
www.allitebooks.com

http://www.allitebooks.org

jQuery UI 1.10:
The User Interface Library for jQuery

Build highly interactive web applications with
ready-to-use widgets

Alex Libby

Dan Wellman

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

jQuery UI 1.10:
The User Interface Library for jQuery

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2009

Fourth published: December 2013

Production Reference: 1181213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-220-9

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Alex Libby

Dan Wellman

Reviewers
Aamir Afridi

Islam AlZatary

Stephen Holsinger

Kristian Mandrup

Marjorie Roswell

Acquisition Editors
Joanne Fitzpatrick

Edward Gordon

Douglas Paterson

Lead Technical Editor
Akshay Nair

Technical Editors
Shashank Desai

Rosmy George

Jinesh Kampani

Manal Pednekar

Project Coordinator
Anugya Khurana

Proofreaders
Martin Diver

Samantha Lyon

Sandra Hopper

Indexers
Monica Ajmera Mehta

Priya Subramani

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Alex Libby is from an IT support background. He has been involved in supporting
end users for the last 15 years in a variety of different environments, and currently
works as a Technical Analyst, supporting a medium-sized SharePoint estate for
an international parts distributor, based in the UK. Although Alex gets to play
with different technologies in his day job, his first true love has always been with
the Open Source movement, and in particular experimenting with CSS/CSS3 and
HTML5. To date, Alex has written five books based on jQuery, HTML5 Video, and
CSS for Packt Publishing, and has reviewed several more (including one on Learning
jQuery). jQuery UI 1.10: The User Interface Library for jQuery is Alex's sixth book with
Packt Publishing.

I would like to give a huge thanks to Dan Wellman for allowing me
the opportunity to update one of his books; it has been a pleasure
and a privilege. I just hope I've done justice to it! I also thank the
reviewers for their help in reviewing the book, along with their
constructive feedback. Thanks must also go to family and friends for
their support and encouragement; it makes working the long hours
all the more worthwhile.

Dan Wellman is an author and frontend engineer living on the South Coast of
the UK and working in London. By day he works for Skype and has a blast writing
application-grade JavaScript. By night he writes books and tutorials focused mainly
on frontend web development. He is also a staff writer for the Tuts+ arm of the
Envato network, and occasionally writes for .Net magazine. He's the proud father of
four amazing children, and the grateful husband of a wonderful wife.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Aamir Afridi is a London-based frontend developer and has a passion for
JavaScript and jQuery. He has been working on different projects for Google,
YouTube, Facebook, and Apple. He is now helping TES in refactoring the frontend
architecture. He is always keen in learning new JavaScript frameworks and
wrote quite a few jQuery plugins and jQuery UI extensions. He can be found at
http://aamirafridi.com/ on the Web. He is aamirafridi on Twitter and GitHub.

Islam AlZatary graduated in Computer Information System from Jordan in 2008.
He worked for two years as a PHP web developer, and then he was appointed as a
frontend engineer at Bayt.com.

He deals with jQuery, jQuery UI, HTML/HTML5, CSS/CSS3, Bootstrap framework,
Mailer engine, JavaScript frameworks (RequireJS, AngularJS), and with all design
approaches (fixed, fluid, responsive, adaptive). He also likes the "mobile first
approach".

Stephen Holsinger has been developing on the Web professionally for over seven
years. He has worked for service companies and manufacturers, primarily focusing
on e-commerce platform and website development. His experience stretches from
backend system integration to frontend web development. He currently works as an
independent contractor lending his expertise to clients implementing retail sites on
the Demandware Commerce SaaS Platform.

www.allitebooks.com

http://www.allitebooks.org

Kristian Mandrup has a master's degree in Computer Science from Copenhagen
University.

He has been developing software since he got his first computer at the age of 12
and has always been curious and always asks the hard questions: why? He likes to
push the techs to the limits and live on the bleeding edge. He is always on the move,
on new adventures and explorations, since the techs and tools never feel quite
good enough.

He is a toolmaker and an architect more than a traditional software developer. He
has crossed various platform boundaries over the year and has lately shifted from
the Ruby on Rails platform to the new frontier of Node.js and the MEAN stack. He is
currently exploring single-page, real-time applications. He likes to combine many
of the best techs available into a high-powered stack. This is where jQuery UI fits
in perfectly.

You can find Kristian on GitHub at https://github.com/kristianmandrup and his
Twitter handle is @kmandrup.

Marjorie Roswell is a web developer from Baltimore, MD. She has been building
websites that serve the community for more than a decade.

She wrote the Drupal 5 Views Recipes book for Packt Publishing. She has developed
a GIS system for assisting citizen callers to the Baltimore Office of Recycling, and
has taught professional classes in desktop publishing, AutoCAD, and Drupal. She
currently serves clients as a NationBuilder website developer.

While in college, Marjorie received the Betty Flanders Thomson Prize for Excellence
in Botany. Her http://FarmBillPrimer.org site is devoted to mapping and
charting federal food and farm policy.

The author of this book has a masterful knowledge of jQuery UI, and
Packt Publishing staff Anugya Khurana and Prachi Bisht have been
terrific to work with during the review process.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introducing jQuery UI 7

Downloading the library 8
Using the hosted versions of jQuery UI 10

Setting up a development environment 11
Understanding the structure of the library 13

Examining the folder structure in detail 14
Working with ThemeRoller 16
Categorizing the component categories 19

Introducing the widget factory and effects 21
Browser support 21
Using the book examples 22
Library licensing 22
Introducing the API 23

Events and callbacks 25
Callback arguments 26

Summary 27
Chapter 2: The CSS Framework and Other Utilities 29

Working with the files that make up the framework 29
jquery.ui.all.css 31
jquery.ui.base.css 31
jquery.ui.core.css 32

Explaining the individual component framework files 33
jquery.ui.theme.css 33

Linking to the required framework files 34
Using the framework classes 35

Working with containers 35
Using interactions 37

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Adding icons 39
Examining the icons in detail 40
Adding custom icons 41
Using custom icons – a note 43

Interaction cues 43
Switching themes quickly and easily 45

Overriding the theme 46
The position utility 49

Using the position utility 50
Explaining collision avoidance 52

Positioning with a function 54
Using the position widget in a real-world example 55
The widget factory 57
Summary 58

Chapter 3: Using the Tabs Widget 59
Implementing a tab widget 60
Styling the Tabs widget 62
Applying a custom theme to the tabs 64
Configuring the Tabs widget 65
Working with tabs 66

Selecting a tab 66
Disabling a tab 67
Adding transition effects 68
Collapsing a tab 69

Working with the Tab events 69
Binding to events 71

Using tab methods 72
Enabling and disabling tabs 73
Adding and removing tabs 74
Simulating clicks 75
Destroying tabs 76
Getting and setting options 77
Working with AJAX tabs 79
Changing the URL of a remote tab's content 80
Displaying data obtained via JSONP 81
Summary 83

Chapter 4: The Accordion Widget 85
Structuring the accordion widget 86
Styling the accordion 89
Configuring an accordion 90

Table of Contents

[iii]

Changing the trigger event 91
Changing the default active header 92
Filling the height of its container 93
Using the accordion animation 95
Listing the accordion events 98
Using the change event 99
Configuring the beforeActivate event 100
Explaining the accordion methods 102

Header activation 102
Adding or removing panels 103
Resizing an accordion panel 106
Accordion interoperability 107

Using multiple accordions 109
Summary 111

Chapter 5: The Dialog 113
Creating a basic dialog 114
Listing the dialog options 116

Showing the dialog 118
Setting a dialog title 118
Configuring the modality option 120

Adding buttons 121
Adding icons to the dialog buttons 122

Enabling dialog animations 123
Configuring the dialog's dimensions 124
Setting the z-index order of dialogs 125

Controlling the focus 126
Handling the dialog's event callbacks 127
Controlling a dialog programmatically 129

Toggling the dialog 130
Getting data from the dialog 130
Exploring dialog interoperability 132
Creating a dynamic image-based dialog 134
Summary 140

Chapter 6: The Slider and Progressbar Widgets 141
Introducing the slider widget 142
Custom styling 143
Configuring a basic slider 145

Creating a vertical slider 145
Setting the maximum and minimum values 146
Stepping with the slider widget 147

Table of Contents

[iv]

Animating the slider widget 148
Setting the slider's value 148
Using multiple handles 148
Working with the range option 149

Using the slider's event API 151
Using slider methods 153

Practical uses 156
Creating a color slider 158
Introducing the progressbar widget 160

Listing the progressbar's options 162
Setting the progressbar's value 162
The progressbar's event API 163
Using progressbar methods 165
Adding indeterminate support 166

Responding to user interaction 168
Implementing rich uploads with a progressbar 173
Summary 177

Chapter 7: The Datepicker Widget 179
Implementing the datepicker widget 180

Selecting dates using inline calendars 182
Configurable options of the datepicker 183

Using the basic options 187
Minimum and maximum dates 189
Changing the elements in the datepicker UI 190

Adding a trigger button 192
Configuring alternative animations 194

Displaying multiple months 195
Displaying the datepicker vertically 197
Changing the date format 198

Updating an additional input element 201
Changing the date format 202

Localizing the datepicker widget 203
Implementing custom localization 207
Implementing callbacks 208
Localizing a datepicker dynamically via rollup 209

Introducing the utility methods 211
Listing the datepicker methods 212

Selecting a date programmatically 213
Showing the datepicker in a dialog box 214

Table of Contents

[v]

Implementing an AJAX-enabled datepicker 215
Summary 218

Chapter 8: The Button and Autocomplete Widgets 219
Introducing the button widget 220

Implementing the standard buttons 220
Creating buttons using the <input> or <button> tags 222

Theming 222
Exploring the configurable options 223
Adding the button icons 223
Input icons 225
Adding the Button events 226
Creating button sets 228

Checkbox button sets 229
Radio button sets 230

Working with button methods 231
Introducing the autocomplete widget 232

Working with local data sources 233
Using an array of objects as the data source 235

Configurable autocomplete options 236
Configuring minimum length 237
Appending the suggestion list to an alternative element 237

Working with autocomplete events 238
The autocomplete methods 240

Working with remote data sources 241
Retrieving content based on input 241

Passing a function as a source option 243
Displaying HTML in the list of suggestions 247
Summary 251

Chapter 9: Creating Menus 253
Implementing a basic menu widget 254
Exploring the menu CSS framework classes 257
Configuring menu options 259
Styling menus 260

Displaying the state of the selected menu options using icons 260
Adding dividers to menus 262

Using menu methods 264
Enabling and disabling menu options programmatically 265
Adding and removing menu items 266
Working with menu events 268
Binding to events 271

Table of Contents

[vi]

Creating horizontal menus 272
Combining with other widgets 274
Designing context menus 276
Enhancing a select menu 278
Summary 280

Chapter 10: Working with Tooltips 281
Implementing a default tooltip 282
Exploring the tooltip CSS framework classes 284
Overriding the default styles 284

Using prebuilt themes 285
Creating custom themes with ThemeRoller 288

Configuring tooltip options 289
Positioning tooltips accurately 290

Using the position widget 292
Tracking mouse movement with tooltips 293
Displaying certain tooltips 295
Displaying AJAX content in tooltips 296

How can we tell if it has worked? 298
Using effects in tooltips 298
Working with HTML in tooltips 299

The dangers of working with HTML 302
Using tooltip methods 302
Enabling and disabling tooltips 303
Displaying tooltips programmatically 304
Handling tooltip events 306

Binding to tooltip events 308
Playing videos 309
Filling out and validating forms 311
Summary 314

Chapter 11: Drag and Drop 315
The deal with draggables and droppables 316
Getting started with the draggable widget 316

Implementing a basic drag 317
Configuring the draggable options 318

Using the configuration options 320
Resetting the dragged elements 322
Adding the drag handle support 323
Adding the helper elements 324
Constraining the drag 327
Snapping 328

Table of Contents

[vii]

Draggable event callbacks 330
Draggable's methods 332
Getting started with the droppable widget 333
Configuring droppables 335

Configuring accepted draggables 335
Configuring drop tolerance 337
Understanding the droppable callback options 339

Setting the scope options for droppable 342
Configuring the greedy option 344

Droppable methods 347
Creating a maze game using the widgets 347
Summary 351

Chapter 12: The Resizable Component 353
Implementing a basic resizable widget 354
Listing the resizable options 356

Configuring the resize handles 357
Adding additional handle images 357
Defining size limits 359
Resizing ghosts 360
Containing the resize 362
Handling aspect ratio 363
Resizable animations 364
Simultaneous resizing 365
Preventing unwanted resizes 366

Defining resizable events 367
Looking at the resizable methods 370
Creating resizable tabs 370
Summary 372

Chapter 13: Selecting and Sorting with jQuery UI 373
Introducing the selectable widget 374
Introducing the Selectee class names 376
Configuring the selectable component 377

Filtering selectables 378
Canceling the selection 379

Handling selectable events 380
Working with vast amounts of selectables 383

Working with selectable methods 385
Refreshing selectables 385

Table of Contents

[viii]

Creating a selectable image viewer 386
Adding the behavior 388
Styling the image selector 391

Getting started with the sortable widget 392
Styling the sortable widget 396
Configuring sortable options 396

Placeholders 402
Sortable helpers 403
Sortable items 405
Connecting lists 405

Reacting to sortable events 407
Connecting callbacks 411
Listing the sortable methods 413

Serializing 414
Exploring widget compatibility 416

Adding draggables 417
Summary 422

Chapter 14: UI Effects 425
Using the core effects file 426

Using color animations 426
Using class transitions 429
Advanced easing 431

Highlighting specified elements 431
Adding additional effect arguments 433

Bouncing 434
Shaking an element 436

Transferring an element's outline 436
Scaling elements on a page 439
Exploding elements on a page 441
Creating a puff effect 443
Working with the pulsate effect 445
Adding the drop effect to elements 447
Implementing the sliding effect 449

Using easing 453
Understanding the blind effect 454
Clipping elements 456
Folding elements 457
Summary 459

Table of Contents

[ix]

Appendix: Help and Support 461
Downloading jQuery 461

Updating the code samples 462
Getting help 462
Changing themes 462
Getting help from the community 463
Need to ask a question? 463
Getting help via IRC chat 463
Asking at Stack Overflow 463
Reporting a bug in the library 464

Index 465

Preface
Modern web application user interface design requires rapid development and
proven results. jQuery UI, a trusted suite of official plugins for the jQuery JavaScript
library, gives you a solid platform on which you can build rich and engaging
interfaces with maximum compatibility, stability, and minimum time and effort.

jQuery UI has a series of ready-made, great-looking user interface widgets and
a comprehensive set of core interaction helpers designed to be implemented in a
consistent and developer-friendly way. With all this, the amount of code that
you need to write personally to take a project from conception to completion is
drastically reduced.

Specially revised for Version 1.10 of jQuery UI, this book has been written to
maximize your experience with the library by breaking down each component and
walking you through examples that progressively build upon your knowledge,
taking you from beginner to advanced usage in a series of easy-to-follow steps.

In this book, you'll learn how each component can be initialized in a basic default
implementation and then see how easy it is to customize its appearance and
configure its behavior to tailor it to the requirements of your application. You'll look
at the configuration options and the methods exposed by each component's API to
see how these can be used to bring out the best in the library.

Events play a key role in any modern web application if it is to meet the expected
minimum requirements of interactivity and responsiveness. Each chapter will show
you the custom events fired by the component covered and how these events can be
intercepted and acted upon.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

What this book covers
Chapter 1, Introducing jQuery UI, lets you find out exactly what the library is, where
it can be downloaded from, and how the files within it are structured. We also look
at ThemeRoller, which browsers support the library, how it is licensed, and how
the API has been simplified to give the components a consistent and easy-to-use
programming model.

Chapter 2, The CSS Framework and Other Utilities, looks in detail at the extensive CSS
framework, which provides a rich environment for integrated theming through
Themeroller and also allows developers to easily supply their own custom themes
or skins. We also cover the new position utility and have a look at all the unique
features and series of configuration options that it provides.

Chapter 3, Using the Tabs Widget, looks at the first widget, which is the tabs widget,
a simple but effective means of presenting structured content in an engaging and
interactive widget.

Chapter 4, The Accordion Widget, looks at the accordion widget, another component
dedicated to the effective display of content. Highly engaging and interactive, the
accordion makes a valuable addition to any web page and its API is exposed in full
to show exactly how it can be used.

Chapter 5, The Dialog, focuses on the dialog widget. The dialog behaves in the same
way as a standard browser alert, but it does so in a much less intrusive and more
visitor-friendly manner. We look at how it can be configured and controlled to
provide maximum benefit and appeal.

Chapter 6, The Slider and Progressbar Widgets, provides a less commonly used, but
no less valuable user interface tool for collecting input from your visitors, and
displaying the results of an action to them. We look closely at the APIs of both
components throughout this chapter to see the variety of ways in which it can be
implemented, and put to good use in our web applications.

Chapter 7, The Datepicker Widget, looks at the datepicker. This component packs a
huge amount of functionality into an attractive and highly usable tool, allowing your
visitors to effortlessly select dates. We look at the wide range of configurations that
its API makes possible as well as seeing how easy common tasks such as skinning
and localization are made.

Chapter 8, The Button and Autocomplete Widgets, looks at the brand new button, and
recently revived autocomplete. Long-time users of the library will remember the
autocomplete from a previous version of the library. The widget is now back, fully
updated to fit in with the latest version of the library and in this chapter we get to see
how it can be used to great effect.

Preface

[3]

Chapter 9, Creating Menus, takes us through how to create and add menus to our
websites or application. We'll see how, with minimal code, we can turn a bunch
of ordinary hyperlinks into an interactive system for navigating around your site,
which will help engage your site's visitors and make it easy to find content.

Chapter 10, Working with Tooltips, will show us how, with minimal effort, we can
easily provide a context-based system of support, by displaying important messages
or feedback to the end user. This is particularly important in instances where visitors
to your site may have inadvertently entered incorrect information; we can help get
them back onto the right track!

Chapter 11, Drag and Drop, begins to look at the low-level interaction helpers, tackling
first the related drag-and-droppable components. We look at how they can be
implemented individually and how they can be used together to enhance your
user interfaces.

Chapter 12, The Resizable Component, looks at the resizing component and how it is
used with the dialog widget seen earlier in the book. We see how it can be applied to
any element on the page to allow it to be resized in a smooth and attractive way.

Chapter 13, Selecting and Sorting with jQuery UI, looks at the final two interaction
helpers in this chapter; the selectable and sortable components. We can use the
components to select and sort elements in a website or application, although the
sortable component really comes into its own when working with lists, as you can
reorder them by dragging items to a new position in the list. Both components can
help you add a high level of professionalism and interactivity to your site, while at the
same time blurring the boundaries between desktop and browser-based applications.

Chapter 14, UI Effects, is dedicated solely to the special effects that are included with
the library. We look at an array of different effects that allow you to show, hide,
move, and jiggle elements in a variety of attractive and appealing animations.

Chapter 15, The Widget Factory, the downloadable chapter of the book provides an
extensive look at the widget factory and how it allows us to quickly and easily
create our very own jQuery UI plugins. The widget factory solves lots of common
problems for you and can greatly improve productivity; it also extensively improves
code reuse, making it a great fit for jQuery UI as well as many other stateful plugins.
You can find this chapter at http://www.packtpub.com/sites/default/files/
downloads/2209OS_Chapter_15.pdf.

Appendix, Help and Support, covers the basics of downloading the library. It provides
the Getting Help section which helps readers with answers to all their queries
throughout the book.

Preface

[4]

What you need for this book
All you need to work through most of the examples in this book is a simple text
or code editor and a browser. One or two of the more advanced examples rely on
PHP, but for convenience, I've included these examples in the code download that
accompanies this book.

Who this book is for
The book is for frontend developers who need to quickly learn how to use jQuery
UI, or designers who wish to see how jQuery UI functions, behaves, and looks. To
get the most out of this book you should have a good working knowledge of HTML,
CSS, and JavaScript, and ideally be comfortable using jQuery.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
path names, dummy URLs, user input, and Twitter handles are shown as follows:
"When prompted for a location to unpack the archive to, choose the jqueryui
folder that we just created."

A block of code is set as follows:

<link rel="stylesheet"
href="development-bundle/themes/base/jquery.ui.tabs.css">
<link rel="stylesheet"
href="development-bundle/themes/base/jquery.ui.theme.css">

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

$(".ui-positioned-element").position({
 of: ".ui-positioning-element",
 my: "right bottom",
 at: "right bottom"
});

Preface

[5]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "When
we view the page and select the Images tab, after a short delay we should see six
new images."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book – what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[6]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from http://www.packtpub.com/sites/
default/files/downloads/2209OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books – maybe a mistake
in the text or the code – we would be grateful if you would report this to us. By
doing so, you can save other readers from frustration and help us to improve
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/support, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be
uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introducing jQuery UI
Welcome to jQuery UI 1.10: The User Interface Library for jQuery. This resource aims
to take you from your first steps to an advanced usage of the JavaScript library of
UI widgets and interaction helpers that are built on top of the hugely popular and
easy-to-use jQuery.

jQuery UI extends the underlying jQuery library to provide a suite of rich and
interactive widgets along with code-saving interaction helpers, built to enhance the
user interfaces of your websites and web applications. Both jQuery Core and UI are
built according to strict coding conventions, which are updated regularly, and follow
the current best practice for JavaScript design. As the official UI library for jQuery,
it's this strict adherence to current JavaScript standards that helps to make it one of
the better UI libraries available for jQuery.

In this chapter we will cover the following topics:

• How to obtain a copy of the library
• How to set up a development environment
• The structure of the library
• ThemeRoller
• Browser support
• How the library is licensed
• The format of the API

jQuery has quickly become one of the most popular JavaScript libraries in use
today, thanks to its ever-growing range of common UI widgets, high level of
configurability, and its exceptional ease of implementation. The library is used
and supported by some very well-known names, such as Microsoft, WordPress,
Adobe, and Intel.

Introducing jQuery UI

[8]

jQuery UI runs on top of jQuery, so the syntax used to initialize, configure, and
manipulate the different components is in the same comfortable and easy-to-use
style as jQuery. As jQuery forms the basis for UI, we can also take advantage of
all the great jQuery functionality as well. The library is also supported by a range
of incredibly useful tools, such as the CSS framework that provides a range of
helper CSS classes, and the excellent ThemeRoller application that allows us to
visually create our own custom themes for the widgets, or choose from a growing
library of pre-existing themes. We will be taking a look at the ThemeRoller
application later in this chapter.

Over the course of this book, we'll look at each of the existing components that
make up the library. We will also be looking at their configuration options and
trying out their methods in order to fully understand how they work and what they
are capable of. By the end of the book, you'll be an expert in the configuration and
use of each widget within the jQuery UI library. By the time we create a custom
component, we'll already have a basic working knowledge of the components
when we add a new widget or interaction helper, because of the consistency in
how we implement the different components that make up the library. Therefore,
we only need to learn any widget-specific functionality to master the particular
component we wish to use.

Downloading the library
This book is specifically tailored towards Version 1.10 of jQuery UI and requires
jQuery 1.6 or higher; throughout this book, we will be using jQuery 2.0.3 in our
code samples.

If you still need to support IE6 then the legacy Version 1.9.2 of the jQuery
UI library is also available for download. You will also need to avail
yourself of a copy of jQuery 1.10, as jQuery 2.0 does not support IE 6-8.

To obtain a copy of the library, we should visit the Download Builder at http://
www.jqueryui.com/download. This tool gives us a range of different options for
building a download package that is tailored to our particular requirements. The
following screenshot shows the Download Builder:

Chapter 1

[9]

We can either download the complete current release or a complete package of a
legacy version. We can also select just the components that we want and download
a custom package—this is particularly recommended for production environments,
where we are only using a subset of the UI library; this helps to reduce bandwidth
used when viewing the page.

The page is laid out in a friendly and easy-to-use way. It lists all of the different
components in their respective groupings (UI Core, Interactions, and Widgets)
and allows us to choose from one of the 24 different predesigned themes
(or no theme at all). The page also provides information about the package
(including both its compressed and uncompressed size).

Introducing jQuery UI

[10]

If as a developer you would like to see the latest snapshot of jQuery
UI under source control, then you can download a copy from GitHub,
which is available at https://github.com/jquery/jquery-ui.

We'll look at the different files found within the library in just a moment, but for
now we should download the complete library. It will contain everything we need,
including the JavaScript and CSS files, as well as any images from the current theme
that rely on different components. It even contains the latest version of jQuery itself,
so we don't need to worry about downloading this separately.

For now, just use the custom Download link at the top of the page then select
Smoothness as the theme on the following page, and then click on Download.
We'll look at downloading and using other themes in the next chapter.

The code download that accompanies this book includes a copy of jQuery 2.03
within each chapter's exercise folder. If you need to download a new copy, you
can do so—the instructions for downloading a new copy are listed in Appendix,
Help and Support.

Using the hosted versions of jQuery UI
We don't need to download the library in order to implement it in a production
web application. Both jQuery and jQuery UI are hosted on content delivery
networks (CDN) provided by Google, CDNJS, Microsoft, and MediaTemple
(who provide the CDN for the jQuery UI).

On a live site that receives a lot of international traffic, using a CDN will help ensure
that the library files are downloaded to a visitor's computer from a server that is
geographically close to them. This helps in making the response quicker for them and
saving our own bandwidth. This is not recommended for local development however!

Hosted Files
If you would like to take advantage of using the CDN links, then these
can be found at the following locations:

• Google's CDN: http://code.google.com/apis/libraries/
• CDNJS's CDN: http://cdnjs.com
• jQuery's CDN: http://code.jquery.com
• Microsoft's CDN: http://www.asp.net/ajaxlibrary/CDN.

ashx

Chapter 1

[11]

Setting up a development environment
We'll need a location to unpack the jQuery UI library in order to easily access the
different parts of it within our own files. We should first create a project folder,
into which all of our example files as well as all of the library, and other associated
resources can be saved.

Create a new folder in your C: drive, or your home directory, and call it jqueryui.
This will be the root folder of our project and will be the location where we store all
of the example files that we'll make over the course of the book.

The structure of the accompanying code download for this
book will mirror the local environment we are creating.

To unpack the library, you can use Windows Explorer (if working on a PC), or
a compression program such as 7-zip. When extracting the library, choose the
jqueryui folder that we just created. If you are a Mac user, you may need to copy
the contents of the jqueryui-1.10.3.custom folder into the new jqueryui folder
we have just created. (We will go through the structure of the jqueryui folder later
in this chapter.)

7-zip is an open source archive application similar to WinZip
or WinRAR; I personally find it better and easier to use. You
can download it for free from at http://www.7-zip.org.

The code examples that we'll be looking at use other resources, mostly images, but
occasionally some PHP files too. The accompanying code download available on the
Packt Publishing website contains all of the images that we'll be using. You should
download this if you can, from http://www.packtpub.com/support/book/user-
interface-library-for-jquery. You'll need to create a new folder within the
jqueryui project folder and call it img, then unpack all of the images within the
image folder in the archive to this new folder.

www.allitebooks.com

http://www.allitebooks.org

Introducing jQuery UI

[12]

Once you have unpacked the jqueryui folder and added any additional folders that
are required, you will see something similar to the following screenshot—here I've
used Chapter 5 as an example, which requires an additional img folder to be created:

The code download also contains all the examples as well as the library itself.
These files are provided in the hope that they will be used for reference purposes
only. I'd recommend that you follow the examples in the book as you go along,
manually creating each file as it is shown, instead of just referring to the files in the
code download. The best way to learn code, is to code.

This is all that we need to do, no additional platforms or applications need to
be installed and nothing needs to be configured or set up. As long as you have
a browser and some kind of code or text editor, everything is in place to begin
developing with the library.

There are plenty of editors available, any of which will be fine for use with jQuery
UI, if you don't already have a preferred editor—for Windows users, you can
try Notepad++ (freely available from http://www.notepad-plus-plus.org),
or Sublime Text 2 (shareware, which can be downloaded from http://www.
sublimetext.com/2). I would avoid using memory-hungry IDEs, as they tend to
facilitate too much of the work and therefore impact on the learning curve when
using jQuery UI.

Chapter 1

[13]

For those of you who like to develop using a local web server,
then you may use something like WAMP (for PC) or MAMP
(for Mac), if you do not already have something set up as a
part of your normal daily workflow. Linux users should find a
suitable web server that is available from within their distro.

Understanding the structure of the library
Let's take a moment to look at the structure of the library once it has been unpacked,
so that we know where to look for specific utilities and files. This will give us a feel
for its composition and structure. Open up the jqueryui folder where we unpacked
the library. The contents of this folder should be as follows:

• A css folder
• A development-bundle folder
• A js folder
• An index.html file

We can see what the structure looks like from the following screenshot:

For the purposes of using jQuery UI, it is sufficient to know that the js and css
folders are the ones you will need to use within a production environment; these can
be dropped into your site structure as they are, and the relevant compressed files
referenced accordingly from within your code.

Introducing jQuery UI

[14]

If however you are using the library in a development capacity, then I would
recommend using the development-bundle folder instead; this contains the same
code as the individual source files, but in uncompressed format.

Examining the folder structure in detail
For most people, it is not necessary to know how the jQuery UI library is made
up; after all, the two key folders to use can simply be dropped in to your site and
referenced accordingly. In this case, you may wish to skip this section and move
onto Working with ThemeRoller.

If however your skills are more advanced and you want to learn more about the
structure of the library, then please read on. I would recommend having a copy of
the jQuery downloaded to hand as you work through this section, so that you can
get to grips with how the library is made up.

The css folder is used to store the complete CSS framework that comes with the
library. In this folder there will be a directory that has the name of the theme we
chose when building the download package. Inside this is a single file that contains
all of the CSS framework, and a folder that holds all the images used by the theme.
We can also store the css files that we will be creating in this css directory.

The js folder contains minified versions of jQuery and the complete jQuery UI
library, with all components rolled into one file. In a live project, it is the js and
css folders that we'd want to drop into our site.

The index is an HTML file that gives a brief introduction to the library and displays
all of the widgets along with some of the CSS classes. If this is the first time you've
ever used the library, you can take a look at this file to see some of the things that
we'll be working with throughout the course of this book.

The development-bundle directory contains a series of resources to help us develop
with the library. It consists of the following subdirectories:

1. A demos folder
2. A docs folder
3. An external folder
4. A themes folder
5. A ui folder

Chapter 1

[15]

The following screenshot shows how the folder structure should appear:

Also present in the directory are the license files, JSON source files, documents
showing the version of the library and its main contributors, and an uncompressed
version of jQuery.

The demos folder contains a series of basic examples, showing all of the different
components in action. The docs folder contains API documents for each of the
different components.

The external folder contains a set of tools that may be of use to developers.
They are as follows:

• The globalize plugin
• The jshint plugin
• The mousewheel plugin
• The unit testing suite qunit (consisting of a JavaScript and a CSS file)

The globalize plugin provides localization support to jQuery, and can be used
to format strings, dates, and numbers in over 350 cultures. The jshint plugin, a
derivative of the jslint plugin, is a tool to detect errors and potential problems
in JavaScript code while enforcing your own coding conventions. The mousewheel
plugin, designed by Brandon Aaron, adds cross-browser mouse wheel support to
your website or online application. The QUnit framework is jQuery's unit testing
suite that we can use to run unit tests on our any code that we create.

Introducing jQuery UI

[16]

For more information on QUnit, go to http://docs.jquery.com/
QUnit.

The themes folder contains either the default theme or the theme that was selected
during the download builder. Other themes that we download at a later point or
themes that we create ourselves can also be stored here.

The ui folder contains the individual and uncompressed source files of each of the
different components of the library.

If you select the Stable download option from the main page, you will
find that the contents appear different—the Stable download option
contains the contents of the development-bundle folder only, and the
theme included by default is called Base. This is visually similar to the
Smoothness theme we've downloaded in the custom package.

Working with ThemeRoller
ThemeRoller is a custom tool written in jQuery and PHP. It allows us to visually
produce our own custom jQuery UI theme and package it up in a convenient and
downloadable archive, which we can then drop into our project with no further
coding (other than using the stylesheet in an HTML <link> element, of course).

ThemeRoller, hosted at http://ui.jquery.com/themeroller, was created by
Filament Group, Inc., and makes use of a number of jQuery plugins released into
the open source community. It can be used to produce themes for jQuery UI 1.10
or the legacy Version 1.9 of jQuery UI.

Hosted Themes
We don't even need to download a theme if we're using one of the themes
available from the main site. In a production environment, you may
prefer to use a CDN version of the theme, in the same way as you might
use a CDN link to reference the main library.
You can import the base or smoothness theme using the following link:
http://code.jquery.com/ui/1.10.3/themes/smoothness/
jquery-ui.css. If you want to use one of the other themes, replace
smoothness in the URL with your preferred theme.

Chapter 1

[17]

ThemeRoller is certainly the most comprehensive tool available for creating your
own jQuery UI themes. We can very quickly and easily create an entire theme
comprised of all the styles needed for targeting the different widgets that make
up the library, including the images we'll need.

If you looked at the index.html file a little earlier, the ThemeRoller landing page
will be instantly familiar, as it shows all the UI widgets on the page, skinned with
the default Smoothness theme.

The ThemeRoller page features an interactive menu on the left that is used to work
with the application. Each item within the menu expands to give you access to
the available style settings for each part of the widget, such as the Content and
Clickable areas, the Header and Content areas of the widget, and other associated
things, such as warnings and Error messages.

Introducing jQuery UI

[18]

Here we can create our custom theme with ease and see the changes as soon, as they
are applied to the different visible parts of each widget on the page, as shown
in the following screenshot:

Chapter 1

[19]

If you're not feeling particularly inspired while creating a theme, there is also a
gallery of pre-configured themes that you can instantly use to generate a fully
configured theme. Apart from convenience, the best thing about these pre-selected
themes is that when you select one, it is loaded into the left menu. Therefore, you
can easily make little tweaks as required.

This is an excellent way to create a visually appealing custom theme that matches the
style of your existing site, and is the recommended method for creating custom skins.

Installing and using the new theme is as simple as selecting or creating it.
The Download theme button in the above screenshot takes us back to the
download builder that has the CSS and images for the new theme integrated
into the download package.

If it's just the new theme we want, we can deselect the actual components and just
download the theme. Once downloaded, the css folder within the downloaded
archive will contain a folder that has the name of the theme. We can simply drag this
folder into our own local css folder, and then link to the stylesheet from our pages.

We won't be looking at this tool in much detail in this book. We'll be focusing instead
on the style rules that we need to manually override in our own custom stylesheets
to generate the desired look of the examples manually.

Categorizing the component categories
There are three types of component found within the jQuery UI library, as follows:

• Low-level interaction helpers: These components are designed to work
primarily with mouse events

• Widgets: These components produces visible objects on the page
• Core components: These are the components that the other parts of the

library rely on

Let us take a moment to consider the components that make up each of these
categories, beginning with the core components.

The core components consist of:

• Core
• Widget
• Mouse
• Position

Introducing jQuery UI

[20]

The core file sets up the construct that all components use to function, and adds
some core functionality that is shared by all of the library components, such as
keyboard mappings, parent-scrolling, and a z-index manager. This file isn't designed
to be used on its own, and exposes no functionality that can be used outside of
another component.

The interaction helpers are comprised of the following components:

• Draggable
• Droppable
• Resizable
• Selectable
• Sortable

The interaction helpers add basic mouse-based behaviors to any element; this allows
you to create sortable lists, resize elements (such as dialog boxes) on the fly or even
build functionality (such as a drag-and-drop based shopping cart).

The higher-level widgets (at the time of writing) include:

• Accordion
• Autocomplete
• Button
• Datepicker
• Dialog
• Menu
• Progressbar
• Slider
• Tabs
• Menu
• Tooltips

The widgets are UI controls that bring the richness of desktop application
functionality to the Web. Each of the widgets can be fully customized, appearance
and their behavior.

Chapter 1

[21]

Introducing the widget factory and effects
When working with jQuery UI's widgets, you will come across the widget factory.
This literally creates the basis for all of the visible widgets exposed by the library.
It implements the shared API common to all widgets, such as create and destroy
methods, and provides the event callback logic. It also allows us to create custom
jQuery UI widgets that inherit the shared API. We will cover the Widget Factory in
detail later on in this chapter.

Apart from these components and interaction helpers, there are also a series of
UI effects that produce different animations or transitions on targeted elements
on the page. These are excellent for adding flair and style to our pages. We'll be
looking at these effects in the final chapter of this book, Chapter 14, UI Effects.

The great thing about jQuery UI's simplified API is that once you have learned to use
all of the existing components (as this book will show you), you'll be able to pick up
any new components very quickly. There are plans for many more components in
future versions, including a move to merge jQuery Mobile into the library!

Browser support
Like jQuery itself, this version of jQuery UI officially supports the current and the
previous version of a browser, although the library works fine with older versions
of major browsers, including the following: IE7+, Firefox 2+, Opera 9+, Safari 3+,
and Chrome 1+.

Support for IE6 and IE7
As mentioned earlier, the jQuery UI team has dropped support for
IE6 in UI 1.10; you can still use jQuery UI though, by downloading the
legacy Version 1.9.2. Users of IE7 may note that there are plans to drop
support for this browser too; at the time of writing, this is currently
scheduled for Version 1.11, although this is yet to be confirmed.

The widgets are built from semantically correct HTML elements generated as needed
by the components. Therefore, we won't see excessive or unnecessary elements being
created or used.

www.allitebooks.com

http://www.allitebooks.org

Introducing jQuery UI

[22]

Using the book examples
The library is as flexible as standard JavaScript. By this, I mean that there is often
more than one way of doing the same thing, or achieving the same end. For example,
the callback events used in the configuration objects for different components can
usually take either references to functions or inline anonymous functions, and use
them with equal ease and efficiency.

In practice, it is advisable to keep your code as minimal as possible (which jQuery
can really help with anyway). But to make the examples more readable and
understandable, we'll be separating as much of the code as possible into discrete
modules. Therefore, callback functions and configuration options will be defined
separately from the code that calls or uses them.

Throughout this book, we will separate JavaScript and CSS code into separate
files; while this is overkill for the purposes of development work, it is advisable for
production websites. Scripts that reside in external js files can be cached by the
browser for vastly improved loading speeds; those written in-line (that is, directly
into a <script> tags) are not cached by the browser.

I'd also just like to make it clear that the main aim throughout the course of this
book is to learn how to use the different components that make up jQuery UI. If an
example seems a little convoluted, it may be that this is the easiest way to expose
the functionality of a particular method or property, as opposed to a situation that
we would find ourselves coding for regular implementations.

I'd like to add here that the jQuery UI library is currently going through a rapid
period of expansion, bug-fixing, and development. For this release, the jQuery team
is focusing on bug-fixing to help make the library as stable as possible. Over the
longer term, the jQuery UI team is focusing on complete redesigns of each widget's
API, ahead of adding a host of new widgets in future releases, and completing a
planned merger with jQuery Mobile.

Library licensing
Like jQuery, the jQuery UI library is licensed under the MIT open source license.
This is a very unrestrictive license that allows the creators to take credit for its
production and retain intellectual rights over it, without preventing us developers
from using the library in any way that we like on any type of site.

The MIT license explicitly states that users of the software (jQuery UI in this case) are
free to use, copy, merge, modify, publish, distribute, sublicense, and sell. This lets us
do pretty much whatever we want with the library. The only requirement imposed by
this license is that we must keep the original copyright and warranty statements intact.

Chapter 1

[23]

This is an important point to make. You can take the library and do whatever you
like with it. You can build applications on top of the library and then sell those
applications or give them away for free. You can put the library in embedded
systems such as cell phone OSes and sell them. But whatever you do, leave the
original text file with John Resig's name present on it. You can also duplicate it
word-for-word in the help files or documentation of your application.

The MIT license is very lenient, but because it is not copyrighted itself, we are
free to change it. We can therefore demand that the users of our software give
attribution to us instead of the jQuery team, or pass off the code as our own.

The license is not there to restrict us in any way and is not the same as the kind of
license that comes with software that you might purchase and install on your own
computer. In most cases, how the library is licensed will not be a consideration when
using it. Plugin authors, however, will want to ensure that their plugins are released
under a similar license.

Introducing the API
Once you've worked with one of the components from the library, you'll instantly
feel at home when working with any of the other components, since the methods
of each component are called in exactly the same way.

The API for each component consists of a series of different methods. While these
are all technically methods, it may be useful to categorize them based on their
particular function.

Method type Description

The plugin method
This method is used to initialize the component and is simply the
name of the component, followed by parentheses. I will refer to this
throughout the book as the plugin method or the widget method.

Shared API
methods

The destroy method can be used with any of the components to
completely disable the widget being used and in most cases returns
the underlying HTML to its original state.
The option method is used by all components to get or set any
configuration option after initialization.
The enable and disable methods are used by most library
components to enable or disable the component.
The widget method, exposed by all widgets, returns a reference to
the current widget.

Specialized
methods

Each component has one or more methods unique to that particular
component that perform specialized functions.

Introducing jQuery UI

[24]

Methods are consistently called throughout each of the different components by
passing the method that we'd like to call, as a simple string to the component's
plugin method, with any arguments that the method accepts passed as strings
after the method name.

For example, to call the destroy method of the accordion component, we would
simply use the following code:

$("#someElement").accordion("destroy");

See how easy that was! Every single method that is exposed by all of the
different components is called in this same simple way.

Some methods such as standard JavaScript functions accept arguments that trigger
different behavior in the component. If we wanted to call the disable method on
a particular tab in the tabs widget for example, we would use the following code:

$("#someElement").tabs("disable", 1);

The disable method, when used in conjunction with the tabs widget, accepts an
integer that refers to the index of the individual tab within the widget. Similarly, to
enable the tab again we would use the enable method as shown in the following code:

$("#someElement").tabs("enable", 1);

Again, we supply an argument to modify how the method is used. Sometimes the
arguments that are passed to the method vary between components. The accordion
widget, for example, does not enable or disable individual accordion panels, only the
whole widget, so no additional arguments following the method name are required.

The option method is slightly more complex than the other common methods, but
it's also more powerful and is just as easy-to-use. The method is used to either get
or set any configurable option after the component has been initialized.

To use the option method in getter mode to retrieve the current value of an option,
we could use the following code:

$("#someElement").accordion("option", "navigation");

The previous code would return the current value of the navigation option of the
accordion widget. So to trigger the getter mode, we just supply the option name
that we'd like to retrieve.

In order to use the option method in the setter mode instead, we can supply
the option name and the new value as arguments:

$("#someElement").accordion("option", "navigation", true);

Chapter 1

[25]

The previous code would set the value of the navigation option to true.
Note that an object literal can also be passed to the option method in order
to set several different options at once. For example:

$("#someElement").accordion("option", {
 animate: "bounceslide",
 heightStyle: "fill"
});

As you can see, although the option method gives us the power to use both the get
and set configuration options, it still retains the same easy-to-use format of the
other methods.

Events and callbacks
The API for each component also contains a rich event model that allows us to easily
react to different interactions. Each component exposes its own set of unique custom
events, yet the way in which these events are used is the same, regardless of which
event is used.

We have two ways of working with events in jQuery UI. Each component allows
us to add callback functions that are executed when the specified event is fired, as
values for configuration options. For example, to use the select event of the tabs
widget, which is fired every time a tab is selected, we could use the following code:

var options = {
 select: function() {
 ...
 }
};
$("#myTabs").tabs(options);

The name of the event is used as the option name and an anonymous function is
used as the option value. We'll look at all of the individual events that are used
with each component in later chapters.

The other way of working with events is to use the jQuery's on() method. To use
events in this way, we simply specify the name of the component followed by the
name of the event:

$("#someElement").on("tabsselect", function() {
...
});

Introducing jQuery UI

[26]

Usually, but not always, callback functions used with the on() method are executed
after the event has been fired, while callbacks that are specified using configuration
options are executed directly before the event is fired. The callback functions are
called in the context of the DOMElement that triggered the event. For example, in
a tabs widget with several tabs, the select event will be triggered by the actual tab
that is selected and not the tabs widget as a whole. This is extremely useful to us
because it allows us to associate the event with a particular tab.

Some of the custom events fired by jQuery UI components are cancelable and if
stopped, can be used to prevent certain actions from taking place. The best example
of this (which we'll look at later in the book) is preventing a dialog widget from
closing by returning false in the callback function of the beforeClose event:

beforeClose: function() {
 if (readyToClose === false) {
 event.preventDefault();
}

If the arbitrary condition in this example was not met, false would be returned by
the callback function and the dialog would remain open. This is an excellent and
powerful feature that can give us fine-grained control over each widget's behavior.

Callback arguments
An important feature of using any widget is its ability to accept callbacks. We can
use callbacks to run anonymous functions that perform a specific task. For example,
we could fire an alert on screen each time a particular header is clicked in an
Accordion widget.

Any anonymous functions that we supply as callback functions to the different
events automatically pass two arguments: the original, extended or modified
event object, and an object containing useful information about the widget. The
information contained in the second object varies between components. As an
example, let's take a look at a callback that could be implemented when using the
Accordion widget:

$("#myAccordion").accordion({
 activate: function (event, ui) {
 if(ui.newHeader.length > 0){
 alert(ui.newHeader.attr("id"));
 } else {
 // closed
 }
 }
});

Chapter 1

[27]

Here we've passed the arguments to the function and used them to determine
which accordion heading is open, before displaying the result on screen. The same
principle of passing these objects to any callback functions that we define applies
to all components; we will cover this in detail in later chapters.

Summary
jQuery UI removes the difficulty of building engaging and effective user interfaces.
It provides a range of components that can be used quickly and easily out of the box
with little configuration. Each component exposes a comprehensive set of properties
and methods for integration with your pages or applications that can be leveraged if
a more complex configuration is required.

Each component is designed to be efficient, lightweight, and semantically correct,
all while making use of the latest object-oriented features of JavaScript, and using
a concise, well-tested framework. When combined with jQuery, it provides an
awesome addition to any web developer's toolkit.

So far, we've seen how the library can be obtained, how your system can be set up
to utilize it, and how the library is structured. We've also looked at how we can add
or customize a theme for different widgets, how the API simply and consistently
exposes the library's functionality, and the different categories of component. We've
covered some important topics during the course of this chapter, but now we can get
on with using the components of jQuery UI and get down to some proper coding,
beginning with a look at the CSS framework.

The CSS Framework and
Other Utilities

Added in Version 1.7, the jQuery UI library contains a refreshed CSS framework that
can be used to effectively and consistently theme each widget available in the library.
The framework is made up of many helper classes that we can use in our own code,
even if we aren't using any of the library components.

In this chapter we'll be covering the following subjects:

• The files that make up the framework
• How to use the classes exposed by the framework
• How to switch themes quickly and easily
• Overriding the theme
• Using the position utility

Working with the files that make up the
framework
There are two locations within the library's structure where the CSS files that
make the framework reside, depending on which version of the library you
choose to download.

The CSS Framework and Other Utilities

[30]

They are as follows:

• css: This folder holds the complete CSS framework, including the theme
that was selected when the download package was built. All the necessary
CSS has been placed in a single, lean and mean stylesheet to minimize the
HTTP requests in production environments. The CSS file is stored in a folder,
named after the theme selected on the download builder. This version of the
framework will contain styles for all the components that were selected in
the download builder, so its size will vary depending on how much of the
library is being used.

• themes: Another version of the framework exists within the development-
bundle folder, within which you will find the themes folder. Two themes
are provided in this folder—the base theme, and whichever theme that was
selected when the library was downloaded. The base theme is a gray, neutral
theme that is visually identical to the smoothness theme.

Within each of these theme folders, are the individual files that make up the
framework. Each of the different components of the framework is split into
its own respective files:

Component Use

jquery.ui.all.css All the required files for a theme can be linked by
using this file in development. It consists of the @
import directives that pull in the ui.base.css
and the ui.theme.css files.

jquery.ui.base.css This file is used by ui.all.css. It also contains
@import directives that pull in the ui.core.
css file, as well as each of the widget CSS files.
However, it contains none of the theme styles that
control each widget's appearance.

jquery.ui.core.css This file provides core framework styles, such as the
clear-fix helper and a generic overlay.

Chapter 2

[31]

Component Use

jquery.ui.accordion.css
jquery.ui.datepicker.css
jquery.ui.button.css
jquery.ui.autocomplete.css
jquery.ui.dialog.css
jquery.ui.progressbar.css
jquery.ui.resizable.css
jquery.ui.selectable.css
jquery.ui.slider.css
jquery.ui.spinner.css
jquery.ui.tabs.css
jquery.ui.menu.css
jquery.ui.tooltip.css
jquery-ui.css

These files are the individual source files that
control the layout and basic appearance of each
widget.

jquery.ui.theme.css This file contains the complete visual theme and
targets of all the visual elements that make up each
widget in the library.

Let's take a look at each of these files in more detail.

jquery.ui.all.css
The jquery.ui.all.css file makes use of CSS imports, using the @import rule to
read in two files—the jquery.ui.base.css and the jquery.ui.theme.css file.
This is all that is present in the file and all that is needed to implement the complete
framework and the selected theme.

From the two directives found in this file, we can see the separations between the
part of the framework that makes the widgets function and the theme that gives
them their visual appearance.

jquery.ui.base.css
The jquery.ui.base.css file also consists of only @import rules, and imports the
jquery.ui.core.css file along with each of the individual widget CSS files. At this
point, I should mention that the resizable component has its own framework file,
along with each of the widgets.

www.allitebooks.com

http://www.allitebooks.org

The CSS Framework and Other Utilities

[32]

jquery.ui.core.css
The jquery.ui.core.css file provides generic styles for the framework that are
used by all components. It contains the following classes:

Class Use
.ui-helper-hidden This class hides elements with display: none.
.ui-helper-hidden-
accessible

This class hides elements by clipping them, so that the
element remains fully accessible. The element is not
hidden or positioned off-screen at all.

.ui-helper-reset This is the reset mechanism for jQuery UI (it doesn't
use a separate reset stylesheet), which neutralizes the
margins, padding, and other common default styles
applied to common elements by browsers. For an
introduction to the importance of resetting default
browser styling, visit: http://sixrevisions.com/
css/css-tips/css-tip-1-resetting-your-
styles-with-css-reset/.

.ui-helper-clearfix The .ui-helper-clearfix styles are applied to the
container itself.

.ui-helper-zfix The .ui-helper-zfix class provides rules that are
applied to <iframe> elements, in order to fix z-index
issues when overlays are used.

.ui-state-disabled This class sets the cursor to default for disabled elements
and uses the important directive to ensure that it is not
overridden.

.ui-icon This rule is the library's method of replacing the text
content of an element with a background image. The
responsibility of setting the background images for the
different icons found in the library is delegated to the
jquery.ui.theme.css file.

.ui-widget-overlay This class sets the basic style properties of the overlay
that is applied to the page when dialogs and other modal
pop ups are shown. As images are used by the overlay,
some styles for this class are also found in the theme file.

The core file lays the foundation for the rest of the framework. We can also give
these class names to our own elements, to clear floats or hide elements whenever we
use the library, and especially when building new jQuery UI plugins for consistent
theming with ThemeRoller.

Chapter 2

[33]

Explaining the individual component framework files
Each widget in the library, as well as the resizable interaction helper, has a
framework file that controls the CSS and makes the widget function correctly. For
example, the tab headings in the tabs widget must be floated left in order to display
them as tabs. The framework files set this rule. These styles will need to be presented
when we are overriding the framework in a custom theme.

These files are brief, with each component using the smallest number of rules
possible for it to function correctly. Generally the files are quite compact (usually
not more than 15 style rules long). The Datepicker source file is the exception, as it
requires a large number of rules to function correctly.

jquery.ui.theme.css
This file will be customized to the theme that was selected or created with
ThemeRoller.

It sets all of the visual properties (colors, images, and so on) for the different
elements that make up each widget.

Within the jquery.ui.theme.css file, there are many comments that contain
descriptive labels, enclosed within curly braces. These are called placeholders, and
the CSS styles that precede them are updated by ThemeRoller automatically when
the theme is generated.

This is the file that will be generated for the complete theme and it contains styles
for all the visible parts of each widget when creating or selecting a theme using
ThemeRoller. When overriding the framework to create a custom theme, it is mostly
rules in this file that will be overridden.

Each widget is constructed from a set of common elements. For example, the outer
container of each widget has the class named ui-widget, while any content within
the widget will be held in a container with the class named ui-widget-content.
It is this consistent layout and classing convention that makes the framework
so effective.

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/supportand register to
have the files e-mailed directly to you.

The CSS Framework and Other Utilities

[34]

This is the biggest stylesheet used by the framework and contains too many classes
to list here in its entirety (but feel free to open it up at this point and take a look
through it). The following table lists the different categories of classes:

Category Use
Containers This category sets style properties for widget, heading, and content

containers.
Interaction states These classes set the default, hover, and active states for any

clickable elements.
Interaction cues This category applies visual cues to elements including highlight,

error, disabled, primary, and secondary styles.

States and images These classes set the images used for icons displayed in the
content and heading containers, as well as any clickable elements
including default, hover, active, highlight, focus, and error states.

Image positioning All of the icon images used by the theme are stored in a single
sprite file, and are displayed individually by manipulating the
background-position properties of the sprite file. This category sets
the background positions for all individual icons.

Corner radius CSS3 is used to give rounded corners to supporting browsers (such
as Firefox 3+, Safari 3+, Chrome 1+, Opera 10+, and IE9+).

Overlays The image used for the generic overlay defined in the core CSS
file is set here, as it is a class that implements a semi-transparent
overlay over specified elements.

The jQuery UI documentation features an extensive overview of the Theme API at:
http://api.jqueryui.com/category/theming/.

Linking to the required framework files
For rapid theming of all jQuery UI widgets in a development environment, we can
link to all of the individual files using jquery.ui.all.css:

<link rel="stylesheet"
href="development-bundle/themes/smoothness/jquery.ui.all.css">

To use each file individually when testing a component such as the tabs widget, for
example, we would use the following <link> elements:

<link rel="stylesheet"
 href="development-bundle/themes/base/jquery.ui.core.css">
<link rel="stylesheet"

Chapter 2

[35]

 href="development-bundle/themes/base/jquery.ui.tabs.css">
<link rel="stylesheet"
 href="development-bundle/themes/base/jquery.ui.theme.css">

The CSS resources, when linked to separately, should be added to the HTML page
in the following order: core.css, the widget's CSS file, and the theme.css file.

In a production environment, of course, we'd use the super-efficient combined file to
minimize the number of HTTP requests for CSS files. We need to link to the combined
jquery-ui-x.x.x.min.css stylesheet found in the css/themename/ directory, where
x.x.x is the version number of jQuery UI you have downloaded:

<link rel="stylesheet"
 href="css/smoothness/jquery-ui-x.x.x.custom.css">

For easier coding and convenience, we'll be linking to the development-bundle/
themes/base/jquery.ui.all.css file in all our examples. If you have unpacked
the library as shown in the previous chapter, along with the css, development-
bundle, and js folders, then the previous path to the CSS file will be correct. If you
are using a different structure, please alter the path to the CSS file accordingly.

Creating the examples from this book
Throughout this book, you will note that we make reference to saving
files in the jqueryui folder; you may wish to put a subfolder in for each
chapter, so that the code is stored separately from other chapters. This is
reflected in the code download that accompanies this book.

Using the framework classes
Along with using the framework while we're implementing official jQuery UI
widgets, we can also use it when we're deploying our own custom plugins.

Working with containers
Containers are recommended because it means that widgets or plugins that we write
will be ThemeRoller-ready and easier for end-developers to theme and customize.
Let's look at how easy it is to use the framework with our own elements.

In your text editor, create a new file and add the following code:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">

The CSS Framework and Other Utilities

[36]

 <title>CSS Framework - Containers</title>
 <link rel="stylesheet"
 href="development-bundle/themes/base/jquery.ui.all.css">
</head>
<body>
 <div class="ui-widget">
 <div class="ui-widget-header ui-corner-top">
 <h2>This is a .ui-widget-header container</h2>
 </div>
 <div class="ui-widget-content ui-corner-bottom">
 <p>This is a .ui-widget-content container</p>
 </div>
 </div>
</body>
</html>

Save this page as containers.html within the jqueryui project folder that we
created in Chapter 1, Introducing jQuery UI, when we unpacked the library. We're
linking to the jquery.ui.all.css file from the base development theme in the
library. If we were building a more complex widget, we'd probably want to link
to the jquery.ui.core.css file as well.

Working with this file when creating widgets or plugins is essential, because it lets
us verify that the class names we give our containers will pick up the appropriate
styling, and reassures us that they will be ThemeRoller-ready. Any style that we
need to apply ourselves would go into a separate stylesheet, just as each widget
from the library has its own custom stylesheet.

We use only a couple of elements in this example. Our outer container is given the
class name ui-widget.

Within the outer container, we have two other containers. One is the ui-widget-
heading container and the other is the ui-widget-content container. We also give
these elements variants of the corner-rounding classes: ui-corner-top and ui-
corner-bottom, respectively.

Inside the header and content containers, we just have a couple of appropriate
elements that we might want to put in, such as <h2> in the header and <p> in
the content element. These elements will inherit some rules from their respective
containers, but are not styled directly by the theme file.

Chapter 2

[37]

When we view this basic page in a browser, we should see that our two container
elements pick up the styles from the theme file as shown in the following screenshot:

Using interactions
Let's look at some more of the framework classes in action. In containers.html,
remove the markup with the <body> tags, and add the following:

<body>
 <div class="ui-widget">
 <div class="ui-state-default ui-state-active ui-corner-all">
 I am clickable and selected
 </div>
 <div class="ui-state-default ui-corner-all">
 I am clickable but not selected
 </div>
 </div>
</body>

Let's also alter the title too so it reflects what we are creating in the code—remove the
existing <title>, and replace it with the following:

<title>CSS Framework - Interaction states</title>

Save this file as interactions.html in the jqueryui project folder. We've defined
two clickable elements in these examples, which are comprised of a container <div>
and an <a> element. Both containers are given the class names ui-state-default
and ui-corner-all, but the first is also given the selected state ui-state-active.

The CSS Framework and Other Utilities

[38]

This will give our clickable elements the following appearance:

The CSS framework doesn't provide styles on the :hover CSS pseudo-class. Instead
it applies a set of styles using a class name, which is added using JavaScript. To see
this in action before the closing </body> tag, add the following code:

<script type="text/javascript" src="js/jquery-2.0.3.js"> </script>
<script>
 $(document).ready(function($){
 $(".ui-widget a").hover(function() {
 $(this).parent().addClass("ui-state-hover");
 }, function() {
 $(this).parent().removeClass("ui-state-hover");
 });
 });
</script>

Save this variation of the previous example file as interactionsHovers.html.

The version number of jQuery will change as the library
continues to evolve; we've used Version 2.03 throughout this
book. You should replace it with whichever version you've
downloaded, if it is different.

Our simple script adds the ui-state-hover class name to a clickable element when
the mouse pointer moves on to it, and then removes it when the mouse pointer
moves off. When we run the page in a browser and hover over the second clickable
element, we should see the ui-state-hover styles:

Chapter 2

[39]

Adding icons
The framework also provides a series of images that we can use as icons. Change the
contents of the ui-widget container in interactionsHovers.html so that it appears
as follows:

<div class="ui-widget">
 <div class="ui-state-default ui-state-active ui-corner-all">

 I am clickable and selected
 </div>
 <div class="ui-state-default ui-corner-all">

 I am clickable but not selected
 </div>
</div>

Save this as icons.html in the jqueryui directory. In this example, our nested
<div> elements, which have the classes ui-icon and ui-icon-circle-plus, are
given the correct icon from a sprite file:

The CSS Framework and Other Utilities

[40]

If you are not already familiar with how sprites work, then it is worth
reading about this technique—have a look at http://nerdwith.me/
news/css-sprites-for-beginners/ for an example of how to create
sprite images. If you need to create sprite images, then the CSS Sprites
Generator at http://csssprites.com/ is a good site to use.

As you can see, the ui-state-active icon differs slightly from the ui-state-
default icon (as well as the ui-state-hover icon). We haven't positioned the icons
at all in this example, because this would necessitate the creation of a new stylesheet.

The point of this example is to see how the icons can be automatically added using
the class names from the framework, without having to add any extra CSS styling
by default.

If we wanted to adjust the positioning, we could have overridden the
.existing .ui-icon class by adding an extra style, such as span.ui-
icon { float: left; }, which would reposition the icons to the left
of the text in each .

Examining the icons in detail
Now that we have seen some of the icons in use, let's take a look at how you can use
them in more detail.

The icons come in the form of a sprite image, which we download as part of the
theme. In the main css folder in the library, you will find more than one theme
folders. Depending on how many you need to download; each theme library
contains a number of sprite images that are used by jQuery UI to produce the
icons, such as the ones we've seen in the previous example.

Chapter 2

[41]

When viewing the image sprites containing our icons, they will look something
as follows:

If we examine the code within a DOM inspector such as Firebug, you will find at
least two styles are added, such as:

The format of the icon CSS will usually follow .ui-icon-{icon type}-{icon sub
description}-{direction}; it should be noted that a third class will be added if
you are using the icon option within widgets, such as the accordion.

Each icon element is given a base class of .ui-icon, which will set dimensions of the
icon to a 16 px square block, hides inner text, and sets the background image with
the chosen sprite image. The background sprite image used will depend on its parent
container; for example a ui-icon element within a ui-state-default container will
get colored according to the ui-state-default's icon color.

Adding custom icons
Adding icons to widgets does not need to be limited to those within the library. It is
possible to use your own custom icons.

To do this, we have two options—you can reference individual files, or use similar
image sprites; the latter is preferable, particularly if you use multiple custom icons,
as the sprite that contains them will be cached once loaded.

You can see a full list of icons available within the core jQuery UI
library, along with their icon class names, at http://api.jqueryui.
com/theming/icons/.

www.allitebooks.com

http://www.allitebooks.org

The CSS Framework and Other Utilities

[42]

To reference the icons, you will need to add your own custom style, which overrides
the .ui-icon class—this is to ensure that jQuery UI doesn't try to apply its own
styles that cancel out your own. An example of such a custom class would look
something as follows:

.ui-button .ui-icon.you-own-cusom-class {
 background-image: url(your-path-to-normal-image-file.png);
 width: your-icon-width;
 height: your-icon-height;
}
.ui-button.ui-state-hover .ui-icon.you-own-cusom-class {
 background-image: url(your-path-to-highlighted-image-file.png);
 width: your-icon-width;
 height: your-icon-height;
}

We can then apply our new style to our chosen widget, as illustrated using this
example of a jQuery UI Button:

 $('selector-to-your-button').button({
 text: false,
 icons: {
 primary: "you-own-cusom-class" // Custom icon
 }
 });

As long as the icon is of the right format, and is correctly referenced in our code, then
we are free to add whichever icons we desire; it is worth researching options online,
as there will be plenty of icons available for use, such as the Font Awesome library at
http://fortawesome.github.io/Font-Awesome/icons/, or IcoMoon, which you
can download from http://icomoon.io/.

Why does my icon appear on a new line?
In some instances, you may find that your icon appears on a new line
above or below the text in your widget, as illustrated in our icons example
earlier in this chapter. The reason for this is the display: block
attribute in the .ui-icon class:
.ui-icon { display: block; text-indent: -99999px;
overflow: hidden; background-repeat: no-repeat; }
To get around it, you can use a float attribute, and set it to show the icon
on the left, right, or center as appropriate.

Chapter 2

[43]

Using custom icons – a note
If you decide to use custom icons, then there is nothing that will prevent you from
doing so, this could open up a wealth of possibilities! You do need to note that using
custom icons requires the use of two classes—the base .ui-icon, followed by your
own custom class. This is to ensure the icons display correctly, and prevent jQuery
UI from trying to override your own icon.

There is a risk that using your own icons may conflict with styles within the
framework, if care is not taken in ensuring that the icons are of the right dimensions;
it is strongly recommended that you look carefully through the existing icon library
that is provided, as the jQuery UI team may have already converted something that
could be of use. Alternatively a look online could help too; custom themes have been
written for jQuery UI, and you may find one that contains the icon(s) you need.

Interaction cues
Another set of classes we can use is the interaction cues. We will look at another
example using these. In a new page in your text editor, add the following code. This
will create a form example, where we can see the cues in action:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>CSS Framework - Interaction cues</title>
 <link rel="stylesheet" href="development-
 bundle/themes/base/jquery.ui.all.css">
 <link rel="stylesheet" href="css/jquery.ui.form.css">
</head>
<body>
 <div class="ui-widget ui-form">
 <div class="ui-widget-content ui-corner-all">
 <div class="ui-widget-header ui-corner-all">
 <h2>Login Form</h2>
 </div>
 <form action="#" class="ui-helper-clearfix">
 <label>Username</label>
 <div class="ui-state-error ui-corner-all">
 <input type="text">
 <div class="ui-icon ui-icon-alert"></div>
 <p class="ui-helper-reset ui-state-error-text">Required
 field</p>

The CSS Framework and Other Utilities

[44]

 </div>
 </form>
 </div>
 </div>
</body>
</html>

Save this file as cues.html in the jqueryui folder. This time we link to a custom file,
jquery.ui.form.css that we'll create in a moment.

On the page, we have the outer widget container, with the class names ui-form and
ui-widget. The ui-form class will be used to pick up our custom styles from the
jquery.ui.form.css stylesheet. Within the widget, we have ui-widget-header
and ui-widget-content containers.

Within the content section, we've got a <form> with a single row of elements, a
<label> element followed by a <div> element that has the ui-state-error and
ui-corner-all class names hardcoded to it.

Within this <div> element, we have a standard <input>, a <div> with the ui-icon,
and ui-icon-alert classes added, along with a <p> element with the ui-state-
error-text class name added to it. Because the <form> will have child elements that
are floated due to styles we will add in jquery.ui.form.css, we can make use of
the ui-helper-clearfix class to clear the floats, which we add as a class name.

We should now create the custom jquery.ui.form.css stylesheet. In a new file in
your text editor, add the following code:

.ui-form { width: 470px; margin: 0 auto; }

.ui-form .ui-widget-header h2 { margin: 10px 0 10px 20px; }

.ui-form .ui-widget-content { padding: 5px; }

.ui-form label, .ui-form input, .ui-form .ui-state-error,

.ui-form .ui-icon, .ui-form .ui-state-error p { float: left; }

.ui-form label, .ui-state-error p { font-size: 12px; padding: 10px
 10px 0 0; }
.ui-form .ui-state-error { padding: 4px; }
.ui-form .ui-state-error p { font-weight: bold; padding-top: 5px;
 }
.ui-form .ui-state-error .ui-icon { margin:5px 3px 0 4px; }
.ui-helper-clearfix:before, .ui-helper-clearfix:after { margin-
 top: 10px; }

Within our jqueryui project folder, there is a folder called css that is used to store
the single-file production version of the framework. All of the CSS files we create
throughout the book will also be saved in here for convenience. Save this file as
jquery.ui.form.css in the css folder.

Chapter 2

[45]

Imagine we have more forms of elements and a submit button. By adding the ui-
state-error class to the <div> element, we can use the error classes for form
validation, which upon an unsuccessful submission would show the icon and text.
The following screenshot shows how the page should look:

Switching themes quickly and easily
Once we have developed content using the base theme, we may decide to change
the theme to something that fits in better with our overall site theme; thankfully, the
CSS framework makes switching themes a painless task. Looking at the previous
example, all we need to do to change the skin of the widget is choose a new theme
using ThemeRoller (available at http://www.jqueryui.com/themeroller), and then
download the new theme. We can download the new theme by selecting all of the
components in the download builder and clicking on Download to obtain the theme.

Within the downloaded archive, there will be a directory with the name of the
chosen theme, such as redmond. We drag the theme folder out of the archive into
the development-bundle\themes folder and link the new theme file from our page,
giving our form a completely new look as shown in the following screenshot:

The CSS Framework and Other Utilities

[46]

The theme I used to obtain this screenshot is redmond. This uses various shades
of blue, either for the background or normal text; selected options, such as tab
headings or selected items in a widget will appear either in orange text or with an
orange background. We'll be using this theme, or themes of our own creation for
the remainder of the book.

Overriding the theme
Using the ThemeRoller gallery and customization tools, we can generate an
extraordinary number of unique themes. But there may be times when we need a
deeper level of customization than we are able to reach using ThemeRoller; in this
situation we have two options.

We can either create a complete theme file from scratch by ourselves, or we can
create an additional stylesheet that overrides only those rules in the jquery.
ui.theme.css file that we need. The latter is probably the easiest method and
results in having to write less code.

We'll now take a look at this aspect of theming. Switch back to the base theme in
<head> of cues.html, if you changed it for the previous example. Save the page as
cuesOverridden.html and then create the following new stylesheet:

.ui-corner-all { border-radius: 4px; }

.ui-widget-header { font-family: Helvetica; background:
 #251e14; border-radius: 4px 4px 0 0; border: 1px solid #362f2d;
 color: #c7b299; }
.ui-form .ui-widget-header h2 { margin: 0; padding: 5px; font-
 style: italic; font-weight: normal; }
.ui-form .ui-widget-content { background: #eae2d8; border: 1px
 solid #362f2d; border-top: 0; width: 500px; padding: 0; }
.ui-widget-content form { padding: 20px; border: 1px solid
 #f3eadf; border-radius: 0 0 4px 4px; }
.ui-widget-content .ui-state-error-text { color: #9A1B1E; }
.ui-form .ui-state-error { border-radius: 4px 4px 4px 4px; }

Save this as overrides.css in the css folder. In this stylesheet we're mostly
overriding rules from the jquery.ui.theme.css file. These are simple styles and
we're just changing colors, backgrounds, and borders. Link to this stylesheet by adding
the following line of code below the other stylesheet in cuesOverridden.html:

<link rel="stylesheet" href="css/overrides.css">

Chapter 2

[47]

Our humble form should now appear as in the following screenshot:

As long as our stylesheet appears after the theme file, and that we match or exceed
the specificity of the selectors used in the jquery.ui.theme.css file, our rules will
take precedence. A long discussion on CSS selector weight is beyond the scope of
this book. However, a brief explanation of specificity may be beneficial as it is the key
to overriding the selected theme. CSS specificity refers to how specific a CSS selector
is—the more specific it is, the more weight it will have, and will subsequently
override other rules that are applied to the element being targeted by other selectors.
For example, consider the following selectors:

#myContainer .bodyText
.bodyText

The first selector is more specific than the second selector, because it not only uses
the class name of the element being targeted, but also the ID of its parent container. It
will therefore override the second selector, regardless of whether the second selector
appears after it.

If you would like to learn more about CSS specificity, then there
are lots of good articles on the Internet. As a start, you might like
to look at http://designshack.net/articles/css/what-
the-heck-is-css-specificity/, or http://reference.
sitepoint.com/ css/specificity. Alternatively, you may
like to work through Chris Coyier's example, at http://css-
tricks.com/specifics-on-css-specificity/.

The CSS Framework and Other Utilities

[48]

In this example, we have full control over the elements that we're skinning. But when
working with any widgets from the library or with plugins authored by third parties,
a lot of markup could be generated automatically, which we have no control over
(without hacking the actual library files themselves).

Therefore, we may need to rely on overriding styles in this way. All we need to do to
find which styles to override is open up the jquery.ui.theme.css file in a text editor
and take a look at the selectors used there. Failing to do that, we can use Firebug's CSS
viewer to see the rules that we need to override as in the following example:

Chapter 2

[49]

DOM Explorers
All modern browsers have DOM explorers and CSS inspectors like
Firebug that can be used to see the order in which CSS rules are
being applied. Using the browser's CSS inspector is usually the
most convenient way of checking CSS order.

The position utility
The position utility is a powerful stand-alone utility that is used to position any
element relative to the window, the document, a specific element, or the mouse
pointer. It is unique among library components, in that it doesn't require jquery.
ui.core.js or jquery.effects.core.js as dependencies.

It exposes no unique or custom methods (other than the position() method), and
fires no events, but it does come with a series of configuration options that allow us
to use it. These options are listed in the following table:

Option Format Used to
at string Specify the edges of the element that is being

positioned against. Formatted as, for example, left
bottom.

collision string Move the positioned element to an alternative
position when the positioned element overflows its
container.

my string Specify the edges of the element being positioned
that are expected to be aligned to the element being
positioned against, for example right top.

of selector, jQuery,
object, event
object

Specify the element to position against the
positioned element. When a selector or jQuery
object is provided, the first matched element is
used. When an event object is provided, the pageX
and pageY properties are used

using function Accepts a function, which actually positions the
positioned element. This function receives an
object containing the top and left values of the new
position.

The CSS Framework and Other Utilities

[50]

Using the position utility
Using the position utility is easy. Let's look at a few examples; create the following
page in your text editor:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Position Utility - position</title>
 <link rel="stylesheet" href="css/position.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.position.js"> </script>
 <script>
 $(document).ready(function() {
 (function($) {
 $(".ui-positioned-element").position({
 of: ".ui-positioning-element"
 });
 })(jQuery);
 });
 </script>
</head>
<body>
 <div class="ui-positioning-element">I am being positioned against</
div>
 <div class="ui-positioned-element">I am being positioned </div>
</body>
</html>

Save this as position.html. We also use a very basic stylesheet in this example,
consisting of the following styles:

.ui-positioning-element { width: 200px; height: 200px; border:
 1px solid #000; }
.ui-positioned-element { width: 100px; height: 100px; border:
 1px solid #f00; }

Save this file in the css folder as position.css. The element that we are positioning
against, as well as the element that we are positioning itself, can be set to either
relative, absolute, or static positioning, without affecting how the positioned element
behaves. If the element we are positioning against is moved using its top, left,
bottom, or right style properties, the element we are positioning will take account
of this and still work correctly.

