option, which is turned off by default. This option, when true, tells the
widget to display the step increments using tick marks. In the _create() method, we're
calling the original implementation of _create() using _super(), as we want the slider
constructed as normal. Then, we check to see if the ticks option has been turned on and
if the step value is greater than 5. If the ticks option has been turned on and we have a
step value that is less than 5, they'll appear to be close to each other; so we simply don't
display them.

The cnt counter variable controls our tick rendering loop, and is initialized to the first step
above the min option. Likewise, the loop exits before the max option value. This is because
we do not want to render tick marks at the beginning or the end of the slider, but only the mid
section. The backgroud variable is used to extract the border-color CSS property from
the slider widget. What we're actually doing here is transferring the theme setting to a new
element we're adding to the widget. This allows the theme to be swapped, and the tick marks
will change color accordingly.

Inside the while loop, we're creating the div elements that represent the tick marks. The
left CSS property is computed to actually position the div so that it lines up with the slider
handle as the user moves it around. The ui-slider-tick CSS class we're adding to the
div element configures the common properties for each tick mark, including the z-index,
which pushes a portion of the div behind the main slider bar.

Getting range values
The slider widget can be used to control a range value. So instead of moving a fixed point, that
is the handle, back and forth over the slider axis, the user will move two handles back and
forth. The space in between these two points represents the range value. But how do we go
about computing that number? The slider widget gives us the raw data, the upper and lower
bounds on the user selection. We can use these values inside our event handlers to compute
the range value.

Getting ready...
We'll use just a basic slider for this demonstration, but we'll need some supporting CSS and
HTML surrounding the slider so that we can display the range values as they're changed. Here
is the CSS:

Chapter 8

157

.slider-container {
 width: 180px;
 margin: 20px;
}

.slider-container .slider-label {
 margin-bottom: 10px;
 font-size: 1.2em;
}

And here is the HTML:

<div class="slider-container">
 <div class="slider-label">
 Range Value:
 <strong id="range-value">
 </div>
 <div id="slider"></div>
</div>

How to do it...
We'll create the slider instance using the following JavaScript code. Note that we're passing
options specific to supporting range selections.

$(function() {

 $("#slider").slider({
 min: 0,
 max: 600,
 values: [280, 475],
 range: true,
 create: function(e, ui) {
 var values = $(this).data("uiSlider").values();
 $("#range-value").text(values[1] - values[0]);
 },
 change: function(e, ui) {
 $("#range-value").text(ui.values[1] - ui.values[0]);
 }
 });

});

Using Sliders

158

Now when you view this slider in your browser, you'll notice that the range value is displayed
as a label outside the widget. And, if you move either one of the slider handles, the label will
reflect the changed range value.

How it works...
In this example, we're creating a simple slider widget that uses a range of values instead of
just a single value. We do this by passing an array of values to the widget constructor, and by
passing a range value of true to the constructor as well. This is how the widget knows to
use two handles instead of one, and to fill in the space between them. We're also passing the
slider constructor with two event callback functions: one for the create event and the other
for the change event.

The two callbacks do the same thing: they compute the range value and display it in our
#range-value label. The two callbacks, however, implement the same logic in a slightly
different manner. The create callback doesn't have the values array as part of the
ui object, which is used to hold widget data. So, our workaround here is the use of the
uiSlider data, which holds an instance of the JavaScript slider widget instance in order
to access the values() method. This returns the same data that we find in the ui object
passed to the change event callback.

The number we're computing here is simply the value of the first handle, minus the value
of the second. For example, if we're using a slider such as this in a form, the API might not
care about the two values as represented by the two slider handles, but only the range value
derived by the two numbers.

Chapter 8

159

Changing the slider orientation
By default, the slider widget will render horizontally. It's easy for us to change the slider
orientation to a vertical layout using the orientation option.

How to do it...
We'll use the following HTML to define our two widgets. The first slider will be vertical while the
second uses the default horizontal layout:

<div class="slider-container">
 <div id="vslider"></div>
</div>

<div class="slider-container">
 <div id="hslider"></div>
</div>

Next, we'll use the following JavaScript code to instantiate the two widgets:

$(function() {

 $("#vslider").slider({
 orientation: "vertical",
 range: "min",
 min: 1,
 max: 200,
 value: 128
 });

 $("#hslider").slider({
 range: "min",
 min: 0,
 max: 200,
 value: 128
 });

});

Using Sliders

160

If you look at the two sliders in your browser, you can see the contrast between the vertical
layout and the default horizontal layout:

How it works...
The two slider widgets we've created here, #vslider and #hslider, are identical in
terms of content. The only difference is that the #vslider instance is created with the
orientation option set to vertical. The #hslider instance doesn't specify an
orientation option and so uses the default, horizontal. The key difference between
them is the layout as is made obvious in our example. The actual layout itself is controlled
by the ui-slider-vertical and ui-slider-horizontal CSS classes, which are
mutually exclusive.

Being able to control the slider orientation is valuable depending on where you want to put
the widget in the context of the UI. The containing element, for example, might not have a
lot of horizontal space, and so using the vertical orientation option might make good sense
here. However, be careful about dynamically changing the slider orientation. The handle can
sometimes break away from the slider bar. Therefore, it's best to decide on the orientation at
design time.

9
Using Spinners

In this chapter, we will cover:

 f Removing the input focus outline
 f Formatting currencies for local cultures
 f Formatting time for local cultures
 f Controlling the step between values
 f Specifying the spin overflow
 f Simplifying the spinner buttons

Introduction
In this chapter, we'll be working with spinners. A spinner is nothing more than an adornment
on a text input element. But at the same time, it's plenty more. For example, the spinner
does a lot to assist with formatting numbers to local cultures as we'll see in this chapter. We'll
also explore some of the options that the spinner widget ships with, and how we can expand
on and improve these options. Finally, we'll take a look at some of the ways we can modify the
look and feel of the spinner widget.

Removing the input focus outline
Most browsers will automatically apply an input focus outline around the input element
when it gains the focus from the user. The element receives focus when the user either clicks
the input element, or tabs their way there. The spinner widget is essentially an input
element with adornments. This includes the ability to utilize the innate jQuery state classes
from the CSS theme framework. While the automatic focusing behavior of the browser may
work well on input elements by themselves, these focus rings can make the spinner look
a little cluttered. Let's take a look at how we can remove the automatic focus outline, while
maintaining the same level of accessibility

Using Spinners

162

How to do it...
We'll create just a simple input element for this example. Here is what the HTML structure
looks like.

<div class="spinner-container">
 <input id="spinner"/>
</div>

And, here is the custom CSS used in conjunction with our widget modifications to remove the
focus outline.

.ui-spinner-input-no-outline {
 outline: 0;
}

Finally, here is our JavaScript code which alters the definition of the spinner widget, and
creates an instance with no automatic outline applied by the browser.

(function($, undefined) {

$.widget("ab.spinner", $.ui.spinner, {

 options: {
inputOutline: true
},

 _create: function() {

 this._super();

 if (this.options.inputOutline) {
return;
}

 this.element.addClass("ui-spinner-input-no-outline");
 this._focusable(this.uiSpinner);

 }
});

})(jQuery);

$(function() {

 $("#spinner").spinner({ inputOutline: false });

});

Chapter 9

163

To give you a better idea of the change we've introduced, this is what the spinner widget we
just created looked like before our modifications to the spinner definition.

Here, you can clearly see that the input element has the focus, but we could do without the
double border as it doesn't exactly fit nicely with our theme. Following is the modified version
of the same widget in the focused state after introducing our changes.

We no longer have the focus outline, and the widget still changes its state visually when it
gains focus. Except now, we're changing the appearance using state classes from the CSS
theme, and not relying on the browser to do it for us.

How it works...
The CSS class that takes care of removing the outline for us, the ui-spinner-input-no-
outline class, is easy enough to understand. We simply set the outline to 0 which overrides
the default browser way of doing things. Our custom extension of the spinner widget knows how
to make use of this class.

We've added a new inputOutline option to the spinner widget. This option will apply
our new CSS class to the input element if it is set to false. However, inputOutline
defaults to true, because we don't want to override the default browser functionality by
default. Furthermore, we also don't want to necessarily override the default spinner widget
functionality by default. Instead, it's safer to provider an option that when explicitly set,
changes the defaults. In our implementation of the _create() method, we call the
original implementation of the spinner constructor. Then, if the inputOutline option
is true, we apply the ui-spinner-input-no-outline class.

Again, you may have noticed the last thing we do is apply the _focusable() method
to the this.uiSpinner property. The reason being, we need to make up for the lost
accessibility; the outline is no longer applied by the browser, and so we need to apply the
ui-state-focus class when the widget gains focus. The _focusable() method is a
simple helper defined in the base widget class, and so available to all widgets, that makes
the passed elements handle the focus events. This is much simpler than dealing with the
event setup and tear-down ourselves.

Using Spinners

164

Formatting currencies for local cultures
It is possible to use the spinner widget in conjunction with the Globalize jQuery library. The
Globalize library is an effort by the jQuery foundation to standardize the way jQuery projects
format data for different cultures. A culture is a set of rules that formats strings, dates, and
currencies according to cultural norms. For example, our application should treat German
dates and currencies differently from French dates and currencies. This is how we're able
to pass a culture value to the spinner widget. Let's look at how we can use the Globalize
library with the spinner widget to format currencies to local cultures.

How to do it...
The first thing our application needs when working with several locales is to include the
globalize libraries. Each culture is contained in its own JavaScript file.

<script src="globalize.js"
 type="text/javascript"></script>
<script src="globalize.culture.de-DE.js"
 type="text/javascript"></script>
<script src="globalize.culture.fr-CA.js"
 type="text/javascript"></script>
<script src="globalize.culture.ja-JP.js"
 type="text/javascript"></script>

Next, we'll define the HTML used to display the culture selector, made up of radio buttons,
and the spinner widget, used to display currencies.

<div class="culture-container"></div>
<div class="spinner-container">
 <input id="spinner"/>
</div>

Finally, we have our JavaScript code used to populate the culture selector, instantiate the
spinner widget, and bind the change event to the culture selector.

$(function() {

 var defaultCulture = Globalize.cultures.default;

 $.each(Globalize.cultures, function(i, v) {

 if (i === "default") {
 return;
 }

Chapter 9

165

 var culture = $("<div/>").appendTo(".culture-container");

 $("<input/>").attr("type", "radio")
 .attr("name", "cultures")
 .attr("id", v.name)
 .attr("checked", defaultCulture.name === v.name)
 .appendTo(culture);

 $("<label/>").attr("for", v.name)
 .text(v.englishName)
 .appendTo(culture);

 });

 $("#spinner").spinner({
 numberFormat: "C",
 step: 5,
 min: 0,
 max: 100,
 culture: $("input:radio[name='cultures']:checked")
 .attr("id")
 });

 $("input:radio[name='cultures']").on
 ("change", function(e) {
 $("#spinner").spinner("option", "culture",
 $(this).attr("id"));
 });

});

When you first look at this UI in your browser, you'll notice that English is the selected culture,
and the spinner will format the currency accordingly.

Using Spinners

166

But, a change in culture results in a currency format change in the spinner widget, as
previously illustrated.

How it works...
The first thing we do in the JavaScript code, once the DOM is ready, is populate the culture
selector using the Globalize.cultures object. The Globalize library constructs this
object based on the available cultures; you'll notice a direct correlation from the available
culture options and the culture scripts that we've included in the page. We store the name
of the culture as the id attribute since this is what we pass to the spinner widget later. The
Globalize.cultures object also has a default culture, and we use this value to determine
which option is selected when the page first loads.

The spinner instance we've created uses a numberFormat option value of C. This string
actually gets passed directly to the Globalize.format() function upon rendering of the
spinner value. The next three options, step, min, and max are typical with any numerical
spinner instances. The culture option, which we're setting to the selected default culture,
tells the spinner widget how to format the currency. Finally, we've setup an event handling
that is triggered anytime the culture selection changes. This handler will update the spinner
widget to use the newly-selected culture.

Formatting time for local cultures
The spinner widget utilizes the Globalize jQuery project; an effort to standardize on data
formats according to the local culture. The spinner widget utilizes this library to format its
values. For example, specifying the numberFormat and culture options allow us to use
the spinner widget to display currency values according to local culture. However, currency is
just one value that we like to format locally; time is another. We can use the built-in Globalize
capabilities only to an extent in the spinner widget for displaying time values. A little more
work is required on our part to extend the widget to properly allow for time values. In fact,
let's create our own time widget, based on the spinner.

Chapter 9

167

How to do it...
First, let's look at the markup required for creating two time widgets in which we'll display the
Toronto time and the London time. We're not showcasing the time-zone computation abilities
here, simply the fact that we have two different cultures in the same UI.

<div class="spinner-container">
 <h3>Toronto</h3>
 <input id="time-ca" value="2:30 PM"/>
</div>

<div class="spinner-container">
 <h3>London</h3>
 <input id="time-gb" value="7:30 PM"/>
</div>

Next, let's have a look at the JavaScript used to define the new time widget, and create two
instances of it.

(function($, undefined) {

$.widget("ab.time", $.ui.spinner, {

 options: {
 step: 60 * 1000,
 numberFormat: "t"
 },

 _parse: function(value) {

 var parsed = value;

 if (typeof value === "string" && value !== "") {

 var format = this.options.numberFormat,
 culture = this.options.culture;

 parsed = +Globalize.parseDate(value, format);

 if (parsed === 0) {
 parsed = +Globalize.parseDate(value,
 format, culture);
 }

 }

Using Spinners

168

 return parsed === "" || isNaN(parsed) ? null :
 parsed;

 },

 _format: function(value) {
 return this._super(new Date(value));
 }

});

})(jQuery);

$(function() {

 $("#time-ca").time({
 culture: "en-CA"
 });

 $("#time-gb").time({
 culture: "en-GB"
 });

});

Looking at the two time widgets in the browser, we can see that they've been formatted to
their own local culture.

How it works...
Let's first look at the two input elements used to define the time widget instances. Notice the
value attribute, they both have a default time, expressed using the same format. Now, let's
jump to the definition of the new time widget.

Chapter 9

169

The first thing you'll notice here is that we're using the widget factory to define the time
widget under the ab namespace. You'll also notice that we're extending the spinner widget.
That's because it is essentially a spinner that we're building here, with a couple of small but
important distinctions. This is actually a good example of something you'll have to consider
when designing jQuery UI widget customizations that are derived from the standard set of
widgets. Should you retain the original widget name, in this case spinner, or should you call
it something else, in this case time? The one thing that can help you guide this decision is
thinking about how this widget will be used. For example, we could have left the spinner
widget intact to display these cultured time values, but that would mean introducing new
options, and potentially confusion for the developers using this widget. We've decided that
the use cases here are simple ones, and that we should allow the time to be displayed with
as few options as possible.

The options we're defining here aren't new; the step and numberFormat options are already
defined by the spinner widget, we're just setting them to default values that make sense for
our time widget. The step value will be incrementing against a timestamp value, and so we
give it a default that will step by one second. The numberFormat option specifies the format,
the spinner expects when parsing, and when formatting output.

Our extension of the spinner, the _parse() method, is where we're using the Globalize library
directly to parse the time strings. Recall that our inputs have the same string formats. This
becomes a problem if we're trying to parse a value that has an unrecognizable format. So we
try to parse the time value without specifying what culture the value is. If that doesn't work, we
use the culture attached to this widget. This way, we can specify the initial values using one
format, as we've done here, and we can change the culture on-the-fly; everything will still work.
Our version of the _format() method is simple since we know the value is always going
to be a timestamp number, all we have to do is pass a new Date object back to the original
spinner _format() method.

Lastly, we have the two time widget instances, where one is passed a culture of en-CA, and
the other, en-GB.

Controlling the step between values
There are several ways with which we can control the steps in the spinner widget. The step
is the value that the spinner widget uses to move its number either up or down. For example,
you'll often see loop code that increments a counter cnt ++. Here, the step is one and this
is what the spinner step value defaults to. Changing this option in the spinner is trivial; we
can even change this value after the widget has been created.

There are other measures we can take to control the stepping behavior of the spinner. Let's
take a look at the incremental option and see how this impacts the spinner.

