
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

jQuery
Pocket	Primer

	

www.allitebooks.com

http://www.allitebooks.org

LICENSE,	DISCLAIMER	OF	LIABILITY,	AND	LIMITED	WARRANTY

By	purchasing	or	using	this	book	(the	“Work”),	you	agree	that	this	license	grants
permission	to	use	the	contents	contained	herein,	but	does	not	give	you	the	right	of
ownership	to	any	of	the	textual	content	in	the	book	or	ownership	to	any	of	the	information
or	products	contained	in	it.	This	license	does	not	permit	uploading	of	the	Work	onto	the
Internet	or	on	a	network	(of	any	kind)	without	the	written	consent	of	the	Publisher.
Duplication	or	dissemination	of	any	text,	code,	simulations,	images,	etc.	contained	herein
is	limited	to	and	subject	to	licensing	terms	for	the	respective	products,	and	permission
must	be	obtained	from	the	Publisher	or	the	owner	of	the	content,	etc.,	in	order	to
reproduce	or	network	any	portion	of	the	textual	material	(in	any	media)	that	is	contained
in	the	Work.

MERCURY	LEARNING	AND	INFORMATION	(“MLI”	or	“the	Publisher”)	and	anyone
involved	in	the	creation,	writing,	or	production	of	the	companion	disc,	accompanying
algorithms,	code,	or	computer	programs	(“the	software”),	and	any	accompanying	Web	site
or	software	of	the	Work,	cannot	and	do	not	warrant	the	performance	or	results	that	might
be	obtained	by	using	the	contents	of	the	Work.	The	author,	developers,	and	the	Publisher
have	used	their	best	efforts	to	insure	the	accuracy	and	functionality	of	the	textual	material
and/or	programs	contained	in	this	package;	we,	however,	make	no	warranty	of	any	kind,
express	or	implied,	regarding	the	performance	of	these	contents	or	programs.	The	Work	is
sold	“as	is”	without	warranty	(except	for	defective	materials	used	in	manufacturing	the
book	or	due	to	faulty	workmanship).

The	author,	developers,	and	the	publisher	of	any	accompanying	content,	and	anyone
involved	in	the	composition,	production,	and	manufacturing	of	this	work	will	not	be	liable
for	damages	of	any	kind	arising	out	of	the	use	of	(or	the	inability	to	use)	the	algorithms,
source	code,	computer	programs,	or	textual	material	contained	in	this	publication.	This
includes,	but	is	not	limited	to,	loss	of	revenue	or	profit,	or	other	incidental,	physical,	or
consequential	damages	arising	out	of	the	use	of	this	Work.

The	sole	remedy	in	the	event	of	a	claim	of	any	kind	is	expressly	limited	to	replacement
of	the	book,	and	only	at	the	discretion	of	the	Publisher.	The	use	of	“implied	warranty”	and
certain	“exclusions”	vary	from	state	to	state,	and	might	not	apply	to	the	purchaser	of	this
product.

www.allitebooks.com

http://www.allitebooks.org

jQuery
Pocket	Primer

	

Oswald	Campesato
	

www.allitebooks.com

http://www.allitebooks.org

Copyright	©2015	by	MERCURY	LEARNING	AND	INFORMATION	LLC.	All	rights	reserved.

This	publication,	portions	of	it,	or	any	accompanying	software	may	not	be	reproduced
in	any	way,	stored	in	a	retrieval	system	of	any	type,	or	transmitted	by	any	means,	media,
electronic	display	or	mechanical	display,	including,	but	not	limited	to,	photocopy,
recording,	Internet	postings,	or	scanning,	without	prior	permission	in	writing	from	the
publisher.

Publisher:	David	Pallai
MERCURY	LEARNING	AND	INFORMATION
22841	Quicksilver	Drive
Dulles,	VA	20166
info@merclearning.com
www.merclearning.com
(800)	232-0223

O.	Campesato.	jQuery	Pocket	Primer.
ISBN:	978-1-938549-14-4

The	publisher	recognizes	and	respects	all	marks	used	by	companies,	manufacturers,
and	developers	as	a	means	to	distinguish	their	products.	All	brand	names	and	product
names	mentioned	in	this	book	are	trademarks	or	service	marks	of	their	respective
companies.	Any	omission	or	misuse	(of	any	kind)	of	service	marks	or	trademarks,	etc.	is
not	an	attempt	to	infringe	on	the	property	of	others.

Library	of	Congress	Control	Number:	2013944477

1516321										Printed	in	the	United	States	of	America
This	book	is	printed	on	acid-free	paper.

Our	titles	are	available	for	adoption,	license,	or	bulk	purchase	by	institutions,
corporations,	etc.
For	additional	information,	please	contact	the	Customer	Service	Dept.	at	800-232-
0223(toll	free).

All	of	our	titles	are	available	in	digital	format	at	authorcloudware.com	and	other
digital	vendors.	Companion	files	(figures	and	code	listings)	for	this	title	are	available	by
contacting	info@merclearning.com.	The	sole	obligation	of	MERCURY	LEARNING	AND
INFORMATION	to	the	purchaser	is	to	replace	the	disc,	based	on	defective	materials	or	faulty
workmanship,	but	not	based	on	the	operation	or	functionality	of	the	product.

www.allitebooks.com

http://www.allitebooks.org

I’d	like	to	dedicate	this	book	to	my	parents	–
may	this	bring	joy	and	happiness	into	their	lives.

	

www.allitebooks.com

http://www.allitebooks.org

Contents

Preface

Chapter	1			jQuery	Concepts

Using	jQuery	to	Find	Elements	in	Web	Pages

A	“Hello	World”	Web	Page	with	jQuery

Querying	and	Modifying	the	DOM	with	jQuery

Find	and	Modify	Elements	with	:first	and	:last	Qualifiers

Finding	Elements	with	:eq,	:lt,	and	:gt	Qualifiers

Properties	versus	Attributes	in	jQuery

Finding	and	Setting	Element	Attributes

Working	with	Custom	Attributes

Using	jQuery	to	Remove	Elements

Creating	DOM	Elements

The	jQuery	append()	and	appendTo()	methods

Useful	jQuery	Code	Blocks

Handling	Click	Events	in	jQuery

Handling	Events	in	jQuery	1.7	and	Beyond

Chaining	jQuery	Functions

Accelerometer	Values	with	jQuery

Summary

Chapter	2			Introduction	to	CSS3

CSS3	Support	and	Browser-Specific	Prefixes	for	CSS3	Properties

Quick	Overview	of	CSS3	Features

CSS3	Pseudo	Classes	and	Attribute	Selection

CSS3	Pseudo	Classes

CSS3	Attribute	Selection

CSS3	Shadow	Effects	and	Rounded	Corners

Specifying	Colors	with	RGB	and	HSL

CSS3	and	Text	Shadow	Effects

CSS3	and	Box	Shadow	Effects

www.allitebooks.com

http://www.allitebooks.org

CSS3	and	Rounded	Corners

CSS3	Gradients

Linear	Gradients

Radial	Gradients

CSS3	2D	Transforms

Rotate	Transforms

CSS3	Media	Queries

Additional	Code	Samples	on	the	CD

Summary

Chapter	3			Animation	Effects	with	jQuery	and	CSS3

Working	with	CSS3	Selectors	in	jQuery

Basic	Animation	Effects	in	jQuery

Using	Callback	Functions

jQuery	Fade	and	Slide	Animation	Effects

The	fadeIn(),	fadeOut(),	and	fadeToggle()	Functions

jQuery	Slide-Related	Functions

Easing	Functions	in	jQuery

The	jQuery	.animate()	Method

Custom	CSS	Animation	Using	the	.animate()	Function

CSS3-Based	Animation	Effects

Animation	Effects	with	CSS3	Keyframes	and	2D	Transforms

2D	Transforms	with	CSS3	and	jQuery

A	Follow-the-Mouse	Example	with	jQuery

Handling	Other	Events	with	jQuery

Handling	Mouse	Events

Handling	Keyboard	Events

Additional	Code	Samples	on	the	CD

Animation:	Comparing	CSS3	with	jQuery

Summary

Chapter	4			jQuery	UI	Controls

Using	jQuery	2.0	in	this	Chapter

Accordion	Effects

www.allitebooks.com

http://www.allitebooks.org

Buttons

Check	Boxes	and	Radio	Buttons

Combo	Boxes

Date	Pickers

Progress	Bars

Additional	Code	Samples	on	the	CD

Create	“Exploding”	Effects

Useful	Links

Summary

Chapter	5			Other	HTML5	Technologies

The	Stages	in	the	W3C	Review	Process

HTML5	APIs	in	W3C	Recommendation	Status	(REC)

HTML5	Geolocation

Obtain	a	User’s	Position	with	getCurrentPosition()

Track	a	User’s	Position	with	watchPosition()

HTML5	Cross-Origin	Resource	Sharing	(CORS)

HTML5	APIs	in	W3C	Candidate	Recommendation	Status	(CR)

The	Battery	API

XMLHttpRequest	Level	2	(XHR2)

Making	AJAX	Calls	without	jQuery

Making	AJAX	Calls	with	jQuery

AJAX	Requests	using	XMLHttpRequest	Level	2	(XHR2)

HTML5	Drag	and	Drop	(DnD)

jQuery	and	HTML5	Drag	and	Drop

jQuery	and	HTML5	Local	Storage

Libraries	for	HTML5	Local	Storage

jQuery	and	HTML5	File	APIs

HTML5	History	APIs

HTML5	Offline	Web	Applications

Detecting	Online	and	Offline	Status

Summary

Chapter	6			Introduction	to	Single-Page	Applications

www.allitebooks.com

http://www.allitebooks.org

What	is	an	SPA?

Modern	Web	Architecture

MVC	and	MV*	Patterns

Generating	Web	Pages	in	SPAs

Handling	Model-Related	Events	in	SPAs

Client-Side	Technologies	for	SPAs

BackboneJS

A	Brief	Introduction	to	BackboneJS

What	is	a	Model?

Model	Changes

What	is	a	View?

What	is	a	Collection?

What	is	a	Router?

Useful	Links

Backbone	Boilerplate

Variations	of	BackboneJS

EmberJS

Twitter	Bootstrap

Useful	Links

A	Minimalistic	SPA

Jade

Jade	Code	Samples

A	Minimal	NodeJS	Code	Sample	with	Jade

Other	Templating	Solutions

MongoDB

NodeJS

Mongoose

Connecting	to	MongoDB	via	Mongoose

Creating	Schemas	in	Mongoose

An	SPA	Code	Sample

Summary

Chapter	7			Introduction	to	jQuery	Mobile

Using	jQuery	2.0	in	This	Chapter

Overview	of	jQuery	Mobile

Key	Features	and	Components	in	jQuery	Mobile

A	Minimal	jQuery	Mobile	Web	Page

More	Differences	between	jQuery	and	jQuery	Mobile

jQuery	Mobile	Page	Views

jQuery	Mobile	Custom	Attributes

jQuery	Mobile	Page	Transitions

jQuery	Mobile	and	CSS-Related	Page	Initialization

The	mobileinit	Event

jQuery	Mobile	Options	and	Customization

Page	Navigation	and	Changing	Pages

The	jqmData()	Custom	Selector

Multiple	Page	Views	in	One	HTML5	Web	Page

Positioning	the	Header	and	Footer	in	Page	Views

Working	with	Buttons	in	jQuery	Mobile

Navigation	Buttons	as	Anchor	Links

Groups	of	Buttons	and	Column	Grids

Rendering	Buttons	with	Themes

List	Views	in	jQuery	Mobile

Additional	Code	Samples	on	the	CD

jQuery	Mobile	and	AJAX

jQuery	Mobile	and	Geolocation

Summary

Chapter	8			User	Gestures	and	Animation	Effects	in	jQuery	Mobile

Handling	User	Gestures	and	Events	in	jQuery	Mobile

Two	jQuery	Plugins	for	Detecting	User	Gestures

Scroll	Events	in	jQuery	Mobile

Portrait	Mode	versus	Landscape	Mode

Animation	Effects	Using	jQuery	Mobile

Fade-related	Methods

Slide-Related	jQuery	Methods

jQuery	Mobile	and	Transition	Effects

jQuery	Mobile	and	Animation	Effects	with	CSS3

jQuery	Mobile	Virtual	Mouse	Events

Additional	Code	Samples	on	the	CD

Accelerometer	Values	with	jQuery

Summary

Chapter	9			Introduction	to	HTML5	Canvas

What	is	HTML5	Canvas?

HTML5	Canvas	versus	SVG

The	HTML5	Canvas	Coordinate	System

Line	Segments,	Rectangles,	Circles,	and	Shadow	Effects

HTML5	Canvas	Linear	Gradients

Horizontal,	Vertical,	and	Diagonal	Linear	Gradients

Radial	Color	Gradients

HTML5	Canvas	Transforms	and	Saving	State

jCanvas:	a	jQuery	Plugin	for	HTML5	Canvas

HTML5	Canvas	with	CSS3	and	jQuery	Mobile

Additional	Code	Samples	on	the	CD

Other	HTML5	Canvas	Toolkits

Summary

Chapter	10			Using	PhoneGap	for	HTML5	Mobile	Apps

HTML5/CSS3	and	Android	Applications

SVG	and	Android	Applications

HTML5	Canvas	and	Android	Applications

What	is	PhoneGap?

How	Does	PhoneGap	Work?

Creating	Android	Apps	with	the	PhoneGap	Plugin

Working	with	HTML5,	PhoneGap,	and	iOS

A	CSS3	Cube	on	iOS	Using	PhoneGap

Additional	Code	Samples	on	the	CD

Summary

On	the	CD-Rom

Index

PREFACE
	

This	book	endeavors	to	provide	you	with	as	much	up-to-date	information	as	possible
regarding	jQuery	that	can	be	reasonably	included	in	a	book	consisting	of	roughly	200
pages.	You	need	some	familiarity	with	HTML	Web	pages	and	JavaScript,	but	no	prior
knowledge	of	jQuery	is	required.

Which	Version	of	jQuery	is	for	this	Book?
The	code	samples	in	this	book	were	initially	written	using	jQuery	1.7.1.	These	code

samples	were	upgraded	to	jQuery	2.0	beta,	along	with	jQuery	Migrate	plugin	(version
1.9.1)	to	ensure	that	the	code	samples	do	not	contain	any	deprecated	jQuery	methods.

There	are	two	benefits	to	this	approach.	First,	you	can	use	these	HTML	Web	pages
with	jQuery	2.0	beta	and	be	assured	that	they	do	not	contain	any	deprecated	jQuery	code.
In	addition,	if	you	need	to	use	a	version	of	jQuery	prior	to	version	2.0	(perhaps	due	to	an
existing	code	base),	these	HTML	Web	pages	work	correctly	without	modification.

What	About	jQuery	2.0?
The	current	production	version	of	jQuery	is	version	1.9,	and	jQuery	2.0	beta	is	also

available.	As	this	book	goes	to	print,	jQuery	2.0	will	probably	become	available	as	well.
The	key	point	to	remember	is	that	jQuery	2.0	removes	support	for	IE	6,	IE	7,	and	IE	8,	and
also	deprecates	some	jQuery	methods	that	are	available	in	earlier	versions	of	jQuery.
Fortunately,	version	2.0	will	be	backward	compliant	with	jQuery	1.9.

Which	Version	of	jQuery	Should	Readers	Use?
This	is	an	important	question	because	there	are	at	least	five	active	versions	of	jQuery

in	HTML	Web	pages	(back	to	version	1.6.x).	The	answer	is	simple:	strive	to	write	code
that	is	compliant	with	jQuery	2.0.

There	are	two	things	that	you	can	do	to	achieve	jQuery	2.0	compliance.	First,	make
sure	that	you	do	not	use	the	jQuery	methods	that	have	been	desupported,	which	are
available	here	(along	with	other	changes):

http://jquery.com/upgrade-guide/1.9/

Second,	use	the	jQuery	Migrate	plugin,	which	you	can	use	with	either	1.9	or	2.0	to
detect	deprecated	and	removed	features,	or	to	restore	old	features	for	cases	where	you
need	old	code	to	run	with	new	jQuery.	The	plugin	and	the	messages	it	generates	are
documented	in	the	project	README.

You	can	use	the	plugin	simply	by	including	it	after	your	jQuery	file	and	check	for
warning	messages	regarding	deprecated	code.	For	example,	if	you	plan	to	use	jQuery	1.9
in	your	HTML	Web	pages,	include	the	following	code	snippet:

<script	src=“http://code.jquery.com/jquery-1.9.0.js”></script>

<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

</script>

If	you	plan	to	use	jQuery	2.0	in	your	HTML	Web	pages,	include	the	following	code
snippet:

<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”></script>

<script	src=“http://code.jquery.com/jquery-migrate-1.0.0.js”>	</script>

When	you	add	the	preceding	code	snippet	to	an	HTML	Web	page	and	then	launch	that
Web	page	in	a	WebKit-based	browser,	you	will	see	the	following	message	in	the	Inspector
if	there	are	no	errors:

JQMIGRATE:	Logging	is	active

You	can	find	additional	details	on	the	jQuery	blog:

http://blog.jquery.com/

How	Do	I	Actually	Find	the	Deprecated	Code?
Launch	the	HTML	Web	page	in	question	in	a	WebKit-based	browser	and	open	the

Web	Inspector	to	check	for	errors	or	warnings.	Unfortunately,	the	jQuery	Migrate	plugin
can	generate	warning	messages	that	are	unintuitive.	For	example,	consider	the	following
code	snippet	in	JQDragAndDrop1.html	in	Chapter	5:

<!—

<script	src=“http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.9/jquery-ui.min.js”>

</script>

—>

<script	src=“http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.1/jquery-ui.min.js”>

</script>

You	must	use	the	second	<script>	element	because	the	first	<script>	element	does	not
work	correctly.	Listing	1	displays	the	output	in	Web	Inspector	when	you	launch	the	HTML
Web	page	and	you	attempt	to	drag-and-drop	any	of	the	images.

	
Figure	1		An	Error	Message	from	jQuery	Migration	Plugin	in	Web	Inspector.

If	you	launch	an	HTML	Web	page	and	you	find	“cryptic”	error	messages,	check	the
jQuery	Website	for	the	latest	version	of	the	CDN-based	JavaScript	and	CSS	files	and
update	your	Web	page	accordingly.	If	this	does	not	resolve	the	issue,	perform	a	Google
search	to	see	if	you	can	find	a	link	with	a	solution	for	the	error.

ABOUT	THE
TECHNICAL	EDITOR

	

Richard	Clark,	M.A.	(@rdclark)	is	an	experienced	software	developer	and	instructor
for	Kaazing	Corporation.	He	has	taught	for	Apple	and	Hewlett-Packard,	written
immersive	simulations,	developed	multiple	high-performance	web	applications	for	the
Fortune	100,	and	published	Apple	iOS	applications.	An	in-demand	speaker	for
international	conferences,	he	has	a	special	interest	in	using	mobile,	connected,	real-time
applications	to	help	people	live,	work,	and	play	better.	In	his	spare	time,	Richard	does
Web	development	for	non-profits,	tends	a	garden	full	of	California	native	plants,	and
cooks	for	family	and	charity	events.

CHAPTER			1
	

jQUERY	CONCEPTS

	

This	chapter	introduces	you	to	jQuery	and	provides	examples	of	using	jQuery	APIs
to	manipulate	elements	in	HTML5	Web	pages.	jQuery	is	an	extremely	popular	open
source	JavaScript-based	toolkit	that	provides	a	layer	of	abstraction	over	JavaScript.
Moreover,	jQuery	supports	multiple	browsers,	which	simplifies	the	code	in	your	HTML
Web	pages.

The	jQuery	homepage	provides	a	download	link	for	the	source	code,	along	with
documentation,	developer	resources,	and	other	useful	links:

http://jquery.org

jQuery	is	an	open	source	JavaScript	toolkit	that	enables	you	to	write	cross-browser	and
cross-platform	JavaScript	code	for	managing	elements	in	an	HTML	Web	page,	This
includes	finding,	creating,	updating,	and	deleting	not	only	elements,	but	also	element
attributes,	as	well	as	the	ability	to	add	or	remove	style-related	attributes	of	elements.

Some	of	the	important	and	useful	features	of	jQuery	(in	no	particular	order)	include	its
support	for	cross-browser	code,	third-party	jQuery	plugins,	themeable	widgets,	event
handling,	AJAX	support,	and	simpler	DOM	traversal.

Using	jQuery	to	Find	Elements	in	Web	Pages
A	key	point	to	remember	is	that	the	“$”	prefix	is	the	jQuery	function.	The	$	prefix	is	a

short-hand	form	of	jQuery(),	which	means	that	the	following	two	lines	of	code	are	the	same:
var	pElements1	=	$(“p”);

var	pElements2	=	jQuery(“p”);

A	third	option	is	the	use	of	window.jQuery,	but	this	is	less	common	than	using	jQuery	or
simply	the	$	sign.

One	key	point	to	remember	is	that	a	jQuery	search	actually	returns	a	“result	set,”
which	is	the	set	of	elements	that	match	the	selection	criteria.	You	can	then	apply	an
“action”	to	that	set	of	elements.	For	example,	you	can	find	all	the	paragraphs	in	an	HTML
Web	page	and	then	set	their	text	to	red.	After	applying	an	action	to	a	set	of	elements,	a
new	set	of	elements	is	returned.	In	fact,	you	can	apply	a	second	action	to	that	modified	set,
which	returns	yet	another	set.	This	process	of	applying	multiple	methods	to	a	set	is	called
method	chaining,	and	the	good	news	is	that	you	“chain”	together	as	many	function
invocations	as	you	wish.	Method	chaining	enables	you	to	write	very	compact	yet	powerful
code,	as	you	will	see	in	some	examples	in	this	chapter.	As	a	preview,	the	following	code
snippet	illustrates	the	use	of	jQuery	method	chaining:

$(“ul	li#item4”).next().next().css({‘font-size’:24,

http://jquery.org

																																‘background-color’:‘blue’});

As	a	simple	example	of	how	to	use	jQuery	to	select	a	set	of	elements	in	an	HTML
Web	page,	the	following	code	snippet	returns	the	set	of	<p>	elements	(if	any)	in	an	HTML
Web	page	and	assigns	that	set	of	elements	to	the	JavaScript	variable	pElements:

var	pElements	=	$(“p”);

The	following	code	samples	illustrate	these	and	other	jQuery	concepts.

A	“Hello	World”	Web	Page	with	jQuery

The	example	in	this	section	finds	a	single	HTML	<p>	element	and	then	changes	its	text.
Later	you	will	also	see	the	modified	code	that	enables	you	to	manipulate	an	HTML	Web
page	containing	multiple	HTML	<p>	elements.

Listing	1.1	displays	the	contents	of	HelloWorld1.html	that	illustrates	how	to	add	jQuery
functionality	to	an	HTML5	Web	page	that	contains	a	single	HTML	<p>	element.

				Listing	1.1	contains	console.log()	that	is	available	in	WebKit-based	browsers,	but
might	not	be	available	without	some	type	of	plugin	or	extension	for	other	browsers.

	
LISTING	1.1	HelloWorld1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

		<meta	charset=“utf-8”	/>

		<title>Hello	World</title>

	

<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

</script>

<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

</script>

</head>

	

<body>

		<p	id=“Steve”>Hello	World	From	a	Paragraph</p>

	

		<script>

			$(document).ready(function(){

					//	get	the	‘id’	value

					var	pId	=	$(“p”).attr(“id”);

	

					//	get	the	text	in	the	<p>	element

www.allitebooks.com

http://www.allitebooks.org

					var	pText	=	$(“p”).text();

					console.log	(pId+”	says	“+pText);

	

					//	update	the	text	in	the	<p>	element

					$(“p”).text(“Goodbye	World	From	a	Paragraph”);

					pText	=	$(“p”).text();

					console.log(pId+”	says	“+pText);

			});

		</script>

	</body>

</html>

Listing	1.1	references	two	jQuery	files	with	this	code	snippet:
<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

</script>

<script

		src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

</script>

Important:	the	first	HTML	<script>	element	in	the	HTML	<body>	element	starts	with	this
line:

$(document).ready(function(){

		//	do	something	here

});

The	preceding	construct	ensures	that	the	DOM	has	been	loaded	into	memory,	so	it’s
safe	to	access	and	manipulate	DOM	elements.

Remember	that	you	can	use	the	$	sign	to	represent	jQuery,	and	you	can	get	the	value	of
an	attribute	of	an	HTML	element	(such	as	a	<p>	element)	using	the	jQuery	attr()	function.
For	example,	you	can	get	the	value	of	the	id	attribute	of	an	HTML	<p>	element	as	follows:

var	pId			=	$(“p”).attr(‘id’);

You	can	get	the	text	string	in	an	HTML	<p>	element	using	the	jQuery	text()	function,	as
shown	here:

//	get	the	text	in	the	<p>	element

var	pText	=	$(“p”).text();

console.log	(pId+’	says	‘+pText);

Finally,	you	can	use	the	same	text()	function	to	update	the	text	in	an	HTML	<p>	element,
as	shown	here:

//	update	the	text	in	the	<p>	element

$(“p”).text(“Goodbye	World	From	a	Paragraph”);

Launch	the	file	in	Listing	1.1	and	open	the	Inspector	that	is	available	in	your	WebKit-

based	browser.	Next,	select	“Inspect	Element”,	and	click	the	“>>”	symbol	at	the	bottom	of
the	Web	page	to	see	the	output	from	the	two	console.log()	statements	in	Listing	1.1.	Keep	in
mind	that	the	exact	sequence	of	steps	for	using	the	Web	Inspector	is	different	for	Chrome
than	for	Safari,	and	the	sequence	will	probably	also	change	in	future	versions	of	these	two
browsers.

In	case	you	don’t	already	know,	you	can	use	Chrome	Web	Inspector	to	view	the
contents	of	variables,	which	can	be	very	helpful	for	debugging	purposes.	You	can
experiment	with	the	features	of	Chrome	Web	Inspector,	and	also	read	online	tutorials
about	this	excellent	tool.

Querying	and	Modifying	the	DOM	with	jQuery
This	section	shows	you	how	to	use	various	jQuery	modifiers	that	make	it	very	easy	to

find	and	update	elements	in	an	HTML5	Web	page.	The	code	samples	are	short	because
they	illustrate	only	one	or	two	qualifiers,	but	you	can	combine	them	to	perform	very
sophisticated	DOM	traversals	and	context-sensitive	modifications	to	DOM	elements.

Some	of	the	qualifiers	that	are	discussed	in	the	code	samples	in	this	section	includes
:first,	:last,	:even,	and	:odd.	A	partial	list	of	selectors	includes	:eq(),	:lt(),	:gt(),	:has(),	:contains(),	and
:eq().

Find	and	Modify	Elements	With	:first	and	:last	Qualifiers

The	example	in	this	section	shows	you	how	to	use	the	jQuery	:first	and	:last	qualifiers	to
manipulate	the	text	in	HTML	elements.

Listing	1.2	displays	the	contents	of	JQModifyElements1.html	that	illustrates	how	to	switch
the	contents	of	two	<p>	elements.

LISTING	1.2	JQModifyElements1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

		<meta	charset=“utf-8”	/>

		<title>jQuery	and	Modifying	Elements</title>

	

			<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

			</script>

			<script

					src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

			</script>

	</head>

	

	<body>

		<p	style=“color:red”	id=“Steve”>Hello	From	Paragraph	One</p>

		<p	style=“color:blue”	id=“Dave”>Goodbye	From	Paragraph	Two</p>

		

		<script>

			$(document).ready(function(){

					//	get	information	in	first	paragraph:

					var	pId1			=	$(“p:first”).attr(‘id’);

					var	pText1	=	$(“p:first”).text();

		

					//	get	information	in	last	paragraph:

					var	pId2			=	$(“p:last”).attr(‘id’);

					var	pText2	=	$(“p:last”).text();

	

					$(“p:first”).html(pText2);

					$(“p:last”).html(pText1);

			//$(“p:first”).text(pText2);

			//$(“p:last”).text(pText1);

			});

		</script>

	</body>

</html>

Listing	1.2	references	the	required	jQuery	file,	adds	two	HTML	<p>	elements,	and	then
extracts	the	value	of	the	id	attribute	and	the	text	in	the	first	<p>	element	as	shown	here:

//	get	information	in	first	paragraph:

var	pId1			=	$(“p:first”).attr(‘id’);

var	pText1	=	$(“p:first”).text();

The	next	block	of	code	performs	the	same	thing	with	the	second	<p>	element.	Then,	the
text	of	the	two	<p>	elements	is	switched	with	the	following	two	lines	of	code:

$(“p:first”).html(pText2);

$(“p:last”).html(pText1);

Despite	the	simplicity	of	the	jQuery	code,	this	illustrates	the	ease	with	which	you	can
manipulate	HTML	elements	in	an	HTML	Web	page	by	means	of	the	available	jQuery
functions.

Incidentally,	you	can	get	and	set	the	value	of	an	HTML	<input>	field	(whose	id	attribute
has	value	myInput)	with	the	following	two	lines	of	code:

$(“#myInput”).val()

$(“#myInput).text(“new	input	value”);

Figure	1.1	displays	the	result	of	rendering	the	page	JQModifyElements1.html	in	a	landscape-
mode	screenshot	taken	from	an	Asus	Prime	tablet	with	Android	ICS.

	
Figure	1.1		Modifying	element	in	jQuery	on	an	Asus	Prime	tablet	with	Android	ICS.

The	next	section	shows	you	how	to	use	jQuery	methods	that	can	set	collection	of
elements	with	the	jQuery	qualifiers	:even()	and	:odd().

Finding	Elements	with	:eq,	:lt,	and	:gt	Qualifiers

There	are	many	jQuery	functions	available	to	perform	sophisticated	manipulations	of
HTML	elements	with	relative	ease.	This	section	contains	some	useful	code	snippets	that
illustrate	some	of	the	other	jQuery	functions	that	are	available.

For	example,	the	jQuery	qualifiers	:eq(),	:lt(),	and	:gt()	respectively	match	elements
whose	position	is	equal	to,	less	than,	or	greater	than,	in	a	list	of	items.	Recall	that	since
lists	in	jQuery	start	from	index	0,	the	first	item	in	a	list	has	index	zero	of	the	list.

An	example	of	finding	the	<p>	element	with	index	3:
$(‘p:eq(3)’).text(‘index	equals	three’);

An	example	of	finding	the	<p>	element	with	index	greater	than	3:
$(‘p:gt(3)’).text(‘index	is	greater	than	three’);

An	example	of	finding	the	<p>	element	with	index	less	than	3:
$(‘p:lt(3)’).text(‘index	is	less	than	three’);

The	preceding	code	snippets	show	you	some	of	the	things	that	are	possible	with
jQuery	functions.	Also,	there	are	jQuery	functions	that	perform	conditional	tests	on
HTML	elements.

For	example,	jQuery	provides	custom	selectors,	such	as	:has(),	:contains(),	and	:eq().	You
can	use	these	selectors	to	select	elements,	as	in	the	following	example:

$(“div:contains(‘foo’)”))

You	can	also	use	these	selectors	to	filter	other	selectors,	as	shown	here:
$(“div”).contains(‘foo’)

In	addition,	you	can	search	for	elements	based	on	the	value	of	their	id	attribute	or	by	a
specific	class	attribute,	as	shown	in	the	next	section.

Properties	versus	Attributes	in	jQuery

In	general	terms,	an	attribute	is	descriptive	information	attached	to	a	DOM	node	that
is	not	the	node’s	contents	or	child	nodes.	For	example,	in	the	following	code	snippet:

<p	class=“intro”>Hello</p>

class	is	an	attribute	with	the	value	“intro.”

A	property	is	a	value	derived	from	the	node	(attributes	and	all),	and	is	often	writeable.
For	example,	every	node	has	an	attributes	property	with	a	reference	to	all	the	attributes.	In
the	preceding	code	snippet,	there	will	be	a	className	property	that	initialized	from	the	class
attribute.

In	most	cases	you	want	the	property,	but	if	you	need	to	see	the	original	value,	then	use
the	attribute.

Additional	information	regarding	properties	and	attributes	is	here:

https://developer.mozilla.org/en-US/docs/DOM/element

http://stackoverflow.com/questions/5874652/prop-vs-attr

jQuery	provides	the	.prop()	method	for	properties	and	the	jQuery	.attr()	method	for
attributes.	Unfortunately,	the	jQuery	documentation	describes	the	.prop()	method	and	the
.attr()	method	with	an	identical	statement:

“Get	the	value	of	a	property	for	the	first	element	in	the	set	of	matched	elements	or	set	one	or	more	properties	for
every	matched	element.”

However,	the	good	news	is	in	the	following	statement:

“To	maintain	backwards	compatability	[sic],	the	.attr()	method	in	jQuery	1.6.1+	will	retrieve	and	update	the
property	for	you	so	no	code	for	Boolean	attributes	is	required	to	be	changed	to	.prop().”

The	safest	thing	to	do	is	to	use	the	jQuery	.attr()	method	on	primitive	values	(such	as
Boolean	or	single-valued	strings)	and	to	use	the	jQuery	.prop()	method	for	multi-valued
strings	(such	as	“style”).	With	this	point	in	mind,	the	next	section	shows	you	how	to	work
with	attributes	in	jQuery.

Finding	and	Setting	Element	Attributes

You’ve	seen	how	to	use	various	jQuery	functions	to	manipulate	elements,	and	also
how	to	find	the	value	of	an	attribute.	This	section	contains	examples	of	updating	the
attributes	of	elements.

The	following	snippet	gets	the	value	of	the	src	attribute	of	an	element:
var	$source	=	$(“img”).attr(“src”);

The	next	code	snippet	shows	how	to	set	the	value	of	one	attribute:
$(“img”).attr(“src”,	“/images/MyHouse.jpg”);

https://developer.mozilla.org/en-US/docs/DOM/element
http://stackoverflow.com/questions/5874652/prop-vs-attr

The	following	code	snippet	shows	how	to	set	multiple	attributes	in	one	command
(displayed	over	multiple	lines	for	convenience):

$(“img”).attr({

							src:	“/images/MyHouse.jpg”,

							title:	“House”,

							alt:	“House”

});

The	preceding	code	snippet	sets	the	values	of	the	attributes	src,	title,	and	alt	to	their
respective	values.

Notice	that	the	syntax	of	the	jQuery	attr()	method	is	very	similar	to	the	jQuery	css()
method,	so	when	you	understand	one	function,	you	will	understand	the	other	one	as	well.

Working	with	Custom	Attributes

HTML5	supports	custom	attributes,	provided	that	the	attribute	name	starts	with	the
string	data-	followed	by	an	attribute	name.	Although	you	might	not	need	to	use	custom
attributes	right	now,	jQuery	Mobile	relies	heavily	on	custom	attributes,	so	this
functionality	is	extremely	useful.

You	can	retrieve	the	values	of	custom	attributes	using	the	jQuery	.data()	method.	For
example,	suppose	your	HTML	Web	page	contains	this	snippet:

<div	data-role=“page”	data-value=“99”	data-status=“new”></div>

You	can	retrieve	the	values	of	these	custom	attributes	as	follows:

$(“div”).data(“role”)	returns	the	value	page

$(“div”).data(“value”)	returns	the	value	99

$(“div”).data(“status”)	returns	the	value	true

You	will	see	more	examples	of	manipulating	custom	data	attributes	in	jQuery	Mobile
code	samples,	and	if	you’re	really	ambitious,	you	can	find	more	examples	in	the	jQuery
Mobile	source	code.

Using	jQuery	to	Remove	Elements

As	you	can	probably	guess,	jQuery	enables	you	to	remove	elements	in	addition	to
finding	and	modifying	elements	in	an	HTML	Web	page.	Listing	1.3	contains	a	portion	of
the	HTML	Web	page	JQRemovingElements1.html	that	illustrates	how	to	remove	elements	via
jQuery.

LISTING	1.3	JQRemovingElements1.html
<script>

			$(document).ready(function(){

					//	remove	the	<p>	element	Dave

					$(“#Dave”).remove();

	

					//	remove	the	<p>	element	Michelle

					$(“div1”).remove(“#Michelle”);

	

					//	remove	<p>	elements	containing	“Goodbye”

					$(“p”).filter(“:contains(‘Goodbye’)”).remove();

			});

</script>

Listing	1.3	contains	three	lines	of	code	for	removing	elements,	the	first	of	which	is
shown	here	(and	the	second	is	similar):

//	remove	the	<p>	element	Dave

$(“#Dave”).remove();

Although	the	preceding	code	snippet	performs	just	as	you	would	expect,	an	example
that	illustrates	the	real	power	of	jQuery	is	shown	in	the	following	code	snippet,	which	uses
the	jQuery	filter()	method	to	find	and	then	remove	all	the	HTML	<p>	elements	that	contain
the	string	Goodbye:

$(“p”).filter(“:contains(‘Goodbye’)”).remove();

Compare	the	simple	and	intuitive	nature	of	the	preceding	single	line	of	jQuery	code
with	the	corresponding	JavaScript	code	that	is	required	to	perform	the	same	functionality.

	
Figure	1.2		Removing	elements	with	jQuery	on	an	iPad3.

Figure	1.2	displays	the	result	of	rendering	RemovingElements1.htmlin	a	portrait-mode
screenshot	taken	from	an	iOS	application	running	on	an	iPad3.

Creating	DOM	Elements

jQuery	provides	the	clone()	method	and	the	append()	method	for	creating	new	DOM
elements.	The	clone()	method	creates	a	true	copy	of	an	element.	On	the	other	hand,	the
append()	method	operates	on	the	specified	element.	Listing	1.4	displays	the	contents	of
JQCreatingElements1.html	that	illustrates	how	to	use	both	of	these	jQuery	methods	in	order	to
create	new	elements	in	an	HTML	Web	page.

LISTING	1.4	JQCreatingElements1.html
<!DOCTYPE	html>

<html	lang=“en”>

<body>

		<script>

			$(document).ready(function(){

					//	append	a	clone	of	the	#Dave	element	to	“#div2”:

					$(“#Dave”).clone().css({color:”#000”}).appendTo(“#div2”);

	

					//	append	another	clone	of	the	#Dave	element	to	“#div2”:

					$(“#Dave”).clone().css({color:”#00f”})

							.appendTo(“#div2”);

	

					//	move	the	red	#Dave	to	the	end	of	“#div4”:

					$(“#Dave”).appendTo(“#div4”);

	

					//	prepend	#Dave	to	all	the	‘div’	elements:

			//$(“#Dave”).clone().prependTo(“div”);

			});

		</script>

	</body>

</html>

Listing	1.3	introduces	the	jQuery	clone()	method,	an	example	of	which	is	shown	here:
//	append	a	clone	of	the	#Dave	element	to	“#div2”:

$(“#Dave”).clone().css({color:”#000”}).appendTo(“#div2”);

The	purpose	of	the	preceding	code	snippet	is	clear,	and	you	can	even	read	it	from	left
to	right	to	grasp	its	purpose:	clone	the	element	whose	id	is	Dave,	set	its	color	to	black,	and
append	this	cloned	element	to	the	element	whose	id	is	div2.

The	only	other	new	functionality	in	Listing	1.3	is	the	jQuery	prependTo()	function,	which
inserts	an	element	before	(instead	of	after)	a	specified	element,	as	shown	here:

//	prepend	#Dave	to	all	the	‘div’	elements:

//$(“#Dave”).clone().prependTo(“div”);

One	other	point	to	remember:	clone(true)	will	also	propagate	the	event	handlers	of	the
source	element.	There	are	other	jQuery	methods	for	inserting	DOM	elements,	some	of
which	are	described	in	a	later	section.

Figure	1.3	displays	the	result	of	rendering	JQCreatingElements1.html	in	a	landscape-mode
screenshot	taken	from	an	iOS	application	running	on	an	iPad3.

	
Figure	1.3		Creating	elements	with	jQuery	on	an	iPad3.

The	jQuery	append()	and	appendTo()	methods

The	jQuery	documentation	provides	a	succinct	explanation	about	these	two	methods:

“The.append()and	.appendTo()methods	perform	the	same	task.	The	major	difference	is	in
the	syntax-specifically,	in	the	placement	of	the	content	and	target.	With	.append(),	the
selector	expression	preceding	the	method	is	the	container	into	which	the	content	is
inserted.	With	.appendTo(),	on	the	other	hand,	the	content	precedes	the	method,	either	as	a
selector	expression	or	as	markup	created	on	the	fly,	and	it	is	inserted	into	the	target
container.”

Perhaps	this	casual	explanation	will	clarify	the	difference:
{select-something-here}.append(and-append-stuff-from-here)

{specify-stuff-here}.appendTo(and-append-that-stuff-here)

This	chapter	contains	code	samples	that	use	these	methods	so	that	you	will	remember
the	difference	between	these	two	jQuery	methods.

Useful	jQuery	Code	Blocks

This	section	contains	a	set	of	code	snippets	that	enable	you	to	perform	conditional
logic	and	then	execute	your	custom	code.	The	code	samples	in	this	section	are
straightforward,	and	the	comments	explain	their	purpose.

Check	if	jQuery	is	loaded:
if	(typeof	jQuery	==	‘undefined’)	{

			//	jQuery	is	not	loaded

}

Check	if	an	element	exists:
if	($(‘#myElement’).length	>	0)	{

			//	the	element	exists

}

Note	that	the	“>”	symbol	in	the	preceding	code	snippet	is	often	omitted	in	the	“truthy”
style	of	programming,	but	it’s	good	to	be	explicit	in	your	code.

Checking	for	empty	elements:
$(‘*’).each(function()	{

			if	($(this).text()	==	””)	{

						//do	something	here

			}			

});

Returns	true	or	false	based	on	content	of	a	<div>	element:
var	emptyTest	=	$(‘#myDiv’).is(‘:empty’);

Determine	if	a	checkbox	is	checked	(returns	true/false):
$(‘#checkBox’).attr(‘checked’);

Find	all	checked	checkboxes:
$(‘input[type=checkbox]:checked’);

Disable/enable	inputs	for	a	button	element:
$(“#submit-button”).attr(“disabled”,	true);

Remove	an	attribute	from	a	button	element:
$(“#submit-button”).removeAttr(“disabled”);

The	preceding	code	snippets	give	you	an	idea	of	the	compact	manner	in	which	you	can
check	various	conditions.	As	you	become	more	proficient	with	jQuery,	you	will	develop
your	own	set	of	useful	code	snippets.

Now	let’s	take	a	look	at	another	important	class	of	jQuery	functions	that	enable	you	to
navigate	around	the	DOM,	some	of	which	are	discussed	in	the	next	section.

Handling	Click	Events	in	jQuery
jQuery	provides	support	for	various	types	of	events	and	user	gestures	that	you	can

“bind”	to	custom	code	(written	by	you)	that	is	executed	whenever	those	events	or	gestures
take	place.	The	events	that	you	can	detect	and	bind	in	jQuery	Mobile	are	discussed	in	the
jQuery	Mobile	chapter.

The	click()	function	enables	you	to	handle	click	events	using	the	following	syntax:
$(“#button1”).click(function()	{

						//	do	something

}

There	are	several	techniques	for	handling	events,	and	the	recommended	technique	for
doing	so	is	shown	here:

$(“#button1”).on(“click”),	function()	{

						//	do	something

}

The	dblclick()	function	enables	you	to	handle	double	click	events,	and	an	example	of	the
syntax	is	here:

www.allitebooks.com

http://www.allitebooks.org

				$(“#button2”).dblclick(function()	{

						//	do	something

				}

Incidentally,	the	focus()	function	provides	focus	on	selected	elements.	Although	it	is	not
covered	here,	you	can	get	more	information	by	consulting	the	online	documentation.

Listing	1.5	displays	most	of	the	contents	of	JQClickDivs1.html	that	illustrates	how	to	detect
click	events	and	then	update	the	contents	of	both	<div>	elements	in	this	HTML5	Web	page.

LISTING	1.5	JQClickDivs1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

			<meta	charset=“utf-8”	/>

			<title>Detecting	Click	Events	with	jQuery</title>

	

			<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

			</script>

			<script

					src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

			</script>

</head>

	

<body>

		<div	id=“div1”>The	first	div	element	</div>

		<div	id=“div2”>The	second	div	element	</div>

	

		<script>

			var	click1=0,	click2=0,	total=0;

	

			$(document).ready(function()	{

						$(“#div1”).click(function()	{

								++click1;

								++total;

								$(this).text(“Clicked:	“+click1+”	total:	“+total);

							$(“#div2”).text(“Clicked:	“+click2+”	total:

																							”+total);

						});

	

						$(“#div2”).click(function()	{

								++click2;

								++total;

								$(this).text(“Clicked:	“+click2+”	total:	“+total);

							$(“#div1”).text(“Clicked:	“+click1+”	total:	“+total);

						});

			});

		</script>

	</body>

</html>

Listing	1.5	references	the	required	jQuery	file,	followed	by	some	CSS	styling
definitions,	along	with	two	HTML	<div>	elements.	The	code	for	adding	a	click	event
listener	to	the	first	HTML	<div>	element	is	shown	here	(with	similar	jQuery	code	for	the
second	HTML	<div>	element):

$(“#div1”).click(function()	{

					++click1;

					++total;

					$(this).text(“Clicked:	“+click1+”	total:	“+total);

					$(“#div2”).text(“Clicked:	“+click2+”	total:	“+total);

});

Whenever	users	click	on	the	preceding	HTML	<div>	element,	its	click	count	and	the
total	click	count	are	incremented,	and	the	text	of	both	HTML	<div>	elements	are	updated
with	the	click	count	for	the	individual	<div>	elements	as	well	as	the	sum	of	the	click	counts
for	both	<div>	elements.

Although	the	example	in	Listing	1.4	is	simplistic,	it	does	illustrate	how	to	keep	track
of	events	in	different	HTML	elements	in	an	HTML	Web	page.	A	more	realistic	example
could	involve	an	HTML	Web	page	with	an	HTML	Form	that	has	inter-dependencies
between	elements	in	the	form.

Figure	1.4	displays	the	result	of	rendering	the	HTML	page	JQClickDivs1.html	in	a
landscape-mode	screenshot	taken	from	an	iOS	application	running	on	an	Asus	Prime
tablet	with	Android	ICS.

	
Figure	1.4		Counting	click	events	on	an	Asus	Prime	Tablet	with	Android	ICS.

Handling	Events	in	jQuery	1.7	and	Beyond
In	jQuery	1.7	and	beyond,	the	preferred	method	for	defining	an	event	handler	uses	the

following	construct:
$(“some-element”).on(some-event)

However,	versions	of	jQuery	prior	to	version	1.7	provide	several	techniques	to	bind
events	to	elements,	and	three	of	these	techniques	have	been	deprecated.	Since	version	1.7
was	introduced	recently,	you	will	probably	be	exposed	to	HTML	Web	pages	containing
earlier	versions	of	jQuery	for	quite	some	time.	Consequently,	you	need	to	be	aware	of
those	other	coding	techniques	so	that	you	will	be	able	to	read	the	jQuery	code	in	HTML
Web	pages	that	use	earlier	versions	of	jQuery.

For	the	purpose	of	illustration,	suppose	that	you	need	to	bind	a	“click”	event	to	an
HTML	<div>	element	whose	id	attribute	is	div1.

The	preferred	method	for	defining	an	event	handler	with	this	code	block	(which	you
saw	earlier	in	this	chapter)	is	shown	here:

$(“#div1”).on(“click”),	function()	{

			//	do	something

}

However,	HTML	Web	pages	using	older	versions	of	jQuery	also	use	an	event	handler
defined	like	this:

$(“#div1”).click(function()	{

			//	do	something

}

A	third	method	for	defining	an	event	handler	is	to	use	the	bind()	method,	which	has
been	deprecated	in	version	1.7:

$(“#button1”).bind(“click”),	function()	{

			//	do	something

}

A	fourth	method	for	defining	an	event	handler	is	to	use	the	live()	method,	which	has
also	been	deprecated	in	version	1.7:

$(“#div1”).live(“click”),	function()	{

			//	do	something

}

The	bind()	method	and	the	live()	method	attach	a	handler	to	an	event	to	any	element	that
matches	the	current	selector.	In	addition,	the	live()	method	attaches	the	same	handler	to
elements	created	later,	which	match	the	current	selector.

A	fifth	method	for	defining	an	event	handler	is	to	use	the	delegate()	method,	which	has
also	been	deprecated	in	version	1.7:

$(“#div1”).delegate(“click”),	function()	{

			//	do	something

}

In	the	preceding	code	blocks,	an	event	handler	was	defined	in	order	to	handle	a	click
event,	but	similar	comments	apply	to	other	user-initiated	events,	such	as	swipeleft	and
swiperight.	If	you	want	to	learn	more	about	other	changes	in	jQuery	1.7,	you	can	find	a
summary	of	the	changes	(with	links)	here:

http://api.jquery.com/category/version/1.7/

You	can	also	get	detailed	information	regarding	new	functionality	and	changes	in
jQuery	1.7	on	this	Web	page:

http://blog.jquery.com/2011/11/03/jquery-1-7-released/

Additional	information	regarding	the	most	recent	versions	of	jQuery	is	available	in	the
Preface	of	this	book.

Chaining	jQuery	Functions
You	have	already	seen	examples	of	chaining	jQuery	commands,	and	you	might	have

used	chained	commands	in	Java	(especially	with	JAXB)	such	as	the	following:
myList().getFirstElem().getCustomer().setFirstName(“Dave”);

jQuery	chaining	supports	more	sophisticated	operations	than	the	preceding	code
snippet.	By	default,	jQuery	references	the	first	element	in	a	chain,	but	you	can	change	the
default	behavior.	For	example,	you	can	instruct	jQuery	to	reference	the	current	element
using	the	.parent()	method,	perform	some	manipulation,	and	then	use	the	jQuery	.end()
method	to	reference	the	first	element	in	the	chain	again.

http://api.jquery.com/category/version/1.7/
http://blog.jquery.com/2011/11/03/jquery-1-7-released/

A	good	example	that	illustrates	the	information	discussed	in	the	previous	paragraph	is
here:

http://blog.pengoworks.com/index.cfm/2007/10/26/jQuery-Understanding-the-chain

Keep	in	mind	the	following	caveats:	use	caution	when	you	change	the	default	behavior
in	method	chaining	because	the	actual	behavior	might	not	be	the	behavior	that	you	expect
in	your	code.	In	addition,	make	sure	that	you	clearly	document	such	code,	lest	you	confuse
people	who	are	less	knowledgeable	than	you	about	jQuery.

Accelerometer	Values	with	jQuery
The	example	in	this	section	illustrates	how	you	can	use	jQuery	to	obtain	accelerometer

values	for	a	mobile	device.

		Listing	1.6	displays	the	contents	of	JQAccelerometer1.html	that	illustrates	how	to
display	the	accelerometer	values	of	a	mobile	device	whenever	the	device	undergoes
acceleration	in	any	direction.	The	CSS	stylesheet	JQAccelerometer1.css	contains	simple
selectors	that	are	not	shown	here,	but	you	can	find	the	complete	listing	on	the	CD.

LISTING	1.6	JQAccelerometer1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

	<meta	charset=“utf-8”>

	<title>jQuery	and	Accelerometer</title>

	

			<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

			</script>

			<script

					src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

			</script>

	

		<script>

				var	colorX	=	””,	colorY	=	””,	colorZ	=	””;

				var	intx	=	0,	inty	=	0,	intz	=	0;

				var	colors	=	[‘#f00’,	‘#ff0’,	‘#00f’];

	

				$(‘document’).ready(function(){

						$(window).bind(“devicemotion”,	function(e){

									var	accelEvent	=	e.originalEvent,

													acceler	=	accelEvent.accelerationIncluding

																							Gravity,

http://blog.pengoworks.com/index.cfm/2007/10/26/jQuery-Understanding-the-chain

													x	=	acceler.x,	y	=	acceler.y,	z	=	acceler.z;

	

									if(x	<	0)						{	intx	=	0;	}

									else	if(x	<	1)	{	intx	=	1;	}

									else											{	intx	=	2;	}

	

									if(y	<	0)						{	inty	=	0;	}

									else	if(y	<	1)	{	inty	=	1;	}

									else											{	inty	=	2;	}

	

									if(z	<	0)						{	intz	=	0;	}

									else	if(z	<	1)	{	intz	=	1;	}

									else											{	intz	=	2;	}

	

									colorX	=	colors[intx];

									colorY	=	colors[inty];

									colorZ	=	colors[intz];

	

									$(“#valueX”).css(“backgroundColor”,	colorX);

									$(“#valueY”).css(“backgroundColor”,	colorY);

									$(“#valueZ”).css(“backgroundColor”,	colorZ);

	

								$(“#valueX”).html(“<p>Acceleration	x:	”	+	x	+

																																												”</p>”);

								$(“#valueY”).html(“<p>Acceleration	y:	”	+	x	+

																																												”</p>”);

								$(“#valueZ”).html(“<p>Acceleration	z:	”	+	x	+

																																												”</p>”);

						});

				});

		</script>

</head>

	

<body>

			<h2>Accelerometer	Values</h2>

			<div	id=“outer”>

					<div	id=“valueX”></div>

					<div	id=“valueY”></div>

					<div	id=“valueZ”></div>

			</div>

	</body>

</html>

The	code	in	Listing	1.6	obtains	accelerometer	values	for	three	directions	(all
perpendicular	to	each	other)	for	a	mobile	device,	and	then	performs	some	arithmetic
calculations	in	order	to	compute	integer	values	to	be	used	as	indexes	into	an	array	of	color
values.	After	determining	the	color	associated	with	each	direction,	the	associated
rectangular	<div>	element	is	updated	with	the	corresponding	color.

After	binding	the	window	object	to	the	devicemotion	event,	we	can	use	the	event	object	(in
this	case	called	e)	to	obtain	a	JavaScript	reference	to	the	acceleration	object	(which	is
called	acceler).	We	can	then	extract	current	values	for	the	three	different	axes,	as	shown
here:

$(‘document’).ready(function(){

			$(window).bind(“devicemotion”,	function(e){

						var	accelEvent	=	e.originalEvent,

													acceler	=	accelEvent.accelerationIncludingGravity,

													x	=	acceler.x,	y	=	acceler.y,	z	=	acceler.z;

For	simplicity,	the	array	of	colors	contains	only	three	colors,	and	the	following	code
computes	a	number	between	0	and	2	in	order	to	determine	the	color	for	the	x	direction:

if(x	<	0)						{	intx	=	0;	}

else	if(x	<	1)	{	intx	=	1;	}

else											{	intx	=	2;	}

The	color	for	the	x	direction	is	calculated	like	this:
colorX	=	colors[intx];

The	background	color	of	the	HTML	<div>	element	that	is	associated	with	the	x	direction
is	updated	with	the	following	code:

$(“#valueX”).css(“backgroundColor”,	colorX);

Finally,	the	current	value	of	the	acceleration	in	the	x	direction	is	displayed	using	the
following	code	snippet:

$(“#valueX”).html(“<p>Acceleration	x:	”	+	x	+	“</p>”);

The	corresponding	values	for	the	y	direction	and	the	z	direction	are	computed	in	a
similar	fashion.

Figure	1.5	displays	the	result	of	rendering	the	HTML	Web	page	in	Listing	1.5	in	a
landscape-mode	screenshot	taken	from	an	Android	application	running	on	an	Asus	Prime
tablet	with	Android	ICS.

	
Figure	1.5		Accelerometer	on	an	Asus	Prime	tablet	with	Android	ICS.

Summary
This	chapter	introduced	you	to	jQuery,	along	with	code	samples	that	illustrated	how	to

use	jQuery	functions	to	manipulate	an	HTML	Web	page.	You	saw	code	samples	that
showed	how	to	do	the	following:

Create	a	simple	jQuery-based	HTML5	Web	page
Find	and	modify	Elements	With	:first	and	:last	qualifiers
Find	elements	with	:even	and	:odd	qualifiers
Find	elements	with	:eq,	:lt,	and	:gt	qualifiers
Find	elements	by	class	or	id
Find/set	element	Attributes
Find	form	elements	and	their	attributes
CSS3-style	expressions	for	finding	elements
Remove	DOM	elements
Create	DOM	elements
Handle	events	in	jQuery
Use	the	click()	function
Chaining	jQuery	functions
Accelerometer	with	jQuery

CHAPTER			2
	

INTRODUCTION	TO	CSS3
	

This	chapter	introduces	various	aspects	of	CSS3,	such	as	2D/3D	graphics	and	2D/3D
animation.	In	some	cases,	CSS3	concepts	are	presented	without	code	samples	due	to	space
limitations;	however,	those	concepts	are	included	because	it’s	important	for	you	to	be
aware	of	their	existence.	By	necessity,	this	chapter	assumes	that	you	have	a	moderate
understanding	of	CSS,	which	means	that	you	can	write	a	basic	stylesheet	with	selectors
and	properties.	If	you	are	unfamiliar	with	CSS	selectors,	there	are	many	introductory
articles	available	through	an	Internet	search.	If	you	are	convinced	that	CSS	operates	under
confusing	and	seemingly	arcane	rules,	then	it’s	probably	worth	your	while	to	read	an
online	article	about	the	CSS	box	model,	after	which	you	will	have	a	better	understanding
of	the	underlying	logic	of	CSS.

The	first	part	of	this	chapter	contains	code	samples	that	illustrate	how	to	create	shadow
effects,	how	to	render	rectangles	with	rounded	corners,	and	also	how	to	use	linear	and
radial	gradients.	The	second	part	of	this	chapter	covers	CSS3	transforms	(scale,	rotate,
skew,	and	translate),	along	with	code	samples	that	illustrate	how	to	apply	transforms	to
HTML	elements	and	to	JPG	files.

The	third	part	of	this	chapter	covers	CSS3	2D	graphics,	such	as	linear	gradients,	radial
gradients,	and	CSS3	transforms.

You	can	launch	the	code	samples	in	this	chapter	in	a	Webkit-based	browser	on	a	desktop
or	a	laptop.	You	can	also	view	them	on	mobile	devices,	provided	that	you	launch	them	in	a
browser	that	supports	the	CSS3	features	that	are	used	in	the	code	samples.	For	your
convenience,	many	of	the	code	samples	in	this	chapter	are	accompanied	by	screenshots	of
the	code	samples	on	a	Sprint	Nexus	S	4G	and	an	Asus	Prime	Android	ICS	10”	tablet	(both
on	Android	ICS),	which	enables	you	to	compare	those	screenshots	with	the	corresponding
images	that	are	rendered	on	Webkit-based	browsers	on	desktops	and	laptops.	In	Chapter	10,
you	will	learn	the	process	of	creating	Android	applications	that	can	launch	HTML5	Web
pages.

