
www.allitebooks.com

http://www.allitebooks.org

jQuery Mobile Web
Development Essentials

Second Edition

Build mobile-optimized websites using the simple,
practical, and powerful jQuery-based framework

Raymond Camden

Andy Matthews

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

jQuery Mobile Web Development Essentials
Second Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2012

Second Edition: September 2013

Production Reference: 1190913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-789-1

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Raymond Camden

Andy Matthews

Reviewers
Matt Gifford

Eliecer Daza Parra

Olivier Pons

Acquisition Editor
Usha Iyer

Lead Technical Editor
Sweny M. Sukumaran

Technical Editors
Dennis John

Gaurav Thingalaya

Project Coordinator
Apeksha Chitnis

Proofreader
Faye Coulman

Indexer
Mariammal Chettiyar

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Raymond Camden is a Senior Developer Evangelist for Adobe. His work focuses
on web standards, mobile development, and ColdFusion. He's a published author,
and presents at conferences and user groups on a variety of topics. Raymond can
be reached at his blog at www.raymondcamden.com, followed on Twitter
(@cfjedimaster), or contacted via e-mail at raymondcamden@gmail.com.

As always, I dedicate this book to the one person who made this all
possible, my wife Jeanne. Thank you for believing in me and being
strong when I am not. I will love you always.
I'd like to thank everyone on the jQuery and jQuery Mobile teams
for making tools that have changed my life. Without your hard work
and dedication, the Web would be less awesome. Thank you Andy
for coming on board and helping to make this book better.

Andy Matthews has been working as a web and application developer for over
16 years, with experience in a wide range of industries, and a skillset that includes
UI/UX, graphic design, and programming. He is the co-author of the book jQuery
Mobile Web Development Essentials, Packt Publishing, and writes for online publications
such as NetTuts and .NET Magazine. He is a frequent speaker at conferences
around the country, and he has developed software for the open source community
including several of the most popular jQuery Mobile projects on the Web. He blogs
at andyMatthews.net, tweets at @commadelimited, and lives in Nashville, TN, with
his wife and four children.

Thanks to my wife and children who tolerate my time spent learning
and writing.
Thanks to Packt Publishing for publishing this book. Thanks to the
jQuery Mobile team for creating such a great and easy-to-use open
source project.

www.allitebooks.com

mailto:raymondcamden@gmail.com.
http://www.allitebooks.org

About the Reviewers

Matt Gifford is an RIA developer from Cambridge, England, who specializes
in ColdFusion, web application, and mobile development. With over 10 years of
industry experience across various sectors. Matt is the owner of a development
consultancy firm monkehWorks Ltd (www.monkehworks.com).

He is a regular presenter at national and international conferences, and also
contributes articles and tutorials for leading international industry magazines
as well as publishes them on his blog at: http://www.mattgifford.co.uk.

As an Adobe Community Professional, Matt is an advocate of community resources
and industry-wide knowledge sharing, with a focus on encouraging the next
generation of industry professionals.

Matt is the author of Object-Oriented Programming in ColdFusion and PhoneGap Mobile
Application Development Cookbook (both by Packt Publishing) as well as numerous open
source applications, including the popular monkehTweets Twitter API wrapper.

You can reach Matt on Twitter via @coldfumonkeh or through his blog.

My eternal thanks always go to my constantly supportive family. Big
thanks also go to Ray and Andy for inviting me to review their work.
It has been a pleasure working with them, as always.

www.allitebooks.com

http://www.allitebooks.org

Eliecer Daza Parra has been a web developer since 2005. He has got ample
experience in Java, Python, PHP, jQuery, and jQuery Mobile. Elicer has an experience
of more than 8 years as a Java developer. He has been a software developer for
Information Management and Customer Relationship Management (CMR) for health
promoting enterprises (EPS), public transportation, and education companies in the
private and public sectors. He has been working as a Python developer since more
than 2 years, working with responsive websites.

Among the main areas of his interest are the development of Linux, Python, Android,
and Google Services. He has a huge interest in nurturing blog spaces about Linux
administration and programming.

My heartfelt appreciation to God, my beloved mother and friend, my
family, and July.

Olivier Pons is a developer who's been building websites since 1997. He's a
teacher at Ingésup (École supérieure d'ingénierie informatique), the University of
Sciences (IUT) of Aix-en-Provence, France where he teaches Linux, Apache HTTP
server, PHP, jQuery/jQuery Mobile, advanced website optimization, and advanced
VIM techniques. He has already written some technical reviews, including the
Packlib book Ext JS 4 First Look. In 2011, he left a full-time job as a Delphi and PHP
developer to concentrate on his own company, HQF Development (http://hqf.
fr). He currently runs a number of websites, including http://www.livrepizzas.
fr, http://www.papdevis.fr, and http://olivierpons.fr—his own web
development blog. He currently works as a consultant, project manager, and
senior developer.

www.allitebooks.com

http://www.livrepizzas.fr
http://www.livrepizzas.fr
http://www.papdevis.fr
http://olivierpons.fr
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Preparing Your First jQuery Mobile Project	 11

Important preliminary points	 11
Building an HTML page	 11
Getting jQuery Mobile	 13

Customized downloads	 14
Implementing jQuery Mobile	 14
Working with data attributes	 16
Summary	 18

Chapter 2: Working with jQuery Mobile Pages	 19
Important preliminary points	 19
Adding multiple pages to one file	 20
jQuery Mobile, links, and you	 22
Working with multiple files	 23
jQuery Mobile and URLs	 25
Additional customization	 26

Page titles	 26
Prefetching content	 26
Changing page transitions	 27

Summary	 28
Chapter 3: Enhancing Pages with Headers, Footers, and Toolbars	 29

Important preliminary points	 29
Adding headers	 29
Icon sneak peak	 31
Working with back buttons	 31
Working with footers	 33

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Creating fixed and full-screen headers and footers	 35
Full-screen headers and footers	 36

Working with navigation bars	 37
Persisting navigation bar footers across multiple pages	 38

Summary	 40
Chapter 4: Working with Lists	 41

Creating lists	 41
Working with list features	 44

Creating inset lists	 44
Creating list dividers	 45

Autodividers	 46
Creating lists with count bubbles	 46
Using thumbnails and icons	 47
Creating split button lists	 49
Using a search filter	 51

Summary	 53
Chapter 5: Getting Practical – Building a Simple
Hotel Mobile Site	 55

Welcome to Hotel Camden	 55
The home page	 56
Finding the hotel	 58
Listing the hotel rooms	 60
Contacting the hotel	 61
Summary	 62

Chapter 6: Working with Forms and jQuery Mobile	 63
Before you begin	 63
What jQuery Mobile does with forms	 64

Working with radio buttons and checkboxes	 68
Working with select menus	 71
Search, toggle, and slider fields	 75

Search fields	 75
Flip toggle fields	 76
Slider fields	 77

Using native form controls	 78
Working with the mini fields	 79
Summary	 80

Chapter 7: Creating Modal Dialogs and Widgets	 81
Creating dialogs	 81
Laying out content with grids	 84

Making responsive grids	 88

Table of Contents

[iii]

Working with collapsible content	 90
Popups	 95
Responsive tables	 98
Working with panels	 102
Summary	 104

Chapter 8: Moving Further with the Notekeeper
Mobile Application	 105

What is a mobile application?	 105
Designing your first mobile application	 106

Listing out the requirements	 106
Building your wireframes	 107
Designing the add note wireframe	 108
Display notes wireframe	 108
View note/delete button wireframe	 108

Writing the HTML	 109
Adding functionalities with JavaScript	 111

Storing Notekeeper data	 114
Using localStorage	 114

Effective use of boilerplates	 116
Building the Add Note feature	 116

Adding bindings	 116
Collecting and storing the data	 118
Building the Display Notes feature	 119

Dynamically adding notes to our listview	 121
Viewing a note	 122

Using the .on() method	 123
Dynamically creating a new page	 123
Deleting a note	 126

Summary	 127
Chapter 9: jQuery Mobile Configuration, Utilities,
and JavaScript Methods	 129

Configuring jQuery Mobile	 129
Using jQuery Mobile utilities	 137

Page methods and utilities	 138
Path and URL-related utilities	 139

jQuery Mobile widget and form utilities	 142
Summary	 145

Chapter 10: Working with Events	 147
Working with physical events	 147
Handling page events	 153

What about $(document).ready?	 156

Table of Contents

[iv]

Creating a real example	 156
Summary	 158

Chapter 11: Enhancing jQuery Mobile	 159
What's possible?	 159
The visual building blocks of jQuery Mobile	 160

Border-radius	 160
Applying drop shadows	 162

Using text-shadow	 162
Using box-shadow	 163
CSS gradients	 164

The basics of jQuery Mobile theming	 167
Bars (.ui-bar-?)	 168
Content blocks (.ui-body-?)	 168
Buttons and listviews (.ui-btn-?)	 169
Mixing and matching swatches	 169
Site-wide active state	 170
Default icons	 170

Creating and using a custom theme	 171
What's ThemeRoller?	 172
Using ThemeRoller	 172
Preview	 174
Colors	 175
Inspector	 175
Tools	 176
Creating a theme for Notekeeper	 177

Exporting your theme	 180
Creating and using custom icons	 182

CSS Sprites	 182
Designing your first icon	 183
High and low resolution	 186
Resolution independence	 186

Updating the Notekeeper app	 187
Adding our custom theme	 187
Adding our custom icon	 188

Summary	 189
Chapter 12: Creating Native Applications	 191

HTML as a native application	 191
Working with PhoneGap	 192
Adding PhoneGap functionality	 197

Summary	 201

Table of Contents

[v]

Chapter 13: Becoming an Expert – Building an RSS
Reader Application	 203

RSS Reader – the application	 203
Creating the RSS Reader application	 206

The displayFeeds function	 208
Storing our feeds	 209
Adding an RSS feed	 210
Viewing a feed	 212
Creating the entry view	 214
Going further	 215

Summary	 216
Index	 217

Preface
Welcome to jQuery Mobile Web Development Essentials, Second Edition. Both myself and
Andy Matthews have tried our best to create a book that introduces and prepares
you for building mobile-friendly websites with jQuery Mobile.

What is jQuery Mobile?
On August 11, 2010, John Resig (creator of jQuery) announced the jQuery Mobile
project. While focused on the UI framework, it was also a recognition of jQuery itself
as a tool for mobile sites, and that work would be done to the core framework itself
to make it work better on devices. Release after release, the jQuery Mobile project
evolved into a powerful framework encompassing more platforms, more features,
and better performance with every update.

But what do we mean when we refer to a "UI framework"? What does it mean for
developers and designers? jQuery Mobile provides a way to turn regular HTML
(and CSS) into mobile-friendly sites. As you will see in the book, you can take a
regular HTML page, add in the required bits for jQuery Mobile (essentially five lines
of HTML), and find your page transformed into a mobile-friendly version instantly.

Unlike other frameworks, jQuery Mobile is focused on HTML. In fact, for a
framework tied to jQuery, you can do a heck of a lot of work without writing a single
line of JavaScript. It's a powerful, practical way of creating mobile websites that
any existing HTML developer can pick up and adapt within a few hours. Compare
this to other frameworks, such as Sencha Touch; Sencha Touch is also a powerful
framework, but its approach is radically different, using JavaScript to help define
and lay out pages. jQuery Mobile is much friendlier to people who are more familiar
with HTML as opposed to JavaScript. jQuery Mobile is "touch-friendly", which will
make sense to anyone who has used a smart phone, and struggled to click the right
spot on a website with tiny text and hard-to-spot links.

Preface

[2]

It will make sense to anyone who accidentally clicked a Reset button instead of
Submit. jQuery Mobile will enhance your content to help solve these issues. Regular
buttons become large, fat, and easy to hit. Links can be turned into list-based
navigation systems. Content can be split into virtual pages with smooth transitions.
You will be surprised just how much jQuery Mobile will do for you without writing
much code at all.

jQuery Mobile has some very big sponsors. They include Nokia, Blackberry, Adobe,
and other large companies. These companies have invested money, hardware, and
developer resources to help ensure the success of the project.

What's the cost?
Ah, the million dollar question! Luckily this one is easy to answer: nothing. jQuery
Mobile, like jQuery itself, is completely free to use for any purpose. Not only that, it's
completely open source. Don't like how something works? You can change it. Want
something not supported by the framework? You can add it. To be fair, digging deep
into the code base is probably something most folks will not be comfortable doing.
However, the fact that you can if you need to, and the fact that other people can,
leads to a product that will be open to development by the community at large.

Preface

[3]

What do you need to know?
Finally, along with not paying a dime to download and work with jQuery Mobile,
the best thing is that you probably already have all the skills necessary to work
with the framework. As you will see in the chapters of the book, jQuery Mobile is
a HTML-based framework. If you know HTML, even just simple HTML, you can
use jQuery Mobile framework. Knowledge of CSS and JavaScript is a plus, but not
entirely required (While jQuery Mobile uses a lot of CSS and JavaScript behind the
scenes, you don't actually have to write any of this yourself!).

What about native apps?
jQuery Mobile does not create native applications. You'll see later in the book
how you can combine jQuery Mobile with "wrapper" technologies such as PhoneGap
to create native apps, but in general, jQuery Mobile is for building websites.
The question on whether to develop a website or a mobile app is not something
this book can answer. You need to look at your own business needs and see what will
satisfy them. Because we are not building mobile apps themselves, we do not have to
worry about setting up any accounts with Google or Apple or paying any fees for the
marketplace. Any user with a mobile device that includes a browser will be able to
view your mobile-optimized sites.

Again, if you want to develop true mobile apps with jQuery Mobile, it's definitely
an option.

Help!
While we'd like to think that this book will cover every single possible topic you
would need for all your jQuery Mobile needs, there will most likely be things we
can't cover. If you need help, there are a couple of places you can try.

Firstly, the jQuery Mobile docs (http://jquerymobile.com/demos/) cover syntax,
features, and development in general, much like this book. While the material may
cover some of the same ground, if you find something confusing here, try the official
docs. Sometimes a second explanation can really help.

Secondly, the jQuery Mobile forum (http://forum.jquery.com/jquery-mobile)
is an open-ended discussion list for jQuery Mobile topics. This is the perfect place
to ask questions. Also, it's a good place to learn about problems other people are
having. You may even be able to help them. One of the best ways to learn a new
topic is by helping others.

Preface

[4]

Examples
Do you want to see jQuery Mobile in action? There's a site for that. JQM Gallery
(http://www.jqmgallery.com/) is a collection of user-submitted sites built using
jQuery Mobile. Not surprisingly, it too uses jQuery Mobile that makes it yet another
way to sample jQuery Mobile.

What this book covers
Chapter 1, Preparing Your First jQuery Mobile Project, walks you through your first
jQuery Mobile project. It details what must be added to your project's directory
and source code.

Chapter 2, Working with jQuery Mobile Pages, continues the work in the previous
chapter and introduces the concept of jQuery Mobile pages.

Chapter 3, Enhancing Pages with Headers, Footers, and Toolbars, explains how to enhance
your pages with nicely formatted headers and footers.

Chapter 4, Working with Lists, describes how to create jQuery Mobile listviews.
These are mobile-optimized lists that are especially great for navigation.

Preface

[5]

Chapter 5, Getting Practical – Building a Simple Hotel Mobile Site, walks you through
creating your first "real" (albeit simple) jQuery Mobile application.

Chapter 6, Working with Forms and jQuery Mobile, walks you through the process of
using jQuery Mobile-optimized forms. Layout and special form features are covered
in detail.

Chapter 7, Creating Modal Dialogs and Widgets, walks you through special jQuery
Mobile user interface items for creating grid-based layouts, dialogs, and collapsible
content areas.

Chapter 8, Moving Further with the Notekeeper Mobile Application, walks you through the
process of creating another website, an HTML5-enhanced note taking application.

Chapter 9, jQuery Mobile Configuration, Utilities, and JavaScript Methods, describes the
various JavaScript-based utilities your code may require.

Chapter 10, Working with Events, details the events thrown by various jQuery
Mobile-related features, such as pages loading and unloading.

Chapter 11, Enhancing jQuery Mobile, demonstrates how to change the default
appearance of your jQuery Mobile sites by selecting and creating unique themes.

Chapter 12, Creating Native Applications, takes what you've learned previously and
shows how to use the open source PhoneGap project to create real native applications.

Chapter 13, Becoming an Expert – Building an RSS Reader Application, expands upon
the previous chapter by creating an application that lets you add and read RSS feeds
on mobile devices.

What you need for this book
Nothing! Technically, you need a computer and a browser, but jQuery Mobile is built
with HTML, CSS, and JavaScript. No IDE (Integrated Development Environment) or
special tool will be required to work with the framework. If you've got any editor on
your system (and all operating systems include a free editor of some sort), you can
develop with jQuery Mobile.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

There are good IDEs out there that can help you be more productive. Adobe
Dreamweaver CC, for example, includes native support for jQuery Mobile
with code assist and device previews.

At the end of the day, you can develop with jQuery Mobile for free. It's zero cost
for you to download, develop, and publish jQuery Mobile sites.

Who this book is for
This book is for anyone looking to embrace mobile development and expand
their skillsets beyond the desktop.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Notice the new data-title tag added
to the div tag."

Preface

[7]

A block of code is set as follows:

<html>
<head>
<title>First Mobile Example</title>
</head>
<body>

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes, for example, appear in the text like this:
"Imagine our Megacorp page. It's got three pages, but the Products page is
a separate HTML file."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you can really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title in the subject line of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Preface

[8]

Downloading the example code
This book contains many code samples. You are not expected to type them in.
You should not type them all in. Rather, you should download them from the
public GitHub repository set up for the book: https://github.com/cfjedimaster/
jQuery-Mobile-Book. The GitHub repository will be updated as typos and other
mistakes are found in the book. Therefore it is possible that the code may not exactly
match the text in the book.

If you are not familiar with Git, then simply click on the Downloads tab and then
either Download as zip or Download as tar.gz to quickly get an archived collection
of all the files.

You should extract these files onto a local web server. If you do not have one
installed, we recommend installing Apache (http://httpd.apache.org/). Apache
works on all platforms, is free, and is typically easy to install. Once extracted, you
can edit these files, view them in your browser, or copy them as a starting point for
your own projects.

You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Preface

[9]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Preparing Your First jQuery
Mobile Project

You know what jQuery Mobile is, the history of it as well as its features and goals.
Now we're actually going to build our first jQuery Mobile website (well, web page)
and see how easy it is to use.

In this chapter we will perform the following steps:

•	 Create a simple HTML page
•	 Add jQuery Mobile to the page
•	 Make use of custom data attributes (data-*)
•	 Update the HTML to make use of the data attributes that jQuery

Mobile recognizes

Important preliminary points
You can find all the source code for this chapter in the c1 folder of the ZIP file
you downloaded from GitHub. If you wish to type everything out by hand,
we recommend you use similar filenames.

Building an HTML page
Let's begin with a simple web page that is not mobile optimized. To be clear, we
aren't saying it can't be viewed on a mobile device. Not at all! But it may not be
usable on a mobile device. It may be hard to read (text too small). It may be too
wide. It may use forms that don't work well on a touch screen. We don't know
what kinds of problems we will have at all until we start testing. (And we've all
tested our websites on mobile devices to see how well they work, right?)

Preparing Your First jQuery Mobile Project

[12]

Let's have a look at the following code snippet:

 <h1>Welcome</h1>
 <p>
 Welcome to our first mobile web site. It's going to be the
 best site you've ever seen. Once we get some content. And a
 business plan. But the hard part is done!
 </p>
 <p>
 <i>Copyright Megacorp© 2013</i>
 </p>
 </body>
</html>

As we said, there is nothing too complex, right? Let's take a quick look at this
in the browser:

Not so bad, right? But let's take a look at the same page in a mobile simulator:

Chapter 1

[13]

Wow, that's pretty tiny. You've probably seen web pages like this before on your
mobile device. You can, of course, typically use pinch and zoom or double-click
actions to increase the size of the text. But it would be preferable to have the page
render immediately in a mobile-friendly view. This is where jQuery Mobile comes in.

Getting jQuery Mobile
In the preface we talked about how jQuery Mobile is just a set of files. That isn't
said to minimize the amount of work done to create those files, or how powerful
they are, but to emphasize that using jQuery Mobile means you don't have to install
any special tools or server. You can download the files and simply include them in
your page. And if that's too much work, you have an even simpler solution. jQuery
Mobile's files are hosted on a Content Delivery Network (CDN). This is a resource
hosted by them and guaranteed (as much as anything like this can be) to be online
and available. Multiple sites are already using these CDN hosted files. That means
when your users hit your site they may already have the resources in their cache.
For this book, we will be making use of the CDN hosted files, but just for this first
example we'll download and extract the files we need. I recommend doing this
anyway for those times when you're on an airplane and wanting to whip up
a quick mobile site.

To grab the files, visit http://jquerymobile.com/download. There are a few
options here but you want the ZIP file option. Go ahead and download that
ZIP file and extract it. (The ZIP file you downloaded earlier from GitHub has a
copy already.) The following screenshot demonstrates what you should see after
extracting the files from the ZIP file:

Preparing Your First jQuery Mobile Project

[14]

At the time this book was written, jQuery Mobile was preparing for
the release of Version 1.4. Obviously, by the time you read this book
a later version may have been released. The file names you see listed
in the previous screenshot are version specific, so keep in mind they
may look a bit different for you.

Notice the ZIP file contains a CSS and JavaScript file for jQuery Mobile, as well as a
minified version of both. You will typically want to use the minified version in your
production apps and the regular version while developing. The images folder has
five images used by the CSS when generating mobile optimized pages. You will also
see demos for the framework as well as theme and structure files (You won't need
to use those for this book). So, to be clear, the entire framework and all the features
we will be talking about over the rest of the book will consist of a framework of 6
files. Of course, you also need to include the jQuery library. You can download that
separately at www.jquery.com. At the time this book was written, the recommended
version was 1.9.1.

Customized downloads
As a final option for downloading jQuery Mobile, you can also use a customized
Download Builder tool at http://jquerymobile.com/download-builder. Currently
in Alpha (that is, not certified to be bug-free!), the web-based tool lets you download
a jQuery Mobile build minus features your website doesn't need. This creates smaller
files which reduces the total amount of time your application needs to display to the
end user.

Implementing jQuery Mobile
Ok, we've got the bits, but how do we use them? Adding jQuery Mobile support
to a site requires the following three steps at a minimum:

1.	 First, add the HTML5 DOCTYPE to the page: <!DOCTYPE html>. This is used
to help inform the browser about the type of content it will be dealing with.

2.	 Add a viewport metatag: <metaname="viewport"content="width=dev
ice-width,initial-scale="1">. This helps set better defaults for pages
when viewed on a mobile device.

3.	 Finally, the CSS, JavaScript library, and jQuery itself need to be included into
the file.

Chapter 1

[15]

Let's look at a modified version of our previous HTML file that adds all of the above:

code 1-2: test2.html
<!DOCTYPE html>
<html>
 <head>
 <title>First Mobile Example</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet"href="jquery.mobile-1.3.2.min.css" />
 <script type="text/javascript"
 src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 <script type="text/javascript"src="jquery.mobile-
 1.3.2.min.js"></script>
 </head>
 <body>
 <h1>Welcome</h1>
 <p>
 Welcome to our first mobile web site. It's going to be the best
 site you've ever seen. Once we get some content. And a
business
 plan. But the hard part is done!
 </p>
 <p>
 <i>Copyright Megacorp© 2013</i>
 </p>
 </body>
</html>

For the most part, this version is the exact same as Code 1-1, except for the addition
of the DOCTYPE, the CSS link, and our two JavaScript libraries. Notice we point to the
hosted version of the jQuery library. It's perfectly fine to mix local JavaScript files
and remote ones. If you wanted to ensure you could work offline, you can simply
download the jQuery library as well.

www.allitebooks.com

http://www.allitebooks.org

Preparing Your First jQuery Mobile Project

[16]

So while nothing changed in the code between the body tags, there is going to be a
radically different view now in the browser. The following screenshot shows how
the iOS mobile browser renders the page now:

Right away, you see a couple of differences. The biggest difference is the relative
size of the text. Notice how much bigger it is and easier to read. As we said, the user
could have zoomed in on the previous version, but many mobile users aren't aware
of this technique. This page loads up immediately in a manner that is much more
usable on a mobile device.

Working with data attributes
As we saw in the previous example, just adding in jQuery Mobile goes a long way
to updating our page for mobile support. But there's a lot more involved to really
prepare our pages for mobile devices. As we work with jQuery Mobile over the
course of the book, we're going to use various data attributes to mark up our pages
in a way that jQuery Mobile understands. But what are data attributes?

HTML5 introduced the concept of data attributes as a way to add ad-hoc values to
the DOM (Document Object Model). As an example, this is a perfectly valid HTML:

<div id="mainDiv" data-ray="moo">Some content</div>

In the previous HTML, the data-ray attribute is completely made-up. However,
because our attribute begins with data-, it is also completely legal. So what happens
when you view this in your browser? Nothing! The point of these data attributes is
to integrate with other code, like JavaScript, that does whatever it wants with them.
So for example, you could write JavaScript that finds every item in the DOM with the
data-ray attribute, and change the background color to whatever was specified in
the value.

Chapter 1

[17]

This is where jQuery Mobile comes in, making extensive use of data attributes,
both for markup (to create widgets) and behavior (to control what happens when
links are clicked). Let's look at one of the main uses of data attributes within jQuery
Mobile—defining pages, headers, content, and footers:

code 1-3: test3.html
<!DOCTYPE html>
<html>
 <head>
 <title>First Mobile Example</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet"href="jquery.mobile-1.3.2.min.css" />
 <script type="text/javascript"src="http://code.jquery
 .com/jquery-1.9.1.min.js"></script>
 <script type="text/javascript"src="jquery.
 mobile-1.3.2.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header"><h1>Welcome</h1></div>
 <div data-role="content">
 <p>
 Welcome to our first mobile web site. It's going to be the
 best site you've ever seen. Once we get some content. And
 a business plan. But the hard part is done!
 </p>
 </div>
 <div data-role="footer">
 <h4>Copyright Megacorp© 2013</h4>
 </div>
 </div>
 </body>
</html>

Compare the previous code snippet to code 1-2, and you can see that the main
difference was the addition of the div blocks. One div block defines the page. Notice
it wraps all of the content inside the body tags. Inside the body tag, there are three
separate div blocks. One has a role of header, another a role of content, and the
final one is marked as footer.

Preparing Your First jQuery Mobile Project

[18]

All the blocks use data-role, which should give you a clue that we're defining a role
for each of the blocks. As we stated previously, these data attributes mean nothing to
the browser itself. But let's look what at what jQuery Mobile does when it encounters
these tags:

Notice right away that both the header and footer now have a black background
applied to them. This makes them stand out even more from the rest of the content.
Speaking of the content, the page text now has a bit of space between it and the
sides. All of this was automatic once the div tags with the recognized data-roles
were applied. This is a theme you're going to see repeated again and again as we go
through this book. A vast majority of the work you'll be doing will involve the use of
data attributes.

Summary
In this chapter, we talked a bit about how web pages may not always render well in a
mobile browser. We talked about how the simple use of jQuery Mobile can go a long
way to improving the mobile experience for a website. Specifically, we discussed
how you can download jQuery Mobile and add it to an existing HTML page, what
data attributes mean in terms of HTML, and how jQuery Mobile makes use of data
attributes to enhance your pages. In the next chapter, we will build upon this usage
and start working with links and multiple pages of content.

Working with jQuery
Mobile Pages

In the previous chapter you saw how easy it was to add jQuery Mobile to a simple
HTML page. While it would be nice if every website consisted of one and only one
page, real websites consist of multiple pages connected via links. jQuery Mobile
makes it easy to work with multiple pages, and provides many different ways to
create and link the pages.

In this chapter, we will perform the following steps:

•	 Add multiple pages to one jQuery Mobile file
•	 Discuss how links are modified by jQuery Mobile (and how to disable it)
•	 Demonstrate how additional files can be linked to and added to a jQuery

Mobile site
•	 Discuss how jQuery Mobile automatically handles URLs to allow for easy

bookmarking

Important preliminary points
As mentioned in the previous chapter, all of the code from this chapter is available
via the ZIP file downloaded at GitHub.

Starting with this chapter, we will be presenting only the most relevant parts of each
code snippet. The first code snippet, typically, will include all the code, while later
code snippets will focus on the important sections. Be sure to reference the complete
code snippets available via the downloaded ZIP file.

Working with jQuery Mobile Pages

[20]

Adding multiple pages to one file
In the previous chapter, we worked on a file that had a simple page of text. For our
first modification, we're going to add another page to the file and create a link to
it. If you remember, jQuery Mobile looks for a particular <div> wrapper to help it
know where your page is: <div data-role="page">. What makes jQuery Mobile so
simple to use is that we can add another page by simply adding another div using
the same format. The following code snippet code 2-1 shows a simple example of
this feature:

code 2-1: test1.html
<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <title>Multi Page Example</title>
 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.2/jquery.mobile-
 1.3.2.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.9.1.min.js"></script>
 <script.src="http://code.jquery.com/mobile/1.3.2/jquery.mobile-
1.3.2.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="homePage">
 <div data-role="header"><h1>Welcome</h1></div>
 <div data-role="content">
 <p>
 Welcome to our first mobile web site. It's going to be the
 best site you've ever seen. Once we get some content. And
 a business plan. But the hard part is done!
 </p>
 <p>
 You can also learn more about
 Megacorp.
 </p>
 </div>
 <div data-role="footer">

Chapter 2

[21]

 <h4>Copyright Megacorp © 2013</h4>
 </div>
 </div>
 <div data-role="page" id="aboutPage">
 <div data-role="header"><h1>About Megacorp</h1></div>
 <div data-role="content">
 <p>
 This text talks about Megacorp and how interesting it is.
 Most likely though you want to
 return to the home page.
 </p>
 </div>
 <div data-role="footer">
 <h4>Copyright Megacorp © 2013/h4>
 </div>
 </div>
 </body>
</html>

Ok, so as always, we begin our template with a few required bits: the HTML5
DOCTYPE, the meta tag, one CSS include, and two JavaScript files. This was covered
in the previous chapter and we will not be mentioning it again. Note that this
template switches over to the CDN version of the CSS and JavaScript libraries:

<link rel="stylesheet" href="http://code.jquery.com/
 mobile/1.3.2/jquery.mobile-1.3.2.min.css" />
<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script src="http://code.jquery.com/mobile/1.3.2/
 jquery.mobile-1.3.2.min.js"></script>

These versions are hosted by the jQuery team. Most likely, your visitors will have
loaded these libraries already so they exist in their cache before arriving at your
mobile site. While this is the route we will take going further with our examples,
remember that you can always use the version you downloaded instead.

Notice now we have two <div> blocks. The first hasn't much changed from the
previous example. We've added a unique ID (homepage), as well as a second
paragraph. Notice the link in the second paragraph. It's using a standard internal
link (#aboutPage) to tell the browser that we want to simply scroll the browser
down to that part of the page. The target specified, aboutPage, is defined right
below in another div block.

Working with jQuery Mobile Pages

[22]

In a traditional web page, this would display as two main blocks of text on a
page. Clicking any of the two links would simply scroll the browser up and down
accordingly. However, jQuery Mobile is going to do something significantly different
here. The following figure shows how the page is rendered in the mobile browser:

Notice something? Even though our HTML included two blocks of text (the two
<div> blocks), it only rendered one. jQuery Mobile will always display the first page
it finds, and only that page. Here comes the best part. If you click on the link, the
second page automatically loads. Using your device's back button or simply clicking
on the link will return you back to the first page. (Obviously this only works on
devices that have a back button, for example Android devices.) You will also notice
a smooth transition. This is something you can configure later on. But all of the
interactions here, the showing and hiding of pages, and the transitions, were all done
automatically by jQuery Mobile. Now is a good time to talk about links and what
jQuery Mobile does when you click on them.

jQuery Mobile, links, and you
When jQuery Mobile encounters a simple link (Foo</
a>), it will automatically capture any clicks on that link and change it to an AJAX-
based load. This means that if it detects that the target is something on the same
page, that is, the hash-mark style (href="#foo") links we used previously, it will
handle transitioning the user to a new page. If it detects a page to another file on the
same server, it will use AJAX to load the page and replace the currently visible one.