Using Spinners

170

How to do it...
We'll create three spinner widgets to demonstrate the potential of the incremental option.
Following is the HTML structure:

<div class="spinner-container">
 <h3>Non-incremental</h3>
 <input id="spin1" />
</div>

<div class="spinner-container">
 <h3>Doubled</h3>
 <input id="spin2" />
</div>

<div class="spinner-container">
 <h3>Faster and Faster</h3>
 <input id="spin3" />
</div>

And following is the JavaScript used to create the three spinner instances:

$(function() {

 $("#spin1").spinner({
 step: 5,
 incremental: false
 });

 $("#spin2").spinner({
 step: 10,
 incremental: function(spins) {
 if (spins >= 10) {
 return 2;
 }
 return 1;
 }
 });

 $("#spin3").spinner({
 step: 15,
 incremental: function(spins) {
 var multiplier = Math.floor(spins / 100),
 limit = Math.pow(10, 10);

Chapter 9

171

 if (multiplier < limit && multiplier > 0) {
 return multiplier;
 }
 return 1;
 }
 });

});

The three spinner widgets should look something like this in your browser.

How it works...
We've created three different spinner instances, all of which behave differently when the
user holds down one of the spin buttons. The #spin1 spinner has a step value of 5, and
will always increment the spinner value by 5. You can try this out by holding down the spinner
button. You'll notice this will take you a really long time to get to a larger integer value.

The incremental option takes a boolean value, as we saw with the first spinner, but it
also accepts a callback function. The #spin2 spinner has a step value of 10, but that
will change based on our function passed to the incremental option. This incremental
callback function we've defined gets passed through the number of spins that have
happened, since the user held the spin button down. We start off normally here, for the
first 10 spins, and then we pick up speed from that point forward by returning 2 instead of
1. When we return 2, our step value becomes 20 since the returned value of this function is
a multiplier. But it's only used while the user is holding down the spin button; this function
doesn't permanently alter the step option.

Our last spinner instance, #spin3, also uses an incremental callback function. However,
this function will use a progressively larger value as the user continues to spin. Every hundred
spins, we increase the multiplier, and also the step. This latter incremental function is useful as
the spinner value itself gets larger, and we can control the pace at which the step changes.

Using Spinners

172

There's more...
We've just seen how to control the step of the value of the spinner widget. The step option
dictates how far, in either direction, the value moves for a given spin. When the user holds the
spin button down, we can use the use the incremental option to compute a step value. This
helps speed up, or slow down the time it takes to spin to a given destination value.

Another approach is to alter the actual timing delay in-between spins. This might be handy, if you
want to slow the spinning down, when the user is holding down the spin button. Let's look at an
example of how we would go about altering the spin delay. Following is the HTML structure:

<div class="spinner-container">
 <h3>Default delay</h3>
 <input id="spin1" />
</div>

<div class="spinner-container">
 <h3>Long delay</h3>
 <input id="spin2" />
</div>

<div class="spinner-container">
 <h3>Longer delay</h3>
 <input id="spin3" />
</div>

And here is the custom spinner widget definition, and three instances that all use different
spin values.

(function($, undefined) {

$.widget("ab.spinner", $.ui.spinner, {

 options: {
 spinDelay: 40
 },

 _repeat: function(i, steps, event) {

 var spinDelay = this.options.spinDelay;

 i = i || 500;

 clearTimeout(this.timer);

Chapter 9

173

 this.timer = this._delay(function() {
 this._repeat(spinDelay, steps, event);
 }, i);

 this._spin(steps * this.options.step, event);

 }

});

})(jQuery);

$(function() {

 $("#spin1").spinner();

 $("#spin2").spinner({
 spinDelay: 80
 });

 $("#spin3").spinner({
 spinDelay: 120
 });

});

You can try each one of these spinners in the browser, and observe the contrast in spin delay.

Using Spinners

174

The new spinDelay option we've added to the spinner widget allows us to specify the delay
in milliseconds. In order to actually use this option, we have to perform some alterations in
one of the core spinner widget methods. The _repeat() method is used internally by the
widget when the user holds down the spinner button. It actually does a fair amount of work
using little code. Essentially, the goal is to repeat the given event, over and over, until the user
lifts the button and the spinning should stop. However, we cannot just call _spin() over
and over without some kind of delay, otherwise the user would see nothing more than a blur
each time the text input is updated with a new value. And so, the spinner makes use of the
_delay() method for this exact purpose. The _delay() method sets a delayed execution
for the past function, and is defined in the base widget class; all widgets have access to
_delay().

Our version of the _repeat() method is nearly identical to the original, except we're not
hard-coding the delay between spins; we get that from the spinDelay option now.

Specifying the spin overflow
The spinner widget will happily let the user spin, indefinitely. It'll even change the display
to use exponential notation when the JavaScript integer limit is reached, that's fine. Almost
no application needs to worry about these limits. And in fact, it's probably best to put some
limitations in place that actually make sense for the application. That is, specify a min
boundary and a max boundary.

This works well, but it could work even better if we plug some logic into the spinner that
handles overflow, when the user wants to go beyond the boundary. Rather than just stop
spinning as is the default behavior, we just send them in the same direction, but starting from
the opposite boundary. The best way to picture these constraints is by default, the spinner
min-max boundary is like a straight line. We want to make it look more like a circle.

How to do it...
We'll have two spinner widgets, the first using the default boundary constraint logic, and
the second using our own custom-defined behavior. Following is the HTML structure used to
create the two widgets:

<div class="spinner-container">
 <h3>Default</h3>
 <input id="spin1" />
</div>

<div class="spinner-container">
 <h3>Overflow</h3>
 <input id="spin2" />
</div>

Chapter 9

175

And, here is the JavaScript used to instantiate the two spinners when the document has loaded:

$(function() {

 $("#spin1").spinner({
 min: 1,
 max: 100
 });

 $("#spin2").spinner({
 minOverflow: 1,
 maxOverflow: 100,
 spin: function(e, ui) {

 var value = ui.value,
 minOverflow = $(this).spinner
 ("option", "minOverflow"),
 maxOverflow = $(this).spinner
 ("option", "maxOverflow");

 if (value > maxOverflow) {
 $(this).spinner("value", minOverflow);
 return false;
 }
 else if (value < minOverflow) {
 $(this).spinner("value", maxOverflow);
 return false;
 }

 }
 });

});

Following are the two widgets in the browser. The latter spinner, you'll see, handles the
boundary overflow differently than the default implementation.

Using Spinners

176

How it works...
When the #spin1 spinner reaches either of the boundaries, 1 or 100, the spinning will just
stop. On the other hand, the #spin2 spinner will pick up at the other end. You'll notice that
we're passing two non-standard spinner options here; minOverflow and maxOverflow.
These don't actually constrain the boundary of the spinner the way min and max do. Adding
these new options was intentional on our part because we don't want the regular constraint
logic to fire.

The spin callback function we've supplied to this widget gets called on every spin. If we had
used the traditional spinning min and max options, we would never know if we're experiencing
an overflow because min would be less than 1 and max would never be more than 100. So,
we use the new options to redirect the value, depending on the direction. If the value has
gone above 100, then we set the value back to minOverflow. Or if the value has gone below
1, then we set the value to maxOverflow.

There's more...
You may decide that the overflow behavior, where we bring the user around to the other side
of the spinner boundary, it isn't exactly what you're looking for. You may just want to stop
the spinning, once the boundary is reached. However, we can still improve on the widget by
disabling the spinner button once the boundary in that direction has been reached. This is
just a different approach to spinner overflow, whereby we simply supply better feedback to the
user, as opposed to altering the business logic as we did earlier. Let's take a look at how we
can make this change. Following is the HTML structure used for a simple spinner widget:

<div class="spinner-container">
 <input id="spin" value=10 />
</div>

And here is our JavaScript used to create the widget once the page loads.

$(function() {

 $("#spin").spinner({
 min: 1,
 max: 100,
 spin: function(e, ui) {
 var value = ui.value,
 buttons = $(this).data("uiSpinner").buttons,
 min = $(this).spinner("option", "min"),
 max = $(this).spinner("option", "max");

Chapter 9

177

 if (value === max) {
 buttons.filter(".ui-spinner-up:not
 (.ui-state-disabled)")
 .button("disable");
 }
 else if (value === min) {
 buttons.filter(".ui-spinner-down:not
 (.ui-state-disabled)")
 .button("disable");
 }
 else {
 buttons.filter(".ui-state-disabled")
 .button("enable");
 }
 }
 });

});

When you start interacting with this widget in the browser, you'll notice that when you hit the
min option value, in this case, 1, the down spinner button is disabled.

Likewise, when you hit the max, which is 100 here, the up spinner button is disabled.

We've introduced this new spinner behavior by passing the constructor a spin callback
function, executed on each spin. In this callback, we create a reference to both spinner
buttons in the buttons variable. Then we check if either the max value has been reached,
or if the min value has been reached. We then disable the appropriate button. If we're
somewhere in-between min and max, then we simply enable the buttons. You'll also notice
that we have some extra filtering involved here; not(.ui-state-disabled) and .ui-
state-disabled. This is necessary because of the way the spinner widget fires spin events.
Disabling buttons can trigger a spin, leading to an infinite loop. And so we have to take care to
disable only those buttons that haven't been disabled yet.

Using Spinners

178

Simplifying the spinner buttons
The default spin buttons implemented in the spinner widget might be a bit much, depending
on context. For example, you can clearly see that these are button widgets added to the slider
as subcomponents. And this works perfectly when we get to build larger widgets out of smaller
ones. This is more along the lines of an aesthetic preference. Maybe the spinner would look
better if the individual up and down spin buttons didn't have a hover state, and didn't have a
background or border, either for that matter. Let's try taking these style properties away from
the buttons in the slider and make them appear more tightly integrated.

How to do it...
Here is the basic HTML structure used as the foundation of our spinner widget:

<div class="spinner-container">
 <input id="spin" />
</div>

And here is the CSS we'll use to remove the button styles we're no longer interested in:

.ui-spinner-basic > a.ui-button {
 border: none;
 background: none;
 cursor: pointer;
}

The input element isn't yet a widget, and the new CSS class we've created isn't yet part of
the spinner widget. Here is what the JavaScript code to do both of those things, looks like:

 (function($, undefined) {

$.widget("ab.spinner", $.ui.spinner, {

 options: {
 basic: false
 },

 _create: function() {

 this._super();

 if (this.options.basic) {
 this.uiSpinner.addClass("ui-spinner-basic");
 }

Chapter 9

179

 }

});

})(jQuery);

$(function() {

 $("#spin").spinner({
 basic: true
 });

});

If you take a look at the spinner we've created in the browser, you'll notice that the borders
and backgrounds of the spinner buttons have been stripped. It now looks more like one whole
widget. You'll also notice that the mouse cursor uses a pointer icon when the user hovers over
either of the buttons, which helps indicate that they're clickable.

How it works...
The new CSS class we've just created, ui-spinner-basic, works by overriding the button
widget styles within the context of the spinner. Specifically, we're removing the border and
background, from both the button widgets. In addition, we have set the cursor property
to pointer in order to give the user the impression that the arrows are clickable. We've also
customized the definition of the spinner widget itself a little bit. We've done so by adding a
new basic option, which when true, will apply the new ui-spinner-basic class to the
widget. We don't need to explicitly remove this class when the widget is destroyed because it
was added to an element that is created by the spinner widget. This element is automatically
removed by the base spinner implementation, and so our code doesn't have to worry about it.

10
Using Tabs

In this chapter, we will cover:

 f Working with remote tab content

 f Giving tabs an icon

 f Simplifying the tab theme

 f Using tabs as URL navigation links

 f Creating effects between tab transitions

 f Sorting tabs using the sortable interaction

 f Setting the active tab using href

Introduction
The tabs widget is a container used to organize the content on your page. It is an excellent
way to consolidate your page content so only the relevant items are displayed. The user has
an easy navigation mechanism to activate content. The tabs widget can be applied in a larger
navigational context, where the tabs widget is the main top-level container element for the
page. It can also serve well as a smaller component for a specific page element, used to
simply split two sections of content.

The tabs widget in the latest jQuery UI version offers the developer a cohesive set of options
to tweak the behavior of the widget. We'll look at how we can combine these options, as well
as how to get the most out of the navigational pieces of the tabs widget. We'll also explore
applying effects to tab transitions, and making tabs sortable for the user.

Using Tabs

182

Working with remote tab content
The tabs widget knows how to populate a given tab panel with remote content out of the
box. It's all about how we specify the tab links. For example, an href attribute that points to
#tab-content-home will load the content using the HTML found in that element. But, if
instead of pointing to an already-existing element we point to another page, the tabs widget
will load the content into the appropriate panel on demand.

This works as expected without passing options to the tabs, but there is the beforeLoad
option should we want to tweak the behavior of the Ajax request in an any way. Let's take a
look at some of the ways we can work with remote content using the tabs widget.

How to do it...
First, we'll create the HTML for our tabs widget, which consists of four links. The first three
point to existing resources while the fourth doesn't exist, and so the Ajax request will fail.

<div id="tabs">

 Tab 1
 Tab 2
 Tab 3
 Tab 4

</div>

Next, we have the JavaScript used to create the tabs widget instance as well as specify some
custom behavior to alter the Ajax request.

$(function() {

 function tabLoad(e, ui) {

 if (ui.panel.html() !== "") {

 ui.jqXHR.abort();

 }
 else {

 ui.jqXHR.error(function(data) {

Chapter 10

183

 $("<p/>").addClass("ui-corner-all ui-state-error")
 .css("padding", "4px")
 .text(data.statusText)
 .appendTo(ui.panel);
 });

 }

 }

 $("#tabs").tabs({
 beforeLoad: tabLoad
 });

});

In order to view the Ajax behavior implemented in this demonstration, you'll want to put a
web server in front of it. The easiest way to do that is to install Python and run python -m
SimpleHTTPServer from the directory with the main HTML file, as well as the Ajax content
files, tab1.html, tab2.html, and tab3.html. Here is an example of what the tab1.html
file looks like:

<!doctype html>
<html lang="en">
 <body>
 <h1>Tab 1</h1>
 <p>Tab 1 content</p>
 </body>
</html>

When you load this tabs widget in your browser, the first tab is selected by default. So the
widget will perform the Ajax request that loads the first tab's content right away. You should
see something like this:

Using Tabs

184

Switching to the second and third tabs will execute the Ajax request necessary to fetch the
content. On the other hand, the fourth tab will result in an error as the linked resource doesn't
exist. Instead of content being displayed in that panel, our custom behavior that we've added
to the Ajax request displays an error message.

The last thing to note about this example is our other modification to the Ajax request. If you
were to revisit the first tab, we're not sending another Ajax request as we already have the
panel content.

How it works...
We're creating a tabs widget from the #tabs div when the document has finished loading.
We're passing beforeLoad a callback function, tabLoad(), defined earlier. The tabLoad
function gets called just before the Ajax request to fetch the tab panel content that is
dispatched. This gives us an opportunity to update the state of the jqXHR object.

The jqXHR object returned by $.ajax() is an extension of the native
XMLHTTPRequest type found in JavaScript. Developers seldom interact
with this object but occasionally, the need does arise as we've seen here.

The first thing we're checking for in this example is whether or not the tab panel has any
content in it. The ui.panel object represents the div element where the dynamic Ajax
content will eventually land. If it is an empty string, we continue loading the content. If, on
the other hand, there is content already, we abort the request. This is useful if the server isn't
generating dynamic content and we're merely using this feature of the tabs widget as a means
of structural composition. There is no point in requesting the same content over and over
when we already have it.

Chapter 10

185

We're also attaching behavior to the jqXHR object that's executed if the Ajax request fails. We
update the tab content with the status text returned by the server after formatting it using the
ui-state-error and ui-corner-all classes.

There's more...
The preceding example took the HTML retrieved from the remote resource and placed it into
the tab panel. But now we've decided that the h1 tags in the tab content are redundant,
as the active tab serves the same purpose. We can take the tags directly out of the remote
resource that we're using to build the tab content, but that could pose a problem if we're using
that resource somewhere else in the application. Instead, we can just alter the tab content
before the user actually sees it using the load event. Here is a modified version of our tabs
widget instance:

$(function() {

 function beforeLoad(e, ui) {

 ui.jqXHR.error(function(data) {

 ui.panel.empty();

 $("<p/>").addClass("ui-corner-all ui-state-error")
 .css("padding", "4px")
 .text(data.statusText)
 .appendTo(ui.panel);
 });

 }

 function afterLoad(e, ui) {
 $("h1", ui.panel).remove();
 }

 $("#tabs").tabs({
 beforeLoad: beforeLoad,
 load: afterLoad
 });

});

Using Tabs

186

Looking at it now, you'll see that there is no longer a header inside the tab panel. Our load
callback passed to the tabs in the constructor will find and remove any h1 tags. The load
event is triggered after the Ajax call has returned and the content inserted into the panel. We
don't need to worry about the h1 tags appearing after our code has run.