CSS3	Support	and	Browser-Specific	Prefixes	for	CSS3	Properties
Before	we	delve	into	the	details	of	CSS3,	there	are	two	important	details	that	you	need

to	know	about	defining	CSS3-based	selectors	for	HTML	pages.	First,	you	need	to	know
the	CSS3	features	that	are	available	in	different	browsers.	One	of	the	best	Websites	for
determining	browser	support	for	CSS3	features	is	here:

http://caniuse.com/

The	preceding	link	contains	tabular	information	regarding	CSS3	support	in	IE,
Firefox,	Safari,	Chrome,	and	Opera,	as	well	as	several	mobile	browsers.

http://caniuse.com/

Another	highly	useful	tool	that	checks	for	CSS3	feature	support	is	Enhance.js.	It	tests
browsers	to	determine	whether	or	not	they	can	support	a	set	of	essential	CSS	and
JavaScript	properties,	and	then	delivers	features	to	those	browsers	that	satisfy	the	test.	You
can	download	Enhance.js	here:

https://github.com/filamentgroup/EnhanceJS

A	third	useful	tool	is	Modernizr,	which	checks	for	HTML5-related	feature	detection	in
various	browsers,	and	its	homepage	is	here:

http://www.modernizr.com/

At	some	point	you	will	start	using	JavaScript	in	your	HTML5	Web	pages	(indeed,	you
probably	do	so	already),	and	Modernizr	provides	a	programmatic	way	to	check	for	many
HTML5	and	CSS3	features	in	different	browsers.

In	order	to	use	Modernizr,	include	the	following	code	snippet	in	the	<head>	element	of
your	Web	pages:

<script	src=“modernizr.min.js”	type=“text/javascript”></script>

Navigate	to	the	Modernizr	homepage	where	you	can	read	the	documentation,	tutorials,
and	details	regarding	the	set	of	feature	detection.

The	second	detail	that	you	need	to	know	is	that	many	CSS3	properties	currently
require	browser-specific	prefixes	in	order	for	them	to	work	correctly.	The	prefix	applies	to
“work	in	progress”	for	individual	browsers,	and	the	final	specification	drops	browser-
specific	prefixes.	The	prefixes	–ie-,	-moz-,	and	-o-	are	for	Internet	Explorer,	Firefox,	and
Opera,	respectively.	Note	that	Opera	also	supports	–webkit-	prefixes,	and	it’s	possible	that
other	browsers	will	do	the	same	(check	the	respective	Websites	for	updates).

As	an	illustration,	the	following	code	block	shows	examples	of	these	prefixes:
-ie-webkit-border-radius:	8px;

-moz-webkit-border-radius:	8px;

-o-webkit-border-radius:	8px;

border-radius:	8px;

In	your	CSS	selectors,	specify	the	attributes	with	browser-specific	prefixes	before	the
“generic”	property,	which	serves	as	a	default	choice	in	the	event	that	the	browser-specific
attributes	are	not	selected.	The	CSS3	code	samples	in	this	book	contain	WebKit-specific
prefixes,	which	helps	us	keep	the	CSS	stylesheets	manageable	in	terms	of	size.	If	you	need
CSS	stylesheets	that	work	on	multiple	browsers	(for	current	versions	as	well	as	older
versions),	there	are	essentially	two	options	available.	One	option	involves	manually
adding	the	CSS3	code	with	all	the	required	browser-specific	prefixes,	which	can	be
tedious	to	maintain	and	also	error-prone.	Another	option	is	to	use	CSS	toolkits	or
frameworks	(discussed	in	the	next	chapter),	which	can	programmatically	generate	the
CSS3	code	that	contains	all	browser-specific	prefixes.

Finally,	an	extensive	list	of	browser-prefixed	CSS	properties	is	here:

http://peter.sh/experiments/vendor-prefixed-css-property-overview/

An	extensive	list	of	prefix-free	CSS	properties	is	here:

www.allitebooks.com

https://github.com/filamentgroup/EnhanceJS
http://www.modernizr.com/
http://peter.sh/experiments/vendor-prefixed-css-property-overview/
http://www.allitebooks.org

http://www.blooberry.com/indexdot/css/propindex/all.htm

Quick	Overview	of	CSS3	Features
CSS3	adopts	a	modularized	approach	involving	multiple	sub-specifications	for

extending	existing	CSS2	functionality	as	well	as	supporting	new	functionality.	As	such,
CSS3	can	be	logically	divided	into	the	following	categories:

Backgrounds/borders
Color
Media	queries
Multi-column	layout
Selectors

With	CSS3,	you	can	create	boxes	with	rounded	corners	and	shadow	effects;	create	rich
graphics	effects	using	linear	and	radial	gradients;	detect	portrait	and	landscape	mode;
detect	the	type	of	mobile	device	using	media	query	selectors;	and	produce	multi-column
text	rendering	and	formatting.

In	addition,	CSS3	enables	you	to	define	sophisticated	node	selection	rules	in	selectors
using	pseudo-classes	(described	in	the	next	section),	first	or	last	child	(:first-child,	:last-child,
:first-of-type,	and	:last-of-type),	and	also	pattern-matching	tests	for	attributes	of	elements.
Several	sections	in	this	chapter	contain	examples	of	how	to	create	such	selection	rules.

CSS3	Pseudo	Classes	and	Attribute	Selection
This	brief	section	contains	examples	of	some	pseudo-classes,	followed	by	snippets	that

show	you	how	to	select	elements	based	on	the	relative	position	of	text	strings	in	various
attributes	of	those	elements.

Recall	that	the	class	attribute	in	CSS	provides	a	way	to	mark	a	group	of	elements	as
having	a	certain	property,	such	as	the	following	code	snippet:

<p	class=“details”>

On	the	other	hand,	pseudo-classes	enable	you	to	reference	an	arbitrary	group	of
elements	by	some	identifying	feature	that	they	possess.	For	example,	the	following	code
snippet	collects	the	first	paragraph	in	each	HTML	<section>	element	in	an	HTML	Web	page:

section:p:first-of-type

CSS3	supports	an	extensive	and	rich	set	of	pseudo-classes,	including	nth-child(),	along
with	some	of	its	semantically	related	“variants,”	such	as	nth-of-type(),	nth-first-of-type(),	nth-last-of-
type(),	and	nth-last-child().

CSS3	also	supports	Boolean	selectors	(which	are	also	pseudo-classes)	such	as	empty,
enabled,	disabled,	and	checked,	which	are	very	useful	for	Form-related	HTML	elements.	One
other	pseudo	class	is	not(),	which	returns	a	set	of	elements	that	do	not	match	the	selection
criteria.

Although	this	section	focuses	on	the	:nth-child()	pseudo-class,	you	will	become	familiar
with	various	other	CSS3	pseudo-classes.	In	the	event	that	you	need	to	use	those	pseudo-
classes,	a	link	is	provided	at	the	end	of	this	section,	which	contains	more	information	and

http://www.blooberry.com/indexdot/css/propindex/all.htm

examples	that	illustrate	how	to	use	them.

CSS3	Pseudo	Classes

The	CSS3	:nth-child()	pseudo-class	is	both	powerful	and	useful,	and	it	has	the	following
form:

:nth-child(insert-a-keyword-or-linear-expression-here)

The	following	list	provides	various	examples	of	using	the	nth-child()	pseudo-class	in
order	to	match	various	subsets	of	child	elements	of	an	HTML	<div>	element	(which	can	be
substituted	by	other	HTML	elements	as	well):

div:nth-child(1):	matches	the	first	child	element

div:nth-child(2):	matches	the	second	child	element

div:nth-child(:even):	matches	the	even	child	elements

div:nth-child(:odd):	matches	the	odd	child	elements

The	interesting	and	powerful	aspect	of	the	nth-child()	pseudo-class	is	its	support	for
linear	expressions	of	the	form	an+b,	where	a	is	a	positive	integer	and	b	is	a	non-negative
integer,	as	shown	here	(using	an	HTML5	<div>	element):

div:nth-child(3n):	matches	every	third	child,	starting	from	position	0

div:nth-child(3n+1):	matches	every	third	child,	starting	from	position	1

div:nth-child(3n+2):	matches	every	third	child,	starting	from	position	2

Another	very	useful	pseudo-class	involves	:hover,	which	can	easily	create	nice	visual
effects.	The	following	example	of	the	CSS3	:hover	pseudo-class	changes	the	font	size	of	an
element	whose	id	attribute	has	value	text1,	whenever	users	hover	over	the	associated
element	with	their	mouse:

#text1:hover	{

		font-size:	12pt;

}

CSS3	Attribute	Selection

You	can	specify	CSS3	selectors	that	select	HTML	elements,	as	well	as	HTML
elements	based	on	the	value	of	an	attribute	of	an	HTML	element	using	various	regular
expressions.	For	example,	the	following	selector	selects	img	elements	whose	src	attribute
starts	with	the	text	string	Laurie,	and	then	sets	the	width	attribute	and	the	height	attribute	of	the
selected	img	elements	to	100px:

img[src^=“Laurie”]	{

		width:	100px;	height:	100px;

}

The	preceding	CSS3	selector	is	useful	when	you	want	to	set	different	dimensions	to
images	based	on	the	name	of	the	images	(Laurie,	Shelly,	Steve,	and	so	forth).

The	following	HTML		elements	do	not	match	the	preceding	selector:

CSS3	uses	the	meta-characters	^,	$,	and	*	(followed	by	the	=	symbol)	in	order	to	match
an	initial,	terminal,	or	arbitrary	position	for	a	text	string.	If	you	are	familiar	with	the	Unix
utilities	grep	and	sed,	as	well	as	the	vi	text	editor,	then	these	meta-characters	are	very
familiar	to	you.	However,	CSS3	imposes	a	restriction	for	using	meta-characters:	they	can
only	be	used	in	the	context	of	an	attribute	match	(which	uses	square	brackets).

The	following	selector	selects	HTML	img	elements	whose	src	attribute	ends	with	the
text	string	jpeg,	and	then	sets	the	width	attribute	and	the	height	attribute	of	the	selected	img
elements	to	150px:

img[src$=“jpeg”]	{

		width:	150px;	height:	150px;

}

The	preceding	CSS3	selector	is	useful	when	you	want	to	set	different	dimensions	to
images	based	on	the	type	of	the	images	(jpg,	png,	jpeg,	and	so	forth).

The	following	selector	selects	HTML	img	elements	whose	src	attribute	contains	any
occurrence	of	the	text	string	baby,	and	then	sets	the	width	attribute	and	the	height	attribute	of
the	selected	HTML	img	elements	to	200px:

img[src*=“baby”]	{

		width:	200px;	height:	200px;

}

The	preceding	CSS3	selector	is	useful	when	you	want	to	set	different	dimensions	to
images	based	on	the	“classification”	of	the	images	(mybaby,	yourbaby,	babygirl,	babyboy,	and	so
forth).

If	you	want	to	learn	more	about	patterns	(and	their	descriptions)	that	you	can	use	in
CSS3	selectors,	an	extensive	list	is	available	here:

http://www.w3.org/TR/css3-selectors

This	concludes	part	one	of	this	chapter,	and	the	next	section	delves	into	CSS3
graphics-oriented	effects,	such	as	rounded	corners	and	shadow	effects.

CSS3	Shadow	Effects	and	Rounded	Corners
CSS3	shadow	effects	are	useful	for	creating	vivid	visual	effects.	You	can	use	shadow

effects	for	text	as	well	as	rectangular	regions.	CSS3	also	enables	you	to	easily	render
rectangles	with	rounded	corners,	so	you	do	not	need	JPG	files	in	order	to	create	this	effect.

Specifying	Colors	with	RGB	and	HSL

Before	we	delve	into	the	interesting	features	of	CSS3,	you	need	to	know	how	to
represent	colors.	One	method	is	to	use	(R,	G,	B)	triples,	which	represent	the	Red,	Green,	and
Blue	components	of	a	color.	For	instance,	the	triples	(255,	0,	0),	(255,	255,	0),	and	(0,	0,	255)
respectively	represent	the	colors	Red,	Yellow,	and	Blue.	Other	ways	of	specifying	the	color
include:	the	hexadecimal	triples	(F,	0,	0)	and	(FF,	0,	0);	the	decimal	triple	(100%,	0,	0);	or	the

http://www.w3.org/TR/css3-selectors

string	#F00.	You	can	also	use	(R,	G,	B,	A),	where	the	fourth	component	specifies	the	opacity,
which	is	a	decimal	number	between	0	(invisible)	to	1	(opaque)	inclusive.

However,	there	is	also	the	HSL	(Hue,	Saturation,	and	Luminosity)	representation	of	colors,
where	the	first	component	is	an	angle	between	0	and	360	(0	degrees	is	north),	and	the	other
two	components	are	percentages	between	0	and	100.	For	instance,	(0,	100%,	50%),	(120,	100%,
50%),	and	(240,	100%,	50%)	represent	the	colors	Red,	Green,	and	Blue,	respectively.

The	code	samples	in	this	book	use	(R,	G,	B)	and	(R,	G,	B,	A)	for	representing	colors,	but
you	can	perform	an	Internet	search	to	obtain	more	information	regarding	HSL.

CSS3	and	Text	Shadow	Effects

A	shadow	effect	for	text	can	make	a	Web	page	look	more	vivid	and	appealing.	Many
Websites	look	better	with	shadow	effects	that	are	not	overpowering	for	users	(unless	you
specifically	need	to	do	so).

Listing	2.1	displays	the	contents	of	the	HTML5	page	TextShadow1.html	that	illustrate	how
to	render	text	with	a	shadow	effect,	and	Listing	2.2	displays	the	contents	of	the	CSS
stylesheet	TextShadow1.css	that	is	referenced	in	Listing	2.1.

LISTING	2.1	TextShadow1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

		<meta	charset=“utf-8”	/>

		<title>CSS	Text	Shadow	Example</title>

		<link	href=“TextShadow1.css”

								rel=“stylesheet”	type=“text/css”>

</head>

		

<body>									

		<div	id=“text1”>Line	One	Shadow	Effect</div>

		<div	id=“text2”>Line	Two	Shadow	Effect</div>							

		<div	id=“text3”>Line	Three	Vivid	Effect</div>																						

		<div	id=“text4”>

				13

				August

				2012

		</div>

		<div	id=“text5”>

				13

				August

				2012

		</div>																						

		<div	id=“text6”>

				13

				August

				2012

		</div>

</body>

</html>

The	code	in	Listing	2.1	is	straightforward:	there	is	a	reference	to	the	CSS	stylesheet
TextShadow1.css	that	contains	two	CSS	selectors.	One	selector	specifies	how	to	render	the
HTML	<div>	element	whose	id	attribute	has	value	text1,	and	the	other	selector	matches	the
HTML	<div>	element	whose	id	attribute	is	text2.	Although	the	CSS3	rotate()	function	is
included	in	this	example,	we’ll	defer	a	more	detailed	discussion	of	this	function	until	later
in	this	chapter.

LISTING	2.2	TextShadow1.css
#text1	{

		font-size:	24pt;

		text-shadow:	2px	4px	5px	#00f;

}

		

#text2	{

		font-size:	32pt;

		text-shadow:	0px	1px	6px	#000,

															4px	5px	6px	#f00;

}

/*	note	the	multiple	parts	in	the	text-shadow	definition	*/				

#text3	{

		font-size:	40pt;

		text-shadow:	0px	1px	6px		#fff,

															2px	4px	4px		#0ff,

															4px	5px	6px		#00f,

															0px	0px	10px	#444,

															0px	0px	20px	#844,

															0px	0px	30px	#a44,

															0px	0px	40px	#f44;

}			

				

#text4	{

		position:	absolute;

		top:	200px;

		right:	200px;

		font-size:	48pt;

		text-shadow:	0px	1px	6px		#fff,

															2px	4px	4px		#0ff,

															4px	5px	6px		#00f,

															0px	0px	10px	#000,

															0px	0px	20px	#448,

															0px	0px	30px	#a4a,

															0px	0px	40px	#fff;

		-webkit-transform:	rotate(-90deg);

}

	

#text5	{

		position:	absolute;

		left:	0px;

		font-size:	48pt;

		text-shadow:	2px	4px	5px	#00f;

		-webkit-transform:	rotate(-10deg);

}

	

#text6	{

		float:	left;

		font-size:	48pt;

		text-shadow:	2px	4px	5px	#f00;

		-webkit-transform:	rotate(-170deg);

}

	

/*	‘transform’	is	explained	later	*/

#text1:hover,	#text2:hover,	#text3:hover,

#text4:hover,	#text5:hover,	#text6:hover	{

-webkit-transform	:	scale(2)	rotate(-45deg);

transform	:	scale(2)	rotate(-45deg);

}

The	first	selector	in	Listing	2.2	specifies	a	font-size	of	24	and	a	text-shadow	that	renders	text
with	a	blue	background	(represented	by	the	hexadecimal	value	#00f).	The	attribute	text-
shadow	specifies	(from	left	to	right)	the	x-coordinate,	the	y-coordinate,	the	blur	radius,	and
the	color	of	the	shadow.	The	second	selector	specifies	a	font-size	of	32	and	a	red	shadow
background	(#f00).	The	third	selector	creates	a	richer	visual	effect	by	specifying	multiple

components	in	the	text-shadow	property,	which	were	chosen	by	experimenting	with	effects
that	are	possible	with	different	values	in	the	various	components.

The	final	CSS3	selector	creates	an	animation	effect	whenever	users	hover	over	any	of
the	six	text	strings,	and	the	details	of	the	animation	will	be	deferred	until	later	in	this
chapter.

Figure	2.1	displays	the	result	of	matching	the	selectors	in	the	CSS	stylesheet
TextShadow1.css	with	the	HTML	<div>	elements	in	the	HTML	page	TextShadow1.html.	The
landscape-mode	screenshot	is	taken	from	an	Android	application	(based	on	the	code	in
Listing	2.1	and	Listing	2.2)	running	on	a	Nexus	S	4G	(Android	ICS)	smart	phone.

	
Figure	2.1		CSS3	text	shadow	effects.

CSS3	and	Box	Shadow	Effects

You	can	also	apply	a	shadow	effect	to	a	box	that	encloses	a	text	string,	which	can	be
effective	in	terms	of	drawing	attention	to	specific	parts	of	a	Web	page.	However,	the	same
caveat	regarding	over-use	applies	to	box	shadows.

		The	HTML	page	BoxShadow1.html	and	BoxShadow1.css	are	not	shown	here,	but	they
are	available	on	the	CD.	Together,	they	render	a	box	shadow	effect.

The	key	property	is	the	box-shadow	property,	as	shown	here	in	bold	for	Mozilla,	WebKit,
and	the	non-prefixed	property:

#box1	{

		position:relative;top:10px;

		width:	50%;

		height:	30px;

		font-size:	20px;

		-moz-box-shadow:	10px	10px	5px	#800;

		-webkit-box-shadow:	10px	10px	5px	#800;

		box-shadow:	10px	10px	5px	#800;

Figure	2.2	displays	a	landscape-mode	screenshot	is	taken	from	a	Nexus	S	4G	with
Android	ICS	(based	on	the	code	in	BoxShadow1.html	and	BoxShadow1.css).

	
Figure	2.2		CSS3	box	shadow	effect	on	a	Sprint	Nexus	with	Android	ICS.

CSS3	and	Rounded	Corners

Web	developers	have	waited	a	long	time	for	rounded	corners	in	CSS,	and	CSS3	makes
it	very	easy	to	render	boxes	with	rounded	corners.	Listing	2.3	displays	the	contents	of	the
HTML	page	RoundedCorners1.html	that	renders	text	strings	in	boxes	with	rounded	corners,	and
Listing	2.4	displays	the	CSS	file	RoundedCorners1.css.

LISTING	2.3	RoundedCorners1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

		<link	href=“RoundedCorners1.css”	rel=“stylesheet”

																																																type=“text/css”>

</head>

<body>

		<div	id=“outer”>

				Text	Inside	a	Rounded	Rectangle

		</div>

		<div	id=“text1”>Line	One	of	Text	with	a	Shadow	Effect</div>

		<div	id=“text2”>Line	Two	of	Text	with	a	Shadow	Effect</div>

</body>

</html>

Listing	2.3	contains	a	reference	to	the	CSS	stylesheet	RoundedCorners1.css	that	contains
three	CSS	selectors	that	match	the	elements	whose	id	attribute	has	value	anchor,	text1,	and
text2,	respectively.	The	CSS	selectors	defined	in	RoundedCorners1.css	create	visual	effects,	and
as	you	will	see,	the	hover	pseudo-selector	enables	you	to	create	animation	effects.

LISTING	2.4	RoundedCorners1.css
a.anchor:hover	{

background:	#00F;

}

		

a.anchor	{

background:	#FF0;

font-size:	24px;

font-weight:	bold;

padding:	4px	4px;

color:	rgba(255,0,0,0.8);

text-shadow:	0	1px	1px	rgba(0,0,0,0.4);

-webkit-border-radius:	8px;

border-radius:	8px;

www.allitebooks.com

http://www.allitebooks.org

}

Listing	2.4	contains	the	selector	a.anchor:hover	that	changes	the	text	color	from	yellow
(#FF0)	to	blue	(#00F)	during	a	two-second	interval	whenever	users	hover	over	any	anchor
element	with	their	mouse.

The	selector	a.anchor	contains	various	attributes	that	specify	the	dimensions	of	the	box
that	encloses	the	text	in	the	<a>	element,	along	with	two	new	pairs	of	attributes.	The	first
pair	specifies	the	border-radius	attribute	(and	the	WebKit-specific	attribute)	whose	value	is	8px,
which	determines	the	radius	(in	pixels)	of	the	rounded	corners	of	the	box	that	encloses	the
text	in	the	<a>	element.	The	last	two	selectors	are	identical	to	the	selectors	in	Listing	2.1.

Figure	2.3	displays	the	result	of	matching	the	selectors	that	are	defined	in	the	CSS
stylesheet	RoundedCorners1.css	with	elements	in	the	HTML	page	RoundedCorners1.html	in	a
landscape-mode	screenshot	taken	from	an	Asus	Prime	tablet	with	Android	ICS.

	
Figure	2.3		CSS3	rounded	corners	effect	on	an	Asus	Prime	tablet	with	Android	ICS.

CSS3	Gradients
CSS3	supports	linear	gradients	and	radial	gradients,	which	enable	you	to	create

gradient	effects	that	are	as	visually	rich	as	gradients	in	other	technologies	such	as	SVG.
The	code	samples	in	this	section	illustrate	how	to	define	linear	gradients	and	radial
gradients	in	CSS3	and	then	match	them	to	HTML	elements.

Linear	Gradients

CSS3	linear	gradients	require	you	to	specify	one	or	more	“color	stops,”	each	of	which
specifies	a	start	color,	and	end	color,	and	a	rendering	pattern.	Webkit-based	browsers
support	the	following	syntax	to	define	a	linear	gradient:

A	start	point
An	end	point
A	start	color	using	from()
Zero	or	more	stop-colors
An	end	color	using	to()

A	start	point	can	be	specified	as	an	(x,	y)	pair	of	numbers	or	percentages.	For	example,
the	pair	(100,	25%)	specifies	the	point	that	is	100	pixels	to	the	right	of	the	origin	and	25%	of
the	way	down	from	the	top	of	the	pattern.	Recall	that	the	origin	is	located	in	the	upper-left
corner	of	the	screen.

Listing	2.5	displays	the	contents	of	LinearGradient1.html	and	Listing	2.6	displays	the
contents	of	LinearGradient1.css,	which	illustrate	how	to	use	linear	gradients	with	text	strings
that	are	enclosed	in	<p>	elements	and	an	<h3>	element.

LISTING	2.5	LinearGradient1.html
<!doctype	html>

<html	lang=“en”>

<head>

		<meta	charset=“utf-8”	/>

		<title>CSS	Linear	Gradient	Example</title>

		<link	href=“LinearGradient1.css”

								rel=“stylesheet”	type=“text/css”>

</head>

	

<body>

		<div	id=“outer”>

				<p	id=“line1”>line	1	with	a	linear	gradient</p>

				<p	id=“line2”>line	2	with	a	linear	gradient</p>

				<p	id=“line3”>line	3	with	a	linear	gradient</p>

				<p	id=“line4”>line	4	with	a	linear	gradient</p>

				<p	id=“outline”>line	5	with	Shadow	Outline</p>

				<h3>A	Line	of	Gradient	Text</h3>

		</div>

</body>

</html>

Listing	2.5	is	a	simple	Web	page	containing	five	<p>	elements	and	one	<h3>	element.
Listing	2.5	also	references	the	CSS	stylesheet	LinearGradient1.css,	which	contains	CSS
selectors	that	match	the	four	<p>	elements	and	the	<h3>	element	in	Listing	2.5.

LISTING	2.6	LinearGradient1.css
#line1	{

width:	50%;

font-size:	32px;

background-image:	-webkit-gradient(linear,	0%	0%,	0%	100%,	from(#fff),	to(#f00));

background-image:	-gradient(linear,	0%	0%,	0%	100%,	from(#fff),	to(#f00));

-webkit-border-radius:	4px;

border-radius:	4px;

}

	

#line2	{

width:	50%;

font-size:	32px;

background-image:	-webkit-gradient(linear,	100%	0%,	0%	100%,	from(#fff),	to(#ff0));

background-image:	-gradient(linear,	100%	0%,	0%	100%,	from(#fff),	to(#ff0));

-webkit-border-radius:	4px;

border-radius:	4px;

}

	

#line3	{

width:	50%;

font-size:	32px;

background-image:	-webkit-gradient(linear,	0%	0%,	0%	100%,	from(#f00),	to(#00f));

background-image:	-gradient(linear,	0%	0%,	0%	100%,	from(#f00),	to(#00f));

-webkit-border-radius:	4px;

border-radius:	4px;

}

	

#line4	{

width:	50%;

font-size:	32px;

background-image:	-webkit-gradient(linear,	100%	0%,	0%	100%,	from(#f00),	to(#00f));

background-image:	-gradient(linear,	100%	0%,	0%	100%,	from(#f00),	to(#00f));

-webkit-border-radius:	4px;

border-radius:	4px;

}

	

#outline	{

font-size:	2.0em;

font-weight:	bold;

color:	#fff;

text-shadow:	1px	1px	1px	rgba(0,0,0,0.5);

}

	

h3	{

width:	50%;

position:	relative;

margin-top:	0;

font-size:	32px;

font-family:	helvetica,	ariel;

}

	

h3	a	{

position:	relative;

color:	red;

text-decoration:	none;

-webkit-mask-image:	-webkit-gradient(linear,	left	top,	left	bottom,	from(rgba(0,0,0,1)),	color-stop(50%,
rgba(0,0,0,0.5)),	to(rgba(0,0,0,0)));

}

	

h3:after	{

content:“This	is	a	Line	of	Gradient	Text”;

color:	blue;

}

The	first	selector	in	Listing	2.6	specifies	a	font-size	of	32	for	text,	a	border-radius	of	4
(which	renders	rounded	corners),	and	a	linear	gradient	that	varies	from	white	to	blue,	as
shown	here:

#line1	{

width:	50%;

font-size:	32px;

background-image:	-webkit-gradient(linear,	0%	0%,	0%	100%,

																																			from(#fff),	to(#f00));

background-image:	-gradient(linear,	0%	0%,	0%	100%,

																																			from(#fff),	to(#f00));

-webkit-border-radius:	4px;

border-radius:	4px;

}

As	you	can	see,	the	first	selector	contains	two	attributes	with	a	-webkit-	prefix	and	two
standard	attributes	without	this	prefix.	Since	the	next	three	selectors	in	Listing	2.6	are
similar	to	the	first	selector,	we	will	not	discuss	their	content.

The	next	CSS	selector	creates	a	text	outline	with	a	nice	shadow	effect	by	rendering	the
text	in	white	with	a	thin	black	shadow,	as	shown	here:

color:	#fff;

text-shadow:	1px	1px	1px	rgba(0,0,0,0.5);

The	final	portion	of	Listing	2.6	contains	three	selectors	that	affect	the	rendering	of	the
<h3>	element	and	its	embedded	<a>	element.	The	h3	selector	specifies	the	width	and	font
size;	the	h3	selector	specifies	a	linear	gradient;	and	the	h3:after	selector	specifies	the	text
string	“This	is	a	Line	of	Gradient	Text”	to	display	after	the	HTML5	<h3>	element.	(Note:	you	can
use	h3:before	to	specify	a	text	string	to	display	before	an	HTML5	<h3>	element.)	Other
attributes	are	specified,	but	these	are	the	main	attributes	for	these	selectors.

Figure	2.4	displays	the	result	of	matching	the	selectors	in	the	CSS	stylesheet
LinearGradient1.css	to	the	HTML	page	LinearGradient1.html	in	a	landscape-mode	screenshot	taken
from	an	Android	application	running	on	an	Asus	Prime	tablet	with	Android	ICS.

Radial	Gradients

CSS3	radial	gradients	are	more	complex	than	CSS3	linear	gradients,	but	you	can	use
them	to	create	more	complex	gradient	effects.	Webkit-based	browsers	support	the	following
syntax	to	define	a	radial	gradient:

A	start	point
A	start	radius
An	end	point
An	end	radius
A	start	color	using	from()
Zero	or	more	color-stops
An	end	color	using	to()

	
Figure	2.4	 	CSS3	Linear	 gradient	 effect	 on	 an	Asus	Prime	10”	 tablet	with	Android

ICS.

Notice	that	the	syntax	for	a	radial	gradient	is	similar	to	the	syntax	for	a	linear	gradient,
except	that	you	also	specify	a	start	radius	and	an	end	radius.

			The	HTML5	Web	page	RadialGradient1.html	and	the	CSS	stylesheet
RadialGradient1.css	are	not	shown	here,	but	the	full	listing	is	available	on	the	CD.	The	essence
of	the	code	in	the	HTML5	code	involves	this	code	block:

<div	id=“outer”>

		<div	id=“radial3”>Text3</div>

		<div	id=“radial2”>Text2</div>

		<div	id=“radial4”>Text4</div>

		<div	id=“radial1”>Text1</div>

	</div>

The	CSS	stylesheet	RadialGradient1.css	contains	five	CSS	selectors	that	match	the	five
HTML	<div>	elements,	and	one	of	the	selectors	is	shown	here:

#radial1	{

background:	-webkit-gradient(

		radial,	500	40%,	0,	301	25%,	360,	from(red),

		color-stop(0.05,	orange),	color-stop(0.4,	yellow),

		color-stop(0.6,	green),	color-stop(0.8,	blue),

		to(#fff)

);

}

The	#radial1	selector	contains	a	background	attribute	that	defines	a	radial	gradient	using	the
–webkit-	prefix,	and	it	specifies	the	following:

A	start	point	of	(500,	40%)
A	start	radius	of	0
An	end	point	of	(301,	25%)
An	end	radius	of	360
A	start	color	of	red
An	end	color	of	white	(#fff)

The	other	selectors	have	the	same	syntax	as	the	first	selector,	but	the	rendered	radial
gradients	are	significantly	different.	You	can	create	these	(and	other)	effects	by	specifying
different	start	points	and	end	points,	and	by	specifying	a	start	radius	that	is	larger	than	the
end	radius.

Figure	2.5	displays	the	result	of	matching	the	selectors	in	the	CSS	stylesheet

RadialGradient1.css	to	the	HTML	page	RadialGradient1.html	in	a	landscape-mode	screenshot	taken
from	an	Android	application	running	on	an	Asus	Prime	tablet	with	Android	ICS.

	
Figure	2.5		CSS3	Radial	gradient	effect	on	an	Asus	Prime	tablet	with	Android	ICS.

CSS3	2D	Transforms
In	addition	to	transitions,	CSS3	supports	four	common	transforms	that	you	can	apply

to	2D	shapes	and	also	to	JPG	files.	The	four	CSS3	transforms	are	scale,	rotate,	skew,	and
translate.	The	following	sections	contain	code	samples	that	illustrate	how	to	apply	each	of
these	CSS3	transforms	to	a	set	of	JPG	files.	The	animation	effects	occur	when	users	hover
over	any	of	the	JPG	files;	moreover,	you	can	create	“partial”	animation	effects	by	moving
your	mouse	quickly	between	adjacent	JPG	files.

Listing	2.7	displays	the	contents	of	Scale1.html	and	Listing	2.8	displays	the	contents	of
Scale1.css,	which	illustrate	how	to	scale	JPG	files	to	create	a	“hover	box”	image	gallery.

LISTING	2.7	Scale1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

		<meta	charset=“utf-8”	/>

		<title>CSS	Scale	Transform	Example</title>

		<link	href=“Scale1.css”

								rel=“stylesheet”	type=“text/css”>

</head>

	

<body>

		<header><h1>Hover	Over	any	of	the	Images:</h1></header>

	

		<div	id=“outer”>

			

				

				

				

		</div>

</body>

</html>

Listing	2.7	references	the	CSS	stylesheet	Scale1.css	(which	contains	selectors	for
creating	scaled	effects)	and	four	HTML		elements	that	references	the	JPG	files
sample1.png	and	sample2.png.	The	remainder	of	Listing	2.7	is	straightforward,	with	simple
boilerplate	text	and	HTML	elements.

LISTING	2.8	Scale1.css
#outer	{

float:	left;

position:	relative;	top:	50px;	left:	50px;

}

	

img	{

-webkit-transition:	-webkit-transform	1.0s	ease;

transition:	transform	1.0s	ease;

}

	

img.scaled	{

		-webkit-box-shadow:	10px	10px	5px	#800;

		box-shadow:	10px	10px	5px	#800;

}

	

img.scaled:hover	{

-webkit-transform	:	scale(2);

transform	:	scale(2);

}

The	img	selector	in	Listing	2.8	specifies	a	transition	property	that	applies	a	transform	effect
occurring	during	a	one-second	interval	using	the	ease	function,	as	shown	here:

transition:	transform	1.0s	ease;

Next,	the	selector	img.scaled	specifies	a	box-shadow	property	that	creates	a	reddish	shadow
effect	(which	you	saw	earlier	in	this	chapter),	as	shown	here:

img.scaled	{

		-webkit-box-shadow:	10px	10px	5px	#800;

		box-shadow:	10px	10px	5px	#800;

}

Finally,	the	selector	img.scaled:hover	specifies	a	transform	attribute	that	uses	the	scale()
function	in	order	to	double	the	size	of	the	associated	JPG	file	whenever	users	hover	over
any	of	the		elements	with	their	mouse,	as	shown	here:

transform	:	scale(2);

Since	the	img	selector	specifies	a	one-second	interval	using	an	ease	function,	the	scaling
effect	will	last	for	one	second.	Experiment	with	different	values	for	the	CSS3	scale()
function	and	also	different	value	for	the	time	interval	to	create	the	animation	effects	that
suit	your	needs.

Another	point	to	remember	is	that	you	can	scale	both	horizontally	and	vertically:
img	{

-webkit-transition:	-webkit-transform	1.0s	ease;

transition:	transform	1.0s	ease;

}

	

img.mystyle:hover	{

-webkit-transform	:	scaleX(1.5)	scaleY(0.5);

transform	:	scaleX(1.5)	scaleY(0.5);

}

Figure	2.6	displays	the	result	of	matching	the	selectors	in	the	CSS	stylesheet	Scale1.css
to	the	HTML	page	Scale1.html.	The	landscape-mode	screenshot	is	taken	from	an	Android
application	(based	on	the	code	in	Listing	2.7	and	Listing	2.8)	running	on	a	Nexus	S	4G
smart	phone	with	Android	ICS.

Rotate	Transforms

The	CSS3	transform	attribute	allows	you	to	specify	the	rotate()	function	in	order	to	create
scaling	effects,	and	its	syntax	looks	like	this:

rotate(someValue);

You	can	replace	someValue	with	any	number.	When	someValue	is	positive,	the	rotation	is
clockwise;	when	someValue	is	negative,	the	rotation	is	counter	clockwise;	and	when	someValue
is	zero,	there	is	no	rotation	effect.	In	all	cases,	the	initial	position	for	the	rotation	effect	is
the	positive	horizontal	axis.

	
Figure	2.6		CSS3-based	scaling	effect	on	JPG	files.

		The	HTML5	Web	page	Rotate1.html	and	the	CSS	stylesheet	Rotate1.css	on	the	CD
illustrate	how	to	create	rotation	effects,	a	sample	of	which	is	shown	here:

img.imageL:hover	{

-webkit-transform	:	scale(2)	rotate(-45deg);

transform	:	scale(2)	rotate(-45deg);

}					

The	img	selector	that	specifies	a	transition	attribute	that	creates	an	animation	effect	during
a	one-second	interval	using	the	ease	timing	function,	as	shown	here:

transition:	transform	1.0s	ease;

The	CSS3	transform	attribute	allows	you	to	specify	the	skew()	function	in	order	to
create	skewing	effects,	and	its	syntax	looks	like	this:

skew(xAngle,	yAngle);

You	can	replace	xAngle	and	yAngle	with	any	number.	When	xAngle	and	yAngle	are	positive,
the	skew	effect	is	clockwise;	when	xAngle	and	yAngle	are	negative,	the	skew	effect	is	counter
clockwise;	and	when	xAngle	and	yAngle	are	zero,	there	is	no	skew	effect.	In	all	cases,	the
initial	position	for	the	skew	effect	is	the	positive	horizontal	axis.

			The	HTML5	Web	page	Skew1.html	and	the	CSS	stylesheet	Skew1.css	are	on	the
CD,	and	they	illustrate	how	to	create	skew	effects.	The	CSS	stylesheet	contains	the	img
selector	that	specifies	a	transition	attribute,	which	in	turn	creates	an	animation	effect	during	a

www.allitebooks.com

http://www.allitebooks.org

one-second	interval	using	the	ease	timing	function,	as	shown	here:
transition:	transform	1.0s	ease;

There	are	also	the	four	selectors	img.skewed1,	img.skewed2,	img.skewed3,	and	img.skewed4	create
background	shadow	effects	with	darker	shades	of	red,	yellow,	green,	and	blue,
respectively	(all	of	which	you	have	seen	in	earlier	code	samples).

The	selector	img.skewed1:hover	specifies	a	transform	attribute	that	performs	a	skew	effect
whenever	users	hover	over	the	first		element	with	their	mouse,	as	shown	here:

transform	:	scale(2)	skew(-10deg,	-30deg);

The	other	three	CSS3	selectors	also	use	a	combination	of	the	CSS	functions	skew()	and
scale()to	create	distinct	visual	effects.	Notice	that	the	fourth	hover	selector	also	sets	the
opacity	property	to	0.5,	which	takes	place	in	parallel	with	the	other	effects	in	this	selector.

Figure	2.7	displays	the	result	of	matching	the	selectors	in	the	CSS	stylesheet	Skew1.css
to	the	elements	in	the	HTML	page	Skew1.html.	The	landscape-mode	screenshot	is	taken
from	an	Android	application	running	on	a	Nexus	S	4G	smart	phone	with	Android	ICS.

	
Figure	2.7		CSS3-based	skew	effects	on	JPG	files.

The	CSS3	transform	attribute	allows	you	to	specify	the	translate()	function	in	order	to
create	an	effect	that	involves	a	horizontal	and/or	vertical	“shift”	of	an	element,	and	its
syntax	looks	like	this:

translate(xDirection,	yDirection);

The	translation	is	in	relation	to	the	origin,	which	is	the	upper-left	corner	of	the	screen.
Thus,	positive	values	for	xDirection	and	yDirection	produce	a	shift	to	the	right	and	downward,
respectively,	whereas	negative	values	for	xDirection	and	yDirection	produce	a	shift	to	the	left
and	upward.	Zero	values	for	xDirection	and	yDirection	do	not	cause	any	translation	effect.

			The	Web	page	Translate1.html	and	the	CSS	stylesheet	Translate1.css	on	the	CD
illustrate	how	to	apply	a	translation	effect	to	a	JPG	file.

img.trans2:hover	{

-webkit-transform	:	scale(0.5)	translate(-50px,	-50px);

transform	:	scale(0.5)	translate(-50px,	-50px);

}

The	CSS	stylesheet	contains	the	img	selector	specifies	a	transform	effect	during	a	one-
second	interval	using	the	ease	timing	function,	as	shown	here:

transition:	transform	1.0s	ease;

The	four	selectors	img.trans1,	img.trans2,	img.trans3,	and	img.trans4	create	background	shadow
effects	with	darker	shades	of	red,	yellow,	green,	and	blue,	respectively,	just	as	you	saw	in
the	previous	section.

The	selector	img.trans1:hover	specifies	a	transform	attribute	that	performs	a	scale	effect	and
a	translation	effect	whenever	users	hover	over	the	first		element	with	their	mouse,	as
shown	here:

-webkit-transform	:	scale(2)	translate(100px,	50px);

transform	:	scale(2)	translate(100px,	50px);

Figure	2.8	displays	the	result	of	matching	the	selectors	defined	in	the	CSS3	stylesheet
Translate1.css	to	the	elements	in	the	HTML	page	Translate1.html.	The	landscape-mode
screenshot	is	taken	from	an	Android	application	running	on	a	Nexus	S	4G	smart	phone	with
Android	ICS.

	

Figure	2.8		JPG	files	with	CSS3	scale	and	translate	effects.

CSS3	Media	Queries
CSS3	media	queries	are	very	useful	logical	expressions	that	enable	you	to	detect

mobile	applications	on	devices	with	differing	physical	attributes	and	orientation.	For
example,	with	CSS3	media	queries	you	can	change	the	dimensions	and	layout	of	your
applications	so	that	they	render	appropriately	on	smart	phones	as	well	as	tablets.

Specifically,	you	can	use	CSS3	media	queries	in	order	to	determine	the	following
characteristics	of	a	device:

Browser	window	width	and	height
Device	width	and	height
Orientation	(landscape	or	portrait)
Aspect	ratio
Device	aspect	ratio
Resolution

CSS3	media	queries	are	Boolean	expressions	that	contain	one	or	more	“simple	terms”
(connected	with	and	or	or)	that	evaluate	to	true	or	false.	Thus,	CSS3	media	queries	represent
conditional	logic	that	evaluates	to	either	true	or	false.

As	an	example,	the	following	link	element	loads	the	CSS	stylesheet	mystuff.css	only	if
the	device	is	a	screen	and	the	maximum	width	of	the	device	is	480px:

<link	rel=“stylesheet”	type=“text/css”			

						media=“screen	and	(max-device-width:	480px)”

																									href=“mystuff.css”/>

The	preceding	link	contains	a	media	attribute	that	specifies	two	components:	a	media
type	of	screen	and	a	query	that	specifies	a	max-device-width	whose	value	is	480px.	The	supported
values	for	media	in	CSS3	media	queries	are	braille,	embossed,	handheld,	print,	projection,	screen,
speech,	tty,	and	tv.

The	next	CSS3	media	query	checks	the	media	type,	the	maximum	device	width,	and
the	resolution	of	a	device:

@media	screen	and	(max-device-width:	480px)	and	(resolution:	160dpi)	{			

		#innerDiv	{

				float:	none;			

		}

}

If	the	CSS3	media	query	in	the	preceding	code	snippet	evaluates	to	true,	then	the	nested
CSS	selector	will	match	the	HTML	element	whose	id	attribute	has	the	value	innerDiv,	and	its
float	property	will	be	set	to	none	on	any	device	whose	maximum	screen	width	is	480px.	As
you	can	see,	it’s	possible	to	create	compact	CSS3	media	queries	that	contain	non-trivial
logic,	which	is	obviously	very	useful	because	CSS3	does	not	have	any	if/then/else	construct
that	is	available	in	other	programming	languages.

		Additional	Code	Samples	on	the	CD
The	CSS	stylesheet	CSS3MediaQuery1.css	and	the	HTML5	Web	page	CSS3MediaQuery1.html

illustrate	how	to	use	media	queries	in	order	to	change	the	size	of	two	images	when	users
rotate	their	mobile	device.

			You	can	detect	a	change	of	orientation	of	a	mobile	device	using	simple
JavaScript	code,	so	you	are	not	“forced”	to	use	CSS3	media	queries.	The	HTML5	Web
page	CSS3OrientationJS1.html	on	the	CD	illustrates	how	to	use	standard	JavaScript	in	order	to
change	the	size	of	two	images	when	users	rotate	their	mobile	device.

In	essence,	the	code	uses	the	value	of	the	variable	window.orientation	in	order	to	detect
four	different	orientations	of	your	mobile	device.	In	each	of	those	four	cases,	the
dimensions	of	the	JPG	files	are	updated	with	the	following	type	of	code:

document.getElementById(“img1”).style.width		=	“120px”;

document.getElementById(“img1”).style.height	=	“300px”;

Although	this	is	a	very	simple	example,	hopefully	this	code	gives	you	an	appreciation
for	the	capabilities	of	CSS3	Media	Queries.

Summary
This	chapter	showed	you	how	to	create	graphics	effects,	shadow	effects,	and	how	to

use	transforms	in	CSS3.	You	learned	how	to	create	animation	effects	that	you	can	apply	to
HTML	elements,	and	you	saw	how	to	define	CSS3	selectors	to	do	the	following:

Render	rounded	rectangles
Create	shadow	effects	for	text	and	2D	shapes
Create	linear	and	radial	gradients
Use	the	methods	translate(),	rotate(),	skew(),	and	scale()
Create	CSS3-based	animation	effects

CHAPTER			3
	

ANIMATION	EFFECTS	WITH

JQUERY	AND	CSS3
	

This	chapter	shows	you	how	to	create	HTML5	Web	pages	that	create	animation
effects	and	also	provide	interactivity	for	users.	You’ll	see	an	assortment	of	jQuery
functions	that	create	various	animation	effects,	which	you	can	easily	incorporate	in	your
HTML5	Web	pages.	This	eclectic	chapter	is	intended	to	provide	you	with	many	animation
effects,	along	with	an	assortment	of	code	samples	and	code	fragments	that	you	can
incorporate	into	your	other	HTML5	Web	pages.

The	first	part	of	this	chapter	shows	you	how	to	use	jQuery	in	order	to	manipulate	the
attributes	of	an	element	by	setting	the	values	of	properties	in	CSS3	selectors,	along	with
examples	of	creating	animation	effects	using	animate	and	effect.	You’ll	see	code	examples
that	create	slide-based	and	fade-related	(fadeIn,	fadeOut,	fadeTo)	animation	effects.	This
section	also	illustrates	how	to	create	2D	animation	effects	using	jQuery	together	with
CSS3	keyframes.

The	second	part	of	this	chapter	illustrates	how	to	create	a	“follow	the	mouse”	HTML5
Web	page	that	uses	CSS3	for	the	visual	effect	and	jQuery	for	updating	the	location	of	the
gradient-filled	rectangle.	Remember	that	the	CSS3	examples	in	the	chapters	of	this	book
are	specifically	for	WebKit-based	browsers,	but	you	can	modify	the	code	samples	to	include
vendor-specific	prefixes	so	that	the	code	samples	will	run	in	other	browsers.	The	last
example	in	this	chapter	illustrates	how	to	render	SVG	with	jQuery	using	a	jQuery	plugin.

Note	that	this	chapter	covers	jQuery	animation	effects	and	chapter	seven	contains
some	corresponding	animation	effects	using	jQuery	Mobile,	and	that	both	chapters	contain
CSS3-based	animation	effects	as	well.	Due	to	space	constraints,	this	chapter	covers	only	a
portion	of	the	animation-related	functionality	that	is	available	in	jQuery.	You	can	learn
more	about	jQuery	animation	by	reading	the	online	jQuery	documentation	or	by
performing	an	Internet	search	for	additional	tutorials	and	articles.

Working	with	CSS3	Selectors	in	jQuery
This	section	contains	code	samples	that	illustrate	how	to	use	jQuery	to

programmatically	create	HTML	elements	and	to	style	them	with	CSS3	to	create	various
effects,	such	as	rounded	corners,	gradients,	and	shadow	effects.	By	manually	creating	the
required	CSS3	selectors	and	the	HTML	elements,	you	can	leverage	the	power	of	jQuery	to
create	even	more	sophisticated	visual	effects.

Basic	Animation	Effects	in	jQuery
This	section	contains	code	fragments	rather	than	complete	code	listings,	and	these

code	fragments	illustrate	how	to	create	animation	effects	in	jQuery	using	the	functions
hide()	and	show(),	and	also	how	to	set	the	animation	speed.	You’ll	also	learn	how	to	use	the
jQuery	toggle()	function	to	toggle	CSS	properties.

Keep	in	mind	that	this	section	covers	only	a	portion	of	the	rich	set	of	functionality	that
is	available	with	jQuery	functions	that	create	animation	effects.	Be	sure	to	read	the	jQuery
online	documentation	to	learn	about	many	other	features	that	are	supported.

The	jQuery	hide()	and	show()	functions	enable	you	to	change	the	visibility	of	elements	in
an	HTML	page.	For	example,	the	following	code	block	hides	the	second	button	when
users	click	the	first	button;	when	users	double	click	on	the	first	button,	the	second	button
becomes	visible:

$(“#myButton1”).click(function()	{

		$(#myButton2”).hide();

});

$(“#myButton1”).dblclick(function()	{

		$(#myButton2”).show();

});

The	jQuery	toggle	function	can	handle	two	or	more	occurrences	of	the	same	event	on	an
element.	For	example,	the	following	code	fragment	handles	one,	two,	or	three	click	events
on	an	element	with	the	specified	id	value:

$(“#myDiv1”).toggle(

					function()	{

							$(“myText”).text(“First	click”);

					},

					function()	{

							$(“#myText”).text(“Second	click”);

					},

					function()	{

							$(“#myText”).text(“Third	click”);

					}

});

Two	other	useful	jQuery	methods	are	removeClass()	and	addClass(),	which	remove	or	add
CSS	classes,	respectively,	and	an	example	is	here:

$(“#myDiv1”).toggle(

					function()	{

							$(“myText”).addClass(“shiny”);

					},

					function()	{

							$(“#myText”).addClass(“dark”);

					}

});

The	jQuery	addClass()	method	adds	a	CSS	class,	whereas	the	toggleClass()	method
“toggles”	the	CSS	class;	i.e.,	the	class	is	added	if	it’s	not	present,	and	it’s	removed	if	it	is
already	included.

Other	related	jQuery	methods	include	fadeClass(),	which	uses	a	fading	effect,	and
slideClass(),	which	creates	a	sliding	effect.

Using	Callback	Functions

Many	jQuery	functions	(including	hide(),	show(),	toggle(),	and	slide-related	functions)
enable	you	to	specify	a	callback	function	that	is	executed	after	the	specified	action	is
completed.	For	example,	you	can	define	the	following	code	block:

$(“#myButton1”).click(function()	{

		$(#myButton2”).hide(‘slow’,

				function	callback()	{

					//	do	something	else

			});

});

When	users	click	on	an	element	whose	id	is	myButton1,	the	preceding	code	block	slowly
hides	the	element	whose	id	is	myButton2,	and	after	the	animation	is	completed,	the	code	in
the	callback	function	is	executed.

This	book	contains	WebKit-based	code	samples,	but	if	you	decide	to	use	the	preceding
code	block	with	IE,	keep	in	mind	that	there	is	a	bug	involving	the	use	of	named	functions
in	callbacks	in	IE.	The	following	article	provides	useful	information	regarding	named
functions:

http://kangax.github.com/nfe

jQuery	Fade	and	Slide	Animation	Effects
The	jQuery	fade-related	and	slide-related	effects	are	easy	to	create,	and	if	you	define

them	appropriately,	they	can	create	very	nice	visual	effects	in	your	Web	pages.

The	following	example	combines	the	jQuery,	.fadeIn(),	and	.fadeOut()	functions	and	also
shows	you	how	to	chain	these	functions	so	that	you	can	create	multiple	animation	effects.

The	fadeIn(),	fadeOut(),	and	fadeToggle()	Functions

The	three	jQuery	functions	.fadeIn(),	fadeOut	(),	and	fadeToggle()	methods	can	specify	three
parameters,	and	their	syntax	is	shown	here:

jQuery(list-of-elements).fadeIn(speed);

jQuery(list-of-elements).fadeOut(speed);

jquery(list-of-elements).fadeTo(speed);

The	following	code	block	illustrates	how	to	use	these	three	jQuery	functions:
$(“#something”).click(function()	{

			$(this).fadeIn(‘slow’);

http://kangax.github.com/nfe

});

$(“#something”).click(function()	{

			$(this).fadeOut(‘slow’);

});

$(“#something”).click(function()	{

			$(this).fadeTo(‘slow’,	.65);

});

Listing	3.1	displays	the	contents	of	FadeInOut.html,	and	illustrates	how	to	perform	simple
and	chained	fading	effects	in	jQuery.

LISTING	3.1	FadeInOut.html
<!DOCTYPE	html>

<html	lang=“en”>

		<head>

			<meta	charset=“utf-8”	/>

			<title>jQuery	Fade-Related	Effects</title>

	

			<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

			</script>

			<script

					src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

			</script>

		</head>

	

		<body>

				<div>

					<div>	<p>Hello	World	from	jQuery	(hover	on	me)</p>	</div>

						<div>	<p>Goodbye	World	from	jQuery	(hover	on	me)</p>	</div>

					<div>

								<input	type=“button”	id=“button1”	value=“Hide	Me”	/>

						</div>

				</div>

	

				<script>

						$(document).ready(function(){

							var	para	=	$(“div	>	p”);

	

								para.each(function(){

											var	p	=	$(this);

											p.append(‘<span	style=“color:red;font-size:18px”’+

																				’>This	Text	Will	Fade	on	Hover’);

								});

	

								para.hover(function()	{

											//	you	can	use	‘slow’	or	‘fast’

									//$(this).find(“span”).fadeIn(“slow”);

											$(this).find(“span”).fadeIn(3000).fadeOut(“fast”)

																															.fadeIn(“slow”);

								},	function()	{

									//$(this).find(“span”).hide();

											$(this).find(“span”).fadeOut(2000).fadeIn(“slow”)

																															.fadeOut(“fast”).fadeIn(2000)

																															.fadeOut(“slow”);

								});

	

								$(“#button1”).click(function()	{

											$(this).fadeOut(500,	function()	{

									//$(this).remove();

										});

								});

						});

				</script>

		</body>

</html>

Listing	3.1	starts	with	two	HTML	<div>	elements	and	an	HTML	<button>	elements,
followed	by	jQuery	code	for	applying	fade-related	effects	to	the	HTML	<p>	elements.	The
first	point	to	notice	is	the	JavaScript	variable	para	that	stores	a	reference	to	the	HTML	<p>
elements	that	are	direct	child	elements	of	HTML	<div>	elements,	as	shown	here:

$(document).ready(function(){

		var	para	=	$(“div	>	p”);

		//	code	omitted

}

The	next	code	block	dynamically	adds	an	HTML		element	to	the	HTML	<p>
elements	that	are	referenced	in	the	para	variable:

para.each(function(){

		var	p	=	$(this);

		p.append(‘<span	style=“color:red;font-size:18px”’+

											’>This	Text	Will	Fade	on	Hover’);

});

When	users	hover	over	any	of	the	HTML	<p>	elements,	the	jQuery	code	creates
multiple	fade-related	effects	for	the	HTML	<p>	elements	using	jQuery	method	chaining.
An	example	is	shown	below:

$(this).find(“span”).fadeOut(2000).fadeIn(“slow”)

																				.fadeOut(“fast”).fadeIn(2000)

																				.fadeOut(“slow”);

You	can	use	jQuery	methods	to	apply	effects	to	elements	other	than	the	element	that
has	the	current	focus.	For	example,	if	you	want	to	hide	a	sibling	element	during	a	hover
event,	you	can	do	something	like	this:

$(this).next().fade();

The	next	section	shows	you	how	to	use	jQuery	slide-related	functions	in	order	to
create	slide-related	animation	effects.

jQuery	Slide-Related	Functions

The	jQuery	slideUp(),	slideDown(),	and	slideToggle()	methods	can	specify	three	parameters,
and	they	have	the	following	syntax:

jQuery(elements).slideUp([milliseconds],	[easing-function],

																									[callback-function]);

	

jQuery(elements).slideDown([milliseconds],

																											[easing-function],

																											[callback-function]);

	

jQuery(elements).slideToggle([milliseconds],

																													[easing-function],

																													[callback-function]);

The	value	milliseconds	specifies	the	duration	of	the	animation	effect,	and	the	callback-
function	is	an	optional	JavaScript	function	that	is	executed	after	the	animation	is	completed.

Listing	3.2	displays	the	contents	of	JQSlideUpDown.html,	and	illustrates	how	to	perform
simple	and	chained	sliding	effects	in	jQuery.

LISTING	3.2	JQSlideUpDown.html
<!DOCTYPE	html>

<html	lang=“en”>

		<head>

			<meta	charset=“utf-8”	/>

			<title>jQuery	Slide-Related	Effects</title>

	

www.allitebooks.com

http://www.allitebooks.org

			<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

			</script>

			<script

					src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

			</script>

		</head>

	

		<body>

				<div>

						<div>	<p>Hello	World	from	jQuery	(hover	on	me)</p>	</div>

						<div>	<p>Goodbye	World	from	jQuery	(hover	on	me)</p>	</div>

						<div>

								<input	type=“button”	id=“button1”

															value=“Click	to	Slide	Me	Up	and	Hide	Me”	/>

						</div>

				</div>

	

				<script>

						$(document).ready(function(){

							var	para	=	$(“div	>	p”);

	

								para.each(function(){

											var	p	=	$(this);

											p.append(‘’+

																				‘This	Text	Will	Slide	on	Hover’);

								});

	

								para.hover(function()	{

											//	you	can	use	‘slow’	or	‘fast’

									//$(this).find(“span”).slideDown(“slow”);

											$(this).find(“span”).slideDown(3000).slideUp(“fast”)

																															.slideDown(“slow”);

								},	function()	{

									//$(this).find(“span”).hide();

											$(this).find(“span”).slideUp(2000).slideDown(“slow”)

																															.slideUp(“fast”).slideDown(2000)

																															.slideUp(“slow”);

								});

	

								$(“#button1”).click(function()	{

											$(this).slideUp(2000,	function()	{

											//$(this).remove();

										});

								});

						});

				</script>

		</body>

</html>

Listing	3.2	is	similar	to	Listing	3.1,	except	that	slide-related	jQuery	methods	are	used
instead	of	fade-related	jQuery	methods,	and	the	description	of	this	code	sample	is
analogous	to	the	description	of	Listing	3.1.

One	point	to	keep	in	mind	is	that	sliding	effects	do	not	always	work	as	expected	(some
jerkiness	may	occur)	for	elements	that	have	CSS	padding	or	margin	properties	or	a	width
property	that	is	not	set	to	a	fixed	width.	Experiment	with	these	scenarios	to	see	if	the
resultant	behavior	is	what	you	expect,	or	if	it	is	acceptable	for	your	Web	pages.

Easing	Functions	in	jQuery

jQuery	supports	a	set	of	so-called	“easing”	functions	that	provide	different	types	of
animation	effects.	In	general	terms,	an	easing	function	uses	some	type	of	equation	as	the
path	for	an	animation	effect.	For	example,	you	can	use	a	linear	equation	to	create
animation	with	constant	speed.	You	can	also	use	a	quadratic	equation	(a	polynomial	of
degree	two,	whose	general	form	is	a*x*x+b*x+c)	to	create	animation	effects	with
acceleration	or	for	quadratic	Bezier	curves,	and	cubic	equations	for	cubic	Bezier	curves.

jQuery	also	provides	easing	functions	for	animation	whose	speed	is	more	complex
(slow,	fast,	slow)	at	different	positions	of	an	easing	function.	Before	you	search	for	jQuery
plugins,	it’s	well	worth	your	time	to	explore	the	existing	jQuery	easing	functions,	some	of
which	are:	linear,	easeInQuad,	easeOutQuad,	easeInCubic,	easeOutCubic,	easeInOutCubic,	easeInSine,
easeOutSine,	easeInOutSine,	easeInElastic,	easeOutElastic,	and	easeInOutElastic.