Chapter 2

[23]

If you link to an external site, then jQuery Mobile will leave the link as it is, and
the normal link behavior will occur. There may be times when you want to disable
jQuery Mobile from doing anything with your links at all. In that case, you can make
use of a data attribute that lets the framework know it shouldn't do anything at all.
An example:

Normal, non-special link

As we saw in Chapter 1, Preparing Your First jQuery Mobile Project, jQuery Mobile
makes heavy use of data attributes. It is also very good at letting you disable
behaviors you don't like. As we continue in the book you will see example after
example of something jQuery Mobile does to enhance your site for mobile devices.
In all of these cases though, the framework recognizes there may be times when you
want to disable that.

Working with multiple files
In an ideal world, we could build an entire website with one file, never have to
perform revisions, and be done with every project by 2 P.M. on Friday. But in the
real world we have to deal with lots of files, lots of revisions, and, unfortunately,
lots of work. In the earlier code snippet, you saw how we could include two pages
within one file. jQuery Mobile handles this easily enough. But you can imagine that
this would get unwieldy after a while. While we could include ten, twenty, even
thirty pages, this is going to make the file difficult to work with and make the initial
download for the user that much slower.

To work with multiple pages, and files, all we need to do is make a simple link
to other files in the same domain as our first file. We can even combine the first
technique (two pages in one file) with links to other files. In code 2-2, we've
modified the first example to add a link to a new page. (As mentioned previously,
we are only listing the relevant portion of the page!)

code 2-2:test2.html
<div data-role="page" id="homePage">
 <div data-role="header"><h1>Welcome</h1></div>
 <div data-role="content">
 <p>
 Welcome to our first mobile web site. It's going to be the
 best site you've ever seen. Once we get some content. And
 a business plan. But the hard part is done!
 </p>
 <p>
 Find out about our wonderful
 products.

Working with jQuery Mobile Pages

[24]

 </p>
 <p>
 You can also learn more about
 Megacorp.
 </p>
 </div>
 <div data-role="footer">
 <h4>Copyright Megacorp © 2013</h4>
 </div>
</div>

Now, let's look at code 2-3, our products page:

code 2-3: products.html
<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <title>Products</title>
 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.2/jquery.mobile-
 1.3.2.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.9.1.min.js"></script>
 <script
 src="http://code.jquery.com/mobile/1.3.2/jquery.mobile-
 1.3.2.min.js"></script>
 </head>

<body>
 <div data-role="page" id="productsPage">
 <div data-role="header"><h1>Products</h1></div>
 <div data-role="content">
 <p>
 Our products include:
 </p>

 Alpha Series
 Beta Series
 Gamma Series

 </div>
 </div>
</body>
</html>

Chapter 2

[25]

Our products page is rather simple, but notice that we included the jQuery and
jQuery Mobile resources on top. Why? I mentioned earlier that jQuery Mobile is
going to use AJAX to load in your additional pages. If you open up test2.html in
any modern browser you can see for yourself using developer tools. Clicking on the
link for products will fire an XHR (XHR means XML HTTP Request, but generally
just means an AJAX call) request, as shown in the following screenshot from
Chrome's DevTools:

That's neat! But what happens when someone bookmarks the application? Let's now
take a look at how jQuery Mobile handles URLs and navigation.

What are browser developer tools?
All modern browsers have built-in tools to help you build web pages.
These tools allow you to inspect and manipulate the DOM, pause and
debug JavaScript execution, and view network activity and errors.

jQuery Mobile and URLs
If you've opened up test2.html in your browser and played with it, you may have
noticed something interesting about the URLs as you navigate. Following is the
initial URL (the address and folder will, of course, differ on your computer):
http://localhost/mobile/c2/test2.html.

After clicking on products, the URL changes to http://localhost/mobile/
c2/products.html. If I click on back, and click on learn more, I get http://
localhost/mobile/c2/test2.html#aboutPage.

In both subpages (the Products page and the About page) the URL was changed
by the framework itself. The framework uses history.pushState and history.
replaceState in browsers that support it. For older browsers, or browsers that don't
support JavaScript manipulation of the URL, hash-based navigation is used instead.
The products link, when viewed in an older Internet Explorer, looks like the following:

http://localhost/mobile/c2/test2.html#/mobile/c2/products.html

www.allitebooks.com

http://www.allitebooks.org

Working with jQuery Mobile Pages

[26]

What's interesting is that in this bookmark style, test2.html is always loaded
first. You could actually build your products.html to only include the div and be
assured that if the request was made for products first, it would still render correctly.
It's the newer, fancier browsers that have an issue. If you didn't include the proper
jQuery and jQuery Mobile additions, when they go directly to products.html you
would end up with a page that has no styles. It's best to simply always include
your proper header files (the CSS, the JavaScript, and so on). Any decent editor
will provide simple ways to create templates.

Additional customization
Working with multiple pages in jQuery Mobile is pretty simple. You could take
what's been discussed in the first two chapters and build a pretty simple, but mobile
compliant website right now. The following are a few more interesting tricks you
may want to consider.

Page titles
You may have noticed when you clicked on the Products page in the previous
example, the title of the browser correctly updated to Products. This is because
jQuery Mobile noticed, and parsed in, the title tag from the products.html file.
If you click the learn more link, you will notice the title also updates. How did
that work? When the About page was loaded, jQuery Mobile used the header
tag's content (About Megacorp) for a title. You can override this by providing
an additional argument to your div tag defining your page: data-title.
The following code snippet demonstrates this feature:

<div data-role="page" id="aboutPage" data-title="All About
Megacorp">
 <div data-role="header"><h1>About Megacorp</h1></div>

You can find this version in test3.html.

Prefetching content
The benefit of including all your content within one HTML file is that all of your
pages are available immediately. But the negatives (too difficult to update, too
slow for an initial download) far outweigh that. Most jQuery Mobile applications
will include multiple files, and typically just use one or two pages per file. You
can, however, ensure speedier loading of some pages to help improve the user
experience. Imagine our Megacorp site. It's got three pages, but the Products page is
a separate HTML file. Since it's the only real content on the site, most likely all of our
users will end up clicking that link. We can tell jQuery Mobile to prefetch the content

Chapter 2

[27]

immediately upon the main page loading. That way, when the user does click the
link, the page will load much quicker. Once again, this comes down to one simple
data attribute.

<p>
 Find out about our wonderful <a href="products.html" data-
 prefetch="true">products.
</p>

In the previous link, all we've done is added data-prefetch="true" to the link.
When jQuery Mobile finds this in a link, it will automatically fetch the content right
away. Now, when the user clicks the Products link, they will see the content even
quicker. This modification was saved in test4.html.

Obviously, this technique should be used with care. Given a page with four main links,
you may want to consider only prefetching the two most popular pages, not all four.

Changing page transitions
Earlier, we mentioned that you could configure the transitions jQuery Mobile
uses between pages. Later in the book, we'll discuss how to do that globally,
but if you want to switch to a different transition for a particular link, just include
a data-transition attribute in your link:

<p>
Find out about our wonderful <a href="products.html" data-
 transition="pop">products.
</p>

Valid values for transition include: fade (the default), flip, flow, pop, slide,
slidedown, slidefade, turn, and none.

Many transitions also support a reverse action. Normally jQuery Mobile figures out
if you need this, but if you want to force a direction, use the data-direction attribute:

<p>
Find out about our wonderful <a href="products.html" data-
 transition="pop" data-direction="reverse">products.
</p>

Working with jQuery Mobile Pages

[28]

Downloading the example code
This book contains many code samples. You are not expected to type
them in. You should not type them all in. Rather, you should download
them from the public GitHub repository setup for the book: https://
github.com/cfjedimaster/jQuery-Mobile-Book. The GitHub
repository will be updated as typos and other mistakes are found in the
book. Therefore it is possible that the code may not exactly match the text
in the book.
If you are not familiar with Git, then simply click on the Downloads tab
and then either Download as zip or Download as tar.gz to quickly get an
archived collection of all the files.
You should extract these files onto a local web server. If you do not
have one installed, we recommend installing Apache (http://httpd.
apache.org/). Apache works on all platforms, is free, and is typically
easy to install. Once extracted, you can edit these files, view them in your
browser, or copy them as a starting point for your own projects.
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/supportand register to have the files e-mailed directly to you.

Summary
This chapter further fleshed out the concept of jQuery Mobile pages, and how to
work with multiple pages. Specifically, we saw how one physical file can contain
many different pages. jQuery Mobile will handle hiding all but the first page. We
also saw how you can link to other pages, and how jQuery Mobile uses AJAX to
dynamically load the content into the browser. Next, we discussed how jQuery
Mobile handles updating the URL of the browser in order to enable bookmarking.
Finally, we discussed two utilities that will help to improve your page. The first way
was to provide a title for embedded pages. The second technique demonstrated how
to prefetch content to further improve the experience of the users visiting your site.

In the next chapter, we'll take a look at headers, footers, and navigation bars.
These will greatly enhance our pages and make them easier to navigate.

Enhancing Pages with
Headers, Footers,

and Toolbars
Toolbars provide a simple way to add navigation elements to a mobile website.
They can be especially useful for consistent or site-wide navigation controls that
users can always refer to when navigating through your application.

In this chapter, we will perform the following steps:

•	 Talk about how to create both headers and footers
•	 Discuss how to turn these headers and footers into useful toolbars
•	 Demonstrate how to create fixed positioned toolbars that always show up,

no matter how large the content of a particular page is
•	 Show an example of navigation bars

Important preliminary points
As mentioned in the previous chapter, all of the code from this chapter is available
via the ZIP file downloaded at GitHub. As before, the chapter will only consider the
important parts of each file. Consult the downloaded files for the complete source.

Adding headers
You've already worked with headers in the previous chapter, so the code will be
familiar. In this chapter, we will study them deeper and demonstrate how to add
additional functionality, such as buttons, to your site headers.

Enhancing Pages with Headers, Footers, and Toolbars

[30]

If you remember, a header can be defined by simply using a div with the
appropriate role:

<div data-role="header"><h1>My Header</h1></div>

We can further add functionality to headers by adding buttons. Buttons could be
used for navigation (for example, to return to the home screen), or to provide links
to related pages. Because the center of the header is used for text, there are only two
spaces available for buttons—one to the left and one to the right. Buttons can be
added simply by creating links in your header. The first link will be to the left of
the text and the second link to the right. The following file is an example:

code 3-1: header_test.html
<div data-role="header">
 Home
 <h1>My Header</h1>
 Contact
</div>

When viewed in the mobile browser, you can see that the links were automatically
turned into buttons:

Notice how the simpler links were automatically turned into big buttons, making
them easier to use and more "control-like" for the header. You may be wondering,
what if you only want one button, and want it on the right-hand side? Removing the
first button and keeping the second in place will not work, as shown in the following
code snippet:

<div data-role="header">
 <h1>My Header</h1>
 Contact
</div>

The previous code snippet creates a button in the header but on the left-hand side.
In order to position the button to the right, simply add the class ui-btn-right.

code 3-2: header_test2.html

<div data-role="header">
 <h1>My Header</h1>
 Contact
</div>

Chapter 3

[31]

You can also specify ui-btn-left to place a link on the left-hand side, but as
demonstrated in the previous code snippet, that's the normal behavior.

Icon sneak peak
While not specifically a header toolbar feature, one interesting feature available to
all buttons in jQuery Mobile is the ability to specify an icon. A set of simple, easily
recognizable icons ship with jQuery Mobile, and are available to use immediately.
These icons will be discussed further in Chapter 6, Working with Forms and jQuery
Mobile, but as a quick preview, the following code snippet shows a header with
two customized icons:

code 3-3: header_test3.html
<div data-role="header">
 Home
 <h1>My Header</h1>
 Contact
</div>

Notice the new attribute, data-icon. When viewed in the browser, you get what
is shown in the following screenshot:

The specific icons displayed were based on the values passed to the data-icon
attributes. Again, this will be discussed more in depth later in the book.

Working with back buttons
Depending on your user's hardware, they may or may not have a physical back
button. For devices that do, such as Android phones, hitting the back button will
work just fine in a jQuery Mobile application. Whatever page the user was on
previously will be loaded as soon as the button is clicked. But on other devices, like
the iPhone, there is no such button to click. While you can provide links to navigate
around pages yourself, jQuery Mobile provides some nice built in support for
navigating backwards out of the box.

Enhancing Pages with Headers, Footers, and Toolbars

[32]

There are two ways you can add an automatic back button. code 3-4 shows a simple,
two page jQuery Mobile site. In the second page, we've added a new data attribute,
data-add-back-btn="true". This will create a back button in the header of the
second page automatically. Next, we also added a simple link in the page content.
While the actual URL for the link is blank, make note of the data-rel="back"
attribute. jQuery Mobile will detect this link and automatically send the user
to the previous page.

code 3-4: back_button_test.html
<div data-role="page">

 <div data-role="header"><h1>My Header</h1></div>

 <div data-role="content">
 <p>
 Go to the sub page...
 </p>
 </div>

</div>

<div data-role="page" id="subpage" data-add-back-btn="true">
 <div data-role="header"><h1>Sub Page</h1></div>
 <div data-role="content">
 <p>
 Go back...
 </p>
 </div>
</div>

The following screenshot demonstrates the feature in action:

In case you're curious, the text of the button can be customized by simply using
another data attribute in your page div: data-add-back-btn="true" data-back-
btn-text="Return". You can turn on back button support globally and change
the text via JavaScript as well. This will be discussed in Chapter 9, jQuery Mobile
Configuration, Utilities, and JavaScript Methods.

Chapter 3

[33]

As a final example, what if you want to create a header without any actual text?
Imagine for a moment that you include this header:

<div data-role="header">
 Home
</div>

When viewed in the mobile browser, the header is not properly sized because it is
missing the <h1> normally used to provide text.

Luckily, there is a simple enough fix for this. Add a span with the class ui-title
to the header and all will be fine:

<div data-role="header">
 Home

</div>

Working with footers
Footers are going to be, for the most part, much like headers. We've previously
demonstrated the use of the data-role to create a footer:

<div data-role="footer"><h4>My Footer</h4></div>

Enhancing Pages with Headers, Footers, and Toolbars

[34]

As with the headers, you can include buttons in the footer. Unlike the headers,
the buttons in a footer do not automatically position themselves to the left and
right of the text. Rather, they simply line up from the left-hand side. The following
is a simple example with two buttons:

<div data-role="footer">
 Credits
 Contact
</div>

The following screenshot demonstrates this feature:

This works, but notice the buttons don't have much space around them. You can
improve that by adding a class called ui-bar to your footer div tag, as shown in the
following code snippet:

<div data-role="footer" class="ui-bar">
 Credits
 Contact
</div>

You can find both of the previous examples in the files footer_test2.html and
footer_test3.html.

Chapter 3

[35]

If you include footer text along with your buttons, you should
not use an <h4> tag around the text. This is a bit different from
headers and can trip you up if you forget. If you do forget, your
header will end up approximately 3 times as high as it needs to be!

Creating fixed and full-screen headers
and footers
In the previous discussion about headers and footers, you saw a few examples of
how buttons can be added. These buttons could be useful for navigating in your site.
But what if a particular page is somewhat long? A blog entry, for example, could
be quite long, especially when viewed on a mobile device. As the user scrolls, the
header or footer could be off-screen. jQuery Mobile provides a way to create fixed
position headers and footers.

With this feature enabled, the header and footer will always be visible. In a page
with long content, the user can scroll up and down, but the headers and footers will
remain in their proper positions. This only works with mobile browsers that support
the fixed value for the CSS position property. For browsers that do not support
this feature, the headers and footers will act as normal. This feature can be enabled
by adding data-position="fixed" to the div tag used for either the header or
footer. code 3-5 demonstrates an example. In order to ensure the page actually
scrolls, many paragraphs of text were repeated. This has been removed from the
code in the book, but exists in the actual file.

code 3-5: longpage.html
<div data-role="page">
 <div data-role="header" data-position="fixed"><h1>My
 Header</h1></div>

 <div data-role="content">
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Suspendisse id posuere lacus. Nulla ac sem ut eros
 dignissim interdum a et erat. Class aptent taciti
 sociosqu ad litora torquent per conubia nostra, per
 inceptos himenaeos. In ac tellus est. Nunc consequat

 parturient montes, nascetur ridiculus mus. In id volutpat
 lectus.Quisque mauris ipsum, vehicula id ornare aliquet,
 auctor volutpat dui. Sed euismod sem in arcu dapibus
 condimentum dictum nibh consequat.
 </p>

www.allitebooks.com

http://www.allitebooks.org

Enhancing Pages with Headers, Footers, and Toolbars

[36]

 </div>

 <div data-role="footer" data-position="fixed"><h4>My
 Footer</h4></div>
</div>

We won't bother with a screenshot of this example as it won't exactly convey the
feature well. But if you try this in your mobile device, notice while scrolling up and
down, that as soon as you lift your finger the header and footer will both pop in.
This gives the user access to them no matter how large the page may be.

Full-screen headers and footers
Another option to consider is what's called full-screen headers and footers. This is a
metaphor commonly used with pictures, but can also be used where fixed-positioned
headers and footers are used. In this scenario, the header and footer appear and
disappear with clicks. So, with a photo, this allows you a view of the photo as it is, but
also the ability to get the header and footer back with a simple click. Perhaps, instead
of full-screen headers or footers, you can consider them as retrievable headers and
footers instead. In general, this is best used when you want the content of the page to
be viewed by itself—again, an excellent example of this would be pictures.

To enable this feature, simply add data-fullscreen="true" to the header and
footer tags in a page. (Yes, you can choose to enable full-screen support for only the
header or footer, if you wish.) code 3-3 demonstrates this feature, as shown in the
following code snippet:

code 3-6: fullscreen.html
<div data-role="page">
 <div data-role="header" data-position="fixed" data-
 fullscreen="true"><h1>My Header</h1></div>
 <div data-role="content">
 <p>

 </p>
 </div>
 <div data-role="footer" data-position="fixed" data-
 fullscreen="true"><h4>My Footer</h4></div>
</div>

As with the previous example, the code snippet doesn't translate very well to static
screenshots. Open it up in your mobile browser and take a look. Remember, you can
click multiple times to toggle the effect on and off.

Chapter 3

[37]

Working with navigation bars
You've now seen a few examples of headers and footers that include buttons, but
jQuery Mobile has a cleaner version of this called NavBars (navigation bars). These are
full-screen-wide bars used to hold buttons. jQuery Mobile also supports highlighting
one button at a time as an active button. When used for navigation, this is an easy way
to mark a page as being active.

A NavBar is simply an unordered list wrapped in a div tag that uses data-
role="navbar". Placed inside a footer it looks similar to the following code snippet:

<div data-role="footer">
 <div data-role="navbar">

 <a href="header_and_footer__with_navbar.html" class="ui-
 btn-active">Home
 <a href=" header_and_footer__with_navbar_credits.html "
 >Credits
 <a href=" header_and_footer__with_navbar_contact.html "
 >Contact

 </div>
</div>

Notice the use of class="ui-btn-active" on the first link. This will mark the first
button as active. jQuery Mobile won't be able to do this for you automatically, so
as you build each page and make use of a navbar you will have to move the class
appropriately. The following screenshot shows how it looks:

You can add up to 5 buttons and jQuery Mobile will appropriately size the buttons to
make them fit. If you go over five, then the buttons will simply be split over multiple
lines. Most likely, this is not something you want to cover. Overwhelming the user
with too many buttons is a sure way to confuse, and ultimately anger your users.

Enhancing Pages with Headers, Footers, and Toolbars

[38]

You can also include a navbar in your header. If placed after the text, or any other
buttons, jQuery Mobile will automatically drop it to the next line:

<div data-role="header">
 <h1>Home</h1>
 <div data-role="navbar">

 <a href=" header_and_footer_with_navbar.html" class="ui-btn-
 active">Home
 <a href=" header_and_footer_with_navbar_credits.html"
 >Credits
 <a href=" header_and_footer_with_navbar_contact.html"
>Contact

 </div>
</div>

You can see an example of both of these in action in the file named header_and_
footer_with_navbar.html.

Persisting navigation bar footers across
multiple pages
Let's now take two of the previous topics and combine them into one incredibly cool
little feature—multiple page persistent footers. It's a bit more work, but you can create
a footer, NavBar, that will not disappear when switching from page to page. In order
to do this, you have to follow a few simple rules:

•	 Your footer div must be present on all pages
•	 Your footer div must use the same data-id value across all pages
•	 You must use two CSS classes, ui-state-persist and ui-btn-active,

on the active page in the NavBar
•	 You must also use the persistent footer feature

Chapter 3

[39]

That sounded a bit complex, but it's really just a tiny bit more HTML in your
template. In code 3-7, an index page for a fictional company makes use of a footer,
NavBar. Note the use of ui-state-persist and ui-btn-active for the currently
selected page.

code 3-7: persistent_footer_index.html

<div data-role="footer" data-position="fixed" data-id="footernav">
 <div data-role="navbar">

 <a href="persistent_footer_index.html" class="ui-btn-
 active ui-state-persist">Home
 Credits
 Contact

 </div>
</div>

The following screenshot shows how the complete page looks:

We don't need to worry so much about the other two pages. You can find them
in the ZIP file you downloaded. The following code snippet is the footer section
from the second page. Notice that the only change here is the movement of the
ui-btn-active and ui-state-persist class:

<div data-role="footer" data-position="fixed" data-id="footernav">
 <div data-role="navbar">

 Home
 <a href="persistent_footer_credits.html" class="ui-btn-
 active ui-state-persist">Credits
 <a

Enhancing Pages with Headers, Footers, and Toolbars

[40]

 href="persistent_footer_contact.html">Contact

 </div>
</div>

Clicking from one page to another shows a smooth transition to each page, but the
footer bar remains. Much like a framed site (don't shudder—frames weren't always
looked at with scorn), the footer will stay as the user navigates throughout the site.

Summary
In this chapter, we discussed how to add headers, footers, and navigation bars
(NavBars) to your jQuery Mobile pages. We showed how the proper div tags will
create nicely formatted headers and footers on your page, and how to make these
headers and footers persist over a long page. furthermore, we demonstrated full-screen
mode for headers and footers. These are headers and footers that appear and disappear
with clicks—perfect for images and other items you want to show in a full-screen type
view on your mobile device. Finally, we saw how to combine persistent footers and
NavBars to create a footer that doesn't go away when the page changes.

In the next chapter, we'll take an in-depth look at lists. Lists are one of the primary
ways folks add navigation and menus to their mobile sites. jQuery Mobile provides
a plethora of options for creating and styling lists.

Working with Lists
Lists are a great way to provide menus to users on a mobile website. jQuery Mobile
provides a wealth of list options, from simple lists to lists with custom thumbnails
and multiple user actions.

In this chapter, we will cover the following aspects:

•	 Talk about how to create lists
•	 How to create linked and sub-menu style lists
•	 How to create different styles of lists

Creating lists
As you've (hopefully!) come to learn, jQuery Mobile takes an approach of
enhancement when it comes to UI. You take the ordinary, simple HTML, add a bit
of markup (sometimes!), and jQuery Mobile will do the heavy lifting of enhancing
the UI. The same process applies to lists. We've all worked with simple lists in HTML
before; the following code snippet is an example:

 Raymond Camden
 Scott Stroz
 Todd Sharp
 Dave Ferguson

Working with Lists

[42]

And we all know how they are displayed (a bulleted list in the case of the previous
code snippet). Let's take that list and drop it in a simple jQuery Mobile optimized
page. code 4-1 takes a typical page and drops in our list:

code 4-1: test1.html
<div data-role="page">
 <div data-role="header">
 <h1>My Header</h1>
 </div>
 <div data-role="content">

 Raymond Camden
 Scott Stroz
 Todd Sharp
 Dave Ferguson

 </div>
 <div data-role="footer">
 <h1>My Footer</h1>
 </div>
</div>

Given this HTML, jQuery Mobile gives us something nice right away, as shown
in the following screenshot:

We can enhance that list, though, with a simple change. Take the ordinary
tag from code 4-1, and add a data-role="listview" attribute, as shown in the
following line of code:

<ul data-role="listview">

Chapter 4

[43]

In the code you download from GitHub, you can find this modification in test2.
html. The change, though, is rather dramatic, as shown in the following screenshot:

You can see that the items no longer have the bullets in front, but they are much
larger and easier to read. Things get even more interesting when we begin to add
links to our list. In the following code snippet I've added a link to each list item:

<ul data-role="listview">
 Raymond Camden
 Scott Stroz
 Todd Sharp
 Dave Ferguson

Once again you can find the complete file; this was taken from the ZIP file you
downloaded earlier. This one may be found in test3.html. The following
screenshot shows how this code is rendered:

Working with Lists

[44]

Notice the new arrow image. This was automatically added when jQuery Mobile
detected a link in your list. Now you've turned a relatively simple HTML unordered
list into a simple menu system. This, by itself, is pretty impressive, but as we will see
throughout the remaining chapter, jQuery Mobile provides a wealth of rendering
options to let you customize your lists.

Working with list features
jQuery Mobile provides multiple different styles of lists, as well as different features
that can be applied to them. For the next part of this chapter we'll cover some (but not
all!) of these options available. These aren't in any particular order and are presented as
a gallery of options available to you. You probably will not (and should not!) try to use
all of these within one application, but it's good to keep in mind the various types of
list styles jQuery Mobile has available.

Creating inset lists
One of the simplest and slickest changes you can make to your lists is to turn them
into inset lists. These are lists that do not take up the full width of the device. Taking
the initial list we modified with data-role="content", we can simply add another
attribute, data-inset="true", for the following code block (found in test4.html):

<ul data-role="listview" data-inset="true">
 Raymond Camden
 Scott Stroz
 Todd Sharp
 Dave Ferguson

The result is now very different from the earlier example:

Chapter 4

[45]

Creating list dividers
Another interesting UI element you may wish to add to your lists are dividers. These
are a great way to separate a long list into something that is a bit easier to scan. Adding
a list divider is as simple as adding a li tag that makes use of data-role="list-
divider". The following code snippet shows a simple example of this element:

<ul data-role="listview" data-inset="true">
 <li data-role="list-divider">Active
 Raymond Camden
 Scott Stroz
 Todd Sharp
 <li data-role="list-divider">Archived
 Dave Ferguson

In the previous code block, note the two new li tags making use of the list-divider
role. In this example, I've used these to separate the list of people into two groups. You
can find the complete template in test5.html. The following screenshot shows how
this is rendered:

www.allitebooks.com

http://www.allitebooks.org

Working with Lists

[46]

Autodividers
Another option for dividers is to have jQuery Mobile create them for you
automatically. By adding data-autodividers="true" to any listview, jQuery
Mobile will automatically divide lists by the first letter of the item. (You can tweak
this with custom JavaScript if you wish.) Given the following simple list (from
test6.html):

<ul data-role="listview" data-inset="true" data-
 autodividers="true">
 Apples
 Apricots
 Bananas
 Cherries
 Coconuts

Notice that there are no dividers in the list, but that autodividers is enabled at the top
level of the list itself. This creates the following in the browser:

If you were to add a new list item—let's say for donuts—listview will automatically
add a new D divider. And let's be honest, no list is complete without donuts.

Creating lists with count bubbles
Yet another interesting UI trick you can perform with jQuery Mobile lists are count
bubbles. This is a UI enhancement that adds a simple number to the end of each list
item. The numbers are wrapped in a bubble-like look, which is commonly used for
e-mail-style interfaces. In the following code snippet, the count bubble is used to

Chapter 4

[47]

signify the number of cookies consumed at a technical conference. This number
is supplied inside a span tag that uses a class of ui-li-count.

<ul data-role="listview" data-inset="true">
 <li data-role="list-divider">Cookies Eaten
 Raymond Camden 9
 Scott Stroz 4
 Todd Sharp 13
 Dave Ferguson 8

A simple HTML change is demonstrated—but consider how nicely it gets
rendered—as shown in the following screenshot:

You can find a complete example of this feature in test7.html.

Using thumbnails and icons
Another common need with lists is to include images. jQuery Mobile supports
both thumbnails (smallish images) and icons (even smaller images) that display
well within the list control. Let's first look at including thumbnails within your list.
Assuming you already have nicely sized images (our examples are all 160 pixels
wide by 160 pixels high), you can simply include them within each li element as
demonstrated in the following code snippet:

<ul data-role="listview" data-inset="true">
 Raymond
 Camden
 Scott
 Stroz
 Todd Sharp
 Dave
 Ferguson

Working with Lists

[48]

Nothing special is done with the image, no data attribute or class is added. jQuery
Mobile will automatically left align the image, and place the item text aligned to the
top of each li block as shown in the following screenshot:

You can find the previous demonstration in test8.html. So what about icons? To
include an icon in your code, add the class ui-li-icon to your image. (Note that the
beginning of the class is ui, not ul.) The following code snippet is an example of that
with our same list:

<ul data-role="listview" data-inset="true">

 Raymond Camden

 Scott Stroz

 Todd Sharp

Chapter 4

[49]

 Dave Ferguson

jQuery Mobile does shrink images when used with this class, but in my experience, the
formatting was better when the image was resized beforehand. Doing so also improves
the speed of your web page as the smaller images should result in quicker download
times. The images previously are all 16 pixels wide and high each. And the result is
as follows:

You can find the previous example in test9.html.

Creating split button lists
Another interesting feature of jQuery Mobile lists is the split button list. This is simply
a list with multiple actions. A main action is activated when the user clicks on the list
item and a secondary action is available via a button at the end of the list item. For this
example, let's start with the screenshot first and then demonstrate how it's done:

Working with Lists

[50]

As you can see, each list item has a secondary icon at the end of the row. This is an
example of a split item list and is defined by simply adding a second link to a list
item. For example:

<ul data-role="listview" data-inset="true">

 Raymond Camden

 Delete

 Scott Stroz

 Delete

 Todd Sharp

 Delete

 Dave Ferguson

 Delete

Note that the second link's text, Delete, is actually replaced by the icon. You can
specify an icon by adding the data attribute split-icon to your ul tag, as shown
in the following line of code:

<ul data-role="listview" data-inset="true" data-split-
icon="delete">

The complete code for this example may be found in test10.html.

Chapter 4

[51]

Using a search filter
For our last and final list feature we will look at the search filters. The lists we've
worked with so far have been pretty short. Longer lists may make it difficult for users
to find what they are looking for. jQuery Mobile provides an incredibly simple way
to add a search filter to your lists. By adding data-filter="true" to any list, jQuery
Mobile will automatically add a search field on top that filters as you type:

<ul data-role="listview" data-inset="true" data-filter="true">
 Raymond Camden
 Scott Stroz
 Todd Sharp
 Dave Ferguson
 (lots of items….)

The result looks similar to the following screenshot:

Working with Lists

[52]

If you begin typing in the previous field, the list automatically filters out the results
as you type:

By default, the search is case-insensitive and matches anywhere in the list item.
You can specify placeholder text for the search form by using data-placeholder-
text="Something" in your ul tag. You can also specify a theme for the form using
data-filter-theme.

Along with filtering, you can reverse the process and create something that looks like
an autocomplete control. This is done by adding data-filter-reveal="true" to
your unordered list. Here is an example demonstrating this:

<ul data-role="listview" data-inset="true" data-filter="true"
data-filter-reveal="true" data-filter-placeholder="Type to
search...">

Chapter 4

[53]

Note that you can also customize the text in the search field as well. Now on, display
the list is completely hidden.

As you type, elements in the list that match your input will be displayed. You can
also, via a bit of JavaScript, completely modify the behavior of this widget so as to
retrieve the contents to display via an AJAX (XHR) request.

Summary
This chapter discussed how to work with listviews in jQuery Mobile. We saw how
to turn a regular HTML list into a mobile optimized list, and we demonstrated the
numerous types of list features available with the framework.

In the next chapter, we'll take what we've learned already and build a real
(albeit a bit simple) mobile-optimized website for a hotel.

Getting Practical – Building
a Simple Hotel Mobile Site

In the past four chapters, we've looked at a few features of jQuery Mobile,
but we already have enough knowledge to build a simple, pretty basic
mobile-optimized website.