Chapter 2

[51]

On the page we just have two <div> elements: one is what we will be positioning
against, and the other is the actual element we will be positioning. jQuery itself is
a requirement so we link to that within the <head> element, and we also link to
the position utility's source file. As I mentioned earlier, we don't need to link to the
jquery.ui.core.js file when using position by itself.

The minimum configuration we can use, as we have in this example, is to set the of
option, against which we use to specify the element we are positioning. When we set
just this one option, the element we are positioning is placed exactly in the center of
the element we are positioning against, as shown in the following screenshot:

This alone is incredibly useful as the element is not only centered horizontally, but
vertically too.

By using the my and at properties as well, we can place any edge of the positioned
element against any edge of the element we are positioning against. Change the code
within the outer function so that it appears as follows (new/altered code is shown
in bold):

$(".ui-positioned-element").position({
 of: ".ui-positioning-element",
 my: "right bottom",
 at: "right bottom"
});

www.allitebooks.com

http://www.allitebooks.org

The CSS Framework and Other Utilities

[52]

The following screenshot shows the output of this code:

The my option refers to the element that is being positioned. The first part of the
string, which is supplied as the value of this option, is the horizontal axis, and can be
set to left, center, or right. The second part is the vertical axis, and can be set to top,
center, or bottom.

The at option refers to the horizontal and vertical edges of the element
being positioned against. It also accepts a string in the same format as the my
configuration option.

Explaining collision avoidance
The position utility has a built-in collision detection system to prevent the element that
is being positioned from overflowing the viewport. There are two different options
that we can use to set what happens when a collision is detected. The default is flip,
which causes the element to flip and align the opposite edges of those configured.

For example, if we position a <div> element's right edge to align to the left edge of
another element, it will be flipped to have its right edge aligned to the positioning
element's right edge instead, if it overflows the viewport.

Chapter 2

[53]

Change the configuration in position.html to the following:

$(".ui-positioned-element").position({
 of: ".ui-positioning-element",
 my: "right",
 at: "left"
});

This would result in the following positioning:

The other mode of collision avoidance is fit, which will honor the configured
positioning as much as possible, but adjust the element's positioning, so that it
stays within the viewport. Configure the collision option as follows:

$(".ui-positioned-element").position({
 collision: "fit",
 of: ".ui-positioning-element",
 my: "right",
 at: "left"
});

The CSS Framework and Other Utilities

[54]

Save this file as positionFit.html. This time, the element is positioned as close as
possible to its intended position:

We can also set the value of the collision option to none to
disable collision detection entirely, and allow the positioned element
to overflow the viewport.

Positioning with a function
We can set the using option to a function, and position the positioned element
manually. Change the configuration so that it appears as follows:

$(".ui-positioned-element").position({
 of: ".ui-positioning-element",
 my: "right bottom",
 at: "right bottom",
 using: function(pos) {
 $(this).css({

Chapter 2

[55]

 backgroundColor: "#fc7676",
 top: pos.top,
 left: pos.left
 });
 }
});

Save this change as positionFunction.html. We supply an anonymous function as
the value of the using option. This function is passed as a single argument that is an
object containing the properties top and left, which correspond to the values that the
element we are positioning should be given.

As you can see from this code, we still need to position the element manually, but
the function allows us to do any preprocessing of the element that may be required.
Within the function, the this object is set to the element being positioned.

Using the position widget in a real-world
example
So far, we've considered the theory behind using the position widget; before moving
on to look at the widget factory, let us take a moment to consider how we can use the
position widget in a real-world scenario.

A perfect example comes in the shape of jQuery UI's Dialog widget, configured to
work as a modal dialog. Here we can use the position widget to place the dialog box
on the page in relation to the button's current location.

To see how, add the following code to a new file in your text editor:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Dialog</title>
 <link rel="stylesheet" href="development-
 bundle/themes/redmond/jquery.ui.all.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-
 bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-
 bundle/ui/jquery.ui.position.js"></script>
 <script src="development-
 bundle/ui/jquery.ui.dialog.js"></script>

The CSS Framework and Other Utilities

[56]

 <script src="development-
 bundle/ui/jquery.ui.button.js"></script>
 <script></script>
</head>
<body></body>
</html>

We need some markup, so add the following code in between the <body> tags:

<div id="myDialog" title="This is the title!">
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aenean sollicitudin. Sed interdum pulvinar justo. Nam iaculis
 volutpat ligula. Integer vitae felis quis diam laoreet
 ullamcorper. Etiam tincidunt est vitae est.
</div>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean sollicitudin. Sed interdum pulvinar justo. Nam iaculis
volutpat ligula. Integer vitae felis quis diam laoreet
ullamcorper. Etiam tincidunt est vitae est.
<button id="showdialog">Click me</button>

Finally, in order to tie it together and make it work, add the following script as the
last entry before the closing </head> tag:

$(document).ready(function($){
 $("#showdialog").button();
 $("#myDialog").dialog({ autoOpen: false, modal: true, });
 $("#showdialog").click(function() {
 $("#myDialog").dialog("open");
 });
 $("#showdialog").position({
 my: "left+20 top+100",
 at: "left bottom",
 of: myDialog
 });
});

Chapter 2

[57]

If we preview this in a browser, you'll see that we can't do anything with the text in
the background when clicking on the button:

Here, we've instigated a UI dialog, and configured it to work as a modal; autopen has
been set to false, so that the dialog doesn't show when displaying the page. We've
then created a simple click handler to show the dialog on the click of a button; this
is followed by a call to the position widget, where we set the my and at attributes, to
correctly display the dialog in relation to the current position of the button.

The widget factory
Another tool within the jQuery UI library is the widget factory, which was
introduced in Version 1.8 of jQuery UI, and has since undergone some important
changes. This splits the functionality that allows widgets to be easily created into a
separate and standalone utility file. This is the jquery.ui.widget.js file, and we
can use it to create our very own jQuery UI plugins with ease. Like jQuery itself,
which provides the fn.extend() method for easily creating plugins, jQuery UI also
provides mechanisms to make plugin creation easier, and to ensure that the common
API functionality is retained in new plugins. We will cover the Widget Factory in
more detail in a separate chapter that can be downloaded with the book.

The CSS Framework and Other Utilities

[58]

Summary
In this chapter, we've seen how the CSS framework consistently styles each of the
library components. We've looked at the files that make it and how they work
together to provide the complete look-and-feel of the widgets. We also saw how
tightly integrated the ThemeRoller application is with the framework, and that it
is easy to install or change a theme using ThemeRoller. We also looked at how we
can override the theme file if we require a radical customization of a widget that
we cannot obtain with ThemeRoller alone.

The chapter also covered building our own widgets or plugins in a way that is
compatible with and can make use of the framework, as well as to ensure that
our creations are ThemeRoller ready. We can also make use of the helper classes
provided by the framework, such as the ui-helper-clearfix class, to quickly
implement common CSS solutions.

We also looked at the position utility, which allows us to align any edge of one
element with any edge of another element, giving us a powerful and flexible way
of positioning elements that we create or manipulate.

In the next chapter, we'll move on to start looking at the widgets provided by the
library, starting with the tabs widget.

Using the Tabs Widget
Now that we've been formally introduced to the jQuery UI library, the CSS
framework, and some of the utilities, we can move on to begin looking at the
individual components included in the library. Over the next seven chapters, we'll be
looking at the widgets. These are a set of visually engaging, highly configurable user
interface widgets.

The UI tabs widget is used to toggle visibility across a set of different elements, with
each element containing content that can be accessed by clicking on its tab heading.
Each panel of content has its own tab. The tab headings are usually displayed across
the top of the widget, although it is possible to reposition them so that they appear
along the bottom of the widget instead.

The tabs are structured so that they line up next to each other horizontally, whereas
the content sections are all set to display: none except for the active panel. Clicking
a tab will highlight the tab and show its associated content panel, while ensuring all
of the other content panels are hidden. Only one content panel can be open at a time.
The tabs can be configured so that no content panels are open.

In this chapter, we will look at the following topics:

• The default implementation of the widget
• How the CSS framework targets tab widgets
• How to apply custom styles to a set of tabs
• Configuring tabs using their options
• Built-in transition effects for content panel changes
• Controlling tabs using their methods
• Custom events defined by tabs
• AJAX tabs

Using the Tabs Widget

[60]

The following screenshot is labeled with the different elements that a set of jQuery
UI tabs consists of:

Implementing a tab widget
The structure of the underlying HTML elements on which tabs are based is fairly
rigid, and widgets require a certain number of elements for them to work. The tabs
must be created from a list element (ordered or unordered) and each list item must
contain an <a> element. Each link will need to have a corresponding element with
a specified id that is associated with the href attribute of the link. We'll clarify the
exact structure of these elements after the first example.

In a new file in your text editor, create the following page:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Tabs</title>
 <link rel="stylesheet" href="development-bundle/themes/base/jquery.
ui.all.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"> </script>
 <script src="development-bundle/ui/jquery.ui.widget.js"> </script>
 <script src="development-bundle/ui/jquery.ui.tabs.js"> </script>
 <script>
 $(document).ready(function($){
 $("#myTabs").tabs();
 });
 </script>
</head>
<body>
 <div id="myTabs">

 Tab 1
 Tab 2

Chapter 3

[61]

 <div id="a">This is the content panel linked to the first tab, it
is shown by default.</div>
 <div id="b">This content is linked to the second tab and will be
shown when its tab is clicked.</div>
 </div>
</body>
</html>

Save the code as tabs1.html in your jqueryui working folder. Let's review what
was used. The following script and CSS resources are needed for the default tab
widget configuration:

• jquery.ui.all.css

• jquery-2.0.3.js

• jquery.ui.core.js

• jquery.ui.widget.js

• jquery.ui.tabs.js

A tab widget is usually constructed from several standard HTML elements arranged
in a specific manner:

• An outer container element, on which the tabs method is called
• A list element (or)
• An <a> element within an element for each tab
• An element for the content panel of each tab

These elements can be either hardcoded into the page, added dynamically,
or can be a mixture of both, depending upon the requirements.

The list and anchor elements within the outer container make the clickable tab
headings, which are used to show the content section that is associated with the tab.
The href attribute of the link should be set to a fragment identifier, prefixed with #.
It should match the id attribute of the element that forms the content section with
which it is associated.

The content sections of each tab are created using <div> elements. The id attribute
is required and will be targeted by its corresponding <a> element. We've used <div>
elements in this example as the content panels for each tab, but other elements can
also be used as long as the relevant configuration is provided and the resulting
HTML is valid. The panelTemplate and tabTemplate configuration options can be
used to change the elements used to build the widget (see the Configuration section,
later in this chapter, for more information).

Using the Tabs Widget

[62]

We link to several <script> resources from the library in the <head> section before
its closing tag. Scripts can be loaded in the <head> section using the document.
ready() command, or at the end after stylesheets and page elements. Loading
them last is a proven technique for improving the apparent loading time of a page,
although it is debatable as to how much benefit this really brings in performance.

After linking first to jQuery, we link to the jquery.ui.core.js file that is required
by all components (except the effects, which have their own core file), and the
jquery.ui.widget.js file. We then link to the component's source file, which
in this case is jquery.ui.tabs.js.

After the three required script files from the library, we can turn to our custom
<script> element in which we add the code that creates the tabs. We encapsulate
the code used to create the tabs, within jQuery's DOMReady statement; this ensures
the code is only executed when the page elements are loaded and ready to be
manipulated. We also pass through the jQuery object ($) to help avoid conflicts
with other JavaScript-based libraries.

Within the DOMReady function we simply call the tabs() widget method on the
jQuery object, representing our tabs container element (the with an id of
myTabs). When we run this file in a browser, we should see the tabs as they
appeared in the first screenshot of this chapter (without the annotations of course).

Styling the Tabs widget
Using Firebug for Firefox (or another generic DOM explorer), we can see that
a variety of class names are added to the different underlying HTML elements.
Let's review these class names briefly and see how they contribute to the overall
appearance of the widget. To the outer container <div>, the following class names
are added:

Class name Purpose
ui-tabs Allows tab-specific structural CSS to be applied.
ui-widget Sets generic font styles that are inherited by nested elements.
ui-widget-content Provides theme-specific styles.
ui-corner-all Applies rounded corners to the container.

Chapter 3

[63]

The first element within the container is the element. This element receives the
following class names:

Class name Purpose
ui-tabs-nav Allows tab-specific structural CSS to be applied.
ui-helper-reset Neutralizes browser-specific styles applied to elements.
ui-helper-clearfi Applies the clear-fix, as this element has children that are

floated.
ui-widget-header Provides theme-specific styles.
ui-corner-all Applies rounded corners.

The individual elements that form a part of the tab headings are given the
following class names:

Class name Purpose
ui-state-default Applies the standard, non-active, non-selected, non-hovered

state to the tab headings.
ui-corner-top Applies rounded corners to the top edges of the elements.
ui-tabs-selected This is only applied to the active tab. On page-load of the

default implementation, this will be the first tab. Selecting
another tab will remove this class from the currently selected
tab and apply it to the newly selected tab.

ui-state-active Applies theme-specific styles to the currently selected tab.
This class name will be added to the tab that is currently
selected, just like the previous class name. The reason there
are two class names is that ui-tabs-selected provides
the functional CSS, while ui-state-active provides the
visual, decorative styles.

The <a> elements within each are not given any class names, but they still have
both structural and theme-specific styles applied to them by the framework.

Finally, the panel elements that hold each tab's content are given the following
class names:

Class name Purpose
ui-tabs-panel Applies structural CSS to the content panels.
ui-widget-content Applies theme-specific styles.
ui-corner-bottom Applies rounded corners to the bottom edges of

the content panels.

Using the Tabs Widget

[64]

All of these classes are added to the underlying HTML elements automatically by the
library. We don't need to manually add them when coding the page or adding the
base markup.

Applying a custom theme to the tabs
In the next example, we can see how to change the tabs' basic appearance. We
can override any rules used purely for display purposes with our own style rules
for quick and easy customization, without changing the rules related to the tab
functionality or structure.

In a new file in your text editor, create the following very small stylesheet:

#myTabs { min-width: 400px; padding: 5px; border: 1px solid
 #636363; background: #c2c2c2 none; }
.ui-widget-header { border: 0; background: #c2c2c2 none;
 font-family: Georgia; }
#myTabs .ui-widget-content { border: 1px solid #aaa; background:
 #fff none; font-size: 80%; }
.ui-state-default, .ui-widget-content .ui-state-default { border:
 1px solid #636363; background: #a2a2a2 none; }
.ui-state-active, .ui-widget-content .ui-state-active { border:
 1px solid #aaa; background: #fff none; }

This is all we need. Save the file as tabsTheme.css in your css folder. If you
compare the class names with the tables on the previous pages, you'll see that we're
overriding the theme-specific styles. Because we're overriding the theme file, we
need to meet or exceed the specificity of the selectors in theme.css. This is why we
target multiple selectors sometimes.

In this example, we override some of the rules in jquery.ui.tabs.css. We need to
use the selector from jquery.ui.theme.css (.ui-widget-content), along with the
ID selector of our container element in order to beat the double class selector .ui-
tabs .ui-tabs-panel.

Add the following reference to this new stylesheet in the <head> of tabs1.html and
resave the file as tabs2.html:

<link rel="stylesheet" href="css/tabsTheme.css">

Make sure the custom stylesheet we just created appears after the
jquery.ui.tabs.css file, because the rules that we are trying
to override will not be overridden by our custom theme file if the
stylesheets are not linked in the correct order.

Chapter 3

[65]

If we view the new page in a browser, it should appear as in the following
screenshot:

Our new theme isn't dramatically different from the default smoothness (as shown in
the first screenshot), but we can see how easy it is, and how little code it requires to
change the appearance of the widget to suit its environment.

Configuring the Tabs widget
Each of the different components in the library has a series of options that control
which features of the widget are enabled by default. An object literal, or an object
reference, can be passed in to the tabs() widget method to configure these options.

The available options to configure non-default behaviors are shown in the
following table:

Option Default value Used to…
active 0 Indicate which panel is open.
collapsible false Allow an active tab to be unselected if it is clicked, so

that all of the content panels are hidden and only the
tab headings are visible.

disabled false Disable the widget on page load. We can also pass an
array of tab indices (zero-based) in order to disable
specific tabs.

event "click" Specify the event that triggers the display of content
panels.

heightStyle content Control the height of the tabs widget and each panel.
Possible values are auto, fill, and content.

Using the Tabs Widget

[66]

Option Default value Used to…
hide null Control if or how to animate the hiding of the panel.
show null Control if or how to animate the showing of the panel.

Working with tabs
The Tabs widget provides a number of options we can use to perform actions,
such as selecting or disabling tabs, or adding transition effects. Over the next few
examples, we will take a look at some of these options, beginning with selecting tabs.

Selecting a tab
Let's look at how these configurable properties can be used. For example, let's
configure the widget so that the second tab is displayed when the page loads.
Remove the link for tabsTheme.css in the <head> of tabs2.html and change
the final <script> element so that it appears as follows:

<script>
 $(document).ready(function($){
 var tabOpts = {
 active: 1
 };
 $("#myTabs").tabs(tabOpts);
 })
</script>

Save this as tabs3.html. The different tabs and their associated content panels are
represented by a numerical index starting at zero. Specifying a different tab to open
by default is as easy as supplying its index number as the value for the active
property. When the page loads now, the second tab should be selected by default.

Along with changing which tab is selected, we can also specify that no tabs should
be initially selected by supplying a value for collapsible in addition to the active
property. Change the <script> element from tabs4.html so that it appears
as follows:

<script>
 $(document).ready(function($){
 var tabOpts = {
 active: false,
 collapsible: true
 };

Chapter 3

[67]

 $("#myTabs").tabs(tabOpts);
})
</script>

This will cause the widget to appear as follows on page load:

Disabling a tab
You may want a particular tab to be disabled until a certain condition is met. This
is easily achieved by manipulating the disabled property of the tabs. Change the
tabOpts configuration object in tabs4.html to this:

var tabOpts = {
 disabled: [1]
};

Save this as tabs5.html in your jqueryui folder. In this example, we remove the
active property and add the index of the second tab to the disabled array. We could
add the indices of other tabs to this array as well, separated by a comma, to disable
multiple tabs by default.

When the page is loaded in a browser, the second tab has the class name ui-widget-
disabled applied to it, and will pick up the disabled styles from ui.theme.css. It will
not respond to mouse interactions in any way, as shown in the following screenshot:

Using the Tabs Widget

[68]

Adding transition effects
We can easily add attractive transition effects using the show property. These are
displayed when tabs are opened or closed. This option is configured using another
object literal (or an array) inside our configuration object, which enables one or
more effects. We can enable fading effects, for example, using the following
configuration object:

var tabOpts = {
 show: { effect: "toggle", duration: "slow" }
};

Save this file as tabs6.html in your jqueryui folder. The show object that we
created has two properties. The first property is the animation to use when changing
tabs. To use fading animations we specify effect, as this is what is adjusted.
Toggling the effect simply reverses its current setting. If it is currently visible, it is
made invisible and vice versa. You can use any one of the effects options, such as
toggle, fadeIn, or slideDown; we will look at effects in more detail in Chapter 14,
UI Effects.

The second property, duration, specifies the speed at which the animation occurs.
The values for this property are slow or fast, which correspond to 200 and 600
milliseconds, respectively. Any other string will result in the default duration of
400 milliseconds. We can also supply an integer representing the number of
milliseconds the animation should run for.

When we run the file we can see that the tab content slowly fades-out as a tab closes
and fades-in when a new tab opens. Both animations occur during a single tab
interaction. To only show the animation once, when a tab closes, for example, we
would need to nest the show object within an array. Change the configuration object
in tabs6.html so that it appears as follows:

var tabOpts = {
 show: [{ opacity: "toggle", duration: "slow" }, null]
};

The closing effect of the currently open content panel is contained within an object
in the first item of the array, and the opening animation of the new tab is the second.
By specifying null as the second item in the array, we disable the opening animations
when a new tab is selected. Save this as tabs7.html and view the results in a browser.

We can also specify different animations and speeds for opening and closing
animations, by adding another object as the second array item instead of null.

Chapter 3

[69]

Collapsing a tab
By default when the currently active tab is clicked, nothing happens. But we can
change this so that the currently open content panel closes when its tab heading is
selected. Change the configuration object in tabs7.html so that it appears as follows:

var tabOpts = {
 collapsible: true
};

Save this version as tabs8.html. This option allows all of the content panels to
be closed, much like when we supplied null to the selected property earlier on.
Clicking a deactivated tab will select the tab and show its associated content panel.
Clicking the same tab again will close it, shrinking the widget down so that only tab
headings are visible.

Working with the Tab events
The Tabs widget defines a series of useful options that allow you to add callback
functions to perform different actions, when certain events exposed by the widget
are detected. The following table lists the configuration options that are able to
accept executable functions on an event:

Event Fired when...
add A new tab is added.
disable A tab is disabled.
enable A tab is enabled.
load A tab's remote data has loaded.
remove A tab is removed.
select A tab is selected.
show A tab is shown.

Each component of the library has callback options (such as those in the previous
table), which are tuned to look for key moments in any visitor interactions. Any
functions we use within these callbacks are usually executed before the change
happens. Therefore, you can return false from your callback and prevent the action
from occurring.

Using the Tabs Widget

[70]

In our next example, we will look at how easy it is to react to a particular tab being
selected, using the standard non-bind technique. Change the final <script> element
in tabs8.html so that it appears as follows:

$(document).ready(function($){
 var handleSelect = function(e, tab) {
 $("<p></p>", {
 text: "Tab at index " + tab.newTab.index() + " selected",
 "class": "status-message ui-corner-all"
 }).appendTo(".ui-tabs-nav", "#myTabs").fadeOut(5000,
 function() {
 $(this).remove();
 });
 },
 tabOpts = {
 beforeActivate: handleSelect
 }
 $("#myTabs").tabs(tabOpts);
});

Save this file as tabs9.html. We also need a little CSS to complete this example. In
the <head> of the page we just created, add the following <link> element:

<link rel="stylesheet" href="css/tabSelect.css">

Then in a new page in your text editor, add the following code:

.status-message { padding:11px 8px 10px; margin:0; border:1px
 solid #aaa; position: absolute; right: 10px; top: 9px; font-size:
 11px; background-color: #fff; }
.ui-widget-header { color: #2e6e9e; font-weight: bold; }

Save this file as tabSelect.css in the css folder. In this example, we've linked
to multiple CSS files in a production environment; you may want to consider
combining CSS into one file, to minimize CSS HTTP requests. Although this will
help with performance on larger sites, it does come at the expense of not being able
to drop in replacement jQuery UI CSS files, as you will lose any customizations you
have added.

We made use of the beforeActivate callback in this example to create a new
element in jQuery using the <p> tag, although the principle is the same for any of the
other custom events fired by tabs. The name of our callback function is provided as
the value of the beforeActivate property in our configuration object.

Two arguments will be passed automatically by the widget to the callback function
we define, when it is executed. These are the original event object and custom object
containing useful properties from the tab that was selected.

Chapter 3

[71]

To find out which of the tabs was clicked, we can look at the index() property of the
second object (remember these are zero-based indices). This is added, along with a
little explanatory text, to a paragraph element that we create on the fly and append
to the widget header:

Whenever a tab is selected, the paragraph before it fades away. Note that the event is
fired before the change occurs.

Binding to events
Using the event callbacks exposed by each component is the standard way of
handling interactions. However, in addition to the callbacks listed in the previous
table, we can also hook into another set of events fired by each component at
different times.

We can use the standard jQuery on() method to bind an event handler to a custom
event, fired by the Tabs widget in the same way that we could bind to a standard
DOM event, such as a click.

The following table lists the tab widget's custom binding events and their triggers:

Event Fired when...
tabsselect A tab is selected.
tabsload A remote tab has loaded.
tabsshow A tab is shown.
tabsadd A tab has been added to the interface.
tabsremove A tab has been removed from the interface.
tabsdisable A tab has been disabled.
tabsenable A tab has been enabled.

Using the Tabs Widget

[72]

The first three events are fired in succession, in the order of events in which
they appear in the table. If no tabs are remote, then tabsbeforeactivate and
tabsactivate are fired in that order. These events can be fired before or after
the action has occurred, depending on which event is used.

Let's see this type of event usage in action; change the final <script> element in
tabs8.html to the following:

<script>
 $(document).ready(function($){
 $("#myTabs").tabs();
 $("#myTabs").on("tabsbeforeactivate", function(e, tab) {
 alert("The tab at index " + tab.newTab.index() + " was
selected");
 });
 });
</script>

Save this change as tabs10.html. Binding to the tabsbeforeactivate in this
way produces the same result as the previous example, using the select callback
function. Like last time, the alert should appear before the new tab is activated.

All the events exposed by all the widgets can be used with the on() method, by
simply prefixing the name of the widget to the name of the event.

Although each callback name is spelled using camelCase
format, each event name must be written in lowercase.

Using tab methods
The Tabs widget contains many different methods, which means it has a rich set of
behaviors. It also supports the implementation of advanced functionality that allows
us to work with it programmatically. Let's take a look at the methods, which are
listed in the following table:

Method Used to...
destroy Completely remove the tabs widget.
disable Disable all tabs.
enable Enable all tabs.
load Reload an AJAX tab's content, specifying the index number of the tab.
option Get or set any property after the widget has been initialized.
widget Return the element that the tabs() widget method is called on.

Chapter 3

[73]

Enabling and disabling tabs
We can make use of the enable or disable methods to programmatically enable
or disable specific tabs. This will effectively switch on any tabs that were initially
disabled or disable those that are currently active.

Let's use the enable method to switch on a tab, which we disabled by default in an
earlier example. Add the following new <button> elements directly after the existing
markup for the tabs widget in tabs5.html:

<button type="button" id="enable">Enable</button>
<button type="button" id="disable">Disable</button>

Next, change the final <script> element so that it appears as follows:

<script>
$(document).ready(function($){
 $("#myTabs").tabs({
 disabled: [1]
 });
 $("#enable").click(function() {
 $("#myTabs").tabs("enable", 1);
 });
 $("#disable").click(function() {
 $("#myTabs").tabs("disable", 1);
 });
});
</script>

Save the changed file as tabs11.html. On the page, we've added two new <button>
elements—one will be used to enable the disabled tab and the other is used to disable
it again.

In the JavaScript, we use the click event of the Enable button to call the tabs()
widget method. To do this, we pass the string enable to the tabs() method as
the first argument. Additionally, we pass the index number of the tab we want to
enable as a second argument. All methods in jQuery UI are called in this way. We
specify the name of the method we wish to call as the first argument to the widget
method. The disable method is used in the same way. Don't forget that we can use
both of these methods without additional arguments, in order to enable or disable
the entire widget.

Using the Tabs Widget

[74]

Adding and removing tabs
Along with enabling and disabling tabs programmatically, we can also remove
them or add completely new tabs on the fly. In tabs11.html, remove the existing
<button> elements and add the following:

<label>Enter a tab to remove:</label>
<input for="indexNum" id="indexNum">
<button type="button" id="remove">Remove!</button>
<button type="button" id="add">Add a new tab!</button>

Then change the final <script> element as follows:

<script>
 $(document).ready(function($){
 $("#myTabs").tabs();
 $("#remove").click(function() {
 var indexTab = parseInt($("#indexNum").val(), 10);
 var tab = $("#myTabs").find(".ui-tabs-nav li:eq(" +
 indexTab + ")").remove();
 $("#myTabs").tabs("refresh");
 });
 $("#add").click(function() {
 $("New Tab")
.appendTo("#myTabs .ui-tabs-nav");
 $("#myTabs").tabs("refresh");
 });
 });
</script>

We also need to provide some content that will be loaded into the tab remotely—in a
new file, add Remote tab content!, and save it as remoteTab.txt.

Save this as tabs12.html—to preview this example, you will need to view it using a
local webserver such as WAMP (for Windows), or MAMP (Apple Macs). The demo
will not work if accessed using the filesystem.

On the page we've added a new instructional <label>, an <input>, and a <button>
that are used to specify a tab to remove. We've also added a second <button>, which
is used to add a new tab.

In <script>, the first of our new functions handle removing a tab, using the remove
method. This method uses jQuery's :eq() function to find the index of the tab to
be removed. We get the value entered into the textbox and use the index to identify
which tab to remove, before using the refresh method to update the instance
of Tabs.

Chapter 3

[75]

The data returned by jQuery's val() method is in string format, so
we wrap the call in the JavaScript parseInt function to convert it.

The add method, which adds a new tab to the widget, works using a similar process.
Here, we create an instance of a list item, before using jQuery's appendTo() method
to add it to the existing Tabs and updating them. In this example, we've specified
that the content found in the remoteTab.txt file should be added as the content of
the new tab. Optionally, we can also specify the index number of where the new tab
should be inserted as a fourth argument. If the index is not supplied, the new tab
will be added as the last tab.

After adding and perhaps removing some tabs, the page should appear something
as follows:

Simulating clicks
There may be times when you want to programmatically select a particular tab
and show its content. This could happen as the result of some other interaction
by the visitor.

We can use the option method to do this, which is completely analogous with the
action of clicking a tab. Alter the final <script> block in tabs12.html, so that it
appears as follows:

<script>
 $(document).ready(function($){
 $("#myTabs").tabs();

Using the Tabs Widget

[76]

 $("#remove").click(function() {
 var indexTab = parseInt($("#indexNum").val(), 10);
 var tab = $("#myTabs").find(".ui-tabs-nav li:eq(" + indexTab +
")").remove();
 $("#myTabs").tabs("refresh");
 });
 $("#add").click(function() {
 $("New Tab").
appendTo("#myTabs .ui-tabs-nav");
 $("#myTabs").tabs("refresh");
 var tabCount = $("#myTabs ul li").length;
 $("#myTabs").tabs("option", "active", tabCount - 1);
 });
 });
</script>

Save this as tabs13.html in your jqueryui folder. Now when the new tab is added,
it is automatically selected. The option method requires two additional arguments:
the first is the name of the option to use, and the second is the ID of the tab to set
as active.

As any tab that we add will, by default (although this can be changed), be the last
tab in the interface, and as the tab indices are zero based, all we have to do is use the
length method to return the number of tabs, and then subtract 1 from this figure to
get the index. The result is passed to the option method.

Interestingly, selecting the newly added tab straight away fixes, or at least hides,
the extra space issue from the last example.

Destroying tabs
As shown earlier, we can easily add tabs but there may be occasions when you need
to completely destroy a set of tabs. This is possible using the destroy method, which
is common to all the widgets found in jQuery UI. Let's see how it works. In tabs13.
html, remove the existing markup immediately after the existing
, and add a
new <button> as follows:

<button type="button" id="destroy">Destroy the tabs</button>

Next, change the final <script> element to this:

<script>
 $(document).ready(function($){
 $("#myTabs").tabs();

Chapter 3

[77]

 $("#destroy").click(function() {
 $("#myTabs").tabs("destroy");
 });

 });
</script>

Save this file as tabs14.html. The destroy method, which that we invoke with a
click on the button, completely removes the Tabs widget, returning the underlying
HTML to its original state. After the button has been clicked, you should see a
standard HTML list element and the text from each tab, similar to the following
screenshot:

Only the original tabs hard coded in the page will remain if the tabs are
destroyed, not those added with the add method.

Getting and setting options
Like the destroy method, the option method is exposed by all the different
components found in the library. This method is used to work with the configurable
options and functions in both getter and setter modes. Let's look at a basic example;
add the following <button> after the Tabs widget in tabs9.html:

<button type="button" id="show">Show Selected!</button>

Using the Tabs Widget

[78]

Then change the final <script> element so that it is as follows:

<script>
$(document).ready(function($){
 $("#myTabs").tabs();
 $("#show").click(function() {
 $("<p></p>", {
 text: "Tab at index " + $("#myTabs").tabs("option", "active") +
" is active"
 }).appendTo(".ui-tabs-nav").fadeOut(5000);
 });
});
</script>

We also need to tweak the positioning of the text shown, so remove the link to
tabSelect.css in the existing code, and add the following in the <head> section:

 <style type="text/css">
 ul.ui-tabs-nav p { margin-top: 2px; margin-left: 210px;}
 </style>

Save this file as tabs15.html. The <button> on the page has been changed, so that
it shows the currently active tab. All we do is add the index of the selected tab to a
status bar message, as we did in the earlier example. We get the active option by
passing the string active as the second argument. Any value of any option can be
accessed in this way.

Chaining UI methods
Chaining widget methods (either with other UI methods, or core
jQuery ones) is possible because like the methods found in the
underlying jQuery library, they almost always return the jQuery
($) object. Note that this is not possible when using getter methods
that return data, such as the length method.

To trigger setter mode instead, we can supply a third argument containing the new
value of the option that we'd like to set. Therefore, to change the value of the active
option, in order to change the tab being displayed, we could use the following
HTML instead,for this, alter the HTML as shown, at the bottom of tabs15.html:

<label for="newIndex">Enter a tab index to activate</label>
<input id="newIndex" type="text">
<button type="button2" id="set">Change Selected</button>

Chapter 3

[79]

Next, append the click-handler as shown:

<script>
 $(document).ready(function($){
 $("#myTabs").tabs();
 $("#set").click(function() {
 $("#myTabs").tabs("option", "active", parseInt($("#newIndex").
val()));
 });
 });
</script>

Save this as tabs16.html. The new page contains a <label>, an <input>, as well as
a <button> that is used to harvest the index number that the active option should
be set to. When the button is clicked, our code will retrieve the value of the <input>
and use it to change the selected index. By supplying the new value we put the
method in setter mode.

When we run this page in our browser, we should see that we can switch to
the second tab by entering its index number as 1 and clicking on the Change
Selected button.

Working with AJAX tabs
We saw how we can use the add method to add an AJAX tab to the widget
dynamically, but we can also add remote content to tabs using the underlying
HTML. In this example, we want the tab that will display the remote content to be
available all the time, not just after clicking on the button. This example will also
only work correctly using a full web server with PHP installed and configured, such
as WAMP (PC) or MAMP (Macs).

Add the following new <a> element to the underlying HTML for the widget in
tabs16.html:

AJAX Tab

We should also remove the <button> from the last example.

The final <script> element can be used to call the tabs method; no additional
configuration is required:

$("#myTabs").tabs();

Using the Tabs Widget

[80]

Save this as tabs17.html. All we're doing is specifying the path to the remote file
(the same one we used in the earlier example) using the href attribute of an <a>
element in the underlying markup, from which the tabs are created.

Unlike static tabs, we don't need a corresponding <div> element with an id that
matches the href of the link. The additional elements required for the tab content
will be generated automatically by the widget.

If you use a DOM explorer, you can see that the file path that we added to link to the
remote tab has been removed. Instead, a new fragment identifier has been generated
and set as href. The new fragment is also added as the id of the new tab (minus the
symbol of course), so that the tab heading still shows the tab.

Along with loading data from external files, it can also be loaded from URLs. This is
great when retrieving content from a database using query strings or a web service.
Methods related to AJAX tabs include the load and url methods. The load method
is used to load and reload the contents of an AJAX tab, which could come in handy
for refreshing content that changes very frequently.

There is no inherent cross-domain support built into the AJAX
functionality of tabs widget. Therefore, unless additional PHP
or some other server-scripting language is employed as a proxy,
you may wish to make use of JavaScript Object Notation (JSON)
structured data and jQuery's JSONP functionality. Files and URLs
should be under the same domain as the page running the widget.

Changing the URL of a remote tab's
content
The url method is used to change the URL that the AJAX tab retrieves its content
from. Let's look at a brief example of these two methods in action. There are also a
number of properties related to AJAX functionality.

Add the following new <select> element after the Tabs widget in tabs17.html:

<select id="fileChooser">
 <option value="remoteTab1.txt">remoteTab1</option>
 <option value="remoteTab2.txt">remoteTab2</option>
</select>

Chapter 3

[81]

Then change the final <script> element to the following:

<script>
 $(document).ready(function($){
 $("#myTabs").tabs();
 $("#fileChooser").change(function() {
 $("#myTabs").tabs("option", "active", "2");
 $("#myTabs").find("ul>li a").attr("href", $(this).val());
 $("#myTabs").tabs("load", "active");
 });
 });
</script>

Save the new file as tabs18.html. We've added a simple <select> element to the
page that lets you choose the content to display in the AJAX tab. In the JavaScript,
we set a change handler for <select> and specified an anonymous function to be
executed each time the event is detected.

This function first sets the active tab; in this instance, AJAX Tab, which has an ID
of 2 – then uses jQuery's find() method to set the href attribute for the tab's panel,
before using the load() method to insert the contents into the tab.

We'll also need a second local content file. Change the text in the remoteTab1.txt
file and resave it as remoteTab2.txt.

Run the new file in a browser and use the <select> dropdown to choose the second
remote file then switch to the remote tab. The contents of the second text file should
be displayed.

Displaying data obtained via JSONP
For our final example, let's pull in some external content for our final tabs example.
If we use the Tabs widget, in conjunction with the standard jQuery library getJSON
method, we can bypass the cross-domain exclusion policy and pull-in a feed from
another domain, to display in a tab. In tabs19.html, change the Tabs widget so that
it appears as follows:

<div id="myTabs">

 Nebula Information
 Images

 <div id="a">

Using the Tabs Widget

[82]

 <p>A nebulae is an interstellar cloud of dust, hydrogen gas, and
plasma. It is the first stage of a star's cycle. In these regions
the formations of gas, dust, and other materials clump together to
form larger masses, which attract further matter, and eventually will
become big enough to form stars. The remaining materials are then
believed to form planets and other planetary system objects. Many
nebulae form from the gravitational collapse of diffused gas in the
interstellar medium or ISM. As the material collapses under its own
weight, massive stars may form in the center, and their ultraviolet
radiation ionizes the surrounding gas, making it visible at optical
wavelengths.</p>
 </div>
 <div id="flickr"></div>
</div>

Next, change the final <script> to the following:

<script>
 $(document).ready(function($){
 var img = $("", {
 height: 100,
 width: 100
 }),
 tabOpts = {
 beforeActivate: function(event, ui) {
 $('#myTabs a[href="#flickr"]').parent().index() != -1 ?
 getData() : null;
 function getData() {
 $("#flickr").empty();
 $.getJSON("http://api.flickr.com/services/feeds/
 photos_public.gne?tags=nebula&format=json&jsoncallback=?",
 function(data) {
 $.each(data.items, function(i,item){
 img.clone().attr("src", item.media.m)
 .appendTo("#flickr");
 if (i == 5) {
 return false;
 }
 });
 });
 }
 }
 };
 $("#myTabs").tabs(tabOpts);
});
</script>

Chapter 3

[83]

Save the file as tabs19.html in your jqueryui folder. We first create a new
element and store it in a variable. We also create a configuration object and add the
select event option to it. Every time a tab is selected, the function we set as the
value of this option will check to see if it was the tab with an id of flickr that was
selected. If it was, the jQuery getJSON method is used to retrieve an image feed from
http://www.flickr.com.

Once the data is returned, first empty the contents of the Flickr tab to prevent a
build-up of images, then use jQuery's each() utility method to iterate over each
object within the returned JSON, and create a clone of our stored image.

Each new copy of the image has its src attribute set using the information from the
current feed object, and is then added to the empty Flickr tab. Once iteration over six
of the objects in the feed has occurred, we exit jQuery's each method. It's that simple.

When we view the page and select the Images tab, after a short delay we should see
six new images, as seen in the following screenshot:

Summary
The Tabs widget is an excellent way of saving space on your page by organizing
related (or even completely unrelated) sections of content that can be shown or
hidden, with simple click-input from your visitors. It also lends an air of interactivity
to your site that can help improve the overall functionality and appeal of the page
on which it is used.

Let's review what was covered in this chapter. We first looked at how, with just
a little underlying HTML and a single line of jQuery-flavored JavaScript, we can
implement the default Tabs widget.

Using the Tabs Widget

[84]

We then saw how easy it is to add our own basic styling for the Tabs widget
so that its appearance, but not its behavior, is altered. We already know that in
addition to this, we can use a predesigned theme or create a completely new
theme using ThemeRoller.

We then moved on, to look at the set of configurable options exposed by the tabs'
API. With these, we can enable or disable different options that the widget supports,
such as whether tabs are selected by clicks or another event and whether certain tabs
are disabled when the widget is rendered.

We took some time to look at how we can use a range of predefined callback options
that allow us to execute arbitrary code, when different events are detected. We also
saw that the jQuery on() method can listen for the same events if necessary.

Following the configurable options, we covered the range of methods that we can
use to programmatically make the tabs perform different actions, such as simulating
a click on a tab, enabling or disabling a tab, and adding or removing tabs.

We briefly looked at some of the more advanced functionalities supported by the
Tabs widget such as AJAX tabs, and obtaining information using JSONP. Both these
techniques are easy to use and can add value to any implementation.

In the next chapter, we'll move on to look at the accordion widget, which like
the Tabs widget, is used to group content into related sections that are shown
one at a time.

The Accordion Widget
The accordion widget is another UI widget that allows you to group the content into
separate panels that can be opened or closed by visitor interaction. Therefore, most
of its content is initially hidden from view, much like the tabs widget that we looked
at in the previous chapter.

Each container has a heading element associated with it that is used to open the
container and display the content. When you click on a heading, its content will slide
into view (with an animation) below it. The currently visible content is hidden, while
the new content is shown whenever we click on an accordion heading.

In this chapter, we are going to cover the following topics:

• The structure of an accordion widget
• The default implementation of an accordion
• Adding custom styling
• Using the configurable options to set different behaviors
• Working with methods for controlling the accordion
• The built-in types of animation
• Custom accordion events

The accordion widget is a robust and highly configurable widget that allows you
to save the space on your web pages by displaying only a single panel of content
at any time.

The Accordion Widget

[86]

The following screenshot shows an example of an accordion widget:

It's easy for our visitors to use and easy for us to implement. It has a range of
configurable options that can be used to customize its appearance and behavior,
and exposes a series of methods that allow you to control it programmatically. It
also comes with a rich set of interaction events that we can use to hook into key
interactions between our visitors and the widget.

The height of the accordion's container element will be set automatically so that there
is room to show the tallest content panel in addition to the headers. Also, by default,
the size of the widget will remain fixed so that it won't push other elements on the
page around it out of the way when content panels open or close.

Structuring the accordion widget
Let's take a moment to familiarize ourselves with the underlying markup that an
accordion is made of. Within the outer container is a series of links. These links are
the headings within the accordion and each heading will have a corresponding
content panel that opens when the header is clicked.

It's worth remembering that only one content panel can be open at a time
when using the accordion widget. In a blank page in your text editor, create
the following page:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Accordion</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <script src="js/jquery-2.0.3.js"></script>

Chapter 4

[87]

 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"> </script>
 <script src="development-bundle/ui/jquery.ui.accordion.js"> </
script>
 <script>
 $(document).ready(function($) {
 $("#myAccordion").accordion();
 });
 </script>
</head>
<body>
 <div id="myAccordion">
 <h2>Header 1</h2>
 <div>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean sollicitudin. Sed interdum pulvinar justo.
 Nam iaculis volutpat ligula. Integer vitae felis quis diam laoreet
ullamcorper.</div>

 <h2>Header 2</h2>
 <div>Etiam tincidunt est vitae est. Ut posuere, mauris at sodales
rutrum, turpis tellus fermentum metus, ut
 bibendum velit enim eu lectus. Suspendisse potenti.</div>

 <h2>Header 3</h2>
 <div>Donec at dolor ac metus pharetra aliquam. Suspendisse purus.
Fusce tempor ultrices libero. Sed
 quis nunc. Pellentesque tincidunt viverra felis. Integer elit
mauris, egestas ultricies, gravida vitae,
 feugiat a, tellus.</div>
 </div>
</body>
</html>

Save the file as accordion1.html in the jqueryui folder, and try it out in a browser.
The widget should appear as it did in the screenshot at the start of the chapter, fully
skinned and ready for action.

The following list shows the required dependencies of the widget:

• jquery.ui.all.css

• jquery-2.0.3.js

• jquery.ui.core.js

• jquery.ui.widget.js

• jquery.ui.accordion.js

The Accordion Widget

[88]

As we saw with the tabs widget, each widget has its own source file (although it
may be dependent on others to provide functionality); these must be referenced in
the correct order for the widget to work properly. The jQuery library must always
appear first, followed by the jquery.ui.core.js file. After that, the file that
contains the required dependencies must follow. These files should be present before
referencing the widget's on-script file. The library components will not function as
expected if the files are not loaded in the correct order.

The underlying markup required for the accordion is flexible, and the widget can
be constructed from a variety of different structures. In this example, the accordion
headings are formed from links wrapped in the <h2> elements, and the content
panels are the simple <div> elements.

For the accordion to function correctly, each content panel should appear directly
after its corresponding header. All of the elements for the widget are enclosed
within a <div> container that is targeted with the accordion() widget method.

After the required script dependencies from the library, we use a custom <script>
block to transform the underlying markup into the accordion.

To initialize the widget, we use a simple ID selector $("#myAccordion"), to
specify the element that contains the markup for the widget, and then chain the
accordion() widget method after the selector to create the accordion.

In this example, we used an empty fragment (#) as the value of the href attribute
in our tab heading elements, such as:

<h2>Header 1</h2>

You should note that any URL supplied for the accordion headers will not be
followed when the header is clicked in the default implementation.

Similar to the tabs widget that we looked at in the previous chapter, the underlying
markup that is transformed into the accordion has a series of classnames added to it
when the widget is initialized.

A number of different elements that make up the widget are given role and
aria- attributes.

Chapter 4

[89]

Accessible Rich Internet Applications (ARIA) is a W3C recommendation
for ensuring that rich-internet applications remain accessible to assisted
technologies.

The accordion panels that are initially hidden from view are given the aria-
expanded = "false" attribute to ensure that screen readers don't discard or cannot
access content that is hidden using display: none. This makes the accordion widget
highly accessible; it stops the reader from having to wade through lots of content
unnecessarily, that might be hidden, and tells the user that they can also expand or
collapse the panel, depending on the current value of the aria-expanded attribute.

Styling the accordion
ThemeRoller is the recommended tool for choosing or creating the theme of the
accordion widget, but there may be times when we want to considerably change
the look and style of the widget beyond what is possible with ThemeRoller. In that
case, we can just style our own accordion—in our example, we're going to flatten
the styling effect, add a border, and remove the corners from some of the elements
within the accordion widget.

In a new file in your text editor add the following code:

#myAccordion { width: 400px; border: 1px solid #636363; padding-
bottom: 1px; }
#myAccordion .ui-state-active { background: #fff; }
.ui-accordion-header { border: 1px solid #fff; font-family:
 Georgia; background: #e2e2e2 none; }
.ui-widget-content { font-size: 70%; border: none; }
.ui-corner-all { border-radius: 0; }
.ui-accordion .ui-accordion-header { margin: 0 0 -1px; }

Save this file as accordionTheme.css in the css folder, and link to it after the jQuery
UI style sheet in the <head> element of accordion1.html:

<link rel="stylesheet" href="css/accordionTheme.css">

The Accordion Widget

[90]

Save the new file as accordion2.html in the jqueryui folder and view it in a
browser. It should appear something like as follows:

As you can see from the preceding screenshot, we've disabled the built-in rounded
corners that are added by the theme file and have set alternative fonts, background
colors, and border colors. We haven't changed the widget much, but we haven't used
many style rules. It would be easy to continue overriding rules in this way to build a
much more complex custom theme.

Configuring an accordion
The accordion has a range of configurable options that allow us to change the default
behavior of the widget. The following table lists the available options, their default
values, and gives a brief description of their usage:

Option Default value Use
active first child (the first

panel is open)
Sets the active heading on page
load.

animate {} Controls the animation of panels.
collapsible false Allows all of the content panels to

be closed at the same time.
disabled false Disables the widget.

Chapter 4

[91]

Option Default value Use
event "click" Specifies the event on headers that

trigger drawers to open.
header "> li >:first-

child,>
:not(li):even"

Sets the selector for header
elements. Although it looks
complex, this is a standard jQuery
selector that simply targets the
first child within every odd
element.

heightStyle "auto" Controls the height of the accordion
and each panel

icons 'header': 'ui-
icontriangle-1-e',
'headerSelected':
'uiicon- triangle-
1-s'

Specifies the icons for the header
elements and the selected state.

Changing the trigger event
Most of the options are self-explanatory, and the values they accept are usually
Boolean, string, or element selectors. Let's put some of them to use, so that we can
explore their functionality. Change the final <script> element in accordion2.html
so that it appears as follows:

<script>
 $(document).ready(function($) {
 var accOpts = {
 event:"mouseover"
 }
 $("#myAccordion").accordion(accOpts);
 });
</script>

We no longer need the custom stylesheet added in accordion2.html, so go ahead
and remove the following line from the code:

 <link rel="stylesheet" href="css/accordionTheme.css">

Save these changes as accordion3.html. First, we create a new object literal called
accOpts that contains the event key and the mouseover value, which is the event
we wish to use to trigger the opening of an accordion panel. We pass this object to
the accordion() method as an argument and it overrides the default option of the
widget, which is click.

The Accordion Widget

[92]

The mouseover event is commonly used as an alternative trigger event. Other events
can also be used, for example, we can set keydown as the event, but in order for this
to work, the accordion panel that we wish to open must already be focused. You
should note that you can also set options using an inline object within the widget
method, without creating a separate object. Using the following code would be
equally as effective, and would often be the preferred way of coding, which we
will use for the remainder of the book:

<script>
 $(function() {
 $("#myAccordion").accordion({
 event: "mouseover"
 });
 });
</script>

Changing the default active header
By default, the first header of the accordion will be selected when the widget is
rendered with its content panel open. We can change which header is selected on
page load using the active option. Change the configuration <script> block in
accordion3.html so that it appears as follows:

 <script>
 $(document).ready(function($) {
 $("#myAccordion").accordion({
 active: 2
 });
 });
 </script>

Save this version as accordion4.html. We set the active option to the integer 2 to
open the third content panel by default, and similar to the tab headers that we saw
in the previous chapter, accordion's headers use a zero-based index. Along with an
integer, this option also accepts a jQuery selector or raw DOM element.

We can also use the Boolean value of false to configure the accordion so that none
of the content panels are open by default. Change the configuration object once again
to the following:

 <script>
 $(document).ready(function($) {
 $("#myAccordion").accordion({
 collapsible: true,
 active: false

Chapter 4

[93]

 });
 });
 </script>

If you use the active: false option, as shown here, you
must also include the collapsible option too, which must
be set to true for active to work correctly.

Save this as accordion5.html. Now when the page loads, all of the content panels
are hidden from view:

The accordion will remain closed until one of the headers is selected, which will
remain open unless the active header is clicked; at this point, its associated content
panel will close. For usability, it is best to avoid configuring both this and the
mouseover event option together in the same implementation, as the open panels
would close even when the user inadvertently moused off-and-back over them.

Filling the height of its container
If the heightStyle option is set, it will force the accordion to take the full height
of its container. In our examples so far, the container of the accordion has been the
body of the page, and the height of the body will only be the height of its largest
element. We'll need to use a new container element with a fixed height to see this
option in action.

The Accordion Widget

[94]

In the <head> element of accordion5.html, add the following <style> element:

<style>
 #container { height: 600px; width: 400px; }
</style>

Then wrap all of the underlying markup for the accordion in a new container
element as follows:

<div id="container">
 <div id="myAccordion">
 <h2>Header 1</h2>
 <div>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean sollicitudin. Sed interdum pulvinar justo. Nam iaculis volutpat
ligula. Integer vitae felis quis diam laoreet ullam corper.</div>
 <h2>Header 2</h2>
 <div>Etiam tincidunt est vitae est. Ut posuere, mauris at
sodales rutrum, turpis tellus fermentum metus, ut bibendum
velit enim eu lectus. Suspendisse potenti.</div>
 <h2>Header 3</h2>
 <div>Donec at dolor ac metus pharetra aliquam. Suspendisse purus.
Fusce tempor ultrices libero. Sed quis nunc. Pellentesque tincidunt
viverra felis. Integer elit mauris, egestas ultricies, gravida vitae,
feugiat a, tellus.</div>
 </div>
</div>

Finally, change the configuration <script> to use the heightStyle option:

 <script>
 $(document).ready(function($) {
 $("#myAccordion").accordion({
 heightStyle: "fill"
 });
 });
 </script>

Save the changes as accordion6.html. The new container is given a fixed height and
width using the CSS specified in the <head> element of the page.

In most cases, you'll want to create a separate style sheet. For
our purposes, with just a single selector and two rules, using
the style tag in our HTML file is most convenient.

Chapter 4

[95]

The heightStyle option forces the accordion to take the entire height of its
container, and restricting the width of the container naturally reduces the width
of the widget too. This page should appear as follows:

Using the accordion animation
The accordion widget comes with the built-in slide animation that is enabled by
default, and has been present in all of our examples so far. Disabling this animation
is as easy as supplying false as the value of the animate option. Remove the
<style> tag from the <head> element of the page in accordion6.html, and remove
the additional container <div>, then change the configuration object so that it
appears as follows:

 <script>
 $(document).ready(function($) {
 $("#myAccordion").accordion({
 animate: false

The Accordion Widget

[96]

 });
 });
 </script>

Save this as accordion7.html. This will cause each content panel to open
immediately instead of sliding-open nicely whenever a header is clicked.

An alternate animation has also been built into the widget—the EaseOutBounce
animation. However, to use this alternate animation, we need to add a link to the
jquery.ui.effect.js file.

Directly after the link to jquery.ui.accordion.js at the top of the <head> element,
add the following line of code:

<script src="development-bundle/ui/jquery.ui.effect.js"></script>

Now, change the configuration object in our custom <script> element so that it
appears as follows:

 <script>
 $(document).ready(function($) {
 $("#myAccordion").accordion({
 animate: {
 duration: 600,
 down: {
 easing: "easeOutBounce",
 duration: 1000
 }
 }
 });
 });
 </script>

Save these changes as accordion8.html. Although the accordion panels close in
exactly the same way as they did in previous examples, when they open they bounce
a few times at the end of the animation. It's a great way to make the animation more
interesting, and as we saw in this example, it's easy to use.

In addition to the two preconfigured animations, we can also use any of the different
easing effects defined within the jquery.ui.effect.js file, including the following:

• easeInQuad

• easeInCubic

• easeInQuart

• easeInQuint

Chapter 4

[97]

• easeInSine

• easeInExpo

• easeInCirc

• easeInElastic

• easeInBack

• easeInBounce

Each of these easing methods is complimented by easeOut and easeInOut
counterparts. For the complete list, see the jquery.ui.effect.js file, or refer
to the easing table in Chapter 14, UI Effects.

See the jQuery UI demo site for some great examples of the
accordion effects at http://jqueryui.com/accordion/. The
effects can be applied to any widget that can be animated, such as
the accordion, tabs, dialog or datepicker.

The easing effects don't change the underlying animation, which will still be based
on the slide animation. But they do change how the animation progresses. For
example, we can make the content panels bounce both at the start and end of our
animation by using the easeInOutBounce easing effect in our configuration object:

<script>
 $(document).ready(function($) {
 $("#myAccordion").accordion({
 animate: {
 duration: 600,
 down: {
 easing: "easeInOutBounce",
 duration: 1000
 }
 }
 });
 });
</script>

Save this file as accordion9.html and view it in a browser. Most of the easing
effects have opposites, for example, instead of making the content panels bounce
at the end of the animation, we can make them bounce at the start of the animation
using the easeInBounce easing effect.

The Accordion Widget

[98]

Another option that has an effect on animations is the heightStyle property, which
resets height and overflow styles after each animation. Remember that animations
are enabled by default, but this option isn't. Change the configuration object in
accordion9.html to the following:

$(document).ready(function($) {
 $("#myAccordion").accordion({
 heightStyle: "content",
 animate: {
 duration: 600,
 down: {
 easing: "easeOutBounce",
 duration: 1000
 }
 }
 });
});

Save this as accordion10.html. Now when the page is run, the accordion will
not keep to a fixed size; it will grow or shrink depending on how much content is in
each panel. It doesn't make much of a difference in this example, but the property
really comes into its own when using dynamic content, when we may not always
know how much content will be within each panel when the panel content
changes frequently.

Listing the accordion events
The accordion exposes three custom events, which are listed in the following table:

Event Triggered when…
activate The active header has changed.
beforeActivate The active header is about to change
create The widget has been created

The activate event is triggered every time the active header (and its associated
content panel) is changed. It fires at the end of the content panel's opening
animation, or if animations are disabled, immediately (but still after the active
panel has been changed).

Chapter 4

[99]

The beforeActivate event is fired as soon as the new header is selected, that is,
before the opening animation (or before the active panel has changed, if animations
are disabled). The create event is fired as soon as the widget has been initialized.

Using the change event
Let's see how we can use these events in our accordion implementations. In
accordion10.html, change the configuration object so that it appears as follows:

$(document).ready(function($) {
 var statustext;
 $("#myAccordion").accordion({
 activate: function(e, ui) {
 $(".notify").remove();
 Statustext = $("<div />", {
 "class": "notify",
 text: [
 ui.newHeader.find("a").text(), "was activated,",
 ui.oldHeader.find("a").text(), "was closed"
].join(" ")
 });
 statusText.insertAfter("#myAccordion").fadeOut(2000, function(){
 $(this).remove();
 });
 }
 });
});

Save this as accordion11.html. In this example, we use the activate configuration
option to specify an anonymous callback function that is executed every time the
active panel is changed. This function will automatically receive two objects as
arguments. The first object is the event object, which contains the original browser
event object.

The second argument is an object, which contains useful information about the
widget, such as the header element that was activated (ui.newHeader) and the
header that was deactivated (ui.oldHeader). The second object is a jQuery object,
so we can call jQuery methods directly on it.

In this example, we navigate down to the <a> element within the header and display
its text content in an information box, which is appended to the page and then
removed after a short interval with a fading animation.

The Accordion Widget

[100]

For reference, the ui object also provides information on the content panels in the
form of ui.newPanel and ui.oldPanel properties.

Once a header has been activated, and its content panel is shown, the notification
will be generated:

Configuring the beforeActivate event
The beforeActivate event can be used in exactly the same way, and any callback
function we specify using this event also receives the e and ui objects to use.

Change the configuration object from the last example to as follows:

$(document).ready(function($) {
 var statusText;
 $("#myAccordion").accordion({
 beforeActivate: function(e, ui) {
 statusText = $("<div />", {
 "class": "notify",

Chapter 4

[101]

 text: [ui.newHeader.find("a").text(),
 "was activated,", ui.oldHeader.find("a").text(),
 "was closed"].join(" ");
 });
 statusText.insertAfter("#myAccordion")
 .fadeOut(2000, function() {
 $(this).remove();
 });
 }
 });
});

Save this as accordion12.html. All that's changed is the property that we're
targeting with our configuration object. When we run the page, we should find that
everything is exactly as it was before, except that our notification is produced before
the content panel animation instead of after it.

There are also events such as accordionactivate and accordionbeforeactivate
for use with the standard jQuery on() method, so that we can specify a callback
function to execute outside of the accordion configuration. Using an event handler
in this manner allows us to fire it precisely in response to specific events, rather than
when the page is rendered on screen.

As an example, let's rework the script block for the demo we've just created, to use
the accordionbeforeactivate event handler. If you wanted to use this format
instead, simply replace the <script> block from accordion12.html with the
below script – you can see the main changes highlighted in the code:

<script>
 $(document).ready(function($) {
 var statusText;
 $("#myAccordion").accordion();

 $(document).on("accordionbeforeactivate", function(e, ui) {
 statusText = $("<div />", {
 "class": "notify",
 text: [ui.newHeader.find("a").text(), "was activated, ",
ui.oldHeader.find("a").text(), "was closed"].join(" ")
 });
 statusText.insertAfter("#myAccordion")
 .fadeOut(2000, function() {
 $(this).remove();
 });
 });
 });
</script>

The Accordion Widget

[102]

In this example, we've moved the beforeActivate event handler out of the main
configuration call to Accordion, into its own event handler. Here, we've tied the
event handler to the document object; we could equally have bound it to an object
such as a button or hyperlink on the page.

Explaining the accordion methods
The accordion includes a selection of methods that allow you to control and
manipulate the behavior of the widget programmatically. Some of the methods are
common to each component of the library, such as the destroy method that is used
by every widget. The following table lists the sole method for the accordion widget:

Method Use
refresh Recalculates the height of the accordion panels;

the outcome is dependent on the content and the
heightStyle options

Header activation
The option method can be used to programmatically show or hide different
drawers. We can easily test this method using a textbox and a new button. In
accordion12.html, add the following new markup directly after the accordion:

<label for="activateChoice">Enter a header index to activate </
label>
<input id="activateChoice">
<button type="button" id="activate">Activate</button>

Now change the <script> element so that it appears as follows:

<script>
 $(document).ready(function($) {
 var drawer = parseInt($("#activateChoice").val(), 10);

 $("#myAccordion").accordion();
 $("#activate").click(function() {
 $("#myAccordion").accordion("option", "active", drawer);
 });
 });
</script>

Chapter 4

[103]

Save the new file as accordion13.html. The option method takes two additional
arguments. It expects to receive the name of the option to use, as well as the index
(zero-based) number of the header element to activate. In this example, we obtain
the header to activate, by returning the value of the text input. We convert it to
an integer using the parseInt() function of JavaScript because the val() jQuery
method returns a string.

If an index number that doesn't exist is specified, nothing will happen. The first
header will be activated if no index is specified. If a value other than an integer is
specified, nothing will happen; the script will fail silently, without any errors, and
the accordion will continue to function as normal.

Adding or removing panels
Prior to Version 1.10, the only way you could change the number of panels in an
accordion was to destroy it and reinitialize a new instance. While this worked, it was
not a satisfactory way to implement any changes, with this in mind the jQuery team
have worked hard to introduce a new method, which brings it in line with other
widgets, which don't require recreating in order to change any configured options.
Let's test this method using an input button, to create our new panels.

In accordion13.html, change the markup immediately below the accordion to the
following code:

<p>
 <button type="button" id="addAccordion">Add Accordion</button>
</p>

Alter the <script> block, so it appears as follows:

<script>
 $(document).ready(function($) {
 $("#myAccordion").accordion();
 $('#addAccordion').click(function() {
 var newDiv = "<h2>New Header</h2><div>New
Content</div>";
 $("#myAccordion").append(newDiv).accordion("refresh");
 });
 });
</script>

The Accordion Widget

[104]

Save the new file as accordion14.html. In this example, we've created the
additional markup content for a new accordion panel, which we assign to the newDiv
variable. This we append to the myAccordion <div>, which is then refreshed using
accordion's refresh method. This does not require any arguments.

We've specified the default text to be used within the markup
for each accordion panel. This could easily be altered to include
whatever text you need, as long as the same markup is maintained.

When the page loads, we can click on Add Accordion to add any number of new
accordion panels, as shown in the following screenshot:

However, if we need to remove an accordion panel, this involves a little more
work—the markup comes in two parts (header and panel), so we have to remove
both separately. Alter the markup immediately below the accordion:

<p>
 <label>Enter a tab to remove:</label>
 <input for="indexNum" id="indexNum">
 <button type="button" id="remove">Remove!</button>
</p>

Chapter 4

[105]

Now change the <script> block as follows:

<script>
 $(document).ready(function($) {
 function removeDrawer(removeIndex) {
 $("#myAccordion").find("h2").eq(removeIndex).remove();
 $("#myAccordion").find("div").eq(removeIndex).remove();
 $("#myAccordion").accordion("refresh");
 }
 $("#myAccordion").accordion();
 $("#remove").click(function(event, ui) {
 var removeIndex = $("#indexNum").val();
 removeDrawer(removeIndex);
 });
 });
</script>

Save the new file as accordion15.html; when the page loads, enter 1 and click on
Remove to remove the middle header and its panel:

In this example, we obtain the accordion to remove by returning the value of the text
input. If an index number that doesn't exist is specified, nothing will happen.

We then use eq() to find both the header and panel to remove, based on the given
value, once found, they are then removed. The final stage is to refresh the accordion
so a new header and panel can then be selected.

The Accordion Widget

[106]

Resizing an accordion panel
Change the underlying markup for the accordion widget in accordion10.html so
that the third header points to a remote text file and the third panel is empty. The
heading element should also be given an id attribute:

<div id="myAccordion">
 <h2>Header 1</h2>
 <div>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean sollicitudin. Sed interdum pulvinar justo. Nam iaculis volutpat
ligula. Integer vitae felis quis diam laoreet ullamcorper.</div>
 <h2>Header 2</h2>
 <div>Etiam tincidunt est vitae est. Ut posuere, mauris at sodales
rutrum, turpis tellus fermentum metus, ut bibendum velit enim eu
lectus. Suspendisse poten-ti.</div>
 <h2 id="remote">Remote</h2>
 <div></div>
</div>

You will see in the code that we've made reference to a text file, which will host our
remote content. In a new file within your editor, add some dummy text, and save it
with the name remoteAccordion.txt. (A copy of this file is available with the code
download that accompanies this book).

Then change the final <script> element so that it appears as follows:

$(document).ready(function($) {
 $("#myAccordion").accordion({
 beforeActivate: function(e, ui) {
 if (ui.newHeader.attr("id") === "remote") {
 $.get(ui.newHeader.find("a").attr("href"),
 function(data) {
 ui.newHeader.next().text(data);
 });
 }
 },
 activate: function(e, ui) {
 ui.newHeader.closest("#myAccordion").accordion("refresh");
 }
 });
});

Save this file as accordion16.html. To view this example correctly, you will need
to have installed a local web server, such as WAMP (for PC), or MAMP (Mac),
otherwise the contents of the remoteAccordion.txt file will not be rendered.

Chapter 4

[107]

In our configuration object, we use the beforeActivate event to check whether the
id of the element matches the id we gave to our remote accordion heading.

If it does, we get the contents of the text file specified in the href attribute of the
<a> element, using jQuery's get() method. If the request returns successfully, we
add the contents of the text file to the empty panel after the header. This all happens
before the panel opens.

We then use the activate event to call the refresh method on the accordion, after
the panel has opened.

When we run the page in a browser, the contents of the remote text file should
be sufficient to cause a scroll bar to appear within the content panel. Calling the
refresh method allows the widget to readjust itself, so that it can contain all of the
newly added content without displaying the scroll bar.

You will have seen from the code that we've used the newHeader property in two
places; one as a part of loading the content, and the second to refresh the panel once
content has been added. Let us explore this for a moment, as it is a key part of how
we can access content in any accordion.

The ui object contains four properties that allow us to access the content within
the header or panel of any accordion that has been added to a page. The full list
is as follows:

Header Access content in…

ui.newHeader The header that was just activated
ui.oldHeader The header that was just deactivated
ui.newPanel The panel that was just activated

ui.oldPanel The panel that was just deactivated

Once we've referenced the relevant panel or header, we are then free to manipulate
the contents at our discretion.

Accordion interoperability
Does the accordion widget play nicely with other widgets in the library? Let's take
a look and see whether the accordion can be combined with the widget from the
previous chapter, the tabs widget.

The Accordion Widget

[108]

Change the underlying markup for the accordion so that the third content panel now
contains the markup for a set of tabs, and the third heading no longer points to the
remote text file:

<div id="myAccordion">
 <h2>Header 1</h2>
 <div>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean sollicitudin. Sed interdum pulvinar justo.Nam iaculis volutpat
ligula. Integer vitae felis quis diam laoreet ullamcorper.</div>
 <h2>Header 2</h2>
 <div>Etiam tincidunt est vitae est. Ut posuere, mauris at sodales
rutrum, turpis tellus fermentum metus, ut bibendum velit enim eu
lectus. Suspendisse potenti.</div>
 <h2>Header 3</h2>
 <div>
 <div id="myTabs">

 Tab 1
 Tab 2

 <div id="0">This is the content panel linked to the first tab,
it is shown by default.</div>
 <div id="1">This content is linked to the second tab and will be
shown when its tab is clicked.</div>
 </div>
 </div>
</div>

We should also link to the source file for the tabs widget after the accordion's source
file; add this line immediately below the call to jquery.ui.widget.js in your code:

<script src="development-bundle/ui/jquery.ui.tabs.js"></script>

Next, change the final <script> element so that it appears as follows:

 <script>
 $(document).ready(function($) {
 $("#myAccordion").accordion();
 $("#myTabs").tabs();
 });
 </script>

Save this file as accordion17.html. All we've done with this file is to add a simple
tab structure to one of the accordion's content panels. In the <script> element at the
end of the page, we just call the accordion and tab's widget methods. No additional
or special configuration is required.

Chapter 4

[109]

When the third accordion heading is activated, the page should appear as follows:

The widgets are compatible the other way round; that is, we can have an accordion
within one of the tab's content panels without any adverse effects as well.

Using multiple accordions
We've seen how you can easily use the accordion with other widgets on the page.
What about using multiple accordions on the same page? This is equally not a
problem; we can have multiple accordions on the same page, as long as we configure
the call(s) to the accordion properly.

In your text editor, add the following markup immediately below the existing block
in accordion1.html:

 <p>
 <div class="myAccordion two">
 <h2>Header 1</h2>
 <div>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean sollicitudin. Sed interdum pulvinar justo. Nam iaculis volutpat
ligula. Integer vitae felis quis diam laoreet ullamcorper.
 </div>
 <h2>Header 2</h2>

The Accordion Widget

[110]

 <div>Etiam tincidunt est vitae est. Ut posuere, mauris at sodales
rutrum, turpis tellus fermentum metus, ut bibendum velit enim eu
lectus. Suspendisse potenti.
</div>
 <h2>Header 3</h2>
 <div>Donec at dolor ac metus pharetra aliquam. Suspendisse purus.
Fusce tempor ultrices libero. Sed quis nunc. Pellentesque tincidunt
viverra felis. Integer elit mauris, egestas ultricies, gravida vitae,
 feugiat a, tellus.</div>
 </div>

We need to allow for the second accordion widget in our code, so adjust the
<script> block as follows:

 <script>
 $(document).ready(function($) {
 $(".myAccordion").accordion();
 $(".two").accordion("option", "icons", { "header": "ui-icon-
plus", "activeHeader": "ui-icon-minus" });
 });
 </script>

Save the file as accordion18.html. If we preview the results in our browser, you
should see something as follows:

Chapter 4

[111]

All we've done is to duplicate the existing markup for the first accordion; the trick is
in how we initiate the second accordion functionality within our script.

Throughout this book, we've used selector IDs to initiate our accordions; this is
perfect, particularly when there is only one accordion on the page. If we have
multiple accordions on the same page (or even in the same website), this can
become clumsy, as we are duplicating code unnecessarily.

We can get around this by switching to using classes, in place of selector IDs,
accordion can easily use either method. In our example, we've assigned a classname
of .myAccordion to both the accordions. We've then used this to initiate the call
to .accordion() in our script. This allows us to share common functionality
throughout multiple accordions, without duplicating code.

If we need to override the configuration for one or more of these accordions though,
we can do this by adding a second separate class to our markup, in this instance, we
want to change the second accordion to use + and – icons, in place of arrowheads.

To implement this, the second accordion has been assigned the .myAccordion
.two classes. The second class is then used as the basis for the call to a second
accordion() instance; this overrides the original configuration, but only for those
accordions that have the additional .two class assigned to them. We can then extend
this principle to apply to any other accordion that should have different functionality
to the first by adding a second class to the accordion's markup.

Summary
We first looked at what the accordion does and how it is targeted by the CSS
framework. We then moved on to look at the configurable options that can be used
to change the behavior of the accordion, such as specifying an alternative heading to
be open by default, or setting the event that triggers the opening of a content drawer.

Along with configurable options, we saw that the accordion exposes several custom
events. Using them, we can specify callback functions during configuration, or bind
to them after configuration to execute additional functionality, in reaction to different
things happening to the widget.

Next, we looked at the accordion's default animation and how we can animate
the opening of content panels, using easing effects. We saw that to make use of
non-standard animations or easing effects, the jquery.ui.effect.js file needs
to be included along with the requisite custom effect file.

The Accordion Widget

[112]

In addition to looking at these options, we also saw that there are a range of methods
which can be called on the accordion to make it do things programmatically. In
the next chapter, we get to play with the dialog widget, which allows us to create
a flexible, highly configurable overlay that floats above the page and displays any
content we specify.

The Dialog
Traditionally, the way to display a brief message or ask a visitor a question would've
been to use one of JavaScript's native dialog boxes (such as alert or confirm), or to
open a new web page with a predefined size, styled to look like a dialog box.

Unfortunately, as I'm sure you're aware, neither of these methods is particularly
flexible to us as developers or particularly engaging for our visitors. For every
problem they solve, several new problems are usually introduced.

The dialog widget lets us display a message, supplemental content (such as images
or text) or even interactive content (such as forms). It's also easy to add buttons, such
as a simple Ok and Cancel to the dialog, and define the callback functions for them
in order to react to their being clicked; the dialog can also be modal or nonmodal.

