
www.allitebooks.com

http://www.allitebooks.org

jQuery Mobile
Cookbook

Over 80 recipes with examples and practical tips to help
you quickly learn and develop cross-platform applications
with jQuery Mobile

Chetan K Jain

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

jQuery Mobile Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2012

Production Reference: 1011112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-722-5

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Chetan K Jain

Reviewers
Shaun Dunne

Ankit Garg

Yousef Jadallah

Acquisition Editor
Usha Iyer

Lead Technical Editor
Arun Nadar

Technical Editors
Kirti Puajri

Lubna Shaikh

Project Coordinator
Vishal Bodwani

Proofreader
Aaron Nash

Maria Gould

Indexer
Hemangini Bari

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Chetan K Jain loves to code, and has been writing code for over 16 years now. He is a
Senior Architect, and has worked on mobile technologies for over 4 years for Nokia. Since
then, he has moved on to work as a freelance consultant.

Chetan has significant experience in writing cross-platform mobile apps using jQuery Mobile,
HTML5, CSS3, JavaScript, Nodejs, and has also worked extensively on Qt. Prior to mobile
technologies, he has worked with Java technology and was also certified as an MCSD and
MCSE in his early days.

Chetan is an active contributor to open source development, and tries to help jQuery Mobile
development whenever he can. He regularly participates in developer forums, and was earlier
a top-ranked member and a "mad scientist" in the Nokia Qt Developer Forum.

Chetan was born in Bangalore and lives there with his wife Shwetha and son Tanmay.

The only time he ventured to live away from Bangalore was when he worked for over
4 years in the USA. His adventure didn't end there. He did a solo US cross country drive
in his two door coupe from the east coast to the west and back, driving alone for over
8000 plus miles in 16 days to experience and live life as he calls it. His travelogue can
be found at http://adventure.chetankjain.net.

Chetan has contributed and published over 15 books to Gutenberg as a volunteer.
He has also published four books on Jaina Literature and History written by his mother
Saraswathamma. He is a voracious reader, and his other interests include music,
movies, and travelling. Photography is his favorite hobby, and his clicks can be found at
http://www.facebook.com/chetankjainphotos/photos_stream.

Chetan can be reached at chetankjain@gmail.com. He also blogs at
http://dev.chetankjain.net.

www.allitebooks.com

http://www.facebook.com/chetankjainphotos/photos_stream
mailto:chetankjain@gmail.com
http://dev.chetankjain.net/
http://www.allitebooks.org

Acknowledgement

First and foremost, my wife Shwetha and son Tanmay deserve full credit for the completion
of this book. This book was possible only because of their understanding, support, and
countless sacrifices. For days I would be unavailable, miss many family events, and yet they
continued to shower me with all their love and affection.

I thank my parents, Mahendra Kumar Jaini and Saraswathamma, for their love, support, and
for everything that I am today. I miss my father, but he is always there with me. My mother is
my muse, and I follow her footsteps now as an author.

I have a very supportive sister Suma Jain and nephew Poojith Jain who never fail to pep me
up. Ashwin Das, is family, and I enjoy bouncing all my ideas with him.

I thank my very close friend, Chidananda P, for all the help and support that he continues to
give me. I thank my childhood friend Anand Rao for always being there as my buddy and for
encouraging every project of mine.

My venture into mobile space has been very enjoyable. I thank all my former colleagues in
Nokia—Prahalad Rao for being a great manager and for directly supporting me at work when
I started this book, Sathish EV for all those initial reviews, Bhuwan Lodha for encouraging me
to blog, Ashwin Das, Karthik S, Prasad S, Pavanesh, and Krishna KN for all the suggestions
given. A very special thanks to Govind Ashrit, who actually urged me to write this book.
Thank you guys!

I also thank Shaun Dunne, Ankit Garg, and Yousef Jadallah for reviewing the technical content
of the book, and suggesting valuable changes and corrections.

Finally, I thank Packt Publishers and Usha Iyer for giving me this opportunity. My heartfelt
thanks to my editors Vishal Bodwani, Arun Nadar, Kirti Pujari, and Lubna Shaikh for tirelessly
reviewing my writing—multiple times, and giving me many valuable suggestions. You guys were
just great!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Shaun Dunne is a Developer working for SapientNitro in London, UK, and has been
coding since 2008 with a passion for JavaScript and all the front-end goodness. Working
for a large agency over the past few years, Shaun has had the chance to use various web
technologies to build large scale applications, and found a passion for getting other people
excited about the web.

Shaun has been hacking the mobile web for a couple of years, trying and testing all the tools
available and sharing his discoveries where he can, to ensure that others are aware of what is
available to use and in what situation.

When he's not working or spending some family time with his kids, he can usually be found
on the web, tinkering, blogging, and building things. He's currently working on his own book,
a self-published title about SASS and Friends called UberCSS, which is due to be released in
the winter of 2012.

Ankit Garg is a Front-End Developer at iGate Global Solutions. He likes to call himself a
Mobile Web Application Developer, a JavaScript Developer, and a blogger.

He likes reading, practicing, and blogging new things in the Mobile Web and JavaScript space.
If you would like to reach him, send him an e-mail to gargankit90@gmail.com.

www.allitebooks.com

http://www.allitebooks.org

Yousef J. Jadallah is a software developer. He has good hands-on experience of web
and .NET technologies, such as ASP.NET, SQL Server, AJAX, ASP.NET AJAX, C#,VB.NET, jQuery
Mobile, HTML5, Web Services, and REST.

He spends most of his leisure time helping the communities on Microsoft technologies,
specifically in the Microsoft official forum. He is honored with the Microsoft Community
Contributor Award - 2011 (CCA).

He is from Jordan. You can contact with him through his blog:
http://weblogs.asp.net/yousefjadallah.

www.allitebooks.com

http://weblogs.asp.net/yousefjadallah
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

To Shwetha and Tanmay, you fill my life with joy and wonder.

Table of Contents
Preface	 1
Chapter 1: Get Rolling	 7

Introduction	 7
Writing your first jQuery Mobile application	 9
Using JS Bin to create a simple application	 12

Chapter 2: Pages and Dialogs	 17
Introduction	 17
Writing a single-page template application	 18
Writing a multi-page template application	 22
Prefetching pages for faster navigation	 25
Using the DOM cache to improve performance	 29
Custom styling a dialog	 32
Using CSS to create a bouncing page transition	 36
Using JS to create a slide and fade page transition	 40
Using data-url to handle the login page navigation	 44
Using History API to create a custom error pop up	 48

Chapter 3: Toolbars	 55
Introduction	 55
Using fullscreen fixed toolbars	 55
Using persistent navbars in toolbars 	 59
Customizing the header with multiple buttons	 64
Adding a customized round button to the header	 66
Adding an image to the header	 69
Adding a customized back button	 70
Adding a layout grid to the footer	 73

ii

Table of Contents

Chapter 4: Buttons and Content Formatting	 77
Introduction	 77
Scripting a dynamically added button	 78
Using a custom icon in a button	 80
Adding a custom icon sprite	 83
Replacing the default icon sprite	 86
Using alternate icons in a collapsible	 89
Creating a nested accordion	 92
Creating a custom layout grid	 94
Using XML content	 96
Using JSON content	 99

Chapter 5: Forms	 105
Introduction	 105
Native styling of form controls	 105
Disabling text controls	 108
Grouping radio buttons in a grid	 110
Customizing a checkbox group	 113
Creating dynamic flip switch and slider controls	 117
Using options to auto-initialize a select menu	 120
Validating forms	 123
Submitting a form using POST	 126
Fetching data using GET	 130
Creating an accessible form	 133

Chapter 6: List Views	 137
Introduction	 137
Using inset and non-inset lists	 138
Creating a custom numbered list	 140
Using a nested list	 142
Using a read-only nested list	 145
Formatting content in a list	 147
Using a split button list	 150
Using image icons	 154
Creating a custom search filter	 155
Modifying a list with JavaScript	 159

Chapter 7: Configurations	 163
Introduction	 163
Configuring the active classes	 163
Configuring ajaxEnabled	 167
Configuring autoInitializePage	 169
Configuring the default transitions	 170

iii

Table of Contents

Configuring ignoreContentEnabled	 172
Configuring the page loading and error messages	 174
Configuring the default namespace	 176
Configuring hashListeningEnabled and subPageUrlKey	 178
Configuring pushStateEnabled and linkBindingEnabled	 180

Chapter 8: Events	 183
Introduction	 183
Using orientation events	 183
Using scroll events	 185
Using touch events	 186
Virtual mouse events	 190
Page initialization events	 194
Page load and remove events	 196
Page change events	 201
Page transition and animation events	 205
Using layout events	 210

Chapter 9: Methods and Utilities	 213
Introduction	 213
Using loadPage() to load a page	 213
Using changePage() to change a page	 216
Using jqmData() and jqmRemoveData()	 220
Using jqmEnhanceable()	 222
Using jqmHijackable	 224
Using $.mobile.base	 226
Parsing an URL	 228
Using $.mobile.path utility methods	 231
Using silent scrolling	 235

Chapter 10: The Theme Framework	 239
Introduction	 239
Theming a nested list	 239
Using a custom background	 242
Using custom fonts	 244
Styling corners	 247
Overriding the global Active State theme 	 249
Overriding an existing swatch	 252
Using the ThemeRoller tool to create a swatch	 255

Chapter 11: HTML5 and jQuery Mobile	 261
Introduction	 261
Using the new HTML5 semantics	 262
Improving speed and taking your application offline	 265

iv

Table of Contents

Using Web Workers for intensive tasks	 270
Using local and session storage	 273
2D drawing with Canvas	 277
Applying Gaussian blur on a SVG image	 279
Tracking your location with the Geolocation API	 282
Playing music with the <audio> element	 284
Viewing videos with the <video> element	 286

Index	 289

Preface
jQuery Mobile is an award winning, HTML5/CSS3-based open source, cross-platform UI
framework. It offers a very cool and highly customizable UI. It is built on the popular jQuery
library and uses declarative coding, making it easy to use and learn. It is the market leader
today, considering the numerous browsers and platforms that it supports.

jQuery Mobile Cookbook presents over eighty recipes written in a simple and easy manner.
You can quickly learn and start writing the code immediately. Advanced topics, such as using
scripts to manipulate, customize, and extend the framework, are also covered. These tips
address your common everyday problems. The book is very handy for both beginner and
experienced jQuery Mobile developers.

You start by developing simple apps using various controls and learn to customize them. Later,
you explore using advanced aspects, such as configurations, events, and methods.

Develop single and multi-page applications. Use caching to boost performance. Use
custom transitions, icon sprites, styles, and themes. Learn advanced features, such as
configurations, events, and methods. Explore the new features and semantics of HTML5
using it with jQuery Mobile.

jQuery Mobile Cookbook is an easy read, and is packed with practical tips and screenshots.

What this book covers
Chapter 1, Get Rolling, begins with a brief introduction on what the jQuery Mobile framework
is and what it can do for you. You will get to write your first jQuery Mobile cross-platform app
here. You will also see how to use the online JSBin tool to develop and test your apps.

Chapter 2, Pages and Dialogs, here you will learn how to compare and use single page and
multi-page template applications. You will learn various performance-enhancing techniques,
such as prefetching and using the DOM cache to improve your page loading speed. You
will create new custom transitions using JavaScript and CSS, and also learn to use page
redirection for a login page. You will also create a custom styled dialog, and use the HTML5
History API to create your own custom pop up.

Preface

2

Chapter 3, Toolbars, here you will learn how to use fixed and full screen toolbars and how to
persist your navigation links across pages. You will see how you can create and add custom
round buttons, images, and a custom back button to the header, and a grid layout to the footer.

Chapter 4, Buttons and Content Formatting, here you will use JavaScript to dynamically create
a button and assign an action to it. Then, you will learn how to use a custom icon, add a custom
icon sprite, and finally replace the existing icon sprite provided by the jQuery Mobile framework.
You will learn how to create nested accordions (collapsible sets), how to create a custom layout
grid, and finally see how to format and display XML and JSON content in your app.

Chapter 5, Forms, shows you how to natively style forms, disable text controls, and group
radio buttons into a multi-row grid. You will learn to customize a checkbox group, auto initialize
select menus, and create dynamic flip switch and slider controls. You will also see how to
validate and submit a form to a server using POST, and also how to fetch data using GET.
Finally, you will learn how to create an accessible form.

Chapter 6, List Views, here you will learn how to use various list types and also customize
them. You will use an inset list, custom number a list, and then create a read-only list. You will
see how to format list content, use a split button, and an image icon list. You will also create a
custom search filter for your list, and finally see how you can use JavaScript to modify a list.

Chapter 7, Configurations, shows you how to tweak, configure, and customize the various
options and settings provided by the jQuery mobile framework. Configuring the active classes,
enabling Ajax, auto initializing pages, configuring default transitions, customizing error and
page loading messages, and using your own custom namespace are all covered along with a
few more advanced configuration options.

Chapter 8, Events, shows you how to use the various events available in the framework. You
will learn to use the orientation, scroll, touch, virtual mouse, and layout events along with the
page initialization, page load, page change, and page remove events. You will also see how to
use the page transition and animation events.

Chapter 9, Methods and Utilities, here you will see how to use the methods and utilities
provided in the framework. The chapter runs through the methods provided by the framework
and lists working recipes for each of these. You will see how to load a page, change a page,
and also how to do silent scrolling.

Chapter 10, The Theme Framework, here you will learn how to theme a nested list, style
button corners, and use custom backgrounds and fonts. You will explore how to override the
global active state and override an existing swatch. Finally, you will use the ThemeRoller
web tool to create and use your own swatch.

Preface

3

Chapter 11, HTML5 and jQuery Mobile, here you will see how to use various HTML5 features
in your jQuery mobile app. You will explore some new HTML5 semantics, use the Application
Cache to take your app offline, use Web Workers to see how asynchronous operations are
done, and you will use web storage to store data using local and session storage. Then you
will see how to draw in 2D using the Canvas, use SVG image and apply a Gaussian blur filter
on it, track your device location using the Geolocation API, and finally see how to use audio
and video in your app.

What you need for this book
To work with jQuery Mobile, all you need is just your favorite text editor to write the HTML code.
You can then run this code in your favorite browser and launch your app on a wide variety
of platforms and devices. The full and detailed list of supported platforms and devices is
available at http://jquerymobile.com/gbs.

To install and run the recipes in the cookbook, you will have to download and install the
node.js web server from http://www.nodejs.org. The online docs at the nodejs
website has the simple steps that are required to install on your specific platform (Windows/
Linux/Mac). The source code bundle accompanying this cookbook just needs to be extracted,
and it contains all the required nodejs modules. You can now launch the recipes directly in
your browser. Refer to the Readme.txt file in the source code bundle for detailed instructions
on how to do this.

Who this book is for
If you are a beginner with jQuery/JavaScript skills, this book offers you numerous examples to
get you started.

If you are a seasoned developer, this book lets you explore jQuery Mobile in greater depth.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Now, open the main.html file in your favorite
browser, and you will see an output similar to the following screenshot:".

www.allitebooks.com

http://www.allitebooks.org

Preface

4

A block of code is set as follows:

<body>
 <!-- Main Page -->
 <div id="main" data-role="page">
 <div data-role="header">
 <h1>Welcome - JS BIN</h1>
 </div>
 <div id="content" data-role="content">
 <p>The jQuery Mobile Cookbook</p>
 </div>
 <div data-role="footer">
 <h4>Enjoy reading the book ...</h4>
 </div>
 </div>
</body>
</html>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<!DOCTYPE html>
<html>
<head>
<link href="http://code.jquery.com/mobile/latest
 /jquery.mobile.css" rel="stylesheet" type="text/css" />
<script src="http://code.jquery.com
 /jquery-1.7.1.min.js"></script>
<script src="http://code.jquery.com/mobile/latest
 /jquery.mobile.js"></script>
<meta name="viewport" content="width=device-width,
 initial-scale=1">
<title>Welcome using JS Bin</title>
</head>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "You can also manually run the
script by clicking on the Run with JS button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

5

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

6

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Get Rolling

In this chapter, we will cover the following recipes:

ff Writing your first jQuery Mobile application

ff Using JS Bin to create a simple application

Introduction
The jQuery Mobile Framework is an open source cross-platform UI framework. It is built
using HTML5, CSS3, and the very popular jQuery JavaScript library, and it follows Open Web
standards. It provides touch-friendly UI widgets that are specially styled for mobile devices.
It has a powerful theming framework to style your applications. It supports AJAX for various
tasks, such as page navigation and transitions.

As jQuery Mobile follows the open web standards, you can be sure that your application
can get maximum support and compatibility with a wide range of browsers and platforms.
You can write your application once and it will work seamlessly on iPhones, iPads, Android
phones and tablets, Blackberry, Bada, Windows, Symbian, Meego, and even the upcoming
HTML5-based platforms, such as Boot2Gecko and Tizen. The same code will run on Chrome,
Firefox, Opera, IE, Safari, and other browsers on your desktop. Further, it will work even on
your smart TV or any other gadget that has a compatible browser which is compliant with the
open web standards. The market reach potential is phenomenal.

The list of the currently certified supported browsers, platforms, and the grade of support is
available on the jQuery Mobile website at http://www.jquerymobile.com/gbs. Note that
some features, such as CSS 3D animations and AJAX, might not be supported on certain older
and legacy platforms. Here, the framework resorts to Progressive Enhancement. This means
that the basic functionality is supported initially. Later, when a more capable future browser
or platform becomes available, your application automatically makes use of its capabilities
and offers upgraded functionality. In most scenarios, you will not have to write the code or
interfere in any way. This is a big plus when you compare mobile web applications with mobile
native applications.

http://www.jquerymobile.com/gbs

Get Rolling

8

While coding native applications, you will have to write the code in different languages,
based on the platform. You will then have to compile the code for each platform, and build
binary packages that can run on the device. Upgrading the application to support the next
version means you have to go back and redo the whole exercise of checking/fixing your
code, rebuilding, and repackaging. This overhead compounds as you add support for more
platforms. The whole thing just becomes unmanageable after a point. You are better off by
just supporting the top one or two platforms for your application.

Of course, there are advantages of using native applications. The performance of your
application could be a very crucial factor. There are certain applications where you have to go
native, especially when you expect real-time responses. Also, with native apps, you can access
core OS and device features, such as camera, accelerometer, contacts, and calendar. This is
not easily done today with HTML5.

HTML5 is a relatively new entrant for mobile applications. But the gap is closing by the day.
There are libraries already available that expose the native features using simple JavaScript
API, which is directly available to your HTML5 app. PhoneGap is one such popular library.
Firefox's Boot2Gecko and Intel/Samsung's Tizen are totally based on HTML5, and you should
be able to access the core device functionality directly from the browser here. Things do look
very promising for the future.

The jQuery Mobile framework has a wide array of plugins and tools that help you build your
application. It has a very active and vibrant developer community, and new features are
continuously being added. It is strongly backed by companies, such as Filament Group, Mozilla,
Nokia, Palm, Adobe, Rhomobile, and others. Within its first year (in 2011), the framework has
already won awards, such as the Packt Open Source Award and the .NET Innovation Award.

Web-based mobile applications have evolved. They used pure native code for the UI in
the early days, then came flash and other plugin-based UI (such as Silverlight). But even
Adobe and Microsoft (with its Windows 8 platform) are going full steam ahead on HTML5
development. So, the situation is ripe for the explosive growth of an open source web
standards-based cross-platform framework, such as jQuery Mobile.

The jQuery Mobile framework requires you to use declarative syntax (HTML markup) for most
of the basic tasks and for building the UI. You have to fall back to scripting with JavaScript
only, where declarative syntax does not help, and of course for adding your application
logic. This is different from many other UI frameworks that are available in the market today.
The other frameworks require you to write much more JavaScript and have a much steeper
learning curve.

If you are familiar with HTML, CSS, and jQuery/JavaScript, then you will find it very easy to
learn jQuery Mobile. There are many popular IDEs and UI builders that you can use to visually
drag-and-drop UI controls and develop in jQuery Mobile. But to get started, all you need is your
favorite text editor to write the code. You will also need a browser (running on your desktop
or mobile) to test the application. You are now ready to write your first jQuery Mobile cross-
platform application.

Chapter 1

9

Writing your first jQuery Mobile application
A simple jQuery Mobile application consists of a page, which forms the basic building block
for your application. The page follows a basic structure with three main parts, the header, the
page content, and the footer. You can build feature-rich applications with workflows using
multiple pages, each page with its own functionality, logic, and navigational flow. This recipe
shows how to create a page and write your first jQuery Mobile application.

Getting ready
Copy the full code of this recipe from the code/01/welcome folder. You can launch this code
using the URL: http://localhost:8080/01/welcome/main.html.

How to do it...
Carry out the following steps:

1.	 Create the following main.html file using your favorite text editor:
<!DOCTYPE html>
<html>
 <head>
 <title>Welcome</title>
 <meta name='viewport' content='width=device-width,
 initial-scale=1'>

2.	 Include the jQuery and jQuery Mobile JavaScript files:
 <link rel='stylesheet' href='http://code.jquery.com
 /mobile/1.1.1/jquery.mobile-1.1.1.min.css' />
 <script src='http://code.jquery.com/jquery-
 1.7.1.min.js'></script>
 <script src='http://code.jquery.com/mobile
 /1.1.1/jquery.mobile-1.1.1.min.js'></script>
 </head>
 <body>

3.	 Create the jQuery Mobile page:
 <!-- Main Page -->
 <div id='main' data-role='page'>
 <div data-role='header'>
 <h1>Welcome!</h1>
 </div>
 <div id='content' data-role='content'>
 <p>The jQuery Mobile Cookbook</p>

Get Rolling

10

 </div>
 <div data-role='footer'>
 <h4>Enjoy reading the book ...</h4>
 </div>
 </div>
 </body>
</html>

How it works...
Create main.html as an HTML5 document starting with the <!DOCTYPE html> declaration.
In the <head> tag of the file, add a <meta> tag and specify that the viewport should occupy
the entire device width by using the content='width=device-width' attribute. Include
the jQuery Mobile stylesheet by using the <link> tag pointing to the CSS file location on the
jQuery Mobile Content Delivery Network (CDN) site.

Next, include the JavaScript libraries; first the jQuery and then the jQuery Mobile JavaScript
files. Use the <script> tags and point src to the CDN location, as shown in the code. You
are now ready to create the page.

The page, its header, footer, and content are all <div> containers, which are styled by using
the data-role attributes. Add a <div> tag with data-role='page' to the <body> tag. Add
three div tags with data-role='header', 'content', and finally the 'footer' as child
elements within the page. This will create the page header, content, and footer respectively.
You can add any text, forms, lists, or other HTML controls within these <div> tags. The
framework will enhance and render the controls in a touch-friendly mobile-enabled style.

Now, open the main.html file in your favorite browser, and you will see an output similar to
the following screenshot:

Open and compare the output of this file in different browsers, mobile devices, and tablets.
You will see that on all-compliant and certified browsers/devices, the page opens up and
looks pretty much the same.

Congratulations! You just created your first cross-platform jQuery Mobile web application.

Chapter 1

11

There's more...
At the time of writing this recipe, jQuery Mobile v1.1.1 was the stable version and is used in all
the recipes in this book. The supported jQuery library recommended is jQuery v1.7.1.

You can use the libraries directly from the jQuery Mobile CDN, as shown in this recipe.
You could also download the library files (available in a single archive) at http://www.
jquerymobile.com/download, and host the files locally within your network. When hosted
locally, you just have to update the links in your code to point to the correct location of the files
on your network (or to the path on your hard disk), as shown in the following code snippet:

<link rel="stylesheet" href='[local path]/jquery.mobile-
 1.1.1.min.css' />
<script src='[local path]/jquery-1.7.1.min.js'></script>
<script src='[local path]/mobile/1.1.1/jquery.mobile-
 1.1.1.min.js'></script>

The Page theme
By default, the framework provides five basic color schemes or combinations called color
swatches. They are named a, b, c, d and e. By default, swatch d is used when you create
a page. This gives the page a bright combination of white and black colors, as seen in the
previous screenshot. You can change the color swatch of your page and header/footer by
using the data-theme attribute, as shown in the following code snippet:

<div data-role='page' data-theme='a'>
 <div data-role='header' data-theme='b'>
….
 <div data-role='footer' data-theme='b'>

The output will now be similar to the following screenshot:

http://www.jquerymobile.com/download
http://www.jquerymobile.com/download

Get Rolling

12

See also
ff The Using JS Bin to create a simple application recipe

ff The Writing a single-page template application and Writing a multi-page template
application recipes in Chapter 2, Pages and Dialogs

Using JS Bin to create a simple application
JS Bin is an open source web application built by Remy Sharp, available at http://www.
jsbin.com. JS Bin allows you to directly enter your HTML, CSS, and JavaScript code online,
and also allows you to include the required jQuery and jQuery Mobile libraries. You can add
and directly run your JavaScript code and preview the output on your browser. You can also
share your code and collaborate with others for review or troubleshooting. You can finally
download your code once everything works as desired. It is a very popular tool used by
many jQuery Mobile developers. This recipe shows you how to create a simple jQuery Mobile
application using JS Bin.

Getting ready
The code in this recipe was created using the JS Bin web application available at
http://www.jsbin.com. The code is available in the code/01/jsbin source folder. You
can launch the code using the URL http://localhost:8080/01/jsbin/main.html.

How to do it...
1.	 Launch the JS Bin web application tool at the URL http://www.jsbin.com, and

you will see a basic HTML template.

2.	 Select the Add Library link on the top-left panel, and include the latest jQuery Mobile
library files. Next, edit the <head> section, as shown in the following code snippet:
<html>
 <head>
 <link href="http://code.jquery.com/mobile/latest
 /jquery.mobile.css" rel="stylesheet" type="text/css" />
 <script src="http://code.jquery.com
 /jquery-1.7.1.min.js"></script>
 <script src="http://code.jquery.com
 /mobile/latest/jquery.mobile.js"></script>
 <meta name="viewport" content="width=device-width,
 initial-scale=1">
 <title>Welcome using JS Bin</title>
 </head>

Chapter 1

13

3.	 Add code to the <body> section to create a simple jQuery Mobile page:
 <body>
 <!-- Main Page -->
 <div id="main" data-role="page">
 <div data-role="header">
 <h1>Welcome - JS BIN</h1>
 </div>
 <div id="content" data-role="content">
 <p>The jQuery Mobile Cookbook</p>
 </div>
 <div data-role="footer">
 <h4>Enjoy reading the book ...</h4>
 </div>
 </div>
 </body>
</html>

4.	 The preview or output is now visible in the Output pane on the right side of
the screen.

5.	 You can now download the source file (or copy-and-paste into a local file) to have a
simple working jQuery Mobile application.