In this chapter, we will cover the following aspects:

•	 Discuss what our hotel mobile website will contain
•	 Create the hotel mobile website using jQuery Mobile
•	 Discuss what could be done to make the site more interactive

Welcome to Hotel Camden
The Hotel Camden, known throughout the world, has had a web presence for some
time now. (Ok, just to be clear, we're making this up!) They were an early innovator in
the online world, beginning with a simple website in 1996 and gradually improving
their online presence over the years. Online visitors to the Hotel Camden can now see
virtual tours of rooms, check the grounds with a stunning 3D Adobe Flash plugin, and
actually make reservations online. Recently, though, the owners of Hotel Camden have
decided they want to move into the mobile space. For now, they want to start simply
and create a mobile-optimized site which includes the following features:

•	 Contact information: This will include both a phone number and an e-mail
address. Ideally, the user will be able to click these and get connected to a
real person.

•	 Map of the hotel location: This should include the address and possibly
a map too.

www.allitebooks.com

http://www.allitebooks.org

Getting Practical – Building a Simple Hotel Mobile Site

[56]

•	 Room types available: This can be a simple list of the rooms from the
simplest to the most grand.

•	 Provide a way for the user to get to the real website: We are accepting
that our mobile version will be somewhat limited (for this version), so at
a minimum, we should provide a way for users to return to the desktop
version of the site.

The home page
Let's begin with the initial home page for the Camden Hotel. This will provide a
simple list of options, as well as a bit of marketing text on the top. The text doesn't
actually help anyone, but the marketing staff won't let us release the site without it.

code 5-1: index.html
<!DOCTYPE html>
<html>
 <head>
 <title>The Camden Hotel</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 1.3.2/jquery.mobile-1.3.2.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.9.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 1.3.2/jquery.mobile-1.3.2.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>Camden Hotel</h1>
 </div>
 <div data-role="content">
 <p>
 Welcome to the Camden Hotel. We are a luxury hotel
 specializing in catering to the rich and overly
 privileged. You will find our accommodations both
 flattering to your ego, as well as damaging to your
 wallet. Enjoy our complimentary wi-fi access, as well as
 caviar baths while sleeping in beds with gold thread.
 </p>
 <ul data-role="listview" data-inset="true">
 Find Us
 Our Rooms
 Contact Us

Chapter 5

[57]

 Non-Mobile Site

 </div>
 <div data-role="footer">
 <h4>© Camden Hotel 2012</h4>
 </div>
 </div>
 </body>
</html>

At a higher level, the code in code 5-1 is simply another instance of the jQuery page
model we've discussed before. You can see what the CSS and JavaScript include,
as well as the div wrappers that set up our page, header, footer, and the content.
Within our content div you can also see a list being used. We've left the URL blank
for the non-mobile site option (Non-Mobile Site), as we don't have a real website
for the Camden Hotel.

The order of the list items is also thought out. Each item is listed in order of what the
staff feel are the most common requests, with the number one being simply finding
the hotel and the last option (ignoring leaving the site) being able to contact the hotel.
Over all, the idea of this example is to provide quick access to the most important
aspects of what we think the hotel customers will need. The following screenshot
shows how the site looks:

Getting Practical – Building a Simple Hotel Mobile Site

[58]

It isn't terribly exciting, but it renders well and is easy to use. Later on, you'll learn how
to theme jQuery Mobile so your site doesn't look like every other example out there.

Finding the hotel
The next page of our mobile website is focused on helping the user find the hotel.
This will include the address, as well as a map. code 5-2 shows how this is done
(as a reminder, we are saving space and trimming the code samples a bit!):

code 5-2: find.html
<div data-role="page">
 <div data-role="header">
 <h1>Find Us</h1>
 </div>
 <div data-role="content">
 <p>
 The Camden Hotel is located in beautiful downtown
 Lafayette, LA. Home of the Ragin Cajuns, good food, good
 music, and all around good times, the Camden Hotel is
 smack dab in the middle of one of the most interesting
 cities in America!
 </p>
 <p>
 400 Kaliste Saloom

 Lafayette, LA

 70508
 </p>
 <p>
 <img src="http://maps.googleapis.com/maps/api/
 staticmap?center=400+Kaliste+Saloom,+Lafayette,
 LA&zoom=12&size=150x150&scale=2&maptype=roadmap&
 markers=label:H%7C400+Kaliste+Saloom,+Lafayette,
 LA&sensor=false">
 </p>
 </div>
 <div data-role="footer">
 <h4>© Camden Hotel 2012</h4>
 </div>
</div>

Chapter 5

[59]

The beginning of the template has our boiler plate included again, and as before,
we have some marketing speak fluff on top. Immediately below this, though, is
the address and the map. We created the map using one of the cooler Google
features, Static Maps. You can read more about Google Static Maps at its home page:
http://code.google.com/apis/maps/documentation/staticmaps/. Essentially,
it is a way to create static maps via URL parameters. There's no zooming or panning
in these maps, but if you are just trying to show a user where your business is
located, it's an incredibly powerful and simple way to do so. Unlike the traditional
Google Maps API, which is driven by JavaScript, the Static Maps API is simply an
image URL with URL parameters specifying options for size, location, and other
factors. While there are a large number of options, you can use with this API; our
example simply centers it on an address and adds a marker there as well. The
address used is simply one in my hometown and does not reflect a real business.
The label H is used for the marker, but a custom icon could be used instead.
The following screenshot shows how this looks:

You could play around with that map URL a bit more to change the zoom,
change the colors, and so on to your liking.

Getting Practical – Building a Simple Hotel Mobile Site

[60]

Listing the hotel rooms
Now let's look at rooms.html. This is where we will list out the room types available
at the hotel:

code 5-3: rooms.html
<div data-role="page">
 <div data-role="header">
 <h1>Our Rooms</h1>
 </div>
 <div data-role="content">
 <p>
 Select a room below to see a picture.
 </p>
 <ul data-role="listview" data-inset="true">
 Simple Elegance
 Gold Standard
 Emperor Suite

 </div>
 <div data-role="footer">
 <h4>© Camden Hotel 2012</h4>
 </div>
</div>

The rooms page is simply a list of their rooms. The hotel has three levels of rooms,
each linked to the list so that the user can get details. You can find all three files in
the ZIP downloaded from GitHub, but let's look at one of them in detail:

code 5-4: room_high.html
<div data-role="page" data-fullscreen="true">
 <div data-role="header" data-position="fixed">
 <h1>Emperor Suite</h1>
 </div>
 <div data-role="content">

 </div>
 <div data-role="footer" data-position="fixed">
 <h4>© Camden Hotel 2012</h4>
 </div>
</div>

The room detail page is only an image. Not very helpful, but it gets the point across.
However, notice that we use a trick we learned in Chapter 3, Enhancing Pages with
Headers, Footers, and Toolbars. This allows the user to quickly click and hide the
headers so they can see the room in all its glory.

Chapter 5

[61]

Contacting the hotel
Now, let's take a look at the contact page. This will provide the user with information
on how to reach the hotel:

code 5-5: contact.html
<div data-role="page">
 <div data-role="header">
 <h1>Contact Us</h1>
 </div>
 <div data-role="content">
 <p>
 Phone:
 555-555-5555

 Email:
 people@camdenhotel.fake
 </p>
 </div>

Getting Practical – Building a Simple Hotel Mobile Site

[62]

 <div data-role="footer">
 <h4>© Camden Hotel 2012</h4>
 </div>
</div>

As before, we've wrapped our page in the proper script blocks and div tags. Make
a special note of our two links. Both the phone and e-mail links use URLs that may
not look familiar to you. The first, tel:555-555-555, is actually a way to ask the
mobile device to call a phone number. Clicking it brings up the dialer, as shown in
the following screenshot:

This makes it easy for the user to quickly call the hotel. Similarly, the mailto link
will allow for quickly jotting an e-mail off to the hotel. Other URL schemes exist,
including ones to send an SMS message. As you can probably guess, this scheme
uses the form sms, so to begin an SMS message to a phone number, you could
use the following URL: sms://5551112222.

For additional examples, consider the official documentation for iOS URL
schemes: http://developer.apple.com/library/ios/#featuredarticles/
iPhoneURLScheme_Reference/Introduction/Introduction.html. For a good
overview of other platforms, the HTML5 Mobile Development DZone Reference
Card is an excellent resource: http://refcardz.dzone.com/refcardz/html5-
mobile-development.

Summary
In this chapter, we took what we've learned so far and built a very simple, but
effective website for a fake hotel. This website shared essential information for
folks needing to learn about the hotel while on a mobile device, made use of
Google's Static Maps API to create a simple map showing the hotel's location,
and demonstrated the use of tel and mailto URL schemes for automatic phone
dialing and e-mailing.

In the next chapter, we'll take a look at forms and how they are automatically
improved with jQuery Mobile.

Working with Forms and
jQuery Mobile

In this chapter, we will look at forms. Forms are a critical part of most websites as they
provide the primary way for users to interact with the website. jQuery Mobile goes a
long way to making forms both usable and elegantly designed for mobile devices.

In this chapter, we will cover the following aspects:

•	 Talk about what jQuery Mobile does with forms
•	 Work with a sample form and describe how the results are handled
•	 Discuss specifics about how to build certain types of forms and make use

of jQuery Mobile conventions

Before you begin
In this chapter, we're going to talk about forms and how jQuery Mobile enhances
them. As part of our discussion, we will be posting our forms to the server. In order
to have the server actually do something with the response, we're going to make use
of an application server from Adobe called ColdFusion. ColdFusion is not free for
production use, but is 100% free for development and is a great server for building
web applications. You do not need to download ColdFusion. If you do not, the forms
you use within this chapter should not be submitted. This chapter does talk about
how forms are submitted, but the response to the forms isn't really critical.
If you know another language, like PHP, you should be able to simply mimic
the code ColdFusion is using to echo back the form data.

Working with Forms and jQuery Mobile

[64]

ColdFusion (currently version 10) can be downloaded at http://www.adobe.com/go/
coldfusion. Versions exist for Windows, OS X, and Linux. As stated previously, you
can run ColdFusion for free on your development server with no timeout restrictions.

What jQuery Mobile does with forms
Before we get into the code, there are two very important things you should know
about what jQuery Mobile will do with your HTML forms:

•	 All forms will submit their data via AJAX. That means the data is sent
directly to the action of your form and the result will be brought back
to the user and placed within the page that held the form. This prevents
a full page reload.

•	 All form fields are automatically enhanced, each in their own way. As we go
on in the chapter, you will see examples of this; but basically jQuery Mobile
modifies your form fields to work better on a mobile device. A great example
of this is the buttons. jQuery Mobile automatically widens and heightens
buttons to make them easier to click in the small form factor of a phone.
If for some reason you don't like this, jQuery Mobile provides a way to
disable this, either on a global or per use basis.

With that in mind, let's look at our first example in code 6-1:

code 6-1: test1.html
<div data-role="header">
 <h1>Form Demo</h1>
</div>
<div data-role="content">
 <form action="echo.cfm" method="post">
 <div data-role="fieldcontain">
 <label for="name">Name:</label>
 <input type="text" name="name" id="name" value="" />
 </div>
 <div data-role="fieldcontain">
 <label for="email">Email:</label>
 <input type="text" name="email" id="email" value="" />
 </div>
 <div data-role="fieldcontain">
 <input type="submit" name="submit" value="Send" />
 </div>
 </form>
</div>

Chapter 6

[65]

As before, we've focused on the important part of the template, the content within
our main page div block. Notice that, for the most part, this is a generic form, but
that every label and field is wrapped with the following div:

<div data-role="fieldcontain">
</div>

This will help jQuery Mobile align the label and form field. You'll see why in a
moment. Our form has two text fields, one for name and one for e-mail. The last item is
just the submit button. So, outside of using a fieldcontain wrapper and ensuring we
have labels for our form fields, nothing special is going on here. Right away, though,
you can see some pretty impressive changes to the form:

Notice how the labels are presented above the form fields. This gives the fields more
space on the mobile device. Also, notice the submit button is large and easy to click.
If we rotate the device, jQuery Mobile updates the display to take advantage of the
additional space:

Working with Forms and jQuery Mobile

[66]

Notice that the fields now line up directly to the right of their labels. So what
happens when the form is submitted? As mentioned at the beginning of this
chapter, we're making use of ColdFusion to handle responding to the form
requests. Our echo.cfm template will simply loop over all the form fields
and display them back out to the user:

code 6-2: echo.cfm
<div data-role="page">
 <div data-role="header">
 <h1>Form Result</h1>
 </div>
 <div data-role="content">
 <cfloop item="field" collection="#form#">
 <cfoutput>
 <p>
 The form field #field# has the value #form[field]#.
 </p>
 </cfoutput>
 </cfloop>
 </div>
</div>

If you do not want to install ColdFusion, you can simply edit the form action value
in code 6-1 to point to a PHP file, or any other server-side processor. You may
also simply change it to test1.html, the file itself. Nothing will happen when you
submit it, but you will not get an error either. Here's what the device will show after
hitting submit:

Chapter 6

[67]

Another great example of how jQuery Mobile updates form fields is with textarea.
textarea, by default, can be very difficult to work with on a mobile device,
especially as the amount of text grows beyond the size of the textarea and a scroll
bar is added. In the following code snippet, we've simply modified the previous
form to include a third item, a bio field that uses textarea. The complete file may be
found in the book's code ZIP file as test2.html. The following code snippet is the
div block added after the previous two fields:

<div data-role="fieldcontain">
 <label for="bio">Bio:</label>
 <textarea name="bio" id="bio"></textarea>
</div>

When viewed on the device, the textarea expands to take in more width like the
regular text fields, and grows taller.

Working with Forms and jQuery Mobile

[68]

But once you begin typing and entering multiple lines of text, the textarea
automatically expands:

This is much easier to read than if scrollbars had been used. Now let's look at another
common form option: radio buttons and checkboxes.

Working with radio buttons and checkboxes
Both radio buttons and checkboxes are also updated to work nicely on a mobile
device, but require a tiny bit more code. In the earlier examples, we wrapped form
fields with a div tag that made use of data-role="fieldcontain". When working
with radio buttons and checkboxes, one more tag is required.

<fieldset data-role="controlgroup">

This fieldset tag will be used to group together your radio buttons or checkboxes.
code 6-3 demonstrates one set of radio buttons and one checkbox group:

code 6-3: test3.html
<div data-role="page">
 <div data-role="header">
 <h1>Form Demo</h1>
 </div>

Chapter 6

[69]

 <div data-role="content">
 <form action="echo.cfm" method="post">
 <div data-role="fieldcontain">
 <fieldset data-role="controlgroup">
 <legend>Favorite Movie:</legend>
 <input type="radio" name="favoritemovie"
 id="favoritemovie1" value="Star Wars">
 <label for="favoritemovie1">Star Wars</label>
 <input type="radio" name="favoritemovie"
 id="favoritemovie2" value="Vanilla Sky">
 <label for="favoritemovie2">Vanilla Sky</label>
 <input type="radio" name="favoritemovie"
 id="favoritemovie3" value="Inception">
 label for="favoritemovie3">Inception</label>
 </fieldset>
 </div>
 <div data-role="fieldcontain">
 <fieldset data-role="controlgroup">
 <legend>Favorite Colors:</legend>
 <input type="checkbox" name="favoritecolor"
 id="favoritecolor1" value="Green">
 <label for="favoritecolor1">Green</label>
 <input type="checkbox" name="favoritecolor"
 id="favoritecolor2" value="Red">
 <label for="favoritecolor2">Red</label>
 <input type="checkbox" name="favoritecolor"
 id="favoritecolor3" value="Yellow">
 <label for="favoritecolor3">Yellow</label>
 </fieldset>
 </div>
 <input type="submit" name="submit" value="Send" />
 </div>
 </form>
 </div>
</div>

Working with Forms and jQuery Mobile

[70]

Our form has two main questions: what is your favorite movie and what are your
favorite colors? Each block is wrapped in the div tag we mentioned before. Inside
this is the fieldset using data-role="controlgroup". Finally, you then have
your radio and checkbox groups. It is important to include the labels with each
input control, as each of the previous examples have. Once rendered, jQuery Mobile
groups these into a nice-looking, singular control.

Notice the wide, clickable regions for each item. This makes it much easier to select
items on a mobile device. Another interesting feature of both of these controls is the
ability to turn them into horizontal button bars. In test4.html, both fieldset tags
were modified to include a new data attribute:

<fieldset data-role="controlgroup" data-type="horizontal">

Chapter 6

[71]

As you can see, the effect doesn't work well with the longer text in the first group,
so be sure to test it.

Working with select menus
Yet another example of jQuery Mobile form enhancement is with select menus.
As with our earlier examples, we make use of a fieldcontain div and label tag,
but outside of that, the select tag is used as normal. The following code snippet is
from test5.html:

<div data-role="fieldcontain">
 <label for="favmovie">Favorite Movie:</label>
 <select name="favmovie" id="favmovie">
 <option value="Star Wars">Star Wars</option>
 <option value="Revenge of the Sith">Revenge of the
 </option>
 <option value="Tron">Tron</option>
 <option value="Tron Legacy">Tron Legacy</option>
 </select>
</div>

Working with Forms and jQuery Mobile

[72]

On the mobile device, the initial display of the select control is modified to be easier
to hit.

However, once clicked, the device's native menu will take over. This will look
different on the platform you are using. The following screenshot shows how
iOS renders the menu:

The following screenshot demonstrates how Android renders it:

Chapter 6

[73]

Another option to use with the select fields is grouping. jQuery Mobile allows you
to vertically or horizontally group together multiple select fields. In both cases, all
that's required is to wrap your select fields in a fieldset using the data-role of
controlgroup, much like we did earlier for radio and checkboxes. The following
code snippet is an example of a vertically aligned group of select fields:

<div data-role="fieldcontain">
 <fieldset data-role="controlgroup">
 <legend>Trip Setup:</legend>
 <label for="location">Location</label>
 <select name="location" id="location">
 <option value="Home">Home</option>
 <option value="Work">Work</option>
 <option value="Moon">Moon</option>
 <option value="Airport">Airport</option>
 </select>
 <label for="time">Time</label>
 <select name="time" id="time">
 <option value="Morning">Morning</option>
 <option value="Afternoon">Afternoon</option>
 <option value="Evening">Evening</option>
 </select>
 <label for="time">Meal</label>
 <select name="meal" id="meal">
 <option value="Meat">Meat</option>
 <option value="Vegan">Vegan</option>

Working with Forms and jQuery Mobile

[74]

 <option value="Kosher">Kosher</option>
 </select>
 </fieldset>
</div>

The rest of this template can be found in test6.html. The following screenshot
shows how it looks:

Note how jQuery Mobile groups them together and nicely rounds the corners. The
horizontal version can be achieved by adding a data-type="horizontal" attribute
to the fieldset tag. It's also important to remove the div using "fieldcontain".
Here is an example (the complete file can be found in test7.html):

<form action="echo.cfm" method="post">
 <fieldset data-role="controlgroup" data-type="horizontal">
 <legend>Trip Setup:</legend>
 <label for="location">Location</label>
 <select name="location" id="location">
 <option value="Home">Home</option>
 <option value="Work">Work</option>
 <option value="Moon">Moon</option>
 <option value="Airport">Airport</option>
 </select>
 <label for="time">Time</label>
 <select name="time" id="time">
 <option value="Morning">Morning</option>
 <option value="Afternoon">Afternoon</option>
 <option value="Evening">Evening</option>
 </select>

Chapter 6

[75]

 <label for="meal">Meal</label>
 <select name="meal" id="meal">
 <option value="Meat">Meat</option>
 <option value="Vegan">Vegan</option>
 <option value="Kosher">Kosher</option>
 </select>
 </fieldset>
 <div data-role="fieldcontain">
 <input type="submit" name="submit" value="Send" />
 </div>
</form>

The following screenshot shows the result:

Search, toggle, and slider fields
Along with taking regular form fields and making them work better, jQuery Mobile
also helps make some of the newer HTML5 form fields work correctly across
multiple browsers. While support still isn't nailed down on the desktop across every
major browser, jQuery Mobile provides built-in support for search, toggle, and slider
fields. Let's take a look at each one.

Search fields
The simplest of the three new fields, search fields simply adds a quick delete icon to
the end of the field after you begin typing. Some devices will also put an hourglass
icon in front to help convey the idea of the field being used for some type of search.
To use this field, simply switch your type from text to search, as in the following
example from test8.html:

<div data-role="fieldcontain">
 <label for="name">Name:</label>
 <input type="search" name="name" id="name" value="" />
</div>

Working with Forms and jQuery Mobile

[76]

The following screenshot is the result. Notice that I've typed a bit and the field
automatically adds a Delete icon at the end.

Flip toggle fields
Flip toggle fields are controls that flip back between one and two values. Creating
a toggle field involves using a select control with a particular data-role value. Now,
here is where things may get a bit confusing. To enable a select field to turn into
a toggle field, you use data-role="slider". In a moment, we're going to look at
another slider control, but it uses a different technique. Just keep in mind that even
though you'll be seeing "slider" in the HTML, it's really a toggle control we are
creating. Let's look at a simple example. (You can find the complete source for this
in test9.html.)

<div data-role="fieldcontain">
 <label for="gender">Gender:</label>
 <select name="gender" id="gender" data-role="slider">
 <option value="0">Male</option>
 <option value="1">Female</option>
 </select>
</div>

The following screenshot demonstrates how the flip toggle is displayed:

Chapter 6

[77]

Slider fields
For the last of our special fields, we take a look at sliders. Like search fields, this is
based on an HTML5 specification that works in some browsers and not others. jQuery
Mobile simply makes it work everywhere. To enable this field, we take a regular text
field and switch the type to "range" To give our slider a range, we also provide a min
and max value. You can also add additional color to the slider by adding the attribute
data-highlight="true". The following code snippet is a sample. (You can find the
complete file in test10.html.)

<div data-role="fieldcontain">
 <label for="coolness">Coolness:</label>
 <input type="range" name="coolness" id="coolness" min="0"
 max="100"
 value="22" data-highlight="true">
</div>

The result is a slider control and an input field. Both allow you to modify the value
between the minimum and maximum value.

The HTML5 specification for the range supports a step attribute.
While this works in some browsers, it is not yet directly supported
by jQuery Mobile.

In other words, jQuery Mobile won't try to add this support on a browser that
doesn't have it built-in. You can add the attribute as long as you are aware it may
not always work as intended.

Working with Forms and jQuery Mobile

[78]

You can also get more fancy with your slider control by creating a dual range
slider. In this case, your slider has two controls, allowing your user to select both
a minimum and maximum value. To create this control, you first create a div block
with the data-role of range slider:

<div data-role="rangeslider">
</div>

Then within the div attribute, you simply add two slider controls, using the exact
same syntax you used before. In the following code snippet (taken from test11.
html), you can see an example of this:

<div data-role="fieldcontain">
 <div data-role="rangeslider">
 <label for="coolnessLow">Cool Range:</label>
 <input type="range" name="coolnessLow" id="coolnessLow"
 min="0" max="100" value="22">
 <input type="range" name="coolnessHigh" id="coolnessHigh"
 min="0" max="100" value="82">
 </div>
</div>

A few things to note here; there is only one label. If you provide two labels, the
second one is automatically hidden. Next, in theory, even though both ranges have
the same minimum and maximum, jQuery Mobile will not let you drag the second
value below the first. The following is a screenshot of this in action:

Using native form controls
Now you've seen how far jQuery Mobile will go to enhance and empower your
form fields to work better on mobile devices. But what if you don't like what jQuery
Mobile does? What if you love its updates to buttons but despise its changes to

Chapter 6

[79]

drop-downs? Luckily jQuery Mobile provides a simple way to disable automatic
enhancement. In each field you want to be left alone, simply add data-role="none"
to the markup. So given the following HTML, the first item will be updated while the
second will not:

<input type="submit" value="Awesome">
<input type="submit" value="Not So Awesome" data-role="none">

You can see an example of this in test12.html.

Another option is to disable it when jQuery Mobile is initialized. That option will be
discussed in Chapter 9, jQuery Mobile Configuration, Utilities, and JavaScript Methods.

Working with the mini fields
In the previous examples, we saw how jQuery Mobile automatically enhances form
fields to make them easier to use on smaller, touch based devices. In general, jQuery
Mobile took your fields and made them nice and fat. While that's desirable most of
the time, you may want to put your form fields on a bit of a diet. This is especially
true for placing form fields in a header or footer. jQuery Mobile supports an attribute
on any form field that creates a smaller version of the field: data-mini="true".
The following code snippet is a complete example:

<div data-role="fieldcontain">
 <label for="name">Name:</label>
 <input type="search" name="name" id="name" value="" />
</div>
<div data-role="fieldcontain">
 <label for="name">Name (Slim):</label>
 <input type="search" name="name" id="name" value="" data-
 mini="true" />
</div>

Working with Forms and jQuery Mobile

[80]

The result is a bit subtle, but you can see the height difference in the second field in
the following screenshot:

This example may be found with the rest of the files in a file named test13.html.

Summary
In this chapter, we discussed forms and how they are rendered in a jQuery Mobile
application. We discussed how jQuery Mobile automatically turns all form
submissions into AJAX-based calls and updates form fields to work better on mobile
devices. Not only are all your form fields automatically updated, but you can also
make use of new controls like the toggle, slider, and search inputs.

In the next chapter, we'll take a look at modal dialogs, widgets, and layout grids.
These provide additional UI options for your mobile optimized site.

Creating Modal Dialogs
and Widgets

In this chapter, we will look at dialogs, grids, and other widgets. In the previous
chapters we've dealt with pages, buttons, and form controls. While jQuery Mobile
provides great support for them, you get even more UI controls than you get within
the framework.

In this chapter, we will do the following:

•	 Discuss how to link to and create dialogs; also how to handle leaving them
•	 Demonstrate grids and how you can add them to your pages
•	 Show how collapsible blocks allow you to pack a lot of information in a small

amount of space
•	 Explain how to create popups and how they differ from dialogs
•	 Discuss the new responsive table and panel widgets

Creating dialogs
Dialogs, at least under the jQuery Mobile framework, are small windows that cover
an existing page. They typically provide a short message or question for the user.
They will also typically include a button that allows the user to dismiss the dialog
and return back to the site. Creating a dialog in jQuery Mobile is done by adding
a simple attribute to a link: data-rel="dialog". The following code snippet
demonstrates an example:

Code 7-1: test1.html
<div data-role="page" id="first">
 <div data-role="header">
 <h1>Dialog Test</h1>

Creating Modal Dialogs and Widgets

[82]

 </div>
 <div data-role="content">
 <p>
 Another Page (normal)
 </p>
 <p>
 A Dialog (dialog)
 </p>
 </div>
 </div>
 <div data-role="page" id="page2">
 <div data-role="header">
 <h1>The Second</h1>
 </div>
 <div data-role="content">
 <p>
 This is the Second
 </p>
 </div>
 </div>
 <div data-role="page" id="page3">
 <div data-role="header">
 <h1>The Third</h1>
 </div>
 <div data-role="content">
 <p>
 This is the Third
 </p>
 </div>
 </div>

This is a simple, multi-page jQuery Mobile site. Notice how we link to the second
and third page. The first link is typical. The second link, though, includes the
data-rel attribute mentioned earlier. Notice that both the second and third pages
are defined in the usual manner. So, the only change we have here is in the link.
When that second link is clicked, the page is rendered completely differently,
as shown in the following screenshot:

Chapter 7

[83]

Remember that the page wasn't defined differently. The change you see in the
preceding screenshot is driven by the change to the link itself. That's it! Clicking
the little X button will hide the dialog and return the user back to the original page.

Any link within the page will handle closing the dialog as well. If you wish to add
a cancel type button, or link, you can do so using data-rel="back" in the link. The
target of the link should be to the page that launched the dialog. Code 7-2 shows a
modified version of the earlier template. In this one, we've simply added two buttons
to the dialog. The first button will launch the second page, while the second one will
act as a cancel action:

Code 7-2: test2.html
<div data-role="page" id="first">
 <div data-role="header">
 <h1>Dialog Test</h1>
 </div>
 <div data-role="content">
 <p>
 Another Page (normal)
 </p>
 <p>
 A Dialog (dialog)
 </p>
 </div>
 </div>
 <div data-role="page" id="page2">
 <div data-role="header">
 <h1>The Second</h1>
 </div>
 <div data-role="content">
 <p>
 This is the Second
 </p>
 </div>
 </div>
 <div data-role="page" id="page3">
 <div data-role="header">
 <h1>The Third</h1>
 </div>
 <div data-role="content">
 <p>
 This is the Third
 </p>
 Page 2

Creating Modal Dialogs and Widgets

[84]

 <a href="#first" data-role="button" data-
 rel="back">Cancel
 </div>
 </div>

The major change in this template is the addition of the buttons in the dialog,
contained within page3 div. Notice that the first link is turned into a button,
but outside of that is a simple link. The second button includes the addition of
the data-rel="back" attribute. This will handle simply dismissing the dialog.
The following screenshot shows how the dialog looks with the buttons added:

Laying out content with grids
Grids are one of the few features of jQuery Mobile that do not make use of particular
data attributes. Instead, you work with grids simply by specifying CSS classes for
your content.

Grids come in four flavors: two-column, three-column, four-column, and five-column.
(You will probably not want to use the five-column grid on a mobile phone device.
Save that for a tablet instead.)

You begin a grid with a div block that makes use of the ui-grid-X class, where X
will be either a, b, c, or d. ui-grid-a represents a two-column grid, whereas ui-
grid-b is a three-column grid. You can probably guess what c and d create.

So to begin a two-column grid, you would wrap your content with the following:

<div class="ui-grid-a">
 Content
</div>

Chapter 7

[85]

Within the div tag, you then use a div for each "cell" of the content. The class for
grid calls begin with ui-block-X, where X goes from a to d. ui-block-a would
be used for the first cell, ui-block-b for the next, and so on. This works much like
HTML tables.

Putting it together, the following code snippet demonstrates a simple two-column
grid with two cells of content:

<div class="ui-grid-a">
 <div class="ui-block-a">Left</div>
 <div class="ui-block-b">Right</div>
</div>

Text within a cell will automatically get wrapped. Code 7-3 demonstrates a simple
grid with a large amount of text in one of the columns:

Code 7-3: test3.html
<div data-role="page" id="first">
 <div data-role="header">
 <h1>Grid Test</h1>
 </div>
 <div data-role="content">
 <div class="ui-grid-a">
 <div class="ui-block-a">
 <p>
 This is my left hand content. There won't be a lot of
 it.
 </p>
 </div>
 <div class="ui-block-b">
 <p>
 This is my right hand content. I'm going to fill it
 with some dummy text.
 </p>
 <p>
 Bacon ipsum dolor sit amet andouille capicola spare
 ribs, short loin venison sausage prosciutto
 turkey flank frankfurter pork belly short ribs.
 chop, pancetta turkey bacon short ribs ham flank
 pork belly. Tongue strip steak short ribs tail
 </p>
 </div>
 </div>
 </div>
 </div>

Creating Modal Dialogs and Widgets

[86]

In the mobile browser, you can clearly see the two columns, as shown in the
following screenshot:

If the text in those div tags seems a bit close together, there is a simple fix for that.
In order to add a bit more space between the content of the grid cells, you can add
a class to your main div that specifies ui-content. This tells jQuery Mobile to pad
the content a bit. So, for example, consider the following line of code:

<div class="ui-grid-a ui-content">

This small change modifies the previous screenshot in the following manner:

Chapter 7

[87]

Working with other types of grids then is simply a matter of switching to the other
classes. For example, a four-column grid would be set up similar to the following
code snippet:

<div class="ui-grid-c">
 <div class="ui-block-a">1st cell</div>
 <div class="ui-block-b">2nd cell</div>
 <div class="ui-block-c">3rd cell</div>
</div>

Again, keep in mind your target audience. Anything over two columns may be too
thin on a mobile phone.