Giving tabs an icon
The tabs widget uses anchor elements, which when clicked, activate the various tab panels to
reveal their content. This anchor element only displays text by default, which is good enough
under the vast majority of circumstances. There are other times, however, where the tab
link itself would benefit from an icon. For example, a house icon helps quickly cue what is
in the panel content before actually activating it. Let's look at how we can extend the tab's
capabilities to support using both an icon and text as the tab button.

How to do it...
We'll create a basic tabs div to support our widget that looks like the following:

<div id="tabs">

 <li data-icon="ui-icon-home">
 Home

 <li data-icon="ui-icon-search">
 Search

 <li data-icon="ui-icon-wrench">
 Settings

 <div id="home">
 <p>Home panel...</p>
 </div>
 <div id="search">
 <p>Search panel...</p>
 </div>

Chapter 10

187

 <div id="settings">
 <p>Settings panel...</p>
 </div>
</div>

Next, we have our JavaScript, including an extension to the tabs widget that understands how
to utilize the new data-icon attributes we've included in the markup.

(function($, undefined) {

$.widget("ab.tabs", $.ui.tabs, {

 _processTabs: function() {

 this._super();

 var iconTabs = this.tablist.find("> li[data-icon]");

 iconTabs.each(function(i, v) {

 var $tab = $(v),
 iconClass = $tab.attr("data-icon"),
 iconClasses = "ui-icon " +
 iconClass +
 " ui-tabs-icon",
 $icon = $("").addClass(iconClasses),
 $anchor = $tab.find("> a.ui-tabs-anchor"),
 $text = $("").text($anchor.text());

 $anchor.empty()
 .append($icon)
 .append($text);

 });
 },

 _destroy: function() {

 var iconTabs = this.tablist.find("> li[data-icon]");

 iconTabs.each(function(i, v) {

 var $anchor = $(v).find("> a.ui-tabs-anchor"),
 text = $anchor.find("> span:not(.ui-icon)")
 .text();

Using Tabs

188

 $anchor.empty().text(text);

 });

 this._super();

 }

});

})(jQuery);

$(function() {

 $("#tabs").tabs();

});

If you were to look at this tabs widget in the browser, you'll notice that each tab button now
has an icon to the left of the button text.

How it works...
What's interesting about this customization to the tabs widget is that we're passing the data
through the li elements that represent the tab buttons. As any given tabs widget instance
could have any number of tabs, it'd be hard to specify which tab gets which icon through the
options object. Instead, we're simply transferring these options through the use of a data
attribute, data-icon. The value is the icon class we'd like to use from the theme framework.

The changes we've implemented could actually have been done manually in the markup
itself, as we're just adding new elements and new classes to the widget. But, there are two
problems with this way of thinking. First, there is a lot of manually injected markup that could
be generated based on the value of one data attribute—it violates the DRY principle, especially
if you're following this pattern for several tabs widgets. Second, we would be introducing new
markup that the default widget implementation doesn't know about. It may work out fine, but
when things stop working as expected, this can be very difficult to diagnose. And so, we're
better off extending the tabs widget.

Chapter 10

189

The _processTabs() method we're overriding will iterate over each li element that has
the data-icon attribute, as these are the ones we need to manipulate. The data-icon
attribute stores the class of icons to use from the theme framework. We construct a span
element that uses the ui-icon class in conjunction with the specific icon class. It also gets
our new ui-tabs-icon class that properly positions the element inside the link. We're then
grabbing the original text of the tab button and wrapping it in a div. The reason being, it's
easier to insert the icon span, followed by the text span.

Simplifying the tab theme
Sometimes, the context of our tabs widget has important theme implications. The default
visual components of the tabs widget work best when the widget is near the top of the
document, that is, the majority of the page content is nested within the tab panels. In
contrast, there may be preexisting page elements that could benefit from being organized by
a tabs widget. And therein lies the challenge—stuffing a top-level widget such as tabs into a
smaller block can look awkward at best, unless we can figure out a way to strip down some
unnecessary theme components from the tabs.

How to do it...
Let's first create ourselves some markup to base the tabs widget on. It should look something
like the following:

<div id="tabs-container">
 <div id="tabs">

 Tab 1
 Tab 2
 Tab 3

 <div id="tab1">
 <h3>Tab 1...</h3>

 Item 1
 Item 2
 Item 3

 </div>
 <div id="tab2">
 <h3>Tab 2...</h3>

 Item 4
 Item 5
 Item 6

Using Tabs

190

 </div>
 <div id="tab3">
 <h3>Tab 3...</h3>

 Item 7
 Item 8
 Item 9

 </div>
 </div>
</div>

Next, we'll define some CSS used by the tabs widget and the tabs widget container.

div.ui-tabs-basic {
 border: none;
 background: none;
}

div.ui-tabs-basic > ul.ui-tabs-nav {
 background: none;
 border-left: none;
 border-top: none;
 border-right: none;
}

#tabs-container {
 width: 22%;
 background: #f7f7f7;
 padding: 0.9em;
}

Next comes our JavaScript code that creates the tabs widget once the document is ready.

$(function() {

 $("#tabs").tabs({
 create: function(e, ui) {
 $(this).addClass("ui-tabs-basic")
 .find("> ul.ui-tabs-nav")
 .removeClass("ui-corner-all");
 }
 });

});

Chapter 10

191

How it works...
The create function we're passing to the tabs constructor gets triggered after the widget
is created. This is where we're adding our custom class, ui-tabs-basic, which is used to
override the background and border settings. These are the components we would like
to be removed, and so we just set them to none. We're also removing the ui-corner-all
class from the tabs navigation section because we're keeping the bottom border, and leaving
this class doesn't look right.

Creating this widget normally, that is, without passing our create function, the tabs widget
would look something like this:

As you can see, it looks like the tabs widget was stuffed into the #tabs-container element
without much thought. After our simplifications were introduced, the tabs take on a more
natural look inside their new context.

Using Tabs

192

There's more...
If you're using this slimmed-down version of the tabs widget in several places throughout
your UI, it can be cumbersome to define a function callback several times to pass to the
tabs constructor. You could define the callback function once and pass a reference to it in
the constructor, but then you still have the callback function out in the open. From a design
perspective, we might want to encapsulate this behavior in the tabs widget and expose it to
the outside world through a widget option. Here is a modification of the example that does
just that:

(function($, undefined) {

$.widget("ab.tabs", $.ui.tabs, {

 options: {
 basic: false
 },

 _create: function() {

 this._super();

 if (!this.options.basic) {
 return;
 }

 $(this.element).addClass("ui-tabs-basic")
 .find("> ul.ui-tabs-nav")
 .removeClass("ui-corner-all");

 }

});

})(jQuery);

$(function() {

 $("#tabs").tabs({
 basic: true
 });

});

Here, we've moved the functionality previously in our callback into the tabs constructor,
but it's only ever executed if the basic option is set to true, and it defaults to false.

Chapter 10

193

Using tabs as URL navigation links
The tabs widget isn't limited to populating tab panels using preloaded div elements or by
making Ajax calls. Some applications already have many components built, and lots of content
to display. If you're updating a site, or application such as this, the tabs widget might be useful
as the main form of navigation, especially if you're already using jQuery UI widgets. What we
would need then is something generic that could be applied to every page, without much
effort on the part of the developer using the widget. Although the tabs widget wasn't designed
for such a purpose, we're not going to let that stop us because with a little tweaking, we can
create a generic component that gives us exactly what we need.

How to do it...
The first thing we'll look at is the content on one of the pages in our application. The HTML
defines both the tabs widget structure and the content displayed under the active tab.

<div id="nav">

 Tab 1

 Tab 2

 Tab 3

 <div>
 <p>Tab 1 content...</p>
 </div>
</div>

You'll notice that there are three pages in this application, and they each use the same widget
HTML structure; the only difference is the tab content paragraph. Next, we'll define our new
navigation widget and create it on the page. This same JavaScript code is included on each
page of the application.

(function($, undefined) {

$.widget("ab.nav", $.ui.tabs, {

 _initialActive: function() {

 var path = location.pathname,
 path = path.substring(path.search(/[^\/]+$/)),

Using Tabs

194

 tabs = this.tabs,
 $active = tabs.find("> a[href$='" + path + "']");

 return tabs.find("a")
 .index($active);

 },

 _eventHandler: function(event) {

 window.open($(event.target).attr("href"), "_self");

 },

 _createPanel: function(id) {

 var panel = this.element.find("> div:first");

 if (!panel.hasClass("ui-tabs-panel")) {
 panel.data("ui-tabs-destroy", true)
 .addClass("ui-tabs-panel " +
 "ui-widget-content " +
 "ui-corner-bottom");

 }

 return panel;

 },

 _getPanelForTab: function(tab) {

 return this.element.find("> div:first");

 },

 load: $.noop

});

})(jQuery);

$(function() {

 $("#nav").nav();

});

Chapter 10

195

Now, when you interact with this navigation widget, you'll see that each time you activate a
new tab, the browser will reload the page to point at the tab's href; for example, tab3.html.

How it works...
Let's first look at the HTML structure before we discuss the new nav widget we've created.
The first thing to note is that the HTML structure we've provided here is different from what
the tabs widget is expecting. We have a div element that holds the main content of the page
and it has no ID, and thus no way for any tab link to reference it. Not to worry though, this is
intentional. The nav widget is designed for sites or applications that have multiple pages—
we're not embedding multiple tab pane content in this widget. With this structural change
to the HTML the widget uses, it's best that we create an entirely new widget rather than just
extend the tabs widget. This approach will avoid confusion as to what the HTML structure of a
tabs widget should look like.

The goal of our nav widget, based on the tabs widget, is to activate the appropriate tab
and render the div element as the selected tab panel. When a tab link is clicked, we don't
perform any of the usual tab activities, we simply follow href.

All the methods we're overriding in the definition of the nav widget come from the tabs
widget, and for the most part, we're replacing the tabs functionality we don't need. The first
method is _initialActive(), which determines the active tab when the widget is first
created. Here, we're basing this decision on the path in the location object. We compare
it to the tab's href attributes. Next is the _eventHandler() method. This method gets
called when the user activates a tab. Here, we're just performing the same action as a
default browser link and following the href attribute of the tab link. As we're doing this in
the _eventHandler() method, the keypress events used to switch tabs will still work as
expected. Next, the _createPanel() method is called when the tabs widget needs to create
and insert a tab panel. The reason the tabs widget calls this method is that it needs a panel
when making Ajax calls. As we're not making any Ajax calls in our nav widget, this method
will now use the default div that has the content of the page. The only changes we're making
to the content div is adding the appropriate tab panel CSS classes. Finally, we have the _
getPanelForTab() method that returns our content div, the only one that matters for this
widget, and the load() method is $.noop. This prevents the widget from trying to load Ajax
content when the widget is first created.

Using Tabs

196

Creating effects between tab transitions
The tabs widget lets the developer specify an effect to run when transitioning between tabs.
Specifically, we're able to tell the tabs widget to run a specific effect when showing a tab,
and another effect when hiding a tab. When the user clicks on a tab, both of these effects,
if specified, are run. First the hide effect, followed by the show effect. Let's take a look at how
we can combine these two tabs options to enhance the interactivity of the widget.

How to do it...
First, we'll create the necessary HTML structure we need to build our tabs widget. It should
look something along the lines of what follows, producing three tabs:

<div id="tabs">

 Tab 1
 Tab 2
 Tab 3

 <div id="tab1">
 <p>Tab 1 content...</p>
 <button>Tab 1 Button</button>
 </div>
 <div id="tab2">
 <p>Tab 2 content...</p>
 Tab 2 bold text
 </div>
 <div id="tab3">
 <p>Tab 3 content...</p>
 <p>...and more content</p>
 </div>
</div>

Next, the following JavaScript code instantiates the tabs widget, with the show and hide
effect options passed to the widget constructor.

$(function() {

 $("#tabs").tabs({
 show: {
 effect: "slide",
 direction: "left"
 },
 hide: {

Chapter 10

197

 effect: "drop",
 direction: "right"
 }
 });

});

How it works...
When you view this tabs widget in your browser and click through the tabs, you'll notice how
the content of the current tab slides to the right, while fading out at the same time. Once this
effect has finished execution, the show effect of the now-active tab runs, and in this case,
slides the content in from the left. The two effects complement each other—when combined,
they create an illusion of the new content pushing the old out of the panel.

The two effects we've chosen here are actually very similar. The drop effect is really just the
slide effect with the addition of fading while sliding. The key to their collaboration is the
direction property we've passed to each effect object. We've told the hide effect to
move to the right when it runs. Likewise, we've told the show effect to enter from the left.

Sorting tabs using the sortable interaction
When we implement tabs in a user interface, we might briefly consider the default ordering
of the tabs. Obviously, we want the most relevant tabs accessible to the user in an order that
makes most sense to them. But we seldom get this right in a way that makes everyone happy.
So why not let the user arrange the tabs in a way that they see fit? Let's see if we can recruit
the sortable interaction widget for some help by providing this capability in the tabs widget.

How to do it...
We'll use the following as the sample HTML driving our tabs instance:

<div id="tabs">

 Tab 1
 Tab 2
 Tab 3

 <div id="tab1">
 <p>Tab 1 content...</p>
 </div>
 <div id="tab2">
 <p>Tab 2 content...</p>

Using Tabs

198

 </div>
 <div id="tab3">
 <p>Tab 3 content...</p>
 </div>
</div>

Next, we'll implement the new sortable option in the tabs widget. We'll also need to extend
the widget's behavior to take advantage of this new option.

(function($, undefined) {

$.widget("ab.tabs", $.ui.tabs, {

 options: {
 sortable: false
 },

 _create: function() {

 this._super();

 if (!this.options.sortable) {
 return;
 }

 this.tablist.sortable({
 axis: "x",
 stop: $.proxy(this, "_stopped")
 });

 },

 _destroy: function() {

 if (this.options.sortable) {
 this.tablist.sortable("destroy");
 }

 this._super();

 },

 _stopped: function(e, ui) {
 this.refresh();
 }

});

Chapter 10

199

})(jQuery);

$(function() {

 $("#tabs").tabs({
 sortable: true
 });

});

Now when you drag the tab buttons along the x axis, dropping them will rearrange their order.
For example, dragging the first tab would look something like this:

If we dropped the first tab at the end and activated Tab 2, now the first tab, you should see
something like this:

How it works...
We've added a new option to the tabs widget, sortable, which when true will use the
sortable interaction widget to enable the sortable behavior with the tab buttons. We've
added this option by setting the default sortable value to false in the options object.
This object will be merged with the default tabs options. In the _create() method, the
tabs constructor, we call the original tabs widget constructor as nothing special needs to
happen with the default widget construction. Next, still inside _create(), we check that the
sortable option is true, and if so create the sortable widget. The tablist property we're
using to create the sortable widget with is the ul element that holds our tabs buttons. This is
why we're calling it here, we want its children to be sortable along the x axis.

Using Tabs

200

We're also passing the stop option of the sortable widget a callback function, in this case,
a proxy of the _stopped() method. This is using the $.proxy() utility so that we can
implement _stopped() as though it is a regular method of tabs. Notice in the _stopped()
implementation that this is the widget instance, whereas without a proxy, this would be the
ul element.

Finally, the _destroy() method is overridden here to ensure that the sortable widget is
destroyed. Without doing so, we couldn't reliably destroy and recreate the tabs widget.