In this chapter, we will cover the following topics:

• Creating a basic dialog
• Working with the dialog options
• Modality
• Enabling the built-in animations
• Adding buttons to the dialog
• Working with the dialog callbacks
• Controlling a dialog programmatically

The Dialog

[114]

The following screenshot shows a dialog widget and the different elements it is
made of:

Creating a basic dialog
A dialog has a lot of built-in default behavior, but few methods are needed to
control it programmatically, making this an easy-to-use widget, which is also
highly configurable and powerful.

Generating the widget is simple and requires a minimal underlying markup
structure. The following page contains the minimum markup that's required
to implement the dialog widget:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Dialog</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"> </script>
 <script src="development-bundle/ui/jquery.ui.position.js"> </script>
 <script src="development-bundle/ui/jquery.ui.dialog.js"> </script>
 <script src="development-bundle/ui/jquery.ui.button.js"> </script>
 <script>
 $(document).ready(function($){
 $("#myDialog").dialog();
 });

Chapter 5

[115]

 </script>
</head>
<body>
 <div id="myDialog" title="This is the title!">
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean sollicitudin. Sed interdum pulvinar justo. Nam iaculis volutpat
ligula. Integer vitae felis quis diam laoreet ullamcorper. Etiam
tincidunt est vitae est.
 </div>
</body>
</html>

Save this file as dialog1.html in the jqueryui project folder. To use the dialog, the
following dependencies are required:

• jquery.ui.all.css

• jquery.ui.core.js

• jquery.ui.widget.js

• jquery.ui.position.js

• jquery.ui.dialog.js

• jquery.ui.button.js

Optionally, we can also include the following files to make the dialog draggable
and resizable:

• jquery.ui.mouse.js

• jquery.ui.draggable.js

• jquery.ui.resizable.js

The dialog widget is initialized in the same way as the other widgets, which we have
already looked at by calling the widget's plugin method.

When you run this page in your browser, you should see the default dialog widget,
as shown in the following screenshot:

The Dialog

[116]

As with the previous widgets that we've covered, a variety of classnames from the
CSS framework are added to different elements within the widget to give them the
appropriate styling for their respective elements, and any additional elements that
are required are created on the fly.

The dialog in the first example is fixed both in size and position and will be
positioned in the center of the viewport. We can easily make the widget draggable,
resizable, or both. All we need to do is include the draggable and resizable
component's source files, as well as the mouse utility, with the other <script>
resources at the end of <head>.

It's not important that the draggable and resizable files are included in the page
before the dialog's source file. They can come before or after, and the widget will still
inherit these behaviors. Any styling that is required, such as the resize indicator that
appears in the bottom-left of the dialog, will be picked up automatically from the
master CSS file.

Add the following three <script> elements directly before the closing </head> tag
in dialog1.html:

<script src="development-bundle/ui/jquery.ui.mouse.js">
</script>
<script src="development-bundle/ui/jquery.ui.draggable.js">
</script>
<script src="development-bundle/ui/jquery.ui.resizable.js">
</script>

Save this as dialog2.html and view it in a browser. The dialog should now be
draggable and can be moved to any part of the viewport, but will not cause it to
scroll if the widget is moved to an edge.

The dialog should also be resizable—by clicking and holding any corner and
dragging, the widget can be made bigger or smaller. If the dialog is made bigger than
the viewport, it will cause the window to scroll.

Listing the dialog options
An option object can be used in a dialog's widget method to configure various dialog
options. Let's look at the available options:

Chapter 5

[117]

Option Default value Description

appendTo "body" Determines which element the dialog (and overlay, if
modal) should be appended to.

autoOpen true Shows the dialog as soon as the dialog() method is
called, when set to true.

buttons {} Supplies an object containing buttons to be used
with the dialog. Each key becomes the text on the
<button> element, and each value is a callback
function, which is executed when the button is
clicked.

closeOnEscape true If set to true, the dialog will close when the Esc key
is pressed.

dialogClass "" Sets additional classnames on the dialog for theming
purposes.

draggable true Makes the dialog draggable (requires use of jquery.
ui.draggable.js).

height auto Sets the starting height of the dialog.

hide null Sets an effect to be used when the dialog is closed.

maxHeight false Sets a maximum height for the dialog.

maxWidth false Sets a maximum width for the dialog.

minHeight 150 Sets a minimum height for the dialog.

minWidth 150 Sets a minimum width for the dialog.

modal false Enables modality while the dialog is open.

position center Sets the starting position of the dialog in the
viewport. It can accept a string, an array of strings,
or an array containing the exact coordinates of the
dialog offset from the top and left of the viewport use
(requires use of jquery.ui.position.js).

resizable true Makes the dialog resizable (also requires jquery.
ui.resizable.js).

show null Sets an effect to be used when the dialog is opened.
title "" Alternative to specifying the title attribute on the

widget's underlying container element.
width 300 Sets the starting width of the dialog.

The Dialog

[118]

As you can see, we have a wide range of configurable options to work with while
implementing the dialog. Many of these options are Boolean, numerical, or string-
based, making them easy to get and set within your code.

Showing the dialog
In our examples so far, the dialog has been displayed as soon as the page is loaded.
The autoOpen option is set to true by default, so the dialog will be displayed as soon
as it is initialized.

We can change this so that the dialog is opened when something else occurs, like
a button being clicked by setting the autoOpen option to false. Change the final
<script> element at the bottom of dialog2.html to the following one:

<script>
 $(document).ready(function($){
 $("#myDialog").dialog({
 autoOpen: false
 });
 });
</script>

Save this as dialog3.html. The widget is still created; the underlying markup is
removed from the page, transformed into the widget, and then reappended to the
end of <body>. It will remain hidden until the open method is called on it. We'll come
back to this option when we look at the open method a little later in this chapter.

Setting a dialog title
The options table shows a title option, which we can use to control how the title
is displayed on the widget; this can be made selectable if the draggable attribute is
set to false. Although it is possible to set it directly in code, it is far easier to set it
within the configuration options, as this gives us a greater control over how the title
is displayed in the widget.

By default, the title text of the dialog widget will be shown in plain text; we can
override this by adding a custom style to the .ui-dialog-title class.

In your browser, alter the <script> block for dialog in dialog3.html as follows:

<script>
 $(document).ready(function($){
 $("#myDialog").dialog({
 draggable: false,
 open: function() {

Chapter 5

[119]

 $(".ui-dialog-title").addClass("customtitle");
 }
 });
 });
</script>

Save the file as dialog4.html. We can now add some styling to our dialog's title bar
– in a separate file add the following code, saving it as dialogOverrides.css after
the link to the jQuery UI stylesheet:

.customtitle { color: #800080; }

If we preview the results in our browser, you can clearly see the title now shows in a
different color:

To see the effect on the code, we can see how the script has overridden the base code,
using a DOM inspector such as Firebug:

This is the
title!

We could manually style the dialog elements within our stylesheet, but it would be
through trial and error; it is much easier to simply add a new class using jQuery,
which we can then style to our heart's content!

If a value is not provided to the title attribute, the
attribute on the dialog source element will be used.

The Dialog

[120]

Configuring the modality option
One of the dialog's greatest assets is modality. This feature creates an overlay that
covers the underlying page beneath the dialog while it is open. The overlay is
removed as soon as the dialog is closed. None of the underlying page content can be
manipulated within anyway while the dialog is open.

The benefit of this feature is that it ensures the dialog is closed before the underlying
page becomes interactive again, and gives a clear visual indicator to the visitor that
the dialog must be interacted with before they can proceed.

Change the configuration object in dialog4.html to the following:

 $(document).ready(function($){
 $("#myDialog").dialog({
 modal: true
 });
 });

This file can be saved as dialog5.html. The following screenshot shows the modal
effect (you may like to add some fake content to the page to fully appreciate the
effect of the modal):

Chapter 5

[121]

Only a single property is required while adding modality and that is the modal
option. When you view the page in a browser, you'll see the modal effect
immediately. The repeated background image that is used to create the overlay is
styled completely by the CSS framework and is therefore fully themeable through
the ThemeRoller tool. We can also use our own image if we need to. The class name
ui-widget-overlay is added to the overlay, so this is the selector to override if
customization is required.

Adding buttons
The button option accepts an object literal that is used to specify the different
<button> elements that should be present on the dialog. Each property:
value pair represents a single button. Let's add a couple of <button> elements
to our dialog.

Modify the final <script> element in dialog5.html so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#myDialog").dialog({
 buttons: { Ok: function() { }, Cancel: function() { } },
 draggable: false
 });
 });
</script>

Save the file as dialog6.html. The key for each property in the buttons object is
the text that will form the <button> label, and the value is the name of the callback
function to execute when the button is clicked. The buttons option can take either an
object, as in this example, or an array of objects. In this example the execute() and
cancel() functions don't do anything; we'll come back to this example shortly and
populate them.

The following screenshot shows how our new <button> elements would appear:

The Dialog

[122]

The widget will add our new buttons to their own container at the foot of the dialog,
and if the dialog is resized, this container will retain its original dimensions. The
<button> elements are fully themable and will be styled according to the theme
in use.

Adding icons to the dialog buttons
Until now, closing a dialog usually meant having to click on the cross icon in the
title bar – it works well for this purpose, but doesn't offer us any opportunity to
get a response from the person browsing our website or online application.

The addition of buttons in the previous example helps remove this constraint, and
allows us to accept a varied response from the end user – we can take this a step
further by adding icons to provide visual support to the buttons.

In your text editor, alter the <script> block in dialog6.html as follows:

<script>
 $(document).ready(function($){
 $("#myDialog").dialog({
 buttons: [{
 text: "Ok",
 icons: { primary: "ui-icon-check", secondary: "ui-icon-
circle-check" },
 click: function() { }
 }, {
 text: "Cancel",
 icons: { primary: "ui-icon-closethick", secondary: "ui-icon-
circle-close" },
 click: function() { }
 }],
 draggable: false
 });
 });
</script>

Save this as dialog7.html. Here, we've used the buttons option to specify the text,
icons, and the action that should be taken when the button is clicked. You will notice
that we've also used a different way to specify each option, compared to the previous
example. Both work equally well; we need to use this method while adding icons,
otherwise you may find you have buttons with no text appearing!

Chapter 5

[123]

If we preview the results in a browser, we can now see the buttons with added icons
appearing, at the foot of our dialog:

The icons will be styled according to the theme in use. In our example we've specified
both primary and secondary icons; the former sits to the left of the button text, whilst
the latter sits to the right. It is likely though you would only need to specify one or the
other in your application or website, according to your requirements.

Enabling dialog animations
The dialog provides us with a built-in effect that can be applied to the opening or
closing (or both) phases of the widget. There is only a single effect that we can use,
which is an implementation of the scale effect (we'll look at this in more detail in
Chapter 13, Selecting and Sorting with jQuery UI). Change the final <script> element
in dialog7.html to the following one:

<script>
 $(document).ready(function($){
 $("#myDialog").dialog({
 show: true,
 hide: true
 });
 });
</script>

The Dialog

[124]

Save this as dialog8.html. We set both the hide and show options to the Boolean
value true. This enables the built-in effect, which gradually reduces the dialog's size
and opacity until it gracefully disappears. The following screenshot shows an effect
in motion:

We can enable or disable either the show or hide animations individually using
Booleans, as we have in this example. We could also specify the type of animation
to be used by supplying a string specifying the name of the effect to use:

<script>
 $(document).ready(function($){
 $("#myDialog").dialog({
 show: {effect: "fadeIn", duration: 1000},
 hide: {effect: "fadeOut", duration: 1000}
 });
 });
</script>

We can even take this a step further, using some of the effects such as bounce or
explode, although these should only be added if appropriate! We will cover the use
of effects in jQuery UI later, in Chapter 14, UI Effects. You can also see more details at
http://api.jqueryui.com/category/effects/.

Configuring the dialog's dimensions
There are several options related to the dialog's size, and the minimum and
maximum size that it can be resized to. We can add all of these options to the next
example as they're all related, to save looking at them individually. Change the
configuration object in dialog8.html to the following:

$("#myDialog").dialog({
 width: 500,
 height: 300,
 minWidth: 150,

Chapter 5

[125]

 minHeight: 150,
 maxWidth: 600,
 maxHeight: 450
});

Save this file as dialog9.html. The effect these options have on the widget is simple;
the width and height options define how big the dialog is when it is first opened,
while the min- and max- options define how small or large the dialog can be resized
to respectively.

As an additional note, assistive technologies and keyboard users may
find the content difficult to navigate if the dialog is made too small.
There is a usability tenet that insists dialog boxes should always be
non-resizable, whereas the windows should always be resizable.

While I don't think this is a black and white, set in granite rule, it may be wise to
keep small, informational, text-based dialogs at a fixed size, while allowing dialogs
richer in content, composed of both images and text to be resizable. We will cover
how you can add resize handles to any suitable element (such as dialogs), later in
Chapter 12, The Resizable Component.

Setting the z-index order of dialogs
The dialog is made so that it appears above any of the existing page content. We
can alter its z-index setting using CSS, or by ensuring it is correctly appended to
its parent element using the appendTo option, in case we need to raise it slightly to
cover our existing content. But what if we have two dialogs on the page? Do we need
to separately define zIndex for each dialog? How is focus taken into consideration?

Let's see if we can answer these questions by looking at another example; change the
<body> tag of dialog7.html so that it has two dialog boxes on it:

<div id="dialog1" title="Dialog 1">
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean sollicitudin. Sed interdum pulvinar justo. Nam aculis
volutpat ligula. Integer vitae felis quis diam laoreet ullamcorper.
Etiam tincidunt est vitae est.
</div>
<div id="dialog2" title="Dialog 2">
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean
sollicitudin. Sed interdum pulvinar justo. Nam iaculis volutpat
ligula. Integer vitae felis quis diam laoreet ullamcorper. Etiam
tincidunt est vitae est.
</div>

The Dialog

[126]

Now change the final <script> element so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#dialog1, #dialog2").dialog();
 });
</script>

Save this file as dialog10.html. We've added another dialog to the page, which
is basically just a clone of the original with different id and title attributes.
In the <script>, we simply call the widget method on both of our underlying
dialog containers.

As the widget method is called last on the second dialog and therefore it receives the
focus, the second dialog will automatically have a higher z-index value. This means
we don't need to worry about configuring it separately. The order in which the
dialogs appear in the underlying markup doesn't matter; it's the order of the widget
methods that dictates each dialog's z-index value.

Overriding the z-index value
If you need to override the z-index value, you can (and should)
do this using CSS – you will need to use the !important
attribute to override the existing value.

Because neither dialog has its position explicitly set, only the second dialog will be
visible when our example page loads. However, both are draggable and we can align
them so that they overlap slightly by dragging the second dialog away. If we click on
the first dialog box, it will receive focus and so it will be shown above the second box.

Controlling the focus
While opening a dialog, the element that receives focus is determined by whichever
item matches the following:

• The first element within the dialog with the autofocus attribute
• The first :tabbable element within the dialog's content
• The first :tabbable element within the dialog's buttonpane
• The dialog's close button
• The dialog itself

Chapter 5

[127]

This can best be illustrated by the following code excerpt, where we've added the
autofocus attribute to the yes radio button:

 <div id="myDialog" title="Best Widget Library">
 <p>Is jQuery UI the greatest JavaScript widget library?</p>
 <label for="yes">Yes!</label>
 <input type="radio" autofocus="autofocus" id="yes" value="yes"
name="question" checked="checked">

 <label for="no">No!</label>
 <input type="radio" id="no" value="no" name="question">
 </div>

The yes radio button will receive the focus first; we can then tab away from that
element to others within the widget. As soon as the dialog is closed, the focus will
automatically return to the element that had it prior to the dialog being opened.

Handling the dialog's event callbacks
The dialog widget gives us a wide range of callback options that we can use to
execute arbitrary code at different points, in any dialog interaction. The following
table lists the options available to us:

Event Description
beforeClose This is fired when the dialog is about to be closed
close This is fired when the dialog is closed
create This is fired when the dialog is initialized
drag This is fired when the dialog is being dragged
dragStart This is fired when the dialog starts being dragged
dragStop This is fired when the dialog stops being dragged
focus This is fired when the dialog receives focus
open This is fired when the dialog is opened
resize This is fired when the dialog is being resized
resizeStart This is fired when the dialog starts to be resized
resizeStop This is fired when the dialog stops being resized

Some of these callbacks are only available in certain situations, such as the drag and
resize callbacks, which will only be available when the draggable and resizable
jQuery UI components are included. We won't be looking at these callback options in
this chapter, as they'll be covered in detail in Chapters 11, Drag and Drop and Chapter
12, The Resizable Component, respectively.

The Dialog

[128]

Other callbacks, such as the beforeClose, create, open, close, and focus will be
available in any implementation. Let's look at an example in which we make use of
some of these callback options.

Remove the second dialog from the page in dialog10.html and add the following
new markup directly after the first dialog:

<div id="status" class="ui-widget ui-dialog ui-corner-all ui-widget-
content">
 <div class="ui-widget-header ui-dialog-titlebar ui-corner-
all">Dialog Status</div>
 <div class="ui-widget-content ui-dialog-content"></div>
</div>

Now change the final <script> element so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#dialog1").dialog({
 open: function() {
 $("#status").children(":last").text("The dialog is open");
 },
 close: function() {
 $("#status").children(":last").text("The dialog is closed");
 },
 beforeClose: function() {
 if ($(".ui-dialog").css("width") > "300") {
 return false;
 }
 }
 });
 });
</script>

Save this as dialog11.html. The page contains a new status box, which will be used
to report whether the dialog is open or closed. We've given the elements that make
up the status box of several CSS framework classes, to make them fit with the theme
in use.

Our configuration object uses the open, close, and beforeClose options to specify
simple callback functions. The open and close callbacks simply set the text of the
status box accordingly. The beforeClose callback that is fired after the Close button
on the dialog has been clicked (but before it is actually closed) is used to determine
whether or not to close the dialog.

Chapter 5

[129]

We use a simple if statement to check the width of the dialog; if the dialog is greater
than 300 pixels wide, we return false from the callback and the dialog remains
open. This kind of behavior is of course usually a big no in terms of usability, but
it does serve to highlight how we can use the beforeClose callback to prevent the
dialog being closed.

When the page loads and the dialog is shown, the open callback will be executed and
the status box should display a message. When the dialog is closed, as shown in the
following screenshot, a different message is displayed:

One thing I should make clear is that the dialog widget only passes a single object
(the original event object) to the callback functions. It does pass a second ui object
into the handler function, although in this release of the library, this object contains
no properties.

Controlling a dialog programmatically
The dialog is intuitive and easy-to-use, and like the other components in the library,
it comes with a range of methods that are used to programmatically control the
widget after it has been initialized. The full list of the methods we can call on
a dialog is as follows:

Method Description
close This is used to close or hide the dialog.
destroy This is used to permanently disable the dialog. The destroy method for a

dialog works in a slightly different way than it does for the other widgets
we've seen so far. Instead of just returning the underlying HTML to its
original state, the dialog's destroy method also hides it.

isOpen This is used to determine whether a dialog is open or not.

The Dialog

[130]

Method Description
moveToTop This is used to move the specified dialog to the top of the stack.
open This is used to open the dialog.
option This is used to get or set any configurable option after the dialog has been

initialized.
widget This is used to return the outer element that the dialog() widget method

is called on.

Toggling the dialog
We first take a look at opening the widget, which can be achieved with the simple
use of the open method. Let's revisit dialog3.html in which the autoOpen option
was set to false, so that the dialog didn't open when the page was loaded. Add the
following <button> to the page:

<button type="button" id="toggle">Toggle dialog!</button>

Then add the following click handler to the <script> block at the top of the code:

$("#toggle").click(function() {
 if(!$("#myDialog").dialog("isOpen")) {
 $("#myDialog").dialog("open");
 } else {
 $("#myDialog").dialog("close");
 }
});

Save this file as dialog12.html. To the page, we've added a simple <button> that
can be used to either open or close the dialog depending on its current state. In the
<script> element, we've added a click handler for the <button> element that checks
the return value of the isOpen method; the use of the exclamation mark means we
are looking to see if the dialog box isn't open. If the statement returns true, the
dialog is not open so we call its open method, otherwise we call the close method.

The open and close methods both trigger any applicable events; for example, the
#toggle click handler method first fires the beforeClose and then the close events.
Calling the close method is analogous to clicking the close button on the dialog.

Getting data from the dialog
Because the widget is a part of the underlying page, passing data to and from it is
simple. The dialog can be treated as any other standard element on the page. Let's
look at a basic example.

Chapter 5

[131]

We looked at an example earlier in the chapter, which added some <button>
elements to the dialog. The callback functions in that example didn't do anything,
but the following example gives us the opportunity to use them. Replace the existing
dialog markup in dialog8.html with the following:

<div id="myDialog" title="Best Widget Library">
 <p>Is jQuery UI the greatest JavaScript widget library?</p>
 <label for="yes">Yes!</label>
 <input type="radio" id="yes" value="yes" name="question"
checked="checked">

 <label for="no">No!</label>
 <input type="radio" id="no" value="no" name="question">
</div>

Now change the final <script> element as follows:

<script>
$(document).ready(function($){
 var execute = function(){
 var answer = $("#myDialog").find("input:checked").val();
 $("<p>").text("Thanks for selecting " + answer).
 appendTo($("body"));
 $("#myDialog").dialog("close");
 }
 var cancel = function() {
 $("#myDialog").dialog("close");
 }
 $("#myDialog").dialog({
 buttons: {
 "Ok": execute,
 "Cancel": cancel
 }
 });
});
</script>

Save this as dialog13.html. Our dialog widget now contains a set of radio buttons,
some <label> elements, and some text. In this example, we’re going to get the result of
the selected radio button, and then do something with it, when the dialog closes.

We start the <script> element by filling out the execute function that will be
attached as the value of the Ok property in the buttons object, later in the script.
It will therefore be executed each time the Ok button is clicked.

The Dialog

[132]

In this function, we use the :checked filter to determine which of the radio buttons is
selected. We set the value of the answer variable to the radio button's value, and then
create a short message along with appending it to the <body> element of the page.
The callback mapped to the Cancel button is simple; all we do is close the dialog
using the close method.

The point of this example was to see that getting data from the dialog is as simple as
getting data from any other element on the page. If you preview it in your browser,
you will first see the dialog on the left; clicking on a button gives the appropriate
response, as shown in the following screenshot:

Exploring dialog interoperability
In the previous chapters, we've combined multiple widgets so that we can see how
well they work together, and this chapter will be no exception. We can easily place
other UI widgets into the dialog such as the accordion widget that we looked at in
the previous chapter. In a new file in your text editor, create the following page:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Dialog</title>

Chapter 5

[133]

 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/jquery.ui.position.js"></script>
 <script src="development-bundle/ui/jquery.ui.dialog.js"></script>
 <script src="development-bundle/ui/jquery.ui.button.js"></script>
 <script src="development-bundle/ui/jquery.ui.accordion.js">
 </script>
 <script src="development-bundle/ui/jquery.ui.mouse.js"></script>
 <script src="development-bundle/ui/jquery.ui.draggable.js"></script>
 <script src="development-bundle/ui/jquery.ui.resizable.js"></script>
 <script>
 $(document).ready(function($){
 $("#myDialog").dialog();
 $("#myAccordion").accordion();
 });
 </script>
</head>
<body>
 <div id="myDialog" title="An Accordion Dialog">
 <div id="myAccordion">
 <h2>Header 1</h2>
 <div>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean sollicitudin.</div>
 <h2>Header 2</h2>
 <div>Etiam tincidunt est vitae est. Ut posuere, mauris at so
dales rutrum, turpis.</div>
 <h2>Header 3</h2>
 <div>Donec at dolor ac metus pharetra aliquam. Suspendisse pu
rus.</div>
 </div>
 </div>
</body>
</html>

Save this file as dialog14.html. The underlying markup for the accordion widget is
placed into the dialog's container element, and we just call each component's widget
method in the <script> element.

The Dialog

[134]

In this example, we use quite a few separate <script>
resources. It is worth remembering that for production, we
should use the combined and minified script file, which contains
all of the components we selected in the download builder.

The combined widget should appear like this:

Creating a dynamic image-based dialog
The class behind the dialog widget is compact and caters to a small range of
specialized behavior, much of which we have already looked at. We can still have
some fun with a dynamic dialog box, which loads different content depending on
which element triggers it.

In a new page in your text editor, add the following code:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Dialog</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <link rel="stylesheet" href="css/dialogTheme.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/jquery.ui.position.js"></script>
 <script src="development-bundle/ui/jquery.ui.dialog.js"></script>
 <script src="development-bundle/ui/jquery.ui.button.js"></script>

Chapter 5

[135]

 <script src="development-bundle/ui/jquery.ui.accordion.js"></script>
 <script src="development-bundle/ui/jquery.ui.mouse.js"></script>
 <script src="development-bundle/ui/jquery.ui.draggable.js"></script>
 <script src="development-bundle/ui/jquery.ui.resizable.js"></script>
</head>
<body>
 <div id="thumbs" class="ui-corner-all">
 <div class="ui-widget-header ui-corner-top">
 <h2>Some Common Flowers</h2>
 </div>
 <p>(click a thumbnail to view a full-size image)</p>
 <div class="thumb ui-helper-clearfix ui-widget-content">
 <img
src="img/haThumb.jpg" alt="Helianthus annuus">
 <h3>Helianthus annuus</h3>
 <p>Sunflowers (Helianthus annuus) are annual plants native to
the Americas, that possess a large flowering head</p>
 </div>
 <div class="thumb ui-helper-clearfix ui-widget-content">
 <img
src="img/lcThumb.jpg" alt="Lilium columbianum">
 <h3>Lilium columbianum</h3>
 <p>The Lilium columbianum is a lily native to western North
America. It is also known as the Columbia Lily or Tiger Lily</p>
 </div>
 <div class="thumb ui-helper-clearfix ui-widget-content">
 <img
src="img/msThumb.jpg" alt="Myosotis scorpioides">
 <h3>Myosotis scorpioides</h3>
 <p>The Myosotis scorpioides, or Forget-me-not, is a
herbaceous perennial plant of the genus Myosotis.</p>
 </div>
 <div class="thumb ui-helper-clearfix ui-widget-content last">
 <img
src="img/nnThumb.jpg" alt="Nelumbo nucifera">
 <h3>Nelumbo nucifera</h3>
 <p>Nelumbo nucifera is known by a number of names including;
Indian lotus, sacred lotus, bean of India, or simply lotus.</p>
 </div>
 </div>
 <div id="dialog"></div>
</body>
</html>

The Dialog

[136]

Save this file as dialog15.html. The following screenshot shows the result when
previewed in a browser:

The page is relatively straightforward—we've got an outer container, which encloses
everything and an element, which we've given the class name ui-widget-header.
We've used the latter in order to pick up some of the default styling from the theme
in use.

Chapter 5

[137]

Following this, we have some explanatory text followed by a series of containers.
Several classnames are given to these containers, some of which are so that we
can style them, and others (such as ui-helper-clearfix), in order to pick up the
framework or theme styles.

Within each of these containers is an image, wrapped in an anchor, a subheading,
and some descriptive text. After the outer container, comes the empty <div>
element, which is used to create the dialog. In this example, we don't use the
resizable feature. Each of the thumbnail images is wrapped in an anchor, in order for
the page to function even with JavaScript disabled. The dialog widget won't display
in this situation, but the visitor will still be able to see a full-sized version of each
image. This form of progressive enhancement is essential in this kind of application,
where we can always view the content. Adding in the call to the dialog widget is
enhancing the overall view to the visitor, whilst ensuring content will always display
something, even with JavaScript disabled!

Now add the following <script> block directly before the closing </head> tag:

<script>
 $(document).ready(function($){
 var filename, titleText, dialogOpts = {
 modal: true,
 width: 388,
 height: 470,
 autoOpen: false,
 open: function() {
 $("#dialog").empty();
 $("", { src: filename }).appendTo("#dialog");
 $("#dialog").dialog("option", "title", titleText);
 }
 };
 $("#dialog").dialog(dialogOpts);
 $("#thumbs").find("a").click(function(e) {
 e.preventDefault();
 filename = $(this).attr("href");
 titleText = $(this).attr("title");
 $("#dialog").dialog("open");
 });
 });
</script>

The Dialog

[138]

The first thing we do is define three variables; the first variable is used to add the
path to the full-sized image of whichever thumbnail was clicked, the second is
to store the image title to use as the text for the widget's title, and the third is the
configuration object for the dialog. We've seen the entire configuration options in
action already, so I won't go over most of them in much detail.

The open callback, called directly before the dialog is opened, is where we add the
full-sized image to the dialog. We first empty the dialog, then create a new
element, and set its src to the value of the filename variable. The new is then
appended to the inner content area of the dialog.

We then use the option method to set the title option to the value of the titleText
variable. Once the open callback has been defined, we call the dialog's widget
method as normal.

We can use the wrapper <a> elements as the triggers to open the dialog. Within our
click handler, we first call e.preventDefault() to stop the default action of the
click, before setting the contents of our filename and titleText variables using the
href and title attributes of the link that was clicked. We then call the dialog's open
method to display the dialog, which in turn triggers the callback function specified in
the open option.

If we omit e.preventDefault(), this will override
the dialog and the browser will render each image as if it
were a link that had been clicked.

We'll also need a new stylesheet for this example. In a new page in your text editor,
add the following code:

#thumbs { width:342px; padding: 10px 0 10px 10px; border:1px
 solid #ccc; background-color:#eee; }
#thumbs p { width: 330px; font-family: Verdana; font-size: 9px;
 text-align: center; }
.thumb { width: 310px; height: 114px; padding: 10px;
 border:1px solid #ccc; border-bottom: none; }
.last { border-bottom: 1px solid #ccc; }
.thumb img { border: 1px solid #ccc; margin-right: 10px;
 float: left; cursor: pointer; }
.thumb h3 { margin: 0; float: left; width:198px; }
#thumbs .thumb p { width: 310px; margin:0; font-family:
 Verdana; font-size: 13px; text-align: left; }
#thumbs .ui-widget-header { width: 330px; text-align: center; }

Chapter 5

[139]

Many of these styles have been used in the previous examples, but adding some
new rules for the other page elements lets us see the dialog in a real-world context.
Save this as dialogTheme.css in the css folder. We also use some images in this
example, which can be found in the img folder of the accompanying code download
for this book.

This should now give us the page that we saw in the previous screenshot and when a
thumbnail is clicked, the full size version of the same image will be displayed:

The Dialog

[140]

Summary
The dialog widget is specialized and caters to the display of a message or question
in a floating panel that sits above the page content. Advanced functionality such
as dragging and resizing is directly built-in and require just the inclusion of an
additional script file for each feature. Other features such as the excellent modality
and overlay are easy to configure.

We started out by looking at the default implementation, which is as equally simple
to configure as the other widgets we have looked at so far. We then examined the
range of configurable options exposed by the dialog's API. We can make use of them
to enable or disable built-in behavior such as modality, or set the dimensions of the
widget. It also gives us a wide range of callbacks that allow us to hook into custom
events fired by the widget during an interaction.

We then took a brief look at the built-in opening and closing effects that can be used
with the dialog, before moving on to see the basic methods we can invoke, in order
to make the dialog do things, such as open or close.

In the next chapter, we'll move on to look at the slider and progress bar widgets,
which allow us to create interactive form widgets used to select from a predefined
range of values and display the results on screen.

The Slider and Progressbar
Widgets

The slider component allows us to implement an engaging and easy-to-use widget
that our visitors should find attractive and intuitive to use. Its basic function is
simple. The slider track represents a series of values that are selected by dragging
the handle along the track.

The progressbar widget is used to show the percentage complete for any arbitrary
process. It's a simple and easy-to-use component with an extremely compact API
that provides excellent visual feedback to visitors.

In this chapter we will cover the following topics:

• The default slider implementation
• Custom styling for sliders
• Changing the configuration options
• Creating a vertical slider
• Setting minimum, maximum, and default values
• Enabling multiple handles and ranges
• The slider's built-in event callbacks
• Slider methods
• The default implementation for a progressbar
• The configurable options
• The event API exposed by the widget
• The single unique method exposed by the progressbar
• Some real-world examples of a progressbar

The Slider and Progressbar Widgets

[142]

Before we roll up our sleeves and begin creating a slider, let's look at the different
elements that it is made from. The following diagram shows a typical slider widget:

slider track slider handle

It's a simple widget, as you can see, comprised of just two main elements—the slider
handle (sometimes called the thumb), and the slider track.

Introducing the slider widget
Creating the default, basic slider takes no more code than any of the other widgets
that we have looked at so far. The underlying HTML markup required is also
minimal. Let's create a basic one now. In a new page in your text editor, add the
following code:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Slider</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
 jquery.ui.all.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js">
 </script>
 <script src="development-bundle/ui/jquery.ui.mouse.js"></script>
 <script src="development-bundle/ui/jquery.ui.slider.js">
 </script>
 <script>
 $(document).ready(function($){
 $("#mySlider").slider();
 });
 </script>
</head>
<body>
 <div id="mySlider"></div>
</body>
</html>

Chapter 6

[143]

Save this file as slider1.html and view it in your browser. On the page is a simple
container element; this will be transformed by the widget into the slider track. In
<script> within the <head> section of the code, we select this element and call
the slider method on it. The <a> element that is used for the slider handle will be
automatically created by the widget.

When we run the slider1.html file in a browser, we should see something similar
to the previous diagram. We've used several library resources for the default
implementation, including the following files:

• jquery.ui.all.css

• jquery-2.0.3.js

• jquery.ui.core.js

• jquery.ui.widget.js

• jquery.ui.mouse.js

• jquery.ui.slider.js

The default behavior of a basic slider is simple but effective. The thumb can be
moved horizontally along any pixel of the track on the x axis by dragging the thumb
with the mouse pointer, or using the left/down or right/up arrow keys on the
keyboard. Clicking anywhere on the track with the left button will instantly move
the handle to that position.

Custom styling
Because of its simplicity, it is easy to create a custom theme for the slider widget.
Using ThemeRoller is one method of theming: we can simply download a new
theme, then put it into the theme folder and change the reference within our code to
the name of the new theme. Like all other widgets, the slider will be restyled to use
the new theme.

To completely change the look and feel of the widget though, we can easily create
our own theme file. In your text editor create the following stylesheet:

.background-div {
 height: 50px; width: 217px; padding: 36px 0 0 24px;
 background: url(../img/slider_outerbg.gif) no-repeat;
}
#mySlider {

The Slider and Progressbar Widgets

[144]

 background: url(../img/slider_bg.gif) no-repeat; height: 23px;
 width: 184px; border: none; top: 4px; position: relative;
 left: 4px;
 }
#mySlider .ui-slider-handle {
 width: 14px; height: 30px; top: -4px;
 background: url(../img/slider_handle.gif) no-repeat;
}

Save this file as sliderTheme.css in the css directory. In slider1.html, add a link
to the stylesheet in the <head> of the page (after the jQuery UI stylesheet), and wrap
the underlying slider element in a new container:

<div class="background-div">
 <div id="mySlider"></div>
</div>

Save this file as slider2.html. With a minimum of CSS and a few images (these can
be found in the code download), we can easily but considerably modify the widget's
appearance, as shown in the following screenshot:

Let us turn our attention to how we can configure the slider widget, using some of
its options.

Chapter 6

[145]

Configuring a basic slider
Additional functionality, such as vertical sliders, multiple handles, and stepping
can also be configured using an object literal, passed into the widget method when
the slider is initialized. The options that can be used in conjunction with the slider
widget are listed in the following table:

Option Default value Usage
animate false Enables a smooth animation of the slider handle when

the track is clicked.
disabled false Disables the widget when it is initialized.
max 100 Sets the maximum value of the slider.
min 0 Sets the minimum value of the slider.
orientation auto Sets the axis along which the slider thumb is moved.

This can accept the strings vertical or horizontal.
range false Creates a styleable range of elements between them.
step 1 Sets the distance of the step that the handle will take

along the track. The max value must be equally divisible
by the supplied number.

value 0 Sets the value of the slider thumb when the widget is
initialized.

values null Accepts an array of values. Each supplied integer will
become the value of a slider handle.

Creating a vertical slider
To make a vertical slider, all we need to do is set the orientation option to
vertical; the widget will do the rest for us.

In slider1.html, change the final <script> element so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#mySlider").slider({
 orientation: "vertical"
 });
 });
</script>

The Slider and Progressbar Widgets

[146]

Save this file as slider3.html. We just need to set this single option to put the slider
into vertical mode. When we launch the page, we see that the slider operates
exactly as it did before, except that it now moves along the y axis, as in the following
screenshot:

The widget defaults to 100px in height, unless we provide our own CSS rule for
.ui-slider-vertical in the stylesheet.

Setting the maximum and minimum values
By default, the minimum value of the slider is 0 and the maximum value is 100,
but we can change these values easily using the min and max options. Change the
configuration object in slider3.html to the following code:

$("#mySlider").slider({
 min: -50,
 max: 50
});

Save this file as slider4.html. We simply specify the integers that we'd like to set
as the start and end values. The value and values methods are exclusive to the
slider, and are used to get or set the value of single or multiple handles. As the value
option is set to 0 by default, when we run the slider4.html file, the slider thumb
will start in the middle of the track, half way between -50 and 50.

When the slider handle, in this example, is at the minimum value, the value method
will return to -50, as we would expect. To prove this, we could adapt slider4.html
to show this value in an alert. Add the following code immediately below the slider
configuration object:

Chapter 6

[147]

$("#getValue").click(function(){
 var value = $("#mySlider").slider("value");
 alert("Value of slider is " + value);
});

In the markup within <body>, change it as follows:

 <div id="mySlider"></div>
<p>
<button id="getValue">Get value of slider</button>

If we now try previewing changes in a browser, you will get an alert that will appear
when clicking on the button, once you've moved the handle to the far left of the
slider. We will explore the value option later in the Using the slider methods section of
this chapter.

Stepping with the slider widget
The step option refers to the number and position of steps along the track that the
slider's handle jumps, when moving from the minimum to the maximum positions
on the track. The best way to understand how this option works is to see it in action,
so change the configuration object in slider4.html to the following code:

$("#mySlider").slider({
 step: 25
});

Save this file as slider5.html. We set the step option to 25 in this example. We
haven't set the min or max options, so they will take the default values of 0 and 100
respectively. Hence, by setting step to 25, we're saying that each step along the track
should be a quarter of the track's length, because 100 (the maximum) divided by 25
(the step value) is 4. The handle will therefore take four steps along the track, from
beginning to end.

The max value of the slider should be equally divisible by whatever value we set
as the step option; other than that, we're free to use whatever value we wish. The
step option is useful to confine the value selected by the visitors to one of a set of
predefined values.

If we were to set the value of the step option, in this example, to 27 instead of 25,
the slider would still work, but the points along the track that the handle stepped to
would not be equal.

The Slider and Progressbar Widgets

[148]

Animating the slider widget
The slider widget comes with a built-in animation that moves the slider handle
smoothly to a new position, whenever the slider track is clicked. This animation
is disabled by default, but we can easily enable it by setting the animate option to
true. Change the configuration object in slider5.html, so that it is as follows:

$("#mySlider").slider({
 animate: true
});

Save this file as slider6.html. This simple change can give a slider a more polished
feel; instead of the slider handle just moving instantly to a new position when the
track is clicked, it smoothly slides there.

If the step option is configured to a value other than 1, and the animate option is
enabled, the thumb will slide to the nearest step mark on the track. This may mean
that the slider thumb moves past the point that was clicked.

Setting the slider's value
The value option, when set to true in a configuration object, determines the starting
value for the slider thumb. Depending on what we want the slider to represent, the
starting value of the handle may not be 0. If we wanted to start at half-way across the
track instead of at the beginning, we can use the following configuration object:

$("#mySlider").slider({
 value: 50
});

Save this file as slider7.html. When the file is loaded in a browser, we see that
the handle starts halfway along the track instead of at the beginning, exactly as it
did when we set the min and max options earlier. We can also set this option after
initialization, to programmatically set a new value.

Using multiple handles
I mentioned earlier that a slider may have multiple handles; additional handles can
be added using the values option. It accepts an array where each item in the array is
a starting point for a handle. We can specify as many items as we wish, up to the max
value (taking step into account):

$("#mySlider").slider({
 values: [25, 75]
});

Chapter 6

[149]

Save this file as slider8.html. This is all we need to do; we don't need to supply
any additional underlying markup. The widget has created both new handles for us,
and as you'll see, they both function exactly as a standard single handle does.

The following screenshot shows our dual-handled slider:

We could make use of a double-handled slider to create a time window for a
schedule. A good example would be on a travel booking form. Normally you would
enter dates manually, which could be a bit clunky.

Instead, you could use a double-handled slider to select dates; the user would simply
slide each handle to the left or right to change the date window. We can then use the
method described in Setting the minimum and maximum values section earlier in this
chapter to obtain the position values of each slider's handle.

When a slider has two or more handles, each handle may move past
the other handle(s) without issue; you may want to consider setting
a range, if you need to prevent this from happening.

Working with the range option
When working with multiple handles, we can set the range option to true. This
adds a styled range element between two handles. In slider8.html, change the
configuration object so that it is as follows:

$("#mySlider").slider({
 values: [25, 75],
 range: true
});

The Slider and Progressbar Widgets

[150]

Save this file as slider9.html. When the page loads, we should see that a styled
<div> element now connects our two handles, as shown in the following screenshot:

When using two handles and a range, the two handles will not be able to cross each
other on the track.

A maximum of two handles can be used in conjunction with the range option, but
we can also enable it with a single handle change the configuration object in the
previous example to the following:

$("#mySlider").slider({
 range: "min"
});

Save this file as slider10.html. Along with the Boolean value true, we can also
supply one of the string values min or max, but only when a single handle is in use.

In this example, we set it to min, so when we move the slider handle along the track,
the range element will stretch from the start of the track to the slider handle. If we set
the option to max, the range will stretch from the handle to the end of the track.

If you want to capture the value of where the handle is on the scale, we can do this
by using the slide event handler. In this instance, we only need to get one value
(as we only have one handle), but the same principle applies if a second handle had
been configured.

In slider4.html, add the following function in just above our slider's configuration
object:

function slideValues(event, ui){
 var val0 = $("#mySlider").slider("values", 0),
 endValue = parseInt(val0, 10);

 $("#rangeValues").text("Range: 0 - " + endValue);
}:

Chapter 6

[151]

We need to then modify the configuration object, to call our slideValues event
handler at the appropriate time:

$("#mySlider").slider({
 range: "min",
 slide: slideValues
});

So we can display the results on screen, add this in below the existing markup in the
<body> section:

<div id="rangeValues"></div>

We can then do as we wish with the value; if you preview the results, you will see
the value on the right change; the left value will always remain at 0, as this is the
default value for the min option in our code.

Using the slider's event API
In addition to the options we saw earlier, there are another five options used to
define functions that are executed at different times during a slider interaction. Any
callback functions that we use are automatically passed the standard event object,
and an object representing the slider. The following table lists the event options we
can use:

Event Fired when…
change The slider's handle stops moving and its value has changed.
create The slider is created
slide The slider's handle moves.
start The slider's handle starts moving.
stop The slider's handle stops moving.

Hooking into these built-in callback functions is easy. Let's put a basic example
together to see. Change the configuration object in slider10.html so that it appears
as follows:

$("#mySlider").slider({
 start: function() {
 $("#tip").fadeOut(function() {
 $(this).remove();
 });
 },
 change: function(e, ui) {

The Slider and Progressbar Widgets

[152]

 $("<div></div>", {
 "class": "ui-widget-header ui-corner-all",
 id: "tip",
 text: ui.value + "%",
 css: { left: e.pageX-35 }
 }).appendTo("#mySlider");
 }
});

Save this file as slider11.html. We use two of the callback options in this
example—start and change. In the start function, we select the tooltip element if it
exists, and fade it out with jQuery's fadeOut() method. Once hidden from view, it is
removed from the page.

The change function will be executed each time the value of the slider handle
changes; when the function is called, we create the tool tip and append it to the
slider. We position it so that it appears above the center of the slider handle and give
it some of the framework class names in order to style it with the theme in use.

In several places we use the second object passed to the callback function, the
prepared ui object that contains useful information from the slider. In this example,
we use the value option of the object to obtain the new value of the slider handle.

We also need a very small custom stylesheet for this example. In your text editor,
add the following code:

#mySlider { margin: 60px auto 0; }
#tip { position: absolute; display: inline; padding: 5px 0;
 width: 50px; text-align: center; font: bold 11px Verdana;
 top: -40px }

Save this file as sliderTheme2.css in the css folder and add a link to it from the
<head> of slider11.html. When displayed, our tool tip should appear as shown in
the following screenshot:

Chapter 6

[153]

When all of the event options are used together, the events will be fired in the
following order:

• create

• start

• slide

• stop

• change

The slide callback can be quite an intensive event as it is fired on every mouse move
while the handle is selected, but it can also be used to prevent a slide in certain
situations by returning false from the callback function. When using the stop and
change callbacks together, the change callback may override the stop callback.

As with all library components each of these events can also be used with the
jQuery's on() method by prefixing the word slider to the event name, for example,
sliderstart.

Using slider methods
The slider is intuitive, and like the other components in the library it comes with a
range of methods that are used to programmatically control the widget after it has
been initialized. The methods specific to the slider are shown in the following table:

Method Usage
value Sets a single slider handle to a new value. This will move the handle to the new

position on the track automatically. This method accepts a single argument
which is an integer representing the new value.

values Sets the specified handle to move to a new value when multiple handles are
in use. This method is the same as the value method, except that it takes two
arguments—the index number of the handle followed by the new value.

The destroy, disable, enable, option, and widget methods are common to all
components, and work in the same way with a slider that we would expect them to.

As we saw earlier in this chapter, the value and values methods are exclusive to
the slider, and can be used to get or set the value of single or multiple handles. Of
course, we can also do this using the option method, so these two methods are
merely shortcuts to cater for common implementation requirements. Let's take a look
at them in action. First of all let's see how the value method can be used.

The Slider and Progressbar Widgets

[154]

In slider11.html, remove the <link> to sliderTheme2.css and add a new
<button> element to the page, directly after the slider container:

<p><button type="button" id="setMax">Set to max value</button></p>

Now, change the final <script> element so that it is as follows:

<script>
 $(document).ready(function($){
 $("#mySlider").slider();
 $("#setMax").click(function() {
 var maxVal = $("#mySlider").slider("option", "max");
 $("#mySlider").slider("value", maxVal);
 });
 });
</script>

Save this file as slider12.html. We add a click handler for our new <button>;
whenever it is clicked, this method will first determine what the maximum value
for the slider is, by setting a variable to the result of the option method, specifying
max as the option we'd like to get. Once we have the maximum value, we then call
the value method, passing in the variable that holds the maximum value as the
second argument; our variable will be used as the new value. Whenever the button is
clicked, the slider handle will instantly move to the end of the track.

Using value as an option or method
In a number of examples throughout this chapter, we've made
reference to value (or values) as an option or method. This can be
a little confusing; think of value's method as being a shortcut for
using the value option as a getter in your code.

Working with multiple handles is just as easy but involves a slightly different
approach.

Remove the setMax button in slider12.html and add the following two buttons
directly after the slider element:

<p>
<button type="button" class="preset" id="low">Preset 1 (low) </button>
<button type="button" class="preset" id="high">Preset 2 (high) </
button>

Now change the final <script> element at the end of the <head> to the following
code:

<script>
 $(document).ready(function($){

Chapter 6

[155]

 $("#mySlider").slider({
 values: [25, 75]
 });

 $(".preset").click(function() {
 if (this.id === "low") {
 $("#mySlider").slider("values", 0, 0).slider("values", 1,
 25);
 } else {
 $("#mySlider").slider("values", 0, 75).slider("values" ,
 1, 100);
 }
 });
 });
</script>

Save this file as slider13.html. To trigger multiple handles, we specify the values of
two handles in our configuration object. When either of the two <button> elements
on the page are clicked, we work out whether Preset 1 or Preset 2 was clicked and
then set the handles to either low values or high values, depending on which button
was clicked.

You can also use the array notation method for setting the values in
a slider; this will set the same value for all the handles, irrespective
of how many are present.

The values method takes two arguments. The first argument is the index number of
the handle we'd like to change, and the second argument is the value that we'd like
the handle to be set to. The following screenshot shows how the page should appear
after the second button is clicked:

The Slider and Progressbar Widgets

[156]

Practical uses
An HTML5 element that may lend itself particularly well to implementations of the
slider widget is the <audio> element. This element will automatically add controls that
enable the visitor to play, pause, and adjust the volume of the media being played.

The default controls, however, cannot be styled; if we wish to change their
appearance, we need to create our own controls. A slider widget, of course, makes an
excellent substitution for the default volume control. Let's take a look at how you can
add one, as a basis that you can take further in your own projects.

Create the following new code in your text editor:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Slider</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
 jquery.ui.all.css">
 <link rel="stylesheet" href="css/sliderTheme3.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/jquery.ui.mouse.js"></script>
 <script src="development-bundle/ui/jquery.ui.slider.js"></script>
 <script>
 $(document).ready(function($){
 var audio = $("audio")[0];
 audio.volume = 0.5;
 audio.play();
 $("#volume").slider({
 value: 5,
 min: 0,
 max: 10,
 change: function() {
 var vol = $(this).slider("value") / 10;
 audio.volume = vol;
 }
 });
 });
 </script>
</head>
<body>
 <audio id="audio" controls="controls" src="uploads/prelude.mp3">

Chapter 6

[157]

 Your browser does not support the <code>audio</code> element.
 </audio>
 <div id="volume"></div>
</body>
</html>

Save this file as slider14.html. We also need to add a couple of styles to tweak
the display. In a new page in your text editor, add the following, and save it as
sliderTheme3.css:

#volume { padding-top: 5px; }
#volume.ui-slider { width: 300px; }
.ui-slider-horizontal .ui-slider-handle { margin-left: -0.6em;
 top: -0.1em; }

Don't forget to add a link to sliderTheme3.css from your main page:

<link rel="stylesheet" href="css/sliderTheme3.css">

On the slider14.html page, we have the <audio> tag that has its src attribute
set to an audio clip available from the Internet Archive. We also have the empty
container element for our volume control.

This example uses one of the music soundtrack files created by
Jan Morgenstern for the Big Bunny Movie; you can download
it, and others in the collection at https://archive.org/
details/JanMorgenstern-BigBuckBunny.

In the script, we first select the <audio> element using the standard jQuery syntax
and retrieve the actual DOM element from the jQuery object, so that we can call
methods from the <audio> API.

Next, we define the configuration object for our slider and set the initial minimum
and maximum values. We then add a handler for the change event that is used to
change the volume of the currently playing audio track, using the volume property
method. Whenever the slider is changed, we get a new slider value and convert it to
the required format for the volume property, by dividing the slider value by 10. Once
our variables are defined, we set the volume of the audio clip and begin playing the
clip immediately with the play() method.

The Slider and Progressbar Widgets

[158]

When we run this example in a supporting browser, we can pause or play the audio
clip; if the slider handle is moved, the volume of the clip should increase or decrease
as shown in the following screenshot:

Creating a color slider
A fun implementation of the slider widget, which can be very useful in certain
applications, is the color slider. Let's put what we've learned about this widget into
practice to produce a basic color-choosing tool. The following screenshot shows the
page that we'll be making:

In your text editor, alter the <body> markup in slider1.html to the following code:

<div id="container" class="ui-widget ui-corner-all ui-widget-content
ui-helper-clearfix">
 <label>R:</label>
 <div id="rSlider"></div>

 <label>G:</label>
 <div id="gSlider"></div>

Chapter 6

[159]

 <label>B:</label>
 <div id="bSlider"></div>
 <div id="colorBox" class="ui-corner-all ui-widget-content"></div>
 <label for="output" id="outputLabel">Color value:</label>
 <input id="output" type="text" value="rgb(255,255,255)">
</div>

Let's now add in the script functionality for our demo, so go ahead and remove the
contents of the last <script> element, and add the following code:

<script>
 $(document).ready(function($){
 $("#rSlider, #gSlider, #bSlider").slider({
 min:0,
 max: 255,
 value: 255,
 slide: function() {
 var r = $("#rSlider").slider("value"),
 g = $("#gSlider").slider("value"),
 b = $("#bSlider").slider("value");
 var rgbString = ["rgb(", r, ",", g, ",", b, ")"].join("");
 $("#colorBox").css({
 backgroundColor: rgbString
 });
 $("#output").val(rgbString);
 }
 });
 });
</script>

Save this file as slider15.html. The page itself is simple enough. We've got some
elements used primarily for displaying the different components of the color slider,
as well as the individual container elements that will be transformed into slider
widgets. We use three sliders for our color chooser, one for each RGB channel.

We'll need some CSS as well to complete the overall appearance of our widget. In a
new page in your text editor, create the following stylesheet:

#container { width: 426px; height: 146px; padding: 20px 20px
 0; position: relative; font-size: 11px; background: #eee; }
#container label { float: left; text-align: right; margin: 0
 30px 26px 0; clear: left; }
.ui-slider { width: 240px; float: left; }
.ui-slider-handle { width: 15px; height: 27px; }
#colorBox { width: 104px; height: 94px; float: right; margin:
 -83px 0 0 0; background: #fff; }

The Slider and Progressbar Widgets

[160]

#container #outputLabel { float: right; margin: -14px 34px 0 0; }
#output { width: 100px; text-align: center; float: right; clear: both;
margin-top: -17px; }

Save this file as colorSliderTheme.css in the css folder; don't forget to add a link
to this in your main file immediately after the call to the jQuery UI stylesheet:

<link rel="stylesheet" href="css/colorSliderTheme.css">

In our code, we give the container and color box elements class names from the CSS
framework, so that we can take advantage of effects such as the rounded corners, so
that we can cut down on the amount of CSS we need to write ourselves.

Turning our attention to the JavaScript code, we first set the configuration object. As
RGB color values range from 0 to 255, we set the max option to 255 and the value
option to 255 as well, so that the widget handles start in the correct location (the
color box will have a white background on page load).

The slide callback is where the action happens. Every time a handle is moved,
we update each of the r, g, and b variables, by using the value method, and then
construct a new RGB string from the values of our variables. This is necessary as
we can't pass the variables directly into jQuery's css() method. We also update the
value in the <input> field.

When we run the example, we should find that everything works as expected. As
soon as we start moving any of the slider handles, the color box begins to change
color and the <input> updates.

The slide event is fired on every mouse move as soon as the handle
is selected; this is a potentially intensive event that may cause issues
in older browsers or on slow computers. Care should therefore
be taken when used in a production environment to keep any
unnecessary actions in the event handler to a minimum.

Introducing the progressbar widget
The widget is made up of just two nested <div> elements—an outer <div> container
and an inner <div> container, which is used to highlight the current progress. The
following diagram shows a progressbar that is 50 percent complete:

Percentage of progress progressbar container

Chapter 6

[161]

Let's take a look at the most basic progressbar implementation. In a new file in your
text editor, create the following code:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Progressbar</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/
 jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/
 jquery.ui.progressbar.js"></script>
 <script>
 $(document).ready(function($){
 $("#myProgressbar").progressbar();
 });
 </script>
</head>
<body>
 <div id="myProgressbar"></div>
</body>
</html>

Save this file as progressbar1.html in the jqueryui project folder. With no
configuration, the progressbar is, of course, empty. Our example should appear like
the first screenshot but without any progress displayed (the container is empty).

The progress bar depends on the following components:

• jquery.ui.all.css

• jquery-2.0.3.js

• jquery-ui.core.js

• jquery-ui.progressbar.js

All we need on the page is a simple container element. In this case we've used a
<div> element, but other block-level elements, such as a <p> for example, can also be
used. The widget will add a nested <div> element to the specified container element
at initialization that represents the value of the progressbar.

The Slider and Progressbar Widgets

[162]

This widget, like some of the other widgets, such as the accordion, will naturally fill
the width of its container. Other widgets that also work in a similar way are tabs,
accordion, slider, and menu—each of these equally need some form of container to
restrict their size on screen. Both the container and the inner <div> element are given
a series of attributes and class names by the component. The class names pick up
styling from the theme file in use, and the component is fully ThemeRoller-ready.
Being ThemeRoller-ready means that your chosen theme can easily be changed with
another jQuery ThemeRoller theme, and that widgets will still function without any
changes required to styling.

The additional attributes added to the widget are ARIA compliant, making the
widget fully accessible to visitors using assisted technologies. ARIA (Accessible
Rich Internet Applications) defines ways of making web content more accessible to
those with assistive technologies such as screen the readers. All jQuery widgets have
varying levels of support for ARIA, including a progressbar; this is provided through
the use of additional tags that appear in your code, such as these (highlighted in the
following code):

<div id="myProgressbar" class="ui-progressbar ui-widget ui-widget-
content ui-corner-all" role="progressbar" aria-valuemin="0" aria-
valuemax="100" aria-valuenow="20">

These help translate code into content that assistive technologies will understand;
without them, the code is effectively hidden, which will affect what the end user will
see or hear.

Listing the progressbar's options
The progressbar has three configuration options at the time of writing:

Option Default Value Usage
disabled false Disable the widget
Max 100 The maximum value of the progressbar
Value 0 Set the value (in percent) of the widget

Setting the progressbar's value
Change the final <script> element in progressbar1.html, so that it appears
as follows:

<script>
 $(document).ready(function($){
 $("#myProgressbar").progressbar({

Chapter 6

[163]

 value: 50
 });
 });
</script>

Save this file as progressbar2.html. The value option takes an integer and sets the
width of the inner <div> of the widget to the corresponding percentage. This change
will make the widget appear as it did in the first screenshot of this chapter, with the
progressbar half-filled.

The progressbar's event API
The progressbar exposes three custom events as shown in the following table:

Event Fired when…
create The widget is initialized
change The widget's value changes
complete The value of the widget reaches 100 percent

As with the other widgets, we can supply an anonymous callback function as the
value of these events in a configuration object, and the component will automatically
call the function for us, each time the event fires.

To see this event in action add the following <button> to the page in
progressbar2.html:

<p><button id="increase">Increase by 10%</button>

Next, change the final <script> block to the following:

<script>
 $(document).ready(function($){
 var progress = $("#myProgressbar"),
 progressOpts = {
 change: function() {
 var val = $(this).progressbar("option", "value");
 if (!$("#value").length) {
 $("", { text: val + "%", id: "value"})
 .appendTo(progress);
 } else {
 $("#value").text(val + "%");
 }
 }
 };

The Slider and Progressbar Widgets

[164]

 progress.progressbar(progressOpts);
 $("#increase").click(function() {
 var currentVal = progress.progressbar("option", "value"),
 newVal = currentVal + 10;
 progress.progressbar("option", "value", newVal);
 });
 });
</script>

Save this file as progressbar3.html. We also need to add some styling for our
progressbar, so add the following to a new file, saving it as progressIncrease.css:

#value { margin-top: -28px; margin-right: 10px; float: right; }

Don't forget to add a link to the new stylesheet from the <head> of our page (after
the link to the standard jQuery UI stylesheet):

<link rel="stylesheet" href="css/progressIncrease.css">

In our example, we first cache the selector for the progressbar, then define an event
handler for the change event. Within this callback function, we first obtain the
current value of the progressbar, which will correspond to the value after its last
update. We can select the progressbar using $(this)when inside the event handler.

Provided the value is less than or equal to 100 (percent), we check whether there is
already an element with an id of value on the page. If the element doesn't exist
(that is, its value has no length), we create a new element and set its text to the
current value. We also give it an id attribute and position it, so that it appears inside
the progressbar. If the element already exists, we just update its text to the new value.

Use of self-closing shortcut tag selectors
You may have seen the use of $("") in the code;
this is a shortcut that jQuery uses to produce the full version of
the tags; in this instance, it would encapsulate any content it is
passed within … tags.

We also add a click-handler for the button that we added to the page. Whenever
the button is clicked, we first get the current value of the progressbar by using the
option method in getter mode. We then add 10 to the value before using the
option method in setter mode to increase the value of the inner <div> by 10
percent. The value is added to a element to indicate the progress.

Chapter 6

[165]

The following screenshot shows the result of clicking on the button:

In this example, we set the value of the progressbar manually whenever the Increase
by 10% button is clicked; we use the standard option method, common to all UI
library components, to retrieve information about the current state of the progressbar.

Don't forget that like the other library components, this event can be used with
jQuery's on() method by prefixing the name of the widget onto the event name,
for example, progressbarchange.

Using progressbar methods
In addition to the common API methods that are exposed by all library components,
such as destroy, disable, enable, widget, and option, the slider API also exposes
the value method, which is a shortcut for using the option method to set the value
of the progressbar.

We can do exactly the same as we did in the last example, but with less code, using
the value method. Change the final <script> element in progressbar3.html,
so that it is as follows:

<script>
 $(document).ready(function($){
 var progress = $("#myProgressbar");
 progress.progressbar();
 $("#increase").click(function() {
 var currentVal = progress.progressbar("option", "value"),
 newVal = currentVal + 10;
 progress.progressbar("value", newVal);
 if (!$("#value").length) {
 $("", { text: newVal + "%", id: "value"

The Slider and Progressbar Widgets

[166]

 }).appendTo(progress);
 } else {
 $("#value").text(newVal + "%");
 }
 });
 });
</script>

Save this file as progressbar4.html. We lose the configuration object in this
example, as it isn't required.

The logic for increasing the value using the value method has been moved into the
click handler for the <button> element. Within the event handler, we get the value of
currentVal, then add 10 to it, and assign that to newVal. The value attribute of the
progressbar widget is updated with the new value; a check is performed to see if the
percentage count text exists. If it doesn't (that is, the length of #value is zero), then
we add a new instance, with the updated figure and display this on screen.

You will notice though, with the move of the update code into the event handler,
that this has allowed us to perform the same action as in the previous example, but
in a more concise format.

Adding indeterminate support
So far, we've looked at how you can control the percentage value that a progressbar
should use, when updating its results. However, there may be instances where this
isn't always possible—to allow for this, an indeterminate option can be used. Added
in jQuery UI 1.10, this allows for those instances where the value can't be updated,
as the final value is not known.

Let's take a look at a couple of examples to compare the difference between setting
a known value and an indeterminate one. In progressbar4.html, change the
<script> element to the following code:

<script>
 $(document).ready(function($){
 $("#myprogressbar").progressbar({ value: false });
 $("button").on("click", function(event) {
 var target = $(event.target), progressbar = $("#myprogressbar"),
progressbarValue = progressbar.find(".ui-progressbar-value");
 if (target.is("#numButton")) {
 progressbar.progressbar("option", { value: Math.floor(Math.
random() * 100) });
 } else if (target.is("#falseButton")) {
 progressbar.progressbar("option", "value", false);

Chapter 6

[167]

 }
 });
});
</script>

In the <body> element of the code, alter the HTML to the following code:

<div id="myprogressbar"></div>
<p>
<button id="numButton">Random Value - Determinate</button>
<button id="falseButton">Indeterminate</button>

Save this file as progressbar5.html. The following screenshot shows the results of
clicking on the Indeterminate button:

Although it's hard to see it in action in print, the previous example shows a
continually moving progressbar at 100 percent; clicking on the Indeterminate button
sets the value attribute to false, which tells the progressbar to assume 100 percent
as the value. The automatic setting to 100 percent in this instance is an indicator that
we are making progress. As we are unable to get an accurate figure for how much
progress has been made at each point, the progressbar widget automatically assumes
that the value is 100 percent.

The Slider and Progressbar Widgets

[168]

In comparison, if we know the value that the progressbar should use, we can set that
value instead. Clicking on the Random Value - Determinate button shows the effect
of setting such a value as shown in the following screenshot, in a similar fashion to
previous examples throughout this chapter:

Responding to user interaction
At its most basic level, we can manually update the progressbar in response to user
interaction. For example, we could specify a wizard-style form, which has several steps
to complete. In this example, we'll create a form as shown in the following screenshot:

Chapter 6

[169]

During each step, we can increment the progressbar manually to let the user
know how far through the process they are. In progressbar5.html, replace the
progressbar container and buttons with the following code:

<div class="form-container ui-helper-clearfix ui-corner-all">
 <h1>Registration Form</h1>
 <p>Progress:</p>
 <div id="myProgressbar"></div>
 <label id="amount">0%</label>
 <form action="serverScript.php">>
 <div class="form-panel">
 <h2>Personal Details</h2>
 <fieldset class="ui-corner-all">
 <label for="name">Name:</label>
 <input id="name" type="text">
 <label for="dob">D.O.B:</label>
 <input id="dob" type="text">
 <label for="passwrd1">Choose password:</label>
 <input id="passwrd1" type="password">
 <label for="passwrd2">Confirm password:</label>
 <input id="passwrd2" type="password">
 </fieldset>
 </div>
 <div class="form-panel ui-helper-hidden">
 <h2>Contact Details</h2>
 <fieldset class="ui-corner-all">
 <label for="email">Email:</label>
 <input id="email" type="text">
 <label for="tel">Telephone:</label>
 <input id="tel" type="text">
 <label for="address">Address:</label>
 <textarea id="address" rows="3" cols="25"></textarea>
 </fieldset>
 </div>
 <div class="form-panel ui-helper-hidden">
 <h2>Registration Complete</h2>
 <fieldset class="ui-corner-all">
 <p>Thanks for registering!</p>
 </fieldset>
 </div>
 </form>
 <button id="next">Next</button>
 <button id="back" disabled="disabled">Back</button>
</div>

The Slider and Progressbar Widgets

[170]

Save this file as progressbar6.html. In the <head> section, we add a link to the
framework theme files, as we have done with the other examples in this chapter, and
will need to add a link to a custom stylesheet that we'll add in a moment:

<link rel="stylesheet" href="css/progressTheme.css">

The <body> element of the page contains a few layout elements and some text
nodes, but the main elements are the container for the progressbar and the <form>.
The <form> section is separated into several different sections using the <div> and
<fieldset> elements. The reason for this is that we can hide the parts of the form to
make it appear as if it spans several pages.

We've added a paragraph and a <label> parameter next to the progressbar. We'll
position these so that they appear inside the widget. The paragraph contains a
simple text string. The label will be used to show the current progress value.

The outer container is given several class names; the first is that we can apply some
custom styling to the element, but the next two are to target different features of the
jQuery UI CSS framework. The ui-helper-clearfix class is used to automatically
clear floated elements and is a great way of reducing the clutter of additional and
unnecessary clearing of the <div> elements. Don't forget to make explicit use of this
and other framework classes when creating your own widgets.

We covered some of the core CSS classes back in Chapter 2, The CSS
Framework and Other Utilities; more details of the CSS framework API are
available at http://learn.jquery.com/jquery-ui/theming/api/.

The ui-corner-all class is used to give the container element (as well as the
progressbar itself, which has them automatically, and our <fieldset> elements)
rounded corners, using several proprietary style rules. These are now supported by
most modern browsers. We also have a Next button to move forward through each
panel, and a Back button that is disabled by default.

We use another class from the CSS framework within the form. Several panels need
to be hidden when the page first loads; we can therefore make use of the ui-helper-
hidden class to ensure that they are set to display: none. When we want to show
them, all we have to do is remove this class name.

Now let's add the JavaScript. Change the final <script> element at the bottom of the
page, so that it appears as follows:

$(document).ready(function($){
 var prog = $("#myProgressbar"), progressOpts = {
 change: function() {

Chapter 6

[171]

 prog.next().text(prog.progressbar("value") + "%");
 }
 };
 prog.progressbar(progressOpts);
 $("#next, #back").click(function() {
 $("button").attr("disabled", true);
 if (this.id == "next") {
 prog.progressbar("option", "value",
 prog.progressbar("option", "value") + 50);
 $("form").find("div:visible").fadeOut().next()
 .fadeIn(function(){
 $("#back").attr("disabled", false);
 if (!$("form").find("div:last").is(":visible")) {
 $("#next").attr("disabled", false);
 }
 });
 } else {
 prog.progressbar("option", "value", prog.progressbar
 ("option", "value") - 50);
 $("form").find("div:visible").not(".buttons").fadeOut()
 .prev().fadeIn(function() {
 $("#next").attr("disabled", false);
 if (!$("form").find("div:first").is(":visible")) {
 $("#back").attr("disabled", false);
 }
 });
 }
 });
});

We first cache a selector for the progressbar and define our configuration object,
making use of the change event to specify an anonymous callback function. Each
time the event is fired we'll grab the current value of the progressbar using the value
method, and set it as the text of the <label> parameter directly after the progressbar
element. The event is fired after the change takes place, so the value we obtain will
always be the new value.

Once the progressbar is initialized, we add a click handler for the buttons after the
form. Within this handler function, we first disable both of the buttons to prevent the
form from breaking if a <button> is repeatedly clicked. We then use an if statement
to run the slightly different code branches, depending on the button that was clicked.

The Slider and Progressbar Widgets

[172]

If the Next button was clicked, we increase the value of the progressbar by 50
percent by setting the value option to the current value plus 50 percent. We then
fade out the currently visible panel and fade in the next panel. We use a callback
function as an argument to the fadeIn() method, which will be executed once the
animation ends.

Within this function, we re-enable the Back button (as it was Next that was clicked, it
is not possible for the first panel to be visible, and so this button should be enabled)
and determine whether to enable the Next button, which can be done, provided the
last panel is not visible.

The second branch of the outer if statement deals with the Back button being
clicked. In this case, we reduce the progressbar by 50 percent, enable the Next
button, and check whether the Back button should be enabled.

This is now all of the JavaScript that we'll need. All we have to do now is add
some basic CSS to lay the example out; in a new file in your text editor add the
following code:

h1, h2 { font-family: Tahoma; font-size: 140%; margin-top: 0;}
h2 { margin: 20px 0 10px; font-size: 100%; text-align: left; }
p { margin: 0; font-size: 95%; position: absolute; left: 30px;
 top: 60px; font-weight: bold; }
#amount { position: absolute; right: 30px; top: 60px; font- size:
80%; font-weight: bold; }
#thanks { text-align: center; }
#thanks p { margin-top: 48px; font-size: 160%; position:
 relative; left: 0; top: 0; }
form { height: 265px; position: relative; }
.form-container { width: 400px; margin: 0 auto; position:
 relative; font-family: Verdana; font-size: 80%; padding:
 20px; background-color: #C5DBEC; border: 1px solid #2E6E9E; }
.form-panel { width: 400px; height: 241px; position: absolute;
 top: 0; left: 0; }
fieldset { width: 397px; height: 170px; margin: 0 auto; padding: 22px
0 0; border: 1px solid #abadac; background-color: #ffffff; }
label { width: 146px; display: block; float: left; text-align:
 right; padding-top: 2px; margin-right: 10px; }
 input, textarea { float: left; width: 200px; margin-bottom:
 13px; }
button { float: right; }

Save this as progressTheme.css in the css directory. We should now have a
working page with a wired-up progressbar. When we run the page, we should
find that we can navigate through each panel of the form, and the progressbar will
update itself accordingly.

Chapter 6

[173]

We're still relying on user interaction to set the value of the progressbar in this
example, which is driven by the visitor navigating through each of the panels.

Implementing rich uploads with a
progressbar
Instead of relying on user interaction to increase the value of the progressbar and
therefore the completion of the specified task, we can instead rely on the system to
update it, as long as something is available that can be used to update it accurately.

In our final progressbar example, we can incorporate the HTML5 file API, in order
to upload a file asynchronously, and can use the onprogress event to update the
progressbar, while the file is uploading.

At this point, you may like to obtain a copy of the
code download that accompanies this book, so that
you can work through the code at the same time as
you study the example.

This example will only work correctly using a full web server with PHP installed and
configured. We won't be looking at the server-side part of the upload process in this
example; we're not interested in what happens to the file once it's been uploaded,
only in updating the progressbar based on feedback received from the system, while
it is uploading.

Change the <body> in progressbar6.html, so that it contains the following elements:

<div id="container">
 <h1>HTML5 File Reader API</h1>
 <form id="upload" action="upload.php" method="POST"
 enctype="multipart/form-data">
 <fieldset>
 <legend>Image Upload</legend>
 <input type="hidden" id="MAX_FILE_SIZE" name="MAX_FILE_SIZE"
 value="300000" />
 <div>
 <label for="fileselect">Image to upload:</label>
 <input type="file" id="fileselect" name="fileselect[]"
 multiple="multiple" />
 </div>
 <div id="progress"></div>
 </fieldset>
 </form>
 <div id="messages"></div>
</div>

The Slider and Progressbar Widgets

[174]

On the page, we have an <input> element of the file type, followed by the
container for the progressbar as usual. Next, let's add the script; change the final
<script> element at the end of <head> to the following code:

$("document").ready(function($) {
 if (window.File && window.FileList && window.FileReader) {
 $("#fileselect").on("change", function(e) {
 var files = e.target.files || e.dataTransfer.files;
 for (var i = 0, f; f = files[i]; i++) {
 ParseFile(f);
 UploadFile(f);
 }
 });
 }
});

Save this file as progressbar7.html. Add the following code to a new document,
and save it as uploads.js:

function ParseFile(file) {
 $("#messages").html(
 "<p>File information:
" +
 " type: " + file.type + "
" +
 " size: " + file.size +
 " bytes</p>"
);

 if (file.type.indexOf("image") === 0) {
 var reader = new FileReader();
 reader.onload = function(e) {
 $("#messages").prepend(
 "
Image:
" + file.name + "
" +
 '<img class="preview" src="' + e.target.result + '"
 /></p>'
);
 };
 reader.readAsDataURL(file);
 }
}

function UploadFile(file) {
 $("#progress").progressbar();
 var xhr = new XMLHttpRequest();
 xhr.upload.onprogress = function updateProgress(e) {
 var fileloaded = (e.loaded / e.total);

Chapter 6

[175]

 $("#progress").progressbar("value", Math.round(fileloaded *
 100));
 };

 xhr.upload.onload = function() {
 $("#progress").progressbar("value", 100);
 };

 xhr.open("POST", $("#upload").action, true);
 xhr.setRequestHeader("X_FILENAME", file.name);
 xhr.send(file);
}

Finally, add the following immediately below the links to jQuery UI in the <head>
element of your document:

<script type="text/javascript" src="js/uploads.js"></script>

First of all, in progressbar7.html we perform a check to confirm if the browser
supports the File API; if it can, then we instigate an event handler that fires as soon
as the fileselect button is clicked.