To create multiple rows in a grid, you simply need to repeat the blocks. The following
code snippet demonstrates a simple example of a grid with two rows of cells:

<div class="ui-grid-a">
 <div class="ui-block-a">Left Top</div>
 <div class="ui-block-b">Right Top</div>
 <div class="ui-block-a">Left Bottom</div>
 <div class="ui-block-b">Right Bottom</div>
</div>

Notice that there isn't any concept of a row. jQuery Mobile handles knowing
that it should create a new row when the block starts over with the one marked
ui-block-a. The following code snippet, Code 7-4, is a simple example:

Code 7-4:test4.html
<div data-role="page" id="first">
 <div data-role="header">
 <h1>Grid Test</h1>
 </div>
 <div data-role="content">
 <div class="ui-grid-a">
 <div class="ui-block-a">
 <p>

 </p>
 </div>
 <div class="ui-block-b">
 <p>
 This is Raymond Camden. Here is some text about him. It
 may wrap or it may not but jQuery Mobile will make it
 look good. Unlike Ray!
 </p>
 </div>
 <div class="ui-block-a">

Creating Modal Dialogs and Widgets

[88]

 <p>
 This is Scott Stroz. Scott Stroz is a guy who plays
 golf and is really good at FPS video games.
 </p>
 </div>
 <div class="ui-block-b">
 <p>

 </p>
 </div>
 </div>
 </div>
 </div>

The following screenshot shows the result:

Making responsive grids
Earlier in the chapter, we mentioned that complex grids may not work depending on
the size of your targeted devices. A simple two-column grid is fine, but larger grids
would render well only on tablets. Luckily, there's a simple solution for it. jQuery
Mobile's latest updates include a much better support for responsive design. Let's
consider a simple example. The following is a screenshot of a web page using
a four-column grid:

Chapter 7

[89]

It is surely readable, but a bit dense. The same page in a table, though, will be more
readable. The following is a screenshot of the same page on an iPad:

By making use of responsive design, we can handle the different sizes intelligently
using the same basic HTML. jQuery Mobile enables a simple solution for this by
adding the ui-responsive class to an existing grid. The following is an example:

<div class="ui-grid-c ui-responsive">

Creating Modal Dialogs and Widgets

[90]

By making this one small change, look how the phone version of our page changes:

The four-column layout now is a one-column layout instead. If viewed in a tablet,
the original four-column design is preserved.

Working with collapsible content
The next widget we will look at in this chapter supports collapsible content. This is
simply content that can be collapsed and expanded. Creating a collapsible content
widget is as simple as wrapping it in a div, adding data-role="collapsible",
and including a title for the content. Consider the following simple example:

<div data-role="collapsible">
 <h1>My News</h1>
 <p>This is the latest news about me…
</div>

Upon rendering, jQuery Mobile will turn the title into a clickable banner that can
expand and collapse the content within. Let's look at a real example. Imagine you
want to share the location of your company's primary address. You also want to
include satellite offices. Because most people won't care about the other offices,
we can use a simple collapsible content widget to hide the content by default.
The following code snippet, Code 7-5, demonstrates an example of this:

Code 7-5: test5.html
<div data-role="page" id="first">
 <div data-role="header">

Chapter 7

[91]

 <h1>Our Offices</h1>
 </div>
 <div data-role="content">
 <p>
 Main Office:

 400 Elm Street

 New York, NY

 90210
 </p>
 <div data-role="collapsible">
 <h3>Satellite Offices</h3>
 <p>
 Asia:
 Another Address Here
 </p>
 <p>
 Europe:
 Another Address Here
 </p>
 <p>
 Mars:
 Another Address Here
 </p>
 </div>
 </div>
 </div>

You can see that the other offices are all wrapped in the div tag using the new
collapsible content role. When viewed, they are seen to be hidden:

Creating Modal Dialogs and Widgets

[92]

Clicking on the + icon next to the title opens it, and can be clicked again to close it:

By default, jQuery Mobile will collapse and hide the content. You can, of course, tell
jQuery Mobile to initialize the block as open instead of closed. To do so, simply add
data-collapsed="false" to the initial div tag. For example, consider the following
code snippet:

<div data-role="collapsible" data-collapsed="false">
 <h1>My News</h1>
 <p>This is the latest news about me…
</div>

This region will still have the ability to collapse and open, but will simply default
to being opened initially.

Another option for collapsible content blocks is the ability to theme the content of
the area that is collapsed. By providing a data-content-theme attribute, you can
specify a background color that makes the region a bit more cohesive. Theming is
covered in Chapter 11, Enhancing jQuery Mobile but we can take a look at a quick
example. In the following screenshot, the first region does not make use of the
feature, while the second one does:

Chapter 7

[93]

Notice that the icon is also shifted to the right. This demonstrates another option:
data-iconpos. The following code snippet, found in the test5-2.html file in the
code folder, demonstrates these options:

<div data-role="collapsible">
 <h3>First</h3>
 <p>
 Hello World...
 </p>
</div>
<div data-role="collapsible" data-content-theme="c" data-
 iconpos="right">
 <h3>First</h3>
 <p>
 Hello World again...
 </p>
 </div>

Creating Modal Dialogs and Widgets

[94]

Finally, you can take multiple collapsible regions and combine them into one called
an accordion. This is done by simply taking multiple collapsible blocks and wrapping
them in a new div tag. This div tag makes use of data-role="collapsible-set" to
make the inner blocks as one unit. Code 7-6 demonstrates an example of this. It takes
the earlier office address example and uses a collapsible set for each unique address:

Code 7-6: test6.html
<div data-role="page" id="first">
 <div data-role="header">
 <h1>Our Offices</h1>
 </div>
 <div data-role="content">
 <div data-role="collapsible-set">
 <div data-role="collapsible">
 <h3>Main Office</h3>
 <p>
 400 Elm Street

 New York, NY

 90210
 </p>
 </div>
 <div data-role="collapsible">
 <h3>Asia</h3>
 <p>
 Another Address Here
 </p>
 </div>
 <div data-role="collapsible">
 <h3>Europe</h3>
 <p>
 Another Address Here
 </p>
 </div>
 <div data-role="collapsible">
 <h3>Mars</h3>
 <p>
 Another Address Here
 </p>
 </div>
 </div>
 </div>
 </div>

Chapter 7

[95]

In Code 7-6, we simply wrap four collapsible blocks with a div tag that makes
use of a collapsible set. Once done, jQuery Mobile will group them together and
automatically close one once another is open:

Popups
Popups (also known as tooltips) are similar to dialogs, but are much smaller and not
necessarily model. They can be useful for providing contextual help or descriptive
text. Like dialogs, you create a popup by applying a data attribute to a link. Unlike
dialogs, your "target" for the popup content will be another div in the same page.
Let's look at an example:

Code 7-7: test7.html
<div data-role="page" id="first">

 <div data-role="header">
 <h1>Popup Demo</h1>
 </div>

 <div data-role="content">

 Show
Popup

 </div>

 <div data-role="popup" id="firstPopup">
 <p>This is just a test. It has some text in it. It is incredibly
awesome.</p>
 </div>

</div>

Creating Modal Dialogs and Widgets

[96]

Inside our main content div is a simple link. In order to let jQuery Mobile know
this is linking to a popup, the data-rel attribute is specified. Note that the ID value
points to another div on the page. That div has the role of a popup. When viewed in
the browser, jQuery Mobile automatically hides this div. It will only show up when
the link is actually clicked:

As with other widgets, you have multiple options you can specify for your popups.
They include position options, modal properties, transitions (for opening and closing),
and of course, theming. Let's look at the position and modal properties first, as they are
the most interesting.

By default, popups will be positioned to the center of the item that launched them.
So for example, in our previous code this was a button. You can modify this value by
using a data-position-to attribute. The default is origin. You can center the popup
to the entire window by using, you guessed it, window. Finally, you can also pass a
jQuery selector as a value and that DOM item will be used to center the popup.

Normally, popups are dismissed if you click anywhere on the page. You can
create a modal popup (which acts just like the dialogs discussed earlier in the
chapter) by setting them as non-dismissible. This is done by adding data-
dismissible="false" to the div containing the popup. To be clear, this is done to
the div, not the link. Code 7-8 demonstrates an example of both of these options:

Code 7-8: test8.html
<div data-role="page" id="first">

 <div data-role="header">
 <h1>Advanced Popup Demo</h1>
 </div>

 <div data-role="content">

 <a href="#firstPopup" data-role="button"
 data-rel="popup" data-position-to="window">Show Popup
 <p>
 I'm including some text here just so that we can
 properly demo the new position of my popup. It

Chapter 7

[97]

 will be centered on the window, not the link
 above. That is <i>awesome</i>.
 </p>
 </div>

 <div data-role="popup" id="firstPopup" data-dismissible="false"
class="ui-content">
 <p>This is just a test. It has some text in it. It is incredibly
awesome.</p>
 Get
Rid Of Me
 </div>

</div>

This template is mostly like the previous one, but with a few important updates.
Firstly, make note of the data-position-to attribute. This will position the popup
centered to the window. We added some text to help make the page a bit taller
in general. The next change was to the popup div. First, we added the data-
dismissible="false" attribute to make it more of a modal dialog. In order to
actually get rid of the popup though we have to add our own UI. To do this, a button
was added. By specifying data-rel="back", jQuery Mobile will handle getting rid
of the popup.

Creating Modal Dialogs and Widgets

[98]

Responsive tables
Tables present a particular difficulty for mobile browsers. Generally, tables consist
of a large amount of data. This could take up an entire screen of a desktop browser.
On a mobile browser, this can be even more condensed. In the folder for this
chapter's source code, take a look at test_table.html. We won't print the code
here, but it is a rather simple four-column, four-row table. On a mobile device,
this information fits, but just barely.

jQuery Mobile can make this work better by creating a responsive version of the table.
There are a few small changes you must make to your tables to enable this feature.
Firstly, ensure your table makes use of thead and tbody blocks. The previous example,
test_table.html, did this already. Code 7-9 demonstrates what else we have to do
to make the table responsive:

Code 7-9: test_resp_table.html
<table data-role="table" class="ui-responsive table-stroke">
 <thead>
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>Age</th>
 <th>Beers</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th>Raymond Camden</th>
 <td>Jedi Master</td>
 <td>40</td>
 <td>3</td>
 </tr>
 <tr>

Chapter 7

[99]

 <th>Scott Stroz</th>
 <td>Golf Master</td>
 <td>45</td>
 <td>9</td>
 </tr>
 </tbody>
</table>

Firstly, we add a data-role="table" to the core table block. This will enable basic
responsive functionality for the table. To use the default responsive breakpoints,
a class of ui-responsive is also added. There is one more small change we will
explain in a minute. Now take a look at the table in the following screenshot:

jQuery Mobile has broken the table up into blocks of content that are much easier to
read. Even better, if you view this table on a larger screen tablet, it will render as a
regular table. Remember the one other change we mentioned? Note the vertical space
between the first "row" (for Raymond Camden) and the second "row" (Scott Stroz).
By default, jQuery Mobile will not add the vertical spacing. This was accomplished
by changing the first cell of each row to a <th> element. These elements are normally
reserved for the top-level header, but can be used inside a tbody as well. For our
demo here, they serve to help visually group the different rows in a more visually
pleasing manner.

Creating Modal Dialogs and Widgets

[100]

But wait, there's more! jQuery Mobile also supports another powerful feature—the
ability to selectively filter the columns displayed to the user. The Column Toggle
feature is enabled by adding data-mode="columntoggle" to a table. As an example:

<table data-role="table" data-mode="columntoggle" class="ui-responsive
table-stroke" id="peopleTable">

This adds a column toggle widget to your table. (Note that, in order for the button to
associate with your table, you must include an ID). By default, though, the column
toggle widget will not actually allow you to select any columns. To provide a list of
columns, selectively add a data-priority to each row header that you wish to make
toggle-enabled. You do not need to select every column, nor do you need to provide
any specific order. The following is an example taken from the test_resp_adv_
table.html file:

<table data-role="table" data-mode="columntoggle" class="ui-responsive
table-stroke" id="peopleTable">
 <thead>
 <tr>
 <th>Name</th>
 <th data-priority="1">Title</th>
 <th data-priority="2">Age</th>
 <th data-priority="3">Beers</th>
 </tr>
 </thead>

Again, the preceding order is totally arbitrary. While the order will probably match
the order of your columns, you are free to choose any order you wish. Now, when
the table is displayed, a column toggle widget is added and the default display is
focused on the first priority column:

Chapter 7

[101]

Clicking on the widget opens a popup:

The user can then select which columns they care about, as illustrated in the
following screenshot:

And that's it! In case you're curious, you can change the text on the column toggle
widget by simply using the data-column-btn-text attribute on the table.

Creating Modal Dialogs and Widgets

[102]

Working with panels
The last widget we will discuss is the Panel widget. The Panel widget sits on the
left or right-hand side of your page and can be shown or hidden dynamically.
Because of the limited "real estate" on mobile devices, panels are a nice way
to hide navigation or other content until the user requests it.

Creating a panel in jQuery Mobile is simple. First, add a new <div> block with a
data-role of panel. This must be done inside the div that defines your page, and
should be outside of the content region. Code 7-10 demonstrates an example of this.

Code 7-10: test_panel.html
<div data-role="page" id="first">

 <div data-role="panel" id="leftPanel">
 This is the left panel.

 <p>
 <a data-role="button" data-rel="close">Close
 </p>

 </div>

 <div data-role="header">
 <h1>Test Panel</h1>
 </div>

 <div data-role="content">

 Open My Panel!
 Open Another Panel!

 </div>

 <div data-role="panel" data-position="right" id="rightPanel">
 This is the right panel.

 <p>
 <a data-role="button" data-rel="close">Close
 </p>

 </div>

</div>

Chapter 7

[103]

In this example, two panels are defined, one above and one below the content div.
Note that both have an ID. This is required so that the panel can be opened. Opening
panels is done with a simple link. Inside the content div are two links—one for the
left-hand side panel and one for the right-hand side panel. Panels are placed on the
left-hand side by default. To place one on the right-hand side, add the data-position
attribute. The final aspect to this is how panels are closed. By default,a panel will be
closed if the user clicks anywhere outside the panel. Panels will also be closed if the
user swipes. But because a user may not know this, it makes sense to also provide a
manual way to close the panel. In both panels, a link with a data-rel value of close is
provided. The following is an example with the left-hand side panel opened:

Notice that the main page content was pushed to the right-hand side. Panels are
displayed in one of three ways and can be customized via the data-display
attribute. The default value is reveal which pushes the content away. Another
option is overlay. As you can guess, this will render the panel on top of the main
page content, as shown in the following screenshot:

The final option is push. The push and reveal options look very similar,
and frankly, many users may not be able to tell the difference. The reveal option
will move the main page content to the side revealing the panel. The push option acts
as if the panel is pushing the content to the side. You can see an example of both of
these in test_panel_display.html.

Creating Modal Dialogs and Widgets

[104]

Finally, you can control the close behavior of panels by using data-swipe-
close="false" and data-dismissable="false". The former disables the
swipe-to-close behavior and the latter prevents the panel from closing by clicking
outside the panel.

Summary
In this chapter, we learned more about how jQuery Mobile enhances basic HTML
to provide additional layout controls to our mobile pages. With dialogs, we learned
how to provide a basic, quick, modal message to users. With grids, we learned a
new way to easily layout content in columns. We learned about collapsible content
blocks—a cool way to share additional content without taking up as much screen
space. We looked at popups, responsive tables, and finally, panel controls.

In the next chapter, we demonstrate a full, real example that creates a basic Note
Tracker. It makes use of additional HTML5 features, as well as some of the UI tips
you've learned over the past few chapters.

Moving Further with
the Notekeeper Mobile

Application
In this chapter we're going to begin assembling everything we've learned about lists,
forms, pages, and content formatting thus far into a usable "mobile application"—the
Notekeeper application.

In this chapter, we will do the following:

•	 Accept user input using forms
•	 Store user-inputted data locally using the HTML5 localStorage functionality
•	 Demonstrate how to add, edit, and remove items from the page dynamically

What is a mobile application?
Before writing our first mobile application, perhaps we should define what one is.
Wikipedia defines it as follows (http://en.wikipedia.org/wiki/Mobile_app):

A mobile application (or mobile app) is a software application designed to run on
smartphones, tablet computers and other mobile devices.

While it's true that jQuery Mobile apps are written in HTML, CSS, and JavaScript,
that doesn't prevent them from being sophisticated pieces of software. They can
certainly be developed with mobile devices in mind.

Moving Further with the Notekeeper Mobile Application

[106]

Some critics might note that it can't really be software unless it's "installed". As you'll
see later in the book, jQuery Mobile applications can actually be installed on a wide
array of devices (including iOS, Android, and Windows Mobile) when coupled with
the open source library PhoneGap (http://phonegap.com/). This means that you'll
be able to have your cake and eat it too. You might be asking yourself if code written
using jQuery Mobile can be considered as software, and as you'll find out in this
chapter, the answer is yes.

Designing your first mobile application
The goal of any piece of software is to meet a need. Gmail met a need by freeing
users from a single computer and letting them check their e-mail from any web
browser. Photoshop met a need by allowing users to manipulate photos in ways
no one had ever done. Our Notekeeper application meets a need by allowing us
to record simple notes for later reference. I know that this is sort of a letdown by
comparison, but we've got to start somewhere, right?

When building software, it's a good idea to spend time up front writing out a
specification for your project: what it will do, what it will look like, and what it
should have. Remember that if you don't know what you're building, how will
you ever know if it's done?

Listing out the requirements
We already know what we want our application to do—take notes. The problem is
that there are so many ways that you could build a note-taking app that it's essential
to sketch out just what we want ours to do. Not too much, not too little, but just
enough...for now. It's a point of fact with developers that our applications are never
"done", they're only finished "for now". With Notekeeper, we've decided that we
want to be able to do the following things with our application:

•	 Add a note
•	 Display a list of notes
•	 View a note/delete a note

Chapter 8

[107]

After deciding what tasks our app needs to accomplish, we need to decide how it
will accomplish them. The easiest approach is to simply write those things out in a
list. By breaking each part down into smaller pieces, we make it easier to understand,
and to see just what we need to make it work. It's just like getting directions to your
favorite restaurant; a left turn here, a roundabout there, and you're sitting down at
the table before you know it. Let's look at each thing we want Notekeeper to do,
with the help of the following pieces and parts:

•	 Adding new notes (form)
°° A form container: All user input widgets should be wrapped and

contained within a form
°° A title: This would be the name of the note and will also be used

to display the existing notes
°° The note itself: The content or body of the note
°° A Submit button: This will trigger the saving of the note

•	 Displaying a list of existing notes (listview)
°° A row item containing the title of the note: This row should

be a link to a page containing the body of the note
°° A section header row: This might be nice feature

•	 Viewing note details (label, paragraph, button)
°° A label for the title of the note
°° A paragraph containing the content of the note
°° A button labeled Delete
°° A Back button

Building your wireframes
Now that we've listed out the functionalities for our app, how about we sketch each
piece so that we get an idea of what we want it to look like? Don't worry if you
failed art or if you can't draw a stick figure. Use a ruler if you have to, or consider
using Microsoft Excel, or PowerPoint if you have those. You just need to be able to
draw some boxes and text labels. There are a number of free or inexpensive tools
you can use for this purpose. A popular wireframing tool that runs in the browser is
Balsamiq Mockups (http://balsamiq.com/).

Moving Further with the Notekeeper Mobile Application

[108]

Designing the add note wireframe
Now, what about the add note part? We decided that it needs a title, a box for the
note, and a Submit button. The form is an invisible container so we don't need to
draw that:

Display notes wireframe
The listview is an integral part of mobile development. It's the simplest way to group
similar items together, plus, it offers lots of extra functionality, such as scrolling and
built-in images for links. We'll be using a listview to display our list of notes:

View note/delete button wireframe
Finally, once we've added a note, we need to be able delete the evidence; I mean,
clear out old notes to make way for new ones. Note that we've also sketched out a
back button. Once you start seeing things laid out, you'll find that you've forgotten
something really important (such as being able to return to the previous page):

Chapter 8

[109]

Writing the HTML
Now that our wireframes are done and we're happy with them, it's time to turn
pencil drawings into 1s and 0s. Because our app is relatively simple, none of the
HTML should be difficult. You're more than halfway through the book after all
and you should be able to do these things in your sleep.

The HTML that you come up with should look remarkably like what's shown in the
following code snippet. Let's examine it together:

Code 8-1: notekeeper.html
<!DOCTYPE html>
<html>
 <head>
 <title>Notekeeper</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-1.8.2.js"></script>
 <script src="http://code.jquery.com/mobile/latest/
 jquery.mobile.min.js"></script>
 <script src="application.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>Notekeeper</h1>
 </div>
 <div data-role="content">
 <form>
 <div>
 <input id="title" type="text" placeholder="Add a note" />
 </div>

Moving Further with the Notekeeper Mobile Application

[110]

 <div>
 <textarea id="note" placeholder="The content of your
 note"></textarea>
 </div>
 <div class="ui-grid-a">
 <div class="ui-block-a">
 <input id="btnNoThanks" type="submit" value="No Thanks" />
 </div>
 <div class="ui-block-b">
 <input id="btnAddNote" type="button" value="Add Note" />
 </div>
 </div>
 </form>
 <ul id="notesList" data-role="listview" data-inset="true">
 <li data-role="list-divider">Your Notes
 <li id="noNotes">You have no notes

 </div>
 <div data-role="footer" class="footer-docs">
 <h5>Intro to jQuery Mobile</h5>
 </div>
 </div>
 </body>
</html>

Our Notekeeper application will make use of a single HTML file (notekeeper.html)
and a single JavaScript file (application.js). Up until this point, none of the code
you've written has really needed JavaScript, but once you begin writing more complex
applications, JavaScript will be a necessity. Preview the HTML from Code 8-1 in your
web browser and you should see something similar to the following screenshot:

Chapter 8

[111]

Notice that we're displaying the Add Note form on the same page as the form to
view notes. With mobile application development, it's a good idea to condense things
where possible. Don't make this a hard and fast rule, but because there's so little to
our app, it's an acceptable decision to place both parts together as long as they're
clearly labeled. You can see that this page meets all the requirements we set for
adding a note and for displaying our existing notes. It has a title input field, a note
input field, a save button, and the entire thing is wrapped inside a form container.
It also has a listview that will be used to display our notes once we start adding
them. What isn't seen here is a Delete button, but that will show up once we add
our first note and view the details page.

Adding functionalities with JavaScript
As already mentioned in this book, you don't need to write any JavaScript to get your
money's worth from jQuery Mobile. As you progress in your experience with jQuery
Mobile, you'll begin to see how much additional value JavaScript can add to your
projects. Before we look at the code, let's talk about how it will be structured. If you've
done any web designing or development earlier, you've probably seen JavaScript. It
has been around since 1995. The problem is that there's been many different ways to
do the same thing in JavaScript and not all of them are good.

The JavaScript code in this application will use what's called a design pattern.
It's just a fancy term that specifies a certain structure to the code. There are the
following three main reasons for using an existing design pattern:

•	 It helps our code stay organized and tidy.
•	 It prevents the variables and functions we write from being accidentally

overwritten or altered by any other code we might add, for example, a jQuery
plugin perhaps, or code that's being loaded in from a third-party website.

•	 It will help future developers acclimatize themselves to your code much
more rapidly. You are thinking about future developers as you work on the
next Facebook killer, right?

Let's take a look at a very simple implementation of this design pattern before
jumping into the complete code:

Code 8-2: kittyDressUp.js
$(document).ready(function(){
 // define the application name
 var kittyDressUp = {};
 (function(app){
 // set a few variables which can be used within the app
 var appName = 'Kitty Dress Up',

Moving Further with the Notekeeper Mobile Application

[112]

 version = '1.0';
 app.init = function(){
 // init is the typical name that developers give for the
 // code that runs when an application first loads
 // use whichever word you prefer
 var colors = app.colors();
 };
 app.colors = function(){
 var colors = ['red','blue','yellow','purple'];
 return colors;
 };
 app.init();
 })(kittyDressUp);
});

If you're familiar with JavaScript or jQuery, you'll probably see some elements that
you recognize. For those readers who aren't familiar with jQuery or JavaScript, we'll
review this example line by line. KittyDressUp.js starts off with jQuery's most
recognizable element: $(document).ready(). Any code contained within this block
waits to execute until the document or the HTML page is completely loaded. This
means that you, the developer, can be assured that everything that needs to be on the
page is there before your code runs:

$(document).ready({
 // I'm ready captain!
});

In simple terms, the next line creates a variable named kittyDressUp and assigns
it a value of an empty object. However, in our code, this new object will contain our
entire application:

// define the application name
var kittyDressUp = {};

The following declaration is the core of the Kitty Dress Up application. It creates
a function that accepts a single argument and then immediately calls itself, passing
in the empty object we created in the previous line of code. This is known as a
self-executing function and is what keeps the external code from interfering
with our application:

(function(app){
 // define the app functionality
})(kittyDressUp);

Chapter 8

[113]

The next two lines set a few variables that can only be accessed from within the
context or scope of our application:

// set a few variables which can be used within the app
var appName = 'Kitty Dress Up',
 version = '1.0';

Finally, the last few lines set up two functions that are available for use within the
application. You can see that each function is assigned a name that is within the
scope of the larger application. This is known as a namespace. The app variable is
where the function lives, and the word after the dot (.) is the function name. Notice
that, within the init function, we're calling another function contained within the
same application called app.colors(). We could also reference any of the variables
that we defined at the top as well:

app.init = function(){
 // init is the typical name that developers give for the
 // code that runs when an application first loads
 // use whatever word you prefer
 var colors = app.colors();
}
app.colors = function(){
 var colors = ['red','blue','yellow','purple'];
 return colors;
}
app.init();

Remember that app was the name of the parameter passed into the self-executing
function and that its value is an empty object. Taken as a whole, these few lines
create an object named kittyDressUp that contains two variables (appName and
version), and two functions (init and colors). This example, as well as the code
for Notekeeper, are simple examples, but they illustrate how to go about wrapping
up code for various pieces of a larger app into discrete packages. In fact, after
kittyDressUp.js runs, you could even pass the kittyDressUp object into yet
another set of code for use there.

Phew…everyone take five, you've earned it.

Moving Further with the Notekeeper Mobile Application

[114]

Storing Notekeeper data
Now that we're back from our five-minute break, it's time to roll up our sleeves and
get to work adding functionalities to our app. While we've talked about how we want
Notekeeper to behave, we haven't discussed the core issue of where to store the note
data. There are a few possibilities, all of which have pros and cons. Let's list them out:

•	 Database (MySQL, SQL Server, and PostgreSQL): While a database
would be the ideal solution, it's a little complex for our app because it
requires Internet connectivity, and you'd need a server-side component
(such as ColdFusion, PHP, and .NET) acting as a middleman to save notes
to the database.

•	 Text file: Text files are great because they take up very little room.
The problem is that as a web app, Notekeeper can't save files to the
user's device.

•	 localStorage: localStorage is relatively new, but it's quickly becoming a
good option. It stores information on the user's machine in key/value pairs.
Although it's got a size limit, it's pretty large for plain text, most modern
browsers support it, and it can also be used in the offline mode.

Using localStorage
For the purposes of this chapter, we'll be selecting localStorage as our method
of choice. Let's take a quick look at how it behaves so that you'll be familiar with it
when you see it. As mentioned previously, localStorage works on the premise of
storing data in key/value pairs. Saving a value to localStorage works in one of two
ways and is easy, no matter which one you choose:

localStorage.setItem('keyname','this is the value I am saving');

Or

localStorage['keyname'] = 'this is the value I am saving';

Which version you choose is personal preference, but we'll be using the second
method, square brackets, because it requires slightly less typing. One issue we'll
run into is that localStorage can't directly store complex data such as arrays or
objects. It only stores strings. That's a problem because we're going to store all of
our data inside one variable so that we always know where it lives. Never fear, we
can pull a fast one on localStorage and convert our complex object into a string
representation of itself using a built-in function called stringify(). This conversion
process, from complex object to string, is called serialization.

Chapter 8

[115]

The following code snippet shows how it works:

// create our notes object
var notes = {
 'note number one': 'this is the contents of note number one', 'make
 conference call': 'call Evan today'
 }
// convert it to a string, then store it.
localStorage['Notekeeper'] = JSON.stringify(Notekeeper);

Retrieving a value is just as simple as setting it, and it also offers two options. You'll
usually want to define a variable to receive the content of the localStorage variable:

var family = localStorage.getItem('my family');

Or

var family = localStorage['my family'];

If you're retrieving a complex value, there's an additional step that must be
performed before you can use the content of the variable. As we just mentioned,
to store complex values you must first use the stringify() function, which has
a counterpart function called parse(). The parse() function takes the string
containing that complex object and turns it back into pure JavaScript, a process
called deserialization. It's used as follows:

var myFamily = ['andy', 'jaime', 'noelle', 'evan', 'mason', 'henry'];
localStorage['family'] = JSON.stringify(myFamily);
var getFamily = JSON.parse(localStorage['family']);

Finally, if ever you want to delete the key completely, you can accomplish it in a
single line of code, again with two flavors:

localStorage.removeItem('family');

Or

delete localStorage['family'];

It's worth noting that if you try to retrieve a key that doesn't exist within
localStorage, JavaScript won't throw an error. It'll just return "undefined,"
which is JavaScript's way of saying "sorry, but nothing's there". The following
code snippet is an example:

var missing = localStorage['yertl the turtle'];
console.log(missing);
// returns undefined

Moving Further with the Notekeeper Mobile Application

[116]

Effective use of boilerplates
There is one last thing before we start building our JavaScript file. In our application,
we're only going to have one JavaScript file, and it's going to contain the entire
codebase. This is fine for smaller apps like ours, but it's a bad idea for larger apps.
It's better to break up your project into distinct pieces, then put each of those into
their own files. This makes it easier for teams of developers to work together
(for example, Evan works on the login process, while Henry builds out the list of
vendors). It also makes each file smaller and easier to understand because it only
addresses one part of the whole. When you want all of the pieces of your app to
have a similar structure and design, it's a good idea to start each section with a
boilerplate. We'll be using a boilerplate for our app's only file (which you can see
in the following code snippet, Code 8-3). You might notice it looks very similar to
the kittyDressUp example, and you'd be right:

Code 8-3: application.js
$(function(){
 // define the application
 var Notekeeper = {};
 (function(app){
 // variable definitions go here
 app.init = function(){
 // stuff in here runs first
 }
 app.init();
 })(Notekeeper);
});

Building the Add Note feature
At last, we can get started building! As it's difficult to display a list of notes that don't
exist, much less delete one, we'll start writing the Add Note functionality first. For a
user to be able to add a note, they have to enter a title, the content of a note, then hit
the Submit button. So let's start there.

Adding bindings
We're going to create a new, empty, function block under the app.init() function
definition. It should look something similar to the following line of code:

app.bindings = function(){
}

Chapter 8

[117]

The bindings function can contain any piece of code that needs to fire when a user
does something in our app, such as clicking on the Submit or the Delete button.
We group that code together for the sake of organization. Within the bindings()
function, we're going to add the following lines. This will fire when a user clicks
on the Submit button on the Add Note form:

// set up binding for form
$('#btnAddNote').on('click', function(e){
 e.preventDefault();
 // save the note
 app.addNote(
 $('#title').val(),
 $('#note').val()
);
});

jQuery's val() function is a shorthand method used to get the current value of any
form input field.

The following are a few notes about this new addition:

•	 When using jQuery, there will always be more than one way to accomplish
something, and in most cases, you simply pick the one that you like the best
(they usually offer identical performance). You might be more familiar with
$('#btnAddNote').click(), and that's just fine as well.

•	 Notice that the .on() method accepts a single parameter called e which is
the event object (in this case, a click event). We call e.preventDefault()
to stop the standard click event from happening on this element, but still
allow the remaining code to continue running. You might have seen other
developers use return false, but jQuery best practices recommend using
e.preventDefault() instead.

•	 Within the click binding, we're calling the addNote function and passing the
title typed in by the user and the note into it. The whitespace is unimportant,
serving merely to make it easier to see what we're doing.

Even though we've added the binding to our code, if you run the app right now,
nothing will happen when you click on the Add Note button. The reason is that
nothing has actually called the bindings() function yet. Add the following line
inside the init() function and you'll be ready to go:

app.init = function(){
 app.bindings();
}

Moving Further with the Notekeeper Mobile Application

[118]

Collecting and storing the data
Next, we add another new, empty, function block under app.bindings:

app.addNote = function(title, note){
}

Now, because we're storing all of our notes into one key within localStorage,
we first need to check if any notes already exist. Retrieve the Notekeeper key from
localStorage, save it to a variable, then compare it. If the value of the key we ask
for is an empty string or is undefined, we'll need to create an empty object. If there
is a value, we take that and use the parse() function to turn it into JavaScript:

var notes = localStorage['Notekeeper'];
if (notes == undefined || notes == '') {
 var notesObj = {};
} else {
 var notesObj = JSON.parse(notes)
}

Notice that we're expecting two variables to be passed into the addNote() function,
title and note. Next, we replace any spaces in the title with dashes; this makes it
easier for some browsers to understand the string of text. Then we place the key/
value pair into our newly minted notes object:

notesObj[title.replace(/ /g,'-')] = note;

The JavaScript replace method makes string manipulation quite simple. It acts on a
string, taking a search term and a replacement term. The search term can be a simple
string or a complex regular expression.