You	can	find	numerous	links	that	provide	an	extensive	set	of	demonstration	of	jQuery
easing	functions,	including	the	one	shown	here:

http://jqueryui.com/demos/effect/easing.html

In	addition,	there	are	many	jQuery	plugins	available	for	custom	animation-related
easing	functions,	or	you	can	create	your	own	jQuery	plugin	if	you	cannot	find	one	that	fits
your	needs.

The	jQuery	.animate()	Method
The	jQuery	animate()	method	can	take	four	parameters,	and	they	look	like	this:
jQuery(elements).animate([properties],

																									[milliseconds],

http://jqueryui.com/demos/effect/easing.html

																									[easing-function],

																									[complete-function]);

The	properties	parameter	contains	the	list	of	properties	to	animate,	and	the	milliseconds
parameter	specifies	the	duration	of	the	animation	effect.	The	easing-function	parameter
specifies	one	of	the	easing	functions	discussed	in	the	previous	section,	and	the	complete-
function	specifies	the	JavaScript	callback	function	to	execute	when	the	animation	effect	has
completed.

			The	HTML5	Web	page	JQAnimate1.html	on	the	CD	illustrates	how	to	use	the
jQuery	animate()	function	in	order	to	create	animation	effects	on	two	PNG	files.

This	HTML5	Web	page	contains	two	PNG	images,	along	with	jQuery	click	handlers
for	two	HTML	<button>	elements.	Whenever	users	click	on	the	left	button,	the	jQuery	code
decreases	the	PNG	opacity	from	1.0	to	0.25,	shifts	the	image	file	50	units	to	the	right,	and
increases	its	height	by	100	units	during	a	five-second	interval,	as	shown	here:

$(‘#text1’).animate({

				opacity:	0.25,

				left:	‘+=50’,

				height:	‘+=100’

		},	5000,	function()	{

				//	Animation	complete	(do	something	else)

});

Whenever	users	click	on	the	second	button,	the	jQuery	code	performs	similar
animation	effects	on	the	right-side	image	file.	Launch	the	code	in	Listing	3.2	and	click	the
buttons	to	see	the	animation	effects.

You	can	see	a	variation	of	the	animation	effects	in	Listing	3.2	in	the	HTML5	Web
page	JQAnimate2.html,	as	well	as	sequential	and	parallel	animation	effects	in	the	HTML5
Web	page	JQAnimate2.html,	both	of	which	are	available	on	the	CD.

			You	can	use	the	jQuery	animate()	function	to	create	other	interesting	visual
effects	by	changing	different	CSS	properties	of	HTML	elements.	For	example,	the
following	code	block	create	a	“wobbling”	effect	with	list	items	that	are	part	of	an	HTML
	element:

$(‘#mylist	li’).hover(function()	{

		$(this).animate({paddingLeft:	‘+=15px’},	200);

},	function()	{

		$(this).animate({paddingLeft:	‘-=15px’},	200);

});

You	can	also	create	linear	and	swing	animation	effects,	as	shown	here:
$(‘p:first’).toggle(function()	{

		$(this).animate({‘height’:’+=150px’},	1000,	‘linear’);

},	function()	{

		$(this).animate({‘height’:’-=150px’},	1000,	‘swing’);

});

Custom	CSS	Animation	Using	the	.animate()	Function

You	can	use	jQuery	to	animate	many	CSS	properties,	including	border-width,	bottom,	font-
size,	height,	margin,	opacity,	padding,	right,	top,	width,	and	word-spacing.	In	addition,	you	can	specify	the
duration	with	slow,	fast,	or	an	integer	value	that	represents	milliseconds.

The	following	code	animates	the	width	and	height	attributes	of	an	HTML	<div>	element	so
that	their	final	values	will	be	500	and	300,	respectively:

$(“#myDiv”).click(function()	{

		$(this).animate({

					width:‘500px’,	height:	‘300px’

		});

});

In	the	preceding	jQuery	code	snippet,	the	width	will	increase	to	500px	if	its	initial	value
is	less	than	500px;	otherwise	it	will	decrease	the	width	to	500px.	(The	same	holds	true	for	the
height	attribute).

CSS3-Based	Animation	Effects
This	section	illustrates	a	variety	of	animation	effects	that	you	can	create	with	CSS3,

where	the	code	samples	use	CSS3	@keyframes	rules	and	2D/3D	transforms.

Animation	Effects	with	CSS3	Keyframes	and	2D	Transforms

Listing	3.3	displays	the	contents	of	JQButtonAnimation1.html,	and	illustrates	how	to	create
button-related	animation	effects	that	are	triggered	by	the	hover	pseudo-class.

LISTING	3.3	JQButtonAnimation1.html
<!DOCTYPE	html>

<html	lang=“en”>

		<head>

			<meta	charset=“utf-8”	/>

			<title>jQuery	Button	Animation	Effect</title>

	

			<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

			</script>

			<script

					src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

			</script>

	

			<style>

					@-webkit-keyframes	AnimButton	{

								0%	{

											font-size:	18px;

											background-color:	#0f0;

											-webkit-transform:	translate(0px,0px)	rotate(-60deg)

																														skew(-15deg,0);

								}

								25%	{

											font-size:	24px;

											background-color:	#0ff0

											-webkit-transform:	translate(100px,100px)

																														rotate(-180deg)	skew(-15deg,0);

								}

								50%	{

											font-size:	32x;

											-webkit-transform:	translate(50px,50px)	rotate(-120deg)

																														skew(-25deg,0);

											background-color:	#00f;

								}

								75%	{

											font-size:	24px;

											background-color:	#0ff;

											-webkit-transform:	translate(100px,100px)

																														rotate(-180deg)

																														skew(-15deg,0);

								}

								100%	{

											font-size:	18px;

											-webkit-transform:	translate(0px,0px)	rotate(0)

																														skew(0,0);

											background-color:	#f00;

								}

					}

	

					#button1	{

						font-size:	12px;

						background-color:	#f00;

					}

	

					#button1:hover	{

						font-size:	36px;

						background-color:	#00f;

					-webkit-animation-name:	AnimButton;

					-webkit-animation-duration:	4s;

					}

	

					#button2	{

						font-size:	12px;

						background-color:	#00f;

					}

	

					#button2:hover	{

						font-size:	24px;

						background-color:	#00f;

					-webkit-animation-name:	AnimButton;

					-webkit-animation-duration:	2s;

					}

			</style>

		</head>

	

		<body>

				<div>

								<input	type=“button”	id=“button1”

															value=“Click	Me	or	Hover	Over	Me”	/>

				</div>

				<div>

								<input	type=“button”	id=“button2”

															value=“Click	Me	or	Hover	Over	Me”	/>

						</div>

				</div>

	

				<script>

						$(document).ready(function(){

								$(“#button1”).click(function()	{

											$(this).fadeOut(500,	function()	{

											//$(this).remove();

										});

								});

	

								$(“#button2”).click(function()	{

											$(this).fadeOut(500,	function()	{

											//$(this).remove();

										});

								});

						});

				</script>

	

		</body>

</html>

Listing	3.3	contains	an	HTML	<style>	element	with	a	CSS3	keyframes	definition	(which
you	could	also	move	to	a	separate	CSS	stylesheet),	followed	by	two	HTML	<input>
elements	of	type	button,	both	of	which	have	click	event	handlers	defined	in	the	<script>
element	in	Listing	3.3.

Whenever	users	click	on	either	button,	the	CSS3	keyframes	definition	is	applied	to	the
button.	This	in	turn	creates	animation	effects	using	combinations	of	the	functions	translate(),
rotate(),	and	skew()	for	the	time	periods	(either	2	seconds	or	4	seconds)	specified	in	the
associated	selectors.	In	addition,	the	click	handlers	create	a	fading	effect	that	lasts	for	500
milliseconds.

When	you	launch	the	HTML	Web	page	JQButtonAnimation1.html	in	a	browser,	you	will	see
the	animation	effect	whenever	you	hover	over	either	of	the	buttons.

2D	Transforms	with	CSS3	and	jQuery

The	code	sample	in	this	section	shows	you	how	to	apply	CSS	transforms	directly	to
elements	(based	on	user-initiated	events)	using	the	jQuery	css()	function.

Listing	3.4	displays	the	contents	of	JQTransforms2D1.css,	which	contains	CSS3	selectors
that	are	applied	to	the	HTML5	Web	page	JQTransforms2D1.html,	shown	in	Listing	3.4.

LISTING	3.4	JQTransforms2D1.css
#outer	{

		position:	absolute;

		left:	50px;

		top:	150px;

}

	

#inner1	{

		float:	left;

		background-color:#F00;

		width:	200px;

		height:150px;

}

	

#inner2	{

		float:	left;

		background-color:#FF0;

		width:	200px;

		height:150px;

}

	

#inner3	{

		float:	left;

		background-color:#00F;

		width:	200px;

		height:150px;

}

Listing	3.4	is	very	straightforward:	several	properties,	such	as	the	width	and	height,	are
specified	for	three	HTML	<div>	elements	that	are	defined	in	Listing	3.5.

LISTING	3.5	JQTransforms2D1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

		<meta	charset=“utf-8”	/>

		<title>jQuery	Transform	Effects</title>

		<link	href=“Transforms1.css”	rel=“stylesheet”	type=“text/css”>

	

			<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

			</script>

			<script

					src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

			</script>

</head>

	

<body>

		<h1>Click	Inside	Any	of	the	Rectangles:</h1>

	

		<div	id=“outer”>

				<div	id=“inner1”></div>

				<div	id=“inner2”></div>

				<div	id=“inner3”></div>

				</div>

		</div>

		

		<script>

			$(document).ready(function()	{

						$(“#inner1”).click(function()	{

								$(“div”).css({height:	‘300px’,

										‘webkit-transform’:	‘scale(0.5,	0.5)	skew(-10deg,

																																																					20deg)’

								});

						});

		

						$(“#inner2”).click(function()	{

								$(“div”).css({height:	‘200px’,

																						width:	‘250px’,

									‘webkit-transform’:	‘scale(0.5,	0.8)	rotate(-45deg)’

								});

						});

	

						$(“#inner3”).click(function()	{

								$(“div”).css({height:	‘100px’,

																						width:	‘250px’,

									‘webkit-transform’:	‘skew(-10deg,	10deg)	rotate(-45deg)’

								});

						});

			});

		</script>

	

	</body>

</html>

Listing	3.5	defines	event	handlers	for	the	click	event	for	three	HTML	<div>	elements,
all	of	which	invoke	the	jQuery	css()	function	in	order	to	update	properties	of	the	<div>
element	that	received	a	click	event.

For	example,	the	first	HTML	<div>	element	is	updated	as	follows	whenever	users	click
on	this	element:

$(“div”).css({height:	‘300px’,

				‘webkit-transform’:	‘scale(0.5,	0.5)	skew(-10deg,	20deg)’

});

As	you	can	see,	the	height	property	is	set	to	300px,	and	transforms	are	applied	to	the
<div>	elements	when	users	click	on	them.

Keep	in	mind	that	you	can	move	the	CSS3	code,	referenced	in	the	click	handlers	in
Listing	3.5,	to	a	separate	CSS	stylesheet.	This	makes	it	easier	to	maintain	the	CSS3	code
in	a	single	file,	and	you	can	also	reference	the	same	CSS	stylesheet	in	multiple	HTML
Web	pages.

In	addition	to	CSS3	2D	animation	effects,	you	can	obviously	create	CSS3	3D
animation	effects.	Experiment	with	the	code	in	Listing	3.5	by	adding	some	of	the	3D
effects	that	are	available	in	code	chapters	in	Chapter	2,	or	from	the	following	open	source
project:

http://code.google.com/p/css3-graphics

Figure	3.1	displays	JQTransforms2D1.html	in	the	Chrome	browser	on	a	MacBook.

The	remainder	of	this	chapter	contains	examples	that	are	different	from	the	previous
code	samples.	Listing	3.4	and	Listing	3.5	involve	mouse-related	functionality	and	how	to
handle	mouse	events	programmatically.	Listing	3.6	in	the	next	section	shows	you	a	very
rudimentary	game-oriented	code	sample	that	combines	JavaScript,	jQuery,	and	CSS3
more	extensively	than	earlier	examples.

	

http://code.google.com/p/css3-graphics

Figure	3.1		Transformed	rectangles	in	jQuery	in	the	Chrome	browser	on	a	MacBook.

A	Follow-the-Mouse	Example	with	jQuery
The	code	sample	in	this	section	extends	the	functionality	introduced	in	the	previous

section	by	showing	you	how	to	programmatically	create	HTML	<div>	elements	and	append
them	to	the	DOM.

Listing	3.6	displays	the	contents	of	JQSketchFollowMouse1.html	that	illustrates	how	to
render	a	<div>	element	under	the	current	location	of	a	user’s	mouse	using	jQuery	and	CSS3
in	an	HTML5	Web	page.

LISTING	3.6	JQSketchFollowMouse1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

		<meta	charset=“utf-8”	/>

		<title>jQuery	Follow	the	Mouse	Example</title>

	

			<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

			</script>

			<script

					src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

			</script>

</head>

	

<body>

		<div></div>

	

		<script>

			//	see	commentary	about	the	preceding	empty	<div>	element

			$(document).ready(function()	{

				var	rectWidth		=	20;

				var	rectHeight	=	20;

				var	moveCount		=	0;

				var	insertNode	=	true;

				var	currColor		=	””;

				var	rectColors	=	new	Array(‘#ff0000’,	‘#ffff00’,

																															’#00ff00’,	‘#0000ff’);

				var	newNode;

			

				$(document).mousemove(function(e)	{

								++moveCount;

	

								//	are	users	are	moving	their	mouse?

								if(insertNode	==	true)	{

											//	create	a	rectangle	at	the	current	position

											newNode	=	$(‘<div	id=newNode>’).css({‘position’:‘absolute’,

																																						‘background-color’:’#ff0000’,

																																						‘width’:rectWidth+‘px’,

																																						‘height’:rectHeight+‘px’,

																																							top:	e.pageY,		

																																							left:	e.pageX		

																																					});

			

											//append	the	rectangle	to	body	with	this	code:

											$(“div”).append(newNode);

	

											//do	not	append	the	rectangle	to	body	with	this	code:

											//$(document.body).append(newNode);

	

											insertNode	=	false;

								}	else	{			

										currColor	=	rectColors[moveCount	%	rectColors.length];

	

										$(‘div’).each(function()	{

												$(this).css({top:	e.pageY,

																									left:	e.pageX,

																									‘background-color’:	currColor

												});

										});

								}

					});

			});

		</script>

	</body>

</html>

Listing	3.6	initializes	some	JavaScript	variables	and	then	uses	the	jQuery	css()	method
to	dynamically	create	an	HTML	<div>	element	whose	upper-left	vertex	has	the	same
coordinates	of	the	point	where	a	mousemove	event	occurs,	thereby	creating	a	follow-the-

mouse	effect.	The	key	point	to	note	is	that	the	event	object	(called	e	in	this	code	sample)
gives	us	access	to	the	coordinates	of	the	current	move	position.	We	can	use	the	attributes
e.pageX	and	e.pageY	to	set	the	CSS	properties	left	and	top,	respectively.

Notice	also	the	inclusion	of	an	empty	HTML	<div>	element	immediately	after	the
HTML	<body>	element	in	Listing	3.6.	This	element	is	required	because	UI	elements	added
after	a	script	are	known	to	disappear	in	some	older	browsers.	The	solution	is	to	include	the
empty	<div>	element	and	then	append	content	to	that	element.

Handling	Other	Events	with	jQuery
You	have	seen	code	samples	that	illustrate	how	to	use	jQuery	to	handle	various	events.

jQuery	provides	extensive	support	for	mouse-related	events	and	also	support	for	keyboard
events,	as	described	in	the	next	two	sections.

Handling	Mouse	Events

jQuery	supports	the	following	common	mouse	events	that	are	probably	familiar	to
you:	mousedown,	mouseenter,	mouseleave,	mousemove,	mouseout,	mouseover,	and	mouseup.	You	can	detect
each	of	these	mouse	events	in	jQuery	using	the	following	jQuery	code	constructs:

$(“#myInput”).mousedown(function()	{

		//	do	something

});

$(“#myInput”).mouseenter(function()	{

		//	do	something

});

$(“#myInput”).mouseleave(function()	{

		//	do	something

});

$(“#myInput”).mousemove(function()	{

		//	do	something

});

$(“#myInput”).mouseout(function()	{

		//	do	something

});

$(“#myInput”).mouseover(function()	{

		//	do	something

});

$(“#myInput”).mouseup(function()	{

		//	do	something

});

You	can	include	any	of	the	preceding	code	snippets	that	you	need	in	your	HTML	Web
pages	and	then	add	the	processing	logic	to	provide	the	intended	functionality.

Handling	Keyboard	Events

You	can	also	detect	keypress,	keyup,	and	keydown	events	in	jQuery.	For	example,	this	code
displays	an	alert	when	users	click	on	the	uppercase	“Z”	key:

$(“#myInput”).keypress(function(e)	{

		if	(e.which	==	90)	alert	(‘Z	was	typed.’)

});

You	can	check	for	other	key	events,	keeping	in	mind	that	uppercase	A	is	decimal	65
(hexadecimal	41),	lowercase	a	is	decimal	97	(hexadecimal	61),	and	lowercase	z	is	decimal
122	(hexadecimal	7A).

You	can	also	add	many	other	effects,	including	the	animation	effects	that	are	available
in	previous	code	samples	in	this	chapter.

			Additional	Code	Samples	on	the	CD
The	HTML5	Web	page	JQSlideShow1.html	illustrates	how	to	create	a	slideshow	with	JPG

images	using	jQuery,	which	uses	the	following	code	block	to	determine	the	next	HTML
	element	(which	wraps	around	to	the	first	image	in	the	list	when	we	reach	the	right-
most	image)	and	adds	the	show	attribute,	as	shown	here:

next	=	curr.next().length	?	curr.next()	:

															curr.parent().children(‘:first’);

next.addClass(“show”);

			The	HTML5	Web	page	JQSketchSolid1.html	on	the	CD	illustrates	how	to	create	a
rudimentary	sketching	program	with	jQuery	and	CSS3	in	an	HTML5	Web	page.

Figure	3.2	displays	JQSketchSolid1.html	in	the	Chrome	browser	on	a	MacBook.

	
Figure	3.2		Sketching	with	jQuery	in	the	Chrome	browser	on	a	MacBook.

The	jQuery	plugin	rotate3di	for	3D	animation	enables	you	to	animate	HTML	content,
along	with	other	visual	effects,	and	its	homepage	is	here:

http://www.zachstronaut.com/projects/rotate3di/

			You	can	also	combine	jQuery	with	SVG	instead	of	dynamically	creating	<div>
elements	that	are	styled	with	CSS3	selectors.	The	accompanying	CD	contains	the	HTML5
Web	page	JQArchDoubleEllipse1Rotate1.html	that	illustrates	how	to	combine	jQuery	with	SVG.
However,	this	code	is	similar	to	earlier	code	samples,	so	its	contents	are	omitted	from	this
chapter.

			The	HTML5	Web	page	JQBouncingBalls1.html	on	the	CD	illustrates	how	to	render
a	set	of	vertically	bouncing	balls	in	a	jQuery	HTML5	Web	page.	Figure	3.3	displays	the
result	of	rendering	this	HTML5	Web	page	on	an	Asus	Prime	tablet	with	Android	ICS.

	
Figure	3.3		Bouncing	balls	on	an	Asus	Prime	tablet	with	Android	ICS.

The	jQuery	plugin	PFold	provides	a	nice	paper-folding	effect,	and	it’s	downloadable
here:

http://tympanus.net/Development/PFold/index.html

Animation:	Comparing	CSS3	with	jQuery
The	performance	differences	between	CSS3	and	jQuery	are	an	interesting	and

obviously	important	topic,	especially	if	you	plan	to	develop	an	HTML	Web	page	or
application	that	contains	many	animation	effects.	This	section	provides	three	links	with
various	tips	and	some	performance	benchmarks.

http://www.zachstronaut.com/projects/rotate3di/
http://tympanus.net/Development/PFold/index.html

The	first	link	is	an	article	written	by	Christian	Heilmann	that	contains	five
performance-related	tips:

http://christianheilmann.com/2013/01/25/five-things-you-can-do-to-make-html5-
perform-better/

The	second	link	provides	performance	benchmarks	(and	it	differs	slightly	from	one	of
Christian’s	recommendations):

http://blog.tumult.com/2013/02/28/transform-translate-vs-top-left/?
utm_source=html5weekly&utm_medium=email

The	third	link	is	in	an	article	on	Opera’s	Website,	comparing	the	performance	of	CSS3
and	jQuery	animation:

“CSS3	wins	the	race	by	lengths.	The	huge	difference	in	performance	is	because	the
browser’s	CSS	processor	is	written	in	C++	and	native	code	executes	very	fast	whereas
jQuery	(JavaScript)	is	an	interpreted	language	and	the	browser	can’t	predict	JavaScript
ahead	in	time,	in	terms	of	what	event	will	occur	next.”

The	preceding	quote	is	from	the	following	Website:
http://dev.opera.com/articles/view/css3-vs-jquery-animations/#comments

The	preceding	Website	also	states	the	following:

“Although	the	results	above	indicate	that	you	should	use	CSS3	for	animations,	you
should	bear	in	mind	the	advantages	and	disadvantages	we	discussed	earlier	on	in	the
article.	You	need	to	keep	in	mind	that	a	fair	amount	of	people	still	use	Internet	Explorer	7
and	8,	so	you	should	use	jQuery	if	your	animations	absolutely	need	to	work	the	same	in
those	older	browsers.”

The	preceding	links	provide	guidelines	for	improving	the	performance	of	your
HTML5	Web	pages.	However,	you	might	need	to	perform	a	more	detailed	analysis	of	the
contents	of	your	HTML5	Web	page	in	order	to	fine-tune	its	performance.	Perform	an
Internet	search	for	articles	that	discuss	performance	issues	in	Web	pages	with	similar
animation	effects.

Summary
This	chapter	introduced	you	to	jQuery	graphics	and	animation	effects,	along	with	code

samples	that	illustrated	how	to	use	jQuery	functions	to	create	simple	animation	effects.	In
particular,	you	learned	how	to	do	the	following:

Basic	animation	effects	in	jQuery
The	Effect	action	in	jQuery
Scrolling	effects	in	jQuery
Working	with	CSS3	selectors	in	jQuery
Setting	properties	with	the	css()	function
Toggling	CSS	properties
Creating	rounded	corners
Creating	shadow	effects
Setting	linear	and	radial	gradients

http://christianheilmann.com/2013/01/25/five-things-you-can-do-to-make-html5-perform-better/
http://blog.tumult.com/2013/02/28/transform-translate-vs-top-left/?utm_source=html5weekly&utm_medium=email

Working	with	images
The	hide()	and	show()	functions
Using	callback	functions
The	fadeIn(),	fadeOut(),	and	fadeTo()	methods
Setting	the	speed
Toggling	hide()	and	show()
jQuery	Fade	and	Slide	animation	effects
The	fadeIn()	and	fadeOut()	functions
jQuery	slideUp()	and	slideDown()	functions
Easing	functions	in	jQuery
Custom	CSS	animation	using	animate()
Creating	a	slideshow	with	images
CSS3-Based	Animation	Effects
Simple	Sliding	Effects	with	CSS3
Updating	Multiple	Attributes	with	CSS3
Sliding	Effects	with	CSS
Animation	Effects	with	CSS3	keyFrames	and	2D	Transforms
2D	Transforms	with	CSS3	and	jQuery
3D	Transforms	with	CSS3	and	jQuery
A	Follow-the-Mouse	Example	with	jQuery
Your	First	Sketching	Program

The	next	chapter	introduces	you	to	various	jQuery	UI	Controls,	along	with	code
samples	that	show	how	to	render	some	jQuery	UI	controls	in	HTML5	Web	pages.

CHAPTER			4
	

JQUERY	UI	CONTROLS

	

This	chapter	introduces	you	to	various	jQuery	UI	controls,	along	with	code	samples
that	show	how	to	render	some	jQuery	UI	controls	in	HTML5	Web	pages.	The	rationale	for
using	these	UI	controls	is	simple:	they	do	not	require	nearly	as	much	effort	as	writing	your
own	custom	UI	controls,	nor	do	you	need	to	maintain	the	code	for	these	controls.
Moreover,	these	UI	controls	work	well	on	a	range	of	browsers.

You	will	see	examples	of	using	jQuery	to	render	accordions,	buttons,	combo	boxes,
date	pickers,	progress	bars,	sliders,	and	tabs.	In	addition,	you	will	learn	how	to
programmatically	handle	user-initiated	events	involving	jQuery	UI	controls.	There	are
more	UI	controls	available	that	you	can	learn	about	by	consulting	the	jQuery	homepage.

The	jQuery	UI	controls	in	this	chapter	are	presented	alphabetically,	so	feel	free	to	skip
around	to	read	about	the	UI	controls	that	are	of	interest	to	you.	Although	information
about	these	UI	controls	is	available	in	the	jQuery	documentation,	this	is	a	primer	book,	so
it’s	more	appropriate	to	include	a	list	of	UI	controls	in	one	convenient	location	instead	of
telling	you	to	“go	read	the	documentation.”	After	you	have	read	this	chapter,	you	will	also
be	in	a	better	position	to	understand	the	lengthy	code	sample	at	the	end	of	the	chapter.	The
sample	illustrates	an	HTML5	Web	page	with	various	jQuery	UI	controls	in	a	manner	that
reflects	a	somewhat	realistic	scenario.

This	chapter	also	contains	code	samples	for	handling	user	click	events	that	trigger
updates	in	other	(sometimes	graphical)	elements	that	are	defined	elsewhere	in	the	same
HTML5	Web	page.	This	approach	makes	it	easy	to	understand	how	to	implement	event-
related	functionality,	and	hopefully	you	will	be	able	to	adapt	the	code	samples	in	this
chapter	to	your	specific	needs.

One	point	to	keep	in	mind	is	that	the	HTML5	Web	pages	in	this	chapter	contain	both
HTML	markup	and	jQuery	code.	For	longer	Web	pages,	it	makes	more	sense	to	put
jQuery	code	in	a	separate	file	(just	as	we	have	done	with	CSS	stylesheets).	However,
almost	every	Web	page	in	this	chapter	is	short	(between	one	page	and	1.5	pages),	so	it’s	a
choice	based	on	convenience	to	keep	the	code	in	a	single	file.

A	second	point	involves	how	to	write	your	own	jQuery	plugins,	which	is	beyond	the
scope	of	this	book.	You	can	find	online	tutorials	that	show	you	how	to	write	jQuery
plugins	if	you	cannot	find	any	existing	jQuery	plugins	that	meet	your	needs.

Using	jQuery	2.0	in	this	Chapter
The	following	code	samples	work	correctly	on	jQuery	1.5,	but	they	do	not	work

correctly	with	jQuery	2.0.0:

JQUIProgressBar1.html	(no	progress	bar	displayed)
JQUISlider1.html	(no	slider	displayed)
JQUISliderColors1.html	(no	slider	displayed)
JQUIThemes1.html	(use	plugin	available	on	github)

Keep	in	mind	that	future	versions	of	jQuery	will	undoubtedly	resolve	these	issues	and
other	inconsistencies	that	you	might	encounter	in	your	own	HTML	Web	pages	that	use
jQuery.

Accordion	Effects
jQuery	UI	supports	an	accordion	widget,	which	contains	one	or	more	“folders”	whose

contents	are	shown	only	when	users	click	on	a	particular	folder.

Listing	4.1	displays	the	contents	of	the	HTML5	Web	page	JQUIAccordion1.html,	which
illustrates	how	to	render	an	accordion	widget.

LISTING	4.1	JQUIAccordion1.html
<!DOCTYPE	html>

<html	lang=“en”>

	<head>

		<meta	charset=“utf-8”	/>

		<title>jQuery	Accordion</title>

	

		<link	href=“JQUIAccordion1.css”	rel=“stylesheet”

																																							type=“text/css”>

		<link	type=“text/css”

								href=“css/themename/jquery-ui-1.8.14.custom.css”	/>		

		<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

		</script>

		<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

		</script>

		<script	src=“http://code.jquery.com/ui/1.10.1/jquery-ui.js”>

		</script>

	

		<link	href=“JQUIAccordion1.css”

								rel=“stylesheet”	type=“text/css”>

	</head>

	

	<body>

		<div	id=“accordion”>

					<h3>Section	1</h3>

					<div>

								<p>	This	is	the	first	section	of	the	accordion.	</p>

					</div>

	

					<h3>Section	2</h3>

					<div>

								<p>	This	is	the	second	section	of	the	accordion.	</p>

								

											List	item	one

											List	item	two

											List	item	three

								

					</div>

		

					<h3>Section	3</h3>

					<div>

								<p>	This	is	the	section	of	the	third	accordion.	</p>

					</div>

					<h3>Section	4</h3>

					<div>

								<p>	This	is	the	section	of	the	fourth	accordion.	</p>

								<div	id=“outer”>

										<div	id=“inner1”></div>

										<div	id=“inner2”></div>

										<div	id=“inner3”></div>

								</div>

					</div>

		</div>

	

		<script>

				$(document).ready(function()	{

						$(“#accordion”).accordion();

				});

		</script>

	</body>

</html>

Listing	4.1	is	straightforward:	after	the	usual	file	references,	there	is	an	HTML	<script>
element	that	references	a	HTML	<div>	element	(whose	id	attribute	has	value	accordion).	This
HTML	<div>	element	also	contains	4	HTML	<div>	elements	that	refer	to	four	different

“sections”	in	the	HTML	Web	page.

The	<script>	element	contains	jQuery	code	that	renders	the	contents	of	this	HTML	<div>
element	as	an	accordion	in	literally	one	line	of	code,	shown	here:

<script>

			$(document).ready(function()	{

					$(“#accordion”).accordion();

			});

</script>

In	fact,	the	code	in	the	preceding	<script>	element	is	the	typical	manner	in	which	jQuery
renders	the	contents	of	an	HTML	<div>	element	as	a	jQuery	widget:

$(“#theDivID”).widgetType();

In	this	example,	the	widgetType	function	is	the	jQuery	accordion()	function.	You	can	create
different	accordion	effects	by	overriding	some	of	the	default	CSS	definitions	for	a	jQuery
accordion.	For	example,	insert	the	following	section	of	code	before	the	first	section	of	the
accordion	in	Listing	4.1,	and	see	how	this	changes	the	effect	of	selecting	each	section	in
the	accordion:

<h3	class=“ui-accordion-header	ui-helper-reset	ui-state-active	ui-corner-top”>

		

		Section	1

</h3>

LISTING	4.2	JQUIAccordion1.css
#inner1	{

		float:	left;

		background-col33r:#F00;

		width:	200px;

		height:200px;

}

	

#inner2	{

		float:	left;

		background-color:#FF0;

		width:	200px;

		height:200px;

}

	

#inner3	{

		float:	left;

		background-color:#00F;

		width:	200px;

		height:200px;

}

The	three	selectors	in	Listing	4.2	match	their	corresponding	HTML	<div>	elements	in
Listing	4.1,	which	renders	three	rectangular	shapes	with	red,	yellow,	and	blue,
respectively.	This	effect	is	visible	when	users	click	on	the	lowest	folder	(labeled	“Section
4”)	in	the	accordion.	In	a	sense,	an	accordion	can	be	viewed	as	a	set	of	vertical	tabs,	where
each	tab	contains	whatever	HTML	content	you	want	to	render,	including	graphics-like
effects.

	
Figure	4.1		A	jQuery	accordion	on	a	Nexus	S	4G	with	Android	ICS.

Launch	the	HTML5	Web	page	in	Listing	4.1	and	click	on	each	“folder”	in	the	rendered
accordion,	which	will	reveal	the	contents	of	the	currently	selected	folder	and	also	hide	the
contents	of	the	other	folders	of	this	accordion.

Figure	4.1	displays	the	result	of	rendering	JQUIAccordion1.html	in	Listing	4.1	in	a
landscape-mode	screenshot	taken	from	an	Android	application	running	on	a	Nexus	S	4G
with	Android	ICS.

Buttons
Buttons	are	obviously	important	in	Web	pages,	especially	for	submitting	form-based

data,	and	jQuery	provides	significant	support	for	button-related	functionality.	You	can
define	CSS3	selectors	to	apply	whatever	styling	effects	you	need	to	HTML	buttons,
including	gradients	and	shadow	effects.

Listing	4.3	displays	the	contents	of	the	HTML5	Web	page	JQUIButtons1.html,	which
illustrates	how	to	render	buttons	in	an	HTML	Web	page.	The	CSS	stylesheet	JQUIButtons1.css
is	omitted	because	its	contents	are	the	same	as	Listing	4.2.

LISTING	4.3	JQUIButtons1.html
<!DOCTYPE	html>

<html	lang=“en”>

	<head>

		<meta	charset=“utf-8”	/>

		<title>jQuery	Buttons</title>

		

		<link	href=“JQUIButtons1.css”

		rel=“stylesheet”	type=“text/css”>

		<link	type=“text/css”	rel=“Stylesheet”

								href=“css/themename/jquery-ui-1.8.14.custom.css”	/>

	

		<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

		</script>

		<script

				src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

		</script>

	

		<script	src=“http://code.jquery.com/ui/1.10.1/jquery-ui.js”>

		</script>

	</head>

	

	<body>

		<div	id=“outer”>

				<div	class=“buttons”>

						<button>A	regular	button</button>

						<input	type=“submit”	value=“A	submit	button”>

						An	anchor	button

				</div>

	

				<div	id=“inner1”></div>

				<div	id=“inner2”></div>

				<div	id=“inner3”></div>

		</div>

	

		<script>

					$(function()	{

								$(“input:submit,	a,	button”,	“.buttons”).button();

					});

		</script>

	

		<script>

			$(document).ready(function()	{

						var	divColors	=	new	Array(‘#000’,	‘#F0F’,	‘#F00’,

																																’#0F0’,	‘#00F’,	‘#0FF’);

						var	clickCount	=	0;

						var	color1	=	””;

	

						$(“button”).click(function()	{

								++clickCount;

								color1	=	divColors[(clickCount)	%	divColors.length];

								$(“#inner1”).css({background:	color1});

						});

	

						$(“input”).click(function()	{

								++clickCount;

								color1	=	divColors[(clickCount)	%	divColors.length];

								$(“#inner2”).css({background:	color1});

						});

	

						$(“a”).click(function()	{

								++clickCount;

								color1	=	divColors[(clickCount)	%	divColors.length];

								$(“#inner3”).css({background:	color1});

						});

			});

		</script>

	

	</body>

</html>

Listing	4.3	contains	an	HTML	<script>	element	that	applies	the	jQuery	button()	method	to
three	HTML	elements	and	converts	them	into	jQuery	buttons	with	one	line	of	code,	as
shown	in	this	code	snippet:

$(“input:submit,	a,	button”,	“.buttons”).button();

Notice	that	the	class	.buttons	(which	is	used	to	style	an	HTML	<div>	element	that
contains	the	HTML	buttons	and	anchors)	is	also	specified	in	the	preceding	code	snippet.
This	extra	class	is	redundant	in	this	code	snippet,	but	it	shows	you	the	flexibility	of
specifying	a	set	of	HTML	elements	that	you	want	to	convert	into	jQuery	buttons.

The	next	block	of	code	renders	three	HTML	<div>	elements	with	colors	that	are
specified	in	their	corresponding	selectors	that	are	defined	in	the	associated	CSS	stylesheet.

Launch	the	HTML	Web	page	in	Listing	4.3,	and	when	you	click	on	the	top	row	of
buttons	(which	includes	the	anchor	link),	the	rectangles	change	colors.	For	example,	the
buttons	change	color	whenever	users	click	on	them	because	of	the	following	code:

$(“button”).click(function()	{

				++clickCount;

				color1	=	divColors[(clickCount)	%	divColors.length];

				$(“#inner1”).css({background:	color1});

});

In	the	preceding	event	handler,	the	colors	are	selected	from	a	JavaScript	array	called
divColors	that	contains	a	set	of	colors.

Figure	4.2	displays	the	result	of	rendering	JQUIButtons1.html	in	Listing	4.3,	in	a
landscape-mode	screenshot	taken	from	an	iPad3.

	
Figure	4.2		Buttons	on	an	iPad3.

Check	Boxes	and	Radio	Buttons
jQuery	enables	you	to	add	event	handlers	to	HTML	checkboxes	and	radio	buttons	so

that	you	can	determine	which	ones	that	users	have	selected.

Listing	4.4	displays	the	contents	of	JQUICheckBoxRadio1.html	that	illustrates	how	to	render
a	checkbox	and	a	set	of	radio	buttons	in	an	HTML	Web	page.	The	CSS	stylesheet
JQUICheckBoxRadio11.css	is	omitted	because	its	contents	are	the	same	as	Listing	4.2.

LISTING	4.4	JQUICheckBoxRadio1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

		<meta	charset=“utf-8”	/>

		<title>jQuery	Checkbox	and	Radio	ButtonsEffect</title>

	

		<link	href=“JQUICheckBoxRadio1.css”

								rel=“stylesheet”	type=“text/css”>

		<link	type=“text/css”

								href=“css/themename/jquery-ui-1.8.14.custom.css”	/>

	

			<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

			</script>

			<script

					src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

			</script>

	

		<script	src=“http://code.jquery.com/ui/1.10.1/jquery-ui.js”>

		</script>

ox

		<style>

			#CheckBoxRadioInfo,	#CheckBoxRadioInfo2	{

						font-size:	20px;

						top:	10px;

						width:	50%;

						height:	50px;

			}

		</style>

</head>

	

<body>

		<div	id=“outer”>

			<div>

				<fieldset	id=“CheckBoxRadioInfo”>

					<label	for=“checkbox1”>Check	Something:

																																																				</label>

					<input	type=“checkbox”	name=“checkbox1”	id=“checkbox1”>

																																																				</input>

	

					<input	type=“radio”	name=“radio”

												value=“radio1”	checked=“checked”></input>

					<input	type=“radio”	name=“radio”	value=“radio2”></input>

					<input	type=“radio”	name=“radio”	value=“radio3”></input>

				</fieldset>

			</div>

	

			<div>

				<fieldset	id=“CheckBoxRadioInfo2”>

					<label	for=“input1”>You	Clicked	On:

																																																</label>

					<input	type=“input”	name=“input1”	id=“input1”></input>

				</fieldset>

			</div>

			</div>

		</div>

	

		<script>

				$(document).ready(function()	{

						$(“input[name=‘checkbox1’]”).click(function()	{

								$(“#input1”).val(“checkbox1”);

						});

	

						$(“input[name=‘radio’]”).click(function()	{

								$(“#input1”).val($(this).val());

						});

				});

		</script>

	</body>

</html>

Listing	4.4	contains	two	HTML	<div>	elements	that	contain	an	HTML	<fieldset>	element,
which	specifies	an	HTML	checkbox	followed	by	HTML	radio	buttons.

You	can	find	the	state	of	the	checkbox	whose	name	attribute	has	the	value	checkbox1	with
this	event	handler:

$(“input[name=‘checkbox1’]”).click(function()	{

			$(“#input1”).val(“checkbox1”);

});

Similarly,	you	can	determine	which	radio	button	is	checked	with	this	code:
$(“input[name=‘radio’]”).click(function()	{

			$(“#input1”).val($(this).val());

});

In	addition,	you	can	also	check	which	radio	button	is	selected	with	the	following	code
snippet:

var	value	=	$(“input[@name=	fieldname]	:checked”).val();

In	the	preceding	snippet,	you	need	to	replace	fieldname	with	the	corresponding	name	in
the	form	field.

$(‘input:radio[name=“postage”]’).change(function(){

		if	($(this).is(‘:checked’)	&&	$(this).val()	==	‘Yes’)	{

		//	append	goes	here

		}

});

Figure	4.3	displays	the	result	of	rendering	JQUICheckBoxRadio1.html	in	Listing	4.4	in	a
Chrome	browser	on	a	MacBook.

	
Figure	4.3		Checkboxes/button	in	the	Chrome	browser	on	a	MacBook.

Combo	Boxes
jQuery	provides	support	for	HTML	combo	boxes,	and	you	can	attach	event	handlers	to

detect	events	that	are	associated	with	those	HTML	elements.

Listing	4.5	displays	the	contents	of	JQUIComboBox1.html	that	illustrates	how	to	render	a
combo	box	in	an	HTML	Web	page,	and	to	execute	a	block	of	code	whenever	users	select	a
different	value	in	the	combo	box.

LISTING	4.5	JQUIComboBox1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>		

		<meta	charset=“utf-8”	/>

		<title>jQuery	ComboBox</title>

	

		<link	type=“text/css”

								href=“css/themename/jquery-ui-1.8.14.custom.css”	/>

		<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

		</script>

		<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

		</script>

	

		<script	src=“http://code.jquery.com/ui/1.10.1/jquery-ui.js”>

		</script>

	

		<style>

			#ComboBoxInfo	{

						position:	relative;

						font-size:	20px;

						top:	10px;

						width:	50%;

						height:	50px;

			}			

		</style>

</head>

	

<body>

		<div	id=“outer”>

			<div>

				<fieldset	id=“ComboBoxInfo”>

					<label	for=“ComboBox”>My	ComboBox:</label>

					<select	id=“ComboBox”	>

							<option	value=“1”>Value	1</option>

							<option	value=“2”>Value	2</option>

							<option	value=“3”>Value	3</option>

							<optgroup	label=“Group1”>

									<option	value=“4”>Value	4</option>

									<option	value=“5”>Value	5</option>

									<option	value=“6”>Value	6</option>

							</optgroup>

					</select>

	

					<label	for=“selected1”>You	selected:

																																																	</label>

				<input	id=“selected1”	type=“text”	value=””>

				</fieldset>

			</div>

		</div>

	

		<script>

				$(document).ready(function()	{

						$(“#ComboBox”).change(function()	{

								//	display	the	selected	value

								$(“#selected1”).val(

											$(“#ComboBox	option:selected”).text());

						});

				});

		</script>

	</body>

</html>

Listing	4.5	is	straightforward:	the	first	section	references	the	required	jQuery	files,
followed	by	an	HTML	<style>	element,	and	then	the	definition	of	the	items	in	a	combo	box.

Whenever	users	change	the	selected	item	in	the	combo	box,	this	block	of	code	is
executed:

$(“#ComboBox”).change(function()	{

				//	display	the	selected	value

				$(“#selected1”).val(

								$(“#ComboBox	option:selected”).text());

});

Figure	4.4	displays	the	result	of	rendering	JQUIComboBox1.html	in	Listing	4.5	in	the
Chrome	browser	on	a	MacBook.

	
Figure	4.4		Combo	box	in	the	Chrome	browser	on	a	MacBook.

Date	Pickers
jQuery	supports	“date	picker”	functionality	that	enables	you	to	set	the	past,	current,

and	future	dates,	as	well	as	the	ability	to	modify	those	dates	in	a	contextually	relevant
manner.

Listing	4.6	displays	the	contents	of	the	HTML5	Web	page	JQUIDatePicker1.html	that
illustrates	how	to	render	a	jQuery	datepicker	widget	in	an	HTML	Web	page.	The	CSS
stylesheet	JQUIDatePicker1.css	is	omitted	because	its	contents	are	the	same	as	Listing	4.2.

LISTING	4.6	JQUIDatePicker1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

		<meta	charset=“utf-8”	/>

		<title>jQuery	Date	Picker</title>

	

		<script

				src=“http://code.jquery.com/jquery-ui-1.8.14.custom.min.js”>

		</script>

	

		<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

		</script>

		<script

				src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

		</script>

	

		<script	src=“http://code.jquery.com/ui/1.10.1/jquery-ui.js”>

		</script>

	

		<style>

			#input1,	#input2,	#input3	{

					width:	150px;

					height:	50px;

					float:	left;

			}

		</style>

</head>

	

<body>

		<div	id=“outer”>

				<div	id=“input1”>

						Last	Week:

						<input	type=“text”	name=“date”	id=“date1”	/>

				</div>

	

				<div	id=“input2”>

						Today’s	Date:

						<input	type=“text”	name=“date”	id=“date2”	/>

				</div>

	

				<div	id=“input3”>

						A	Future	Date:

						<input	type=“text”	name=“date”	id=“date3”	/>

				</div>

		</div>

	

		<script>

				$(document).ready(function()	{

						//	set	date	to	last	week

						var	defaultDate1	=	$(“#date1”).datepicker(“option”,

																																																“defaultDate”);

						$(“#date1”).datepicker(“option”,	“defaultDate”,	-7);

	

						//	set	date	to	today

						var	defaultDate2	=	$(“#date1”).datepicker(“option”,

																																																“defaultDate”);

						$(“#date2”).datepicker(“option”,	“defaultDate”,	+0);

	

						//	set	date	to	the	future

						var	futureDate	=	“07/07/2017”;

						$(“#date3”).datepicker(“setDate”,futureDate);

				});

		</script>

	</body>

</html>

Listing	4.6	references	the	usual	jQuery	files,	followed	by	a	<style>	element	that	applies
styling	to	the	three	HTML	<div>	elements.	Next,	the	HTML	<body>	element	specifies	the
container	of	the	three	HTML	<div>	elements,	followed	by	a	block	of	code	that	converts
three	HTML	<input>	fields	into	jQuery	datepicker	widgets,	shown	here:

		$(“#date1”).datepicker();

		$(“#date2”).datepicker();

		$(“#date3”).datepicker();

You	can	specify	a	future	date	and	when	you	want	to	change	that	future	date,	jQuery
will	display	the	previous	and	next	months	that	are	relative	to	that	date,	as	shown	here:

//	set	date	to	the	future

var	futureDate	=	“07/07/2017”;

$(“#date3”).datepicker(“setDate”,futureDate);

Figure	4.5	displays	the	result	of	rendering	JQUIDatePicker1.html	in	Listing	4.6	in	the
Chrome	browser	on	a	MacBook.

	
Figure	4.5		A	date	picker	in	the	Chrome	browser	on	a	MacBook.

Progress	Bars
You	can	create	and	update	progress	bars	very	easily	using	jQuery.	Listing	4.7	displays

the	contents	of	JQUIProgressBar1.html	and	illustrates	how	to	render	a	progress	bar	in	an	HTML
Web	page.

LISTING	4.7	JQUIProgressBar1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

		<meta	charset=“utf-8”	/>

		<title>jQuery	Progress	Bar</title>

	

		<link	rel=“stylesheet”
type=“text/css”		href=“http://ajax.googleapis.com/ajax/libs/jqueryui/1.8/themes/base/jquery-ui.css”/>

	

		<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

		</script>

		<script

				src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

		</script>

	

		<script	src=“http://code.jquery.com/ui/1.10.1/jquery-ui.js”>

		</script>

	

		<style>

				#progressBarDiv1	{

						width:	30%;

				}

		</style>

	</head>

	

	<body>

		<div	id=“outer”>

				<div	id=“progressBar1”>

						Progress	Bar:

						<div	id=“progressBarDiv1”>	</div>

				</div>

	

				<div	id=“value1”>

						Progress	Bar	Value:

						<input	id=“text1”	type=“text”	value=“0”	/>

				</div>

	

				<div	id=“newValue”>

						Set	New	Value:

						<input	id=“newVal”	type=“text”	value=“0”	/>

				</div>

	

		<script>

			$(document).ready(function()	{

			$(“#progressBarDiv1”).progressbar({	value:	40	});

							$(“#text1”).val($(“#progressBarDiv1”).progressbar(“value”));

	

							$(“#newValue”).bind(“change”,	function()	{

									var	newVal	=	$(“#newVal”).val();

									$(“#progressBarDiv1”).progressbar(“option”,	“value”,

																																											parseInt(newVal));

							});

			});

		</script>

</body>

</html>

Listing	4.7	references	the	usual	jQuery	files,	followed	by	an	HTML	<div>	element

(whose	id	value	is	outer)	that	contains	the	HTML	code	for	a	progress	bar,	the	current	value
of	the	progress	bar	(which	is	initialized	to	40),	and	an	input	field	that	allows	users	to
change	the	value	of	the	status	bar.

The	creation,	display,	and	update	of	the	value	of	the	progress	bar	is	handled	in	the
following	code	block:

$(document).ready(function()	{

			$(“#progressBarDiv1”).progressbar({	value:	40	});

	

			$(“#text1”).val($(“#progressBarDiv1”).progressbar(“value”));

	

			$(“#newValue”).bind(“change”,	function()	{

						var	newVal	=	$(“#newVal”).val();

	

			$(“#progressBarDiv1”).progressbar(“option”,	“value”,

																																								parseInt(newVal));

			});

});

As	you	can	see,	the	preceding	code	block	binds	a	change	event	to	the	second	HTML
<input>	field.	When	users	enter	a	new	value,	the	progress	bar	is	updated	with	that	value.

Figure	4.6	displays	the	result	of	rendering	JQUIProgressBar1.html	in	Listing	4.7	in	the
Chrome	browser	on	a	MacBook.

	
Figure	4.6		Progress	bar	in	the	Chrome	browser	on	a	MacBook.

			Additional	Code	Samples	on	the	CD
The	HTML5	Web	page	JQUISlider1.html	illustrates	how	to	render	horizontal	and	vertical

sliders	in	an	HTML	Web	page,	and	a	key	block	of	code	is	shown	here:
$(document).ready(function()	{

					$(“#sliderDiv1”).slider({

									orientation:	‘horizontal’,

									min:	0,

									max:	200,

									step:	10,

									value:	100

					});

}

One	simple	use	of	jQuery	sliders	is	to	use	them	to	control	the	speed	of	animation
effects	(which	can	also	be	done	with	a	spinner).

The	HTML5	Web	page	JQUIAnimSlider1.html	illustrates	how	to	use	a	slider	widget	to
control	an	animation	effect.

Currently,	jQuery	does	not	provide	scroll	pane	widgets,	but	you	still	have	some
options	available.	One	option	is	to	use	HTML5	progress	bars,	which	are	simple	to	use	and
they	provide	some	“reasonable”	functionality.	If	HTML5	progress	bars	are	insufficient	for
your	needs,	you	may	use	a	jQuery	plugin	that	supports	scroll	pane	widgets,	such	as	the
jScrollPane	plugin	whose	homepage	is	here:

http://jscrollpane.kelvinluck.com/

The	jScrollPane	plugin	provides	the	jScrollPane-<version>.min.js	JavaScript	file,	as	well	as	a
CSS	stylesheet	(jScrollPane.css)	that	you	can	override	with	your	own	customizations.

This	plugin	provides	over	20	demos	that	show	you	how	to	create	scroll	bars
(horizontal,	vertical,	or	both),	the	use	of	arrow	buttons,	its	scrollTo	and	scrollBy	methods,	how
to	style	scrollbars	in	an	IFRAME,	and	various	other	effects.

The	jQuery	tab	widget	supports	various	options,	methods,	and	events,	and	the	HTML5
Web	page	JQUITabs.html	illustrates	how	to	render	tabs	in	an	HTML	Web	page.

jQuery	UI	provides	very	nice	support	for	switching	between	different	themes,	which
consist	of	different	look-and-feel	effects	that	are	applied	to	widgets	and	text.	You	can	find
very	good	information	about	jQuery	themes	on	these	Websites:

http://jqueryui.com/docs/Theming

http://jqueryui.com/docs/Theming/API

http://jqueryui.com/docs/Theming#Using_ThemeRoller_and_Themes

The	HTML5	Web	page	JQUIThemes1.html	illustrates	how	to	dynamically	apply	different
themes	to	an	HTML	Web	page	with	a	set	of	widgets:

http://midnightprogrammer.net/post/Change-Page-Themes-Dynamically-Using-
JQuery-Theme-Roller.aspx

			The	theme	switcher	is	no	longer	supported	as	of	jQuery	UI	1.9,	but	you	can
use	the	“Super-Theme-Switcher”	that	is	available	on	github:
https://github.com/harborhoffer/Super-Theme-Switcher

http://jscrollpane.kelvinluck.com/
http://jqueryui.com/docs/Theming
http://jqueryui.com/docs/Theming/API
http://jqueryui.com/docs/Theming#Using_ThemeRoller_and_Themes
http://midnightprogrammer.net/post/Change-Page-Themes-Dynamically-Using-JQuery-Theme-Roller.asp
https://github.com/harborhoffer/Super-Theme-Switcher

	
Create	“Exploding”	Effects

The	following	example	is	purely	for	fun,	and	you	might	even	find	a	good	use	for	the
jQuery	effect()	function,	which	enables	you	to	create	some	nice	visual	effects.

The	HTML5	Web	page	JQUIEffects1.html	illustrates	how	to	horizontally	shake	and	then
“explode”	an	HTML	<div>	element	and	its	HTML	<p>	child	elements.

The	<script>	element	defines	a	click	handler	for	the	container	HTML	<div>	element	by
means	of	method	chaining	that	uses	the	jQuery	effect()	method,	as	shown	here:

$(“#outer”).effect(‘shake’,	{times:3},	300)

											.effect(‘highlight’,	{},	3000)

											.hide(‘explode’,	{},	1000);

When	users	click	on	this	element,	it	will	first	shake	horizontally	three	times	(each	time
for	300	milliseconds),	then	change	the	color	to	a	highlight	effect.	After	3	seconds,	it	will
create	an	“exploding”	effect	that	lasts	for	one	second.

The	HTML5	Web	page	JQUITravel1.html	illustrates	how	to	use	some	of	the	UI
components	that	you	saw	earlier	in	this	chapter.	The	validation	details	have	been	omitted
in	order	to	illustrate	how	to	manipulate	the	UI	components	in	a	code	sample	of	reasonable
length,	using	techniques	that	you	can	use	in	your	own	Web	pages.

Useful	Links
The	jQuery	UI	Website	provides	extensive	documentation	and	details	regarding

jQuery	UI	components.	Its	homepage	is	here:

http://jqueryui.com/

Another	useful	jQuery	UI	link	is	a	Website	that	provides	useful	demos	of	jQuery	UI
components:

http://jqueryui.com/demos/

You	can	use	the	jFormer	jQuery	plugin	with	HTML5	forms,	and	its	homepage	is	here:

https://www.jformer.com/

A	collection	of	jQuery	plugins	for	playing	audio	and	video	files	is	here:

http://superdit.com/2011/04/27/12-jquery-plugins-for-playing-audio-video-files/

The	jQuery	plugin	jTweetsAnywhere	for	displaying	tweets	is	here:

http://thomasbillenstein.com/jTweetsAnywhere/

Summary
This	chapter	introduced	you	to	jQuery	UI	controls,	along	with	code	samples	that

illustrated	how	to	create	HTML5	Web	pages	with	jQuery	UI	controls.	You	learned	how	to
use	the	following	jQuery	UI	controls:

Accordion	effects

http://jqueryui.com/
http://jqueryui.com/demos/
https://www.jformer.com/
http://superdit.com/2011/04/27/12-jquery-plugins-for-playing-audio-video-files/
http://thomasbillenstein.com/jTweetsAnywhere/

Buttons
Check	boxes	and	radio	buttons
Combo	boxes
Date	pickers
Dialog	boxes
Progress	bars
Scroll	panes
Sliders
Tabs
Theming	jQuery	UI
ThemeRoller	and	themes

CHAPTER			5
	

OTHER	HTML5	TECHNOLOGIES

	

This	chapter	provides	an	overview	of	several	HTML5-related	technologies	and	code
samples	for	many	of	these	technologies.	Although	you	can	use	the	HTML5	technologies
in	this	chapter	without	jQuery,	it	makes	sense	to	discuss	jQuery	plugins	for	various
HTML5	technologies.	Since	new	jQuery	plugins	are	continually	being	written,	compare
the	latest	jQuery	plugins	with	the	plugins	that	are	covered	in	this	chapter.

The	HTML5	technologies	in	this	chapter	are	presented	according	to	their	W3C	status:
W3C	Recommendation	(REC),	Candidate	Recommendation	(CR),	Last	Call	(LC),
Working	Draft	(WD),	and	experimental	APIs.	The	HTML5	technologies	in	each	section
are	presented	alphabetically.	This	approach	enables	you	to	quickly	determine	the	status	of
each	HTML5	technology,	which	is	the	main	advantage	over	using	a	pure	alphabetical
listing	of	HTML5	technologies.

The	first	part	of	this	chapter	briefly	describes	the	stages	of	the	W3C	process,	after
which	you	will	discover	that	the	HTML5	technologies	that	are	currently	in	the	REC	status
are	SVG,	MathML,	CORS,	and	the	Geolocation	APIs.

The	second	part	of	this	chapter	contains	the	HTML5	technologies	with	a	W3C	CR
status,	which	includes	the	Battery	API	and	the	Vibration	API.	You	will	also	learn	about
XHR2	(currently	in	WD	status),	which	includes	an	example	of	the	new	FormData	object.

The	third	part	of	this	chapter	contains	a	code	sample	that	illustrates	drag	and	drop	for
JPG	files	via	jQuery	(which	is	simpler	than	“pure”	HTML5	Drag	and	Drop	APIs),	an
example	of	invoking	some	of	the	HTML5	file	APIs	in	jQuery,	and	finally	a	jQuery	plugin
for	obtaining	Geolocation	information	about	users.	You	will	also	learn	about	the	jQuery
plugins	jStorage	and	jStore	that	provide	a	layer	of	abstraction	on	top	of	the	HTML5	Storage
APIs.	The	final	part	of	this	chapter	provides	an	overview	of	the	History	APIs,	which	is	an
HTML5	technology	whose	W3C	status	is	WD.

If	you	have	the	choice	(and	perhaps	the	“luxury”),	you	probably	prefer	ease	of	coding
instead	of	getting	“bogged	down”	in	long	and	tedious	code	samples	when	there	are
simpler	alternatives	available.	For	example,	the	code	sample	that	uses	jQuery	for	HTML5
Drag	and	Drop	(DnD)	is	much	more	straightforward	than	a	code	sample	that	directly
invokes	the	existing	HTML5	DnD	APIs.

The	other	advantage	of	simpler	code	samples	is	that	they	will	quickly	introduce	you	to
a	number	of	HTML5	technologies,	after	which	you	will	be	in	a	better	position	to	explore
the	nuances	of	those	HTML5	technologies.	Another	scenario	is	to	combine	jQuery	Mobile
with	other	toolkits,	such	as	PhoneGap	(discussed	in	Chapter	10)	or	appMobi	(not
discussed	in	this	book).	Toolkits	such	as	PhoneGap	provide	support	for	hardware
functionality;	you	can	also	combine	PhoneGap	with	jQuery	Mobile.	Your	application

requirements	and	constraints	will	determine	your	choice	of	toolkits	(if	any)	for	your
mobile	Web	applications.