Within the change handler, we get details of the files selected and save them to an
array; we then call out to the ParseFile() function (in uploads.js) to first initiate
the output messages, then to load and read a copy of the image using FileReader(),
and output a copy of the image to screen. At the same time, we display details of the
image name.

Moving on to uploads.js, we then shell out to the UploadFile function, which is
where the real magic happens. We begin by initiating an instance of the progressbar,
give it the progress ID, and using a <div> element as its container. The code then
sets up an instance of XMLHttpRequest() and opens a POST connection in order
to upload the file. In this instance, the file is actually only uploaded to a test folder
on the server (or in this case, your PC), called uploads; it's at this point where you
would create an upload script that would redirect the file to the appropriate location
on the remote server.

Each time the XMLHttpRequest parameter is updated, it fires the onprogress event
handler to update the progressbar; we calculate the difference between the total file
size and the uploaded content, then convert it to a percentage and use this to update
the progressbar. Once the upload is completed, we fire the onload() event handler
to ensure it shows 100 percent completion.

The Slider and Progressbar Widgets

[176]

We also need a bit of CSS for this example; in a new text file add the following code:

body { font-family: "Segoe UI", Tahoma, Helvetica, Freesans,
 sans-serif; font-size: 90%; margin: 10px; color: #333;
 background-color: #fff; }
#container { margin-left: auto; margin-right: auto; width: 430px; }
#messages { padding: 0 10px; margin: 1em 0; border: 1px solid #999;
width: 400px; clear: both; height: 275px; }
#messages p { position: absolute; float: left; margin-left:
 275px; width: 150px; }
#progress { margin-top: 3px; width: 390px; left: -2px; }
h1 { font-size: 1.5em; font-weight: normal; }
legend { font-weight: bold; color: #333; }
.preview { height: 60%; width: 60%; float: left; }
fieldset { width: 400px; }

This file can be saved in the css folder as uploads.css. Mostly the styles just
position the various elements and set the width of the progressbar. We also don't
need the link to progressTheme.css, so this can be removed as well.

When we run this file, we should see that once a file has been selected, it will
automatically begin to upload, and the progressbar will begin to fill up. If testing
locally, it will be pretty quick, so it's best tested with reasonably large files.

The following screenshot shows the page once the upload has completed:

Chapter 6

[177]

Summary
In this chapter, we've looked at two interface widgets that can both provide some
form of visual feedback, either as result of an operation, or to set a particular value.
We saw how quickly and easily it can put a slider widget on the page, and that it
requires minimal underlying markup and just a single line of code to initialize.

We explored the different options that we can set, to control how the slider behaves
and how it is configured once it's initialized, while providing callbacks that can be
used to execute code at important times during an interaction. We also covered the
range of methods that can be used to programmatically interact with the slider,
including methods for setting the value of the handle(s), or getting and setting
configuration options after initialization.

We also looked at the progressbar widget with a compact API that provides essential
visitor feedback when processes are in progress. We then looked into the various
options that can be used to configure the widget, prior to initialization, or once the
widget is in use. We also examined the methods available for working with the
progressbar widget, to see how we can easily react to changes in progress, or once
the widget has completed.

We also looked at how the progressbar includes support for an indeterminate
progress indicator, for use when the current status of the process cannot be
accurately determined.

In the next chapter, we will look at the datepicker widget, which has the
biggest, most feature-packed API of any widget in the library and includes full
internationalization.

The Datepicker Widget
The jQuery UI datepicker widget is probably the most refined and documented
widget found in jQuery library. It has the biggest Application programming interface
(API) and probably provides the most functionality out of all the widgets. It not only
works completely out of the box, but is also highly configurable and robust.

Quite simply, the datepicker widget provides an interface that allows visitors of your
site or application to select dates. Wherever a form field is required that asks for a
date to be entered, the datepicker widget can be added. This means your visitors get
to use an attractive and engaging widget, and you get dates in the format in which
you expect them.

In this section, we will look at the following topics:

• The default datepicker implementation
• Exploring the configurable options
• Implementing a trigger button
• Configuring alternative animations
• The dateFormat option
• Easy localization
• Multiple month datepickers
• Data-range selection
• Datepicker widget's methods
• Using AJAX with the datepicker

The Datepicker Widget

[180]

Additional functionality built into the datepicker includes automatic opening and
closing animations along with the ability to navigate the interface of the widget
using the keyboard. While holding down the Ctrl key (or command key on Mac),
the arrows on the keyboard can be used to choose a new day cell, which can then be
selected using the return key.

While easy to create and configure, the datepicker is a complex widget made up of a
wide range of underlying elements, as shown in the following figure:

Despite this complexity, we can implement the default datepicker
with just a single line of code, much like the other widgets in the
library that we have covered so far.

Implementing the datepicker widget
To create the default datepicker, add the following code to a new page in your
text editor:

<!DOCTYPE html>
<html>
<head>
 <meta charset = "utf-8">
 <title>Datepicker</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>

Chapter 7

[181]

<script src="development-bundle/ui/jquery.ui.datepicker.js"> </script>
 <script>
 $(document).ready(function($){
 $("#date").datepicker();
 });
 </script>
</head>
<body>
 <label for="date">Enter a date:</label>
 <input id="date" />
</body>
</html>

Save this as datePicker1.html in the jqueryui project folder. All we have on the
page is a <label> and a standard text <input> element. We don't need to specify
any empty container elements for the datepicker widget to be rendered into, as the
markup required to create the widget is automatically added by the library.

Although it might be tempting to use the HTML5 type="date"
attribute in your <input> statements, it is not recommended—this
can cause conflicts where it shows both jQuery UI datepickers at
the same time as the native HTML5 version.

When you run the page in your browser and focus on the <input> element, the
default datepicker should appear beneath the input. Along with an <input> element,
the datepicker can also be attached to a <div> element.

Apart from looking great, the default datepicker also comes with a lot of built-in
functionality. When the datepicker opens, it is smoothly animated from zero to
full size, and it will automatically be set to the present date. Selecting a date will
automatically add the date to the <input> and close the calendar (again with a
nice animation).

With no additional configuration and a single line of code, we now have a perfectly
usable and attractive widget that makes date selection easy. If all you want is to let
people pick a date, this is all that you need. The source files required for the default
datepicker are as follows:

• jquery-2.0.3.js

• jquery.ui.core.js

• jquery.ui.widget.js

• jquery.ui.datepicker.js

The Datepicker Widget

[182]

Selecting dates using inline calendars
We've created a basic datepicker widget, which we've linked into a normal text
<input> box. While this will work perfectly fine, there may be instances where you
don't want to use a normal input box, and just need to display the calendar already
open within your page.

Fortunately this is easy to achieve using the datepicker widget. Change the HTML
code to use <div> elements as shown in the following code:

<body>
 Enter a date: <div id="date"></div>
</body>

If we preview the results in a browser, you will notice that the input textbox has
disappeared, and that the calendar is already displayed in full:

Chapter 7

[183]

Configurable options of the datepicker
The datepicker has a large range of configurable options (currently 50 to be exact).
The following table lists the basic options, their default values, and gives a brief
description of their usage:

Option Default value Usage
altField "" Specifies a CSS selector for an

alternative <input> field to
which the selected date is also
added.

altFormat "" Specifies an alternative format for
the date added to the alternative
<input>. See the dateFormat
option in the later section for
clarification on the value this
option takes.

appendText "" Adds text after datepicker
<input> to show the format of
the selected date.

autoSize false Automatically sets the width
of the <input> element so
that it can accommodate a
date according to the specified
dateFormat.

beforeShow null Allows the datepicker
configuration object to update
the datepicker just before it is
called.

beforeShowDay null Takes a date as a parameter, and
returns values to indicate if the
date is selectable, the class name
to add to the date's cell, and an
(optional) pop-up tooltip for the
date.
The function is called for each
day in the datepicker, before it is
displayed.

buttonImage "" Specifies a path to the image to
use for the trigger <button>.

The Datepicker Widget

[184]

Option Default value Usage
buttonImageOnly false Sets to true to use an image

instead of a trigger button.
buttonText "..." Provides text to display on a

trigger <button> (if present).
calculateWeek $.datepicker.

iso8601Week
Accepts a function, used to
calculate the week of the year for
a specified date.

changeMonth false Show the month change
dropdown.

changeYear false Show the year change dropdown.
closeText

constrainInput true Constrains the <input> element
to the format of the date,
specified by the widget.

currentText "Today" The text to display for the current
day link. This option must be
used in conjunction with the
showButtonPanel attribute to
display this button.

dateFormat The format to use for parsed
and displayed dates. A full list
of formats is displayed in the
Changing the date format section
later in this chapter.

dayNames ["Sunday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday"]

The list of long day names to
be used in conjunction with the
dateFormat attribute.

dayNamesMin ["Su", "Mo",
"Tu", "We",
"Th", "Fr", "Sa"
]

An array that contains the
minimized date names that show
on the column headers in the
datepicker widget. This can be
localized, as we will see later in
this chapter.

Chapter 7

[185]

Option Default value Usage
dayNamesShort ["Sun", "Mon",

"Tue", "Wed",
"Thu", "Fri",
"Sat"]

The list of abbreviated day
names, for use with the
dateFormat attribute of the
widget.

defaultDate null Sets the date that will be
highlighted when the datepicker
opens and the <input> element
is empty.

duration "normal" Sets the speed at which the
datepicker opens.

firstDay 0 Sets the first day of the week,
beginning with 0 for Sunday,
through to 6 for Saturday.

gotoCurrent false Sets the current day link to move
the datepicker widget to the
currently selected date instead of
today.

hideIfNoPrevNext false Hides the previous/next links
when not needed, instead of
disabling them.

isRTL false Controls whether the language
used is drawn from right to left.

maxDate null Sets the maximum date that
can be selected. Accepts a date
object or a relative number. For
example: +7, or a string such as
+6m.

minDate null Sets the minimum date that can
be selected. Accepts a number,
date object, or string.

monthNames Array of
month names,
for example
["January",
"February",
"March"…]

Sets the full list of month names,
for use with the dateFormat
attribute in the widget.

monthNamesShort Array of
abbreviated
month names,
such as ["Jan",
"Feb", "Mar"…]

Sets the list of abbreviated month
names for use in each month
header within the datepicker
widget, as specified by the
dateFormat attribute.

The Datepicker Widget

[186]

Option Default value Usage
navigationAsDateFormat false Allows us to specify month

names using the previous, next,
and current links.

nextText "Next" Sets the text to display for the
next month link.

numberOfMonths 1 Sets the number of months
shown on a single datepicker
widget.

onChangeMonthYear Function Called when datepicker moves to
a new month or year.

onClose Function Called when the datepicker
widget is closed, irrespective of
whether a date has been selected.

onSelect Function Called when the datepicker
widget has been selected.

prevText "Prev" Sets the text to display for the
previous month link.

selectOtherMonths false Allows days in previous or
following months that are shown
on the current month's panel (see
the showOtherMonths option)
to be selected.

shortYearCutoff "+10" Determines the current
century while using the year
representation; numbers less
than this are deemed to be in the
current century.

showAnim "show" Sets the animation used when the
datepicker widget is displayed.

showButtonPanel false Shows a panel of buttons for the
datepicker widget, consisting of
close and current links.

showCurrentAtPos 0 Sets the position of the current
month in multiple-month
datepickers

showOn "focus" Sets the event that triggers
displaying the datepicker.

Chapter 7

[187]

Option Default value Usage
showOptions {} An object literal containing

options to control the configured
animation.

showOtherMonths false Shows the last and first days of
the previous and next months.

showWeek false Displays a column showing
the week of the year. The
week is determined using the
calculateWeek option.

stepMonths 1 Sets how many months are
navigated with the previous and
next links.

weekHeader "Wk" Sets the text to display for
the week of the year column
heading.

yearRange "-10:+10" Specifies the range of years in the
year dropdown.

We will explore some of these options in detail throughout this chapter.

Using the basic options
Change the final <script> element in datepicker1.html to the following:

<script>
 $(document).ready(function($){
 $("#date").datepicker({
 appendText: " (mm/dd/yy)",
 defaultDate: "+5",
 showOtherMonths: true
 });
 });
</script>

The Datepicker Widget

[188]

Save this as datePicker2.html. The following screenshot shows how the widget
will look after configuring these options:

We've used a number of options in this example simply because there are so many
options available. The appearance of the initial page, before the datepicker is even
shown, can be changed using the appendText option. This adds the specified text
string using a element directly after the <input> field, which is associated
with the picker. This helps visitors to clarify the format that will be used for the date.

For styling purposes, we can target the new element using the
.ui-datepicker-append class name.

The defaultDate option sets which date is highlighted in the datepicker when it
opens initially and the <input> element is empty. We've used the relative +5 string
in this example, so that when the datepicker widget opens initially, the date five days
from the current date is selected. Pressing the Enter key on the keyboard will select
the highlighted date.

Along with a relative string, we can also supply null as the value of defaultDate
to set it to the current date (today subjectively), or a standard JavaScript date object.

As we can see in the previous screenshot, the styling of the datepicker widget date
for the current date is different from the styling used to show the default date. This
will vary between themes, but for reference, the current date is shown in bold against
a light shade (orange), while the selected date has a darker border than normal dates
with the default theme.

Chapter 7

[189]

Once a date has been selected, subsequent openings of the datepicker widget will
show the selected date as the default date, which again has different styling (a
preselected date with the redmond theme will be light blue).

By setting the showOtherMonths option to true, we've added grayed-out
(nonselectable) dates from the previous and next months to the empty squares that
sit at the beginning and end of the date grid, before and after the current month.
These are visible in the previous screenshot and are rendered in a much lighter color
than the selectable dates.

Minimum and maximum dates
By default, the datepicker will go forward or backward infinitely, there are no
upper or lower boundaries. If we want to restrict the selectable dates to a particular
range, we can do it easily using the minDate and maxDate options. Change the
configuration object in datePicker2.html to the following:

$("#date").datepicker({
 minDate: new Date(),
 maxDate: "+10"
});

Save this as datePicker3.html. In this example, we supply a standard, unmodified
JavaScript date object to the minDate option, which will set the minimum date to the
current date. This will make any dates in the past unselectable.

For the maxDate option, we use a relative text string of +10, which will make only the
current date and the next 10 dates selectable. You can see how these options affect
the appearance of the widget in the following screenshot:

The Datepicker Widget

[190]

The minDate and maxDate options can also take strings such as +6w,
-10m, or 1y, which represent weeks, months, and years respectively.
You can find more details on how to set these options at http://
api.jqueryui.com/datepicker/#option-minDate and
http://api.jqueryui.com/datepicker/#option-maxDate.

Changing the elements in the datepicker
UI
The datepicker API exposes a number of options directly related to adding or
removing additional UI elements within the datepicker. To show <select> elements
that allow the visitor to choose the month and year, we can use the changeMonth and
changeYear configuration options:

$("#date").datepicker({
 changeMonth: true,
 changeYear: true
});

Save this as datePicker4.html. Using the month and year <select> elements,
gives the user a much quicker way to navigate to dates that may be far in the past or
future. The following screenshot shows how the widget will appear with these two
options enabled:

Chapter 7

[191]

By default, the year select box will include the previous and next 10 years, covering
a total range of 20 years. We can navigate further than this using the previous/next
arrow links, but if we know beforehand that visitors may be choosing dates very far
in the past or future, we can change the range of years using the yearRange option:

$("#date").datepicker({
 changeMonth: true,
 changeYear: true,
 yearRange: "-25:+25"
});

Save this as datePicker5.html. This time when we run the page, we should find
that the year range now covers 50 years in total.

Another change we can make to the UI of the datepicker is to enable the button
panel, which adds two buttons to the footer of the widget. Let's see it in action.

Change the configuration object in datepicker5.html, so that it appears as follows:

$("#date").datepicker({ showButtonPanel: true })

Save this as datePicker6.html. The buttons added to the foot of the widget appear
exactly as the buttons in a dialog widget, as you can see in the following screenshot:

The Today button will instantly navigate the datepicker back to the month showing
the current date, while the Done button will close the widget without selecting
a date.

The Datepicker Widget

[192]

We could also change the Today button so that it goes to the selected date instead of
the current date using the gotoCurrent option; we can achieve this by adding it into
the configuration object for the widget, as follows:

$("#date").datepicker({
 showButtonPanel: true,
 gotoCurrent: true
});

If you select a date, then scroll through a number of months, you can then return
to the selected date by clicking on the Today button.

Adding a trigger button
By default, the datepicker is opened when the <input> element that it is associated
with receives focus. However, we can change this very easily, so that the datepicker
opens when a button is clicked instead. The most basic type of <button> can
be enabled with just the showOn option. Change the configuration object in
datePicker6.html, so that it is as follows:

$("#date").datepicker({
 showOn: "button"
});

Save this as datePicker7.html. Setting the showOn option to true in our
configuration object will automatically add a simple <button> element directly after
the associated <input> element. We can also set this option to both, so that it opens
when the <input> is focused as well as when the <button> is clicked.

The datepicker will now open only when the <button> is clicked, rather than when
the <input> is focused. This option also accepts the string value "both", which opens
the widget when the <input> is focused and when the <button> is clicked. The new
<button> is shown in the following screenshot:

Chapter 7

[193]

The default text shown on the <button> (an ellipsis) can easily be changed
by providing a new string as the value of the buttonText option; change the
previous configuration object to this:

$("#date").datepicker({
 showOn: "button",
 buttonText: "Open Calendar"
});

Save this as datePicker8.html. Now, the text on the <button> should match the
value that we set as the buttonText option:

Instead of using text as the label of the <button> element, we can use an image. This
is configured using the buttonImage option:

$("#date").datepicker({
 showOn: "button",
 buttonText: "Open Calendar",
 buttonImage: "img/cal.png"
});

Save this as datePicker9.html. The value of the buttonImage option is a string,
consisting of the path to the image that we'd like to use on the button. Notice that
we also set the buttonText option in this example too. The reason for this is that the
value of the buttonText option is automatically used as the title and alt attributes
of the element, that is, added to the <button>.

Our trigger button should now look as shown in the following screenshot:

The Datepicker Widget

[194]

In this example, we've deliberately not styled the button at this
point, and concentrated on just adding a logo. You could however
style it using jQuery UI, as we will see in Chapter 8, The Button and
Autocomplete Widgets.

We don't need to use a button at all if we don't want to; we can replace the <button>
element with an element instead. Change the configuration object in
datePicker9.html, so that it appears as follows:

$("#date").datepicker({
 showOn: "button",
 buttonImage: "img/date-picker/cal.png",
 buttonText: "Open Calendar",
 buttonImageOnly: true
});

Save this as datePicker10.html. This should give you a nice image-only button, as
illustrated in the following screenshot:

Configuring alternative animations
The datepicker widget comes with an attractive built-in opening animation that
makes the widget appear to grow from nothing to full size. Its flexible API also
exposes several options related to animations. These are the duration, showAnim,
and showOptions configuration options.

The simplest animation configuration that we can set is the speed at which the
widget opens and closes. To do this, all we have to do is change the value of the
duration option. This option requires a simple string that can take a string value
of either slow, normal (the default), or fast, or a number representing a duration
in milliseconds.

Chapter 7

[195]

Change the configuration object in datePicker10.html to the following:
$("#date").datepicker({
 duration: "fast"
});

Save this variation as datePicker11.html. When we run this page in a browser, we
should find that the opening animation is visibly faster.

Along with changing the speed of the animation, we can also change the animation
itself using the showAnim option. The default animation used is a simple show
animation, but we can change this so that it uses any of the other show/hide effects
included with the library (refer to Chapter 14, UI Effects). Change the configuration
object from the previous example to the following:

$("#date").datepicker({
 showAnim: "drop",
 showOptions: {direction: "up"}
});

Save this as datePicker12.html. We also need to use two new <script> resources
to use alternative effects. These are the jquery.ui.effect.js and the source file of
the effect we wish to use, in this example, jquery.ui.effect-drop.js. We'll look at
both of these effects in more detail in Chapter 14, UI Effects, but they are essential for
this example to work. Make sure you add these to the file, directly after the source
file for the datepicker:

<script src="development-bundle/ui/jquery.ui.datepicker.js">
</script>
<script src="development-bundle/ui/jquery.ui.effect.js"></script>
<script src="development-bundle/ui/jquery.ui.effect-drop.js"></script>

Our simple configuration object configures the animation to drop using the
showAnim option, and sets the direction option of the effect using showOptions,
which is required due to the datepicker's absolute positioning. When you now run
this example, the datepicker should drop down into position instead of opening.
Other effects can be implemented in the same way.

Displaying multiple months
So far, all of our examples have looked at single-month datepickers, where only one
month was shown at a time. However, we can easily adjust this to show a different
number of months, if we wish using a couple of configuration options. Remove the
effect source files before the configuration object in datePicker12.html, and change
the configuration object so that it appears as follows:

$("#date").datepicker({
 numberOfMonths: 3
});

The Datepicker Widget

[196]

Save this as datePicker13.html. The numberOfMonths option takes an integer
representing the number of months that we would like to be displayed in the widget
at any point. Our datepicker should now appear like this:

There is no upper limit to the number of months that will be
displayed; however, the performance of the widget decreases with
each additional month shown. There is also a noticeable lag between
focusing the <input> and the widget being displayed.

Also, the individual month panels are floated side-by-side, and due to their size, they
will soon overflow the viewport causing a horizontal scroll bar to appear. However,
as soon as the scroll bar is used, the datepicker will close, making any months that go
beyond the boundary of the screen unusable. For these reasons, it's best to keep the
number of months displayed to a minimum.

There are several other configuration options related to multiple-month datepickers.
The stepMonths option controls how many months are changed when the previous
or next links are used.

The default value of stepMonths is 1, so in our previous example, the widget starts
with the current month displayed first and the next two months after it. Each time
the Previous or Next icons are clicked; the panels move one space left or right.

If we set stepMonths to 3, the same as the number of months shown, each month
will move three spaces left or right when the previous or next links are clicked, so
entirely new panels are shown on each click.

Chapter 7

[197]

The showCurrentAtPos option specifies where the current month is shown when
the datepicker is displayed. In our previous example, the current month is shown
as the first month panel. Each month panel has a zero-based index number, so if we
want the current month to be in the middle of the widget, we would set this option
to 1 instead.

Displaying the datepicker vertically
In the previous example, it was noted that the use of multiple months should be kept
to a minimum, as we cannot change the styling used for the width, if the calendar
goes too far to the right.

We can mitigate this to an extent, by adapting the numberofMonths option. It takes
two attributes: the first is to control the number of months we display, and the
second is for the number of columns that should be used. If we set the example from
datepicker13.html accordingly, this is how it could look when set to show two
months in a single column:

The Datepicker Widget

[198]

To achieve this effect, all we need to do is to change the configuration object in
datepicker13.html as follows:

$("#date").datepicker({
 numberOfMonths: [2, 1]
});

You will see that the datepicker now only displays two calendar months, and that
these are now in a vertical format. We could then use a little jQuery to get the size of
the window, and set the numberOfMonths attribute depending on the size returned:

function responsive(){
 var winWidth = $(window).width();
 if((winWidth < 991)&&(winWidth >= 768)) {
 // tablet
 $("#date").datepicker("option", "numberOfMonths", [2, 1]);
 } else {
 //desktop
 $("#date").datepicker("option", "numberOfMonths", 2);
 }
}

It isn't possible to achieve the same effect manually using CSS;
while most styles can be altered, the container width is hardcoded
into the library and cannot be altered.

Changing the date format
The dateFormat option is one of the localization options at our disposal for
advanced datepicker locale configuration. Setting up this option allows you to
quickly and easily set the format of selected dates (as displayed in the <input>)
using a variety of short-hand references. The format of dates can be a combination
of any of the following characters (they are case sensitive):

• d: This is the day of month (single digit where applicable)
• dd: This is the day of month (two digits)
• m: This is the month of year (single digit where applicable)
• mm: This is the month of year (two digits)
• y: This is the year (two digits)
• yy: This is the year (four digits)
• D: This is the short day name

Chapter 7

[199]

• DD: This is the full day name
• M: This is the short month name
• MM: This is the long month name
• '...': This is any literal text string
• @: This is the UNIX timestamp (milliseconds since January 1, 1970)

We can use these shorthand codes to quickly configure our preferred date format, as
in the following example. Change the configuration object in datePicker13.html to
the following:

$("#date").datepicker({
 dateFormat:"d MM yy"
});

Save the new file as datePicker14.html. We use the dateFormat option to specify a
string containing the shorthand date code for our preferred date format. The format
we set is the day of the month (using a single digit if possible) with d, the full name
of the month with MM, and the full four-digit year with yy.

When dates are selected and added to the associated <input>, they will be in the
format specified in the configuration object, as shown in the following screenshot:

While using a string as the value of this option to configure dates, we can also specify
whole strings of text. However, if we do and any letters in the string are those used
as shorthand, they will need to be escaped using single quotes.

For example, to add the string Selected: to the start of the date, we would need to
use the string Selecte'd': to avoid having the lowercase d picked up as the short
day of month format:

$("#date").datepicker({
 dateFormat:"Selecte'd': d MM yy"
});

The Datepicker Widget

[200]

Save this change as datePicker15.html. Notice how we escape the lowercase d in
the string Selected by wrapping it in single quotes. Now when a date is selected,
our text string is prefixed to the formatted date:

Styling the <input> tag
You may want to add width: 15em as a style for
the input box, so you can see the whole text clearly.
I've added this into the code file available in the
download that accompanies this book.

There are also a number of built-in preconfigured date formats that correspond to
common standards or RFC notes. These formats are added to the components as
constants and can be accessed via the $.datepicker object. As an example, let's
format the date according to the ATOM standard:

$("#date").datepicker({
 dateFormat: $.datepicker.ATOM
});

Save this as datePicker16.html. When a date is selected in this example,
the value entered into the <input> should be in the format as shown in the
following screenshot:

Chapter 7

[201]

The ATOM format or RFC 3339/ISO 8601 as it is technically known, is
an international standard designed to provide a clear format for dates
and times to avoid misinterpretation, especially when data is transferred
between countries that use different date formats.

The complete set of predefined date formats is listed in the following table:

Option value Shorthand Formatted as…
$.datepicker.ATOM "yy-mm-dd" 2013-07-25
$.datepicker.COOKIE "D, dd M y" Wed, 25 Jul 2013
$.datepicker.ISO_8601 "yy-mm-dd" 2013-07-25
$.datepicker.RFC_822 "D, d M y" Wed, 25 Jul 11
$.datepicker.RFC_850 "DD, dd-M-y" Wednesday, 25-Jul-11
$.datepicker.RFC_1036 "D, d M y" Wed, 25 Jul 11
$.datepicker.RFC_1123 "D, d M yy" Wed, 25 Jul 2013
$.datepicker.RFC_2822 "D, d M yy" Wed, 25 Jul 2013
$.datepicker.RSS "D, d M y" Wed, 25 Jul 13
$.datepicker.TIMESTAMP @ (UNIX timestamp) 1302649200000
$.datepicker.W3C "yy-mm-dd" 2013-07-25

Updating an additional input element
There may be times when we want to update two <input> elements with the
selected date, perhaps to show a different date format. The altField and altFormat
options can be used to cater to this requirement. Add a second <input> element to
the page in datepicker16.html with an id attribute of dateAltDisplay, and then
change the configuration object to the following:

$("#date").datepicker({
 altField: "#dateAltDisplay",
 altFormat: $.datepicker.TIMESTAMP
});

The Datepicker Widget

[202]

Save this as datePicker17.html. The altField option accepts a standard jQuery
selector as its value, and allows us to select the additional <input> element that is
updated when the main <input> is updated. The altFormat option can accept the
same formats as the dateFormat option. The following screenshot shows how the
page should appear, once a date has been selected using the datepicker:

Changing the date format
While using the datepicker widget, you may have noticed that dates returned
programmatically through the getDate method (see the Datepicking methods section)
are in the default GMT date and time standard. In order to change the format of the
date returned by the API, the $.datepicker.formatDate() utility method should
be used. Let's take a look at how we can use this function.

In datePicker17.html, alter the date configuration object as follows:

 $("#date").datepicker({
 dateFormat: 'yy-mm-dd',
 onSelect: function(dateText, inst) {
 var d = new Date(dateText);
 var fmt2 = $.datepicker.formatDate("DD, d MM, yy", d);
 $("#selecteddate").html("Selected date: " + fmt2);
 }
 });

Save this as datePicker18.html. We need to add an additional CSS style rule, so
that we can see the results of selecting a date within the widget. Add the following
to the <head> of our file:

<style type="text/css">
 #selecteddate { margin-top: 250px; }
</style>

Chapter 7

[203]

If we preview the results in a browser, you will see that the date format used in the
initial <input> field is set using the dateFormat attribute in the configuration object;
this was set to dd-mm-yy. In the onSelect event handler, we use $.datepicker.
formatDate to change the selected date to that shown in the following screenshot:

Localizing the datepicker widget
In addition to the options already listed, there are also a range of localization options.
They can be used to provide custom locale support in order to display a datepicker
with all the text shown in an alternative language, or to change the default values of
words in English.

Those options that are used specifically for localization are listed in the
following table:

Option Default Usage
closeText "Close" Text to display on the close

button.
currentText "Today" The text to display for the

current day link.
dateFormat "mm/dd/yy" The format selected dates

should take when added to the
<input>.

The Datepicker Widget

[204]

Option Default Usage
dayNames ["Sunday",

"Monday","Tuesday",

"Wednesday",
"Thursday",
"Friday","Saturday"]

An array of names of days in a
week.

dayNamesMin ["Su", "Mo",
"Tu","We", "Th",
"Fr", "Sa"]

An array of two-letter names of
days in a week.

dayNamesShort ["Sun", "Mon",
"Tue", "Wed", "Thu",
"Fri", "Sat"]

An array of abbreviated names
of days in a week.

firstDay 0 Specify the first column of days
in the datepicker.

isRTL false Set the calendar to right-to-left
format.

monthNames ["January",
"February",

"March", "April",

"May", "June",
"July,

"August",
"September",

"October",
"November",

"December"]

An array of month names.

monthNamesShort ["Jan", "Feb",
"Mar",

"Apr", "May", "Jun",

"Jul", "Aug", "Sep",

"Oct", "Nov", "Dec"]

An array of abbreviated month
names.

nextText "Next" Text to display on the next link.
prevText "Prev" Text to display on the previous

link.
showMonthAfterYear false Shows the month after the year

in the header of the widget.
yearSuffix "" An additional text string to

display after the year in the
month header.

Chapter 7

[205]

A wide range of different translations have already been provided and reside within
the i18n folder in the development-bundle/ui directory. Each language translation
has its own source file and to change the default language, all we have to do is
include the source file of the alternative language.

In datePicker17.html, add the following new <script> element directly after the
link to jquery.ui.datepicker.js:

<script src="development-bundle/ui/i18n/jquery.ui.datepicker-fr.js">
</script>

Remove the altField and altFormat attributes of the configuration object:

$("#date").datepicker();

Save this as datePicker19.html and view the results in a browser:

With just a single link to one new resource, we've changed all of the visible text
in the datepicker to an alternative language, and we don't even need to set any
configuration options. If we wanted to truly internationalize the datepicker, there
is even a roll-up file containing all of the alternative languages that we can use, and
which avoids the need to include multiple language files.

The Datepicker Widget

[206]

In datepicker19.html, alter the link for jquery.ui.datepicker-fr.js in the
<head> to the following code:

<script src="development-bundle/ui/i18n/jquery-ui-i18n.js">
</script>

Next, change the configuration object for datepicker as follows:

$(document).ready(function($){
 $("#date").datepicker();
 $("#date").datepicker("option", $.datepicker.regional["ar"]);
});

Save the file as datepicker20.html. If we preview the results in our browser,
you will see that it displays the widget in Arabic. We've used datepicker's option
attribute to set $.datepicker.regional to ar, which is jQuery UI's code for the
Arabic language:

We will revisit the localization roll-up file later in this chapter, in the Localizing a
datepicker dynamically example.

Chapter 7

[207]

Implementing custom localization
Custom localization is also very easy to implement. This can be done using a
standard configuration object containing the configured values for the options from
the previous table. In this way, any alternative language not included in the roll-up
file can be implemented.

For example, to implement a Lolcat datepicker, remove the existing configuration
object of datePicker20.html, and add the following code:

$("#date").datepicker({
 closeText: "Kthxbai",
 currentText: "Todai",
 nextText: "Fwd",
 prevText: "Bak",
 monthNames: ["January", "February", "March", "April", "Mai", "Jun",
"July", "August", "Septembr", "Octobr", "Novembr", "Decembr"],
 monthNamesShort: ["Jan", "Feb", "Mar", "Apr", "Mai", "Jun", "Jul",
"Aug", "Sep", "Oct", "Nov", "Dec"],
 dayNames: ["Sundai", "Mondai", "Tuesdai", "Wednesdai", "Thursdai",
"Fridai", "Katurdai"],
 dayNamesShort: ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Kat"],
 dayNamesMin: ["Su", "Mo", "Tu", "We", "Th", "Fr", "Ka"],
 dateFormat: 'dd/mm/yy',
 firstDay: 1,
 isRTL: false,
 showButtonPanel: true
});

Save this change as datePicker21.html. Most of the options are used to provide
simple string substitutions. However, the monthNames, monthNamesShort, dayNames,
dayNamesShort, and dayNamesMin options require arrays.

The Datepicker Widget

[208]

Notice that the dayNamesMin option and other day-related arrays should begin with
Sunday (or the localized equivalent); here, we've set Monday to appear first in this
example using the firstDay option. Our datepicker should now appear like this:

For those of you curious about the term Lolcat, it is a term dating
from 2006, but based on a series of images created in the early
twentieth century. It is used to signify a series of cat images that had
(albeit grammatically incorrect or idiosyncratic) phrases, intended to
create humor. You can learn more about this unique form of humor
at http://en.wikipedia.org/wiki/Lolcat.

Implementing callbacks
The final set of configuration options is related to the event model exposed by the
widget. It consists of a series of callback functions that we can use to specify the code
to be executed at different points during an interaction with the datepicker.

Chapter 7

[209]

These are listed in the following table:

Event Fired when…
beforeShow The datepicker is about to open.
beforeShowDay Each individual date is rendered in the datepicker.

Can be used to determine whether the date should
be selectable or not.

onChangeMonthYear The current month or year changes.
onClose The datepicker is closed.
onSelect A date is selected.

To highlight how useful these callback properties are, we can extend the previous
internationalization example to create a page that allows visitors to choose any
available language found in the i18n roll-up file.

Localizing a datepicker dynamically via rollup
Earlier in the book, we took a brief look at how you can use the roll-up file to change
the language displayed by the datepicker. This avoids the need to reference multiple
language files, which helps reduce HTTP requests to the server; the downside
though is that the datepicker widget will always be displayed in the language that
has been hardcoded into the widget's attributes.

We can change that though. Let's take a look at how you can use the beforeShow
callback by adding a language selection dropdown that displays the datepicker in
whichever language is selected.

In datePicker21.html, add the following new <select> box to the page with the
following <option> elements. For reasons of brevity, I've only included a few here;
you can see the full list in the code download that accompanies this book:

<select id="language">
<option id="en-GB">English</option>
<option id="ar">Arabic</option>
<option id="ar-DZ">Algerian Arabic</option>
<option id="az">Azerbaijani</option>
<option id="bg">Bulgarian</option>
<option id="bs">Bosnian</option>
<option id="ca">Catalan</option>
<option id="cs">Czech</option>
...
<option id="en-NZ">English/New Zealand</option>

The Datepicker Widget

[210]

<option id="en-US">English/United States</option>
<option id="eo">Esperanto</option>
<option id="es">Spanish</option>
<option id="et">Estonian</option>
<option id="zh-HK">Chinese</option>
<option id="zh-TW">Taiwanese</option>
</select>

Next, link to the i18n.js roll-up file as follows:

<script src="development-bundle/ui/i18n/jquery-ui-i18n.js">
</script>

Now change the final <script> element so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#date").datepicker({
 beforeShow: function() {
 var lang = $(":selected", $("#language")).attr("id");
 $.datepicker.setDefaults($.datepicker.regional[lang]);
 }
 });
 $.datepicker.setDefaults($.datepicker.regional['']);
 });
</script>

Save this file as datePicker22.html. We use the beforeShow callback to specify a
function that is executed each time the datepicker is displayed on the screen.

Within this function, we obtain the id attribute of the selected <option> element,
and then pass this to the $.datepicker.regional option. This option is set using
the $.datepicker.setDefaults() utility method.

When the page first loads, the <select> element won't have a selected <option>
child, and because of the order of the i18n roll-up file, the datepicker will be set to
Taiwanese. In order to set it to default English, we can set the regional utility to an
empty string after the datepicker has been initialized.

Chapter 7

[211]

The following screenshot shows the datepicker after an alternative language has
been selected in the <select> element:

We can take this a step further; you may have noticed that the language doesn't
change until you click inside the <input> field to display the widget.

The code works, but feels a little clunky; instead, if we make a change to how we
display the widget, we can remove the need to click inside the <input> field. I've
included an example of how to do this in the code download, as datepickerXX.html.

Introducing the utility methods
We used one of the utility methods available in a datepicker in the previous example,
setDefaults is used to set configuration options on all datepicker instances. In
addition to this, there are several other utility methods that we can use; these are
shown in the following table:

Utility Used to…
formatDate Transform a date object into a string in a specified format.

While using the dateFormat option, dates are returned in this
specified format using the formatDate method. This method accepts
three arguments—the format to convert the date to (see dateFormat
in configurable options of the picker), the date object to convert, and
an optional configuration object containing additional settings. The
following options can be provided: dayNamesShort, dayNames,
monthNamesShort, and monthNames.

The Datepicker Widget

[212]

Utility Used to…
iso8601Week Return the week number that a specified date falls on according to

the ISO 8601 date and time standard. This method accepts a single
argument—the date to show the week number.

noWeekends Make weekend dates unselectable. It can be passed to the
beforeShowDay event.

parseDate Do the opposite of formatDate, converting a formatted date string
into a date object. It also accepts three arguments—the expected
format of the date to parse, the date string to parse, and an optional
setting object containing the following options: shortYearCutoff,
dayNamesShort, dayNames, monthNamesShort, and monthNames.

regional Set the language of the datepicker.
setDefaults Set configuration options on all datepickers. This method accepts an

object literal containing the new configuration options.

All of these methods are called on the singleton instance of the $.datepicker
manager object, which is created automatically by the widget on initialization and
used to interact with instances of the datepicker. Irrespective of the number of
datepickers that have been created on the page as jQuery objects, they will always
reference the properties and methods of the first instance of the datepicker widget
created on that page.

Listing the datepicker methods
Along with the wide range of configuration options at our disposal, there are also a
number of useful methods defined that make working with the datepicker a breeze.

In addition to the shared API methods discussed in Chapter 1, Introducing jQuery UI,
such as destroy, disable, enable, option, and widget. The datepicker API also
exposes the following unique methods:

Method Used to…
dialog Open the datepicker in a dialog widget.
getDate Get the currently selected date.
hide Programmatically close a datepicker.
isDisabled Determine whether a datepicker is disabled.
refresh Redraw the datepicker.
setDate Programmatically select a date.
show Programmatically show a datepicker.

Chapter 7

[213]

Let's take a look at some of these methods in more detail, beginning with selecting
dates programmatically.

Selecting a date programmatically
There may be times (such as on dynamic, client-server sites), when we want to be
able to set a particular date from within our program logic, without the visitor using
the datepicker widget in the usual way. Let's look at a basic example.

Remove the <select> element in datePicker22.html and directly after the
<input> element add the following <button>:

<button id="select">Select +7 Days</button>

Now change the final <script> element so that it appears like this:

<script>
 $(document).ready(function($){
 $("#date").datepicker();
 $("#select").click(function() {
 $("#date").datepicker("setDate", "+7");
 });
 });
</script>

Save this as datePicker23.html. The setDate function accepts a single argument,
which is the date to set. As with the defaultDate configuration option, we can
supply a relative string (as we do in this example) or a date object.

You can see some of the options available to set the date object at
http://api.jqueryui.com/datepicker/#utility-formatDate.

If we're forced to work with strings as the source for our datepicker, we can easily
convert them to a date object; to achieve this, we can use one of the many date
JavaScript libraries available such as Moment.js. I've included a simple example
of how to use this library to generate our date object in the code download that
accompanies this book.

The Datepicker Widget

[214]

Showing the datepicker in a dialog box
The dialog method produces the same highly usable and effective datepicker
widget, but it displays it in a floating dialog box. The method is easy to use, although
it affects the placement of the datepicker dialog; the dialog will appear disconnected
from the date input field, as we shall see.

Remove the <button> from the page and change the final <script> element in
datePicker23.html to the following code:

<script>
 $(document).ready(function($){
 function updateDate(date) {
 $("#date").val(date);
 }
 $("#date").focus(function() {
 $(this).datepicker("dialog", null, updateDate);
 });
 });
</script>

Save this as datePicker24.html. First we define a function called updateDate.
This function will be called whenever a date is selected in the datepicker. All we do
within this function is to assign the date that is selected, which will be passed to the
function automatically to our <input> element on the page.

We use the focus event to call the dialog method, which takes two arguments. In
this example, we've supplied null as the first argument, so the datepicker defaults
to the current date.

The second argument is a callback function to execute when a date is selected, which
is mapped to our updateDate function.

We can also supply additional third and fourth arguments; the third is the
configuration object for the datepicker, and the fourth is used to control the position
of the dialog containing the datepicker. By default, it will render the dialog in the
center of the screen.

You can learn more about how to configure these options at
http://api.jqueryui.com/datepicker/#method-dialog.

Chapter 7

[215]

Implementing an AJAX-enabled datepicker
For our final datepicker example, we'll work a little magic into the mix and create
a datepicker, which will communicate with a remote server to see if there are any
dates that cannot be selected. These dates will then be styled as such within the
datepicker widget.

Change the <body> of datepicker24.html, so that it contains the following markup:

<div id="bookingForm" class="ui-widget ui-corner-all">
 <div class="ui-widget-header ui-corner-top">
 <h2>Booking Form</h2>
 </div>
 <div class="ui-widget-content ui-corner-bottom">
 <label for "date">Appointment date:</label>
 <input id="date">
 </div>
</div>
<script>
 $(document).ready(function($){
 var months = [], days = [], x;
 $.getJSON("http://www.danwellman.co.uk/bookedDates.php?
 jsoncallback=?", function(data) {
 for (x = 0; x < data.dates.length; x++) {
 months.push(data.dates[x].month);
 days.push(data.dates[x].day);
 }
 });

 function disableDates(date) {
 for (x = 0; x < days.length; x++) {
 if (date.getMonth() == months[x] - 1 && date.getDate() ==
days[x]) {
 return [false, "preBooked"];
 }
 }
 return [true, ""];
 }

 function noWeekendsOrDates(date) {
 var noWeekend = jQuery.datepicker.noWeekends(date);
 return noWeekend[0] ? disableDates(date) : noWeekend;
 }

The Datepicker Widget

[216]

 $("#date").datepicker({
 beforeShowDay: noWeekendsOrDates,
 minDate: "+1"
 });
 });
</script>

The first part of our script initially declares two empty arrays, and then performs
a request to obtain the JSON object from a PHP file. The JSON object contains a
single option called dates. The value of this option is an array, where each item is
also an object.

Each of these subobjects contain month and day properties, representing one date
that should be made unselectable. The months or days array are populated with the
values from the JSON object for later use in the script.

Next, we define the noWeekendsOrDates callback function that is invoked on the
beforeShowDay event. This event occurs once for each of the 35 individual day
squares in the datepicker. Even the empty squares are included!

The date of each day square is passed to this function, which must determine first if
the selected date is not a weekend using jQuery UI's $.datepicker.noWeekends()
function. If yes, it is automatically passed to the disableDates function, otherwise it
is marked as being disabled.

If the value is passed to the disableDates function, it is passed the date of each
square sent to it from the noWeekendsOrDates function, and must return an array
containing up to two items.

The first is a Boolean indicating whether the day is selectable, and the second is
optionally a class name to give the date. Our function loops through each item in
our months and days arrays to see if any of the dates passed to the callback function
match the items in the arrays. If both the month and day items match a date, the
array returns with false and a custom class name as its items. If the date does not
match, we return an array containing true to indicate that the day is selectable. This
allows us to specify any number of dates that cannot be selected in the datepicker.

Finally we define a configuration object for the datepicker. The properties of the
object are simply the callback function to make the dates specified in the JSON object
unselectable, and the minDate option, which will be set to the relative value +1, as
we don't want people to select dates in the past, or the current day.

Chapter 7

[217]

In addition to the HTML page, we'll also need a little custom styling. In a new page
in your editor, create the following stylesheet:

#date { width: 302px; }
#bookingForm { width: 503px; }
#bookingForm h2 { margin-left: 20px; }
#bookingForm .ui-widget-content { padding: 20px 0; border-top: none;
}
label { margin: 4px 20px 0; font-family: Verdana; font-size: 80%;
float: left; }
.ui-datepicker .preBooked span { color: #ffffff;
background: url(../img/red_horizon.gif) no-repeat; }

Save this as datepickerTheme.css in the css folder. We use PHP to provide the
JSON object in response to the request made by our page. If you don't want to install
and configure PHP on your web server, you can use the file that I have placed at
the URL specified in the example. For anyone that is interested, the PHP used is
as follows:

<?php
 header('Content-type: application/json');
 $dates = "({
 'dates':[
 {'month':12,'day':2},
 {'month':12,'day':3},
 etc...
]
 })";
 $response = $_GET["jsoncallback"] . $dates;
 echo $response;
?>

This can be saved as bookedDates.php in the main jqueryui project folder.

The pre-booked dates are just hardcoded into the PHP file. Again, in a proper
implementation, you'd probably need a more robust way of storing these dates,
such as in a database.

The Datepicker Widget

[218]

When we run the page in a browser and open the datepicker, the dates specified by
the PHP file should be styled according to our preBooked class, and should also be
completely nonresponsive, as shown in the following screenshot:

Summary
In this chapter, we looked at the datepicker widget that is supported by one of
the biggest APIs in the jQuery UI library. This gives us a huge number of options
to work with and methods to receive data from. We first looked at the default
implementation and how much behavior is added to the widget automatically.

We looked at the rich API exposed by the datepicker, which includes more
configurable options than any other component. We also saw how we can use the
utility functions that are unique to the datepicker manager object.

We saw how easy the widget makes implementing internationalization. We also saw
that there are 34 additional languages the widget has been translated into. Each of
these is packed into a module that is easy to use in conjunction with the datepicker
for adding support for alternative languages. We also saw how we create our own
custom language configuration.

We covered some of the events that are fired during a datepicker interaction, and
looked at the range of methods available for working with and controlling the
datepicker from our code.

In the next chapter, we'll look at two of the more recent additions to the library, the
button widget and the autocomplete widget.

The Button and
Autocomplete Widgets

The button and autocomplete widgets are two of the more recent additions to the
library, and were released with Version 1.8.

Traditionally, it has been tricky to style the form elements consistently across all
browsers and platforms, and to confound this, most browsers and platforms render
the form controls uniquely. Both of the widgets covered in this chapter are used to
improve some of the traditional form elements that are used on the web.

The button widget allows us to create visually appealing and highly configurable
buttons from elements, including the <button>, <input>, and <a> elements that
can be styled with themes generated using ThemeRoller. The types of the <input>
element that are supported include submit, radio, and checkbox. Additional
features, such as icons, button sets, and split buttons can be used to further
enhance the underlying controls.

The autocomplete widget is attached to a standard text <input> and is used to
provide a menu of contextual selections. When the visitor begins typing in the
<input> element, the suggestions that match the characters entered into the
control are displayed.

Autocomplete is fully accessible through the keyboard input, allowing the list
of suggestions to be navigated with the arrow keys, a selection made with the
Enter key, and the menu closed with the Esc key. When the arrow keys are used
to navigate the list of suggestions, each suggestion will be added to the <input>
element before a selection is made. If the Esc key is used to close the menu after
the list has been navigated, the value of the <input> element will revert to the text
entered by the visitor.

The Button and Autocomplete Widgets

[220]

In this chapter we will cover the following topics:

• Standard button implementations
• Configurable options
• Adding icons
• Button events
• Button sets
• Button methods
• Using local data sources with autocomplete
• The configurable options of autocomplete
• Autocomplete events
• Unique methods of autocomplete
• Using remote data sources with autocomplete
• Using HTML in the autocomplete suggestions menu

Introducing the button widget
The button widget is used to provide a consistent, fully-themed styling to a range of
elements and input types. The widget can be created from several different elements
and the resulting DOM of the widget, as well as the features that can be used, will
vary slightly depending on which element is used.

A standard button widget, built from either a <button>, <a>, or <input> element
with a type of button, submit, or reset will appear as follows:

Implementing the standard buttons
As the button can be built from several different elements, there are some minor
variations of the underlying code that we can use. When creating buttons using the
<a>, <button>, or element will be created automatically by the widget and
nested within the underlying element. This new will contain the text label
of the button.

Chapter 8

[221]

To create a link button, use the following code:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Button</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js">
 </script>
 <script src="development-bundle/ui/jquery.ui.button.js">
 </script>
</head>
<body>
 A link button
</body>
</html>

Save this file as button1.html. The script required to create a button, when using
an <a> element as the underlying HTML can be as simple as this, which should be
added after the last <script> element in the previous code:

<script>
 $(document).ready(function($){
 $("#myButton").button();
 });
</script>

In this case, no special behavior is added to the resulting button; the <a> element will
simply send the visitor to the new page or anchor specified in the href attribute of
the anchor. In this case, the widget is simply themed consistently with other jQuery
UI widgets that we may be using in the page or site. Markup is automatically added
by the widget when compiled in the browser—if you use a DOM inspector such as
Firebug, you will see the following code for button1.html:

<a href="some_other_page.html" id="myButton" class="ui-button
ui-widget ui-state-default ui-corner-all ui-button-text-only"
role="button" aria-disabled="false">A
link button

The Button and Autocomplete Widgets

[222]

The button widget requires the following library resources:

• jquery.ui.all.css

• jquery-2.0.3.js

• jquery.ui.core.js

• jquery.ui.widget.js

• jquery.ui.button.js

Creating buttons using the <input> or <button>
tags
We are not limited to just using hyperlinks to create buttons; the button widget will
also work with the <input> or <button> tags.

It is imperative that the type attribute of the element is set when using <input>, so
that the appearance of the button matches that of other buttons created from other
underlying elements. For a standard, single button widget, the type attribute can be
set to be submit, reset, or button.

Creating a button from a <button> element is identical to the code used in button1.
html (except that we don't add a href attribute to the <button> tag):

<button id="myButton">A <button> button</button>

Creating a button from an <input> element is also very similar except that we use
the value attribute to set the text on the button instead of adding text content to the
<input> tag:

<input type="button" id="myButton" value="An <input>
button">

Theming
Like all widgets, the button has a variety of class names added to it, which
contribute to its overall appearance. Of course, we can use the theme's class names
in our own stylesheets to override the default appearance of the theme in use, if
we wish to provide custom styling. ThemeRoller is still usually the best tool for
theming buttons.

Chapter 8

[223]

Exploring the configurable options
The button widget has the following configuration options:

Option Default Value Usage
disabled false Disables the button instance.
icons {primary: null,

secondary: null}
Sets the icons for the button
instance.

label The content of the
underlying element or
value attribute

Sets the text of the button instance.

text true Hides the text of the button when
using an icon-only instance.

In our first example, the text content of the <a> element was used as the button's
label. We can easily override this using the label option. Change the final <script>
element in button1.html, so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#myButton").button({
 label: "A configured label"
 });
 });
</script>

Save this file as button2.html. As we'd expect, when we run this file in a browser,
we see that the within the button widget takes the configured text as its label,
instead of the text content of the <a> element.

Adding the button icons
We can easily configure our buttons, so that they have up to two icons in most cases.
Whenever an <a> or <button> element is used as the underlying element for the
button, we can use the icons' configuration option to specify one or two icons.

To see icons in action, change the configuration object in button2.html, so that it
appears as follows:

$("#myButton").button({
 icons: {
 primary: "ui-icon-disk",
 secondary: "ui-icon-triangle-1-s"
 }
});

The Button and Autocomplete Widgets

[224]

Save this file as button3.html. The icons property accepts an object with up to
two keys; primary and secondary. The values of these options can be any of the
ui-icon- classes found in the jquery.ui.theme.css file. The icons that we set are
displayed as shown in the following screenshot:

The icons are added to the widget using additional elements, which are
automatically created and inserted by the widget. The primary icon is displayed
to the left of the button text, while the secondary icon is displayed to the right of
the text.

To generate an icon-only button that has no text label, change the configuration
object in button3.html to the following code:

$("#myButton").button({
 icons: {
 primary: "ui-icon-disk",
 secondary: "ui-icon-triangle-1-s"
 },
 text: false
});

Save this file as button4.html. When we view this variation in a browser, we see
that the button displays only two icons as shown in the following screenshot:

Chapter 8

[225]

Input icons
As child elements are used to display the specified icons, we cannot use icons
when using an <input> element as an underlying markup for a button instance.
We can add our own icons when using the <input> elements, by adding an extra
container, the required elements, and some custom CSS.

Change the <body> of button4.html, so that it contains the following elements:
<div class="iconic-input ui-button-text-icons ui-state-default
uicorner-all">

 <input id="myButton" type="button" value="Input icons"
 class="ui-button-text">
 <span class="ui-button-icon-secondary ui-icon ui-icon-triangle-
 1-s">
</div>

Save this file as button5.html. We'll also need to override some of the button's
styling for this example. Create a new stylesheet and add to it the following
basic styles:

.iconic-input { display: inline-block; position: relative; }

.ui-icon { z-index: 2; }

.iconic-input input { border: none; margin: 0; }

In older versions of Internet Explorer, the display: inline-
block style will not be applied. To prevent the button taking up
the full width of its container, we would need to float it, or set a
width explicitly.

Save this file in the css directory as buttonTheme.css. Don't forget to link to the
new stylesheet from the <head> element of our page (after the link to the standard
jQuery UI stylesheet):

<link rel="stylesheet" href="css/buttonTheme.css">

Visually our custom <input> based widget is complete, but practically it's not quite
there; the icons do not pick up the correct hover states (the reason for this is that the
widget has applied the required class names to the underlying <input> element
instead of our custom container). We can add the required behavior, like we have
added the container and elements, using jQuery. Change the code in the
final <script> element, so that it appears as follows:

$(document).ready(function($){
 $("#myButton").button().hover(function() {

The Button and Autocomplete Widgets

[226]

 $(this).parent().addClass("ui-state-hover");
 }, function() {
 $(this).parent().removeClass("ui-state-hover");
 });
});

Now our button should work as intended. As the previous example shows, although
it's technically feasible to manually add the elements, the styling and the behavior
required to add icons to a button built from an <input> element, in most cases, it
will be easier and more efficient to simply use an <a> or <button> element.

Adding the Button events
Buttons that are built from <a> elements will work as intended with no further
intervention from us—the browser will simply follow the href as we would
expect—provided the <button> or <input> elements are within a <form> element
and have the relevant type attribute set. These elements will submit the form data
in the standard way.

If more modern AJAX submission of any <form> data is required, or if the button
is to trigger some other action or process, we can use standard jQuery click event
handlers to react to the button being clicked.

In the next example, we use the following underlying markup for the button widget:

<button type="button" id="myButton">A button</button>

The button widget exposes a single event, the create event, which is fired when
the button instance is initially created. We could use this event to run additional
code each time a button instance is created. For example, if we wanted the button
to be initially hidden from view (in order to display later, after something else has
occurred), we could use .css() to set the display property to none.

Replace the document.ready() code in button5.html, with the following code:

$(document).ready(function($){
 $("#myButton").button({
 create: function() {
 $(this).css("display", "none")
 }
 });
});

Save this file as button6.html. Within the event handler, $(this) refers to the
button instance, which is hidden from view using jQuery's css() method.

Chapter 8

[227]

In order for the button to fulfill its primary purpose, that is, to do something when
clicked, we should attach a handler to the button manually. We might want to collect
some registration information from our visitors, for example, and use a button to
send this information to the server.

Replace the <button> in button6.html with the following code:

<form method="post" action="serverscript.php">
 <label for="name">Name:
 <input type="text" id="name" name="name">
 </label>
 <label for="email">Email:
 <input type="text" id="email" name="email">
 </label>
 <p>
 <input type="submit" id="myButton" value="Register" />
 </p>
</form>

Change the final <script> element to the following code:

<script>
 $(document).ready(function($){
 var form = $("form"), formData = {
 name: form.find("#name").val(),
 email: form.find("#email").val()
 };

 $("#myButton").button();
 $("#myButton").click(function(e) {
 e.preventDefault();
 form.find("label").remove();
 $("#myButton").button("option", "disabled", true);

 $.post("register.php",$.post("register.php", formData,
 function() {
 $("<label />", { text: "Thanks for registering!"
 }).prependTo(form);
 });
 });
 });
</script>

The Button and Autocomplete Widgets

[228]

Save this file as button7.html. The underlying <button> element is now part of a
simple <form>, which simply provides text inputs for the visitor, their name, and an
e-mail address. In the script, we first initialize the button widget, before creating a
click event handler. This prevents the default action of the browser, which would
be to post the form in a traditional non-AJAX way.

We then collect the name and e-mail address entered into the fields, and post the
data to the server asynchronously using jQuery's post() method. In the success
handler for the request, we use the widget's option method to disable the button,
then create and display a thanks message.

We're not interested in the server-side of things in this example, and we don't
include any validation (although the latter should be included in production use),
but you can see how easy it is to react to the button being clicked using standard
jQuery functionality. To see the example work, we'll need to run the page through
a web server, and should add a PHP file of the name specified in the request in the
same directory as the page (which doesn't need to contain anything for the purposes
of this example). The following screenshot shows how the page should appear after
the button has been clicked:

Creating button sets
The button widget can also be used in conjunction with radio buttons and
checkboxes. The button component is unique in jQuery UI, in that it has not one but
two widget methods. It has the button() method that we have already looked at,
and it has the buttonset() method, which is used to create groups of buttons based
on radio buttons and checkboxes.

Chapter 8

[229]

Checkbox button sets
Change the <body> element of button7.html, so that it contains the following code:

<div id="buttons">
 <h2>Programming Languages</h2>
 <p>Select all languages you know:</p>
 <label for="js">JavaScript</label>
 <input id="js" type="checkbox">
 <label for="py">Python</label>
 <input id="py" type="checkbox">
 <label for="cSharp">C#</label>
 <input id="cSharp" type="checkbox">
 <label for="jv">Java</label>
 <input id="jv" type="checkbox">
</div>

Now change the final <script> element, so that it appears as follows:

$(document).ready(function($){
 $("#buttons").buttonset();
});

Save this file as button8.html. All we need to do is call the buttonset() method on
the container in which the <label> and <input> elements reside.

When we run this file in a browser, we see that the checkboxes are hidden from view
and the <label> elements are converted into buttons and grouped visually in a
horizontal set as shown in the following screenshot:

The Button and Autocomplete Widgets

[230]

Although the actual checkboxes themselves are hidden from view behind the
buttons, whenever a button is selected, the underlying checkbox will have its
checked attribute updated, so we can still harvest the states from script with ease.

When a checkbox button is clicked, it will have a selected state applied to it by the
widget, so that the visitor can easily see that it has been selected. As we would
expect, multiple buttons may be selected at once.

There are a couple of rules that we need to adhere to when creating buttons from
checkboxes. In HTML5, it is common to nest form controls within their associated
<label> elements (we did this in an earlier example), but this is not allowed when
using the button widget. Using the for attribute with the <label> element is required.

Radio button sets
Buttons based on radio buttons are visually the same as those based on checkboxes;
they differ only in their behavior. Only one button can be selected at any one time,
whereas multiple buttons can be selected when using checkboxes.

Let's see this behavior in action in button8.html; change the elements in <body>
to the following code:

<div id="buttons">
 <h2>Programming Languages</h2>
 <p>Select your most proficient languages:</p>
 <label for="js">JavaScript</label>
 <input id="js" type="radio" name="lang">
 <label for="py">Python</label>
 <input id="py" type="radio" name="lang">
 <label for="cSharp">C#</label>
 <input id="cSharp" type="radio" name="lang">
 <label for="jv">Java</label>
 <input id="jv" type="radio" name="lang">
</div>

Save this file as button9.html. The script to initialize radio buttons is the same: we
simply call the buttonset() method on the container. The only difference to the
underlying markup, other than specifying radio as the type, is that these <input>
elements must have the name attribute set.

Chapter 8

[231]

Working with button methods
The button widget comes with the default destroy, disable, enable, widget, and
option methods common to all widgets. In addition to these methods, the button
widget exposes one custom method, which is the refresh method. This method
is used for changing the state of checkbox and radio buttons, if they are changed
programmatically. By combining some of the previous examples, we can see this
method in action.

Change the <body> of button8.html, so that it includes two new <button> elements
as shown in the following code:

<div id="buttons">
 <h2>Programming Languages</h2>
 <p>Select all languages you know:</p>
 <label for="js1">JavaScript</label>
 <input id="js1" type="checkbox">
 <label for="py1">Python</label>
 <input id="py1" type="checkbox">
 <label for="cSharp1">C#</label>
 <input id="cSharp1" type="checkbox">
 <label for="jv1">Java</label>
 <input id="jv1" type="checkbox">
</div>
<p>
 <button type="button" id="select">Select All</button>
 <button type="button" id="deselect">Deselect All</button>
</p>

In this example, we have reverted to the checkboxes, so that we can
programmatically select or deselect them as a group. Now change the final <script>
element, so that it appears as follows:

$("#buttons").buttonset();
function buttonSelected(buttonState){
 $("#buttons").find("input").prop("checked", buttonState);
 $("#buttons").buttonset("refresh");
}

$("#select").click(function() {
 buttonsSelected(true);
});

$("#deselect").button().click(function() {
 buttonsSelected(false);
});

The Button and Autocomplete Widgets

[232]

Save this file as button10.html. If we preview the results in a browser, you can see
the effect by clicking on the Select All button as shown in the following screenshot:

In this example, we have a Select All button and a Deselect All button. When the
Select All button is clicked, we set the checked attribute of the checkboxes to true.
This will check the underlying (and hidden) checkboxes, but it won't do anything
to the <label> elements that are styled to appear as buttons. To update the state of
these buttons, so that they appear selected, we call the refresh method.

The Deselect All button sets the checked attribute to false, and then calls the
refresh method again to remove the selected states from each button.

Introducing the autocomplete widget
The autocomplete widget, reintroduced in jQuery UI 1.8, is back and looking better
than ever. This is one of my favorite widgets in the library, and although it doesn't
yet have the full set of behavior that it had in its first incarnation, it still provides
a rich set of functionality to enhance simple text inputs that expect data from a
predefined range.

A good example is cities; you have a standard <input type="text"> on the page,
which asks for the visitor's city. When they begin typing in the <input> element, all
of the cities that contain the letter that the visitor has typed are displayed. The range
of cities that the visitor can enter is finite and constrained to the country in which
the visitor lives (this is either assumed by the developer or has already been selected
previously by the visitor).

Chapter 8

[233]

The following screenshot shows how this widget appears:

Like other widgets, a range of elements and class names are added programmatically
when the widget is initialized.

Working with local data sources
To implement a basic autocomplete with a local array as its data source, create the
following code in a new file:

<html>
 <head>
 <meta charset="utf-8">
 <title>Autocomplete</title>
 <link rel="stylesheet" href="development-bundle/
 themes/redmond/jquery.ui.all.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js">
 </script>
 <script src="development-bundle/ui/jquery.ui.widget.js">
 </script>
 <script src="development-bundle/ui/jquery.ui.position.js">
 </script>
 <script src="development-bundle/ui/jquery.ui.menu.js">
 </script>

The Button and Autocomplete Widgets

[234]

 <script src="development-bundle/ui/jquery.ui.autocomplete.js">
 </script>
 </head>
 <body>
 <label>Enter your city:</label>
 <input id="city">
 </body>
</html>

All we need on the page is a standard <input> element of the text type. The
initialization required for autocomplete is slightly larger than that required for other
components; add the following <script> element, after the autocomplete source file:

<script>
 $(document).ready(function($){
 $("#city").autocomplete({ source: ["Aberdeen", "Armagh",
 "Bangor", "Bath", "Canterbury", "Cardiff", "Derby", "Dundee",
 "Edinburgh", "Exeter", "Glasgow", "Gloucester", "Hereford",
 "Inverness", "Leeds", "London", "Manchester", "Norwich",
 "Newport", "Oxford", "Plymouth", "Preston", "Ripon",
 "Southampton", "Swansea", "Truro", "Wakefield", "Winchester",
 "York"]});
 });
</script>

Save this file as autocomplete1.html. In our configuration object for the
autocomplete, we use the source option to specify a local array of strings. The
source option is mandatory and must be defined. The object is then passed to the
autocomplete method, which is called on the city <input> that the autocomplete
is to be associated with.

When we run this file in a browser, we should find that as we begin to type into the
<input> element, a list of the cities defined in our source array that contain the letter(s)
that we have typed is displayed in a drop-down menu attached to the <input>.

The autocomplete widget requires the following files in order to function:

• jquery.ui.all.css

• jquery-2.0.3.js

• jquery.ui.core.js

• jquery.ui.widget.js

• jquery.ui.position.js

• jquery.ui.menu.js

• jquery.ui.autocomplete.js

Chapter 8

[235]

Using an array of objects as the data source
In addition to providing an array of strings, we can also supply an array of objects as
the data source, which gives us more flexibility over the text added to the <input>
when a suggestion from the menu is selected. Change the configuration object in
autocomplete1.html, so that it appears as follows:

$("#city").autocomplete({
 source: [
 { value: "AB", label: "Aberdeen" },
 { value: "AR", label: "Armagh" },
 { value: "BA", label: "Bangor" },
 { value: "BA", label: "Bath" },
 { value: "CA", label: "Canterbury" },
 { value: "CD", label: "Cardiff" },
 { value: "DE", label: "Derby" },
 { value: "DU", label: "Dundee" },
 { value: "ED", label: "Edinburgh" },
 { value: "EX", label: "Exeter" },
 { value: "GL", label: "Glasgow" },
 { value: "GO", label: "Gloucester" },
 { value: "HE", label: "Hereford" },
 { value: "IN", label: "Inverness" },
 { value: "LE", label: "Leeds" },
 { value: "LO", label: "London" },
 { value: "MA", label: "Manchester" },
 { value: "NO", label: "Norwich" },
 { value: "NE", label: "Newport" },
 { value: "OX", label: "Oxford" },
 { value: "PL", label: "Plymouth" },
 { value: "PR", label: "Preston" },
 { value: "RI", label: "Ripon" },
 { value: "SO", label: "Southampton" },
 { value: "SW", label: "Swansea" },
 { value: "TR", label: "Truro" },
 { value: "WA", label: "Wakefield" },
 { value: "WI", label: "Winchester" },
 { value: "YO", label: "York" }
]
});

The Button and Autocomplete Widgets

[236]

Save this file as autocomplete2.html. Each item in the array that we are using as
the data source is now an object, instead of a simple string. Each object has two keys:
value and label. The value of the value key is the text that is added to the <input>
element when a suggestion is selected from the list. The value of label is what is
displayed in the suggestion list. Other keys, which store custom data can also be used.

If each object in the array contains only a single property, the property will be used
as both the value and label key. In this case, we might as well use an array of
strings instead of an array of objects, but it is worth noting the alternative format
of the local data.

Configurable autocomplete options
The following options can be set in order to modify the behavior of the widget:

Option Default Value Usage
appendTo "body" Specifies which element to append the widget

to.
autofocus false Focuses the first suggestion in the list when

displaying the list of suggestions.
delay 300 Specifies the number of milliseconds the

widget should wait before displaying the list
of suggestions, after the visitor has started
typing in the <input>.

disabled false Disables the widget.
minLength 1 Specifies the number of characters the visitor

needs to enter in the <input> before the list
of suggestions is displayed. Can be set to 0 to
make the widget display all suggestions in the
menu.

position { my: "left
top", at:
"left bottom",
collision: "none"
}

Specifies how the list of suggestions should be
positioned relative to the <input> element.
This option is used in the exact same way, and
accepts the same values as the position utility
that we looked at earlier in the book.

source Array, String or
Function

Specifies the data source used to fill the list
of suggestions. This option is mandatory and
must be configured. It accepts an array, string,
or function as its value.

Chapter 8

[237]

Configuring minimum length
The minLength option allows us to specify the minimum number of characters that
need to be typed into the associated <input> element before the list of suggestions is
displayed. By default, the suggestions that are displayed by the widget only contain
the letters typed into the <input> element, rather than just those starting with the
entered letters, which can result in many more suggestions being displayed than
is necessary.

Setting the minLength option to a number higher than the default value of 1 can help
narrow the list of suggestions, which may be much more important when dealing
with large remote data sources.

Change the configuration object that we used in autocomplete1.html (we'll revert
to using an array of strings as the data source for the time being), so that it appears
as follows:

$("#city").autocomplete({
 minLength: 2,
 source: [
 "Aberdeen", "Armagh", "Bangor", "Bath", "Canterbury",
 "Cardiff", "Derby", "Dundee", "Edinburgh", "Exeter",
 "Glasgow", "Gloucester", "Hereford", "Inverness", "Leeds",
 "London", "Manchester", "Norwich", "Newport",
 "Oxford", "Plymouth", "Preston", "Ripon", "Southampton",
 "Swansea", "Truro", "Wakefield", "Winchester", "York"
]
});

Save this file as autocomplete3.html. When we run this file in a browser, we should
find that we need to type two characters into the <input>, and only cities that
contain the characters in consecutive order are displayed, which vastly reduces
the number of suggestions.

Although the benefits are not obvious in this basic example, this can greatly reduce
the data returned by a remote data source.

Appending the suggestion list to an
alternative element
By default, the suggestion list is appended to the <body> of the page, when using
their autocomplete widget. We can change this, and specify that the list should
be added to another element on the page. The autocomplete widget then uses the
position utility to position the list, so that it appears to be attached to the <input>
element it is associated with. We can change this and specify that the list should be
added to another element on the page, by using the appendTo option.

The Button and Autocomplete Widgets

[238]

Wrap the underlying <label> and <input> in a container <div> in
autocomplete3.html:

<div id="container">
 <label>Enter your city:</label>
 <input id="city">
</div>

Then change the configuration object in the final <script> element to the
following code:

$("#city").autocomplete({
 appendTo: "#container",
 source: ["Aberdeen", "Armagh", "Bangor", "Bath", "Canterbury",
 "Cardiff", "Derby", "Dundee", "Edinburgh", "Exeter",
 "Glasgow", "Gloucester", "Hereford", "Inverness", "Leeds",
 "London", "Manchester", "Norwich", "Newport", "Oxford",
 "Plymouth", "Preston", "Ripon", "Southampton", "Swansea",
 "Truro", "Wakefield", "Winchester", "York"]
});

Save this file as autocomplete4.html. Usually, the suggestion list is added right at
the bottom of the <body> element of the code. The appendTo option accepts a jQuery
selector or an actual DOM element as its value.

In this example, we see that the list is appended to our <div> container instead of
the <body> element, which we can verify using Firebug, or another DOM explorer.

Working with autocomplete events
The autocomplete widget exposes a range of unique events that allow us to react
programmatically to the widget being interacted with. These events are listed
as follows:

Event Fired when...
change A suggestion from the list is selected. This event is fired once

the list has closed and the <input> has lost focus.
close The suggestion list is closed.
create An instance of the widget is created.
focus The keyboard is used to focus a suggestion in the list.
open The suggestion menu is displayed.
search The request for the suggestions is about to be made.
select A suggestion from the list is selected.