The next step is to take our notesObj variable, pass it into stringify() and place
the return value into localStorage. We then clear the values from the two input
fields to make it easier for the user to input another note. As a rule in building
software, it's a nice touch to return the interface to its original state after an action,
such as adding or removing content:

localStorage['Notekeeper'] = JSON.stringify(notesObj);
// clear the two form fields
$note.val('');
$title.val('');
//update the listview
app.displayNotes();

Chapter 8

[119]

All of these variable definitions should be familiar to you with perhaps one exception
that we should point out. Many jQuery developers like to use conventional naming
for variables that contain jQuery objects. Specifically, they prepend the variable name
with a $ sign just like with jQuery. This lets them, or future developers know what's
contained within the variable. Let's go ahead and add those definitions to the top
of our app. Just after the line that reads // variable definitions go here,
add the following lines. They refer to the title input field and the note text area
field respectively:

var $title = $('#title'),
 $note = $('#note');

As a final step to this function, we fire off a call to app.displayNotes() to update
the list of notes. Since that function doesn't exist yet, let's create it next.

Building the Display Notes feature
You probably tested out the Add Note feature while in the previous section. This
means that you'll have at least one note saved in localStorage for use in testing
the Display Notes feature. By now, you'll be familiar with our first steps for any new
section. Go ahead and add your empty displayNotes() function to hold our code:

app.displayNotes = function(){
}

Next, we need to retrieve all of our notes from localStorage:

// get notes
var notes = localStorage['Notekeeper'];
// convert notes from string to object
return JSON.parse(notes);

You might start to see a pattern with many of our functions; almost all of them begin
with us retrieving notes from localStorage. While there are only two lines of code
needed to perform this task, there's no need for us to repeat those two lines each time
we need to get the notes. So we're going to write a quick helper function containing
those two lines. It looks similar to the following code snippet:

app.getNotes = function(){
 // get notes
 var notes = localStorage['Notekeeper'];
 // convert notes from string to object
 return JSON.parse(notes);
}

Moving Further with the Notekeeper Mobile Application

[120]

With our new helper function in place, we can use it in the displayNotes() function
as shown in the following code snippet:

app.displayNotes = function(){
 // get notes
 var notesObj = app.getNotes();
}

Now that we have the notesObj variable containing our packet of notes, we need
to loop over that packet and output the contents:

// create an empty string to contain html
var notesObj = app.getNotes(),
 html = '',
 n; // make sure your iterators are properly scoped
// loop over notes
for (n in notesObj) {
 html += li.replace(/ID/g,n.replace(/-/g,' ')).replace(/LINK/g,n);
}
$ul.html(notesHdr + html).listview('refresh');

It might seem odd for the line inside the for loop to have multiple replace
statements, but the nature of JavaScript allows for methods to be chained.
Chaining allows us to run multiple operations (on the same element) within
a single statement. Adding an additional method call simply repeats the process.

There might be some new concepts in this code block, so let's take a closer look.
The variable named html is nothing special, but the way we're using it might be.
As we loop over the existing notes, we're storing new information into the html
variable along with whatever else is inside it. We accomplish this by using
the += operator that allows us to assign and append at the same time.

The second thing you might notice is the li variable on the right-hand side of the
assignment. Where does that come from? That's a template for a single list item that
has not yet been created. Let's do that now before we talk about it. At the top of your
app.js file, just after the line that reads // variable definitions go here, add
the following lines of code:

var $title = $('#title'),
 $note = $('#note'),
 $ul = $('#notesList'),
 li = 'ID',

Chapter 8

[121]

You'll already be familiar with the convention of adding a $ symbol before a variable
to indicate a jQuery object. That's what we're doing with the $ul variable. The
second new variable, the li, is slightly different. This contains the HTML for a single
list item that will display a note's title. It's best practice to avoid mixing HTML or
CSS in with your JavaScript wherever possible. We're declaring this as a template
now, in case we decide to use it in multiple places later.

The other part that might be of interest is the way we're using the li variable.
When calling the string replace function, we're looking for all occurrences of the
word LINK (uppercase intended) and replacing it with the title of the note. Because
JavaScript is a case-sensitive language, it's a safe assumption that we won't run into
a natural occurrence of that word.

Dynamically adding notes to our listview
There's one final thing we need to put in place before our notes show up on the page.
You might have noticed that the only place that calls the displayNotes() function
appears within the addNote() function. This is a good place for it, but it can't be the
only place. We need something that runs when the page first loads. The prime place
for this would be in the init() function, and that's where we'll place it.

There's one problem though, we can't just load our notes and run; what happens
if there are no notes? We need a nice message to display to the user so that
they don't think something's wrong. Let's create a new function called app.
checkForStorage() that handles all of this:

app.checkForStorage = function(){
 var notes = app.getNotes();
 // are there existing notes?
 if (!$.isEmptyObject(notes)) {
 // yes there are. pass them off to be displayed
 app.displayNotes();
 } else {
 // nope, just show the placeholder
 $ul.html(notesHdr + noNotes).listview('refresh');
 }
};

Moving Further with the Notekeeper Mobile Application

[122]

By now, all of this should be familiar to you: calling our app.getNotes() method
for notes and calling the displayNotes() function if it finds them. The second part
has some new items though. When we set the HTML for the $ul jQuery object,
we're calling two new variables. One for the listview header, and another if we don't
have any notes. Let's add those two variable definitions now. Under // variable
definitions go here, add the following lines:

var $title = $('#title'),
 $note = $('#note'),
 $ul = $('#notesList'),
 li = 'ID'
 notesHdr = '<li data-role="list-divider">Your Notes',
 noNotes = '<li id="noNotes">You have no notes';

The last part of the line normally goes unnoticed, but we won't let it. It's really
crucial. jQuery Mobile offers several options to developers. Apart from the option
of having a static HTML code that's already on the page when it loads, jQuery
Mobile also provides an option for adding HTML code on the fly. That really gives
developers lots of flexibility, but it presents a unique challenge as well. By design,
jQuery Mobile converts HTML into stylish looking widgets before the page is
displayed to the user. This means that any HTML added after that will be presented
to the user without any style.

However, jQuery Mobile also offers a way to get around this by building in the
ability to refresh each and every element that it converts. Most of them have a
built-in function corresponding to the name of the element; in our case, it's the
listview() function. Actually, this method offers the ability to add a completely
new listview to the page. In our situation, we only care about refreshing the one we
have, so we simply add the refresh keyword and jQuery Mobile converts your
plaintext listview. Try leaving that last part out and see just how much work jQuery
Mobile saves you. Maybe you should add the jQuery Mobile team to your Christmas
card list?

Finally, we have to actually call our newest function. Within the init() function,
add the following line. Then reload the page and watch your notes load up:

app.checkForStorage();

Viewing a note
At this point, we should be able to create a new note and have that note be
immediately displayed in our listview. In fact, the rows in the listview are
already links, but they just don't work; let's change that right now.

Chapter 8

[123]

Using the .on() method
Add the following lines to the bindings() function:

$(document).on('click', '#notesList a', function(e){
 e.preventDefault();
 var href = $(this)[0].href.match(/\?.*$/)[0];
 var title = href.replace(/^\?title=/,'');
 app.loadNote(title);
});

This new binding has a few new concepts, so let's unpack them. First up, we're not
using the bind() function, instead, we use jQuery's on() function. The difference is
that bind() only works on existing page elements, whereas on() is proactive. It works
on existing elements as well as on the ones that get created after the binding is applied.

The second and third lines of the binding might look a little confusing, but they only
do one thing. They retrieve the URL from the href attribute of the link that was
clicked. The li template we defined earlier in the chapter contained the following
URL for each list item:

#pgNotesDetail?title=LINK

After the displayNote() function runs, the URL looks like the following
(run your mouse over each list item to see the link displayed at the bottom
of your browser window):

#pgNotesDetail?title=the-title-of-the-note

Finally, we tell our code to run a new function appropriately named
app.loadNote().

Dynamically creating a new page
If you haven't already created the new empty function block for our new loadNote()
function, go ahead and do it now. Remember that we're passing in the title of the note
we want to view, so make sure to add that as an argument in the loadNote() function:

app.loadNote = function(title){
}

Then include the following lines at the top of the function:

// get notes
var notes = app.getNotes(),
 // lookup specific note
 note = notes[title],

Moving Further with the Notekeeper Mobile Application

[124]

 // define the "new page" template
 page = ['<div data-role="page" data-url="details" data-add-back-
btn="true">',
 '<div data-role="header">',
 '<h1>Notekeeper</h1>',
 '<a id="btnDelete" href="" data-href="ID" data-
role="button" class="ui-btn-right">Delete',
 '</div>',
 '<div data-role="content"><h3>TITLE</h3><p>NOTE</p></
div>',
 '</div>'].join(''),

The first line retrieves our note object, while the second line pulls the specific
note that the user has requested. The third variable definition breaks the rule we
mentioned earlier in the chapter about mixing HTML and JavaScript; but every
rule has exceptions. We're defining it here as opposed to the header of our JS file,
because this is the only place it is needed. This still serves the purpose of keeping
the document organized.

The page variable now contains all of the HTML needed to display a "note details"
page to the user. Do you recall that our app has only one HTML file? We're actually
creating an entire page from scratch using the previous HTML code. There are also
some details in it worth pointing out:

•	 By default, jQuery Mobile does not offer a Back button for pages.
You can, however, enable one on a page-by-page basis using the
data-add-back-btn="true" attribute on any div tag that also has
a data-role="page" attribute.

•	 The data-url attribute is an identifier used by jQuery Mobile so that it
can keep track of multiple pages that are generated.

•	 This approach to string concatenation might look different to you. When
you only have a few words, it's okay to say 'andy' + 'jaime' but when
you have multiple lines, a nice trick is to create an array where each line is
an item in the array. Then you join each item together and presto! It has the
added benefit of keeping things neat and tidy too.

Now that we have a whole page contained within a variable, what can we do with it?
The first thing we can do is to turn it into a jQuery object. By wrapping any distinct
chunk of HTML with $(), you turn it into a Grade-A jQuery object:

newPage = $(page);

Chapter 8

[125]

Then we can take the HTML of that newly created page and replace parts of it with
the values from our selected note:

// append it to the page container
newPage.html(function(index,old){
 return old
 .replace(/ID/g,title)
 .replace(/TITLE/g,title
 .replace(/-/g,' '))
 .replace(/NOTE/g,note)
}).appendTo($.mobile.pageContainer);

Since Version 1.4, jQuery has offered the option of a callback within certain
functions. These include .html(), .text(), .css(), and a few others. This function
expects two arguments, of which the second contains the full HTML currently
contained within the matching element. This means that we can make tweaks to the
HTML contained inside our newPage variable without having to completely change
it. Wonderful, isn't it?

Next, we're appending the entire newPage variable to the end of the current page,
referenced here by the $.mobile.pageContainer constant. Finally, because we
cancelled the default click action in our binding, we have to tell the link to perform
an action that is to forward the user to this newly created page. jQuery Mobile offers
a built-in way to do this:

$.mobile.changePage(newPage);

And now for the grand reveal. If you load up notekeeper.html in your browser,
you should be able to add, display, and finally view notes, all within the confines
of a single browser window. Isn't jQuery Mobile great?

Moving Further with the Notekeeper Mobile Application

[126]

Deleting a note
Looking back to the requirements for our app, we're doing pretty well. We've written
HTML code that sets up the document structure, allows us to add a note, display
notes, and view a note. All that's left is deleting a note and it begins with a last
binding setup in our bindings() function. Let's add it right now:

$(document).on('click', '#btnDelete', function(e){
 e.preventDefault();
 var key = $(this).data('href');
 app.deleteNote(key);
});

There's only one item that might be new to you in this binding—the use of jQuery's
.data() function. HTML5 allows you to store arbitrary data directly on any HTML
element by using an attribute prepended with data- and this ability is at the core of
jQuery Mobile's functionality. Anywhere you see data-role="something", you're
seeing HTML5 data in action. Furthermore, jQuery allows you to retrieve any data-
value by using the .data() function and passing in the key of the item you want
to view. In the preceding case, we've stored the title of the note into a data-href
attribute directly on the Delete button within the view page. Because the binding
we're adding is a click handler assigned to the Delete button, we can retrieve the title
of the note by calling $(this).data('href'). Neat-o!

This will be the last function that we add in this chapter. Are you sad? It's a poignant
moment for certain, but we can look back on this with fondness after you're a
successful jQuery Mobile developer. Once again, we start with an empty function
that accepts a single argument, the title of the note we're deleting:

app.deleteNote = function(key){
}

Follow the function definition up with our helper function for retrieving notes:

// get the notes from localStorage
var notesObj = app.getNotes();

Then we delete the note. You've already seen this in action when we reviewed
localStorage, so it should be familiar to you:

// delete selected note
delete notesObj[key];
// write it back to localStorage
localStorage['Notekeeper'] = JSON.stringify(notesObj);

Chapter 8

[127]

Deleting the note is followed in quick succession by writing the remaining notes
back to localStorage. The final two lines in the deleteNote() function take us
back to the main page of the app—the list of notes. They also trigger the original
checkForStorage() function:

// return to the list of notes
$.mobile.changePage('notekeeper.html');
// restart the storage check
app.checkForStorage();

The last line may seem odd to you, but keep in mind that we don't know in advance
if there are still any notes left. Running through the storage check allows us to
display the placeholder text, in case there are no notes. It's a good habit to get into,
as it helps our app become less prone to errors.

Summary
In this chapter, we built a living, breathing mobile application with jQuery Mobile.
Stop and give yourself a pat on the back. We walked through the process of listing
the requirements for our app, building the wireframes, and writing the HTML. We
learned about HTML5's localStorage, using templates for text replacement, and
some of the cooler features of jQuery Mobile, including dynamically adding and
refreshing elements on the page.

In the next chapter, you'll learn how to set global configuration options for jQuery
Mobile, how to use other utility APIs within jQuery Mobile to streamline your code,
and take advantage of the great work the jQuery Mobile team has already done on
your behalf.

jQuery Mobile Configuration,
Utilities, and JavaScript

Methods
In this chapter, we will look at how JavaScript can be used to further configure
and enhance jQuery Mobile websites. So far we've made use of HTML and CSS
to generate everything. Now we'll look at additional scripting that adds additional
functionalities to your sites.

In this chapter, we will do the following:

•	 Explain how jQuery Mobile sites can be configured via JavaScript
•	 Discuss the various JavaScript utilities that ship with jQuery Mobile

and how they can be used
•	 Explain the APIs used to work with the enhanced jQuery Mobile form

and widget controls

Configuring jQuery Mobile
jQuery Mobile does many things for you—from improving page navigation to
changing how form controls work. All of this is done in an effort to make your
content work better in a mobile environment. There will be times, however, when
you do not want jQuery Mobile to do something, or you perhaps simply want to
slightly tweak how the framework acts. That's where configuration comes in.

jQuery Mobile Configuration, Utilities, and JavaScript Methods

[130]

To configure a jQuery Mobile site, you begin by writing code that listens for the
mobileinit event. This can be listened to using a normal jQuery event handler,
similar to the following code snippet:

$(document).bind("mobileinit", function() {
 //your customization here
});

In order for this event to be captured, you must configure it before jQuery Mobile
is actually loaded. The simplest way to do this, and the way recommended by the
jQuery Mobile docs, is to simply place this code in a script that is loaded before the
jQuery Mobile JavaScript library. The following code snippet shows what the header
of our files typically looks like:

<!DOCTYPE html>
<html>
 <head>
 <title>Dialog Test</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 1.3.2/jquery.mobile-1.3.2.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.9.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 1.3.2/jquery.mobile-1.3.2.min.js"></script>
 </head>

Notice that the jQuery Mobile library is the last one loaded. We can simply add
in a new script tag before it:

<!DOCTYPE html>
<html>
 <head>
 <title>Dialog Test</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.9.1.min.js"></script>
 <script src="config.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>

Chapter 9

[131]

Configuring jQuery Mobile is as simple as updating the $.mobile object. The
following code snippet is a simple example:

$(document).bind("mobileinit", function() {
 $.mobile.someSetting="some value here";
});

This object contains a set of key/value pairs for the various settings that can be
configured. You don't actually create it; it exists when the event handler is run.
Another option is to make use of jQuery's extend() functionality, as shown in
the following code snippet:

$(document).bind("mobileinit", function() {
 $.extend($.mobile, {
 someSetting:"some value here"
 });
});

Either form is ok and works exactly the same. Use whichever you feel is more
comfortable. Now, let's look at the various configuration options:

Settings Use
ns This is the namespace value used for data attributes.

It defaults to nothing. You would specify a value
here if you wanted to prefix the jQuery Mobile-
recognized data attributes. So for example, if you
wanted to use data-jqm-role="page" instead of
data-role="page", you would configure the ns
value to be jqm.

activeBtnClass This simply sets the class name used for buttons
in the active state. The default for this value is ui-
btn-active.

activePageClass This sets the class name for pages that are currently
being viewed. The default for this value is ui-
page-active.

ajaxEnabled We've discussed earlier how Ajax is used for both
page loads and form submissions. If you wish to
disable this, set this value to false. The default,
obviously, is true.

allowCrossDomainPages This is a security setting that defaults to false;
setting this to true allows for remote pages to be
loaded via $.mobile.loadPage. This is normally
only required for PhoneGap applications that load
content from another server.

jQuery Mobile Configuration, Utilities, and JavaScript Methods

[132]

Settings Use
autoInitializePage Normally, jQuery Mobile will run $.mobile.

initializePage on load. This displays the
renders page. (At this time, this particular
function isn't properly documented.) If you wish
to disable this default value, set the value of
autoInitializePage to false. You will need to
run $.mobile.initializePage manually.

buttonMarkup.hoverDelay Specifies a delay value to buttons for triggering the
hover and down classes. The lower the value, the
quicker the button will appear "depressed" when
touched on the mobile device. It defaults to 200.

defaultDialogTransition Specifies what transition should be used to show
or hide dialogs. The default is pop. Possible values
are fade, flip, pop, slide, slidedown, and
slideup.

defaultPageTransition Like the previous option, this setting is used for
transitions; this time, for page loads. The default is
fade and the options similar to the previous option
are possible.

dynamicBaseEnabled Used to signal if a dynamic base tag is used. This
defaults to true and should only be set to false if
you're using another web framework that requires a
particular base tag reference.

gradeA Used to determine what actually constitutes a "good"
browser. This is handled by jQuery Mobile, but if
you want to overrule the framework or define some
other condition that must be met, you would need to
provide a function here that returns a Boolean (true
or false) value.

getMaxScrollForTransition One of the performance tricks jQuery Mobile uses
is to automatically disable page transitions if you're
navigating from or to a page that is very long. So
for example, imagine you are at the bottom of a
very long page and you click on a link to load a
new page. If jQuery Mobile determines that you've
scrolled to a value of three times the window height,
it will disable the transition. That value, 3, can be
configured by this property.

hashListeningEnabled Refers to the ability to listen to changes in the
location.hash property of the browser. jQuery
Mobile handles this normally, but if the value is set
to false, you can write your own code to respond
to these changes.

Chapter 9

[133]

Settings Use
ignoreContentEnabled Normally, jQuery Mobile automatically enhances

everything it can. You can disable this in some
cases at a control level, but you can also tell jQuery
Mobile to ignore everything within a particular
container by adding data-enhance=true. If
you make use of this feature, your configuration
must set ignoreContentEnabled to true. This
tells jQuery Mobile to look for, and respect, that
particular flag. This is set to false by default, and
allows jQuery Mobile to work its magic quite a bit
faster.

linkBindingEnabled jQuery Mobile typically listens to all link clicks. If
you wish to disable this globally, you can do so with
this setting.

maxTransitionWidth This is used to set a max size for transitions; if set to
a value that is smaller than a window that it will be
transitioned into, no visual transitions will be used.

minScrollBack jQuery Mobile will attempt to remember your
scrolled position in a page when you return to it.
This can be useful on a large page that the user
returns to after visiting another page. By default, the
scroll will be remembered if it is more than 150, the
default.

pageLoadErrorMssage This is a message shown to users if an error occurs
when loading a page. The default is Error Loading
Page, but could be changed for localization reasons.
(Or any reason, really).

pageLoadErrorMessageTheme This is the theme to use when a page load error
dialog is displayed. The default is e.

phonegapNavgiationEnabled If enabled, PhoneGap's navigation helper will
be used when sending the user to their previous
location. This was added to help with issues under
Android. The default is false.

pushStateEnabled This tells jQuery Mobile to use the HTML5
pushState functionality instead of hash-based
changes for page navigation. This defaults to true.

jQuery Mobile Configuration, Utilities, and JavaScript Methods

[134]

Settings Use
subPageUrlKey jQuery Mobile supports multiple pages within

one file. In order to make these "virtual" pages
bookmarkable, jQuery Mobile will append a value
to the URL containing the prefix ui-page. For
example, ui-page=yourpage. This setting lets you
customize the prefix.

transitionFallbacks This is not a simple setting, but rather a
hashmap that allows you to specify a fallback
for a transition that is not supported on a
device. So for example, you can specify that the
fallback for the slide transition is pop by using
transitionFallsback["slide"] = "pop".

That's quite a few options, but typically, you will only need to configure one or two
of these settings. Let's look at a simple example where a few of these are put to use.
Code 9-1 is the home page for the application. Note the use of the additional script
tags to load in our configuration:

Code 9-1: test1.html
<!DOCTYPE html>
<html>
 <head>
 <title>Page Transition Test</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.3.2/
jquery.mobile-1.3.2.min.css" />
<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script src="config.js"></script>
<script src="http://code.jquery.com/mobile/1.3.2/jquery.mobile-
1.3.2.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="first">
 <div data-role="header">
 <h1>Dialog Test</h1>
 </div>
 <div data-role="content">
 <p>
 Another Page

 Yet Another Page
	
 </p>

Chapter 9

[135]

 </div>
 </div>
 <div data-role="page" id="page2">
 <div data-role="header">
 <h1>The Second</h1>
 </div>
 <div data-role="content">
 <p>
 This is the Second. Go first.
 </p>
 </div>
 </div>
 </body>
</html>

The file contains two jQuery Mobile pages and links to another page in test2.html.
That page simply provides a link back so will not be included in the text. Now let's
look at config.js:

Code 9-2: config.js
$(document).bind("mobileinit", function() {
 $.mobile.defaultPageTransition = "none";
});

In config.js, one setting is modified—the default page transition.

In an earlier chapter, we discussed forms and how jQuery Mobile automatically
enhances controls. While you can suppress this enhancement on a control within
your HTML, you can also tell jQuery Mobile a list of controls never to enhance. To
set this list, specify a value for $.mobile.page.prototype.options.keepNative.
The value should be a list of selectors. Any field that matches one of the selectors will
not be enhanced. (As a reminder, you can disable the form field's auto-enhancement
in HTML by adding data-role="none" to your form field.) Code 9-3 demonstrates
an example of this:

Code 9-3: form.html
<!DOCTYPE html>
<html>
<head>
<title>Page Transition Test</title>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.3.2/
jquery.mobile-1.3.2.min.css" />
<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script src="config2.js"></script>
<script src="http://code.jquery.com/mobile/1.3.2/jquery.mobile-

jQuery Mobile Configuration, Utilities, and JavaScript Methods

[136]

1.3.2.min.js"></script>
</head>

<body>

<div data-role="page" id="first">

 <div data-role="header">
 <h1>Form Test</h1>
 </div>

 <div data-role="content">

 <div data-role="fieldcontain">
 <label for="name">Name:</label>
 <input type="text" name="name" id="name" value="" />
 </div>

 <div data-role="fieldcontain">
 <label for="email">Email:</label>
 <input type="text" name="email" id="email" value=""
class="boring" />
 </div>

 </div>

</div>

</body>
</html>

Notice two things in particular. First, we're loading a config file in the header of the
page. Second, our form has two text fields, but we've added a class to the second one
named boring. Code 9-4 is our configuration file:

Code 9-4: config2.js
$(document).bind("mobileinit", function() {
 $.mobile.page.prototype.options.keepNative = "input.boring";
});

Chapter 9

[137]

We've specified that we want input tags with the class of boring to not be enhanced.
The result is shown in the following screenshot:

Using jQuery Mobile utilities
Now that we've covered jQuery Mobile configuration, let's take a look at the utilities
available to your applications. These are utilities provided by the framework and
can be used in any application. You may not need all of them (or any) on your site,
but knowing they are there can help save time in the future.

jQuery Mobile Configuration, Utilities, and JavaScript Methods

[138]

Page methods and utilities
Let's begin looking at methods and utilities related to pages and navigation
between pages:

•	 $.mobile.activePage: This property is a reference to the current page.
•	 $.mobile.changePage(page,options): This method is used to switch to

another page. The first argument, page, can be either a string (the URL), or
a jQuery DOM object. The options argument is an optional object of key/
value pairs. These options are as follows:

°° allowSamePageTransition: Normally jQuery Mobile will not
allow you to transition to the same page, but if set to false,
this will be allowed.

°° changeHash: This determines if the URL should change.
°° data: This is either a string or an object of values passed to the

next page.
°° dataUrl: This is the value used for the URL in the browser and is

normally set by the page the user is being sent to. You can override
this here.

°° pageContainer: jQuery Mobile will place pages within a DOM item
that acts as a "bag" for all the pages. You can bypass this automatic
collection and use another item in the DOM instead.

°° reloadPage: If a page already exists in the browser, jQuery Mobile
will fetch it from memory. Setting this to true will force jQuery
Mobile to reload the page.

°° reverse: This determines the "direction" of the transition.
°° role: jQuery Mobile will typically look for the data-role attribute

of the page loaded. To specify another role, set this option.
°° showLoadMsg: Normally, jQuery Mobile shows a loading message

when a page is fetched. You can disable this by setting this value
to false.

°° transition: This specifies what transition to use. Remember that
this can be configured at a global level as well.

°° type: We mentioned earlier that jQuery Mobile loads in new pages
via an Ajax-based request. The type option allows you to specify the
HTTP method used to load the page. The default is get.

Chapter 9

[139]

•	 $.mobile.loadPage(page,options): This is a lower-level function
used when $.mobile.changePage is passed a string URL to load. Its first
argument is the same as $.mobile.changePage, but its options do not
include dataUrl. Those options are the same as those listed in the previous
option, except for loadMsgDelay. This value gives time for the framework to
try to fetch a page via the cache first.

•	 $.mobile.navigate(url, data): Both changePage and loadPage are
available to developers, but navigate may be a simpler way of doing the
same thing—sending the user to a new location in your application. Simply
provide a URL and an optional set of data. jQuery Mobile handles using the
changes in the HTML5 History API if possible with the current browser.

In Code 9-5, a simple example of $.mobile.changePage is demonstrated:

Code 9-5: test3.html
<div data-role="page" id="third">
 <div data-role="header">
 <h1>Test</h1>
 </div>
 <div data-role="content">
 <input type="button" id="pageBtn" value="Go to page">
 </div>
 </div>
 <script>
 $("#pageBtn").click(function() {
 $.mobile.changePage("test2.html", {transition:"flip"});
 });
 </script>

The page simply contains one button. At the bottom of the file is a jQuery event
listener for that button. When clicked, $.mobile.changePage is used to load test2.
html while making use of the flip transition

Path and URL-related utilities
These utilities are related to the current location, URL, or path of the application:

•	 $.mobile.path.isAbsoluteUrl and $.mobile.path.isRelativeUrl:
These two functions look at a URL and allow you to check if they are either
a complete, absolute, or a relative URL.

•	 $.mobile.path.get(): This returns the "directory" portion of a URL. So
given a URL in the form of http://www.raymondcamden.com/demos/foo.
html, it would return http://www.raymondcamden.com/demos/.

jQuery Mobile Configuration, Utilities, and JavaScript Methods

[140]

•	 $.mobile.path.makeUrlAbsolute(relative url, absolute url):
A slightly different form of the previous function, this utility works
with absolute URLs instead.

Code 9-6 is a tester application. It contains the form fields allowing you to test all
of the methods previously discussed. First, let's just look at the UI controls used for
the application:

Code 9-6: test4.html
<div data-role="page" id="third">

 <div data-role="header">
 <h1>Test</h1>
 </div>

 <div data-role="content">

 <form>

 <div data-role="fieldcontain">
 <label for="isabsurl">Is Absolute URL?</label>
 <input type="text" name="isabsurl" id="isabsurl" value=""
/>
 <div id="isabsurlresult"></div>
 </div>

 <div data-role="fieldcontain">
 <label for="isrelurl">Is Relative URL?</label>
 <input type="text" name="isrelurl" id="isrelurl" value=""
/>
 <div id="isrelurlresult"></div>
 </div>

 <div data-role="fieldcontain">
 <label for="makeurl">Make URL Absolute</label>
 <input type="text" name="makeurl" id="makeurl" value=""
placeholder="Relative URL" />
 <input type="text" name="makeurl2" id="makeurl2" value=""
placeholder="Absolute URL" />
 <div id="makeurlresult"></div>
 </div>

 <div data-role="fieldcontain">
 <label for="pathget">Path Get</label>
 <input type="text" name="pathget" id="pathget" value="" />

Chapter 9

[141]

 <div id="pathgetresult"></div>
 </div>

 </form>
 </div>

</div>

This creates the following form:

Now let's look at the code:

Code 9-7: test4.html (continued)
<script>
$("#isabsurl").keyup(function() {
 var thisVal = $(this).val();
 var isAbsUrl = $.mobile.path.isAbsoluteUrl(thisVal);
 $("#isabsurlresult").text(isAbsUrl);
});

$("#isrelurl").keyup(function() {

jQuery Mobile Configuration, Utilities, and JavaScript Methods

[142]

 var thisVal = $(this).val();
 var isRelUrl = $.mobile.path.isRelativeUrl(thisVal);
 $("#isrelurlresult").text(isRelUrl);
});

$("#makeurl,#makeurl2").keyup(function() {
 var urlVal1 = $("#makeurl").val();
 var urlVal2 = $("#makeurl2").val();
 var makeUrlResult = $.mobile.path.makeUrlAbsolute(urlVal1,urlVal2);
 $("#makeurlresult").text(makeUrlResult);
});

$("#pathget").keyup(function() {
 var thisVal = $(this).val();
 var path = $.mobile.path.get(thisVal);
 $("#pathgetresult").html(path);
});

</script>

The previous two code listings are a bit long, but it's really pretty simple.
Each fieldcontain block consists of one particular test of the path methods
and utilities. In the bottom-half of the template, you can see we've made use of
keyup event listeners to monitor changes to these fields and run each test. You
can use this template to see how these methods react based on different inputs.

jQuery Mobile widget and form utilities
We've mentioned numerous times how jQuery Mobile automatically updates various
items and supports things such as lists and collapsible content. One of the things you
may run into, however, is trying to get jQuery Mobile to work with content loaded
after the page is rendered. So, for example, imagine a list view that has data added to
it via some JavaScript code. Code 9-8 demonstrates a simple example of this. It has
a listview with a few items in it, but also a form by which a person could add
new entries:

Code 9-8: test5.html

 <div data-role="page" id="third">
 <div data-role="header">
 <h1>List Updates</h1>
 </div>
 <div data-role="content">
 <ul id="theList" data-role="listview" data-inset="true">

Chapter 9

[143]

 Initial
 Item

 <form>
 <div data-role="fieldcontain">
 <label for="additem">New Item</label>
 <input type="text" name="additem" id="additem"
 value="" />
 </div>
 <input type="button" id="testBtn" value="Add It">
 </form>
 </div>
 </div>
 <script>
 $("#testBtn").click(function() {
 var itemToAdd = $.trim($("#additem").val());
 if(itemToAdd == "") return;
 $("#theList").append(""+itemToAdd+"");
 });
 </script>

When initially loaded, notice that everything seems fine. However, the following
screenshot shows what happens when an item is added to the end of the list:

jQuery Mobile Configuration, Utilities, and JavaScript Methods

[144]

As you can see, the new item was indeed added to the end of the list, but it wasn't
drawn correctly. This brings up a critical point; jQuery Mobile parses your code for
data attributes and checks for form fields once. After it has done so, it considers its
work done. Luckily, there is a standard way for these UI items to be updated. For
our listview it is a simple matter of calling the listview method on the list itself.
The listview method can be used to turn a new list into a listview, or to refresh an
existing listview. To refresh our listview, we'd simply modify the code, as shown
in the following code snippet:

<script>
 $("#testBtn").click(function() {
 var itemToAdd = $.trim($("#additem").val());
 if(itemToAdd == "") return;
 $("#theList").append(""+itemToAdd+"");
 $("#theList").listview("refresh");
 });
</script>

You can find the previous code snippet in test6.html. The following screenshot
shows how the application handles the new item:

Chapter 9

[145]

That listview method could also be used for completely new lists. Consider the
following code snippet Code 9-9:

Code 9-9: test7.html
<div data-role="page" id="third">
 <div data-role="header">
 <h1>List Updates</h1>
 </div>
 <div data-role="content" id="contentDiv">
 <input type="button" id="testBtn" value="Add A List">
 </div>
 </div>
 <script>
 $("#testBtn").click(function() {
 $("#contentDiv").append("<ul data-role='listview' data-
 inset='true' id='theList'>Item OneItem
 Two");
 $("#theList").listview();
 });
 </script>

In this example, a completely new list is appended to the div tag. Notice that we still
include the proper data-role. But, this by itself, is not enough. We follow up the
HTML insertion with a call to the listview method to enhance the list just added.