How it works...
Launch the JS Bin web application in your browser. You will see the following screen in your
browser, with a basic HTML template (which you can edit) on the left side. A menu bar is
available at the top and an Output pane is available on the right, to instantly preview the
output of your code:

www.allitebooks.com

http://www.allitebooks.org

Get Rolling

14

You can click on the various menu options and see how the CSS or JavaScript panes can be
made visible or hidden. Selecting the Auto-run JS option will allow you to run your JS code
automatically; you can leave it on. You can also manually run the script by clicking on the Run
with JS button.

Click on the Add library menu option and select the jQuery Mobile Latest option as shown in
the following screenshot:

This will include the links and references to the jQuery Mobile and jQuery libraries in the
<head> section of the HTML.

When you add the jQuery Mobile library to your code using JS Bin, make
sure you edit and set the correct versions for both jQuery Mobile and
jQuery libraries that you want to use with your application. When this
recipe was written, jQuery v1.6.4 was being used in JS Bin, whereas
jQuery v1.7.1 is recommended to be used with jQuery Mobile v1.1.1.

Next, edit the <meta> tag to set the correct viewport width and scale, as shown in the
code. Then, add a page to the <body> tag using a div tag with data-role="page". Create
the header (data-role="header"), page content (data-role="content"), and footer
(data-role="footer"), as shown. As you add these sections, you will notice that the
Output pane on the right side of the screen gets updated and shows the output preview of
your code.

Chapter 1

15

You can also add CSS styles and JavaScript, and check how it works. Finally, your code is
ready and you can copy-and-paste it locally into your editor. You can also click on the JS Bin
menu option at the top-left to download the file. Now, launch the local file in your browser, and
you will see that the output matches what was displayed in the Output pane of JS Bin.

There's more...
This recipe shows you the simple steps required to create a basic jQuery Mobile application
using JS Bin. JS Bin provides many features that are nice to use, such as creating and using
ready templates, saving and forking your code using GitHub, and cloning your code. This tool
is best suited for when you want to store your files online and collaborate on your source files.
For more information and tutorials on using JS Bin, refer to http://jsbin.tumblr.com/.

You can register for free and log in to JS Bin with your user account
to make use of the save, download, or clone features. Only the basic
features are available without user login.

http://jsbin.tumblr.com/

Get Rolling

16

See also
ff The Writing your first jQuery Mobile application recipe

2
Pages and Dialogs

In this chapter, we will cover:

ff Writing a single-page template application

ff Writing a multi-page template application

ff Prefetching pages for faster navigation

ff Using the DOM cache to improve performance

ff Custom styling a dialog

ff Using CSS to create a bouncing page transition

ff Using JS to create a slide and fade page transition

ff Using data-url to handle a login page navigation

ff Using the History API to create a custom error pop up

Introduction
A Page is the basic jQuery Mobile object written within a <div data-role="page">
container that gets displayed on the screen. It can contain the header, the page content, and
the footer. You can embed various HTML5 controls and widgets within a page. The jQuery
Mobile framework automatically enhances and displays all these controls, making them
tap-friendly (finger-friendly). Your application can have a series of individual HTML files each
representing a single page, or it can have one single HTML file containing multiple page div
containers within it. You can provide links to open other pages within a page, and when the
user clicks on a link, the new page opens using Ajax with CSS3 animation. The current page is
then hidden from view.

A Dialog is a page having the data-role="dialog" attribute. You can also load a page as
a dialog by adding the data-rel="dialog" attribute to the page link. The dialog is styled
differently from a page, and it appears in the middle of the screen above the page. The dialog
also provides a close button in its header.

Pages and Dialogs

18

Writing a single-page template application
In a single-page template application, each page of the application will have its own HTML file.
A page is wrapped within a page container as <div data-role="page">. When you launch
the app, the jQuery Mobile framework will load the first page of the app (or the main page) into
the DOM, whose reference is held all through the app cycle. The main page just gets hidden
when the user navigates to another page, which now is marked as an active page. Except
for the main page, all other pages get removed from the DOM when the user navigates away
from them. Navigation between the pages is specified using anchor links. The anchor links
are decorated as buttons using the data-role="button" attribute. On clicking any link,
navigation occurs with some cool CSS3 transitions, and the new page is pulled in via Ajax.

This recipe shows you how to create a single-page template application and navigate between
the pages of the app.

Getting ready
Copy the full code of this recipe from the code/02/single-page sources folder. You can
launch this code using the URL http://localhost:8080/02/single-page/main.html.

How to do it...
Carry out the following steps:

1.	 Create main.html, and add a page container with the header, footer, and page
content to it. Add a link to open page2.html:
<div id="main" data-role="page">
 <div data-role="header">
 <h1>Header of main.html</h1>
 </div>
 <div data-role="content">

 Go to Page 2
 </div>
 <div data-role="footer">
 <h4>Footer of main.html</h4>
 </div>
</div>

Chapter 2

19

2.	 Since this is a single-page template app, add each page to its own HTML file. Next,
create page2.html and add the second page of the app to it. Add a link to go back
to main.html:
<div id="page2" data-role="page">
 <div data-role="header">
 <h1>Header of page2.html</h1>
 </div>
 <div data-role="content">
 <a href="#" data-role="button" data-rel="back"
 data-theme="b">Go Back
 </div>
 <div data-role="footer">
 <h4>Footer of page2.html</h4>
 </div>
</div>

How it works...
Create main.html, and add a page to it using the <div> page container with the data-
role="page" attribute specified. Add the header, footer, and page content, as shown in the
code. Now, add an anchor link to the page content to open the second page, page2.html.
You can style this link as a button by using the data-role="button" attribute.

Next, create page2.html and add a page to it using the <div> page container with the
data-role="page" attribute specified. Add the header, footer, and page content to it, as
shown in the code listing. Here, in the page content, add an anchor link to go back to main.
html. Also, set the data-role="button" attribute to style this link as a button.

Now, when you launch the app, the main.html page is first loaded into the DOM. This page
stays in the DOM throughout the life cycle of the app. The following screenshot is displayed:

Pages and Dialogs

20

When you click on the button to open page2.html, the main page is hidden from view, and
page2.html is displayed and made active, as shown in the following screenshot:

Now, click on the link to go back to main.html. The browser opens the main.html page
again and hides page2.html.

In page2.html, the anchor button has a data-rel="back" attribute. This indicates that
the previous page in the browser history should be loaded. The href link is ignored and so
you can set it to #.

Setting the title for a single-page template app
Use the <title> tag to set the page title for each page in a
single-page app. This ensures that relevant titles are displayed as
you navigate through the various pages in your app.

There's more...
It is recommended that most applications use single-page templates, for the following reasons:

ff Pages are lighter, cleaner, and more modular, and thus easier to maintain.

ff The DOM size is relatively smaller.

ff Pages work well on multiple platforms and environments. They work even where
JavaScript is not supported. You can target more devices this way.

On the flip side:

ff It consumes more bandwidth as each page visit generates a new request.

ff Opening a previously loaded page again will generate a fresh request.

ff First load is faster, but every subsequent page has to be fetched.

To conclude, single-page template apps are more suited for larger applications and in
situations where you want to target as many platforms as possible.

Chapter 2

21

Turning off Ajax navigation
In this recipe, in #page2, the href value is set to #. If you set the href value to the absolute
or relative URL of the page, that is href="main.html", then Ajax navigation will still work.
To prevent pages being loaded via Ajax, add the data-ajax="false" attribute to the link.
The framework will not use the custom CSS3 transitions when Ajax is turned off.

text

Using URL instead of data-rel="back"
It is always better to use URLs in href of the anchor link while navigating
in single page apps. This way, Ajax navigation would work where Ajax is
supported. In C grade browsers, where Ajax is not supported, the app
would still continue to work, since it uses href for navigation. In such
browsers, if your app relies only on the data-rel="back" attribute,
and does not use href, then page navigation would break down.

Using data-rel and data-direction
When you add both the href and data-rel="back" attributes to an anchor link, the href
attribute is ignored by the framework. The page will only consider the data-rel attribute
and navigate "back"; that is, it will navigate to the page present as the previous entry in
the browser history stack. If you specify the data-direction="reverse" attribute, the
framework will reverse the direction of the most recent page transition used. The data-
direction attribute does not depend on the data-rel attribute, and can be used
independently in any transition.

<a href="page2.html" data-role="button"
 data-direction="reverse">text

Page container is optional
Specifying the <div data-role="page"> page container is optional in a single-page
template application. The page contents are automatically wrapped with a page container by
the jQuery Mobile framework.

Always use a div page container to wrap your page. It is easier to read
and maintain the code. It also allows you to add page-specific data
attributes such as data-theme to your page.

See also
ff The Writing a multi-page template application, Prefetching pages for faster

navigation, and Using the DOM Cache to improve performance recipes

ff The Writing your first jQuery Mobile application recipe in Chapter 1, Introduction

Pages and Dialogs

22

Writing a multi-page template application
In a multi-page template application, the HTML file will have multiple pages in it. Each page
is wrapped within a page container as <div data-role="page">. The page ID is used to
identify the pages for linking or invoking any actions on them. The page ID must be unique
within your app. When you launch the app, the jQuery Mobile framework loads all the available
pages into the DOM and displays the first page it finds in the HTML. Navigation between the
pages is specified by using anchor links, and you can decorate these links as buttons by using
the data-role="button" attribute. On clicking any link, navigation occurs with some cool
CSS3 transitions, and the new page is pulled in via Ajax. This recipe shows you how to create
a multi-page template application and navigate between the multiple pages it contains.

Getting ready
Copy the full code of this recipe from the code/02/multi-page sources folder. You can
launch this code using the URL http://localhost:8080/02/multi-page/main.html.

How to do it...
Carry out the following steps:

1.	 Create main.html, and add the #main page to it. Define the header, page content,
and footer, as shown in the following code snippet. Add a link to open the #page2
page in the page content:
<div id="main" data-role="page">
 <div data-role="header">
 <h1>Header of #main</h1>
 </div>
 <div data-role="content">
 Go to Page 2
 </div>
 <div data-role="footer">
 <h4>Footer of #main Page</h4>
 </div>
</div>

2.	 Next, in main.html, add the second #page2 page in its own page div container, as
shown in the following code snippet. Add the header, page content, and footer to this
page. Finally, add a link to go back to the #main page in its page content:
<div id="page2" data-role="page" data-title="Multi-Page Template">
 <div data-role="header">
 <h1>Header of #page2</h1>
 </div>

Chapter 2

23

 <div data-role="content">
 <a href="#" data-role="button" data-rel="back" data-
theme="b">Go Back
 </div>
 <div data-role="footer">
 <h4>Footer of #page2</h4>
 </div>
</div>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

How it works...
Create main.html, and add two pages, #main and #page2, to it. First, add the #main page
using the <div> page container with the data-role="page" attribute specified. Add the
header, footer, and page content, as shown in the code. Now, add an anchor link to the page
content to open the second page, #page2. You can style this link as a button by using the
data-role="button" attribute.

Next, add the #page2 page using the <div> page container, with the data-role="page"
attribute specified. Add the header, footer, and page content to it as shown in the code listing.
Here, in the page content, add the anchor link to go back to the #main page. Set the data-
role="button" attribute to style it as a button. Also, add the data-rel="back" attribute
to it. This indicates to the jQuery Mobile framework that this link should open the previous
page available in the browser history.

Now, when you launch the app, all the pages are loaded into the DOM and they stay in the
DOM throughout the life cycle of the app. The framework opens the first page it finds. So,
#main is displayed with a button to open #page2, as follows:

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support
http://www.allitebooks.org

Pages and Dialogs

24

When you click on the button to open the second page, the #main page is hidden from view,
and the #page2 page is displayed and made active, as follows:

Finally, click on the link to go back to the #main page. Since data-rel="back" was used,
the browser opens the #main page again and hides #page2.

Setting the title for a multi-page template app
Use the <title> tag to set the page title for the first or the main page
of the multi-page template app. Use the data-title attribute to set
the title of all the other pages. This will ensure that the correct titles are
shown for each page.

There's more...
It is recommended that the following factors be considered before using a multi-page
template to build your app:

ff A multi-page template application is heavier due to the large DOM size.

ff The DOM size is relatively larger and heavier because all the pages are loaded
into it upfront.

ff The application needs JavaScript support. This limits your choice of target platforms,
and you might have to ignore many popular legacy platforms. But this exclusion list is
getting thinner by the day as the older phones/platforms get phased out.

On the plus side:

ff Only the first page load is slower, but subsequent page navigations are fast.

ff All the pages are pre-loaded in the DOM, so no new requests (to the server) are
required for subsequent page navigations. This means lesser bandwidth.

To conclude, multi-page template apps are more suited for relatively smaller applications and
situations where you know the capabilities of your target platforms, including JavaScript support.

Chapter 2

25

The updated list of browsers and platforms supported by jQuery Mobile
is available at http://www.jquerymobile.com/gbs. It also
details the grade of support provided on these platforms.

Using transitions
The data-transition attribute can be used to specify various transitions that are available
by default with jQuery Mobile. The following code opens #page2 using a flip transition:

text

Turning off Ajax navigation
If you pass the data-ajax="false" attribute while loading a page in a multi-template app,
it does not completely stop Ajax navigation. The default fade transition will then be used to
load the pages regardless of the transition specified in the data-transition attribute.

text

Page container is mandatory
Specifying the <div data-role="page"> page container is mandatory for all the pages
within a multi-page template application. Use the page container for all your apps and all your
pages regardless of whether they use the single-page or multi-page templates.

See also
ff The Writing a single-page template application, Prefetching pages for faster

navigation, and Using the DOM Cache to improve performance recipes

ff The Writing your first jQuery Mobile application recipe in Chapter 1, Introduction

Prefetching pages for faster navigation
Using a single-page template for your mobile app makes your mobile app faster and lighter. But
you have to fetch each page during navigation. You can see the ui-loader spinning icon every
time a page loads. This problem does not happen with a multi-page template application, as
all the pages are already preloaded into the DOM. By using the prefetch feature, a single-page
template application can be made to mimic the multi-page template application.

A page marked for prefetch is loaded in the background and is immediately available when
the user tries to open it. You can prefetch pages in two ways. The first is by just adding the
data-prefetch attribute to the anchor link. The second way is by using JavaScript to call
the loadPage() method. This recipe shows you how to improve page loading speed by
prefetching pages in your jQuery Mobile app.

http://www.jquerymobile.com/gbs
http://www.jquerymobile.com/gbs

Pages and Dialogs

26

Getting ready
Copy the full code of this recipe from the code/02/prefetch sources folder. You can launch
this code using the URL http://localhost:8080/02/prefetch/main.html.

How to do it...
The steps to be followed are:

1.	 Create main.html and add two links to it. The first link points to prefetch.html
and the second link to prefetch-JS.html. After the main.html file is loaded, the
linked pages in it can be prefetched in the background using the data-prefetch
attribute on the first link, as shown in the following code snippet:
<div id="main" data-role="page">
 <div data-role="header">
 <h1>Header of Main Page</h1>
 </div>
 <div data-role="content">
 <a href="prefetch.html" data-role="button"
 data-prefetch>Prefetch Page

 Prefetch Page using JS
 </div>
 <div data-role="footer">
 <h4>Footer of Main Page</h4>
 </div>
</div>

2.	 Next, add the JavaScript given in the following code snippet to the <head> section of
main.html. Here, use the loadPage() method to load the prefetch-JS.html
file in the background, into the DOM:
 $("#main").live("pageshow", function(event, data) {
 $.mobile.loadPage("prefetch-JS.html",
 { showLoadMsg: false });
 });
</script>

3.	 Now, create the prefetch.html file as shown in the following code snippet. This
is a regular page which is prefetched in the main.html page (in step 1), using the
data-prefetch attribute. Also add a link to navigate back to main.html:
<div id="prefetch" data-role="page">
 <div data-role="header">
 <h1>Header of Prefetched Page</h1>
 </div>

Chapter 2

27

 <div data-role="content">
 <a href="#" data-role="button" data-rel="back"
 data-theme="b">Go Back
 </div>
 <div data-role="footer">
 <h4>Footer of Prefetched Page</h4>
 </div>
</div>

4.	 You will see that in step 2, the prefetchJS.html was prefetched using JavaScript.
Now, create prefetchJS.html, as shown in the following code snippet, and add a
link to navigate back to main.html:
<div id="jsprefetch" data-role="page">
 <div data-role="header">
 <h1>Header of JS Prefetched Page</h1>
 </div>
 <div data-role="content">
 <a href="#" data-role="button" data-rel="back"
 data-theme="b">Go Back
 </div>
 <div data-role="footer">
 <h4>Footer of JS Prefetched Page</h4>
 </div>
</div>

How it works...
Create main.html, and add two links to it. Point the first link to prefetch.html and set
the data-prefetch attribute to this link. This page is now automatically fetched in the
background and is immediately available for opening when main.html is loaded.

Point the second link to the prefetch-JS.html file. To prefetch this page using JavaScript,
add an event handler for the pageshow event of #main. In this callback function, invoke
the loadPage() method to fetch the prefetch-JS.html file. Also set the showLoadMsg
option as false, to prevent the spinning page ui-loader message from being shown.
Next, create the two HTML files as shown in the code. Add the link to navigate back to main.
html in both the pages.

Pages and Dialogs

28

Now, when you launch the app, both the HTML files are prefetched. You can observe this
prefetch behavior using your browser's code inspector, as shown in the following screenshot:

This screenshot shows the code inspector in the Google Chrome browser right after loading
the main.html page. We can see that both the #prefetch and #jsprefetch pages are
already prefetched and available in the DOM. Now, navigating to these prefetched pages
is almost immediate, and the spinning ui-loader icon animation does not show up. This
makes your app much faster and gives a better user experience to the user. If prefetch was
not used, the page would have loaded only when you navigated to it.

Using the data-prefetch attribute is the easier way to prefetch pages, as you don't have
to write any further code with it. But prefetching a page with JavaScript using loadPage()
allows you to provide more options to the loadPage() method and have a better control over
the behavior of your page load. You can also build in conditional prefetch with this approach.

There's more...
Avoid using prefetch on too many pages, as all the pages have to be fetched and stored in
the DOM. This means more memory utilization, and memory is a scarce resource on mobile
devices. This will slow down your app. More pages prefetched also means more bandwidth
utilized. So use it judiciously.

When prefetch is not completed
If a page hasn't been fully prefetched and you try to navigate to that page, then the ui-
loader spinner comes up and the page is shown only after the page is completely fetched.
This could occur on slower connections.

Chapter 2

29

Prefetched pages are not permanently cached
When a page is prefetched, it is available in the DOM. If you navigate to this page and then
navigate away, the page is automatically removed from the DOM. So if it is a frequently visited
page, you have to add it to the DOM cache instead.

See also
ff The Using the DOM cache to improve performance recipe

ff The Using loadPage() to load a page recipe in Chapter 9, Methods and Utilities

Using the DOM cache to improve
performance

During page navigation in a single-page template application, each new page is fetched
and stored in the DOM. The page remains in the DOM and is removed once you navigate
away from the page. Only the main or the first page of the app always remains in the DOM.
As seen in the previous recipe, prefetching commonly-used pages could help in improving
performance to some extent. But when you visit a prefetched page and navigate away from
it, the page gets removed from the cache. So the problem of multiple fetching of frequently
visited pages is not fully solved.

With DOM caching, specific pages are marked to be cached in the DOM. These pages, once
loaded, remain in the DOM all through the life cycle of the app. You can use the DOM cache in
two ways. The first is by adding the data-dom-cache attribute to the page container of the
page that is to be cached. The second way is by using JavaScript. This recipe shows you how
to improve the performance of your app by using the DOM cache.

Getting ready
Copy the full code of this recipe from the code/02/dom-cache sources folder. You can
launch this code using the URL http://localhost:8080/02/dom-cache/main.html.

How to do it...
The steps to be followed are:

1.	 Create the main.html file with links to navigate to the the two pages, cached.html
and cachedJS.html. Both these pages, in turn, specify that they should be cached
in the DOM:
<div id="main" data-role="page">
 <div data-role="header">
 <h1>Header of Main Page</h1>

Pages and Dialogs

30

 </div>
 <div data-role="content">

 Cached Page

 JS Cached Page

 </div>
 <div data-role="footer">
 <h4>Footer of Main Page</h4>
 </div>
</div>

2.	 Create the cached.html page and set the data-dom-cache attribute of its page
container. Also add a button to go back to the main.html page:
<div id="cached" data-role="page" data-dom-cache="true">
 <div data-role="header">
 <h1>Header of Cached Page</h1>
 </div>
 <div data-role="content">

 Go Back

 </div>
 <div data-role="footer">
 <h4>Footer of Cached Page</h4>
 </div
</div>

3.	 Finally, create the cached-JS.html file, and cache it by using JavaScript added
to the page div container, as shown in the following code snippet. Add a button to
navigate back to main.html:
<div id="jscached" data-role="page">
 <script>
 $("#jscached").page({ domCache: true });
 </script>

 <div data-role="header">
 <h1>Header of JS Cached Page</h1>
 </div>
 <div data-role="content">

 Go Back

Chapter 2

31

 </div>
 <div data-role="footer">
 <h4>Footer of JS Cached Page</h4>
 </div
</div>

How it works...
Create main.html and add two links to open the cached.html and cached-JS.html
files. Next, create the cached.html file with a link to go back to main.html. Here, set the
data-dom-cache="true" attribute to the page container. This indicates that the page must
be cached in the DOM once it is loaded.

Now create the cached-JS.html file with a link to return to main.html. Here, add the given
script to the page div container. In the script, set the domCache option on the page to true.
Now, when this page is loaded, it gets cached in the DOM.

Launch the app and navigate between the pages. During page navigation, each new page
is fetched and stored in the DOM. You can observe the DOM cache behavior using your
browser's code inspector. The following image shows the Chrome code inspector snapshot
after both the pages were visited and cached in the DOM. The current active page is shown
as #main; this is indicated by the ui-page-active class added to its page's div container.
The other two pages are cached and are also seen available in the DOM.

Pages and Dialogs

32

Adding scripts to the page div and not the <head> element
When using Ajax navigation, the <head> section is processed only on the
first page or the main page of your app. The <head> element of each of
the remaining pages is ignored and only their page's div containers are
processed. Thus, to ensure that your script is executed in these pages, you
have to include the <script> tag within the page's div container.

There's more...
If you want to cache all pages ever visited in your app, it becomes cumbersome to add the
caching option in each of these pages. There is a way to do this globally using JavaScript.
Add the following script to the <head> section of your main page. Now, every page visited
automatically gets cached in the DOM.

<script>
 $.mobile.page.prototype.options.domCache = true;
</script>

DOM caching can slow down your app
Having a large number of pages cached in the DOM could make your app very heavy and slow
it down. In such situations, you will have to write extra code to manage the cached pages in
the DOM, and perform any clean ups that are required. So, use DOM caching on selected
frequently accessed pages only.

See also
ff The Prefetching pages for faster navigation recipe

Custom styling a dialog
You can style a page as a dialog by using the data-role="dialog" attribute on the page
container. You can also specify the data-rel="dialog" attribute in the anchor link used
to open the page. The page now gets styled as a dialog, and opens with a pop transition.
When you add a header to the dialog, a close icon is created on the header, by default, in the
left side of the header. In some applications/platforms, you might want to position this close
button on the right side of the header. There is no ready option available to change this icon's
position. This recipe shows you how to build a dialog with a custom styled header to position
the close button at the right side of the header.

Chapter 2

33

Getting ready
Copy the full code of this recipe from the code/02/custom-dialog sources folder.
You can launch this code using the URL http://localhost:8080/02/custom-dialog/
main.html.

How to do it...
The steps to be followed are:

1.	 Create main.html with the #main page. Add a link here to open the
#customdialog page as a dialog using the data-rel="dialog" attribute:
<div id="main" data-role="page">
 <div data-role="header">
 <h1>Header of Main Page</h1>
 </div>
 <div data-role="content">
 <a href="#customdialog" data-role="button"
 data-rel="dialog">Open Custom Dialog
 </div>
 <div data-role="footer">
 <h4>Footer of Main Page</h4>
 </div>
</div>

2.	 Create the #customdialog page in main.html, and add the custom header to
the dialog that positions the close button on the right side of the header. The default
header enhancement is prevented in this code:
<div id="customdialog" data-role="page">
 <div class="ui-corner-top ui-overlay-shadow ui-header ui-bar-a"
 role="banner">
 <a href="#main" data-icon="delete" data-iconpos="notext"
 class="ui-btn-right ui-btn ui-btn-icon-notext ui-btn-corner-
 all ui-shadow ui-btn-up-a" title="Close" data-theme="a"
data-
 transition="pop" data-direction="reverse">

 Close
 </
span>

 <h1 class="ui-title" tabindex="0" role="heading"
 aria-level="1">Custom Dialog</h1>
 </div>

www.allitebooks.com

http://www.allitebooks.org

Pages and Dialogs

34

3.	 Finally, add the page content with a link to go back to the #main page:
 <div data-role="content">
 <a href="#" data-role="button" data-rel="back"
 data-theme="b">Go Back
 </div>
 <div data-role="footer">
 <h4>Footer of Dialog</h4>
 </div>
</div>

How it works...
Create main.html with two pages, #main and #customdialog, in it. Add a link in the #main
page to open the #customdialog page as a dialog, by setting the data-rel="dialog"
attribute. Next, create the #customdialog page and add a button to go back to the #main
page. Now, in the header of #customdialog, do not use the data-role="header"
attribute. This will prevent the dialog header from being enhanced with the default style. The
close icon will not be placed at the left side of the header now. You can now add your custom
header and set custom styles to it, as given in the code listing earlier. Launch the app and open
the dialog, you will see the dialog pop up. This dialog now has a custom styled header with the
close icon on the right side of the header, as shown in the following screenshot:

To understand how the custom style was arrived at, first create a page that opens a
regular dialog. Using the code inspector of your browser and observe the code enhancements
done by the jQuery Mobile framework to the header of the dialog. Copy this generated code
"as is" into your custom dialog code. Then you have to make the changes mentioned in the
following sections.

The first change is to fix the close icon's position. You will see that the close action is
performed with the help of an anchor link that has been added into the header code. Here,
replace the ui-btn-left class with the ui-btn-right class. This will position the icon to
the right in the header. The jquery.mobile.css file already has these class definitions in it.

Chapter 2

35

With this change, the close icon now appears at both the left and the right positions in the
header. This is because the header still has the data-role="header" attribute. This makes
the framework enhance the entire header and automatically add the close icon on the left
side. But, since you have already added all these generated classes manually, you can now
safely remove the data-role="header" attribute from your code. Retain all the other code
and classes that you have added. Now, when you launch the code, you will only see a single
close icon positioned at the right side of your header.