Chapter 8

[239]

The select event is useful when we are working with an array of objects as the data
source and have additional data other than the label and value properties that we
used earlier. For the next example, remove the <div> container that we used in the
last example and then change the configuration object, so that it appears as follows:

$("#city").autocomplete({
 source: [
 { value: "AB", label: "Aberdeen", population: 212125 },
 { value: "AR", label: "Armagh", population: 54263 },
 { value: "BA", label: "Bangor", population: 21735 },
 { value: "BA", label: "Bath", population: 83992 },
 { value: "CA", label: "Canterbury", population: 43432 },
 { value: "CD", label: "Cardiff", population: 336200 },
 { value: "DE", label: "Derby", population: 233700 },
 { value: "DU", label: "Dundee", population: 152320 },
 { value: "ED", label: "Edinburgh", population: 448624 },
 { value: "EX", label: "Exeter", population: 118800 },
 { value: "GL", label: "Glasgow", population: 580690 },
 { value: "GO", label: "Gloucester", population: 123205 },
 { value: "HE", label: "Hereford", population: 55700 },
 { value: "IN", label: "Inverness", population: 56660 },
 { value: "LE", label: "Leeds", population: 443247 },
 { value: "LO", label: "London", population: 7200000 },
 { value: "MA", label: "Manchester", population: 483800 },
 { value: "NO", label: "Norwich", population: 259100 },
 { value: "NE", label: "Newport", population: 137011 },
 { value: "OX", label: "Oxford", population: 149300 },
 { value: "PL", label: "Plymouth", population: 256700 },
 { value: "PR", label: "Preston", population: 114300 },
 { value: "RI", label: "Ripon", population: 15922 },
 { value: "SO", label: "Southampton", population: 236700 },
 { value: "SW", label: "Swansea", population: 223301 },
 { value: "TR", label: "Truro", population: 17431 },
 { value: "WA", label: "Wakefield", population: 76886 },
 { value: "WI", label: "Winchester", population: 41420 },
 { value: "YO", label: "York", population: 182000 }
],
 select: function(e, ui) {
 if ($("#pop").length) {
 $("#pop").text(ui.item.label + "'s population is: " +
 ui.item.population);
 } else {
 $("<p></p>", {
 id: "pop",

The Button and Autocomplete Widgets

[240]

 text: ui.item.label + "'s population is: " + ui.item.
 population
 }).insertAfter("#city");
 }
 }
});

Save this file as autocomplete5.html. We've added an extra property to each object
in our array data source—the population of each city. We use the select event to
obtain the label and our extra property, and write them to the page whenever a city
is selected.

The event handler that we pass to the select event accepts the event object and the
object from the data source that was selected. The .length test is used to determine
if the pop element exists on the page. If it does, we simply replace the text within it,
with the updated statement. If not, we create a new <p> element, with an id of pop,
and insert this immediately after the city input field. We can access any property
defined within our object in the standard way.

Once a city has been selected, the page should appear as shown in the following
screenshot:

The autocomplete methods
In addition to the standard methods that all widgets share, the autocomplete gives us
two unique methods that allow us to initiate certain actions. The unique methods are
listed as follows:

Method Usage
close Close the suggestion menu.
search Request the list of suggestions from the data source

specifying the search term as an optional argument

Chapter 8

[241]

The close method is extremely easy to use, we simply call the autocomplete widget
method and specify close as an argument:

$("#associated_input").autocomplete("close");

This will cause the suggestions menu to be closed, and the close event to be
triggered. A possible use for the close event handler is to alert the user if there
is a problem with the entry they have selected; if it doesn't match an entry in a
predefined list, then this can be flagged to the user.

The search method is slightly more complex, in that it can accept an additional
argument, although this is not mandatory. If the search method is called without
passing an argument (which is likely to be the default behavior), the value of the
associated <input> element is used as the search term. Alternatively, the term
can be provided to the method as the argument.

Working with remote data sources
So far in this example, we've worked with a rather small local array of data. The
autocomplete widget really comes into its own when working with remote data
sources, which is the recommended way of using the widget when the data
source is large.

Retrieving content based on input
In the next example, we'll use a web service to retrieve the list of countries instead of
using our local array. Change the <input> element in autocomplete5.html, so that
it appears as follows:

<label>Enter your country:</label>
<input id="country">

Then change the final <script> element, so that the configuration object is defined
as follows:

$("#country").autocomplete({
 source: "http://danwellman.co.uk/countries.php?callback=?"
});

Save this file as autocomplete6.html. We changed the <input> element in this
example, as we are requesting the visitor's country instead of a city.

The Button and Autocomplete Widgets

[242]

We have specified a string as the value of the source configuration object in this
example. When a string is supplied to this option, the string should contain a URL
that points to a remote resource. The widget assumes that the resource will output
JSON data, and it assumes that the JSON data will be in the format that we saw
earlier when using an array of objects as the source.

Therefore, when using a simple string as the value of the source option, the data that
is returned should be an array of objects, where each object contains at least a key
called label. The data can be in JSON or JSONP format for cross-domain requests.
The widget will automatically add the query string term=, followed by whatever
was typed into the <input> element.

In this example, I have specified a URL of my own website. The resource at this URL
will output the data in the correct format, so you can run this example from your
desktop computer (without even needing a web server) and see the correct behavior
as shown in the following screenshot:

One important point that I should make is about the PHP file that I have used. It
will only return entries from the database that start with the letter(s) typed into the
<input> element, and do not contain the letters as is the default for the widget. I
wanted to clarify that this is a change that I implemented at the server level, and not
behavior exhibited by the widget.

So, using a string as the value of the source option is useful and convenient when
we have a data source that outputs data in the exact format we require, which is
usually when we are in control of the web service that returns the data, as well as
the data itself. This may not be the case if we are trying to extract data from a public
web service over which we have no control. In these situations, we will need to use a
function as the value of the source option and parse out the data manually.

Chapter 8

[243]

Passing a function as a source option
Passing a function to the source option, instead of a local array or a string, is the
most powerful way of working with the widget. In this scenario, we have complete
control over the request and how the data is processed before being passed to the
widget to display in the suggestion menu.

In this example, we'll use a different PHP file that returns different data which
is not in the format that autocomplete expects. We'll use the function to request
and process the data before passing it to the widget. The context of the example
will be the frontend for a messaging system similar to Facebook's, in which the
autocomplete suggests possible message recipients, but can also be removed after
they have been selected and added to the <input> element. The page we will end
up with will appear as in the following screenshot:

The Button and Autocomplete Widgets

[244]

To start with, change the <body> of autocomplete6.html, so that it contains the
following markup:

<div id="formWrap">
 <form id="messageForm" action="#">
 <fieldset>
 <legend>New message form</legend>
 New Message
 <label id="toLabel" for="friends">To:</label>
 <div id="friends" class="ui-helper-clearfix">
 <input id="to" type="text">
 </div>
 <label>Subject:</label>
 <input id="subject" name="subject" type="text">
 <label>Message:</label>
 <textarea id="message" name="message" rows="5" cols="50">
 </textarea>
 <button type="button" id="cancel">Cancel</button>
 <button type="submit" id="send">Send</button>
 </fieldset>
 </form>
</div>

Then change the final <script> element, so that it appears as follows:

$(document).ready(function($){
 var suggestions = [];

 var getData = function(req, resp){
 $.getJSON("http://danwellman.co.uk/contacts.php?callback=?",
 req, function(data) {
 var suggestions = [];
 $.each(data, function(i, val){
 suggestions.push(val.name);
 });
 resp(suggestions);
 });
 };

 var selectEmail = function(e, ui) {
 var removeLink = $("<a>").addClass("remove")
 .attr({href: "javascript:", title: "Remove " + friend});
 var friend = ui.item.value,
 span = $("").text(friend),
 a = removeLink.text("x").appendTo(span);

Chapter 8

[245]

 span.insertBefore("#to");
 }

 $("#to").autocomplete({
 source: getData,
 select: selectEmail,
 change: function() {
 $("#to").val("").css("display", 2);
 }
 });

 $("#friends").click(function(){
 $("#to").focus();
 });

 $("#to").click(function(){
 if (this.length != 0) {
 $("#to").val('');
 }
 });

 $(".remove", document.getElementById("friends")).on("click",
function(){
 $(this).parent().remove();
 if($("#friends span").length === 0) {
 $("#to").css("top", 0);
 }
 });
});

Save this file as autocomplete7.html. On the page, we've got some basic markup
for a form and the necessary elements to recreate the Facebook-style message dialog.
To test the effect, try entering Admiral Ozzel, Fode, or Han Solo into the textbox,
then selecting their name when the autocomplete displays their entry.

The autocomplete parameter will only display certain names; if you
would like to see possible options, then I would recommend browsing to
http://danwellman.co.uk/contacts.php.

We use a <div> element that is styled to look just like an <input> element, with a
totally unstyled actual <input> within this.

The Button and Autocomplete Widgets

[246]

The actual <input> is needed, so that the visitor can type into it and so that it can
be associated with the autocomplete. We use the <div> element because we can't
insert the elements that will make up each contact into the <input> element.
We also have a hidden <input> element, which will be used to store the actual
e-mail addresses.

In the script, we use the getData function as the value of our source option; this
is called every time the text in the <input> field is updated. We first make a JSON
request to the PHP file containing the data and then iterate over each item in the
JSON object returned by the request.

Each newly created object is added to the suggestions array, and once each item in
the returned data has been processed, the suggestions array is passed to the resp
callback function, which is passed to the source function as the second argument.

We then define the selectEmail handler for the autocomplete's select event; this
function is automatically passed to two arguments, which are the event object and a
ui object containing the suggestion that was selected. We use this function to create
a element to format and hold the text and an anchor element that can be used
to remove the recipient. The formatted is then inserted directly before the
camouflaged <input> element.

Lastly, we added a click handler for the #friends field, so that this gains focus when
anyone clicks inside it. A click handler has also been added to the #to field, so that if
you click inside it, it will automatically remove the contents of the previous entry.

We'll also need a stylesheet to go with this example; add the following CSS to a
new file:

#formWrap { padding: 10px; position: absolute; float: left;
 background-color: #000; background: rgba(0,0,0,.5); -moz-border-
 radius: 10px; -webkit-border-radius: 10px; border-radius: 10px; }
#messageForm { width: 326px; border: 1px solid #666; background-
 color: #eee; }
#messageForm fieldset { padding: 0; margin: 0; position: relative;
 border: none; background-color: #eee; }
#messageForm legend { visibility: hidden; height: 0; }
#messageForm span { display: block; width: 326px; padding: 10px 0;
 margin: 0 0 20px; text-indent: 20px; background-color: #bbb;
 border-bottom: 1px solid #333; font: 18px Georgia, Serif; color:
#fff; }
#friends { width: 274px; padding: 3px 3px 0; margin: 0 auto;
 border: 1px solid #aaa; background-color: #fff; cursor: text; }
#messageForm #to { margin: 0 0 2px 0; padding: 0 0 3px; position:
 relative; top: 0; float: left; }

Chapter 8

[247]

#messageForm input, #messageForm textarea { display: block; width:
 274px; padding: 3px; margin: 0 auto 20px; border: 1px solid #aaa;
}
#messageForm label { display: block; margin: 20px 0 3px; text-
 indent: 22px; font: bold 11px Verdana, Sans-serif; color: #666; }
#messageForm #toLabel { margin-top: 0; }
#messageForm button { float: right; margin: 0 0 20px 0; }
#messageForm #cancel { margin-right: 20px; }
#friends span { display: block; width: auto; height: 10px; margin:
 0 3px 3px 0; padding: 3px 20px 4px 8px; position: relative; float:
 left; text-indent: 0; background-color: #eee; border: 1px solid
#333; -moz-border-radius: 7px; -webkit-border-radius: 7px; border-
 radius: 7px; color: #333; font: normal 11px Verdana, Sans-serif; }
#friends span a { position: absolute; right: 8px; top: 2px; color:
#666; font: bold 12px Verdana, Sans-serif; text-decoration: none;
}
#friends span a: hover { color: #ff0000; }
.ui-menu .ui-menu-item { white-space: nowrap; padding: 0 10px 0 0;
}

Save this file as autocompleteTheme.css in the css folder, and link to the new file
from the <head> of our new page:

<link rel="stylesheet" href="css/autocompleteTheme.css">

When we run the page in a browser, we should find that we can type into the
<input> element, select a name from the suggestions menu, and get a nicely
formatted and styled name added to the fake input.

Displaying HTML in the list of suggestions
By default, the autocomplete widget will only display plain text for each suggestion
in the list. Of course, this plain text is within HTML elements created by the widget,
but nevertheless, if we try to use HTML within our data source, then it will be
stripped out and ignored. However, Scott González, the current project leader for
jQuery UI, has written an extension that allows us to use HTML for each suggestion
in the list instead of plain text, if the need arises.

This could be handy if we wanted to highlight to the visitor the parts of the
suggestion that matched with what they had typed in the <input> element. We
will need the extension for this example, which can be found at https://github.
com/scottgonzalez/jquery-ui-extensions/blob/master/src/autocomplete/
jquery.ui.autocomplete.html.js.

The Button and Autocomplete Widgets

[248]

The file can be saved in our local js directory and a reference to it should be
included on the page, after the source file for the autocomplete:

<script src="js/jquery.ui.autocomplete.html.js"></script>

Before we make a start on our code, let's take a look at how it will appear, when
previewed in a browser:

In our next example, we're going to make use of Scott's plugin with the autocomplete
widget, to allow a user to search for some city names. If there is a match, each letter
in the selection drop-down will begin to change color, if the letter matches the
characters entered in the textbox.

Change the final <script> element in autocomplete5.html, so that it appears
as follows:

$(document).ready(function($){
 var data = [
 { value: "Aberdeen", label: "Aberdeen" },
 { value: "Armagh", label: "Armagh" },
 { value: "Bangor", label: "Bangor" },
 { value: "Bath", label: "Bath" },
 { value: "Canterbury", label: "Canterbury" },
 { value: "Cardif", label: "Cardif" },
 { value: "Derby", label: "Derby" },
 { value: "Dundee", label: "Dundee" },
 { value: "Edinburgh", label: "Edinburgh" },
 { value: "Exeter", label: "Exeter" },
 { value: "Glasgow", label: "Glasgow" },
 { value: "Gloucester", label: "Gloucester" },
 { value: "Hereford", label: "Hereford" },
 { value: "Inverness", label: "Inverness" },
 { value: "Leeds", label: "Leeds" },

Chapter 8

[249]

 { value: "London", label: "London" },
 { value: "Manchester", label: "Manchester" },
 { value: "Norwich", label: "Norwich" },
 { value: "Newport", label: "Newport" },
 { value: "Oxford", label: "Oxford" },
 { value: "Plymouth", label: "Plymouth" },
 { value: "Preston", label: "Preston" },
 { value: "Ripon", label: "Ripon" },
 { value: "Southampton", label: "Southampton" },
 { value: "Swansea", label: "Swansea" },
 { value: "Truro", label: "Truro" },
 { value: "Wakefield", label: "Wakefield" },
 { value: "Winchester", label: "Winchester" },
 { value: "York", label: "York" }
];

 $("#city").autocomplete({
 html: true,
 source: function(req, resp) {
 var suggestions = [],
 chosenTerm = "" + req.term + "",
 regEx = new RegExp("^" + req.term, "i");

 $.each(cityList, function(i, val){
 if (val.label.match(regEx)) {
 var obj = {};
 obj.value = val.value;
 obj.label = val.label.replace(regEx, chosenTerm);
 suggestions.push(obj);
 }
 });
 resp(suggestions);
 }
 });
});

Save this file as autocomplete8.html. We also need to add a styling rule to our
code; add this to the <head> of your file:

<style>
 span { color:green !important; }
</style>

The Button and Autocomplete Widgets

[250]

Although this appears as a short example, there are some key points here to note;
let's explore the code we've used in more detail.

In this example, we've gone back to using a local array of objects, called cityList.
Both the value and label properties in each object hold the same data to begin with.

In our configuration object, we specify a new html option, which is used in
conjunction with the HTML extension. We set the value of this option to true as in
the following code:

$("#city").autocomplete({
 html: true,

We've used a function as the value of the source option in this example. Within
the function, we first create a new empty array and define a new regular expression
object. This will case-insensitively match whatever is typed into the <input>, at the
start of a string:

source: function(req, resp) {
 var suggestions = [],
 chosenTerm = "" + req.term + "",
 regEx = new RegExp("^" + req.term, "i");

We then iterate over each object in our data array and test whether our regular
expression matches any of the label values in the objects in our array. If any items
do match, we create a new object and give it value and label properties. The value
property (which is added to the <input> element when a suggestion is selected)
is simply the corresponding value from our data array, and the label (what is
displayed in the suggestion menu) is a new string that contains a element
wrapping the text entered into the <input> element:

 $.each(cityList, function(i, val){
 if (val.label.match(regEx)) {
 var obj = {};
 obj.value = val.value;
 obj.label = val.label.replace(regEx, chosenTerm);
 suggestions.push(obj);
 }

Chapter 8

[251]

Finally, we call the resp callback, passing in the newly constructed suggestions
array. We should always ensure that this callback is called, as this is required by the
widget. It doesn't matter if the suggestions array is empty, the important thing is
that the callback is called.

resp(suggestions);

So now, each item in the suggestions menu will have a element, wrapping
the text that was typed into the <input> element. We can use it to style this text
slightly differently, such as with the green text <style> that we have added to
our example.

Summary
We covered two widgets in this chapter; both of them are relatively new to the
library and both work with <form> elements of some description. The button widget
can be used to turn <a>, <button>, and <input> (of the button, submit, or reset
type) into attractively and consistently styled-rich widgets.

The autocomplete widget is attached to an <input> element of the text type and is
used to show a list of suggestions when the visitor begins typing into the <input>
element. The widget is preconfigured to work with a local array of data or a URL that
outputs data in the expected format. It can also be configured to work with data that
is not in the expected format. We must first process the data being displayed before
passing it to the widget, making this an extremely versatile and powerful widget.

We're almost at the end of the section covering the visible widgets, before focusing
on the interaction helpers available with jQuery UI; let's take a look at the two
newest additions to the library over the next couple of chapters, beginning with
the menu widget.

Creating Menus
The menu widget, previously a part of the autocomplete widget, became a
standalone plugin in its own right from Version 1.9 of the library, which allows
for its re-use in other components. It can be used on its own to transform a list of
hyperlinks into a themeable menu that can be controlled using the keyboard or
mouse, although it really comes into its own when used with other components such
as buttons.

Each menu has a number of menu items associated with it, which when selected
will direct the visitor to any part of your site. When you click on the top level,
a number of submenu items will slide into view; these may have extra decoration
in the form of icons, or be disabled if access is to be prevented at the time of accessing
the menu option.

In this chapter, we will cover the following topics:

• How to turn a list into a menu, with or without submenus
• The options available for configuring a menu
• Adding style to menus
• Manipulating menu items with icons and dividers
• Using methods
• Enabling and disabling menu options programmatically
• Responding to events
• Creating horizontal and context menus
• Extending a <select> box using jQuery UI's menu

Creating Menus

[254]

Implementing a basic menu widget
Navigation is a crucial element of the web design; a poorly designed menu will
always detract from good content. Good navigation must be both aesthetically
pleasing and usable. Using the jQuery UI menu widget, we can create the perfect
navigation for your website.

Although it is possible to use a variety of different elements to create our menu, the
 element is by far the most common one to use. Menus can be created from any
valid markup, as long as the elements have a strict parent-child relationship, with
each menu having its own anchor. Following the first example, where we will take a
series of European towns and convert them into a basic menu we will further explore
the structure.

In a new file in your text editor, create the following page:

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>Menu</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <style>
 .ui-menu { width: 150px; }
 </style>
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/jquery.ui.position.js"></
script>
 <script src="development-bundle/ui/jquery.ui.menu.js"></script>
 <script>
 $(document).ready(function($){
 $("#myMenu").menu();
 });
 </script>
 </head>
 <body>
 <ul id="myMenu">
 <!-- Top level menu -->
 <li class="ui-state-disabled">London
 Antwerp
 Belgium

Chapter 9

[255]

 <!-- Second level menu -->
 <li class="ui-state-disabled">Antwerp
 Brussels
 Bruges

 <!-- Top level menu -->
 Brussels
 Bruges

 Belgium

 Antwerp
 Brussels
 Bruges

 <!-- Second level menu -->
 Belgium

 <!—Third level menu -->
 Antwerp
 Brussels
 Bruges

 Paris

 <li class="ui-state-disabled">Amsterdam

 </body>
</html>

Save the code as menu1.html in your jqueryui working folder. Let's take a moment
to familiarize ourselves with the code that goes into making the markup required for
a menu.

We need the following files from the library to create a menu from our chosen
elements:

• jquery-2.0.3.js

• jquery.ui.core.js

• jquery.ui.widget.js

Creating Menus

[256]

• jquery.ui.position.js

• jquery.ui.menu.js

When you view the page in a browser, you'll see that we've turned our unordered
list into a simple menu. We've added an additional style in our example, unlike other
library components, the menu widget needs some additional styling, otherwise it
will consume 100 percent of the width of its container by default, which will be the
screen. You can see the results in the following screenshot:

A menu widget is normally constructed from several standard HTML elements
arranged in a specific manner:

• An outer container element, on which the menu() method is called (this can
be either a or element)

• An <a> element within an element for each menu item
• An element for the title of each menu item

These elements can be either hardcoded into the page, added
dynamically, or can be a mixture of both, depending upon
the requirements.

All we need on the page is a list, using either the or tags. In our example
we've created a more complex example, which jQuery UI uses to turn into a menu
with two levels of submenus.

Chapter 9

[257]

After linking first to the jQuery core library, we link to the jquery.ui.core.js and
jquery.ui.widget.js files that are required by all UI-based components, the file,
and finally jquery.ui.position.js. We then link to the component's source file,
which in this case is jquery.ui.menu.js. We can then turn to our custom <script>
element in which we add the code that creates the menu. This is then executed as
soon as the Document Object Model (DOM) is loaded and ready.

Within this function we simply call the menu() widget method on the jQuery object,
representing our menu container element (the element with an id of myTabs).
When we run this file in a browser, we should see the tabs as they appeared in the
first screenshot of this chapter (without the annotations of course).

Exploring the menu CSS framework
classes
Using Firebug for Firefox (or another generic DOM explorer), we can see that a
variety of classnames are added to the different underlying HTML elements that go
to make up a menu widget.

Let's review these classnames briefly and see how they contribute to the overall
appearance of the widget. To the outer container , the following classnames
are added:

Classname Applies/Applied to

ui-menu The outer container of the menu.

ui-widget The outer container of all widgets. It sets font family and font size
to widgets.

ui-widget-content Applies content container styles to an element and its child text,
links, and icons (applicable to a parent or sibling of the header).

ui-corner-all Applies corner radius to all four corners of the element

ui-menu-icons The submenu icons set via the icons option when initiating the
menu.

Creating Menus

[258]

The first element within the container is the element. This element receives the
following classnames:

Classname Purpose

ui-state-
disabled

Applies a dimmed opacity to the disabled UI elements. This should
be added in addition to an already-styled element.

ui-menu-item The container for individual menu items.
ui-menu-divider Applies a divider between the menu items, if added to a

element.

Finally, the <a> elements within each of the element are given the following
classnames:

Classname Purpose

ui-state-focus Applies a clickable focus container style to an element and its child
text, links, and icons.

ui-state-active Applies a clickable active container style to an element and its child
text, links, and icons.

ui-icon Applies a base class to an icon element. Sets dimensions to a 16 px
square block, hides inner text, and sets the background image to the
content state sprite image. The background image for this class will
be influenced by the parent container; if for example, the ui-icon
element within a ui-state-default container will get colored
according to the icon color of ui-state-default.

ui-icon-xxx-xxx Applied as a second class to describe the type of the icon. The syntax
for the icon classes generally follows the format of .ui-icon-
{icon type}-{icon sub description}-{direction}. For
a single triangle icon pointing to the right, the format would be
.ui-icon-triangle-1-e.
For more examples of icon names, hover over the icons in the
ThemeRoller at http://jqueryui.com/themeroller/.

Most of these classnames are added to the underlying HTML elements automatically
by the library, with the exception of the classes used for displaying icons or menu
dividers; the latter should be added as part of designing your menu structure.
For more examples of CSS classnames, it is worth taking a look at http://api.
jqueryui.com/theming/css-framework/, this details all of the CSS classes
available within the framework, which can be applied to most (if not all) widgets
within the jQuery UI library.

Chapter 9

[259]

You may like to take a look at the link, which details some good
practices for building menus: https://developer.apple.com/
library/mac/documentation/UserExperience/Conceptual/
AppleHIGuidelines/Menus/Menus.html#//apple_ref/doc/
uid/TP30000356-TP6

Configuring menu options
Each of the different components in the library has a series of options that control
which features of the widget are enabled by default. An object literal, or an object
reference, can be passed in to the menu() widget method to configure these options.

The available options to configure non-default behaviors are shown in the
following table:

Option Default value Use
disabled false Disables the menu if set to true.
icons {submenu: "ui-

icon-carat-1-e"}
Sets the icons to use for submenus, matching an
icon provided by the jQuery UI CSS framework.

menus "ul" Assigns the selector for the elements that serve as
the menu container, including submenus.

position { my: "left top",
at: "right top" }

Identifies the position of submenus in relation to
the associated parent menu item. The of option
defaults to the parent menu item, but you can
specify another element to position against. There
are more details on how to use the positioning
widget, in Chapter 2, The CSS Framework and Other
Utilities.

role "menu" Customizes the Accessible Rich Internet
Application (ARIA) roles used for the menu
and menu items. Roles cannot be changed once
they have been initialized: any existing menus,
submenus, or menu items will not be updated
once they have been created.

Creating Menus

[260]

Styling menus
All of the UI-based widgets in the jQuery UI library—and the menu widget is no
different—can be customized using either one of the prebuilt themes available from
http://jqueryui.com/download/ or by customizing one using the ThemeRoller
tool available at http://jqueryui.com/themeroller/. All you need to do is to
download your theme, and then alter the following line in the code, to reflect the
name of the new theme in use:

<link rel="stylesheet" href="development-bundle/themes/redmond/jquery.
ui.all.css">

You can even change to using a theme hosted on a CDN connection, if preferred.
The key to this is to choose whichever best suits your development workflow and
environment.

Displaying the state of the selected menu
options using icons
In our next example, we'll see how we can enhance the appearance of selected menu
items by adding icons.

In your text editor, remove the existing markup between the <body> tags, and
replace it with this:

<body>
 <ul id="myMenu">
 File
 Read
email
 Move
to folder...
 <li class="ui-state-disabled"><span class="ui-icon ui-
icon-print">Print...

Address Book

 Edit

 </
span>Compose email
 </
span>Mark email
 Send
to trash

Chapter 9

[261]

</body>

We need to tweak the styling slightly, so in a separate file, add the following, and
save it as menuIcons.css—don't forget to add a link to it from your page:

.ui-menu { width: 150px; }

.ui-widget { font-size: 1em; }

Add the following reference to this new stylesheet in the <head> tag of menu1.html
and re-save the file as menu2.html. We can remove the existing styling too, as this is
no longer required. When the page is loaded in a browser, we can now see the icons
that have been applied to selected menu items, as shown in the following screenshot:

We can take this a step further, let's say we didn't like the icon used to indicate the
presence of submenus, and wanted to change it. This is easy enough to do. Alter the
<script> block from our last example, as shown:

<script>
 $(document).ready(function($){
 $("#menu").menu({
 icons: { submenu: "ui-icon-circle-triangle-e" }
 });
 });
</script>

Creating Menus

[262]

Save this as menu3.html. If you load this into a browser now, you will find the icon
has changed to an arrow inside a circle. While this works perfectly, it could benefit
from a slight adjustment to its position. Add the following to the menuIcons.css
stylesheet, and save it as menuIconsOverrides.css:

.ui-menu-icon { margin-top: 5px; }

Don't forget to update the CSS link in your code too:

<link rel="stylesheet" type="text/css" href="css/menuIconsOverrides.
css">

Let's preview this in a browser. You should find the icon is now better placed, as
shown in this screenshot:

Adding dividers to menus
So far we've seen how to set up a basic menu and add icons, one feature that you
may often see, but which is so far lacking, is the use of dividers. Menu dividers help
group related items together, or can act to separate fixed menu items from those that
may change, such as a recent items list.

There are two ways you can achieve this:

• Addition of class="ui-menu-divider" to a item.
• Insertion of - between menu items. These should not be wrapped

in any other tags, such as the <a> link tags.

Chapter 9

[263]

Either option will work perfectly and produce the same results, but they work on
different principles and have different merits. The CSS option is perhaps the most
descriptive, but requires more markup with the body of your code.

In a copy of menu2.html, alter the markup as shown:

<ul id="menu">
 File
 <li class="ui-menu-divider">
 Read
email

Save this as menu4.html. When loading this into your browser, you will see a menu
separator appear, immediately after the File menu option:

You can also achieve this using the - route; this requires less markup and
is more akin to the method used by those used to programming in code, such as C#.
Alter the code immediately after the Address Book option, as follows:

Address
Book
-
Edit

The styling will be applied by jQuery UI automatically to turn this into a separator.

Creating Menus

[264]

Using menu methods
The menu widget contains a host of different methods, in addition to the core
methods such as destroy, disable, enable, option, and widget, which means
that it has a rich set of different behaviors. It also supports the implementation of
advanced functionality that allows us to work with it programmatically. Let's take
a look at the methods, which are listed in the following table:

Option Use
blur Removes focus from a menu, resets any active element styles, and

triggers the menu's blur event.
collapse Closes the currently active submenu.
collapseAll Closes all open submenus.
expand Opens the submenu below the currently active item, if one exists.
focus Activates a particular menu item, begins opening any submenu, if

present, and triggers the menu's focus event.
isFirstItem Returns a Boolean value stating whether or not the currently active

item is the first item in the menu.
isLastItem Returns a Boolean value stating whether or not the currently active

item is the last item in the menu.
next Moves active state to the next menu item.
nextPage Moves active state to the first menu item below the bottom of a

scrollable menu or the last item if not scrollable.
option Gets or sets any property after the widget has been initialized.
previous Moves the active state to the previous menu item.
previousPage Moves the active state to the first menu item above the top of a

scrollable menu or the first item if not scrollable.
refresh Initializes submenus and menu items that have not already been

initialized, once new items or content have been added.
select Selects the currently active menu item, collapses all submenus, and

triggers the menu's select event.

Let's take a look at some of these options over the next few sections, beginning with
enabling and disabling menu options.

Chapter 9

[265]

Enabling and disabling menu options
programmatically
A common requirement when working with menus is to either enable or disable an
option based on whether it matches a particular set of conditions, for example, you
might disable the printing option if printing is not available.

One would hope that there would be an option available to do this within the menu
widget. Alas! there isn't. The only method available is to either disable or enable the
whole menu, not a specific menu item. It's not a problem though, as we can achieve
the same effect using the ui-state-disabled class and a little jQuery magic.

Add the following new <button> elements directly after the existing markup for the
menu widget in menu2.html:

<p>
 <form>
 <input type="button" id="disableprint" value="Disable printing" />
 <input type="button" id="enableprint" value="Enable printing" />
 </form>
<p>

Next, change the <script> element so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#myMenu").menu();

 $("#disableprint").click(function() {
 $("ul li:nth-child(4)").addClass("ui-state-disabled ui-menu-
item");
 });

 $("#enableprint").click(function() {
 $("ul li:nth-child(4)").removeClass("ui-state-disabled");
 });
 });
</script>

Save the changed file as menu5.html. In jQuery, we've used a pseudo-selector to find
the fourth element (not the third—the count starts from 0, not 1), and then add or
remove the ui-state-disabled class using removeClass or addClass whichever
is appropriate.

Creating Menus

[266]

You will notice that we remove all of the classes when disabling the menu item, this
is purely so that when we add the CSS styles to mark the item as disabled, it adds the
CSS styles in the correct order. You could easily just use the .removeClass() option
in both cases, but then the CSS markup order will not match that of the already
disabled Print… option!

Adding and removing menu items
Along with enabling or disabling menu items programmatically, we can also add or
remove menu items on the fly. In menu2.html, add the following code immediately
after the existing markup:

<p>
 <form>
 <input type="button" id="additem" value="Add menu item" />
 </form>
</p>

Then change the final <script> element to this:

<script>
 $(document).ready(function($){
 $("#myMenu").menu();
 $("#additem").click(function() {
 $("New item").appendTo("#myMenu");

Chapter 9

[267]

 $("#myMenu").menu("refresh");
 });
 });
</script>

Save the changes as menu6.html. On this page, we've added a new <input> element,
which we will use to add a new menu item.

In the <script> element, our function handles the addition of a menu item by first
building the required markup. We then append this to the myMenu menu, before
calling menu's refresh() method to update the display. After adding a few menu
items, the page should appear something like this:

Not to be outdone, we can use the same refresh() method to remove a menu item,
although the process we need to use to find the item to remove will change. Let's
take a look at how to achieve this, alter the <form> tag contents, as shown:

<form>
 <input type="button" id="removeitem" value="Remove menu item" />
</form>

Next, change the <script> element in menu6.html as shown:

<script>
 $(document).ready(function($){

Creating Menus

[268]

 $("#myMenu").menu();
 $("#removeitem").click(function() {
 $("#ui-id-3").remove();
 $("#myMenu li:nth-child(3)").remove();
 $("#myMenu").menu("refresh");
 });
 });
</script>

Save the changes as menu7.html. If we load the page in the browser, and hit the
Remove menu item button, you will find the Move to folder… menu option has
been removed:

Working with menu events
The menu widget defines a series of useful options that allow you to add callback
functions to perform different actions when certain events exposed by the widget are
detected. The following table lists the configuration options that are able to accept
executable functions on an event:

Event Triggered when…
blur The menu loses focus
create The menu is created
focus The menu gains focus or when any menu item is activated
select A menu item is selected

Chapter 9

[269]

Each component of the library has callback options (such as those in the previous
table), which are tuned to look for key moments in any visitor interactions. Any
functions we use within these callbacks are usually executed before the change
happens. Therefore, you can return false from your callback and prevent the action
from occurring.

In our next example, we will look at how easy it is to react to a particular menu item
being selected, using the standard non-bind technique. Remove the final <script>
element in menu1.html and replace it with this:

<script>
 $(document).ready(function($){
 var menuarray;
 $("#myMenu").menu({
 select: function(event, ui) {
 $('.selected', this).removeClass('selected');
 ui.item.addClass('selected');
 menuarray = ui.item.text().split(" ");
 $("#menutext").").text("You clicked on: " + menuarray[0]);
 },
 focus: function(event, ui) {
 if ($("#menutext").text() != "") {
 $("#menutext").removeClass("normaltext").
addClass("hilitetext");
 }
 },
 blur: function(event, ui) {
 $("#menutext").removeClass("hilitetext").
addClass("normaltext");
 }
 });
 });
</script>

Below the final tag, add the following:

<div id="menutext"></div>

Save this file as menu8.html. We also need a little CSS to complete this example; in a
new page in your text editor, add the following code:

#menutext { width: 150px; font-family: Lucida Grande,Lucida
 Sans,Arial,sans-serif; text-align: center; }
.ui-menu { width: 150px; }
.hilitetext { background-color: #a6c9e2; padding: 3px;
border-radius: 4px; margin-top: 6px; }

Creating Menus

[270]

.normaltext { background-color: #fff; padding: 3px; margin-
 top: 6px; }
.selected { background-color : #313c43; border-radius: 4px; }
.selected a { color: #fff; }

Save this file as menuEvents.css in the css folder. In the <head> element of the page
we just created, add the following <link> element:

<link rel="stylesheet" href="css/menuEvents.css">

If we preview our results, we will see something like the following screenshot when
navigating around the menu. Notice the selected menu item being displayed below
the menu:

We made use of three callbacks in our example— select, focus, and blur; the
principle is largely the same for any other callback fired by other widgets in the library.

Two arguments will be passed automatically by the widget to the callback function
we define when it is executed. These are the original event object and the custom
object containing useful properties from the menu it which was selected.

In our example, we've used the select callback to determine the title of the selected
menu item, before assigning a .selected class to it to indicate when it has been
selected; the blur and focus callbacks are used to provide a hover functionality
while navigating around our menu.

Chapter 9

[271]

Binding to events
Using the event callbacks exposed by each component is the standard way of
handling interactions. However, in addition to the callbacks listed in the previous
table, we can also hook into another set of events fired by each component at
different times.

We can use the standard jQuery on() method to bind an event handler to a custom
event, fired by the menu widget in the same way that we could bind to a standard
DOM event, such as a click.

The following table lists the menu's custom binding events and their triggers:

Event Fired when…
Menucreate The menu is created
Menuselect A menu item is selected
Menufocus A menu gains focus or when any menu item is activated
Menublur The menu loses focus

The first event menucreate is fired, as soon as the menu object is initialized; the next
three will be fired depending on whether a menu item has been selected by the user.

Let's see this type of event usage in action; change the final <script> element in
menu8.html to the following:

<script>
 $(document).ready(function($){
 var menuarray;
 $("#myMenu").menu();

 $("#myMenu").on("menuselect", function(event, ui) {
 $('.selected', this).removeClass('selected');
 ui.item.addClass('selected');
 menuarray = ui.item.text().split(" ");
 $("#menutext").text("You clicked on: " + menuarray[0]);
 });

 $("#myMenu").on("menufocus", function(event, ui) {
 if ($("#menutext").text() != "") {
 $("#menutext").removeClass("normaltext")
.addClass("hilitetext");
 }
 });

 $("#myMenu").on("menublur", function(event, ui) {

Creating Menus

[272]

 $("#menutext").removeClass("hilitetext")
.addClass("normaltext");
 });
 });
</script>

Save this change as menu9.html. Binding to the menuselect event in this way
produces the same result as the previous example, using the select callback function.
Like last time, the confirmation text should appear when selecting a menu item.

All the events exposed by all of the widgets can be used with the on() method, by
simply prefixing the name of the widget to the name of the event.

Creating horizontal menus
Have you noticed one thing? Throughout this chapter all of the menu examples are
vertical. This is not through pure chance, but simply because the menu widget, at the
time of writing, doesn't yet have an option to create a horizontal menu.

It's not a problem though, as it is easy enough to create one using the power of the
position widget and a little extra styling. In this example, we'll take a look at how to
achieve this effect, while updating it for jQuery Version 2.

Lots of people have attempted doing it, with varying degrees of
success—my personal favorite is the version produced by Aurélien
Hayet, and which we will use in this example. If you want to see
the original article by Aurélien Hayet (in French language), then it
is available at http://aurelienhayet.com/2012/11/03/
comment-realiser-un-menu-horizontal-a-laide-de-
jquery-ui/.

Remove the existing menu markup in menu2.html, and replace it with the following,
saving it as menu10.html:

<body>
 <ul id="menu">
 Item A
 Item B
 Item C

 Item C-1
 Item C-2
 Item C-3
 Item C-4

Chapter 9

[273]

 Item C-4-1
 Item C-4-2
 Item C-4-3
 Item C-4-4
 Item C-4-5

 Item C-5

 Item D
 Item E

</body>

Alter the final <script> element as follows:

<script>
 $(document).ready(function($){
 $("#menu").menu({ position: { using: setSubMenu} });
 $("#menu > li > a > span.ui-icon-carat-1-e").removeClass("ui-icon-
carat-1-e").addClass("ui-icon-carat-1-s");
 function setSubMenuposition, elements) {
 var options = { of: elements.target.element };
 if (elements.element.element.parent().parent().attr("id") ===
"menu") {
 options.my = "center top";
 options.at = "center bottom";
 } else {
 options.my = "left top";
 options.at = "right top";
 }
 elements.element.element.position(options);
 };
 });
</script>

We need to tweak the styling a little to turn it into a horizontal menu, so add the
following to a new document, and save it as menuHorizontal.css in the css folder.
Don't forget to add a link to it from the main document:

.ui-menu { width: 100px; font-size: 12px; min-height: 22px; }
 ul#menu { width: 500px; }
 ul#menu > li { width: 100px; float: left; }

Creating Menus

[274]

When loading it into a browser, the page should appear something like this:

It should be noted that a MenuBar widget is in the works at the time of writing;
you can see a version at http://view.jqueryui.com/menubar/demos/menubar/
default.html. There are still some bugs to iron out and features to complete on
this development version, but it is nonetheless still a usable widget that you can
download and try at your own risk.

Combining with other widgets
Let's switch tracks now and take a look at some more in-depth examples of how you
can use the menu widget, beginning with using it with a button.

An odd combination I hear you say, but not in reality; we can use both to build a nice
little split button with a drop-down menu!

Fortunately for us, a plugin has already been created by Mike Cantrell;
we'll use this in our example. You can download a copy of this plugin
from Github (https://gist.github.com/mcantrell/1255491);
I've updated the version in the code download for use with jQuery 2.0
and UI 1.10.3.

Immediately after the link to jquery.ui.menu.js in menu2.html, add the following:

<script src="development-bundle/ui/jquery.ui.button.js"></script>
<script src="js/jquery.ui.splitbutton.js"></script>

Chapter 9

[275]

Alter the final <script> element as follows:

<script>
 $(document).ready(function($){
 $("#split-button").splitButton();
 });
</script>

Replace the existing markup between the <body> tags with the following:

<div>
 Edit
 Menu
</div>
<ul style="display:none;">
 Print
 Copy
 Delete

Save the document as menu11.html. We need to add in our jQuery some magic
that will combine our menu and document together, so in a new document add the
following, and save it as jquery.ui.splitbutton.js within the js folder:

(function($) {
 $.fn.splitButton = function(options) {
 var menu = null;
 var settings = {
 selected: function(event, ui) {
 document.location = ui.item.children()[0];
 },
 showMenu: function() {
 if (menu) menu.hide();
 menu = $(this).parent().next().show().position({
 my: "left top", at: "left bottom", of: $(this).prev()
 });
 $(document).one("click", function() { menu.hide(); });
 return false;
 }
 };
 if (options) { $.extend(settings, options); }
 var buttonConfig = { text: false, icons: { primary: "ui-icon-
triangle-1-s" }};
 return this.button().next().button(buttonConfig).click(settings
 .showMenu).parent().buttonset().next().menu({select: settings.
selected});

Creating Menus

[276]

 };
})(jQuery);

To complete the effect, we need to adjust the CSS styling a little, so add the following
into a new document and save it as menuSplit.css within the css folder:

#menutext { width: 150px; font-family: Lucida Grande,Lucida
Sans,Arial,sans-serif; text-align: center; }
.ui-menu { width: 150px; }

Don't forget to add a link into your code, pointing to menuSplit.css. If we load the
page into a browser, you should see something similar to the following screenshot:

While the Edit text won't change in this example, you could easily adapt it to your
own needs, adding valid links to each of the options in the drop-down menu list.

Designing context menus
One menu format that isn't, at present, available with jQuery UI is that of a context
menu; more and more applications rely on the use of context menus for quick access
to options, such as formatting content.

It is however a relatively easy configuration to replicate in jQuery. In our next
example, we've reused some of the standard HTML markup from the main UI
website and turned it into a context menu. It goes to show that, with a little jQuery
magic, the markup doesn't actually need to change—a bargain!

For this exercise and the next, you will need a copy of the code
download that accompanies this book. We will be using some
of the files in the code download.

Chapter 9

[277]

Once we have created our page, we can view the results in a browser by
right-clicking on the image. It should resemble the following screenshot:

The image can be found at http://upload.wikimedia.
org/wikipedia/commons/2/25/Coffee_Roasting.jpg.

Let's begin by extracting a copy of menu2.html from the code download and saving
it to the jqueryui folder. Next, change the final <script> element so that it appears
as follows:

<script>
 $(document).ready(function($){
 $("#myMenu").menu({
 select: function (event, ui) {
 $("#myMenu").hide();
 alert("Menu element clicked!");
 }
 });
 $("#contextMenu").on("contextmenu", function (event) {
 $("#myMenu").show();
 $("#myMenu").position({ collision: "none", my: "left top",
 of: event });
 return false;
 });
 $("#contextMenu").click(function (event) {
 $("#myMenu").hide();

Creating Menus

[278]

 });
 $("#myMenu").on("contextmenu", function (event) { return false;
});
 });
</script>

Save the changed file as menu12.html in the jqueryui folder. We need to tweak the
styling a little, so add the following to a new document, and save it in the css folder
as menuContext.css:

body { color: #fff; font-family: 'Doppio One', sans-serif; text-
shadow: 0 1px 0 rgba(0,0,0,.3); line-height: 1.5; -webkit-font-
smoothing: antialiased; }
.ui-menu { width: 150px; }
#menu { position: absolute; display: none; }
#contextMenu { color: #000; }

Save this file as menuContext.css in the css folder, and link to it after the jQuery UI
stylesheet in the <head> section of menu12.html:

<link rel="stylesheet" type="text/css" href="menuContext.css">

With use of menu's position attribute and a little extra jQuery magic, I am sure you
will agree that this produces a very nice result!

Enhancing a select menu
In our final menu example, let's look at how you can use the power of a menu
widget to enhance a <select> menu. The original author of this book, Dan Wellman,
produced an excellent example of how to achieve this using some additional jQuery
and techniques we've already covered earlier in this book. I've updated it to work
with jQuery 2.03 and UI 1.10.3.

Replace the existing markup in menu2.html with the following:

<body>
 <select id="selectmenu">
 <option>Option 1</option>
 <option>Option 2</option>
 <option>Option 3</option>
 <option>Option 4</option>
 <option>Option 5</option>
 </select>
</body>

Chapter 9

[279]

From the code download that accompanies this book, extract a copy of the
menuSelect.js file, then save it in the the js folder, and link it to immediately
below the last jQuery UI library reference to jquery.ui.menu.js.

In menu2.html, change the second <link> to point to a new stylesheet as follows:

<link rel="stylesheet" href="css/menuSelect.css">

In menuSelect.css, add the following:

.ui-menu-container { width: 200px; height: 26px; padding: 4px 0 0
 4px; position: relative; cursor: pointer; }
.ui-menu { position: absolute; right: 0; top: 100%; }
.ui-menu .ui-menu-item a { padding: 2px 20px; }
.ui-menu-trigger { padding: 0 3px; margin: -1px 3px; float: right;
text-decoration: none; }

Save the page as menu13.html. If we load the page into a browser and preview it,
you will see something akin to this screenshot:

We've used a fair bit of jQuery in this example; this would lend itself to being
turned into a plugin that could be included on a page and used to enhance the
existing <select> menus. If written correctly, it would work using a progressive
enhancement technique, while still maintaining the original base code, in the event of
jQuery not being available.

Creating Menus

[280]

Summary
The menu widget is an excellent way of saving space on your page by organizing
related (or even completely unrelated) sections of content that can be shown or
hidden with simple click input from your visitors.

Let's review what was covered in this chapter. We first looked at how, with just
a little underlying HTML and a single line of jQuery-flavored JavaScript, we can
implement the default menu widget. We then took a look at the CSS classes and
menu options that are available for you to use to customize the menu to your needs,
and how you can use some of these attributes to great effect when styling the menu.
We also covered the range of methods and events that we can use to perform actions
or react to events triggered by the menu widget.

We finished with a look at some examples of how you can completely alter the look
of the menu, while still maintaining the original markup. We used three examples
of customizing a <select> menu, enhancing a button, as well as turning a menu into
a context menu.

In the next chapter, we'll move on to look at the Tooltips widget, which we can use
to point out points of note on elements such as fields or images, or set up to work as
a mini-menu of options for visitors to your site.

Working with Tooltips
Introduced as a part of the HTML 3 standard, and using the title attribute as its text,
tooltips are a common element used to provide context within a page. You could
find them in use in a variety of situations, although it is most likely that they will be
found when providing assistance in correcting errors as part of the submission of
a form (particularly when it concerns payment for products!).

The jQuery team introduced their version of the tooltip as part of changes to Version
1.9 of the library; it was designed to act as a direct replacement for the standard
tooltip used in all browsers. The difference here, though, was that whilst you can't
style the standard tooltip, jQuery UI's replacement is intended to be accessible,
themeable, and completely customizable. It has been set to display not only when
a control receives focus, but also when you hover over that control, which makes it
easier to use for keyboard users.

In this chapter, we'll look at the following topics:

• The default implementation of the widget
• How the CSS framework targets tooltip widgets
• How to apply custom styles
• Configuring tooltips using their options
• Controlling tooltips using their methods
• Displaying tooltips programmatically
• Displaying different types of content in the tooltip
• Built-in transition effects for tooltips
• AJAX tooltips

Working with Tooltips

[282]

Implementing a default tooltip
Tooltips were built to act as direct replacements for the browser's native tooltips.
They will recognize the default markup of the title attribute in a tag, and use it to
automatically add the additional markup required for the widget. The target selector
can be customized though using tooltip's items and content options; you'll see an
example of this later in this chapter. Let's first have a look at the basic structure
required for implementing tooltips.

In a new file in your text editor, create the following page:

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>Tooltip</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <style>
 p { font-family: Verdana, sans-serif; }
 </style>
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/jquery.ui.position.js">
</script>
 <script src="development-bundle/ui/jquery.ui.tooltip.js"></script>
 <script>
 $(document).ready(function($){
 $(document).tooltip();
 });
 </script>
 </head>
 <body>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla
blandit mi quis imperdiet semper. Fusce vulputate venenatis fringilla.
Donec vitae facilisis tortor. Mauris dignissim nibh ac justo
ultricies, nec vehicula ipsum ultricies. Mauris molestie felis ligula,
id tincidunt urna consectetur at. Praesent <a href="http://www.
ipsum.com" title="This was generated from www.ipsum.com">blandit
faucibus ante ut semper. Pellentesque non tristique nisi. Ut hendrerit
tempus nulla, sit amet venenatis felis lobortis feugiat. Nam ac
facilisis magna. Praesent consequat, risus in semper imperdiet, nulla
lorem aliquet nisi, a laoreet nisl leo rutrum mauris.</p>
 </body>
</html>

Chapter 10

[283]

Save the code as tooltip1.html in your jqueryui working folder. Let's review
what was used. The following script and CSS resources are needed for the default
tooltip widget configuration:

• jquery.ui.all.css

• jquery-2.0.3.js

• jquery.ui.core.js

• jquery.ui.widget.js

• jquery.ui.tooltip.js

The script required to create a tooltip, when using the title element in the underlying
HTML can be as simple as this, which should be added after the last <script>
element in your code, as shown in the previous example:

<script>
 $(document).ready(function($){
 $(document).tooltip();
 });
</script>

In this example, when hovering over the link, the library adds in the requisite aria
described by the code for screen readers into the HTML link. The widget then
dynamically generates the markup for the tooltip, and appends it to the document,
just before the closing </body> tag. This is automatically removed as soon as the
target element loses focus.

ARIA, or Accessible Rich Internet Applications, provides a way
to make content more accessible to people with disabilities. You can
learn more about this initiative at https://developer.mozilla.
org/en-US/docs/Accessibility/ARIA.

It is not necessary to only use the $(document) element when adding tooltips.
Tooltips will work equally well with classes or selector IDs; using a selector ID,
will give a finer degree of control, as we will see later in this chapter.

Working with Tooltips

[284]

Exploring the tooltip CSS framework
classes
Using Firebug for Firefox (or another generic DOM explorer), we can see that specific
class names are added to the underlying HTML elements that the Tooltip widget is
created from. Let's review these class names briefly and see how they contribute to
the overall appearance of the widget.

Classname Purpose
ui-tooltip The outer container for the tooltip
ui-tooltip-content The content of the tooltip
ui-widget-content Applies content container styles to an element and its child text,

links, and icons
ui-corner-all Applies a corner-radius to all four corners of element

Unlike other widgets, little in the way of styling is added by tooltip—the majority of
the styles are added when the tooltip is created, as shown in the following screenshot:

Overriding the default styles
When styling the Tooltip widget, we are not limited to merely using the prebuilt
themes on offer (about which we will cover in the next section), we can always elect to
override existing styles with our own. In our next example, we'll see how easy this is to
accomplish, by making some minor changes to the example from tooltip1.html.

Chapter 10

[285]

In a new document, add the following styles, and save it as tooltipOverride.css,
within the css folder:

p { font-family: Verdana, sans-serif; }
.ui-tooltip { background: #637887; color: #fff; }

Don't forget to link to the new style sheet from the <head> element of your document:

<link rel="stylesheet" href="css/tooltipOverride.css">

Before we continue, it is worth explaining a great trick for styling
tooltips before committing the results to code.
If you are using Firefox, you can download and install the Toggle
JS add-on for Firefox, which is available from https://addons.
mozilla.org/en-US/firefox/addon/toggle-js/. This
allows us to switch off JavaScript on a per-page basis; we can then
hover over the link to create the tooltip, before expanding the
markup in Firebug and styling it at our leisure.

Save your HTML document as tooltip2.html. When we run the page in a browser,
you should see the modified tooltip appear when hovering over the link in the text:

Using prebuilt themes
If creating completely new styles by hand is overkill for your needs, you can always
elect to use one of the prebuilt themes that are available for download from the
jQuery UI site.

Working with Tooltips

[286]

This is a really easy change to make. We first need to download a copy of the
replacement theme; in our example, we're going to use one called Excite Bike. Let's
start by browsing to http://jqueryui.com/download/, then deselecting the Toggle
All option:

We don't need to download the whole library, just the theme at the bottom, change
the theme option to display Excite Bike then click on Download:

Chapter 10

[287]

Next, open a copy of tooltip2.html then look for this line:

<link rel="stylesheet" href="development-bundle/themes/redmond/jquery.
ui.all.css">

You will notice the highlighted word in the above line. This is the name of the
existing theme. Change this to excite-bike then save the document as tooltip3.
html, then remove the tooltipOverride.css link, and you're all set. The following
is our replacement theme in action:

With a single change of word, we can switch between any of the prebuilt themes
available for use with jQuery UI (or indeed even any of the custom ones that others
have made available online), as long as you have downloaded and copied the theme
into the appropriate folder.

There may be occasions, though, where we need to tweak the settings. This gives us
the best of both worlds, where we only need to concentrate on making the required
changes. Let's take a look at how we can alter an existing theme using ThemeRoller.

Working with Tooltips

[288]

Creating custom themes with ThemeRoller
If we browse to http://jqueryui.com/themeroller/, we can alter some of the
settings used to style the Tooltip example on this page. Alter the Background color
& texture option under Content, then change the Border option to #580000, as
shown in the following screenshot:

Move down to the Clickable: active state section, then change the Background color
& texture option to #ccb2b2 at 100%, and the Border option to #580000. Leave the
rest unchanged:

Chapter 10

[289]

If you scroll down to the Tooltip example at the foot of the page, then hover over
either image, you should see the effects of our changes:

Whilst I know the colors may not win any style awards, you can see how easy it is to
alter the colors. When you've finished choosing your colors, you can then download
the final version from the download page. A copy of the custom theme is also
available in the code download that accompanies this book; take a look at tooltip4.
html in the jquery folder to see an example of our new stylesheet in action.

We can take it even further with the use of HTML. Beware though, as
this will introduce a security risk to your pages and should be used
with care! Have a look at the section marked Working with HTML in
tooltips, later in this chapter, for an example of how you can really go
to town in altering the styles of your tooltips.

Configuring tooltip options
Each of the different components in the library has a series of options that control
which features of the widget are enabled by default. An object literal, or an object
reference, can be passed into the tooltip() widget method to configure these options.

Working with Tooltips

[290]

The available options to configure non-default behaviors are shown in the
following table:

Option Default value Used to…
content function returning

the title attribute
Set the content of the tooltip—if setting
this option, then it is likely you will also
need to change the items option as well.

disabled false Disable the tooltip.
hide null Determine if or how to animate the

hiding of the tooltip.
items [title] Set a selector that indicates which

items should show tooltips. This can be
customized if you are planning to use
something other than the title attribute
for the tooltip content, or need to set a
different selector for event delegation.

position { my: "left top+15",
at: "left bottom",
collision: "flipfit"
}

Identify the position of the tooltip in
relation to the associated target element.

show null Determine if or how to animate the
showing of the tooltip.

tooltipClass null Add a class to a widget that can display
different tooltip types, such as errors or
warnings.

track false Determine whether the tooltip should
track (follow) the mouse.

Positioning tooltips accurately
One of the most useful features of jQuery UI's tooltips is the ability to fine-tune
where they appear on screen. There may be instances where you need them to
appear, but not at the expense of hiding an important feature on your website or
application! Let's have a look at how the position attribute works, using a custom
styled tooltip with pointer as an example.

In your text editor, alter the final <script> block of tooltip4.html, as shown in
the following code:

<script>
 $(document).ready(function($){
 $('a').tooltip({
 position: {

Chapter 10

[291]

 my: 'center+30 bottom',
 at: 'center top-8',
 of: '#tip'
 }
 });
 $('a').tooltip('option', 'tooltipClass', 'top');
 });
</script>

We need to alter the markup so it includes the selector ID we've just referenced in the
tooltip call:

<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla
blandit mi quis imperdiet semper. Fusce vulputate venenatis fringilla.
Donec vitae facilisis tortor. Mauris dignissim nibh ac justo
ultricies, nec vehicula ipsum ultricies. Mauris molestie felis ligula,
id tincidunt urna consectetur at. Praesent <a href="http://www.ipsum.
com" id="tip" title="This was generated from www.ipsum.com">blandit
 faucibus ante ut semper. Pellentesque non tristique nisi. Ut
hendrerit tempus nulla, sit amet venenatis felis lobortis feugiat. Nam
ac facilisis magna. Praesent consequat, risus in semper imperdiet,
nulla lorem aliquet nisi, a laoreet nisl leo rutrum mauris.</p>

In a new file in your text editor, create the following small style sheet:

body { margin-top: 75px; }
.ui-tooltip { background: #c99; color: white; border: none; padding:
0; opacity: 1; border-radius: 8px; border: 3px solid #fff; width:
245px; }
.ui-tooltip-content { position: relative; padding: 1em; }
.ui-tooltip-content::after { content: ''; position: absolute; border-
style: solid; display: block; width: 0; }
.right .ui-tooltip-content::after { top: 18px; left: -10px; border-
color: transparent #c99; border-width: 10px 10px 10px 0; }
.left .ui-tooltip-content::after { top: 18px; right: -10px; border-
color: transparent #c99; border-width: 10px 0 10px 10px; }
.top .ui-tooltip-content::after { bottom: -10px; left: 72px; border-
color: #c99 transparent; border-width: 10px 10px 0; }
.bottom .ui-tooltip-content::after { top: -10px; left: 72px; border-
color: #c99 transparent; border-width: 0 10px 10px; }

Save this as tooltipPointer.css. Remove the existing styling from tooltip4.html,
then add the following references into the <head> and resave it as tooltip5.html:

<link rel="stylesheet" href="development-bundle/themes/redmond/jquery.
ui.all.css">
<link rel="stylesheet" href="css/tooltipPointer.css">

Working with Tooltips

[292]

In this example, we've used a number of pseudo-selectors to style our tooltip; this
has the added advantage that it doesn't require any images as part of producing
the tooltip. If we view the new page in a browser, it should appear similar to the
following screenshot:

Using the position widget
In our example, you will have noticed that we've resized the window to achieve the
effect shown in the previous screenshot. If you expand that window to full size, the
tooltip is very likely to shift; to prevent this from happening, it's important to use the
of attribute, so that the tooltip (in this instance) remains next to the original link we
added to our markup.

Using the position attribute (and indeed the widget) can be a little tricky to master,
but it is worth the effort to ensure that your widgets are positioned just where you
need them to appear.

Chris Coyier of CSS Tricks (http://www.css-tricks.com)
has produced a nice example of how the position utility works,
which you can see at http://css-tricks.com/jquery-
ui-position-function/.

In a nutshell, an example use of the position widget such as the following code:

$("#move-me").position({
 "my": "right top",
 "at": "left bottom",
 "of": $("#thing")

Chapter 10

[293]

});

…would translate in the following illustration:

Source: http://css-tricks.com/jquery-ui-
position-function/

Tracking mouse movement with tooltips
So far, we've had a look at how to add tooltips to your page, and covered some of
the possibilities for styling and positioning them on screen. One small enhancement
we can make to our tooltips is to set them so that they can follow your cursor, when
activated.

This is a simple change to make; change the body of tooltip5.html so it contains
the following elements:

<div id="content">
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Nulla blandit mi quis imperdiet semper. Fusce vulputate
venenatis fringilla. Donec vitae facilisis tortor. Mauris <a
href="#" rel="tooltip1"title="This is a tooltip hovering over
a link">dignissim nibh ac justo ultricies, nec vehicula
ipsum ultricies. Mauris molestie felis ligula, id tincidunt urna
consectetur at. Praesent blandit faucibus ante ut semper. <a href="#"
rel="tooltip2" title="Here is another tooltip">Pellentesque non
tristique nisi. Ut hendrerit tempus nulla, sit amet venenatis
felis lobortis feugiat. Nam ac facilisis magna. Praesent consequat,
risus in semper imperdiet, nulla lorem aliquet nisi, a laoreet nisl
leo rutrum mauris.
 <p>Tooltips are also useful for form elements, to show some
additional information in the context of each field.</p>
 <p>

Working with Tooltips

[294]

 <label for="textinput">First text input:</label>
 <input id="test" title="Please enter text in this field." />
 </p>
</div>
<p>Hover over the input field or links to see the tooltips in
action.</p>

We need to add the tracking facility, so update the final <script> block as follows:

<script>
 $(document).ready(function($){
 $(document).tooltip({ track: true });
 });
</script>

Save the updated document as tooltip6.html. Let's now add in some final tweaks
to our styling so the content appears properly on screen. Add the following to a new
document, saving it as tooltipTrack.css, in the css folder:

p { font-family: Verdana, sans-serif; font-size: 0.8em; font-style:
italic; }
label { display: inline-block; width: 8.5em; }
#content { border: 2px solid #42505a; padding: 5px; border-radius:
4px; }
#content p { font-style: normal; }

Don't forget to link to the new style sheet from the <head> of our page (by replacing
the existing reference to tooltipPointer.css):

<link rel="stylesheet" href="css/tooltipTrack.css">

The following screenshot shows how the page should appear when previewing
our results:

Chapter 10

[295]

We've now set the tooltip to follow our cursor anytime we are hovering over a target
element. In our example, this includes either of the two links or the input element.
We're not limited to either of those elements when setting up tracking; this can be
used on any valid HTML element, such as radio buttons, buttons, or even labels.

Although we can't easily show it in print, you should find that when you move your
cursor around, the tooltip will follow it as long as the cursor is still hovering over its
target element.

Displaying certain tooltips
So far, we've assigned all of our tooltips to work using the $(document) object;
whilst this will work perfectly well, it does mean that our tooltips will always follow
the same format, and work in the same manner, as the configuration will apply to all
tooltips on that page.

We can easily change this, though; jQuery UI's Tooltip will work equally fine with
any jQuery selectors, as it does with the document object. To prove this, let's take a
look at how you would configure tooltip to work with a specific element.

In tooltip2.html, change the final <script> element to the following:

<script>
 $(document).ready(function($){
 $("#input").tooltip();
 });
</script>

We don't need the CSS override styles, so remove this line from the <head> of the
document:

<link rel="stylesheet" href="css/tooltipOverride.css">

We also need to add the following code below the existing markup:

<p>Tooltips are also useful for form elements, to show some additional
information in the context of each field.</p>
<label for="input">Please enter some text:</label>
<input type="text" id="input" title="I am a tooltip!">

Working with Tooltips

[296]

Save this as tooltip7.html in your jqueryui folder. In this example, we've
removed the reference to document, and replaced it with the id assigned to the
textbox, as shown in the following screenshot:

The same style classes that we've seen earlier will still be applied, but this time they
will only appear when hovering over the textbox, and not the link in the text.

Displaying AJAX content in tooltips
Throughout most of this chapter, we've used the standard technique of displaying
content in our tooltips, which is to reference the text stored in the title attribute of
any tags that can be found on the page.

However, jQuery UI's Tooltips are able to reference content using AJAX; this allows
you to generate tooltips dynamically, rather than being limited to what is displayed in
your markup. In our example, we will use the content attribute to pass plain text to the
widget; you could equally pass a callback function as the content's value to the tooltip.

In your text editor, remove the existing final <script> block in tooltip7.html, and
replace it with the following code:

$(document).ready(function($){
 var url = "ajax.html";
 $("#ajaxTip").load(url);
 $('a').tooltip({
 content: '... waiting on ajax ...',
 open: function(evt, ui) {
 var elem = $(this);

Chapter 10

[297]

 var data = $("#ajaxTip").text();
 $.ajax().always(function(event, ui) {
 elem.tooltip('option', 'content', data);
 });
 }
 });
});

Next, remove the <label> and <input> code, then add the following immediately
below your markup in the <body> section:

<div id="ajaxTip" style="display:none;"></div>

We also need to create some content that will be imported into the page using AJAX,
so in a new document, add the following code and save it as ajax.html:

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Save the file as tooltip8.html. In this instance, you will need to view this through
a web server, in order for the AJAX effect to work correctly; if you don't have
access to some online web space, you can use WAMP Server(for PC, available from
http://www.wampserver.com/en/) or MAMP locally (for Macs, downloadable from
http://www.mamp.info/en/mamp/), which will work equally as well.

When hovering over the link, a tooltip will appear but with the content of the HTML
file that it has imported, as shown in the following screenshot:

Working with Tooltips

[298]

As we are pulling in HTML-based content, you should ensure that content is
handled correctly, to minimize risks of attacks to your site. In this example, we've
just imported plain text from our test HTML file, but using this method does allow
you to import any HTML (within reason) to great effect.

Later in this chapter, we will look at using HTML in tooltips in
more detail; you could potentially use the styling and content
from that method, but import it all using AJAX instead.

How can we tell if it has worked?
The easiest way to tell if your content has successfully been imported is by inspecting
it in the Console tab of a DOM inspector, such as Firebug.

DOM Inspectors can be used to inspect, browse, and edit the Document
Model Object (DOM) of any webpage, for a number of purposes, such
as establishing slow-loading objects or sources, or previewing changes
to CSS styling before committing them to code.

Here you can clearly see the call to test.html (taken from Firebug), which has
returned a value of 200, indicating success:

Using effects in tooltips
You will have hopefully noticed that, from each of the examples demonstrated in
this chapter, each tooltip will fade in and out gradually, by default. Tooltips are not
limited to using only this fade in or out effect; you may prefer to use something that
shows a little more impact when displayed on screen.

In our next example, we will look at how you can alter your code to use different
effects, to achieve this effect. Add the following lines of code immediately below the
last call to the jQuery UI library in tooltip7.html:

<script src="development-bundle/ui/jquery.ui.effect.js"></script>
<script src="development-bundle/ui/jquery.ui.effect-bounce.js">
</script>
<script src="development-bundle/ui/jquery.ui.effect-explode.js">
</script>

Chapter 10

[299]

Next, remove these two lines from the existing markup:

<label for="input">Please enter some text:</label>
<input type="text" id="input" title="I am a tooltip!">

Alter the final <script> element to include the new effects, as shown:

<script>
 $(document).ready(function($){
 $(document).tooltip({
 show: { effect: "bounce", duration: 800 },
 hide: { effect: "explode", duration: 800 }
 });
 });
</script>

Save the document as tooltip9.html. If we load the page into a browser and hover
over the link in the text, you will see the tooltip explode when moving away, as
shown in the following screenshot:

Working with HTML in tooltips
So far, we've covered how you can set up tooltips to appear on your pages, as well
as style them. The latter presents us with a slight dilemma, though, as we have to
rely on jQuery to add in CSS styles programmatically, which can be detrimental if
we're aiming to maintain a progressive style of enhancement for our tooltips. There
is a way around this; whilst it involves an element of jQuery, it does allow us to use
HTML to generate our tooltips, making it far more flexible for our needs.

Use of HTML in your tooltips
Before we go any further, I should point out that use of this method
introduces a security risk to your code; it is for this reason that the
default usage of content was switched from allowing HTML to just
plain text. Please use this at your own risk!

Working with Tooltips

[300]

Remove the contents of the markup in tooltip9.html, and add in the following:

<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Nulla blandit mi quis imperdiet semper. Fusce vulputate venenatis
fringilla. Donec vitae facilisis tortor. Mauris <a href="#"
rel="tooltip1">dignissim nibh ac justo ultricies, nec vehicula
ipsum ultricies. Mauris molestie felis ligula, id tincidunt urna
consectetur at. Praesent blandit faucibus ante ut semper. Pellentesque
non tristique nisi. Ut hendrerit tempus nulla, sit amet venenatis
felis lobortis feugiat. Nam ac facilisis magna. Praesent consequat,
risus in semper imperdiet, nulla lorem aliquet nisi, a laoreet nisl
leo rutrum mauris.
</p>

Next, alter the final <script> block, as shown in the following code:

<script>
 $(document).ready(function($){
 var tooltiptext = "<div id='tooltip'><div id='title'>Test Tooltip
</div><div id='content'>This is a random tooltip with some text</
div></div>";
 $("a[rel=tooltip]").tooltip({
 items: "a",
 content: function() {
 return tooltiptext;
 }
 });
 });
</script>

Save this as tooltip10.html. We now have a working tooltip, but it won't look very
attractive. Create a new style sheet and add to it the following basic styles:

p { font-family: Verdana, sans-serif; }
#tooltip { width: 100px; border: 1px solid #F1D031; font-family:
Verdana, sans-serif; font-size: 10px; }
#title { width: 94px; background-color: #FFEF93; font-weight: bold;
padding: 3px; }
#content { width: 94px; background-color: #FFFFA3; height: 50px;
padding: 3px; }

Save this as tooltipSelector.css in your css folder. Don't forget to link to the
new style sheet from the <head> of our page (after the link to the standard jQuery UI
style sheet):

<link rel="stylesheet" href="css/tooltipSelector.css">

Chapter 10

[301]

In this example, we're not going to use the prebuilt styling from our redmond theme,
so remove the following link:

<link rel="stylesheet" href="development-bundle/themes/redmond/jquery.
ui.all.css">

We also need to remove the effects calls from the previous demonstration, so remove
the following links from the <head> of your document:

<script src="development-bundle/ui/jquery.ui.effect.js"></script>
<script src="development-bundle/ui/jquery.ui.effect-bounce.js">
</script>
<script src="development-bundle/ui/jquery.ui.effect-explode.js">
</script>

Save our altered document as tooltip10.html. If we run this page in a browser, you
will see the tooltip Test tooltip appear when hovering over a link, as shown in the
following screenshot:

As you can see, we've completely altered the styling used on our tooltip; this method
requires more work than the normal method for setting up tooltips, but it is worth
the effort, provided it is done correctly!

Working with Tooltips

[302]

The dangers of working with HTML
In the previous example, we looked at how you can incorporate HTML into your
tooltips, which opens up some powerful opportunities in terms of what can be
displayed within a tooltip. There is an inherent risk associated with using HTML
in tooltips, though; in previous versions of the library, you could include HTML
within the <title> tag, as part of setting up tooltips. However, this has been altered
in UI 1.10, as a fix for the cross-site scripting (XSS) vulnerability that was present in
Version 1.9, where attackers could insert (or inject) client-side script, often malicious,
into the Tooltip widget on a page. You can still use HTML, but need to use the
content option as outlined in the previous example. You can learn more about cross-
site scripting, and how to reduce the threat, at http://en.wikipedia.org/wiki/
Cross-site_scripting.

As the content option overrides the default behavior, you should
always ensure your content is correctly escaped (or sanitized) to
minimize the risk of cross-site scripting.

Using tooltip methods
The Tooltip widget contains a handful of methods which allow us to work with it
programmatically and alter its default behaviors. Let's take a look at the methods,
which are listed in the following table:

Method Used to…
close Close a tooltip; should only be used for non-delegated tooltips.
destroy Remove the tooltip functionality completely.
disable Disable the tooltip.
enable Enable the tooltip.
open Programmatically open a tooltip. This is only intended for non-delegated

tooltips.
option Get or set the value associated with the specified optionName
widget Return a jQuery object containing the original element.

Chapter 10

[303]

Enabling and disabling tooltips
We can make use of the enable or disable methods to programmatically enable or
disable specific tooltips. This will effectively switch on any tooltips that were initially
disabled or disable those that are currently active. Let's make use of the enable and
disable methods to switch on or off a tooltip, which we will configure to be disabled
when the page loads in the browser.

Add the following new <button> elements directly after the existing markup for the
Tooltip widget in tooltip10.html:

 <label for="input">Please enter some text:</label>
 <input type="text" id="tooltip2" title="I am a tooltip!">
 <p>
 <button id="turnon">Enable Tooltip 1</button>
 <button id="turnoff">Disable Tooltip 1</button>
 <p>
 </body>

Next, change the final <script> element so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#tooltip").tooltip({ disabled: true });
 $("#turnon").click(function(){
 $("#tooltip").tooltip("enable");
 })

 $("#turnoff").click(function(){
 $("#tooltip").tooltip("disable");
 })
 });
</script>

Working with Tooltips

[304]

Save the changed file as tooltip11.html. On the page, we've added two new
<button> elements. One will be used to enable the disabled tooltip and the other is
used to disable it again. If we load the page into a browser, we will see something
similar to the following screenshot:

In the JavaScript, we use the click event of the Enable Tooltip button to call the
tooltip() widget method. To do this, we pass the string enable, to the tooltip()
method as the first argument. Additionally, we pass the index number of the tab we
want to enable as a second argument. All methods in jQuery UI are called in this
way. We specify the name of the method we wish to call as the first argument to the
widget method; the disable method is used in the same way.

Don't forget that if you set $(document) as the element upon
which tooltip works, then we can use both of these methods
without additional arguments, in order to enable or disable all
tooltips on that page.

Displaying tooltips programmatically
As well as enabling or disabling tooltips programmatically, we can equally show or
hide tooltips at will, by clicking a button or suitable link on screen. Let's use both
now, to show or hide one of the tooltips at will, in our next example.