In	general,	jQuery	and	jQuery	Mobile	will	probably	work	with	other	toolkits,	but	you
ought	to	check	online	forums	for	any	issues	that	might	affect	your	Web	applications.
Finally,	if	you	prefer	not	to	use	jQuery	plugins,	you	can	perform	an	Internet	search	to	find
online	tutorials	that	illustrate	to	create	HTML5	Web	pages	using	pure	HTML5	APIs	for	all
the	HTML5	technologies	that	are	covered	in	this	book.

The	Stages	in	the	W3C	Review	Process
If	you	are	unfamiliar	with	the	various	stages	of	the	W3C	process,	the	following	brief

description	(from	earliest	stage	to	final	stage)	is	provided	below.

A	WD	(“Working	Draft”)	document	is	the	first	form	of	a	standard	that	is	publicly
available.	Comments	are	widely	accepted	but	not	guaranteed	to	be	incorporated,	and	this
document	could	differ	significantly	from	its	final	form.

A	LC	(“Last	Call”)	status	involves	the	creation	of	a	public	record	of	the	responses	of	a
working	group	to	all	comments	about	a	specification.	This	stage	also	handles	bug	reports
about	a	specification.	Incidentally,	HTML5	reached	LC	status	in	the	W3C	in	May	2011.

A	CR	(“Candidate	Recommendation”)	status	is	firmer	than	the	WD	document,	where
major	features	have	been	finalized.	The	goal	is	to	elicit	assistance	from	the	development
community	regarding	the	extent	to	which	the	standard	can	be	implemented.

A	PR	(“Proposed	Recommendation”)	status	means	that	the	standard	has	passed	two
previous	stages,	and	at	this	point	the	document	is	submitted	to	the	W3C	for	final	approval.

A	REC	(“Recommendation”)	status	is	the	final	stage	of	a	ratification	process,
comparable	to	a	published	technical	standard	in	many	other	industries.	The	criterion	for
the	specification	becoming	a	W3C	Recommendation	is	“two	100%	complete	and	fully
interoperable	implementations.”

Recall	that	Chapter	1	describes	some	of	the	groups	that	create	specifications,	with
detailed	information	about	APIs	for	the	technologies	that	are	discussed	in	this	chapter.

HTML5	APIs	in	W3C	Recommendation	Status	(REC)
You	might	be	surprised	to	discover	that	SVG	and	MathML	have	a	REC	status.	Both	of

these	technologies	are	mature	and	are	included	under	the	HTML5	umbrella.	However,
neither	topic	is	covered	in	this	book.

HTML5	Geolocation
Geolocation	allows	users	to	share	their	current	location,	which	may	be	determined	by

the	following	methods:

Cell	tower
GPS	hardware	on	the	device
IP	address
Wireless	network	connection

The	actual	method	used	depends	on	the	browser	and	the	capabilities	of	the	device.	The
browser	then	determines	the	location	and	passes	it	back	to	the	Geolocation	API.	Note	that
the	W3C	Geolocation	specification	mentions	that	there	is	no	guarantee	that	the
Geolocation	API	returns	the	device’s	actual	location.

The	geolocation	object	is	a	child	object	of	window.navigator,	and	you	can	check	if	your
browser	supports	geolocation	with	the	following	type	of	code	block:

if(window.navigator.geolocation)	{

		//	geolocation	supported

}	else	{

		//	geolocation	not	supported

}

The	W3C	Geolocation	API	enables	you	to	obtain	geolocation	information	in	a	browser
session	that	is	running	on	a	device.	The	geolocation	object	is	available	in	the	global
window.navigator	object,	accessed	via	window.navigator.geolocation.

Note	that	the	Geolocation	API	requires	users	to	allow	a	Web	application	to	access
location	information:

The	geolocation	object	contains	the	following	three	methods:
getCurrentPosition(successCallback,	errorCallback,	options)
watchPosition(successCallback,	errorCallback,	options)
clearWatch(watchId)

The	method	getCurrentPosition()	tries	to	get	geolocation	information.	It	uses	the
successCallback	method	if	it	is	successful;	otherwise,	it	calls	the	errorCallback	method	in	its
argument	list.

The	method	watchPosition()	obtains	the	geolocation	at	regular	intervals,	and	it	also	returns
a	watchId	value.	Success	and	failure	are	handled	through	the	two	JavaScript	methods	in	its
list	of	arguments.

Finally,	the	method	clearWatch(watchId)	stops	the	watch	process	based	on	the	value	of
watchId.

The	major	difference	between	the	first	two	methods	is	that	the	watchPosition()	method
will	return	a	value	immediately	upon	being	called,	and	the	returned	value	uniquely
identifies	that	watch	operation.

A	table	that	displays	support	for	Geolocation	on	desktop	and	mobile	browsers	is	here:

http://caniuse.com/geolocation

Obtain	a	User’s	Position	with	getCurrentPosition()

The	PositionOptions	object	is	an	optional	parameter	that	can	be	passed	to	the
getCurrentPosition()	method	and	watchPosition()	methods.	All	of	the	properties	in	the	PositionOptions
object	are	optional	as	well.

For	example,	you	can	define	an	instance	of	a	PositionOptions	object	by	means	of	the

http://caniuse.com/geolocation

following	JavaScript	code	block:
var	options	=	{

		enableHighAccuracy:	true,

		maximumAge:	60000,

		timeout:	45000

};

Next,	we	can	invoke	the	getCurrentPosition()	method	by	specifying	a	JavaScript	success
function,	a	JavaScript	error	function,	and	the	previously	defined	options	variable,	as	shown
here:

navigator.geolocation.getCurrentPosition(successCallback,

																																									errorCallback,

																																									options);

Track	a	User’s	Position	with	watchPosition()

This	method	is	useful	when	an	application	requires	an	updated	position	each	time	that
a	device	changes	location.	The	watch	operation	is	an	asynchronous	operation	that	is
invoked	as	shown	here:

var	watchID	=	null;

var	options	=	{	enableHighAccuracy:	true,	timeout:	30000	};

	

if	(window.navigator.geolocation)	{

			watchID	=	navigator.geolocation.watchPosition(

																successCallback,errorCallback,	options);

}	else	{

			alert(‘Your	browser	does	not	support	geolocation.’);

}

	

function	successCallback(position)	{

			console.log(“Success	obtaining	the	device	location”);

}

	

//	Error	obtaining	the	location

function	errorCallback(error)	{

			console.log(“Error	obtaining	the	device	location”);

}

If	your	browser	supports	Geolocation,	the	JavaScript	variable	watcher	is	initialized	via
an	invocation	of	the	watchPosition()	method	of	the	geolocation	object.	Notice	the	JavaScript
functions	successCallback()	and	errorCallback()	for	handling	success	or	failure,	respectively.	(In
our	case,	these	functions	simply	display	a	message	in	the	browser’s	console).

The	W3C	Geolocation	API	provides	a	method	for	clearing	a	watch	operation	by
passing	a	watchId	to	the	clearWatch()	method,	as	shown	here:

navigator.geolocation.clearWatch(watcher);

After	creating	a	new	watch	operation,	you	can	remove	that	watch	after	successfully
retrieving	the	position	of	a	device,	as	shown	here:

function	successCallback(position)	{		

			navigator.geolocation.clearWatch(watcher);

			//	Do	something	with	a	location	here

}

As	you	can	see,	the	JavaScript	successCallback()	function	does	nothing	more	than	“clear”
the	JavaScript	variable	watcher.	The	key	point	is	that	you	will	continue	receiving
information	until	you	clear	this	variable.

You	can	perform	a	Google	search	to	find	various	JavaScript	plugins	that	support
Geolocation.	If	you	prefer	to	use	a	jQuery	plugin	for	Geolocation,	there	are	several
available,	including	this	one:

http://mobile.tutsplus.com/tutorials/mobile-web-apps/html5-geolocation/

HTML5	Cross-Origin	Resource	Sharing	(CORS)
In	brief,	the	“same	origin	policy”	allows	scripts	that	originate	from	the	same	site	and

protocol	to	execute,	and	they	can	access	each	other’s	methods	and	properties	without
restriction.	This	policy	also	restricts	AJAX	calls	to	the	same	origin	as	the	page	(but	with	a
“loophole”	that	circumvents	this	restriction	when	dynamically	loading	<script>	tags).

As	a	simple	example,	the	following	pair	of	URLs	is	from	the	same	site	but	with
different	protocols,	so	they	do	not	meet	the	criteria	for	“same	origin	policy”:

http://foo.com

https://foo.com

On	the	other	hand,	cross-origin	resource	sharing	(CORS)	specifies	the	ways	in	which
a	Web	server	can	allow	its	resources	to	be	accessed	by	Web	pages	from	different	domains.
Although	CORS	is	more	flexible	than	“same	origin	policy,”	it	does	not	allow	access	to
resources	by	any	and	all	requests.

In	simplified	terms,	the	CORS	specification	provides	support	for	cross-domain
communication	by	means	of	a	simple	header	exchange	between	a	client	and	a	server.

Some	of	the	new	HTTP	headers	for	the	CORS	specification	are	Options,	Origin,	and
Access-Control-Allow-Origin.	When	the	appropriate	CORS	headers	are	provided,	CORS	makes	it
possible	to	make	asynchronous	HTTP	requests	to	other	domains.

Keep	the	following	point	in	mind:	there	is	no	single	CORS	API,	but	any	API	that	uses
the	cross-origin	features	may	be	referred	to	as	a	CORS	API.	In	practice,	a	CORS	API	uses
the	XMLHttpRequest	object	as	a	“container”	for	sending	and	receiving	the	requisite	headers
for	CORS,	and	also	the	withCredentials	property	that	can	be	used	for	determining
programmatically	whether	or	not	an	XMLHttpRequest	object	supports	CORS.

http://mobile.tutsplus.com/tutorials/mobile-web-apps/html5-geolocation/
http://foo.com
https://foo.com

For	a	more	detailed	description	of	CORS,	perform	an	Internet	search	and	you	will	find
many	free	articles	with	such	information.

HTML5	APIs	in	W3C	Candidate	Recommendation	Status	(CR)
This	section	of	the	chapter	contains	a	set	of	HTML5	APIs	that	have	Candidate

Recommendation	status.	Although	the	HTML5	technologies	Navigation	Timing,	RDFa,
and	Selectors	have	CR	status,	they	are	not	discussed	in	this	book.

The	Battery	API
The	Battery	API	is	maintained	by	the	DAP	(Device	APIs)	working	group,	which

provides	information	about	the	battery	status	of	the	hosting	device.	The	following	simple
code	snippet	from	Battery1.html	shows	you	how	to	write	the	battery	level	to	the	console	each
time	the	level	changes:

navigator.battery.onlevelchange	=	function	()	{

		console.log(navigator.battery.level);

};

The	next	section	contains	an	AJAX-based	code	sample	shows	you	how	to	use	the	new
FormData	object	with	XHR2,	described	below.

XMLHttpRequest	Level	2	(XHR2)
The	XMLHttpRequest	Level	2	specification	supports	the	following	new	features:

Handling	byte	streams	such	as	File,	Blob,	and	FormData	objects	for	upload	and	download
Showing	progress	events	during	upload	and	download
Making	cross-origin	requests
Making	anonymous	requests	(not	HTTP	Referrer)
Setting	a	timeout	for	the	request

Before	we	look	at	an	XHR2	code	sample,	we’ll	start	with	a	code	sample	that	shows
you	how	to	make	a	simple	AJAX	request,	followed	by	an	AJAX	request	that	uses	jQuery.

Making	AJAX	Calls	without	jQuery

The	code	sample	in	this	section	shows	you	how	to	make	a	“traditional”	AJAX	call.
Later,	we	will	look	at	how	to	accomplish	the	same	task	using	jQuery.	The	purpose	of	this
example	is	to	illustrate	the	fact	that	jQuery	(once	again)	enables	you	to	write	simpler	code
that	is	easier	to	maintain,	debug,	and	enhance	with	additional	functionality	(which	you
already	know	from	the	code	samples	you	have	seen	throughout	this	book).

			You	must	launch	BasicAjax1.html	from	an	actual	Web	server	(not	a	file	navigator)
because	this	Web	page	reads	the	contents	of	a	local	file	called	sample.xml.

	
LISTING	5.1	BasicAjax1.html
<!DOCTYPE	html>

<html>

<head>

	<meta	charset=utf-8	/>

	<title>Basic	Ajax</title>

	

	<script>

			var	xmlHTTP,	myFile	=	“http://localhost:8080/sample.xml”;

							var	url	=	“http://localhost:8080/sample.xml”;

	

			function	loadXML(url,	callback)	{

					if	(window.XMLHttpRequest)	{

								//	Chrome,	Firefox,	IE7+,	Opera,	and	Safari

								xmlHTTP	=	new	XMLHttpRequest();

					}	else	{

								//	IE5	and	IE6

								xmlHTTP	=	new	ActiveXObject(“Microsoft.XMLHTTP”);

					}

	

					xmlHTTP.onreadystatechange	=	callback;

					xmlHTTP.open(“GET”,	url,	true);

					xmlHTTP.send();

			}

	

			function	init()	{

					loadXML(myFile,	function()	{

							if(xmlHTTP.readyState==4	&&	xmlHTTP.status==200)	{

									document.getElementById(“myDiv”).innerHTML	=

																																									xmlHTTP.responseText;

							}

					});

			}

	</script>

</head>

	

<body	onload=“init()”>

		<div	id=“myDiv”></div>

</body>

</html>

Listing	5.1	contains	a	JavaScript	function	init()	that	is	executed	when	the	Web	page	is
loaded	into	a	browser.	The	init()	function	invokes	the	loadXML()	function	with	the	name	of	an
XML	document,	along	with	a	JavaScript	function	that	is	executed	when	the	AJAX	request
is	completed.

The	loadXML()	function	contains	conditional	logic	that	determines	how	to	initialize	the
JavaScript	variable	xmlhttp,	followed	by	a	code	block	that	sets	the	name	of	the	callback
function,	specifies	a	GET	method	and	a	URL	in	the	url	variable	(not	shown	in	this	code
sample),	and	then	makes	the	actual	AJAX	request,	as	shown	here:

xmlHTTP.onreadystatechange	=	callback;

xmlHTTP.open(“GET”,	url,	true);

xmlHTTP.send();

When	the	AJAX	request	is	completed,	the	HTML	<div>	element	in	Listing	5.1	is
updated	with	the	data	that	is	returned	by	the	AJAX	request.	In	this	code	sample,	the	XML
document	sample.xml	is	an	SVG	document	containing	3	rectangles	and	is	reproduced	here:

<?xml	version=‘1.0’	encoding=‘iso-8859-1’?>

<svg	xmlns=“http://www.w3.org/2000/svg”

					xmlns:xlink=“http://www.w3.org/1999/xlink”

					width=“100%”	height=“100%”>

		<rect	x=“50”		y=“10”	width=“100”	height=“200”

								stroke=“blue”	fill=“red”	/>

		<rect	x=“200”	y=“10”	width=“100”	height=“200”

								stroke=“blue”	fill=“green”	/>

		<rect	x=“350”	y=“10”	width=“100”	height=“200”

								stroke=“blue”	fill=“blue”	/>

</svg>

If	you	are	new	to	AJAX,	then	the	code	in	Listing	5.1	might	seem	convoluted,	and
perhaps	even	confusing.	Fortunately,	jQuery	simplifies	the	process	of	making	AJAX
requests	by	shielding	you	from	the	lower-level	details,	as	you	will	see	in	the	next	section.

Making	AJAX	Calls	with	jQuery

This	example	is	the	modified	version	of	Listing	5.1,	which	adds	jQuery	functionality
to	the	code.	There	are	several	jQuery	methods	that	provide	AJAX-based	functionality,
including	jQuery.load(),	jQuery.get(),jQuery.post(),	and	jQuery.ajax().

			You	must	launch	JQueryAjax1.html	from	an	actual	Web	server	(not	a	file
navigator)	because	this	Web	page	reads	the	contents	of	a	local	file	called	sample.xml.

	
Listing	5.2	displays	the	contents	of	JQueryAjax1.html	that	illustrates	how	to	use	the	first	of

these	jQuery	AJAX	methods	in	an	HTML	Web	page	in	order	to	produce	the	same	result	as
Listing	5.1.

LISTING	5.2	JQueryAjax1.html
<!DOCTYPE	html>

<html>

<head>

	<meta	charset=utf-8	/>

	<title>JQuery	Ajax</title>

	

		<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

		</script>

		<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

		</script>

</head>

	

<body>

		<div	id=“myDiv”></div>

	

		<script>

				var	url	=	“http://localhost:8080/sample.xml”;

	

				$(document).ready(function()	{

						$(“#myDiv”).load(url,	function()	{});

				});

		</script>

</body>

</html>

Listing	5.2	contains	only	one	line	of	code	that	performs	an	AJAX	request	via	the
jQuery	load()	method,	as	shown	here:

$(“#myDiv”).load(url,	function()	{});

The	result	executing	the	code	in	Listing	5.2	is	the	same	as	the	result	of	executing	the
Listing	5.1.	The	contents	of	the	HTML	<div>	element	whose	id	attribute	is	myDiv	are
replaced	with	the	contents	of	sample.xml,	and	three	SVG-based	rectangles	are	rendered.

Alternatively,	you	can	use	the	jQuery.ajax()	method	as	shown	here:
				$.ajax({

							url:		url,

							type:	“get”,

							success:	GotData,

							dataType:	‘xml’

				});

In	the	preceding	code	block,	you	also	need	to	define	a	JavaScript	function	called
GotData()	where	you	would	process	the	result	of	the	Ajax	invocation.

As	you	would	expect,	jQuery	provides	much	more	AJAX	functionality.	Specifically,
jQuery	provides	support	for	the	following	callback	hooks:

beforeSend()

fail()

dataFilter()

done()

always()

The	functions	beforeSend(),	error(),	and	done()	are	intuitively	named	and	they	behave	as
expected.	The	dataFilter()	callback	is	the	first	callback	to	receive	data;	after	it	performs	its
processing,	the	done()	callback	is	invoked.	Finally,	the	always()	callback	is	invoked,
regardless	of	whether	the	result	of	the	AJAX	invocation	was	successful	or	in	error.

A	concise	example	of	jQuery	code	that	makes	an	AJAX	request	using	method	chaining
with	several	of	the	preceding	APIs	is	here:

//	Assign	handlers	immediately	after	making	the	request,

//	and	get	a	reference	to	the	jqxhr	object	for	this	request

var	jqxhr	=	$.ajax(“example.php”)

				.done(function()	{	alert(“success”);	})

				.fail(function()	{	alert(“error”);	})

				.always(function()	{	alert(“complete”);	});

	

//	perform	other	work	here	…

	

//	Set	another	completion	function	for	the	request	above

jqxhr.always(function()	{	alert(“second	complete”);	});

If	you	want	to	explore	more	AJAX-related	features	in	jQuery,	a	complete	list	of
jQuery	AJAX	methods	is	here:

http://api.jquery.com/category/ajax/

http://api.jquery.com/ajaxComplete/

The	next	section	contains	a	code	sample	that	uses	the	new	FormData	object.

AJAX	Requests	using	XMLHttpRequest	Level	2	(XHR2)

Listing	5.3	displays	AjaxForm.html,	which	illustrates	how	to	create	an	HTML5	Web	page
using	the	new	FormData	object	and	XHR2.

LISTING	5.3	AjaxForm.html
<!doctype	html>

<html	lang=“en”>

	

http://api.jquery.com/category/ajax/
http://api.jquery.com/ajaxComplete/

<head>

	<meta	charset=utf-8	/>

	<title>Ajax	Form</title>

	

	<script>

		function	sendForm(form)	{

				var	formData	=	new	FormData(form);

		

				var	xhr	=	new	XMLHttpRequest();

				xhr.open(‘POST’,	form.action,	true);

				xhr.onload	=	function(e)	{

						//	do	something	here

				};		

		

				xhr.send(formData);

		

				//	Prevent	page	submission

				return	false;

		}

	</script>

</head>

	

<body>

<form	id=“myform”	name=“myform”	action=“xhr2.php”>

		<input	type=“text”			name=“uname”	value=“asmith”>

		<input	type=“number”	name=“id”				value=“33333”>

		<input	type=“submit”	onclick=“return	sendForm(this.form);”>

</form>

</body>

</html>

Listing	5.3	is	straightforward.	The	<body>	element	contains	a	HTML	<form>	element
with	several	input	fields.	Next,	the	form	data	is	submitted	via	the	JavaScript	function
sendForm(),	which	creates	a	FormData	object	and	then	submits	the	user-provided	data	via
XHR2,	as	shown	in	this	code	block:

var	xhr	=	new	XMLHttpRequest();

xhr.open(‘POST’,	form.action,	true);

xhr.onload	=	function(e)	{

				//	do	something	here

};

xhr.send(formData);

			

	

			The	CD	does	not	provide	a	PHP	file	xhr2.php,	so	the	HTML	Web	page	AjaxForm1.html	does
not	submit	form	data	to	a	server.

	
A	final	point	to	know:	the	XMLHttpRequest	Level	2	specification	supports	the	transfer

of	binary	data	and	also	tracks	the	upload	progress	through	the	XMLHttpRequestUpload	object.
Consequently,	XHR2	can	be	used	for	binary	file	transfers	via	the	File	APIs	and	the
FormData	object.

If	you	need	to	use	XHR2	in	your	HTML	Web	pages,	an	XHR2	library	is	here:

https://github.com/p-m-p/xhr2-lib

More	tutorials	and	information	regarding	XHR2	are	here:

http://www.html5rocks.com/en/tutorials/file/xhr2/

http://www.matiasmancini.com.ar/jquery-plugin-ajax-form-validation-html5.html

HTML5	Drag	and	Drop	(DnD)
HTML5	Drag	and	Drop	(DnD)	enables	you	to	rearrange	the	layout	of	HTML	elements

in	an	HTML	Web	page.	HTML4	does	not	have	built-in	support	for	DnD,	and	creating	such
support	requires	considerably	more	JavaScript	code	than	a	toolkit	such	as	jQuery.

On	the	other	hand,	HTML5	provides	APIs	that	support	Drag	and	Drop	in	HTML5
Web	pages.	HTML5	Drag	and	Drop	emits	the	following	events:

drag

dragend

dragenter

dragleave

dragover

dragstart

drop

In	addition,	the	HTML5	DnD	provides	a	source	element,	the	data	content,	and	the
target.	Respectively,	they	represent	the	drag	“start”	element,	the	data	being	dragged,	and
the	“target”	element.

In	your	HTML5	Web	page,	you	attach	event	listeners	to	elements	(with	an	optional
third	parameter),	as	shown	here:

myElement.addEventListener(‘dragenter’,	handleDragEnter,	false);

myElement.addEventListener(‘dragleave’,	handleDragLeave,	false);

https://github.com/p-m-p/xhr2-lib
http://www.html5rocks.com/en/tutorials/file/xhr2/
http://www.matiasmancini.com.ar/jquery-plugin-ajax-form-validation-html5.html

myElement.addEventListener(‘dragover’,		handleDragOver,		false);

myElement.addEventListener(‘dragstart’,	handleDragStart,	false);

Next,	you	define	custom	code	in	each	of	the	JavaScript	event	handlers	that	will	be
executed	whenever	the	associated	event	occurs.

However,	keep	in	mind	that	HTML5	Web	pages	with	DnD	functionality	still	require
browser-specific	code,	which	means	that	you	need	to	maintain	the	code	in	multiple
HTML5	Web	pages	if	you	want	to	support	multiple	browsers.

Eric	Bidelman	has	written	an	extensive	and	detailed	blog	entry	that	shows	you	how	to
write	an	HTML5	Web	page	with	Drag	and	Drop	functionality:

http://www.html5rocks.com/en/tutorials/dnd/basics/

We	will	skip	examples	of	“native”	HTML5	DnD	and	proceed	to	an	example	of	using
jQuery	with	HTML5	DnD,	which	is	covered	in	the	next	section.

jQuery	and	HTML5	Drag	and	Drop
Drag	and	Drop	is	exceptionally	simple	in	jQuery:	only	one	line	of	code	is	required	for

an	HTML	element.

Listing	5.4	displays	the	contents	of	the	HTML5	Web	page	JQDragAndDrop1.html,	which
illustrates	how	easy	it	is	to	create	an	HTML5	Web	page	with	Drag	and	Drop	using	jQuery.

LISTING	5.4	JQDragAndDrop1.html
<!doctype	html>

<html	lang=“en”>

<head>

	<meta	charset=utf-8	/>

	<title>JQuery	DnD</title>

	

<style>

	div[id^=“draggable”]	{

			position:relative;	width:	100px;	height:	100px;

	}

	

	#draggable1	{	background:	red;	}

	#draggable2	{	background:	yellow;	}

	#draggable3	{	background:	blue;	}

</style>

	

		<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

		</script>

		<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

		</script>

http://www.html5rocks.com/en/tutorials/dnd/basics/

<!—	version	1.8.9	of	jQuery	UI	causes	an	error:

<script	src=“http://ajax.googleapis.com/ajax/libs/jqueryui

																																						/1.8.9/jquery-ui.min.js”>

</script>

—>

<script	src=“http://ajax.googleapis.com/ajax/libs/jqueryui

																																					/1.10.1/jquery-ui.min.js”>

</script>

	

		<script

				src=“http://code.jquery.com/jquery-ui-1.8.14.custom.min.js”>

		</script>

</head>

	

<body>

		<div	id=“content”	style=“height:	400px;”>

				<div	id=“draggable1”>

									

				</div>

				<div	id=“draggable2”>

									

				</div>

				<div	id=“draggable3”>

									

				</div>

		</div>

	

		<script

				$(document).ready(function()	{

						$(‘#draggable1’).draggable();

						$(‘#draggable2’).draggable();

						$(‘#draggable3’).draggable();

				});

		</script>

</body>

</html>

Listing	5.4	contains	a	block	of	jQuery	code	that	makes	the	three	HTML	<div>	elements
(defined	in	the	<body>	element)	draggable,	using	this	type	of	code	snippet:

$(‘#draggable2’).draggable();

The	<body>	element	contains	three	<div>	elements,	each	of	which	contains	a	PNG	image
that	you	can	drag	around	the	screen.

	
Figure	5.1		Three	images	in	the	Chrome	browser	on	a	MacBook.

Figure	5.1	displays	the	result	of	rendering	Listing	5.4	in	the	Chrome	browser	on	a
MacBook.

Figure	5.2	shows	an	example	of	dragging	the	images	in	Listing	5.4	to	different
positions	in	the	Chrome	browser	on	a	MacBook.

	
Figure	5.2		Three	dragged	images	in	the	Chrome	browser	on	a	MacBook.

More	information	about	jQuery	Drag	and	Drop	(including	the	list	of	available	options)
is	available	here:

http://jqueryui.com/demos/draggable/

There	are	several	jQuery	plug-ins	for	drag-and-drop	functionality	that	are	listed	here:

http://plugins.jquery.com/projects/plugins?type=45

You	can	also	use	jQuery	Mobile	with	HTML5	DnD,	and	although	we	will	not	discuss
an	example	(due	to	space	constraints),	you	can	perform	an	Internet	search	to	find	tutorials
and	code	examples,	or	you	can	start	with	the	details	in	this	link:

http://www.jsplugins.com/Scripts/Plugins/View/Jquery-Mobile-Drag-And-Drop/

jQuery	and	HTML5	Local	Storage
HTML5	provides	both	local	storage	and	session	storage	that	enable	Web	pages	to	store

data	locally.	Although	they	are	not	discussed	in	this	book,	you	can	perform	an	Internet
search	to	learn	about	their	functionality.	This	section	introduces	you	to	jQuery	plugins	that
provide	a	layer	of	abstraction	over	local	storage	and	session	storage.

The	jQuery	plugin	jStorage	is	a	cross-browser	plugin	that	enables	you	to	use	jQuery
syntax	in	order	to	manage	data	in	local	storage,	and	its	homepage	is	here:

http://www.jstorage.info/

The	JStorage	APIs	enable	you	to	get,	set,	and	delete	data	in	storage.	You	can	also	check

http://jqueryui.com/demos/draggable/
http://plugins.jquery.com/projects/plugins?type=45
http://www.jsplugins.com/Scripts/Plugins/View/Jquery-Mobile-Drag-And-Drop/
http://www.jstorage.info/

if	storage	is	available,	as	well	as	the	size	of	the	stored	data	(in	bytes).	The	intuitively
named	JStorage	APIs	are	listed	here	for	your	convenience:

$.jStorage.set(key,	value)

$.jStorage.get(key)

$.jStorage.deleteKey(key)

$.jStorage.flush()

$.jStorage.index()

$.jStorage.storageSize()

$.jStorage.currentBackend()

$.jStorage.reInit()

$.jStorage.storageAvailable()

If	local	storage	or	session	storage	is	unavailable	(such	as	in	IE6	or	IE7),	jStorage	adds
polyfills	to	support	this	functionality.

Listing	5.5	displays	the	contents	of	JQJStorage1.html	and	illustrates	how	to	use	JStorage	in
order	to	save	data	in	the	storage	area	of	your	browser.

LISTING	5.5	JQJStorage1.html
<!DOCTYPE	html>

<html	lang=“en”>

		<head>

			<meta	charset=utf-8	/>

			<title>JStorage	Example</title>

			

		<link	rel=“stylesheet”

			href=“http://code.jquery.com/mobile/1.1.0/jquery.mobile-1.1.0.min.css”	/>

	

		<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

		</script>

		<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

		</script>

	

		<script	src=“http://code.jquery.com/ui/1.10.1/jquery-ui.js”>

		</script>

	

	<script

		src=“http://code.jquery.com/mobile/1.1.0/

																																		jquery.mobile-1.1.0.min.js”>

	</script>

	

		<script	src=“jstorage.js”></script>

	

				<script>

						$(document).ready(function()	{

								//	Check	if	“key”	exists	in	the	storage

								var	value	=	$.jStorage.get(“key”);

	

								if(!value){

										//	load	the	data	from	the	server

										value	=	load_data_from_server()

	

										//	save	the	value

										$.jStorage.set(“key”,value);

								}			

						});

				</script>

		</head>

	

		<body>

				<div>	</div>

		</body>

</html>

The	core	functionality	in	Listing	5.5	takes	place	in	a	short	JavaScript	code	block,	with
conditional	logic	that	checks	for	the	existence	of	a	data	item	in	local	storage	with	the	value
key.	If	this	value	does	not	exist,	then	the	load_data_from_server()	JavaScript	function	(which	is
not	implemented	in	this	code	sample)	is	invoked,	and	then	the	return	value	is	stored	in
local	storage.

You	can	also	use	the	jQuery	plugin	jStore	for	HTML5	storage,	which	is	a	cross-browser
plugin	that	enables	you	to	use	jQuery	syntax	in	order	to	manage	data	in	local	storage.	Its
homepage	is	here:

http://code.google.com/p/jquery-
jstore/source/browse/trunk/src/engines/jStore.Html5.js?r=6

Libraries	for	HTML5	Local	Storage
A	number	of	JavaScript	toolkits	are	available	for	local	storage,	some	of	which	use

jQuery	(and	some	do	not	use	jQuery).	This	short	section	briefly	describes	some	of	the
available	toolkits.

lscache	emulates	memcache	functions	using	HTML5	localStorage	for	caching	data	in	a
client	browser,	along	with	an	expiration	time	for	each	data	item.

The	lscache	homepage	is	here:

http://code.google.com/p/jquery-jstore/source/browse/trunk/src/engines/jStore.Html5.js?r=6

https://github.com/pamelafox/lscache

If	the	localStorage	limit	(approximately	5MB)	is	exceeded,	items	that	are	closest	to	their
expiration	date	are	removed.	If	localStorage	is	unavailable,	lscache	does	not	cache	anything
(and	all	cache	requests	return	null).

The	lscache	methods	are	set(),	get(),	remove(),	and	flush(),	and	a	jQuery	lscache	plugin	is
available	here:

https://github.com/mckamey

YQL	LocalCache	is	a	wrapper	for	YQL	to	support	local	storage,	and	its	homepage	is
here:

https://github.com/phunkei/autoStorage

A	sample	invocation	with	YQL	LocalCache	with	self-explanatory	parameters	is	here:
yqlcache.get({

		yql:	‘select	*	from	flickr.photos.search	where	text=“warsaw”’,

		id:	‘myphotos’,

		cacheage:	(60*60*1000),

		callback:	function(data)	{

				console.log(data);

		}

});

The	returned	data	in	the	callback	is	an	object	with	two	properties:	data	(the	YQL	data)
and	type	(‘cached’	for	cached	data	or	‘freshcache’).	You	can	get	additional	code	samples
here:

https://github.com/codepo8/yql-localcache

Savify	is	a	jQuery	plugin	for	automatically	recording	a	user’s	progress	in	a	form	while
it	is	being	completed.	Its	homepage	is	here:

https://github.com/blackcoat/Savify

jQuery	and	HTML5	File	APIs
The	HTML5	File	APIs	enable	you	to	create,	read,	and	write	files	on	the	file	system.

The	first	step	is	to	obtain	access	to	the	HTML5	FileSystem,	after	which	you	can	perform
file-related	operations.	You	can	read	about	these	APIs	and	see	some	code	examples	here
(and	make	sure	you	check	whether	or	not	your	target	browser	is	supported):

http://blueimp.github.com/jQuery-File-Upload/

http://www.htmlgoodies.com/html5/other/responding-to-html5-filereader-events.html

			The	CD	contains	the	HTML	Web	page	JQFileInfo1.html,	which	illustrates	how	to
use	jQuery	in	order	to	display	the	attributes	of	a	file	that	is	selected	by	users.	A	more
interesting	(and	useful)	example	is	JQFileUpload2.html	in	Listing	5.6,	which	illustrates	how	to

https://github.com/pamelafox/lscache
https://github.com/mckamey
https://github.com/phunkei/autoStorage
https://github.com/codepo8/yql-localcache
https://github.com/blackcoat/Savify
http://blueimp.github.com/jQuery-File-Upload/
http://www.htmlgoodies.com/html5/other/responding-to-html5-filereader-events.html

use	jQuery	and	XHR2	to	upload	files.

LISTING	5.6	JQFileUpload2.html
<!DOCTYPE	HTML>

<html	lang=“en”>

	<head>

			<meta	charset=utf-8	/>

			<title>File	Upload	with	XHR2</title>

		<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

		</script>

		<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

		</script>

</head>

	

	<body>

		<script>

			$(document).ready(function	()	{

						var	url	=	“http://localhost:8080/”;

	

						$(“body”).on(“change”,	‘#fileUploader’,	function()	{

									//	Prepare	post	data

									var	data	=	new	FormData();

									data.append(‘uploadfile’,	this.files[0]);

				

									//	invoke	the	jQuery	.ajax	method:

									$.ajax({

											url:	url,

											type:	‘POST’,

											contentType:	false,

											processData:	false,

											data:	data,

											success:		function(data)	{

																								//	do	something	here

																					},		

											dataType:	‘text’

									});

						});

				});

		</script>

	

		<div>

				<input	id=“fileUploader”	type=“file”	multiple	/>

		</div>

	</body>

</html>

Listing	5.6	contains	an	HTML	<input>	field	that	enables	users	to	select	a	file	from	the
file	system.	After	a	file	is	selected,	the	jQuery	“change”	event	is	triggered,	and	an	XHR2
FormData	object	(discussed	earlier	in	this	chapter)	is	created	and	populated,	as	shown	here:

var	data	=	new	FormData();

data.append(‘uploadfile’,	this.files[0]);

The	selected	file	is	uploaded	via	the	jQuery	.ajax()	method,	which	contains	a	“success”
function	that	is	invoked	after	the	AJAX	request	has	been	completed	successfully.

Note	that	you	must	set	the	value	of	contentType	and	processData	to	false,	or	you	will	get	the
following	error	in	the	Web	Inspector:

Uncaught	TypeError:	Illegal	invocation

The	following	link	provides	an	explanation	regarding	these	two	parameters:

http://stackoverflow.com/questions/12431760/html5-formdata-file-upload-with-
rubyonrails

If	you	want	to	use	a	jQuery	plugin	for	uploading	files	in	HTML5	Web	pages,	there	are
several	available,	such	as	the	cross-browser	jQuery	plugin	jquery-filedrop.	Its	homepage	is
here:

https://github.com/weixiyen/jquery-filedrop

HTML5	History	APIs
Prior	to	HTML5,	the	browser	support	for	history-related	APIs	provided	limited

functionality.	You	could	find	the	number	of	items	in	the	browser	history,	move	forward
and	backward,	and	several	links	backward,	as	shown	here:

console.log(history.length);

console.log(history.forward());

console.log(history.back());

console.log(history.go(-2));

Several	new	APIs	are	available,	as	shown	here:
history.pushState(data,	title,	url);

history.replaceState(data,	title,	url);

The	parameters	in	the	history.pushState()	method	are	as	follows:

data	is	some	type	of	structured	data,	assigned	to	the	history	item.
title	is	the	name	of	the	item	in	the	history	drop-down	that	is	displayed	by	the	browser’s

http://stackoverflow.com/questions/12431760/html5-formdata-file-upload-with-rubyonrails
https://github.com/weixiyen/jquery-filedrop

back	and	forward	buttons.
url	is	the	(optional)	URL	that	is	displayed	in	the	address	bar.

The	parameters	in	the	history.replaceState()	method	are	the	same	as	the	history.pushState()
method,	except	that	the	former	updates	information	that	is	already	in	the	browser’s	history.

In	addition,	there	is	the	new	popstate	event,	which	occurs	when	uses	view	their	browser
history,	and	you	can	use	it	in	the	following	manner:

window.addEventListener(“popstate”,	function(event)	{

		//	do	something	here

});

Keep	in	mind	that	different	browsers	implement	HTML5	browser	history	in	different
ways,	so	the	following	JavaScript	toolkit	is	useful:

https://github.com/balupton/History.js/

The	History.js	toolkit	supports	jQuery,	MooTools	and	Prototype.	In	HTML5	browsers,
you	can	modify	the	URL	directly	without	resorting	to	hashes	(such	as	example.com/#/foo/…).
In	addition,	changing	the	fragment	does	not	trigger	a	page	reload.

HTML5	Offline	Web	Applications
The	purpose	of	offline	Web	applications	is	simple:	users	can	work	on	an	application

even	when	they	are	disconnected	from	the	Internet.	When	users	do	have	access	to	the
Internet,	their	data	changes	are	synchronized	so	that	everything	is	in	a	consistent	state.

A	Website	that	contains	demos,	additional	links,	and	tutorial-like	information	is	here:

http://appcachefacts.info/

The	HTML5	specification	requires	a	so-called	“manifest	file”	(with	“appcache”	as	the
suggested	suffix)	that	contains	the	following	three	sections:

CACHE	(the	list	of	files	that	are	going	to	be	cached)

NETWORK	(the	files	outside	the	cache	that	can	only	be	accessed	online)

FALLBACK	(specifies	the	resource	to	display	when	users	try	to	access	non-cached
resources)

As	a	simple	example,	Listing	5.7	displays	the	contents	of	a	sample	manifest	file	called
MyApp.appcache.

LISTING	5.7	MyApp.appcache
CACHE	MANIFEST

#	Verson	1.0.0

CACHE:

Index.html

Cachedstuff.html

Mystyle.css

Myimage.jpg

https://github.com/balupton/History.js/
http://appcachefacts.info/

	

NETWORK:

*

FALLBACK:

/	noncached.html

You	must	ensure	that	the	manifest	file	is	served	with	the	following	MIME	type:
text/cache-manifest

Second,	Web	applications	that	uses	offline	functionality	must	reference	the	manifest
file	at	the	top	of	one	of	its	Web	pages:

<html	lang=“en”	manifest=“mymanifest.manifest”>

If	you	have	a	Web	page	that	is	hosted	by	a	provider,	you	can	verify	that	the	Web	page
contains	the	correct	MIME	type	by	issuing	the	following	type	of	command:

curl	–I	http://www.myprovider.com/mymanifest.manifest

Detecting	Online	and	Offline	Status
The	simplest	way	to	determine	whether	or	not	an	application	is	offline	in	an	HTML5

Web	page	is	with	the	following	code	snippet:
if(navigator.online)	{

		//	application	is	online

}	else	{

		//	application	is	offline

}

For	mobile	applications	that	use	jQuery	Mobile,	you	can	use	the	following	type	of
code	block:

$(document).bind(“offline”,	function()	{

		//	application	is	offline

}

Binding	the	offline	event	as	shown	in	the	preceding	code	block	is	useful	for	handling
situations	whereby	an	application	goes	offline	while	users	are	actively	viewing	an
application.

In	addition,	you	would	send	data	to	a	server	only	when	you	are	online,	and	store	data
locally	via	HTML5	LocalStorage	when	you	are	offline.

The	jQuery	plugin	jquery-offline	is	a	cross-browser	plugin	that	enables	you	to	use	jQuery
syntax	for	offline	applications.	Its	homepage	is	here:

https://github.com/wycats/jquery-offline

Summary
This	chapter	provided	an	overview	of	various	HTML5	technologies	and	grouped	them

according	to	their	current	W3C	status.	For	your	convenience,	these	HTML5	technologies

http://www.myprovider.com/mymanifest.manifest
https://github.com/wycats/jquery-offline

are	listed	alphabetically	below:

CORS
AJAX	(XHR2)
Drag	and	Drop
File	APIs
Forms
Geolocation

CHAPTER			6
	

IINTRODUCTION	TO	SINGLE-PAGE	APPLICATIONS

	

This	chapter	provides	an	introduction	to	Single-Page	Applications,	commonly
referred	to	as	SPAs.	The	first	part	of	this	chapter	briefly	discusses	the	rationale	for	creating
a	single-page	application	in	JavaScript.	The	XHR2	section	contains	AJAX-related
examples,	starting	with	a	generic	AJAX	code	sample,	followed	by	a	jQuery-based	AJAX
code	sample.	The	second	part	of	this	Chapter	provides	an	overview	of	BackboneJS	and	Twitter
Bootstrap.	The	third	part	of	this	chapter	contains	an	abbreviated	introduction	to	Jade,	MongoDB,
Mongoose,	and	NodeJS.	The	final	portion	of	this	chapter	provides	code	for	a	minimalistic	SPA
that	you	can	enhance	with	your	own	custom	code.

What	is	an	SPA?
Let’s	start	with	a	whirlwind	“review”	of	Web	application	architecture.	First	there	were

servers	that	delivered	static	pages	to	Websites,	which	evolved	into	servers	that	could
deliver	dynamically	generated	Web	pages	(using	languages	such	as	PHP)	to	Websites.
Next	came	AJAX,	which	provided	partial-page	refresh	functionality	that	was	more
efficient	and	also	created	a	better	user	experience.	Then,	a	collection	of	Comet-based
solutions	arose	in	order	to	make	the	communication	between	browsers	and	servers	more
efficient.	More	recently,	HTML5	WebSockets	provide	bidirectional	full	duplex
asynchronous	communication	between	browsers	and	servers	via	a	persistent	TCP
connection	using	the	WebSocket	protocol.	This	is	an	improvement	over	the	HTTP
protocol	that	is	the	basis	for	all	earlier	Web	applications.

During	this	time,	various	strategies	were	devised	for	the	division	of	code	between	the
browser	and	the	server.	One	approach	involves	a	“thick	server”	where	most	of	the
operations	(such	as	generating	dynamic	Web	pages	and	user	authentication/validation)	are
performed,	along	with	a	“thin	client”	(or	browser)	that	renders	a	Web	page	from	a	server
but	with	limited	additional	functionality.

Modern	Web	Architecture

Recently	there	has	been	a	proliferation	of	JavaScript	toolkits	that	enable	people	to
develop	Web	applications	with	a	“thick	client”	and	“thin	server.”	Although	there	is	a
diversity	of	architectures	(even	among	recent	Websites),	many	modern	Web	applications
have	the	following	architecture:

DOM	(contains	read-only	data)
Models	(contain	the	state	and	data	of	the	application)
Modules	(small	independent	subsystems)
Views	(they	observe	model	changes	via	notifications)

SPAs	are	based	on	the	preceding	characteristics	of	a	modern	Web	application:	they
have	a	model	layer	that	handles	data	and	view	layers	that	read	data	from	models,	so	they
can	redraw	the	UI	without	involving	a	server	round-trip,	which	can	give	SPAs	a	more
“native”	feel	to	them.	Fewer	round-trips	reduce	the	load	on	the	server,	which	is	obviously
another	benefit.

However,	keep	in	mind	the	following	points.	First,	there	is	no	“specification”	for	SPA,
and	that	SPA	is	evolving	and	improving	over	time	as	a	result	of	the	contributions	from
people	in	the	community.	Second,	some	toolkits	that	have	an	SPA	also	use	AJAX,	which
arguably	breaks	the	“ideal”	design	of	SPA.	Thus,	different	toolkits	(and	the	applications
that	are	based	on	those	toolkits)	have	different	implementations	of	SPA,	which	in	turn
increases	the	likelihood	that	you	will	find	a	toolkit	that	is	well	suited	to	your	specific
needs.

MVC	and	MV*	Patterns

The	MVC	(Model-View-Controller)	pattern	is	well	documented	(plenty	of	online
information	is	available)	and	has	been	popular	for	years;	however,	the	concept	of
controllers	can	be	absent	from	SPAs	and	from	some	JavaScript	toolkits.	“Traditional”	Web
applications	use	a	page	refresh	in	order	to	navigate	between	independent	views,	whereas
JavaScript	Web	applications	based	on	SPA	can	retrieve	(via	AJAX)	data	from	a	server	and
dynamically	rendered	data	in	different	views	in	the	same	Web	page.	Routers	are	used	for
navigation	purposes	because	URLs	are	not	updated	while	navigating	to	different	views	in
a	SPA	Web	application.

Although	controllers	usually	update	the	view	when	the	model	changes	(and	vice
versa),	most	JavaScript	MVC	frameworks	tend	to	differ	from	the	MVC	pattern	in	terms	of
their	use	of	controllers.	As	designs	evolve	in	a	community,	variants	emerge	based	on
individual	preferences	and	experiences.	Since	no	individual	or	organization	promotes	the
idea	of	MVC,	these	variants	are	free	to	co-exist.

Contrary	to	what	you	might	read	in	online	articles,	BackboneJS	does	not	have	an	MVC
pattern:	controllers	are	absent	in	current	versions.	(Also,	note	that	the	Controller	object	in
early	versions	was	renamed	to	the	Router	object	in	later	versions.)	Some	controller-like
logic	is	located	in	BackboneJS	views	and	also	in	BackboneJS	routers	(the	latter	are	employed	to
manage	application	states).	BackboneJS	views	receive	notifications	when	there	are	model
changes,	and	the	views	are	updated	accordingly.	BackboneJS	can	be	best	classified	as	having
an	MV*	architecture.

In	addition,	there	are	other	models,	such	as	the	MVP	(Model-View-Presenter)	pattern
and	MVVM	(Model-View-ViewModel,	which	is	used	in	.NET	frameworks	and	in
KnockoutJS).	MVP	appears	to	be	better	suited	to	Web	applications	in	which	there	are
numerous	large	views,	and	the	role	of	the	Presenter	overlaps	with	that	of	a	controller.

You	can	learn	more	about	MVC	and	MVP	in	this	article:

http://martinfowler.com/eaaDev/uiArchs.html

Generating	Web	Pages	in	SPAs

As	you	already	know,	many	Web	pages	are	generated	dynamically	on	a	server	that
sends	those	Web	pages	to	browsers.	In	modern	Web	applications,	one	solution	is	to

http://martinfowler.com/eaaDev/uiArchs.html

generate	Web	pages	using	client-side	templating.	Another	solution	is	to	use	code;	this	is
the	more	traditional	approach.	The	distinction	between	server-rendered	and	client-
rendered	Web	pages	helps	to	reinforce	the	fact	that	the	server	renders	a	given	Web	page,
but	the	client	renders	subsequent	updates.

Handling	Model-Related	Events	in	SPAs

The	two	major	options	for	handling	model	data	changes	are	observables	and	event
emitters,	and	there	is	little	difference	between	these	two	approaches.	When	a	change
occurs,	the	code	that	is	“bound”	to	that	change	event	is	triggered.	For	example,	events	are
registered	on	objects:

MyApp.on(‘change’,	function()	{	…	});

whereas	observers	are	attached	through	global	names:
Framework.registerObserver(window.MyApp,‘change’,function(){…});

Observables	usually	have	some	type	of	name	resolution	system,	where	you	use	strings
in	order	to	refer	to	objects.	A	global	name	resolution	system	(where	names	are	strings
rather	than	directly	accessing	objects)	is	often	added	for	observables	in	order	to	facilitate
the	use	of	observers,	which	can	only	be	registered	when	the	objects	they	refer	to	have	been
instantiated.

Client-Side	Technologies	for	SPAs

In	brief,	client-side	technologies	for	an	SPA	include	toolkits	such	as	jQuery,	BackboneJS,
and	Jade.	However,	you	can	certainly	use	other	toolkits,	such	as	variants	of	BackBoneJS	(Spine,
Vertebrae,	and	so	forth),	or	an	entirely	different	toolkit	(such	as	EmberJS).	In	addition	to	Jade,
there	are	other	templating	engines	available,	including	Mustache	and	Handlebars.	Perform	an
Internet	search	for	information	as	well	as	a	feature	comparison	of	these	toolkits.

BackboneJS
Backbone.js	is	an	open	source	JavaScript	toolkit	for	developing	structured	Web

applications,	and	its	homepage	is	here:

http://Backbone.js.org/

Although	Backbone.js	is	not	based	on	an	MVC	(Model-View-Controller)	pattern,	there	are
some	similarities.	Backbone.js	provides	models	with	key-value	binding	and	custom	events,
collections	with	an	API	of	enumerable	functions,	and	views	with	declarative	event
handling,	all	of	which	is	connected	to	your	existing	API	over	a	RESTful	JSON	interface.
Backbone.js	is	an	open-source	component	of	DocumentCloud,	and	it’s	available	on	GitHub	under
the	MIT	software	license,	where	you	can	find	the	source	code,	an	online	test	suite,	an
example	application,	a	list	of	tutorials,	and	real-world	projects	that	use	Backbone.js.

Download	Backbone.js	from	its	GitHub	repository:

https://github.com/documentcloud/backbone/

A	Brief	Introduction	to	BackboneJS

The	following	subsections	give	you	a	simple	overview	of	models,	views,	collections,
and	routers	in	BackboneJS.	After	you	have	read	this	section,	you	can	search	for	online

http://Backbone.js.org/
https://github.com/documentcloud/backbone/

tutorials	that	show	you	examples	of	BackboneJS	applications.

What	is	a	Model?

According	to	the	authors	of	Backbone:

“Models	are	the	heart	of	any	JavaScript	application,	containing	the	interactive	data
as	well	as	a	large	part	of	the	logic	surrounding	it:	conversions,	validations,	computed
properties,	and	access	control.”

Whenever	you	create	a	new	instance	of	a	model,	the	initialize()	method	is	invoked
(which	is	also	the	case	when	you	instantiate	a	new	view	in	BackboneJS).	A	simple	example	is
shown	in	the	following	code	block:

Vehicle	=	Backbone.Model.extend({

				initialize:	function(){

								alert(“I	am	a	vehicle”);

				}

});

var	vehicle	=	new	Vehicle;

You	can	set	parameters	in	a	model	in	one	of	two	ways.	One	method	is	to	use	a
constructor,	as	shown	here:

var	vehicle	=	new	Vehicle({model:	“Ford”,	make:	“Mustang”});

Another	way	is	to	use	the	set	method,	as	shown	here:
vehicle.set({make:	“Ford”,	model:	“Mustang”});

After	setting	property/value	pairs,	you	can	retrieve	their	values	as	follows:
var	make		=	vehicle.get(“make”);		//	“Mustang”

var	model	=	vehicle.get(“model”);	//	“Ford”

You	can	also	set	default	values	in	the	following	manner:
Vehicle	=	Backbone.Model.extend({

				defaults:	{

						make:			“Ford”,

						model:		“Mustang”

				},		

				initialize:	function(){

								alert(“I	am	a	vehicle”);

				}			

});

Model	Changes

You	can	listen	for	changes	to	the	model	and	execute	code	whenever	a	change	is
detected.

For	example,	here	the	new	contents	of	the	initialize	method:

initialize:	function(){

			alert(“I	am	a	vehicle”);

	

			this.bind(“change:model”,	function(){

											var	model	=	this.get(“model”);

											alert(“Changed	my	model	to	”	+	model);

			});

}

There	are	various	other	features	available	for	manipulating	models	that	you	can	read	in
the	online	documentation.

What	is	a	View?

In	simplified	terms,	Backbone	views	provide	a	visual	representation	of	the	data	models
in	an	application.	Moreover,	Backbone	views	listen	to	events	and	respond	to	changes	in	data
models	in	order	to	ensure	that	data	in	a	given	view	is	synchronized	with	its	associated
model.

SearchView	=	Backbone.View.extend({

				initialize:	function(){

								alert(“A	view	of	a	vehicle.”);

				}

});

	

//	The	initialize	function	is	like	a	constructor	in	that

//	it	is	always	called	when	you	instantiate	a	Backbone	View

var	search_view	=	new	SearchView();

What	is	a	Collection?

A	Collection	in	BackboneJS	is	an	ordered	set	of	models.	Collections	are	useful	because	you
can	include	methods	inside	of	them	to	fetch	data	from	a	server,	prepare	that	data	before
returning	the	collection,	and	set	sample	collections	for	debugging/testing.

Moreover,	you	can	add	event	listeners	and	attach	views	to	collections,	which	is	not	the
case	for	simple	JavaScript	arrays.

As	a	simple	example,	we	can	use	the	Model	Vehicle	that	we	created	in	the	previous
section	in	order	to	create	a	Collection	in	Backbone	as	follows:

var	Cars	=	Backbone.Collection.extend({

		model:	Vehicle

});

	

var	vehicle1	=	new	Vehicle({	make:	“Ford”,		model:	“Mustang”		});

var	vehicle2	=	new	Vehicle({	make:	“GM”,				model:	“Camaro”			});

var	vehicle3	=	new	Vehicle({	make:	“GM”,				model:	“Corvette”	});

	

var	myCars	=	new	Cars([vehicle1,	vehicle2,	vehicle3]);

console.log(myCars.models);	//	[vehicle1,	vehicle2,	vehicle3]

What	is	a	Router?

BackboneJS	routers	are	used	for	mapping	URL	fragments	in	your	application	(e.g.,
mapping	example.com/*/foo	to	shareFoo).	Routing	the	URLs	in	your	applications	via	URL
fragments	makes	them	useful	for	applications	that	need	URL	routing	and	history
capabilities.	Defined	routers	should	contain	at	least	one	route	and	a	function	to	map	to	that
particular	route.	Keep	in	mind	that	routes	interpret	anything	after	“#”	tag	in	the	URL,	and
all	links	in	your	application	should	target	either	“#/action”	or	“#action.”

As	a	simple	example,	the	following	code	block	defines	a	Backbone	router:
var	MyAppRouter	=	Backbone.Router.extend({

				routes:	{

									//	matches	http://example.com/#you-can-put-anything-here

								”*actions”:	“defaultRoute”

				},

				defaultRoute:	function(actions){

								//	The	variable	passed	in	matches	the	variable

								//	that	is	in	the	route	definition	“actions”

								alert(actions);

				}

});

	

//	Initiate	the	router

var	appRouter	=	new	MyAppRouter();

	

//	Start	Backbone	history	(required	for	bookmarkable	URLs)

Backbone.history.start();

This	concludes	a	bare-bones	introduction	to	BackboneJS.	The	next	section	provides	some
useful	links	with	more	detailed	information.

Useful	Links

A	collection	of	BackboneJS	tutorials	is	here:

http://backbonetutorials.com/

An	example	of	using	BackboneJS	with	jQuery	Mobile:

http://coenraets.org/blog/2012/03/using-backbone-js-with-jquery-mobile/

http://weblog.bocoup.com/organizing-your-backbone-js-application-with-modules/

http://backbonetutorials.com/
http://coenraets.org/blog/2012/03/using-backbone-js-with-jquery-mobile/
http://weblog.bocoup.com/organizing-your-backbone-js-application-with-modules/

Backbone	Boilerplate
Backbone-boilerplate	is	an	open	source	JavaScript	toolkit	that	provides	“boilerplate”

functionality	analogous	to	toolkits	such	as	HTML5	Boilerplate.	Its	homepage	is	here:

https://github.com/tbranyen/backbone-boilerplate

The	set-up	instructions	for	Backbone-boilerplate	are	available	in	the	readme.md	file	that	is
included	in	this	distribution:

https://github.com/backbone-boilerplate/grunt-bbb

The	set-up	is	somewhat	lengthy	(and	beyond	the	constraints	of	this	chapter),	but	it’s
worth	exploring	this	toolkit	if	you	plan	to	use	BackboneJS	extensively	in	your	code.

Variations	of	BackboneJS
There	are	many	variations	of	BackboneJS	(which	are	also	extensions	of	BackboneJS),	some

of	which	are	listed	here:
pine.js

joint.js

ligament.js

vertebrae.js

bones.js	(provides	server-side	functionality)

hambone.js

shinbone.js

Space	constraints	in	this	chapter	preclude	a	thorough	discussion	of	these	toolkits,	but
you	can	perform	an	Internet	search	to	find	information	about	these	toolkits.

One	other	variant	of	BackboneJS	is	SpineJS,	which	uses	controllers	(even	though	it	is	based
on	BackboneJS).	Controllers	in	SpineJS	provide	the	“glue”	in	Web	applications,	and	they	provide
the	functionality	of	traditional	controllers.

The	following	SpineJS	code	block	defines	a	Spine	controller	with	three	functions.	The
controller	synchronizes	changes	in	models	to	update	views	(and	vice	versa).	Compare	this
code	with	BackboneJS	code	blocks	that	you	saw	earlier	in	this	chapter:

//	Controllers	inherit	from	Spine.Controller:

var	RecipesController	=	Spine.Controller.sub({

		init:	function(){

				this.item.bind(‘update’,		this.proxy(this.render));

				this.item.bind(‘destroy’,	this.proxy(this.remove));

		},

	

		render:	function(){

				//	Handle	templating

				this.replace($(‘#recipeTemplate’).tmpl(this.item));

https://github.com/tbranyen/backbone-boilerplate
https://github.com/backbone-boilerplate/grunt-bbb

				return	this;

		},

	

		remove:	function(){

				this.$el.remove();

				this.release();

		}

});

EmberJS
In	addition	to	BackboneJS,	there	are	various	toolkits	available,	and	one	of	the	most

popular	is	EmberJS,	whose	homepage	is	here:

http://emberjs.com/

EmberJS	applications	download	everything	that	is	required	to	run	during	the	initial	page
load,	which	is	consistent	with	SPA.	One	point	to	keep	in	mind	is	that	EmberJS	adopts	an
MVC	pattern	as	well	as	a	heavy	emphasis	on	routers,	and	also	a	templating	engine.	EmberJS
focuses	on	the	“heavy	lifting”	to	handle	some	of	the	more	burdensome	JavaScript	tasks.
On	the	other	hand,	BackboneJS	has	a	much	more	minimalistic	approach	(but	it	can	be
enhanced	with	Backbone	Boilerplate).