Similar APIs exist for other fields. For example, new buttons added to a page can be
enhanced by calling the button() method on them. In general, assume any changes
to enhanced controls will need to be updated via their respective JavaScript APIs.

Summary
In this chapter, we (finally!) broke out some JavaScript. We looked at how you can
configure various jQuery Mobile settings, what utilities exist, and how to handle
post-rendered updates to enhanced controls.

In the next chapter, we'll continue working with JavaScript and look at the various
events your code can listen to.

Working with Events
In this chapter, we will look at how events work in jQuery Mobile. While developers
obviously have access to regular events (button clicks, and so on), jQuery Mobile also
exposes its own events for developers to use.

In this chapter, we will do the following:

•	 Discuss touch, swipe, scroll, and other physical events
•	 Discuss page events

Working with physical events
For the first part of this chapter, we will focus on the "physical" events, or events
related to touch and other actions done with a device.

For those of you who have been testing jQuery Mobile using a regular
browser, please note that some of the following examples will not work
properly on a desktop browser. If you wish, you can download and
install emulators for various mobile phone types. For example, Android
has an SDK that supports creating virtual mobile devices. Apple also
has a way to simulate an iOS device. Setting up and installing these
emulators are beyond the scope of this chapter, but it is certainly an
option. Of course, you can also use a real hardware device as well.

Chrome users can go into their Dev Tools settings and emulate the touch events.
This will be useful for some of the examples in this chapter.

Working with Events

[148]

The physical events include the following:

•	 tap and taphold: tap represents what it sounds like—a quick physical touch
on the web page. taphold is a longer touch. Many applications will make use
of two separate actions, one for tap and one for taphold.

•	 swipe, swipeleft, and swiperight: These represent swipes or a finger
movement across most of the devices. The swipe event is a generic one,
whereas swipeleft and swiperight represent a swipe in a specific
direction. There is no support for a swipe up or down event.

•	 scrollstart and scrollstop: They respectively handle the beginning
and end of scrolling a page.

•	 orientationchange: This is fired when the device's orientation changes.
•	 vclick, vmousedown, vmouseup, vmousemove, vmousecancel, and

vmouseover: All of these are "virtual" events meant to abstract away
checking for either touch or mouse-click events. As these are mainly just
aliases for click and touch events, they will not be demonstrated.

Now that we've listed the basic physical events, let's start looking at a few examples.
Code 10-1 demonstrates a simple example of the tap and taphold events:

Code 10-1: test1.html
<div data-role="page" id="first">
 <div data-role="header">
 <h1>Tap Tests</h1>
 </div>
 <div data-role="content">
 <p>
 Tap anywhere on the page...
 </p>
 <p id="status"></p>
 </div>
 </div>
 <script>
 $("body").bind("tap", function(e) {
 $("#status").text("You just did a tap event!");
 });
 $("body").bind("taphold", function(e) {
 $("#status").text("You just did a tap hold event!");
 });
 </script>

Chapter 10

[149]

This template is rather simple. The page has some explanatory text asking the user
to tap on it. Beneath it is an empty paragraph. Note though the two binds at the end
of the document; one listens for tap while the other listens for taphold. The user
can do either action and a different status message is displayed. While rather simple,
this gives you a good idea of how you could respond differently based on how long
the user holds their finger down. Note that a taphold event also fires a tap event,
specifically when the user lifts their finger off the device. You will need to handle
this behavior if you intend to use taphold events.

Now let's look at Code 10-2, which is an example of swipe events:

Code 10-2: test2.html
<div data-role="page" id="first">
 <div data-role="header">
 <h1>Swipe Tests</h1>
 </div>
 <div data-role="content">
 <p>
 Swipe anywhere on the page...
 </p>
 <p id="status"></p>
 </div>
 </div>
 <script>
 $("body").bind("swipe", function(e) {
 $("#status").append("You just did a swipe event!
");
 });
 $("body").bind("swipeleft", function(e) {
 $("#status").append("You just did a swipe left event!
");
 });
 $("body").bind("swiperight", function(e) {
 $("#status").append("You just did a swipe right
 event!
");
 });
 </script>

This example is pretty similar to the previous one, except now our event handlers
listen for swipe, swipeleft, and swiperight. One important difference is that
we append to the status div instead of simply setting it. Why? A swiperight
or swipeleft event is automatically a swipe event. If we simply set the text in the
paragraph, one would wipe out the other.

Working with Events

[150]

The following screenshot shows how the device looks after a few swipes:

How about a more complex example? Consider the following code snippet,
Code 10-3:

Code 10-3: test3.html
<div data-role="page" id="first">
 <div data-role="header">
 <h1>First</h1>
 </div>
 <div data-role="content">
 <p>
 Swipe to navigate
 </p>
 </div>
 </div>
 <div data-role="page" id="second">
 <div data-role="header">
 <h1>Second</h1>
 </div>
 <div data-role="content">
 <p>
 Swipe to the right...
 </p>
 </div>
 </div>

Chapter 10

[151]

 <script>
 $("body").bind("swipeleft swiperight", function(e) {
 var page = $.mobile.activePage[0];
 var dir = e.type;
 if(page.id == "first" && dir == "swipeleft")
 $.mobile.changePage("#second");
 if(page.id == "second" && dir == "swiperight")
 $.mobile.changePage("#first");
 });
 </script>

In this example, we've got a file that includes two separate pages, one with the ID
first and the other with the ID second. Notice that we have no links. So how do
we navigate? With swipes! Our event handler is now listening for both swipeleft
and swiperight. We first grab the active page using $.mobile.activePage, as
described in Chapter 9, jQuery Mobile Configuration, Utilities, and JavaScript Methods on
methods and utilities. The [0] at the end refers to the fact that the value is actually a
jQuery Selector. Using [0] grabs the actual DOM item. The event type will be either
swipeleft or swiperight. Once we know that, we can actively move the user around
depending on what page they are currently on and in what direction they swiped.

Now let's look at scrolling. You can detect when a scroll starts and when one ends.
Code 10-4 is another simple example of this in action:

Code 10-4: test4.html
<div data-role="page" id="first">
 <div data-role="header">
 <h1>Scroll Tests</h1>
 </div>
 <div data-role="content">
 <p>
 Scroll please....

 (Many
 tags removed to save space!)

 </p>
 <p id="status"></p>
 </div>
 </div>
 <script>
 $("body").bind("scrollstart", function(e) {
 $("#status").append("Start
");
 });
 $("body").bind("scrollstop", function(e) {
 $("#status").append("Done!
");
 });
 </script>

Working with Events

[152]

This template is pretty similar to test1.html, the tap tester, except now we've
listened to scrollstart and scrollstop. Also note the list of
 tags. In the
real source file, there are many of these. This will ensure that the page is actually
scrollable when you test. When the scrolling will start and end, we simply append to
another status div. (Please note that currently DOM manipulation is listed as being
buggy when listening to scrollstart. The previous example may not work in iOS,
but works fine on Android.)

Now let's look at orientation events in Code 10-5:

Code 10-5: test5.html
<div data-role="page" id="first">
 <div data-role="header">
 <h1>Orientation Tests</h1>
 </div>
 <div data-role="content">
 <p>
 Tilt this sideways!
 </p>
 <p id="status"></p>
 </div>
 </div>
 <script>
 $(window).bind("orientationchange", function(e,type) {
 $("#status").html("Orientation changed to "+e.orientation);
 });
 </script>

The critical part of the previous code snippet is the JavaScript at the end, specifically
the event listener for changing orientation. This is not actually a jQuery Mobile
supported event but something supported by the browser itself. Once the event
listener is attached, you can do whatever you wish based on the orientation of the
device. The following screenshot is a demonstration:

Chapter 10

[153]

Handling page events
Now that we've discussed physical type events, it's time to turn our attention to page
events. Remember that jQuery Mobile has its own concept of pages. In order to give
developers even more control over how pages work within jQuery Mobile, numerous
page events are supported. Not all will necessarily be useful in your day-to-day
development. In general, page events can be split into the following categories:

•	 load: These are events related to the loading of a page. They are
pagebeforeload, pageload, and pageloadfailed. pagebeforeload is
fired prior to a page being requested. Your code can either approve or deny
this request based on whatever logic may make sense. If a page is loaded,
pageload is fired. Conversely, pageloadfailed will be fired on any load
that does not complete.

•	 change: These events are related to the change from one page to another.
They are: pagebeforechange, pagechange, and pagechangefailed. As
before, the pagebeforechange function acts as a way to programmatically
decline the event. If done, the pagechangefailed event is fired.
pagebeforechange is fired before the pagebeforeload event.
pagechange will fire after the page is displayed.

•	 transition: These events are related to the movement, or transition, from one
page to another. They are pagebeforeshow, pageshow, pagebeforehide,
and pagehide. Both pagebeforeshow and pagebeforehide run prior to their
related events but unlike pagebeforeload and pagebeforechange, they
can't actually prevent the next event.

•	 init: As it has been shown many times in this book, jQuery Mobile performs
multiple updates to basic HTML to optimize it for mobile displays.
These are initialization-related events. The events you can listen to are
pagebeforecreate, pagecreate, and pageinit. pagebeforecreate fires
before any of the automatic updates are fired on your controls. This allows you
to manipulate your HTML via JavaScript beforehand. pagecreate is fired after
page content exists in the DOM, but still before the layout has been updated by
jQuery Mobile. The official docs recommend this as the place to do any custom
widget handling. Finally, pageinit will run after the initialization has
been completed.

•	 remove: There is one event for this category called pageremove. This event
is fired before jQuery Mobile removes an inactive page from the DOM. You
can listen to this event to prevent the framework from removing the page.

•	 layout: The final category is related to layout and has one event called
updatelayout. This is typically fired by other layout changes as a way
to let the page know it needs to update itself.

Working with Events

[154]

That's quite a lot! A simple way to look at these events in action would be to simply
listen to all of them. In Code 10-6, we have a simple example of this in action:

Code 10-6: test_page.html
<div data-role="page" id="first">
 <div data-role="header">
 <h1>Page Event Tests</h1>
 </div>
 <div data-role="content">
 <p>
 Go to Page 2

 Go to Page 3

 Go to Page 4

 Go to Page Failed
 </p>
 </div>
 </div>
 <div data-role="page" id="page2">
 <div data-role="header">
 <h1>Page Event Tests</h1>
 </div>
 <div data-role="content">
 <p>
 Go to Page 1

 Go to Page 3

 Go to Page 4
 </p>
 </div>
 </div>
 <script>
 $(document).bind("pagebeforeload pageload pageloadfailed
 pagebeforechange pagechange pagechangefailed pagebeforeshow
 pagebeforehide pageshow pagehide pagebeforecreate pagecreate
 pageinit pageremove updatelayout", function(e) {
 console.log(e.type);
 });
 </script>

Chapter 10

[155]

This template is part of a four-page, three-file simple application that has buttons
linking to each of the other pages. The other pages may be found in the ZIP file
you downloaded. In order to test this application, you should use a desktop
browser with console support. That's any version of Chrome, recent Firefox
browsers (or Firefox with Firebug), and the latest Internet Explorer. A full
explanation of the browser console wouldn't fit in this chapter, but you can
think of it as a hidden-away debugging log useful for recording events and
other messages. In this case, we've told jQuery to listen for all of our jQuery
Mobile page events. We then log the specific event type to the console. After
clicking around a bit, the following screenshot shows how the console log looks
in a Chrome browser:

Opening the console in Chrome is simple. Click on the "three line" icon in the
upper-right corner of the browser. Select Tools and then JavaScript Console.
Open the console up before testing these files yourself and you can monitor
the page events as they happen in real time.

Working with Events

[156]

What about $(document).ready?
If you are a jQuery user, you may be curious how $(document).ready comes into
play with a jQuery Mobile site. Almost all jQuery applications use $(document).
ready for initialization and other important setup operations. However, in a
jQuery Mobile application, this will not work well. Because Ajax is used to load
pages, $(document).ready is only really effective for the first page. Therefore, the
pageInit event should be used in cases where you would have used $(document).
ready in the past.

Creating a real example
So what about a real example? Our next set of code is going to demonstrate how to
create a simple, but dynamic, jQuery Mobile website. The content will be loaded via
Ajax. Normally, this would be dynamic data, but for our purposes, we'll use simple
static files of JSON data. JavaScript Object Notation (JSON) is a way to represent
complex data as simple strings. Code 10-7 is the application's home page:

Code 10-7: test_dyn.html
<div data-role="page" id="homepage">
 <div data-role="header">
 <h1>Dynamic Pages</h1>
 </div>
 <div data-role="content">
 <ul id="peopleList" data-role="listview"
 data-inset="true">
 </div>
 </div>
 <script>
 $("#homepage").bind("pagebeforecreate", function(e) {
 //load in our people
 $.get("people.json", {}, function(res,code) {
 var s = "";
 for (var i = 0; i < res.length; i++) {
 s+="<a href='test_people.html
 ?id="+res[i].id+"'>"+res[i].name+"";
 }
 $("#peopleList").html(s).listview("refresh");
 }, "json");
 });

Chapter 10

[157]

$(document).on("pagebeforeshow", "#personpage", function(e) {
 var thisPage = $(this);
 var thisUrl = thisPage.data("url");
 var thisId = thisUrl.split("=")[1];
 $.get("person"+thisId+".json", {}, function(res, code) {
 $("h1",thisPage).text(res.name);
 s = "<p>"+res.name +" is a "+res.gender+" and
 likes "+res.hobbies+"</p>";
 $("#contentArea", thisPage).html(s);
 }, "json");
 });
 </script>

The first thing you may notice about this jQuery Mobile page is that there isn't any
actual content. Not within the jQuery Mobile page's content block at least. There's a
listview but no actual content. So where's the content going to come from? At the
bottom of the page you can see two event listeners. For now, let's just focus on the
first one.

The code here binds to the pagebeforecreate event that jQuery Mobile fires for
pages. We've told jQuery Mobile to run this event before it creates the page. This
event will run once and only once. Within this event we use the jQuery get feature
to do an Ajax request to the people.json file. This file is simply an array of names
in JSON format:

[{"id":1,"name":"Raymond Camden"},{"id":2,"name":"Todd
 Sharp"},{"id":3,"name":"Scott Stroz"},{"id":4,"name":"Dave
 Ferguson"},{"id":5,"name":"Adam Lehman"}]

Each name has both an ID and the actual name value. When loaded by jQuery, this
is turned into an actual array of simple objects. Looking back at the event handler,
you can see that we simply loop over this array and create a string representing a set
of li tags. Note that each one has a link to test_people.html as well as a dynamic
name. Also note the links themselves are dynamic. They include each person's ID
value as retrieved from the JSON string.

It was mentioned earlier, but take note of the call to listview("refresh"):

$("#peopleList").html(s).listview("refresh");

Without the listview("refresh") portion, the items we added to the listview
would not be styled correctly.

Working with Events

[158]

Next, let's take a quick look at test_people.html:

Code 10-8: test_people.html
<div data-role="page" id="personpage">
 <div data-role="header">
 <h1></h1>
 </div>
 <div data-role="content" id="contentArea">
 </div>
 </div>

As with our last page, this one is pretty devoid of content. Note that both the header
and the content area are blank. But, if you remember the second event handler in
test_dyn.html, we have support to load the content here. This time we used the
pagebeforeshow event. Why? We want to run this code before every display of the
page. We need to know what particular person to load. If you remember, the ID of
the person was passed in the URL. We can fetch that via a data property, such as url,
that exists on the page object. This returns the complete URL, but all we care about
is the end of it—our ID. So we split the string and grab the last value. Once we have,
we can then load in a particular JSON file for each person. The form of this filename
is personX.json, where X is the number 1 through 5. The following line of code is
one example:

{"name":"Raymond Camden","gender":"male","hobbies":"Star Wars"}

Obviously, a real person object would have a bit more data. Once we fetch this
string, we can then parse it and lay out the result on the page itself:

Summary
In this chapter, we looked into events that jQuery Mobile application can listen and
respond to. These events include physical types (scrolling, orientation, and touching)
and page-based ones as well.

In the next chapter, we'll look at how jQuery Mobile sites are themed—both
out-of-the-box themes and custom ones as well.

Enhancing jQuery Mobile
In this chapter we'll be learning about how to enhance jQuery Mobile, and how
to make our mobile application really stand out from the pack by creating themes
and icons to improve the look and functionality of our app. We will cover the
following aspects:

•	 Learn about the building blocks of jQuery Mobile
•	 Create our own jQuery Mobile theme using ThemeRoller
•	 Design and implement custom icons for our application

What's possible?
The first reaction many developers have when first using jQuery Mobile is to awe
at how easy it is to implement a rich, compelling mobile website for their users. The
ease with which it converts plain HTML to beautiful, usable buttons, listviews, and
form elements is a dream. The jQuery Mobile team shipped five well-designed and
attractive themes, and 20 commonly used icons along with the rest of the package.
They even built a tool which allows developers to build out their own themes:
ThemeRoller (http://jquerymobile.com/themeroller/).

After working with jQuery Mobile for a while, some developers might be asking,
"What else can I do with this?" Just like muscle cars from the 60s and 70s; it wasn't
enough that they were already awesome; the tweakers and the gearheads wanted to
do more. If you identify with that mentality, then this chapter is for you.

The wonderful thing about jQuery Mobile is that it's just HTML, and for that reason
we can do great things with very little effort. In this chapter we'll be creating our
own theme from scratch using ThemeRoller for jQuery Mobile. We'll be designing
buttons from scratch and writing the CSS code needed to implement both low and
high resolution versions. We'll also be looking at how we can expand on the styles
and classes already available in jQuery Mobile, and make something different and
unique. Let's get started, shall we?

Enhancing jQuery Mobile

[160]

The visual building blocks of jQuery
Mobile
As you've already seen, jQuery Mobile is very user-friendly and pleasing to the eye.
It uses rounded corners, subtle gradients, and drop shadows to make elements stand
out from their surroundings, and other tricks that graphic designers have been using
for years in print. But on the web, these effects were only possible with the use of
images, or complicated and poorly supported plugins and applets.

With the advent of Web 2.0 and CSS 3, all of these options have been made available
to us, the layman web developer. Just remember that with great power comes great
responsibility. jQuery Mobile operates on the principle of progressive enhancement.
A tricky phrase, but it just means that you should develop for the lowest common
denominator, and offer enhancements for browsers that understand them.

Lucky for us, these stylistic additions are almost purely cosmetic. If a browser
doesn't understand the border-radius declaration then it simply displays squared
off corners. The same holds true for gradients and shadows. While jQuery Mobile
adds these effects to your application out of the box, it's worthwhile knowing how
to add them on your own.

Border-radius
Rounded corners can be one of the most elegant and appealing effects, and are also
the simplest to add. There are a few caveats that developers need to know about this
and the other effects. While there is a spec for border-radius as recommended by
the W3C, it turns out that each of the primary browser manufacturers support it in
slightly different ways. The end result is the same, but the path to it varies. Let's take
a look at the most basic border-radius declaration, and its result:

#rounded {
 border-radius: 10 px;
}

Chapter 11

[161]

You also have the option of rounding only certain corners, as well as tweaking
the values so that the corner isn't a perfect quarter-circle. Let's look at a few
more examples:

#topLeftBottomRight {
 border-radius: 15px 0 15px 0;
}

#topLeft {
 border-top-left-radius: 100px 40px;
}

Sadly, it's not quite as easy as this, just yet. Because each browser vendor has
their own unique rendering for this effect; software developers like Google
or Mozilla have taken to creating their own versions, called vendor prefixes.
For the preceding style declarations to have the widest range of coverage,
you'd have to add the following lines:

 #rounded {
-webkit-border-radius: 10 px;
-moz-border-radius: 10 px;
border-radius: 10 px;
}

#topLeftBottomRight {
-webkit-border-top-left-radius: 15px;
-webkit-border-bottom-right-radius: 15px;
-moz-border-radius-topleft: 15px;
-moz-border-radius-bottomright: 15px;
border-top-left-radius: 15px;
border-bottom-right-radius: 15px;
/* Mozilla and webkit prefixes require you to define each corner
individually when setting different values */
}

#bottomLeft {

Enhancing jQuery Mobile

[162]

-webkit-border-top-left-radius: 100px 40px;
-moz-border-radius-topleft: 100px 40px;
border-top-left-radius: 100px 40px;
}

Applying drop shadows
Drop shadows in CSS take one of two forms: text shadows (applied to text) and box
shadows (applied to everything else). Like border-radius, drop shadows are fairly
straightforward if you're looking at the W3C spec.

Using text-shadow
Let's look at text-shadow first:

p {
 text-shadow: 2px 2px 2px #000000; /* horizontal, vertical, blur,
 color */
}

This property also supports multiple shadows by adding additional declarations
in a comma-separated list:

p {
 text-shadow: 0px 0 px 4px white,
 0 px -5px 4px #ffff33,
 2px -10 px 6px #ffdd33,
 -2px -15px 11px #ff8800,
 2px -25px 18px #ff2200
}

Unlike the border-radius property, the text-shadow property doesn't require
vendor prefixes. That doesn't mean that all browsers support it; it simply means that
browsers that do support this property will display it as intended, while browsers
that do not, cannot simply see anything.

Chapter 11

[163]

Using box-shadow
Box-shadow follows a very similar model to text-shadow with one addition, the
inset keyword that allows for inner shadowing. Let's get to the examples. First up,
standard outer shadows:

#A {
 -moz-box-shadow: -5px -5px #888888;
 -webkit-box-shadow: -5px -5px #888888;
 box-shadow: -5px -5px #888888; /* horizontal, vertical, color */
}

#B {
 -moz-box-shadow: -5px -5px 5px #888888;
 -webkit-box-shadow: -5px -5px 5px #888888;
 box-shadow: -5px -5px 5px #888888; /* horizontal, vertical,
 blur, color */
}

#C {
 -moz-box-shadow: 0 0 5px 5px #888888;
 -webkit-box-shadow: 0 0 5px 5px #888888;
 box-shadow: 0 0 5px 5px #888888; /* horizontal, vertical, blur,
 spread, color */
}

And now, check out these inner shadows. Snazzy eh?

#D {
 -moz-box-shadow: inset -5px -5px #888888;
 -webkit-box-shadow: inset -5px -5px #888888;
 box-shadow: inset -5px -5px #888;}

#E {
 -moz-box-shadow: inset -5px -5px 5px #888888;
 -webkit-box-shadow: inset -5px -5px 5px #888888;
 box-shadow: inset 0px 0px 10 px 20px #888888;
}

#F {

Enhancing jQuery Mobile

[164]

 -moz-box-shadow: inset -5px -5px 0 5px #888888;
 -webkit-box-shadow: inset -5px -5px 0 5px #888888;
 box-shadow: inset 0 0 5px 5px #888888;
}

It's worth mentioning that both box-shadow and text-shadow can have their colors set
with the less commonly used rgb and rgba declarations. This allows developers to set
colors using the more familiar convention of RGB values. The rgba declaration also
allows the setting of color opacity from 0 to 1. The code for that is a simple change:

#opacity {
 box-shadow: inset 0 0 5px 5px rgb(0,0,0); /* black */
}
#transparent {
 box-shadow: inset 0 0 5px 5px rgba(0,0,0,.5); /* black with 50%
 opacity */
}

CSS gradients
CSS gradients are a great way to add beauty and impact to your website. The options
include linear gradients (right to left, top to bottom, and so on), and radial gradients
(from center outwards). By default, gradients consist of a start color and an end
color. CSS gradients may also include additional tones using color stops.

It should be noted, however, that support for CSS gradients in older browsers
isn't perfect, specifically Internet Explorer. The good news is that there are ways to
address IE that can allow developers to reliably use gradients in their development.
The bad news is that the code for that support is robust. Let's take a look at the
simplest possible gradient declaration.

div {
 width: 500px;
 height: 100px;
 background: linear-gradient(left, #ffffff 0%,#000000 100%);
}

Chapter 11

[165]

Gradient declarations can be quite complex, so let's break it down with an infographic:

Now here's the kicker. At the time of this writing there were no browsers that
supported the W3C spec using the actual property. Let's take a look at the code
to support multiple browsers, and you'll love jQuery Mobile even more than you
already do.

div {
 width: 500px;
 height: 100px;
 border: 1px solid #000000;
 /* Old browsers */
 background: #ffffff;
 /* FF3.6+ */
 background: -moz-linear-gradient(left, #ffffff 0%, #000000
 100%);
 /* Chrome10+,Safari5.1+ */
 background: -webkit-linear-gradient(left, #ffffff 0%,#000000
 100%);
 /* Opera 11.10+ */
 background: -o-linear-gradient(left, #ffffff 0%,#000000 100%);
 /* IE10+ */
 background: -ms-linear-gradient(left, #ffffff 0%,#000000 100%);
 /* W3C spec*/
 background: linear-gradient(left, #ffffff 0%,#000000 100%);
 /* IE6-9 */
 filter: progid:DXImageTransform.Microsoft.gradient(
 startColorstr='#ffffff', endColorstr='#000000',GradientType=1
);
}

Enhancing jQuery Mobile

[166]

You can add multiple colors to your gradient by adding additional comma-separated
declarations. Consider the following code:

div {
 width: 500px;
 height: 100px;
 border: 1px solid #000000;
 /* Old browsers */
 background: #ffffff;
 /* FF3.6+ */
 background: -moz-linear-gradient(left, #ffffff 0%, #000000 35%,
 #a8a8a8 100%);
 /* Chrome10+,Safari5.1+ */
 background: -webkit-linear-gradient(left, #ffffff 0%,#000000
 35%,#a8a8a8 100%);
 /* Opera 11.10+ */
 background: -o-linear-gradient(left, #ffffff 0%,#000000
 35%,#a8a8a8 100%);
 /* IE10+ */
 background: -ms-linear-gradient(left, #ffffff 0%,#000000
 35%,#a8a8a8 100%);
 /* W3C */
 background: linear-gradient(left, #ffffff 0%,#000000
 35%,#a8a8a8 100%);
 /* IE6-9 */
 filter: progid:DXImageTransform.Microsoft.gradient(
 startColorstr='#ffffff', endColorstr='#a8a8a8',GradientType=1
);
}

The previous code results in the following gradient:

As you might guess after reading the last few pages, jQuery Mobile does a lot
of heavy lifting on your behalf. Not only does it add slick gradients as page
backgrounds, but it has to keep track of all of the browser quirks that might prevent
that sweet drop shadow from showing up. As we move into the next section, you'll
likely be even more impressed with the way it handles themes and color swatches.

Chapter 11

[167]

The basics of jQuery Mobile theming
Theming in jQuery Mobile is straightforward and simple to use for the developer,
but is pretty elaborate behind the scenes. Luckily there will rarely be a time when
you need to know everything that's being done for you. However, it's worth a little
bit of our time to understand how it works.

Out of the box, jQuery Mobile comes with a theme set comprised of five color
swatches, each associated with a letter from A to E. The theme contains a series
of base CSS classes that can be applied at will to nearly any element, and contain
global settings for width, height, border radius, and shadows. The individual
swatches contain specific information about color, fonts, and so on.

Additional swatches can be added to the five original swatches from F to Z, or the
original swatches can be replaced or overridden at will. This system allows for a
total of 26 distinct swatches, allowing for millions of possible combinations of theme
colors, styles, and patterns. You apply a jQuery Mobile theme to the selected element
by adding a data-theme attribute with the letter of the desired theme.

Developers will generally choose to use the data-theme attribute method when
applying styles, but it's also possible to attach the CSS class names directly to your
page elements for more granular control. There are a handful of primary prefixes
that allow for this flexibility.

Enhancing jQuery Mobile

[168]

Bars (.ui-bar-?)
The bar prefix is generally applied to headers, footers, and other areas with
high importance:

Content blocks (.ui-body-?)
Content blocks are generally applied to areas where paragraph text is expected
to occur. Its color helps to ensure maximum readability with the text color placed
against it:

Chapter 11

[169]

Buttons and listviews (.ui-btn-?)
Buttons and listviews are two of the most important elements in the jQuery Mobile
library, and you can rest assured that the team took their time getting these right.
The .ui-btn prefix also includes styles for up, down, hover, and active states:

Mixing and matching swatches
One of the nice things about theming in jQuery Mobile is that child elements inherit
from their parent unless otherwise specified. This means that if you put a button
without its own data-theme attribute inside a header or footer bar, that button
will use the same theme as its parent. Wicked eh?

Enhancing jQuery Mobile

[170]

It's also perfectly acceptable and even encouraged to place an element using one
swatch as the child of an element using another swatch. This can help the element
stand out more, match a different part of the app, or whatever reasoning the developer
chooses. It's possible, and what's more, it's easy. Simply place a button (or other
element) inside a header bar, and assign it its own data-theme attribute:

Site-wide active state
jQuery Mobile also applies a global active state for all elements. This active state is
used for buttons, form elements, navigation, and anywhere there's a need to indicate
that something is currently selected. The only way to change this color value is to set
(or override) it via CSS. The CSS class for the active state is, appropriately named,
.ui-btn-active:

Default icons
Included in the jQuery Mobile set are 20 icons which cover a wide array of needs for
developers. The icon set is white on transparent which jQuery Mobile overlays with
a semi-transparent black circle to provide contrast against all of the swatches. To
add an icon, specify the data-icon attribute with the name of the desired icon. In
addition to the white icon set, there is also a black on transparent icon set for colors
that need higher contrast. You can force any icon to use the dark set by adding the
ui-icon-alt class to any element that uses an icon.

Chapter 11

[171]

jQuery Mobile also provides the ability to place icons on the top, right, bottom, or
left side of a button using the data-iconpos="[top, right, bottom, left]"
attribute, with left being the default placement. Developers are also able to display
an icon alone, without text, by specifying data-iconpos="notext":

Custom icons are also possible and will be covered later in this chapter.

Creating and using a custom theme
We've already discussed how powerful theming is in jQuery Mobile. It makes it
trivial to develop a rich mobile website with simple and elegant style. Even more
powerful is the ability to create your own library of swatches that can be used to
make your application or website truly unique. Developing your own theme can
be approached in one of the following two ways:

1.	 Download and open the existing jQuery Mobile CSS file and edit
to your heart's content.

2.	 Point your web browser to ThemeRoller for jQuery Mobile:
http://jquerymobile.com/themeroller/.

We'll be focusing solely on option 2, because let's be honest, why wade through all
of that CSS when you can point, click, and drag your way to a new theme full of
swatches in like 10 minutes? Let's find out what ThemeRoller is all about.

Enhancing jQuery Mobile

[172]

What's ThemeRoller?
ThemeRoller for jQuery Mobile is an extension of a web-based app that was written
for the jQuery UI project. It allows users to quickly assemble a theme full of swatches
in minutes by pointing, clicking, and dragging. It features an interactive preview
so that you can immediately see how your changes affect your theme. It also has a
built-in inspector tool that helps you dig into the minute details (should you want
them). It also integrates with Adobe® Kuler®, a color management tool. You can
download your theme after you're done, you can share it with others via a custom
URL, and you can reimport past themes for last-minute tweaking. It's a powerful
tool and is a perfect complement to jQuery Mobile.