There's more...
We can further enhance the user interaction of the tabs widget when the sortable option
is set to true. First, let's modify cursor while the user is dragging the tab so that it uses a
standard move icon. Next, we'll activate the dropped tab. Here is the CSS we'll need for the
modified cursor; we'll keep the previous HTML structure as is:

.ui-tabs .ui-tabs-nav li.ui-tab-move > a {
 cursor: move;
}

And here is the modified JavaScript:

(function($, undefined) {

$.widget("ab.tabs", $.ui.tabs, {

 options: {
 sortable: false
 },

 _create: function() {

 this._super();

 if (!this.options.sortable) {
 return;
 }

 this.tablist.sortable({
 axis: "x",
 start: $.proxy(this, "_started"),

Chapter 10

201

 stop: $.proxy(this, "_stopped")
 });

 },

 _destroy: function() {

 if (this.options.sortable) {
 this.tablist.sortable("destroy");
 }

 this._super();

 },

 _started: function(e, ui) {
 ui.item.addClass("ui-tab-move");
 },

 _stopped: function(e, ui) {

 ui.item.removeClass("ui-tab-move");
 this.refresh();
 this._activate(ui.item.index());

 }

});

})(jQuery);

$(function() {

 $("#tabs").tabs({
 sortable: true
 });

});

Using Tabs

202

Now when you sort these tabs, you'll notice the new cursor is illustrated in the following
screenshot. The ui-tab-move class defines the cursor CSS property, and this class is
added to the li element in the start event handler of the sortable widget. It is subsequently
removed in the stop handler. You'll also notice that the tab is activated when the tab
is dropped. This is done by getting the index of the li element and passing that to the
activate() method.

Setting the active tab using href
The tabs widget allows the developer to programmatically set the active tab. This can be done
by passing a zero-based index value to the active option. This option can be set in the tabs
constructor, which tells the widget which tab to activate by default, or it can be set afterwards,
potentially changing the active tab. Changing the active tab using this option is essentially the
same thing as a user clicking on a tab button to activate the panel. However, we can improve
on this interface by allowing developers using the tabs widget to pass an href value instead
of an index. This way, you don't have to remember the ordering of the tabs—which number
represents which link, and so on.

How to do it...
Let's first set up the HTML used in this demonstration as the foundation of the tabs widget.

<div id="tabs">

 Tab 1
 Tab 2
 Tab 3

 <div id="tab1">
 <p>Tab 1 content...tab 2</
a></p>
 </div>
 <div id="tab2">
 <p>Tab 2 content...tab 3</
a></p>

Chapter 10

203

 </div>
 <div id="tab3">
 <p>Tab 3 content...tab 1</
a></p>
 </div>
</div>

Next is the modified implementation of the tabs widget that enables us to activate the second
tab by passing the string "#tab2" to the active option.

(function($, undefined) {

$.widget("ab.tabs", $.ui.tabs, {

 _findActive: function(index) {
 return this._super(this._getIndex(index));
 },

 _initialActive: function() {

 this.options.active = this._getIndex(this.options.active);
 return this._super();

 }

});

})(jQuery);

$(function() {

 $("#tabs").tabs({
 active: "#tab2"
 });

 $(".tab-link").on("click", function(e) {
 e.preventDefault();
 $("#tabs").tabs("option", "active", $(this).attr("href"
));
 });

});

Using Tabs

204

How it works...
You'll notice that when you look at this tabs widget in the browser, the second tab is activated
by default as we're passing in the string "#tab2". You'll also notice that the content of each
tab panel has a link pointing to another tab.

We're extending the tabs widget so that we can override a couple of tabs methods. The first
method is _findActive(), which in the original implementation expects an integer. We've
changed this to use the _getIndex() method that returns the index based on the href
attribute of the tab button, that is, unless it gets an integer value passed to it, in which case,
it just returns that number. In short, we've changed _findActive() to accept either a zero-
based index number, or an href string.

The next method is _initialActive(), which is called when the tabs widget is first
instantiated. What we're doing here is setting the active option to the appropriate index value
before calling the original implementation of _initialActive(). This is necessary to
support the href string in the constructor as the active option value.

Finally, we're creating our tabs widget using an href string, and we're binding an event
handler to each of the tab-link anchors in the tab panels. Here, we're activating the tab based
solely on the href attribute of the link, so you can see the value of this new href capability
we've introduced.

There's more...
In the preceding example, we're utilizing the href attribute of the tab button links. However,
we're not utilizing the location hash of the browser. In other words, when a tab is activated, the
location hash in the browser URL doesn't change. There are several advantages to supporting
this approach. For one thing, we can use the Back button to navigate through our active tabs.
Another benefit is that our links in the tab content panels no longer need an event handler;
they can just point their href attributes to the tab href.

Here is the modified JavaScript that supports the same functionality as the previous example.
The only difference is that the URL hash will change any time a tab is activated.

Chapter 10

205

(function($, undefined) {

$.widget("ab.tabs", $.ui.tabs, {

 _create: function() {

 this._super();

 this._on(window, {
 hashchange: $.proxy(this, "_hashChange")
 });

 },

 _hashChange: function(e) {

 if (this.active.attr("href") === location.hash) {
 return;
 }

 this._activate(this._getIndex(location.hash));

 },

 _eventHandler: function(e) {

 this._super(e);

 var href = $(e.target).attr("href");

 if (href === location.hash) {
 return;
 }

 if (href.indexOf("#") === 0) {
 location.hash = href;
 }
 else {
 location.hash = "";
 }

 }

Using Tabs

206

});

})(jQuery);

$(function() {
 $("#tabs").tabs();
});

Now when you interact with this tabs widget in the browser, you'll notice that the hash
changes in the URL as you navigate through the tabs. This is done by adding an event handler
to the _create() method, after calling the original implementation of _create(). We're
using the _on() utility method to subscribe to the window's hashchange event. Next, the
_hashChange() method we've added is the handler for this event. First, we check if the URL
hash, stored in the location.hash variable, is already pointing to the active tab. If not, we
activate the tab based on the current URL hash value. This is all we need to support the links
in the tab panel content that point directly to a URL hash. But, when the user clicks directly on
the tab button, there is no change in the hash value. This doesn't help us much because we
cannot track the tab navigation history.

This is why we've implemented a customization of the _eventHandler() method. We first
call the original implementation of the method before we go about handling the URL hash
specifics. If the URL hash is already pointing to the active tab, we have nothing to do here;
otherwise, we update the URL hash.

11
Using Tooltips

In this chapter, we will cover:

 f Changing the tooltip state

 f Using custom markup in tooltips

 f Displaying mouse movement

 f Applying effects to the tooltip display

 f Tooltips for selected text

Introduction
In this chapter, we'll explore the various dimensions of the tooltip widget, used to provide
contextual information to the user. The tooltip widget works well with existing code because
by default, it uses standard HTML attributes for the text of the tooltip. Furthermore, it's easy
to create tooltip instances for the entire user interface with one line of code.

Going beyond the simple use cases, we'll look at the different types of content we can pass
into the widget, and how the content can be generated dynamically. We'll also look at how
the tooltip can aid the development process as a tool, and how developers can manipulate
the available effects for showing and hiding the widget.

Using Tooltips

208

Changing the tooltip state
The visual display of the tooltip widget has a default state. That is, out of the box, the widget
is nicely designed, using elements from the theme framework. We may want to change that,
however, depending on the state of some resource in the application. For example, a button
that is new to the user as a result of a change in permissions might want a tooltip state that
stands out visually, relative to the other tooltips on the page. By the same token, if there is a
broken resource, and the user hovers over one of its components, the tooltip displayed should
take on an error state. Of course, when changing the state of the tooltip, we should keep in
mind that the state should match the context and tone of the actual tooltip. For example,
don't put an error state on a tooltip that reads "everything is good to go!". Let's look at a quick
and easy entry point into tooltip customization. We'll use a standard tooltip option to pass the
state CSS class in.

How to do it...
We'll use the following HTML for our tooltip widgets. What we have here are three buttons,
each with their own states, and their own tooltip instances.

<div class="button-container">
 <button class="tt-default" title="I'm using the default tooltip
state">Default</button>
</div>
<div class="button-container">
 <button class="tt-highlight" title="I'm using the highlight
tooltip state">Highlight</button>
</div>
<div class="button-container">
 <button class="tt-error" title="I'm using the error tooltip
state">Error</button>
</div>

Next, we'll create the tooltip widgets for their respective buttons using the following JavaScript:

$(function() {

 $("button").tooltip();

 $("button.tt-highlight").tooltip("option", {
 tooltipClass: "ui-state-highlight"
 });

 $("button.tt-error").tooltip("option", {
 tooltipClass: "ui-state-error"
 });

});

Chapter 11

209

Hovering over each one of the buttons in the browser shows you the default, highlight, and
error states as shown in the following images:

 f The default state:

 f The highlight state:

 f The error state:

How it works...
For this particular example, we're utilizing the tooltipClass option to pass the state CSS
classes from the theme framework to the widget. First, we simply make each button on the
page a tooltip widget. After this call the tooltip constructor, we have three tooltip instances,
all using the default state. Next, we find the button with the tt-highlight class and pass
the tooltipClass option a value of ui-state-highlight. Finally, we locate the button
with the tt-error class and assign that tooltip widget the ui-state-error class using the
tooltipClass option.

Using Tooltips

210

There's more...
There are a few downsides to the approach we've used previously. For one thing, the user
can't tell that something is wrong till they move their mouse over the element and see that the
tooltip is in an error state. In a more realistic scenario, if there were something wrong with the
button, it would probably have an error state applied to the button itself. So to apply the error
state, we had to invent our own class names and determine at tooltip-creation time which
class to use.

A more robust solution would center around using the actual states from the framework
on the element instead of inventing our own. Furthermore, the tooltip should be intelligent
enough to change its class depending on the state of the element to which it is applied. In
other words, if the button has the ui-state-error class applied to it, it should use this
class as the tooltipClass option. Let's add an inheritState option to the tooltip widget
that'll turn on this behavior.

Here is the modified HTML source:

<div class="button-container">
 <button title="I'm using the default tooltip state">Default</
button>
</div>
<div class="button-container">
 <button class="ui-state-highlight" title="I'm using the highlight
tooltip state">Highlight</button>
</div>
<div class="button-container">
 <button class="ui-state-error" title="I'm using the error tooltip
state">Error</button>
</div>

And here is the definition of the tooltip widget extension with the new option included:

(function($, undefined) {

$.widget("ab.tooltip", $.ui.tooltip, {

 options: {
 inheritState: false
 },

 _create: function() {

 var self = this,
 options = this.options,
 states = [

Chapter 11

211

 "ui-state-highlight",
 "ui-state-error"
];

 if (!options.inheritState || options.tooltipClass) {
 return this._super();
 }

 $.each(states, function(i, v) {

 if (self.element.hasClass(v)) {
 self.options.tooltipClass = v;
 }

 });

 this._super();

 }

});

})(jQuery);

$(function() {

 $("button").tooltip({
 inheritState: true
 });

});

This version of the code should behave identically to the first iteration. The difference, of
course, is that the buttons themselves have a visible state, and we want the tooltip widgets to
pick up on that. We tell it to do so by setting the inheritState option to true.

Using Tooltips

212

Our new option, inheritState, gets added to the default options object set forth by
the original implementation of the tooltip widget. In the _create() method, the widget
constructor, we're checking if the inheritState option is true, or if the tooltipClass
option has already been set. In either case, we return, calling the original implementation.
Otherwise, we check if the element has either of the states in the states array, and if so,
we set that class as the tooltipClass.

Using custom markup in tooltips
We're not limited to using the title attribute to supply basic text strings to the tooltip
content. Sometimes, the content of the tooltip widget warrants formatting. For example,
a title section would have different font styles than that of the main text section. The tooltip
widget allows developers to pass in custom content through the content option. This can
either be a raw string, or a function that returns the content we would like displayed. Let's
look at how to go about using this option in your application.

How to do it...
We'll create two button elements; each have a title attribute, the text of which we'll
use in the tooltip. We're also going to add the name of the button as the tooltip title.

<div class="button-container">
 <button title="Logs the user in by establishing a new
session.">Login</button>
</div>
<div class="button-container">
 <button title="Deactivates the session, and logs the user
out.">Logout</button>
</div>

Next, let's create the basic CSS styles that format our tooltip.

.ui-tooltip-title {
 font-weight: bold;
 font-size: 1.1em;
 margin-bottom: 5px;
}

Finally, we'll create the tooltip widgets using a custom content function to format the
tooltip content.

$(function() {

 $("button").tooltip({
 content: function() {

Chapter 11

213

 var $content = $("<div/>");

 $("<div/>").text($(this).text())
 .addClass("ui-tooltip-title")
 .appendTo($content);

 $("").text($(this).attr("title"))
 .appendTo($content);

 return $content;

 }

 });

});

The tooltip, when we hover over one of the button elements, should look something like the
following screenshot. Notice the formatted title section.

How it works...
The content function we've passed to each tooltip widget wraps the content into a div
element, stored in the $content variable. The purpose is to store the title and the main
text elements inside this div, and that way we simply return the $content variable from
the function. The title div uses the button text, or, its name. This div gets the ui-tooltip-
title class we defined earlier, which simply modifies the font, and adds some space to the
bottom of the element. Next, we add the main content span element, which just uses the
title attribute of the element.

Using Tooltips

214

There's more...
The approach to modifying the tooltip we've just examined is free-form—the function can
return just about anything it wants. Let's look at a more structured approach to modifying the
tooltip content. We'll alter the tooltip widget so that it accepts specific content section options.
To demonstrate this, we'll utilize the Rotten Tomatoes API. The only HTML we'll need is a
simple div element that looks like <div class="titles"></div>. Now let's define the
CSS styles for the titles that we're going to list, as well as the specific tooltip content sections.

.titles {
 margin: 20px;
}

.titles img {
 padding: 10px;
}

.ui-tooltip-header {
 font-weight: bold;
 font-size: 1.4em;
}

.ui-tooltip-body {
 margin: 7px 0 7px 0;
 font-size: 1.2em;
}

.ui-tooltip-footer {
 font-weight: bold;
 border-top: solid 1px;
 padding-top: 7px;
}

Here is the customized tooltip widget declaration which adds the new content options. When
the document loads, we call the Rotten Tomatoes API and display five images in our container
div. Each image is also a tooltip that uses the new specific content options we've added to
the widget.

(function($, undefined) {

$.widget("ab.tooltip", $.ui.tooltip, {

 options: {
 header: null,

Chapter 11

215

 body: null,
 footer: null
 },

 _create: function() {

 this._super();

 var header = this.options.header,
 body = this.options.body,
 footer = this.options.footer;

 if (!header && !body && !footer) {
 return;
 }

 this.options.content = $.proxy(this, "_content");

 },

 _content: function() {

 var header = this.options.header,
 body = this.options.body,
 footer = this.options.footer,
 $content = $("<div/>");

 if (header) {

 $("<div/>").text(header)
 .addClass("ui-tooltip-header")
 .appendTo($content);

 }

 if (body) {

 $("<div/>").text(body)
 .addClass("ui-tooltip-body")
 .appendTo($content);

 }

Using Tooltips

216

 if (footer) {

 $("<div/>").text(footer)
 .addClass("ui-tooltip-footer")
 .appendTo($content);

 }

 return $content;

 }

});

})(jQuery);

$(function() {

 var apikey = "2vnk...", // Your Rotten Tomatoes API key goes here
 apibase = "http://api.rottentomatoes.com/api/public/v1.0";

 $.ajax({
 url: apibase + "/lists/movies/in_theaters.json",
 dataType: "jsonp",
 data: {
 apikey: apikey,
 page_limit: "5",
 },
 success: function(data) {

 $.each(data.movies, function(i, v) {

 var $logo = $("");

 $logo.attr("src", v.posters.thumbnail)
 .appendTo(".titles");

 $logo.tooltip({
 header: v.title,
 body: v.synopsis.substring(0, 150) + "...",
 footer: v.year + " (" + v.mpaa_rating + ")",
 items: "img"
 });

Chapter 11

217

 });

 }

 });

});

Viewing this page in the browser should populate the titles div with five images, and when
you hover the mouse pointer over each one, you should see our custom tooltip content.

Let's start by looking at the API call we're making to the Rotten Tomatoes API when the
document has finished loading. All we're fetching are the first five movies from the in-theaters
catalog. We're then creating an img element and setting the src attribute to the appropriate
thumbnail for the movie. This is how the images you see in the example are rendered. We're
also calling the tooltip constructor on each of the images, passing to it the new options
we've defined. Namely, these are the sections of the tooltip content, the header, body, and
footer. Notice, that we have to tell the tooltip that that this is an img element and it won't
find the tooltip content in the usual places—this is done using the items option.