Chapter 10

[305]

In tooltip11.html, alter the last lines of our existing markup as indicated:

<label for="input">Please enter some text:</label>
<input type="text" id="tooltip2" title="I am a tooltip!">
<p>
 <button id="showtip">Show (open) Tooltip</button>
 <button id="hidetip">Hide (close) Tooltip</button>
</p>

Next, let's change the final <script> element to include the new event handlers that
will be assigned to the new buttons we've just added:

<script>
 $(document).ready(function($){
 $("#tooltip").tooltip();

 $("#showtip").click(function(){
 $("#tooltip").tooltip("open");
 })
 $("#hidetip").click(function(){
 $("#tooltip").tooltip("close");
 })
 });
</script>

Save the altered file as tooltip12.html. When loading the page into a browser, and
clicking on the Show (open) Tooltip button, you will see the tooltip appear:

Working with Tooltips

[306]

In the JavaScript, we use the click event of the Show (open) Tooltip button to call the
Tooltip widget and display the tooltip. To do this, we only need to pass one attribute,
which is the string open, to the tooltip() method. When we need to hide (or close)
the tooltip, we can pass the string close as part of calling the Tooltip widget, in a
similar manner.

Handling tooltip events
The Tooltip widget defines three events that allow you to add call back functions to
perform different actions, when certain events exposed by the widget are detected.
The following table lists the configuration options that are able to accept executable
functions on an event:

Event Fired when…
close A tooltip is closed or triggered on focusout or mouseleave
create A tooltip is created
open A tooltip is shown or triggered on focusin or mouseover

Each component of the library has callback options (such as those in the previous
table), which are tuned to look for key moments in any visitor interactions. Any
functions we use within these callbacks are usually executed before the change
happens. Therefore, you can return false from your callback and prevent the action
from occurring.

In our next example, we'll look at how easy it is to react to a particular tooltip being
displayed, using the standard non-bind technique. Change the final <script>
element in tooltip12.html so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#tooltip").tooltip({
 open: function(event, ui) {
 $("#console").append("Tooltip activated" + "
");
 },
 close: function(event, ui) {
 $("#console").append("Tooltip closed" + "
");
 }
 });
 $("#tooltip").tooltip();
 });
</script>

Chapter 10

[307]

Save this as tooltip13.html. We also need to alter our markup, so remove the two
buttons at the foot of our existing markup, and insert a new History <div> as shown:

 <div id="history">
 History:
 <div id="console"></div>
 </div>
</body>

Finally, we need to add a little styling to make the display look presentable. In a new
document, add the following:

#history { border-radius: 4px; border: 1px solid #c4c4c4; width:
250px; padding: 3px; margin-top: 15px; }

Save this in the css folder as tooltipEvents.css. Don't forget to link to the new style
sheet from the <head> of our page (after the link to the standard jQuery UI stylesheet):

<link rel="stylesheet" href="css/tooltipEvents.css">

If we preview the results in a browser, then move over the tooltip link a few times.
We can begin to see a history build up, as shown in this screenshot:

Working with Tooltips

[308]

We made use of both the open and close callbacks within this example, although the
principle is the same for the create custom event, that can also be fired by tooltip. The
names of the callback functions are provided as the values of the open and close
properties in our configuration object.

Two arguments will be passed automatically by the widget to the callback function
we define, when it is executed. These are the original event object and custom ui
object containing useful properties from the tooltip, which was displayed.

Binding to tooltip events
Using the event callbacks exposed by each component is the standard way of handling
interactions. However, in addition to the callbacks listed in the previous table, we can
also look into another set of events fired by each component at different times.

We can use the standard jQuery on() method to bind an event handler to a custom
event, fired by the Tooltip widget in the same way that we could bind to a standard
DOM event, such as a click.

The following table lists the Tooltip widget's custom binding events and their triggers:

Event Fired when…
tooltipcreate A tooltip is created
tooltipopen A tooltip is shown or triggered on focusin or mouseover
tooltipclose A tooltip is closed or triggered on focusout or mouseleave

The first event is fired as soon as the tooltip is created; the remaining two are fired
depending on whether the tooltip has received focus.

Let's see this type of event in action; change the final <script> element in
tooltip13.html to the following:

<script>
 $(document).ready(function($){
 $("#tooltip").tooltip();
 $("#tooltip").on("tooltipopen", function(event, ui) {
 $("#console").append("Tooltip activated" + "
");
 })

 $("#tooltip").on("tooltipclose", function(event, ui) {
 $("#console").append("Tooltip closed" + "
");
 })
 });
</script>

Chapter 10

[309]

Save this change as tooltip14.html. Binding to the tooltipopen and
tooltipclose event handlers in this way, produces the same result as the previous
example, using the open and close callback functions. Like last time, the console log
should be updated each time you hover over the tooltip in the text.

All of the events exposed by all of the widgets can be used with the on() method, by
simply prefixing the name of the widget to the name of the event.

Playing videos
So far, we've covered a great deal of theory around using jQuery UI's Tooltip; in this
example and the next, we will take a look at some practical uses of tooltips that you
can use as a starting point for your own projects. Before continuing, make sure you
have a copy of the code download available, as we will be using files from it for this
exercise.

One possible use for tooltips is to mimic the like or dislike buttons you might find
on social media sites, such as YouTube, where you can register your preference for
videos you have enjoyed watching. Let's take a look at how you could replicate the
functionality, in your own projects, but using tooltips and a number of other jQuery
UI widgets that we've covered so far in this book.

This demonstration uses a video from the open source
project The Big Buck Bunny, created by the Blender Foundation,
and available from http://www.bigbuckbunny.org.

From the code download, extract a copy of tooltipVideo.js; this will provide the
functionality that adds the buttons and tooltips to the bottom of our video. Don't
forget to link to the new JavaScript file from the <head> of our page (after the link to
the jQuery UI button widget):

<script src="js/tooltipVideo.js"></script>

We also need to add a reference to the Button widget to the <head> of our page:

<script src="development-bundle/ui/jquery.ui.button.js"></script>

Next, change the <body> so that it contains the following elements:

<div class="player">
 <video controls="controls">
 <source src="video/big_buck_bunny.mp4" />

Working with Tooltips

[310]

 <source src="video/big_buck_bunny.webm" />
 </video>
 </div>
 <p>
 <div class="tools">

 <button data-icon="ui-icon-circle-arrow-n" title="I like
this">Like</button>
 <button data-icon="ui-icon-circle-arrow-s">I dislike this</
button>

 <div class="set">
 <button data-icon="ui-icon-circle-plus" title="Add to Watch
Later">Add to</button>
 <button class="menu" data-icon="ui-icon-triangle-1-s">Add to
favorites or playlist</button>
 </div
 <button title="Share this video">Share</button>
 <button data-icon="ui-icon-alert">Flag as inappropiate</button>

</div>

Last but not least, we also need to add some styling, to ensure the tooltips display
correctly. Add the following to a new document in your text editor:

.player { width: 642px; height: 362px; border: 2px groove gray;
background: rgb(200, 200, 200); text-align: center; line-height:
300px; }
.ui-tooltip { border: 1px solid white; background: rgba(20, 20, 20,
1); color: white; }
.set { display: inline-block; }
.notification { position: absolute; display: inline-block; font-size:
2em; padding: .5em; box-shadow: 2px 2px 5px -2px rgba(0,0,0,0.5); }

Save this as tooltipVideo.css, into the css folder – don't forget to add a link to it
from your main document, immediately after the link to the jQuery UI stylesheet:

<link rel="stylesheet" href="css/tooltipVideo.css">

Chapter 10

[311]

Save your modified page as tooltip15.html. The following screenshot shows how
the page should appear when previewing the video in a browser:

Using the buttons in this manner allows us to add some really powerful functionality
to our sites. In our example, the buttons don't actually do anything (apart from show
the tooltips), but in real-life, they would be used to maintain a running tally of those
who have watched the video, and want to register their like (or dislike) for it.

Filling out and validating forms
Throughout this chapter, we've covered a lot of ground on how to implement
tooltips, and configure them to our needs, within our sites. We cannot finish this
chapter though, without taking a look at what is arguably the most important
(or common?) use of tooltips in a site—form validation.

I am sure that over the years, you will likely have filled out forms online; perhaps
as part of purchasing something, and that you will have made a mistake whilst
completing it. The beauty of tooltips is that we can use them to provide some
feedback to the visitor, to ensure they fill out the fields correctly, and do not enter
invalid values to your form.

In your text editor, alter the final <script> block from tooltip14.html, as shown
in the following code:

$(document).ready(function($){
 $("button").button();
 var $tooltips = $('#signup [title]').tooltip({
 position: { my: "left+15 center", at: "right center" }
 });

Working with Tooltips

[312]

 $("#open").on('click', function() {
 $tooltips.tooltip('open');
 });
 $("#close").on('click', function() {
 $tooltips.tooltip('close');
 });
});

As we are using JQuery UI's Button widget in this example, we need to add a link to
the widget from within jQuery UI's library:

<script src="development-bundle/ui/jquery.ui.button.js"></script>

Next, we need to add in the markup for our form – remove the existing markup, and
replace it with the following:

<form id="signup">
 <fieldset>
 <legend>Sign Up Now</legend>
 <div>
 <label for="username">Username:</label>
 <input type="text" name="username" id="username" title="User
name must be between 8 and 32 characters.">

 </div>
 <div>
 <label for="password">Password:</label>
 <input type="password" name="password" title="Password must
contain at least one number.">
 </div>
 <div>
 <label for="password2">Confirm Password:</label>
 <input type="password" name="password2" title="Please re-type
your password for confirmation.">
 </div>
 </fieldset>
</form>
 <button id="open">Open Help</button>
 <button id="close">Close Help</button>

Save this as tooltip16.html. We also need a little CSS to complete this example. In
the <head> of the page we just created, add the following <link> element:

<link rel="stylesheet" href="css/tooltipForm.css">

Chapter 10

[313]

Then in a new page in your text editor, add the following code:

body { font-family: verdana, sans-serif; width: 430px; }
label { display: inline-block; width: 11em; }
button { float: right; margin: 2px; }
fieldset { width: 400px; border: 3px solid black; border-radius: 4px;
margin: 3px; border-color: #7c96a9; font-size: 1.1em;}
fieldset div { margin-bottom: 1.2em; }
fieldset .help { display: inline-block; }
.ui-tooltip { width: 300px; font-size: 0.7em; }

Save this as tooltipForm.css in the css folder. If we preview the page in our
browser, you will see each of the tooltips appear when hovering over them, or they
can all be shown when clicking on the Open Help button, as shown in the following
screenshot:

In this example, we've set jQuery UI to show the tooltips on the [title] attributes
of each field. However, as we assigned the tooltip method handler to the $tooltips
variable, we were able to use this to create a click handler for each of the buttons,
which will either display or hide all of the tooltips, depending on which button is
pressed. We can also display messages to the user, when something has gone wrong;
for example, if a password has been entered incorrectly, we can use the input field's
blur event handler to open a tooltip on screen.

Working with Tooltips

[314]

Summary
Phew! For such a small widget, we certainly have covered a lot of ground!

The Tooltip widget is an excellent way to communicate short pieces of information,
such as an error or alert, to the user, you can even use it as a mini help system; let's
review what was covered in this chapter.

We first looked at how, with just a little underlying HTML and a single line of jQuery-
flavored JavaScript, we can implement the default tooltip widget. We then saw how
easy it is to style the Tooltip widget, either using a predesigned ThemeRoller theme, or
one of our own; so that its appearance, but not its behavior, is altered.

We then moved on, to look at the set of configurable options exposed by the tooltip's
API, and how these can be used to control the options that the widget offers.
Following the configurable options, we covered the handful of methods that we can
use to programmatically make the tooltip perform different actions, such as enabling
or disabling specific tooltips.

We briefly looked at some of the more involved functionality supported by the
tooltips widget, such as AJAX-based tooltips, and providing context to forms. Both
of these techniques are easy to use and can add value to any implementation.

We have now finished our journey through the UI widgets, so let's turn our attention
to looking at some of interactions available in the library, beginning with the
dragging widget.

Drag and Drop
So far in this book, we've covered the complete range of fully released interface
widgets, and over the next four chapters, we're going to shift our focus to the core
interaction helpers. These are widgets that provide mouse-based interactions for
widgets, where we can perform actions, such as selecting, dragging, or resizing
widgets on a website. A perfect example is the resizable widget, which we will cover
in Chapter 12, The Resizable Component. These interaction components of the library
differ from those we've already looked at, in that they are not physical objects
or widgets that exist on the page.

These are low-level interaction components, as opposed to the high-level widgets
that we looked at in the first part of this book. They help the elements used on your
pages to be more engaging and interactive for your visitors, which adds value to
your site and can help make your web applications appear more professional. They
also help to blur the distinctions between the browser and the desktop, and provide
greater usability to make web applications more efficient, effective, and natural.

In this chapter, we'll be covering two very closely related components—draggables
and droppables. The draggables API transforms any specified element into
something that your visitors can pick up with the mouse pointer and drag around
the page. Methods that are exposed allow you to restrict the draggables movement,
make it return to its starting point after being dropped, and much more.

In this chapter, we will cover the following topics:

• How to make elements draggable
• The options available for configuring draggable objects
• How to make an element return to its starting point once the drag ends
• How to use event callbacks at different points in an interaction
• The role of a drag helper
• Containing draggables

Drag and Drop

[316]

• How to control draggability with the component's methods
• Turning an element into a drop target
• Defining accepted draggables
• Working with droppable class names
• Defining drop tolerance
• Reacting to interactions between draggables and droppables

The droppables API allows you to define a region of the page or a container of
some kind for people to drop the draggables on to in order to make something
else happen, for example, while adding a product to a shopping basket. A rich set
of events is fired by the droppable widget that lets us react to the most interesting
moments of any drag interaction.

The deal with draggables and droppables
Dragging and dropping as behaviors go hand-in-hand with each other. Where one
is found, the other is invariably close by. Dragging an element around a web page is
all very well and good, but if there's nowhere for that element to be dragged to, the
whole exercise is usually pointless.

You can use the draggable class independently from the droppable class, as
pure dragging for the sake of dragging can have its uses, such as with the dialog
component. However, you can't use the droppable class without the draggable
class. You don't need to make use of any of draggable's methods of course, but using
droppables without having anything to drop on to them is of no value whatsoever.

Like with the widgets, it is possible, however, to combine some of the interaction
helpers; draggables and droppables go together obviously. But draggables can also
be used with sortables, as we'll see in Chapter 13, Selecting and Sorting with jQuery UI,
as well as resizables.

Getting started with the draggable widget
The draggables component is used to make any specified element or collection of
elements draggable, so that they can be picked up and moved around the page by
a visitor. Draggability is a great effect, and is a feature that can be used in numerous
ways to improve the interface of our web pages.

Using jQuery UI means that we don't have to worry about all of the tricky differences
between browsers that originally made draggable elements on web pages a nightmare
to implement and maintain.

Chapter 11

[317]

Implementing a basic drag
Let's look at the default implementation by first making a simple <div> element
draggable. We won't do any additional configuration. Therefore, all that this code
will allow you to do is pick up the element with the mouse pointer and drag it
around the viewport.

In a new file in your text editor, add the following code:

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>Draggable</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <link rel="stylesheet" href="css/autocompleteTheme.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/jquery.ui.mouse.js"></script>
 <script src="development-bundle/ui/jquery.ui.draggable.js "></
script>
 <script>
 $(document).ready(function($){
 $("#drag").draggable();
 });
 </script>
 </head>
 <body>
 <div id="drag"></div>
 </body>
</html>

Save this as draggable1.html in your jqueryui folder. As with the widget-based
components of jQuery UI, the draggable component can be enabled using a single
line of code. This invokes the draggable's constructor method: draggable and turns
the specified element into a drag object.

We need the following files from the library to enable draggability on an element:

• jquery-2.0.3.js

• jquery.ui.core.js

• jquery.ui.widget.js

Drag and Drop

[318]

• jquery.ui.mouse.js

• jquery.ui.draggable.js

We're using a plain <div> element with a background image specified in the CSS file
that we're linking to in the <head> tag of the page. Use the following stylesheet for
the drag element:

#drag { width: 114px; height: 114px; cursor: move; background: url(../
img/draggable.png) no-repeat; }

Save this as draggable.css in the css folder. When you view the page in a browser,
you'll see that the image can be moved around the draggable area as shown in the
following screenshot:

Configuring the draggable options
The draggable component has a wide range of configurable options, giving us a very
fine degree of control over the behavior that it adds. The following table lists the
options that we can manipulate to configure and control our drag elements:

Option Default value Used to…
addClasses true Add the ui-draggable class to the drag object.

Set it to false to prevent this class being added.
appendTo "parent" Specify a container element for drag objects with

a helper attached.
axis false Constrain drag objects to one axis of motion.

Accepts the strings x and y as values, or the
Boolean false.

Chapter 11

[319]

Option Default value Used to…
cancel ":input,

option"
Prevent certain elements from being dragged, if
they match the specified element selector.

connectToSortable false Allow the drag object to be dropped on to
a sortable list and become one of the sort
elements.

containment false Prevent drag objects from being dragged out of
the bounds of its parent element.

cursor "auto" Specify a CSS cursor to be used while the
pointer is over the drag object.

cursorAt false Specify a default position at which the cursor
appears relative to the drag object, while it is
being dragged.

delay 0 Specify a time in milliseconds that the start of
the drag interaction should be delayed by.

disabled false Disable dragging on the draggable.
distance 1 Specify the distance in pixels that the pointer

should move with the mouse button held down
on the drag object, before the drag begins.

grid false Make the drag object snap to an imaginary grid
on the page. Accepts an array containing x and
y pixel values of the grid.

handle false Define a specific area of the drag object that is
used to hold the pointer on, in order to drag.

helper "original" Define a pseudo-drag element that is dragged
instead of the drag object. Can accept the string
values original or clone, or can accept a function
that returns the helper element.

iframeFix false Stop all the <iframe> elements on the page
from capturing mouse events, while a drag is in
progress.

opacity false Set the opacity of the helper element.
refreshPositions false Calculate the positions of all the drop objects

while the drag is in progress.
revert false Make the drag object return to its start position

once the drag ends, when set to true. Can
also accept the strings valid and invalid, where
revert is only applied if the drag object is
dropped on a valid drop object or vice versa,
respectively.

revertDuration 500 Set the number of milliseconds it takes for the
drag object to return to its starting position.

Drag and Drop

[320]

Option Default value Used to…
scope "default" Set the scope of the drag object with respect to

the drop objects that are valid for it.
scroll true Make the viewport automatically scroll when

the drag object is moved within the threshold of
the viewport's edge.

scrollSensitivity 20 Define how close in pixels the drag object
should get to the edge of the viewport, before
scrolling begins.

scrollSpeed 20 Set the speed at which the viewport scrolls.
snap false Cause drag objects to snap to the edges of

specified elements.
snapMode "both" Specify which edges of the element the drag

object will snap to. Can be set to either inside,
outside, or both.

snapTolerance 20 Set the distance from snapping elements that
drag objects should reach, before snapping
occurs.

stack false Ensure that the current drag object is always
on top of other drag objects in the same group.
Accepts an object containing group and/or min
properties.

zIndex false Set the zIndex of the helper element.

Using the configuration options
Let's put some of these options to use. They can be configured in exactly the same
way as the options exposed by the widgets that we looked at in previous chapters,
and also usually have both getter and setter modes.

In the first example a moment ago, we used CSS to specify that the move cursor
should be used when the pointer hovers over our draggable <div>. Let's change this
and use the cursor option of the draggables component instead.

Remove cursor: move from draggable.css, and resave it as draggableNoCursor
.css. Also change the <link> tag in draggable1.html, to reference the new file:

<link rel="stylesheet" href="css/draggableNoCursor.css">

Then change the final <script> element to the following one:

<script>
 $(document).ready(function($){
 $("#drag").draggable({

Chapter 11

[321]

 cursor: "move"
 });
 });
</script>

Save this as draggable2.html, and try it out in your browser. An important point to
note about this option is that the move cursor that we have specified is not applied
until we actually start the drag. While using this option in place of simple CSS,
we should perhaps provide some other visual cue that the element is draggable.

Let's look at a few more of draggable's many configuration options. Change the
configuration object in draggable2.html to the following one:

$("#drag").draggable({
 cursor: "move",
 axis: "y",
 distance: "30",
 cursorAt: { top: 0, left: 0 }
});

This can be saved as draggable3.html. The first new option that we've configured
is the axis option, which has restricted the draggable to moving only upwards or
downwards in the page, but not side to side across it.

Next, we've specified 30 as the value of the distance option. This means that the
cursor will have to travel 30 pixels across the drag object, with the mouse button
held down, before the drag begins.

The final option cursorAt is configured using an object literal, whose properties can
be top, right, bottom, or left. The values supplied to the properties that we choose
to use are the values relative to the drag object that the cursor will assume, when a
drag occurs.

However, you'll notice in this example that the value for the left option seems to
be ignored. The reason for this is that we have configured the axis option. When
we begin the drag, the drag object will automatically move so that the cursor is at 0
pixels from the top of the element, but it will not move so that the cursor is 0 pixels
from the left edge as we have specified because the drag object cannot move left.

Let's look at some more of the draggable's options in action. Change draggable3.
html so that the configuration object appears as follows:

$("#drag").draggable({
 delay: 500,
 grid: [100,100]
});

Drag and Drop

[322]

Save the file as draggable4.html. The delay option, which takes a value in
milliseconds, specifies the length of time that the mouse button must be held
down with the cursor over the drag object, before the drag begins.

The grid option is similar in usage to the steps option of the slider widget. It is
configured using an array of two values representing the number of pixels along
each axis that the drag element should jump when it is dragged. This option can
be used safely in conjunction with the axis option.

Resetting the dragged elements
It is very easy to configure drag objects to return to their original starting position
on the page once they've been dropped, and there are several options that can be
used to control this behavior. Change the configuration object that we used with
draggable4.html, so that it appears as follows:

$("#drag").draggable({
 revert: true
});

Save this as draggable5.html. By supplying true as the value of the revert option,
we've caused the drag object to return to its starting position at the end of any drag
interaction. However, you'll notice that the drag element doesn't just pop back to its
starting position instantly. Rather, it's smoothly animated back, with no additional
configurations required.

Another revert-related option is the revertDuration option, which we can use
to control the speed of the revert animation. Change the configuration object in
draggable5.html, so that it appears as follows:

$("#drag").draggable({
 revert: true,
 revertDuration: 100
});

Save this as draggable6.html. The default value for the revertDuration option
is 500 milliseconds, so by lowering it to 100, the relative speed of the animation is
considerably increased.

The actual speed of the animation will always be determined on the fly, based on
the distance from the drop point to the starting point. The revertDuration option
simply defines a target for the animation length in time.

Chapter 11

[323]

Adding the drag handle support
The handle option allows us to define a region of the drag object that can be used to
drag the object. No other areas can be used to drag the object. A simple analogy is
the dialog widget. You can drag the dialog around only if you click and hold on the
title bar. The title bar is the drag handle.

In the following example, we'll add a simple drag handle to our drag object. Put a
new empty <div> element inside the drag element:

<div id="drag">
 <div id="handle"></div>
</div>

Then, change the configuration object to the following one:

$("#drag").draggable({
 handle: "#handle"
});

Save this as draggable7.html. We've given the new <div> an id attribute and then
specified this id as the value of the handle option in our configuration object.

The handle is styled with a few simple style rules. Add the following new styles to
draggableNoCursor.css:

#handle {
 width:30px; height:30px; border-bottom:2px solid #ff0000;
 border-left:2px solid #ff0000; position:absolute;
 right:10px; top:10px; cursor:move;
}

Save this as dragHandle.css in the css folder. Don't forget to link to the new
stylesheet from <head> of draggable7.html:

<link rel="stylesheet" href="css/dragHandle.css">

Drag and Drop

[324]

When we preview the page in a browser, we see that the original drag object is
still draggable, but only when the handle is selected with the pointer as seen in the
following screenshot:

Adding the helper elements
Several configuration options are directly related to drag helpers. A helper is a
substitute element that is used to show where the object is on screen, while the drag
is in progress, instead of moving the actual draggable.

A helper can be a very simple object in place of the actual drag object. It can help
cut down on the intensity of the drag operation, lessening the load on the visitor's
processor. Once the drag is completed, the actual element can be moved to the new
location.

Let's look at how helpers can be used in the following example. Remove the <div>
element we used for handle and revert back to the draggable.css stylesheet in
draggable7.html, and then change the configuration object to the following one:

$("#drag").draggable({
 helper: "clone"
});

Chapter 11

[325]

Save this file as draggable8.html. We also need to tweak the CSS so that the cursor
changes to indicate that we're moving the image at the appropriate time. Alter the
CSS in draggable.css as follows:

#drag, .ui-draggable { width: 114px; height: 114px; background:
url(../img/draggable.png) no-repeat; }
.ui-draggable-dragging { cursor: move; }

The value clone for the helper option causes an exact copy of the original drag object
to be created and used as draggable. Therefore, the original object stays in its starting
position at all times. This also causes the clone object to revert back to its starting
position, an effect that cannot be changed, even by supplying false as the value of the
revert option. The following screenshot shows the clone option in action:

In addition to the string clone and the default original, we can also use a function
as the value for this option. This allows us to specify our own custom element to use
as the helper.

Change the final <script> element in draggable8.html to the following one:

<script>
 $(document).ready(function($){
 function helperMaker() {
 return $("<div />", {
 css: {
 border: "4px solid #ccc",
 opacity: 0.5,
 height: 110,

Drag and Drop

[326]

 width: 120
 }
 });
 }
 $("#drag").draggable({
 helper: helperMaker
 });
 });
</script>

Save this file as draggable9.html. Our helperMaker() function creates a new
<div> element using standard jQuery functionality, and then sets some CSS
properties on it to define its physical appearance. It then, importantly, returns the
new element. While supplying a function as the value of the helper option, the
function must return an element (either a jQuery object, as in this example, or an
actual DOMNode).

Now when the drag begins, it is our custom helper that becomes the drag object.
Because the custom element is much simpler than the original drag object, it can help
improve the responsiveness and performance of the application in which it is used.

Make sure that when you use the helper (clone) elements that
you use the element with class and not IDs, because IDs must
be unique in the DOM, and the clone will duplicate it.

The following screenshot shows our custom helper:

Chapter 11

[327]

Helper opacity
We used the css jQuery method in this example during the creation
of the custom helper. However, we can also use the opacity
option of the drag object to set the opacity of helper elements as a
cross-platform solution.

Constraining the drag
Another aspect of drag scenarios is that of containment. In our examples so far, the
<body> element of the page has been the container of the drag object. There are also
options that we can configure to specify how the drag object behaves with regards to
another container element.

We'll look at these in the following examples, starting with the containment option,
which allows us to specify a container element for the drag object. In the <head> tag
of draggable9.html, add the following link to the stylesheet that we'll be using in
this example:

<link rel="stylesheet" href="css/draggableContainer.css">

Then wrap the drag element within a container <div> as follows:

<div id="container">
 <div id="drag"></div>
</div>

Then change the configuration object to the following:

$("#drag").draggable({
 containment: "parent"
});

Save this variant as draggable10.html. On the page, we've added a new <div>
element as the parent of the existing drag element. In the code, we've used the value
parent for the containment option, so the element that is the direct parent of the
drag object (the <div> element with the id of container in this example) will be
used as the container.

The parent <div> needs some basic styling to give dimensions to it and so it can be
seen on the page. Add the following code to draggable.css and resave the file as
draggableContainer.css. Remember, this string is not the id of an element or a
jQuery selector (although selectors are also supported).

#container { height: 250px; width: 250px; border: 2px solid #ff0000; }

Drag and Drop

[328]

When you run the page in your browser, you'll see that the drag object cannot exceed
the boundary of its container.

Along with the string parent that we used in this example, we could also specify a
selector, for example:

$("#drag").draggable({
 containment: "#container"
});

There are three additional options related to drag objects within containers and these
are all related to scrolling. However, you should note that these are only applicable
when the document is the container.

The default value of the scroll option is true, but when we drag the <div> element
to the edge of the container, it does not scroll. You may have noticed in the previous
examples, where the drag object was not within a specified container, the viewport
automatically scrolled. We can fix this by setting the CSS overflow style to auto in a
stylesheet if necessary.

Snapping
Drag elements can be given an almost magnetic quality by configuring snapping.
This feature causes dragged elements to align themselves to specified elements,
while they are being dragged.

In the next example, we'll look at the effects that snapping has on the behavior of the
drag object. Get rid of the container we added in the previous example, and add a
new empty <div> element directly after the drag element, as follows:

<div id="drag"></div>
<div id="snapper"></div>

Then, change the configuration object so that it appears as follows:

$("#drag").draggable({
 snap: "#snapper",
 snapMode: "inner",
 snapTolerance: 50
});

Chapter 11

[329]

Save this as draggable11.html. We also need some additional styles; add the
following code to the bottom of draggable.css:

#snapper {
 width: 300px; height: 300px; border: 1px solid #ff0000;
}

Save this file as draggableSnap.css in the css directory. Don't forget to add a link
to the new stylesheet in the <head> element of the page:

<link rel="stylesheet" href="css/draggableSnap.css">

We've supplied the selector #snapper as the value of the snap option in our
configuration object, and have added a <div> element with a matching id to the
page. Therefore, our drag object will snap to this element on the page, while the
object is being dragged.

We also set the snapMode option to inner (the other possible values are outer and
both) so snapping will occur on the inside edges of our snapper element. If we
drag the element towards the outer edge of the snapper element and get within the
tolerance range, the element will snap to the inner edge.

Finally, we've set snapTolerance to 50, which is the maximum distance (in pixels)
the drag object will need to get to the snapper element, before snapping occurs. As
soon as a drag object is within this range, it will snap to the element.

When we drag the image within 50 pixels of the edge of the snapper element, the drag
object will automatically align itself to that edge, as shown in the following screenshot:

Drag and Drop

[330]

Draggable event callbacks
In addition to the options that we have already looked at, there are three more that
can be used as callback functions to execute code after specific custom events occur.

These events are listed in the following table:

Event Fired when…
drag The mouse is moved while dragging
start Dragging starts
stop Dragging stops

While defining callback functions to make use of these events, the functions will
always receive two arguments automatically: the original event object as the first
argument, and a second object containing the following properties:

Property Usage
helper A jQuery object representing the helper element.
position A nested object with properties: top and left, which is the position of the

helper element relative to the original drag element.
offset A nested object with properties: top and left, which is the position of the

helper element relative to the page.

Using the callbacks and the two objects that are passed as arguments is extremely
easy. We can look at a brief example to highlight their usage. Remove the snapper
<div> in draggable11.html, and change the configuration object as follows:

$("#drag").draggable({
 start: function(e, ui) {
 ui.helper.addClass("up");
 },
 stop: function(e, ui) {
 ui.helper.removeClass("up");
 }
});

Save this as draggable12.html. We also need a new stylesheet for this example; add
the following code to draggable.css:

#drag.up {
 width: 120px; height: 121px;
 background: url(../img/draggable_on.png) no-repeat;
}

Chapter 11

[331]

Save this version of the stylesheet as draggableEvents.css in the css directory,
and don't forget to update the link in the <head> element of the page to point to the
new stylesheet.

In this example, our configuration object contains just two options—the start and
stop callbacks. We set literal functions as the values of these options. What all the
functions do in this example is add or remove a class name respectively.

The class name adds a slightly different background image to the draggable element,
which when applied appears as shown in the following before and during screenshot:

Let's move on to a slightly more complex example where we can make use of the
second object passed to our callbacks. We need a couple of new elements on the page;
change the <body> element of the page so that it contains the following elements:

<div id="container">
 <div id="drag"></div>
</div>
<div id="results"></div>

Then change the final <script> element, so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#drag").draggable({
 stop: function(e, ui) {
 var rel = $("<p />", {
 text: "The helper was moved " + ui.position.top +
 "px down, and " + ui.position.left + "px to the
 left of its original position."
 }),
 offset = $("<p />", {

Drag and Drop

[332]

 text: "The helper was moved " + ui.offset.top + "px
 from the top, and " + ui.offset.left + "px to the
 left relative to the viewport."
 });
 $("#results").empty().append(rel).append(offset);
 }
 });
 });
</script>

Save this as draggable13.html. We've defined a callback function as the value of the
stop option, so it will be executed each time a drag interaction stops. Our callback
function receives the event object (which we don't need but must specify in order
to access the second object) and a ui object containing useful information about the
draggable helper.

All our function needs to do is create two new <p> elements, concatenating the
values found in the ui object: ui.position.top, ui.position.left, ui.offset.
top, and ui.offset.left. It then inserts the new elements into the results <div>.

Here's how the page should look after the draggable has been dragged:

Draggable's methods
The draggable interaction helper does not expose any unique methods of its own, only
the common API methods, which are destroy, disable, enable, option, and widget.

Chapter 11

[333]

Getting started with the droppable widget
In a nutshell, the droppables component of jQuery UI gives us a place for the drag
objects to be dropped. A region of the page is defined as a droppable, and when a
drag object is dropped onto that region, something else is triggered. You can react
to drops on a valid target very easily using the extensive event model exposed by
this component.

Let's start with the default droppable implementation. In a new file in your text
editor, add the following page:

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>Droppable</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <link rel="stylesheet" href="css/droppable.css">
 <script src="http://code.jquery.com/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/jquery.ui.mouse.js"></script>
 <script src="development-bundle/ui/jquery.ui.draggable.js"></
script>
 <script src="development-bundle/ui/jquery.ui.droppable.js"></
script>
 <script>
 $(document).ready(function($){
 $("#drag").draggable();
 $("#target").droppable();
 });
 </script>
 </head>
 <body>
 <div id="drag"></div>
 <div id="target"></div>
 </body>
</html>

Save this as droppable1.html. The extremely basic stylesheet that is linked to, in this
example, is simply an updated version of draggable.css, and appears as follows:

#drag { width:114px; height:114px; margin-bottom:5px; z-index:2;
cursor:move; background:url(../img/draggable.png) no-repeat; }
#target { width:200px; height:200px; border:3px solid #000;
position:absolute; right:20px; top:20px; z-index:1; }

Drag and Drop

[334]

Save this as droppable.css in the css folder. When the page runs in a browser, it
should look like the following screenshot:

In this example, the droppable is created; we can see this with the class name ui-
droppable, which is added to the specified element when the page loads.

Even though we haven't added any additional logic to our script, events are firing
throughout the interaction on both the drag object and the drop target. A little later
in the chapter, we'll look at these events in more detail to see how we can hook into
them, to react to successful drops.

The files we used for this basic droppable implementation are as follows:

• jquery-2.0.3.js

• jquery.ui.core.js

• jquery.ui.widget.js

• jquery.ui.mouse.js

• jquery.ui.draggable.js

• jquery.ui.droppable.js

As you can see, the droppables component is an extension of draggables, rather
than a completely independent component. Therefore, it requires the jquery.
ui.draggable.js file in addition to its own source file. The reason our droppable
does nothing is because we haven't configured it, so let's do that next.

Chapter 11

[335]

Configuring droppables
The droppable class is considerably smaller than the draggable class, and there are
fewer configurable options for us to play with. The following table lists those options
available to us:

Option Default Used to…
accept "*" Set the draggable element(s) that the droppable will

accept.
activeClass false Set the class that is applied to the droppable, while an

accepted drag object is being dragged.
addClasses true Add the ui-droppable class to the droppable.
disabled false Disable the droppable.
greedy false Stop drop events from bubbling when a drag object is

dropped onto nested droppables.
hoverClass false Set the class that is applied to the droppable, while

an accepted drag object is within the boundary of the
droppable.

scope "default" Define sets of drag objects and drop targets.
tolerance "intersect" Set the mode that triggers an accepted drag object being

considered over a droppable.

Configuring accepted draggables
In order to get a visible result from the droppable, we're going to use a couple of
the configurable options together in the following example, which will highlight the
drop target when an accepted drag object is interacted with. Change the elements on
the page in droppable1.html so that they appear as follows:

<div class="drag" id="drag1"></div>
<div class="drag" id="drag2"></div>
<div id="target"></div>

Next, change the final <script> element to the following one:

<script>
 $(document).ready(function($){
 $(".drag").draggable();
 $("#target").droppable({
 accept: "#drag1",
 activeClass: "activated"
 });
 });
</script>

Drag and Drop

[336]

Save this as droppable2.html. The accept option takes a selector. In this example,
we've specified that only the drag object that has id of drag1 should be accepted by
the droppable.

We've also specified the class name activated as the value of the activeClass
option. This class name will be applied to the droppable when the accepted drag
object starts to be dragged. The hoverClass option can be used in exactly the same
way to add styles, when an accepted drag object is over a droppable.

We need a new stylesheet for this example; modify droppable.css so that it appears
as follows:

.drag { width: 114px; height: 114px; margin-bottom: 5px; z-index:2;
cursor: move; background: url(../img/draggable.png) no-repeat; }
#target { width: 200px; height: 200px; border: 3px solid #000;
position: absolute; right: 20px; top: 20px; z-index: 1; }
.activated { border: 3px solid #339900; background-color: #fe2e2e;}

Save this file as droppableActive.css in the css folder, and link to it in the <head>
element of the page:

<link rel="stylesheet" href="css/droppableActive.css">

When we view this page in a browser, we should find that when we move the first
drag object, which is defined as accepted, the droppable picks up the activated
class and turns red. However, when the second drag object is moved, the drop target
does not respond. The following screenshot shows how the page should look, while
the first drag object is being dragged over the square:

In addition to a string value, the accept option can also take a function as its value.
This function will be executed once for every drag object that is on the page. The
function must return either true, to indicate that the drag object is accepted, or
false to indicate that it's not.

Chapter 11

[337]

To see the function value of the accept option in action change the final <script>
element in droppable2.html to the following one:

<script>
 $(document).ready(function($){
 $(".drag").draggable();
 function dragEnrol(el) {
 return (el.attr("id") === "drag1") ? true : false;
 }
 $("#target").droppable({
 accept: dragEnrol,
 activeClass: "activated"
 });
 });
 });
</script>

Save this variation as droppable3.html. On the surface, the page works exactly
the same as it did in the previous example. But this time, acceptability is being
determined by the JavaScript ternary statement within the dragEnrol function,
instead of a simple selector.

Note that the function we use with the accept option has
automatically passed a jQuery object representing the drag object
as an argument, so we can call the jQuery methods on this object.
This makes it easy to obtain information about it, such as its id
as in this example. This callback can be extremely useful when
advanced filtering beyond a selector is required.

Configuring drop tolerance
Drop tolerance refers to the way a droppable detects whether a drag object is over it
or not. The default value is intersect. The following table lists the modes that this
option may be configured with:

Mode Implementation
fit The drag object must be completely within the boundary of the

droppable for it to be considered over it.
intersect At least 25 percent of the drag object must be within the boundary of

the droppable before it is considered over it.
pointer The mouse pointer must touch the droppable boundary before the drag

object is considered over the droppable.
touch The drag object is over the droppable as soon as an edge of the drag

object touches an edge of the droppable.

Drag and Drop

[338]

So far, all of our droppable examples have used intersect, which is the default value
of the tolerance option. Let's see what difference the other values for this option
make to an implementation of the component. Revert to the #drag and #target
IDs from their respective elements in droppable2.html, and then use the following
configuration object:

$("#target").droppable({
 hoverClass: "activated",
 tolerance: "pointer"
});

Save this as droppable4.html. This time we use the hoverClass option to specify
the class name that is added to the droppable. We then use the tolerance option
to specify which tolerance mode is used.

The part of the drag object that is over the droppable is irrelevant in this example; it
is the mouse pointer that must cross the boundary of the droppable while a drag is in
progress for our activated class to be triggered:

Chapter 11

[339]

Understanding the droppable callback
options
The options that we've looked at so far configure various operational features of the
droppable. In addition to these, there are almost as many callback options so that we
can define functions that react to different things occurring to the droppable and its
accepted drag objects. These options are listed in the following table:

Callback option Invoked when…
activate An accepted drag object begins dragging.
deactivate An accepted drag object stops being dragged.
drop An accepted drag object is dropped onto a droppable.
out An accepted drag object is moved out of the bounds (including

the tolerance) of the droppable.
over An accepted drag object is moved within the bounds (including

the tolerance) of the droppable.

Let's put together a basic example that makes use of these callback options. We'll add
a status bar to our droppable that reports the status of different interactions between
the drag object and the droppable. In droppable4.html, add the following new
element directly after the target element:

<div id="status"></div>

Then, change the final <script> element to this:

<script>
 $(document).ready(function($){
 $("#drag").draggable();
 $("#target").droppable({
 accept: "#drag",
 activate: eventCallback,
 deactivate: eventCallback,
 drop: eventCallback,
 out: eventCallback,
 over: eventCallback
 },
 eventMessages = {
 dropactivate: "A draggable is active",
 dropdeactivate: "A draggable is no longer active",
 drop: "An accepted draggable was dropped on the droppable",
 dropout: "An accepted draggable was moved off the droppable",
 dropover: "An accepted draggable is over the droppable"

Drag and Drop

[340]

 });
 function eventCallback(e) {
 var message = $("<p />", {
 id: "message",
 text: eventMessages[e.type]
 });
 $("#status").empty().append(message);
 }
 });
</script>

Save this file as droppable5.html. We also need some new styles for this example.
Create a new stylesheet in your text editor, and add to it the following selectors
and rules:

#drag { width: 114px; height: 114px; margin-bottom: 5px; z-index: 2;
cursor: move; background: url(../img/draggable.png) no-repeat; }
#target { width: 250px; height: 200px; border: 3px solid #000;
position: absolute; right: 20px; top: 20px; z-index: 1; }
#status { width: 230px; padding: 10px; border: 3px solid #000;
position: absolute; top: 223px; right: 20px; color: #000; }
#message { margin: 0px; font-size: 80%; }

Save this file as droppableEvents.css in the css directory. Don't forget to update
<link> in the <head> element of the page to point to the new stylesheet:

<link rel="stylesheet" href="css/droppableEvents.css">

The <body> element of the page contains, along with the droppable, a new status bar,
which in this case is a simple <div> element. In the script, we define our configurable
options, specifying that the function eventCallback should be executed when each
of the events are detected.

Next, we define an object literal, in which the key for each property is set to one of
the event types that may be triggered. The value of each property is the message that
we want to display for any given event.

We then define our callback function. Like other components, the callback functions
used in the droppables component automatically pass two objects: the event object
and an object representing the drag element.

We use the type property of the event object to retrieve the appropriate message
from the eventMessages object. We then use standard jQuery element creation and
manipulation methods to add the message to the status bar.

Chapter 11

[341]

Here's how the status bar will look following an interaction:

After playing around with the page, it may appear that one of our messages is not
being displayed. When the drag object is dropped onto the droppable, our drop
message is not shown.

Actually, the message is shown, but because the deactivate event is fired
immediately after the drop event; the drop message is overwritten right away. There
are a number of ways we could work around this; the simplest, of course, would be
not to use the drop and deactivate options together.

Although we only make use of the event object (e) in this example, a second object is
also passed automatically to any callback functions we use with the event options.

This object contains information relevant to the droppable such as the following:

Property Value
ui.draggable The current drag object.
ui.helper The current drag helper.
ui.position The current relative position of the helper.
ui.offset The current absolute position of the helper.

Drag and Drop

[342]

Setting the scope options for droppable
Both the draggables and droppables feature the scope configuration option that
allows us to easily define groups of drag objects and drop targets. In this next
example, we can look at how these options can be configured and the effect it has
by configuring them. We'll link to another new stylesheet in this example so in the
<head> element of droppable5.html, change the <link> element so that it appears
as follows:

<link rel="stylesheet" href="css/droppableScope.css">

We need a number of new elements for this example. Change the <body> element of
the page in droppable5.html so that it contains the following elements:

<div id="target_a">A</div>
<div id="target_b">B</div>
<div id="group_a">
 <p>A</p>
 <div id="a1" class="group_a">a1</div>
 <div id="a2" class="group_a">a2</div>
 <div id="a3" class="group_a">a3</div>
</div>
<div id="group_b">
 <p>B</p>
 <div id="b1" class="group_b">b1</div>
 <div id="b2" class="group_b">b2</div>
 <div id="b3" class="group_b">b3</div>
</div>

To make these elements behave correctly, change the final <script> element to the
following one:

<script>
 $(document).ready(function($){
 var dragOpts_a = { scope: "a" },
 dragOpts_b = { scope: "b" },
 dropOpts_a = { hoverClass: "over", scope: "a" },
 dropOpts_b = { hoverClass: "over", scope: "b" };
 $(".group_a").draggable(dragOpts_a);
 $(".group_b").draggable(dragOpts_b);
 $("#target_a").droppable(dropOpts_a);
 $("#target_b").droppable(dropOpts_b);
 });
</script>

Chapter 11

[343]

Save this file as droppable6.html. Next, we need to create a new CSS file; in a new
page in your text editor add the following code:

#target_a, #target_b, #group_a, #group_b { width: 150px; height:
150px; padding: 50px; margin: 0 20px 20px 0; border: 2px solid black;
float: left;
font-family: Georgia; font-size: 100px; color: red; text-align:
center; }
#group_a, #group_b { width: 518px; height: 115px; padding: 5px 0 5px
5px; margin-bottom: 20px; clear: both; }
p { float: left; margin: 0 20px 0; }
.group_a, .group_b { width: 94px; height: 94px; padding: 20px 0 0
20px;
.group_a, .group_b { width: 94px; height: 94px; padding: 20px 0 0
20px; margin-right: 20px; float: left; font-family: arial; font-size:
14px; color: red; text-align: left;
background: url(../img/draggable.png) no-repeat; }
.over { background-color: #fe2e2e; }

Save this as droppableScope.css in the css folder.

The page has two drop targets and two groups of three drag objects, all of which are
labeled to show the group they belong to. In the script, we define two configuration
objects for the two groups of draggables, and two configuration objects for the drop
targets. Within each configuration object we set the scope option.

The values we set for the scope option of each drop target matches scope of each
drag object. Therefore, if we want to use the scope option, it must be defined for
both the drag object and drop target. If we try to set scope of a droppable, but don't
give at least one drag object to the same scope, an error is thrown.

Setting the scope option gives us another technique for defining which drag objects
are accepted by which drop targets, but it is provided as an alternative to the accept
option; the two options should not be used together.

Drag and Drop

[344]

The following screenshot shows how the page will appear:

Configuring the greedy option
The final option that we are going to look at in connection with the droppable
component is the greedy option. This option can be useful in situations where there
is a droppable nested within another droppable. If we don't use this option, both
droppables will fire events during certain interactions.

The greedy option is an easy way to avoid event-bubbling problems in an efficient
and cross-browser manner. Let's take a closer look at this option with an example.

Change the <link> element in droppable6.html so that it links to a new stylesheet:

<link rel="stylesheet" href="css/droppableNesting.css">

Chapter 11

[345]

Then change <body> so that it contains the following elements:

<div id="drag"></div>
 <div class="target" id="outer">
 <div class="target" id="inner"></div>
</div>
<div id="status"></div>

Finally, change the last <script> element so that it appears as follows:

<script>
 $(document).ready(function($){
 $(".target").css({ opacity:"0.5" });
 $("#drag").draggable({ zIndex: 3 });
 $(".target").droppable({
 drop: dropCallback,
 greedy: true
 });
 function dropCallback(e) {
 var message = $("<p></p>", {
 id: "message",
 text: "The firing droppable was " + e.target.id
 });
 $("#status").append(message);
 }
 });
</script>

Save this example as droppable7.html. The CSS for this example is simple and
builds on the CSS of previous examples.

#drag { width: 114px; height: 114px; margin-bottom: 5px; cursor: move;
background: url(../img/draggable.png) no-repeat; float: left; }
#outer { width: 300px; height: 300px; border: 3px solid #000; float:
right; background-color: #fe2e2e; }
#inner { width: 100px; height: 100px; border: 3px solid #000;
position: relative; top: 100px; left: 100px; background-color:
#FFFF99; }
#status {width: 280px; padding: 10px; border: 3px solid #000; float:
right; clear: right; color: #000; }
#message { margin: 0px; font-size: 80%; }

Save this as droppableNesting.css in the css folder.

In this example, we have a smaller droppable nested in the center of a larger
droppable. Their opacity is set using the standard jQuery library's css() method.

Drag and Drop

[346]

In this example, this is necessary because if we alter the zIndex option of the
elements, so that the drag object appears above the nested droppables, the target
element is not reported correctly.

In this example, we use the zIndex option of the draggables component to show the
drag object above the droppables, while a drag is in progress. The dropCallback
function is used to add a simple message to the status bar, notifying us which
droppable was the target of the drop.

Our droppables configuration object uses the drop option to wire up our callback
function. However, the key option is the greedy option that makes whichever target
the draggable is dropped on to stop the event from escaping into other targets.

If you run the page and drop the drag object onto one of the droppables, you should
see something like what's shown in the following screenshot:

The net effect of setting the greedy option to true is that the inner droppable
prevents the event from propagating into the outer droppable and firing again.

If you comment out the greedy option and drop the draggable onto the inner
droppable, the status message will be inserted twice, once by the inner droppable
and once by the outer droppable.

Chapter 11

[347]

Droppable methods
Like the draggable component, droppable has only the common API methods shared
by all the library components. This is another component that is primarily option
driven. The methods available to us are the same ones exposed by draggable, namely
the standard methods shared by all the library components, which are destroy,
disable, enable, option, and widget.

Creating a maze game using the widgets
We've now reached the point where we can have a little fun by putting what we've
learned about these two components into a fully working example. In our final drag-
and-drop example, we're going to combine both of these components to create a
simple maze game.

The game will consist of a draggable marker that will need to be navigated through
a simple maze to a specified droppable at the other end of the maze. We can make
things a little more challenging so that if any of the maze walls are touched by the
marker, it will return to the starting position.

The following screenshot shows what we're going to build:

Drag and Drop

[348]

Let's start with the markup. In a new page in your text editor, add the
following code:

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>Droppable</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <script src="http://code.jquery.com/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/jquery.ui.mouse.js"></script>
 <script src="development-bundle/ui/jquery.ui.draggable.js" ></
script>
 <script src="development-bundle/ui/jquery.ui.droppable.js" ></
script>
 <script>
 </script>
 </head>
 <body>
 <div id="maze">
 <div id="drag"></div>
 <div id="start"></div>
 <div id="end"></div>
 </div>
 </body>
</html>

Save this file as dragMaze.html. On the page, we have our outer container that we've
given id of maze. We have <div> elements for the starting and ending positions, as
well as for the drag marker. Our map will need walls. Rather than hand coding the
46 required walls for the map pattern that we're going to use, I thought we could use
jQuery to do this for us.

We left an empty <script> element at the bottom of our page. Let's fill that up with
the following code:

$(document).ready(function($){
 var dragOpts = {
 containment: "#maze"
 },
 dropOpts = {
 tolerance: "touch",

Chapter 11

[349]

 over: function(e, ui) {
 $("#drag").draggable("destroy").remove();
 $("<div />", {
 id: "drag",
 css: {
 left: 0,
 top: 0
 }
 }).appendTo("#maze");
 $("#drag").draggable(dragOpts);
 }
 },
 endOpts = {
 over: function(e, ui) {
 $("#drag").draggable("destroy").remove();
 alert("Woo! You did it!");
 }
 };
 for (var x = 1; x < 47; x++) {
 $("<div />", {
 id: "a" + x,
 class: "wall"
 }).appendTo("#maze");
 }
 $("#drag").draggable(dragOpts);
 $(".wall").droppable(dropOpts);
 $("#end").droppable(endOpts);
});

We also need to style up the walls of the maze, but we can't use any simple
JavaScript pattern for this. Unfortunately, we have to hardcode them. In another
new file in your text editor, add the following selectors and rules:

#maze { width: 441px; height: 441px; border: 10px solid #000000;
position: relative; background-color: #ffffff; }
#drag { width: 10px; height: 10px; z-index: 1; background-color:
#0000FF; }
#start { width: 44px; height: 10px; background-color: #00CC00;
position: absolute; top: 0; left: 0; z-index: 0; }
#end { width: 44px; height: 10px; background-color: #FF0000; position:
absolute; top: 0; right: 130px; }
.wall { background-color: #000000; position: absolute; }
#a1 { width: 10px; height: 133px; left: 44px; top: 0; }
#a2 { width: 44px; height: 10px; left: 0; top: 167px; }
#a3 { width: 44px; height: 10px; left: 44px; top: 220px; }

Drag and Drop

[350]

#a4 { width: 89px; height: 10px; left: 0; bottom: 176px; }
#a5 { width: 94px; height: 10px; left: 0; bottom: 88px; }
#a6 { width: 10px; height: 41px; left: 40px; bottom: 0; }
#a7 { width: 10px; height: 48px; left: 88px; top: 44px; }
#a8 { width: 78px; height: 10px; left: 54px; top: 123px; }
#a9 { width: 10px; height: 97px; left: 88px; top: 133px }
#a10 { width: 10px; height: 45px; left: 40px; bottom: 98px; }
#a11 { width: 88px; height: 10px; left: 89px; bottom: 132px; }
#a12 { width: 10px; height: 97px; left: 132px; bottom: 35px; }
#a13 { width: 10px; height: 44px; left: 89px; bottom: 142px; }
#a14 { width: 92px; height: 10px; left: 40px; bottom: 35px; }
#a15 { width: 89px; height: 10px; left: 88px; top: 34px; }
#a16 { width: 10px; height: 145px; left: 132px; top: 76px; }
#a17 { width: 44px; height: 10px; left: 132px; top: 220px; }
#a18 { width: 133px; height: 10px; left: 132px; bottom: 175px; }
#a19 { width: 10px; height: 107px; left: 176px; bottom: 35px; }
#a20 { width: 10px; height: 150px; left: 176px; top: 34px; }
#a21 { width: 35px; height: 10px; left: 186px; top: 174px }
#a22 { width: 35px; height: 10px; left: 186px; bottom: 88px; }
#a23 { width: 122px; height: 10px; left: 186px; top: 88px; }
#a24 { width: 10px; height: 44px; left: 220px; top: 0px; }
#a25 { width: 10px; height: 55px; left: 220px; top: 174px; }
#a26 { width: 10px; height: 45px; left: 220px; bottom: 130px; }
#a27 { width: 133px; height: 10px; right: 88px; top: 44px; }
#a28 { width: 10px; height: 168px; right: 166px; top: 98px; }
#a29 { width: 44px; height: 10px; right: 176px; top: 130px; }
#a30 { width: 10px; height: 98px; right: 166px; bottom: 35px; }
#a31 { width: 133px; height: 10px; right: 88px; bottom: 35px; }
#a32 { width: 10px; height: 133px; right: 78px; top: 44px; }
#a33 { width: 44px; height: 10px; right: 88px; top: 128px; }
#a34 { width: 131px; height: 10px; right: 35px; top: 171px; }
#a35 { width: 43px; height: 10px; right: 123px; top: 220px; }
#a36 { width: 10px; height: 91px; right: 123px; bottom: 85px; }
#a37 { width: 131px; height: 10px; right: 35px; bottom: 123px; }
#a38 { width: 10px; height: 55px; right: 79px; top: 220px; }
#a39 { width: 44px; height: 10px; right: 0; top: 122px; }
#a40 { width: 10px; height: 54px; right: 79px; bottom: 35px; }
#a41 { width: 79px; height: 10px; right: 0; bottom: 79px; }
#a42 { width: 10px; height: 45px; right: 35px; top: 44px; }
#a43 { width: 43px; height: 10px; right: 35px; top: 88px; }
#a44 { width: 79px; height: 10px; right: 0; top: 220px; }
#a45 { width: 10px; height: 44px; right: 35px; bottom: 132px; }
#a46 { width: 10px; height: 50px; right: 35px; bottom: 0; }

Save this file as dragMaze.css in the css folder.

Chapter 11

[351]

Let's review what the new code does. First, we define a simple configuration object
for the drag object. The only option we need to configure is the containment option
that constrains the draggable marker element within the maze.

Next, we define the configuration object for the walls. Each wall is treated as a
droppable. We specify touch as the value of the tolerance option, and add a
callback function to the over option. Therefore, whenever the drag object touches
a wall, the function will be executed.

All we do in this function is destroy the current drag object and remove it from
the page.

We then create a new drag object back at the starting position and make it draggable
once more. There is no cancelDrag method that causes the drag object to act as if it
had been dropped and revert to its starting position, but we can easily replicate this
behavior ourselves.

Now, we add another droppable configuration object that configures the ending
point of the maze. All we configure for this droppable is a function to execute when
the draggable is over this droppable. In this function, we remove the drag object
again and present the user with an alert congratulating them.

We then use a simple for loop to add the walls to our maze. We use the plain vanilla
for loop in conjunction with jQuery to create 46 <div> elements, and add id and
class attributes to each one, before appending them to the maze container. Finally,
we make the drag object draggable and the walls and the end target droppables.

We can now attempt to navigate the marker from the starting point to the finish by
dragging it through the maze. If any wall is touched, the marker will return to the
starting point. We could make it harder (by adding additional obstacles to navigate),
but for the purpose of having fun with jQuery UI draggables and droppables, our
work here is complete.

Summary
We looked at two very useful library components in this chapter—the draggable
and droppable components. Draggables and droppables, as we saw, are very closely
related and have been designed to be used with each other, allowing us to create
advanced and highly interactive interfaces.

We've covered a lot of material in this chapter, so let's recap what we have learned.
We saw that the draggable behavior can be added to any element on the page
with zero configurations. There may be implementations where this is acceptable,
but usually we'll want to use one or more of the component's extensive range of
configurable options.

Drag and Drop

[352]

In the second part of this chapter, we saw that the droppables class allows us
to easily define areas on the page that draggables can be dropped onto, and can
react to things being dropped on them. We can also make use of a smaller range of
configurable droppable options to implement more advanced droppable behavior.

Both components feature an effective event model for hooking into the interesting
moments of any drag-and-drop interaction. Our final example showed how both
the draggables and droppables components can be used together to create a fun and
interactive game. Although the game was very basic by modern gaming standards, it
nevertheless provides a sound base that we can easily build upon to add features.

In the next chapter, we'll take a look at the resizable component, which allows users
to resize selected elements using a familiar drag-based interface.

The Resizable Component
We have already seen resizables in action briefly when we looked at the dialog
widget, earlier in the book. In this chapter, we're going to focus on it directly.
However, the dialog is a perfect example of how useful the resizable component
can be in a real-world implementation.

The resizable widget adds the same functionality that is automatically added to
<textarea> elements in WebKit browsers such as Safari or Chrome, or newer
versions of Firefox. In these browsers, a resize handle is added to the bottom-
right corner, which allows the element to be resized. With the jQuery UI resizable
component, we can add this behavior to almost any element on the page.

In this chapter, we'll be looking at the following aspects of the component:

• Implementing basic resizability
• The configurable options available for use
• Specifying which resize handles to add
• Managing the resizable's minimum and maximum sizes
• The role of resize helpers and ghosts
• A look at the built-in resize animations
• How to react to resize events
• Determining the new size of a resizable
• Using a resizable with other library widgets

The resizable widget is a flexible component that can be used with a wide range of
different elements. Throughout the examples in this chapter, we'll mostly be using
simple <div> elements so that the focus remains on the component and not on
the underlying HTML. We will also look at some brief examples using and
<textarea> elements, towards the end of the chapter.

The Resizable Component

[354]

The resizable component works well with other components and is very often used
in conjunction with draggables. However, while you can easily make draggable
components resizable (think dialog), the two classes are in no way related.

Implementing a basic resizable widget
Let's implement the basic resizable so we can see how easy making elements
resizable is, when you use jQuery UI as the driving force behind your pages.
In a new file in your text editor add the following code:

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>Resizable</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <link rel="stylesheet" href="css/resize.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/jquery.ui.mouse.js"></script>
 <script src="development-bundle/ui/jquery.ui.resizable.js"></script>
 </head>
 <script>
 $(document).ready(function($){
 $("#resize").resizable();
 });
 </script>
 <body>
 <div id="resize"></div>
 </body>
</html>

Save this as resizable1.html. The basic widget method used with no arguments for
the default implementation uses the same simplified syntax as the rest of the library.
This requires just one line of code for the example to work.

Chapter 12

[355]

Along with the CSS framework files that we need for any resizable implementations,
we also use a custom stylesheet to add basic dimensions and borders to our resizable
<div>. Use the following CSS in a new file in your text editor:

#resize { width: 200px; height: 200px; margin: 30px 0 0 30px;
border: 1px solid #7a7a7a; }

Save this file as resize.css in the css folder. We've specified the dimensions of
our resize <div> in the CSS, as without them the <div> element will stretch the
width of the screen. We've also specified a border to clearly define it, as the default
implementation only adds a single resize handle to the bottom-right corner of the
targeted element. The following screenshot shows how our basic page should look
after the <div> element has been resized:

The files required for the resizable component are as follows:

• jquery-2.0.3.js

• jquery.ui.core.js

• jquery.ui.widget.js

• jquery.ui.mouse.js

• jquery.ui.resizable.js

The component automatically adds the three required elements for the drag handles.
Although the only visible resize handle is the one in the bottom-right corner, both
the bottom and right edges can be used to resize the widget.

The Resizable Component

[356]

Listing the resizable options
The following table lists the configurable options that we have at our disposal while
working with the resizable component:

Option Default
value

Used to…

alsoResize false Automatically resize specified elements in sync with
the resizable.

animate false Animate the resizable element to its new size.

animateDuration slow Set the speed of the animation. Values can be integers,
specifying the number of milliseconds, or one of the
string values slow, normal, or fast.

animateEasing swing Add easing effects to the resize animation.

aspectRatio false Maintain the aspect ratio of the resize element.
Accepts numerical custom aspect ratios in addition to
Boolean values.

autoHide false Hide the resize handles until the resizable is hovered
over with the mouse pointer.

cancel ':input,
option'

Stop specified elements from being resizable.

containment false Constrain the resizable within the boundary of the
specified container element.

delay 0 Set a delay in milliseconds from when the pointer is
clicked on a resizable handle to when the resizing
begins.

disabled false Disable the component at page load.

distance 1 Set the number of pixels the mouse pointer must
move with the mouse button held down before the
resizing begins.

ghost false Show a semi-transparent helper element while the
resizing is taking place.

grid false Snap the resize to imaginary grid lines while resizing
is taking place.

Chapter 12

[357]

Option Default
value

Used to…

handles 'e, se,
s'

Define which handles to use for resizing. Accepts a
string containing any of the following values: n, ne,
e, se, s, sw, w, nw, or all. The string could also be an
object where the properties are any of the preceding
values and the values are jQuery selectors matching
the elements to use as handles.

helper false Add a class name to the helper element that is applied
during resizing.

maxHeight null Set the maximum height the resizable may be
changed to.

maxWidth null Set the maximum width the resizable may be set to.

minHeight null Set the minimum height the resizable may be changed
to.

minWidth null Set the minimum width the resizable may be set to.

Configuring the resize handles
Thanks to the handles configuration option, specifying which handles we would
like to add to our target element is exceptionally easy. In resizable1.html, change
the final <script> element so that it appears as follows:

 <script>
 $(document).ready(function($){
 $("#resize").resizable({ handles: "all" });
 });
 </script>

Save this as resizable2.html. When you run the example in a browser, you'll see
that although the component looks exactly as it did before, we can now use any
edge or corner to resize the <div> element.

Adding additional handle images
One thing you'll notice straight away is that although the element is resizable
along any axis, there's no visual cue to make this obvious; the component will
automatically add the resize stripes to the bottom-right corner, but it's up to us
to add the rest.

The Resizable Component

[358]

There are several different ways to do this. Although the method doesn't add images
to the other three corners, it does insert DOM elements with class names, so we can
easily target these with CSS and provide our own images. This is what we'll do next.

In a new page in your text editor, add the following style rules:

#resize {width: 200px; height: 200px; margin: 30px 0 0 30px; border:
1px solid #7a7a7a;}
.ui-resizable-sw, .ui-resizable-nw, .ui-resizable-ne {width: 12px;
height: 12px; background: url(../img/handles.png) no-repeat 0 0;}
.ui-resizable-sw {left: 0; bottom: 0;}
.ui-resizable-nw {left: 0; top: 0; background-position: 0 -12px;}
.ui-resizable-ne {right: 0; top: 0; background-position: 0 -24px;}

Save this file in the css folder as resizeHandles.css. We provide our own image for
this example, which is a single image containing copies of the standard bottom-right
image flipped and reversed (this can be found in the code download). We can then
reference them by setting the background-position attribute in our CSS style rules.
Use of a single image or sprite reduces the need to cache multiple images; all of the
individual images we've used are actually segments from a single, larger file.

Chris Coyier has written a useful article, explaining how to
implement sprites, that can be found at http://css-tricks.
com/css-sprites/.

Our selectors target the class names that are automatically added to the handle
elements by the control. Link to the new stylesheet in the <head> element of
resizable2.html and resave it as resizable3.html:

<link rel="stylesheet" href="css/resizeHandles.css">

The new stylesheet should give our element the following appearance:

Chapter 12

[359]

Another configuration option related to resize handles and how they are displayed is
autoHide. Let's take a quick look at this option next. Change the configuration object
in resizable3.html to the following:

$("#resize").resizable({
 handles: "all",

 autoHide: true

});

Save this version as resizable4.html. We've added the autoHide option and set its
value to true in this example. Configuring this option hides all of the resize handles
until the mouse pointer moves onto the resizable element. This is great for a minimal
intrusion of the additional DOM elements when there is pictorial content inside the
resizable element.

Defining size limits
Restricting the minimum or maximum sizes that the target element can be resized
to is made exceptionally easy with four configurable options. They are maxWidth,
maxHeight, minWidth, and minHeight. We will see in action in the next example. It's
better to have some content in the container for this example, so add some layout text
in a <p> element within our resizable <div> in resizable4.html:

<p>Lorem ipsum etc, etc…</p>

Change the configuration object that we used in resizable4.html to as follows:

$("#resize").resizable({

 maxWidth: 500,

 maxHeight: 500,

 minWidth: 100,

 minHeight: 100

});

Save this as resizable5.html. This time, the configuration object uses the
dimension-boundary options to specify the minimum and maximum height and
width that the resizable may be adjusted to. These options take simple integers as
their values.

The Resizable Component

[360]

As we can see when we run this example, the resizable now adheres to the sizes we
have specified, whereas in previous examples, the resizable element's minimum size
was the combined size of its resize handles, and it had no maximum size.

So far, our resizable has been an empty <div> element and you may be wondering
how the resizable handles minimum and maximum sizes when there is content
within the target element. The restrictions are maintained, but we'll need to add
overflow: hidden to the CSS. Otherwise, the content may overflow the resizable
if there is too much for the minimum size to handle.

Of course, we can also use overflow: auto as well to add a scroll bar when there is
too much content, which can sometimes be the desired behavior.

Resizing ghosts
Ghost elements, which are semi-transparent helper elements, are very similar to the
proxy element that we used when we looked at the draggables component in the
previous chapter. A ghost element can be enabled with the configuration of just one
option. Let's see how this is done.

Change the configuration object we used in resizable5.html to the following:

$("#resize").resizable({ ghost: true });

Save this file as resizable6.html. All that is needed to enable a resize ghost is
to set the ghost option to true. The effect of the resizable ghost is very subtle. It
is basically a clone of the existing resizable element, but is only a quarter of the
opacity. This is why we've left the layout text from the previous example within
the resizable element.

We're also linking to a new stylesheet in this example, which is exactly the same as
resize.css with a background color specified:

#resize { width: 200px; height: 200px; margin: 30px 0 0 30px;
border: 1px solid #7a7a7a; overflow: hidden; background-color: #999; }

Chapter 12

[361]

Save this as resizeGhosts.css in the css folder. The next screenshot shows how
the resizable ghost will appear while it is visible when being dragged:

In some versions of Internet Explorer, ghost elements may cause
issues when transparent PNGs are within the resizable. If you find
this is the case, there is a useful article available at http://www.
pixelthemestudio.ca/news-and-updates/156-fixing-
that-png-image-optimization-for-ie that details how to fix
these issues using TweakPNG.

The ghost element is just a helper element that has been made semitransparent. If
this is not suitable and further control over the appearance of the helper element is
required; we can use the helper option to specify a class name to be added to the
helper element, which we can then use to style it. Change the configuration object in
resizable6.html, so that it appears as follows:

$("#resize").resizable({
 ghost: true,

 helper: "my-ui-helper"

});

Save this revision as resizable7.html. We've simply specified the class name that
we'd like to be added as the value of the helper option. We can target the new class
name from a CSS file. Open resize.css and add the following code to it:

.my-ui-helper { background-color:#FFFF99; }

The Resizable Component

[362]

Save the new stylesheet as resizeHelper.css and don't forget to link it at the top of
resizable7.html:

<link rel="stylesheet" href="css/resizeHelper.css">

The only thing we do in this example is give the helper a simple background color,
which in this case is yellow. This is how it looks when the new page is run and a
resize is in action:

The ghost and helper options don't have to be used together; we can use either one
separately, but if we use the helper option without the ghost option, we do not get
the semi-transparent content within the resize helper.

Containing the resize
The resizable component makes it easy to ensure that a resized element is contained
within its parent element. This is great if we have other content on the page that
we don't want moving around all over the place during a resize interaction. In
resizable7.html, change the elements on the page so that they appear as follows:

<div class="container">

</div>

Chapter 12

[363]

Finally, change the configuration object to use the containment option:

$("#resize").resizable({

 containment: ".container"

});

Save this as resizable8.html. On the page, we've added a container element for
the resizable and have switched from using a <div> element to an image as the
resizable element.

Once again, we need some slightly different CSS for this example. In a new file in
your text editor, add the following code:

.container { width: 600px; height: 600px; border: 1px solid #7a7a7a;
padding: 1px 0 0 1px; }
#resize { width: 300px; height: 300px; }

Save this as resizeContainer.css in the css folder and change the <link> in the
<head> element of the page from resizeHelper.css to the new stylesheet:

<link rel="stylesheet" href="css/resizeContainer.css">

The containment option allows us to specify a container for the resizable, which will
limit how large the resizable can be made, forcing it to stay within its boundaries.

We specify a jQuery selector as the value of this option. When we view the page, we
should see that the image cannot be resized to larger than its container.

Handling aspect ratio
In addition to maintaining the aspect ratio of the resizable element, we can also
define it manually. Let's see what control this interaction gives us over the resize.
Change the configuration object used in resizable8.html to the following:

$("#resize").resizable({
 containment: ".container",

 aspectRatio: true

});

Save this file as resizable9.html. Setting the aspectRatio option to true ensures
that our image will maintain its original aspect ratio. So in this example, the image
will always be a perfect square.

The Resizable Component

[364]

For a greater degree of control, we can instead specify the actual aspect ratio that the
resizable should maintain:

$("#resize").resizable({
 containment: ".container",

 aspectRatio: 0.5

});

By specifying the floating-point value of 0.5, we're saying that when the image is
resized, the x-axis of the image should be exactly half of the y-axis.

Care should be taken when deviating from the aspect ratio of any
images; it is wise to try to keep the element and container sizes
in proportion, otherwise you may find an object doesn't resize to
the full extent of its container, as happened in our example. If you
change aspectRatio to 1, you will find that it resizes to the full
size of our container correctly.

Resizable animations
The resizable API exposes three configuration options related to animations:
animate, animateDuration, and animateEasing. By default, animations are
switched off in resizable implementations. However, we can easily enable them
to see how they enhance this component.

In this example, change the markup from the previous couple of examples so that the
resizable element goes back to a plain <div>:

<div id="resize"></div>

We should also switch back to the resizeGhosts.css stylesheet:

<link rel="stylesheet" href="css/resizeGhost.css">

Now, change the configuration object to use the following options:

$("#resize").resizable({
 ghost: true,

 animate: true,

 animateDuration: "fast"

});

Save this as resizable10.html. The configuration object we use in this example
starts with the ghost option.

Chapter 12

[365]

While using animations, the resizable element is not resized until
after the interaction has ended, so it's useful to show the ghost as a
visual cue that the element will be resized.

All we need to do to enable animation is set the animate option to true. That's it;
no further configuration is required. Another option we can change is the speed of
the animation, which we have done in this example by setting the animateDuration
option. This accepts any of the standard values that can be used with jQuery's
animate() method.

When we run this page in a browser, we should find that the resize div will
smoothly animate to its new size, once we let go of the mouse button.

Simultaneous resizing
We can easily make several elements on the same page individually resizable by
passing references to them to the resizable widget method. But, in addition to doing
this, we can make use of the alsoResize property to specify additional elements
that are to be resized together as a group, whenever the actual resizable element is
resized. Let's see how.

First, we'll need to reference to a new stylesheet once again:

<link rel="stylesheet" href="css/resizeSimultaneous.css">

Next, we'll need to change the elements in <body> of the page as follows:

<div id="mainResize">
 <p>I am the main resizable!</p>
</div>
<div id="simultaneousResize">
 <p>I will also be resized when the main resizable is resized!</p>
</div>

Then change the configuration object to the following:

$("#resize").resizable({

 alsoResize: "#simultaneousResize"

});

Save this file as resizable11.html. We provide a selector as the value of the
alsoResize option, in order to target the second <div> element. The secondary
element will automatically pick up the resizable attributes of the actual resizable.

The Resizable Component

[366]

So, if we limit the resizable to having just an e handle, the secondary element will
also only resize in this direction.