One of the hallmarks of the five default swatches is that the jQuery Mobile team
spent quite a bit of time working on readability and usability. The swatches range
from highest contrast (A), to lowest contrast (E). Within a single theme, the areas that
have the most contrast are the areas most prominent on the page. This includes the
header (and listview headers), and buttons. When creating your own theme, it's a
good idea to keep this in mind. We always want to focus on usability within our app,
right? What good is a slick app if no one can read it because of poor color choices?

Using ThemeRoller
The first thing you'll see when you load up ThemeRoller is a slick-looking
splash screen.

Following the splash screen is a helpful "Getting Started" screen (the "Getting
Started" screen has some helpful tips, so make sure to glance at it before clicking
the Get Rolling button).

Chapter 11

[173]

After all of the splash screens are out of the way, you'll be presented with the
primary interface:

Enhancing jQuery Mobile

[174]

ThemeRoller is broken up into four main areas: Preview, Color, Inspector, and
Tools. Each of these contains important functionality that we need to review.
We'll start with the Preview section.

Preview
Unless you're loading an existing theme, the preview area will present three
complete, identical, and interactive jQuery Mobile pages packed with widgets
of all sorts:

Move your mouse over them and you'll see that each page is functional. The header
on each page contains a letter indicating which swatch controls its appearance.

Chapter 11

[175]

Colors
At the top of the page, you'll see a series of color chips along with two slider controls
and a toggle button. Further to the right, you'll see another 20 blank chips. These will
contain your recently used colors and will be empty until you've selected a color.

Below the color chips are two sliders labeled Lightness and Saturation. The Lightness
slider adjusts the light and dark tones of the series of colors swatches, while the
Saturation slider makes the colors more or less vibrant. Taken together, a user should
be able to approximate nearly any color they choose. To use colors from Kuler®, click
on the text link marked Adobe Kuler swatches.

Each of the color chips can be dragged onto any element within the preview area.
This makes development of a swatch set extremely easy. Note that many of the
jQuery Mobile styles overlap; for example, the header bar at the top of the page
receives the same style as the header of the listview. Adjust the colors as desired
then drag each chip onto an element on the page. Remember that each individual
page has its own swatch so be careful about how you choose to mix colors.

Inspector
On the far left of the interface is the Inspector panel that allows you to exercise fine
grain control over your theme:

Enhancing jQuery Mobile

[176]

The bottom section contains a series of tabs labeled Global, A, B, C, and +. Each tab
contains an accordion panel with all of the values for an individual swatch, except
for the Global tab that applies to all of the swatches.

Click on the Global tab, then click on Active State, and the accordion panel will
expand to show settings for the active state for your entire theme. The options
include text color, text shadow, background, and border. Changing a value in the
Global tab causes every current (and future) swatch to reflect the new setting.

Additional swatches can be added to your theme in two ways. Clicking the + tab at
the top of the Inspector adds a new swatch to the last place in your theme. You can
also add a new swatch by clicking the Add Swatch button located at the bottom of
the preview area. Swatches can be deleted by selecting the tab with the swatch you
want to remove, then clicking on the Delete link located to the right of the swatch
name. Note that deleting a swatch from the top of the stack will cause the remaining
swatches to be renamed.

Tools
At the very top of the page are a series of buttons. These buttons allow you to
perform a variety of tasks which we'll cover in a moment, but first, let's take a closer
look at the buttons themselves:

You'll notice the following buttons: a switch allowing you to change between current
and previous versions, undo/redo, and a toggle button for the Inspector. Setting this
toggle to ON allows you to inspect any of the widgets in the preview area. Hovering
over a widget highlights that element with a blue box. Clicking on the element will
cause the accordion menu in the Inspector area to expand to display settings specific
to that element.

There are four additional buttons which allow you to download your theme,
import, or upgrade a previously created theme, share your theme with others,
and a help button.

Chapter 11

[177]

Creating a theme for Notekeeper
Now that we're familiar with the ThemeRoller interface, how about we go ahead and
create our first theme? Rather than build one in abstract let's create one that we'll
actually use for the Notekeeper app we built earlier. Let's start simple by modifying
one of the existing themes that ship with jQuery Mobile. The team was kind enough
to let users import the default themes as a starting place for new themes, so that's
where we'll head first. Click on the Import button at the top left of the window and
you'll get a box allowing you to paste in the contents of an existing theme:

Import the default theme by clicking on the link in the top-right corner,
appropriately titled Import Default Theme. After the text area fills with CSS,
click on Import. The preview area will reload and display swatches A to E.

Enhancing jQuery Mobile

[178]

We'll focus our efforts on changing up the white swatch, D, as it's the closest to what
our end goal is. Since we'd rather use swatch A as the name, let's delete the other
swatches so that only D is left. Remember that ThemeRoller renames swatches as
others are deleted. That means when you delete swatch A, B becomes A, C becomes
D, and so on. Keep going until the swatch that was D is now in the A position.
Finally, delete swatch B (which was formerly swatch E) so that all we have left is
swatch A:

This swatch is nice looking but it's a little bland. Let's inject a little color by changing
the header to a nice green. The simplest way to determine what values should be
changed for any element is to use the Inspector. Toggle the Inspector to ON at the
top, then click anywhere on the header of theme A. You'll know if you got it right if
the A tab is selected on the left, and the Header/Footer Bar panel expands:

Chapter 11

[179]

You can change the color in one of a few ways. You can drag a color chip from the
top directly onto the background. You can also drag a color chip onto an input field.
Finally, you can manually input the value. Notice that when you click into a field
containing a color value, you're provided with a slick color picker. Go ahead and
change the values in the input fields in this panel to the values shown in the
preceding screenshot.

Looking good, but now the blue from the theme's active state clashes with our
green. Using the Inspector tool, click once on the On section of the On/Off toggle
bar. This should cause the Active State panel within the global tab to expand.
We'll change the blue to a nice warm grey. The Global panel should now look
like the following screenshot:

There's only one thing that's keeping our new theme from looking its hottest; the
blue text link in the paragraph at the top. Going back to our trusty Inspector, lets'
click directly on the link that will expand the Content Body panel within the A tab.
Now, for those already familiar with CSS, you know that you can't simply change
the link color without also changing the hover, visited:hover, and active states.

Enhancing jQuery Mobile

[180]

The problem is that there are no options to make those changes, but ThemeRoller has
you covered. Click on the + to the right of the LINK COLOR input field to display
the rest of the options, then change the colors as shown in the following screenshot:

And that's it! Feel free to make additional changes to your theme as you explore
the Inspector area. Change whatever you like; it's just bits and bytes right now.

Exporting your theme
Before we actually export our theme, there's one thing that must be noted. Remember
the splash page with the "helpful" information? It turns out that there's one piece that's
not a recommendation, but a requirement.

We recommend building themes with at least 3 swatches (A to C).

For our theme to apply to our Notekeeper app properly, we'll need to duplicate our
single swatch (letter A) to swatches B and C. Luckily, this is an easy thing to do.
Click on the A tab at the top of the Inspector, then click the + tab twice. What you
should see are three identical swatches, and now we're done.

Chapter 11

[181]

Now that we've finished our theme, we're going to export it for use in our
Notekeeper application. This is a straightforward process that begins by clicking
on the Download Theme button located in the middle of the page at the top of the
interface. You'll be presented with a box allowing you to name your theme, some
information about how to apply your theme, and a button labeled Download Zip.
After naming our theme Notekeeper, click on the Download Zip button, and you'll
receive a tasty little morsel in your downloads folder.

Extract the contents of the ZIP file and you'll see the following directory structure:

•	 index.html

•	 themes/

°° Notekeeper.css (the uncompressed version of your theme)
°° Notekeeper.min.css (the compressed version; can be used

in production)
°° images/

°° ajax-loader.gif

°° icons-18-black.png

°° icons-18-white.png

°° icons-36-black.png

°° icons-36-white.png

The HTML file at the top of the tree contains information on how to implement
your theme, as well as a few widgets to confirm that the theme works. All of the
links are relative in the example file, so you should be able to drag it into any
browser window and see the results.

A few notes about the download and implementation of themes are as follows:

•	 The jQuery team provides the icons for buttons to use in this ZIP file for a
reason. The theme requires those images to be relative to the CSS file. This
means that unless you're already using the default themes you need to also
include the images folder when you upload your theme to your website, or
the icons won't show up.

•	 Hang on to the uncompressed version of your theme. While you don't want
to use it in production because of the size, you will need it should you ever
wish to edit it within ThemeRoller. ThemeRoller cannot import the minified
CSS file.

Enhancing jQuery Mobile

[182]

Creating and using custom icons
We've seen how easy it is to add our own theme to jQuery Mobile using ThemeRoller.
Now we're going to add a little more spice to our Notekeeper application by creating
a custom icon. The directions in this section will be specific to Photoshop, but any
graphics application capable of exporting transparent PNG files should be acceptable.

CSS Sprites
Before we create and use an icon, we should first understand how jQuery Mobile
uses icons and applies them. In the theme you just created are several image files
(themes/images). Open icons-18-black.png, and icons-36-black.png in the
graphics editor of your choice. Zoom in on both of them to 400 percent or so, and
you should see something very similar to the following screenshot:

When opening each of these files, you'll probably notice that each image contains all of
the icons. This is because jQuery Mobile takes advantage of a technique called sprite
sheets that allows developers to crop a background image by specifying its position
within its container, and to hide any other part of the background that would normally
display outside of that container. Its primary benefits include the following:

•	 Reducing the number of requests a browser has to make. Fewer requests
generally mean that a page will load faster.

•	 Centralize image locations. All icons can be found in one location.

Here's a simple illustration of the technique:

Chapter 11

[183]

A browser always refers to an image from its top left corner. In CSS language that's
0,0. To achieve this affect you set the background image on a container then simply
adjust the X and Y coordinates until the image's position matches your design.
Then set the overflow of the container to crop, or hide the remainder of the image.
Remember that you're moving the image to the left, so you'll use negative numbers
for the X position. Using the preceding illustration as a reference, this is what the
code to achieve this effect would look like.

<html>
 <head>
 <title></title>
 <style>
 div {
 background: url("icons-36-black.png");
 background-position: -929px 4px;
 background-repeat: no-repeat;
 border: 1px solid #000000;
 height: 44px;
 overflow: hidden;
 width: 44px;
 }
 </style>
 </head>
 <body>
 <div></div>
 </body>
</html>

Designing your first icon
We're only going to be creating a single icon, so we won't quite need all of the
empty space around the icon. Let's start by deciding what we want to illustrate.
Our application is called Notekeeper and it creates notes. Perhaps an icon illustrating
a sheet of paper would work?

Enhancing jQuery Mobile

[184]

This would have the added benefit of being fairly easy to represent at a small size.
In the image editor of your choice, create a new document at 36 pixels by 36 pixels
at 72 dpi. Name it as notekeeper-icon-black-36.png.

Even though the dimensions of the document are 36 by 36, the active area of the
icon will only be 22 px by 22 px. This is in keeping with the icons provided by the
jQuery Mobile team, and will make sure our icon doesn't look odd. To make it easier
to stay within the lines, use the rectangular selection tool to draw a square at 22 px,
then position it 7 px from the top edge of the document, and 7 px from the left. Next,
draw guides along each edge so that your document looks something like this:

Chapter 11

[185]

When drawing icons, you want to keep in mind the dimensions and attributes of the
thing being illustrated. You won't be able to represent everything, but you need to
communicate the spirit of the thing. A sheet of paper is taller than it is wide, and has
lines on it. Let's start with those two things and see what we can come up with. The
other icons in the set have a thick feel to them so that they can stand out against the
background. Let's color in a solid shape, then delete the lines for the page so that the
icon has the same thick feel. We're going to draw the lines in black so that they show
up better printed in the book, but our icons will need to be white. Make sure you
adjust your design accordingly.

This icon seems to meet all of our criteria. It's taller than it is wide, and has lines just
like paper. It also has a jaunty little page turn to give it some attitude. Isn't that what
everyone looks for in their paper icon? Make sure that the icon's lines are white, then
save it. The jQuery Mobile icons have been saved as transparent PNG-24 files. This is
similar to the GIF format, but isn't required. Use transparent GIF if you wish.

When we created our first icon, we created the high resolution version. For brevity's
sake, we're going to quickly walk through the steps of creating a low-resolution icon:

1.	 Create a new image document at 18 px by 18 px. Name this one
notekeeper-icon-18.

2.	 The active area of this icon will be 12 px by 12 px. Draw a selection 12 px
square, then position it 3 px from the top, and 3 px from the left.

3.	 Draw your guides, then sketch out the icon using the previous version
as a reference. It's a lot harder drawing with this little space isn't it?

Enhancing jQuery Mobile

[186]

4.	 Your final result should look similar to the following screenshot:

Save both images along with your Notekeeper theme then close Photoshop.

High and low resolution
Resolution is the number of dots or pixels that can be displayed into a given area.
Those of you from the web world measure everything in 72 dpi, because that's what
most monitors display. If you have much experience with mobile then you might
know that each device can have a different resolution from those next to it. The
problem with this is that higher resolution devices simply display more pixels on
the screen. This means that an image displayed on a high resolution screen will be
smaller than the same image on a low resolution screen.

jQuery Mobile accounts for this by having two versions of each icon, along with two
sets of code for high and low resolution devices. In the next section we'll apply our
custom theme and custom icon to our Notekeeper application.

Resolution independence
While it's nice that we can provide a better experience for users with higher
resolution devices, we need to be concerned about devices that might have even
higher resolutions. Those devices are out already, namely the Retina MacBook Pro
and the iPad 3, both of which sport monstrous resolutions. Wouldn't it be nice if we
could use a single file which scaled to whatever resolution the user's device had?

A great solution is using the CSS @font-face declaration: http://caniuse.
com/#search=@font-face. By using an icon font you can centralize your icons into
a single file, and you also get vector based crispness. This idea is so appealing that I
took the time to build out a project that allows you to create your own icon font from
a list of available icons. It's specifically made for jQuery Mobile, and spits out a few

Chapter 11

[187]

CSS files, a few font files, and all of the code you need to integrate these icons into
your jQuery Mobile project. Visit the following URL to try out the project yourself:

 http://jqmiconpack.andymatthews.net/.

Updating the Notekeeper app
It's time for us to tie all of these loose ends together. We have a custom theme that
we built using ThemeRoller, we've got our sweet custom icon, and now it's time for
us to put all the pieces together. You'll need the following pieces to finish up:

•	 The code you completed at the end of the Notekeeper chapter
•	 The custom theme you created earlier in this chapter
•	 Your custom icon in white in both 18 px and 36 px sizes

Adding our custom theme
Let's start with the easiest part. Adding in our custom theme is pretty simple.
Open notekeeper.html in your browser, and in the text editor of your choice.
Additionally, open the index.html file from your theme download. We're going
to merge the <head> tag from the theme file into notekeeper.html. You can see the
results of the merge in the following code:

<title>Notekeeper</title>
<meta name="viewport" content="width=device-width, initial-
 scale=1">
<link rel="stylesheet" href="themes/Notekeeper.min.css" />
<link rel="stylesheet" href="styles.css" />
<link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.1/jquery.mobile.structure-
 1.3.1.min.css" />
<script src="http://code.jquery.com/jquery-1.8.2.js"></script>
<script src="http://code.jquery.com/mobile/1.3.1/jquery.mobile-
 1.3.1.min.js"></script>
<script src="js/application.js"></script>

The first new line implements the new theme we created. The second line currently
points to a missing file (because we haven't created it yet). Even with a rich theming
system such as jQuery Mobile has, we're still going to have some custom CSS for
various things. styles.css is where we'll put our assorted styles, especially the
definitions for our custom icon.

Enhancing jQuery Mobile

[188]

By the way, go ahead and reload your browser window and take a look at our new
theme in action. Isn't it snazzy? It's going to look even snazzier in a few minutes
when our custom icon appears.

The astute among you might notice the deleted line. When ThemeRoller was first
launched it provided a theme file that completely the entire default theme, even
though the code contained in the default theme was being completely overridden.
This meant that users would be downloading code they weren't ever going to use.
When jQuery Mobile 1.1 was released, the team corrected that error by providing
a structure.css file along with the theme.

Adding our custom icon
Go ahead and create styles.css in the root of your Notekeeper application code,
and then open it. The first thing we'll do is to add in the declaration for our 18 px
icon. It's low-resolution and will be the one you'll see in your desktop browser.
High-resolution icons only show up in iPhone 4 and iPhone 4S at the moment.

To add our custom icon, we follow the pattern set by jQuery Mobile. It applies icons
to buttons and other elements using the .ui-icon prefix. This means that for our
icon to work within the framework, we have to name our CSS class as follows:

.ui-icon-notekeeper-note {
 background-image: url("themes/images/notekeeper-icon-white-
 18.png");
}

Then adding the icon to our Add Note button is as simple as adding a data-icon
attribute like the following code:

<div class="ui-block-b">
 <input id="btnAddNote" type="button" value="Add Note" data-
 icon="notekeeper-note" />
</div>

Keep in mind that the string notekeeper-note can be anything as long as it matches
the second half of the CSS class you created earlier. Finally, let's add the remaining
piece to our app, the high-resolution icon.

Chapter 11

[189]

One of the hallmarks of jQuery Mobile is its support for CSS media queries. Media
queries allow you to query a given device for various pieces of information based
on its media type: screen, print, tv, handheld, and several others. This answer to
this query allows developers to branch CSS code and display the page one way for
a desktop browser (screen), and another way for a TV (tv). In the case of our icons,
we want to ask any viewing device with a type of screen if it supports a property
called -webkit-min-device-pixel-ratio and if the value of that property is 2.
Add the following lines to styles.css after the declaration for the low-res icon.

@media only screen and (-webkit-min-device-pixel-ratio: 2) {
 .ui-icon-notekeeper-note {
 background-image: url("themes/images/notekeeper-icon-white-
 36.png");
 background-size: 18px 18px;
 }
}

Other than the media query code, the only thing unique about this is the
background-size property. It allows developers to specify that a given background
should be scaled to the specified size (18 px by 18 px), rather than its original size
of 36 px by 36 px. Since the resolution on the iPhone 4 and higher is exactly double
the size of the low-resolution, this means that we're packing double the pixels into
the same space as the smaller icon. The end result is that the icon looks crisper and
sharper. If you've got one of these devices, upload your code to a server and view it.
Your patience will be rewarded.

Summary
In this chapter we learned about advanced CSS techniques that are central to the
jQuery Mobile experience, and how jQuery Mobile uses them to provide a rich
interface to the end user. We took a deep dive into the basics of jQuery Mobile
theming and how it works. We built a custom theme using the ThemeRoller tool,
a custom icon with our very own hands, and we learned how to tie all those things
together and implement them in our application

In the next chapter, you'll learn how to take the principles you've learned in the past
11 chapters and create a native application that can run on the iOS and Android
platforms (along with several others), using the PhoneGap open source library.

Creating Native Applications
In this chapter, we will look at how to turn jQuery Mobile-based web applications
into native applications for mobile devices. We'll discuss the PhoneGap framework,
and how it allows you to tap into your device's hardware.

We will cover the following aspects:

•	 Discuss the PhoneGap project and what it does
•	 Demonstrate how to use PhoneGap's Build service to create native applications

HTML as a native application
For most folks, creating a native application on a platform like Android or iOS
requires learning an entirely new programming language. While it is always good to
learn new languages and expand your skill set, wouldn't it be cool if you could take
your existing HTML skills, and use them natively on a mobile device?

Luckily, there is just such a platform. PhoneGap (http://www.phonegap.com)
is an open-source project that allows you to take HTML pages and create native
applications. This code is entirely free and can be used to develop applications for
iOS (both iPhone and iPad), Android (again both phones and tablets), Blackberry,
WebOS, Windows Phone 7, Windows Phone 8, Symbian, and Bada. PhoneGap works
by creating a project in the native environment and pointing to an HTML file. Once
set up, you can use your existing HTML, CSS, and JavaScript skills to create the UI
and functionality of your application.

Even better, PhoneGap provides additional APIs to your JavaScript code. These APIs
include the following:

•	 Accelerometer: It allows your code to detect basic movement on the device
•	 Camera: It allows your code to work with the camera

Creating Native Applications

[192]

•	 Compass: It gives you access to the compass on the device
•	 Connection: It lets your application determine if your user is online,

and if so, what type of connection is supported
•	 Contacts: Provides basic search and contact creation support
•	 Device: Basic device metadata like the operating system
•	 Events: Various types of events
•	 File: Read/write access to the device's storage
•	 Geolocation: Provides a way to detect the location of the device
•	 Globalization: Automatically formatting numbers and dates in your

user's locale
•	 Media: Allows for basic video/audio capture support
•	 Network: Determines the network connectivity settings of the device
•	 Notification: A simple way to create a notification (via a pop up, sound,

or vibration)
•	 Storage: Access to a simple SQL database

By using these APIs, you can take normal HTML sites and turn them into powerful,
native-like applications that users can download and install on their devices.

Before we go any further, you should know that PhoneGap is actually the
implementation of Apache Cordova. PhoneGap is Adobe's implementation, but for
all intents and purposes, is the same thing. Since most people know the PhoneGap
name, that is the one we will use in the book. Finally, do not forget that Cordova is
free, open source, and available to all!

Working with PhoneGap
Creating a PhoneGap project is done via two main methods. The primary way
people use PhoneGap is by using a command line tool and SDKs of the platform
they are planning to support. The PhoneGap Docs (http://docs.phonegap.com/
en/3.0.0/guide_platforms_index.md.html#Platform%20Guides) provides
details on how to set up your environment for the device platform of your choice.

Chapter 12

[193]

Detailing the setup for each platform would be too much for this book (and would
just duplicate what's on the PhoneGap website), so instead we will focus on the other
option for creating native applications, the PhoneGap Build service. PhoneGap Build
(https://build.phonegap.com) is an online service that simplifies and automates the
process of creating native applications. It allows you to simply upload code (or use a
public source control repository) to generate native binaries. Even better, you can use
PhoneGap Build to generate binaries for all their supported platforms. That means you
can write your code once and spit out code for an iPhone, Android, Blackberry, and
other platforms, all from the site itself.

Creating Native Applications

[194]

The PhoneGap Build service is not free, though. Pricing plans and other details may
be found on the site, but luckily there is a free developer plan. That is the service
we'll be using for this chapter. You can sign up with either an Adobe ID or GitHub
credentials. After signing up you can then create your first PhoneGap Build project.

Notice that the Build service supports seeding a project from an existing Git or
subversion repository or via an uploaded ZIP file. At this point, let's switch away
from the website and back to code. We want to begin with a very simple set of code.
Later on in the chapter we will do something a bit more interesting, but for now,
our objective is to just upload some HTML and see what comes next. In the code
you downloaded from GitHub, open the c12 folder and look at the app1 folder. This
contains a copy of one of the list examples from Chapter 4, Working with Lists. It uses
jQuery Mobile to create a simple list of four people, along with thumbnail pictures.
Nothing too exciting, but it gets the job done for our purposes here. You will notice
that there is already an app1.zip file.

If you go back to the website and click on Upload an archive, you can then browse
to the location on your computer where you extracted the files and select that ZIP
file. Be sure to also enter a name for the application; I chose FirstBuildApp. After
clicking on Ready to build, you are then taken to a page with all your apps, which
if you are a new Build user, will only contain the one just created:

Chapter 12

[195]

Clicking on the app title then gives you the option to download various flavors of
the application. Believe it or not, you are already able to download a version for most
platforms. Working with iOS requires you to provide a certificate. If you create a
certificate (which must be done on a Mac), you can upload it to PhoneGap Build and
tell it to use the certificate for iOS builds. What's cool is that once you've done that,
you can use a Windows (or even Linux) machine to work on your HTML, upload
to PhoneGap Build, and create iOS builds. Click on the application title to go to the
application's detail page:

Creating Native Applications

[196]

Note that you can now download (again, you will need a certificate for iOS, or
Blackberry if you choose) by simply clicking on the link next to your platform.

Actually using the applications depends on your platform of choice. For Android,
you need to ensure that you have enabled the setting, Allow installation of
non-Market applications. The exact wording and location of that setting will
depend on your device. You can sign the application by editing the settings on
the PhoneGap Build site. Once you've done that, you can actually submit your
application to the Android Market. But since Android allows you to play with
applications that are not signed, you can skip that step while testing. The following
screenshot shows the application running on an Android:

And here is the same application running on an iPhone:

Chapter 12

[197]

Adding PhoneGap functionality
We just demonstrated how to use the PhoneGap Build service to turn HTML
(and JavaScript, CSS, and images of course) into a real, native application for
multiple platforms. As mentioned earlier in the chapter, though, PhoneGap provides
more than a simple wrapper to turn HTML into native applications. The PhoneGap
JavaScript API provides access to a number of cool device-centric services that can
greatly enhance the power of your application. For our second example, we'll take
a look at one of these features—the Contacts API. (For full details, see the Contacts
API documentation which is available at: http://docs.phonegap.com/en/3.0.0/
cordova_contacts_contacts.md.html#Contacts).

Creating Native Applications

[198]

The application in Code 12-1 is a simple contact search tool. Let's take a look at the
code and then cover what's going on:

Code 12-1: index.html
<!DOCTYPE html>
<html>
 <head>
 <title>Contact Search</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="jquery.mobile.min.css" />
 <script src="jquery.js"></script>
 <script src="jquery.mobile.min.js"></script>
 <script src="phonegap.js"></script>
 <script>
 document.addEventListener("deviceready", onDeviceReady,
 false);
 function onDeviceReady(){
 $("#searchButton").on("touchend", function() {
 var search = $.trim($("#search").val());
 if(search == "") return;
 var opt = new ContactFindOptions();
 opt.filter = search;
 opt.multiple = true;
 navigator.contacts.find(["displayName","emails"],
 foundContacts, errorContacts, opt);
 });
 foundContacts = function(matches){
 //create results in our list
 var s = "";
 for (var i = 0; i < matches.length; i++) {
 s += ""+matches[i].displayName+"";
 }
 $("#results").html(s);
 $("#results").listview("refresh");
 }
 errorContacts = function(err){
 navigator.notification.alert("Sorry, we had a problem and
gave
 up.", function() {});
 }
 }
 </script>
 </head>
 <body>

Chapter 12

[199]

 <div data-role="page">
 <div data-role="header">
 <h1>Contact Search</h1>
 </div>
 <div data-role="content">
 <input type="search" id="search" value="" />
 <button id="searchButton">Search</button>
 <ul id="results" data-role="listview" data-
 inset="true">
 </div>
 </div>
 </div>
 </body>
</html>

Let's begin by looking at the layout portion of the application which resides in the
bottom half of the file. You can see our jQuery Mobile page structure, and within it,
an input field, a button, and an empty list. The idea here is that the user will enter
a name to search for, hit the button, and the results will show up within the list.
The following screenshot demonstrates the output:

Now take a look at the JavaScript code. The first change we've made is to include the
PhoneGap JavaScript library:

<script src="phonegap.js"></script>

You may be wondering, why is this file? You don't need it! When you upload your
code to PhoneGap Build, the service automatically injects the proper JavaScript file
for the platform.

Creating Native Applications

[200]

The next interesting tidbit is the following line of code:

document.addEventListener("deviceready", onDeviceReady, false);

The deviceready event is a special event fired by PhoneGap. It essentially means
that your code can now make use of advanced functionality, such as the Contacts API.

Within the event handler onDeviceReady, we have a few things going on. The first
function of note is the event handler for the search button. The first few lines simply
get, trim, and validate the value.

After we are sure there's actually something to search for, you can see the first actual
use of the Contacts API, as shown in the following code snippet:

var opt = new ContactFindOptions();
opt.filter = search;
opt.multiple = true;
navigator.contacts.find(["displayName","emails"], foundContacts,
 errorContacts, opt);

The Contacts API has a search method. Its first argument is an array of fields to both
search and return. In our case, we are saying we want to search against the name and
e-mail values for contacts. The second and third arguments are the success and error
callbacks. The final option is a set of options for the search. You can see it created
before the call. The filter key is simply the search term. By default, contact searches
return one result, so we specifically ask for multiple results as well.

Now let's take a look at the success handler:

foundContacts = function(matches){
 //create results in our list
 var s = "";
 for (var i = 0; i < matches.length; i++) {
 s += ""+matches[i].displayName+"";
 }
 $("#results").html(s);
 $("#results").listview("refresh");
}

Chapter 12

[201]

The result of the contact search will be an array of results. Remember that you only
get back what you asked for, so our result objects contain the displayName and
emails property. For now, our code simply takes the displayName and adds it to
the list. Remembering what we learned from one of the previous chapters, we also
know that we need to refresh the jQuery Mobile listview whenever we modify it.
The following screenshot shows a sample search:

Summary
In this chapter we looked into the PhoneGap open-source project, and how it allows
you to take your HTML, JavaScript, and CSS, and create native applications for
a multitude of different devices. We played with the Build service and used it to
upload our code and download compiled native applications. While jQuery Mobile
isn't required with PhoneGap, the two make an incredibly powerful team.

In the next chapter, we'll take this team and create our final application,
a full-fledged RSS reader.

Becoming an Expert –
Building an RSS Reader

Application
Now that you've been introduced to jQuery Mobile and its features, it's time to build
our final, full application—an RSS Reader.

In this chapter, we will cover the following aspects:

•	 Discuss the RSS Reader application and its features
•	 Create the application
•	 Discuss what could be added to the application

RSS Reader – the application
RSS (Really Simple Syndication) is a way for sites to create a computer-readable
index of their information. By using a common XML format, sites can let people
read their content via other sites and applications. RSS is most popular on blog
and news sites.

Before diving into the code, it may make sense to quickly demonstrate the
application in its final working form, so you can see the pieces and how they work
together. The RSS Reader application is exactly that; an application meant to take
RSS feeds (for example from CNN, ESPN, and other sites), parse them into readable
data, and provide a way for the user to view the articles. This application will allow
you to add and delete feeds, providing both a name and a URL, and then provide a
way to view the current entries from the feed.

Becoming an Expert – Building an RSS Reader Application

[204]

The application begins with a basic set of instructions. These instructions are only
visible when you run the application without any known feeds:

Clicking on the Add Feed button brings you to a simple form allowing for both a
name and a URL (Unfortunately the URL has to be typed in manually. Luckily modern
mobile devices allow for copy and paste. I'd strongly recommend using that!).

After adding the feed, you are returned back to the home page. The following
screenshot shows the view after a few feeds are added:

Chapter 13

[205]

To begin reading entries, the user simply selects one of the feeds. This will then fetch
the feed and display the current entries, as shown in the following screenshot:

Becoming an Expert – Building an RSS Reader Application

[206]

The final part of the application is the entry view itself. Some blogs don't provide a
full copy of the entry via RSS, and obviously you may want to comment on the blog
itself. So, at the bottom we provide a simple way to hit the real website, as shown in
the following screenshot:

Now that you've seen the application, let's build it. Once again we're going to use
PhoneGap Build to create the final result, but this application will actually run as is
on a regular website as well.

Creating the RSS Reader application
Our application begins with the first page, index.html. This page will load in jQuery
and jQuery Mobile as well. Its core mission is to list your current feeds, but it has
to recognize when the user has no feeds at all and provide a bit of text encouraging
them to add their first feed:

Code 13-1: index.html
<!DOCTYPE html>
<html>
 <head>
 <title>RSS Reader App</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="jquery.mobile/jquery.mobile-
 1.3.2.min.css" />
 <script src="jquery.mobile/jquery-1.9.1.min.js"></script>
 <script src="jquery.mobile/jquery.mobile-
 1.3.2.min.js"></script>
 <script src="main.js"></script>
 </head>

Chapter 13

[207]

 <body>
 <div data-role="page" id="intropage">
 <div data-role="header">
 <h1>RSS Reader Application</h1>
 </div>
 <div data-role="content" id="introContent">
 <p id="introContentNoFeeds" style="display:none">
 Welcome to the RSS Reader Application. You do not
 currently have any RSS Feeds. Please use the "Add Feed"
 button below to begin.
 </p>
 <ul id="feedList" data-role="listview" data-inset="true"
 data-
 split-icon="delete">
 Add
 Feed
 </div>
 <div data-role="footer">
 <h4>Created with jQuery Mobile</h4>
 </div>
 </div>
 <script>
 $(document).on("pagecreate", "#intropage", function(e) {
 init();
 });
 </script>
 </body>
</html>

As mentioned before in the code, we need to load up our jQuery and jQuery Mobile
templates first. You can see that in the beginning of the previous code. Most of the
remaining part of the page is boiler-plate HTML you saw in the previous chapter,
so let's call out a few specifics.