There's more...
This technique is a very important one. It can be used to customize how your jQuery Mobile
apps should look and feel. The framework provides many basic options, elements, and
attributes that you can add to your apps. The framework then enhances these by adding more
markup code and styles internally, making it look good in your browser. This enhanced code is
not visible in the View Source option of your browser. But, with a code inspector or debugging
tool, you can view the enhanced code, copy it to your HTML files, tweak it, and get the result
you want. The following screenshot shows the code inspector view for the custom dialog
header created using this recipe:

Customizing CSS
The dialog page can further be enhanced by introducing your own styles in a custom CSS file.
Check for all classes that have ui-dialog in the jquery.mobile.css file. Copy the styles
that you want to tweak into your custom CSS and set appropriate new values. The following
line of code shows a sample change where the top margin of the dialog is set to -12px
instead of the default -15px:

.ui-dialog { margin-top: -12px; };

See also
ff The Adding a customized round button to the header recipe in Chapter 3, Toolbars

Pages and Dialogs

36

Using CSS to create a bouncing page
transition

As you navigate between the pages of your app, the jQuery Mobile framework uses CSS3
animations to show some cool transition effects. The fade transition is used by default for
pages, and the pop transition is used for dialogs. You can navigate into a page with a particular
transition, and when you navigate out of the page, you can reverse the direction of the
transition. jQuery Mobile comes with a default set of 10 transitions as of v1.1.1. The jQuery
Mobile online docs has a nice online demo showing all the available transitions. But that's
not all; you can use CSS to create your own custom transitions and use them in your app. This
recipe shows you how to use CSS and create a bouncing page effect during page transitions.

Getting ready
Copy the full code of this recipe from the code/02/custom-css-transition sources
folder. You can launch this code using the URL http://localhost:8080/02/custom-
css-transition/main.html.

How to do it...
The steps to be followed are:

1.	 Create the customtransition.css file, and define the bounceup custom
transition as shown in the following code snippet. Animate the Y position property of
the page in the CSS:
.bounceup.in, .bounceup.in.reverse {
 -webkit-transform: translateY(0) ;
 -webkit-animation-name: bounceupin;
 -webkit-animation-duration: 1s;
 -webkit-animation-timing: cubic-bezier(0.1, 0.2, 0.8, 0.9);	
}
@-webkit-keyframes bounceupin {
 0% { -webkit-transform: translateY(100%); }
 90% { -webkit-transform: translateY(-10%); }
 100% {-webkit-transform: translateY(0); }
}

2.	 Define the reverse animation next:
.bounceup.out, .bounceup.out.reverse {
 -webkit-transform: translateY(100%);
 -webkit-animation-name: bounceupout;
 -webkit-animation-duration: 1s;
 -webkit-animation-timing: cubic-bezier(0.1, 0.2, 0.8, 0.9);

Chapter 2

37

}
@-webkit-keyframes bounceupout {
 0% { -webkit-transform: translateY(0); }
 90% { -webkit-transform: translateY(110%); }
 100% {-webkit-transform: translateY(100%); }
}

3.	 Create main.html and include the reference to the customtransition.css
stylesheet in its <head> section, as follows:
<meta name="viewport" content="width=device-width,
 initial-scale=1">
<link rel="stylesheet" href="http://code.jquery.com
 /mobile/1.1.1/jquery.mobile-1.1.1.min.css" />
<link rel="stylesheet" href="customtransition.css" />
<script src="http://code.jquery.com/jquery-1.7.1.min.js">
</script>
<script src="http://code.jquery.com/mobile
 /1.1.1/jquery.mobile-1.1.1.min.js"></script>

4.	 Create the #main page with a link to open #page2. Set the bounceup custom
transition defined earlier to the data-transition attribute:
<div id="main" data-role="page">
 <div data-role="header">
 <h1>Header of Main Page</h1>
 </div>
 <div data-role="content">
 <a href="#page2" data-role="button"
 data-transition="bounceup">Go to Page 2
 </div>
 <div data-role="footer">
 <h4>Footer of Main Page</h4>
 </div>
</div>

5.	 Finally, create the #page2 page with a link to go back to the #main page:
<div id="page2" data-role="page" data-title="Custom
 Transition using CSS">
 <div data-role="header">
 <h1>Header of Page 2</h1>
 </div>
 <div data-role="content">
 <a href="#" data-role="button" data-rel="back"
 data-theme="b">Go Back
 </div>

Pages and Dialogs

38

 <div data-role="footer">
 <h4>Footer of Page 2</h4>
 </div>
</div>

How it works...
Create the customtransition.css file and define the custom bounceup transition. First,
define the .bounceup.in and .bounceup.in.reverse classes, with both having the
same values. This will make both the transitioning into a new page and out of it (reverse)
look similar. In the class, set the Y co-ordinate or the vertical position of the new page on the
screen using the translateY property. Animate this property over the given duration of 1
second, using a Cubic Bezier animation curve. Next, define the keyframes for the animation of
the Y co-ordinate (this is specified using the bounceupin animation name). The keyframes
define the values of Y at various times within the animation.

You can use a simple trick to get the bounce effect that is used in this animation. Set the
value of Y to beyond the screen at 90 percent duration, and then set it to the edge of the
screen at 100 percent duration, or at the completion of the animation. This gives it a neat
bouncing effect as the new page animates into the screen, extends out of the screen for a
short duration, and comes back to the correct position. Similarly, define the .bounceup.out
and .bounceup.out.reverse animations for the current page while it navigates out of the
screen, as shown in the code.

Now, create main.html and include the CSS file in its <head> section after including
the jquery.mobile.css file. Create the #main page, and add a link to open the #page2
page with the custom transition using the data-transition="bounceup" attribute.
Finally, create the #page2 page with a link to go back to the #main page. Now when you
launch the app and click on the buttons, the page navigation will occur, using a nice custom
bouncing animation.

During a page transition, there is a from and a to page. jQuery Mobile applies the out class
style on the from page (current page) and the in class style on the to page (new page). If the
reverse transition is to be supported, the word reverse is suffixed to the in and out classes,
as shown in the CSS file. Using these styles, jQuery Mobile will apply the right transition
effects on the pages. You can further tweak the code in this recipe, and explore further with
CSS animations to create more page animations. You can get as creative as you want!

Chapter 2

39

There's more...
The CSS styles are listed in this recipe to support only the web kit browsers (Chrome and
Safari). You can explore this further and try to make it work on other browsers, such as IE,
Firefox, or Opera. You will have to add vendor-specific prefixes to the CSS properties. Also, the
browser should be capable of supporting the CSS property used. The vendor prefixes required
for the popular browsers are as follows:

ff Chrome and Safari: –webkit

ff Opera: –o

ff Firefox: –moz

ff IE: –ms

Adding vendor prefixes to the customtransition.css file
To incorporate support for other browsers, you will have to extend the customtransition.
css file provided in this recipe. You can do this by adding vendor prefixes for the properties,
as follows:

.bounceup.in, .bounceup.in.reverse {
 -webkit-transform: translateY(0);
 -moz-transform: translateY(0);
 -ms-transform: translate(0)
 -o-transform: translate(0)
 transform: translate(0)

 -webkit-animation-name: bounceupin;
 -moz-animation-name: bounceupin;
 -ms-animation-name: bounceupin;
 -o-animation-name: bounceupin;
 animation-name: bounceupin;
}

This has to be done for all the specified CSS properties that have the –webkit prefix in the
code listed in this recipe.

CSS3 animation support in various browsers
The minimum browser versions required to support CSS3 animations
are Chrome, Firefox 5.0, IE 10, Safari 4.0 on the desktop and Android
browser 4, Firefox Mobile 5.0, and Safari Mobile (iOS 2) on the mobile.

Pages and Dialogs

40

When the CSS3 property becomes a standard
The last line for each property shown in the preceding CSS is the name of the property after it
becomes the standard. At this point, the browsers will drop support for that specific property's
vendor prefixes. But you will not have to modify a single line of code in your CSS, as the
standard property is already available in your file. The browser will skip all the properties it
does not understand and pick up the standard property. So things will work just fine.

Progressive enhancement
You will notice that the transition animation in this recipe will not work properly on all the
browsers. But the basic functionality of page navigation works fine everywhere. The best support
for CSS3 animation, as of writing this recipe, is offered by the web kit browsers. But the beauty
of CSS3 is that as browsers continue to improve and as users upgrade their devices, the user
will automatically get a better experience with your app. You will not have to modify any code
or make any upgrade releases. This is called Progressive Enhancement. Using jQuery Mobile
means that your code is already using progressive enhancement. This would not be so easy if
your app was natively written.

See also
ff The Using JS to create a slide and fade page transition recipe

ff The Configuring your default transitions recipe in Chapter 7, Configurations

Using JS to create a slide and fade page
transition

In the previous recipe, you learned to add a custom transition to your jQuery Mobile app using
CSS. You can also create custom transitions using JavaScript. This recipe shows you how to
create a "slidefade" (slide and fade) effect during page transition in your app by using JavaScript.

Getting ready
Copy the full code of this recipe from the code/02/custom-js-transition sources
folder. You can launch this code using the URL http://localhost:8080/02/custom-
js-transition/main.html.

Chapter 2

41

How to do it...
Carry out the following steps:

1.	 Create the customtransition.js JavaScript file and define your custom transition
by adding a mycustomTransition() method, as shown in the following code
snippet. Here, define how the from and to pages should animate during the transition:
function mycustomTransition(name, reverse, $to, $from) {
 var deferred = new $.Deferred();
 // Define your custom animation here
 $to.width("0");
 $to.height("0");
 $to.show();
 $from.animate(
 { width: "0", height: "0", opacity: "0" },
 { duration: 750 },
 { easing: 'easein' }
);
 $to.animate(
 { width: "100%", height: "100%", opacity: "1" },
 { duration: 750 },
 { easing: 'easein' }
);

2.	 Next, use the standard template copied directly from the jquery.mobile.js file
to complete the transition function definition:
// Standard template from jQuery Mobile JS file
reverseClass = reverse ? " reverse" : "";
viewportClass
 = "ui-mobile-viewport-transitioning viewport-" + name;
$to.add($from).removeClass("out in reverse " + name);
if ($from && $from[0] !== $to[0]) {
 $from.removeClass($.mobile.activePageClass);
}
$to.parent().removeClass(viewportClass);
deferred.resolve(name, reverse, $to, $from);
$to.parent().addClass(viewportClass);
if ($from) {
 $from.addClass(name + " out" + reverseClass);
}
$to.addClass($.mobile.activePageClass + " " + name
 + " in" + reverseClass);

return deferred.promise();
}

Pages and Dialogs

42

3.	 Finally, register the custom transition with the name slidefade with the jQuery
Mobile framework:
// Register the custom transition
$.mobile.transitionHandlers["slidefade"] = mycustomTransition;

4.	 Next, create the main.html file, and include the customtransition.js file in the
<head> section:
<meta name="viewport" content="width=device-width,
 initial-scale=1">
<link rel="stylesheet" href="http://code.jquery.com
 /mobile/1.1.1/jquery.mobile-1.1.1.min.css" />
<script src="http://code.jquery.com/jquery-1.7.1.min.js">
</script>
<script src="http://code.jquery.com/mobile/1.1.1
 /jquery.mobile-1.1.1.min.js"></script>
<script src="customtransition.js"></script>

5.	 Define the #main page, and include a link to open #page2. Use the custom
slidefade transition with the data-transition attribute:
<div id="main" data-role="page">
 <div data-role="header">
 <h1>Header of Main Page</h1>
 </div>
 <div data-role="content">
 <a href="#page2" data-role="button"
 data-transition="slidefade" data-theme="b">Go to Page 2
 </div>
 <div data-role="footer">
 <h4>Footer of Main Page</h4>
 </div>
</div>

6.	 Finally, define the #page2 page with a link to go back to the #main page:
<div id="page2" data-role="page" data-title="Custom Transition
using JS">
 <div data-role="header">
 <h1>Header of Page 2</h1>
 </div>
 <div data-role="content">
 <a href="#" data-role="button" data-rel="back"
 data-theme="b">Go Back
 </div>
 <div data-role="footer">

Chapter 2

43

 <h4>Footer of Page 2</h4>
 </div>
</div>

How it works...
Create the customtransition.js file and define the mycustomTransition function.
Here, first create a jQuery $.Deferred object. Then, write your custom transition code.
Set the initial width and height of the to page (or the target page) to zero. Make it visible by
calling the show() function. Next, define the animation for the to and from pages (the from
page is the current page).

The jQuery $.Deferred object can be used to register and invoke
multiple synchronous or asynchronous callbacks, and then return their
results. You can read more about this feature and the methods it provides
at http://api.jquery.com/category/deferred-object/.

Call the animate() function and set options such as the width, height, opacity, duration of
the animation, and animation curve, as shown in the code listing. Set the values, so that the
from page is animated in such a way that its width and opacity become zero over the duration
specified. This will slowly hide the page while sliding it to the left. Similarly, animate the to
page such that in the given duration, width, height, and opacity reach 100 percent from 0. The
to page fades in from the left to occupy the full screen. Now, both these animations happen
together, giving a nice end result to the transition.

Once the transition is complete, the code must ensure that the right page is set as the active
page. You can copy this code snippet and the other default actions that are required by the
framework directly from the standard template, which is already defined in the jquery.
mobile.js file. Now, once the transition is completed, invoke the deferred.resolve()
function. Also return the promise of the deferred object from the transition handler.

Finally, you should register the custom transition handler with the framework using the
slidefade name. This will ensure that when you specify the slidefade transition name
in the data-transition attribute, the correct transition is picked and used from the
$.mobile.transitionHandlers directory.

Create main.html and include the customtransition.js file in the <head>
section. Define the #main page with a link to open #page2 using the data-
transition="slidefade" attribute, as shown in the code. Also define #page2 with a link
to go back to the #main page. You don't have to set the transition in #page2 as JavaScript
already takes care of the reverse animation. Launch your app and when you navigate between
the pages, you will see the new page slide in while the current page fades out, giving you the
custom slide and fade transition. On second thoughts, probably "slide and shrink" would be a
better name for this transition.

www.allitebooks.com

http://api.jquery.com/category/deferred-object/
http://api.jquery.com/category/deferred-object/
http://www.allitebooks.org

Pages and Dialogs

44

There's more...
If you have defined a custom transition in your app and used it for most of your page
navigations, then you can directly set this custom transition as the default transition to be
used for all your pages. This way, the data-transition attribute need not be specified with
every link. This is specified in the customtransition.js file. Add the line after registering
your custom transition handler (at the end of the file), as follows:

$.mobile.defaultTransitionHandler = myCustomTransition;

In the preceding code snippet, myCustomTransition is the newly-defined transition
handler. Now, all the pages would use the slidefade transition. But this does not affect the
Dialog transitions, which use the pop transition by default.

JavaScript transitions compared to CSS3 transitions
Use CSS3 transitions over JS transitions in spite of the fact that you might run into vendor
prefixes and incompatible browsers. With CSS3 transitions, the code required is lesser and it
is much easier to develop and maintain it. Also you will not have to program the entire logic
of the animation from scratch. With future versions of jQuery Mobile, the page transition
framework or the logic might change, and this will break your custom JS transition.

Whereas, with CSS3, the beauty lies in the fact that your apps are progressively enhanced
and fall back to basic functionality on lack of CSS3 support. As browsers improve and get
upgraded, the vendor prefixes will ensure that your code works better without you modifying
a single line of code. When the vendor prefixes go away, the standard attribute will get picked
and everything will continue to work just fine. So use JS transitions only when you want to do
more complex stuff and when CSS3 transitions would not fully support your requirement.

See also
ff The Using CSS to create a bouncing page transition recipe

ff The Configuring your default transitions recipe in Chapter 7, Configurations

Using data-url to handle the login page
navigation

When you write a login page in your app, once the user enters valid credentials, you will want
to redirect the user to a different page or to a different folder on success. This recipe shows
you how to redirect the user to a different page during a login page navigation scenario, by
using the data-url attribute.

Chapter 2

45

Getting ready
Copy the full code of this recipe from the code/02/data-url sources folder. You can launch
this code using the URL http://localhost:8080/02/data-url/login/main.html.

How to do it...
The steps to be followed are:

1.	 Create two folders called login and records. The login folder will contain main.
html, and the records folder will contain the index.html and data.html files.

2.	 In the login folder, create main.html as a multi-page document. Here, first add
the #main page as shown in the following code snippet. Also add a link to open the
#login page.
<div data-role="page" id="main">
 <div data-role="header">
 <h1>Header of Main Page</h1>
 </div>
 <div data-role="content">
 <p>Page: login/main.html #main</p>
 <p>
 Login to Records folder</p>
 </div>
</div>

3.	 Next, create the #login page in main.html with a link to open the index.html
file. Specify the data-url attribute pointing to the records folder (for page
redirection), as shown in the following code snippet:
<div data-role="page" id="login"
 data-url="http://localhost:8080/02/data-url/records/"
 data-title="data-url main# Login Page">
 <div data-role="header">
 <h1>Header of Login Page</h1>
 </div>
 <div data-role="content">
 <p>Page: login/main.html #login</p>
 <p>
 Go to Index Page</p>
 </div>
</div>

Pages and Dialogs

46

4.	 Now, create the index.html file in the records folder, as shown in the following
code snippet. Add a link to open the data.html file here. Also set data-url for the
page, as given in following the code:
<div data-role="page"
 data-url="http://localhost:8080/02/data-url/records/"
 <div data-role="header">
 <h1>Header of Index Page</h1>
 </div>
 <div data-role="content">
 <p>Page: records/index.html</p>
 <p>
 Go to Data Page</p>
 </div>
</div>

5.	 Finally, create the data.html file in the records folder. Add a link to the index.
html file here. The data-url attribute is not set here, and the navigation will still
work since the page redirect done earlier was successful:
<div data-role="page">
 <div data-role="header">
 <h1>Header of Data Page</h1>
 </div>
 <div data-role="content">
 <p>Page: records/data.html</p>
 <p><a href="index.html" data-role="button"
 data-theme="b">Go to Index Page</p>
 </div>
</div>

How it works...
Each of the pages in the previous code listed also displays the page URL of the current page
just below the page header. Keep an eye on this text, and compare it with the address shown
in the browser address bar as you navigate through the pages in this recipe.

First, create the login and records folders. In the login folder, create the main.html file,
which is a multi-page document. Add the #main and #login pages to it. In the #main page,
add a Login to Records folder button to open the #login page. Next, create the #login page,
and specify its data-url attribute as http://localhost:8080/02/data-url/records.
Add an Open the Index Page button to this page, to open the index.html file located in the
records folder. Now, when you launch the app and click on the login button, the #login page
is shown. But the browser address bar will show the URL as http://localhost:8080/02/
data-url/records/, as shown in the following screenshot. Whereas the text above the Go to
Index Page button still says that the current page location is login/main.html #login.

Chapter 2

47

This redirect occurred because the data-url attribute was used in the #login page div
container. The jQuery Mobile framework updates the address bar with the value of this
attribute instead of the actual URL used to fetch the page.

This is a very handy feature that allows you to perform redirects in your app. This recipe does
not show the username or password being validated by the server. But in real life, the user
would enter the username/password credentials in the #main page and on a successful
response from the server, you can redirect the user to restricted folders and webpages. Do
not redirect any unauthenticated users, and they will not be able to access any pages in the
records folder.

Next, add the index.html and records.html files as given in the code. Add links to these
pages to enable navigation between them. Now, in the #login page, when you click on the
Open the Index Page button, the href attribute only specifies index.html in the code. But
since the redirect has already occurred at this point, the index.html file from the records
folder is opened. The index.html file is now the landing page here and allows you to access
other pages, such as data.html, which are all located in the records folder. An alternate
approach to using data-url is that you could also use the changePage() method to
redirect the user to the index.html page on a successful login.

In index.html, set the data-url="http://localhost:8080/02/data-url/
records" attribute to support proper navigation when the user clicks on the back or forward
buttons of the browser, If this is not done, navigation will break if you click on the back button
in index.html. data-url helps you set the correct value on the history stack.

You can play with the back and forward buttons of your browser to see how the address bar is
updated when compared to the text shown below the header as you navigate through the app.

Pages and Dialogs

48

Using proper values for data-url
You can specify any value for the data-url attribute, and the same will be
shown in the address bar. But you should take care to see that it is a valid
reference and the browser should be able to render the page. Specifying
incorrect or non-existent URLs will break the navigation when you refresh
the browser or when you click on the back/forward buttons.

There's more...
jQuery Mobile sets and maintains the data-url attribute for all the pages in your app. Only
the first page of your app does not require data-url, as it is always available in the DOM
and can be referenced by its ID or URL. For all other pages, if the data-url attribute is not
specified, it gets added with the value of the page ID by default. For external pages in the
same domain, the relative path of the page is used as the value for data-url. For pages
from different domains, the absolute path is used.

Using data-url as the href link
If a page div tag contains both the page ID and data-url, you can either use data-url or
the page ID in the value of the href attribute value and navigate to that page.

Working with sub-hash urls
Some plugins dynamically break a page into separate pages. These pages have to be
reached via deep links. These pages should have their data-url attribute specified
in the following manner:

data-url="page.html&ui-page=subpage"

See also
ff The Submitting a form using POST recipe in Chapter 6, Forms

Using History API to create a custom error
pop up

The jQuery Mobile framework does not track dialogs in history. A dialog will thus not
reappear when you click on the back button of your browser. Using a dialog for some
features, for example to show an error pop up or an alert, has a minor issue that is very
visible. When the dialog is opened from a page, the address bar will show the page URL
suffixed with the #&ui-state=dialog text. This might not be desirable to all. This recipe
shows you how to use the History API and customize a regular dialog to appear, such as a
pop up without any changes to the URL, making use of the History API.

Chapter 2

49

Getting ready
Copy the full code of this recipe from the code/02/history sources folder. You can launch
this code using the URL http://localhost:8080/02/history/main.html.

How to do it...
The steps to be followed are:

1.	 Create main.html, and add a link to open the errordialog.html file as a dialog.
Also add an input button, as shown in the following code snippet:
<div id="main" data-role="page">
 <div data-role="header">
 <h1>Header of Main</h1>
 </div>
 <div data-role="content">
 <a href="errordialog.html" data-theme="b"
 data-role="button" data-rel="dialog">
 Dialog

 <input type="submit" value="Popup" id="linkButton"
 data-theme="b"/>
 </div>
 <div data-role="footer">
 <h4>Footer of Main</h4>
 </div>
</div>

2.	 Add the following script to the <head> section of main.html to open errorpopup.
html as a dialog on the click event of the input button:
 $("#main").live("pageinit", function(event) {
 $("#linkButton").bind("click", function(event, ui) {
 $.mobile.changePage("errorpopup.html", {
 changeHash: false,
 role: "dialog"
 });
 });
 });

3.	 Create the errordialog.html file to show a custom error message. Also add a
button to go back to main.html, as shown in the following code snippet:
<div id="errordialog" data-role="page">
 <div data-role="header">
 <h1>Error !</h1>

Pages and Dialogs

50

 </div>
 <div data-role="content">
 <p>Please correct and resubmit<p>
 <a href="main.html" data-role="button"
 data-theme="b">Close
 </div>
</div>

4.	 Create errorpopup.html, and add the following script inside the page container.
This is a regular dialog but it has a custom styled header. Remove its entry from the
history stack when you click on the anchor link:
<div id="errorpopup" data-role="page">
 <script>
 $("#errorpopup").live("pageinit", function(event) {
 $("a").click(function(event) {
 history.back();
 });
 });
 </script>

5.	 Then, add a custom header to the page and also add the link to go back
to main.html:
 <div class="ui-corner-top ui-overlay-shadow ui-header ui-bar-a"
 role="banner">
 <h1 class="ui-title" tabindex="0" role="heading"
 aria-level="1">
 Error !
 </h1>
 </div>
 <div data-role="content">
 <p>Please correct and resubmit<p>
 <a href="main.html" data-role="button" data-
 theme="b">
 Close

 </div>
</div>

Chapter 2

51

How it works...
Create main.html with the #main page having a link to open the errordialog.
html page. Add an input submit button (id="linkButton") as shown. Next, create the
errordialog.html page with a button to go back to main.html as given in the code.
When you launch the app and click on the first button (Dialog), the errordialog.html
page is opened as a regular dialog with the pop transition. You will see the address bar
change and show the #&ui-state=dialog text at the end of the URL, as shown in the
following screenshot. Close and open this dialog a couple of times, and then if you press and
hold the back button, the browser's history is displayed and you will see entries for the Error
Dialog made in the history stack list:

Now, in main.html, add the given script to the pageinit event handler that gets invoked
when the app starts. Here, handle the click event of the #linkButton input button, and
invoke the changePage() method in the callback with the options described in the following
section, to open the errorpopup.html page. Set the role option as dialog to open the
page as a dialog. Also, set the changeHash option to false, to indicate that the URL hash
must not be changed in the address bar when the page is opened.

Next, create errorpopup.html and add the given script inside the page container. In
this script, bind the pageinit event that gets invoked when the page is initialized. Here,
add an event handler for the click event of the anchor button. In this callback, invoke the
history.back() method to remove the history entry made on the history stack. You should
add this script in the page container, so that it gets invoked every time the page gets loaded
and initialized in the DOM.

Next, add a custom header to the error pop-up page container. This custom header is the
same as the one used in the Custom styling a dialog recipe, earlier in this chapter. This dialog
header is customized to make it look more like a pop up and to avoid the close button, which
is present by default in the dialog header. Finally, in the page content, add a button to go back
to main.html.

Pages and Dialogs

52

Now, launch the app again and click on the second button (Popup). The custom dialog created
is shown as a pop up, as shown in the following screenshot:

This pop up behaves differently from the default dialog. The Close icon is not present. You
will note that the browser's address bar is not changed. You will also see that the Error Popup
page title is not shown in the history list when you click and hold the browser's back button.
Close the pop up and go back to main.html. You can click and hold the browser's back or
front button to see that the pop up is never shown in the history list, whereas the dialog is
listed, as shown in the following screenshot:

There's more...
The History API is very easy to use, and provides additional methods with which you can
handle and manipulate the history stack in the browser. You can use the pushState()
method to add a new entry into the history. With replaceState(), you can replace the
history entry and the URL of an existing entry in the stack. This is a very handy method
and lets you manipulate the history to suit your app's needs. As shown in the code listed in
this recipe, history.back() takes you back one step in the history, whereas history.
forward() takes you one step forward. To go to a specific entry in the history stack, you can
also use the history.go() method, passing it a numerical value on how many entries you
want to jump. So, history.go(-3) will take you three entries back, and a plus value will
take you three entries forward.