As	a	simple	illustration,	the	following	code	block	shows	you	how	to	define	JavaScript
objects	in	EmberJS.

Person	=	Ember.Object.extend({

		greeting:	function(msg)	{

				alert(msg);

	}

});

	

var	person	=	Person.create();

//	alert	message:	My	Name	is	Dave

person.greeting(“My	name	is	Dave”);

	

var	person	=	Person.create({

		name:	“Jeanine	Smith”,

		greeting:	function()	{

				this.greeting(“My	name	is	”	+	this.get(‘name’));

		}

});

	

//	alert	message:	My	Name	is	Jeanine

http://emberjs.com/

person.greeting();

You	can	extend	objects	in	EmberJS,	as	shown	here:
var	HappyPerson	=	Person.extend({

		greeting:	function(msg)	{

				this._super(greeting.toUpperCase());

		}

});

You	can	also	add	event	listeners	in	EmberJS,	as	shown	here:
person.addObserver(‘name’,	function()	{

		//	do	something	after	a	name	change

});

person.set(‘name”,	‘Oswald’);

An	extensive	comparison	between	BackboneJS	and	EmberJS	is	here:

http://www.i-programmer.info/programming/htmlcss/4966-creating-web-apps-the-
camera-api.html

If	BackboneJS	and	EmberJS	are	not	a	good	fit	for	your	needs,	you	can	perform	an	Internet
search	for	other	toolkits.	You	can	also	find	various	online	articles	that	discuss	the	merits	of
various	toolkits,	and	sometimes	you	can	find	articles	that	provide	a	direct	comparison	of
various	toolkits.	One	point	to	keep	in	mind	is	that	there	is	an	abundance	of	toolkits
available.	If	time	is	a	constraint,	you	might	need	to	limit	your	analysis	to	a	small	number
of	toolkits	so	that	you	can	properly	assess	them.

Twitter	Bootstrap
Twitter	Bootstrap	is	an	open	source	project	for	creating	Websites	and	Web	applications.

This	toolkit	contains	HTML-	and	CSS-based	design	templates	for	UI	Controls	(such	as
forms,	buttons,	charts,	navigation,	and	so	forth),	as	well	as	user	interactions.

Currently,	Twitter	Bootstrap	is	the	most	watched	and	forked	repository	in	GitHub,	and	you
can	download	it	here:

http://twitter.github.com/Bootstrap/

http://blog.getBootstrap.com/

Twitter	Bootstrap	was	designed	primarily	as	a	style	guide	to	document	best	practices,	and
also	to	assist	people	of	diverse	skill	levels.	Bootstrap	supports	new	HTML5	elements	and
syntax,	and	you	can	use	Bootstrap	as	a	complete	kit	or	to	start	something	more	complex.

Twitter	Bootstrap	was	initially	created	for	modern	browsers,	but	it	has	expanded	its	support
to	include	all	major	browsers	(including	IE7).	In	addition,	Twitter	Bootstrap	2.0	supports
tablets	and	smartphones,	and	its	responsive	design	means	that	its	components	are	scaled
according	to	a	range	of	resolutions	and	devices,	thereby	providing	a	consistent	experience.
Moreover,	Twitter	Bootstrap	provides	custom-built	jQuery	plugins,	and	it’s	built	on	top	of	the
LESS	toolkit.	Some	features	of	Twitter	Bootstrap	2.0	are	tooltips,	styled	stateful	buttons,	more
table	and	form	styling,	and	an	improved	structure	for	its	CSS	source	code	(multiple	files

http://www.i-programmer.info/programming/htmlcss/4966-creating-web-apps-the-camera-api.html
http://twitter.github.com/Bootstrap/
http://blog.getBootstrap.com/

instead	of	a	single	monolithic	file).	Bootstrap	also	supports	styling	for	tabs,	navigation	bars,
form	controls,	navigation	lists,	labels,	and	others.	If	you	prefer,	you	can	create	your	own
custom	download	if	you	do	not	want	to	download	the	full	toolkit.

Bootstrap	requires	HTML5	doctype,	which	is	specified	with	this	snippet:
<!DOCTYPE	html>

Twitter	Bootstrap	sets	basic	global	display,	typography,	and	link	styles	(located	in
scaffolding.less	of	the	distribution),	including	the	following	examples:

Remove	margin	on	the	body
Set	background-color:	white;	on	the	body
Use	 the	@baseFontFamily,	@baseFontSize,	 and	@baseLineHeight	 attributes	 as	 the	 typographic
base
Set	the	global	link	color	via	@linkColor	and	apply	link	underlines	only	on	:hover

Keep	in	mind	that	Twitter	Bootstrap	2.0	uses	much	of	Normalize.css	(which	also	powers
HTML5	Boilerplate)	instead	of	the	‘reset’	block	in	version	1	of	Bootstrap.

Additional	details	are	available	here:

http://twitter.github.com/bootstrap/scaffolding.html

One	interesting	Bootstrap	feature	is	its	support	for	progress	bars	using	the	CSS	classes
.bar	and	.progress	that	are	available	in	Bootstrap.	As	an	illustration,	the	following	code	block
shows	how	to	render	bars	with	different	colors	based	on	custom	attributes	that	start	with
the	string	progress-,	as	shown	here:

<div	class=“progress	progress-info”	style=“margin-bottom:	9px;”>

				<div	class=“bar”	style=“width:	20%”></div>

</div>

<div	class=“progress	progress-success”	style=“margin-bottom:

																																														9px;”>

				<div	class=“bar”	style=“width:	40%”></div>

</div>

<div	class=“progress	progress-warning”	style=“margin-bottom:

																																														9px;”>

				<div	class=“bar”	style=“width:	60%”></div>

</div>

<div	class=“progress	progress-danger”	style=“margin-bottom:

																																													9px;”>

				<div	class=“bar”	style=“width:	80%”></div>

</div>

Useful	Links

The	following	links	provide	a	sample	application	using	Twitter	Bootstrap,	as	well	as	a	set
of	videos	and	tutorials:

http://twitter.github.com/bootstrap/scaffolding.html

https://dev.twitter.com/blog/say-hello-to-Bootstrap-2

http://webdesign.tutsplus.com/tutorials/workflow-tutorials/twitter-Bootstrap-101-tabs-
and-pills/

http://twitter.github.com/Bootstrap/examples.html

Here	is	an	example	of	BackboneJS	with	Twitter	Bootstrap:

http://coenraets.org/blog/2012/02/sample-app-with-backbone-js-and-twitter-
Bootstrap/

The	following	open	source	project	uses	Bootstrap	with	SaSS	instead	of	LESS:

https://github.com/jlong/sass-twitter-Bootstrap

A	Minimalistic	SPA
The	remainder	of	this	chapter	shows	you	how	to	set	up	several	server-side	toolkits	for

creating	a	very	simple	SPA.	You	will	see	“bare	bones”	code	that	provides	a	starting	point
for	an	SPA	that	enables	users	to	see	the	books	that	their	friends	have	read,	along	with	other
information,	such	as	reviews,	interesting	book	quotes,	and	so	forth.	This	application	uses
the	following	technologies:

Jade

MongoDB

Mongoose

NodeJS

The	next	section	of	this	chapter	provides	a	high-level	description	of	the	technologies	in
the	preceding	list	that	have	not	been	discussed	already.	The	final	section	of	this	chapter
contains	code	blocks	that	will	help	you	understand	the	logic	of	the	SPA	application.	As	a
suggestion,	include	additional	toolkits	(such	as	BackboneJS	and	jQuery)	in	this	SPA	so	that	you
can	expand	your	skillset.

Jade
Jade	is	a	popular	templating	language	for	NodeJS,	and	its	homepage	is	here:

http://jade-lang.com/

Download	Jade	here:

https://github.com/visionmedia/jade#readme

After	you	uncompress	the	Jade	distribution,	you	can	create	a	single	Jade	JavaScript	file
with	the	following	command:

make	jade.js

Note	that	you	can	also	install	Jade	via	npm	(the	package	manager	for	NodeJS)	as	follows:
npm	install	jade

Jade	Code	Samples

Jade	uses	HTML	tags	to	generate	HTML	elements,	the	“#”	syntax	to	generate	id
attributes,	and	the	“.”	syntax	to	generate	class	attributes.	Indentation	specifies	nesting	of

https://dev.twitter.com/blog/say-hello-to-Bootstrap-2
http://webdesign.tutsplus.com/tutorials/workflow-tutorials/twitter-Bootstrap-101-tabs-and-pills/
http://twitter.github.com/Bootstrap/examples.html
http://coenraets.org/blog/2012/02/sample-app-with-backbone-js-and-twitter-Bootstrap/
https://github.com/jlong/sass-twitter-Bootstrap
http://jade-lang.com/
https://github.com/visionmedia/jade#readme

elements.	For	example,	the	following	Jade	code	block:
html

		head

		body

				div

				div#myid

				div.myclass

				p	my	paragraph

generates	the	following	HTML:
<html>

	<head></head>

	<body>

			<div></div>

			<div	id=“myid”></div>

			<div	class=“myclass”></div>

			<p>my	paragraph</p>

	</body>

</html>

Jade	supports	interpolation,	so	you	can	pass	data	to	a	Jade	document.	For	example,
suppose	you	have	this	data:

{fname:	john,	lname:	smith}

and	that	you	have	this	Jade	element:
div	#user	#{fname}	#{lname}

then	the	result	is	this	HTML	element:
<div	id=“user”>john	smith</div>

Jade	also	supports	comments	(single	and	multi-line),	conditional	logic,	a	“case”
statement,	filters,	and	iteration.

As	a	more	concrete	example,	Listing	6.1	displays	the	contents	of	layout.jade,	which
generates	a	very	basic	HTML5	Web	page.

LISTING	6.1	layout.jade
doctype	5

html

		head

				title=	title

				link(rel=‘stylesheet’,	href=’/css/style.css’)

				script(src=’/js/jquery-1.8.2.min.js’)

				script(src=’/js/client.js’)

				script(src=’/js/templates.js’)

		body		

				block	content

As	you	can	see	in	Listing	6.1,	Jade	uses	an	easy	syntax	for	defining	links	to	CSS
stylesheets	and	for	defining	HTML	<script>	elements.

In	addition,	Jade	allows	you	to	extend	the	contents	of	a	template	and	also	to	use
conditional	logic.	Listing	6.2	extends	the	contents	with	layout.jade	based	on	whether	or	not
user.id	(which	is	defined	elsewhere)	is	defined.

LISTING	6.2	index.jade
extends	layout

	

block	content

				h1=	title

				-	if	(user.id)

								p	Hello	#{user.name},	and	welcome	to	#{title}

								p

										a(href=’/managebooks’)	My	Book	List

								p

										a(href=’/logout’)	Logout

								#bookhistory

				-	else

								div

												a(href=’/login’)	Login	with	password

								div

												a(href=’/register’)	Register

As	you	can	see,	the	first	portion	of	Listing	6.2	(starting	with	“if”)	displays	a	welcome
message	and	a	link	where	the	currently	logged-in	user	can	see	a	list	of	books.	The	second
portion	of	Listing	6.2	(starting	with	“else”)	displays	a	<div>	element	with	a	link	for	the
login	page,	as	well	as	a	second	<div>	element	for	a	registration	page.

A	Minimal	NodeJS	Code	Sample	with	Jade

This	section	shows	you	how	to	create	a	tiny	NodeJS	application	that	uses	Jade	with	the
following	three	Jade	files	(which	are	placed	in	a	views	subdirectory)	and	one	JavaScript	file:

views/index.jade

views/layout.jade

views/navigation.jade

server.js

Here	are	the	contents	of	index.jade:
h1

		a(href=‘http://www.google.com/’)	Google	Home	Page

Here	are	the	contents	of	layout.jade:
!!!	5

		html(lang=‘en’)

				head

		title=	title

		body!=	body

				div#navigation!=	partial(‘navigation.jade’)

Here	are	the	contents	of	navigation.jade:
div#navigation

		a(href=’/’)	home

Listing	6.3	displays	the	contents	of	server.js	that	references	the	three	Jade	files	in	this
section.

LISTING	6.3	server.js
var	express	=	require(‘express’);

var	app	=	express.createServer();

	

app.configure(function	()	{

			app.set(‘views’,	__dirname	+	‘/views’);

			app.set(‘view	engine’,	‘jade’);

});

	

app.get(‘/’,	function(req,	res)	{

				res.render(‘index.jade’,

						{	pageTitle:	‘Jade	Example’,	layout:	false	});

});

	

app.listen(9000);

Although	we	have	not	covered	Node-related	code,	you	can	see	that	the	code	creates	an
application,	sets	some	configuration	values,	and	then	renders	the	HTML	Web	page	that	is
defined	by	the	Jade-based	templates	in	the	view	subdirectory.

In	slightly	more	detail,	Listing	6.3	starts	by	creating	an	express-based	application	called
app.	Next,	the	code	specifies	the	views	subdirectory	of	the	current	directory	(indicated	by	the
built-in	variable	__dirname),	and	also	configures	Jade	as	the	“view	engine.”	The	next	portion
of	code	specifies	what	to	do	with	a	GET	request,	as	shown	here:

app.get(‘/’,	function(req,	res)	{

				res.render(‘index.jade’,

						{	pageTitle:	‘Jade	Example’,	layout:	false	});

});

The	preceding	code	renders	a	response	by	returning	the	contents	of	index.jade	(in	the
views	subdirectory),	which	is	an	HTML	Web	page	with	a	link	to	the	Google	homepage.

The	final	line	of	code	listens	on	port	9000	of	localhost.

			

	

			You	must	launch	this	Node	application	by	performing	a	‘cd’	into	the	simple_app	directory
that	is	on	the	CD.

	
Other	Templating	Solutions

There	are	many	other	templating	solutions	available,	and	some	of	the	more	popular
ones	are	listed	here:

Mustache.js

Handlebars.js

Dust.js

jQuery.tmpl	plugin

Underscore	Micro-templating

PURE

You	can	perform	an	Internet	search	to	find	links	and	tutorials	with	examples	that
illustrate	how	to	use	the	preceding	templating	engines.

MongoDB

MongoDB	is	a	popular	NoSQL	database,	and	its	homepage	is	here:

http://www.mongodb.org/

A	good	place	to	start	working	with	MongoDB	is	here:

https://mongolab.com/home

Download	and	install	MongoDB	from	this	Website:

http://www.mongodb.org/downloads

After	you	install	MongoDB,	you	can	start	MongoDB	with	the	following	command:
mongodb

You	can	also	launch	an	interactive	session	by	typing	mongo	in	another	command	shell,
which	enables	you	to	manage	schemas	and	perform	CRUD-like	operations	from	the
command	line.	(CRUD	stands	for	create,	read,	update,	and	delete,	the	four	key	database
operations.)

For	example,	the	following	sequence	of	commands	shows	you	how	to	insert	a	new
user	in	the	users	schema	(which	is	defined	in	the	Mongoose	section	later	in	this	chapter).

http://www.mongodb.org/
https://mongolab.com/home
http://www.mongodb.org/downloads

mongo

>

>	use	db

switched	to	db	db

>	users	=	db.users

db.users

>	users.find();

>

>	users.insert({firstName:‘a’,	lastName:‘b’});

>	users.find()

{

								“_id”	:	ObjectId(“509425f82685d84f9c41c858”),

								“firstName”	:	“a”,

								“lastName”	:	“b”

}

Consult	the	documentation	for	additional	details	about	commands	that	you	can	execute
in	the	MongoDB	command	shell.

NodeJS

NodeJS	is	a	popular	server	technology	that	executes	JavaScript.	You	can	download	and
install	NodeJS	from	its	homepage:

http://nodejs.org/

			This	section	will	describe	only	the	basic	information	and	the	modules	that	you
need	in	order	to	work	with	a	NodeJS	server	used	in	the	sample	application	on	the	CD.

After	you	have	installed	NodeJS	on	your	machine,	install	express	and	mongoose	with	these
commands:

npm	install	express

npm	install	mongoose

Just	to	show	you	that	you	can	use	NodeJS	without	a	templating	engine	(such	as	Jade),
Listing	6.4	displays	the	contents	of	HelloWorld.js	that	displays	the	text	string	“Hello	World”
when	users	navigate	to	localhost:5000	in	a	browser.

LISTING	6.4	HelloWorld.js
//create	an	app	server

var	express	=	require(“express”);

var	app	=	express();

	

//send	‘Hello	World’	to	the	client

app.get(‘/’,	function(req,	res)	{

http://nodejs.org/

				res.send(‘Hello	World’);

});

	

app.listen(5000);

Launch	the	application	from	the	command	line	as	follows:
node	HelloWorld.js

Launch	a	browser	and	navigate	to	the	URL	http://localhost:5000.	You	will	see	the	text
string	“Hello	World.”

Now	that	you	have	seen	how	to	launch	simple	NodeJS	applications	(with	and	without
templates),	you	are	ready	to	create	a	NodeJS	application	that	uses	Mongoose	and	MongoDB,
which	is	the	topic	of	the	next	section	of	this	chapter.

Mongoose

Mongoose	is	an	ORM	(written	in	NodeJS)	for	MongoDB	that	enables	you	to	define	schemas
in	a	MongoDB	database,	and	its	homepage	is	here:

http://mongoosejs.com/index.html

Install	Mongoose	with	the	npm	package	manager,	as	shown	here:
npm	install	mongoose

The	following	sections	show	you	how	to	connect	to	a	MongoDB	instance	via	Mongoose,
followed	by	an	example	of	creating	schemas,	creating	instances	of	the	schemas,	and	then
modifying	and	saving	those	instances	to	a	MongoDB	database.

Connecting	to	MongoDB	via	Mongoose

You	can	connect	to	MongoDB	with	the	mongoose.connect()	method.	The	following	command
is	the	minimum	needed	to	connect	the	myapp	database	running	locally	on	the	default	port
(27017):

mongoose.connect(‘mongodb://localhost/myapp’);

You	can	specify	additional	parameters	in	the	uri	depending	on	your	environment:
mongoose.connect(‘mongodb://username:password@host:port/

																																																	database’);

Consult	the	documentation	for	additional	options	for	connecting	to	a	MongoDB	database.

Creating	Schemas	in	Mongoose

The	permitted	SchemaTypes	in	Mongoose	are:	String,	Number,	Date,	Buffer,	Boolean,	Mixed,	ObjectId,
and	Array.

First	we	need	to	define	two	variables	that	reference	Mongoose	and	a	MongoDB	database	as
follows:

var	mongoose	=	require(‘mongoose’),

				db	=	mongoose.createConnection(‘localhost’,	‘test’);

Now	let’s	create	a	simple	Person	schema	in	Mongoose:

http://localhost:5000
http://mongoosejs.com/index.html

var	personSchema	=	new	mongoose.Schema({

				id:								Schema.Types.ObjectId,

				firstName:	String,

				lastName:		String

})

We	can	add	methods	to	our	Person	schema,	as	shown	here:
personSchema.methods.pname	=	function	()	{

		var	fullname	=	this.firstname+”	“+this.lastname;

		console.log(fullname);

}

Next	we	compile	our	Person	schema	into	a	Model	as	follows:
var	Person	=	db.model(‘Person’,	personSchema);

Note	that	a	model	is	just	a	class	that	enables	us	to	construct	documents.	In	this
example,	a	document	is	a	Person	object.

Let’s	create	two	Person	objects	as	follows:
var	p1	=	new	Person({	firstName:	‘John’,	lastname:	‘Smith’	})

var	p2	=	new	Person({	firstName:	‘Jane’,	lastname:	‘Jones’	})

Finally,	we	can	save	our	objects	in	MongoDB	as	follows:
p1.save(function	(error)	{

		if	(error)	{

					console.log(“error	saving	p1”);

		}

});

	

p2.save(function	(error)	{

		if	(error)	{

					console.log(“error	saving	p2”);

		}

});

You	can	specify	other	properties	in	a	Mongoose	schema,	such	as	indexes,	setters,	and
getters.	For	example,	the	following	code	block	shows	you	how	to	expand	the	definition	of
the	User	schema	with	several	additional	properties:

mongoose.model(‘User’,	{

		properties:	[‘first,	‘last’],

		cast:							{age:	Number},

		indexes:				[‘first’,	‘last’],

		setters:				{first:	function(){}	},

		getters:				{full_name:	function(){}	},

		methods:				{save:	function()	}

};

An	SPA	Code	Sample

The	SPA	code	sample	creates	three	Mongoose	schemas	to	represent	users,	books,	and
user	comments	about	books.

The	userSchema	contains	information	about	users	and	the	list	of	books	that	each	user	had
read.	There	is	a	one-to-many	relationship	(each	user	can	read	multiple	books),	as	shown
here:

var	userSchema	=	new	mongoose.Schema({

				userid:				Schema.Types.ObjectId,

				firstName:	String,

				lastName:		String,

				date:						{type:	Date,	default:	Date.now},

				books:					[{type:	Schema.Types.ObjectId,	ref:	‘Book’}]

})

The	bookSchema	contains	information	about	books	and	the	list	of	users	that	have	read
each	book.	Similar	to	userSchema,	there	is	a	one-to-many	relationship	(multiple	users	can
read	each	book),	as	shown	here:

var	bookSchema	=	new	mongoose.Schema({

				bookid:						Schema.Types.ObjectId,

				bookAuthor:		String,

				bookTitle:			String,

				bookPubDate:	{type:	Date},

				bookEdition:	Number,

				date:								{type:	Date,	default:	Date.now},

				users:							[{type:	Schema.Types.ObjectId,	ref:	‘User’}]

})

The	commentSchema	contains	information	about	the	comments	that	users	make	about
books	that	they	have	read.	It	references	a	user,	a	book,	and	a	comment	about	a	book,	as
shown	here:

var	commentSchema	=	new	mongoose.Schema({

				commentid:	Schema.Types.ObjectId,

				userid:				{type:	Schema.Types.ObjectId,	ref:	‘User’},

				bookid:				{type:	Schema.Types.ObjectId,	ref:	‘Book’},

				comment:			String,

				date:						{type:	Date,	default:	Date.now}

})

Now	we	can	compile	our	three	schemas	into	Models	as	follows:

var	Book				=	db.model(‘Book’,	bookSchema);

var	User				=	db.model(‘User’,	userSchema);

var	Comment	=	db.model(‘Comment’,	commentSchema);

Finally,	we	can	create	objects	for	the	three	schemas.	The	following	code	block	creates
a	new	book,	a	new	user,	and	a	comment	about	the	new	book	by	the	new	user:

var	b1	=	new	Book({bookAuthor:		‘Oswald	Campesato’,

																				bookTitle:		‘HTML5	Canvas	and	CSS3	Graphics’,

																			bookPubDate:	‘07/30/2012’

																		});

	

var	u1	=	new	User({firstName:		‘John’,	lastname:	‘Smith’});

var	c1	=	new	Comment({userid:	u1,	bookid:	b1,	comment:

																																														“Great	book!”});

Now	we	need	to	update	b1	to	add	user	u1	to	the	list	of	users	who	have	read	the	book:
b1.users.push(u1);

Next,	update	u1	to	add	the	book	b1	to	the	list	of	books	that	user	u1	has	read:
u1.books.push(b1);

Save	the	modified	b1,	u1,	and	c1	with	the	following	code	snippet:
b1.save();

u1.save();

c1.save();

You	also	need	code	that	enables	users	to	find	and	update	existing	books	and	users.	The
following	method	enables	us	to	find	and	update	a	book	by	its	id	value:

Book.findByIdAndUpdate(b1.bookid,	{	$set:	{	books:	appendB1}},

		function	(err,	book)	{

				if	(err)	return	handleError(err);

				res.send(book);

});

The	following	method	enables	us	to	find	and	update	a	user:
Book.findByIdAndUpdate(b1.userid,	{	$set:	{	books:	appendU1}},

		function	(err,	book)	{

				if	(err)	return	handleError(err);

				res.send(book);

});

Now	you	know	how	to	do	the	following:

Connect	to	a	MongoDB	database	in	Mongoose
Create	MongoDB	schemas	using	Mongoose

Create	and	insert	documents	for	a	MongoDB	database

The	code	in	Listing	6.5	contains	the	code	(the	schema	definitions	are	shown	above	and
are	not	displayed	in	the	code	sample)	for	connecting	to	a	MongoDB	instance,	creating
schemas,	populating	some	instances	of	the	schemas,	and	then	saving	the	instances	to	the
database.

LISTING	6.5	book.js
/*	server	*/

var	express	=	require(‘express’)

		,	app	=	express.createServer()

		,	mongoose	=	require(‘mongoose’)

		,	db	=	mongoose.createConnection(‘localhost’,	‘test’);

	

/*	models	*/

mongoose.connect(‘mongodb://127.0.0.1/sampledb’);

	

var	Schema	=	mongoose.Schema

		,	ObjectId	=	Schema.ObjectID;

	

//	schemas	declared	earlier	in	Mongoose	section

var	userSchema	=	…

var	bookSchema	=	…

var	commentSchema	=	…

	

var	Book				=	db.model(‘Book’,	bookSchema);

var	User				=	db.model(‘User’,	userSchema);

var	Comment	=	db.model(‘Comment’,	commentSchema);

	

//A	new	book,	a	new	user,	and	a	comment

//about	the	new	book	by	the	new	user:

	

var	b1	=	new	Book({bookAuthor:		‘Oswald	Campesato’,

																			bookTitle:			‘HTML5	Canvas	and	CSS3	Graphics’,

																			bookPubDate:	‘07/30/2012’

																		});

	

var	u1	=	new	User({firstName:		‘John’,	lastname:	‘Smith’});

var	c1	=	new	Comment(

									{userid:	u1,	bookid:	b1,	comment:	“Great	book!”});

	

//	Add	user	u1	to	the	list	of	users	(in	b1)	who	have	read	the	book:

b1.users.push(u1);

	

//	Add	book	b1	to	the	list	of	books	(in	u1)	that	user	u1	has	read:

u1.books.push(b1);

	

//show	books

app.get(‘/showbooks’,	function(req,res){

console.log(“finding	books”);

				Book.find({},	function(error,	data){

								res.json(data);

				});

});

	

//show	users

app.get(‘/showusers’,	function(req,res){

console.log(“finding	users”);

				User.find({},	function(error,	data){

								res.json(data);

				});

});

	

//	sample	URL	for	adding	a	user:

//http://localhost:3003/adduser/tom/smith

	

app.get(‘/adduser/:first/:last/:username’,	function(req,	res){

console.log(“adding	user”);

				var	user_data	=	{

								first_name:	req.params.first

						,	last_name:	req.params.last

						,	username:	req.params.username

				};

	

				var	user	=	new	User(user_data);

	

				user.save(function(error,	data){

								if(error){

												res.json(error);

								}

								else{

												res.json(data);

								}

				});

});

	

app.listen(3003);

console.log(“listening	on	port	%d”,	app.address().port);

Listing	6.5	consolidates	many	of	the	code	fragments	that	you	saw	earlier	in	this
chapter.	There	is	also	a	code	block	that	enables	you	to	add	new	users	by	extracting	the
relevant	pieces	of	information	from	a	URL	and	then	constructing	the	following	structure
that	is	saved	to	the	database:

//sample	URL	for	adding	a	user:

//http://localhost:3003/adduser/tom/smith

	

app.get(‘/adduser/:first/:last/:username’,	function(req,	res){

		var	user_data	=	{

								first_name:	req.params.first

						,	last_name:	req.params.last

						,	username:	req.params.username

				};

	

				var	user	=	new	User(user_data);

	

				user.save(function(error,	data){

								if(error){

												res.json(error);

								}

								else{

												res.json(data);

								}

				});

});

Now	open	a	command	shell	and	launch	MongoDB	with	the	following	command:
mongod

Open	a	second	shell	and	launch	the	code	in	Listing	6.5	as	follows:

node	app.js

Finally,	launch	a	browser	session	and	navigate	to	localhost:3003	to	view	the	application.

Summary
In	this	chapter,	you	learned	about	the	rationale	for	creating	a	single-page	application

(SPA).	You	also	learned	about	technologies	such	as	Jade,	MongoDB,	Mongoose,	and	NodeJS	that
you	can	use	for	supporting	the	different	parts	of	an	SPA.

CHAPTER			7
	

INTRODUCTION	TO	JQUERY

MOBILE

	

This	chapter	contains	an	introduction	to	jQuery	Mobile,	and	shows	you	how	to	create
HTML5-based	applications	using	jQuery	Mobile.	Web	pages	for	desktop	browsers	are
rendered	differently	on	mobile	devices,	which	is	immediately	apparent	whenever	you	see
the	tiny	font	size	of	the	rendered	text	on	a	mobile	device.	Fortunately,	jQuery	Mobile	is
highly	“page	aware,”	and	it	provides	many	useful	before-and-after	page-related	events	that
you	can	override	with	customizations	that	are	tailored	to	your	needs.

In	fact,	jQuery	Mobile	is	designed	around	the	notion	of	(mostly)	single-page
applications	with	multiple	“page	views”	(discussed	later	in	this	chapter),	whereas	jQuery
was	designed	when	multi-page	sites	and	applications	were	predominant.	Thus,	jQuery
Mobile	has	a	view-oriented	model,	whereas	jQuery	has	a	Web	page-oriented	model.	This
important	distinction	will	help	you	understand	the	rationale	for	the	features	that	are
available	in	jQuery	Mobile.

In	this	chapter,	you	will	become	well	acquainted	with	the	data-	prefix	in	custom
attributes,	which	are	part	of	the	HTML5	specification	(Section	3.2.3.8).	jQuery	Mobile
makes	extensive	use	of	custom	attributes	with	a	data-	prefix,	whereas	custom	attributes	are
not	used	in	jQuery.	In	fact,	jQuery	Mobile	uses	this	custom	attribute	for	specifying
behavior,	functionality,	and	layout.	As	you	will	see,	two	frequently	used	custom	attributes
are	data-role	and	data-transition.

If	you	want	to	write	Web	pages	that	display	correctly	on	different	devices,	then	at	a
minimum	you	need	to	take	into	account	the	dimensions	(width	and	height)	of	those
devices.	Other	considerations	include,	but	are	not	limited	to:	DPI	(Dots	Per	Inch),	which
varies	between	mobile	devices,	and	whether	or	not	you	want	to	allow	users	to	pinch	or
zoom	into	the	Web	page.	One	of	the	strengths	of	jQuery	Mobile	is	that	device	differences
are	handled	automatically	for	you,	in	addition	to	its	rich	feature	set	and	its	support	for
many	mobile	platforms.

The	first	part	of	this	chapter	provides	an	overview	of	some	features	of	jQuery	Mobile,
as	well	as	some	important	differences	from	jQuery.	You	will	see	how	jQuery	Mobile
programmatically	enhances	your	Web	pages	with	extra	functionality.	This	reduces	the
coding	effort	on	your	part	in	order	to	create	mobile-enabled	Web	pages,	and	also	ensures
that	your	Web	pages	will	render	correctly	on	different	mobile	devices.	In	addition,	you
will	learn	about	page-related	events	that	jQuery	Mobile	exposes	(there	are	many	such
events),	and	some	of	the	default	behavior	that	you	can	override	programmatically.

The	second	part	of	this	chapter	discusses	multi-page	views	in	jQuery	Mobile,	and
various	ways	for	positioning	headers	and	footers.	The	third	part	of	this	chapter	discusses

buttons	in	jQuery	Mobile,	which	is	an	extensive	topic	with	lots	of	rich	functionality,	and
you	will	see	complete	code	samples	and	useful	code	snippets.

The	fourth	part	of	this	chapter	contains	code	samples	that	illustrate	how	to	work	with
various	widgets	(including	list	views,	navigation	bars,	and	menus)	in	jQuery	Mobile.	The
intent	of	these	code	samples	is	to	show	you	not	just	how	to	use	these	widgets,	but	also
how	to	incorporate	CSS3-based	graphics	effects	in	the	code	samples.	Some	of	these
effects,	such	as	shadow	and	gradients	(which	you	learned	how	to	do	in	Chapter	3),	show
you	how	to	create	a	richer	visual	effect	that	goes	beyond	the	“out	of	the	box”	functionality
of	jQuery	Mobile.	The	final	portion	of	this	chapter	contains	code	samples	that	show	you
how	to	use	AJAX	and	Geolocation	in	HTML	Web	pages	with	jQuery	Mobile.

Using	jQuery	2.0	in	This	Chapter
The	following	code	samples	work	correctly	in	jQuery2.0.0,	but	they	report	“spurious”

warnings	that	you	can	see	when	you	launch	them	in	a	WebKit-based	browser	and	then	open
the	Web	Inspector:

JQMAjax1.html
JQMButtons1.html
JQMFixed1.html
JQMForm1.html
JQMHelloWorld1.html
JQMMenu1.html
JQMNavigationBar1.html
JQMNestedListViews1.html
JQMPageEvents1.html
JQMSimpleListView1.html
JQMMultiPageViews1.html
JQMGeolocation1.html

Overview	of	jQuery	Mobile
jQuery	Mobile	is	essentially	a	collection	of	jQuery	plugins	and	widgets	that	enable

you	to	write	mobile	Web	applications	that	run	on	multiple	platforms.	You	already	know
that	jQuery	focuses	on	desktop	Web	applications;	by	contrast,	jQuery	Mobile	(which
includes	a	CSS	stylesheet	and	a	JavaScript	library)	is	intended	for	mobile	devices.
However,	jQuery	Mobile	does	rely	on	the	“base”	jQuery	library	that	you	must	reference
prior	to	referencing	the	jQuery	Mobile	library	in	a	Web	page.	In	addition,	jQuery	Mobile
uses	features	of	HTML5	and	CSS3	(such	as	transitions	and	animation),	and	small	icons	for
navigation.

jQuery	Mobile	relies	on	custom	attributes	with	a	data-	prefix.	In	case	you	do	not	know,
custom	attributes	are	new	in	HTML5,	and	they	always	have	such	a	prefix.	This	support	for
custom	data	attributes	provides	HTML5	markup	with	some	of	the	functionality	that	is
available	in	XML.	This	enables	code	to	process	custom	tags	and	their	values	and	also	pass
validation	at	the	same	time.

A	simple	jQuery	Mobile	page	has	the	following	structure:

An	optional	<div>	element	with	a	data-role=“header”	attribute
A	mandatory	<div>	element	with	a	data-role=“content”	attribute
An	optional	<div>	element	with	a	data-role=“footer”	attribute

During	initialization,	jQuery	Mobile	pre-processes	a	Web	page	and	inserts	additional
markup,	CSS	classes,	and	event	handlers.	You	will	see	an	example	of	how	jQuery	Mobile
modifies	a	Web	page	in	the	“Hello	World”	code	sample	later	in	this	chapter.

There	are	several	important	details	that	you	need	to	be	aware	of	when	writing	jQuery
Mobile	Web	pages.	First,	jQuery	Mobile	provides	the	following	page-related	events	that
you	can	invoke	programmatically	during	the	lifecycle	of	a	jQuery	Mobile	page:	pageInit(),
pageCreate(),	pageShow(),	and	pageHide().	Second,	jQuery	Mobile	supports	custom	events	for
handling	user	gestures	such	as	swipe,	tap,	tap-and-hold,	and	orientation	changes	of	a	device.	Third,
jQuery	Mobile	uses	themes	to	customize	the	look	and	feel	of	mobile	applications,	along
with	progressive	enhancement	(discussed	briefly	in	Chapter	1)	to	enable	your	mobile
application	to	run	on	a	diverse	set	of	Web-enabled	devices.

Another	key	point	to	keep	in	mind	is	that	jQuery	uses	this	construct:
$(document).ready()	{

		//	do	something	here

}

On	the	other	hand,	jQuery	Mobile	uses	this	construct:
$(selector).live(‘pageinit’,	(function(event){

		//	do	something	here

}));

Notice	the	different	focus:	jQuery	sends	an	event	when	a	Web	page	has	been	loaded,
whereas	jQuery	Mobile	sends	an	event	when	a	page	(or	page	view)	has	been	initialized.

Key	Features	and	Components	in	jQuery	Mobile

If	you	have	read	the	previous	chapters	that	cover	jQuery,	you	have	already	acquired
substantial	knowledge	of	jQuery	features.	This	knowledge	is	useful	for	another	reason:
jQuery	Mobile	uses	jQuery	as	its	foundation,	and	the	jQuery	library	must	always	precede
the	jQuery	Mobile	library	in	your	HTML5	Web	pages.

jQuery	Mobile	provides	many	useful	features	that	will	simplify	the	process	of	creating
mobile	applications.	Some	of	the	jQuery	Mobile	features	are	listed	here:

Compatible	with	major	mobile	platforms	(Android,	iOS,	and	others)
Uses	HTML5	markup
Adopts	progressive	enhancement	approach
Provides	a	compact	toolkit	(about	12K	compressed)
Supports	plugins	and	themes
Supports	touch	and	mouse-based	user	gestures
Supports	WAI-ARIA

In	addition,	jQuery	Mobile	supports	the	following	components	(and	others	that	are	not

listed	here):

Buttons
Form	elements
List	views
Pages	and	dialogs
Toolbars

The	jQuery	code	samples	in	this	book	use	a	simple	naming	convention:	the	names	of
HTML5	Web	pages	that	contain	jQuery	code	start	with	“JQ,”	and	the	names	of	HTML5
Web	pages	that	contain	jQuery	Mobile	start	with	the	letters	“JQM.”	Keep	in	mind	that	this
naming	convention	is	only	for	this	book.

A	Minimal	jQuery	Mobile	Web	Page
Listing	7.1	displays	the	contents	of	JQMHelloWorld1.html	that	illustrates	how	to	display	the

message	“Hello	World”	in	an	HTML5	Web	page	when	rendered	on	a	desktop	browser,
tablet,	or	smart	phone.

LISTING	7.1	JQMHelloWorld1.html
<!DOCTYPE	html>

<html	lang=“en”>

		<head>

			<meta	charset=utf-8”	/>

			<title>Hello	World	from	jQuery	Mobile</title>

	

			<link	rel=“stylesheet”

				href=“http://code.jquery.com/mobile/1.1.0/

																															jquery.mobile-1.1.0.min.css”	/>

			<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

			</script>

			<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

			</script>

	

			<script

		src=“http://code.jquery.com/mobile/1.1.0/

																																		jquery.mobile-1.1.0.min.js”>

			</script>

		</head>

					

		<body>

				<div		data-role=“page”>

						<div	data-role=“header”>

								<h2>This	is	the	Header</h2>

						</div>

						<div	data-role=“content”>

								<p>Hello	World	from	a	Simple	jQuery	Mobile	Page</p>

						</div>

						<div	data-role=“footer”>

								<h2>This	is	the	Footer</h2>

						</div>

				</div>

		</body>

</html>

Listing	7.1	is	straightforward:	it	consists	of	a	single	page	view	(an	HTML	<div>
element	with	a	data-role=“page”	attribute)	that	contains	three	<div>	elements:	a	header	section,
the	content	section,	and	the	footer	section,	respectively.

Figure	7.1	displays	the	result	of	rendering	the	HTML	Web	page	in	Listing	7.1	in	a
landscape-mode	screenshot	taken	from	an	Asus	Prime	tablet	with	Android	ICS.

Compare	Figure	7.1	with	Figure	7.2,	which	shows	the	sample	jQuery	Mobile
application	running	on	a	Sprint	Nexus	S	4G	smart	phone	with	Android	ICS	in	landscape
mode,	using	the	same	Android	apk	binary	that	was	used	for	capturing	Figure	7.1.	Notice
how	the	header	and	footer	extend	automatically	to	the	width	of	the	screen	in	both
screenshots.

	
Figure	7.1		Hello	World	on	an	Asus	Prime	tablet	with	Android	ICS	(landscape	mode).

Figure	7.2	displays	the	result	of	rendering	the	HTML	Web	page	in	Listing	7.1	in
landscape	mode	on	a	Sprint	Nexus	S	4G	smart	phone	with	Android	ICS.

	
Figure	7.2		Hello	World	on	a	Sprint	Nexus	S	4G	with	Android	ICS	(landscape	mode).

Now	launch	Listing	7.1	in	a	Webkit-based	browser,	and	compare	what	you	see	in	Figure
7.1	and	Figure	7.2.

			Earlier	you	learned	that	jQuery	Mobile	enhances	a	mobile	Web	page	with
additional	tags	and	CSS	classes.	jQuery	Mobile	“injects”	various	CSS	classes	(that	are
part	of	jQuery	Mobile)	into	the	HTML5	Web	page	in	Listing	7.1.	In	general,	you	will	not
need	to	be	concerned	with	these	details;	however,	you	can	delve	into	the	jQuery	Mobile
source	code	if	you	need	a	deeper	understanding	of	these	details.	The	HTML5	page
JQMHelloWorld1Enhanced.html	on	the	CD	shows	you	how	jQuery	“enhances”	the	contents	of	the
HTML5	Web	page	HelloWorld1.html.

More	Differences	between	jQuery	and	jQuery	Mobile
jQuery	is	a	toolkit	for	creating	HTML	Web	pages	on	a	desktop	browser,	whereas

jQuery	Mobile	provides	support	for	additional	functionality	that	is	relevant	for	mobile
devices:

Support	for	multiple	page	views
Custom	attributes	with	a	data-	prefix	for	page	views	and	transitions
Page	transitions	(pagebeforehide,	pagebeforeshow,	and	so	forth)
The	jqmData()	custom	selector
The	mobileInit	event

jQuery	Mobile	Page	Views

As	you	saw	in	a	previous	code	sample,	each	page	view	in	a	jQuery	Mobile	application
is	defined	by	an	HTML	<div>	element	with	a	data-role=“page”	attribute,	along	with	an	optional
header	element,	a	mandatory	content	element,	and	an	optional	footer	element.

Navigation	between	page	views	is	straightforward:	simply	add	a	link	to	the	<div>
element	with	the	data-role=“content”	attribute	in	the	jQuery	Mobile	application,	as	shown	here:

<div	data-role=“content”>

		<p>A	second	page	viewHome</p>				

</div>

The	transition	between	page	views	occurs	when	users	tap	on	a	link,	and	jQuery	Mobile
automatically	handles	the	necessary	details	of	the	transition.	A	complete	example	of	a
jQuery	Mobile	Web	page	with	multiple	page	views	(and	how	to	navigate	between	the	page
views)	is	provided	later	in	this	chapter.

jQuery	Mobile	Custom	Attributes

jQuery	Mobile	uses	the	data-role	attribute	to	identify	different	parts	of	a	“page	view”
(which	is	essentially	one	screen),	and	some	of	its	supported	values	are	page,	header,	content,
and	footer.	The	data-role	attribute	is	also	used	to	enhance	HTML	elements.	For	example,	if
you	specify	the	attribute	data-role=“listview”	as	part	of	the	HTML		tag	of	an	unordered	list,
then	jQuery	Mobile	will	make	the	necessary	enhancements	(such	as	inserting	markup,
adding	CSS	classes,	and	exposing	listeners)	so	that	you	can	treat	the	unordered	list	as
though	it	were	a	widget.

As	another	example,	you	can	create	a	navigation	bar	by	adding	the	attribute	data-
role=“navbar”	to	the	block-level	HTML5	<nav>	element,	and	the	text	strings	in	the
associated	list	items	(which	are	enclosed	in	the	HTML5	<nav>	element)	are	displayed	as	tab
elements	in	the	navigation	bar.

The	data-transition	attribute	specifies	transition	effects	when	changing	page	views	or
when	displaying	dialogs.	Since	these	transitions	are	based	on	CSS3,	these	transitions	work
only	in	browsers	that	support	CSS3	(such	as	WebKit-based	browsers).	The	allowable	values
for	the	data-transition	attribute	are	fade,	flip,	pop,	slide,	slidedown,	and	slideup.

Some	of	the	other	custom	jQuery	Mobile	attributes	are	data-backbtn,	data-divider,	data-direction,
data-icon,	data-inline,	data-position,	data-rel,	and	data-url.

jQuery	Mobile	Page	Transitions

jQuery	Mobile	provides	page	transitions	(as	well	as	the	event	and	ui	objects)	that	you
can	reference	in	custom	code	blocks	that	you	bind	to	any	page	transition.	Keep	in	mind
that	a	“page”	can	be	a	separate	HTML	Web	page	as	well	as	an	HTML	<div>	element	inside
the	currently	loaded	HTML	Web	page.

Here	is	the	sequence	of	page	events	that	occurs	during	a	page	initialization:
pagebeforecreate:	fires	first

pagecreate:	fires	when	DOM	is	populated

pageinit:	after	initialization	is	completed

pagebeforeshow:	fires	on	‘to’	page	before	transition

pageshow:	fires	on	‘to’	page	after	transition

Whenever	users	tap	a	link	that	navigates	to	a	page	that	is	loaded	for	the	first	time,	the
following	sequence	of	events	occurs:

pagebeforehide:	fires	on	the	‘from’	page	before	transition

pagebeforeshow:	fires	on	the	‘to’	page	before	transition

pagehide:	fires	on	the	‘from’	page	after	transition

pageshow:	fires	on	the	‘to’	page	after	transition

Whenever	a	new	page	is	loaded	using	AJAX,	the	following	sequence	of	events	occurs:
pagebeforeload:	before	the	AJAX	call	is	made

pageload:	after	the	AJAX	call	is	completed

pageloadfailed:	fired	if	an	AJAX	call	has	failed

During	page	transitions,	ui.nextPage	is	assigned	the	target	page	of	the	transition,	or	an
empty	jQuery	object	if	there	is	no	next	page.	Similarly,	ui.prevPage	is	assigned	the	current
page	prior	to	the	transition,	or	an	empty	jQuery	object	if	there	is	no	previous	page.

jQuery	Mobile	uses	AJAX-based	asynchronous	method	invocations	for	its	internal
functionality,	so	it	distinguishes	page	load	events	from	page	show	and	hide	events.	Page
load	events	occur	when	a	file	is	loaded	into	the	browser	in	a	synchronous	manner,	and	the
jQuery(document).ready()	method	is	available,	along	with	other	initialization	events.	Note	that	in
some	cases	you	can	explicitly	specify	synchronous	instead	of	asynchronous	method
invocation,	but	this	feature	is	not	discussed	in	this	chapter	(check	the	online	jQuery
Mobile	documentation	if	you	want	more	details).

As	you	will	see	later	in	this	chapter,	a	single	HTML	Web	page	may	contain	multiple
jQuery	Mobile	page	views,	and	users	can	navigate	among	those	page	views	multiple
times.	These	transitions	do	not	fire	page	load	events;	jQuery	Mobile	provides	a	set	of
events	that	happen	every	time	a	page	transition	occurs.

Since	the	page	hide	and	show	events	are	triggered	every	time	a	page	transition
happens,	make	sure	that	you	do	not	bind	the	event	handlers	more	than	once	by	first
checking	if	the	event	handler	is	not	already	bound	(otherwise	do	nothing),	or	by	clearing
the	binding	prior	to	rebinding	to	a	given	event.

Listing	7.2	displays	the	contents	of	JQMPageEvents1.html	that	illustrates	the	sequence	in
which	page	events	are	executed.

LISTING	7.2	JQMPageEvents1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

	<meta	charset=“utf-8”>

	<title>JQuery	Mobile	Page	Events`</title>

	

	<link	rel=“stylesheet”

		href=“http://code.jquery.com/mobile/1.1.0/

																															jquery.mobile-1.1.0.min.css”	/>

	

		<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

		</script>

		<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

		</script>

	

		<script	src=“http://code.jquery.com/mobile/1.1.0/

																							jquery.mobile-1.1.0.min.js”>		</script>

	</head>

	

	<body>

		<div	data-role=“page”	id=“page1”>

				<div	data-role=“header”>

						<h3>JQuery	Mobile	Page	Events</h3>

				</div>

				<div	data-role=“content”	id=“content”>

				</div>

				<div	data-role=“footer”><h3>Footer</h3></div>

		</div>

	

		<script>

				$(“#page1”).live(‘pagebeforecreate’,	(function(event){

								console.log(“pagebeforecreate	event”);

						})				

);				

	

				$(“#page1”).live(‘pagecreate’,	(function(event){

								console.log(“pagecreate	event”);

						})				

);				

	

				$(“#page1”).live(‘pageinit’,	(function(event){

								console.log(“pageinit	event”);

						})				

);				

	

				$(“#page1”).live(‘pagebeforehide’,	(function(event){

								console.log(“pagebeforehideevent”);

						})

);

	

				$(“#page1”).live(‘pagebeforeshow’,	(function(event){

								console.log(“pagebeforeshow	event”);

						})

);

	

				$(“#page1”).live(‘pagehide’,	(function(event){

								console.log(“pagehide	event”);

						})

);

	

				$(“#page1”).live(‘pageshow’,	(function(event){

								console.log(“pageshow	event”);

						})

);

	</script>

</body>

</html>

Listing	7.2	is	a	simple	HTML5	Web	page	with	HTML	markup	and	jQuery	Mobile
code	for	a	single	page	view.	The	main	block	of	code	uses	the	jQuery	live()	method	to	bind
various	page-related	events,	which	displays	a	message	in	the	console	whenever	the	page
event	occurs.

Figure	7.3	displays	the	result	of	rendering	the	HTML	Web	page	in	Listing	7.2	in	the
Chrome	browser	on	a	MacBook.	The	Chrome	Inspector	at	the	bottom	of	Figure	7.3	shows
you	the	sequence	of	paged-related	events	that	are	fired	in	jQuery	Mobile.

	
Figure	7.3		jQuery	Mobile	page	events	on	the	Chrome	browser	on	a	MacBook.

jQuery	Mobile	and	CSS-Related	Page	Initialization

In	addition	to	exposing	page-related	events,	jQuery	Mobile	performs	additional
processing	on	an	HTML	Web	page	before	the	Web	page	is	rendered	in	a	browser.	First,
jQuery	Mobile	triggers	the	beforecreate	event,	then	adds	the	ui-page	class	to	all	page	elements,
and	finally	adds	the	ui-nojs	class	to	all	page	elements	that	have	data-role=“none”	or	data-role=“nojs”
applied	to	them.

Next,	jQuery	Mobile	searches	for	child	elements	with	a	data-	attribute	and	adds	theming
classes,	an	appropriate	ARIA	role,	and	(if	necessary)	also	adds	a	back	button	to	the	header
for	any	pages	beyond	the	first	page.

Finally,	jQuery	Mobile	enhances	buttons,	control	groups,	and	form	controls,	and
makes	any	necessary	adjustments	to	toolbars.

Thus,	jQuery	Mobile	performs	a	significant	amount	of	work	on	your	behalf,	which
means	that	you	are	unencumbered	with	these	tedious	and	low-level	details	so	that	you	can
concentrate	on	the	functionality	of	your	mobile	applications.

There	is	even	more	good	news:	jQuery	Mobile	automatically	handles	page	transitions
and	back	buttons	as	users	navigate	through	the	various	pages	of	your	mobile	application.
jQuery	Mobile	also	handles	external	pages	by	performing	an	asynchronous	fetch	(using
AJAX)	and	then	integrating	that	external	page	into	the	current	document	(and	an	error
message	is	displayed	if	the	external	page	was	not	found).	The	external	page	is
incorporated	into	the	first	element	with	a	data-role=“page”	attribute	into	the	current	document
(while	ignoring	all	other	content	of	that	page).

Note	that	jQuery	Mobile	displays	an	error	message	if	it	cannot	find	the	Web	page	or	if
the	Web	page	does	not	contain	an	element	with	a	data-role=“page”	attribute.	Make	sure	that	the
id	values	in	the	external	Web	page	are	distinct	from	the	id	values	of	the	current	Web	page.

By	the	way,	you	can	override	the	default	page	loading	in	two	ways:	specifying	a	target
attribute	on	a	link	(such	as	_blank),	or	by	specifying	a	rel=“external”	attribute	on	the	link.

The	mobileinit	Event

jQuery	Mobile	triggers	the	mobileinit	event	on	the	document	object	immediately	upon
execution,	so	you	can	bind	to	it	and	override	any	default	configuration.

For	instance,	suppose	you	need	to	prevent	jQuery	Mobile	from	applying	styling	rules
to	specific	types	of	HTML	elements	throughout	a	mobile	application.	The	following	code
block	prevents	jQuery	Mobile	from	applying	its	styling	rules	(on	a	global	level)	to	HTML
<input>	and	<textarea>	elements:

$(document).bind(‘mobileinit’,function	()	{

			$.mobile.page.prototype.options.keepNative	=	“input,

																																																	textarea”;

});

Note	that	the	data-role=“none”	attribute	serves	the	same	purpose	as	the	previous	code
block,	except	that	it	is	applied	only	to	the	specific	element	that	includes	this	attribute.

jQuery	Mobile	Options	and	Customization
jQuery	Mobile	provides	options	and	methods	for	various	objects,	including	.mobile,

.mobile.path,	and	.mobile.history.	There	are	many	options	that	you	can	configure	for	your	mobile
application,	and	we’ll	cover	just	a	few	of	them	in	this	section.	One	method	that	is
obviously	useful	is	the	jQuery	Mobile	pageLoading()	method	that	shows	and	hides	the	jQuery
Mobile	loading	dialog.	You	call	this	method	with	a	Boolean	value	of	true	to	hide	the	dialog,
and	call	this	method	without	a	parameter	to	show	the	dialog,	as	shown	here:

//	Show	the	page	loading	dialog

$.mobile.pageLoading();

	

//	Hide	the	loading	dialog

$.mobile.pageLoading(true);

You	can	also	customize	the	“loading	message”	and	also	the	type	of	transition	effect,	as
and	shown	here:

$.mobile.loadingMessage	=	“wait	a	few	moments	“;

$.mobile.defaultPageTransition	=	“pop”;

Another	way	of	doing	the	same	thing	as	the	previous	two	lines	is	shown	here:
$.extent($.mobile,	{

				“loadingMessage”	=	“wait	a	few	moments”,

				“defaultPageTransition”	=	“pop”

});

In	fact,	you	can	configure	jQuery	Mobile	with	your	own	initialization	as	follows:	1)
create	a	script	that	loads	before	jQuery	Mobile	is	loaded,	and	2)	bind	an	event	handler	to
the	mobileinit	event.

If	you	want	more	information	about	jQuery	Mobile	custom	initialization,	options,	and
methods,	read	the	jQuery	documentation	for	an	in-depth	explanation	of	how	you	can	use
them.

Page	Navigation	and	Changing	Pages
As	users	navigate	around	your	mobile	Web	application,	jQuery	Mobile	also	updates

the	location.hash	object,	with	the	unique	URL	of	each	page	view	(which	is	defined	by	an
element	with	a	data-role=“page”	attribute).	jQuery	Mobile	automatically	stores	the	URL	for	each
page	is	stored	in	the	data-url	attribute,	which	jQuery	Mobile	assigns	to	the	“container”
element	of	a	page.

jQuery	Mobile	also	provides	a	set	of	methods	that	enable	you	to	programmatically
handle	page	changes	and	scrolling.	One	of	these	methods	is	changePage(),	whose	syntax
looks	like	this:

changePage(to,	transition,	back,	changeHash);

The	to	parameter	is	a	string	that	specifies	an	element	id	or	a	filename	(along	with	many
other	options),	and	it	is	a	reference	to	the	target	page.	The	transition	parameter	is	the	name	of
the	transition	effect	that	is	created	when	the	application	goes	to	the	target	page.	The	back
parameter	is	a	Boolean	value	that	specifies	whether	or	not	a	transition	is	in	reverse.
Finally,	the	changeHash	parameter	is	a	Boolean	that	specifies	whether	or	not	to	update	the
location.hash	object.

The	changePage()	method	enables	you	to	create	more	sophisticated	page	transition
effects.	For	example,	the	following	code	snippet	goes	to	page	#first	when	users	click	on	the
.back-btn,	with	a	“flip”	effect	in	reverse	without	updating	the	location	hash:

$(“.back-btn”).bind(“click”,	function()	{

		changePage(“#first”,	“flip”,	true,	false);

});

jQuery	Mobile	also	provides	the	silentScroll()	method	with	a	single	integer	value	that
specifies	the	y-position	of	the	destination.	When	this	method	is	invoked,	the	scroll	event
listeners	are	not	triggered.	As	an	example,	the	following	code	snippet	scrolls	down	to
position	200:

$.mobile.silentScroll(200);

The	jqmData()	Custom	Selector

In	Chapter	1,	you	learned	about	the	jQuery	data()	method.	jQuery	Mobile	provides	a
corresponding	method	called	jqmData(),	which	is	a	custom	selector	specifically	for	selecting
custom	data-	attributes.

For	example,	in	jQuery	you	can	select	all	the	elements	in	a	Web	page	that	contain	a
data-role	attribute	whose	value	is	page	using	this	code	snippet:

$(“[data-role=‘page’]”)

You	can	select	the	same	set	of	elements	using	jqmData()	as	shown	here:
$(“:jqmData(role=‘page’)”)

Select	all	elements	with	any	custom	data-	attribute	within	those	selected	pages:
	$(“:jqmData(role=‘page’)”).jqmData(role)

Note	that	the	jqmData()	selector	automatically	handles	namespacing	for	you	by
specifying	a	value	for	the	string	namespace-	(which	is	empty	by	default),	thereby	avoiding
tagname	collisions.

Multiple	Page	Views	in	One	HTML5	Web	Page
jQuery	Mobile	enables	you	to	conveniently	define	multiple	page	views	in	a	single

HTML5	Web	page,	along	with	a	simple	mechanism	for	users	to	navigate	among	the
different	page	views	in	the	HTML5	Web	page.	The	use	of	a	single	HTML5	Web	page	is
recommended	because	this	approach	is	more	efficient	than	creating	a	mobile	application
with	multiple	HTML5	Web	pages.	Although	the	initial	download	for	the	HTML5	Web
page	might	be	longer,	there	are	no	additional	Internet	accesses	required	when	users
navigate	to	different	parts	of	the	Web	page.

Listing	7.3	displays	the	contents	of	JQMMultiPageViews1.html	that	illustrates	how	to
navigate	between	multiple	internal	page	views	in	a	single	HTML5	Web	page.

LISTING	7.3:	JQMMultiPageViews1.html
<!DOCTYPE	html>

<html>

<head>

		<meta	charset=utf-8”	/>

		<title>jQuery	Mobile:	Multiple	Page	Views</title>

	

		<link	rel=“stylesheet”

				href=“http://code.jquery.com/mobile/1.1.0/jquery.