Looking now at our customizations implemented in the tooltip widget, we can see that the
options are defined by assigning a new option to the options attribute—these get merged
into the default tooltip options object. Next, we have a custom implementation of the _
create() method, which is called when the tooltip is instantiated. The goal here is to check
if any one of the three content sections has been specified, and if not, we have nothing to do
and simply exit. The original version of the _create() method was called using _super(),
and so at this point, the widget has already been created. Our last job in the constructor is to
assign the content option a function that generates the tooltip content. In this case, it is a
proxy to the _content() method.

Using Tooltips

218

The _content() method wraps it's returned HTML in a div element, this is stored in the
$content variable. We then add the specified content to the div element as specified in the
options. Each content section is a div element, and they're given a corresponding CSS class
to control the appearance—ui-tooltip-header, ui-tooltip-body, and ui-tooltip-
footer.

Displaying the mouse movement
We can use the tooltip widget as an aid during development, and not necessarily a widget that
ships with the finished product. For example, we can use the tooltip widget to track the mouse
movements and to display the X and Y coordinates. This could help us diagnose some tricky
mouse behavior as we're piecing together the UI components. We'll look at tracking the mouse
coordinates for specific elements, but bear in mind, the concept is what counts. We can use
this technique to display any number of event properties—we simply discard the call when no
longer needed.

How to do it...
We'll create the required CSS first. These simply position the div elements that we'll want to
track mouse movements on.

.mouse-tracker {
 margin: 20px;
 background-image: none;
 padding: 3px;
}

.mouse-tracker p {
 font-size: 1.2em;
}

.mouse-tracker-page {
 width: 180px;
 height: 170px;
}

.mouse-tracker-relative {
 width: 150px;
 height: 140px;
}

Next comes the HTML itself, two div elements that we're in the midst of designing. We'd like
our mouse tracking utility to show us what happens when the user moves the mouse over
these elements.

Chapter 11

219

<div class="ui-widget-content mouse-tracker mouse-tracker-page">
 <p>Page mouse movement</p>
</div>
<div class="ui-widget-content ui-state-default mouse-tracker mouse-
tracker-relative">
 <p>Element mouse movement</p>
</div>

Last but not least, we'll implement our tracker tool. It's a widget called tracker and it extends
the tooltip widget. We're calling it something else so as to not confuse it with the existing
tooltip widget that we're probably using in our production systems.

(function($, undefined) {

$.widget("ab.tracker", $.ui.tooltip, {

 options: {
 track: true,
 items: ".ui-tracker",
 relative: false
 },

 _create: function() {

 this.element.addClass("ui-tracker");

 this._super();

 this.options.content = $.proxy(this, "_content");

 },

 _content: function() {

 var $content = $("<div/>"),
 relative = this.options.relative,
 xlabel = relative ? "Element X: " : "Page X: ",
 ylabel = relative ? "Element Y: " : "Page Y: ";

 $("<div/>").append($("").text(xlabel))
 .append($("").attr("id", "ui-
tracker-x"))
 .appendTo($content);

 $("<div/>").append($("").text(ylabel))

Using Tooltips

220

 .append($("").attr("id", "ui-
tracker-y"))
 .appendTo($content);

 return $content;

 },

 _mousemove: function(e) {

 var $target = $(e.target).closest(this.options.items),
 offset,
 offsetLeft = 0
 offsetTop = 0;

 if (this.options.relative) {
 offset = $target.offset();
 offsetLeft = offset.left;
 offsetTop = offset.top;
 }

 $("#ui-tracker-x").text(e.pageX - offsetLeft);
 $("#ui-tracker-y").text(e.pageY - offsetTop);

 },

 open: function(e) {

 this._super(e);

 var $target = $(e.target).closest(this.options.items);

 this._on($target, {
 mousemove: $.proxy(this, "_mousemove")
 });

 }

});

})(jQuery);

$(function() {

Chapter 11

221

 $(".mouse-tracker-page").tracker();
 $(".mouse-tracker-relative").tracker({
 relative: true
 });

});

Looking at these two div elements in the browser, you should see something similar to
the following:

How it works...
The tracker widget we've just defined extends the tooltip widget by filling in a couple of options
with new defaults as well as by providing a new option. The track tooltip option tells the
widget to position itself relative to the mouse movement. Since we're implementing a mouse
coordinate tracker, it makes sense to turn this on by default. The next tooltip option value we
want changed is the items option. This tells the tooltip which target elements make valid
tooltips, and in our case, we would like it to be the class given to our tracker widget—ui-
tracker. The relative option is something new we're adding to the widget. This tells the
tracker, when true, to display the coordinates relative to the element in question, instead of
relative to the page, which is the default.

Using Tooltips

222

Next, we're extending the _create() method of the tooltip widget, which is the constructor.
The first thing we do before calling the original implementation of the constructor is add the
track widget class to the element. This is necessary in order for the element to be considered
a valid tracker— see the items option. Once we've finished with the _super() method, we
assign the content option a callback, which is a proxy to the _callback() method of this
widget. The _callback() method simply returns the template content we want displayed in
the tooltip. This includes the X and Y coordinates of the mouse event. We have to figure out if
the label should be a page, or if it should be an element, based on the relative option.

We're overriding the open() method to set up our mousemove event handling. Typically,
this would be done in the _create() method. But there is no need to track the mouse
movement when the tooltip isn't open and the callbacks firing would be a waste of valuable
CPU cycles. We use the _on() utility method to bind a proxy handler to the _mousemove()
method of this widget. The _mousemove() method is responsible for updating the content
of the tooltip. Specifically, it sets the text value of the #ui-tracker-x and #ui-tracker-y
labels generated by our _content() method. The values of the X and Y coordinates will be
based either on the pageX and pageX properties of the event alone, or in conjunction with
the offset values, depending on the relative option.

The tracker widget is instantiated in the same way as the tooltip widget. When we no
longer need these values displayed, as in, when we're ready to go live, these widget calls
would be removed.

Applying effects to the tooltip display
The tooltip widget ships with options to control the display, and hide the actions of the
element. These are the show and hide options, respectfully, and each accepts an object
that specifies animation options. Since the show and hide options control different aspects
of the widget display, we have the freedom to use different settings, such as delay for the
show and hide actions. Or, we could be drastic about it and use two completely different
effects for the animations. Let's explore the various show and hide options available to
us in the tooltip widget.

How to do it...
First, let's create some button elements that we'll use to display the tooltips.

<div class="button-container">
 <button class="drop" title="I'm using the drop effect">Drop</
button>
</div>
<div class="button-container">
 <button class="slide" title="I'm using the slide effect">Slide</
button>
</div>

Chapter 11

223

<div class="button-container">
 <button class="explode" title="I'm using the clip/explode
effect">Explode</button>
</div>

Next, we'll instantiate a tooltip widget for each of the buttons, passing in our custom show and
hide animation options.

$(function() {

 $("button").tooltip();

 $("button.drop").tooltip("option", {
 show: {
 effect: "drop",
 delay: 150,
 duration: 450,
 direction: "up",
 },
 hide: {
 effect: "drop",
 delay: 100,
 duration: 200,
 direction: "down"
 }
 });

 $("button.slide").tooltip("option", {
 show: {
 effect: "slide",
 delay: 250,
 duration: 350,
 direction: "left"
 },
 hide: {
 effect: "slide",
 delay: 150,
 duration: 350,
 direction: "right",
 }
 });

 $("button.explode").tooltip("option", {
 show: {
 effect: "clip",

Using Tooltips

224

 delay: 150,
 duration: 450
 },
 hide: {
 effect: "explode",
 delay: 200,
 duration: 1000
 }
 });

});

Look at the three buttons in your web browser and move the mouse over each one. You'll
notice they each display and hide their tooltips in a unique fashion. For example, here is the
last tooltip, mid-explosion as it's being hidden.

How it works...
Some effects accept options that others don't, such as direction. The button.drop tooltip
widget is using the drop effect for both the show and hide actions. However, show is
specifying the direction as up while the hide action specifies the direction as down.
This means that the tooltip will enter the page in a upward motion, and will exit the page in a
downward motion. The same concept applies to the button.slide widget where we're using
the slide effect. The tooltip will slide in from the left, and will slide out to the right.

The button.explode tooltip is using two different effect types—show uses the clip effect
while hide uses the explode effect. In general, mixing effects like this works fine, but often
involves some trial and error time in finding two effect classes that complement one another
as opposed to looking out of place. Lastly, we're applying the delay and duration options
to the show and hide options for the tooltips we've created. The delay option postpones the
actual display of the tooltip while the duration controls the runtime of the animation.

Chapter 11

225

Tooltips for selected text
Most applications use terms that the user is encountering for the first time. And so, it's helpful
to provide a glossary of sorts so they may look up the meaning of a new term. However,
deciding on where to put this glossary inside the user interface is a big deal. For example,
if I'm performing some task, I don't want to drop it to go look something up. This is where
tooltips help—the user gets a contextual explanation of something.

Out of the box, tooltips work great when applied to a specific element on the page, such as a
button or a progress bar. But what about paragraphs of text? Let's look at how we could allow
the user to select some text, and display some contextual definition for the selection using the
tooltip widget.

How to do it...
We'll design a new dictionary widget, based on the tooltip widget, used to work with text. This
widget will handle text selection by displaying a tooltip with the appropriate tip if one is found.
First, here are the paragraphs we'll use, taken from the preceding section.

<p>
 Most applications use terms that the user is encountering for the
first
 time. And so, it's helpful to provide a glossary of sorts so they
may
 lookup the meaning of a new term. However, deciding on where to
put this
 glossary inside the user interface is a big deal. For example, if
I'm
 performing some task, I don't want to drop it to go look something
up.
 This is where tooltips help – the user gets a contextual
explanation
 of something.
</p>

<p>
 Out of the box, tooltips work great when applied to a specific
element on
 the page, such as a button or a progressbar. But what about
paragraphs of
 text? Let's look at how we could allow the user to select some
text, and
 display some contextual definition for the selection using the
tooltip
 widget.
</p>

Using Tooltips

226

And here is the implementation of the dictionary widget, and how to apply it to our two
paragraphs of text.

(function($, undefined) {

$.widget("ab.dictionary", {

 options: {
 terms: []
 },

 ttPos: $.ui.tooltip.prototype.options.position,

 _create: function() {

 this._super();

 this._on({
 mouseup: this._tip,
 mouseenter: this._tip
 });

 },

 _destroy: function() {
 this._super();
 this._destroyTooltip();
 },

 _tip: function(e) {

 var text = this._selectedText(),
 term = this._selectedTerm(text);

 if (text === undefined || term === undefined) {
 this._destroyTooltip();
 return;
 }

 if (this.element.attr("title") !== term.tip) {
 this._destroyTooltip();
 }

Chapter 11

227

 this._createTooltip(e, term);

 },

 _selectedText: function() {

 var selection, range, fragment;

 selection = window.getSelection();

 if (selection.type !== "Range") {
 return;
 }

 range = selection.getRangeAt(0),
 fragment = $(range.cloneContents());

 return $.trim(fragment.text().toLowerCase());

 },

 _selectedTerm: function(text) {

 function isTerm(v) {
 if (v.term === text || v.term + "s" === text) {
 return v;
 }
 }

 return $.map(this.options.terms, isTerm)[0];

 },

 _createTooltip: function(e, term) {

 if (this.element.is(":ui-tooltip")) {
 return;
 }

 var pos = $.extend(this.ttPos, { of: e });

 this.element.attr("title", term.tip)
 .tooltip({ position: pos })
 .tooltip("open");

Using Tooltips

228

 },

 _destroyTooltip: function() {

 if (!this.element.is(":ui-tooltip")) {
 return;
 }

 this.element.tooltip("destroy")
 .attr("title", "");

 }

});

})(jQuery);

$(function() {

 var dict = [
 {
 term: "tooltip",
 tip: "A contextual widget providing information to the
user"
 },
 {
 term: "progressbar",
 tip: "A widget illustrating the progress of some task"
 },
 {
 term: "element",
 tip: "An HTML element on the page"
 },
 {
 term: "user interface",
 tip: "Components on the screen the user interacts with"
 }
];

 $("p").dictionary({
 terms: dict
 });

});

Chapter 11

229

If you were to open this page in the browser and select "tooltips" using the mouse pointer, you
should get a tooltip as is shown in the following screenshot:

How it works...
Our new dictionary widget adds the ability for users to select paragraph text and get
contextual definitions for their selection if one exists. The widget accepts a terms option,
which is just an array of terms and tips. This is the dictionary data used to perform lookups
when some text is selected. The ttPos attribute is a reference to the default tooltip
position settings object. We keep this handy because we need to use it each time the
user selects text and the tooltip widget is displayed. The _create() method, called when
the widget is instantiated, sets up the event handling. In particular, we're interested in the
mouseup and mouseenter events, both of which display the tooltip widget depending on a
number of things. The _destroy() method makes sure that the tooltip widget we're using is
also destroyed by calling _destroyTooltip().

The _tip() method is like the main program, so to speak, of this widget as it ties together
all the methods that have specific responsibilities. We get the selected text using the _
selectedText() method. We get the selected term from the dictionary using the selected
text. Now, either of these values may be undefined—the user may not have selected anything
when _tip() is called, or the user has selected text that doesn't exist in the dictionary. If
either case is true, we have to ensure that the tooltip is destroyed. If, on the other hand, a
term is found, we create and display the tooltip using the _createTooltip() method.

The _createTooltip() method accepts an event object as well as a term object. The
event object is used to position the tooltip when it is opened. Recall that we stored the
default position options of the tooltip in the ttPos attribute. We create a new position
object by extending the property with the event. This means that we can position the tooltip
relative to where the user selected their text. Now that we've set the position on the tooltip,
we just have to set the title attribute on the paragraph to the text we want displayed inside
the tooltip. This is the tip attribute of the selected term passed into the method. The _
destroyTooltip() takes care of both destroying the tooltip widget, but only if this element
actually is a tooltip, and restoring the title attribute.

Using Tooltips

230

One final note, you'll notice that we're passing in simple terms strings to dictionary instances.
But we're able to find several variants of the term in a given user selection. For example,
"tooltips" will find the term "tooltip" because we're comparing with an added "s" in addition to
the original string. We're also normalizing the white space on either side of the selection in
addition to case insensitivity.

There's more...
The downside to our approach with the dictionary widget, where we make the user select the
text in order to get a contextual definition for the word, is that the user doesn't know which
words our dictionary defines. For example, the two paragraphs in the example define a grand
total of four terms. For this to work, the user has to play a guessing game as to which text
is actually defined. Further, selecting paragraph text is intuitive, but only if you frequently
perform this action in the applications you use—most users do not.

Let's enhance our dictionary widget by introducing a new mode – hover. When this mode
is true, we'll actually manipulate the paragraph text so that the terms defined within the
dictionary stand out. The terms will look like links, and the tooltips containing the definition
will behave like your typical tooltip. First, let's add this simple CSS rule that we'll apply to each
term within the paragraph.