Chapter 2

53

The popstate event on a dialog
Whenever you click on the back or forward buttons, a popstate event is thrown. This event
is handled by the framework using the onpopstate handler, and the framework navigates to
the next or previous page as desired. If popstate results in the target page being a dialog,
the framework handles the event and does not navigate back to the dialog. Thus the dialog is
not shown again when you click on the forward or back buttons in your browser.

The Popup widget
At the time of writing this recipe, jQuery Mobile v1.1.1 was used. So the error pop-up dialog
created in this recipe is not a true pop up, as it still displayed in a separate page and does not
hover over the original page. The Popup widget will be available with jQuery Mobile v1.2.0.
Then you can add a simple, true pop up using the data-rel="popup" attribute, as shown in
the following code snippet:

Open Popup
<div data-role="popup" id="myPopup">
 <p>A simple true popup!<p>
</div>

You can optionally set the pop up not to be tracked in history using the data-
history="false" attribute. You can read more about using pop ups at
http://jquerymobile.com/demos/1.2.0/docs/pages/popup/index.html.

See also
ff The Custom styling a dialog recipe

ff The Using page initialization events recipe in Chapter 8, Events

ff The Using changePage() to change a page recipe Chapter 9, Methods and Utilities

www.allitebooks.com

http://jquerymobile.com/demos/1.2.0/docs/pages/popup/index.html
http://jquerymobile.com/demos/1.2.0/docs/pages/popup/index.html
http://www.allitebooks.org

3
Toolbars

In this chapter we will cover:

ff Using fullscreen fixed toolbars

ff Using persistent navbars in toolbars

ff Customizing the header with multiple buttons

ff Adding a customized round button to the header

ff Adding an image to the header

ff Adding a customized back button

ff Adding a layout grid to the footer

Introduction
The jQuery Mobile framework provides two toolbars, the Header and the Footer. The header
is the first container in the page and the footer is the last. Header is used to specify the title of
the application or the page, and can include the standard navbar for navigation. The footer is
used for a variety of purposes. It can include standard buttons and form controls and can be
customized to suit your needs. It can also contain a navbar for page navigation. The footer is
also usually used to display the copyrights and license information.

Using fullscreen fixed toolbars
Fixed toolbars remain in the same position on the screen when the page is scrolled. When
the page content of your application occupies the entire viewport, the fixed toolbars will
overlap the page content. You cannot toggle the visibility of the fixed toolbars here. To toggle
the toolbar visibility, you can use the fixed toolbars in the Fullscreen mode. This recipe shows
you how to create a simple Photo Viewer application that uses fullscreen toolbars.

Toolbars

56

Getting ready
Copy the full code of this recipe from the code/03/fullscreen-toolbars sources folder.
This code can be launched using the URL http://localhost:8080/03/fullscreen-
toolbars/main.html.

How to do it...
1.	 In main.html create the #main page and a tag to display a scaled down

image of the Niagara Falls, as shown in the following code:
<div id="main" data-role="page">
 <div data-role="header">
 <h1>Photo Gallery</h1>
 </div>
 <div data-role="content">
 <img src="../../resources/images/niagara.png" width="150"
height="100" />

The Niagara Falls, NY, US, 24/12/2011

<a href="#photo" data-role="button" data-
inline="true">View full screen
 </div>
 <div data-role="footer" data-position="fixed">
 Footer of Photo Gallery
 </div>
</div>

2.	 Create the #photo page to display the image in fullscreen mode:
<div id="photo" data-role="page" data-fullscreen="true" data-add-
back-btn="true">
 <div data-role="header" data-position="fixed" >
 <h1>The Niagara Falls, NY, US</h1>
 </div>
 <div data-role="content">
 <img src="../../resources/images/niagara.png" width="100%"
height="100%" />
 </div>
 <div data-role="footer" data-position="fixed">
 Date taken: 24/12/2011
 </div>
</div>

Chapter 3

57

How it works...
In main.html, create the #main page to display the thumbnail image of the Niagara Falls
using the tag with a small width and height. Add a link to open the #photo page.
When you first launch the application, the following screen is displayed with a smaller sized
image of the snap:

Next create the #photo page, with fixed toolbars using the data-fixed="true" attribute.
Set the page container to occupy the full screen using the data-fullscreen="true"
attribute. Add the image using the tag with 100% width and height.

Toolbars

58

Now when you click on the View full screen button in #main, the #photo page is opened
with the fullscreen image of the Niagara Falls. The fixed toolbars can also be seen. When you
tap the screen now, the visibility of the toolbars is toggled. The fullscreen display looks like the
following screenshot:

There's more...
The fullscreen toolbars will overlap over the page content by default. You will not be able to
access any content that is shown below the toolbar. You will have to tap the screen, toggle the
toolbar visibility, and then access the page content. This could become a usability issue for
the users of your application. So use this feature judiciously.

Fullscreen toolbars are ideal in pages where you have
to display full screen content such as photos, previews,
slideshows, or videos.

Chapter 3

59

The position—fixed CSS property
Browsers have to support the position:fixed CSS property for the proper dynamic
positioning of the fixed toolbars. Most modern browsers support this property. For older
browsers, this support might not be there and the framework gracefully degrades and falls
back to using regular static toolbars. In these older platforms, you can use Polyfills to support
fixed toolbars and a detailed note on this is available at http://jquerymobile.com//
test/docs/toolbars/bars-fixed.html.

Toggling the fixed toolbar visibility
As already mentioned in this recipe, you can tap the screen to toggle the visibility of the fixed
toolbars. This change on tap behavior can be controlled by using the tapToggle property (by
default true) of the fixedtoolbar plugin. To enable or disable tapping, use the following code
snippet, that uses a jQuery selector to find the toolbar:

// to disable tap to toggle toolbars use
$("[data-position='fixed']").fixedtoolbar({ tapToggle: false });

// to enable tap to toggle toolbars use
$("[data-position='fixed']").fixedtoolbar({ tapToggle: true });

Toggling the fixed toolbar visibility using JavaScript
You can also use JavaScript to toggle the fixed toolbars' visibility by calling the show or hide
methods on the fixedtoolbar plugin as shown in the following code. The code snippet uses
the jQuery selector to find the toolbar.

$("[data-position='fixed']").fixedtoolbar('show');
// or
$("[data-position='fixed']").fixedtoolbar('hide');

See also
ff The Using persistent navbars in toolbars recipe

Using persistent navbars in toolbars
The Navbar widget can be used to provide navigation links in your application. A Persistent
Navbar stays fixed in the same position in your application, like a fixed tab bar, as you navigate
between pages. This recipe shows you how to use persistent navbars in the toolbars to create
a simple TV Menu UI.

http://jquerymobile.com//test/docs/toolbars/bars-fixed.html
http://jquerymobile.com//test/docs/toolbars/bars-fixed.html

Toolbars

60

Getting ready
Copy the full code of this recipe from the code/03/persistent-navbar sources folder.
This code can be launched using the URL http://localhost:8080/03/persistent-
navbar/main.html.

How to do it...
1.	 In main.html create a simple TV Menu UI with three pages in it, "#movies",

"#songs", and "#serials". Add the #movies page with its header and footer having
navbars as shown in the following code:
<div id="movies" data-role="page" >
 <div data-role="header" data-id="persistheader"
 data-position="fixed">
 <h1>Movies</h1>
 <div data-role="navbar">

 <a href="#" data-role="button"
 class="ui-btn-active ui-state-persist">
 Movies
 Songs
 Serials

 </div>
 </div>
 <div data-role="content">
 <h3>This is the Movies Page</h3>
 </div>
 <div data-role="footer" data-id="persistfooter"
 data-position="fixed" >
 <div data-role="navbar">

 New
 Popular
 Classics

 </div>
 </div>
</div>

Chapter 3

61

2.	 Next add the #songs page with similar content, as shown in the following code:
<div id="songs" data-role="page" >
 <div data-role="header" data-id="persistheader" data-
position="fixed">
 <h1>Songs</h1>
 <div data-role="navbar">

 Movies
 <a href="#" data-role="button"
 class="ui-btn-active ui-state-persist">
 Songs
 Serials

 </div>
 </div>
 <div data-role="content">
 <h3>This is the Songs Page</h3>
 </div>
 <div data-role="header" data-id="persistheader"
 data-position="fixed">
 <div data-role="navbar">

 New
 Popular
 Classics

 </div>
 </div>
</div>

3.	 Finally, add the #serials page as in the following code:
<div id="serials" data-role="page" >
 <div data-role="header" data-id="persistheader"
 data-position="fixed">
 <h1>Serials</h1>
 <div data-role="navbar">

 Movies
 Songs
 <a href="# " data-role="button"
 class="ui-btn-active ui-state-persist">
 Serials

 </div>
 </div>

Toolbars

62

 <div data-role="content">
 <h3>This is the Serials Page</h3>
 </div>
 <div data-role="header" data-id="persistheader"
 data-position="fixed">
 <div data-role="navbar">

 New
 Popular
 Classics

 </div>
 </div>
</div>

How it works...
Create main.html and add three pages to it: #movies, #songs, and #serials. In #main
page, add a fixed header by specifying data-position="fixed". To persist this header
across all the pages, set the attribute data-id="persistheader". Now add a navbar with
three links as shown in the previous code. The first link points to the same page and so use
for the href tag. Also add the attribute class="ui-btn-active ui-state-persist
to indicate that this button should be in active state when you navigate into this page. Next
add a footer to the page with a navbar having three links, New, Popular, and Classics, as
shown in the previous code. Add the attributes data-id="persistfooter" and data-
position="fixed" to indicate that this is a fixed footer and it is to be persisted across all the
pages. You should use the same data-id value for the headers of all three pages. Similarly
the same data-id should be used for the footers of the three pages. Using the same value will
create a sticky navbar, which will stay put and not transition when the page transition occurs.

Next add the #songs page with similar content as the Movies page. Set the same data-id
values to the header and footer as mentioned earlier. Now set the second button to active
state in the header navbar by setting the attribute class="ui-btn-active ui-state-
persist" to it. Finally, add the "#serials" page with fixed persistent header and footer
as in the earlier pages. Here set the third button in the header navbar as active. When you
launch the application, you can navigate to the three pages using the header navbar. All the
three pages have the same header and footer.

Chapter 3

63

You can randomly select different buttons in the footer for the three pages. When you navigate
back and forth between the pages, you will see that the footer button state is persisted and
remembered for the pages. The screen is displayed as shown in the following screenshot:

The persistent navbar is very handy in menu driven
applications, where it is often used to provide navigation
between the pages.

There's more...
You can set icons to the navbar buttons by adding the data-icon attribute. The icon position
can be set to top, bottom, right, or left using the data-iconpos attribute as shown in
the following code:

<a href="#" data-role="button" data-icon="home" data-
iconpos="right">Home

3D page transitions with persistent fixed toolbars
If you use persistent fixed toolbars with pages that have 3D page transitions, you could run
into positioning issues. The performance could also be slow. So it is better that you convert
these pages to use 2D animations, such as slide, slidup, slidedown, fade, or none.

See also
ff The Using fullscreen fixed toolbars recipe

Toolbars

64

Customizing the header with multiple
buttons

When you add buttons to the page header, they line up to the left side of the header and only
one button can be positioned to the right side by default. This recipe shows you how to add
four buttons to the header, with two of them positioned to the right-hand side.

Getting ready
Copy the full code of this recipe from the code/03/multiple-header-buttons
sources folder. This code can be launched using the URL http://localhost:8080/03/
multiple-header-buttons/main.html.

How to do it...
1.	 Create a new stylesheet called jqm.css and define two new custom styles as given

in the following code:
.ui-btn-nexttoleft {
 position: absolute;
 left: 80px;
 top: .4em;
}
.ui-btn-nexttoright {
 position: absolute;
 right: 80px;
 top: .4em;
}

2.	 Include the previous stylesheet in the <head> tag of main.html as shown in the
following code:
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.1.1/
jquery.mobile-1.1.1.min.css" />
<link rel="stylesheet" href="jqm.css" />
<script src="http://code.jquery.com/jquery-1.7.1.min.js"></script>
<script src="http://code.jquery.com/mobile/1.1.1/jquery.mobile-
1.1.1.min.js"></script>

3.	 Now add four buttons to the page header using the default styles provided by
the jQuery Mobile framework and also use your custom styles, as shown in the
following code:

<div id="main" data-role="page">
 <div data-role="header">

Chapter 3

65

 <a href="#" data-role="button" data-theme="c"
 class="ui-btn-left">
 Button1
 <a href="#" data-role="button" data-theme="c"
 class="ui-btn-nexttoleft">
 Button2
 <h1>Custom Header</h1>
 <a href="#" data-role="button" data-theme="c"
 class="ui-btn-nexttoright">
 Button3
 <a href="#" data-role="button" data-theme="c"
 class="ui-btn-right">
 Button4
 </div>
 <div data-role="content">
 This page has a custom styled Header with multiple buttons
 </div>
</div>

How it works...
Create the jqm.css stylesheet and define two new classes, .ui-btn-nexttoleft and
.ui-btn-nexttoright, to specify the absolute positions that will be used by the buttons.
Create main.html and include the link to the previous stylesheet after including the link to
the jquery.mobile.css file as shown in the previous code.

Next add a header with <h1> text in the middle of the header and two anchor buttons on both
its sides. Add the attribute class="ui-btn-left" to the first button to make it appear in
the left-hand corner. Add the attribute class="ui-btn-nexttoleft" to the second button.
Similarly, add the attribute class="ui-btn-nexttoright" to the third button and finally add
class="ui-btn-right" to the fourth button, which will appear in the right-hand corner. The
second and third buttons use the custom classes that you have defined. Now when you launch
the page, the buttons are positioned in the header as shown in the following screenshot:

Take care while using absolute values in your stylesheet; you
might have to modify the absolute positions if the text size or
layout changes.

Toolbars

66

There's more...
Using the attribute data-role="header" to the header div container causes the jQuery
Mobile framework to enhance the header in the standard way. You can skip this attribute and
customize the header in your own way by using the class "ui-bar" in your div container.
You can also include widgets other than buttons in the header.

<div class="ui-bar">

See also
ff The Custom styling a dialog recipe in Chapter 2, Pages and Dialogs

ff The Adding a customized round button to the header recipe

ff The Adding an image to the header recipe

Adding a customized round button to the
header

The jQuery Mobile framework allows you to add custom controls to the header of a page. This
recipe shows you how to add a custom round button to the header of your application.

Getting ready
Copy the full code of this recipe from the code/03/round-button-header sources folder.
This code can be launched using the URL http://localhost:8080/03/round-button-
header/main.html.

How to do it...
1.	 Create a new stylesheet called jqm.css and define a custom roundbtn class in it:

.roundbtn {
 width: 40px;
 height: 40px;
 margin-top: 20px;
 -webkit-border-radius: 20px;
 -moz-border-radius: 20px;
 -ms-border-radius: 20px;
 -o-border-radius: 20px;
 border-radius: 20px;
}

Chapter 3

67

2.	 Create main.html and include the previous stylesheet in the <head> tag:
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.1.1/
jquery.mobile-1.1.1.min.css" />
<link rel="stylesheet" href="jqm.css" />
<script src="http://code.jquery.com/jquery-1.7.1.min.js"></script>
<script src="http://code.jquery.com/mobile/1.1.1/jquery.mobile-
1.1.1.min.js"></script>

3.	 Add an About button to the header of the #main page using the newly defined
roundbtn style, as shown in the following code:
<div id="main" data-role="page" >
 <div data-role="header" style="height: 50px" >
 <h1 style="margin: 15px">Custom Round Button</h1>
 <a href="#about" data-rel="dialog" data-role="button"
 class="roundbtn ui-btn ui-shadow ui-btn-up-c ui-btn-left">

About
 </div>
 <div data-role="content">
 This page has a Round button in the Header
 </div>
</div>

4.	 Add the #about dialog as, in the following code:
<div id="about" data-role="page" >
 <div data-role="header" >
 <h1>About</h1>
 </div>
 <div data-role="content">
 Round Button Demo
 </div>
</div>

How it works...
Create the jqm.css stylesheet and define a new class roundbtn with width, height, and
border-radius properties as shown in the previous code. To create a round button set the
border-radius property value to exactly half the value of the width property. Finally, add
the vendor specific properties for border-radius to ensure that the border radius works
well on various browsers.

Toolbars

68

Create main.html and include the link to the above stylesheet after including the link to the
jquery.mobile.css file as shown in the previous code. Next create the #main page and add
a header with <h1> text to it. Set the height of the header to 50px using the style attribute to
ensure the round button with 40px height (as specified in the CSS) fits properly in the header.
Next add an anchor link in the header with attributes data-role="button" and data-
rel="dialog" to open the "#about" page as a dialog. Add the roundbtn style to this button
using the class attribute. Also add the other classes that are added by the framework while
enhancing an anchor link to a button. You can obtain this list of classes by inspecting the anchor
element using your browser's developer tools. You have to add these classes manually to ensure
that the round button gets the proper style as it has been customized.

Finally, define the #about page as given in the previous code. When you launch the
application, a round button is now displayed in the header as shown in the following
screenshot. Clicking on the round button will open the #about dialog.

There's more...
Your browser should support the border-radius or the corresponding vendor specific prefix
border-radius property in the CSS. If it does not, you will see a rectangular button instead
of a round button.

See also
ff The Using CSS to create a bouncing page transition recipe in Chapter 2, Pages and

Dialogs, for a note on vendor prefixes

ff The Custom styling a dialog recipe in Chapter 2, Pages and Dialogs

ff The Customizing the header with multiple buttons recipe

ff The Adding an image to the header recipe

Chapter 3

69

Adding an image to the header
The header of a jQuery Mobile page usually contains the text which is to be used as the page
header. You can also add other content and markup to the header. This recipe shows you how
to add an image to the header of your application.

Getting ready
Copy the full code of this recipe from the code/03/header-image sources folder. This code
can be launched using the URL http://localhost:8080/03/header-image/main.html.

How to do it...
In this recipe, the image ABC.png is used as the logo image for a a fictitious company,
ABC Inc.

1.	 Create main.html and add the above image to its header. The image is linked to a
dialog as shown in the following code:
<div id="main" data-role="page" data-theme="a">
 <div data-role="header" data-theme="a">
 <h1>ABC Company</h1>
 <a href="#about" data-rel="dialog" data-theme="a" class="ui-
btn ui-shadow ui-btn-up-a">
 <img src="../../resources/images/ABC.png" width="24"
height="24" alt="About ABC" />
 </div>
 <div data-role="content">
 This page has an Image in the Header
 </div>
</div>

2.	 Add the #about dialog as shown in the following code:
<div id="about" data-role="page" >
 <div data-role="header" >
 <h1>About ABC</h1>
 </div>
 <div data-role="content">
 <img src="../../resources/images/ABC.png" width="24"
height="24" alt="ABC" style="margin-right:5px" />ABC Company Inc.
 </div>
</div>

Toolbars

70

How it works...
In main.html, create a #main page and add a header with <h1> text to it. Now add an
anchor link in the header to open the #about page as a dialog by using the attribute data-
rel="dialog". Specify a custom style to the anchor link using the attribute class="ui-
btn ui-shadow ui-btn-up-a". Do not add data-role="button" as the framework
would then enhance this link as a button. Next add an element pointing to the ABC.
png image as shown in the previous code. Scale this image to a suitable size by using the
width and height attributes. Finally, define the #about page as given in the code. When
you launch the application, the header of the #main page displays the ABC.png image on
the left corner as shown in the following screenshot. Clicking on this image opens the #about
dialog page.

There's more...
You can also use native styling for the image and avoid any custom styles being set on
the anchor element to display only the image. It is done by using the attribute data-
role="none" as in the following code:

 <img src="../../resources/images/ABC.png" widht="24" height="24"
 alt="About ABC" />

See also
ff The Customizing the header with multiple buttons recipe

ff The Adding a customized round button to the header recipe

Adding a customized back button
When a new page is opened in your application, the jQuery Mobile framework provides an
option to add a Back button to the header of the page to help you navigate back to the
previous page. The Back button is not visible by default. This recipe shows you how to
dynamically add and customize the Back button in your application using JavaScript.

Chapter 3

71

Getting ready
Copy the full code of this recipe from the code/03/custom-back-button sources folder.
This code can be launched using the URL http://localhost:8080/03/custom-back-
button/main.html.

How to do it...
1.	 Create main.html and add two anchor links in it. The first link opens a page with a

Back button in its header and the second link opens a page without the Back button.

2.	 Also add a submit button to the page as shown in the following code:
<div id="main" data-role="page">
 <div data-role="header">
 <h1>Header of Main Page</h1>
 </div>
 <div data-role="content">
 Page with Header Back
Button
 Page without Header
Back Button
 <input type="submit" id="addbackbtns" value="Click to Add and
Customize the Back Button" data-inline="true" data-role="button">
 </div>
</div>

3.	 Add the following script to the <head> section of the page and bind it to the click
event of the submit button:
$("#main").live("pageinit", function(event) {
 $("#addbackbtns").bind("click", function(event, ui) {
 $.mobile.page.prototype.options.addBackBtn = true;
 $.mobile.page.prototype.options.backBtnText = "Prev";
 $.mobile.page.prototype.options.backBtnTheme = "e";
 });});

4.	 Create page1.html with a Back button in its page header as shown in the
following code:
<div id="page1" data-role="page" data-add-back-btn="true">
 <div data-role="header">
 <h1>Header with Back Button</h1>
 </div>
 <div data-role="content">
 This page has a Header with the Default Back Button
 </div>
</div>

Toolbars

72

5.	 Create page2.html, which does not have the Back button by default:
<div id="page2" data-role="page">
 <div data-role="header">
 <h1>Header without Back Button</h1>
 </div>
 <div data-role="content">
 This page has a Header without any buttons
 <a href="main.html" data-rel="back" data-direction="reverse"
data-role="button">Back
 </div>
</div>

How it works...
Create main.html and add two anchor links to it, which open page1.html and page2.
html respectively. Create page1.html and add the attribute data-add-back-
btn="true" to the page div container as shown in the previous code. Now when you click
on the first button in main.html, it opens page1.html and you can see the Back button
displayed in the page header. Click on it to go back to main.html.

Create page2.html and do not add the data-add-back-btn attribute to it. Now when you
click on the second button in main.html, it opens page2.html and there is no Back button in
the header. You can add an anchor link to the page content to navigate back to main.html.

Now in main.html, add a submit button with id="addbackbtns" and text Click to Add and
Customize Back Button. In the pageinit event handler, which gets invoked after the page
has initialized at startup, bind the click event of the submit button to a callback function.
Here set the option addBackBtn of the $.mobile.page.prototype object to true as
shown in the previous code. This will automatically enable the Back button on all the pages in
your application. Also you can customize the Back button further by setting its text and theme
using the backBtnText and backBtnTheme options as shown in the previous code.

Now you can visit both the pages from main.html and see that the back buttons are
now available and have the same style. Both have yellow color and their text is set to Prev,
as shown in the following screenshot:

Chapter 3

73

There's more...
As mentioned in the recipe, you can set the following property and globally enable the Back
button for all the pages in your application:

$.mobile.page.prototype.options.addBackBtn = true;

When the Back button is enabled by default on all the pages, you can set it off for a particular
page by adding the attribute data-add-back-btn="false" to its page div container:

<div id="page3" data-role="page" data-add-back-btn="false">

See also
ff The Customizing the header with multiple buttons recipe

ff The Adding a customized round button to the header recipe

Adding a layout grid to the footer
A Layout Grid allows you to place controls in columns next to each other. This recipe shows
you how to add multiple form controls to the page footer using a layout grid.

Getting ready
Copy the full code of this recipe from the code/03/footer-layoutgrid sources folder.
This code can be launched using the URL http://localhost:8080/03/footer-
layoutgrid/main.html.

How to do it...
1.	 Create main.html and add a footer to its page. Add a layout grid to the page footer

and add form controls to this layout grid, as shown in the following code:
<div data-role="footer" data-position="fixed" class="ui-bar">
 <fieldset class="ui-grid-a">
 <div class="ui-block-a" data-role="fieldcontain">
 <label for="syncslider">Sync (mins):</label>
 <input type="range" name="syncslider" id="syncslider"
value="5" min="1" max="60"/>
 </div>
 <div class="ui-block-b">
 <div data-role="fieldcontain">
 <fieldset data-role="controlgroup" data-type="horizontal">
 <legend>Share :</legend>

Toolbars

74

 <input type="radio" name="sharefile" id="shareFileNone"
value="sharefile-1" checked="checked" data-theme="c"/>
 <label for="shareFileNone">None</label>
 <input type="radio" name="sharefile"
id="shareFileFriends" value="sharefile-2" data-theme="c"/>
 <label for="shareFileFriends">Friends</label>
 <input type="radio" name="sharefile"
id="shareFilePublic" value="sharefile-3" data-theme="c"/>
 <label for="shareFilePublic">Public</label>
 </fieldset>
 </div>
 </div>
 </fieldset>
</div>

How it works...
Create main.html and add a footer to it. Style the footer by specifying the attribute
class="ui-bar". This creates a horizontal bar in which you can add your custom controls.
Now add a two column layout grid to the footer by creating a fieldset element with the
attribute class="ui-grid-a".

Add a div container with the attributes data-role="fieldcontain" to the first column of
the layout grid. You must add the attribute class="ui-block-a", to indicate that this div
container is placed in the first column of the grid. Now add a Slider widget to this column by
adding an input element with type="range".

Similarly add a div container with the attributes data-role="fieldcontain" and
class="ui-block-b", to indicate that this div container should be placed in the
second column of the layout grid. Add three radio buttons to this column in a single group
by adding the attribute data-role="controlgroup". Also add the attribute data-
type="horizontal" to place the radio controls in a horizontal row (by default they are laid
out vertically below each other).

The footer now looks as shown in the following image:

Chapter 3

75

There's more...
Up to five columns can be specified in a layout grid by styling the grid using the corresponding
class, as shown in the following code:

ff Two column grid – use the ui-grid-a class
ff Three column grid – use the ui-grid-b class
ff Four column grid – use the ui-grid-c class
ff Five column grid – use the ui-grid-d class

Given the lack of real estate in mobile devices, use the four or five
column layout grids selectively. The UI might look cramped and
there may not be enough space to fill in your form controls.

Size of the controls in a layout grid
Adding a form control or a widget to a layout grid column will cause the control to occupy the
entire width of the column. If you do not want this behavior, you will have to modify the style of
your control.

The Button and Select form controls support the data-inline="true"
attribute. You can set this attribute to the controls and they will retain their
actual compact sizes, and they will not resize to occupy the entire width of
the column.

Breaking to the next row in a layout grid
If your layout grid has multiple rows, you have to add the various controls in their own
div containers, starting with class="ui-block-a" for the first column and moving to
class="ui-block-e" for the fifth column. Adding a sixth ui-block or using a div
container with class="ui-block-a" at any point of time in between will cause the
columns to wrap and the newly added div container now moves to the next row.