																																							mobile-1.1.0.min.css”	/>

	

		<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

		</script>

		<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

		</script>

	

			<script	src=“http://code.jquery.com/mobile/1.1.0/

																																			jquery.mobile-1.1.0.min.js”>

			</script>

</head>

	

	<body>

		<div	data-role=“page”	id=“home”>

				<div	data-role=“header”>	<h1>Home	Page	Header	</h1></div>

				<div	data-role=“content”>

						<p>This	is	the	content	of	the	main	page</p>

						<p>Click	here	to	get	more

																																											information</p>

				</div>

				<div	data-role=“footer”>	<h1>Home	Page	Footer</h1></div>

		</div>

			

		<div	data-role=“page”	id=“about”>

				<div	data-role=“header”><h1>About	This	Page	Header</h1></div>

				<div	data-role=“content”>

						<p>A	second	page	view	(that’s	all	for	now)</p>

							Click	Here	or	the	‘Back’	Button	to	go

																																																						Home

				</div>

				<div	data-role=“footer”><h1>About	This	Page	Footer</h1></div>

		</div>

	</body>

</html>

Listing	7.3	contains	two	page	views,	as	specified	by	the	HTML	<div>	elements	whose	id
attribute	has	values	home	and	about	(shown	in	bold	in	Listing	7.3).	When	users	navigate	to
the	second	page	view,	this	code	snippet	returns	to	the	first	page	view:

	Click	Here	or	the	‘Back’	Button	to	go	Home

The	page	views	or	screens	in	a	jQuery	Mobile	application	are	top-level	sibling
elements,	each	of	which	contains	the	attribute	data-role=“page”	(so	pages	cannot	be	nested).

The	jQuery	Mobile	framework	automatically	generates	a	back	button	and	a	home
button	on	every	page	view,	but	you	can	suppress	the	back	button	by	specifying	the
attribute	data-backbtn=“false”	attribute,	as	shown	here:

<div	data-role=“header”	data-backbtn=“false”>

		<h1>Page	Header</h1>

</div>

Figure	7.4	displays	the	result	of	rendering	the	HTML	Web	page	in	Listing	7.3	in	a
landscape-mode	screenshot	taken	from	a	Sprint	Nexus	S	4G	with	Android	ICS.

	
Figure	7.4		Multi-page	app	on	a	Sprint	Nexus	S	4G	with	Android	ICS.

When	you	click	on	the	link	on	the	Web	page,	the	application	navigates	to	the	second
screen,	whose	code	definition	is	also	included	in	Listing	7.3.

Positioning	the	Header	and	Footer	in	Page	Views
jQuery	Mobile	can	dynamically	position	the	header	and	footer	toolbars	in	three	ways:

Standard:	The	toolbars	are	presented	according	to	the	document	flow,	scrolling	into
and	out	of	the	viewport	as	the	user	scrolls	through	data.	This	is	the	default.

Fixed:	The	header	and	footer	will	appear	at	the	top	and	bottom	of	the	viewport	and
remain	there	as	the	user	scrolls.	Tapping	on	the	screen	will	cause	them	to	return	to	their
regular	position	in	the	document	flow.

Fullscreen:	The	header	and	footer	will	appear	within	the	viewport	and	stay	present	as
the	user	scrolls,	regardless	of	where	the	user	is	in	the	content.	Tapping	on	the	screen	will
hide	them.	Essentially,	the	header	and	footer	are	removed	from	the	document	flow	and	are
always	dynamically	positioned	at	the	top	and	bottom	of	the	viewport.

Include	the	data-position=“fixed”	attribute	in	the	<header>	or	<footer>	tags	to	create	a	fixed
header	and	footer,	as	illustrated	in	Listing	7.4	that	displays	the	contents	of	JQMFixed1.html.

LISTING	7.4	JQMFixed1.html
<!DOCTYPE	html>

<html	lang=“en”>

	<head>

			<meta	charset=“utf-8”	/>

			<title>Fixed	Header	and	Footer	in	jQueryMobile</title>

	

		<link	rel=“stylesheet”

				href=“http://code.jquery.com/mobile/1.1.0/jquery.

																																						mobile-1.1.0.min.css”	/>

		<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

		</script>

		<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

		</script>

			<script	src=“http://code.jquery.com/mobile/1.1.0/

																																		jquery.mobile-1.1.0.min.js”>

			</script>

	</head>

	

	<body>

			<div	id=“page1”	data-role=“page”>

					<header	data-role=“header”	data-position=“fixed”>

							<h1>jQuery	Mobile</h1>

					</header>

					<div	class=“content”	data-role=“content”>

							<h3>Content	area.</h3>

					</div>

					<footer	data-role=“footer”	data-position=“fixed”>

							<h3>Fixed	Footer</h3>

					</footer>

				</div>

		</body>

</html>

Listing	7.4	contains	HTML	markup	and	a	single	page	view	that	also	specifies	the
attribute	data-position=“fixed”	for	the	header	and	footer	elements.

You	can	also	create	a	fullscreen	header	or	a	fullscreen	footer	by	including	the	attribute
data-fullscreen=“true”	in	the	element	that	contains	the	data-role=“page”	attribute,	along	with	the
attribute	data-position=“fixed”	to	the	header	and	footer	elements,	as	shown	here:

<section	id=“page1”	data-role=“page”	data-fullscreen=“true”>

		<header	data-role=“header”	data-position=“fixed”>

				<h1>jQuery	Mobile</h1>

		</header>

		<div	class=“content”	data-role=“content”>

				<h3>Content	area</h3>

		</div>

		<footer	data-role=“footer”	data-position=“fixed”>

				<h3>Mercury	Learning	</h3></footer>

		</div>

</section>

<p>About	this	app</p>

Figure	7.5	displays	the	result	of	rendering	the	HTML5	Web	page	in	Listing	7.5,	in	the
Chrome	browser	on	a	MacBook.

	
Figure	7.5		Fixed	headers/footers	in	the	Chrome	browser	on	a	MacBook.

Launch	the	HTML5	Web	page	in	Listing	7.5	in	the	Chrome	browser.	As	you	resize
your	browser	horizontally	or	vertically,	notice	how	the	header	and	footer	“bar”	remain
anchored	to	the	top	and	the	bottom	of	the	screen,	respectively.

Now	that	you	understand	the	structure	of	an	HTML5	Web	page	in	jQuery	Mobile,	let’s
see	how	to	add	jQuery	Mobile	buttons	to	an	HTML5	Web	page.

Working	with	Buttons	in	jQuery	Mobile
jQuery	Mobile	provides	a	set	of	button	markup	options	that	enable	you	to	style	links	as

buttons,	and	also	built-in	support	for	automatically	handling	various	types	of	HTML
<input>	elements	as	though	they	were	buttons.	In	addition,	jQuery	Mobile	supports	inline
buttons,	grouped	buttons	(both	vertical	and	horizontal),	and	an	assortment	of	theming
effects	for	buttons.

jQuery	Mobile	creates	stylized	buttons	by	applying	data-role=“button”	to	HTML	<input>
buttons,	<button>	tags,	and	anchor	links.	Buttons	are	as	wide	as	their	containing	element;
however,	if	you	specify	the	attribute	data-inline=“true”,	then	buttons	are	rendered	only	as	wide
as	their	content.

In	some	of	the	earlier	versions	of	jQuery	Mobile	(prior	to	1.7),	you	could	prevent

jQuery	Mobile	from	applying	its	styling	to	a	button	by	placing	your	custom	markup	inside
an	HTML	<div>	element	located	inside	the	HTML5	<header>	element.	However,	this
functionality	is	no	longer	available	in	version	1.7	and	beyond;	keep	this	in	mind	in	case
you	encounter	this	functionality	in	Web	pages	that	use	older	versions	of	jQuery	Mobile.

You	can	also	create	a	reverse	transition	without	going	back	in	history	by	using	the
attribute	data-direction=“reverse”	instead	of	data-rel=“back”,	as	shown	here:

<div	data-role=“header”>

		Reverse	Transition

		<h1>Left	and	Right	Buttons</h1>

		<!—	This	appears	on	the	right	—>

		Add

</div>

Buttons	can	be	moved	to	the	left	or	right,	as	shown	here:
<div	data-role=“header”>

Right

	<h1>Page	title</h1>

Left

</div>

Navigation	Buttons	as	Anchor	Links

In	jQuery	Mobile,	the	recommended	practice	is	to	define	navigation	buttons	as	anchor
links	and	to	define	form	submission	buttons	as	button	elements.

An	anchor	link	that	contains	the	attribute	data-role=“button”	is	styled	as	a	button,	as	shown
here:

Link-based	button

A	jQuery	Mobile	button	element	or	input	element	whose	type	is	submit,	reset,	button,	or
image	does	not	require	the	attribute	data-role=“button”	because	jQuery	Mobile	automatically
treats	these	elements	as	a	link-based	button.

Although	the	original	form-based	button	is	not	displayed,	it	is	included	in	the	HTML
markup.	When	a	click	event	occurs	on	a	link	button,	a	corresponding	click	event	occurs	on
the	original	form	button.

Groups	of	Buttons	and	Column	Grids

jQuery	Mobile	enables	you	to	render	a	set	of	buttons	(or	checkboxes	or	radio	buttons)
as	a	block	by	defining	a	container	HTML	<div>	element	that	specifies	the	attribute	data-
role=“controlgroup”,	and	then	include	one	or	more	button	elements.	The	default	rendering	of
the	included	buttons	is	horizontal	(a	row),	and	you	can	render	the	buttons	as	a	vertical
group	by	specifying	the	attribute	data-type=“vertical”.

jQuery	Mobile	renders	the	buttons,	removes	margins	(and	drop	shadows)	between
buttons,	and	also	“rounds”	the	first	and	last	buttons	in	order	to	create	a	group-like	effect.
The	following	code	block	shows	you	how	to	specify	a	horizontal	group	of	buttons:

<div	data-role=“controlgroup”>

		One

		Two

		Three

</div>

One	point	to	keep	in	mind:	the	buttons	will	“wrap”	to	additional	rows	if	the	number	of
buttons	exceeds	the	screen	width.	Listing	7.5	shows	you	how	to	render	a	horizontal	group
and	a	vertical	group	of	buttons.

The	jQuery	Mobile	framework	enables	you	to	render	CSS-based	columns	through	a
block	style	class	convention	called	ui-grid.	You	can	render	two-column,	three-column,	four-
column,	and	five-column	layouts	by	using	the	class	value	ui-grid-a,	ui-grid-b,	ui-grid-c,	and	ui-
grid-d,	respectively.	The	following	code	block	illustrates	how	to	render	a	two-column
layout:

<div	class=“ui-grid-a”>

		<div	class=“ui-block-a”>Block	1	and	text	inside	will	wrap</div>

		<div	class=“ui-block-b”>Block	2	and	text	inside	will	wrap</div>

</div>

Notice	the	difference	in	the	following	code	block	that	displays	a	three-column	layout:
<div	class=“ui-grid-b”>

		<div	class=“ui-block-a”>Block	1	and	text	inside	will	wrap</div>

		<div	class=“ui-block-b”>Block	2	and	text	inside	will	wrap</div>

		<div	class=“ui-block-c”>Block	3	and	text	inside	will	wrap</div>

</div>

You	can	find	more	details	and	code	samples	here:

http://jquerymobile.com/demos/1.0b1/#/demos/1.0/docs/content/content-grids.html

Rendering	Buttons	with	Themes

jQuery	Mobile	has	an	extensive	theming	system,	involving	themes	labeled	“a”	through
“e,”	for	controlling	the	manner	in	which	buttons	are	styled.	When	a	link	is	added	to	a
container,	jQuery	Mobile	will	assign	it	a	theme	“swatch”	letter	that	matches	the	theme	of
its	parent.	For	example,	a	button	placed	inside	a	content	container	with	a	theme	of	“a”
(black	in	the	default	theme)	is	automatically	assigned	the	button	theme	of	“a”	(charcoal	in
the	default	theme).

An	example	of	a	button	theme	is	shown	here:
<div	data-role=“footer”	class=“ui-bar”>

	<a	href=“left.html”	data-icon=“arrow-l”

				data-role=“button”	data-theme=“a”>Left

</div>

Listing	7.5	displays	the	contents	of	JQMButtons1.html,	which	illustrates	how	to	render
buttons	horizontally	and	vertically,	how	to	apply	different	themes,	and	how	to	specify

http://jquerymobile.com/demos/1.0b1/#/demos/1.0/docs/content/content-grids.html

custom	CSS	selectors.

LISTING	7.5	JQMButtons1.html
<!DOCTYPE	html>

<html	lang=“en”>

		<head>

			<meta	charset=“utf-8”	/>

			<title>Multiple	Buttons	and	Themes	in	jQuery	Mobile</title>

	

			<link	rel=“stylesheet”	href=“CSS3Background1.css”	/>

	

			<link	rel=“stylesheet”

				href=“http://code.jquery.com/mobile/1.1.0/

																															jquery.mobile-1.1.0.min.css”	/>

		<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

		</script>

		<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

		</script>

	

			<script	src=“http://code.jquery.com/mobile/1.1.0/

																																					jquery.mobile-1.1.0.min.js”>

			</script>

		</head>

			

		<body>

				<div	id=“page1”	data-role=“page”>

						<div	data-role=“header”>

								<!—	This	button	appears	on	the	left	—>

								<a	href=“abc.html”	data-icon=“arrow-l”

																											data-theme=“b”>Index

	

								<h1>Rendering	Buttons	in	jQuery	Mobile</h1>

	

								<!—	This	button	appears	on	the	right	—>

								Add

						</div>

	

						<div	class=“content”	data-role=“content”>

								<div	data-role=“controlgroup”	data-type=“horizontal”>

										One

										Two

										Three

										Four

										Five

								</div>

	

										<a	href=“index6.html”	class=“shadow”

													data-role=“button”>Vertical1

										<a	href=“index7.html”	class=“shadow”

													data-role=“button”>Vertical2

										<a	href=“index8.html”	class=“shadow”

													data-role=“button”>Vertical3

	

								<div	data-role=“controlgroup”>

										Vertical1

										Vertical2

										Vertical3

								</div>

	

								<div>

										<a	href=“index9.html”	data-role=“button”		id=“cancel”

													data-inline=“true”>Cancel

										<a	href=“index10.html”	data-role=“button”	id=“submit”

													data-inline=“true”	data-theme=“b”>Save

								</div>

						</div>

	

						<!—	Display	four	directional	array	keys	—>

						<div	data-role=“footer”	class=“ui-bar”>

							<a	href=“left.html”	data-icon=“arrow-l”

										data-role=“button”	data-theme=“a”>Left

							<a	href=“up.html”	data-icon=“arrow-u”

										data-role=“button”	data-theme=“b”>Up

							<a	href=“down.html”	data-icon=“arrow-d”

										data-role=“button”	data-theme=“c”>Down

							<a	href=“right.html”	data-icon=“arrow-r”

										data-role=“button”data-theme=“e”>Right

						</div>

	

				</div>

		</body>

</html>

Listing	7.5	contains	HTML	markup	and	references	to	jQuery	files,	followed	by	a
single	page	view	that	renders	an	assortment	of	buttons	(they	have	a	data-role=“button”
attribute),	some	of	which	are	in	a	horizontal	group,	while	others	are	in	a	vertical	group.

Notice	that	the	vertical	group	of	buttons	is	rendered	with	a	reddish-tinged	background
shadow,	which	creates	a	richer	visual	effect.	This	is	accomplished	simply	by	specifying	a
value	of	shadow	for	the	class	attribute,	as	shown	in	bold	in	this	code	block:

<a	href=“index6.html”	class=”shadow”

																						data-role=“button”>Vertical1

<a	href=“index7.html”	class=”shadow”

																						data-role=“button”>Vertical2

<a	href=“index8.html”	class=”shadow”

																						data-role=“button”>Vertical3

In	addition,	the	“cancel”	and	“submit”	buttons	specify	class=“shadow”,	and	they	are
rendered	with	a	psychedelic	effect,	which	you	obviously	don’t	want	to	render	in	most
cases.	Nevertheless,	you	see	how	easily	you	can	style	buttons	with	custom	CSS3-based
visual	effects,	and	the	definition	of	the	shadow	selector	is	shown	in	Listing	7.6.

The	bottom	row	of	four	HTML	<a>	elements	in	Listing	7.5	renders	four	directional
arrows	because	they	have	a	data-icon	attribute	that	is	set	to	arrow-l,	arrow-u,	arrow-d,	and	arrow-r,
respectively.	In	addition,	these	four	HTML	<a>	elements	specify	different	values	for	the
attribute	data-theme,	and	they	are	rendered	according	to	the	visual	display	for	each	of	these
pre-defined	jQuery	Mobile	themes.

Note	that	the	HTML	<a>	elements	in	Listing	7.6	reference	HTML	Web	pages	that	are
not	defined	for	this	mobile	application.	Thus,	when	users	click	on	these	links,	they	will	see
an	error	message.

LISTING	7.6	CSS3Background1.css
#cancel,	#submit,	.shadow	{

	background-color:white;

	background-image:

		-webkit-radial-gradient(red	4px,	transparent	18px),

		-webkit-repeating-radial-gradient(red	2px,		green	4px,

																																				yellow	8px,	blue	12px,

																																				transparent	28px,

																																				green	20px,	red	24px,

																																				transparent	28px,

																																				transparent	32px),

		-webkit-repeating-radial-gradient(red	2px,		green	4px,

																																				yellow	8px,	blue	12px,

																																				transparent	28px,

																																				green	20px,	red	24px,

																																				transparent	28px,

																																				transparent	32px);

	

	background-size:	50px	60px,	70px	80px;

	background-position:	0	0;

	-webkit-box-shadow:		30px	30px	30px	#400;

}							

Listing	7.6	contains	definitions	that	are	familiar	to	you	from	Chapter	2.	You	can	refer
to	the	relevant	sections	in	that	chapter	if	you	need	to	refresh	your	memory.

Figure	7.6	displays	the	result	of	rendering	the	HTML	Web	page	in	Listing	7.5	on	a
Sprint	Nexus	S	4G	with	Android	ICS.

	
Figure	7.6		Buttons	on	a	Sprint	Nexus	S	4G	with	Android	ICS.

As	you	can	see,	there	are	many	styling-related	options	available	in	jQuery	mobile,	so	a
summary	of	the	discussion	about	jQuery	Mobile	buttons	might	be	helpful:

An	anchor	link	with	the	attribute	data-role=“button”	is	rendered	as	a	button.
Any	input	element	with	the	type	button,	submit,	reset,	or	image	is	assigned	a	class	of

ui-btn-hidden	and	a	link-based	button	is	displayed.
Add	a	data-icon	attribute	to	create	a	button	with	an	icon.
Add	a	data-iconpos	attribute	to	change	the	position	of	the	icon.
Specify	data-inline=“true”	to	render	a	button	only	as	wide	as	its	text.
data-role=“controlgroup”	 (data-type=“horizontal”)	 groups	 buttons	 vertically	 (horizontally)	 in	 a
<div>	element.
data-theme=“e”	attribute	is	the	fifth	of	five	jQuery	themes	(“a”	through	“e”).

List	Views	in	jQuery	Mobile
jQuery	Mobile	supports	list	views	(which	are	very	common	in	mobile	applications)

and	several	variations,	including	list	view	buttons,	nested	list	views,	and	list	view	split
buttons.	jQuery	Mobile	can	enhance	ordered	lists	and	unordered	lists	by	applying	the
attribute	data-role=“listview”	to	a	list.	List	view	elements	that	are	embedded	inside	anchor	tags
respond	to	user	gestures,	as	shown	in	Listing	7.7,	which	displays	the	contents	of	the
jQuery	Mobile	Web	page	JQMSimpleListView1.html.

LISTING	7.7	JQMSimpleListView1.html
<!DOCTYPE	html>

<html	lang=“en”>

		<head>

			<meta	charset=utf-8”	/>

			<title>Simple	List	Views	in	jQuery	Mobile</title>

	

			<link	rel=“stylesheet”

				href=“http://code.jquery.com/mobile/1.1.0/

																															jquery.mobile-1.1.0.min.css”	/>

		<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

		</script>

		<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

		</script>

			<script	src=“http://code.jquery.com/mobile/1.1.0/

																																		jquery.mobile-1.1.0.min.js”>

			</script>

		</head>

	

		<body>

				<div	data-role=“page”>

						<div	data-role=“header”>	<h2>This	is	the	Header</h2></div>

						<div	data-role=“content”>

								<h3>Simple	Unordered	List	Example</h3>

								<ul	data-role=“listview”>

										Unordered	Item	1

										Unordered	Item	2

										Unordered	Item	3

								

								<h3>Simple	Ordered	List	Example</h3>

								<ol	data-role=“listview”>

										Ordered	Item	1

										Ordered	Item	2

										Ordered	Item	3

								

						</div>

						<div	data-role=“footer”><h2>	This	is	the	Footer</h2>	</div>

				</div>

		</body>

</html>

Whenever	users	tap	on	any	list	item	in	Listing	7.7,	you	can	detect	that	event	and
execute	custom	code	(if	any)	that	you	have	bound	to	that	event.	In	this	example,	the	href
attribute	has	value	#,	so	the	page	is	reloaded	when	users	tap	or	click	on	the	list	items.

Figure	7.7	displays	the	result	of	rendering	the	HTML	Web	page	in	Listing	7.7	in
landscape	mode	on	an	Asus	Prime	tablet	with	Android	ICS.

	
Figure	7.7		List	view	on	an	Asus	Prime	Tablet	with	Android	ICS.

Additional	Code	Samples	on	the	CD

			jQuery	Mobile	can	create	interactive	views	with	nested	lists,	and	users	can
“drill	down”	by	tapping	on	list	items.	The	first	view	displays	the	items	in	the	top-level	list,
and	tapping	on	one	of	those	items	will	display	the	sublist	for	that	item	(and	so	forth).	In
addition,	jQuery	Mobile	automatically	provides	a	back	button	and	also	takes	care	of	the
URL	mapping	and	transitions	between	pages.

			The	HTML5	Web	page	JQMNestedListViews1.html	on	the	CD	is	a	jQuery	Mobile
Web	page	that	illustrates	how	to	render	nested	lists	and	how	to	navigate	between	pages
when	users	click	on	list	items.

Navigation	bars	in	mobile	applications	often	consist	of	a	set	of	buttons	that	enable
users	to	navigate	through	the	page	views.	jQuery	Mobile	allows	you	to	include	navigation
bars	in	the	header,	footer,	or	content	areas	of	a	page	view	(and	also	provide	the	appropriate
formatting	for	the	navigation	bars).

			To	designate	a	navigation	bar,	apply	the	data-role=“navigation”	to	a	block	level
element	like	the	HTML	5	<nav>	element.	Anchor	tags	contained	within	a	designated
navigation	element	will	be	formatted	as	a	button	group.	jQuery	Mobile	will	automatically
handle	changing	the	active	and	inactive	states	of	the	buttons,	as	shown	in	the	HTML5	Web
page	JQMNavigationBar1.html	on	the	CD.

			jQuery	Mobile	enables	you	to	show	and	hide	a	list	of	menu	options,	and	you
can	also	use	transitions	to	create	animation	effects	as	the	menu	list	is	displayed	or	hidden
from	view.	The	HTML5	Web	page	JQMMenu1.html	on	the	CD	illustrates	how	to	create	a
sliding	menu	in	an	HTML5	Web	page.

jQuery	Mobile	and	AJAX

jQuery	Mobile	uses	AJAX	for	form	submission,	and	will	attempt	to	integrate	the
server	response	into	the	DOM	of	the	application,	providing	transitions	as	expected.	If	you
wish	to	prevent	jQuery	Mobile	from	using	AJAX	to	handle	a	form,	apply	the	attribute	data-
ajax=“false”	to	the	form	tag.

Listing	7.8	displays	the	contents	of	JQMAjax1.html	that	illustrates	how	to	handle	AJAX
invocations	in	a	jQuery	Mobile	application.

LISTING	7.8	JQMAjax1.html
<!DOCTYPE	html>

<html	lang=“en”>		

<head>

			<meta	charset=“utf-8”	/>

			<title>jQuery	Mobile	and	AJAX</title>

	

			<link	rel=“stylesheet”

				href=“http://code.jquery.com/mobile/1.1.0/

																															jquery.mobile-1.1.0.min.css”	/>

			<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

			</script>

			<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

			</script>

			<script	src=“http://code.jquery.com/mobile/1.1.0/

																																		jquery.mobile-1.1.0.min.js”>

			</script>

		</head>

				

		<body>

				<script>

					var	xmlData	=	””,	count	=	0;

	

					$(“#page1”).live(‘pageinit’,	(function(event){

							$.ajax({

									url:	‘http://localhost:9000/sample.xml’,

									dataType:	‘xml’,

									success:	function(data)	{

																				$(data)

																						.find(‘svg’)

																						.children()

																						.each(function()	{

																								var	node	=	$(this);

																								var	x						=	node.attr(‘x’);

																								var	y						=	node.attr(‘y’);

																								var	width		=	node.attr(‘width’);

																								var	height	=	node.attr(‘height’);

																								var	stroke	=	node.attr(‘stroke’);

																								var	fill			=	node.attr(‘fill’);

	

																								//	other	processing	here…

																								++count;

	

																								console.log(“element:	“+node);

																				});

																				console.log(“element	count:	“+count);

									},

									error:	function()	{

												alert(‘no	data	found’);

									}

							})

					})

);

				</script>

	

				<div	id=“page1”	data-role=“page”>

						<div	data-role=“header”>Header</div>

						<div	data-role=“content”>

								<p>Hello	World	from	jQuery	Mobile</p>

						</div>

						<div	data-role=“footer”>Footer</div>

				</div>

		</body>

</html>

Listing	7.8	contains	HTML	markup	and	a	jQuery	Mobile	AJAX	invocation	that	is
executed	after	this	Web	page	is	loaded	into	a	browser.	Then,	the	code	processes	all	the
child	elements	of	the	<svg>	element	in	the	XML	document	sample.xml	(displayed	in	Listing
7.9),	as	shown	here:

var	node	=	$(this);

var	x						=	node.attr(‘x’);

var	y						=	node.attr(‘y’);

var	width		=	node.attr(‘width’);

var	height	=	node.attr(‘height’);

var	stroke	=	node.attr(‘stroke’);

var	fill			=	node.attr(‘fill’);

For	the	purpose	of	illustration,	this	code	makes	the	assumption	that	the	XML
document	sample.xml	in	Listing	7.9	contains	XML	elements	that	have	the	attributes	specified
in	the	preceding	code	block.

LISTING	7.9	sample.xml
<?xml	version=‘1.0’	encoding=‘iso-8859-1’?>

<svg	xmlns=“http://www.w3.org/2000/svg”

					xmlns:xlink=“http://www.w3.org/1999/xlink”

					width=“100%”	height=“100%”>

		<rect	x=“50”		y=“10”	width=“100”	height=“200”

								stroke=“blue”	fill=“red”	/>

		<rect	x=“200”	y=“10”	width=“100”	height=“200”

								stroke=“blue”	fill=“green”	/>

		<rect	x=“350”	y=“10”	width=“100”	height=“200”

								stroke=“blue”	fill=“blue”	/>

</svg>

Place	the	files	in	Listing	7.8	and	7.9	in	the	same	directory,	and	launch	a	Web	server
that	serves	requests	on	port	9000.	Launch	the	HTML	Web	page	in	Listing	7.8	in	the
Chrome	browser	on	a	laptop	or	desktop,	open	Chrome	Inspector,	and	inspect	the	contents
of	the	Chrome	console.	You	will	see	something	similar	to	the	contents	of	Figure	7.8,
which	displays	the	contents	of	the	Chrome	Inspector	in	the	Chrome	browser	on	a
MacBook.

	
Figure	7.8		A	jQuery	Mobile	AJAX	invocation	on	a	Chrome	browser	on	a	MacBook.

jQuery	Mobile	and	Geolocation
In	Chapter	5,	you	learned	how	to	obtain	Geolocation	information	for	users.	In	this

section,	you	will	see	how	to	use	jQuery	Mobile	in	order	to	obtain	Geolocation
information.

Listing	7.10	displays	the	contents	of	JQMGeoLocation1.html	that	illustrates	how	to	obtain
Geolocation	information	in	an	HTML5	Web	page.

LISTING	7.10	JQMGeoLocation1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

		<meta	charset=“utf-8”>

		<title>JQueryMobile	Geolocation</title>

	

			<link	rel=“stylesheet”

				href=“http://code.jquery.com/mobile/1.1.0/

																															jquery.mobile-1.1.0.min.css”	/>

			<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

			</script>

			<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

			</script>

			<script	src=“http://code.jquery.com/mobile/1.1.0/

																																		jquery.mobile-1.1.0.min.js”>

			</script>

	

			<!—	google	maps	API	—>

			<script

					src=“http://maps.google.com/maps/api/js?sensor=false”>

			</script>

	

			<style>

#theMap,	#theCoords	{

font-size:	16px;

height:	200px;

width:		400px;

}

			</style>

	

<script>

			function	findUserLocation()	{

					//	specify	the	‘success’	and	‘fail’	JavaScript	functions

					navigator.geolocation.getCurrentPosition(successCallback,

																																														errorCallback);

			}

	

function	successCallback(position)	{

		var	latitude		=	position.coords.latitude;

		var	longitude	=	position.coords.longitude;

		var	latlong			=	new	google.maps.LatLng(latitude,	longitude);

	

		var	myOptions	=	{

							zoom:	14,

							center:	latlong,

							mapTypeId:	google.maps.MapTypeId.ROADMAP

		};

	

		//	use	Google	Maps	to	display	the	current	location

		var	map	=	new	google.maps.Map(document.getElementById(“theMap”),	myOptions);

		map.setCenter(latlong);

	

/*

				var	marker	=	new	google.maps.Marker({

						position:	initialLocation,

						map:	map,

						title:	“I	Am	Here!”

		});

*/

	

		//	display	position	details	in	the	console

		positionDetails(position);

}

	

function	errorCallback(error)	{

		if(error.code	=	error.PERMISSION_DENIED)	{

					console.log(“Error:	you	must	enable	geolocation	access”);

		}	else	if(error.code	=	error.PERMISSION_UNAVAILABLE)	{

					console.log(“Error:	geolocation	unavailable”);

		}	else	if(error.code	=	error.TIMEOUT)	{

					console.log(“Error:	timeout	occurred”);

		}

	

//console.log(error);

}

	

function	positionDetails(pos)	{

	var	positionStr	=

			“Latitude:”+	pos.coords.latitude	+”
”+

			“Longitude:”+	pos.coords.longitude	+”
”+

			“Accuracy:”+	pos.coords.accuracy	+”
”+

	

			“Altitude:”+	pos.coords.altitude	+”
”+

			“AltitudeAccuracy:”+	pos.coords.altitudeAccuracy	+”
”+

			“Heading:”+	pos.coords.heading	+”
”+

			“Speed:”+	pos.coords.speed	+””;

	

			$(“#theCoords”).html(positionStr);

			console.log(positionStr);

}

</script>

</head>

	

	<body>

				<div	data-role=“page”	id=“page1”>

						<div	data-role=“header”><h3>JQuery	Mobile

																																		Geolocation</h3></div>

						<div	data-role=“content”	id=“content”>

								<div	id=“theMap”>	</div>

	

								<form	id=“geoLocationForm”>

										<input	type=“button”	id=“geobutton”

																	value=“Click	to	Find	My	Current	Location”>

								</form>

								<div	id=“theCoords”>	</div>

						</div>

						<div	data-role=“footer”><h3>Footer</h3></div>

				</div>

	

				<script>

						$(“#page1”).live(‘pageinit’,	(function(event){

									$(“#geobutton”).bind(“vmousedown”,function(event,	ui){

											findUserLocation();

								});

						})

);

				</script>

		</body>

</html>

Listing	7.10	contains	code	that	is	very	similar	to	the	code	sample	that	you	saw	in
Chapter	5.	The	only	difference	is	that	the	code	in	Listing	7.10	has	been	adapted	to	jQuery
Mobile,	whereas	the	code	in	Chapter	5	uses	jQuery.	As	such,	you	can	read	the	explanation
that	is	provided	immediately	after	the	related	code	sample	in	Chapter	5.

If	you	are	interested	in	mobile	maps,	there	are	many	such	examples	available,
including	the	details	on	this	Website:

http://jquery-ui-map.googlecode.com/svn/trunk/demos/jquery-google-maps-
mobile.html

Summary
In	this	chapter,	you	learned	about	various	features	of	jQuery	Mobile,	along	with	code

samples	that	showed	you	examples	of	how	to	handle	events,	create	Web	pages	with
multiple	page	views,	and	how	to	create	forms	with	HTML	widgets.	You	also	saw	how	to
use	CSS3	shadow	and	gradient	effects	(which	you	learned	in	Chapter	3)	to	style	buttons	in
jQuery	Mobile	Web	pages.	You	learned	how	to	do	the	following	in	HTML	Web	pages	that
use	jQuery	Mobile:

Render	buttons
Display	simple	and	nested	lists
Render	sliding	menus
Use	jQuery	Mobile	with	AJAX
Use	jQuery	Mobile	with	Geolocation

http://jquery-ui-map.googlecode.com/svn/trunk/demos/jquery-google-maps-mobile.html

CHAPTER			8
	

USER	GESTURES	AND	ANIMATION

EFFECTS	IN	JQUERY	MOBILE

	

This	chapter	contains	a	number	of	code	samples	that	demonstrate	how	to	handle	user
gestures	and	also	how	to	create	animation	effects	in	jQuery	Mobile.	Fortunately,	jQuery
Mobile	emits	events	for	user	gestures,	such	as	orientationchange,	scrollstart,	scrollstop,	swipe,	swipeleft,
swiperight,	tap,	and	taphold.	The	first	part	of	this	chapter	shows	you	how	to	handle	some	of
these	user	gestures.	You	will	also	see	code	samples	that	show	you	how	to	create	slide-
related	and	fade-related	animation	effects	in	jQuery.	The	final	portion	of	this	section
briefly	discusses	jQuery	Mobile	virtual	mouse	events,	which	can	simplify	your	code	when
you	want	to	handle	mouse-related	events	as	well	as	touch-related	events	in	an	HTML	Web
page.

The	second	part	of	this	chapter	shows	you	how	to	create	CSS3	2D/3D	animation
effects	with	jQuery	Mobile.	One	code	sample	uses	jQuery	Mobile	to	create	a	3D	cube
effect.	Also,	there	are	samples	on	the	CD	that	render	“bouncing	balls,”	and	show	how	to
access	accelerometer	values	for	a	mobile	device	and	then	display	the	real-time	values	in	a
jQuery	Mobile	Web	page.

			Recall	that	in	Chapter	2	you	learned	how	to	create	CSS3	2D	and	3D	effects,
and	in	Chapter	3	you	learned	how	to	combine	those	effects	with	jQuery	in	HTML5	Web
pages.	In	this	chapter,	you	will	see	how	to	create	some	of	the	corresponding	effects	using
jQuery	Mobile.

Handling	User	Gestures	and	Events	in	jQuery	Mobile
jQuery	Mobile	emits	an	assortment	of	events	for	user	gestures,	such	as	orientationchange,

scrollstart,	scrollstop,	swipe,	swipeleft,	swiperight,	tap,	and	taphold.

If	you	need	to	handle	many	user	gestures,	consider	the	option	of	using	a	jQuery	plugin
instead	of	writing	your	own	code.	There	are	various	plugins	available,	and	the	next	section
briefly	discusses	two	of	those	plugins.

When	you	want	to	detect	user	gestures	on	a	HTML	Web	page,	you	can	write	custom
jQuery	code	using	the	jQuery	.on(“click”)	method	to	handle	those	gestures.	Please	review	the
section	in	Chapter	1	regarding	the	jQuery	event-related	methods	that	are	deprecated	in
jQuery	1.7	and	beyond,	as	well	as	the	recommended	jQuery	method	for	handling	events.

As	you	probably	know,	a	tap	event	occurs	whenever	users	tap	on	an	element,	whereas	a
taphold	event	occurs	when	users	touch	an	element	and	maintain	contact	for	one	second.	You
can	bind	to	a	tap	event	and	a	taphold	event	in	jQuery	Mobile	with	the	following	code

snippets:
$(“body”).bind(“tap”,	function	()	{

		console.log(“Tap	Event	on	the	body	Element”);

		return	false;

});

	

$(“body”).bind(“taphold”,	function	()	{

		console.log(“Tap	Hold	Event	on	the	body	Element”);

		return	false;

});

The	return	false	statement	inside	a	jQuery	event	handler	is	effectively	the	same	as
invoking	e.preventDefault()	(which	prevents	the	default	event	from	occurring)	and	also
e.stopPropagation()	(which	does	prevent	the	event	from	“bubbling	up”)	on	the	jQuery	Event
object	that	is	passed	as	a	parameter	to	the	JavaScript	function	(which	is	not	supplied	in
this	example).	Keep	in	mind	that	the	return	false	statement	in	non-jQuery	event	handlers	does
not	prevent	“bubbling	up”	behavior	on	the	event	that	occurred.

A	swipe	event	occurs	when	there	is	a	horizontal	drag	at	the	rate	of	30px	(or	greater)
during	a	one-second	interval.	The	swipeleft	and	swiperight	events	occur	when	the	swipe	event
is	toward	the	left	or	toward	the	right,	respectively.

Listing	8.1	displays	the	contents	of	JQMSwipeEvents1.html,	illustrating	how	to	handle	tap
events	as	well	as	swipe	left	and	swipe	right	events	in	jQuery	Mobile.

LISTING	8.1	JQMSwipeTapEvents1.html
<!DOCTYPE	html>

<html	lang=“en”>

		<head>

			<meta	charset=utf-8”	/>

			<title>Swipe	and	Tap	Events	in	jQuery	Mobile</title>

	

		<link	rel=“stylesheet”

			href=“http://code.jquery.com/mobile/1.1.0/

																																jquery.mobile-1.1.0.min.css”	/>

		<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

		</script>

		<script	src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

		</script>

	

			<script	src=“http://code.jquery.com/mobile/1.1.0/

																																			jquery.mobile-1.1.0.min.js”>

			</script>

		</head>

	

		<body>

				<div	data-role=“page”	id=“page1”>

						<div	data-role=“header”><h3>Header</h3></div>

						<div	data-role=“content”>

							<img	id=“sample1”	src=“Sample1.png”	width=“150”

																																															height=“150”	>

							<img	id=“sample2”	src=“Sample2.png”	width=“150”

																																																height=“150”	>

							<img	id=“sample3”	src=“Sample3.png”	width=“150”

																																																height=“150”	>

							<div	id=“result1”>Left	Image:</div>

							<div	id=“result2”>Middle	Image:</div>

							<div	id=“result3”>Right	Image:</div>

						</div>

						<div	data-role=“footer”><h3>Footer</h3></div>

				</div>

	

				<script>

						<!—	jQuery	event	handling	code	starts	here	—>

						$(“#page1”).live(‘pageinit’,	(function(event){

								//	handler	for	tap	hold	event

								$(“#sample1”).bind(“taphold”,function(event,	ui){

										console.log(“Left	image:	tap	hold	event”);

										$(“#result1”).html(“Left	image:	tap	hold	event”);

								})

	

								//	handler	for	swipe	left	event

								$(“#sample2”).bind(“swipeleft”,function(event,	ui){

										console.log(“Middle	image:	swipe	left	event”);

										$(“#result2”).html(“Middle	image:	swipe	left	event”);

								})

	

								//	handler	for	swipe	right	event

								$(“#sample3”).bind(“swiperight”,function(event,	ui){

										console.log(“Right	image:	swipe	right	event”);

										$(“#result3”).html(“Right	image:	swipe	right	event”);

								})

							})

);

				</script>

	</body>

</html>

Listing	8.1	displays	a	horizontal	row	of	three	images.	Under	those	three	images	are
three	text	strings	that	act	as	“labels”	for	user	gestures	that	are	associated	with	the	left,
middle,	and	right	image,	respectively.	Listing	8.1	also	contains	console.log()	messages	that
are	displayed	in	Chrome	Inspector	whenever	users	tap	or	swipe	one	of	the	rendered
images.	Incidentally,	the	code	in	Listing	8.1	was	deployed	as	an	Android	application	from
inside	Eclipse;	after	switching	to	the	DDMS	(Dalvik	Debug	Monitor	Server)	perspective,
you	might	see	the	following	type	of	message	in	the	Eclipse	console	if	you	swipe	your
finger	too	quickly:

“Miss	a	drag	as	we	are	waiting	for	Webcore’s	response	for	touch	down.”

Figure	8.1	displays	the	result	of	rendering	JQMSwipeTapEvents1.html	in	Listing	8.1	in	the
Chrome	browser	on	a	MacBook	Pro.

	
Figure	8.1		Swipe	and	tap	events	on	the	Chrome	browser	on	a	MacBook	Pro.

Two	jQuery	Plugins	for	Detecting	User	Gestures

The	jGestures	jQuery	plugin	handles	a	vast	set	of	user	gestures,	including	pinch,	rotate,
swipe-related	and	tap-related	user	gestures.	This	jQuery	plugin	is	available	for	download
here:

https://jgestures.codeplex.com/

https://jgestures.codeplex.com/

The	syntax	for	handling	user	gestures	uses	the	jQuery	bind	method.	For	example,	you
can	bind	a	swipe	gesture	with	the	jGestures	plugin	with	the	following	code	snippet:

jQuery(‘#swipe’).bind(‘swipeone’,eventHandler);

Another	jQuery	Mobile	plugin	that	handles	various	user	gestures	is	here:

https://github.com/eightmedia/hammer.js

This	JavaScript	toolkit	has	a	good	collection	of	samples	that	illustrate	how	to	handle
user	gestures.	Since	there	are	many	jQuery	Mobile	plugins	available	for	handling	user
gestures,	it’s	a	good	idea	to	perform	an	Internet	search	to	find	many	of	those	plugins,	after
which	you	can	assess	them	to	determine	which	ones	best	fit	your	needs.

Scroll	Events	in	jQuery	Mobile

jQuery	Mobile	supports	the	following	custom	events:	orientationchange	(triggered	by
changing	the	orientation	of	a	device,	either	vertically	or	horizontally),	scrollstart	(triggered
when	a	scroll	begins),	and	scrollstop	(triggered	when	a	scroll	ends).	You	can	bind	to	these
events	like	you	would	with	other	jQuery	events,	using	live()or	bind(),	whose	usage	prior	to
version	1.7	of	jQuery	is	discussed	in	Chapter	6.	In	addition,	when	your	jQuery	Mobile
code	binds	to	the	orientationchange	event,	the	callback	function	can	specify	a	second	argument
that	contains	an	orientation	property	equal	to	either	portrait	or	landscape.

			The	HTML5	Web	page	JQMScrollEvents1.html	on	the	CD	illustrates	how	to	handle
scrolling	events	in	JQuery	Mobile,	and	its	logic	looks	like	this:

<script>

		$(“#page1”).live(‘pageinit’,	(function(event,ui){

					var	eventsElement	=	$(‘#events’);

					$(window).bind(‘scrollstart’,	function	()	{

							console.log(‘Scroll	start’);

							$(‘.ui-body-c’).css(‘background’,	‘green’);

							eventsElement.append(‘Start

																																												Scroll’);

					//eventsElement.listview(‘refresh’);

							eventsElement.listview();

					});

	

					$(window).bind(‘scrollstop’,	function	()	{

								console.log(‘Scroll	stop’);

								$(‘.ui-body-c’).css(‘background’,	‘red’);

								eventsElement.append(‘Stop

																																												Scroll’);

						//eventsElement.listview(‘refresh’);

								eventsElement.listview();

https://github.com/eightmedia/hammer.js

					});

	

					$(window).bind(‘orientationchange’,	function	()	{

								console.log(‘Orientationchange	change’);

								$(‘.ui-body-c’).css(‘background’,	‘red’);

								eventsElement.append(‘

																																								Orientation’);

						//eventsElement.listview(‘refresh’);

								eventsElement.listview();

					});

		});

<script>

Portrait	Mode	versus	Landscape	Mode

In	addition	to	detecting	orientation	of	a	mobile	device,	you	will	probably	need	to
change	the	CSS	class	that	is	used	to	style	elements	in	a	Web	page	when	there	is	a	change
of	orientation.

			The	HTML5	Web	page	JQMOrientation1.html	on	the	CD	illustrates	how	easily	you
can	change	the	CSS	classes	associated	with	HTML	elements	based	on	the	orientation	of	a
mobile	device.	The	key	logic	is	contained	in	this	code	block:

$(“#page1”).live(‘pageinit’,	(function(event,ui){

			$(window).bind	(‘orientationchange’,	function	(e)	{

					console.log(“new	orientation:	“+e.orientation);

					$(“#content”).removeClass(‘portrait	landscape’)

								.addClass	(e.orientation	?	‘landscape’	:	‘portrait’);

			});

});

Notice	that	the	orientationchange	event	is	bound	to	the	window	object.	In	the	current
example,	the	background	color	is	set	to	red	and	the	width	is	set	to	320px	in	portrait	mode,
whereas	the	background	color	is	set	to	blue	and	the	width	is	set	to	480px	in	landscape	mode.

One	other	thing	to	keep	in	mind	is	that	window.orientation	has	the	value	0	for	portrait	mode
and	either	-90	or	90	for	landscape	mode.

Another	approach	is	to	use	the	following	type	of	code	in	your	HTML	Web	page:
@media	all	and	(orientation:	portrait)	{	body	{background-color:	red}	}

<link	rel=“stylesheet”

						media=“all	and	(orientation:	landscape)”

																																							href=“landscape.css”	/>

Figure	8.2	displays	the	result	of	rendering	JQMOrientation1.html	in	a	landscape-mode

screenshot	taken	from	an	Asus	Prime	tablet	with	Android	ICS.

	
Figure	8.2		Detecting	orientation	on	an	Asus	Prime	tablet	with	Android	ICS.

Animation	Effects	Using	jQuery	Mobile
There	are	various	jQuery-based	animation	effects	that	you	can	create	with	jQuery

Mobile,	which	includes	fading	effects,	sliding	effects,	and	custom	animation	effects.	The
methods	for	creating	animation	effects	(available	both	in	jQuery	and	jQuery	Mobile)
include:	animation(),	clearQueue(),	delay(),	dequeue(),	fadeIn(),	fadeOut(),	fadeTo(),	fadeToggle(),	hide(),	queue(),
show(),	slideDown(),	slideToggle(),	slideUp(),	stop(),	and	toggle().

This	section	contains	code	samples	that	illustrate	how	to	create	some	of	these
animation	effects	in	jQuery	Mobile.

Fade-related	Methods

The	jQuery	.fadeIn()	and	.fadeOut()	methods	provide	an	easy	way	to	create	simple
animation	effects.

			The	HTML5	Web	page	JQMFadeInOut1.html	on	the	CD	illustrates	how	to	use	the
jQuery	.fadeIn()	and	.fadeOut()	methods	in	a	jQuery	Mobile	page,	and	its	main	logic	looks	like
this:

<body>

				<div	data-role=“page”	id=“page1”>

						<div	id=“header”	data-role=“header”>

								<h3>Click	Header	To	Show	Text</h3>

						</div>

						<div	id=“context”	data-role=“content”>

								<img	id=“sample1”	src=“Sample1.png”

																																					width=“200”	height=“200”	>

								<img	id=“sample2”	src=“Sample2.png”

																																				width=“200”	height=“200”	>

								<img	id=“sample3”	src=“Sample3.png”

																																				width=“200”	height=“200”	>

								<p>Hello	World	from	jQuery	Mobile</p>

								<p>Goodbye	World	from	jQuery	Mobile</p>

								<p>Click	on	this	text	to	toggle	this	paragraph.</p>

						</div>

						<div	data-role=“footer”><h3>Footer</h3></div>

				</div>

	

				<script>

						$(“#page1”).live(‘pageinit’,	(function(event,ui){

								var	imgs	=	$(“img”);

	

								//	fade	out	when	users	click	on	the	first	

								$(“img:first”).click(function	()	{

										$(“img:first”).fadeOut(“slow”);

								});			

	

								//	display	first		when	users	click	on	the	last	

								$(“img:last”).click(function	()	{

										$(“img:first”).fadeIn(“slow”);

								});

	

								//	fade	when	users	click	on	the	first	<p>

								$(“p:first”).click(function	()	{

										$(“p:first”).fadeOut(“slow”);

								});

	

								//	display	first	<p>	when	users	click	on	the	last	<p>

								$(“p:last”).click(function	()	{

										$(“p:first”).fadeIn(“slow”);

								});

						})

);

				</script>

</body>

The	HTML5	Web	page	JQMFadeInOut1.html	contains	the	jQuery	Mobile	code	for	a	single
page	view	that	responds	to	click	events	by	storing	a	reference	to	the	images	with	this	code
snippet:

var	imgs	=	$(“img”);

If	you	have	an	HTML	page	with	many		elements,	the	use	of	a	variable	such	as
imgs	can	sometimes	be	more	efficient,	because	jQuery	performs	a	DOM	traversal	only
once.	In	this	code	sample,	we	don’t	use	the	imgs	variable	because	there	are	just	three	
elements,	so	there	is	no	noticeable	performance	penalty	involved	in	performing	a	search
each	time	we	reference	an		element.	However,	it’s	important	for	you	to	be	aware	of
this	coding	technique.

The	click	event	on	the	first	image	causes	the	image	to	slowly	fade,	as	shown	here:
//	fade	out	when	users	click	on	the	first	

$(“img:first”).click(function	()	{

			$(“img:first”).fadeOut(“slow”);

});			

The	first	image	is	slowly	displayed	again	whenever	users	click	on	the	right-most
image:

//	display	first		when	users	click	on	the	last	

$(“img:last”).click(function	()	{

			$(“img:first”).fadeIn(“slow”);

});

You	can	use	similar	code	blocks	to	capture	events	on	other	HTML	elements.	In	this
example,	we	could	have	also	captured	all	the	<p>	elements	with	this	snippet:

var	para	=	$(“p”);

However,	in	JQMFadeInOut1.html	we	reference	the	first	and	last	HTML	<p>	elements	using
$(“p:first”)	and	$(“p:last”),	and	we	then	perform	similar	fade	effects.

Figure	8.3	displays	the	result	of	rendering	JQMFadeInOut1.html	in	landscape-mode	in	the
Chrome	browser	on	a	MacBook.

	
Figure	8.3		Fade	effects	on	the	Chrome	browser	on	a	MacBook.

Slide-Related	jQuery	Methods

As	you	can	surmise,	the	jQuery	.slideUp()	and	.slideDown()	methods	provide	slide-related
functionality	for	jQuery	Mobile.

			The	HTML5	Web	page	JQMSlideUpDown1.html	on	the	CD	illustrates	how	to	use
the	jQuery	.slideUp()	and	.slideDown()	methods	in	a	jQuery	Mobile	Web	page,	and	a	portion	of
the	code	is	displayed	here:

<body>

			<div	data-role=“page”	id=“page1”>

					<div	data-role=“header”><h3>Header</h3></div>

					<div	data-role=“content”>

							<p>Click	me	or	one	of	the	Rectangles:</p>

							<div	name=“first”	id=“first”>First</div>

							<div	id=“second”>Second</div>

							<div	id=“third”>Third</div>

							<div	id=“fourth”>Fourth</div>

					</div>

					<div	data-role=“footer”><h3>Footer</h3></div>

			</div>

	

		<script>

				$(“#page1”).live(‘pageinit’,	(function(event,ui)	{

						$(“#page1”).click(function()	{

							if	($(“div:first”).is(“:hidden”))	{

								$(“div”).show(“slow”);

							}	else	{

								$(“div[name=‘first’]”).slideUp(2000);

							}

	

						$(“div[name=‘first’]”).css({background:’#00f’})

														.show(2000).hide(2000).slideDown(2000);

					})

				})

)

		</script>

	</body>

The	HTML5	Web	page	JQMSlideUpDown1.html	contains	a	<style>	element	that	uses	CSS	to
apply	some	styling	to	four	rectangles,	followed	by	a	code	block	that	handles	a	click	event
anywhere	in	the	page	view:

$(“#page1”).click(function()	{

		//	handle	a	click	event	on	the	page

}

The	heart	of	the	jQuery	Mobile	code	consists	of	one	line	of	code	that	uses	method
chaining	to	create	a	multi-part	animation	effect	that	1)	changes	the	background	color	to
red,	2)	performs	a	“show”	and	“hide”	animation	effect	for	2	seconds,	followed	by	3)	a
“slide”	effect	that	occurs	during	2	seconds,	whenever	users	click	on	a	rectangle,	as	shown
here:

$(“div[name=‘first’]”).css({background:’#00f’})

								.show(2000).hide(2000).slideDown(2000);

Figure	8.4	displays	the	result	of	rendering	JQMSlideUpDown1.html	in	landscape-mode	on
an	Asus	Prime	tablet	with	Android	ICS.

	
Figure	8.4		Fade	effects	on	an	Asus	Prime	tablet	with	Android	ICS.

jQuery	Mobile	and	Transition	Effects
jQuery	Mobile	uses	WebKit-based	CSS3	transforms	for	animating	the	page	transitions,

and	WebKit-based	browsers	currently	provide	the	best	support	for	CSS3	transforms	(but

other	browsers	are	improving	their	level	of	support).	Since	WebKit–based	browsers	use
hardware	acceleration,	CSS	animation	effects	appear	smooth	on	mobile	devices	as	well	as
laptops	and	desktops.

You	specify	a	transition	by	applying	the	data-transition	property,	whose	seven	supported
values	are:

fade:	simply	fade	the	page	or	dialog	in	over	the	previous	content
flip:	an	animated	page	 flip,	 rotating	 the	current	view	out	with	 the	other	view	on	 the
reverse	side
pop:	the	page	springs	into	view	from	the	center	of	the	screen
slide:	slide	in	from	the	left	or	right,	pushing	previous	content	out	of	the	way
slidedown:	slide	down	from	the	top,	over	the	top	of	the	current	content
slideup:	slide	up	to	the	top,	revealing	the	next	content	below

jQuery	Mobile	also	provides	the	animationComplete	event,	which	you	can	be	useful	after
adding	or	removing	a	class	that	applies	a	CSS	transition.

Listing	8.2	displays	the	contents	of	JQMTransition1.html	that	illustrates	how	to	use	slidedown
and	flip	transitions	in	a	jQuery	Mobile	page.

LISTING	8.2	JQMTransition1.html
<body>

		<div	data-role=“page”	id=“first”>

				<div	data-role=“header”>	<h2>	This	is	the	first	page	header

				</h2></div>

	

				<div	data-role=“content”>

					<p>

						Go	to	Page	Two

					</p>

				</div>

	

				<div	data-role=“footer”><h2>This	is	the	first	page	footer

				</h2></div>

		</div>

	

		<div	data-role=“page”	id=“second”>

				<div	data-role=“header”>

						<h2>	This	is	the	second	page	header</h2>

				</div>

	

				<div	data-role=“content”>

						<p>You	saw	a	slidedown	effect

							<a	href=”#first”	data-transition=“flip”

																								data-direction=“reverse”>

										Go	to	Page	#1	via	‘flip’	and	reverse

						</p>

				</div>

	

				<div	data-role=“footer”>

						<h2>This	is	the	second	page	footer</h2>

				</div>

		</div>

	</body>

Listing	8.2	contains	the	code	for	a	jQuery	Mobile	Web	page.	When	you	click	on	the
link	in	the	first	page	view,	you	will	see	a	slide	effect	created	by	the	following	code	snippet
in	the	content	HTML	<div>	of	the	first	page	view	(whose	id	attribute	has	value	first):

Go	to	Page	Two

The	second	page	view	displays	the	following	text	and	hyperlink:

You	saw	a	slidedown	effect	Go	to	Page	#1	via	‘flip’	and	reverse

When	you	click	on	the	preceding	link,	you	will	see	a	flip	effect	that	is	created	with	the
following	code	snippet	in	the	content	HTML	<div>	of	the	second	page	view	(whose	id
attribute	has	value	second):

<a	href=”#first”	data-transition=“flip”

																	data-direction=“reverse”>

Note	that	jQuery	Mobile	will	attempt	to	use	the	reverse	transition	when	using	the
automatic	back	button	or	when	hiding	a	dialog.	This	simple	example	illustrates	some	page
transition	effects	that	you	can	create	when	you	navigate	between	page	views.	You	can
experiment	with	a	number	of	different	transition	effects	to	find	the	ones	that	suit	your
requirements.

Figure	8.5	displays	the	result	of	rendering	JQMTransition1.html	in	Listing	8.2	in	landscape
mode	in	the	Chrome	browser	on	a	MacBook.

	
Figure	8.5		Transition	effects	on	the	Chrome	browser	on	a	MacBook.

jQuery	Mobile	and	Animation	Effects	with	CSS3
Recall	that	jQuery	Mobile	uses	WebKit-based	CSS3	transforms	for	animating	the	page

transitions.	WebKit	browsers	use	hardware	acceleration,	so	that	CSS	animation	effects
appear	smooth	on	mobile	devices,	laptops,	and	desktops.

Listing	8.3	displays	the	contents	of	JQMJPG1.html	that	illustrates	how	to	use	slideDown()
and	slideUp()	in	conjunction	with	JPG	files	in	a	jQuery	Mobile	page.

LISTING	8.3	JQMRenderJPG1.html
<body>

				<div	data-role=“page”	id=“page1”>

						<div	data-role=“content”>

							<img	id=“sample1”	src=“Sample1.png”	width=“200”

																																											height=“200”	>

							<img	id=“sample2”	src=“Sample2.png”	width=“200”

																																											height=“200”	>

							<p>

									

												Click	Me	To	Display	The	Right	Image

									

												Click	Me	To	Shrink	The	Right	Image

							</p>

						</div>

				</div>

	

				<script>

						$(“#page1”).live(‘pageinit’,	(function(event,ui)	{

								$(“#sample2”).hover(function()	{

										$(this).slideUp(800);

								});

	

								$(“#sample2”).hover(function()	{

										$(this).css({‘position’:‘relative’,

																							‘width’:‘200px’,

																							‘height’:‘200px’

																							});

								});

	

								$(“#button1”).click(function()	{

										$(“#sample2”).slideDown(800);

								});

	

								$(“#button2”).click(function()	{

										$(“#sample2”).css({‘position’:‘relative’,

																														‘width’:‘100px’,

																														‘height’:‘100px’

																													});

								});

						})

)

				</script>

			});

</body>

Listing	8.3	renders	two	images	and	contains	two	buttons	that	bind	to	click	events.	The
visual	effects	depend	on	the	sequence	in	which	the	buttons	are	clicked.	When	users	click
on	the	second	button	(“Click	Me	To	Shrink	The	Right	Image”),	the	right-most	image	is
reduced	from	its	initial	dimensions	of	200x200	to	dimensions	of	100x100	using	this	code
block:

$(“#button2”).click(function()	{

		$(“#sample2”).css({‘position’:‘relative’,

																					‘width’:‘100px’,

																					‘height’:‘100px’

															});

});

As	you	can	see,	the	preceding	code	block	uses	the	jQuery	css()	function	to	modify	the
width	and	height	of	the	right-most	image,	which	means	there	is	no	transition	effect.