.ui-dictionary-term {
 text-decoration: underline;
 cursor: help;
}

We'll keep the same two paragraphs used previously, and the dictionary will be instantiated
using the new mode option and we'll also modify the widget definition to make use of this new
option. Here is the new JavaScript code:

(function($, undefined) {

$.widget("ab.dictionary", {

 options: {
 terms: [],
 mode: "select"
 },

 ttPos: $.ui.tooltip.prototype.options.position,

 _create: function() {

 this._super();

Chapter 11

231

 if (this.options.mode === "select") {

 this._on({
 mouseup: this._tip,
 mouseenter: this._tip
 });

 }
 else if (this.options.mode === "hover") {

 this._formatTerms();
 this._createTooltip();

 }

 },

 _destroy: function() {

 this._super();
 this._destroyTooltip();

 if (this.options.mode === "hover") {
 this._unformatTerms();
 }

 },

 _tip: function(e) {

 var text = this._selectedText(),
 term = this._selectedTerm(text);

 if (text === undefined || term === undefined) {
 this._destroyTooltip();
 return;
 }

 if (this.element.attr("title") !== term.tip) {
 this._destroyTooltip();
 }

 this._createTooltip(e, term);

Using Tooltips

232

 },

 _selectedText: function() {

 var selection, range, fragement;

 selection = window.getSelection();

 if (selection.type !== "Range") {
 return;
 }

 range = selection.getRangeAt(0),
 fragment = $(range.cloneContents());

 return $.trim(fragment.text().toLowerCase());

 },

 _selectedTerm: function(text) {

 function isTerm(v) {
 if (v.term === text || v.term + "s" === text) {
 return v;
 }
 }

 return $.map(this.options.terms, isTerm)[0];

 },

 _createTooltip: function(e, term) {

 if (this.options.mode === "hover") {
 this.element.find(".ui-dictionary-term").tooltip();
 return;
 }

 if (this.element.is(":ui-tooltip")) {
 return;
 }

 var pos = $.extend(this.ttPos, { of: e });

Chapter 11

233

 this.element.attr("title", term.tip)
 .tooltip({ position: pos })
 .tooltip("open");

 },

 _destroyTooltip: function() {

 if(this.options.mode === "hover") {
 this.element.find(".ui-dictionary-term")
 .tooltip("destroy");
 return;
 }

 if (!this.element.is(":ui-tooltip")) {
 return;
 }

 this.element.tooltip("destroy")
 .attr("title", "");

 },

 _formatTerms: function() {

 function getTerm(v) {
 return v.term;
 }

 var text = this.element.html(),
 terms = $.map(this.options.terms, getTerm);

 $.each(this.options.terms, function(i, v) {

 var t = v.term,
 ex = new RegExp("(" + t + "s|" + t + ")", "gi"),
 termClass = "ui-dictionary-term",
 formatted = "<span " +
 "class='" + termClass + "'" +
 "title='" + v.tip + "'" +
 ">$1";

 text = text.replace(ex, formatted);

 });

Using Tooltips

234

 this.element.html(text);

 },

 _unformatTerms: function() {

 var $terms = this.element.find(".ui-dictionary-term");

 $terms.each(function(i, v) {
 $(v).replaceWith($(v).text());
 });

 }

});

})(jQuery);

$(function() {

 var dict = [
 {
 term: "tooltip",
 tip: "A contextual widget providing information to the
user"
 },
 {
 term: "progressbar",
 tip: "A widget illustrating the progress of some task"
 },
 {
 term: "element",
 tip: "An HTML element on the page"
 },
 {
 term: "user interface",
 tip: "Components on the screen the user interacts with"
 }
]

 $("p").dictionary({
 terms: dict,
 mode: "hover"
 });

});

Chapter 11

235

Now, when you look at the two paragraphs in the browser, you'll notice that the terms we have
defined in the dictionary data are underlined. So when the user hovers their mouse pointer
over the term, they get the help cursor icon, along with the tooltip.

The new mode option we've introduced to the dictionary widget accepts a string value of
either select or hover—it defaults to select, which is the behavior we had originally
implemented in this example. In the widget constructor, the _create() method, we're
checking the mode value. If we're in the hover mode, we call the _formatTerms()
method which changes the visual appearance of the terms inside the paragraph. Next, we
call _createTooltip(), the same method used in the original implementation except that
it too is now mode-aware. The _formatTerms() stores the text of the given element and
then iterates through the dictionary terms. For each term, it builds a regular expression and
replaces any found terms with a span element used to create the tooltips.

12
Widgets and More!

In this chapter, we will cover the following recipes:

 f Accordions to tabs, and back again

 f Building a custom widget from scratch

 f Building an observer widget

 f Using widgets with Backbone applications

Introduction
Until now, each chapter in this book has focused on working with a specific widget that ships
with jQuery UI. In this chapter, we're more interested in the grand scheme of things. After all,
you're building an application, and not a demonstration. So, it's important that developers
using jQuery UI be conscious not only about how each individual widget works on their own,
but also about how they behave in their environment, and how they interact with other widgets
and frameworks.

We'll also address the nuts-and-bolts of the framework in this chapter by building a widget
from the ground up, with the help of the widget factory. With the generic widget machinery at
your disposal, you could write a handful of widgets that have nothing to do with the default
widgets. Although these custom widgets don't inherit much functionality, they behave like
jQuery UI widgets, and that alone is worth the effort—cementing a layer of consistency into
your application.

Widgets and More!

238

Accordions to tabs, and back again
Both the accordion and the tabs widgets are containers. That is, their typical use inside
the context of an application is to organize subcomponents. These subcomponents
might be other widgets, or any other HTML element for that matter. So, both widgets fit
the generic description of a container, that is, a widget with different sections. There are
obviously subtleties to that description; for example, accordions don't support remote Ajax
content. Also, the way users traverse the sections are quite different. Yet, they're essentially
interchangeable. Why not introduce the ability to switch between the two widgets, especially
during run time where the users can set their own preference and toggle between the two
containers? It turns out that we can implement something like this. Let's look at how we would
go about doing this. We need a bidirectional conversion between the two widgets. That way,
the tabs widget can be transformed into an accordion widget, and vice-versa.

How to do it...
To implement the kind of transformation between two different widgets we're talking about
here, we'll have to extend both the accordion and the tabs widget. We'll add a new method to
each of the widgets that converts the widget to its counterpart. Here is the HTML structure
we'll need to make this example happen:

<button class="toggle">Toggle</button>

<div id="accordion">
 <h3>Section 1</h3>
 <div>
 <p>Section 1 content...</p>
 </div>
 <h3>Section 2</h3>
 <div>
 <p>Section 2 content...</p>
 </div>
 <h3>Section 3</h3>
 <div>
 <p>Section 3 content...</p>
 </div>
</div>

<button class="toggle">Toggle</button>

<div id="tabs">

 Section 1

Chapter 12

239

 Section 2
 Section 3

 <div id="section1">
 <p>Section 1 content...</p>
 </div>
 <div id="section2">
 <p>Section 2 content...</p>
 </div>
 <div id="section3">
 <p>Section 3 content...</p>
 </div>
</div>

Here, we have two toggle buttons, an accordion div and a tabs div. The toggle buttons
will morph their corresponding container widget, into another widget type. Here is the
JavaScript code:

(function($, undefined) {

$.widget("ab.accordion", $.ui.accordion, {

 tabs: function() {

 this.destroy();

 var self = this,
 oldHeaders = this.headers,
 newHeaders = $("");

 oldHeaders.each(function(i, v) {

 var id = self.namespace + "-tabs-" + self.uuid + "-" + i,
 header = $("").appendTo(newHeaders);

 $("<a/>").text($(v).text())
 .attr("href", "#" + id)
 .appendTo(header);

 oldHeaders.next().eq(i).attr("id", id);

 });

 newHeaders.prependTo(this.element);

Widgets and More!

240

 this.headers.remove();
 return this.element.tabs();

 }

});

$.widget("ab.tabs", $.ui.tabs, {

 accordion: function() {

 this.destroy();

 var self = this;

 this.tabs.each(function(i, v) {

 var $link = $(v).find("a"),
 id = $link.attr("href"),
 text = $link.text();

 $("<h3/>").text(text)
 .insertBefore(id);

 });

 this.tablist.remove();
 return this.element.accordion();

 },

});

})(jQuery);

$(function() {

 $("button.toggle").button().on("click", function(e) {

 var $widget = $(this).next();

 if ($widget.is(":ab-accordion")) {
 $widget.accordion("tabs");

Chapter 12

241

 }
 else if ($widget.is(":ab-tabs")) {
 $widget.tabs("accordion");
 }

 });

 $("#accordion").accordion();
 $("#tabs").tabs();

});

How it works...
When the page first loads and all the DOM elements are ready, we create the toggle button
widgets, an accordion widget, and a tabs widget. This is illustrated in the following screenshot:

Widgets and More!

242

Now, clicking on the top toggle button will transform the accordion widget into a tabs widget.
Also, the second toggle button will transform the tabs widget into an accordion. Here is the
result of clicking on each of the toggle buttons once:

The toggle buttons work by using jQuery's next()function to grab the next widget, either
#accordion or #tabs, depending on the button clicked. This is then stored in the $widget
variable because we access it several times. Firstly, we check if the widget is an accordion,
and if so, we call the tabs() method on the accordion. Likewise, if $widget is tabs, we call
the accordion() method to transform it. Notice that we're using the built-in widget selector
that the widget factory creates for each widget in order to determine what kind of widget the
element is. Also, notice that the namespace is ab, not ui, which is the recommended practice
when writing your own widgets, or customizing existing widgets, as is the case here. Here, I've
chosen my initials as the namespace. In practice, this would be a standard convention that
somehow relates to the application.

Chapter 12

243

Let's now turn our attention to the tabs() method we've added to the accordion widget.
The essential job of this new method is to destroy the accordion widget, manipulate the DOM
elements so as to take on a form that the tabs widget will recognize, and then to instantiate
the tabs widget. So, this is what we do, we call the destroy() method first. Notice, however,
that we still have access to some of the attributes of the accordion widget, such as headers.
Destroying a widget is mainly concerned with removing any adornments introduced into the
DOM as a result of creating the widget in the first place, in addition to removing the event
handlers. It doesn't, at the JavaScript level, care much about destroying the widget object that
we're working with here.

At this point, we have the oldHeaders variable, which points to the original accordion's h3
elements. Next, we have newHeaders, which is an empty ul element. The newHeaders
element is the starting point for the new elements the tab widget expects to find. Next, we
have to build the li elements that point to the content panels of the tabs. For each header,
we add a link to the newHeaders ul. But, we also have to update the panel ID with an
id that the header links to. We first build an ID string using the position of the tab as well
as the uuid of the widget itself. The uuid isn't strictly necessary; however, it's a good idea
nonetheless to ensure unique tab IDs.

Lastly, we add the new headers to the element, and remove the old headers. At this point, we
have enough to instantiate a tabs widget. And that's just what we do. Notice that we return the
newly-created object, so that if it is referenced elsewhere in the code, it can be replaced by
this method, for example, myTabs = myAccordion.accordion("tabs").

The accordion() method we've added to the tabs widget follows the same principles
applied in the tabs() method described above—we want to destroy the widget, manipulate
the DOM, and create the accordion widget. To make this happen, we need to insert the h3
header element before the corresponding content panel. We then remove the tablist
element, and the tabs ul, followed by a call to instantiate and return the accordion widget.

Building a custom widget from scratch
The most powerful aspect of jQuery UI isn't the prebuilt widgets that ship with it, but rather,
the machinery used to build those widgets. Each widget shares a common infrastructure
called the widget factory, and this is exposed to developers using the framework. The
widget factory provides a means for developers to define their own widgets. We've already
glimpsed the widget factory in action throughout this book. We've been using it to extend the
capabilities of any given widget. The focus of this section takes on a different perspective of
the widget factory. That is, how can we use it to build our own widgets from the ground up?

Widgets and More!

244

Well, we don't want to start with nothing, as that would defeat the whole purpose of the widget
factory. Instead, the aim when building any widget is to utilize the generic capabilities that the
base widget class makes available. In addition, there are some basic design principles that
developers should try to stick with when they're creating widgets. For example, your widget
should perform clean up when destroyed, removing attributes, event handlers, and essentially
leaving the element as you found it. Widgets should also provide a simple API, and it should
be clear to the developers using your widget what it does, and more importantly, what it does
not do. Let's touch on some principles to keep in mind before you start, and while designing
your widget:

 f Keep it simple: With the latest version of jQuery UI, a number of the standard widgets
have undergone major refactoring work in an effort to simplify their interfaces.
Borrow from this lesson when designing your widgets and keep their responsibilities
to a minimum. It can be tempting, during the implementation phase of the widget,
to decide that you need to add another method to the API, perhaps several. Think
long and hard before doing this, because making the API larger generally leads to a
widget that is difficult to maintain and keep stable. And that is the whole idea behind
widgets, a small modular component that is reliable, and can be used in a variety of
contexts without blowing up. With that said, a widget that doesn't meet the needs of
the application isn't of any value either.

 f Design for extensibility: Building on the keep it simple principle is that of
extensibility. Again, as we've seen throughout this book, extensibility is often key in
giving the widget extra capabilities the application needs to do its job. These can be
simple customizations, or a complete re-write of a method. Regardless, assume that
your widget will be modified, and that it will have observers listening for events. In
other words, a good widget will provide a reasonable level of granularity with regards
to how functionality is distributed among the methods that realize it. Each method
is an entry point for specialization, and so the potential entry points should be a
conscious concern. Events triggered by the widget communicate the state of the
widget to the outside world. So when the state of your widget changes, be sure to let
everyone else know about it.

How to do it...
Enough talk already—now, let's build a checklist widget. It really is as simple as it sounds.
We'll base the widget on a ul element, which will transform each li element into a checklist
item. The checklist won't just sit there by itself though; we'll add a few external components
to interact with our widget. We'll want a button that adds a new checklist item, a button
that removes an item, and a progressbar for tracking the progress of our list. The main user
interaction with the widget itself is centered on checking and unchecking items.

Here is the HTML we'll use in this example:

<div class="container">
 <button id="add">Add</button>

Chapter 12

245

 <button id="remove">Remove</button>
</div>
<div class="container">
 <ul id="checklist">
 Write some code
 Deploy some code
 Fix some code
 Write some new code

</div>
<div class="container">
 <div id="progressbar"></div>
</div>

Next, we'll add the CSS required by our checklist widget.

.ui-checklist {
 list-style-type: none;
 padding: 0.2em;
}

.ui-checklist li {
 padding: 0.4em;
 border: 1px solid transparent;
 cursor: pointer;
}

.ui-checklist li a {
 text-decoration: none;
 outline: none;
}

.ui-checklist-checked {
 text-decoration: line-through;
}

Finally, we'll add our widget definition using the following JavaScript code. This code also
creates the two button widgets and the progressbar widget used in this example.

(function($, undefined) {

$.widget("ab.checklist", {

 options: {
 items: "> li",
 widgetClasses: [

Widgets and More!

246

 "ui-checklist",
 "ui-widget",
 "ui-widget-content",
 "ui-corner-all"
],
 itemClasses: [
 "ui-checklist-item",
 "ui-corner-all"
],
 checkedClass: "ui-checklist-checked"
 },

 _getCreateEventData: function() {

 var items = this.items,
 checkedClass = this.options.checkedClass;

 return {
 items: items.length,
 checked: items.filter("." + checkedClass).length
 }

 },

 _create: function() {

 this._super();

 var classes = this.options.widgetClasses.join(" ");

 this.element.addClass(classes);

 this._on({
 "click .ui-checklist-item": this._click,
 });

 this.refresh();

 },

 _destroy: function() {

 this._super();

Chapter 12

247

 var widgetClasses = this.options.widgetClasses.join(" "),
 itemClasses = this.options.itemClasses.join(" "),
 checkedClass = this.options.checkedClass;

 this.element.removeClass(widgetClasses);

 this.items.removeClass(itemClasses)
 .removeClass(checkedClass)
 .removeAttr("aria-checked");

 },

 _click: function(e) {

 e.preventDefault();
 this.check(this.items.index($(e.currentTarget)));

 },

 refresh: function() {

 var trigger = true,
 items,
 newItems;

 if (this.items === undefined) {
 trigger = false;
 this.items = $();
 }

 items = this.element.find(this.options.items)
 newItems = items.not(this.items);

 items.addClass(this.options.itemClasses.join(" "));

 this._hoverable(newItems);
 this._focusable(newItems);

 this.items = items;

 if (trigger) {
 this._trigger("refreshed",
 null,
 this._getCreateEventData());

Widgets and More!

248

 }

 },

 check: function(index) {

 var $item = this.items.eq(index),
 checked;

 if (!$item.length) {
 return;
 }

 checked = $item.attr("aria-checked") === "true" ?
 "false" : "true";

 $item.toggleClass(this.options.checkedClass)
 .attr("aria-checked", checked);

 this._trigger("checked", null, this._getCreateEventData());

 }

});

})(jQuery);

$(function() {

 $("#add").button({
 icons: {
 primary: "ui-icon-plus"
 },
 text: false
 });

 $("#add").on("click", function(e) {

 var $checklist = $("#checklist"),
 $item = $("").appendTo(checklist);

 $("<a/>").attr("href", "#")
 .text("Write some documentation")
 .appendTo($item);

Chapter 12

249

 $checklist.checklist("refresh");

 });

 $("#remove").button({
 icons: {
 primary: "ui-icon-minus"
 },
 text: false
 });

 $("#remove").on("click", function(e) {

 var $checklist = $("#checklist"),
 $item = $checklist.find(".ui-checklist-item:last");

 $item.remove();
 $checklist.checklist("refresh");

 });

 $("#progressbar").progressbar();

 $("#checklist").checklist({
 create: function(e, ui) {
 $("#progressbar").progressbar("option", {
 max: ui.items,
 value: ui.checked
 });
 },
 refreshed: function(e, ui) {
 $("#progressbar").progressbar("option", {
 max: ui.items,
 value: ui.checked
 });
 },
 checked: function(e, ui) {
 $("#progressbar").progressbar("value", ui.checked);
 }
 });

});

Widgets and More!