The new stylesheet referenced in this example should contain the following code:

#mainResize { width: 100px; height: 100px; margin: 0 0 30px;
border: 2px solid #7a7a7a; text-align: center; }
#simultaneousResize { width: 150px; height: 150px; border: 2px solid
#7a7a7a; text-align: center; }
p { font-family: arial; font-size: 15px; }

Save this file as resizeSimultaneous.css in the css folder. When we run the file,
we should see that the second <div> element is resized at the same time as the first:

Preventing unwanted resizes
There may be times when we'd like to make an element resizable, but it also has
other functionality, perhaps it listens for click events too. In this situation, it may be
desirable to prevent the resize unless it is definitely required, enabling us to easily
differentiate between clicks and true drags. We can use two options to achieve this.

First, in resizable10.html, revert to the original stylesheet resize.css:

<link rel="stylesheet" href="css/resize.css">

Chapter 12

[367]

We can also return to the simple empty resizable <div>:

<div id="resize"></div>

Then change the configuration object to the following:

$("#resize").resizable({
 delay: 1000
});

Save this version as resizable12.html. The delay option accepts an integer that
represents the number of milliseconds that need to pass with the mouse button held
down after clicking on a resize handle before the resize will begin.

We've used 1000 as the value in this example that is equal to one second. Try it out
and you'll see that if you click on a resize handle and release the mouse button too
soon, the resize won't take place.

Along with delaying the resize, we could also use the distance option instead to
specify that the mouse pointer must move a certain number of pixels, with the button
held down after clicking on a resize handle, before the resize occurs.

Change the configuration object in resizable12.html, so that it appears as follows:

$("#resize").resizable({
 distance: 30
});

Save this as resizable13.html. Now when the page runs, instead of having to wait
with the mouse button held down, the mouse pointer will need to travel 30 pixels
with the mouse button held down, before the resize occurs.

Both of these options present certain usability issues, especially when set to high as
in these examples. They both make it harder to resize an element along more than
one axis at a time. They should be used sparingly, with as low values as possible.

Defining resizable events
Like other components of the library, resizable defines a selection of custom events,
and allows us to easily execute functions when these events occur. This makes the
most of interactions between your visitors and the elements on your pages.

The Resizable Component

[368]

Resizable defines the following callback options:

Option Triggered when…
create The resizable is initialized
resize The resizable is in the process of being resized
start A resize interaction begins
stop A resize interaction ends

Hooking into these custom methods is just as easy for resizables as it has been for the
other components of the library we have looked at.

Let's explore a basic example to highlight this fact the following screenshot shows
how our page will look before <div> fades away:

In resizable13.html, change the second <link> to point to a new stylesheet
as follows:

<link rel="stylesheet" href="css/resizeStop.css">

Chapter 12

[369]

Then change the final <script> element so that it appears as follows:

<script>
 $(document).ready(function($){
 function reportNewSize(e, ui) {
 var width = Math.round(ui.size.width),
 height = Math.round(ui.size.height);
 $("<div />", {
 "class": "message",
 text: "New size: " + height + "px high, " + width + "px wide",
 width: width
 }).appendTo("body").fadeIn().delay(2000).fadeOut();
 }
 $("#resize").resizable({
 stop: reportNewSize
 });
 });
</script>

Save this as resizable14.html. In resize.css, add the following selector
and rules:

.message { display: none; border: 1px solid #7a7a7a; margin-top: 5px;
position: absolute; left: 38px;fontSize: 80%; font-weight: bold; text-
align: center; }

Save this as resizeStop.css in the css folder.

We define a function called reportNewSize; this function (along with all of the other
event handlers) is automatically passed two objects. The first is the event object and
the second is an object containing useful information about the resizable.

We can use the size property of the second object to find out what the width and
height the resizable has been changed to. These values are stored as variables within
the function. We use the JavaScript Math.round() function to make sure that we end
up with an integer.

We then create a new <div> element and give it a class name for styling. We also set
the text of the new element to display the width and height variables along with
a brief message. We also set the width of the new element to match the resizable.
Once created, we append the message to the page and then fade it in with jQuery's
fadeIn() method. We then use the delay() method to pause for 2 seconds before
fading the message out again.

The Resizable Component

[370]

Looking at the resizable methods
This component comes with the four basic methods found with all of the interaction
components of the library, namely the destroy, disable, enable, and option
methods. Unlike most of the other components, the resizable component has no
custom methods unique to it. For clarification on these basic API methods, see the
API introduction section in Chapter 1, Introducing jQuery UI.

Creating resizable tabs
In our final resizable example, let's look at combining this component with one of
the widgets that we looked at earlier. This will help us see how compatible it is with
the rest of the library. We'll be working with the tabs component in the following
example. The following screenshot shows the page we will end up with:

In your text editor, add the following CSS style to a new file, and save it as
resizeTabs.css:

#resize { width: 200px; height: 200px; margin: 30px 0 0 30px; border:
1px solid #7a7a7a; }
#myTabs { width: 400px; height: 170px; }

Next, add the following code to a new file:

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>Resizable</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">

Chapter 12

[371]

 <link rel="stylesheet" href="css/resizeTabs.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/jquery.ui.tabs.js"></script>
 <script src="development-bundle/ui/jquery.ui.mouse.js"></script>
 <script src="development-bundle/ui/jquery.ui.resizable.js"></script>
 <script>
 $(document).ready(function($){
 var tabs = $("#myTabs").tabs(), resizeOpts = {
 autoHide: true,
 minHeight: 170,
 minWidth: 400
 };
 tabs.resizable(resizeOpts);
 });
 </script>
 </head>
 <body>
 <div id="myTabs">

 Tab 1
 Tab 2

 <div id="a">
 This is the content panel linked to the first tab; it is
 shown by default.
 </div>
 <div id="b">
 This content is linked to the second tab and will be shown
 when its tab is clicked.
 </div>
 </div>
 </body>
</html>

Save this as resizable15.html. Making the tabs widget resizable is extremely easy
and only requires calling the resizable method on the tab's underlying .

We're using a single configuration object in this example. The tabs component can be
initialized without the need for any configuration. Apart from setting the autoHide
option for the resizable in our configuration object to true, we also define minWidth
and minHeight values for usability purposes.

The Resizable Component

[372]

Summary
In this chapter, we covered the resizable. This is a component that allows us to easily
resize any on-screen element. It dynamically adds resize handles to the specified
sides of the target element and handles all of the tricky DHTML resizing for us,
neatly encapsulating the behavior into a compact, easy-to-use class.

We then looked at some of the configurable options that we can use with the widget,
such as how to specify which handles to add to the resizable, and how the minimum
and maximum sizes of the element can be limited.

We briefly looked at how to maintain an image's aspect ratio, or how to work with
custom ratios, while it is being resized. We also explored how to use ghosts, helpers,
and animations to improve the usability and appearance of the resizable component.

We also looked at the event model exposed by the component's API and how we
can react to elements being resized in an easy and effective way. Our final example
explored resizable's compatibility with other components of the library. In the next
chapter, we'll look at how you can select, filter, and sort objects with the Selectable
and Sortable widgets.

Selecting and Sorting with
jQuery UI

If you spend any time working with lists (in an application such as Microsoft Excel),
then it is possible that you will need to select and sort items into some logical order,
in a similar fashion to selecting and ordering icons on your computer's desktop.

The selectable and sortable interaction helpers in jQuery UI allow you to define a
series of elements that can be chosen by dragging a selection square around them,
and then reordered into a new order.

Topics that will be covered in this section include:

• Creating the default selectable implementation
• How selectable class names reflect the state of selectable elements
• Filtering selectable elements
• Working with selectables' built-in callback functions
• A look at selectables' methods
• Creating a default sortable widget
• Basic configurable properties
• Sortables' wide range of built-in event handlers and methods
• Submitting the sorted result to a server
• Adding drag elements to a sortable

Selecting and sorting has been a standard part of modern operating systems for a
long time. For example, if you wanted to select and sort some of the icons on your
desktop, you could hold the mouse button down on a blank part of the desktop and
drag a square around the icons you wanted to select, or select the Auto arrange icons
option from your desktop.

Selecting and Sorting with jQuery UI

[374]

The selectable and sortable interaction helpers add this same functionality to our
web pages, which allows us to build more user-friendly interfaces without needing
to use external environments, such as Flash or Silverlight.

Introducing the selectable widget
The first thing we should do is invoke the default implementation to get a glimpse of
the basic functionality provided by this component.

In a new file in your text editor, add the following code:

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>Selectable</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/jquery.ui.mouse.js"></script>
 <script src="development-bundle/ui/jquery.ui.selectable.js">
</script>
 <script>
 $(document).ready(function($){
 $("#selectables").selectable();
 });
 </script>
 </head>
 <body>
<ul id="selectables">
 This is selectable list item 1
 This is selectable list item 2
 This is selectable list item 3
 This is selectable list item 4
 This is selectable list item 5

 </body>
</html>

Chapter 13

[375]

Save this as selectable1.html in the jqueryui folder. We simply call the
selectable widget method on the parent element and then all of its child
 elements are made selectable. This allows selection by clicking on them or
using the selection square (like you would do on your desktop).

Note that there is no styling associated with the selectable component. Default
behavior includes clicking on individual elements, causing them only to be selected,
and clicking on one of the selected elements to deselect them. Holding down the
Ctrl key will enable multiselect. The following screenshot shows the selection
square enclosing the list items:

The minimum set of library files we need for a selectable implementation is
as follows:

• jquery-2.0.3.js

• jquery.ui.core.js

• jquery.ui.widget.js

• jquery.ui.mouse.js

• jquery.ui.selectable.js

Along with building selectables from list items, we can also build them from other
elements, such as a collection of <div> elements. Add the following link to the
<head> of the selectable1.html file:

<link rel="stylesheet" href="css/selectable.css">

Also, replace the list elements in selectable1.html with the following code:

<div id="selectables">
 <div>This is selectable list item 1</div>
 <div>This is selectable list item 2</div>
 <div>This is selectable list item 3</div>

Selecting and Sorting with jQuery UI

[376]

 <div>This is selectable list item 4</div>
 <div>This is selectable list item 5</div>
</div>

Save this as selectable2.html. Everything is essentially the same as before.

We're just basing the example on different elements. However, due to the nature of
these elements, we should add a little basic styling so that we can see what we're
working with.

In a new file in your text editor, add the following code:

#selectables div { width: 170px; height: 25px; padding: 5px 0 0 10px;
margin: 10px 0 0 10px; border: 1px solid #000; }

Save this as selectable.css in the css folder. It's not much, but it helps to clarify
the individual selectables in the example, as shown in the following screenshot:

Introducing the Selectee class names
The elements that are made selectable are all initially given the ui-selectee class,
and the parent element that contains them is given the ui-selectable class. While
elements are selected, they are given the ui-selected class.

While the selecting square is around selectable elements, they are given the
ui-selecting class, and whilst an element is being deselected it is given the
ui-unselecting class. These classnames are added purely for our benefit, so
that we can highlight different states that the selectable may be in.

Chapter 13

[377]

This extensive class system makes it very easy to add custom styling to show when
elements are either in the process of being selected or have been selected. Let's add
some additional styling now to reflect the selecting and selected states. Add the
following new selectors and rules to selectable.css:

#selectables div.ui-selecting { border: 1px solid #fe2f2f; }
#selectables div.ui-selected { background: #fe2f2f; color: #fff; }

Save this selectableStates.css in the css folder. Change the link to the
stylesheet reference in the <head> of selectable2.html, then save this file as
selectable3.html:

<link rel="stylesheet" href="css/selectableStates.css">

With the addition of this very simple CSS, we can add visual cues to elements that
are part of the current selection, both during and following a select interaction. The
following screenshot shows some elements in the process of being selected on the
left, and the same elements having been selected on the right:

Configuring the selectable component
The selectable class is quite compact, with relatively few configurable options
compared to some of the other components that we've looked at.

Selecting and Sorting with jQuery UI

[378]

The following options are available for configuration:

Option Default value Used to...
autoRefresh True Automatically refresh the size and position of each

selectable at the start of a select interaction.
cancel ":input,

option"
Prevent the specified elements from being selected with
a click. The default string contains the :input jQuery
filter, which matches all <input>, <textarea>,
<select>, and <button> elements along with the
standard option element selector.

delay 0 Set the delay in milliseconds before the element is
selected. The mouse button must be held down on the
element before the selection will begin.

disabled false Disable selection when the page initially loads.
distance 0 Set the distance the mouse pointer must travel, with the

mouse button held down, before selection will begin.
filter "*" Specify child elements to make selectable.
tolerance "touch" Set the tolerance of the selection square. Possible values

are touch or fit. If fit is specified the element must be
completely within the selection square before the element
will be selected.

Filtering selectables
There may be situations when we don't want to allow all of the elements within the
targeted container to be made selectable. In this situation we can make use of the
filter option to nominate specific elements, based on a CSS selector, that we want
selecting to be enabled on. In selectable3.html, change the collection of <div>
elements so that it appears as follows:

<div id="selectables">
 <div> This is unselectable list item 1</div>
 <div> This is unselectable list item 2</div>
 <div class="selectable">This is selectable list item 3</div>
 <div class="selectable">This is selectable list item 4</div>
 <div class="selectable">This is selectable list item 5</div>
</div>

Then change the final <script> element to the following:

<script>
 $(document).ready(function($){
 $("#selectables").selectable({

Chapter 13

[379]

 filter: ".selectable"
 });
 });
</script>

The width of each selectable needs to be increased, so in selectableStates.css,
change the #selectables div rule to have a width of 190 px.

Save this version as selectable4.html. In the underlying markup, we have given a
class to each element except for the first. In the JavaScript, we define a configuration
object containing the filter option. The value of this option is the class selector
of the elements that we want to be selectable; elements without this class name are
filtered out of the selection:

As shown in the previous screenshot, the selection square is over the unselectable
element, but it's not picking up the ui-selecting class like the others. The
component completely ignores the filtered selectable and it does not become
part of the selection.

Canceling the selection
Along with indirectly making elements unselectable using the filter option, we
can also directly make elements unselectable using the cancel option. This option
was also exposed by the interaction helper we looked at in Chapter 12, The Resizable
Component, although we didn't look at it in any detail. Now is the perfect opportunity
to play with it.

Selecting and Sorting with jQuery UI

[380]

Add the class name unselectable to the first and second elements in the container
in selectable4.html:

<div class="unselectable"> This is unselectable list item 1</div>
<div class="unselectable">This is unselectable list item 2</div>

Change the configuration object from the last example so that it uses the
cancel option:

$("#selectables").selectable({
 cancel: ".unselectable"
})

Save this as selectable5.html. Instead of passing the class name of the selectable
elements to the configuration object, we pass the class name of the unselectable
element to it. When we run the example, we can see that the first element, with the
class name unselectable, is still given the class ui-selectee. However, it is only
selectable with the selection square; it cannot be selected by clicking, even with the
Ctrl key held down.

Handling selectable events
In addition to the standard configurable options of the selectable API, there are
also a series of event callback options that can be used to specify functions that are
executed at specific points during a select interaction. These options are listed in
the following table:

Option Triggered when
selecte The select interaction ends and each element added to the selection

triggers the callback.
selecting Each selected element triggers the callback during the select

interaction.
start A select interaction begins.
stop A selection operation ends.
unselected Any elements that are part of the selectable, but are not selected

during the interaction will fire this callback.
unselecting Unselected elements will fire this during the select interaction.

Selecting really only becomes useful when something happens to the elements once
they have been selected, which is where this event model comes into play. Let's put
some of these callbacks to work so that we can appreciate their use.

Chapter 13

[381]

Replace the configuration object in selectable5.html so that it contains the
following code:

$("#selectables").selectable({
 selected: function(e, ui) {
 $(ui.selected).text("I have been selected!");
 },
 unselected: function(e, ui) {
 $(ui.unselected).text("This div was selected");
 },
 start: function(e) {
 if (!$("#tip").length) {
 $("<div />", {
 "class": "ui-corner-all ui-widget ui-widget-header",
 id: "tip",
 text: "Drag the lasso around elements, or click to select",
 css: {
 position: "absolute",
 padding: 10,
 left: e.pageX,
 top: e.pageY - 30,
 display: "none"
 }
 }).appendTo("body").fadeIn();
 }
 },
 stop: function(e) {
 $("#tip").fadeOut("slow", function() {
 $(this).remove();
 });
 }
});

Save this as selectable6.html. In the <script>, we've added functions to
the selected, unselected, start, and stop options. These will be executed at the
appropriate times during an interaction.

As with other components, these functions are automatically passed two objects.
The first is the original browser event object (typically called e) and the other is an
object containing useful properties of the selected element (often referred to as ui).
However, not all callbacks can successfully work with the second object—start and
stop, for example. In our example, we've left out the ui object; there is no need to
include it, as it will be empty.

Selecting and Sorting with jQuery UI

[382]

When a <div> is selected, we change its inner text to reflect the selection using the
selected event callback. We can use the selected property to get the element that
was selected in order to change its text content to a new message. When an element
is deselected, we set the text to The div was selected using the same technique.

We can also alter the text of any selectable that was previously selected using the
unselected event.

At the start of any interaction, we create a tooltip that is appended to the <body> of
the page, slightly offset from the mouse pointer, using the start event. We use a
basic conditional to check that the tool tip does not already exist to prevent duplicate
tips. We can make use of the framework classes ui-corner-all, ui-widget, and
ui-widget-header to do most of the styling for us. The few styles we require that
are not provided by the theme are added using the css() method. We can get the
pointer coordinates using the e (event) object, which is passed as the first argument
to our callbacks, in order to position the tool tip. At the end of the selection, we
remove the tool tip using the stop property. The following screenshot shows the
results of different interactions:

The selecting and unselecting callback options work exactly the same way as
those we have just looked at, but are fired as elements are added or removed to the
selection. To see those in action, replace the selected and unselected options in
the configuration object in selectable6.html with the following:

 selecting: function(e, ui) {
 $(ui.selecting).text("I am part of the selection");
 },
 unselecting: function(e, ui) {
 $(ui.unselecting).text("I was part of the selection");
 },

Chapter 13

[383]

Save your work as selectable7.html. This time we use the selecting and
unselecting properties to specify callback functions, which again change the
text content of the elements at certain times during an interaction. We repeat the
procedure from the last example, this time we're just using different callbacks and
properties of the objects passed to them.

The second object passed to any of the selectable callbacks contains a property
relating to the type of custom event. For example, the selected callback receives an
object with a selected property, which can be used to gain information about the
element that was added to the selection. All callbacks have a matching property
that can be used in this way.

Working with vast amounts of selectables
The jQuery UI library, such as jQuery itself, is already extremely efficient. It uses
the ultra-effective Sizzle selector engine (via jQuery) and each component has
been optimized as much as possible.

Sizzle is a pure JavaScript CSS Selector engine, used by jQuery, which
allows you to use JavaScript on CSS selectors, such as $("<div>").
If you would like to learn more, you can visit the project site at
http://sizzlejs.com/.

However, there is only so much that the creators of the library can do. In our
examples so far, we've used a maximum of five selectable elements, which aren't
really many at all. What if we were to use 500 instead?

When working with great numbers of selectables there is still something we can do
to make sure that the select interactions are as efficient as possible. The autoRefresh
option is set to true by default, which causes the sizes and positions of all selectable
elements on the page to be recalculated at the beginning of every interaction.

This can cause delays on pages with many selectable elements on it, so the
autoRefresh option can be set to false when dealing with large collections of
elements. We can also use the refresh method to manually refresh the selectables
at appropriate times in order to improve the speed and responsiveness of the
interactions. On most pages we would not need to worry about configuring this
option and can leave it at its default setting.

Let's take a look at how this option can help our pages in certain situations. In
the <head> of selectable7.html change the <link> for the custom stylesheet
to the following:

<link rel="stylesheet" href="css/selectableMany.css ">

Selecting and Sorting with jQuery UI

[384]

Then change the selectables container element so that it appears as follows:

<div id="selectables" class="ui-helper-clearfix">
 <div class="selectable">Selectable</div>
</div>

We're going to use a little jQuery to create our selectable elements automatically, so
replace the existing script in document.ready() block with the following code:

 var $selectable = $(".selectable");
 for(var I = 0; I < 100; i++) {
 $selectable.parent().append($selectable.clone());
 }
 $("#selectables").selectable({
 autoRefresh: false
 });

Save this page as selectable8.html. Our page should now contain 100 individual
selectables within the selectables container. We've also added a class name to
the outer container so that the container is cleared properly when we float our
selectables (which we will do in a moment). If the container is not cleared correctly,
the selection square will not work. We added the .ui-helper-clearfix class to our
selectables div to help cure this issue.

We also need a new stylesheet in this example that consists of the following code:

#selectables div { width: 70px; height: 25px; padding: 5px 0 0 10px;
border: 1px solid #000; margin: 10px 0 0 10px; float: left; }
.ui-selected { background-color: #fe2f2f; }

Save this in the css folder as selectableMany.css. It's purely for layout purposes,
so we don't need to discuss it further.

We can use something like Chrome's Developer Tools to profile a selection of all
100 selectables with and without the autoRefresh option enabled; it's enabled by
default, so our example will disable it. The results will probably vary between tests,
but you should find that the profile (in both milliseconds and the number of calls) is
consistently lower with autoRefresh set to disabled.

How do I profile JavaScript performance?
For details of how to perform profiling in a browser such as Chrome, you
can view a useful tutorial at https://developers.google.com/
chrome-developer-tools/docs/cpu-profiling.

Chapter 13

[385]

Working with selectable methods
The methods that we can use to control the selectables component from our code
are similar to the methods found in other interaction helpers and follow the same
pattern of usage. The only unique method exposed by the selectables component is
listed as follows:

Method Usage
Refresh Manually refreshes the positions and sizes of all selectables.

Should be used when autoRefresh is set to false.

In addition to this unique method, the selectables component (like every other
component) makes use of the common API methods destroy, disable, enable,
option, and widget.

Refreshing selectables
Setting the autoRefresh property to false can yield performance gains when there
are many selectables on the page, especially in Internet Explorer. However, there will
still be times when you will need to refresh the size and positions of the selectables,
such as when this component is combined with the draggables component.

Let's take a look at the refresh method as it leads on perfectly from the last example.
Add the following new <button> element directly after the selectables container:

<button id="refresh">Refresh</button>

We'll also need to link to the draggable source file for this example:

<script src="development-bundle/ui/jquery.ui.draggable.js">
</script>

Then change the final <script> element so that it appears as follows:

<script>
 $(document).ready(function($){
 var $selectable = $(".selectable");
 for(var i = 0; i < 100; i++) {
 $selectable.parent().append($selectable.clone());
 }
 $("#selectables").selectable({
 autoRefresh: false
 });
 $("#selectables div").draggable();
 $("#refresh").click(function() {

Selecting and Sorting with jQuery UI

[386]

 $("#selectables").selectable("refresh");
 });
 });
</script>

Save this as selectable9.html. We've added a new <button> to the page and
we now link to the draggable source file as well as the selectable's. Each of the 100
elements is made both draggable and selectable.

Our click handler that is attached to the <button> will simply call the refresh
method manually on the selectables container. When we run the page in a browser
we should first select some, but not all, of the selectable widgets. We should then
deselect the elements and move some of them around. We can move other elements
that weren't selected into the selection group as well. Really shuffle them up!

When we try to select the same group again, we find that the wrong elements are
being selected:

The component hasn't refreshed the positions of the selectables, so it still thinks
that all of the selectables are in the same place as they were when the first selection
was made. If we click on the refresh button and make a third selection, the correct
elements will now be selected.

Creating a selectable image viewer
In our final selectable example, we're going to make a basic image viewer. Images
can be chosen for viewing by selecting the appropriate thumbnail. Although this
sounds like a relatively easy achievement, in addition to the actual mechanics
of displaying the selected image, we'll also need to consider how to handle
multiple selections.

Chapter 13

[387]

The following screenshot shows an example of what we'll end up with:

Let's get started with the code. In a fresh page in your text editor, add the
following page:

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>The Selectables Component</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <link rel="stylesheet" href="css/selectableViewer.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/jquery.ui.mouse.js"></script>
 <script src="development-bundle/ui/jquery.ui.selectable.js">
</script>
 <script src="development-bundle/ui/jquery.ui.tabs.js"></script>
 <script>
 </script>
 </head>
 <body>
 <div id="imageSelector"

Selecting and Sorting with jQuery UI

[388]

 class="ui-widget ui-corner-all ui-helper-clearfix">
 <div id="status" class="ui-widget-header ui-corner-all">Crab</
div>
 <div id="viewer"></div>
 <div id="thumbs">

 </div>
 </div>
 </body>
</html>

Save this as imageSelector.html. On the page, we have a parent <div> with an id
of imageSelector into which all of our other elements go.

Within the parent, we have a <div> that will act as a status bar to display the names
of individually selected images, and a <div> that will act as the viewing panel and
will display the full-sized version of the image. Finally, we have our thumbnail
images, which will be made selectable.

Adding the behavior
Next we need to add the script that makes the image selector work, so directly after
the final <script> element add the following code; throughout this section, we'll
walk through the code block by block, beginning with the configuration object for
the selectables:

 $(document).ready(function($){
 $("#thumbs").selectable({
 stop: function(e, ui) {
 $("#imageSelector").children().not("#thumbs")
.remove();
 $("<div />", {
 id: "viewer"
 }).insertBefore("#thumbs");
 if ($(".ui-selected", "#thumbs").length == 1) {
 singleSelect();
 } else {

Chapter 13

[389]

 multiSelect();
 }
 }
 });

We use the stop callback function to do some prep work, such as removing the
contents of the image selector container (except for the thumbnails) and creating
an empty viewer container. We then use an if conditional to call either the
singleSelect() or multiSelect() functions.

function singleSelect() {
 var id = $(".ui-selected", "#thumbs").attr("id");
 $("<div />", {
 id: "status",
 text: id,
 "class": "ui-widget-header ui-corner-all"
 }).insertBefore("#viewer");
 $("", {
 src: "img/" + id + ".jpg",
 id: id
 }).appendTo("#viewer");
 }

We then define the first of two functions, which is singleSelect(). This will be
invoked every time a single thumbnail is selected. We first cache the id of the
selected element; we'll be referring to this several times, so it's more efficient to
store it in a variable.

Next we create a new status bar and set its innerText to the id value that was
cached a moment ago, which will be the id attribute of whichever thumbnail is
selected. We give the new element some of the framework classes to style the
element and then insert it into the image selector container.

The last thing we do in this function is to create the full-sized version of the
thumbnail. To do this, we create a new image and set its src attribute to match
the large version of the thumbnail that was selected (both the large and thumbnail
versions of each image have the same filename). The full-size image is then inserted
into the viewer container.

function multiSelect() {
 $("<div />", {
 id: "tabs"
 }).insertBefore("#viewer");
 var tabList = $("", {
 id: "tabList"
 }).appendTo("#tabs");

Selecting and Sorting with jQuery UI

[390]

Next we define the multiSelect() function, which is called when multiple
thumbnails are selected. This time we start by creating a new <div> element, give
it an id of tabs and insert it before the viewer container. Following this, we create
a new element, as this is a required component of the tabs widget (which we
looked at in Chapter 3, Using the Tabs Widget). This element is appended to the tabs
container we created a moment ago.

 $(".ui-selected", "#thumbs").each(function() {
 var id = $(this).attr("id"),
 tabItem = $("").appendTo(tabList),
 tabLink = $("<a />", {
 text: id,
 href: "#tabpanel_" + id
 }).appendTo(tabItem),
 panel = $("<div />", {
 id: "tabpanel_" + id
 }).appendTo("#viewer");
 $("", { src: "img/" + id + ".jpg",
 id: id
 }).appendTo(panel);
 });
 $("#viewer").css("left", 0).appendTo("#tabs");
 $("#tabs").tabs();
 }
 });

We then use jQuery's each() method to iterate over each of the thumbnails that were
selected. For each item we create a series of variables, which will hold the different
elements that make up the tab headings. We cache the id attribute of each image
and create a new and a new <a> element. The link will form the clickable tab
heading and is given the id of the thumbnail as its text content.

We then create the new tab panel that will match the tab heading that we just
created. Notice that we create a unique id for the content panel based on the
thumbnail's id attribute and some hardcoded text. Note that the id will precisely
match the href attribute that we set on the <a> element. Each new image is created
in the same way as in the singleSelect() function.

After the each() method, we set a CSS property on the viewer container to tidy up
its appearance and then append it to the tabs container. Finally the tabs() method
is called on the tabs container, transforming it into the tabs widget. At the end of the
script the thumbnails are made selectable.

Chapter 13

[391]

Styling the image selector
Our example is also heavily reliant on CSS to provide its overall appearance. In a
new file in your text editor, create the following new stylesheet:

#imageSelector { width: 676px; height: 497px; border: 1px solid
#adadad; margin: 0 auto; position: relative; background-color:
#dfdede; }
#status { width: 380px; height: 21px; padding: 10px; position:
absolute; left: 17px; top: 17px; font-size: 19px; text-align: center;
background-color: #adadad; border: 1px solid #adadad; text-transform:
capitalize; }
#viewer { width: 400px; height: 400px; border: 1px solid #fff;
position: absolute; left: 17px; top: 78px; }
#thumbs { width: 222px; height: 460px; position: absolute; right:
17px; top: 17px; }
#thumbs img { width: 100px; height: 100px; float: left; margin: 0 18px
18px 0; cursor: pointer; border: 1px solid #fff; }
#thumbs img.right { margin-right: 0; }
#thumbs img.ui-selected { border: 1px solid #99ff99; }
#tabs { padding: 0; border: none; position: absolute; left: 17px;
background: none; }
#tabs .ui-tabs-panel { padding: 0; }
#tabs .ui-tabs-nav { padding: 0; border: none; position: relative;
top: 54px; background: none; }
#tabs .ui-tabs-nav li { margin: 0; }
#tabs .ui-tabs-nav li a { padding: 5px 4px; font-size: 11px; text-
transform: capitalize; }
#tabs .ui-tabs-nav li.ui-tabs-selected a,
#tabs .ui-tabs-nav li.ui-state-disabled a,
#tabs .ui-tabs-nav li.ui-state-processing a { font-weight: bold; }

Save this in the css folder as selectableViewer.css. Most of the styles are
arbitrary and are required purely for layout or visual appearance. We're using some
of the framework classes in our mark up in order to add the rounded corners, so the
amount of CSS we need to write is minimal. The last few selectors are required in
order to override some of the tab widget's default styling.

Selecting and Sorting with jQuery UI

[392]

When we run the example in a browser, we should see something similar to what is
shown in the previous screenshot. When a single thumbnail is selected the full-size
version of the image will be displayed. When multiple images have been selected,
tabs are recreated at the top of the viewer, which allow all of the selected images to
be shown:

Getting started with the sortable widget
The final interaction helper that we're going to look at is the sortables component.
This component allows us to define one or more list of elements (not necessarily
actual or elements), where the individual items in the list(s) can be
reordered by dragging. The sortables component is like a specialized implementation
of drag-and-drop, with a very specific role. It has an extensive API, which caters
for a wide range of behaviors.

Chapter 13

[393]

A basic sortable list can be enabled with no additional configuration. Let's do this
first, so that you can get an idea of the behavior enabled by this component. In a new
file in your text editor, add the following code:

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>Sortable</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/jquery.ui.mouse.js"></script>
 <script src="development-bundle/ui/jquery.ui.sortable.js">
</script>
 <script>
 $(document).ready(function($){
 $("#sortables").sortable();
 });
 </script>
 </head>
 <body>
 <ul id="sortables">
 Sortable 1
 Sortable 2
 Sortable 3
 Sortable 4
 Sortable 5

 </body>
</html>

Selecting and Sorting with jQuery UI

[394]

Save this as sortable1.html. On the page, we have a simple unordered list
with five list items. Thanks to the sortables component, we should find that the
individual list items can be dragged to different positions in the list, as shown
in the following screenshot:

Code-wise, the default implementation is the same as it has been for each of the other
components. We simply call the sortable widget method on the parent element
of the list items that we want to make sortable.

A lot of behaviors are added to the page to accommodate this functionality. As
we drag one of the list items up or down in the list, the other items automatically
move out of the way, creating a slot for the item that is currently being sorted to be
dropped on.

Additionally, when a sortable item is dropped, it will slide quickly, but smoothly
into its new position in the list. The library files that were needed for the basic
implementation are as follows:

• jquery-2.0.3.js

• jquery.ui.core.js

• jquery.ui.widget.js

• jquery.ui.mouse

• jquery.ui.sortable.js

Chapter 13

[395]

As I mentioned earlier, the sortables component is a flexible addition to the library
that can be applied to many different types of elements. For example, instead of
using a list, we could use a series of <div> elements as the sortable list items, in place
of the element in the previous example:

<div id="sortables" class="ui-widget">
 <div class="ui-widget-header ui-corner-all">Sortable 1</div>
 <div class="ui-widget-header ui-corner-all">Sortable 2</div>
 <div class="ui-widget-header ui-corner-all">Sortable 3</div>
 <div class="ui-widget-header ui-corner-all">Sortable 4</div>
 <div class="ui-widget-header ui-corner-all">Sortable 5</div>
</div>

This can be saved as sortable2.html. As you can see, the behavior exhibited by
this version is exactly the same as it was before. All that's changed is the underlying
markup. We've added some of the CSS framework classes in order to add some
basic styling to our elements, and we can also use a custom stylesheet to add a
few extra styles.

Create a new file and add the following styles:

#sortables { width: 300px; }
#sortables div { padding: 2px 0 2px 4px; margin-bottom: 8px; }

Save this in the css folder as sortable.css. Link to the CSS file in the <head> of
sortable2.html:

<link rel="stylesheet" href="css/sortable.css">

With our new stylesheet, the page should now appear as follows:

Selecting and Sorting with jQuery UI

[396]

Styling the sortable widget
Now that we have styled our first set of sortable elements, it's a good point in
journey at which to examine the style classes used by the sortable widget.

The sortable widget uses a number of styles. They are shown in the following table:

Class name Used to…
ui-widget ui-sortable Used on the container element; this first sets the

generic classes from ui-widget, followed by those
in ui-sortable.

ui-widget-header Style each sortable element; this is by default with
rounded corners, using the ui-corner-all style.

ui-sortable-helper – Show a clone of the element being sorted, during
the dragging process.

ui-sortable-placeholder – Act as the placeholder element, ready to accept the
element being sorted. This is hidden by default, but
can be changed, as we will see later in the chapter.

Configuring sortable options
The sortables component has a huge range of configurable options, much more than
any of the other interaction components (but not as many as some of the widgets).

The following table shows the range of options at our disposal:

Option Default value Used to…
appendTo "parent" Set the element that helpers are

appended to, during a sort.
axis false Constrain sortables to one axis of

movement. Possible values are the
strings x or y.

cancel ":input,
button"

Specify elements that cannot be sorted,
if they are the elements being sorted.

connectWith false Enable one-way sorting from the
current list to the specified list.

containment false Constrain sortables to their container
while they are being sorted. Values
can be the string's parent, window, or
document, or can be a jQuery selector
or element node.

Chapter 13

[397]

Option Default value Used to…
cursor "auto" Define the CSS cursor to apply while

dragging a sortable element.
cursorAt false Specify the coordinates that the mouse

pointer should be at, while a sort is
taking place. Accepts an object with
the keys top, right, bottom, or left
with integers as the values.

delay 0 Set the time delay in milliseconds
before the sort begins, once a sortable
item has been clicked (with the mouse
button held down).

disabled false Disable the widget on page load.
distance 1 Set how far in pixels the mouse pointer

should move, while the left button is
held down before the sort begins.

dropOnEmpty true Allow linked items from linked
sortables to be dropped onto empty
slots.

forceHelperSize false Force the helper to have a size when
set to true.

forcePlaceholderSize false Force the placeholder to have a size
when set to true. The placeholder is
the empty space that a sortable can be
dropped on to.

grid false Set sortables to snap to a grid while
being dragged. Accepts an array with
two items—the x and y distances
between gridlines.

handle false Specify an element to be used as the
drag handle on sortable items. Can be
a selector or an element node.

helper original" Specify a helper element that will be
used as a proxy, while the element is
being sorted. Can accept a function
that returns an element.

items ">*" Specify the items that should be
made sortable. The default makes all
children sortable.

Selecting and Sorting with jQuery UI

[398]

Option Default value Used to…
opacity false Specify the CSS opacity of the element

being sorted. Value should be an
integer from 0.01 to 1, with 1 being
fully opaque.

placeholder false Specify a CSS class to be added to
empty slots.

revert false Enable animation when moving
sortables into their new slots, once
they have been dropped.

scroll true Enable page scrolling when a sortable
is moved to the edge of the viewport.

scrollSensitivity 20 Set how close a sortable must get, in
pixels, to the edge of the viewport,
before scrolling should begin.

scrolSpeed 20 Set the distance in pixels that the
viewport should scroll, when a
sortable is dragged within the
sensitivity range.

tolerance "intersect" Control how much of the element
being sorted must overlap other
elements, before the placeholder is
moved. Another possible value is the
string pointer.

zIndex 1000 Set the CSS zIndex of the sortable
or helper, while it is being dragged.

Let's work some of these properties into our previous example to get a feel for the
effect they have on the behavior of the component. First wrap the #sortables
container in a new <div>:

<div id="container">
 <div id="sortables" class="ui-widget">
 <div class="ui-widget-header ui-corner-all">Sortable 1</div>
 <div class="ui-widget-header ui-corner-all">Sortable 2</div>
 <div class="ui-widget-header ui-corner-all">Sortable 3</div>
 <div class="ui-widget-header ui-corner-all">Sortable 4</div>
 <div class="ui-widget-header ui-corner-all">Sortable 5</div>
 </div>
</div>

Chapter 13

[399]

Then change the final <script> element in sortable2.html, so that it appears
as follows:

<script>
 $(document).ready(function($){
 $("#sortables").sortable({
 axis: "y",
 containment: "#container",
 cursor: "ns-resize",
 distance: 30
 });
 });
</script>

Save this as sortable3.html. We also need to add a little padding to our new
container element. Update sortable.css, so that it contains the following new code:

#container { padding: 10px 0 20px; }

Resave this file as sortableContainer.css and update the <link> in the <head> of
sortable3.html, so that it points to the new stylesheet.

We use four options in our configuration object: axis, containment, resize,and
distance. Let's take a look at the role they perform:

• The axis option is set to y, to constrain the motion of the sortable currently
being dragged to just up-and-down.

• The containment option specifies the element that the sortables should be
contained within, to limit the bounds of their movement.

• The cursor option that automatically adds the CSS ns-resize cursor. In a
similar fashion to the draggable component that we looked at in Chapter 11,
Drag and Drop, the cursor is not actually displayed until the sort begins.

• The distance option is configured with a value of 30, which specifies that
the mouse pointer should move 30 pixels before the sort begins. It works
in the same way with sortables as it did with draggables, and is great for
preventing unwanted sorts, but in practice, we'd probably use a much lower
threshold than 30 pixels.

Selecting and Sorting with jQuery UI

[400]

Sortable spacing
Care should be taken when using the containment option. This is
specifically why we added some padding to the container element in
our stylesheet. Without this padding, the first sortable element is flushed
against the top of the container and the last element is flushed against
the bottom. In order to be able to push a sortable element out of the way,
there must be some space above or below it.

Let's look at some more options. In this next example, we'll adapt the code from
sortable3.html to restrict the handle of each item to a specific part of the item.
We will also prevent jQuery UI from allow sorting until a certain time has passed.

Change the underlying <div> elements in sortable3.html, so that they appear
as follows:

<div id="sortables" class="ui-widget">
 <div class="ui-widget-header ui-corner-all">Sortable 1

 </div>
 <div class="ui-widget-header ui-corner-all">Sortable 2

 </div>
 <div class="ui-widget-header ui-corner-all">Sortable 3

 </div>
 <div class="ui-widget-header ui-corner-all">Sortable 4

 </div>
 <div class="ui-widget-header ui-corner-all">Sortable 5

 </div>
</div>

We can get rid of the #container element for this example. We also need a modified
stylesheet for this example. Change sortable.css, so that it includes the following
new styles:

#sortables span { margin: 2px 2px 0 0; float: right; }

Save the new stylesheet as sortableHandles.css in the css folder and update the
<link> element to point to the new stylesheet.

Chapter 13

[401]

Finally, change the configuration object as follows:

$("#sortables").sortable({
 revert: "slow",
 handle: "span",
 delay: 1000,
 opacity: 0.5
});

Save this as sortable4.html. We've made a slight change to the page. Within each
sortable element is a new element that will be used as the sort handle. We
give this element some CSS Framework classes in order to reduce the CSS we need
to add manually.

The revert option has a default value of true, but can also take one of the speed
integer or string values (slow, normal, or fast) that we've seen in other animation
options in other components.

The delay option accepts a value in milliseconds that the component should wait,
before allowing the sort to begin. If the mouse pointer is moved away from the
handle while the left-button is held down, the sort will still occur after the specified
time. If the mouse-button is released, however, the sort will be canceled.

The value of the opacity option is used to specify the CSS opacity of the element
that is being sorted, while the sort takes place. The value should be a floating-point
number between 0 and 1, with 1 corresponding to full opacity and 0 specifying
no opacity.

Another option we've used is the handle option, which allows us to define a region
within the sortable that must be used to initiate the sort. Dragging on other parts of
the sortable will not cause the sort to begin.

Selecting and Sorting with jQuery UI

[402]

You can see how the handle will appear in the following screenshot:

Make my handles bigger
For usability reasons, we should probably use a bigger handle
than the one used in the previous example.

Placeholders
A placeholder defines the empty space or slot that is left, while one of the sortables
is in the process of being moved to its new position. The placeholder isn't rigidly
positioned. It will dynamically move to whichever sortable has been displaced by the
movement of the sortable that is being sorted.

There are two options that are specifically concerned with placeholders the very
aptly named placeholder option and the forcePlaceholderSize option. Let's take
a look at these two options in action. Remove the elements from the sortable
<div> elements in sortable4.html and then change the configuration object, so that
it appears as follows:

$("#sortables").sortable({
 placeholder: "empty ui-corner-all",
 forcePlaceholderSize: true
});

Save this as sortable5.html. Next, we should add the new selector and rules to a
CSS file. Change sortable.css, so that it contains the following styles:

.empty {border: 1px solid #4297D7; background-color: #c5dbec;}

Chapter 13

[403]

Save this as sortablePlaceholder.css in the css folder.

The placeholder option allows us to define a CSS class that should be added to
the placeholder element. This is a useful property that we can use often in our
implementations. Remember this is a class name, not a class selector, so no period is
used at the start of the string. It can accept multiple classnames.

The forcePlaceholderSize option ensures that the placeholder is the same size
as the actual sortables. If we left this option at its default value of false, in this
example, the placeholder would just be a thin line made up of the padding that we
applied to the sortable <div> elements.

When we run the new HTML file in a browser, we should be able to see the specified
styles applied to the placeholder, while the sort is taking place:

Sortable helpers
We looked at helper/proxy elements back when we looked at the draggables
component earlier in the book. Helpers can also be defined for sortables that function
in a similar way to those of the draggable component, although there are some subtle
differences in this implementation.

With sortables, the original sortable is hidden when the sort interaction begins, and
a clone of the original element is dragged instead. So with sortables, helpers are an
inherent feature.

Like with draggables, the helper option of sortables may take a function as its value.
The function, when used, will automatically receive the event object and an object
containing useful properties from the sortable element as arguments.

Selecting and Sorting with jQuery UI

[404]

The function must return the element to use as a helper. Although it's very similar to
the draggable helper example, let's take a quick look at it when used in conjunction
with sortables. In sortable5.html, change the last <script> block, so that it
appears as follows:

<script>
 $(document).ready(function($){
 var buildHelper = function(e, ui) {
 return $("<div />", {
 text: $(ui).text(),
 "class": "ui-corner-all",
 css: {
 opacity: 0.5,
 border: "4px dashed #cccccc",
 textAlign: "center"
 }
 });
 },
 $("#sortables").sortable({
 helper: buildHelper
 });
 });
</script>

Save this file as sortable6.html. We define a helperMaker function that creates
and returns the element to be used as the helper, while the sort is in progress. We
set some basic CSS properties on the new element, so that we don't need to provide
additional rules in the stylesheet.

The following screenshot shows how the helper will appear while a sort is
taking place:

Chapter 13

[405]

Sortable items
By default, all children of the element that the method is called on are turned into
sortables. While this is a useful feature of the component, there may be times when
we don't necessarily want all child elements to become sortable.

The items option controls which child elements of the specified element should be
made sortable. It makes all child elements sortable using the string >* as its default
value, but we can alter this to specify only the elements we want. Change the
sortable <div> elements in sortable6.html, so that the last element has a new
class name:

<div class="ui-widget-header ui-corner-all unsortable">
 Sortable 5
</div>

Then, change the configuration object to make use of the items option:

$("#sortables").sortable({
 items: ">:not(.unsortable)"
});

Save this as sortable7.html. In the <script>, we've specified the selector ">:not(.
unsortable)" as the value of the items option, so the element with the classname
unsortable will not be made sortable, while the rest of the <div> elements will.

When we run the page in a browser, we should find that the last item in the
collection cannot be sorted, and other sortable items cannot be moved into the
space that the last item occupies.

Connecting lists
So far, the examples that we have looked at have all centered on a single list of
sortable items. What happens when we want to have two lists of sortable items,
and more importantly, can we move items from one list to another?

Having two sortable lists is of course extremely easy and involves simply defining
two containers and their child elements, and then passing a reference to each
container to the sortable() method.

Allowing separate lists of sortables to exchange and share sortables is also extremely
easy. This is thanks to the connectWith option, which allows us to define an array of
sortable containers, who can share their sortable contents.

Selecting and Sorting with jQuery UI

[406]

Let's look at this in action. Change the underlying markup on the page, so that it
appears as follows:

<div id="sortablesA" class="ui-widget">
 <div class="ui-widget-header ui-corner-all">Sortable 1A</div>
 <div class="ui-widget-header ui-corner-all">Sortable 2A</div>
 <div class="ui-widget-header ui-corner-all">Sortable 3A</div>
 <div class="ui-widget-header ui-corner-all">Sortable 4A</div>
 <div class="ui-widget-header ui-corner-all">Sortable 5A</div>
</div>
<div id="sortablesB" class="ui-widget">
 <div class="ui-widget-header ui-corner-all">Sortable 1B</div>
 <div class="ui-widget-header ui-corner-all">Sortable 2B</div>
 <div class="ui-widget-header ui-corner-all">Sortable 3B</div>
 <div class="ui-widget-header ui-corner-all">Sortable 4B</div>
 <div class="ui-widget-header ui-corner-all">Sortable 5B</div>
</div>

Everything on the page is pretty similar to what we have worked with before. We
also need a new stylesheet for this example. In a new file, add the following styles:

#sortablesA, #sortablesB { width: 300px; margin-right: 50px; float:
left; }
.ui-widget div { padding: 2px 0 2px 4px; margin-bottom: 8px; }

Save this as sortableConnected.css in the css folder. Don't forget to point to the
new stylesheet in the <head> of the new page. Finally, change the last <script>
element, so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#sortablesA, #sortablesB").sortable({
 connectWith: ["#sortablesA", "#sortablesB"]
 });
 });
</script>

Save this as sortable8.html. We still define a single configuration object, which can
be shared between both sets of sortable elements. The connectWith option is able
to accept multiple selectors if they are passed in as an array, and it's this option that
allows us to share individual sortables between the two sortable containers.

This configuration option only provides a one-way transmission of sortables, so if
we were to only use the configuration object with sortablesA and specify just the
selector #sortablesB, we would only be able to move items from sortablesA to
sortablesB, not the other way.

Chapter 13

[407]

Specifying both sortables' id attributes in the option and selecting both of the
containers when calling the sortable() method allows us to move items between
both elements, and allows us to cut down on coding.

When we run the page in a browser, we find that not only can the individual items
be sorted in their respective elements, but that items can also be moved between
elements, as shown in the following screenshot:

Reacting to sortable events
In addition to the already large list of configurable options defined in the sortables
class, there are also a whole lot more in the form of event callbacks, which can be
passed as functions to execute at different points during a sortable interaction.
These are listed in the following table:

Event Fired when…
activate Sorting starts on a connected list.
beforeStop The sort has stopped, but the original slot is still available.
change The DOM position of a sortable has changed and the sort is still

in progress.
create The widget is initialized.
deactivate Sorting stops on a connected list.
out A sortable is moved out of a connected list.
over A sortable is over a connected list. This is great for providing

visual feedback while a sort is taking place.
receive A sortable is received from a connected list.
remove A sortable is moved from a connected list.

Selecting and Sorting with jQuery UI

[408]

Event Fired when…
sort A sort is taking place.
start A sort starts.
stop A sort ends.
update The sort has ended and the DOM position has changed.

Each of the components that we've looked at in the preceding chapters has defined
its own suite of custom events, and the sortables component is no exception.

Many of these events will fire during any single sort interaction. The following list
shows the order in which they will fire:

• start
• sort
• change
• beforeStop
• stop
• update

As soon as one of the sortables is picked up, the start event is triggered. Following
this, on every single mouse move, the sort event will fire, making this event
very intensive.

As soon as another item is displaced by the current sortable, the change event is
fired. Once the sortable is dropped, the beforeStop and stop events fire, and if the
sortable is now at a different position, the update event is fired last of all.

For the next few examples, we'll work some of these event handling options
into the previous example, starting with the start and stop events. Change the
configuration object in sortable8.html, so that it appears as follows:

var sortOpts = {
 connectWith: ["#sortablesA", "#sortablesB"],
 start: function(e, ui) {
 $("<p />", {
 id: "message",
 text: ui.helper.text() + " is active",
 css: { clear:"both" }
 }).appendTo("body");
 },
 stop: function() {
 $("#message").remove();
 }
};

Chapter 13

[409]

Save this as sortable9.html. Our event usage in this example is minimal. When
the sort starts, we simply create a new paragraph element and add some text to it,
including the text content of the element that is being sorted. The text message is
then duly appended to the <body> of the page. When the sort stops, we remove the
text. Using the second object passed to the callback function is very easy, as you can
see. The object itself refers to the parent sortables container, and the helper property
refers to the actual item being sorted (or its helper). As this is a jQuery object, we can
call jQuery methods, such as text, on it.

When we run the page, the message should appear briefly until the sort ends, at
which point it's removed.

Let's look at one more of these simple callbacks, before we move on to look at the
additional callbacks used with connected sortables. In our next example, we will
take a look at how we can track movement of sortable items between lists, and use a
callback function to display the results on screen.

Change the final <script> element in sortable9.html to the following:

<script>
 $(document).ready(function($){
 var getPlaces = function(e, ui) {
 var extraMessage = (e.type === "sortreceive") ? " in a new
list" : "";
 $("#message").remove();
 $("<p />", {
 id: "message",
 text: [
 "Item now at position ",
 (ui.item.index() + 1).toString(),
 extraMessage

Selecting and Sorting with jQuery UI

[410]

].join(" "),
 css: {
 clear: "both"
 }
 }).appendTo("body");
 };
 $("#sortablesA, #sortablesB").sortable({
 connectWith: ["#sortablesA", "#sortablesB"],
 beforeStop: getPlaces,
 receive: getPlaces
 });
 });
 </script>

Save this as sortable10.html. In this example, we work with the receive and
beforeStop callbacks to provide a message, indicating the position within the list
that any sortable is moved to, as well as which list it is in. We also make use of the
ui.item property from the object, which is automatically passed to any callback
functions used by the events.

We first define a variable called extraMessage, which is initially set to an empty
string. We then define a function called getPlaces. This function will be used as a
callback function for sortable events and will, therefore, automatically receive e and
ui objects.

Within the function, we first check whether the event object's type property has a
value of sortreceive; if it does, we know that a sortable has moved lists and can,
therefore, set the extra part of the message.

We then remove any pre-existing messages, before creating a new <p> element and
setting a message, indicating its new position in the list. We can obtain the new
position of the element that was sorted using the item property of the second object
passed to our callback in conjunction with jQuery's index() method, which we
convert to a string and concatenate into a message.

In our configuration object, we connect the two lists using the connectWith option
as before, and make use of both the receive and beforeStop options, which both
point to our getPlaces function.

The receive event is fired whenever a sortable container receives a new sortable
element from a connected list. The beforeStop event is fired just before the sort
interaction ends. In terms of event order, in this example the beforeStop event is
fired first, followed by the receive event.

Chapter 13

[411]

The receive event will only be fired if a sortable element moves to a new sortable
container. The following screenshot shows how the page should look following a
sort interaction:

Connecting callbacks
Six of the available callbacks can be used in conjunction with connected sortables.
These events fire at different times during an interaction, alongside the events that
we have already looked at.

Like the standard unconnected events, not all of the connected events will fire in any
single interaction. Some events, such as over, off, remove, and receive will fire
only if a sort item moves to a new list.

Other events, such as activate and deactivate, will fire in all executions, whether
any sort items change lists or not. Additionally, some connected events, such as
activate and deactivate, will fire for each connected list on the page. Provided at
least one item is moved between lists, events will fire in the following order:

1. start
2. activate
3. sort
4. change
5. beforeStop
6. stop
7. remove

Selecting and Sorting with jQuery UI

[412]

8. update
9. receive
10. deactivate

Let's now see some of these connected events in action. Change the final <script>
element in sortable10.html, so that it appears as follows:

<script>
 $(document).ready(function($){
 var activateSortable = function() {
 $("<p />", {
 text: $(this).attr("id") + " has been activated",
 css: { clear:"both" }
 }).appendTo("body");
 }

 var deactivateSortable = function() {
 $("<p />", {
 text: $(this).attr("id") + " has been deactivated",
 css: { clear:"both" }
 }).appendTo("body");
 }

 var receiveSortable = function(e, ui) {
 var senderAttr = ui.sender.attr("id");
 var receiverAttr = $(this).attr("id");
 $("<p />", {
 text: [ui.item.text(), "was moved from", senderAttr, "into",
receiverAttr].join(" "),
 css: { clear:"both" }
 }).appendTo("body");
 }

 $("#sortablesA, #sortablesB").sortable({
 connectWith: ["#sortablesA", "#sortablesB"],
 activate: activateSortable,
 deactivate: deactivateSortable,
 receive: receiveSortable
 });
 });
</script>

Chapter 13

[413]

Save this as sortable11.html. The activate and deactivate events are fired for
each connected list at the start of any sort interaction. Within our callback functions,
$(this) refers to each sortable container. We can easily determine which sortable
list the item originated in using the sender property of the second object, passed to
our function.

When we run the page in a browser, we see that as soon as a sort begins, both of
the sortables are activated, and when the sort ends, both of them are deactivated. If
an item is moved between lists, the message generated by the receive callback is
shown in the following screenshot:

Listing the sortable methods
The sortables component exposes the usual set of methods for making the component
perform actions. Like the selectables component that we looked at before, it also
defines a couple of unique methods not seen in any of the other components. The
following table lists sortables' unique methods:

Method Used to…
cancel Cancel the sort and cause elements to return to their original

positions.
refresh Reload the set of sortables.
refreshPositions Trigger a cache refresh of the set of sortables.
serialize Construct a query string that can be used to send a new sort

order to the server, for further processing or storage.
toArray Serialize the sortables into an array of strings.

Selecting and Sorting with jQuery UI

[414]

Serializing
The serialize and toArray methods are great for storing the new order of the
sortables. Let's see this in action. We will create a series of sortable elements, and
then set Sortable to display their order. This will be updated on screen each time
you move one of the elements around.

Change the underlying markup on the <body> of the page in sortable11.html to
as follows:

<div id="sortablesA" class="ui-widget">
 <div id="sortablesA_1" class="ui-widget-header ui-corner-
all">Sortable 1A</div>
 <div id="sortablesA_2" class="ui-widget-header ui-corner-
all">Sortable 2A</div>
 <div id="sortablesA_3" class="ui-widget-header ui-corner-
all">Sortable 3A</div>
 <div id="sortablesA_4" class="ui-widget-header ui-corner-
all">Sortable 4A</div>
 <div id="sortablesA_5" class="ui-widget-header ui-corner-
all">Sortable 5A</div>
</div>

Then change the final <script> element, so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#sortablesA").sortable({
 stop: function(e, ui) {
 var order = $("#sortablesA").sortable("serialize");
 $("#message").remove();
 $("<p />", {
 id: "message",
 text: order,
 css: { clear:"both" }
 }).appendTo("body");
 }
 });
 });
</script>

Save this as sortable12.html. We've dropped the second set of sortables for this
example and have added id attributes to each of the sortable items in the format of
the name of the parent sortable and a number, separated by an underscore.

Chapter 13

[415]

We use the stop event to execute an anonymous function, after each sort interaction.

Within this function, we store the result of the serialize method in the order
variable, and then display this variable in a new <p> element on the page:

As you can see, the format of the serialized string is quite straightforward. The
sortable items appear in the order that the items appear on the page, and are
separated by an ampersand. Each serialized item is made up of two parts: a hash of
the id attribute of each sortable item followed by an integer representing the item's
new order.

In the previous example, all we do is display the serialized string on the page, but
the string is in the perfect format for use with jQuery's ajax method to pass to a
server for further processing.

The serialize method is also able to accept a configuration object to tailor how the
serialization occurs. The options we can configure are listed in the following table:

Option Default value Used to…
attribute id Specify the attribute to use when parsing each item

in the list of sortables and generating the hash.
connected false Include all connected lists in the serialization.
expression "(.+)[-=_]

(.+)"
Specify the regexp to use to parse the sortable list.

key The first
part of the
id attribute
of each
sortable item

Specify the string to be used as the first part of
each item in the serialized output.

Selecting and Sorting with jQuery UI

[416]

The toArray method works in a similar way to serialize, except that with toArray,
the output is not a string, but an array of strings.

Exploring widget compatibility
In the previous chapter, we saw that both the resizable and the selectable
components worked well with the tabs widget (and we already know how well
the dialog and resizables components go together). The sortable component is also
highly compatible with other widgets. Let's look at a basic example. In a new file in
your text editor, add the following code:

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>Sortable Tabs</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/jquery.ui.mouse.js"></script>
 <script src="development-bundle/ui/jquery.ui.sortable.js">
</script>
 <script src="development-bundle/ui/jquery.ui.tabs.js"> </script>
 <script>
 $(document).ready(function($){
 $("#tabs").tabs().sortable({
 axis: "x",
 items: "li"
 });
 });
 </script>
 </head>
 <body>
 <div id="tabs">

 Sort Tab 1
 Sort Tab 2
 Sort Tab 3

 <div id="0">The first tab panel</div>
 <div id="1">The second tab panel</div>

Chapter 13

[417]

 <div id="2">The third tab panel</div>
 </div>
 </body>
</html>

Save this page as sortable13.html. There is nothing in the code that we haven't
seen before, so we won't go into any great detail about it. Note that only the tabs()
and sortable() methods are called on the same element—the outer containing the
<div> element.

When we run the page in a browser, we should find that the components work in
exactly the way that we want them to. The tabs can be sorted horizontally to any
order, but as the tabs are linked to their panel by href, they will still show the correct
panel, when selected.

Sorting the tabs works on the mousedown event and selecting the tabs works on the
mouseup event, so there are no event collisions and no situations arising where you
want to select a tab, but end up sorting it. The following screenshot shows how the
tabs may appear after sorting:

Adding draggables
When we looked at draggables and droppables, earlier in the book, we saw that
there was a configuration option for draggables called connectToSortable. Let's
take a look at that option now that we've been introduced to the fundamentals of the
sortables component. In this example, we'll create a sortable task list that can have
new tasks dragged into it.

Selecting and Sorting with jQuery UI

[418]

The resulting page will appear as follows:

In a new file in your text editor, add the following code:

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>Sortable</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <link rel="stylesheet" href="css/sortableTasks.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.core.js"></script>
 <script src="development-bundle/ui/jquery.ui.widget.js"></script>
 <script src="development-bundle/ui/jquery.ui.mouse.js"></script>
 <script src="development-bundle/ui/jquery.ui.sortable.js">
</script>

Chapter 13

[419]

 <script src="development-bundle/ui/jquery.ui.draggable.js">
</script>
 </head>
 <body>
 <ul id="drag">
 Click here to add a new task...

 <div id="taskList">
 <ul id="tasks">
 Design new site
 Call client
 Order pizza

 </div>
 </body>
</html>

Save this as sortable14.html. On the page, we have a couple of elements:
the first contains a single item that provides an instruction to the visitor and the
second is the task list. The second list is wrapped in a container <div>, mostly for
styling purposes.

We also use a new stylesheet for this example. Add the following code to a new page
in your text editor:

#drag { padding: 0 0 0 11px; margin: 0; float: left; }
#drag li { font-style: italic; color: #999; }
#drag li input { width: 175px; }
#taskList { width: 250px; height: 400px; clear: both; background:
url(../img/paper.jpg) no-repeat; }
#tasks { width: 170px; padding: 89px 0 0; margin: 0; float: right; }
#tasks li, #drag li { height: 28px; padding-top: 5px; list-style-type:
none; }
#add { display: none; width: 24px; height: 24px; position: absolute;
left: 218px; top: 13px; background: url(../img/add.png) no-repeat; }
#add.down { background: url(../img/down.png) no-repeat; }

Save this as sortableTasks.css in the css folder. Mostly this is just decorative,
superficial stuff for the purposes of the example.

Finally, we can add the script that wires it all up. Add the following <script>
element, after the library resources:

<script>
 $(document).ready(function($){

Selecting and Sorting with jQuery UI

[420]

We first cache a couple of selectors that we'll be using frequently throughout
the script:

 var dragItem = $("#drag li"), addButton = $("#add"), taskItems =
$("#tasks");

We then define and initialize the configuration object for the sortables. Sorting is
restricted to the vertical axis and a callback function specified for the stop event.

Within this function, we hide the add button and reset any text that has been added
to the draggable, then use the option method of the draggable to disable dragging
on the element, so that the text label cannot be dragged into the task list.

Additionally, when we set the disabled option of the draggable, it adds a CSS
framework class that reduces the opacity of the draggable. This is not necessary
for our example, so we also remove this class name:

 taskItems.sortable({
 axis: "y",
 stop: function() {
 addButton.css("display", "none");
 dragItem.text("Click here to add new task...");
 dragItem.draggable("option", "disabled", true);
 dragItem.removeClass("ui-state-disabled");
 }
 });

Following this, we define and initialize the draggable configuration object and set
the connectToSortable option to an id selector that matches the parent sortables
container, and the helper option to clone. The dragging is initially disabled:

 dragItem.draggable({
 connectToSortable: "#tasks",
 helper: "clone",
 disabled: true
 });

We need to create two helper functions: the first to count the number of items in the
list, and the second to work out if the <input> field has any content:

 function countItems(x) {
 return x === taskItems.children().length;
 }

 function addNewItem(y) {
 return y === $("#drag input").val();
 }

Chapter 13

[421]

We add a click handler to the draggable element using jQuery's on() method. When
the draggable is clicked, it checks that there aren't too many tasks in the list
already, and if not, it will create a new <input> field and append it to the in the
first . The hidden add button is also displayed. The visitor can then enter a new
task and make the new task draggable, by clicking on the button:

 dragItem.on("click", function() {
 if (countItems(7)) {
 $("#drag").tooltip({
 content: "too many tasks already!",
 items: "ul"
 });
 } else {
 var input = $("<input />", { id: "newTask" });
 $(this).text("").append(input);
 input.focus();
 addButton.removeClass("down").css("display", "block");
 }
 });

We also add a click handler for the add button that we create, again using jQuery's
on() method. This function checks that the <input> contains some text, and
provided it does, it then gets the text and then removes the text field. The text
is then added to the draggable element, and the is made draggable by
setting the disabled option to false. Finally, the <input> is removed, and the
message and button are set back to their original state.

 addButton.on("click", function(e) {
 e.preventDefault();
 if (!addNewItem("")) {
 dragItem.text($("#newTask").val())
 .draggable("option", "disabled", false);
 $("#drag input").remove();
 addButton.addClass("down").
 attr("title", "drag new task into the list");
 }
 });
 });
</script>

Selecting and Sorting with jQuery UI

[422]

The text box and icon will appear as shown in the following screenshot:

We also add a click handler for the add button that we create, again using jQuery's
on() method. This function checks that the <input> contains some text, and
provided it does, it then gets the text and then removes the text field. The text
is then added to the draggable element, and the is made draggable by
setting the disabled option to false. Finally, the <input> is removed, and the
message and button are set back to their original state.

Summary
We've finished our tour of the interaction components of the library, by looking
at the selectable and sortable components. Similar to the other modules that we
looked at before, both have a wide range of properties and methods that allow us
to configure and control their behavior and appearance in both simple and more
complex implementations.

We started off the chapter with a look at a simple, default implementation of the
selectable with no configuration to see the most basic level of functionality added
by the component.

We first looked at the default implementation of a selectable and then moved on to
look at the configurable options, along the numerous callback properties, which can
be used to perform different actions at different points in an interaction.

Next we looked at how the performance of a page can be improved when there are a
large number of selectables on the page, and how the single unique method exposed
by the component, refresh, is used.

Chapter 13

[423]

Lastly we looked at a fun example that brought together what we had learned
throughout the chapter and combined the selectables component with the tabs
component to create an image viewer capable of handling single or multiple
selections.

We then moved on to look at some of the different elements that can be made
sortable and added some basic styling to the page.

Following this, we looked at the range of configurable options that are exposed by
the sortable API. The list is extensive and provides a wide range of functionality that
can be enabled or disabled with ease.

We moved on to look at the extensive event model used by this component that gives
us the ability to react to different events, as they occur in any sort operation, initiated
by the visitor.

Connected lists offer the ability to be able to exchange sortable items between lists
or collections of sortables. We saw the additional options and events that are used
specifically with connected sortable lists.

In the last part of the chapter, we looked at the methods available for use with the
sortables component, and focused on the highly useful serialize method, and also
had a quick look at its compatibility with other members of the jQuery UI library
in the form of the sortable tabs example. We've now looked at all of the current
interaction components found in the library. In the next and final chapter, we'll look
at all of the different animation effects that jQuery UI brings to the table.

UI Effects
We've so far looked at a range of incredibly useful widgets and interaction helpers.
All are easy to use, but at the same time are powerful and highly configurable. Some
have had their subtle nuances, which have required consideration and thought
during their implementation.

The effects provided by the library, on the other hand, are for the most part
extremely compact, with very few options to learn and no methods at all. We
can use these effects quickly and easily, with minimum configuration.

The effects that we'll be looking at in this chapter are as follows:

• Highlight
• Bounce
• Shake
• Transfer
• Scale
• Explode
• Puff
• Pulsate
• Slide
• Blind
• Clip
• Fold

UI Effects

[426]

Using the core effects file
Like the individual components themselves, the effects require the services of a
separate core file. It provides essential functionality to the effects, such as creating
wrapper elements and controlling the animations. Most, but not all, of the effects
have their own source files, which build on the core foundation to add functionality
specific to the effect.

All we need to do to use an effect is include the core file (jquery.ui.effect.js)
in the page, before the effect's source file. However, unlike the jquery.ui.core.js
file, the jquery.ui.effect.js file has been designed to be used, in part,
completely standalone.

Using color animations
If we use the core effect file on its own, we can take advantage of the color
animations. This includes changing the background color of an element to another
color (and not just a snap change, but a smooth morphing of one color into another),
class transitions, and advanced easing animations.

jQuery UI 1.10 uses Version 2.0.0 of the jQuery Color library as
the basis for much of the color support in the library. If you would
like to learn more about jQuery Color, then visit the project page at
https://github.com/jquery/jquery-color.

The core effects plugin within jQuery UI adds the ability to animate color properties
using rgb(), rgba(), hex values, or even color names such as aqua to jQuery Core.
All we need to do is include the jQuery UI effects core file and jQuery's .animate()
will gain support for colors.

Let's take a look at how to create color animations. First, create the following
new page:

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>Color Animations</title>
 <link rel="stylesheet" href="css/effectColor.css">
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.effect.js"></script>
 </head>
 <script>
 <body>

Chapter 14

[427]

 <form action="#">
 <div>
 <label for="name">Name: </label>
 <input id="name" type="text">
 </div>
 <div>
 <label for="age">Age: </label>
 <input id="age" type="text">
 </div>
 <div>
 <label for="email">Email: </label>
 <input id="email" type="text">
 </div>
 <button type="submit">Submit</button>
 </form>
 </body>
</html>

Save the page as effectColor.html. In the last <script> block, add the following
code, which will provide the visual feedback for each field:

 $(document).ready(function($){
 function Validate(fieldname, response) {
 var bgColor, brdrColor;

 switch(response) {
 case "invalid" :
 bgColor = "#ff9999";
 brdrColor = "#ff0000";
 break;
 case "valid" :
 bgColor = "#ccffcc";
 brdrColor = "#00ff00";
 break;
 }

 fieldname.animate({
 backgroundColor: bgColor,
 borderTopColor: brdrColor,
 borderRightColor: brdrColor,
 borderBottomColor: brdrColor,
 borderLeftColor: brdrColor
 });
 }

 $("form").submit(function() {
 ($("#name").val().length == 0) ? Validate($("#name"),
"invalid") : Validate($("#name"), "valid");

UI Effects

[428]

 ($("#age").val().length == 0) ? Validate($("#age"), "invalid")
: Validate($("#age"), "valid");
 ($("#email").val().length == 0) ? Validate($("#email"),
"invalid") : Validate($("#email"), "valid");
 });
 });

As you can see, all we need is jQuery and the jquery.ui.effect.js file to create
attractive color transitions. On the page, we have a simple <form> element enclosing
three container elements and three sets of the <label> and <input> elements.
The animate method is a part of jQuery rather than jQuery UI specifically, but the
jquery.ui.effect.js file extends jQuery's animate method by allowing it to
specifically work with colors and classes.

When the Submit button is clicked, we simply use the animate method to apply a
series of new CSS properties to the target elements based on whether the text inputs
have been filled out or not. If they have been completed, we color them green, and
if not, we color them red. We also use a basic stylesheet in this example. In another
new page in your text editor, add the following basic selectors and rules:

div { margin-bottom: 5px; }
label { display: block; width: 100px; float: left; }
input { border: 1px solid #000000; }

Save this as effectColor.css in the css folder. When we view this page in our
browser, we should see that any fields that are left blank smoothly turn red when
the Submit button is clicked, while fields that are not empty smoothly turn green.
However, it's most attractive when a field changes from red to green.

The following screenshot shows the page once the Submit button has been clicked:

Chapter 14

[429]

A key point to note is that we've used backgroundColor as
the attribute in our code; the reason for this is that jQuery is not
able to animate the background-color CSS style by default,
unless we use the jQuery Color plugin. Let's take a look at these
attributes in more detail.

The style attributes that color animations can be used on are as follows:

• backgroundColor

• borderTopColor

• borderRightColor

• borderBottomColor

• borderLeftColor

• color

• outlineColor

Colors may be specified using either RGB, hexadecimal (in the format #xxx[xxx]),
or even standard color names. It is recommended that RGB or hexadecimal colors be
used where possible, as browsers do not always recognize color names consistently.

The default build of the Color plugin only includes support for
basic color names. If you need to use other color names, you
can download a version that includes support for this from
https://github.com/jquery/jquery-color#readme.

Using class transitions
In addition to animating individual color attributes, jquery.ui.effect.js also
gives us the powerful ability to animate between entire classes. This allows us to
switch styles smoothly and seamlessly without sudden jarring changes. Let's look at
this aspect of the file's use in the following example.

Change the <link> tag in the <head> element of effectColor.html to point to a
new stylesheet:

<link rel="stylesheet" href="css/effectClass.css">

UI Effects

[430]

Then change the final <script> element so that it appears as follows:

<script>
 $(document).ready(function($){
 var obj;

 function showValid(obj) {
 (obj.val().length == 0) ? null : obj.switchClass("error",
"pass", 2000);
 }

 function showInvalid(obj) {
 (obj.val().length != 0) ? null : obj.switchClass("pass",
"error", 2000);
 }

 function showEither(obj) {
 (obj.val().length == 0) ? obj.addClass("error", 2000) : obj.
addClass("pass", 2000);
 }

 $("form").submit(function(e) {
 $("input").each(function() {
 var cssStyle = $(this).attr('class');
 if (cssStyle == "error") { showValid($(this)); };
 if (cssStyle == "pass") { showInvalid($(this)); }
 if (cssStyle == null) { showEither($(this)); }
 })
 });
 });
</script>

Save this as effectClass.html. The jquery.ui.effect.js file extends the jQuery
class API by allowing us to specify a duration over which the new classname should
be applied, instead of just switching it instantly. We can also specify an easing effect.

The switchClass method of the jquery.ui.effect.js file is used when the fields
already have one of the classnames and need to change to a different classname. The
switchClass method requires several arguments; we specify the classname to be
removed, followed by the classname to be added. We also specify duration as the
third argument.

Essentially, the page functions as it did before; although, using this type of class
transition allows us to use non-color-based style rules as well, so we can adjust
widths, heights, or many other style properties if we want to. Note that background
images cannot be transitioned in this way.

Chapter 14

[431]

As in the previous example, we have a stylesheet attached. This is essentially the
same as in the previous example, except with some styles for our two new classes.

Add the following selectors and rules to the bottom of effectColor.css:

.error { border: 1px solid #ff0000; background-color: #ff9999; }

.pass { border: 1px solid #00ff00; background-color: #ccffcc; }

Save the updated file as effectClass.css in the css folder.

Advanced easing
The animate method found in standard jQuery has some basic easing capabilities
built in, but for more advanced easing, you have to include an additional easing
plugin (ported to jQuery by GSGD).