Next,	if	users	hover	over	the	right-most	image	(which	is	now	reduced	in	size),	the
image	will	shrink	and	disappear	with	a	transitional	effect	because	of	the	following	code
block:

$(“#sample2”).hover(function()	{

			$(this).slideUp(800);

});

Now	if	users	click	on	the	first	button	(“Click	Me	To	Display	The	Right	Image”),	the
second	image	will	reappear	(again	using	a	transitional	effect)	with	its	original	dimensions
because	of	the	following	code:

$(“#button1”).click(function()	{

			$(“#sample2”).slideDown(800);

});

This	code	samples	illustrates	how	easy	it	is	to	write	jQuery	code	for	creating	pleasant
animation	effects	with	images.	Moreover,	you	can	combine	the	jQuery	animation	effects
with	the	jQuery	css()	function.	For	example,	you	can	use	the	css()	function	to	render	an
image	with	a	background	radial	gradient	effect	when	users	click	on	the	image,	or	update
any	other	CSS	properties	of	the	image	(or	element)	in	question.

Thus,	you	can	combine	your	knowledge	of	jQuery	animation,	CSS,	and	CSS3	graphics
and	animation	to	create	interesting	effects	by	means	of	simple	and	compact	jQuery	code.

	
Figure	 8.6	 	 Resizing	 JPGs	 with	 animation	 effects	 on	 the	 Chrome	 browser	 on	 a

MacBook.

Figure	8.6	displays	the	result	of	rendering	JQMRenderJPG1.html	in	Listing	8.3	in	landscape
mode	on	the	Chrome	browser	on	a	MacBook.

jQuery	Mobile	Virtual	Mouse	Events
jQuery	Mobile	provides	a	set	of	“virtual”	mouse	events	for	handling	mouse	and	touch

events.	These	events	are	useful	because	each	one	handles	a	mouse	event	as	well	as	its
corresponding	touch-based	event,	which	can	reduce	the	amount	of	code	that	you	need	to
write	in	your	Web	pages.	In	addition,	the	use	of	virtual	mouse	events	can	support	both	the
desktop	and	mobile	style	interactions	in	the	same	Web	page.

The	name	of	a	virtual	mouse	event	in	jQuery	Mobile	starts	with	the	letter	“v”	(for
“virtual”)	followed	by	the	common	or	standard	name	for	a	mouse	event.	For	example,	the
vmousedown	virtual	event	“delivers”	the	mousedown	event	and	also	the	touchstart	event.	The	list
of	virtual	mouse	events	(and	their	corresponding	touch-related	and	mouse-related	events)
is	shown	here:

vclick	(touchend	or	mouse	click	events)

vmousecancel	(touch	or	mouse	mousecancel	events)

vmousedown	(touchstart	or	mousedown	events)

vmousemove	(touchmove	or	mousemove	events)

vmouseover	(touch	or	mouseover	events)

vmouseup	(touchend	or	mouseup	events)

Keep	the	following	in	mind:	on	touch-enabled	devices,	the	vclick	event	is	dispatched
after	the	vmouseup	event;	however,	vmouseup	is	dispatched	before	vmousedown,	and	vmousedown	is
dispatched	before	vclick,	as	you	would	expect.	Furthermore,	the	event	object	contains	the
properties	pageX,	pageY,	screenX,	screenY,	clientX,	and	clientY	that	contain	coordinate	information,
as	you	will	see	in	a	subsequent	code	sample.

			The	HTML5	Web	page	JQM2DAnimationRGrad4Reflect1.html	and	the	CSS	stylesheet
JQM2DAnimationRGrad4Reflect1.css	on	the	CD	illustrate	how	to	create	CSS3	2D	animation
effects	in	jQuery	Mobile.

LISTING	8.4	JQM2DAnimationRGrad4Reflect1.html
<body>

			<div		data-role=“page”>

					<div	data-role=“content”>

							<div	id=“outer”>

									<div	id=“radial3”>Text3</div>

									<div	id=“radial2”>Text2</div>

									<div	id=“radial4”>Text4</div>

									<div	id=“radial1”>Text1</div>

							</div>

					</div>

			</div>

</body>

Listing	8.4	is	straightforward:	the	jQuery	Mobile	code	contains	four	HTML	<div>
elements	that	have	corresponding	CSS3	selectors	in	the	associated	CSS	stylesheet.	The
four	CSS3	selectors	define	radial	gradients	(defined	in	the	accompanying	CSS	stylesheet
on	the	CD),	which	are	very	similar	to	CSS3	code	samples	in	Chapter	2.	(Read	the
appropriate	section	if	you	need	to	refresh	your	memory.)	The	key	point	to	notice	is	that
even	though	the	visual	effects	in	this	code	sample	are	not	new,	this	code	demonstrates	you
how	easily	you	can	combine	jQuery	Mobile	code	with	CSS3	2D/3D	graphics	and
animation	effects.

	
Figure	8.7		CSS3	2D	effects	on	an	iPad3.

Figure	8.7	renders	JQM2DAnimationRGrad4Reflect1.html	in	landscape	mode	on	an	iPad3.

	
Figure	8.8		CSS3	3D	effects	on	an	Asus	Prime	tablet	with	Android	ICS.

The	HTML5	Web	page	JQM3DAnimRotate3DLGrad2SkewOpacityRep4Reflect1.html	on	the	CD
creates	CSS3	3D	animation	effects.	Figure	8.8	displays
JQM3DAnimRotate3DLGrad2SkewOpacityRep4Reflect1.html	in	landscape	mode	on	an	Asus	Prime
tablet	with	Android	ICS.

The	HTML5	Web	page	JQMCSS3AnimTap.html	on	the	CD	shows	you	how	to	detect	user
tap	events	and	then	create	CSS3	3D	animation	effects.	Figure	8.9	displays	the	result	of
launching	this	Web	page	in	a	browser,	in	landscape	mode,	on	an	Asus	Prime	tablet	with
Android	ICS.

	
Figure	8.9		CSS3	3D	Tap	animation	on	an	Asus	Prime	tablet	with	Android	ICS.

Earlier	in	this	chapter,	you	learned	about	jQuery	Mobile	virtual	mouse	events.	The
Web	page	JQMSketchSolidDynamicDOM1.html	on	the	CD	illustrates	how	to	capture	user	gestures
to	dynamically	create	and	append	new	HTML	<div>	elements	into	the	HTML	<div>	element
whose	id	attribute	has	value	content	in	order	to	create	a	“sketching”	program.

LISTING	8.5	JQMSketchSolidDynamicDOM1.html
<body>

		<script>

			$(“#page1”).live(‘pageinit’,	(function(event,ui){

						var	insertNode	=	false;

						var	newNode;

										

						//	mouse-down	means	insertNode:

						$(“#content”).bind(‘vmousedown’,	function()	{

								console.log(“start”);

								insertNode	=	true;

						});

										

						//	mouse-up	means	no	insertNode:

						$(“#content”).bind(‘vmouseup’,	function()	{

								console.log(“stop”);

								insertNode	=	false;

						});

	

						$(“#content”).bind(‘vmousemove’,	function(e)	{

										//	are	users	are	moving	their	mouse?

										if(insertNode	==	true)	{

													console.log(“move”);

	

													//	create	a	rectangle	at	the	current	position

													newNode	=	$(‘<div>’).css({‘position’:‘absolute’,

																																								‘background-color’:’#ff0000’,

																																								‘width’:‘8px’,

																																								‘height’:‘8px’,

																																									top:	e.pageY,

																																									left:	e.pageX

																																							});

	

													//append	the	rectangle	to	the	content	<div>

													$(“#content”).append(newNode);

										}

						});

				})

);

		</script>

</body>

Listing	8.5	contains	jQuery	Mobile	code	that	binds	to	the	vmousedown,	vmouseup,	and
vmousemove	virtual	events.	The	code	uses	the	first	two	virtual	mouse	events	to	determine	if	a
vmousemove	event	is	accompanied	with	a	vmousedown	event;	if	the	latter	is	true,	then	a	new
HTML	<div>	element	is	programmatically	created	at	the	current	location	of	a	user’s	mouse
and	then	inserted	into	the	DOM.

Figure	8.10	displays	JQMSketchSolidDynamicDOM1.html	in	landscape	mode	in	the	Chrome
browser	on	a	MacBook.

	
Figure	8.10		Sketching	effects	in	the	Chrome	browser	on	a	MacBook.

			In	an	earlier	chapter,	you	saw	how	to	create	an	HTML5	Web	page	using	CSS3
to	create	a	3D	cube	whose	faces	move	when	users	hover	their	mouse	over	any	of	the	three
faces	of	the	cube.	The	HTML5	Web	page	JQM3DCube1.html	on	the	CD	illustrates	how	to
render	a	3D	cube	with	CSS3.

LISTING	8.6	JQM3DCube1.html
<body>

				<div	data-role=“page”	id=“page1”>

						<div	data-role=“header”>

								<h3>Tap	on	the	Cube	Faces:</h3>

						</div>

						<div	data-role=“content”>

								<div	id=“outer”>

									<div	id=“top”>Text1</div>

									<div	id=“left”>Text2</div>

									<div	id=“right”>Text3</div>

								</div>

						</div>

						<div	data-role=“footer”><h3>Footer</h3></div>

				</div>

		

				<script>

						$(“#page1”).live(‘pageinit’,	(function(event,ui){	}));

				</script>

</body>

Listing	8.6	contains	jQuery	Mobile	code	that	contains	the	definition	for	three	HTML
<div>	elements	serving	as	placeholders	for	the	left,	top,	and	right	faces	of	the	cube,	and	a
tiny	jQuery	Mobile	code	snippet,	as	shown	here:

<script>

		$(“#page1”).live(‘pageinit’,	(function(event,ui){	}));

</script>

All	the	real	“action”	in	this	code	sample	takes	place	in	the	CSS3	stylesheet
JQM3DCube1.css,	a	portion	of	which	is	shown	in	Listing	8.7.

LISTING	8.7	JQM3DCube1.css
/*	animation	effects	*/

#right:hover	{

-webkit-transition:	-webkit-transform	3.0s	ease;

transition:	transform	3.0s	ease;

		

-webkit-transform	:	scale(1.2)	skew(-10deg,	-30deg)	rotate(-45deg);

transform	:	scale(1.2)	skew(-10deg,	-30deg)	rotate(-45deg);

}

			

#left:hover	{

-webkit-transition:	-webkit-transform	2.0s	ease;

transition:	transform	2.0s	ease;

	

-webkit-transform	:	scale(0.8)	skew(-10deg,	-30deg)

																																				rotate(-45deg);

transform	:	scale(0.8)	skew(-10deg,	-30deg)	rotate(-45deg);

}			

						

#top:hover	{

-webkit-transition:	-webkit-transform	2.0s	ease;

transition:	transform	2.0s	ease;

								

-webkit-transform	:	scale(0.5)	skew(-20deg,	-30deg)

																																				rotate(45deg);

transform	:	scale(0.5)	skew(-20deg,	-30deg)	rotate(45deg);

}								

//	details	omitted	for	brevity

The	CSS3	selectors	in	Listing	8.7	are	taken	from	a	code	sample	in	Chapter	2	that	also
illustrates	how	to	render	a	cube	using	CSS3	selectors,	and	you	can	review	the	code	details

of	that	code	sample.	In	this	example,	the	CSS3	selectors	apply	various	3D	animation
effects	whenever	users	tap	or	hover	over	one	of	the	faces	of	the	3D	cube.

Figure	8.11	displays	JQM3DCube1.html	in	landscape	mode	on	an	Asus	Prime	tablet	with
Android	ICS.

	
Figure	8.11		jQuery	Mobile	and	CSS3	on	an	Asus	Prime	tablet	with	Android	ICS.

Additional	Code	Samples	on	the	CD
The	CD	contains	several	other	code	samples	with	similar	techniques	using	jQuery

Mobile.	You	can	use	these	techniques	as	“building	blocks,”	perhaps	also	with	some	of
your	own,	in	order	to	create	more	complex	visual	effects.

			The	code	samples	are	primarily	for	fun,	and	you	can	experiment	with	them	to
create	other	interesting	effects	by	modifying	additional	CSS	properties	dynamically.

You	can	create	page-turning	effects	in	jQuery	Mobile	applications	in	various	ways,
and	in	this	section	you	will	see	how	to	use	the	jQuery	plugin	Turn.js	whose	homepage	is
here:

http://www.turnjs.com

This	code	sample	contains	many	examples	of	handling	jQuery	Mobile	virtual	events	as
well	as	user	gestures	and	key	events.	Although	space	precludes	us	from	discussing	every
detail	of	this	code	sample,	it’s	well	worth	your	time	to	read	the	code	in	detail	to	learn	some
useful	techniques.

			The	HTML5	Web	page	JQMPageTurn1.html	on	the	CD	illustrates	how	to	use	Turn.js
in	order	to	simulate	page-turning	effects	in	a	jQuery	Mobile	application.

http://www.turnjs.com

Accelerometer	Values	with	jQuery

			The	HTML5	Web	page	JQMAccelerometer1.html	on	the	CD	illustrates	how	to
display	the	accelerometer	values	of	a	mobile	device	whenever	the	device	undergoes
acceleration	in	any	direction.

Summary
This	chapter	introduced	you	to	animation	effects	in	jQuery	Mobile,	and	you	saw	code

samples	that	illustrated	how	to	perform	various	effects.	You	learned	how	to	do	the
following	in	jQuery	Mobile:

Tap	events	and	swipe	events
Scroll	events
Detect	portrait	versus	landscape	mode
Fade-related	animation	effects
Slide-related	animation	effects
Transitions
Animation	effects	with	CSS3
Virtual	mouse	events

CHAPTER			9
	

INTRODUCTION	TO	HTML5	CANVAS

	

This	chapter	provides	an	overview	of	HTML5	Canvas,	which	is	a	technology	that
enables	you	to	write	graphics	programs	that	draw	directly	to	a	part	of	a	Web	page.
HTML5	Canvas	supports	various	APIs	for	rendering	2D	shapes	with	an	assortment	of
graphics	effects.	Although	there	are	many	online	Canvas-related	and	CSS3-related	tutorials
available	(which	you	can	confirm	via	a	quick	Internet	search),	few	of	them	provide	code
examples	of	using	both	HTML5	Canvas	and	CSS3	graphics	effects.

As	you	will	see,	various	code	samples	in	this	chapter	contain	(sometimes	striking)
combinations	of	HTML5	Canvas,	CSS3	graphics,	and	CSS3	2D/3D	animation	effects	that
you	are	unlikely	to	find	in	any	online	resources	or	topic-related	books.	These	code
samples	provide	a	starting	point	for	you	to	create	your	own	visually	compelling	graphics
effects.

In	addition,	most	of	the	sections	in	this	chapter	start	with	the	syntax	of	the	APIs	that
are	used	in	the	associated	code	listings,	partly	because	the	code	samples	contain	a	lot	of
details	and	also	illustrate	multiple	concepts.	So,	even	though	this	is	an	“introductory”
chapter	about	HTML5	Canvas,	you	will	learn	considerably	more	than	you	would	expect
from	a	basic	overview	that	you	might	find	in	other	books.

The	first	part	of	this	chapter	shows	you	how	to	render	line	segments,	rectangles,	and
circles	in	HTML5	Canvas,	and	also	how	to	combine	HTML5	Canvas	with	CSS3	stylesheets.

The	second	part	introduces	you	to	linear	and	radial	gradients	in	HTML5	Canvas,	with
examples	of	how	to	apply	them	to	Bézier	curves	and	JPG	files.	The	third	part	of	this
chapter	discusses	jCanvas,	which	is	a	jQuery	plugin	for	HTML5	Canvas,	and	also	an	example
of	combining	Canvas-based	graphics	with	jQuery	Mobile.

The	concepts	and	code	samples	in	this	chapter	will	help	you	understand	the	HTML5
Canvas-based	charts	and	graphs.	If	you	want	to	explore	additional	HTML5	Canvas	graphics
after	you	have	finished	reading	this	chapter,	an	extensive	set	of	code	samples	is	available
here:

http://code.google.com/p/html5-canvas-graphics

This	chapter	provides	techniques	for	creating	various	visual	effects	that	you	can	use	in
your	custom	charts	and	graphs.	At	the	same	time,	it’s	also	important	for	you	to	assess	the
trade-off	(time,	effort,	and	cost)	between	writing	low-level	Canvas-based	graphics	code,
such	as	the	code	samples	in	this	chapter,	versus	the	availability	of	open	source	projects
and	commercial	products.

One	more	point	to	keep	in	mind:	HTML5	Canvas	does	not	have	any	sort	of
“dependency”	on	jQuery	or	jQuery	Mobile.	If	necessary,	you	can	create	hybrid	HTML5

http://code.google.com/p/html5-canvas-graphics

mobile	applications	containing	HTML5	Canvas	in	conjunction	with	other	toolkits	(such	as
PhoneGap)	or	even	without	a	toolkit.

What	is	HTML5	Canvas?
Several	years	ago	Canvas	began	in	OS	X	as	a	widget	toolkit.	After	Canvas	had	already

been	available	in	the	Safari	browser,	it	became	a	specification	for	the	Web.	Now,	it	is
commonly	referred	to	as	HTML5	Canvas.

HTML5	Canvas	and	SVG	both	allow	you	to	programmatically	render	graphics	in	a
browser	via	JavaScript.	However,	HTML5	Canvas	uses	“immediate	mode,”	which	is	a
write-and-forget	approach	to	rendering	graphics.	Thus,	if	you	want	to	write	a	sketching
program	in	HTML5	Canvas	and	you	also	want	to	provide	an	“undo”	feature,	then	you	must
programmatically	keep	track	of	everything	that	users	have	drawn	on	the	screen.	On	the
other	hand,	SVG	uses	a	“retained	mode,”	which	involves	a	DOM	(Document	Object
Model)	structure	that	keeps	track	of	the	rendered	objects	and	their	relationship	to	one
another.

If	you	are	going	to	write	HTML	Web	pages	that	make	extensive	use	of	graphics
effects,	you’ll	probably	need	to	understand	the	differences	between	HTML5	Canvas	and
SVG	in	terms	of	performance.	You	have	the	freedom	to	use	one	technology	exclusively,
but	you	can	also	create	HTML	Web	pages	that	contain	a	mixture	of	HTML5	Canvas,	SVG,
and	CSS3.	Performance-related	information	can	help	you	decide	how	you	are	going	to
code	your	HTML	Web	pages.

Although	this	chapter	does	not	delve	into	the	preceding	points	in	any	more	detail,	you
can	find	a	good	overview	of	some	features/advantages	of	HTML5	Canvas	here:

http://thinkvitamin.com/code/how-to-draw-with-html-5-canvas/

Incidentally,	if	you	need	HTML5	Canvas	support	in	Internet	Explorer	8,	you	can	use
ExplorerCanvas,	which	is	an	open	source	project	that	is	available	here:

http://code.google.com/p/explorercanvas/

You	can	use	the	preceding	code	project	simply	by	including	the	following	code	snippet
in	your	HTML	Web	pages:

<!—	[if	IE	lt	8]><script	src=“excanvas.js”></script><![endif]—>

HTML5	Canvas	versus	SVG

One	point	to	consider	is	when	it’s	advantageous	to	use	HTML5	Canvas	instead	of	a
technology	such	as	SVG.	The	following	short	list	contains	some	features	to	consider	when
you	are	making	this	type	of	analysis:

Native	versus	plug-in	browser	support
Level	of	SVG	support	in	different	browsers
Animation	support
Support	for	filters	(SVG	only)
Built-in	support	for	HTML-like	widgets
Third-party	support

http://thinkvitamin.com/code/how-to-draw-with-html-5-canvas/
http://code.google.com/p/explorercanvas/

Most	modern	browsers	provide	varying	degrees	of	built-in	support	for	SVG,	and
Adobe’s	SVG	viewer	can	be	used	with	Microsoft’s	Internet	Explorer.	If	you	need	filter-
based	visual	effects,	then	SVG	provides	a	very	rich	(perhaps	even	the	best)	functionality.
If	you	need	built-in	support	for	HTML	controls,	then	frameworks	such	as	Wijmo	might	be
a	good	solution	for	your	needs.	Another	point	to	consider	is	that	Adobe	no	longer	supports
its	SVG	viewer.	This	is	a	significant	decision,	because	Adobe’s	SVG	viewer	had	been	the
de	facto	standard	for	SVG	viewers	for	many	years.	Although	Firefox	and	Opera	have
made	significant	progress	in	terms	of	their	support	for	SVG,	and	both	are	enhancing	their
support	for	SVG,	they	still	lack	the	feature	support	of	Adobe’s	SVG	viewer.	Thus,	you
need	to	weigh	the	most	important	factors	in	order	to	make	the	decision	that	will	meet	your
project-related	needs.

A	very	good	article	containing	examples	and	diagrams	that	compares	the	use	of
HTML5	Canvas	and	SVG	is	here:

http://blogs.msdn.com/b/ie/archive/2011/04/22/thoughts-on-when-to-use-canvas-and-
svg.aspx

The	HTML5	Canvas	Coordinate	System

Think	back	to	your	days	in	high	school,	where	you	learned	that	the	Cartesian
coordinate	system	identifies	any	point	in	the	Euclidean	plane	by	means	of	a	pair	of
numbers,	often	written	as	(x,y).	The	first	number	represents	the	horizontal	value	and	the
second	number	represents	the	vertical	value.	The	horizontal	axis	is	labeled	the	x-axis,	and
positive	values	on	the	x-axis	are	to	the	right	of	the	vertical	axis	(i.e.,	toward	the	right).	The
vertical	axis	is	labeled	the	y-axis,	and	positive	values	on	the	y-axis	are	above	the
horizontal	axis.	The	origin	is	the	intersection	point	of	the	x-axis	and	the	y-axis.

The	situation	is	almost	the	same	in	the	HTML5	Canvas	coordinate	system.	The	x-axis	is
horizontal	and	the	positive	direction	is	toward	the	right.	The	y-axis	is	vertical,	but	the
positive	direction	is	downward,	which	is	the	opposite	direction	of	most	graphs	in	a	typical
mathematics	textbook.	In	the	HTML5	Canvas	coordinate	system,	the	origin	is	the	upper-left
corner	of	the	screen	(not	the	lower-left	corner),	and	the	unit	of	measurement	is	the	pixel.
As	this	book	goes	to	print,	the	largest	visible	display	is	2880×1800,	and	undoubtedly
larger	displays	will	be	available	in	the	future.

http://blogs.msdn.com/b/ie/archive/2011/04/22/thoughts-on-when-to-use-canvas-and-svg.aspx

	
Figure	9.1		Four	points	rendered	in	HTML5	Canvas.

As	a	simple	illustration,	Figure	9.1	displays	four	points	in	an	HTML5	<canvas>	element.

If	you	start	from	the	origin	(the	upper-left	corner	of	the	screen)	and	move	50	pixels	to
the	right,	followed	by	50	pixels	downward,	you	will	reach	the	upper-left	point	in	Figure
9.1.	Next,	if	you	start	from	the	origin	and	move	200	pixels	to	the	right	and	50	pixels
downward,	you	will	reach	the	upper-right	point	in	Listing	9.1.	In	a	similar	fashion,	the	two
points	in	the	second	“row”	have	coordinates	(50,100)	and	(200,100).	Notice	that	the	two	points
in	the	first	row	have	the	same	value	for	the	y-coordinate,	which	makes	sense	because	they
are	the	same	distance	away	from	the	top	of	the	Web	page;	the	same	is	true	for	the	two
points	in	the	second	row.	Similarly,	the	two	points	in	the	left	“column”	have	the	same	x-
coordinate	because	they	are	both	the	same	distance	from	the	left	side	of	the	Web	page.

Now	that	you	have	an	understanding	of	the	HTML5	Canvas	coordinate	system,	let’s
take	a	look	at	the	contents	of	Listing	9.1,	which	displays	a	minimal	HTML5	Web	page	that
is	ready	for	rendering	HTML5	Canvas-based	graphics.	Every	Canvas-based	code	sample	in
this	book	uses	the	code	(or	some	variant)	that	is	displayed	in	Listing	9.1.	Note	that	if	you
launch	this	code	in	a	browser	session,	you	will	only	see	a	blank	screen.

LISTING	9.1	Canvas1.html
<!DOCTYPE	html>

<html	lang=“en”>

	<head>

		<meta	charset=“utf-8”>

		<title>Canvas	Drawing	Rectangles</title>

	

		<script><!—

				window.addEventListener(‘load’,	function	()	{

						//	Get	the	canvas	element

						var	elem	=	document.getElementById(‘myCanvas’);

						if	(!elem	||	!elem.getContext)	{

								return;

						}

				

						//	Get	the	canvas	2d	context

						var	context	=	elem.getContext(‘2d’);

						if	(!context)	{

								return;

						}

	

						//	Insert	your	custom	Canvas	graphics	code	here

						});

				//	—></script>

	</head>

	

	<body>

			<canvas	id=“myCanvas”	width=“300”	height=“300”>

																																										No	support	for	Canvas.

			</canvas>

	</body>

</html>

Listing	9.1	contains	an	HTML	<head>	element	that	checks	for	the	existence	of	an
HTML	<canvas>	element	inside	the	HTML	<body>	element	of	the	Web	page,	and	then	gets
the	2D	context	from	the	HTML	<canvas>	element.	If	you	skip	over	the	various	conditional
statements	in	Listing	9.1,	there	are	two	lines	of	code	that	enable	us	to	get	a	reference	to	the
variable	context,	which	represents	a	drawable	surface:

var	elem	=	document.getElementById(‘myCanvas’);

var	context	=	elem.getContext(‘2d’);

If	you	launch	Listing	9.1	in	a	browser	that	does	not	support	HTML5	Canvas,	the	text
message	“No	support	for	Canvas.”	is	displayed.

The	following	code	snippet	is	executed	whenever	you	launch	the	Web	page	because	of
an	anonymous	JavaScript	function	that	is	executed	during	the	load	event:

<script><!—

window.addEventListener(‘load’,	function	()	{

		//	do	something	here

});

//	—></script>

Now	that	you	understand	the	underlying	code	for	rendering	Canvas-based	2D	shapes,
you	can	focus	on	the	code	that	actually	draws	some	2D	shapes,	starting	with	the	example
in	the	next	section.

Line	Segments,	Rectangles,	Circles,	and	Shadow	Effects
This	section	contains	an	assortment	of	code	samples	that	illustrate	how	to	render	2D

shapes	in	HTML5	Canvas.	There	are	many	concepts	introduced	in	this	section,	so	before
delving	into	the	code	sample,	let’s	look	at	some	of	the	HTML5	Canvas	APIs	that	are	used	in
this	section.	Chapter	2	contains	a	section	that	describes	various	ways	for	specifying	colors,
and	the	material	in	that	section	is	relevant	for	the	code	sample	in	this	chapter	(so	you	can
quickly	review	its	contents	now	if	you	need	to	do	so).

HTML5	Canvas	provides	the	fillRect()	method	for	rendering	a	rectangle,	which	requires
four	parameters:	the	upper-left	vertex	(defined	by	its	x-coordinate	and	its	y-coordinate)	of
the	rectangle,	the	width	of	the	rectangle,	and	the	height	of	the	desired	rectangle.	The	Canvas
fillRect()	API	looks	like	this:

context.fillRect(x,	y,	width,	height);

HTML5	Canvas	allows	you	to	render	line	segments	by	specifying	the	(x,y)	coordinates	of
the	two	endpoints	of	a	line	segment.	The	two	new	APIs	that	are	used	in	the	code	sample	in
this	section	are	moveTo()	and	lineTo(),	and	they	look	like	this:

context.moveTo(x1,	y1);

context.lineTo(x2,	y2);

The	preceding	code	snippet	represents	the	line	segment	whose	two	endpoints	are
specified	by	the	points	(x1,	y1)	and	(x2,	y2).	Note	that	you	can	also	render	the	same	line
segment	with	the	following	code	snippet:

context.moveTo(x2,	y2);

context.lineTo(x1,	y1);

Shadow	effects	provide	a	richer	visual	experience	that	is	an	improvement	over	the	use
of	non-shadow	effects.	You	create	a	shadow	effect	by	assigning	values	to	three	shadow-
related	attributes	that	control	the	size	of	the	underlying	shadow	and	also	the	extent	of	the
“fuzziness”	of	the	shadow,	as	shown	here:

context.shadowOffsetX	=	shadowX;

context.shadowOffsetY	=	shadowY;

context.shadowBlur				=	4;

You	can	also	assign	(R,G,B)	or	(R,G,B,A)	values	to	shadowColor	(which	is	an	attribute	of
the	drawing	context)	as	shown	here:

context.shadowColor			=	“rgba(0,0,64,1.0)”;

The	HTML5	Web	page	RandRectanglesShadow.html	in	Listing	9.2	(with	code	sections
omitted	for	brevity)	uses	this	technique	in	order	to	render	a	set	of	randomly	generated
rectangles	with	a	shadow	effect.

LISTING	9.2	RandRectanglesShadow.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

		<meta	charset=“utf-8”>

		<title>Canvas	Random	Rectangles	With	Shadow	Effects</title>

		<link	href=“CSS3Background2.css”

								rel=“stylesheet”	type=“text/css”>

	

		<script><!—

				window.addEventListener(‘load’,	function()	{

						redrawCanvas	=	function()	{

									//	clear	the	canvas	before	drawing	new	set	of	rectangles

									context.clearRect(0,	0,	elem.width,	elem.height);

	

									for(var	r=0;	r<rectCount;	r++)	{

												basePointX	=	canWidth*Math.random();

												basePointY	=	canHeight*Math.random();

	

												//	Alternate	shadow	effect	based	on	an	even/odd

												//	click	count	with	different	(R,G,B,A)	values

												if(clickCount	%	2	==	0)	{

															context.shadowColor			=	“rgba(0,0,64,1.0)”;

												}	else	{

															context.shadowColor			=	“rgba(64,0,0,1.0)”;

												}

	

												//	code	that	specifies	the	size	and	also	the

												//	“fuzziness”	of	the	underlying	shadow	effect

												context.shadowOffsetX	=	shadowX;

												context.shadowOffsetY	=	shadowY;

												context.shadowBlur				=	4;

												context.lineWidth					=	1;

	

												//	render	a	colored	rectangle

												colorIndex	=	Math.floor(basePointX)%fillStyles.

																										length;

												context.fillStyle	=	fillStyles[colorIndex];

	

												context.fillRect(basePointX,	basePointY,

																													rectWidth,	rectHeight);

	

												++clickCount;

									}

						}

	

						//	render	a	set	of	random	rectangles

						redrawCanvas();

				});

				//	—></script>

	</head>

	

	<body>

			<canvas	id=“myCanvas”	width=“800”	height=“350”>No	support	for

				Canvas

			</canvas>

</body>

</html>

The	HTML5	code	in	Listing	9.2	starts	by	initializing	some	JavaScript	variables	and
then	defining	the	JavaScript	function	redrawCanvas()	that	contains	a	loop	for	rendering	the
rectangles	on	the	screen.	The	loop	calculates	the	coordinates	of	the	upper-left	vertex	of
each	rectangle	as	shown	here:

basePointX	=	canWidth*Math.random();

basePointY	=	canHeight*Math.random();

The	next	part	of	the	loop	assigns	the	background	color	(which	alternates	between	a
dark	blue	and	dark	red	shadow),	and	then	sets	up	the	shadow	effect	by	specifying	values
for	the	attributes	shadowOffsetX,	shadowOffsetY,	and	shadowBlur,	as	shown	here:

context.shadowOffsetX	=	shadowX;

context.shadowOffsetY	=	shadowY;

context.shadowBlur				=	4;

The	actual	rendering	of	each	rectangle	is	performed	by	the	following	code:
context.fillRect(basePointX,	basePointY,

																	rectWidth,	rectHeight);

Notice	that	the	clickCount	variable	is	incremented	each	time	users	click	inside	the
HTML5	Canvas	element,	and	its	value	determines	which	shadow	color	is	applied	to	the
randomly	generated	rectangles.

Although	shadow	effects	create	a	pleasing	effect,	they	also	have	an	impact	on
performance.	If	you	need	shadow-like	effects	but	performance	becomes	an	issue,	one
alternative	is	to	render	a	background	shape	in	black	(or	some	other	dark	color),	and	then
rendering	the	same	shape	(with	a	small	offset)	using	a	different	color.

For	example,	you	can	create	a	shadow	effect	for	rectangles	by	first	rendering	a	black
rectangle	and	then	rendering	a	red	rectangle	on	top	of	the	black	rectangle,	as	shown	here:

//	render	a	black	rectangle

context.fillStyle	=	‘#000’;

context.fillRect(50+shadowX,	50+shadowY,	200,	100);

	

//	render	a	red	rectangle

context.fillStyle	=	‘#f00’;

context.fillRect(50,	50,	200,	100);

The	values	for	shadowX	and	shadowY	determine	the	size	of	the	background	“shadow,”	and
the	choice	of	positive	versus	negative	values	for	shadowX	and	shadowY	will	determine	the
relative	position	of	the	black	rectangle	with	respect	to	the	red	rectangle.

			The	CSS	stylesheet	CSS3Background2.css	that	is	referenced	in	the	HTML5	Web
page	RandRectanglesShadow1.html	is	available	on	the	CD.	This	CSS	stylesheet	contains	two
similar	CSS3	selectors	for	rendering	the	HTML5	<canvas>	element	defined	in	Listing	9.2,	as
well	as	a	hover-based	selector	that	changes	the	background	of	the	HTML5	<canvas>	element
whenever	users	hover	over	this	element	with	their	mouse.	The	#myCanvas	selector	defines	a
radial	gradient,	followed	by	two	repeating	radial	gradients	that	specify	various
combinations	of	red,	green,	yellow,	and	blue	at	different	pixel	locations.	A	key	point
involves	the	use	of	transparent,	which	changes	the	gap	between	consecutive	colors	that	are
rendered.

	
Figure	9.2		Canvas	random	rectangles	on	an	Asus	Prime	tablet	with	Android	ICS.

Figure	9.2	displays	a	set	of	randomly	generated	rectangles	with	a	shadow	effect	based
on	RandRectanglesShadow.html	in	Listing	9.2,	rendered	in	landscape	mode	on	an	Asus	Prime
Tablet	with	Android	ICS.

HTML5	Canvas	Linear	Gradients
HTML5	Canvas	provides	two	primary	types	of	color	gradients	(similar	to	SVG	and

CSS3):	linear	gradients	and	radial	gradients.

Linear	color	gradients	can	be	further	sub-divided	into	three	types:	horizontal	linear
gradients,	vertical	linear	gradients,	and	diagonal	linear	gradients.	Thus,	HTML5	Canvas
provides	color	gradients	that	enable	you	to	create	pleasing	visual	effects.

A	linear	gradient	is	defined	in	terms	of	ColorStop	elements,	each	of	which	contains	a
decimal	(between	0	and	1)	and	a	hexadecimal	value	that	represents	a	color.	For	example,	if
you	define	a	linear	gradient	with	an	initial	color	of	#FF0000	(the	hexadecimal	value	for	red)
and	a	final	color	of	#000000	(the	hexadecimal	value	for	black),	then	the	resultant	color
gradient	will	range	(in	a	linear	fashion)	from	red	to	black.	Linear	gradients	enable	you	to
create	vivid	and	interesting	color	combinations,	and	they	are	available	in	three	varieties:
horizontal,	vertical,	and	diagonal.	Note	that	“linear	gradient”	and	“linear	color	gradient”
are	used	interchangeably	in	this	book.

Horizontal,	Vertical,	and	Diagonal	Linear	Gradients

As	you	learned	in	the	introduction	of	this	chapter,	HTML5	Canvas	supports	the	method
createLinearGradient()that	you	can	use	to	programmatically	create	linear	gradients.	Its	syntax
looks	like	this:

context.createLinearGradient(startX,	startY,	endX,	endY);

			The	HTML5	page	LGradRectangles1.html	in	Listing	9.4	demonstrates	how	to
render	a	set	of	rectangles	with	horizontal,	vertical,	and	diagonal	linear	gradients.	Listing
9.3	references	the	CSS3	stylesheet	HoverAnimation1.css	that	applies	CSS3	keyframes-based	2D
animation	to	the	first	HTML5	<canvas>	element	whenever	users	hover	over	this	<canvas>
element	with	their	mouse.	Listing	9.4	also	references	the	CSS3	stylesheet
HoverAnimation2.css,	which	acts	in	a	similar	fashion.	However,	this	stylesheet	applies	CSS3
3D	animation	effects	to	the	second	HTML5	<canvas>	element	in	Listing	9.3.	Since	the
animation	techniques	in	these	CSS	stylesheets	were	discussed	in	Chapter	2,	we	will	omit
them	from	this	chapter,	but	the	entire	source	code	is	available	on	the	CD.

LISTING	9.3	LGradRectangles1.html
<!DOCTYPE	html>

<html	lang=“en”>

	<head>

		<meta	charset=“utf-8”>

		<title>Canvas	Linear	Gradient	Rectangles</title>

		<link	href=“HoverAnimation1.css”

								rel=“stylesheet”	type=“text/css”>

		<link	href=“HoverAnimation2.css”

								rel=“stylesheet”	type=“text/css”>

	

		<script><!—

				window.addEventListener(‘load’,	function	()	{

						redrawCanvas	=	function()	{

									//	clear	the	canvas	before	drawing	new	set	of	rectangles

									//context.clearRect(0,	0,	elem.width,	elem.height);

									//context2.clearRect(0,	0,	elem.width,	elem.height);

	

									//	upper	left	rectangle:	horizontal	linear	gradient

									currentX	=	basePointX;

									currentY	=	basePointY;

	

									gradient1	=	context.createLinearGradient(

																																						currentX,

																																						currentY,

																																						currentX+rectWidth,

																																						currentY+0*rectHeight);

	

									gradient1.addColorStop(0,	‘#f00’);

									gradient1.addColorStop(1,	‘#00f’);

									context.fillStyle	=	gradient1;

									context.fillRect(currentX,	currentY,

																										rectWidth,	rectHeight);

	

									//	upper	right	rectangle:	vertical	linear	gradient

									//	similar	code	omitted	for	brevity

	

									//	render	the	lower	rectangles	in	the	second	<canvas>

									//	element

									//	lower	left	rectangle:	diagonal	linear	gradient

									//	similar	code	omitted	for	brevity

	

									//	lower	right	rectangle:	diagonal	linear	gradient

									//	similar	code	omitted	for	brevity

	

									++clickCount;

									basePointX	+=	4;

									basePointY	+=	2;

						}

	

						//	render	linear	gradient	rectangles

						redrawCanvas();

				},	false);

				//	—></script>

	</head>

	

<body>

			<div>

				<canvas	id=“myCanvas”	width=“600”	height=“250”>

						No	support	for	Canvas

												alt=“Rendering	linear	gradient	rectangles.”>

				</canvas>

			</div>

	

			<div>

				<canvas	id=“myCanvas2”	width=“600”	height=“250”>No	support

						for	Canvas

												alt=“Rendering	linear	gradient	rectangles.”>

				</canvas>

			</div>

	

			<div>

				<input	type=“button”	onclick=“redrawCanvas();return	false”

											value=“Redraw	the	Rectangles”	/>

			</div>

	</body>

</html>

Listing	9.3	renders	four	rectangles	with	linear	gradient	shading.	The	linear	gradients
have	two,	three,	or	four	invocations	of	the	addColorStop()	method,	using	various
combinations	of	colors	(expressed	in	hexadecimal	form)	so	that	you	can	see	some	of	the
gradient	effects	that	are	possible.

Experiment	with	different	values	for	the	color	stop	definitions	to	see	how	their	values
change	the	appearance	of	the	rendered	rectangles.

	
Figure	9.3		Linear	gradient	rectangles	on	a	Nexus	7	tablet	with	Android	JellyBean.

Figure	9.3	displays	a	set	of	randomly	generated	rectangles	with	a	shadow	effect	based
on	LGradRectangles1.html,	in	landscape	mode	on	a	Nexus	7	tablet	with	Android	JellyBean.

Radial	Color	Gradients
A	radial	color	gradient	is	the	second	type	of	HTML5	Canvas-based	color	gradient.	You

can	define	a	radial	color	gradient	via	the	createRadialGradient()	method,	using	the	addColorStop()
method	to	add	color	values.	Its	syntax	(without	the	addColorStop()	method)	looks	like	this:

context.createRadialGradient(startCenterX,	startCenterY,

			startRadius,	endsCenterX,	endCenterY,	endRadius);

A	radial	color	gradient	can	be	compared	to	the	ripple	effect	that	is	created	when	you
drop	a	stone	in	a	pond,	where	each	“ripple”	has	a	color	that	changes	in	a	gradient	fashion.
Each	ripple	corresponds	to	a	color	stop	element.	For	example,	if	you	define	a	radial

gradient	with	a	start	color	of	#FF0000	(which	is	red)	and	an	end	color	of	#000000	(which	is
black),	then	the	resultant	color	gradient	will	range—in	a	radial	fashion—from	red	to	black.
Radial	gradients	can	also	contain	multiple	start/stop	color	combinations.	The	point	to	keep
in	mind	is	that	radial	gradients	change	colors	in	a	linear	fashion,	but	the	rendered	colors
are	drawn	in	a	set	of	expanding	concentric	circles.	Note	that	“radial	gradient”	and	“radial
color	gradient”	are	used	interchangeably	in	this	book.

			The	HTML5	Web	page	RGradRectangles1.html,	which	renders	line	segments,
rectangles,	and	circles	in	an	HTML5	<canvas>	element	using	linear	and	radial	gradients,	is
available	on	the	CD.

gradient1	=	context.createRadialGradient(currentX,

																																									currentY,

																																									0,

																																								currentX+rectWidth,

																																										currentY+rectHeight,

																																									rectWidth);

	

gradient1.addColorStop(0,	‘#f00’);

gradient1.addColorStop(1,	‘#00f’);

context.fillStyle	=	gradient1;

context.fillRect(currentX,	currentY,

																	rectWidth,	rectHeight);

			The	HTML5	Web	page	RGradRectangles1.htmlis	similar	to	Listing	9.3,	except	for
the	use	of	a	radial	gradient	(instead	of	a	linear	gradient)	that	ranges	in	a	radial	fashion
from	blue	to	red.	The	method	addColorStop()	is	invoked	four	times	in	order	to	add	four	“color
stop	values”	to	the	radial	gradient.	This	Web	page	also	references	HoverAnimation1.css,	whose
entire	source	code	is	available	on	the	CD.

	
Figure	9.4		Radial	gradient	rectangles	on	an	iPad3.

Figure	9.4	displays	a	set	of	rectangles	with	a	radial	gradient	based	on
RGradRectangles1.html	in	landscape	mode	on	an	iPad3.

HTML5	Canvas	Transforms	and	Saving	State
HTML5	Canvas	enables	you	to	rotate,	scale,	shear,	or	translate	(shift	horizontally	and/or

vertically)	2D	shapes	and	text	strings	with	the	following	methods:
rotate(x,y)

scale(x,y)

transform(x1,y1,x2,y2,x3,y3)

translate(x,y)

One	thing	to	keep	in	mind	is	that	you	specify	the	transforms	you	want	to	apply	(along
with	setting	attributes	values)	before	actually	rendering	a	graphics	shape	in	your	HTML5
Web	pages.

The	following	code	snippets	illustrate	sample	values	that	you	can	use	in	the	preceding
Canvas	methods,	where	context	is	a	JavaScript	variable	that	references	the	context	of	an
HTML5	<canvas>	element:

context.rotate(30*Math.PI/180);

context.scale(0.8,	0.4);

context.translate(100,	200);

context.transform(1,	0,	0.5,	1,	0,	0);

The	rotate()	method	in	the	preceding	code	block	references	the	JavaScript	constant
Math.PI	whose	value	represents	PI	radians.	In	case	you	have	forgotten,	PI	radians	equal	180

degrees,	so	2*PI	radians	is	360	degrees,	and	PI/2	radians	is	90	degrees.	Hence,	Math.PI/6
radians	(or	30*Math.PI/180)	is	the	same	as	30	degrees.	You	won’t	need	to	know	anything	more
about	radians,	but	feel	free	to	perform	an	Internet	search	if	you	want	to	read	some	tutorials
that	provide	additional	examples.

Two	additional	APIs	in	HTML5	Canvas	are	save()	and	restore(),	which	enable	you	to	save
the	current	state	of	a	canvas	state,	make	some	changes,	and	then	restore	the	original	state
of	the	canvas.	The	save()	method	“pushes”	the	current	state	on	a	stack,	and	the	restore()
method	“pops”	the	most	recent	state	that	was	pushed	onto	the	stack.

You	can	save	(and	later	restore)	a	canvas	state	after	having	applied	any	of	the
transformations	listed	in	this	section,	and	also	after	having	specified	values	for	shadow-
related	attributes	(among	others).	You	can	invoke	the	save()	and	restore()	methods	multiple
times	on	a	canvas	state,	which	makes	these	two	methods	very	useful	for	game-related	Web
pages.	We	will	not	use	these	two	methods	in	any	code	samples	in	this	chapter,	but	you	can
perform	an	Internet	search	to	read	tutorials	and	also	find	code	samples.

			The	HTML5	Web	page	JQMCanvasTransforms1.html	on	the	CD	illustrates	how	to
apply	four	HTML5	Canvas	transforms	to	a	text	string.

jCanvas:	a	jQuery	Plugin	for	HTML5	Canvas
The	jCanvas	jQuery	plugin	enables	you	to	use	jQuery	syntax	in	order	to	specify	2D

shapes	that	are	rendered	in	an	HTML5	<canvas>	element.	Its	homepage	is	here:

http://calebevans.me/projects/jcanvas/

The	HTML5	Web	page	JCanvasSamples1.html	on	the	CD	illustrates	how	to	render	several
2D	shapes	using	jCanvas.

	
Figure	9.5		The	jQuery	jCanvas	plugin	on	an	iPad3.

Figure	9.5	displays	the	result	of	rendering	JCanvasSamples1.html	in	landscape	mode	on	an

http://calebevans.me/projects/jcanvas/

iPad3.

You	can	also	use	jQuery	Mobile	with	HTML5	Canvas,	as	shown	in	the	code	sample	in
the	next	section.

HTML5	Canvas	with	CSS3	and	jQuery	Mobile
By	now,	we	hope	you	understand	how	to	render	2D	shapes	in	HTML5	Canvas.	This

section	contains	a	code	sample	that	shows	you	how	to	combine	jQuery	Mobile,	HTML5
Canvas,	and	the	dynamic	creation	of	HTML	<div>	elements	whenever	users	tap	inside	the
HTML5	<canvas>	element	in	this	Web	page.

Keep	in	mind	that	although	the	graphics	effects	are	not	necessarily	relevant	to	your
requirements,	this	code	sample	does	illustrate	how	to	handle	dynamic	creation	of	elements
as	well	as	tap	events	in	jQuery	Mobile	(which	are	handled	differently	from	tap	events	in
jQuery).

Listing	9.4	displays	the	contents	of	the	HTML5	Web	page	JQMCanvas1.html,	and	Listing
9.5	displays	the	CSS	stylesheet	JQMCanvas1.css	whose	CSS3	selectors	match	elements	in	the
HTML5	Web	page	JQMCanvas1.html.

LISTING	9.4	JQMCanvas1.html
<!DOCTYPE	html>

<html	lang=“en”>

		<head>

				<meta	charset=“utf-8”>

				<title>JQueryMobile	and	Canvas	Graphics</title>

	

				<link	rel=“stylesheet”	href=“JQMCanvas1.css”	/>

	

				<link	rel=“stylesheet”

					href=“http://code.jquery.com/mobile/1.1.0/

																															jquery.mobile-1.1.0.min.css”	/>

	

				<script	src=“http://code.jquery.com/jquery-2.0.0b1.js”>

				</script>

				<script

						src=“http://code.jquery.com/jquery-migrate-1.1.0.js”>

				</script>

	

				<script

src=“http://code.jquery.com/mobile/1.1.0/

																																	jquery.mobile-1.1.0.min.js”>

				</script>

	

				<script>

						var	tapCount	=	0;

						var	xCoord	=	0,	yCoord	=	0;

						var	rectWidth	=	20,	rectHeight	=	20;

						var	rectColors	=	new	Array(‘#ff0’,	‘#0f0’,	‘#00f’);

						var	elem,	context;

	

						var	gradient1	=	‘-webkit-gradient(radial,	5	25%,	5,	10	50%,	20,	from(red),	color-stop(0.05,	orange),	color-
stop(0.4,	yellow),	color-stop(0.6,	red),	color-stop(0.9,	blue),	to(#fff))’;

	

						var	gradient2	=	‘-webkit-gradient(radial,	5	25%,	5,	10	50%,	20,	from(blue),	color-stop(0.05,	orange),	color-
stop(0.4,	red),	color-stop(0.6,	black),	color-stop(0.9,	blue),	to(#f00))’;

	

						var	gradient3	=	‘-webkit-gradient(radial,	5	25%,	5,	10	50%,	20,	from(blue),	color-stop(0.05,	yellow),	color-
stop(0.4,	green),	color-stop(0.6,	red),	color-stop(0.9,	blue),	to(#fff))’;

	

						var	gradient4	=	‘-webkit-gradient(radial,	5	25%,	5,	10	50%,	20,	from(blue),	color-stop(0.05,	yellow),	color-
stop(0.2,	green),	color-stop(0.6,	blue),	color-stop(0.8,	red),	to(#fff))’;

	

						var	currentBG;

	

						$(“#page1”).live(‘pageinit’,	(function(event){

								//	Get	the	canvas	element

								elem	=	document.getElementById(‘MyCanvas’);

								if	(!elem	||	!elem.getContext)	{

										return;

								}			

	

								//	Get	the	canvas	2d	context

								context	=	elem.getContext(‘2d’);

								if	(!context)	{

										return;

								}			

	

								//	user	tapped	MyCanvas…

								$(“#MyCanvas”).live(‘vmousedown’,function(event)	{

										xCoord	=	0.40*(event.clientX)*window.devicePixelRatio;

										yCoord	=	0.40*(event.clientY)*window.devicePixelRatio;

	

										context.fillStyle	=	rectColors[++tapCount%rectColor

																																											s.length];

										context.fillRect(xCoord,	yCoord,	rectWidth,

																													rectHeight);

	

										$(“#MyCanvas”).hide(“slow”);

								});

	

								//	this	makes	MyCanvas	visible	again

								$(“#tapInside”).live(‘tap’,function(event)	{

											$(“#MyCanvas”).show(“slow”);

								});

	

								$(“#CanvasParent”).live(‘vmousedown’,function(event)	{

										if(tapCount	%	4	==	0)	{

												currentBG		=	gradient1;

										}	else	if(tapCount	%	4	==	1)	{

												currentBG		=	gradient2;

										}	else	if(tapCount	%	4	==	2)	{

												currentBG		=	gradient3;

										}	else	{

												currentBG		=	gradient4;

										}			

	

										newNode	=	$(‘<div>’).css({‘position’:‘absolute’,

																																				‘background’:	currentBG,

																																				‘width’:rectWidth+‘px’,

																																				‘height’:rectHeight+‘px’,

																																					top:	event.clientY,

																																					left:	event.clientX

																																			});

	

										//append	the	new	rectangle	to	CanvasParent

										$(“#CanvasParent”).append(newNode);

							})

						})

);

				</script>

	

				<style>

						#tapInside	{	color:	#f00;	}

						#MyCanvas		{	width:	80%;	height:	30%;	}

				</style>

		</head>

	

		<body>

				<div	data-role=“page”	id=“page1”

									data-role=“page”	data-theme=“b”>

						<div	data-role=“header”>

									<h2>JQuery	Mobile	and	Canvas	Graphics</h2>

						</div>

	

						<div	data-role=“content”>

								<div	id=“tapInside”>

										<p>Tap	Inside	the	Red	Rectangle	to	Hide	and	Tap	Here

													to	Show:</p>

								</div>

	

								<div	id=“CanvasParent”	name=“CanvasParent”>

										<canvas	name=“MyCanvas”	id=“MyCanvas”

																		style=“background:#f00;width=80%;height=200px”>

								</canvas>

	

								<div	id=“outer”>

										<div	id=“radial3”>Text3</div>

										<div	id=“radial2”>Text2</div>

										<div	id=“radial4”>Text4</div>

										<div	id=“radial1”>Text1</div>

								</div>

	

									<!—	jQuery	toggle-handling	code	—>

									<script>

											$(document).ready(function()	{

														$(“#outer”).toggle(function(){

																	$(“#radial1”).show(“slow”);

																	$(“#radial2”).hide(“slow”);

																	$(“#radial3”).hide(“slow”);

																	$(“#radial4”).show(“slow”);

														},function(){

																	$(“#radial1”).hide(“slow”);

																	$(“#radial2”).show(“slow”);

																	$(“#radial3”).show(“slow”);

																	$(“#radial4”).hide(“slow”);

														});

												});

									</script>

						</div>

	

						<div	data-role=“footer”>

									<h3>JQuery	Mobile	and	Canvas	Graphics</h3>

						</div>

				</div>

</body>

</html>

Notice	that	Listing	9.4	contains	a	single	jQuery	Mobile	page	view.	After	initializing
some	JavaScript	variables,	Listing	9.4	contains	the	definition	of	the	JavaScript	variables
gradient1,	gradient2,	gradient3,	and	gradient4,	each	of	which	contains	the	definition	of	a	Webkit-
based	radial	gradient.

When	users	tap	on	the	<canvas>	element	whose	id	has	value	MyCanvas,	the	code	adds	a
new	rectangle	at	the	location	of	the	tap	event,	and	then	the	<canvas>	element	slowly
disappears,	as	shown	here:

$(“#MyCanvas”).live(‘vmousedown’,function(event)	{

		xCoord	=	0.40*(event.clientX)*window.devicePixelRatio;

		yCoord	=	0.40*(event.clientY)*window.devicePixelRatio;

	

		context.fillStyle	=	rectColors[++tapCount%rectColors.length];

		context.fillRect(xCoord,	yCoord,	rectWidth,	rectHeight);

	

		$(“#MyCanvas”).hide(“slow”);

});

Keep	in	mind	that	you	must	use	the	vmousedown	event,	because	a	tap	event	in	jQuery
Mobile	does	not	provide	you	with	the	coordinates	of	the	location	of	the	tap	event.	You	also
need	to	use	the	value	of	window.devicePixelRatio	in	the	calculations	for	the	location	of	the	tap
event.

When	users	tap	on	the	<canvas>	element	whose	id	has	value	tapInside,	the	hidden	<canvas>

element	is	displayed	again,	along	with	any	rectangles	that	were	previously	rendered	via
the	fillRect()	method.

When	users	tap	on	the	<canvas>	element	whose	id	value	is	CanvasParent,	the	code	first	uses
conditional	logic	to	determine	which	radial	gradient	to	select	and	assign	to	the	JavaScript
variable	currentBG.

Next,	a	new	HTML	<div>	element	is	dynamically	created	at	the	location	of	the	tap
event	and	appended	to	the	CanvasParent	element,	as	shown	here:

newNode	=	$(‘<div>’).css({‘position’:‘absolute’,

																										‘background’:	currentBG,

																										‘width’:‘35px’,

																										‘height’:‘35px’,

																											top:	event.pageY,

																											left:	event.pageX

																										});

	

//append	the	new	rectangle	to	CanvasParent

$(“#CanvasParent”).append(newNode);

Notice	that	the	position	property	is	set	to	absolute	in	the	preceding	code	block,	which
means	that	this	dynamically	created	<div>	element	will	remain	visible	whenever	the
MyCanvas	element	slowly	fades	from	view.	However,	all	the	rectangles	that	are	rendered
using	the	fillRect()	method	will	also	slowly	disappear.

Finally,	whenever	users	click	on	any	of	the	bottom	four	<div>	elements	that	are
rendered	with	radial	gradients,	the	code	will	cause	them	to	disappear	“out	of	sequence,”
and	the	remaining	visible	elements	will	be	shifted	accordingly.

LISTING	9.5	JQMCanvas1.css
#outer	{

position:	relative;	top:	10px;	left:	0px;

}

	

#radial1	{

color:	red;

font-size:	24px;

height:	100px;

width:		300px;

position:	relative;	top:	0px;	left:	0px;

	

background:	-webkit-gradient(

		radial,	100	25%,	20,	100	25%,	40,	from(blue),	to(#fff)

);

}

	

#radial2	{

color:	red;

font-size:	24px;

width:		300px;

height:	100px;

position:	absolute;	top:	0px;	left:	300px;

	

background:	-webkit-gradient(

		radial,	100	25%,	20,	150	25%,	40,	from(red),	to(#fff)

);

}

	

#radial3	{

color:	blue;

font-size:	24px;

width:		300px;

height:	100px;

position:	relative;	top:	0px;	left:	0px;

background:	-webkit-gradient(

		radial,	100	25%,	30,	100	25%,	20,	from(yellow),	to(#fff)

);

-webkit-box-shadow:		0px	0px	8px	#000;

}

	

#radial4	{

color:	red;

font-size:	24px;

width:		300px;

height:	100px;

position:	absolute;	top:	100px;	left:	300px;

	

background:	-webkit-gradient(

		radial,	100	25%,	20,	100	25%,	40,	from(green),

		color-stop(0.2,	orange),	color-stop(0.4,	yellow),

		color-stop(0.6,	green),	color-stop(0.8,	blue),

		to(#fff)

);

}

Listing	9.5	contains	four	selectors	that	correspond	to	the	HTML	<div>	elements	with	id
values	radial1,	radial2,	radial3,	and	radial4	in	JQMCanvas1.html.	Since	each	of	these	selectors	defines
Webkit-based	radial	gradients	that	you	have	already	seen	in	earlier	examples	in	this	book,
we	won’t	discuss	the	details	of	those	gradients.

	
Figure	9.6		A	JQuery	Mobile	application	on	a	Nexus	7	tablet	with	Android	JellyBean.

Figure	9.6	displays	the	result	of	rendering	JQMCanvas1.html	in	landscape	mode	on	a
Nexus	7	tablet	with	Android	4.1.

			Additional	Code	Samples	on	the	CD
HTML5	Canvas	provides	support	for	both	quadratic	Bézier	curves	and	cubic	Bézier

curves.	The	code	samples	in	this	section	show	you	how	to	generate	interesting
combinations	of	Bézier	curves	by	using	various	types	of	gradient	shading.	Later	in	this
book,	you	will	see	how	to	use	ECMAScript	in	order	to	programmatically	change	the
values	of	attributes.

Bézier	curves	are	named	after	Pierre	Bézier,	who	promoted	them	during	the	1970s.
Bézier	curves	can	represent	many	non-linear	shapes,	they	can	be	found	in	interesting
applications,	including	PostScript	for	the	representation	of	fonts.	An	Internet	search	will
yield	many	Web	pages	with	interesting	demonstrations	(some	of	which	also	require
additional	plug-ins).	You’ll	find	computer	programs	written	in	C	and	Java,	some	of	which
are	interactive,	that	demonstrate	Bézier	curves.

Cubic	Bézier	curves	have	two	end	points	and	two	control	points,	whereas	quadratic
Bézier	curves	have	two	end	points	and	a	single	control	point.	The	x-coordinate	and	y-
coordinate	of	a	cubic	Bézier	curve	can	be	represented	as	a	parameterized	cubic	equation
whose	coefficients	are	derived	from	the	control	points	and	the	end	points.	The	beauty	of
HTML5	Canvas	is	that	it	allows	you	to	define	both	quadratic	and	cubic	Bézier	curves	via
the	<path>	element	without	having	to	delve	into	the	mathematical	underpinnings	of	Bézier
curves.	If	you’re	interested	in	learning	the	specific	details,	you	can	browse	the	Web,	where
you’ll	find	books	and	plenty	of	articles	that	cover	this	interesting	topic.