250

When you first load the page, the checklist widget, along with the other components on the
page, should look something like this:

You can see that these are the default checklist items as specified in the HTML structure.
The hover state works as expected, but the progressbar is at 0. This is because the checklist
doesn't have any selected items. Let's check some items off, and add some more.

You can see that the progress bar is updated each time an item is added or removed from the
checklist, as well as when an individual item is checked or unchecked.

Chapter 12

251

How it works...
Let's first discuss the HTML structure of the checklist widget along with the new CSS required
to display it. We'll then divide the definition and instantiation of the widget into sections and
conquer those. The HTML used in this example is divided into three main container div
elements. The first element holds our add and remove item buttons. The second one is for the
checklist widget, and the last one is for the progressbar. That is the general layout.

The most important aspect of the HTML structure is the #container element, which is the
foundation of our checklist widget. Each item is stored inside an li element. Notice that the
text of the item is wrapped in an a element as well. This makes dealing with focusing the
individual items, when the user is tabbing through the page elements, much simpler to deal
with. The main styles of the checklist are controlled by the ui-checklist class. This class
gets applied to the element when the widget is first created, and it performs some standard
style manipulations for lists, like removing the bulleted images. Another thing we need to
handle is the border spacing, which becomes relevant when the user hovers over an item, and
ui-state-hover is added and removed. The a elements, wrapping the item text, don't need
any text decoration since we're not using them as standard links. Finally, the ui-checklist-
checked class is relevant to the state of an individual checklist item and visually marks the
item as checked. It also serves as a query helper when we need to collect all checked items.

Let's now turn our attention to the widget definition, and how we're instantiating and using it.

 f The options: The first thing our widget defines are its options, each with a default
value. Always make sure that any option you add to a widget has a default value, as
we can never rely on one being supplied during the time of creation. The options we
define here for our checklist widget are fairly simple, and will rarely be changed by the
developer. For example, the items we look up will generally always be li elements.
And, the classes we've defined here, that get applied to the widget itself, probably will
never change. However, they need to be declared somewhere, and so we can hard
code it, or put them somewhere the developer has access to. Think of options as
attributes, or properties of the widget object.

 f The private methods: By convention, the private methods, or methods that don't
make up part of the API visible to the user, are prefixed with an underscore. Our first
private method is the _getCreateEventData() method. This is called internally by
the base widget class when the create event for the widget is triggered. This method
is a hook for allowing us to supply custom data to the create event handlers. All we're
doing here is passing an object that has the number of items stored in the items
attribute, and the number of checked items stored in the checked attribute.

Widgets and More!

252

 f The create method: The _create() method is probably the most common method
for any widget, since it's called by the widget factory as the widgets constructor.
We're using the _super() utility method to call the base widget constructor for us,
which performs some boilerplate initialization work for us. Next, we apply the relevant
widget CSS classes to the element using the widgetClasses option. Next, we use
the _on() method to setup an event handler for the click event. Notice that we're
passing in a delegate selector after the event name.ui-checklist-item. The
reason we're doing this is because items can be added, and items can be removed
from the checklist, and so it makes sense to use this approach rather than manually
managing the click events for each item.

 f The destroy method: The _destroy() method is essential, as previously
mentioned, to performing clean up tasks. We use _super() here to call the base
widget _destroy() method which will clean up any event handlers we've created
using _on(). Then, we just need to remove any classes and attributes that we've
added throughout the lifespan of the widget. The last of the private methods is the
_click() method, the even handler bound to the click event when the widget was
first created. The job of this method is to change the state of the clicked item, and
we do this by calling the check() method, part of the API exposed to developers.
We also want to prevent the default action of the link clicks here, because they have
the potential to reload the page.

 f The API: In the spirit of keeping our widget simple, the exposed API consists of
only two methods. The first one is the refresh() method, which is responsible
for locating the items that make up our checklist. These are stored in the items
attribute of the widget object, which is an example of something that isn't exposed
through the API. The items attribute is only used internally; however, if a developer
were to extend our widget, their custom methods would be accessible, and perhaps
even useful. The refresh() method changes the state of the widget when new
items are found, and this is why it triggers the refreshed event. However, there is a
corner case during which we don't want to trigger this event, and that is when the
widget is being instantiated for the first time. This is tracked in the trigger variable
(if we haven't stored any items yet, then it's safe to assume that we're creating,
and not refreshing it). The reason we don't want to collide with the create event is
that this is very misleading for developers using the widget. We're also using the
_hoverable(), and _focusable() methods on each newly-found item. This is a
standard widget pattern for items within a widget that the user interacts with.

 f The check method: The check() method is the other half of the checklist API, and
it too changes the state of the widget. It fires a changed event, which includes data
about the item count and the checked count, same as the created event data. You'll
notice that this method ensures the handling of the appropriate aria attributes, as
do the standard jQuery UI widgets. The aria standard promotes accessibility, which
is why the jQuery UI framework uses it, and our widget shouldn't be any different.
Finally, it is the job of this method to toggle the class of this item, using the value
stored in the checkedClass option.

Chapter 12

253

 f The main application: When the page loads, the first thing we do is create our two
button widgets: #add and #remove. The #add button, when clicked, adds a new
item DOM element to the checklist. It then uses the refresh() method to update
the state of the widget, as well as trigger any events. Likewise, the #remove button
removes a DOM element, and calls the refresh() method, triggering any state
change behavior. The progressbar widget is instantiated without any options, as it
knows nothing about our checklist widget.

Lastly, our checklist widget is created with three options. These are all event handlers, and they
all share the same responsibility—update the #progressbar widget. For example, the widget is
first created, and the progressbar is updated with the items found in the DOM (nothing has been
checked yet). The refreshed event is triggered when new items are added or removed from
the list; we want to update the progressbar here too. The checked event handler fires anytime
the user checks or unchecks an item, and here, we're only interested in updating the value for
the progressbar since the total number of items is the same.

Building an observer widget
The typical approach to dealing with events triggered by jQuery UI widgets is to bind an event
handler to that event name, passed directly into the constructor. It's the typical approach
because it's easy to do, and it generally solves a specific problem we're having. For example,
suppose that when a section of our accordion widget is expanded, we would like to update
another DOM element. To do this, assign an event handler function to the activate event
when the accordion is constructed.

This approach works well for small, single purpose jobs that apply to a single instance of
a given widget. However, most meaningful applications have many widgets, all triggering
their own events. The widget factory prefixes each event with the name of the widget, which
generally means that even outside of the widget context we know what we're working with.
This is especially helpful when we want to bind event handlers to widget events, long after
the widget has been created.

Let's build an observer widget that will help us visualize all the potential widget events
taking place in an application. The observer widget is capable of binding to a single widget,
to a group of widgets, or the entire document. We'll look at the latter case, where the observer
will even pick up events for widgets created in the future.

How to do it...
Let's take a look at the CSS styles used by the observer widget first:

.ui-observer-event {
 padding: 1px;
}

Widgets and More!

254

.ui-observer-event-border {
 border-bottom: 1px solid;
}

.ui-observer-event-timestamp {
 float: right;
}

Now, let's look at the HTML used to create a basic page with a few sample widgets on it.
These widgets will trigger the events we're trying to pick up with our observer.

<div class="container">
 <h1 class="ui-widget">Accordion</h1>
 <div id="accordion">
 <h3>Section 1</h3>
 <div>
 <p>Section 1 content</p>
 </div>
 <h3>Section 2</h3>
 <div>
 <p>Section 2 content</p>
 </div>
 </div>
</div>
<div class="container">
 <h1 class="ui-widget">Menu</h1>
 <ul id="menu">
 Item 1
 Item 2
 Item 3

</div>
<div class="container">
 <h1 class="ui-widget">Tabs</h1>
 <div id="tabs">

 Tab 1
 Tab 2
 Tab 3

 <div id="tab1">
 <p>Tab 1 content</p>
 </div>
 <div id="tab2">

Chapter 12

255

 <p>Tab 2 content</p>
 </div>
 <div id="tab3">
 <p>Tab 3 content</p>
 </div>
 </div>
</div>

Finally, here is what the implementation of the widget looks like, along with the four widget
instances used on this page:

(function($, undefined) {

$.widget("ab.observer", {

 options: {

 observables: [
 {
 widget: $.ui.accordion,
 events: [
 "activate",
 "beforeActivate",
 "create"
]
 },
 {
 widget: $.ui.menu,
 events: [
 "blur",
 "create",
 "focus",
 "select"
]
 },
 {
 widget: $.ui.tabs,
 events: [
 "activate",
 "beforeActivate",
 "create"
]
 }
]

Widgets and More!

256

 },

 _getEvents: function() {

 var events = {};

 $.each(this.options.observables, function (i, v) {

 var prefix = v.widget.prototype.widgetEventPrefix;

 $.each(v.events, function(i, v) {
 events[prefix + v.toLowerCase()] = "_event";
 });

 });

 return events;

 },

 _create: function() {

 this._super();

 var dialogId = "ui-observer-dialog-" + this.uuid,
 dialogSettings = {
 minHeight: 300,
 maxHeight: 300,
 position: {
 my: "right top",
 at: "right top"
 },
 title: this.element.selector
 };

 this.dialog = $("<div/>").attr("id", dialogId)
 .attr("title", "Observer")
 .addClass("ui-observer")
 .appendTo("body")
 .dialog(dialogSettings);

 this._on(this.element, this._getEvents());

 },

Chapter 12

257

 _event: function(e, ui) {

 var eventClasses = "ui-observer-event " +
 "ui-observer-event-border",
 $event = $("<div/>").prependTo(this.dialog)
 .addClass(eventClasses),
 time = new Date(e.timeStamp).toLocaleTimeString();

 $("").html(e.type)
 .appendTo($event);

 $("").html(time)
 .addClass("ui-observer-event-timestamp")
 .appendTo($event);

 this.dialog.find(".ui-observer-event:last")
 .removeClass("ui-observer-event-border");

 },

 _destroy: function() {

 this._super();
 this.dialog.dialog("destroy")
 .remove();

 }

});

})(jQuery);

$(function() {

 $(document).observer();

 $("#accordion").accordion();
 $("#menu").menu();
 $("#tabs").tabs();

});

Widgets and More!

258

Looking at this page in the browser, the basic widget layout looks something along the lines of
the following screenshot:

Even simply creating these widgets will trigger events. For example, when the page first loads,
you'll see that the dialog created by the observer widget is already populated with events.

Chapter 12

259

How it works...
The observable widget, in this example, is applied to the document element. This means that
it will pick up any widget events that bubble up to that level. The observable widget defines
an observables option, an array of widgets whose events we'd like to listen to. In this case,
for the sake of brevity, we're only including three widgets. This can always be extended, as
needed by the application, since it is an option.

The purpose of the _getEvents() method is to read the observables option and to build
an object that we can use to bind these events to the _event() method. Notice that we're
automatically adding the widget prefix value to the event name here—this is available in the
widgetEventPrefix property of the widget prototype. The job of the _create() method
is to insert a div element into the body element, which then becomes a dialog widget.
We position it in the top-right of the page so as to get out of the user's way. Finally, we start
listening for events using the object returned by _getEvents() using the _on() method.

The _event() method is the single callback used anytime one of the widget events we're
listening to is fired. It simply logs the event to the observer dialog. It also logs the time of the
event; so, this tool is useful for experimenting with any jQuery UI application, large or small,
since it can highlight which events actually take place, along with their orderings. The widget
also takes care to destroy the dialog widget it created earlier too.

Widgets and More!

260

Using widgets with Backbone applications
With the seemingly endless variations of JavaScript environments you may find yourself
working in, it's best to embrace the fact that not everything is done the jQuery UI way. If you
find yourself on a project where you're just itching to use jQuery UI widgets, because the use
cases are plentiful, you'll have to take the time necessary in understanding the consequences
of jQuery UI mingling with another framework.

It's generally ill-advised for any developer to mix completely different widget frameworks
together, so hopefully that is something easily avoided. You'll of course have to work other
homebrew HTML and CSS concoctions, but this is typical. It is not so bad, as you can control it
(not easily done with other open source frameworks). So, if not other widget frameworks, what
other frameworks might we have to consider working with?

Backbone is a general framework that builds on the lower-level underscore.js utility
library, for adding structure to web application clients. You'll find concepts such as models,
collections, and views in a Backbone application. A full treatment of the Backbone library is
way beyond the scope of this book. But, it's helpful to think of Backbone as the application
scaffolding, the part that doesn't change. It'll run just the same with or without jQuery UI
widgets. But, since jQuery UI is what we're interested in working with, let's build ourselves a
little Backbone application that uses jQuery UI widgets.

How to do it...
The goal of the application is to display an autocomplete widget, where the user can filter
programming language names. When a selection is made, some details about the language
are displayed, including a delete button, which deletes the language from the collection.
Simple, right? Let's get into it.

In the page header, we'll be doing something different—including a template. Templates are
just strings of text, rendered by Backbone views. We'll give it a type of text/template, so
the browser will not try to interpret it as something other than a template (JavaScript code, for
instance). It has an id, so we can reference the template text later when it's time to render
the template.

<script type="text/template" id="template-detail">
 <div>
 Title:
 <%= title %>
 </div>
 <div>
 Authors:
 <%= authors %>
 </div>
 <div>

Chapter 12

261

 Year:
 <%= year %>
 </div>
 <div>
 <button class="delete">Delete</button>
 </div>
</script>

Next, the minimal CSS used by this UI—simple font and layout adjustments.

.search, .detail {
 margin: 20px;
}

.detail {
 font-size: 1.4em;
}

.detail button {
 font-size: 0.8em;
 margin-top: 5px;
}

Next, we have the actual markup used by the user interface. Notice how minimal the detail
class div is. That's because it's simply a holder for the template, rendered by the view, as
we'll see in a moment.

<div class="search">
 <label for="search">Search:</label>
 <input id="search"/>
</div>
<div class="detail"></div>

Finally, we have the actual Backbone application that uses the autocomplete and button
jQuery UI widgets.

For brevity, we're cutting out the bulk of the code listing here, trying to
just show the essentials. The fully-operational Backbone code is available
for download, along with all the other samples in this book.

$(function() {

 // Model and collection classes

 var Language,
 LanguageCollection;

Widgets and More!

262

 // View classes

 var AutocompleteView,
 LanguageView;

 // Application router

 var AppRouter;

 // Collection instance

 var languages;

 // Application and view instances

 var app,
 searchView,
 detailView;

 /**
 *
 * Class definitions
 *
 **/

 Language = Backbone.Model.extend({
 // ...
 });

 LanguageCollection = Backbone.Collection.extend({
 // ...
 });

 AutocompleteView = Backbone.View.extend({
 // ...
 });

 LanguageView = Backbone.View.extend({
 // ...
 });

 AppRouter = Backbone.Router.extend({

 });

 /**
 *
 * Collection, view, and application instances

Chapter 12

263

 *
 **/

 languages = new LanguageCollection([
 // …
]);

 searchView = new AutocompleteView({
 // ….
 });

 detailView = new LanguageView({
 // …
 });

 app = new AppRouter();

 Backbone.history.start();

});

Running this example will present the user with an autocomplete input element. The details
of the chosen language are shown in the following screenshot:

How it works...
Our entire Backbone application is declared within the document ready callback function.
Once that is done, everything is event-based. Let's step through the application components.
The first thing you'll notice is that we've declared our variables up top, and given them brief
categorical explanations. This is often helpful when we're sharing the same namespace with
more than a handful of variables. The categories are as follows:

 f Model and collection classes: The classes used by our application to define the data
model.

 f View classes: Classes used by our application to provide the user with different views
of the data model.

Widgets and More!