Start a row with the class ui-block-a and move towards ui-block-e
in a proper sequence.
Do not repeat the same ui-blocks in the same row.

See also
ff The Using persistent navbars in toolbars recipe

ff The Creating a custom layout grid recipe in Chapter 4, Buttons and
Content Formatting

4
Buttons and Content

Formatting
In this chapter we will cover:

ff Scripting a dynamically added button

ff Using a custom icon in a button

ff Adding a custom icon sprite

ff Replacing the default icon sprite

ff Using alternate icons in a collapsible

ff Creating a nested accordion

ff Creating a custom layout grid

ff Using XML content

ff Using JSON content

Introduction
In a jQuery Mobile app, you can add buttons, form controls, and lists as the page content of
your app. The page content is a div container with the attribute data-role="content".
You can display data and format it using the ready styles and layouts that are provided by the
framework. You can group and display data in collapsible blocks and in collapsible sets or
accordions. You can show data in multiple columns using the Layout Grid. You can also use
the table and other HTML elements in your app.

Buttons and Content Formatting

78

Scripting a dynamically added button
Buttons are standard HTML form elements that are enhanced by the button plugin in
the jQuery Mobile framework to make them finger friendly and also to look good in a wide
variety of mobile devices. You can add buttons to your app by using the <button> tag or
the <input> tag. You can also style the anchor element as a button by adding the data-
role="button" attribute to it. This recipe shows you how to dynamically add a button to a
page using JavaScript and bind an action to this newly added button.

Getting ready
Copy the full code of this recipe from the code/04/dynamic-button sources folder. You
can launch this code using the URL http://localhost:8080/04/dynamic-button/
main.html.

How to do it...
In main.html, create the #main page and add a button to it. When you click on this button,
use JavaScript and create a second button and also assign an action to it:

1.	 Create the #main page in main.html and add the following code content to it:
<div data-role="content">
 <input type="submit" id="addContentBtn" data-inline="true"
 value="Click to add new button">

 <div id="newcontent"></div>
</div>

2.	 Add the following script to handle the click event of the button. In the callback
function, create the new button and also assign an action to it.
$("#main").live("pageinit", function(event) {
 $("#addContentBtn").bind("click", function(event, ui) {
 var str="<a href='#page2' data-role='button' data-
inline='true'>"
 +"Disable 1st button and Go to Page 2";
 $("#newcontent").html(str).trigger("create")
 .bind("click", function(event, ui) {
 $("#addContentBtn").button("disable");
 });
 });
});

3.	 Add #page2 as given in the following code. This is a multi-page document. This page
is opened when you click the dynamically added button.
<div id="page2" data-role="page" data-add-back-btn="true">
 <div data-role="header">

Chapter 4

79

 <h1>Page2 Header</h1>
 </div>
 <div data-role="content">
 <h3>This is Page 2</h3>
 </div>
</div>

How it works...
Create main.html with a page #main and add a button with id="addContentBtn" to
the page content. Also add an empty div container, id="newcontent" to the page. When
you load this page, you will see only one button with text Click to add new button displayed
on the screen.

Next add the given script. Add a pageinit event handler that gets invoked after the page
has been initialized. Here, bind the click event of the button to a callback function.
In the callback function, add an anchor link with data-role="button" to the empty
"#newcontent" div. Since the page is already initialized, you have to explicitly call the
create method to trigger the framework to revisit this link and enhance it to a button. Now
when you click on the first button, you will see that the second button, Disable 1st button and
Go to Page 2, is created and displayed. In the script also add code to bind the click event of
the new button to a callback function. Here, invoke the disable method on the first button.

Finally create a new page with id="page2" that will get opened when you click on the new
button. Add the data-add-back-btn="true" to #page2 to provide a Back button to help
navigate back to the #main page. Now when you click on the second button, the dynamically
added script gets invoked and the first button is disabled and the page navigates to open
page2. You can click on the Back button in page2 and go back to the #main page. You will
see that the first button is now disabled by the dynamic script that you had added.

There's more...
The button plugin also provides methods to enable, disable, and refresh the button:

$(buttonselector).button("enable");

$(buttonselector).button("disable");

$(buttonselector).button("refresh");

Button options
Buttons provide numerous markup options using the data- attributes. They are corners
(data-corners), icon (data-icon), iconpos (data-iconpos), shadow (data-shadow),
iconshadow (data-iconshadow), inline (data-inline), and theme (data-theme).

Buttons and Content Formatting

80

You can call the buttonMarkup method on an anchor link to enhance it as a button. The
following line of code takes a native anchor link and adds the button role to it and also sets
the data-icon="alert" and data-inline="true" attributes:

$("a").buttonMarkup({ icon: "alert", inline: "true"});

Using a custom icon in a button
Buttons can contain text, icons, or both. The icon can be positioned in one of the four
directions within a button. The jQuery Mobile framework provides a set of standard icons that
you can use in your app. This recipe shows you how to add a custom icon to a button along
with the standard icon provided by the framework.

Getting ready
Copy the full code of this recipe from the code/04/custom-icon sources folder. You can
launch this code using the URL http://localhost:8080/04/custom-icon/main.html.

How to do it...
In this recipe, the following image, square.png is used for the custom icon image:

1.	 Create a new style sheet jqm-icon.css and define the custom icon style as in the
following code:
.ui-icon-square {
 background: #fff;
 background: rgba(0,0,0,.4);
 background-image: url("../../resources/images/square.png");
}
@media only screen and (-webkit-min-device-pixel-ratio: 1.5),
 only screen and (min--moz-device-pixel-ratio: 1.5),
 only screen and (min-resolution: 240dpi) {

Chapter 4

81

 .ui-icon-square {
 background-image: url("../../resources/images/square-HD.png");
 background-size: 18px 18px;
 }
}

2.	 Include the CSS in the <head> section of main.html, as shown in the following code:
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.1.1/
jquery.mobile-1.1.1.min.css" />
<link rel="stylesheet" href="jqm-icon.css" />

3.	 Use the custom icon with a submit button and with the following different themes.
Add the default "home" icon as well, for comparison.
<div data-role="content">
 <h3>Default Icon with text</h3>	
 <input type="submit" data-inline="true" value="Home" data-
icon="home" data-theme="a"/>
 <h3>Custom Icon with text</h3>
 <input type="submit" data-inline="true" value="Square" data-
icon="square" data-theme="a"/>
 <h3>Default Icon without text</h3>	
 <input type="submit" data-inline="true" data-iconpos="notext"
data-icon="home" data-theme="a"/>
 <h3>Custom Icon without text</h3>
 <input type="submit" data-inline="true" data-iconpos="notext"
data-icon="square" data-theme="a"/>
</div>

How it works...
Create a jqm-icon.css stylesheet and add a new icon class in it, ui-icon-square.
Specify the background-image property and point it to the image file to be used. Specify
the background color for the icon and also specify the background color for the icon
disc with opacity as shown. Here, the prefix text ui-icon indicates to the button plugin that
this is a custom icon and this generates a square class. You can now use the data-
icon="square" attribute in a button and the framework will fetch and display the square
icon on the button.

Buttons and Content Formatting

82

Create main.html, add submit buttons using input tags, and set icons to these buttons
using the data-icon attribute. First use the default home icon and then use the newly
added custom square icon, with and then without text. For a detailed comparison you can
add multiple buttons using the different theme swatches (data-theme="a" to data-
theme="e"). The end result is as shown in the following image. The custom icon looks as
good as the default one.

There's more...
The icon .ui-icon-square defined in the CSS is of standard resolution. Most of the
new devices support HD resolution today. So to make it work on HD resolutions, you can
create a new high resolution image, square-HD.png of 36 x 36 pixels size. Use this
image in a @media query as shown in the CSS and specify the target device resolutions
that this high resolution icon should work on. For more details about the @media query, see
http://jquerymobile.com/demos/1.1.1/docs/buttons/buttons-icons.html.

For the standard resolution custom icon, use images of 18 x 18 pixels size saved in a PNG-8
format with alpha transparency. Set its alpha value to 0.4 and the background color to #666.
Now your icons will look similar to the default icons provided by the framework.

http://jquerymobile.com/demos/1.1.1/docs/buttons/buttons-icons.html
http://jquerymobile.com/demos/1.1.1/docs/buttons/buttons-icons.html

Chapter 4

83

Using data-inline
By default, the button is stretched to fit the width of its container. You can specify the attribute
data-inline="true" to show the button in its compact mode. You can also add multiple
inline buttons next to each other in the same row.

Using data-iconpos
A button can be associated with an icon image by using the data-icon="home" attribute.
Here, "home" is the name of the icon being used. The data-iconpos attribute can be used
to specify where the icon should be displayed in the button. The possible values are top,
bottom, left, and right. Using the data-iconpos="notext" attribute hides the text
completely and resizes the button to show only the icon.

Using shadows and corners with buttons
Buttons use rounded corners by default and this can be controlled using the Boolean
attribute data-corners. Shadows are also enabled by default for the button and its icon.
This can be controlled by using the attributes data-shadow and data-iconshadow.
The data-corners, data-shadow, and data-iconshadow attributes are all Boolean
and take true or false values.

See also
ff The Adding a custom icon sprite recipe

ff The Replacing the default icon sprite recipe

Adding a custom icon sprite
The jQuery Mobile framework uses a default icon sprite and derives all the icons from it. This
recipe shows you how to add a custom icon sprite, with the divide and equals icons, to the
default standard icon set, together forming the keys of a calculator. The standard icon set
already has the plus, minus, and delete (multiply) icons.

Getting ready
Copy the full code of this recipe from the code/04/add-icon-sprite sources folder.
You can launch this code using the URL http://localhost:8080/04/add-icon-
sprite/main.html.

Buttons and Content Formatting

84

How to do it...
In this recipe, the following image, calc-sprite.png provides the divide and equals icons:

1.	 Create a new jqm-sprite.css stylesheet and define the classes .ui-icon-
divide and .ui-icon-equals for the new icons derived from the custom
icon sprite:
.ui-icon-divide, .ui-icon-equals {
 background: #fff;
 background: rgba(0,0,0,.4);
 background-image: url("../../resources/images/calc-sprite.png");
 background-repeat: no-repeat;
 -moz-border-radius: 9px;
 -webkit-border-radius: 9px;
 -o-border-radius: 9px;
 border-radius: 9px;
}
@media only screen and (-webkit-min-device-pixel-ratio: 1.5),
 only screen and (min--moz-device-pixel-ratio: 1.5),
 only screen and (min-resolution: 240dpi) {
 .ui-icon-divide, .ui-icon-equals {
 background-image: url("../../resources/images/calc-sprite-
 HD.png");
 -moz-background-size: 36px 18px;
 -o-background-size: 36px 18px;
 -webkit-background-size: 36px 18px;
 background-size: 36px 18px;
 }
}
.ui-icon-divide { background-position: -0px 50%; }
.ui-icon-equals { background-position: -18px 50%; }

2.	 Include the CSS in the <head> section of main.html, as shown in the following code:
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.1.1/
jquery.mobile-1.1.1.min.css" />
<link rel="stylesheet" href="jqm-sprite.css" />

Chapter 4

85

3.	 Use the new icons derived from the custom icon sprite along with the default icons as
shown in the following code. Display the buttons with text first:
<div data-role="content">
 <h3>Default and Custom Icons with Text</h3>
 <input type="submit" data-inline="true" value="plus" data-
icon="plus" />
 <input type="submit" data-inline="true" value="minus" data-
icon="minus" />
 <input type="submit" data-inline="true" value="delete" data-
icon="delete" />
 <input type="submit" data-inline="true" value="divide" data-
icon="divide" />
 <input type="submit" data-inline="true" value="equals" data-
icon="equals" />

4.	 Then display the buttons without text for comparison:
<h3>Default and Custom Icons without Text</h3>
 <input type="submit" data-inline="true" data-iconpos="notext"
data-icon="plus" />
 <input type="submit" data-inline="true" data-iconpos="notext"
data-icon="minus" />
 <input type="submit" data-inline="true" data-iconpos="notext"
data-icon="delete" />
 <input type="submit" data-inline="true" data-iconpos="notext"
data-icon="divide" />
 <input type="submit" data-inline="true" data-iconpos="notext"
data-icon="equals" />
</div>

How it works...
Create a stylesheet jqm-sprite.css and add new icon classes .ui-icon-divide and
.ui-icon-equals in it. Specify the background-image property and point it to the image
file to be used as the icon sprite. Next specify the background colors for the icon and for the
icon disc with opacity as shown. Also specify a border-radius of 9px for the icons. The
vendor prefixes are added to ensure this works on various browser platforms. Finally, define the
position for each of the new icons within the icon sprite as shown in the last two lines of the CSS
file. Add the @media query to specify the target device resolutions that the icons should work
on; this is explained earlier in this chapter in the Using a custom icon in a button recipe.

Here, the prefix text ui-icon indicates to the button plugin that these are custom icons and this
generates the corresponding classes without the prefix text. You can now use the new icons
on buttons using the attributes data-icon="divide" or data-icon="equals", and the
framework will fetch and display the correct custom icon.

Buttons and Content Formatting

86

In main.html, create the buttons of a simple calculator by adding submit buttons using input
tags. Set icons to these buttons using the data-icon attribute as shown. Display the buttons
with and without text for comparison. Here, the plus, minus, and delete icons are from the
default icon sprite. The custom icon sprite contributes the divide and equals icons. The
screen is displayed as shown in the following image:

There's more...
For creating an icon sprite, use a PNG image with a height of 18px. The total width is a
multiple of 18px multiplied by the number of icons in the sprite. An alpha value of 0.4 and a
background color of #666 are used by the default icon sprite. Use the same in your custom
sprite to maintain a consistent look with the default icons. Save the image in a PNG-8 format
with alpha transparency.

Specifying an invalid icon name
In the code, if you specify an invalid icon name, say data-icon="random", the framework
prefixes this with the text .ui-icon-and tries to look the class up in the stylesheet. If this is
not resolved to a valid icon, the framework now picks up the first icon from the default icon
sprite and displays the same instead. The first icon in the default sprite is the plus icon and
is used in all places where the icon name cannot be resolved.

See also
ff The Replacing the default icon sprite recipe

ff The Using a custom icon in a button recipe

Replacing the default icon sprite
This recipe shows you how to replace the default icon sprite provided with jQuery Mobile and
use your own instead. The custom icon sprite used here contains icons which form the six
faces of a dice.

Chapter 4

87

Getting ready
Copy the full code of this recipe from the code/04/replace-icon-sprite sources folder.
You can launch this code using the URL http://localhost:8080/04/replace-icon-
sprite/main.html.

How to do it...
In this recipe, the following image, dice.png is an icon sprite with six icons for the six faces
of a dice. This icon sprite is used to replace the default icon sprite.

1.	 Create a new stylesheet jqm-sprite.css and redefine the default .ui-icon
class available with jQuery Mobile framework. Replace the default icon classes
with new classes for the icons derived from the custom icon sprite as shown in
the following code:
.ui-icon {
 background: #fff;
 background: rgba(0,0,0,.4);
 background-image: url("../../resources/images/dice.png");
 background-repeat: no-repeat;
 -moz-border-radius: 9px;
 -webkit-border-radius: 9px;
 -o-border-radius: 9px;
 border-radius: 9px;
}
@media only screen and (-webkit-min-device-pixel-ratio: 1.5),
 only screen and (min--moz-device-pixel-ratio: 1.5),
 only screen and (min-resolution: 240dpi) {
 .ui-icon-one, .ui-icon-two, .ui-icon-three, .ui-icon-four, .ui-
icon-five, .ui-icon-six {
 background-image: url("../../resources/images/dice-HD.png");
 -moz-background-size: 108px 18px;
 -o-background-size: 108px 18px;
 -webkit-background-size: 108px 18px;
 background-size: 108px 18px;
 }
}
.ui-icon-one { background-position: -0px 50%; }
.ui-icon-two { background-position: -18px 50%; }
.ui-icon-three { background-position: -36px 50%; }
.ui-icon-four { background-position: -54px 50%; }
.ui-icon-five{ background-position: -72px 50%; }
.ui-icon-six{ background-position: -90px 50%; }

Buttons and Content Formatting

88

2.	 Include the CSS in the <head> section of main.html, as shown in the following code:
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.1.1/
jquery.mobile-1.1.1.min.css" />
<link rel="stylesheet" href="jqm-sprite.css" />

3.	 Use the new icons derived from the replaced icon sprite to display the six faces of the
dice as shown in the following code. Display the buttons with text:
<div data-role="content">
 <input type="submit" data-inline="true" value="one" data-
icon="one" />
 <input type="submit" data-inline="true" value="two" data-
icon="two" />
 <input type="submit" data-inline="true" value="three" data-
icon="three" />
 <input type="submit" data-inline="true" value="four" data-
icon="four" />
 <input type="submit" data-inline="true" value="five" data-
icon="five" />
 <input type="submit" data-inline="true" value="six" data-
icon="six" />

4.	 Then display the buttons without text for comparison:
<h3>This is how they look without Text</h3>
 <input type="submit" data-inline="true" data-iconpos="notext"
data-icon="one" />
 <input type="submit" data-inline="true" data-iconpos="notext"
data-icon="two" />
 <input type="submit" data-inline="true" data-iconpos="notext"
data-icon="three" />
 <input type="submit" data-inline="true" data-iconpos="notext"
data-icon="four" />
 <input type="submit" data-inline="true" data-iconpos="notext"
data-icon="five" />
 <input type="submit" data-inline="true" data-iconpos="notext"
data-icon="six" />
</div>

How it works...
Create a stylesheet jqm-sprite.css and copy the code snippet for the .ui-icon class as
is from the jquery.mobile.css file. Change the background-image URL of the icon sprite
to point to the custom icon sprite dice.png image. Add the individual icon classes with the
names .ui-icon-one to .ui-icon-six. Specify the positions of these icons in the icon
sprite. The class .ui-icon already specifies the background colors for the icons. It also
specifies a border radius of 9px for the icons with the required vendor prefixes. Modify the
@media query and update the names of the new icons instead of the default icons as shown.

Chapter 4

89

Here, the prefix text ui-icon indicates to the button plugin that these are custom icons and this
generates the corresponding classes without the prefix text. You can now use the replaced
icons on buttons using the attributes data-icon="one" to data-icon="six" and the
framework will fetch and display the correct custom icon.

In main.html, create the buttons for the six faces of a dice by adding submit buttons using
input tags. Set icons to these buttons using the data-icon attribute as shown. Display the
buttons with and without text for comparison. The buttons for the six faces of a dice are now
displayed as shown in the following screenshot, first with text and then without text:

There's more...
This recipe shows you how to replace the default icon sprite with your own custom icon sprite.
You will no longer be able to use the default icons in your application. So replace the default
icon set only if you have a valid reason to do it and if your app requires customization of all the
icons. A better approach is to add a custom sprite along with the default sprite as shown in
the previous recipe.

See also
ff The Using a custom icon in a button recipe

ff The Adding a custom icon sprite recipe

Using alternate icons in a collapsible
A collapsible is a container with the data-role="collapsible" attribute. You can add
a header and other controls inside collapsible content and only the header is displayed
when the collapsible block is collapsed. You can click on the + icon next to the collapsible
to expand it. This recipe shows you how to use alternate icons with a collapsible.

Getting ready
Copy the full code of this recipe from the code/04/collapsible sources folder. You can
launch this code using the URL http://localhost:8080/04/collapsible/main.html.

Buttons and Content Formatting

90

How to do it...
1.	 In main.html add two collapsible blocks using data-role="collapsible",

as shown in the following code. By default, the first collapsible uses the standard
icons (plus and minus).
<div data-role="content">
 <div data-role="collapsible" data-collapsed="false"
 data-theme="c" data-content-theme="c">
 <h3>Header of the collapsible element</h3>
 The header uses the default plus/minus icons
 </div>
 <div id="collapser" data-role="collapsible"
data-collapsed="false" data-theme="d" data-content-theme="d">
 <h3>Header of the collapsible element</h3>
 The header uses the alternate expand/collapse icons
 </div>
</div>

2.	 Add the following script to the <head> section of the page to set alternate arrow
icons to the second collapsible:
//on initial load
$("#main").live("pagebeforeshow", function(event, data) {
 $("#collapser").find(".ui-icon-plus")
 .toggleClass("ui-icon-arrow-r");
 $("#collapser").find(".ui-icon-minus")
 .toggleClass("ui-icon-arrow-d");
});
// handle expand and collapse events below
$("#main").live("pageshow", function(event, data) {
 $("#collapser").bind("expand collapse", function(event) {
 var isCollapse = (event.type === "collapse");
 $(this).find(".ui-icon")
 .toggleClass("ui-icon-arrow-d", !isCollapse)
 .toggleClass("ui-icon-arrow-r", isCollapse);
 });
});

Chapter 4

91

How it works...
In main.html, add two collapsible blocks; they have the default plus and minus icons when
they are loaded. Add script and create an event handler for the pagebeforeshow event to
change the icons for the second collapsible (with id="collapser"). Use the jQuery find()
method to find the class .ui-icon-plus (plus icon) and replace it with the class .ui-
icon-arrow-r (right arrow) using the toggleClass() method. Similarly, replace the class
.ui-icon-minus (minus icon) with the class .ui-icon-arrow-d (down arrow). Set the
data-collapsed="false" attribute on the collapsible blocks to show in an expanded
mode. The second collapsible now has the arrow icons instead of the default icons when the
page is displayed:

When a collapsible is expanded or collapsed, the framework toggles the icon using standard
icons. You can override this behavior by adding an event handler for the pageshow event.
Based on the event (expand or collapse) on the collapsible block, find the .ui-icon class
and replace it with the .ui-icon-arrow-d or the .ui-icon-arrow-r classes to show the
down or the right arrows. The collapsed blocks now look as shown in the following image:

There's more...
You can theme the collapsible content by using the data-content-theme attribute. The
header is not affected. The following code themes the collapsible content with swatch e:

<div data-role="collapsible" data-content-theme="e">

Buttons and Content Formatting

92

Setting a theme to the collapsible header
Use the data-theme attribute and set the theme to the entire collapsible block
including the header. Now you can set a different theme to the collapsible content using
the data-content-theme attribute. It will now look as if you styled the header separately.
The following code snippet sets the header theme to swatch a and body to swatch e:

<div data-role="collapsible"
 data-theme="a" data-content-theme="e" >

See also
ff The Creating a nested accordion recipe

Creating a nested accordion
An accordion or a collapsible set is a group of collapsible blocks in a container with data-
role="collapsible-set". Only one collapsible can be expanded at a time and the other
collapsibles go back to their collapsed state. You cannot nest accordions directly. This recipe
shows you how to create a nested accordion in a simple application that displays the various
real estate properties available for purchase.

Getting ready
Copy the full code of this recipe from the code/04/nested-accordion sources folder. You
can launch this code using the URL http://localhost:8080/04/nested-accordion/
main.html.

How to do it...
1.	 Add a nested accordion to main.html using data-role="collapsible-set" as

shown in the following code:
<div data-role="content">
 <h4>Our current housing projects</h4>
 <div data-role="collapsible-set" data-theme="d" data-content-
 theme="d">
 <div data-role="collapsible" data-collapsed="false">
 <h3>Villas and Row Houses</h3>
 <div data-role="collapsible-set" data-theme="e" data-
 content-theme="e">
 <div data-role="collapsible">
 <h3>ABC Lake View</h3>
 Premium Villas with each villa having its own private

Chapter 4

93

 beach
 </div>
 <div data-role="collapsible">
 <h3>ABC Nest</h3>
 Serene row houses amidst acres of trees
 </div>
 </div>
 </div>
 <div data-role="collapsible">
 <h3>Apartments</h3>
 <div data-role="collapsible" data-theme="e" data-content-
 theme="e">
 <h3>ABC Sky Rise</h3>
 Luxury 3 bedroom apartments 2 blocks away from ABC Mall
 </div>
 </div>
 </div>
</div>

How it works...
In main.html, create a collapsible set with two collapsible blocks in it. The first collapsible shows
Villas and Row Houses and the second shows Apartments. You can now nest another collapsible
set under the Villas and Row Houses collapsible, as shown in the previous code snippet.

Add two collapsible blocks, nesting them inside the first collapsible block to list two properties.
Theme the nested content differently from its parent collapsible using the data-theme
and data-content-theme attributes. The nested collapsible is displayed as shown in
the following screenshot:

Buttons and Content Formatting

94

Now to complete the code, add content to the second collapsible Apartments. At any
point in time, only one collapsible is expanded in this nested accordion, as seen in the
following screenshot:

There's more...
Introducing any other element or content in between two collapsible blocks in a collapsible
set breaks the set. The collapsible blocks are no longer synchronized and they become
independent of each other when you expand or collapse them.

As the name indicates, a collapsible set must only contain
collapsible blocks.

See also
ff The Using alternate icons in a collapsible recipe

Creating a custom layout grid
You can use a layout grid to place controls next to each other in your application. By default,
the layout grid creates column cells with equal width. This recipe shows you how to customize
this and create cells with varying heights and widths.

Getting ready
Copy the full code of this recipe from the code/04/layoutgrid sources folder. You can
launch this code using the URL http://localhost:8080/04/layoutgrid/main.html.

Chapter 4

95

How to do it...
1.	 Add a layout grid to main.html as shown in the following code, using the ui-grid

and ui-block classes:
<div data-role="content">
 <fieldset class="ui-grid-a">
 <div class="ui-block-a" style="width: 25%">
 <div class="ui-bar ui-bar-e">Col A</div>
 </div>
 <div class="ui-block-b" style="width: 50%">
 <div class="ui-bar ui-bar-e">Col B</div>
 </div>
 <div class="ui-block-c" style="width: 25%">
 <div class="ui-bar ui-bar-e">Col C</div>
 </div>
 <div class="ui-grid-solo">
 <div style="height: 40px" class="ui-bar ui-bar-e">A
Single Cell</div>
 </div>
 </fieldset>
</div>

How it works...
Create main.html and add a layout grid to its page by adding a fieldset element with the
attribute class="ui-grid-a". This will create two columns having equal widths by default.
But you can add three cells by adding ui-block-a, ui-block-b, and ui-block-c divs as
shown in the code. Each div has varying widths, with Col B having 50% width and the other
two columns 25% width each. The total width sums up to 100 percent and the framework
automatically lines them up in a single row. If the sum were to exceed 100 percent, then the
extra cells would be moved to the next row.

Now in the second row add a single div with class ui-grid-solo and this will style the cell
to have 100 percent width. You can alter the height of this cell as shown in the code using
the style="height:" attribute. The ui-bar and ui-bar-e classes style the cells with a
border and a gradient color and themes it with swatch e. The grid layout now looks as shown
in the following screenshot:

Buttons and Content Formatting

96

There's more...
You can theme an individual cell, ui-block differently from other cells, by adding the
data-theme attribute to it. To theme an entire row differently from other rows in the grid,
you will have to add the same data-theme attribute to all the cells of that row.