See the easing plugin's project page for further information at
http://gsgd.co.uk/sandbox/jquery/easing/.

The jquery.ui.effect.js file has all of these advanced easing options built in, so
there is no need to include additional plugins. We won't be looking at them in any
real detail in this section; however, we will be using them in some of the examples
later on in the chapter, in the section, Scaling elements on a page.

Highlighting specified elements
The highlight effect temporarily applies a light-yellow coloring to any element that
it's called on (the effect is also known as Yellow Fade Technique (YFT)). Let's put
a simple example together, so we can see the effect in action:

<link rel="stylesheet" href="css/effectHighlight.css">

The <script> element refers to the effect's source file so that it uses the jquery.
effects.highlight.js file:

<script src="development-bundle/ui/jquery.ui.effect-highlight.js">
</script>

UI Effects

[432]

Then remove the <form> element from the <body> element of the page and replace it
with the following markup:

<h1>Choose the correct download below:</h1>

<button id="hint">Hint</button>

Lastly, change the final <script> element so that ends up as follows:

<script>
 $(document).ready(function($){
 var ua = navigator.userAgent.split(" ");
 $("#hint").click(function() {
 var el = ua[1].toLowerCase().substring(1);
 $("#" + el).effect("highlight");
 });
 });
</script>

Save this page as effectHighlight.html. The code that invokes the highlight effect
takes the same familiar form as other library components. The effect method is
called and the actual effect is specified as a string argument to the method.

We simply sniff the userAgent string and see if a search for Windows, Mac, or
Linux returns a positive integer. If a positive integer is found, the userAgent string
contains the search word; if -1 is returned, the search term was not found.

We also need to create the new stylesheet, not for the effect to work, but just tidy
things up a little. In a new page in your text editor, add the following selectors
and rules:

a { padding: 10px; float: left; }
a img { display: block; border: none; }
button { display: block; position: relative; top: 10px; clear: both; }

Save this file as effectHighlight.css in the css folder.

Chapter 14

[433]

View the example and click the Hint button. The icon for whichever operating
system you are using should be highlighted briefly:

While our example may seem a little contrived, it is easy to see the potential for this
effect as an assistance tool on the frontend. Whenever there is a sequence of actions
that needs to be completed in a specific order, the highlight effect can instantly give
the visitor a visual cue as to the step that needs to be completed next.

Adding additional effect arguments
Each of the effect methods, as well as the argument that dictates which effect
is actually applied, can take up three additional arguments that control how the
effect works. All of these arguments are optional, and consist of the following
(in the listed order):

• An object containing additional configuration options
• An integer representing in milliseconds, the duration of the effect, or a string

specifying one of slow, normal, or fast
• A callback function that is executed when the effect ends

The highlight effect has only one configurable option that can be used in the object
passed as the second argument, and that is the highlight color.

UI Effects

[434]

Let's add some of these additional arguments into our highlight example to clarify
their usage. Change the call to the effect method in the final <script> element in
effectHighlight.html so that it appears as follows:

$(el).effect("highlight", {}, function() {
 $("<p />", {
 text: "That was the highlight"
 }).appendTo("body").delay(2000).fadeOut();
});

Save this as effectHighlightCallback.html. Perhaps the most striking feature of
our new code is the empty object passed as the second argument. In this example, we
don't use any additional configurable options, but we still need to pass in the empty
object in order to access the third and fourth arguments.

The callback function, passed as the third argument, is perhaps the least useful
callback in the history of JavaScript, but it does serve to illustrate how easy it is to
arrange additional post-animation code execution following an effect.

Bouncing
Another simple effect we can use with little configuration is the bounce effect.
To see this effect in action change the contents of the <body> element in
effectHighlight.html to the following:

<div id="ball">

</div>

We also need to use the source file for the bounce effect; change the reference to the
jquery.ui.effect-highlight.js file, so that it points to the bounce.js source file:

<script src="development-bundle/ui/jquery.ui.effect-bounce.js">
</script>

Save this as effectBounce.html. We need to add a tiny bit of styling to really see the
effect in full, but it's probably not worth creating a whole new stylesheet so simply
replace the <link> element in the <head> element of the page with the following:

<style>
 #ball { position: relative; top: 150px; }
</style>

Chapter 14

[435]

Finally, change the final <script> element so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#ball").click(function() {
 $(this).effect("bounce", { distance: 140 });
 });
 });
</script>

Using the bounce effect in this example shows how easy it is to add this simple
but attractive effect. We configure the distance option to set how far the element
travels. Other options that can be configured are listed in the following table:

Option Default value Use
direction "up" Sets the direction of the bounce

distance 20 Sets the distance in pixels of the first bounce
times 5 Sets the number of times the element should bounce

When you run the example you will notice that the bounce effect has an ease-out
easing feature built into it so the distance of the bounce will automatically decrease
as the animation proceeds.

The default easing effect used here is swing; this is one of many easings
features that are available for use within the library. Easing functions
control the speed at which an animation proceeds at different points
within the animation; you can see the full list of easings features
available at http://api.jqueryui.com/easings/.

One thing to note is that with most of the different effects, including the bounce
effect (but not the highlight effect we looked at earlier), the effect is not actually
applied to the specified element. Instead a wrapper element is created and the
element targeted by the effect is appended to the inside of the wrapper. The actual
effect is then applied to the wrapper.

This is an important detail to be aware of, because if you need to manipulate the
element that has the effect applied to it in mid-animation, then the wrapper will
need to be targeted instead of the original element. Once the effect's animation has
completed, the wrapper is removed from the page.

UI Effects

[436]

Shaking an element
The shake effect is very similar to the bounce effect, but with the crucial difference of
not having any built-in easing. So, the targeted element will shake the same distance
for the specified number of times, instead of lessening each time (although it will
come to a smooth stop at the end of the animation).

Let's change the previous example so that it uses the shake effect instead of the
bounce effect. Change effectBounce.html so that it uses the shake.js source file
instead of the bounce source file:

<script src="development-bundle/ui/jquery.ui.effect-shake.js">
</script>

Then change the click-handler in the final <script> element at the bottom of the
<body> element so that it appears as follows:

$("#ball").click(function() {
 $(this).effect("shake", { direction: "up" }, 100);
});

Save this as effectShake.html. This time we've made use of the direction
configuration option and the duration argument. The configuration option controls
the direction of the shake. We set this to override the default setting for this option,
which is left. The duration we use speeds up the animation.

This effect shares the same options as the bounce effect, although the defaults are set
slightly differently. The options are listed in the following table:

Option Default value Uses
direction "left" Sets the direction of the shake
distance 20 Sets the distance of the shake in pixels
times 3 Sets the number of times the element should shake

Transferring an element's outline
The transfer effect is different from others, in that it doesn't directly affect the
targeted element. Instead, it transfers the outline of a specified element to another
specified element. To see this effect in action, change the <body> element of
effectShake.html so that it contains the following elements:

<div id="container">
 <div id="basketContainer">
 <div id="basket"></div>
 <p>Basket total: 0</p>

Chapter 14

[437]

 </div>
 <div id="productContainer">

 <p>BFG GTX 280 OC 1GB GDDR3 Dual DVI HDTV Out PCI-E Graphics
Card</p>
 <p id="price">Cost: $350</p>

 </div>
 <div id="purchase"><button id="buy">Buy</button></div>
</div>

Save this as effectTransfer.html. We've created a basic product listing; when the
Buy button is clicked, the transfer effect will give the impression of the product being
moved into the basket. To make this happen, change the final <script> element so
that it contains the following code:

<script>
 $(document).ready(function($){
 $("#buy").click(function() {
 $("#productContainer img").effect("transfer", {
 to:"#basket"
 }, 750, function() {
 var currentTotal = $("#total").text(),
 numeric = parseInt(currentTotal, 10);
 $("#total").text(numeric + 1);
 });
 });
 });
</script>

Of course, a proper shopping cart application would be exponentially more complex
than this, but we do get to see the transfer effect in all its glory. Don't forget to
update the effect's source file:

<script src="development-bundle/ui/jquery.effects.transfer.js">
</script>

We also need some CSS for this example, so create the following new stylesheet:

body { font-family: "Lucida Grande",Arial,sans-serif; }
#container { width: 707px; margin: 0 auto; }
#productContainer img { width: 92px; height: 60px; border: 2px solid
#000000; position: relative; float: left; }
#productContainer p { width: 340px; height: 50px; padding: 5px;
border: 2px solid #000; border-left: none; margin: 0; font-family:
Verdana; font-size: 11px; font-weight: bold; float: left; }

UI Effects

[438]

p#price { height: 35px; width: 70px; padding-top: 20px; float: left; }
#purchase { height: 44px; width: 75px; padding-top: 16px; border: 2px
solid #000; border-left: none; float: left; text-align: center; }
#basketContainer { width: 90px; margin-top: 100px; float: right; }
#basketContainer p { width: 100px; }
#basket { width: 65px; height: 50px; position: relative; left: 13px;
background: url(img/shopping.png) no-repeat; }
.ui-effects-transfer { border: 2px solid #66ff66; }

Save this as effectTransfer.css in the css folder. The key rule in our new stylesheet
is the one that targets the element which has the class as ui-effects-transfer.

This element is created by the effect and together with our styling produces the green
outline that is transferred from the product to the basket.

Run the file in your browser. I think you'll agree that it's a nice effect which would
add value to any page that it was used on. Here's how it should look while the
transfer is occurring:

The transfer effect has just two configurable options, one of which is required and
that we have already seen. For reference, both are listed in the following table:

Option Default value Use
className "ui-effects-transfer" Applies a custom classname to the effect

helper element.
to "none" Sets the element the effect will

be transferred to. This property is
mandatory.

Chapter 14

[439]

The four effects that we've looked at so far all have one thing in common–they can
only be used with the effect method. The remaining effects can be used not only
with the effect method, but also with jQuery's toggle and the show/hide methods.

Let's take a look.

Scaling elements on a page
The scale effect is highly configurable and is used to shrink an element. It is very
effective when used to hide elements. In this example we'll use the hide() method
to trigger the effect, instead of using the effect method.

We'll use a few of the CSS framework classes in this example, as well as a few
custom styles; so add two new <link> elements to the <head> element of
effectTransfer.html:

<link rel="stylesheet" href="development-bundle/themes/redmond/jquery.
ui.all.css">
<link rel="stylesheet" href="css/effectScale.css">

Then, replace the underlying markup in the <body> element with the following:

<div class="ui-widget ui-widget-content ui-corner-all">
 <div class="ui-widget-header ui-corner-all">
 A dialog box

 Close

 </div>
 <div class="content">Close the dialog to see the scale effect</div>
</div>

Don't forget to change the <script> element for the effect, to the scale effect's
source file:

<script src="development-bundle/ui/jquery.ui.effect-scale.js">
</script>

Finally, replace the last <script> element, so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#close").click(function(e) {
 $("#close").click(function(e) {
 e.preventDefault();
 $(this).closest(".ui-widget").hide("scale", {}, 900);

UI Effects

[440]

 });
 });
 });
</script>

Save the new page as effectScale.html. The custom stylesheet we use is
as follows:

.ui-widget { padding: 3px; width: 300px; }

.ui-widget-header, .content { padding: 5px 10px; }

.ui-widget-header a { margin-top: 2px; float: right; }

Save this file as effectScale.css in the css folder. These styles are used to give
the example a vaguely dialog-like appearance.

In the script, we simply add a click handler for the close icon and call the effect()
method on the outer container of the dialog box. An empty object is passed as the
second argument to the method, and a relatively long duration is passed as the third
argument, as this effect proceeds quite rapidly. The following screenshot shows the
effect in action:

Using the hide() method instead of the effect() method is advantageous to us in
this example, because we want the dialog box to remain hidden after the effect has
completed. When the effect() method is used instead, bits of the widget remain
visible at the end of the animation.

When should the percent option be configured?
The percent configuration option must be configured when
using the effect() method in conjunction with the scale effect.

Chapter 14

[441]

There are several configuration options which can be used with scale; these are as
listed in the following table:

Option Default value Use
direction "both" Sets the direction to scale the element in. May

be a string specifying horizontal, vertical, or
both.

from {} Sets the starting height and width of the
element to be scaled.

origin ["middle","center"] Sets the vanishing point, used with show /
hide animations.

percent 0 Sets the end size of the scaled element.

Exploding elements on a page
The explosion effect is truly awesome. The targeted element is literally exploded into
a specified number of pieces, before disappearing completely. It's an easy effect to
use and has few configuration properties, but the visual impact of this effect is huge,
giving you a lot of effect in return for very little code. Let's see a basic example.

Create the following new page:

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8">
 <title>Explode</title>
 <link rel="stylesheet" href="development-bundle/themes/redmond/
jquery.ui.all.css">
 <style>
 body { width: 200px; margin-left: auto; margin-right: auto; }
 </style>
 <script src="js/jquery-2.0.3.js"></script>
 <script src="development-bundle/ui/jquery.ui.effect.js"></script>
 <script src="development-bundle/ui/jquery.ui.effect-explode.js">
</script>
 </head>
 <script>
 $(document).ready(function($){
 $("#theBomb").click(function() {
 $(this).hide("explode");
 });
 });

UI Effects

[442]

 </script>
 <body>
 <p>Click the grenade to pull the pin!</p>

 </body>
</html>

Save this as effectExplode.html. As you can see, the code is extremely simple and
can be used completely out of the box with no additional configuration. This effect
has only one configurable property, which is the pieces property, and it determines
how many pieces the element is exploded into. The default is nine. The effect works
equally as well with the effect() method as it does with the hide() method.

Once the specified element has been exploded, it will be hidden from view by having
its style attribute set to display: none. This is the default behavior. However,
it will still remain in the DOM of the page. The following screenshot shows the
explosion in progress:

Physicists sometimes speculate as to why the arrow of time seems to only point
forward. They invariably ask themselves philosophical questions like "Why do we
not see grenades spontaneously forming from a large cloud of debris?" (Actually
the object is usually an egg, but I don't think an egg-based example would have had
quite the same impact!)

Chapter 14

[443]

jQuery UI cannot help our understanding of entropy, but it can show us what
spontaneously reassembling of a grenade might look like. We'll need to hide the
tag in order to show it. The easiest way to do this is with an inline style attribute:

Then, change the final <script> element so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#theBomb").show("explode");
 });
</script>

Save this variant as effectExplodeShow.html. This time we use the show() method
instead of the hide() method to trigger the animation, which occurs once the page
has loaded.

The animation is the same, except that it is shown in reverse and this time the
grenade is not hidden from view once the animation ends. Like other effects,
explode can also make use of specific durations and callback functions.

Creating a puff effect
Similar to the explode effect, but slightly more subtle is the puff effect, which
causes an element to grow slightly before fading away. Like explode, there are
few configuration options to concern ourselves with.

Consider a page that has AJAX operations occurring on it. It's useful to provide a
loading image that shows the visitor that something is happening. Instead of just
hiding an image like this when the operation has completed, we can puff it out of
existence instead.

Remove the <p> element and change the element from the previous example,
so that it points to a new image:

Then change the effect's source file to the scale effect:

<script src="development-bundle/ui/jquery.ui.effect-scale.js">
</script>

UI Effects

[444]

Finally, change the last <script> element, so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#loader").click(function() {
 $(this).hide("puff");
 });
 });
</script>

Save this as effectPuff.html. We're actually not detecting whether a given process
has finished loading in this example. It would require too much work just to see
the effect we're looking at. Instead, we tie the execution of the effect into a simple
click-handler.

You'll notice that we used the jquery.ui.effect-scale.js source file for this effect.

The puff effect is the only effect that does not have its own source file, and instead it's
a part of the very closely related scale effect's source file.

Like the explode effect that we looked at in the last section, this effect has just one
configuration option that can be passed in an object as the second argument of the
effect method. This is the percent option and controls the size the image is scaled
up to. The default value is 150 percent. Like the explode effect, the target element
is hidden from view once the animation ends. This happens whether effect() or
hide() is used.

The effect stretches the targeted element (and its children, if it has any), while at the
same time reducing its opacity. It works well on proper images, background colors,
and borders, but you should note that it does not work so well with background
images specified by CSS. Nevertheless, it's a great effect.

Chapter 14

[445]

The following screenshot shows it in action:

Working with the pulsate effect
The pulsate effect is another effect that works with the opacity of a specified element.
This effect reduces the opacity temporarily, a specified number of times, making the
element appear to pulsate.

In the following basic example, we'll create a simple countdown time that counts
down from 15. When the display reaches 10 seconds, it will begin to flash red. In
effectPuff.html, change the link in the <head> element of the page to point to a
new stylesheet:

<link rel="stylesheet" href="css/effectPulsate.css">

Then remove the loading element from the page and add the following
element in its place:

<div id="countdown">15</div>

Next, change the source file of the effect so that the jquery.ui.effect-pulsate.js
file is used:

<script src="development-bundle/ui/jquery.ui.effect-pulsate.js">
</script>

UI Effects

[446]

Finally, remove the existing last <script> element, and replace it with the following:

<script>
 $(document).ready(function($){
 var age = 15, countdown = $("#countdown"),
 adjustAge = function() {
 countdown.text(age--);
 if (age === 0) {
 clearInterval(timer);
 } else if (age < 10) {
 countdown.css({
 backgroundColor: "#ff0000",
 color: "#fff"
 }).effect("pulsate", { times: 1 });
 }
 },
 timer = setInterval(function() { adjustAge() }, 1000);
 });
</script>

Save this as effectPulsate.html. The page itself contains just a simple <div>
element with the text 15 inside it. The code first sets a counter variable and then
caches a selector for the <div> element. We then define the adjustAge() function.

This function first decreases the text content of the countdown element and at the
same time reduces the value of the counter variable by one. It then checks whether
the counter variable has reached zero yet; if yes, it clears the interval we are about
to set.

If the counter variable is greater than 0 but less than 11, the function applies a
background color of red to the element and white to the element's text content,
and then runs the pulsate effect.

We use the times configuration option to specify how many times the element
should pulsate. As we'll be executing the method once every second, we can set
this to just pulsate once each time. This is the only configurable option.

After our adjustAge function, we start the interval using JavaScript's setInterval
function. This function will repetitively execute the specified function after the
specified interval, which in this example is 1000 milliseconds, or 1 second. We avoid
using the window object by using an anonymous function to call our named function.

Chapter 14

[447]

The new stylesheet is very simple and consists of the following code:

#countdown { width: 100px; border: 1px solid #000; margin: 10px auto
0; font-size: 60px; text-align: center; }

Save this in the css folder as effectPulsate.css.

Adding the drop effect to elements
The drop effect is simple. Elements appear to drop off (or onto) the page, which is
simulated by adjusting the element's position and opacity values.

This effect exposes the following configurable options:

Option Default value Use
direction "left" Sets the direction of the drop
distance The outer width or height of

the element (depending on
the direction) divided by 2

Sets the distance the element drops

easing n one Sets the easing function used during the
animation

mode "hide" Sets whether the element is hidden or
shown

There are many situations in which the drop effect would be useful, but the one that
instantly springs to mind is when creating custom tooltips. We can easily create a
tooltip that appears when a button is clicked, but instead of just showing the tooltip,
we can drop it onto the page. We'll use the button widget and the position utility in
this example, as well as the effect.

Add a link to the CSS framework file and change the stylesheet link in the <head>
element of effectPulsate.html:

<link rel="stylesheet" href="development-bundle/themes/redmond/jquery.
ui.all.css">
<link rel="stylesheet" href="css/effectDrop.css">

Remove the countdown <div> element from the page and add the following
element instead:

 Click me!

UI Effects

[448]

Now we need to change the effect's source file and add the source files for the
position and button widgets:

<script src="development-bundle/ui/jquery.ui.effect-drop.js">
</script>
<script src="development-bundle/ui/jquery.ui.core.js">
</script>
<script src="development-bundle/ui/jquery.ui.widget.js">
</script>
<script src="development-bundle/ui/jquery.ui.position.js">
</script>
<script src="development-bundle/ui/jquery.ui.button.js">
</script>

Lastly, change the final <script> element, so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#button").button().click(function() {
 var button = this, tip = $("", {
 id: "tip",
 text: button.title
 }),
 tri = $("", {
 id: "tri"
 }).appendTo(tip);
 tip.appendTo("body").position({
 of: button,
 my: "right-35 center",
 at: "left center",
 offset: "-30 0"
 });
 tip.show("drop", { direction: "up" }, function() {
 $(this).delay(1000).fadeOut();
 });
 });
 });
</script>

Save this file as effectDrop.html. When the button is clicked, we first store a
reference to the DOM node of the button. We then add a configuration object for
the position utility, in order to position our tooltip to the right of the button.

Chapter 14

[449]

We then create a new element to use as the tooltip, which has its text content
set to the title text of the button. We also create another element used to create a
triangular CSS shape to give the tooltip a pointer. This element is appended to
the tooltip.

Once created, the tooltip is appended to the <body> element of the page and is then
shown using the drop effect. The direction configuration option is used to make
the tooltip appear to drop down; we have to specify the opposite direction here,
because our tooltip is absolutely positioned.

There is also some minimal CSS required for this example, in addition to the styles
provided by the CSS framework, to style the tooltip. Create the following stylesheet:

#tip { display: none; padding: 10px 20px 10px 10px;
position: absolute; background-color: #cecece; }
#tri { border-top: 20px solid transparent; border-right: 30px solid
#cecece; border-bottom: 20px solid transparent; position: absolute;
left:- 30px; top: 0; }

Save this in the css folder as effectDrop.css. The styling here is purely for aesthetics.

When you run the file in your browser, you should see your tooltip, as in the
following screenshot:

Implementing the sliding effect
The remaining effects of the jQuery UI library all work by showing and hiding
elements in different ways, rather than using opacity like most of the effects we
have already looked at.

The slide effect is no exception and shows (or hides) an element by sliding it into
(or out of) view. It is similar to the drop effect that we just looked at. The main
difference is that it does not use opacity.

UI Effects

[450]

The slide effect contains the following configuration options:

Option Default value Use
direction "left" Sets the direction of the slide
distance The outer width or height of the

element (depending on the direction)
Sets the distance the element
slides

easing none Sets the easing function used
during the animation

mode "show" Sets whether the element is
hidden or shown

These are the same configuration options used by the drop effect that we looked at in
the previous example, except that some of the default values are different.

For our next example, we can create exactly this kind of functionality. In
effectDrop.html, change the <link> element in the <head> element of the
page from effectDrop.css to effectSlide.css:

<link rel="stylesheet" href="css/effectSlide.css">

Then remove the <a> element from the <body> element of the page and add the
following HTML in its place:

<aside id="basket" class="ui-widget">
 <h1 class="ui-widget-header ui-corner-all">
 Basket
 <a id="toggle" title="Show basket contents" class="ui-icon ui-
icon-circle-triangle-s" href="#">
 Open

 </h1>
 <div class="ui-widget-content ui-corner-bottom">

 <h2>Product name</h2>
 <h3>Brief descriptive subtitle</h3>
 £xx.xx

 <h2>Product name</h2>
 <h3>Brief descriptive subtitle</h3>
 £xx.xx

Chapter 14

[451]

 <h2>Product name</h2>
 <h3>Brief descriptive subtitle</h3>
 £xx.xx

 </div>
</aside>

The outer element in this collection is <aside>, which is the perfect element for a
mini-basket widget that sits in the right column of a site. Within this element, we
have a <h1> element that serves as the heading for the basket. The heading contains
a link, which will be used to show or hide the contents of the basket. The contents of
the basket will consist of an unordered list of products within a container <div>.

Don't forget to change the <script> element for the effect's source file to use
jquery.ui.effect-slide.js, and remove the <script> files for jquery.ui.core.
js, jquery.ui.widget.js, jquery.ui.position.js, and jquery.ui.button.js:

<script src="development-bundle/ui/jquery.ui.effect-slide.js">
</script>

The final <script> element will need to be changed to the following code:

 <script>
 $(document).ready(function($){
 $("#toggle").on("click", function(e) {
 var slider = $("#basket").find("div"),
 header = slider.prev();
 if (!slider.is(":visible")) {
 header.addClass("ui-corner-top")
 .removeClass("ui-corner-all");
 }
 slider.toggle("slide", {
 direction: "up"
 }, "slow", function() {
 if (slider.is(":visible")) {
 header.find("a").switchClass("ui-icon-circle-triangle-s",
"ui-icon-circle-triangle-n");
 } else {
 header.switchClass("ui-corner-all", "ui-corner-top");
 header.find("a").switchClass("ui-icon-circle-triangle-n",
"ui-icon-circle-triangle-s");

UI Effects

[452]

 }
 });
 });
 });
 </script>

Save this as effectSlide.html. All of the functionality resides within a clickhandler,
which we attach to the icon in the basket header. When this element is clicked, we first
initialize the slider and header variables, as these are the elements that we will be
manipulating.

We then check whether the slider (which is the basket contents container) is
hidden; if it is hidden, we know that it is about to be opened and so remove the
rounded corners from the bottom of the header. This is so that the slider element
sits flush up to the bottom of the header, even while it is sliding open.

We then use jQuery's toggle() method to call the effect, which we specify using
the first argument of the method. We then set the configuration option, direction,
in an object passed as the second argument. The duration of the animation is
lengthened using the string slow as the third argument, and an anonymous callback
function is used as the fourth argument. This function will be executed at the end of
the slide animation.

Within this function, we check the state of the slider to see if it is hidden or open. If
it is open at the end of the animation, we remove the border from the bottom of the
header and then change the icon in the header, so that it points up to indicate that
the basket can be closed by clicking on the icon again.

If the slider is now closed, we add the bottom border and rounded corners to the
header once again, and change the icon back to an arrow pointing down.

We also use a little CSS in this example. Create the following stylesheet:

#basket { width: 380px; float: right; }
#basket h1 { padding: 5px 10px; margin: 0; }
#basket h1 a { float: right; margin-top: 8px; }
#basket div { display: none; }
#basket ul { margin: 0; padding: 0; list-style-type: none; }
#basket li { padding: 10px; border-bottom: 1px solid #aaa; }
#basket li:last-child { border-bottom: none; }
#basket li:after { content: ""; display: block; width: 100%; height:
0; visibility: hidden; clear: both; }
#basket img { float: left; height: 75px; margin: 2px 10px 0; width:
105px; }
#basket h2 { margin: 0 0 10px; font-size: 14px; }
#basket h3 { margin: 0; font-size: 12px; }
#basket span { margin-top: 6px; float: right; }

Chapter 14

[453]

Save this as effectSlide.css in the css folder. We don't need much CSS in this
example, because we are using the CSS framework classes.

The effect in progress should appear as in the following screenshot:

In this example, we could easily just use jQuery's native slideToggle() method; the
main benefit of using jQuery UI's slide effect is that we can also slide left or right.

Using easing
As mentioned earlier that the jquery.ui.effect.js file had the built-in ability to
seamlessly use easing with the effects. Let's see how easy this is to achieve. Change
the last <script> element in effectSlide.html, so that it appears as follows:

<script>
 $(document).ready(function($){
 $("#toggle").on("click", function(e) {
 var slider = $("#basket").find("div"),
 header = slider.prev(),
 easing = (slider.is(":visible")) ?
 "easeOutQuart" :
 "easeOutBounce";
 if (!slider.is(":visible")) {

UI Effects

[454]

 header.addClass("ui-corner-top")
 .removeClass("ui-corner-all");
 }
 slider.toggle("slide", {
 direction: "up",
 easing: easing
 }, "slow", function() {
 if (slider.is(":visible")) {
 header.find("a").switchClass("ui-icon-circle-triangle-s",
"ui-icon-circle-triangle-n");
 } else {
 header.switchClass("ui-corner-all", "ui-corner-top")
 header.find("a").switchClass("ui-icon-circle-triangle-n",
"ui-icon-circle-triangle-s");
 }
 });
 });
 });
</script>

Save this as effectsSlideEasing.html. See how easy that was? All we need to
do is add the easing option within the effect's configuration object and define one
or more of the easing methods as the option value.

In this example, we specify a different easing method for each toggle state by setting
a variable which uses the JavaScript ternary condition to set an easing function,
depending on whether the slider is visible or not.

When the basket slides down, it bounces slightly at the end of the animation with
easeOutBounce. When it slides back up, it will gradually slow down over the course
of the animation using easeOutQuart.

The full range of easing methods, which we can use with any of the
effects are shown on an excellent page on the jQueryUI site and can be
seen at http://jqueryui.com/demos/effect/easing.html.

Understanding the blind effect
The blind effect is practically the same as the slide effect. Visually, the element
appears to do the same thing, and the two effects' code files are also extremely
similar. The main difference between the two effects that we need to worry about is
that with this effect we can only specify the axis of the effect, not the actual direction.

Chapter 14

[455]

The blind effect has the following configuration options:

Option Default value Use
direction "vertical" Sets the axis of motion
easing none Sets the easing function used during the animation
mode "hide" Sets whether the element is hidden or shown

The direction option that this effect uses for configuration only accepts the values
horizontal or vertical. We'll build on the last example to see the blind effect in
action. Change the <script> resource for the blind effect in effectSlide.html, so
that it refers to the jquery.ui.effect-blind.js file:

<script src="development-bundle/ui/jquery.ui.effect-blind.js">
</script>

Now change the toggle() method, so that it uses the blind effect, and change the
value of the direction configuration option:

slider.toggle("blind", {
 direction: "vertical"
}, "slow", function() {
 if (slider.is(":visible")) {
 header.css("borderBottomWidth", 0).find("a")
 .addClass("ui-icon-circle-triangle-n")
 .removeClass("ui-icon-circle-triangle-s");
 } else {
 header.css("borderBottomWidth", 1)
 .addClass("ui-corner-all")
 .removeClass("ui-corner-top").find("a")
 .addClass("ui-icon-circle-triangle-s")
 .removeClass("ui-icon-circle-triangle-n");
 }
});

Save this as effectBlind.html. Literally, all we've changed is the string specifying
the effect, in this case to blind, and the value of the direction property from up to
vertical. Notice the subtle difference when we view the file between sliding the
element and blinding it up.

When the login form slides up, the bottom of the element remains visible at all times,
as if the whole basket is moving up into or out of the header. However, with the
blind effect, the element is shown or hidden, starting with the bottom first, just
like a window blind opening or closing.

UI Effects

[456]

Clipping elements
The clip effect is very similar to the slide effect. The main difference is that instead of
moving one edge of the targeted element towards the other, to give the effect of the
element sliding out of view, the clip effect moves both edges of the targeted element
in towards the center.

The clip effect has the same configuration options as the blind effect and these
options have the same default values.

At the end of Chapter 5, The Dialog, we created an example that showed a full-size
image in a dialog when a thumbnail image was clicked. When the close button on
the dialog was pressed, the dialog was simply removed from the page instantly.

We could easily use the clip effect to close our dialog instead.

In dialog14.html, add the source files for the clip effect after the existing
library files:

<script src="development-bundle/ui/jquery.ui.effect.js"></script>
<script src="development-bundle/ui/jquery.ui.effect-clip.js"></script>

Then, change the dialog configuration object so that it appears as follows:

dialogOpts = {
 modal: true,
 width: 388,
 height: 470,
 autoOpen: false,
 open: function(event, ui) {
 $("#dialog").empty();
 $("").attr("src", filename).appendTo("#dialog");
 $("#dialog").dialog("option", "title", titleText);
 },
 hide: {
 effect: "clip"
 }
};

Save this as effectClip.html. In this simple addition to the existing file, we use
the clip effect in conjunction with the close event callback to hide the dialog from
view. The default configuration value of vertical for the direction option and the
default speed of normal are both fine, so we just call the hide method, specifying
clip with no additional arguments.

Chapter 14

[457]

The following screenshot shows the dialog being clipped:

Folding elements
Folding is a neat effect that gives the appearance that the element it's applied to is
being folded up like a piece of paper. It achieves this by moving the bottom edge
of the specified element up to 15 pixels from the top, then moving the right edge
completely over towards the left edge.

The distance from the top that the element is shrunk to in the first part of this effect is
exposed as a configurable property by the effect's API. So, this is something that we
can adjust to suit the needs of our implementation. This property is an integer.

We can see this effect in action by modifying the dialog example once again. In
effectClip.html, change the effect source file for clip to fold:

<script src="development-bundle/ui/jquery.ui.effect-fold.js"></script>

UI Effects

[458]

Then change the hide event callback to the following:

hide: {
 effect: "fold",
 size: 200,
 duration: 1000
}

Save this as effectFold.html. This time we make use of the size configuration
option to make the effect stop in the first fold, 200 pixels before the top of the
dialog. We also slow the animation down a little, by setting the duration to 1000
milliseconds. It's a really nice effect; the following screenshot shows the second
part of the animation:

Chapter 14

[459]

Summary
In this chapter, we've covered the complete range of UI effects available in the
jQuery UI library. We've seen how easy it is to use the jquery.ui.effect.js base
component to construct attractive color animations and smooth class transitions.

We also saw that the following effects can be used in conjunction with the simple
effect API:

• Bounce
• Highlight
• Shake
• Transfer

An important point is that most of the individual effects can be used not only
with the effect API but can also make use of show/hide and toggle logic, making
them incredibly flexible and robust. The following effects can be used with this
advanced API:

• Blind
• Clip
• Drop
• Explode
• Fold
• Puff
• Pulsate
• Scale
• Slide

We also saw that the jQuery UI effects' core files also include all of the easing
functions used in the jquery.easing.js plugin that must be used with jQuery
when we are not using jQuery UI.

This now brings us to the end of this chapter. There is a saying that I'm sure almost
all of you will have heard before. It's the "Give a man a fish..." saying. I hope that
during the course of this book, I've taught you how to fish, instead of just giving
you a fish.

Help and Support
Throughout this book, you will have noticed that we’ve concentrated on using
jQuery Version 2.0 as the most recent version available for use with jQuery UI.
However, jQuery UI 1.10 comes bundled with jQuery 1.9.1 by default—why
should we use Version 2.0, if Version 1.9.1 is bundled with jQuery UI 1.10?

The reason for this is simple, and relates to an important change made with Version
2.0, where support for Internet Explorer (IE) 6-8 has been removed. Removing support
for these older browsers has allowed the jQuery team to remove significant parts of the
library, as these were only included to provide workarounds for browsers!

While there has been a big push to retire IE 6 because of the security vulnerabilities,
there is still an element of need to support it; with this in mind, the jQuery team are
still producing and supporting versions of jQuery under the 1.x branch, for as long
as these older browsers are still used.

Downloading jQuery
Each chapter’s exercise folder in the code download will come with both versions
of jQuery included—copies of Version 2.0.3 have been added to the JS folder that
comes as part of the normal download of jQuery (and which contains 1.9.1).

If you need to obtain fresh copies of Version 2.x of jQuery, you can do so by
browsing to http://www.jquery.com/download. Here you will find links for both
the uncompressed and compressed versions of jQuery 2.x. For the purposes of the
exercises, I would recommend using the uncompressed version. You will need to
right-click on the link, and choose Save target as… (or your browser’s equivalent),
in order to save the file into the JS sub-folder.

Help and Support

[462]

Updating the code samples
All of the code samples are already set to use jQuery 2.0.3 by default. If we look at
an example using the Tabs widget, we should see something like this, at the head
of our example:

<!DOCTYPE html>
<html>
<head>
 <meta charset=”utf-8”>
 <title>Tabs</title>
 <link rel=”stylesheet” href=”development-bundle/themes/base/
 jquery.ui.all.css”>
 <script src=”js/jquery-2.0.3.js”></script>
 <script src=”development-bundle/ui/jquery.ui.core.js”></script>
 <script src=”development-bundle/ui/jquery.ui.widget.js”>
 </script>
 <script src=”development-bundle/ui/jquery.ui.tabs.js”></script>
...

Here the highlighted line is important to us; you will need to ensure that the file
you have just downloaded has been saved with the filename of jquery-2.0.3.js,
in order for each sample to work correctly.

Getting help
Getting to know a new library can be daunting sometimes, particularly one the size
of jQuery UI—let’s go through some of the options available, where you can get
hints, tips, help, and support for your endeavors with the library.

Changing themes
At various points throughout the book, we covered the use of themes within jQuery
UI—a useful tool you can incorporate into your pages, is the Super Theme Switcher
(STS) plugin, available from https://github.com/harborhoffer/Super-Theme-
Switcher. Once implemented, you can use it to switch between themes at will; it's a
great way to see how your site's widgets will look when a theme is changed, before
making that change permanent.

This is particularly useful if you need to edit an existing theme; it is better practice to
place your edits into an override file, and call this separately; editing the core UI CSS
files means that you may face issues when upgrading to the next version of jQuery
UI, as customizations could be lost.

Appendix

[463]

Getting help from the community
jQuery UI has a wide range of demos where you can see elements of what each
plugin provides. This is accompanied by extensive API documentation that covers
the widgets, effects, methods, and selectors provided by jQuery UI. You can view
this documentation from http://api.jqueryui.com; another good location to
browse is the documentation available at http://learn.jquery.com/jquery-ui/
getting-started/.

Need to ask a question?
This isn't a problem either; there are a number of public forums available for
jQuery UI:

• Using jQuery UI: For everyone using jQuery UI, the best place to ask
questions and advice regarding the use of all UI components, including
Themeroller, visit http://forum.jquery.com/using-jquery-ui.

• Developing jQuery UI: For more advanced developers who want to work
on developing the jQuery UI library and websites, you can get help from
http://forum.jquery.com/developing-jquery-ui.

• jQuery Accessibility: For anyone that is unable to use the normal forums
due to accessibility issues, there is an alternative forum available at
https://groups.google.com/forum/#!forum/jquery-a11y.

Getting help via IRC chat
You can even get help through IRC chat, the official IRC support channel is #jquery
on irc.freenode.net. For discussions about development of jQuery UI, join the
#jqueryui-dev channel.

Asking at Stack Overflow
You can even get help on the questions and answers site for jQuery (and jQuery UI)
at Stack Overflow, available at http://stackoverflow.com/tags/jquery/info.
This is a large site where people can ask questions, seek advice, and general help
with any questions relating to jQuery UI.

Help and Support

[464]

Reporting a bug in the library
Software isn't perfect; it's often down to the help of contributors that developed
libraries, such as jQuery UI, are still actively used today. Should you find a bug, you
can report it at http://bugs.jqueryui.com.

It is strongly recommended that you read the notes and browse
through the bugs already recorded, just in case someone has
already reported the same issue!

Index
Symbols
7-zip 11
$(document) object 295
<a> element 143
<audio> element 156
<audio> tag 157
<body> element 170
<button> element 121, 166
<button> tags

used, for creating buttons 222
*checked filter 132
<input> element 181
<input> tags

used, for creating buttons 222
<label> parameter 171
.removeClass() option 266
<script> element 159, 409
.selected class 270
.ui-dialog-title class 118
.ui-helper-clearfix class 32
.ui-helper-hidden-accessible class 32
.ui-helper-hidden class 32
.ui-helper-reset class 32
.ui-helper-zfix class 32
.ui-icon class 32
.ui-state-disabled class 32
.ui-widget-overlay class 32

A
accept option 335, 336
Accessible Rich Internet Applications. See

ARIA

accordion interoperability
about 107-109
multiple accordions, using 109-111

accordion() method 91
accordion methods

about 102
header activation 102, 103

accordion panel
resizing 106, 107

accordion widget
animation, using 95-98
configuring 90
events, listing 98, 99
heightStyle option 93, 95
panel, resizing 106, 107
structuring 86-88
styling 89, 90

accordion() widget method 88
activate event 98, 407, 413
activate option 339
activeClass option 335
active option 90
active property 66
addClasses option 318, 335
AJAX content

displaying 296, 297
AJAX enabled datepicker

implementing 215-218
AJAX tabs

working with 79, 80
alsoResize option 356
altField option 183
altFormat option 183
animateDuration option 356
animateEasing option 356
animate method 431

[466]

animate option 90, 145, 356
animations

resizable 364
animations, datepicker widget

alternative animations, configuring 194,
195

date format, changing 198-201
datepicker, displaying vertically 197, 198
multiple months, displaying 195-197

appendText option 183, 188
appendTo() method 75
appendTo option 117, 236, 318, 396
Application programming interface (API)

179
ARIA 89, 162, 283
aria-expanded attribute 89
aspectRatio option 356, 363, 364
attribute option 415
Auto arrange icons option 373
autocomplete events

change event 238
close event 238
create event 238
focus event 238
open event 238
search event 238
select event 238

autocomplete methods
about 240
close method 240
content retrieving, input based 241, 242
function, passing as source option 243-247
remote data sources 241
search method 240

autocomplete options
appendTo option 236
autofocus option 236
delay option 236
disabled option 236
minimum length, configuring 237
minLength option 236
position option 236
source option 236
suggestion list, appending to alternative

element 237

autocomplete widget
about 219, 232, 233
array of objects, using as data source 235,

236
events 238-240
files 234
HTML, displaying 247-251
local data sources 233, 234
methods 240, 241
minimum length, configuring 237
options 236
suggestion list, appending to alternative

element 237, 238
autofocus option 236
autoHide option 356
autoOpen option 117, 118, 130
autoRefresh option 378
autoSize option 183
axis option 318, 396, 399

B
basic dialog

creating 114-116
beforeActivate event

about 99
configuring 100-102

beforeActivate property 70
beforeClose event 127
beforeShowDay event 209
beforeShowDay option 183
beforeShow event 209
beforeShow option 183
beforeStop event 407, 410
Big Bunny Movie

URL 157
blind effect

about 454
direction option 455
easing option 455
mode option 455

blur event 268
blur option 264
bounce effect 434, 435
bug

reporting 464

[467]

button events
adding 226-228

button icons
adding 223, 224

buttonImageOnly option 184
buttonImage option 183, 193
button methods 231, 232
button options

disabled option 223
icons option 223
label option 223
text option 223

buttons
adding 121

buttonset() method 230
button sets

checkbox button sets 229, 230
creating 228
radio button sets 230

buttons option 117
buttonText option 184, 193
button widget

about 219, 220
button events, adding 226-228
button sets, creating 228
configuration options 223
creating, <button> tags, used 222
creating, <input> tags, used 222
icons, adding 223, 224
input icons 225, 226
library resources 222
methods 231, 232
options 223
standard buttons, implementing 220, 221
theming 222

C
calculateWeek option 184
callback

and events 25
arguments 26, 27
beforeShowDay event 209
beforeShow event 209
connecting 411-413
implementing 208

onChangeMonthYear event 209
onClose event 209
onSelect event 209

cancel method 413
cancel option 319, 378, 379, 396
CDNJS's CDN

URL 10
change event

about 151, 164, 171, 238, 407
using 99, 100

changeMonth option 184
change option 163
Change Selected button 79
changeYear option 184
checkbox button sets 229, 230
className option 438
class transitions

using 429-431
click event 304
clicks

simulating 75, 76
clip effect 456, 457
close event callback 238, 306, 456
close method 129, 130, 240, 302
closeOnEscape option 117
closeText option 184, 203
collapseAll option 264
collapse option 264
collapsible option 90
collision avoidance 52-54
color animations

using 426-428
color slider

creating 158-160
complete option 163
connected option 415
connectToSortable option 319
connectWith option 396
constrainInput option 184
containers

about 34
working with 35, 36

containment option 319, 356, 396, 399
content delivery networks (CDN) 10
content option 290
context menus

designing 276, 277

[468]

core components 19, 20
core effects file

class transitions, using 429, 430
color animations, using 426-429
using 426

Corner radius 34
create event 127, 151, 238, 268, 306, 407
create option 163, 368
css 30
css folder 14
CSS Framework

files, linking 34, 35
jquery.ui.all.css file 31
jquery.ui.base.css file 31
jquery.ui.core.css file 32
jquery.ui.theme.css file 33, 34

css() method 160, 382
CSS Sprites Generator

URL 40
currentText option 184, 203
cursorAt option 319, 397
cursor option 319, 397, 399
custom icons

adding 41, 42
using 43

custom localization 207, 208
custom theme

applying, to tabs 64, 65

D
data

displaying 81, 83
date format

changing 198-203
custom localization 207, 208
datepicker widget, localizing 203, 204

dateFormat option 183, 184, 198-203
datepicker methods

date, selecting programmatically 213
displaying, in dialog box 214
listing 212, 213

datepicker widget
about 179-181
AJAX enabled datepicker, implementing

215-218

alternative animations, configuring 194,
195

basic options 187-189
configurable options 183-186
datepicker methods, listing 212
dates selecting, inline calendars used 182
elements, changing 190-192
input element, updating 201, 202
localizing 203-206
localizing, dynamically 209-211
maximum dates 189, 190
minimum dates 189, 190
trigger button, adding 192-194
utility methods 211, 212

dayNamesMin option 184, 204, 208
dayNames option 184, 204
dayNamesShort option 185
deactivate event 407, 413
deactivate option 339
default active header

changing 92, 93
defaultDate option 185, 188
delay() method 369
delay option 236, 319, 356, 378, 397, 401
demos folder 15
destroy method 24, 72, 76, 77, 129, 302
development-bundle directory 14
development environment

setting up 11, 12
dialog

controlling, programmatically 129
data, obtaining from 130, 131
displaying 118
event callbacks, handling 129
modality option, configuring 120, 121
title, setting 118, 119
toggling 130
z-index order, setting 125, 126

dialog animations
enabling 123, 124

dialog box
datepicker, displaying 214

dialog buttons
icons, adding to 122

dialogClass option 117

[469]

dialog interoperability
exploring 132, 134

dialog method 212
dialog options

appendTo 117
autoOpen 117
buttons 117
closeOnEscape 117
dialogClass 117
draggable 117
height 117
hide 117
maxHeight 117
maxWidth 117
minHeight 117
minWidth 117
modal 117
position 117
resizable 117
show 117
title 117
width 117

dialog's dimension
configuring 124

dialog widget
about 113
diagram 114

direction configuration option 449
direction option 435, 436, 441, 447, 450, 455
disabled option 90, 145, 162, 223, 236, 259,

290, 319, 335, 356, 378, 397
disable method 24, 72, 73, 302
distance option 319, 356, 397, 399, 435, 436,

447, 450
docs folder 15
Document Model Object (DOM) 298
document.ready() command 62
DOM explorers 49
DOMReady function 62
Download Builder

URL 8
drag event 127, 330
draggable class 316
draggable event callbacks

about 330, 332
drag event 330
helper property 330

offset property 330
position property 330
start event 330
stop event 330

draggable methods 332
draggable options

about 117
addClasses option 318
appendTo option 318
axis option 318
cancel option 319
configurations 320, 321
connectToSortable option 319
containment option 319
cursorAt option 319
cursor option 319
delay option 319
disabled option 319
distance option 319
drag, constraining 327, 328
dragged elements, resetting 322
drag handle support, adding 323, 324
grid option 319
handle option 319
helper elements, adding 324-327
helper option 319
iframeFix option 319
opacity option 319
refreshPositions option 319
revertDuration option 319
revert option 319
scope option 320
scroll option 320
scrollSensitivity option 320
scrollSpeed option 320
snapMode option 320
snap option 320
snapping 328, 329
snapTolerance option 320
stack option 320
zIndex option 320

draggable widget
about 316, 417-422
basic drag, implementing 317, 318
event callbacks 330, 331, 332
methods 332
options 318-320

[470]

dragStart event 127
dragStop event 127
drop effect

adding, to elements 447-449
dropOnEmpty option 397
drop option 339
droppable callback options

activate option 339
deactivate option 339
drop option 339
out option 339
over option 339
ui.draggable property 341
ui.helper property 341
ui.offset property 341
ui.position property 341

droppable class 316
droppable methods 347
droppable options

accept option 335
activeClass option 335
addClasses option 335
disabled option 335
greedy option 335
hoverClass option 335
scope option 335
tolerance option 335

droppables API 316
droppable scope options

greedy option, configuring 344-346
setting 342, 343

droppable widget
about 333
callback options 339-341
configuring 335-337
drop tolerance, configuring 337, 338
implementation 334
methods 347
scope options, setting 342-344

drop tolerance
configuring 337
fit mode 337
intersect mode 337
pointer mode 337
touch mode 337

dual-handled slider 149
duration option 185

dynamic image-based dialog
creating 134-138

E
each method 83
each() method 390
easing n option 447
easing option 450, 455
effect() method 442
effect methods 433, 434
element

clipping 456, 457
drop effect, adding 447-449
effect arguments, adding 433
folding 457, 458
in datepicker UI, changing 190-192
on page, exploding 441-443
on page, scaling 439-441
outline, trasnsferring 436-439
shaking 436
specified elements, highlighting 431-433

Enable button 73
enable method 24, 72, 302
event callbacks, dialog

handling 127, 128
event option 91
events

about 153
and callbacks 25, 26
binding to 71
change event 151
create event 151
slide event 151
start event 151
stop event 151

Excite Bike 286
execute function 131
expand option 264
explosion effect 441, 443
expression option 415
external folder 15

F
fadeIn() method 172, 369
fadeOut() method 152
fileselect button 175

[471]

filter option 378, 379
find() method 81
firstDay option 185, 204
fit mode 337
fn.extend() method 57
focus event 127, 238, 268
focus option 264
folding element 457, 458
Font Awesome library

URL 42
forceHelperSize option 397
forcePlaceholderSize option 397, 402, 403
formatDate utility 211
forms

filling out 311
validating 311-313

framework classes
containers, working with 35, 36
icons, adding 39
interaction cues 43-45
interactions, using 37, 38

from option 441
function

passing, as source option 243-247
positioning with 54, 55

G
getData function 246
getDate method 212
getJSON method 81, 83
get() method 107
getter mode 24
ghost option 356
ghosts

resizing 360-362
GitHub

URL 10
globalize plugin 15
Google's CDN

URL 10
gotoCurrent option 185
greedy option

about 335
configuring 344-346

grid option 319, 356, 397

H
handle option 319, 323, 357, 397
header activation 102, 103
header option 91
height option 117
heightStyle option 91-95
helper elements

adding 324-326
helper option 319, 357, 397
helper property 330
hideIfNoPrevNext option 185
hide method 212
hide() method 439, 440
hide option 117, 290
horizontal menus

creating 272, 273
hoverClass option 335
href attribute 80, 107
HTML

dangers 302
in tooltips 299-301

I
IcoMoon

URL 42
icons

adding 39, 40
adding, to dialog buttons 122, 123
custom icons, adding 41, 42
examining 40, 41

icons option 91, 223, 259
iframeFix option 319
image positioning 34
images 34
indeterminate button 167
index() method 410
index() property 71
inline calendars

used, for selecting dates 182
input element

updating 201
input icons 225
interaction cues 34, 43-45
interaction helpers component 19, 20

[472]

interactions
using 37, 38

interaction states 34
intersect mode 337
IRC chat 463
isDisabled method 212
isFirstItem option 264
isLastItem option 264
iso8601Week utility 212
isOpen method 129, 130
isRTL option 185, 204
items option 290, 397

J
JavaScript Object Notation (JSON) 80
jQuery

accessibility, URL 463
code samples, updating 462
downloading 461
Version 2.x 461

jQuery's CDN
URL 10

jQuery UI
about 7, 8, 463
browser support 21
developing, URL 463
hosted versions, using 10
using, URL 463
widgets 21

jquery.ui.all.css file 31
jquery.ui.base.css file 31
jquery.ui.core.css file 32
jQuery UI demo site

URL 97
jquery.ui.effect.js file 426-431, 453, 454
jQuery UI library

components 19, 20
downloading 8-10
folder structure 14-19
licensing 22, 23
structure 13, 14
unpacking 11

jquery.ui.theme.css file 33, 34
js folder 14
jslint plugin 15

K
key option 415

L
label option 223
length method 76
lists

connecting 405, 407
load method 72, 80
load() method 81

M
Math.round() function 369
maxDate option 185, 189, 190
maxHeight option 117, 357
max option 145, 162
maxWidth option 117
maze game

creating, widgets used 347-351
Menublur event 271
Menucreate event 271
menu events

about 268-272
blur event 268
create event 268
focus event 268
horizontal menus, creating 272-274
Menublur event 271
Menucreate event 271
Menufocus event 271
Menuselect event 271, 272
select event 268

Menufocus event 271
menu items

adding 266, 267
removing 268

menu methods
using 264

menu options
configuring 259
disabling 265, 266
enabling 265, 266

[473]

menuselect event 271, 272
menus option 259
menu widget

about 253, 254, 257
blur option 264
building, URL 259
collapseAll option 264
collapse option 264
combining, with other widgets 274-276
context menus, designing 276-278
CSS framework classes 257, 258
dividers, adding 262, 263
events 268
events, binding to 271, 272
expand option 264
focus option 264
horizontal menus, creating 272-274
HTML elements 256
isFirstItem option 264
isLastItem option 264
items, adding 266
menu events 269, 270
menu items, adding 267
menu items, removing 268
menu options, configuring 259
menu() widget method 257
methods, using 264
next option 264
nextPage option 264
options, configuring 259
options, enabling 265
page, creating 254, 255
previous option 264
previousPage option 264
refresh option 264
selected menu items, appearance enhancing

260, 261
select menu, enhancing 278, 279
select option 264
styling 260
ui-corner-all 257
ui-icon 258
ui-icon-xxx-xxx 258
ui-menu 257
ui-menu-divider 258
ui-menu-icons 257
ui-menu-item 258

ui-state-active 258
ui-state-disabled 258
ui-state-focus 258
ui-widget 257
ui-widget-content 257

menu() widget method 257
methods 24, 25
Microsoft's CDN

URL 10
minDate option 185, 190
minHeight option 117, 357
minLength option 236, 237
min option 145
minWidth option 117, 357
modal option 117
mode option 447, 450, 455
monthNames option 185, 204
monthNamesShort option 204
mousedown event 417
mouse movement

tracking, with tooltips 293, 294
mouseup event 417
moveToTop method 130
multiple accordions

using 109-111
multiSelect() function 389, 390

N
navigationAsDateFormat option 186
navigation option 25
newHeader property 107
next option 264
nextPage option 264
nextText option 186, 204
Notepad++

URL 12
noWeekends utility 212
numberofMonths option 197
numberOfMonths option 186

O
offset property 330
onChangeMonthYear event 209
onChangeMonthYear option 186
onClose event 209

[474]

onClose option 186
onload() event handler 175
on() method 25, 26, 71, 101, 308, 422
onprogress event 173
onprogress event handler 175
onSelect event 209
onSelect option 186
opacity option 319, 398, 401
open event 127, 238, 306
open method 118, 130, 138, 302
option method

about 24, 72, 75, 76, 102, 130, 138, 153, 264,
302

getting 77-79
setting 77-79

orientation option 145
origin option 441
out event 407
out option 339
over event 407
overlays 34
over option 339

P
panels

adding 103-105
removing 103-105

parseDate utility 212
ParseFile() function 175
parseInt() function 103
percent option 441
placeholder 33, 402, 403
placeholder option 398
plugin method 23
pointer mode 337
position() method 49
position option 117, 236, 259, 290
position property 330
position utility

about 49
collision avoidance 52-54
using 50-52

position widget
using 55-57, 292

post() method 228
preBooked class 218

previous option 264
previousPage option 264
prevText option 186, 204
progressbar widget

about 141, 160-162
event API 163-165
indeterminate support, adding 166, 167
methods, using 165
options 162
rich uploads, implementing 173-176
value, setting 162

puff effect
creating 443, 444

pulsate effect
creating 445, 446

Q
QUnit

URL 15

R
radio button sets 230
range option 145, 149-151
receive event 407
refresh method 102, 212, 385, 413
refresh() method 267
refresh option 264
refreshPositions method 413
refreshPositions option 319
regional utility 212
remote tab content

URL, changing 80
remove event 407
remove method 74
resizable events

about 367
create option 368
resize option 368
start option 368
stop option 368

resizable methods 370
resizable options

about 117, 356
alsoResize option 356
animateDuration option 356
animateEasing option 356

[475]

animate option 356
animations 364
aspect ratio, handling 363
aspectRatio option 356
autoHide option 356
cancel option 356
containment option 356
delay option 356
disabled option 356
distance option 356
ghost option 356
ghosts, resizing 360, 361, 362
grid option 356
handle images, adding 357, 359
handles, configuring 357
handles option 357
helper option 357
maxHeight option 357
minHeight option 357
minWidth option 357
resize, containing 362, 363
resizing, simultaneous 365
size limits, defining 359, 360
unwanted resizes, preventing 366, 367

resizable tabs
creating 370, 371

resizable widget
about 354, 355
events 367-369
options 356, 357
resizable methods 370
resizable tabs, creating 371

resize event 127
resize option 368
resizeStart event 127
resizeStop event 127
revertDuration option 319
revert option 319, 398, 401
role option 259

S
scope option 320, 335
scroll option 320, 398
scrollSensitivity option 320, 398
scrollSpeed option 320
scrolSpeed option 398

search event 238
search method 240
selectable component

autoRefresh option 378
canceling 379
cancel option 378
configuring 377
delay option 378
disabled option 378
distance option 378
filtering 378, 379
filter option 378
tolerance option 378

selectable component, configuring 378
selectable events

handling 380
selecte option 380
selecting option 380
start option 380
stop option 380
unselected option 380
unselecting option 380
working with 383, 384

selectable image viewer
behavior, adding 388-390
creating 386-388
image selector, styling 391

selectable methods
refreshing 385, 386
refresh method 385

selectable widget
about 374, 375
events, handling 380-383
files 375, 376
methods 385
selectable component, configuring 377
selectable image viewer, creating 386-388
selectee class names 376, 377

selected property 69
Selectee class names 376, 377
selecte option 380
select event 238, 240, 268
selecting callback option 382
selecting option 380
select menu

enhancing 278, 279

[476]

select option 264
selectOtherMonths option 186
serialize method 413, 414
setDate method 212
setDefaults utility 212
setter mode 24
shake effect 436
shared API methods 23
shortYearCutoff option 186
showAnim option 186
showButtonPanel option 186
showCurrentAtPos option 197
show method 212
showMonthAfterYear option 204
showOn option 186, 192
show option 117, 290
showOptions option 187
showOtherMonths option 187, 189
showWeek option 187
singleSelect() function 389, 390
Sizzle selector engine 383
slide event 151
slider1.html file 143
slider component 141
slider handle 142
slider method 143
slider track 142
slider widget

about 142, 143
animate option 145
animating with 148
configuring 145
custom styling 143, 144
disabled option 145
event API 151-153
maximum value, setting 146, 147
max option 145
methods, using 153-155
minimum value, setting 146
min option 145
multiple handles, using 148, 149
orientation option 145
range option 145, 149, 151
slider value, setting 148
step option 145, 147
value option 145, 148

values option 145
vertical slider, creating 145, 146

sliding effect 449-453
snapMode option 320
snap option 320
snapping 328, 329
snapTolerance option 320
sortable events

<script> element 409
activate event 407
beforeStop event 407
change event 407
create event 407
deactivate event 407
out event 407
over event 407
reacting to 407-411
receive event 407
remove event 407
sort event 408
start event 408
stop event 408
update event 408

sortable helpers 403, 404
sortable items 405
sortable() method 417
sortable methods

attribute option 415
cancel method 413
connected option 415
expression option 415
key option 415
listing 413
refresh method 413
refreshPositions method 413
serialize method 413, 414
toArray method 413, 414

sortable options
appendTo option 396
axis option 396
cancel option 396
configuring 396
connectWith option 396
containment option 396
cursorAt option 397
cursor option 397

[477]

disabled option 397
distance option 397
dropOnEmpty option 397
forceHelperSize option 397
forcePlaceholderSize option 397
grid option 397
handle option 397
helper option 397
items option 397
opacity option 398
placeholder option 398
revert option 398
scroll option 398
scrollSensitivity option 398
scrolSpeed option 398
tolerance option 398
zIndex option 398

sortable widget
about 392, 394, 395
compatibility 416, 417
draggables, adding 417-422
options, configuring 396-400
styling 396
ui-sortable-helper 396
ui-sortable-placeholder 396
ui-widget-header 396
ui-widget ui-sortable 396

sort event 408
source option

about 236
function, passing as 243-247

specialized methods 23
stack option 320
Stack Overflow 463
start event 151, 330, 408
start option 368, 380
states 34
stepMonths option 187
step option 145, 147
stop callback function 389
stop event 151, 330, 408
stop option 368, 380
Sublime Text 2

URL 12
Super Theme Switcher (STS) plugin

URL 462
switchClass method 430

T
tab

adding 74
collapsing 69
custom theme, applying 64, 65
destroying 76, 77
disabling 67, 73
enabling 73
removing 74
selecting 66, 67
transition effects, adding 68

tab events
working with 69, 70

tab methods
using 72

tabs() method 417
tab widget

configuring 65
implementing 60-62
styling 62, 63

text option 223
Theme API

URL 34
ThemeRoller

about 16, 17, 19, 121
URL 16, 45, 260
used, for creating custom themes 288, 289

themes
about 30
modifying 462
overriding 46-49
switching 45

themes folder 16
thumb 142
times option 435, 436
title option 117
toArray method 413, 414
toggle() method 452
tolerance option 335, 378, 398
tooltipClas option 290
tooltip() method 306
tooltips

about 282, 283
AJAX content, displaying 296-298
certain tooltips, displaying 295, 296
CSS framework classes 284

[478]

custom themes, creating with ThemeRoller
288, 289

default styles, overriding 284, 285
disabling 303, 304
disabling, programmatically 304-306
effects, using 298, 299
enabling 303, 304
events, binding 308
events, handling 306-308
HTML, working with 299-301
methods, using 302
mouse movement, tracking 293, 294
options, configuring 289, 290
positioning 290, 292
position widget, using 292
prebuilt themes, using 285-287

tooltip() widget method 304
to option 438
touch mode 337
track option 290
transfer effect

about 436-438
adding 68

trigger button, datepicker widget
adding 192-194

trigger event
changing 91

U
ui-corner-all 257, 284
ui-corner-all class 62, 63, 170
ui-corner-bottom class 63
ui-corner-top class 63
ui.draggable property 341
ui folder 16
ui-helper-clearfi class 63
ui.helper property 341
ui-helper-reset class 63
ui-icon 258
ui-icon-xxx-xxx 258
ui-menu 257
ui-menu-divider 258
ui-menu-icons 257
ui-menu-item 258
ui.offset property 341
ui.position property 341

ui-selectable class 376
ui-selectee class 376
ui-selecting class 376
ui-sortable-helper 396
ui-sortable-placeholder 396
ui-state-active 258
ui-state-active class 63
ui-state-default class 63
ui-state-disabled 258
ui-state-focus 258
ui-tabs class 62
ui-tabs-nav class 63
ui-tabs-panel class 63
ui-tabs-selected class 63
ui-tooltip 284
ui-tooltip-content 284
ui-unselecting class 376
ui-widget 257
ui-widget class 62
ui-widget-content 257, 284
ui-widget-content class 62, 63
ui-widget-header 396
ui-widget-header class 63
ui-widget ui-sortable 396
unselected option 380
unselecting callback option 382
unselecting option 380
update event 408
URL

changing, of remote tab content 80
userAgent string 432
user interaction

responding to 168-172
using option 54
utility methods 211, 212

V
val() method 75
value method 153, 166
value option 145, 148, 162
values method 153
values option 145
vertical slider

creating 145, 146
videos

playing 309-311

[479]

W
weekHeader option 187
widget factory 57
widget method 72, 130, 302
widgets

components 19
width option 117

X
XMLHttpRequest parameter 175

Y
yearRange option 187
yearSuffix option 204
Yellow Fade Technique (YFT) 431

Z
zIndex option 320, 398
z-index order, dialog

focus, controlling 126, 127
setting 125, 126

z-index value
overriding 126

Thank you for buying
jQuery UI 1.10:

The User Interface Library for jQuery

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning jQuery Fourth Edition
ISBN: 978-1-782163-14-5 Paperback: 444 pages

Better interaction, design, and web development with
simple JavaScript techniques

1. An introduction to jQuery that requires
minimal programming experience

2. Detailed solutions to specific client-side
problems

3. Revised and updated version of this popular
jQuery book

jQuery UI Cookbook
ISBN: 978-1-782162-18-6 Paperback: 290 pages

70 recipes to create responsive and engaging user
interfaces in jQuery

1. Packed with recipes showing UI developers
how to get the most out of their jQuery UI
widgets

2. Solutions to real-world development issues
distilled down in a reader-friendly approach

3. Code examples written in a concise and elegant
format making it easy for the reader to adapt to
their own style

Please check www.PacktPub.com for information on our titles

jQuery Game Development
Essentials
ISBN: 978-1-849695-06-0 Paperback: 244 pages

Learn how to make fun and addictive multi-platform
games using jQuery

1. Discover how you can create a fantastic RPG,
arcade game, or platformer using jQuery!

2. Learn how you can integrate your game with
various social networks, creating multiplayer
experiences and also ensuring compatibility
with mobile devices

3. Create your very own framework, harnessing
the very best design patterns and proven
techniques along the way

Instant jQuery 2.0 Table
Manipulation How-to
ISBN: 978-1-78216-468-5 Paperback: 56 pages

Enhance and add functionality with interactivity to
your HTML tables with jQuery

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2. Use simple jQuery functions to enhance your
HTML tables

3. Demonstrate client-side functionality and add
AJAX for server-side integration

4. Modify your tables without editing your HTML

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing jQuery UI
	Downloading the library
	Using the hosted versions of jQuery UI

	Setting up a development environment
	Understanding the structure of the library
	Examining the folder structure in detail

	Working with ThemeRoller
	Categorizing the component categories
	Introducing the widget factory and effects

	Browser support
	Using the book examples
	Library licensing
	Introducing the API
	Events and callbacks
	Callback arguments

	Summary

	Chapter 2: The CSS Framework and Other Utilities
	Working with the files that make up the framework
	jquery.ui.all.css
	jquery.ui.base.css
	jquery.ui.core.css
	Explaining the individual component framework files

	jquery.ui.theme.css

	Linking to the required framework files
	Using the framework classes
	Working with containers
	Using interactions
	Adding icons
	Examining the icons in detail
	Adding custom icons
	Using custom icons – a note

	Interaction cues

	Switching themes quickly and easily
	Overriding the theme

	The position utility
	Using the position utility
	Explaining collision avoidance

	Positioning with a function
	Using the position widget in a real-world example
	The widget factory
	Summary

	Chapter 3: Using the Tabs Widget
	Implementing a tab widget
	Styling the Tabs widget
	Applying a custom theme to the tabs
	Configuring the Tabs widget
	Working with tabs
	Selecting a tab
	Disabling a tab
	Adding transition effects
	Collapsing a tab

	Working with the Tab events
	Binding to events

	Using tab methods
	Enabling and disabling tabs
	Adding and removing tabs
	Simulating clicks
	Destroying tabs
	Getting and setting options
	Working with AJAX tabs
	Changing the URL of a remote tab's content
	Displaying data obtained via JSONP
	Summary

	Chapter 4: The Accordion Widget
	Structuring the accordion widget
	Styling the accordion
	Configuring an accordion
	Changing the trigger event
	Changing the default active header
	Filling the height of its container
	Using the accordion animation
	Listing the accordion events
	Using the change event
	Configuring the beforeActivate event
	Explaining the accordion methods
	Header activation

	Adding or removing panels
	Resizing an accordion panel
	Accordion interoperability
	Using multiple accordions

	Summary

	Chapter 5: The Dialog
	Creating a basic dialog
	Listing the dialog options
	Showing the dialog
	Setting a dialog title
	Configuring the modality option

	Adding buttons
	Adding icons to the dialog buttons

	Enabling dialog animations
	Configuring the dialog's dimensions
	Setting the z-index order of dialogs
	Controlling the focus

	Handling the dialog's event callbacks
	Controlling a dialog programmatically
	Toggling the dialog

	Getting data from the dialog
	Exploring dialog interoperability
	Creating a dynamic image-based dialog
	Summary

	Chapter 6: The Slider and Progressbar Widgets
	Introducing the slider widget
	Custom styling
	Configuring a basic slider
	Creating a vertical slider
	Setting the maximum and minimum values
	Stepping with the slider widget
	Animating the slider widget
	Setting the slider's value
	Using multiple handles
	Working with the range option

	Using the slider's event API
	Using slider methods

	Practical uses
	Creating a color slider
	Introducing the progressbar widget
	Listing the progressbar's options
	Setting the progressbar's value
	The progressbar's event API
	Using progressbar methods
	Adding indeterminate support

	Responding to user interaction
	Implementing rich uploads with a progressbar
	Summary

	Chapter 7: The Datepicker Widget
	Implementing the datepicker widget
	Selecting dates using inline calendars

	Configurable options of the datepicker
	Using the basic options

	Minimum and maximum dates
	Changing the elements in the datepicker UI
	Adding a trigger button

	Configuring alternative animations
	Displaying multiple months
	Displaying the datepicker vertically
	Changing the date format

	Updating an additional input element
	Changing the date format
	Localizing the datepicker widget
	Implementing custom localization
	Implementing callbacks
	Localizing a datepicker dynamically via rollup

	Introducing the utility methods
	Listing the datepicker methods
	Selecting a date programmatically
	Showing the datepicker in a dialog box

	Implementing an AJAX-enabled datepicker
	Summary

	Chapter 8: The Button and Autocomplete Widgets
	Introducing the button widget
	Implementing the standard buttons
	Creating buttons using the <input> or <button> tags

	Theming
	Exploring the configurable options
	Adding the button icons
	Input icons
	Adding the Button events
	Creating button sets
	Checkbox button sets
	Radio button sets

	Working with button methods

	Introducing the autocomplete widget
	Working with local data sources
	Using an array of objects as the data source

	Configurable autocomplete options
	Configuring minimum length
	Appending the suggestion list to an alternative element

	Working with autocomplete events
	The autocomplete methods
	Working with remote data sources
	Retrieving content based on input

	Passing a function as a source option

	Displaying HTML in the list of suggestions
	Summary

	Chapter 9: Creating Menus
	Implementing a basic menu widget
	Exploring the menu CSS framework classes
	Configuring menu options
	Styling menus
	Displaying the state of the selected menu options using icons
	Adding dividers to menus

	Using menu methods
	Enabling and disabling menu options programmatically
	Adding and removing menu items
	Working with menu events
	Binding to events
	Creating horizontal menus
	Combining with other widgets
	Designing context menus
	Enhancing a select menu
	Summary

	Chapter 10: Working with Tooltips
	Implementing a default tooltip
	Exploring the tooltip CSS framework classes
	Overriding the default styles
	Using prebuilt themes
	Creating custom themes with ThemeRoller

	Configuring tooltip options
	Positioning tooltips accurately
	Using the position widget

	Tracking mouse movement with tooltips
	Displaying certain tooltips
	Displaying AJAX content in tooltips
	How can we tell if it has worked?

	Using effects in tooltips
	Working with HTML in tooltips
	The dangers of working with HTML

	Using tooltip methods
	Enabling and disabling tooltips
	Displaying tooltips programmatically
	Handling tooltip events
	Binding to tooltip events

	Playing videos
	Filling out and validating forms
	Summary

	Chapter 11: Drag and Drop
	The deal with draggables and droppables
	Getting started with the draggable widget
	Implementing a basic drag

	Configuring the draggable options
	Using the configuration options
	Resetting the dragged elements
	Adding the drag handle support
	Adding the helper elements
	Constraining the drag
	Snapping

	Draggable event callbacks
	Draggable's methods
	Getting started with the droppable widget
	Configuring droppables
	Configuring accepted draggables

	Configuring drop tolerance
	Understanding the droppable callback options
	Setting the scope options for droppable
	Configuring the greedy option

	Droppable methods
	Creating a maze game using the widgets
	Summary

	Chapter 12: The Resizable Component
	Implementing a basic resizable widget
	Listing the resizable options
	Configuring the resize handles
	Adding additional handle images
	Defining size limits
	Resizing ghosts
	Containing the resize
	Handling aspect ratio
	Resizable animations
	Simultaneous resizing
	Preventing unwanted resizes

	Defining resizable events
	Looking at the resizable methods
	Creating resizable tabs
	Summary

	Chapter 13: Selecting and Sorting with jQuery UI
	Introducing the selectable widget
	Introducing the Selectee class names
	Configuring the selectable component
	Filtering selectables
	Canceling the selection

	Handling selectable events
	Working with vast amounts of selectables

	Working with selectable methods
	Refreshing selectables

	Creating a selectable image viewer
	Adding the behavior
	Styling the image selector

	Getting started with the sortable widget
	Styling the sortable widget
	Configuring sortable options
	Placeholders
	Sortable helpers
	Sortable items
	Connecting lists

	Reacting to sortable events
	Connecting callbacks
	Listing the sortable methods
	Serializing

	Exploring widget compatibility
	Adding draggables

	Summary

	Chapter 14: UI Effects
	Using the core effects file
	Using color animations
	Using class transitions
	Advanced easing

	Highlighting specified elements
	Adding additional effect arguments

	Bouncing
	Shaking an element
	Transferring an element's outline

	Scaling elements on a page
	Exploding elements on a page
	Creating a puff effect
	Working with the pulsate effect
	Adding the drop effect to elements
	Implementing the sliding effect
	Using easing

	Understanding the blind effect
	Clipping elements
	Folding elements
	Summary

	Appendix: Help and Support
	Downloading jQuery
	Updating the code samples

	Getting help
	Changing themes
	Getting help from the community
	Need to ask a question?
	Getting help via IRC chat
	Asking at Stack Overflow
	Reporting a bug in the library

	Index