264

 f Application router: A single controller-like class that manipulates the browser
address, and executes relevant functionality when the path changes.

 f Collection instance: A collection instance represents the application data – a
collection of model instances.

 f Application and view instances: The single application, along with the various views
used by that application to present data.

With that in mind, let's now dive into the specifics of how each Backbone class works. The
application has only one model class, Language. We can see here that the Language
declaration defines some default values for the attributes once instantiated. Next, the
LanguageCollection class is an extension of the Backbone Collection class. This is where
all our Language instances go. Notice that we're specifying the model property to point to
the Language class. Since we have no RESTful API, we have to tell the collection that any
synchronization actions should be carried out locally. We have to include the local storage
plugin for Backbone in order to make this happen. This is actually an ideal way to bootstrap UI
development before the real backend is completely fleshed out.

Next, we have our first view class, AutocompleteView, which is specific to the autocomplete
jQuery UI widget. We've named it as such because we've done our best here to make it
generic enough that it could be used with another autocomplete widget. We do have some
language specifics hard-coded in the view class, but these are trivial to improve upon should
the need arise. The first property defined in this class is the events object. These are mostly
related to the autocomplete widget events. Each callback event handler is defined as a view
method below. The initialize() method is the view constructor, and it is here that we call
delegateEvents() to activate our events handlers for current elements, as well as future
elements. The constructor then creates the autocomplete widget, and listens to its connection
for destroy events.

The autocompleteCreate() method is fired after the autocomplete widget is created,
and assigns the source option of the widget. This is a proxy to the autocompleteSource
method of this view. The autocompleteSelect method fires when the user selects an
item, and navigates to the appropriate route. The autocompleteChange() method is fired
when the autocomplete widget loses focus and the item is different. We do this to update
the path if the user has removed his/her previous selection. The keyup() handler exists to
handle the route change when the user has removed their selection, but hasn't yet blurred the
autocomplete focus. Lastly, the autocompleteSearch() method is how the autocomplete
widget is populated with items when the user starts typing. First, we perform a filter, using the
underscore filter() method on the collection, then we map using the underscore map()
method on the collection. The mapping is necessary to return a format the autocomplete
widget expects.

Chapter 12

265

The next crucial piece of our application is the LanguageView class, responsible for
rendering the programming language details. Like the previous view, this one sets up
event handlers using the events property. We're also using the #template-detail text
mentioned earlier, to compile the template rendered by this view using the underscore
template machinery. In the constructor, we're listing some events on the collection of this
view. One event to take note of is the change:selected event. This will only fire when the
selected attribute changes, which is good, because that's all we're interested in.

The render() method is responsible for rendering the template, but only if the model in
question is actually selected. Once rendered, we can instantiate the button widget used by
this view. However, take note that the event handler isn't bound again for the click event since
that was delegated when the view was first created.

The AppRouter class is the application controller in that it is responsible for reacting to
changes in the URL path. The routeLang() method responds to a specific language and
marks it as selected. The routeDefault() method handles all other requests. Its only job is
to make sure that no languages are marked as selected, and as a side effect, any previously-
selected languages will be removed from the UI since LanguageView is listening for changes
in the selected attribute.

Finally, we create instances of our model in the collection instance, and then, our views and
the application router.

Index
Symbols
$.ajax() call 124, 184
$.ajax() function 124
$content variable 213
$.datepicker instance 71
$.datepicker object 71
$.ui.progressbar.prototype.options object

126
$.when() function 90
_callback() method 222
_close() method 46, 112
#container element 251
_content() method 218, 222
_createAccept() method 25
_create() function 106, 163
_create() method 9, 13, 14, 55, 86, 112, 131,

139, 147, 206, 212, 217, 252
_createPanel() method 195
_createTarget() method 25
_createTooltip() method 229, 235
_delete() function 19
_destroy() function 20, 57
_destroy() method 131, 200, 252
_eventHandler() method 195, 206
_findActive() method 204
_focusable() method 163, 252
_format() method 169
_formatTerms() method 235
_getCreateEventData() method 251
_getEvents() method 259
_getIndex() method 204
_getPanelForTab() method 195
_hashChange() method 206
_hiddenIcons attribute 64

_hoverable() method 252
_initialActive() method 204
_left() function 131
_makeResizable() method 98
_mousemove() method 222
_on() method 153, 252
_on() utility method 206, 222
_open() method 118
_parse() method 169
_percentage() method 136
_positionMenu() method 45
_processTabs() method 189
_refreshValue() method 126, 128
_renderCategory() function 41
_repeat() method 174
_resetMenu() method 45
_reset() method 153
_resizeMenu() method 45
_right() function 131
_selectedText() method 229
#start datepicker 77
_stopped() method 200
_suggest() method 45
_super() function 120
_super() method 86, 153, 252
_tip() method 229
_updateDatepicker() function

about 71, 74
month-to-month effects, displaying 71

#vslider instance 160

A
accordion

about 5, 238
drag-and-drop 20-26

268

extending 238-243
sections, sorting 17-19

accordion() method 242
active tab

setting, hre used 202-206
addClass() jQuery function 59
animate() function 127
animateHover option 59, 60
animate option 96, 126
animateResize option 96, 98
API data

loading 87-90
AppRouter class 265
autocompleteChange() method 264
autocompleteCreate() method 264
autocomplete filtering

about 35-38
remote 35-38

autocompleteSearch() method 264
autocompleteSelect method 264
autocomplete widget

about 27
default input, styling with themes 28-30

autoOpen option 86

B
backbone application

widgets, using with 260-265
border-color CSS property 156
button.explode tooltip 224
button hover state

effects, using 59-61
buttons

about 47
icons 61-64
spaces, filling automatically 52-57
within group, sorting 57, 58

buttonsets
about 47
used, for controlling spacing 50-52

C
cache 37
calendar data 80, 81
callback function 177

categories
custom categories 38-42

changeMonth 81
change:selected event 265
changeYear 81
checked event handler 253
checklists

creating 48-50
check() method 252
child slider 147, 149, 152, 153
click event 95, 101
clip effect 224
close() method 87
cnt counter variable 156
connectToSortable option 26
content option 212
content function 213
controls 80, 81
create callback 158
create function 191
create() method 30
culture option 166
currencies

formatting, for local cultures 164-166

D
data

custom data 38-42
data-icon attribute 189
data sources

building, select options used 30-33
multiple data sources, using 33-35

dateFormat option 65, 67
date formats

working with 65-67
datepicker widget

date formats 65-67
date range, restricting 74, 75
full-sized calendar widget, creating 68
input field, handling 77-81
month-to-month effects, displaying 70, 71

date range
restricting 74-76

deferred.promise() object 90
destroy() method 20

269

dialog
actions, adding 93, 95
actions, adding to title 93
effects, applying to 84
icons, using in title 91-93
modal, using for messages 98-101
resize interactions, effects applying to 95-98

drop-down menu
effects, applying 42-46

drop effect 197

E
effect object 197
effects

applying, to drop-down menu 42-46
error option 101
exploded option 52
extend() function 71

F
fade animation 84, 86
file upload

progress, displaying 121-124
filter() function 33
filter() method 264
fold effect 86, 90
for attribute 49
formatTerms() method 235
full-sized calendar widget

creating 68, 69

G
Globalize.cultures object 166
Globalize.format() function 166

H
height property 145
height style

changing, dynamically 9-13
heightStyle option 11, 13
heightStyle property 13
hide option 84
highlight option 109

horizontal slider 144
hre

used, for setting active tab 202, 203

I
iconButtons array 95
iconButtons option 95
icon option 93
incremental callback function 171
incremental option 171
inheritState option 210, 211
initialize() method 264
input element 161
input field

hiding 77-80
input focus outline

removing 161-163
inputOutline option 163
isCallback argument 87
items option 217

J
JavaScript Object Notation (JSON) 112
jQuery UI 237
jqXHR object 184

K
keypress event 195

L
LanguageCollection class 264
load() method 195
local cultures

currencies, formatting 164-166
time, formatting 166-169

M
margin-left CSS property 131
margin-top property 16
master slider 147, 149, 152, 153
maxDate option 75
max option 124

270

menus
active menu item, highlighting 107, 109
building, dynamically 112-116
effects, using 109-112
sortable menu items, creating 103-106
submenus position, controlling 117, 118
themes, applying to submenus 118-120

messages
dialog modal, using 98-101

minDate option 75
modal option 98
month-to-month effects

displaying 70, 71
mouse

movement, displaying 218-222

N
navigation links

tabs, using as 193-195
newHeaders element 243
next()function 242
notify widget 101
numberFormat option 166, 169

O
observables option 259
observer widget

building 253-259
oldHeaders variable 243
onprogress event 121
onprogress event handler function 122, 124
open() method 86, 101, 222
options object 101, 188, 217
orientation option 160
original slider 153
overflow CSS property 14

P
padding set 69
percent option 153
progressbar-label class 138
progressbar widget

about 121, 136-141
changes, animating 124-128

progressindicator() constructor 131

progressindicator widget
creating 129-134

promises option 90

R
range values

getting 156, 158
refresh() function 52
refresh() menu method 120
refresh() method 13, 55, 57, 252, 253
relative option 221
reminders

appointing, as tooltips 71-74
remote tab content 182-184
removeClass() jQuery function 59
render() method 265
resizable content sections 13, 14
resizable() interaction widget 95
resizable option 15
resizable() widget 14
response() function 33
Rotten Tomatoes API 214
routeLang() method 265

S
selected attribute 265
select element options 87
select options

used, for building data sources 30-33
self.element 91
showButtonPanel 81
show effect 197, 224
showOtherMonths 81
showWeek 81
slider

handle focus outline, removing 145-147
handle size, controlling 144, 145
orientation, changing 159, 160

sortable interaction widget
about 106
used, for sorting tabs 197-202

sortable() interaction widget 19, 57
sortable option 106
source() function 35
spacing

between themes, controlling 17

271

span element 235
spinDelay option 174
spinner buttons

simplifying 178, 179
spin overflow

specifying 174-177
states

using, to warn thresholds 134-141
step

between values, controlling 169-174
step increments

creating 154, 156
stop option 200
submenus

position, controlling 117, 118
themes, applying to 118-120

T
Tab key

used, for selection navigation 6, 7, 9
tabkeydown() event handler 9
tabkeydown() handler 9
tabs

about 181
icon, giving 186-189
remote tab content 182-185
sorting, sortable interaction used 199-202
sorting, sortable interaction widget used 197
theme, simplifying 189-192
transitions, effects creating

between 196, 197
using, as navigation links 193, 195

tabs() method 242
tabs widget

about 238
extending 238-243

text option 62
theme.accordion.css 16
themes

default input, styling 28-30
spacing, controlling 16

this.uiSpinner property 163
threshold option 136
thresholds 134, 136
ticks option 156

time
formatting, for local cultures 166, 169

title, dialog
actions, adding 93, 95
icons, using 91, 92

toggle button widget 48
tooltip

custom markup, using 212-217
display, effects applying to 222-224
for selected text 225-230, 235
state, changing 208-212

tooltipClass option 209, 210, 212
tooltips

reminders, appointing as 71-74
track tooltip option 221
tt-error class 209
ttPos attribute 229

U
ui-autocomplete-category class 41
ui-autocomplete-item class 41
ui-buttonset-exploded class 52
ui-checklist class 251
ui-corner-all class 52, 191
ui-dialog-icon class 93
ui-helper-hidden class 124
ui.panel object 184
ui-slider-handle class 147
ui-state-error class 210
ui-state-highlight class 109
ui-state-hover class 251
ui-tabs-icon class 189
ui-widget class 30
ui-widget-content class 30
ul element 59

V
values() method 158

W
widgetClasses option 252
widgetEventPrefix property 259
widgets

API 252
check method 252

272

create method 252
creating, with backbone application 260-265
custom widget, building from

scratch 243-245
datepicker widget 65
destroy method 252
dialog widget 83
main application 253
options 251
private methods 251
slider widget 143
tabs widget 181

X
xhr object 124
xhr option 124
XMLHTTPRequest type 184

Thank you for buying

jQuery UI Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

jQuery UI 1.8: The User
Interface Library for jQuery
ISBN: 978-1-84951-652-5 Paperback: 424 pages

Build highly interactive web applications with ready-to-
use widgets from the jQuery Interface Library

1. Packed with examples and clear explanations of
how to easily design elegant and powerful front-
end interfaces for your web applications

2. A section covering the widget factory including an
in-depth example on how to build a custom jQuery
UI widget

3. Updated code with significant changes and fixes to
the previous edition

jQuery UI Themes Beginner's
Guide
ISBN: 978-1-84951-044-8 Paperback: 268 pages

Create new themes for your jQuery site with this step-by-
step guide

1. Learn the details of the jQuery UI theme
framework by example

2. No prior knowledge of jQuery UI or theming
frameworks is necessary

3. The CSS structure is explained in an easy-to-
understand and approachable way

Please check www.PacktPub.com for information on our titles

jQuery 1.4 Animation
Techniques Beginners Guide
ISBN: 978-1-84951-330-2 Paperback: 344 pages

Quickly master all of jQuery's animation methods and
build a toolkt of ready-to-use animation using jQuery 1.4

1. Create both simple and complex animations using
clear, step-by-step instructions, accompanied with
screenshots

2. Walk through jQuery’s built-in animation methods
and see in detail how each one can be used

3. Over 50 detailed examples of different types of
web page animations

jQuery Hotshot
ISBN: 978-1-84951-910-6 Paperback: 296 pages

Ten practical projects that exercise your skill, build your
confidence, and help you master jQuery

1. See how many of jQuery's methods and properties
are used in real situations. Covers jQuery 1.9

2. Learn to build jQuery from source files, write
jQuery plugins, and use jQuery UI and jQuery
Mobile

3. Familiarise yourself with the latest related
technologies like HTML5, CSS3, and frameworks
like Knockout.js

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Creating Accordions
	Introduction
	Section navigation using the Tab key
	Dynamically changing the height style
	Resizable content sections
	Controlling spacing with themes
	Sorting accordion sections
	Dragging-and-dropping between accordions

	Including Autocompletes
	Introduction
	Styling the default input with themes
	Building data sources using select options
	Using multiple data sources
	Remote autocomplete filtering
	Custom data and categories
	Applying effects to the drop-down menu

	Crafting Buttons
	Introduction
	Making simple checklists
	Controlling the spacing with buttonsets
	Filling space with buttons automatically
	Sorting buttons within a group
	Using effects with the button hover state
	Button icons and hiding text

	Developing Datepickers
	Introduction
	Working with different date formats
	Making a full-sized calendar widget
	Displaying month-to-month effects
	Appointment reminders as tooltips
	Restricting the date range
	Hiding the input field
	Additional calendar data and controls

	Adding Dialogs
	Introduction
	Applying effects to dialog components
	Waiting for API data to load
	Using icons in the dialog title
	Adding actions to the dialog title
	Applying effects to dialog resize interactions
	Using modal dialogs for messages

	Making Menus
	Introduction
	Creating sortable menu items
	Highlighting the active menu item
	Using effects with menu navigation
	Building menus dynamically
	Controlling the position of submenus
	Applying themes to submenus

	Progress Bars
	Introduction
	Displaying file upload progress
	Animating progress changes
	Creating progressindicator widgets
	Using states to warn about thresholds
	Giving progressbars labels

	Using Sliders
	Introduction
	Controlling the size of the slider handle
	Removing the handle focus outline
	Using master sliders and child sliders
	Marking step increments
	Getting range values
	Changing the slider orientation

	Using Spinners
	Introduction
	Removing the input focus outline
	Formatting currencies for local cultures
	Formatting time for local cultures
	Controlling the step between values
	Specifying the spin overflow
	Simplifying the spinner buttons

	Using Tabs
	Introduction
	Working with remote tab content
	Giving tabs an icon
	Simplifying the tab theme
	Using tabs as URL navigation links
	Creating effects between tab transitions
	Sorting tabs using the sortable interaction
	Setting the active tab using href

	Using Tooltips
	Introduction
	Changing the tooltip state
	Using custom markup in tooltips
	Displaying the mouse movement
	Applying effects to the tooltip display
	Tooltips for selected text

	Widgets and More!
	Introduction
	Accordions to tabs, and back again
	Building a custom widget from scratch
	Building an observer widget
	Using widgets with Backbone applications

	Index