Adding content to a layout grid cell
You can add any sort of element inside the ui-block cell of a layout grid. You can even add
a layout grid inside this cell. You have to choose wisely how you want your screen to look,
keeping in mind the limited screen size of mobile devices.

Adding a grid layout to any container
You can add a grid to any container by adding the ui-grid class to it. The following code
snippet styles the entire page as a two column grid:

<div id="main" data-role="page" class="ui-grid-a">

See also
ff The Adding a layout grid to the footer recipe in Chapter 3, Toolbars

Using XML content
You can display data obtained from various formats and sources in your application. This
recipe shows you how to display a sample set of Student Records obtained from an XML file.

Getting ready
Copy the full code of this recipe from the code/04/xml-content sources folder. You can
launch this code using the URL http://localhost:8080/04/xml-content/main.html.

How to do it...
1.	 Create the student.xml file with the student node having attributes name and age.

Each student node has multiple course child elements. Each course element has
a name attribute and a child marks element as shown in the following code:
<?xml version="1.0" encoding="utf-8" ?>
<students>
 <student name="Alex" age="22">
 <course name="HTML5">
 <marks>89</marks>
 </course>

Chapter 4

97

 <course name="CSS3">
 <marks>88</marks>
 </course>
 <course name="JavaScript">
 <marks>80</marks>
 </course>
 </student>

</students>

2.	 Create the main.html file and add one hidden div container. You can read the XML
data into this div and then format and display it:
<div id="content" data-role="content" data-theme="b">
 <div id="hiddendiv" hidden="true">hi</div>
</div>

3.	 Include the following JavaScript code in the <head> section of main.html to load
the XML file, format the data, and then display it:
$("#main").live("pageinit", function(event) {
 var str="";
 $("#hiddendiv").load("student.xml", function() {
 $("#hiddendiv").find("student").each(function() {
 str += "<div data-role='collapsible' data-theme='d'
 data-content-theme='d'>";
 str += "<h3>" + $(this).attr("name") + ", "
 + $(this).attr("age") +" years</h3>";
 str += "<ul data-role='listview'>";
 var i=0;
 $(this).find("course").each(function() {
 str += "" + $(this).attr("name") + " : "
 + $(this).children("marks").html() + "";
 });
 str += "</div>";
 });
 $("#content").html(str).trigger("create");
 });
});

Buttons and Content Formatting

98

How it works...
In main.html, add a div container with id="hiddendiv" and hide it by setting the
attribute hidden="true". Create an event handler for the pageinit event to handle the
loading of the XML data as soon as the page is initialized and available in memory. Load the
XML data into hiddendiv using the jQuery Ajax load() method. On successful load, find
each student node using the jQuery find() method. For each student, generate HTML
code by creating a collapsible (using data-role="collapsible"). Set the collapsible
header to the student's name and age. You can obtain these values from the attributes of
the student node by using the jQuery attr() method. Next, find each course within the
student node and obtain course name and marks. The marks value is read by using the
children() call, which extracts the first child element of the course node. The course
elements are added to an unordered list (using data-role="listview").

Once the HTML content is built, set it to the "#content" page content div and then trigger
the "create" method to let the jQuery Mobile framework do its magic and generate the
enhanced controls, as shown in the following screenshot:

Chapter 4

99

There's more...
This recipe shows you how to read contents from a XML file located in the same folder using
Ajax. You can also send an Ajax request to a server and obtain this XML as the response. The
jQuery library has a whole bunch of selectors and manipulators that you can use to read and
write XML data. Visit http://docs.jquery.com to read more.

XML structure requires end tags and this makes it bulky. Always try
to make your XML as light as possible by using more attributes when
possible instead of child nodes. You can also use an algorithm such
as gzip to compress the XML.

Using native browser rendering for XML
Almost all browsers know how to render and display XML data directly. The XML content can
also be formatted and styled if it has an associated style sheet. In your jQuery Mobile app you
can leverage this feature in situations where you can open the content in another page using
the target attribute on the anchor link, as shown in the following code:

Open Student
details

See also
ff The Using JSON content recipe

Using JSON content
JSON stands for JavaScript Object Notation. It is a lightweight data-interchange format and
is very easy to use. This recipe shows you how to display the prices of Precious Metals from a
JSON file.

Getting ready
Copy the full code of this recipe from the code/04/json-content sources folder.
You can launch this code using the URL http://localhost:8080/04/json-content/
main.html.

Buttons and Content Formatting

100

How to do it...
1.	 Create the precious.json file containing an array of the five precious metals.

The name, symbol, and the intraday open, close, high, and low prices are also
available, as shown in the following code:
[
 {
 "name": "Gold",
 "symbol": "Au",
 "price": { "open": 1642.46, "close": 1682.42, "high": 1699.66,
"low": 1638.51 }
 },
 {
 "name": "Silver",
 "symbol": "Ag",
 "price": { "open": 31.24, "close": 33.11, "high": 33.65,
"low": 31.21 }
 },
 {
 "name": "Platinum",
 "symbol": "Pt",
 "price": { "open": 1621.15, "close": 1623.87, "high": 1624.45,
"low": 1620.98 }
 },
 {
 "name": "Paladium",
 "symbol": "Pd",
 "price": { "open": 656.05, "close": 657.35, "high": 657.75,
"low": 655.25 }
 },
 {
 "name": "Rhodium",
 "symbol": "Rh",
 "price": { "open": 1434.38, "close": 1434.68, "high": 1434.98,
"low": 1434.12 }
 }
]

2.	 Create main.html and add an empty div with id="preciousdata" to it. You can
read the JSON file, format, and display the data here:
<div id="content" data-role="content" data-theme="b">
 <div id="preciousdata"></div>
</div>

Chapter 4

101

3.	 Include the following JavaScript code in the <head> section of main.html to fetch
and load the JSON file, format the data, and show the price table of the precious
metals in a layout grid:
$("#main").live("pageinit", function(event) {
 $.getJSON("precious.json", function(metal) {

4.	 Next, store the HTML strings used to create the layout grid in local variables:
 var blocka = "<div class='ui-block-a' style='width: 40%'>";
 var blockb = "<div class='ui-block-b' style='width: 15%'>";
 var blockc = "<div class='ui-block-c' style='width: 15%'>";
 var blockd = "<div class='ui-block-d' style='width: 15%'>";
 var blocke = "<div class='ui-block-e' style='width: 15%'>";
 var title = "<div class='ui-bar ui-bar-a' style='text-align:
right'>";
 var uibarc = "<div class='ui-bar ui-bar-c' style='text-align:
right'>";
 var uibare = "<div class='ui-bar ui-bar-e' style='text-align:
right'>";

5.	 Use the local variables defined above and construct the HTML content for the title of
the layout grid:
 var str="<div class='ui-grid-d'>";
 str += blocka + title + "Precious Metal (USD)</div></div>";
 str += blockb + title + "Open</div></div>";
 str += blockc + title + "High</div></div>";
 str += blockd + title + "Low</div></div>";
 str += blocke + title + "Close</div></div>";

6.	 Now create the HTML content for each metal, including their price details:
 for (var i in metal) {
 str += blocka + uibare + metal[i].name
 + " (" + metal[i].symbol + ")</div></div>";
 str += blockb + uibarc + metal[i].price.open
 + "</div></div>";
 str += blockc + uibare + metal[i].price.high
 + "</div></div>";
 str += blockd + uibarc + metal[i].price.low
 + "</div></div>";
 str += blocke + uibare + metal[i].price.close
 + "</div></div>";
 }
 str += "</div>";

Buttons and Content Formatting

102

7.	 Finally, add this data to the #preciousdata div and trigger the "create" method
to display the formatted JSON data:

 $("#preciousdata").html(str).trigger("create");
 });
});

How it works...
In main.html, add an empty div container with id="preciousdata". You can use this
to display the formatted JSON data later. Create an event handler for the pageinit event
to handle the loading of the JSON data as soon as the page is initialized and available in
memory. Use the $.getJSON() jQuery call to fetch the JSON encoded data from the server
using a GET request. The JSON data is now available in the metal object.

In the callback function for the getJSON method, create the HTML content for a five column
layout grid using the ui-grid-d class. The five columns are titled Precious Metal (USD), Open,
High, Low, and Close. Create the title row using the ui-block classes for each column cell.
Next, loop through the objects in metal and construct the column cells as shown.

Theme the columns alternatively with swatch e and swatch c. You can theme the title
differently using swatch a. Finally, set the generated HTML content to the #preciousdata
div and trigger the create method to let the jQuery Mobile enhance the layout grid. The JSON
with precious metal price data is now displayed as shown in the following screenshot:

There's more...
This recipe shows you how to use the jQuery.getJSON() method to fetch the JSON data from
the server. The jQuery library also provides a jQuery.parseJSON() method that you can use
to parse a JSON string directly into a JavaScript object, as shown in the following code:

var preciousobject= jQuery.parseJSON('{"name":"Gold"}');

Chapter 4

103

JSON for data storage and data transfer
JSON is very popular today for storing and transferring data. JSON is a subset of JavaScript
and as seen in this recipe, reading JSON data using JavaScript is very trivial. JSON is
lightweight and uses less bandwidth compared to XML (for example, no start and end tags).
JSON is also supported out of the box by numerous document oriented databases such as
CouchDB and MongoDB.

JSON parsers
JSON data can also be loaded using the JavaScript eval() method. But do this only if you
absolutely have to and are very sure about the source of the JSON text file. It is always safer
to load the data using a JSON parser as this will accept only valid JSON data, and prevent
potentially malicious code from running. Refer to www.json.org for more details and for
accessing a whole range of available JSON parsers. The jQuery JSON methods are usually
preferred as they are very handy and also safe to use.

Always use a properly implemented JSON parser to read
and write .json files. Avoid using the eval() method,
which is not secure.

See also
ff The Using XML content recipe

http://www.json.org/

5
Forms

In this chapter we will cover:

ff Native styling of form controls

ff Disabling text controls

ff Grouping radio buttons in a grid

ff Customizing a checkbox group

ff Creating dynamic flip switch and slider controls

ff Using options to auto-initialize a select menu

ff Validating forms

ff Submitting a form using POST

ff Fetching data using GET

ff Creating an accessible form

Introduction
The standard HTML form element is enhanced by jQuery Mobile framework to make it
touch friendly and also to make it work across multiple devices and platforms. The form can
contain multiple controls and you can group these controls using a fieldset with data-
role='controlgroup' attribute set on it. By default, the controls are listed vertically. You
can use the data-type='horizontal' attribute to line them horizontally. Forms support
the HTTP GET, POST, and other actions. Ajax is used wherever possible for form submissions.

Native styling of form controls
The jQuery Mobile framework enhances the form and its controls by default. This recipe
shows you the different ways you can set native styling for your form controls and also
how to auto-initialize these controls.

Forms

106

Getting ready
Copy the full code of this recipe from the code/05/native-style sources folder. This code
can be launched using the URL http://localhost:8080/05/native-style/main.
html.

How to do it...
1.	 In main.html, add the following script to the <head> section to natively style

all buttons:
$(document).bind('mobileinit', function() {
 $.mobile.page.prototype.options.keepNative = 'button';
});

2.	 Add a form to the page content to set native styles on the controls:
<form action='#' method='post'>
 <p><label for='button1'>Button 1</label></p>
 <button name='button1'>Button: keepNative configuration</button>
 <p><label for='button2'>Button 2</label></p>
 <button name='button2' data-role='button'>Button: data-
role='button'</button>
 <p><label for='button3'>Button 3</label></p>
 <button id='button3' name='button3'>Button: buttonMarkup()</
button>
 <script>$('#button3').buttonMarkup(); </script>
 <p><label for='input1'>Input 1</label></p>
 <input type='submit' name='input1' value='Input: default'></
input>
 <p><label for='input2'>Input 2</label></p>
 <input type='submit' name='input1' data-role='none'
value="Input: data-role='none'"></input><p>
 Default anchor link</p>
 Anchor: data-role='button'>
</form>

How it works...
In main.html, add an event handler for the mobileinit event that gets triggered at the
start of the app. Here set the keepNative property of the page plugin to 'button'. Now the
framework will not enhance the button controls but will style them natively. Now add button1
to the form and it will be styled natively. To override this native styling, add button2 and set
the attribute data-role='button'. Similarly, add button3 and call the buttonMarkup()
method on it using the script as shown in the previous code. Both button2 and button3
now get enhanced by overriding the default native styling.

Chapter 5

107

The framework enhances all other controls by default. Add an input button input1 and you
will see that it is enhanced. To natively style controls, you can use the data-role='none'
attribute as shown in the previous code for the input control input2.

For anchor links, the native style is used by default. You can enhance an anchor link by using
the data-role='button' attribute on it. The form created is shown above.

There's more...
As already mentioned, form controls are enhanced by the framework to make it finger friendly
across all platforms. But these controls may seem to be slightly bigger to be used in other
small containers (like toolbars). You can use the mini version of the controls by setting the
data-mini = 'true' attribute on the control. The control is now slightly smaller in size
but still finger friendly. You can directly set this attribute on a controlgroup and all child
elements will automatically be minified. Visit jQuery Mobile online docs to see a comparison
of various controls at http://jquerymobile.com/test/docs/forms/forms-all-
compare.html.

http://jquerymobile.com//test/docs/forms/forms-all-compare.html
http://jquerymobile.com//test/docs/forms/forms-all-compare.html

Forms

108

Setting multiple controls to use native style
You can specify multiple controls to be styled natively by the page plugin. The following line of
code natively styles all the buttons, input controls, and select menus in the form:

$.mobile.page.prototype.options.keepNative = 'button, input, select';

The data-role='none' attribute
Based on the control type, the framework initializes and enhances a control by using its
corresponding plugin. When data-role='none' is specified, the control is not enhanced
by the framework and the control gets styled natively. Any action like setting the theme on the
control by using the data-theme attribute is ignored.

The enhanced styles provided by jQuery Mobile are tap and
touch friendly and ideal for mobile devices. Avoid native
styling in your apps as far as possible.

Disabling text controls
This recipe shows you the different ways to enable and disable text controls in a form.

Getting ready
Copy the full code of this recipe from the code/05/text-controls sources folder. This
code can be launched using the URL http://localhost:8080/05/text-controls/
main.html.

How to do it...
1.	 In main.html, create the following text controls in a form:

<form action='#' method='post'>
 <input type='search' id='searchitem' name='searchitem' autofocus
 placeholder='Enter search text' value='' />
 <input type='text' id='textitem' name='textitem'
 placeholder='Enter text item' value='' />
 <textarea id='textarea' name='textarea'
 placeholder='Enter description'></textarea>
 More
Details
</form>

Chapter 5

109

2.	 Add the following script to the <head> section to disable all controls:
 $('#main').live('pageinit', function(event) {
 $('#textitem').prop('disabled', true);
 $('#textarea').textinput('disable');

3.	 Then handle the change event of the search text control to enable all the
form controls:
 $('#searchitem').bind('change', function(event, ui) {
 var str = $(this).attr('value');
 $('#textitem').prop('disabled', true);
 $('#textarea').textinput('enable').append(str
 + ' is absolutely awesome!');
 $('a').removeClass('ui-disabled');
 });
});

How it works...
In main.html, add a search control with input type='search' and add a text with input
type='text'.Now, add an empty textarea as shown in the previous code. Add a link and
disable it by setting the attribute class='ui-disabled'. In the script, add a pageinit
event handler that gets invoked after the page has been initialized. Here, disable the text
input by calling the prop('disabled', true) method to set its disabled property.
Next, disable the textarea by calling the disable method on the textinput plugin with the
textinput('disable') call. Now when the app is loaded, all the controls other than the
search input are disabled on the form, as shown in the following screenshot:

You cannot use the disabled attribute on an anchor link which
has been enhanced to a button using data-role='button'.
This attribute is ignored.

Forms

110

Now to enable the controls, bind the change event of the search control to an event handler.
Here, enable the textitem control by calling the prop('disabled', false) method.
Next, call the textinput('enable') method on the textarea to invoke the enable
method on its textinput plugin. Call the append() method on the textarea to add text
to it. Finally, call the jQuery removeClass() method on the anchor link to remove the
'ui-disabled' class. Now as soon as you type something in the search field, the form
controls are all enabled, as seen in the following screenshot:

There's more...
You can also enable or disable a control by adding the disabled attribute to the control
using the attr() and removeAttr() jQuery methods, as shown in the following code:

$('#textitem').attr('disabled', 'disabled'); // to disable
$('#textitem').removeAttr('disabled'); // to enable

Auto-initialization of text controls
The textarea and text input controls (input type='text') are automatically enhanced by the
framework. You can also theme a text control by using the data-theme attribute.

Grouping radio buttons in a grid
The jQuery Mobile framework allows you to create radio buttons grouped either horizontally
or vertically. This recipe shows you how to group radio controls in a 3 x 3 grid in a simple seat
reservation form.

Getting ready
Copy the full code of this recipe from the code/05/radiobutton-grid sources folder. This
code can be launched using the URL http://localhost:8080/05/radiobutton-grid/
main.html.

Chapter 5

111

How to do it...
1.	 In main.html, create nine radio controls using a 3 x 3 layout grid. These radio

buttons are part of the same control group.
<form action='#' method='post'>
 <fieldset data-role='controlgroup' data-type='horizontal'
 class='ui-grid-a'>
 <div class='ui-block-a' style='width: 30%'>
 <legend>First Row</legend></div>
 <div class='ui-block-b' style='width: 70%'>
 <input type='radio' name='radio-1' id='radio-11'
value='Seat-A1' checked />
 <label for='radio-11'>A-1</label>
 <input type='radio' name='radio-1' id='radio-12'
value='Seat-A2' />
 <label for='radio-12'>A-2</label>
 <input type='radio' name='radio-1' id='radio-13'
value='Seat-A3'/>
 <label id='l-13' for='radio-13' class='ui-corner-
right'>A-3</label>
 </div>
 <div class='ui-block-a' style='width: 30%'>
 <legend>Mid Row</legend></div>
 <div class='ui-block-b' style='width: 70%'>
 <input type='radio' name='radio-1' id='radio-21'
value='Seat-B1' />
 <label id='l-21' for='radio-21' class='ui-corner-left'>B-1</
label>
 <input type='radio' name='radio-1' id='radio-22'
value='Seat-B2' />
 <label for='radio-22'>B-2</label>
 <input type='radio' name='radio-1' id='radio-23'
value='Seat-B3'/>
 <label id='l-23' for='radio-23' class='ui-corner-
right'>B-3</label>
 </div>
 <div class='ui-block-a' style='width: 30%'>
 <legend>Last Row</legend></div>
 <div class='ui-block-b' style='width: 70%'>
 <input type='radio' name='radio-1' id='radio-31'
value='Seat-C1' />
 <label id='l-31' for='radio-31' class='ui-corner-
left'>C-1</label>

Forms

112

 <input type='radio' name='radio-1' id='radio-32'
value='Seat-C2' />
 <label for='radio-32'>C-2</label>
 <input type='radio' name='radio-1' id='radio-33'
value='Seat-C3'/>
 <label for='radio-33'>C-3</label>
 </div>
 </fieldset>
</form>

2.	 Add the following script to the <head> section to fix the styles of the edge
radio buttons:
$('#main').live('pageshow', function(event) {
 $('#l-13').children('span').addClass('ui-corner-right ui-
controlgroup-last');
 $('#l-23').children('span').addClass('ui-corner-right ui-
controlgroup-last');
 $('#l-21').children('span').addClass('ui-corner-left');
 $('#l-31').children('span').addClass('ui-corner-left');
});

How it works...
In main.html, add a horizontal radio control group by specifying data-
role='controlgroup' and data-type='horizontal'. Now add the ui-grid-a class
to this fieldset container to create a two column layout grid. For each row, add the legend
in the first column by specifying class='ui-block-a' to the div container and add the
radio buttons in the second column with class='ui-block-b'. Add nine radio buttons
with appropriate labels as shown in the previous code, with each row containing three radio
buttons. This will create a grid of 3 x 3 radio button group.

In the previous code, you will find that the first and last radio buttons in the grid are styled
properly but all other edge radio buttons (with labels l-13, l-21, l-23, and l-31) are not styled
properly. They have rectangular edges instead of corners. To fix this, copy the style generated
by the framework for the label of the very first radio button (class='ui-corner-left')
to the inner span of the labels l-21 and l-31. Likewise, copy the style generated by the
framework for the label of the very last radio button (class='ui-corner-right ui-
controlgroup-last') to the inner span of the labels l-13 and l-23. The grid of radio
buttons is now properly styled, as shown in the following screenshot, and you will be able to
select only one radio button in the entire grid at a time:

Chapter 5

113

There's more...
When the framework encounters an input control with type='radio', it automatically
enhances it to a styled radio button using the checkboxradio plugin. You can theme a radio
button by using the data-theme attribute during initialization. You can turn auto-initialization
off and use native styling by using the data-role='none' attribute.

See also
ff The Customizing a checkbox group recipe

Customizing a checkbox group
The default horizontally grouped checkbox controls do not have an icon and the vertically
grouped checkbox controls do not use the active state theme. This recipe shows you how to
customize the checkbox and add these styles. It also shows you how to adjust the layout to
handle varying screen sizes. You will create a simple Blog Subscription form in this recipe.

Getting ready
Copy the full code of this recipe from the code/05/custom-checkbox sources folder. This
code can be launched using the URL http://localhost:8080/05/custom-checkbox/
main.html.

Forms

114

How to do it...
The form is first created with the horizontal and vertical group of checkbox controls. The
horizontal checkbox controls are customized by adding icons to them in the pageshow
event handler via JavaScript. The change event of the checkbox controls indicate whether a
checkbox checked state was changed. The change event handler is used to add and toggle
the active state of the checkbox.

1.	 In main.html, create a form with a vertical checkbox control group:
<form action='#' method='post'>
 <div data-role='fieldcontain'>
 <fieldset data-role='controlgroup'>
 <legend>Subscribe to:</legend>
 <input type='checkbox' name='posts' id='posts' />
 <label for='posts' id='postslbl'>New Posts</label>
 <input type='checkbox' name='comments' id='comments' />
 <label for='comments' id='commentslbl'>Comments</label>
 </fieldset>
 </div>

2.	 Next add two horizontal toggle sets or checkbox groups:
 <div data-role='fieldcontain'>
 <fieldset data-role='controlgroup' data-type='horizontal'>
 <legend>Notify Me:</legend>
 <input type='checkbox' name='notify' id='notify' />
 <label for='notify'>Immediate</label>
 <input type='checkbox' name='digest' id='digest' />
 <label for='digest'>Daily Digest</label>
 </fieldset>
 </div>
 <div data-role='fieldcontain'>
 <fieldset data-role='controlgroup' data-type='horizontal'>
 <legend>Share To:</legend>
 <input type='checkbox' name='twitter' id='twitter' />
 <label for='twitter' id='twitterlbl'>Twitter</label>
 <input type='checkbox' name='facebook' id='facebook' />
 <label for='facebook' id='facebooklbl'>Facebook</label>
 </fieldset>
 </div>
</form>

Chapter 5

115

3.	 Add the following script to the <head> section to add icons to the horizontal group:
$('#main').live('pageshow', function(event, data) {
 $('#twitterlbl').children('span').append("<span class='ui-icon
ui-icon-shadow ui-icon-checkbox-off'>").trigger('create');
 $('#twitterlbl').addClass('ui-btn-icon-left').
trigger('refresh');
 $('#facebooklbl').children('span').append("<span class='ui-icon
ui-icon-shadow ui-icon-checkbox-off'>").trigger('create');
 $('#facebooklbl').addClass('ui-btn-icon-left').
trigger('refresh');
 updatePosts();
 updateComments();
 $('#posts').bind('change', updatePosts);
 $('#comments').bind('change', updateComments);
});

4.	 Next, bind the change event to handle the change in the checked state of
the controls:
function updatePosts(event, ui) {
 if($('#posts').prop('checked')) {
 $('#postslbl').addClass('ui-btn-active').trigger('refresh');
 } else {
 if($('#postslbl').hasClass('ui-btn-active'))
 $('#postslbl').removeClass('ui-btn-active').
trigger('refresh');
 }
}

5.	 Finally, toggle the active state based on the checked state of the vertical checkbox:
function updateComments(event, ui) {
 if($('#comments').prop('checked')) {
 $('#commentslbl').addClass('ui-btn-active').
trigger('refresh');
 } else {
 if($('#commentslbl').hasClass('ui-btn-active'))
 $('#commentslbl').removeClass('ui-btn-active').
trigger('refresh');
 }
}

Forms

116

How it works...
In main.html, add three fieldset elements with data-role='controlgroup' to the
Blog Subscription form. Add a vertical checkbox group to the first fieldset element with
checkboxes for Posts and Comments. The second control group is a horizontal toggleset for
selecting blog notifications (Immediate and As a daily digest). The third group of checkboxes
are also horizontal with options to share in Twitter and Facebook.

By default, the horizontal togglesets do not have icons. You can customize this and add icons
to them. Create an event handler for the pageshow event and add the required styles to
the labels of the third horizontal toggleset. Add an inner span with class='ui-icon ui-
icon-shadow ui-icon-checkbox-off' to the labels with id='twitterlbl' and
id='facebooklbl', and also add the ui-btn-icon-left class to the labels. This will
add an icon on the left-hand side of the two checkboxes, similar to the icons available with the
vertical checkbox controls. Compare this with the other horizontal toggelset.

By default, the vertical checkboxes have icons and when selected these icons show the
tick mark. The vertical checkboxes do not get the btn-active style (unlike the horizontal
checkboxes). To add the active button style, create event handlers for the change event on
the two vertical checkboxes (with id='posts' and id='comments'). For each of these
checkboxes, use the prop('checked') call to find out whether the control is checked or
not and then add or remove the ui-btn-active class to style the vertical checkbox, similar
to the horizontal one. The screen is displayed as seen in the following screenshot:

Chapter 5

117

There's more...
In the previous code, each checkbox group is wrapped in a container with the attribute
data-role='fieldcontain'. This attribute will cause the framework to dynamically
adjust the layout of the controls and the position of their labels based on the screen size.
A small horizontal separator line is also added to show the separation. On a wider screen
or when landscape orientation is used, the display is as shown in the following screenshot:

Auto-initialization of checkbox controls
When the framework encounters an input control with type='checkbox', it automatically
enhances it to a styled checkbox using the checkboxradio plugin. You can theme a checkbox
by using the data-theme attribute during initialization. You can turn auto-initialization off and
use native styling by using the data-role='none' attribute.