HTML5	Canvas	provides	the	quadraticCurveTo()	method	for	creating	quadratic	Bézier
curves,	which	requires	one	control	point	and	an	end	point.	HTML5	Canvas	also	provides	the
bezierCurveTo()	method	for	creating	cubic	Bézier	curves,	which	requires	you	to	specify	two
control	points	and	an	end	point.	The	context	point	(which	is	the	location	of	the	most
recently	rendered	point)	is	used	as	the	start	point	for	quadratic	and	cubic	Bézier	curves.

The	syntax	for	the	HTML5	Canvas	quadraticCurveTo()	method	looks	like	this:
quadraticCurveTo(controlX,	controlY,	endX,	endY);

The	syntax	for	the	HTML5	Canvas	bezierCurveTo()	method	looks	like	this:
bezierCurveTo(controlX1,controlY1,controlX2,controlY2,endX,endY);

			The	HTML5	page	LRGradQCBezier1.html	demonstrates	how	to	render	a	quadratic
Bézier	curve	with	linear	gradient	shading	and	a	cubic	Bézier	curve	with	radial	gradient
shading.	The	two	CSS	stylesheets	CSS3Background4.css	and	HoverAnimation1.css	are	available	on
the	CD.

The	cubic	Bézier	curve	defined	in	the	HTML5	page	LRGradQCBezier1.html	is	rendered
with	a	radial	gradient	using	six	color	stops,	based	on	several	calculated	points,	as	shown
here:

context.bezierCurveTo(

					currentX+3*multiplier*rectWidth,

					currentY+2*multiplier*rectHeight,

					currentX+2*multiplier*rectWidth,

					currentY-multiplier*rectHeight,

					currentX+100,	currentY+300);

Experiment	with	different	values	for	the	points	in	a	Bézier	curve,	and	you	might	find
other	ways	to	create	pleasing	visual	effects.	The	next	portion	of	Listing	9.6	renders	a
quadratic	Bézier	curve	using	a	linear	gradient	with	five	color	stops.

Note	that	whenever	users	click	on	the	“redraw”	button,	another	cubic	and	quadratic
Bézier	curve	are	drawn,	based	on	the	value	of	the	variable	clickCount	that	is	incremented
each	time	that	users	click	on	the	“redraw”	button.	The	new	curves	are	superimposed	on
the	previous	curves,	thereby	creating	a	nice	visual	effect.	However,	if	you	want	to	refresh
the	HTML5	<canvas>	element	prior	to	rendering	another	pair	of	Bézier	curves,	simply
uncomment	the	second	line	in	the	following	code	snippet:

//	clear	the	canvas	before	drawing	new	set	of	rectangles

//context.clearRect(0,	0,	elem.width,	elem.height);

	
Figure	9.7		Gradient	Bézier	curves	on	an	iPad3.

Figure	9.7	renders	the	quadratic	and	cubic	Bézier	curves	that	are	defined	in
LRGradQCBezier1.html	in	landscape	mode	on	an	iPad3.

HTML5	Canvas	supports	the	rendering	of	JPG	files,	and	you	can	also	apply	CSS
selectors	to	the	HTML5	<canvas>	element.	The	CD	contains	the	HTML5	Web	page
Image1.html	and	Image1.css	whose	selectors	match	the	HTML5	<canvas>	element.

Incidentally,	HTML5	Canvas	also	supports	a	clip()	method	that	enables	you	to	“clip”	JPG
files	in	various	ways.	Moreover,	you	can	perform	compositing	effects,	and	you	can	even
manipulate	the	individual	pixels	of	a	JPG	file.	Search	the	Internet	for	articles	that	describe
the	technical	details	of	these	effects.

HTML5	Canvas	provides	the	method	createPattern(image,	type)	that	enables	you	to	render	a
set	of	images	according	to	a	pattern	type,	whose	values	can	be	repeat,	repeat-x,	repeat-y,	and	no-
repeat.	An	example	of	the	syntax	(and	also	how	to	use	it)	looks	like	this:

var	pattern	=	canvas.createPattern(img,“repeat”);

canvas.fillStyle	=	pattern;

canvas.fillRect(0,0,500,300);

			The	HTML5	Web	page	RepeatingImage1.html	on	the	CD	illustrates	how	to	repeat	a
JPG	image	on	an	HTML5	<canvas>	element.

Figure	9.8	displays	RepeatingImage1.html	in	landscape	mode	on	the	Chrome	browser	on	a
MacBook.

	
Figure	9.8		Repeating	JPG	on	the	Chrome	browser	on	a	MacBook.

Other	HTML5	Canvas	Toolkits
There	are	several	very	good	JavaScript	toolkits	available	that	provide	a	layer	of

abstraction	on	top	of	HTML5	Canvas	,	including	Easel.js,	Fabric.js,	and	Paper.js.

In	addition	to	the	code	samples	that	are	available	on	the	respective	homepage	of	these
toolkits,	you	might	enjoy	the	contents	of	the	following	open	source	project,	which	uses
Easel.js	to	create	graphics	code	samples:

http://code.google.com/p/easeljs-graphics

Summary
This	chapter	introduced	you	to	HTML5	Canvas	and	showed	you	examples	of	creating

2D	shapes	with	the	HTML5	<canvas>	element.	You	also	learned	how	to	combine	HTML5
Canvas	with	jQuery	custom	code	so	that	you	can	manipulate	HTML5	Web	pages	with
Canvas-based	2D	shapes.	In	particular,	you	learned	how	to	do	the	following	in	HTML5
Canvas:

Render	line	segments,	rectangles,	and	circles
Create	linear	and	radial	gradients
Create	Bézier	curves
Display	JPG	files
Use	jCanvas	(a	jQuery	plugin	for	Canvas)
Combine	HTML5	Canvas	with	CSS3
Combine	HTML5	Canvas	with	jQuery	Mobile

http://code.google.com/p/easeljs-graphics

CHAPTER			10
	

USING	PHONEGAP	FOR	HTML5	MOBILE	APPS

	

This	chapter	shows	you	how	to	create	HTML5-based	hybrid	mobile	applications	for
Android	and	iOS.	The	code	samples	in	this	chapter	contain	HTML5	and	various
combinations	of	HTML5,	CSS3,	and	SVG.

As	you	will	soon	discover,	there	are	more	Android-based	code	samples	than	iOS-
based	code	samples.	The	choice	of	mobile	platform	for	the	code	samples	is	purely	a
stylistic	one.	However,	every	Android-based	code	sample	does	have	an	iOS-based
counterpart,	and	vice	versa	(both	platforms	provide	the	necessary	feature	support	for	all
the	samples	in	this	chapter).	Although	it	was	possible	to	include	the	same	set	of	code
samples	for	both	platforms,	doing	so	would	have	been	needlessly	redundant.	Moreover,
this	chapter	provides	you	with	the	information	that	you	need	in	order	to	“convert”	an
Android-based	code	sample	to	its	iOS	counterpart	(and	vice	versa).

The	first	part	of	this	chapter	provides	an	overview	of	how	to	develop	hybrid	Android
applications	using	a	“manual”	approach	instead	of	a	toolkit	such	as	PhoneGap.	The	code
samples	in	this	section	use	the	same	code	that	you	have	seen	in	earlier	chapters,	and	they
show	you	how	to	create	the	hybrid	Android	mobile	applications	that	will	enable	you	to
create	the	same	screenshots.	If	you	feel	ambitious,	you	can	create	Android-based	mobile
applications	for	all	the	code	samples	in	this	book!

The	second	part	of	this	chapter	contains	Android-based	code	samples	that	show	you
how	to	combine	native	Android	applications	with	CSS3,	SVG,	and	HTML5	Canvas.	This
section	contains	an	example	of	rendering	a	mouse-enabled	multi-line	graph	whose	values
can	be	updated	whenever	users	click	on	the	button	that	is	rendered	underneath	the	line
graph.	Keep	in	mind	that	the	discussion	following	the	code	samples	moves	quickly
because	the	HTML	Web	pages	contain	simple	markup,	the	CSS3	selectors	contain	code
that	you	have	seen	in	earlier	chapters,	and	the	SVG	shapes	are	discussed	in	Chapter	4.

The	third	part	of	this	chapter	provides	a	quick	overview	of	Apache	Cordova	(formerly
known	as	PhoneGap),	which	is	a	popular	cross-platform	toolkit	for	developing	mobile
applications.	In	2011	Adobe	acquired	Nitobi,	the	company	that	created	PhoneGap,	and
shortly	thereafter	Adobe	open	sourced	PhoneGap.	This	section	explains	what	PhoneGap
can	do,	and	some	toolkits	that	you	can	use	with	PhoneGap.	You	will	learn	how	to	create	a
PhoneGap-based	Android	application	that	renders	CSS3-based	animation	effects.	You	can
deploy	this	mobile	application	to	Android-based	mobile	devices	that	support	Android	ICS
or	higher.

The	final	part	of	this	chapter	discusses	how	to	create	iOS	hybrid	mobile	applications
using	the	PhoneGap	plugin	for	Xcode.

As	you	will	see	in	this	chapter,	PhoneGap	allows	you	to	create	mobile	applications

using	HTML,	CSS,	and	JavaScript.	You	can	deploy	those	mobile	applications	to	numerous
platforms,	including	Android,	iOS,	BlackBerry	and	Windows	Mobile.	You	can	also	create
mobile	applications	that	combine	PhoneGap	with	Sencha	Touch,	another	popular
framework).	However,	due	to	space	limitations,	Sencha	Touch	is	not	discussed	in	this
chapter.

If	you	are	unfamiliar	with	any	of	the	mobile	platforms	in	this	chapter,	you	can	still
work	through	the	examples	in	this	chapter	because	they	consist	of	HTML5-based	code.
The	sequence	of	steps	for	creating	HTML5-based	mobile	applications	on	a	mobile
platform	is	essentially	independent	of	the	actual	code.

HTML5/CSS3	and	Android	Applications
If	you	are	unfamiliar	with	Android,	you	can	read	the	Appendix	for	this	book	that

contains	a	concise	overview	of	the	Android-specific	concepts	in	the	code	samples	in	this
chapter.	You	can	refer	to	the	appropriate	section	whenever	you	encounter	an	Android
concept	that	is	not	clear	to	you.

The	code	sample	in	this	section	shows	you	how	to	launch	an	HTML5	Web	page
(which	also	references	a	CSS3	stylesheet)	inside	an	Android	application.	The	key	idea
consists	of	three	steps:

1.	 Modify	the	Android	Activity	class	 to	 instantiate	an	Android	WebView	class,	along	with
some	JavaScript-related	settings.

2.	 Reference	an	HTML5	Web	page	that	is	in	the	assets/www	subdirectory	of	the	Android
project.

3.	 Copy	the	HTML5	Web	page,	CSS	stylesheets,	and	JavaScript	files	into	the	assets/www
subdirectory	of	the	Android	project.

In	Step	3,	you	will	probably	create	a	hierarchical	set	of	directories	that	contain	files
that	are	of	the	same	type	(HTML,	CSS,	or	JavaScript),	in	much	the	same	way	that	you
organize	your	files	in	a	Web	application.

Now	launch	Eclipse	and	create	an	Android	project	called	AndroidCSS3.	Make	sure	that
you	select	Android	version	3.1	or	higher,	which	is	necessary	in	order	to	render	CSS3-
based	effects.

After	you	have	created	the	project,	let’s	take	a	look	at	four	files	that	contain	the	custom
code	for	this	Android	mobile	application.	Listings	10.1,	10.2,	and	10.3	respectively
display	the	contents	of	the	project	files	main.xml,	AndroidCSS3.html,	and	AndroidCSS3Activity.java.

LISTING	10.1	main.xml
<?xml	version=“1.0”	encoding=“utf-8”?>

<LinearLayout	xmlns:android=“http://schemas.android.com/apk/

																																				res/android”

				android:orientation=”vertical”

				android:layout_width=”fill_parent”

				android:layout_height=”fill_parent”>

		<WebView	android:id=”@+id/webview”

											android:layout_width=”fill_parent”

											android:layout_height=”fill_parent”>

		</WebView>

</LinearLayout>

Listing	10.1	specifies	a	LinearLayout	that	contains	an	Android	WebView,	which	will	occupy
the	entire	screen	of	the	mobile	device.	This	is	the	behavior	that	we	want	to	see,	because
the	Android	default	browser	is	rendered	inside	the	Android	WebView.

LISTING	10.2	AndroidCSS3.html
<!doctype	html>

<head>

		<title>CSS	Radial	Gradient	Example</title>

		<link	href=“AndroidCSS3.css”	rel=“stylesheet”>

</head>

	

<body>

	<div	id=“outer”>

		<div	id=“radial1”>Text1</div>

		<div	id=“radial2”>Text2</div>

		<div	id=“radial3”>Text3</div>

		<div	id=“radial4”>Text4</div>

	</div>

</body>

</html>

Listing	10.2	is	a	straightforward	HTML	Web	page	that	references	a	CSS	stylesheet
AndroidCSS3.css	(that	is	available	on	the	CD),	along	with	an	HTML	<div>	element	(whose	id
attribute	has	value	outer)	that	serves	as	a	“container”	for	four	more	HTML	<div>	elements.

			The	CSS	stylesheet	AndroidCSS3.css	contains	a	CSS	selector	for	styling	the
HTML	<div>	element	whose	id	has	value	outer,	followed	by	four	CSS	selectors
radial1,	radial2,	radial3,	and	radial4	that	are	used	to	style	the	corresponding	HTML	<div>	elements
in	Listing	10.2.	The	contents	of	these	selectors	ought	to	be	very	familiar	(you	can	review
the	material	for	CSS3	gradients	in	an	earlier	chapter),	so	we	will	not	cover	their	contents
in	this	section.

LISTING	10.3:	AndroidCSS3Activity.java
package	com.iquarkt.css3;

	

import	android.app.Activity;

import	android.os.Bundle;

	

import	android.webkit.WebChromeClient;

import	android.webkit.WebSettings;

import	android.webkit.WebView;

import	android.webkit.WebViewClient;

	

public	class	AndroidCSS3Activity	extends	Activity

{

			/**	Called	when	the	activity	is	first	created.	*/

			@Override

			public	void	onCreate(Bundle	savedInstanceState)

			{			

						super.onCreate(savedInstanceState);

						setContentView(R.layout.main);

	

						//	Get	a	reference	to	the	declared	WebView	holder

						WebView	webview	=	(WebView)	this.findViewById(R.id.webview);

	

						//	Get	the	settings

						WebSettings	webSettings	=	webview.getSettings();

	

						//	Enable	Javascript	for	interaction

						webSettings.setJavaScriptEnabled(true);

	

						//	Make	the	zoom	controls	visible

						webSettings.setBuiltInZoomControls(true);

	

						//	Allow	for	touching	selecting/deselecting	data	series

						webview.requestFocusFromTouch();

	

						//	Set	the	client

						webview.setWebViewClient(new	WebViewClient());

						webview.setWebChromeClient(new	WebChromeClient());

	

						//	Load	the	URL

						webview.loadUrl(“file:///android_asset/AndroidCSS3.html”);

			}

}

	
Figure	10.1		A	CSS3-based	3D	cube	on	an	Asus	Prime	tablet	with	Android	ICS.

Listing	10.3	defines	a	Java	class	AndroidCSS3Activity	that	extends	the	standard	Android
Activity	class.	This	class	contains	the	onCreate()	method	that	“points”	to	the	XML	document
main.xml	(displayed	in	Listing	10.2)	so	that	we	can	get	a	reference	to	its	WebView	child
element	via	R.id.webview	(which	is	the	reference	to	the	WebView	element	in	Listing	10.2),	as
shown	here:

WebView	webview	=	(WebView)	this.findViewById(R.id.webview);

Next,	the	webSettings	instance	of	the	WebSettings	class	enables	us	to	set	various	properties,
as	shown	in	the	commented	lines	of	code	in	Listing	10.4.

The	final	line	of	code	loads	the	contents	of	the	HTML	Web	page	AndroidCSS3.html
(which	is	in	the	assets/www	subdirectory),	as	shown	here:

webview.loadUrl(“file:///android_asset/AndroidCSS3.html”);

Figure	10.1	displays	a	CSS3-based	Android	application	on	an	Asus	Prime	tablet	with
Android	ICS.

SVG	and	Android	Applications
The	example	in	this	section	shows	you	how	to	create	an	Android	mobile	application

that	renders	SVG	code	that	is	embedded	in	an	HTML5	Web	page.	Now	launch	Eclipse	and
create	an	Android	project	called	AndroidSVG1,	making	sure	that	you	select	Android	version
3.1	or	higher,	which	is	necessary	in	order	to	render	SVG	elements.

The	example	in	the	previous	section	contains	four	custom	files,	whereas	the
Android/SVG	example	in	this	section	contains	two	files	with	custom	code:	the	HTML5
Web	page	AndroidSVG1.html	in	Listing	10.4	and	the	Java	class	AndroidSVG1.java,	which	is

available	on	the	CD.

			LISTING	10.4	AndroidSVG1.html
<!DOCTYPE	html>

<html>

		<body>

				<h1>HTML5/SVG	Example</h1>

				<svg>

						<ellipse	cx=“300”	cy=“50”	rx=“80”	ry=“40”

															fill=”#ff0”	stroke-dasharray=“8	4	8	1”

															style=“stroke:red;stroke-width:4;”/>

	

						<line	x1=“100”	y1=“20”	x2=“300”	y2=“350”

															stroke-dasharray=“8	4	8	1”

															style=“stroke:red;stroke-width:8;”/>

	

						<g	transform=“translate(20,20)”>

								<path

											d=“M0,0	C200,150	400,300	20,250”

											fill=”#f00”

											stroke-dasharray=“4	4	4	4”

											style=“stroke:blue;stroke-width:4;”/>

						</g>

										

						<g	transform=“translate(200,50)”>

								<path

											d=“M200,150	C0,0	400,300	20,250”

											fill=”#00f”

											stroke-dasharray=“12	12	12	12”

											style=“stroke:blue;stroke-width:4;”/>

						</g>

				</svg>

		</body>

</html>

Listing	10.4	is	an	HTML	Web	page	that	contains	an	SVG	document	with	the
definitions	for	an	ellipse,	a	line	segment,	and	two	cubic	Bézier	curves.	Appendix	A
contains	examples	of	these	2D	shapes	(among	others),	and	you	can	review	the	appropriate
material	if	you	need	to	refresh	your	memory.

			The	Java	class	AndroidSVG1Activity.java	is	omitted,	but	its	contents	are	very	similar
to	Listing	10.3.	The	complete	source	code	is	available	on	the	CD.

Figure	10.2	displays	an	SVG-based	Android	application	on	an	Asus	Prime	tablet	with
Android	ICS.

	
Figure	 10.2	 	 An	 SVG-based	 Android	 application	 on	 an	 Asus	 Prime	 tablet	 with

Android	ICS.

HTML5	Canvas	and	Android	Applications
In	addition	to	rendering	CSS3-based	effects	and	SVG	documents,	you	can	also	render

Canvas-based	2D	shapes	in	an	Android	application.	Launch	Eclipse	and	create	an	Android
project	called	AndroidCanvas1.	Make	sure	that	you	select	Android	version	3.1	or	higher,
which	is	necessary	in	order	to	render	SVG	elements.

The	example	in	this	section	contains	one	custom	file	called	AndroidCanvas1.html,	which	is
displayed	in	Listing	10.5.

LISTING	10.5	AndroidCanvas1.html
<!DOCTYPE	html>

<html	lang=“en”>

<head>

	<meta	charset=“utf-8”	/>

	<title>HTML5	Canvas	Example</title>

	

<script>

	function	draw()	{

			var	basePointX		=	10;

			var	basePointY		=	80;

			var	currentX				=	0;

			var	currentY				=	0;

			var	startAngle		=	0;

			var	endAngle				=	0;

			var	radius						=	120;

			var	lineLength		=	200;

			var	lineWidth			=	1;

			var	lineCount			=	200;

			var	lineColor			=	””;

	

			var	hexArray				=	new	Array(‘0’,‘1’,‘2’,‘3’,‘4’,‘5’,‘6’,‘7’,

																															‘8’,‘9’,‘a’,‘b’,‘c’,‘d’,‘e’,‘f’);

	

			var	can	=	document.getElementById(‘canvas1’);

			var	ctx	=	can.getContext(‘2d’);

	

			//	render	a	text	string…

			ctx.font	=	“bold	26px	helvetica,	arial,	sans-serif”;

			ctx.shadowColor	=	“#333333”;

			ctx.shadowOffsetX	=	2;

			ctx.shadowOffsetY	=	2;

			ctx.shadowBlur	=	2;

			ctx.fillStyle	=	‘red’;

			ctx.fillText(“HTML5	Canvas/Android”,	0,	30);

	

			for(var	r=0;	r<lineCount;	r++)	{

							currentX	=	basePointX+r;

							currentY	=	basePointY+r;

							startAngle	=	(360-r/2)*Math.PI/180;

							endAngle			=	(360+r/2)*Math.PI/180;

	

							//	render	the	first	line	segment…

							lineColor	=	‘#’	+	hexArray[r%16]	+	‘00’;

							ctx.strokeStyle	=	lineColor;

							ctx.lineWidth			=	lineWidth;

	

							ctx.beginPath();

							ctx.moveTo(currentX,	currentY+2*r);

							ctx.lineTo(currentX+lineLength,	currentY+2*r);

							ctx.closePath();

							ctx.stroke();

							ctx.fill();

	

							//	render	the	second	line	segment…

							lineColor	=	‘#’	+	‘0’	+	hexArray[r%16]	+	‘0’;

							ctx.beginPath();

							ctx.moveTo(currentX,	currentY);

							ctx.lineTo(currentX+lineLength,	currentY);

							ctx.closePath();

							ctx.stroke();

							ctx.fill();

	

							//	render	the	arc…

							lineColor	=	‘#’	+	‘00’+	hexArray[(2*r)%16];

							ctx.beginPath();

							ctx.fillStyle	=	lineColor;

							ctx.moveTo(currentX,	currentY);

							ctx.arc(currentX,	currentY,	radius,

															startAngle,	endAngle,	false);

							ctx.closePath();

							ctx.stroke();

							ctx.fill();

			}

}

</script>

</head>

	

<body	onload=“draw()”>

		<canvas	id=“canvas1”	width=“300px”	height=“200px”></canvas>

</body>

<html>

Listing	10.5	contains	some	boilerplate	HTML	markup	and	a	JavaScript	function	draw()

that	is	executed	when	the	Web	page	is	loaded	into	the	Android	browser.	The	draw()	function
contains	JavaScript	code	that	draws	a	set	of	line	segments	and	arcs	into	the	HTML5
<canvas>	element,	whose	id	attribute	has	value	canvas1.	You	can	review	the	code	samples	in
chapter	eleven	that	have	similar	functionality	if	you	don’t	remember	the	details	of	the
syntax	of	this	JavaScript	code.

	
Figure	10.3		A	Canvas-based	Android	application	on	an	Asus	Prime	tablet	with	Android

ICS.

Figure	10.3	displays	a	Canvas-based	Android	application	on	an	Asus	Prime	tablet	with
Android	ICS.

The	next	portion	of	this	chapter	delves	into	PhoneGap,	which	is	a	toolkit	that
automatically	creates	the	lower	level	“scaffolding”	that	you	performed	manually	in	the
previous	part	of	this	chapter.	You	will	get	instructions	for	installing	the	PhoneGap	plugin
for	Eclipse	to	create	Android	mobile	applications.	Later	in	this	chapter,	you	will	also	learn
how	to	install	the	PhoneGap	plugin	for	Xcode	in	order	to	create	HTML5-based	mobile
applications	for	iOS	mobile	devices.

What	is	PhoneGap?
PhoneGap	is	an	open	source	device	agnostic	mobile	application	development	tool	that

enables	you	to	create	cross-platform	mobile	applications	using	CSS,	HTML,	and
JavaScript,	and	its	homepage	is	here:

http://phonegap.com

The	PhoneGap	homepage	provides	documentation,	code	samples,	and	a	download	link
for	the	PhoneGap	distribution.

PhoneGap	enables	you	to	create	HTML-based	mobile	application	for	Android,

http://phonegap.com

Blackberry,	iPhone,	Palm,	Symbian,	and	Windows	Mobile.	PhoneGap	provides	support
for	touch	events,	event	listeners,	rendering	images,	database	access,	different	file	formats
(XML	and	JSON),	and	Web	Services.

Note	that	if	you	want	to	develop	iPhone	applications,	you	must	have	a	MacBook	or
some	other	OS	X	machine,	along	with	other	dependencies	that	are	discussed	later	in	this
chapter.

How	Does	PhoneGap	Work?

PhoneGap	mobile	applications	involve	a	Web	view	that	is	embedded	in	a	native
“shell,”	and	your	custom	code	runs	in	the	Web	view.	In	addition,	PhoneGap	provides	a
JavaScript	API	for	accessing	native	features	of	a	mobile	device,	and	your	code	can	use
PhoneGap	in	order	to	access	those	native	features.	For	example,	PhoneGap	contains
JavaScript	APIs	for	accessing	Accelerometer,	Camera,	Compass,	Contacts,	Device
information,	Events,	Geolocation,	Media,	Notification,	and	Storage.

Keep	in	mind	that	PhoneGap	does	not	provide	HTML	UI	elements.	Thus,	if	you	need
this	functionality	in	your	mobile	applications,	you	can	add	other	toolkits	and	frameworks,
such	as	jQuery	Mobile,	Sencha	Touch,	or	Appcelerator.

Now	that	you	have	a	basic	understanding	of	the	capabilities	of	PhoneGap,	install	the
PhoneGap	2.0	(which	was	released	as	this	book	goes	to	print)	for	Xcode	and	Eclipse	by
following	the	instructions	here:

http://outof.me/phonegap-2-0-getting-started/

In	case	you	prefer	to	compile	your	mobile	applications	in	the	“cloud,”	Adobe	provides
a	Website	for	this	purpose:

https://build.phonegap.com/

If	you	have	completed	the	installation	of	the	PhoneGap	plugin	for	Eclipse,	you	are
now	ready	to	create	a	PhoneGap	application	for	Android,	which	is	the	topic	of	the	next
section.

Creating	Android	Apps	with	The	PhoneGap	Plugin
Create	an	Android	project	in	Eclipse	by	clicking	on	the	icon	for	the	PhoneGap	plugin

and	then	(for	the	purposes	of	this	example)	specify	PGJQM1	for	the	Project	Name,	check	the
checkbox	for	including	the	jQuery	Mobile	files,	select	the	Android	version	that	your
Android	device	supports,	and	then	enter	com.iquarkt.phonegap	as	the	package	name.

Click	the	“Finish”	button.	After	the	project	has	been	created,	navigate	to	the	assets/www
subdirectory	of	the	newly	created	Android	project.	You	will	find	the	following	files
(version	numbers	might	be	different	when	this	book	goes	to	print):

index.html

phonegap-1.3.0.js

There	is	also	a	generated	Java	file	PhoneGap1Activity.java,	whose	contents	are	displayed	in
Listing	10.6.

LISTING	10.6	PhoneGap1Activity.java

http://outof.me/phonegap-2-0-getting-started/
https://build.phonegap.com/

package	com.iquarkt.phonegap;

	

import	com.phonegap.*;

import	android.os.Bundle;

	

public	class	PhoneGap1Activity	extends	Activity

{

			/**	Called	when	the	activity	is	first	created.	*/

			@Override

			public	void	onCreate(Bundle	savedInstanceState)

			{

						super.onCreate(savedInstanceState);

						super.loadUrl(“file:///android_asset/www/index.html”);

			}

}

Listing	10.6	contains	an	onCreate()	method	that	launches	the	HTML	page	index.html,	as
shown	here:

super.loadUrl(“file:///android_asset/www/index.html”);

The	HTML	page	index.html	is	located	in	the	assets/www	subdirectory	of	the	project,	and	its
contents	are	displayed	in	Listing	10.7.

LISTING	10.7	index.html
<!DOCTYPE	HTML>

<html>

		<head>

				<meta	name=“viewport”	content=“width=320;	user-scalable=no”	/>

				<meta	http-equiv=“Content-type”	content=“text/html;

																																													charset=utf-8”>

				<title>PhoneGap</title>

	

				<link	rel=“stylesheet”	href=“master.css”

										type=“text/css”	media=“screen”

										title=“no	title”	charset=“utf-8”>

				<script	src=“phonegap-1.0.0.js”></script>

				<script	src=“main.js”></script>

		</head>

	

		<body	onload=“init();”	id=“stage”	class=“theme”>

				<h1>Welcome	to	PhoneGap!</h1>

				<h2>this	file	is	located	at	assets/www/index.html</h2>

				<div	id=“info”>

								<h4>Platform:		 ,

												Version:	 </h4>

								<h4>UUID:		 ,

												Name:	 </h4>

								<h4>Width:		 ,

												Height:	 ,

												Color	Depth:	</h4>

					</div>

	

				<dl	id=“accel-data”>

						<dt>X:</dt><dd	id=“x”> </dd>

						<dt>Y:</dt><dd	id=“y”> </dd>

						<dt>Z:</dt><dd	id=“z”> </dd>

				</dl>

	

				

																																		Toggle	Accelerometer

				

																																		Get	Location

				Call	411

				Beep

				

																																											Vibrate

				

																																													Get	a	Picture

				

																																						Get	Phone’s	Contacts

				

																																														Check	Network

	

				<div	id=“viewport”	class=“viewport”	style=“display:	none;”>

						

				</div>

		</body>

</html>

The	first	portion	of	Listing	10.7	contains	a	<script>	element	that	includes	the	JavaScript

file	phonegap.js,	which	defines	the	functions	that	constitute	the	core	functionality	of
PhoneGap.

The	second	portion	of	Listing	10.7	displays	the	anchor	elements	that	enable	you	to	test
media-related	features	of	your	phone,	including	accelerometer,	geolocation,	making	phone
calls	(from	inside	the	Android	application),	beep	effects,	vibration	effects,	and	taking
pictures	with	the	camera	on	your	smart	phone	or	tablet.

Listing	10.8	displays	the	contents	of	the	JavaScript	file	main.js,	which	contains	selected
portions	of	the	JavaScript	code	that	supports	functionality	in	the	HTML5	Web	page
index.html.

LISTING	10.8	main.js
var	deviceInfo	=	function()	{

				document.getElementById(“platform”).innerHTML	=	device.

																																																				platform;

				document.getElementById(“version”).innerHTML	=	device.

																																																			version;

				document.getElementById(“uuid”).innerHTML	=	device.uuid;

				document.getElementById(“name”).innerHTML	=	device.name;

				document.getElementById(“width”).innerHTML	=	screen.width;

				document.getElementById(“height”).innerHTML	=	screen.height;

				document.getElementById(“colorDepth”).innerHTML	=

																																																	screen.colorDepth;

};

	

//	sections	omitted	for	brevity

function	dump_pic(data)	{

				var	viewport	=	document.getElementById(‘viewport’);

				console.log(data);

				viewport.style.display	=	””;

				viewport.style.position	=	“absolute”;

				viewport.style.top	=	“10px”;

				viewport.style.left	=	“10px”;

				document.getElementById(“test_img”).src	=

																															“data:image/jpeg;base64,”	+	data;

}

	

function	fail(msg)	{

				alert(msg);

}

	

function	show_pic()	{

				navigator.camera.getPicture(dump_pic,	fail,	{

								quality	:	50

				});

}

	

//	details	omitted	for	brevity

The	first	part	of	Listing	10.8	contains	the	code	for	getting	the	data	from	the
accelerometer	of	your	Android	device.	The	second	part	of	Listing	10.9	shows	you	the
JavaScript	code	for	taking	a	picture	from	this	Android	application.

Now	navigate	to	Run	>	Android	application	in	order	to	launch	this	Android	project	and	on
your	Android	device	you	will	see	something	similar	to	Figure	10.4.

	
Figure	10.4		A	PhoneGap-based	Android	mobile	application.

Figure	10.4	displays	a	set	of	menu	items	that	enable	you	to	access	hardware-related
functionality.

Working	with	HTML5,	PhoneGap,	and	iOS
This	section	shows	you	how	to	create	iOS	mobile	applications	using	PhoneGap,	which

is	exactly	the	process	that	was	used	to	create	the	iOS	mobile	applications	in	this	book.
(Their	screenshots	on	an	iPad3	are	included	in	various	chapters.)	Every	iOS	mobile
application	in	this	book	was	developed	on	a	MacBook	OS	X	10.8.2	with	Apple’s	Xcode
4.5	and	PhoneGap.

Earlier	in	this	chapter	you	learned	how	to	create	Android	applications	in	Eclipse,
which	is	an	IDE	that	runs	on	multiple	OSes,	but	the	situation	is	different	for	creating	iOS
applications	(with	or	without	PhoneGap).

First	you	need	access	to	an	Apple	device	(such	as	a	MacBook,	Mac	Mini,	or	Mac	Pro)
with	Apple’s	Xcode	installed	in	order	to	create	mobile	applications	for	iOS	mobile
devices.	If	you	register	as	a	developer	you	can	download	Xcode	for	free,	or	for	$4.99	in
the	Apple	iStore.	Although	this	section	uses	Xcode	4.5,	it	is	possible	to	install	a	lower
version	of	Xcode.	(However,	make	sure	that	you	check	the	minimum	required	version	for
OS	X.)

Secondly,	you	need	to	install	the	PhoneGap	plugin	for	Xcode	4	by	following	the
detailed	instructions	here	(which	also	contain	a	link	for	installing	PhoneGap	on	Xcode	3):

http://wiki.phonegap.com/w/page/39991939/Getting%20Started%20with%20PhoneGap%20iOS%20using%20Xcode%204

Thirdly,	you	need	to	register	as	an	Apple	Developer	(which	costs	$99	per	year)	if	you
want	to	deploy	your	iOS	mobile	applications	to	iOS	devices.	However,	if	you	only	plan	to
use	the	iOS	Simulator,	you	can	do	so	at	no	charge.

After	you	have	set	up	a	laptop	with	the	required	software,	you	will	be	ready	to	create
an	iOS	mobile	application	with	PhoneGap,	which	is	the	topic	of	the	next	section.

			

	

PhoneGap	 applications	 always	 have	 the	 same	 filename	 index.html,	 so	 in	 order	 to	 provide
multiple	PhoneGap	project	 files	 in	 the	 same	directory	 on	 the	CD,	 the	HTML	Web	page
index.html	for	each	PhoneGap	project	is	saved	in	a	Web	page	whose	name	is	the	same	as	the
project.	 For	 example,	 the	 contents	 of	 the	 HTML	 Web	 page	 ThreeDCube1.html	 in	 the	 next
section	are	actually	 the	 same	as	 the	generated	Web	page	 index.html	 that	 is	 specific	 to	 the
PhoneGap	project	in	the	next	section.

	

A	CSS3	Cube	on	iOS	Using	PhoneGap
Create	an	Xcode	application	called	ThreeDCube1	by	selecting	the	PhoneGap	plugin.

(Make	sure	that	your	filenames	start	with	an	alphabetical	character,	or	you	will	get	errors
when	you	attempt	to	compile	and	deploy	your	applications.)

Note	that	if	you	are	using	Xcode	4.3.1,	then	you	will	need	to	perform	a	manual	copy
of	the	generated	www	subdirectory	into	the	project	home	directory	of	your	current	Xcode
application.	When	you	have	performed	this	step	correctly,	you	will	no	longer	see	an	error
message	when	you	launch	your	mobile	application	in	the	Simulator	or	on	your	iOS	device.

The	CSS	stylesheet	ThreeDCube1.css	is	the	same	as	the	CSS	file	3DCube1.css	in	Chapter	2,

so	we	won’t	display	its	contents	here.	Listing	10.9	displays	the	contents	of	the	HTML	Web
page	ThreeDCube1.html	that	is	the	same	as	the	HTML	Web	page	index.html	that	is	generated	by
the	PhoneGap	plugin	in	XCode.

LISTING	10.9	index.html
<!DOCTYPE	html>

<html>

		<head>

		<title>CSS	3D	Cube	Example</title>

		<link	href=“ThreeDCube1.css”	rel=“stylesheet”	type=“text/css”>

	

		<meta	name=“viewport”

				content=“width=device-width,	initial-scale=1.0,	maximum-scale=1.0,	user-scalable=no;”	/>

		<meta	charset=“utf-8”>

	

		<!—	iPad/iPhone	specific	css	below,	add	after	your	main	css	>

		<link	rel=“stylesheet”	media=“only	screen	and	(max-device-width:	1024px)”	href=“ipad.css”	type=“text/css”	/>

		<link	rel=“stylesheet”	media=“only	screen	and	(max-device-width:	480px)”	href=“iphone.css”	type=“text/css”	/>

		—>

	

		<!—	If	your	application	is	targeting	iOS	BEFORE	4.0	you	MUST	put	json2.js	from

							http://www.JSON.org/json2.js	into	your	www	directory	and	include	it	here	—>

	

		<script	src=“phonegap-1.3.0.js”></script>

		

		<script	type=“text/javascript”>

		//	If	you	want	to	prevent	dragging,	uncomment	this	section

		/*

		function	preventBehavior(e)

		{

						e.preventDefault();

				};

		document.addEventListener(“touchmove”,	preventBehavior,	false);

		*/

	

		function	onBodyLoad()

		{

				document.addEventListener(“deviceready”,	onDeviceReady,

					false);

		}

	

		function	onDeviceReady()

		{

				//	do	your	thing!

		//navigator.notification.alert(“PhoneGap	is	working”)

		}

	</script>

	</head>

	

	<body	onload=“onBodyLoad()”>

	<div	id=“outer”>

		<div	id=“top”>Text1</div>

		<div	id=“left”>Text2</div>

		<div	id=“right”>Text3</div>

	</div>

	</body>

</html>

Listing	10.9	is	the	result	of	combining	the	HTML	Web	page	3DCube1.html	from	Chapter
2	(which	is	essentially	a	set	of	HTML	<div>	elements)	with	the	HTML	Web	page	index.html
that	is	automatically	generated	by	PhoneGap	when	you	create	a	mobile	application	in
Xcode	using	the	PhoneGap	plugin.

Now	run	this	mobile	application,	either	in	the	Xcode	Simulator	or	on	your	mobile
device,	and	you	will	see	a	graphics	image	that	is	similar	to	Figure	10.5.

	
Figure	10.5		A	CSS3	cube	on	an	iPad3.

The	process	for	creating	the	other	iOS-based	mobile	applications	in	this	chapter	is
identical	to	the	process	for	the	preceding	iOS	mobile	application,	so	there	is	no	need	to
include	additional	examples.	However,	it’s	worth	your	while	to	spend	some	time	creating
additional	iOS	mobile	applications,	which	will	increase	your	comfort	level	and	perhaps
also	motivate	you	to	learn	about	other	features	of	Xcode.

Additional	Code	Samples	on	the	CD

			Although	Android	does	not	have	built-in	support	for	rendering	charts	and
graphs,	you	can	create	them	using	Canvas-based	code	that	is	very	similar	to	the	code	in	the
previous	section.

			Launch	Eclipse	and	create	an	Android	project	called	AndroidCanvasMultiLine2,
making	sure	that	you	select	Android	version	3.1	or	higher.	The	HTML5	Web	page
AndroidCanvasMultiLine2.html	on	the	CD	contains	JavaScript	code	for	rendering	multiple	line
graphs	using	HTML5	Canvas.

Figure	10.6	displays	a	Canvas-based	multi-line	graph	Android	application	on	a	Nexus	S
4G	with	Android	ICS.

	
Figure	10.6		A	Canvas-based	multi-line	Graph	on	an	Android	smart	phone.

The	Android	project	HTML5CanvasBBall2	contains	the	HTML5	Web	page
HTML5CanvasBBall2.html	that	contains	JavaScript	code	for	creating	a	bouncing	ball	effect	in
HTML5	Canvas.

The	Android	project	PhoneGapForm1	contains	the	HTML5	Web	page

PhoneGapForm1.html	(which	will	actually	be	named	index.html	in	your	Android	project)	that
illustrates	how	to	create	a	form	for	various	types	of	user	input	in	PhoneGap,	and	the	types
of	the	input	fields	are	such	that	the	following	occurs	when	users	navigate	to	this	form:

Text	input	displays	a	standard	keyboard
Telephone	input	displays	a	telephone	keypad
URL	input	displays	a	URL	keyboard
Email	input	displays	an	email	keyboard
Zip	code	input	displays	a	numeric	keyboard

For	the	final	code	sample	in	this	chapter,	create	an	Xcode	application	called	ThreeDCube1
by	selecting	the	PhoneGap	plugin.	(Make	sure	that	your	filenames	start	with	an
alphabetical	character	or	you	will	get	errors	when	you	attempt	to	compile	and	deploy	your
applications.)	Copy	the	CSS	stylesheet	ThreeDCube1.css	into	your	project,	and	replace
index.html	with	the	HTML	Web	page	ThreeDCube1.html	in	your	project.

The	process	for	creating	the	other	iOS-based	mobile	applications	in	this	chapter	is
identical	to	the	process	for	the	preceding	iOS	mobile	application,	so	there	is	no	need	to
include	additional	examples.	However,	it’s	worth	your	while	to	spend	some	time	creating
additional	iOS	mobile	applications.	Not	only	will	this	increase	your	comfort	level,	but	it
will	perhaps	also	motivate	you	to	learn	about	other	features	of	Xcode.

Summary
This	chapter	showed	you	how	to	create	hybrid	Android	mobile	applications	that

contain	HTML5,	CSS3,	and	SVG.	You	created	such	mobile	applications	manually,	which
involved	creating	Android	projects	in	Eclipse,	and	then	modifying	the	contents	of	the
Android	Activity	class	and	populating	an	assets	subdirectory	with	HTML-related	files.

Next,	you	learned	how	to	use	the	PhoneGap	Eclipse	plugin,	which	simplifies	the
process	of	creating	an	Android	project.	You	also	saw	how	the	PhoneGap	plugin	creates	a
default	page	that	allows	you	to	use	“live”	features	of	your	Android	device.

ON	THE	CD-ROM

	

The	CD	contains	an	assortment	of	code	samples,	appendices,	and	figures	that
accompany	the	material	in	the	book.

Code	Samples
The	CD	that	accompanies	this	book	contains	all	the	code	samples	to	save	you	time	and

effort	from	the	error-prone	process	of	manually	typing	code	into	a	text	file.	Samples	are	in
their	respective	chapter	folders.

Appendices
The	CD	contains	appendices	for	the	following	topics:

Appendix	A:	Overview	of	SVG
Appendix	B:	Introduction	to	Android
Appendix	C:	HTML5	and	JavaScript	Toolkits
Appendix	D:	Introduction	to	Single-Page	Applications

Figures
All	of	the	figures	from	the	book,	including	any	images	or	screenshots	that	were

originally	4-color,	are	including	in	their	respective	chapters	on	the	CD-ROM.

INDEX
	

A
	
Accordion	Effects,	68–71

AJAX	(XHR2),	108

Android	Applications,	210–217

HTML5/CSS3	and,	210–213

SVG	and,	213–214

HTML5	Canvas	and,	215–217

AndroidCanvas-MultiLine2,	224

AndroidSVG1,	213

animate(),	52

Animation	effects,	45–64

Additional	Code	Samples	on	the	CD,	63–64

Basics	in	jQuery,	45–47

Using	Callback	Functions,	47

Comparing	CSS3	with	jQuery,	64

CSS3-Based,	54–56

2D	Transforms	with	CSS3	and	jQuery,	57–59

CSS3	Keyframes	and	2D	Transforms,	54

The	jQuery	.animate()	Method,	52–54

Custom	CSS	Animation	Using,	53–54

jQuery	Fade	and	Slide,	47–52

The	fadeIn(),	fadeOut(),	and	fadeToggle()	Functions,	48–50

jQuery	Slide-Related	Functions,	50–52

Easing	Functions	in	jQuery,	52

Using	jQuery	Mobile,	171–174

Fade-related	Methods,	171–173

Slide-Related	jQuery	Methods,	173–174

Apache	Cordova,	209

Attribute,	1,	7

B
	
Backbone	Boilerplate,	115

BackboneJS,	112–115

A	Brief	Introduction	to,	112–115

Variations	of,	115–116

Buttons,	71–73

C
	
Check	Boxes	and	Radio	Buttons,	74–76

click()	function,	12

Collection,	113

Combo	Boxes,	76–78

CR	(“Candidate	Recommendation”)	status,	88

Create	“Exploding”	Effects,	84

CRUD,	123

CSS3,	21–44

2D	Transforms,	37–42

Rotate,	39–42

Additional	Code	Samples	on	the	CD,	43–44

Gradients,	32

Linear,	32–35

Radial,	35–37

Media	Queries,	42–42

Quick	Overview	of	CSS3	Features,	23

Pseudo	Classes	and	Attribute	Selection,	23–26

Shadow	Effects	and	Rounded	Corners,	26–32

Box	Shadow	Effects,	30

Rounded	Corners,	30–32

Specifying	Colors	with	RGB	and	HSL,	26–29

Text	Shadow	Effects	and,	26

Support	and	Browser-Specific	Prefixes	for	CSS3	Properties,	22–23

css(),	8

CSS	box	model,	21

Cubic	Bezier	curves,	52,	205

D
	
Date	Pickers,	78–80

DAP	(Device	APIs)	working	group,	92

Detect	portrait	versus	landscape	mode,	23

divColors,	73

DOM	(Document	Object	Model)	structure,	186

E
	
Eclipse	plugin,	225

Enhance.js,	22

EmberJS,	116–117

H
	
hide()	and	show()	functions,	46

HTML5	Canvas?,	186–207

Cartesian	coordinate	system,	187–189

CSS3	and	jQuery	Mobile	with,	198–204

Linear	Color	Gradients,	193–196

Diagonal,	193

Horizontal,	193

Vertical,	193

Line	Segments,	Rectangles,	Circles,	and	Shadow	Effects,	189–193

Radial	Color	Gradients,	196–197

SVG	versus,	187

Toolkits,	207

Transforms	and	Saving	State,	197–198

HTML5-related	technologies,	87–108

Cross-Origin	Resource	Sharing	(CORS),	91–92

Detecting	Online	and	Offline	Status,	108

HTML5	Drag	and	Drop	(DnD),	98–99

HTML5	History	APIs,	106

HTML5	Offline	Web	Applications,	107

jQuery	and	HTML5	Drag	and	Drop,	99–101

jQuery	and	HTML5	File	APIs,	104–106

jQuery	and	HTML5	Local	Storage,	101–103

Libraries	for	HTML5	Local	Storage,	103–104

The	Battery	API,	92

The	Stages	in	the	W3C	Review	Process,	88

W3C	Geolocation,	89–91

Obtain	a	User’s	Position	with	getCurrentPosition(),	90

Track	a	User’s	Position	with	watchPosition(),	90–91

W3C	Candidate	Recommendation	Status	(CR),	92

W3C	Recommendation	Status	(REC),	89

Working	with,	221

XMLHttpRequest	Level	2	(XHR2),	92–98

AJAX	Requests	using	XMLHttpRequest	Level	2	(XHR2),	97–98

Making	AJAX	Calls	with	jQuery,	95–96

Making	AJAX	Calls	without	jQuery,	93–94

I
	
iOS-based	mobile	applications,	225

J
	
jCanvas,	185,	198

Jade,	119–123

A	Minimal	NodeJS	Code	Sample	with	Jade,	121–123

Code	Samples,	120–121

Templating	Solutions,	123

JAXB,	15

JavaScript-based	toolkit,	1

jQuery,	1

Accelerometer	Values	with	jQuery,	16–19,	184

A	Follow-the-Mouse	Example	with	jQuery,	60–61

Chaining	jQuery	Functions,	15–16

Finding	Elements	in	Web	Pages,	1–4

A	“Hello	World”	Web	Page,	2–4

Handling	Click	Events	in	jQuery,	12–14

Handling	Events	in	jQuery	1.7	and	Beyond,	14–15

Handling	Other	Events	with	jQuery,	61–62

Keyboard	events,	62

Mouse	Events,	62

Querying	and	Modifying	the	DOM	with	jQuery,	4–12

Creating	DOM	Elements,	9–10

:eq,	:lt,	and	:gt	Qualifiers,	6

Finding	and	Setting	Element	Attributes,	7–8

:first	and	:last	Qualifiers,	4–6

Properties	versus	Attributes	in	jQuery,	7

The	jQuery	append()	and	appendTo()	methods,	10–11

working	with	custom	attributes,	8

Useful	jQuery	Code	Blocks,	8–9

using	jQuery	to	remove	elements,	11–12

Working	with	CSS3	Selectors	in,	46

jQuery	Mobile,	135–163,	165–170,	174–183

A	Minimal	jQuery	Mobile	Web	Page,	136–138

Animation	Effects	with	CSS3	and,	176–178

Geolocation	and,	160–163

Handling	User	Gestures	and	Events	in,	165–170

Portrait	Mode	versus	Landscape	Mode,	170

Scroll	Events	in,	169

Two	jQuery	Plugins	for	Detecting	User	Gestures,	168

List	Views	in	jQuery	Mobile,	156–161

AJAX	and,	158–161

Multiple	Page	Views	in	One	HTML5	Web	Page,	146–147

More	Differences	between	jQuery	and	jQuery	Mobile,	138–144

CSS-Related	Page	Initialization	and,	143

Custom	Attributes,	139

Page	Transitions,	140–142

Page	Views,	139

The	mobileinit	Event,	143–144

Options	and	Customization,	144

overview	of,	135–136

Key	Features	and	Components	in,	136

Page	Navigation	and	Changing	Pages,	144–145

The	jqmData()	Custom	Selector,	145

Positioning	the	Header	and	Footer	in	Page	Views,	148–149

Transition	Effects,	174–176

Virtual	Mouse	Events,	179–183

Working	with	Buttons	in,	150–156

Navigation	Buttons	as	Anchor	Links,	150–151

Groups	of	Buttons	and	Column	Grids,	151

Rendering	Buttons	with	Themes,	152–156

jQuery	UI	controls,	67–85

L
	
LC	(“Last	Call”)	status,	88

M
	
method	chaining,	2

Model,	112

Changes,	113

Modernizr,	22

MongoDB,	123–124

Mongoose,	125–131

An	SPA	Code	Sample,	127–131

Connecting	to	MongoDB	via	Mongoose,	125

Creating	Schemas	in	Mongoose,	125–126

N
	
Nexus	S	4G,	224

NodeJS,	124–125

P
	
PhoneGap,	217–222

A	CSS3	Cube	on	iOS	Using,	222

Creating	Android	Apps	with	The	PhoneGap	Plugin,	218–221

How	Does	It	Work?,	217–218

Plugin,	225

Working	with,	221

Progress	Bars,	80–82

Property,	7

PR	(“Proposed	Recommendation”)	status,	88

Q
	
Quadratic	Bezier	curves,	52,	205

R
	
REC	(“Recommendation”)	status,	88

rotate()	function,	27

Router,	114

S
	
Same	origin	policy,	91

scale()	function,	39

Scroll	events,	169

Single-Page	Application	(SPA),	109–131

A	Minimalistic	SPA,	119

What	is	an	SPA?,	109

Client-Side	Technologies	for	SPAs,	111

Generating	Web	Pages	in	SPAs,	111

Handling	Model-Related	Events	in	SPAs,	111

MVC	and	MV*	Patterns,	110–111

Modern	Web	Architecture,	110

skew(),	40

Sliders,	67

slideUp(),	slideDown(),	and	slideToggle()	methods,	50

T
	
Tap	and	Swipe	Events,	168

Theme	Roller,	84

ThreeDCube1,	225

translate()	method,	41

Twitter	Bootstrap,	117–119

V
	
View,	113

W
	
WD	(“Working	Draft”)	document,	88

Write-and-forget	approach,	186

X
	
Xcode,	224

	Preface
	Chapter 1 jQuery Concepts
	Using jQuery to Find Elements in Web Pages
	A “Hello World” Web Page with jQuery
	Querying and Modifying the DOM with jQuery
	Find and Modify Elements with :first and :last Qualifiers
	Finding Elements with :eq, :lt, and :gt Qualifiers
	Properties versus Attributes in jQuery
	Finding and Setting Element Attributes
	Working with Custom Attributes
	Using jQuery to Remove Elements
	Creating DOM Elements
	The jQuery append() and appendTo() methods
	Useful jQuery Code Blocks
	Handling Click Events in jQuery
	Handling Events in jQuery 1.7 and Beyond
	Chaining jQuery Functions
	Accelerometer Values with jQuery
	Summary

	Chapter 2 Introduction to CSS3
	CSS3 Support and Browser-Specific Prefixes for CSS3 Properties
	Quick Overview of CSS3 Features
	CSS3 Pseudo Classes and Attribute Selection
	CSS3 Pseudo Classes
	CSS3 Attribute Selection
	CSS3 Shadow Effects and Rounded Corners
	Specifying Colors with RGB and HSL
	CSS3 and Text Shadow Effects
	CSS3 and Box Shadow Effects
	CSS3 and Rounded Corners
	CSS3 Gradients
	Linear Gradients
	Radial Gradients
	CSS3 2D Transforms
	Rotate Transforms
	CSS3 Media Queries
	Additional Code Samples on the CD
	Summary

	Chapter 3 Animation Effects with jQuery and CSS3
	Working with CSS3 Selectors in jQuery
	Basic Animation Effects in jQuery
	Using Callback Functions
	jQuery Fade and Slide Animation Effects
	The fadeIn(), fadeOut() , and fadeToggle() Functions
	jQuery Slide-Related Functions
	Easing Functions in jQuery
	The jQuery .animate() Method
	Custom CSS Animation Using the .animate() Function
	CSS3-Based Animation Effects
	Animation Effects with CSS3 Keyframes and 2D Transforms
	2D Transforms with CSS3 and jQuery
	A Follow-the-Mouse Example with jQuery
	Handling Other Events with jQuery
	Handling Mouse Events
	Handling Keyboard Events
	Additional Code Samples on the CD
	Animation: Comparing CSS3 with jQuery
	Summary

	Chapter 4 jQuery UI Controls
	Using jQuery 2.0 in this Chapter
	Accordion Effects
	Buttons
	Check Boxes and Radio Buttons
	Combo Boxes
	Date Pickers
	Progress Bars
	Additional Code Samples on the CD
	Create “Exploding” Effects
	Useful Links
	Summary

	Chapter 5 Other HTML5 Technologies
	The Stages in the W3C Review Process
	HTML5 APIs in W3C Recommendation Status (REC)
	HTML5 Geolocation
	Obtain a User’s Position with getCurrentPosition()
	Track a User’s Position with watchPosition()
	HTML5 Cross-Origin Resource Sharing (CORS)
	HTML5 APIs in W3C Candidate Recommendation Status (CR)
	The Battery API
	XMLHttpRequest Level 2 (XHR2)
	Making AJAX Calls without jQuery
	Making AJAX Calls with jQuery
	AJAX Requests using XMLHttpRequest Level 2 (XHR2)
	HTML5 Drag and Drop (DnD)
	jQuery and HTML5 Drag and Drop
	jQuery and HTML5 Local Storage
	Libraries for HTML5 Local Storage
	jQuery and HTML5 File APIs
	HTML5 History APIs
	HTML5 Offline Web Applications
	Detecting Online and Offline Status
	Summary

	Chapter 6 Introduction to Single-Page Applications
	What is an SPA?
	Modern Web Architecture
	MVC and MV* Patterns
	Generating Web Pages in SPAs
	Handling Model-Related Events in SPAs
	Client-Side Technologies for SPAs
	BackboneJS
	A Brief Introduction to BackboneJS
	What is a Model?
	Model Changes
	What is a View?
	What is a Collection?
	What is a Router?
	Useful Links
	Backbone Boilerplate
	Variations of BackboneJS
	EmberJS
	Twitter Bootstrap
	Useful Links
	A Minimalistic SPA
	Jade
	Jade Code Samples
	A Minimal NodeJS Code Sample with Jade
	Other Templating Solutions
	MongoDB
	NodeJS
	Mongoose
	Connecting to MongoDB via Mongoose
	Creating Schemas in Mongoose
	An SPA Code Sample
	Summary

	Chapter 7 Introduction to jQuery Mobile
	Using jQuery 2.0 in This Chapter
	Overview of jQuery Mobile
	Key Features and Components in jQuery Mobile
	A Minimal jQuery Mobile Web Page
	More Differences between jQuery and jQuery Mobile
	jQuery Mobile Page Views
	jQuery Mobile Custom Attributes
	jQuery Mobile Page Transitions
	jQuery Mobile and CSS-Related Page Initialization
	The mobileinit Event
	jQuery Mobile Options and Customization
	Page Navigation and Changing Pages
	The jqmData() Custom Selector
	Multiple Page Views in One HTML5 Web Page
	Positioning the Header and Footer in Page Views
	Working with Buttons in jQuery Mobile
	Navigation Buttons as Anchor Links
	Groups of Buttons and Column Grids
	Rendering Buttons with Themes
	List Views in jQuery Mobile
	Additional Code Samples on the CD
	jQuery Mobile and AJAX
	jQuery Mobile and Geolocation
	Summary

	Chapter 8 User Gestures and Animation Effects in jQuery Mobile
	Handling User Gestures and Events in jQuery Mobile
	Two jQuery Plugins for Detecting User Gestures
	Scroll Events in jQuery Mobile
	Portrait Mode versus Landscape Mode
	Animation Effects Using jQuery Mobile
	Fade-related Methods
	Slide-Related jQuery Methods
	jQuery Mobile and Transition Effects
	jQuery Mobile and Animation Effects with CSS3
	jQuery Mobile Virtual Mouse Events
	Additional Code Samples on the CD
	Accelerometer Values with jQuery
	Summary

	Chapter 9 Introduction to HTML5 Canvas
	What is HTML5 Canvas ?
	HTML5 Canvas versus SVG
	The HTML5 Canvas Coordinate System
	Line Segments, Rectangles, Circles, and Shadow Effects
	HTML5 Canvas Linear Gradients
	Horizontal, Vertical, and Diagonal Linear Gradients
	Radial Color Gradients
	HTML5 Canvas Transforms and Saving State
	jCanvas : a jQuery Plugin for HTML5 Canvas
	HTML5 Canvas with CSS3 and jQuery Mobile
	Additional Code Samples on the CD
	Other HTML5 Canvas Toolkits
	Summary

	Chapter 10 Using PhoneGap for HTML5 Mobile Apps
	HTML5/CSS3 and Android Applications
	SVG and Android Applications
	HTML5 Canvas and Android Applications
	What is PhoneGap?
	How Does PhoneGap Work?
	Creating Android Apps with the PhoneGap Plugin
	Working with HTML5, PhoneGap, and iOS
	A CSS3 Cube on iOS Using PhoneGap
	Additional Code Samples on the CD
	Summary

	On the CD-Rom
	Index