Firstly, make note of the introductory paragraph. Notice the CSS to hide the text?
The assumption here is that, most of the time, the user won't need this text,
as they will have feeds. Our code then is going to handle showing it when necessary.

Following that paragraph is an empty list that will display our feeds. Right below
that is the button that will be used for adding new feeds.

Finally, we've got a bit of script at the end. This creates an event listener for
the jQuery Mobile page event, pagecreate, that we tie into to then start up
our application tasks.

Becoming an Expert – Building an RSS Reader Application

[208]

All of our code (our custom code that is) will be stored in main.js. This file is a bit
big, so we'll simply show parts of it that relate to each section. Please keep that in
mind as we go through the chapter. The entire file can be found with the rest of the
book's sample code:

Code 13-2: Portion of main.js
function init() {
//handle getting and displaying the intro or feeds
 $(document).on("pageshow", "#intropage", function(e) {
 displayFeeds();
 });

Our first snippet from main.js comes from the init function. Remember, this is run
on pagecreate for the home page. It's run before the page shows up. That makes it a
good place to go ahead and register a function for when the page is displayed. We've
taken most of that logic out into its own function, so let's take a look at that next.

The displayFeeds function
displayFeeds handles retrieving our feeds and displaying them. The logic is simple.
If there are no feeds, then we want to display the introductory text. Otherwise we
simply render out each feed:

Code 13-3: displayFeeds from main.js
function displayFeeds() {
 var feeds = getFeeds();
 if(feeds.length == 0) {
 //in case we had one form before...
 $("#feedList").html("");
 $("#introContentNoFeeds").show();
 } else {
 $("#introContentNoFeeds").hide();
 var s = "";
 for(var i=0; i<feeds.length; i++) {
 s+= "<a href='feed.html?id="+i+"' data-
 feed='"+i+"'>"+feeds[i].name+" <a href=''
 class='deleteFeed'
 data-feedid='"+i+"'>Delete";
 }
 $("#feedList").html(s);
 $("#feedList").listview("refresh");
 }
}

Chapter 13

[209]

Notice we also clean out the list. It's possible a user had feeds and deleted them.
By resetting the list to an empty string, we ensure that we don't leave anything
behind. If there are feeds, we create the list dynamically, ensuring we call the
listview("refresh") API at the end to ask jQuery Mobile to pretty up the list.

Storing our feeds
So where do the feeds come from? How do we store them? While we are using
PhoneGap and could make use of the embedded SQLite database implementation,
we can use something simpler—localStorage. localStorage is an HTML5
feature that allows you to store key/value pairs on the client. While you can't store
complex data, you can use JSON serialization to encode complex data before it's
stored. This makes storage of data extremely simple. Do keep in mind though,
that localStorage involves file storage. Your application needs to read from a file
whenever a change is made to the data. Since we are talking about a simple list of
feeds, this data should be relatively small:

Code 13-3: getFeeds, addFeed, and removeFeed
function getFeeds() {
 if(localStorage["feeds"]) {
 return JSON.parse(localStorage["feeds"]);
 } else return [];
}
function addFeed(name,url) {
 var feeds = getFeeds();
 feeds.push({name:name,url:url});
 localStorage["feeds"] = JSON.stringify(feeds);
}
function removeFeed(id) {
 var feeds = getFeeds();
 feeds.splice(id, 1);
 localStorage["feeds"] = JSON.stringify(feeds);
 displayFeeds();
}

The previous three functions represent the entire wrapper to our storage system.
getFeeds simply checks localStorage for the value, and if it exists, handles
converting the JSON data into a native JavaScript object using the parse function.
addFeed takes a feed name and URL, creates a simple object out of it, and stores the
JSON version. Finally, the removeFeed function simply handles finding the right item
in the array, removing it, and storing it back to localStorage. Storage is done using
the stringify function. As you can imagine, it takes data and turns it into a string.

Becoming an Expert – Building an RSS Reader Application

[210]

Adding an RSS feed
So far so good. Now let's look at the logic necessary to add a feed. If you remember,
the link we used to add a feed went to addfeed.html. Let's take a look at it:

Code 13-4: addfeed.html
<div data-role="page" id="addfeedpage" data-add-back-btn="true">
 <div data-role="header">
 <h1>Add Feed</h1>
 </div>
 <div data-role="content">
 <form id="addFeedForm">
 <div data-role="fieldcontain">
 <label for="feedname">Feed Name:</label>
 <input type="text" id="feedname" value="" />
 </div>
 <div data-role="fieldcontain">
 <label for="feedurl">Feed URL:</label>
 <input type="text" id="feedurl" value="" />
 </div>
 <input type="submit" value="Add Feed" data-theme="b">
 </div>
 <div data-role="footer">
 <h4>Created with jQuery Mobile</h4>
 </div>
</div>

There isn't much to this page outside of the form. Note that our form has no
action. We aren't using a server here. Instead our code is going to handle picking
up the form submission and doing something with it. Also note that we've not
done something we recommended earlier—putting the jQuery and jQuery Mobile
includes on top. Those includes are necessary in desktop applications because it's
possible the user may bookmark a page outside of your application's home page.
Since the eventual target for this code is a PhoneGap application, we don't have to
worry about that. This makes our HTML files a bit smaller. Now let's return to main.
js and look at the code that handles this logic.

The following code is a snippet from the init method of main.js. It handles the
button click on the form:

Code 13-5: Add Feed event registration logic
//Listen for the addFeedPage so we can support adding feeds
$(document).on("pageshow", "#addfeedpage", function(e) {

Chapter 13

[211]

 $("#addFeedForm").submit(function(e) {
 handleAddFeed();
 return false;
 });
});

Now we can take a look at handleAddFeed. I've abstracted this code, just to make
things simpler:

Code 13-6: handleAddFeed
function handleAddFeed() {
 var feedname = $.trim($("#feedname").val());
 var feedurl = $.trim($("#feedurl").val());
 //basic error handling
 var errors = "";
 if(feedname == "") errors += "Feed name is required.\n";
 if(feedurl == "") errors += "Feed url is required.\n";
 if(errors != "") {
 //Create a PhoneGap notification for the error
 navigator.notification.alert(errors, function() {});
 } else {
 addFeed(feedname, feedurl);
 $.mobile.changePage("index.html");
 }
}

For the most part, the logic here should be simple to understand. We get the feed name
and URL values, ensure they aren't blank, and optionally alert any error. If an error
didn't occur, then we run the addFeed method described earlier. Notice we make use
of the changePage API to return the user to the home page.

I'll call out one particular bit of code here, the line that handles displaying the error:

navigator.notification.alert(errors, function() {});

This line comes from the PhoneGap API for notifications (http://docs.phonegap.
com/en/3.0.0/cordova_notification_notification.md.html#notification.
alert). It creates a mobile-specific alert notification for your device. You can think of
it as a fancier JavaScript alert() call. The second argument is a callback function for
the alert window dismissal. Because we don't need to do anything in that situation,
we provide an empty callback that does nothing.

Becoming an Expert – Building an RSS Reader Application

[212]

Viewing a feed
Moving on, what happens when a user clicks to view a feed? This is probably
the most complex aspect of the application. We begin with the HTML template,
which is rather simple because most of the work is going to be done in JavaScript:

Code 13-7: feed.html
<div data-role="page" id="feedpage" data-add-back-btn="true">
 <div data-role="header">
 <h1></h1>
 </div>
 <div data-role="content" id="feedcontents">
 </div>
 <div data-role="footer">
 <h4>Created with jQuery Mobile</h4>
 </div>
</div>

This page basically acts as a shell. Note it has no real content at all, just empty HTML
elements waiting to be filled. Let's return to main.js and see how this works:

Code 13-8: Feed display handler (part 1)
//Listen for the Feed Page so we can displaying entries
$(document).on("pageshow", "#feedpage", function(e) {
 //get the feed id based on query string
 var query = $(this).data("url").split("=")[1];
 //remove ?id=
 query = query.replace("?id=","");
 //assume it's a valid ID, since this is a mobile app folks won't
 be messing with the urls, but keep
 //in mind normally this would be a concern
 var feeds = getFeeds();
 var thisFeed = feeds[query];
 $("h1",this).text(thisFeed.name);
 if(!feedCache[thisFeed.url]) {
 $("#feedcontents").html("<p>Fetching data...</p>");
 //now use Google Feeds API
 $.get("https://ajax.googleapis.com/ajax/services/feed/
 load?v=1.0&num=10&q="+encodeURI(thisFeed.url)+"&callback=?", {},
 function(res,code) {
 //see if the response was good...
 if(res.responseStatus == 200) {

Chapter 13

[213]

 feedCache[thisFeed.url] = res.responseData.feed.entries;
 displayFeed(thisFeed.url);
 } else {
 var error = "<p>Sorry, but this feed could not be
 loaded:</p><p>"+res.responseDetails+"</p>";
 $("#feedcontents").html(error);
 }
 },"json");
} else {
 displayFeed(thisFeed.url);
 }
});

This first snippet handles listening for the pageshow event on feed.html. This means
it will run every time the file is viewed, which is what we want since it is used for
every different feed. How does that work? Remember that our list of feeds included
an identifier for the feed itself.

for(var i=0; i<feeds.length; i++) {
 s+= "<a href='feed.html?id="+i+"' data-
 feed='"+i+"'>"+feeds[i].name+" <a href=''
 class='deleteFeed'
 data-feedid='"+i+"'>Delete";
}

jQuery Mobile provides us access to the URL via the data (url) API. Since this returns
the entire URL and we only care about code after the question mark, we can use some
string functions to clean it up. The end result is a numeric value query that we can use
to fetch the data out of our feed query. In a regular desktop application, it would be
pretty simple for a user to mess with the URL parameters. Therefore, we'd do some
checking here to ensure that the value requested actually exists. Since this is a single
user application on a mobile device, it really isn't necessary to worry about that.

Before we try to fetch the feed, we make use of a simple caching system. The very
first line in main.js creates an empty object:

//used for caching
var feedCache= {};

This object will store the results from our feeds so that we don't have to constantly
re-fetch them. That's why the following line is run before we do any additional
network calls:

if(!feedCache[thisFeed.url]) {

Becoming an Expert – Building an RSS Reader Application

[214]

So how do we actually get the feed? Google has a cool service called the Feed API
(https://developers.google.com/feed/). It lets us use Google to handle fetching
in the XML of an RSS feed and converting it to JSON. JavaScript can work with XML,
but JSON is far easier since it becomes regular, simple JavaScript objects. We've got
a bit of error handling, but if everything works well, we simply cache the result.
The final bit is a call to displayFeed:

Code 13-9: displayFeed
function displayFeed(url) {
 var entries = feedCache[url];
 var s = "<ul data-role='listview' data-inset='true'
 id='entrylist'>";
 for(var i=0; i<entries.length; i++) {
 var entry = entries[i];
 s += ""+
 entry.title+"";
 }
 s += "";
 $("#feedcontents").html(s);
 $("#entrylist").listview();
}

All that the previous block does is iterate over the result feed. When Google parsed
the XML from the feed, it turned into an array of objects we can loop over. While there
are a number of properties in the feed we may be interested in for the list, we care
about the title only. Notice how we build our link. We pass the numeric index and the
URL (which we will use in the next portion). This is then rendered to a simple jQuery
Mobile listview.

Creating the entry view
Ready for the last part? Let's look at the individual entry display. As before,
we'll begin with the template:

Code 13-10: entry.html
<div data-role="page" id="entrypage" data-add-back-btn="true">
 <div data-role="header">
 <h1></h1>
 </div>
 <div data-role="content">
 <div id="entrycontents"></div>
 Visit Entry
 </div>
 <div data-role="footer">

Chapter 13

[215]

 <h4>Created with jQuery Mobile</h4>
 </div>
</div>

Similar to feed.html before it, entry.html is an empty shell. Note that the header,
the content, and the link are empty. All of these will be replaced with real code.
Let's head back to main.js and look at the code that handles this page:

Code 13-11: Entry page event handler
$(document).on("pageshow", "#entrypage", function(e) {
 //get the entry id and url based on query string
 var query = $(this).data("url").split("?")[1];
 //remove ?
 query = query.replace("?","");
 //split by &
 var parts = query.split("&");
 var entryid = parts[0].split("=")[1];
 var url = parts[1].split("=")[1];
 var entry = feedCache[url][entryid];
 $("h1",this).text(entry.title);
 $("#entrycontents",this).html(entry.content);
 $("#entrylink",this).attr("href",entry.link);
});

So what's going on here? Remember that we passed an index value (which entry was
clicked, the first or the second?) and the URL of the feed. We parse out those values
from the URL. Once we know the URL of the feed, we can use our cache to get the
specific entry. Once we have that, it's a simple matter to update the header, contents,
and link. And that's it!

Going further
You can take the code from this application and upload it to the PhoneGap Build
service now to try it out on your own device. But what else could we have done?
Here's a short list of things to consider:

•	 PhoneGap provides a connection API (http://docs.phonegap.com/
en/3.0.0/cordova_connection_connection.md.html#Connection)
that returns information about the device's connection status. You could
add support for this to prevent the user from trying to read a feed when
the device isn't online.

Becoming an Expert – Building an RSS Reader Application

[216]

•	 While we store the user's feeds in localStorage, the cached data from
reading the RSS entry is stored temporarily. You could also store that data
and use it when the user is offline.

•	 PhoneGap has an excellent plugin API and a great variety of plugins are
already available. (http://plugins.cordova.io/) One of these plugins
allows for easier sending of SMS messages. You could add an option to send
an entry title and link to a friend via SMS. Did we mention PhoneGap also
lets you work with your contacts? See the Contacts API for more information:
http://docs.phonegap.com/en/3.0.0/cordova_contacts_contacts.
md.html#Contacts.

Hopefully you get the idea. This is only one example of the power of jQuery Mobile
and PhoneGap.

Summary
In this chapter, we took what we had learned about PhoneGap from the previous
chapter and created a full, if rather simple, mobile application making use of jQuery
Mobile for design and interactivity.

Index
Symbols
$(document).ready 156
$.mobile.activePage property 138
$.mobile.changePage(page,options) method

138
$.mobile.loadPage(page,options) 139
$.mobile.navigate(url, data) method 139
$.mobile.path.get() function 139
$.mobile.path.isAbsoluteUrl function 139
$.mobile.path.isRelativeUrl function 139
$.mobile.path.makeUrlAbsolute() function

140
<div> wrapper 20

A
accelerometer API 191
accordion 94
addFeed function 209
addFeed method 211
Add Note feature

bindings function, adding 116, 117
building 116
data, collecting 118, 119
data, storing 118, 119

addNote() function 118, 121
add note wireframe

designing 108
Adobe® Kuler® 172
AJAX 64
alert() function 211
allowSamePageTransition option 138
Apache Cordova 192
API, PhoneGap 191, 192
app.checkForStorage() function 121

app.getNotes() method 122
app variable 113
autodividers 46

B
back button

adding 32
working with 31-33

background-size property 189
Balsamiq Mockups

URL 107
Bars (.ui-bar-?) 168
bind() function 123
bindings() function

 about 123, 126
 adding 116, 117

boilerplate 116
border-radius 160, 161
box-shadows

about 163, 164
using 163, 164

button() method 145
buttons, jQuery Mobile library 169

C
callback 125
camera API 191
change event

pagebeforechange 153
pagechange 153
pagechangefailed 153

changeHash option 138
changePage API 211
checkboxes

working, with form 68-71

[218]

ColdFusion
about 63
URL, for downloading 64

collapsible content
working with 90-95

Column Toggle feature
enabling 100

compass API 192
configuration, jQuery Mobile

JavaScript used 129-131
connection API 192

URL 215
contacts API 192, 200

URL 216
URL, for documentation 197

content
laying out 84-88
prefetching 26, 27

content blocks 168
Content Delivery Network (CDN) 13
count bubbles

lists, creating with 46, 47
CSS 3 160
CSS gradients 164-166
CSS gradients, options

linear gradients 164
radial gradients 164

custom icon
adding, to Notekeeper app 188, 189
designing 185, 186

customization, jQuery Mobile
about 26
content, prefetching 26
page title 26
page transitions, modifying 27

custom theme
adding, to Notekeeper app 187, 188
creating 171
using 171

D
data

collecting 118, 119
storing 118, 119

data-add-back-btn attribute 32

data attributes 16, 18
using 16

database 114
data-column-btn-text attribute 101
data-content-theme attribute 92
data() function 126
data-href attribute 126
data-icon attribute 31, 170, 188
data option 138
data-position attribute 103
data-position-to attribute 96, 97
data-ray attribute 16
data-rel attribute 32, 81, 82, 83, 84, 96, 103
data-role attribute 90
data-theme attribute 167, 169
dataUrl option 138
default icons 170, 171
delete button wireframe 108
deleteNote() function 127
deserialization 115
design pattern

about 111
using 111

device API 192
deviceready event 200
dialog

about 81
creating 81-84
differentiating, with popups 95

displayFeeds function 208, 209
displayNote() function 123
Display Notes feature

building 119, 120
displayNotes() function 119-121
div attribute 78
div tag 30, 34, 35, 37, 38, 68, 70, 85, 86, 91, 92,

94, 95, 96, 102, 124, 145
div wrapper 57
Document Object Model (DOM) 16
Download Builder tool

URL 14
used, for downloading jQuery Mobile 14

drop shadows
about 162
applying 162
box shadows 162-164
text shadows 162

[219]

E
echo.cfm template 66
entry view

creating 214, 215
events

about 147
page events 153, 155
physical events 147

events API 192

F
feed

adding 210, 211
storing 209
viewing 212, 213, 214

feed API
URL 214

fieldcontain wrapper 65
fieldset tag 68, 70, 74
file 192

multiple pages, adding 20-22
five-column grids 84
fixed footers

creating 35, 36
fixed headers

creating 35, 36
flip toggle fields

about 75
creating 76

footers
persisting 38, 39
working with 33, 34

footer text 35
form

about 63
checkboxes, working 68-71
flip toggle fields, creating 76
jQuery Mobile, working with 64-68
mini fields, working with 79, 80
radio buttons, working 68-71
search fields, using 75
select menus, working 71-75
slider fields, enabling 77, 78

form utilities, jQuery Mobile 142-145

four-column grids 84
full-screen footers

creating 35, 36
full-screen headers

creating 35, 36
functionalities

adding to Notekeeper app, with JavaScript
111-113

G
geolocation API 192
getFeeds function 209
globalization API 192
grids

about 84
content, laying out 84-88
five-column 84
four-column 84
three-column 84
two-column 84

H
headers

adding 29-31
high resolution 186
home page 5-58
hotel mobile site

building 55
features 55
home page 56-58
hotel, contacting 61, 62
hotel, finding 58, 59
hotel rooms, listing 60

href attribute 123
HTML

native application, creating from 191, 192
writing 109-111

HTML page
building 11-13

I
icon

 specifying 31
 using 47-49

[220]

init event
pagebeforecreate 153
pagecreate 153
pageinit 153

init function 113, 208
init() function 117, 121, 122, 210
inset keyword 163
inset lists

about 44
creating 44

J
JavaScript

functionalities, adding to Notekeeper app
111-113

used, for configuring jQuery Mobile
129-131

JavaScript Object Notation (JSON) 156
jQuery library

URL 14
jQuery Mobile 11

about 13, 14
border-radius 160, 161
building blocks 160
collapsible content, working with 90-95
configuration options 13-137
configuring, JavaScript used 129-131
CSS gradients 164-166
data attributes, using 16
dialog, creating 81-84
downloading, Download Builder tool used

14
drop shadows, applying 162
events 147
form utilities 142-145
grids 84-88
hotel mobile website, building 55
implementing 14-16
links, modifying 22
lists 41
multiple pages, adding to file 20-22
NavBars, working with 37, 38
page method 138, 139
page utilities 138, 139

panel widget, working with 102-104
popups, creating 95, 96
responsive table, creating 98-101
RSS Reader application, creating 206-208
theming 167
URL, for downloading 13
URLs, updating 25, 26
utilities, using 137
widget 142-145
working, with form 64-68

jQuery Mobile pages
back buttons, working with 31-33
fixed footers, creating 35, 36
fixed headers, creating 35, 36
footers, working with 33, 34
full-screen footers, creating 35, 36
full-screen headers, creating 35, 36
headers, adding 29-31
icon, specifying 31

L
layout event

updatelayout 153
linear gradients 164
links

modifying 22
list dividers

creating 45
lists

about 41
autodividers 46
creating 41-44
creating, with count bubbles 46, 47
features 44
icons, using 47-49
inset lists, creating 44
list dividers, creating 45
search filter, using 51-53
split button list, creating 49, 50
thumbnails, using 47-49

listview
about 169
notes, adding to 121, 122

listview() function 122, 144, 145
li template 123

[221]

load event
pagebeforeload 153
pageload 153
pageloadfailed 153

loadNote() function 123
localStorage 114

used, for storing Notekeeper data 114, 115
low-resolution icon

about 186
creating, steps 185

M
main.js file 208-215
matching swatches 169
media API 192
mini fields

working with 79, 80
mixing swatches 169
mobile application

about 105, 106
reference link 105

mobile device
resolution 186

mobileinit event 130
multiple files

working with 23-25
multiple pages

adding, to file 20-22

N
namespace 113
native application

creating 191
creating, from HTML 191, 192

native form controls
using 78, 79

NavBars
about 37
footers, persisting across multiple pages 38,

39
working with 37

navigation bars. See NavBars
network API 192
newPage variable 125

Notekeeper app 105
add note wireframe, designing 108
custom icon, adding 188, 189
custom icon, designing 185, 186
custom theme, adding 187, 188
delete button wireframe 108
designing 106
functionalities, adding to 111-113
HTML, writing 109-111
notes wireframe, displaying 108
requisites, listing 106, 107
updating 187
view note wireframe 108
wireframe, building 107

Notekeeper data
storing 114
storing, localStorage used 114, 115

Notekeeper data, storing
database 114
localStorage 114
pros and cons 114
text file 114

note object 124
notes

adding, to listview 121, 122
deleting 126
viewing 122
viewing, on() method used 123

notesObj variable 118, 120
notes wireframe

displaying 108
notification API 192

O
on() method

used, for viewing notes 123
orientationchange event 148

P
pagebeforechange event 153
pagebeforecreate event 153, 157
pagebeforehide event 153
pagebeforeload event 153
pagebeforeshow event 153, 158
pagechange event 153

[222]

pagechangefailed event 153
pageContainer option 138
pagecreate event 153, 207
page events

$(document).ready 156
about 153, 155
change event 153
init event 153
layout event 153
load event 153
real example 156, 157, 158
remove event 153

pagehide event 153
pageinit event 153
pageInit event 156
pageload event 153
pageloadfailed event 153
page method, jQuery Mobile 138, 139
pageremove event 153
pageshow event 153, 213
page title 26
page transitions

modifying 27
page utilities, jQuery Mobile 138, 139
page variable 124
panel widget

working with 102-104
parse() function 115, 118
path-related utilities 139-142
path-related utilities, jQuery Mobile 139-

142
people.json file 157
PhoneGap

API 191
native application, creating, from HTML

191
URL 106, 191

PhoneGap Build service
about 193-195
URL 193

PhoneGap Docs
URL 192

PhoneGap functionality
adding 197-200

PhoneGap project
creating 192-196

physical events
about 147
orientationchange 148
scrollstart 148
scrollstop 148
swipe 148
swipeleft 148
swiperight 148
tap 148
taphold 148
vclick 148
vmousecancel 148
vmousedown 148
vmousemove 148
vmouseover 148
vmouseup 148

plugin API
URL 216

popups
about 95, 96
creating 95, 96
differentiating, with dialogs 95

position property 35

R
radial gradients 164
radio buttons

working, with form 68-71
Really Simple Syndication. See RSS
refresh keyword 122
reloadPage option 138
remove event

pageremove 153
removeFeed function 209
replace function 118, 121
resolution

about 186
concerns 186, 187
high resolution 186
low resolution 186

responsive grids
making 88-90

responsive table
creating 98-101

reverse option 138

[223]

role option 138
RSS 203
RSS Reader application

about 203-206
creating 206-208
displayFeeds function 208, 209
entry view, creating 214, 215
feed, adding 210, 211
feed, storing 209
feed, viewing 212-214

S
scrollstart event 148, 152
scrollstop event 148, 152
search fields

about 75
using 75

search filter
using 51-53

select menus
working, with form 71-75

self-executing function 112
serialization 114
showLoadMsg option 138
site-wide active state 170
slider fields

about 75- 78
enabling 77, 78

split button list
creating 49, 50

split-icon attribute 50
Static Maps

URL 59
storage API 192
stringify() function 114, 115, 209
structure.css file 188
swipe event 148, 149
swipeleft event 148-151
swiperight event 148-151

T
tap event 148, 149
taphold event 148, 149
tester application 140
Text file 114

text shadows
about 162
using 162

ThemeRoller
about 172
URL 159, 171
using 172

theming, jQuery Mobile
about 167
bars 168
buttons 169
content blocks 168
default icons 170, 171
listviews 169
matching swatches 169
mixing swatches 169
site-wide active state 170

three-column grids 84
thumbnails

using 47-49
transition event

pagebeforechange 153
pagebeforehide 153
pagebeforeload 153
pagebeforeshow 153
pagehide 153
pageshow 153

transition option 138
two-column grids 84
type option 138

U
ui-icon prefix 188
updatelayout event 153
URL-related utilities 139-142
URL-related utilities, jQuery Mobile

139-142
URLs

updating 25, 26
utilities

using 137

V
val() function 117
vclick event 148
vendor prefixes 161

[224]

view note wireframe 108
vmousecancel event 148
vmousedown event 148
vmousemove event 148
vmouseover event 148
vmouseup event 148

W
Web 2.0 160
widget, jQuery Mobile 142-145
wireframe

building 107

Thank you for buying
jQuery Mobile Web Development Essentials

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Creating Mobile Apps with jQuery
Mobile
ISBN: 978-1-78216-006-9 Paperback: 254 pages

Learn to make practical, unique, real-world sites that
span a variety of industries and technologies with the
world’s most popular mobile development library

1.	 Write less, do more: learn to apply the jQuery
motto to quickly craft creative sites that work
on any smartphone and even not-so-smart
phones.

2.	 Learn to leverage HTML5 audio and video,
geolocation, Twitter, Flickr, blogs, Reddit,
Google maps, content management system, and
much more.

3.	 All examples are either in use in the real world
or were used as examples to win business
across several industries.

jQuery for Designers: Beginner’s
Guide
ISBN: 978-1-84951-670-9 Paperback: 332 pages

An approachable introduction to web design in
jQuery for non-programmers

1.	 Enhance the user experience of your site by
adding useful jQuery features.

2.	 Learn the basics of adding impressive jQuery
effects and animations even if you've never
written a line of JavaScript.

3.	 Easy step-by-step approach shows you
everything you need to know to get started
improving your website with jQuery.

Please check www.PacktPub.com for information on our titles

jQuery Game Development
Essentials
ISBN: 978-1-84969-506-0 Paperback: 244 pages

Learn how to make fun and addictive multi-platform
games using jQuery

1.	 Discover how you can create a fantastic RPG,
arcade game, or platformer using jQuery!

2.	 Learn how you can integrate your game with
various social networks, creating multiplayer
experiences and also ensuring compatibility
with mobile devices.

3.	 Create your very own framework, harnessing
the very best design patterns and proven
techniques along the way.

jQuery Hotshot
ISBN: 978-1-84951-910-6 Paperback: 296 pages

Ten practical projects that exercise your skill, build
your confidence, and help you master jQuery

1.	 See how many of jQuery's methods and
properties are used in real situations. Covers
jQuery 1.9.

2.	 Learn to build jQuery from source files, write
jQuery plugins, and use jQuery UI and jQuery
Mobile.

3.	 Familiarise yourself with the latest related
technologies like HTML5, CSS3, and
frameworks like Knockout.js.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Preparing Your First jQuery Mobile Project
	Important preliminary points
	Building an HTML page
	Getting jQuery Mobile
	Customized Downloads

	Implementing jQuery Mobile
	Working with data attributes
	Summary

	Chapter 2: Working with jQuery
Mobile Pages
	Important preliminary points
	Adding multiple pages to one file
	jQuery Mobile, links, and you
	Working with multiple files
	jQuery Mobile and URLs
	Additional customization
	Page titles
	Prefetching content
	Changing page transitions

	Summary

	Chapter 3: Enhancing Pages with Headers, Footers,
and Toolbars
	Important preliminary points
	Adding headers
	Icon sneak peak
	Working with back buttons
	Working with footers
	Creating fixed and full-screen headers and footers
	Full-screen headers and footers

	Working with navigation bars
	Persisting navigation bar footers across multiple pages

	Summary

	Chapter 4: Working with Lists
	Creating lists
	Working with list features
	Creating inset lists
	Creating list dividers
	Autodividers

	Creating lists with count bubbles
	Using thumbnails and icons
	Creating split button lists
	Using a search filter

	Summary

	Chapter 5: Getting Practical – Building a Simple Hotel Mobile Site
	Welcome to Hotel Camden
	The home page
	Finding the hotel
	Listing the hotel rooms
	Contacting the hotel
	Summary

	Chapter 6: Working with Forms and jQuery Mobile
	Before you begin
	What jQuery Mobile does with forms
	Working with radio buttons and checkboxes
	Working with select menus
	Search, toggle, and slider fields
	Search fields
	Flip toggle fields
	Slider fields

	Using native form controls

	Working with the mini fields
	Summary

	Chapter 7: Creating Modal Dialogs
and Widgets
	Creating dialogs
	Laying out content with grids
	Making responsive grids

	Working with collapsible content
	Popups
	Responsive tables
	Working with panels
	Summary

	Chapter 8: Moving Further with the Notekeeper Mobile Application
	What is a mobile application?
	Designing your first mobile application
	Listing out the requirements
	Building your wireframes
	Designing the add note wireframe
	Display notes wireframe
	View note/delete button wireframe

	Writing the HTML

	Adding functionalities with JavaScript
	Storing Notekeeper data
	Using localStorage

	Effective use of boilerplates
	Building the Add Note feature
	Adding bindings
	Collecting and storing the data
	Building the Display Notes feature

	Dynamically adding notes to our listview
	Viewing a note
	Using the .on() method

	Dynamically creating a new page
	Deleting a note

	Summary

	Chapter 9: jQuery Mobile Configuration, Utilities, and JavaScript Methods
	Configuring jQuery Mobile
	Using jQuery Mobile utilities
	Page methods and utilities
	Path and URL-related utilities

	jQuery Mobile widget and form utilities
	Summary

	Chapter 10: Working with Events
	Working with physical events
	Handling page events
	What about $(document).ready?
	Creating a real example

	Summary

	Chapter 11: Enhancing jQuery Mobile
	What's possible?
	The Visual building blocks of jQuery Mobile
	Border-radius
	Applying drop shadows
	Using text-shadow
	Using box-shadow
	CSS gradients

	The basics of jQuery Mobile theming
	Bars (.ui-bar-?)
	Content blocks (.ui-body-?)
	Buttons and listviews (.ui-btn-?)
	Mixing and matching swatches
	Site-wide active state
	Default icons

	Creating and using a custom theme
	What's ThemeRoller?
	Using ThemeRoller
	Preview
	Colors
	Inspector
	Tools
	Creating a theme for Notekeeper
	Exporting your theme

	Creating and using custom icons
	CSS Sprites
	Designing your first icon
	High and low resolution
	Resolution independence

	Updating the Notekeeper app
	Adding our custom theme
	Adding our custom icon

	Summary

	Chapter 12: Creating Native Applications
	HTML as a native application
	Working with PhoneGap
	Adding PhoneGap functionality

	Summary

	Chapter 13: Becoming an Expert - Build an RSS Reader Application
	RSS Reader – the application
	Creating the RSS Reader application
	The displayFeeds function
	Storing our feeds
	Adding an RSS feed
	Viewing a feed
	Creating the entry view
	Going further

	Summary

	Index