See also
ff The Grouping radio buttons in a grid recipe

Creating dynamic flip switch and slider
controls

This recipe shows you how to add a flip switch and a slider control dynamically to a page
using JavaScript and also handle their events. Here you will create a simple Volume Control
form with a volume slider that warns the user when the volume is very high.

Forms

118

Getting ready
Copy the full code of this recipe from the code/05/dynamic-slider sources folder. This
code can be launched using the URL http://localhost:8080/05/dynamic-slider/
main.html.

How to do it...
1.	 In main.html, add the following empty form to the page content:

<form id='volumeForm' action='#' method='post'></form>

2.	 Add the following script to the <head> section to dynamically add a flip switch
and a slider:
$('#main').live('pageinit', function(event) {
 var str="<div data-role='fieldcontain' style='width: 50%'><label
for='flipswitch'>Volume:</label>"
 + "<select name='flipswitch' id='flipswitch' data-
role='slider' data-track-theme='d'>"
 + "<option value='no'>Off</option><option value='yes'>On</
option></select></div>"
 + "<div id='volcontainer' data-role='fieldcontain'
style='width: 100%'>"
 + "<input type='range' name='volume' id='volume' value='8'
min='0' max='15' data-track-theme='b' disabled /></div>";
 $('#volumeForm').html(str).trigger('create');

3.	 Handle the change event of the flip switch to enable the volume slider control:
 $('#flipswitch').bind('change', function(event, data) {
 if ($(this).slider().val() == 'no') {
 $('#volume').slider('disable');
 } else {
 $('#volume').slider('enable');
 }
 });
});

4.	 Handle the change event on the volume slider to style the slider based on its value:
$('#main').live('pageshow', function(event) {
 $('#volume').bind('change', function(event, data) {
 if ($(this).slider().val() > 10) {
 $('#volcontainer').find('.ui-btn-down-b')
 .removeClass('ui-btn-down-b').addClass('ui-btn-down-e');
 } else {
 $('#volcontainer').find('.ui-btn-down-e')

Chapter 5

119

 .removeClass('ui-btn-down-e').addClass('ui-btn-down-b');
 }
 });
});

How it works...
Add an empty form id='volumeForm' to main.html. Create an event handler for the
pageinit event, which gets triggered after the page has been initialized. Here, generate
the HTML content for the form. Add a flip toggle switch control (id='flipswitch') using
a select control with data-role='slider'. This flip switch will toggle the volume On and
Off. Add an input control with type='range' to create a slider control (id='volume'). Add
the disabled attribute to the slider so that the control is disabled at startup. Set this HTML
content to the empty form and trigger the 'create' method to let the framework initialize
and enhance the controls. When the page loads you will see the Volume Control form with
both the dynamically added flip switch and the disabled slider control, as shown in the
following screenshot:

Next add code to handle the change event of #flipswitch and in the event handler,
check whether the flip switch is on or off using the slider().val() call. Based on
this value, enable or disable the slider volume control by calling slider('enable') or
slider('disable'). Now when you toggle the flip switch value, you will see the slider
getting enabled or disabled as seen in the following screenshot:

Forms

120

Bind the change event of the volume slider control in a pageshow event handler and here
check for the value of the slider using the slider().val() call. If the value is greater
than a threshold volume of 10, set the slider to theme 'e', if not already styled so. If the
value goes below the threshold of 10, set the theme back to theme 'b'. You can use the
jQuery find() method and replace the ui-btn-down-b class with the ui-btn-down-e
class and vice versa. Now when you set a high volume the slider changes to yellow color, as
seen in the following screenshot:

There's more...
You can theme the flip switch and the slider control using the data-theme attribute and the
slider track by using the data-theme-track attribute during initialization. To manipulate
these controls post initialization, you will have to manipulate the underlying native controls
and then invoke the 'refresh' method on them.

Auto-initialization of sliders
When the framework encounters an input control with type='range', it automatically
enhances it to a slider control using the slider plugin. Likewise the slider plugin enhances the
select control with data-role='slider' to a flip switch. You can turn auto-initialization off
and use native styling by using the data-role='none' attribute.

Using options to auto-initialize a select
menu

The native HTML select menu is enhanced by the jQuery Mobile framework to make it finger
friendly for mobile devices. This recipe shows you how to auto-initialize the Select Menu by
setting its control options using JavaScript.

Getting ready
Copy the full code of this recipe from the code/05/select-menu sources folder.
This code can be launched using the URL http://localhost:8080/05/select-menu/
main.html.

Chapter 5

121

How to do it...
1.	 In main.html, add the following code to create a select menu:

<form action='#' method='post'>
 <div data-role='fieldcontain'>
 <label for='selectid' class='select'>Sample Select Menu</
label>
 <select name='selectid' id='selectid' multiple data-native-
menu='false' data-overlay-theme='e'>
 <option value='Sample Select Menu' data-
placeholder='true'>Sample Select Menu</option>
 <option value='opt1'>Option 1</option>
 <option value='disabledopt' disabled>Disabled Option</
option>
 <option value='opt2'>Option 2</option>
 <optgroup label='Options in Group1'>
 <option value='grp1'> Group
Option1</option>
 <option value='grp2'> Group
Option2</option>
 </optgroup>
 <optgroup label='Options in GroupA'>
 <option value='grpA'> Group
OptionA</option>
 <option value='grpB'> Group
OptionB</option>
 </optgroup>
 </select>
 </div>
</form>

2.	 Add the following script to the <head> section to set the select menu control options:
$('#main').live('pageinit', function(event) {
 $('#selectid').selectmenu({
 theme: 'd',
 inline: false,
 corners: true,
 icon: 'star',
 iconpos: 'left',
 shadow: true,
 iconshadow: true
 });
});

Forms

122

How it works...
In main.html, create a form and add a select control to the form with the attribute
multiple to enable multiple selection. Set the attribute data-native-menu='false'
to indicate that the select menu should be enhanced by the framework. Also set the data-
overlay-theme='e' attribute to specify that swatch e (yellow) should be used for the layer
on which the select menu is overlaid.

Add the first option element with the data-placeholder attribute indicating that this option
element text must be used as the header for the select menu. Now add the different option
elements as shown in the previous code. The opt1 and opt2 elements are regular option
items. The element disableopt is disabled by adding the attribute disabled to the option
element. Then add two option groups (Group1 and GroupA) by using the optgroup element
as shown in the previous code. These can contain sub option elements. The select menu is
displayed as shown in the following screenshot:

Add a script to the pageinit event handler that gets invoked after the page has initialized
at startup. Here, set the initial configuration options of the select menu control by passing the
option values to the selectmenu plugin. In the code, set the values of the attributes theme,
inline, corners, icon, iconpos, shadow, and iconshadow of the select menu. Now when
you click on select menu, the styled menu options are as shown in the following screenshot:

Chapter 5

123

There's more...
When the framework encounters a select element, it automatically enhances it to a select
menu by using the selectmenu plugin. You can turn auto-initialization off and use native
styling by using the data-role='none' attribute.

Opening and closing a select menu
You can call the open and close methods on the selectmenu plugin and programmatically
open or close a select menu, as shown in the following screenshot:

$('#selectid').selectmenu('open'); // open select menu
$('#selectid').selectmenu('close'); // close select menu

Validating forms
Validating a form before it is submitted to the server saves bandwidth and time as errors can
be trapped at the client side itself. A server request can thus be avoided. In a jQuery Mobile
application, forms can be validated using JavaScript. This recipe shows you how to validate
the entries made in a Blog Comments Form.

Getting ready
Copy the full code of this recipe from the code/05/validate-form sources folder. This
code can be launched using the URL http://localhost:8080/05/validate-form/
main.html.

How to do it...
1.	 In main.html, add the following code to create a form:

<form id='commentform' action='#' method='post'>
 <div data-role='fieldcontain'>
 <label for='username'>Name</label>
 <input id='username' name='username' type='text' required
placeholder='Enter Name' />
 </div>
 <div data-role='fieldcontain'>
 <label for='email'>Email ID</label>
 <input id='email' name='email' type='email' required
placeholder='Enter Email' />
 </div>
 <div data-role='fieldcontain'>
 <label for='comments'>Comments</label>

Forms

124

 <textarea id='comments' name='comments' required
placeholder='Enter Comments <10-100 chars long>'></textarea>
 </div>
 <div id='errmsg' style='color: #f00'></div>
 <input id='submitid' type='submit' data-transition='pop'
value='Submit Comment'/>
</form>

2.	 Add the following script to validate the comments field:
$('#main').live('pageinit', function(event) {
 $('#commentform').submit(function() {
 var len = $('#comments').val().length;
 if (len < 10 || len > 100) {
 $('#errmsg').text('Invalid comments. Length must be between
10-100 chars').show().fadeOut(5000);
 return false;
 }
 else
 return true;
 });
});

How it works...
In main.html, add a form (id='commentform') and add the following three fields to the
form, username (type='text'), email (type='email'), and comments (textarea). Add
the required attribute to all the three fields to specify them as mandatory. Add appropriate
hints to the user by using the placeholder attribute as shown in the previous code. Add an
empty div (id='errmsg') to the form to display any error messages on form validation.

When you load the form and click on the Submit Comment button without entering the Name
field, the following error message is shown:

Chapter 5

125

The following error is shown when you click on the submit button without a valid Email ID:

Add the pageinit event handler as shown in the previous script. This will get invoked after
the page has been initialized at start-up. Here define the submit() method of the form to
validate the length of the comments. If the comment has an invalid length, display the error
message for five seconds after which it fades out. Now since there was an error, return false
from the submit method; the form will not be submitted.

Post successful validation, return true from the submit() method to successfully submit
the form to the server.

Forms

126

There's more...
In this recipe, the form's action is set to # or the same URL as the current HTML page.
This form is called a self-submitting form. The default response in such cases is the form
content itself. If the form was served by a web server, the response to the post can be custom
generated. If you are using the nodejs web server that is shipped with the source code of this
book, then you will get a custom success response instead of the form contents.

Unique IDs in a form
In a jQuery Mobile application, since multiple pages can reside in the DOM at the same time,
you should ensure that the IDs for the form controls are unique. The IDs should be unique
across the entire app and not just in a single page. Lookups and form behavior could fail or
behave differently if you do not follow this rule. Some browsers might still support duplicate
IDs to a certain extent but this is not guaranteed.

See also
ff The Submitting a form using POST recipe

ff The Fetching data using GET recipe

Submitting a form using POST
This recipe shows you how to POST and submit a form using Ajax and also how to submit the
same forum when not using Ajax. The Blog Comments form used in the previous recipe is
used here for submission.

Getting ready
Copy the full code of this recipe from the code/05/submit-form sources folder. This code
can be launched using the URL http://localhost:8080/05/submit-form/main.html.
To try out this recipe, you will also need to launch the simple nodejs web server that is shipped
along with the source code of this book. Launch the server by using the following command:

node jqmserver.js

Chapter 5

127

How to do it...
1.	 In main.html, create the Blog Comments form as shown in the following code:

<form id='commentform' action='/postComment' data-transition='pop'
method='post'>
 <div data-role='fieldcontain'>
 <label for='username'>Name</label>
 <input id='username' name='username' type='text' required
placeholder='Enter Name' />
 </div>
 <div data-role='fieldcontain'>
 <label for='email'>Email ID</label>
 <input id='email' name='email' type='email' required
placeholder='Enter Email' />
 </div>
 <div data-role='fieldcontain'>
 <label for='comments'>Comments</label>
 <textarea id='comments' name='comments' required
placeholder='Enter Comments <10-100 chars long>'></textarea>
 </div>
 <div id='errmsg' style='color: #f00'></div>
 <input id='submitid' type='submit' value='Submit Comment'/>
</form>

2.	 Add the following script to the <head> section to validate the comments field:
$('#main').live('pageinit', function(event) {
 $('#commentform').submit(function() {
 var len = $('#comments').val().length;
 if (len < 10 || len > 100) {
 $('#errmsg').text('Invalid comments. Length must be between
10-100 chars').show().fadeOut(5000);
 return false;
 }
 else
 return true;
 });
});

Forms

128

How it works...
In main.html, create the Blog Comments form. Set the form action to '/postComment'
and also specify the attribute data-transition='pop'. The rest of the code and form
validations are the same as in the previous recipe and are explained in detail there. When you
launch the application, the form is displayed as shown in the following screenshot:

Fill the form and click on Submit Comment button. If no errors are found, the form is
submitted via Ajax. The custom nodejs web server responds to the /postComment request by
generating the following HTML content as a response with mime-type 'text/html':

<div data-role='page' data-theme='a'>
 <div data-role='header'>
 <h1>Comments Added</h1>
 </div>
 <div data-role='content'>
 Hi {User name entered}!
 <p>Your Email ID: {Email ID entered}</p>
 <p>Added your comment: {Comments entered}</p>
 Back
 </div>
</div>

Chapter 5

129

The response is rendered by the framework as shown in the following screenshot:

The page transition is smooth and it uses the pop animation. You can click on the Back button
and navigate back to the original page as the data-rel='back' attribute is also specified.

There's more...
You can submit this form without using Ajax by specifying the data-ajax='false' attribute
to the form element. This code is available in the non-ajax.html file in the same folder as
main.html:

<form id='commentform' action='/postComment' method='post' data-
ajax='false'>

When Ajax is not used, the response triggers a full page refresh. The server response in this
recipe returns only the page div container and does not return the <head> element with any
links to the jQuery Mobile stylesheet. Also, references to the jQuery and jQuery Mobile libraries
are missing in the response. So the resultant page is as shown in the following screenshot.
Here the response page is not styled and if you click on the Back link, it does not work.

Forms

130

The Ajax response
The server response via Ajax replaces the content of the request form as seen in this recipe.
You can view this response by using a DOM inspector. But if you view the page source, the
original page is still shown. POST requests cannot be bookmarked as they do not contain any
query parameters in the hash. The response to a POST request returns with the same URL as
the request and it does not update the URL hash.

Other ways of non-Ajax form submission
This recipe shows you how to submit forms without using Ajax by setting the attribute data-
ajax='false'. Another way to not use Ajax is to specify a target attribute to the form as
shown in the following code:

<form id='commentform' action='/postComment' method='post'
target='sometarget'>

This is applicable to both POST and GET server requests.

Ajax can also be turned off across your application by using the global configuration as shown
in the following code in the mobileinit event handler:

$.mobile.ajaxEnabled = false;

See also
ff The Validating forms recipe

ff The Fetching data using GET recipe

ff The Configuring ajaxEnabled recipe in Chapter 7, Configurations

Fetching data using GET
This recipe shows you how to use an Ajax GET request and fetch data from a server.
In this recipe, the server sends back soccer scores to a GET request from a Soccer
League Scores form.

Getting ready
Copy the full code of this recipe from the code/05/get-request sources folder. This code
can be launched using the URL http://localhost:8080/05/get-request/main.html.
To try out this recipe you will need to launch the simple nodejs web server that is shipped along
with the source code of this book. Launch the server by using the following command:

node jqmserver.js

Chapter 5

131

How to do it...
1.	 In main.html, add the following code to create a form:

<div id='scores' data-role='fieldcontain'>
 <form id='scoreform' action='/getScores' method='get'>
 The latest scores are now available!
 <input id='submitid' type='submit' name='submitid' data-
inline='true' value='Fetch Scores' />
 </form>
</div>

2.	 Add the following script to the <head> section to fetch and display the scores
using Ajax:
$('#main').live('pageshow', function(event) {
 $('#scoreform').submit(function() {
 $.get('/getScores').success(showScores).error(errMsg);
 return false; // cancel the default submit
 });
});
function showScores(data) { // on success
 $('#scores').html(data).trigger('create');
}
function errMsg() { // on error
 $('#scores').html('Unable to fetch scores, try later');
}

How it works...
In main.html, add a <div> container with id='scores' and set its attribute data-
role='fieldcontain'. This <div> container will display the scores. Add a form
(id='scoreform') to the page and set its action to '/getScores' and method to
'get'. Add a submit button with text Fetch Scores to the form to fetch the scores from the
server. You can add a decorated footer using class='ui-bar ui-bar-e' to the page.
When you load the application the following screen is displayed:

Forms

132

Add an event handler to the pageshow event as shown in the previous code. When you click
on the submit button, it calls the jQuery submit() method. The server response to the
default form submit() would replace the entire page with new content. To get a partial page
update, call the jQuery .get() Ajax method to fetch data from the '/getScores' server
URL. Then cancel the default submit() method by returning false. The .get() method
specifies the callback functions for success and error as shown in the previous code. In
the success callback function showScores(), replace the content of #scores div with the
HTML response obtained from the server. Trigger the 'create' method to let the jQuery
Mobile framework initialize and enhance the newly added content. Any error is handled by the
errMsg() error handler as shown in the previous code.

The custom nodejs web server responds to the /getScores get request by generating the
following HTML content as a response with mime-type 'text/html':

<ul data-role='listview'>
 <li data-role='list-divider'>Group A
 Team A beat Team B [5 - 3]
 Team C lost to Team D [1 - 2]
 <li data-role='list-divider'>Group B
 Team E drew Team F [0 - 0]
 Team G lost to Team H [3 - 4]

Now only the contents of the #scores <div> container are replaced by this server
response. The header and footer remain untouched. The resulting display is as shown in the
following screenshot:

Chapter 5

133

There's more...
You can submit forms without using Ajax by specifying the data-ajax='false' attribute to
the form element as shown in the following code. When Ajax is not used, the response triggers
a full page refresh. So ensure that a proper jQuery Mobile page is returned in the server
response or else the resultant page could have styling and other issues.

<form action='/someAction' method='get' data-ajax='false'>

The Ajax response
The server response via Ajax replaces the content of the request form completely. You can
view the response by using a DOM inspector. But if you view the page source, the original
page is still shown. GET requests can be bookmarked as they support query parameters in the
hash. The GET response allows the update of the URL hash.

Form submission defaults
You can also submit a form without any action or method attribute as specified in the
following code:

<form>

The form will use the default values of the action and method attributes. The method will
default to 'get' and the action will default to the current page's relative path. You can
access this path via the call to the $.mobile.path.get() method.

Always specify the action and method attributes
for a form.

See also
ff The Validating forms recipe

ff The Submitting a form using POST recipe

ff The Configuring ajaxEnabled recipe in Chapter 7, Configurations

Creating an accessible form
The jQuery Mobile framework has very good support for the accessibility features, such as
WAI-ARIA. This provides support for accessibility tools such as screen readers. This enables
your application screens to be read out to those users who depend on such assistive
technologies. Also speech input controls are now available on a few browsers like Chrome
(which uses the webkit engine). These controls accept voice input. This recipe shows you how
to generate accessible form controls that accept voice input and also support screen readers.

Forms

134

Getting ready
Copy the full code of this recipe from the code/05/accessible-controls sources folder.
You can launch this code by using the URL http://localhost:8080/05/accessible-
controls/main.html.

How to do it...
1.	 In main.html, add the following code to create a form:

<form action='#' method='post'>
 <div data-role='fieldcontain' class='ui-hide-label'>
 <input type='text' name='username' id='username'
placeholder='Enter Name' speech x-webkit-speech/>
 <label for='username'>Name</label>
 </div>
 <div data-role='fieldcontain'>
 <input type='number' name='age' id='age' placeholder='Enter
Age' speech x-webkit-speech/>
 <label for='age' class='ui-hidden-accessible'>Age</label>
 </div>
 <div data-role='fieldcontain'>
 <input type='text' name='city' id='city' placeholder='Enter
City' class='custom' speech x-webkit-speech/>
 <label for='city' class='ui-hidden-accessible'>City</label>
 </div>
 <input type='submit' name='submit' id='submit' value='Submit' />
</form>

How it works...
In main.html, add three fields as follows, username (input type='text'), age (input
type='number'), and city (input type='text'). Associate a label to each of these
fields and add a div container with attribute data-role='fieldcontain' for each
set of labels and input controls. This helps the framework to realign and adjust the layout
dynamically based on the platform and settings. The placeholder attribute is used to give
an appropriate hint to the user for input.

To enable voice input, add the attributes speech and x-webkit-speech as shown in the
previous code for each of the input controls. The support for voice input is totally dependent
on browser implementation and a few browsers still do not implement them. When the page
loads, you will see the following screenshot:

Chapter 5

135

You will see a small microphone icon at the right corner of each input control. The user can
tap on this icon and will be prompted to speak in the value for the input. Once the user speaks
in, the speech to text engine converts the voice to text and displays the input value text in the
control. Though not fully accurate the voice to text technologies are improving by the day.

There's more...
As mentioned earlier, the jQuery Mobile framework has very good support for the accessibility
features such as WAI-ARIA. So add meaningful labels to all the form elements. When the
page is initialized, the framework exposes these labels to the screen readers automatically.
If you are already using placeholders to provide hints to the user, labels might be redundant.
But if you are seeking to build an application that supports accessibility, then you should also
define labels.

If you want to use the placeholder feature and also support accessibility, then jQuery Mobile
provides an easy option to hide the labels by using the style 'ui-hidden-accessible' on
the form control. You can also hide the label by adding the style 'ui-hide-label' to the
form field container as shown in the code. Now the labels are not shown on the display but are
still available to screen readers. You can verify this by running your favorite screen reader and
accessing the page created.

Popular voice readers for mobile devices
There are numerous voice readers in the market today and you can try any of the popular
ones based on your platform. Apple phones have VoiceOver (see http://www.apple.
com/accessibility/iphone/vision.html), Android has TalkBack, Spiel, Mobile
Accessibility for Android, and other applications in the Android Play Store.

http://www.apple.com/accessibility/iphone/vision.html
http://www.apple.com/accessibility/iphone/vision.html

Forms

136

Desktop voice readers
For the Chrome desktop browser, the ChromeVox extension can be installed from
http://code.google.com/p/google-axs-chrome and once enabled it will start
reading out the form controls for you. You can verify that the hidden label contents are also
read out by the screen reader.

http://code.google.com/p/google-axs-chrome
http://code.google.com/p/google-axs-chrome

6
List Views

In this chapter we will cover:

ff Using inset and non-inset lists

ff Creating a custom numbered list

ff Using a nested list

ff Using a read-only nested list

ff Formatting content in a list

ff Using a split button list

ff Using image icons

ff Creating a custom search filter

ff Modifying a list with JavaScript

Introduction
A simple list in jQuery Mobile is created using the following code:

<ul data-role='listview'>
 Item 1
 Item 2

The previous code is a regular HTML unordered list to which you add the attribute
data-role='listview'. The framework now enhances the list, styles it, and makes it
mobile friendly. It adds a right arrow for the anchor elements and when you tap any of the
list items, the page in the link is loaded into the DOM and opened using AJAX transition
when possible.

List Views

138

Using inset and non-inset lists
An inset list is a list embedded within a container (a page or form or another list). This recipe
shows you how to create inset and non-inset lists. The recipe also highlights what you need to
take care while using non-inset lists with other form controls.

Getting ready
Copy the full code of this recipe from the code/06/inset-list sources folder. This code
can be launched using the URL http://localhost:8080/06/inset-list/main.html.

How to do it...
1.	 Create main.html with three lists and a few buttons as shown in the following code:

<div data-role='content'>
 Button 1
 <ul data-role='listview' data-inset='true'>
 <li data-theme='e'>Item 1
 <li data-theme='e'>Item 2

 Button 2
 <ul data-role='listview'>
 <li data-theme='e'>Item A
 <li data-theme='e'>Item B

 Button 3
 <ul data-role='listview' style='margin: 15px'>
 <li data-theme='e'>Item 3
 <li data-theme='e'>Item 4

 Button 4
</div>

How it works...
In the code, the first list is an inset list and the other two are non-inset lists. You can create
an inset list by adding the attribute data-inset='true' to a list. This styles the list with
rounded corners and gives it a nice margin of 15px on all four sides. If you place buttons or
any other form controls next to inset lists, the layout is automatically adjusted.

Chapter 6

139

The next list in the code is a non-inset list and it does not have the data-inset attribute. The
framework adds a padding of -15px to this list and stretches it to fill the entire width of the
screen. If you place buttons or any other form controls next to this list, the controls will overlap
each other due to the negative padding. This list has rectangular corners.

The third list in the code is also a non-inset list. But the overlapping of controls is handled here
by using the attribute style='margin: 15px'. This adds a margin of 15px to the list and
negates the default padding. The three lists are displayed as shown in the following screenshot:

Add an additional margin when you use non-inset lists with other
form controls to avoid overlapping of the controls.

There's more...
You can configure the framework to use inset lists by default in your app. You can do this by
setting the inset option of the listview plugin to true and bind this to the mobileinit
event as shown in the following code:

$(document).bind('mobileinit',function(){
 $.mobile.listview.prototype.options.inset = 'true';
});

List Views

140

Setting the listview theme
You can use the data-theme attribute and set a theme to the list as shown in the following
code. The list uses swatch e in the following code:

<ul data-role='listview' data-theme='e'>

Setting the theme on list items
You can use the data-theme attribute with each list item and set different themes. The following
code sets swatch e to the list item Item 1, whereas, the list item Item 2 will use swatch d.

<ul data-role='listview' data-theme='e'>
 Item 1
 <li data-theme='d'>Item 2

Creating a custom numbered list
A numbered list by default uses decimals in jQuery Mobile. The framework uses CSS to add
the numbering. JavaScript is used where CSS cannot be used. This recipe shows you how to
add alphabet numbering to your list using JavaScript.

Getting ready
Copy the full code of this recipe from the code/06/custom-numbered-list sources
folder. This code can be launched using the URL http://localhost:8080/06/custom-
numbered-list/main.html.

How to do it...
1.	 In main.html, create an ordered and an unordered list as shown in the

following code:
<div data-role='content'>
 <ol data-role='listview' data-theme='e' data-inset='true'>
 Soccer
 Basketball
 Hockey
 Tennis

 <ul id='alphalist' data-role='listview' data-theme='e' data-
inset='true'>
 Soccer
 Basketball
 Hockey
 Tennis

Chapter 6

141

</div>

2.	 Add the following script to add alphabet numbering to the unordered list:
$('#main').live('pageinit', function(event) {
 var alph = 'a';
 $('#alphalist').find('li').each(function() {
 var str = "" + alph
 + '. ' + $(this).html();
 $(this).html(str);
 alph = String.fromCharCode(alph.charCodeAt(0)+1);
 });
});

How it works...
The first list in the code is an ordered list and uses decimal numbers by default. The next list
with id='alphalist' is an unordered list. Add the given script to the page container or the
<head> section of main.html.

In the script, bind the pageinit event to a function that injects the alphabet numbering.
In this function, call the jQuery find('li') method to fetch all the list items in the list.
Loop through each of these items using the jQuery each() method. In the callback function
of each(), get the current text of the list item using $(this).html() and prefix the
alphabet (with normal font weight) to this text. Set this new string (str) to the list item
by using $(this).html(str). Finally increment the alphabet in the loop by using the
charCodeAt() and fromCharCode() JavaScript methods. When the page is shown, the
two lists are now displayed as in the following screenshot:

List Views

142

There's more...
You can create any type of numbered lists (such as Roman numerals, small or upper case
alphabets, bullets and so on) using JavaScript. But you will have to ensure that you handle all
the scenarios with these lists (for example, handling the item numbering of nested lists).

Using a nested list
A Nested List is a list that is embedded within the list item of another list. A right arrow icon
is shown by default on the list item and when you click on it, the framework opens a separate
sub page to display the nested list. The sub page shown uses theme b by default for the page
header. The framework can handle nesting to n-levels. This recipe shows you how to use
nested lists and also how to fetch the child pages of the nested list using JavaScript.

Getting ready
Copy the full code of this recipe from the code/06/nested-list sources folder. This code
can be launched using the URL http://localhost:8080/06/nested-list/main.html.

How to do it...
1.	 In main.html, add the following code to create a list of authors. Add nested lists

with book names to some of the authors.
<div data-role='content'>
 <ul data-role='listview' data-theme='b' data-inset='true'>
 H.G. Wells
 Rabindranath Tagore
 <ul data-role='listview' data-theme='a' data-inset='true'>
 The Gardener
 Gitanjali

 William Shakespeare
 <ul data-role='listview' data-theme='a' data-inset='true'>
 Merchant of Venice
 Romeo and Juliet

 <div id='nestedlists'></div>
</div>

Chapter 6

143

2.	 Add the following script to fetch the child pages of the nested list:
$('#main').live('pageinit', function(event) {
 var str = '';
 $('ul').listview('childPages').each(function() {
 str = $(this).find("div[class$='ui-title']").html() + ', ' +
str;
 });
 $('#nestedlists').html('Books available for authors : ' + str);
});

How it works...
In the code, add author names as list items with anchor links. Add nested lists with
book names for the authors Rabindranath Tagore and William Shakespeare. The author
H.G. Wells does not have a nested list.

Add the given script to the page container or the <head> tag in main.html. In the script
bind the pageinit event to an event handler to call the childPages method of the listview
plugin. Iterate through the array of child pages using the jQuery each() method. In the
callback function of each(), get the header text of the sub pages using the jQuery find()
method. Find the header div that has the attribute class='ui-title'. Concatenate this
text to a string and once all the author sub pages are fetched, set this string as the content of
the empty 'nestedlists' div. This will display the list of authors who have a nested list of
books. The author H.G. Wells does not have a nested list and is not shown.

List Views

144

The nested lists are embedded after the anchor link <a> tag inside the list item tag
in a list. When you click on this list item, it opens the sub page as shown in the following
screenshot. The anchor link text is set as the header of the sub page and the header uses
theme b by default.

There's more...
You will notice the difference in the theme of the sub page compared to the main page. The
main page uses theme a for the page content and header. It uses theme b for the list. The sub
page header is set to theme b by default. Since the nested list used the data-theme='a'
attribute, the entire sub page, including the nested list, is themed with swatch a. This might
not be ideal while using nested lists in your app. Refer to the recipe Theming a nested list in
Chapter 10, The Theme Framework on how to theme a nested list properly.

Theming the header of the sub page of a nested list
As seen in this recipe, by default the header of the sub page of a nested list is set to swatch
b. You can use the attribute data-header-theme as shown in the following code to set the
header theme of the sub page:

<ul data-role='listview' data-theme='d' data-header-theme='a'>

Configuring the header theme option of a list view
You can configure the default header theme of nested lists across your app by setting the
headerTheme option of the listview plugin. The following code sets this to theme a and
binds it to the mobileinit event:

$(document).bind('mobileinit',function(){
 $.mobile.listview.prototype.options.headerTheme = 'a';
});

See also
ff The Using a read-only nested list recipe

ff The Theming a nested list recipe in Chapter 10, The Theme Framework

Chapter 6

145

Using a read-only nested list
A read-only list is a list that contains non interactive items or items that do not have anchor
links in them. The framework styles read-only items differently compared to the regular items.
The read-only items have a lighter or paler shade of the theme color and they also have a
smaller size as the user is not expected to tap on them.

This recipe shows you how to create a read-only nested list and also use Options to configure
list views. It also shows you how to display a nested list as an inset list.

Getting ready
Copy the full code of this recipe from the code/06/read-only-list sources folder. This
code can be launched using the URL http://localhost:8080/06/read-only-list/
main.html.

How to do it...
1.	 In main.html, add the following code to create a list of authors. Add nested lists

with book names to some of the authors.
<div data-role='content'>
 <ul data-role='listview'>
 H.G. Wells
 Mark Twain
 Rabindranath Tagore
 <ul data-role='listview'>
 The Gardener
 Gitanjali

 William Shakespeare
 <div><ul data-role='listview'>
 Merchant of Venice
 Romeo and Juliet
 </div>

</div>

List Views

146

2.	 Add the following script to the page to configure the list view options:
<script>
 $.mobile.listview.prototype.options.theme = 'e';
 $.mobile.listview.prototype.options.headerTheme = 'a';
 $.mobile.listview.prototype.options.inset = true;
</script>

How it works...
In the code, add author names as list items without any anchor links. Add nested lists with
books for authors Rabindranath Tagore and William Shakespeare. Author H.G. Wells does
not have a nested list. Author Mark Twain has an anchor link. The list uses theme e, that is,
a yellow color. Items that do not have nested lists or anchor links are displayed in a lighter
shade and a smaller font. Items with nested lists or with anchor links are displayed in a
regular color and have a bigger font.

Add the previous script to the page or the <head> tag of main.html as shown in the code.
The script configures the default options of the listview plugin. In this recipe, the theme,
headerTheme, and inset options are configured. Use the headerTheme option to set the
theme of the sub page header to a as shown in the previous code. Now when you click the list
item Rabindranath Tagore, the sub page is opened for the nested list. The nested list with the
header theme a is displayed as shown in the following screenshot:

Chapter 6

147

There's more...
There may be instances when you want to display the nested list as an inset list. You can do
this by wrapping the inner list within a <div> tag. The framework now will not create a sub
page for the nested list.

Calling the childPages method on the listview plugin will
not return the lists that are embedded with the <div> tag.

The list of books of William Shakespeare are embedded within the <div> tag in this recipe
and so a nested list is not created.

Using inset nested lists will stretch your list vertically and the user will
have to scroll the page to view all the contents. So use them selectively.

See also
ff The Using a nested list recipe

ff The Theming a nested list recipe in Chapter 10, The Theme Framework

Formatting content in a list
This recipe shows you how to format text in a list item. It also shows you how to use collapsible
items and count bubbles within the list item.

Getting ready
Copy the full code of this recipe from the code/06/format-content sources folder. This
code can be launched using the URL http://localhost:8080/06/format-content/
main.html.

How to do it...
1.	 In main.html, add the following code to create a list of modes of transport:

<div data-role='content'>
 <ul data-role='listview'>

 <p class='ui-li-aside' style='font-size: 15px'>
 High Speed</p>
 <div data-role='collapsible' data-theme='e'>

List Views

148

 <h2>Air</h2>
 <ul data-role='listview'>
 AeroplaneHelicopter

 </div>
 <p class='ui-li-count'>2</p>

 <li data-theme='e'>
 <p class='ui-li-aside' style='font-size: 15px'>
 Moderate Speed</p>
 <div data-role='collapsible' data-theme='e'>
 <h2>Land</h2>
 <ul data-role='listview'>
 BusCarBikeTrain

 </div>
 <p class='ui-li-count'>4</p>

 <p class='ui-li-aside' style='font-size: 15px'>
 Slow Speed</p>
 <div data-role='collapsible' data-theme='e'>
 <h2>Water</h2>
 <ul data-role='listview'>
 ShipSubmarineBoat

 </div>
 <p class='ui-li-count'>3</p>

</div>

2.	 Add the following script to the page to configure the list view options:
<script>
 $.mobile.listview.prototype.options.theme = 'e';
 $.mobile.listview.prototype.options.countTheme = 'a';
 $.mobile.listview.prototype.options.inset = true;
</script>

How it works...
Add the three modes of transport as list items as shown in the previous code. Add a
collapsible block with data-role='collapsible' to each of the list items. Add a heading
text to each of the collapsible block and create a list with different vehicle types as its content.
Add a string with the style set to class='ui-li-aside'. This creates a string and positions
it on the top right corner of the list item. Finally, add the number of vehicles listed and set its
style to a count bubble by using class='ui-li-count'. Do this for each of the list items.

Chapter 6

149

Add the script shown in the code to the page or the <head> tag of main.html to configure
the default values for list options theme, inset, and countTheme. The list is now displayed
as shown in the following screenshot:

The following image shows the list with one collapsible block expanded:

List Views

150

There's more...
You can theme the count bubble using the option countTheme as already mentioned in
this recipe. You can also set the attribute data-count-theme on the list as shown in the
following code:

<ul data-role='listview' data-count-theme='a'>

Using form controls in a list item
This recipe shows you how to add a collapsible content with a list to a list item. You can also
add any form control to a list item as shown in the following code. The framework enhances
the form control by adding the required padding and margins within the list item and makes
the form control tap friendly.

<input type='text' name='username' placeholder='Enter name'/>

See also
ff The Using a split button list recipe

Using a split button list
A split button list is a list that provides two different actions for the same list item. This
is created by adding two anchor links to a list item. The framework then automatically
converts the list item to a split button. Any image added to the first link gets scaled down to a
thumbnail with a size of 80 x 80px. The second link is replaced with an icon called the split
icon and is positioned at the right-hand side corner of the split button. This recipe shows you
how to create a split button list to display images in a list.

Getting ready
Copy the full code of this recipe from the code/06/split-button-list sources folder.
This code can be launched using the URL http://localhost:8080/06/split-button-
list/main.html.

How to do it...
1.	 Create main.html as a multi-page template app. Add a split button list in the #main

page as shown in the following code:
<div data-role='content'>
 <ul data-role='listview' data-inset='true' data-theme='b'
 data-split-theme='e' data-split-icon='arrow-d'>

Chapter 6

151

 <img style='margin: 10px'
 src='../../resources/images/img1.png' />
 <h3>Lal Bagh</h3>
 <p>Bangalore, India</p>

 Lal Bagh, Bangalore</
a>

 <img style='margin: 10px'
 src='../../resources/images/img2.png' />
 <h3>Peacock</h3>
 <p>Mysore, India</p>

 Peacock, Mysore

 <img style='margin: 10px' height=75%
 src='../../resources/images/img3.png' />
 <h3>Ganesha</h3>
 <p>Bangalore, India</p>

 Ganesha, Bangalore

</div>

2.	 Add the #viewphoto page that will be opened on tapping the left part of the
split button.
<div id='viewphoto' data-role='page' data-theme='e' >
 <div data-role='header' data-theme='e'>
 <h1>Photo View</h1>
 </div>
 <div data-role='content'>
 Showing photo here ...
 </div>
</div>

List Views

152

3.	 Add the #download page that will be opened on tapping the split icon.
<div id='download' data-role='page' data-theme='e' >
 <div data-role='header' data-theme='e'>
 <h1>Download</h1>
 </div>
 <div data-role='content'>
 Downloading file ...
 </div>
</div>

How it works...
Add list items to the list in the #main page as shown in the previous code. Each list item
has two links and both the links are opened as dialogs by setting the data-rel='dialog'
attribute. Point the first link to the #viewphoto page. Add an image pointing to the photo and
add a formatted description to the anchor link text. Depending on the size of the thumbnail
image, you can add padding to the image as shown in the previous code.

Point the second link to the #download page. The second link is automatically converted to a
split icon. The right arrow is used by default for the split icon. You can configure this by using
the data-split-icon attribute on the list view. Use the data-split-theme attribute to
theme the split icon. The split button list is displayed as shown in the following screenshot:

Chapter 6

153

Tapping on the photo image or the left button in the list item opens the Photo View dialog as
shown in the following screenshot:

Tapping on the split icon opens the Download dialog as shown in the following screenshot:

There's more...
To display the photo image in the #viewphoto dialog you will have to write some JavaScript
code to handle the pagechange event. This is covered in the recipe Using changePage() to
change a page in Chapter 9, Methods and Utilities.

Configuring the split button list using listview options
You can configure the default values for the split icon and the split icon theme using
the splitTheme and splitIcon options of the listview plugin and bind it to the
mobileinit event. The following code sets the star icon and theme e as default values for
the list view options:

$(document).bind('mobileinit',function(){
 $.mobile.listview.prototype.options.splitIcon = 'star';
 $.mobile.listview.prototype.options.splitTheme = 'e';
});

See also
ff The Formatting content in a list recipe

ff The Using image icons recipe

ff The Using changePage()to change a page recipe in Chapter 9, Methods and Utilities

List Views

154

Using image icons
The jQuery Mobile framework adds an icon to the right-hand side of an interactive list item
(a list item having a link). You can also add an icon to the list item text and the framework sizes
this icon to fit within 40 x 40px. This recipe shows you how to display icons with list items.

Getting ready
Copy the full code of this recipe from the code/06/list-icons sources folder. This code
can be launched using the URL http://localhost:8080/06/list-icons/main.html.

How to do it...
1.	 In main.html, add a list with list items as shown in the following code:

<div data-role='content'>
 <ul data-role='listview' data-theme='b' data-inset='true'>
 <li data-icon='star'>

 <img src='../../resources/images/img1.png' class='ui-li-
icon'
 alt='Lal Bagh'/>
 <h3 style='margin-left: 25px'>Lal Bagh, Bangalore</h3>

 <li data-icon='star'>

 <img src='../../resources/images/img2.png' class='ui-li-
icon'
 alt='Peacock'/>
 <h3 style='margin-left: 25px'>Peacock, Mysore</h3>

 <li data-icon='star'>

 <img src='../../resources/images/img3.png' class='ui-li-
icon' alt='Ganesha'/>
 <h3 style='margin-left: 25px'>Ganesha, Bangalore</h3>

</div>

Chapter 6

155

How it works...
Add an image to each of the list items in the list within the anchor link of the list item. Set the
attribute class='ui-li-icon' to this image element. This instructs the framework to style
the image as an icon and the image is automatically scaled down to fit inside the list item. You
can set the required margin to the text so that it gets displayed correctly after adjusting for the
image size. The list is displayed as shown in the following screenshot:

There's more...
For an interactive list item, that is, an item with a link, the framework adds a right arrow icon
by default at the right-hand side of the list item. This can be changed by using the data-icon
attribute on the list item. The code in this recipe uses the star icon for the list item.

See also
ff The Formatting content in a list recipe

ff The Using a split button list recipe

Creating a custom search filter
When a List Search Filter is used, the framework runs through the list items and displays
the items that match the filter text. Alternate text can also be used with the search filter. The
list item text is ignored when alternate text is used. The search is a generic match and any
occurrence of the search value within the text is displayed in the result.

This recipe shows you how to use a search filter that can search both the list item text and
alternate text. It also shows you how to configure search filters and also how to implement a
custom search callback function that uses a custom search logic.

List Views

156

Getting ready
Copy the full code of this recipe from the code/06/custom-search sources folder. This
code can be launched using the URL http://localhost:8080/06/custom-search/
main.html.

How to do it...
1.	 In main.html, create the following list of Mobile platforms. The list items also

contain the OS manufacturer names in the attribute data-filtertext.
<div data-role='content' data-theme='e'>
 <ul id='oslist' data-role='listview'>
 <li data-role='list-divider'>Open Source
 <li data-filtertext='Google'>Android
 <li data-filtertext='HP'>WebOS
 <li data-filtertext='Samsung Intel'>Tizen
 <li data-filtertext='Linux Foundation'>LiMo
 <li data-filtertext='Mozilla'>Boot2Gecko
 <li data-role='list-divider'>Closed
 <li data-filtertext='Apple'>iOS
 <li data-filtertext='Nokia'>Symbian
 <li data-filtertext='Nokia'>S40
 <li data-filtertext='RIM'>Blackberry OS
 <li data-filtertext='Microsoft'>Windows Phone
 <li data-filtertext='Samsung'>Bada

</div>

2.	 Add the following script to the page to configure the default list options:
$.mobile.listview.prototype.options.theme = 'e';
$.mobile.listview.prototype.options.inset = true;
$.mobile.listview.prototype.options.dividerTheme = 'e';
$.mobile.listview.prototype.options.filter = true;
$.mobile.listview.prototype.options.filterTheme = 'e';
$.mobile.listview.prototype.options.filterPlaceholder = 'Search
for ...';
$.mobile.listview.prototype.options.filterCallback = customFilter;

3.	 The following code snippet includes the list item text in the search text:
$('#main').live('pageinit', function(event) {
 $('#oslist').find('li').each(function() {
 $(this).attr('data-filtertext',
 $(this).attr('data-filtertext') + ' ' + $(this).html());
 });
});

Chapter 6

157

4.	 The custom search callback is defined as in the following code:
function customFilter(text, searchValue) {
 var regx='\\b'+searchValue;
 return !(text.match(new RegExp(regx, 'i')));
}

How it works...
In main.html, create a list with id='oslist'. Add list items for the various Mobile OS
platforms as shown in the code. Create list items with the attribute data-role='list-
divider' and separate the list items as Open Source and Closed. Add the OS
manufacturer name as alternate search text by using the data-filtertext attribute.

Add the given script to the page or the <head> tag of main.html. Set the various list view
configuration options like theme='e' and inset='true'. This is a read-only list and the
list items are shaded with a light yellow color. Use the dividerTheme='e' option to theme
the list divider items. The list divider items are styled with a darker shade by the framework.

Next, add the filter='true' and filterTheme='e' options to add a search filter to the
list and theme it with swatch e. Use the filterPlaceholder option to specify a custom
text for the search filter text control (the default is 'Filter Items...'). Finally set a custom
search call back function by setting the option filterCallback=customFilter. The list is
displayed as shown in the following screenshot:

List Views

158

The default search function in a list matches any occurrence of the search string in the text.
To override this, define the custom filter callback as shown in the previous code. The function
accepts two parameters, text and searchValue. Create a regular expression to search for
the occurrence of the searchValue at the start of the word in the given text. The occurrence
of the search value in between a word is ignored. The regular expression is matched with the
text using the match() method. The i parameter makes it case insensitive.

If the filtertext attribute is used with a list item, the default search uses only this text
and ignores the list item text. To use both the list item text and the filter text, add a pageinit
event handler as shown in the previous code. In this function, find each list item using the
jQuery find('li).each() method and in the callback of each(), fetch the list item text
and add it to the filter text. This will not have any visible impact on the list item. But the list
item text is now part of the filter text and is thus available for the search filter. So a search for
a will list Android and iOS (the filtertext has the value Apple). But this will not list Symbian or
Bada which contain a in between words as seen in the following screenshot:

If you search for Bo it shortlists only Boot2Gecko as seen in the following screenshot:

There's more...
The search callback function returns a Boolean value and this indicates if the text should be
hidden by the search filter. So the search filter callback should return false for all matching
elements. Unmatched text elements return true and get hidden by the search filter.

Chapter 6

159

Using data-attribute to configure list divider themes
The recipe uses the dividerTheme option to theme the list divider item. You can also use
the data-divider-theme attribute as shown in the following code:

<ul data-role='listview' data-theme='e' data-divider-theme='e'>

Using data-attribute to configure list search filters
The recipe shows you how to use the filter, filterTheme and filterPlaceholder
options to configure the list view. These can also be set using the data-filter, data-
filter-theme, and data-filter-placeholder attributes as shown in the following code:

<ul data-role='listview' data-filter='true' data-filter-theme='e'
data-filter-placeholder='Search for...'>

Modifying a list with JavaScript
You can use JavaScript to dynamically modify a list and its contents. This recipe shows you
how to use JavaScript to add or remove list items in a read-only list.

Getting ready
Copy the full code of this recipe from the code/06/scripting-lists sources folder.
This code can be launched using the URL http://localhost:8080/06/scripting-
lists/main.html.

How to do it...
1.	 In main.html, add the following code to create an empty list in a layout grid:

<div data-role='content'>
 <div data-role='fieldcontain'>
 <fieldset class='ui-grid-b'>
 <div class='ui-block-a' style='width: 65%'>
 <ul id='numlist' data-role='listview' data-theme='e'
 data-inset='true'>

 </div>
 <div class='ui-block-b'>
 <button data-theme='b' id='addBtn'>Add</button>
 <button data-theme='b' id='removeBtn'>Remove</button>
 </div>
 </fieldset>
 </div>
</div>

List Views

160

2.	 Add the following script to dynamically add or remove list items:
var count = 0;
$('#main').live('pagecreate', function(event) {
 $('#numlist').listview({create: function(event, ui) {
 $('#addBtn').bind('click', function(event, ui) {
 var str = "Item " + (++count) + '';
 $('#numlist').append(str);
 $('#numlist').listview('refresh');
 });
 $('#removeBtn').bind('click', function(event, ui) {
 if (--count < 0) {
 count = 0;
 return;
 }
 $('#numlist').find('li').last().remove();
 $('#numlist').listview('refresh');
 });
 }});
});

How it works...
Add a two column layout grid to main.html using the attribute class='ui-grid-b' on
a fieldset container. Add an empty list with id='numlist' to the first column. Add two
buttons with the IDs addBtn and removeBtn to the second column. On clicking these
buttons, list items are dynamically updated to the empty list in the first column.

Add the given script to the page or the <head> section of main.html. In the script, create an
event handler for the pagecreate event which gets fired before the page is fully initialized.
Here, add an event handler for the create event of the listview element. When the
listview element is created, this event is fired. In its callback function, bind the click
event of the addBtn and removeBtn buttons as shown in the previous code.

The addBtn, when pressed, adds a list item to the list. The list item text is kept in memory
and incremented on adding new elements. The removeBtn when pressed, fetches the most
recent list item element that was added by calling the jQuery find('li').last() method.
This last element is removed by calling the remove() method. Call the refresh() method
on the listview plugin after any modification to update the list.

Chapter 6

161

When the app is started, the display looks like the following screenshot with an empty list:

Pressing the Add button adds new list items to the list, as in the following screenshot:

Pressing the Remove button removes the recently added list item.

List Views

162

There's more...
As mentioned in this recipe, you have to call the refresh() method on the listview plugin
after any modification. On adding new list items or on removing list items, the refresh()
method triggers an update of the list and applies the necessary styles and enhancements on
the list items.

$('#numlist').listview('refresh');

7
Configurations

In this chapter, we will cover the following recipes:

ff Configuring the active classes

ff Configuring ajaxEnabled

ff Configuring autoInitializePage

ff Configuring the default transitions

ff Configuring ignoreContentEnabled

ff Configuring the page loading and error messages

ff Configuring the default namespace

ff Configuring hashListeningEnabled and subPageUrlKey

ff Configuring pushStateEnabled and linkBindingEnabled

Introduction
The jQuery Mobile framework enhances the markup and elements in a document as
soon as the document is loaded. You can tweak the default configurations used for these
enhancements by setting their values in the mobileinit event handler, which gets fired at
startup on the document object. This chapter shows you how to use the various configurations
available in the framework.

Configuring the active classes
The jQuery Mobile framework uses the CSS class activeBtnClass to style a button in an
active state with theme b by default. The activeBtnClass class has a default string value
ui-btn-active. To style the active page (the page in view or in transition), the framework
uses the CSS class activePageClass, which has a default string value ui-page-active.
This recipe shows you how to configure the framework to use custom classes instead of these
default classes.

Configurations

164

Getting ready
Copy the full code of this recipe from the code/07/active-class sources folder.
You can launch this code using the URL: http://localhost:8080/07/active-class/
main.html.

How to do it...
1.	 In main.html, add the following style to the <head> tag of the page to define your

own custom active button class and active page class:
<link rel="stylesheet"
 href="http://code.jquery.com/mobile
 /1.1.1/jquery.mobile-1.1.1.min.css" />
<style>
 .ui-custom-btn-active {
 background: #53C584;
 background-image: -webkit-gradient(linear, left top,
 left bottom, from(#53C584), to(#6FD598));
 background-image: -webkit-linear-gradient(#53C584 ,
 #6FD598);
 background-image: -moz-linear-gradient(#53C584 ,
 #6FD598);
 background-image: -ms-linear-gradient(#53C584 ,
 #6FD598);
 background-image: -o-linear-gradient(#53C584 ,
 #6FD598);
 background-image: linear-gradient(#53C584 ,
 #6FD598);
 }
 .ui-mobile .ui-custom-page-active {
 border: 3px;
 border-style: dotted;
 width: 99%;
 display: block;
 overflow: visible;
 }
</style>

2.	 Add the following script before including the jQuery Mobile script:
$(document).bind("mobileinit", function() {
 $.mobile.activePageClass = "ui-custom-page-active";
 $.mobile.activeBtnClass = "ui-custom-btn-active";
});

Chapter 7

165

3.	 Create the #main page with a link to open #page1 as follows:
<div id="main" data-role="page" data-theme="e">
 <div data-role="header" data-theme="e">
 <h1>Active Classes</h1>
 </div>
 <div data-role="content">
 Open Page 1
 </div>
</div>

4.	 Create #page1 with a link to go back to the #main page as follows; this is a
multi-page document:
<div id="page1" data-role="page" data-theme="e">
 <div data-role="header" data-theme="e">
 <h1>Page 1</h1>
 </div>
 <div data-role="content">

 Go Back

 </div>
</div>

How it works...
In main.html, add a style tag and define the class ui-custom-btn-active to set a
different gradient background (green shade) on the active button. The default active button
background is a bright blue shade. Also add a ui-custom-page-active class that
sets a 3px thick-dotted border for the page. Next, add the given script in the code before
including the reference to jquery.mobile.js. In the script, add an event handler for the
mobileinit event that gets triggered at the start of the app. Here, set the $.mobile.
activePageClass and $.mobile.activeBtnClass properties to the two new classes.
Finally, add the #main and #page1 page containers. When you launch the app, the #main
page is now displayed with a dotted border as shown in the following screenshot:

Configurations

166

When you click on the Open Page 1 button, the active state of the button shows the green
shade when pressed, as shown in the following screenshot:

Next, the page #page1 opens and it too has the dotted border:

The Go Back button also gets a green shade when you click on it:

There's more...
You can customize and configure the default settings for the jQuery Mobile framework using
the mobileinit event handler. You have to add this custom script before the jquery.
mobile.js script is included to ensure that the framework gets initialized with your settings.

Using the jQuery .extend() call
Instead of setting the property directly on $.mobile, you can also use the .extend() jQuery
call to extend the $.mobile object, as follows:

$.extend($.mobile, {
 $.mobile.activeBtnClass = "ui-custom-btn-active";
});

Chapter 7

167

See also
ff Chapter 2, Pages and Dialogs, Using CSS to create a bouncing page transition: This

recipe provides and overview of vendor prefixes

Configuring ajaxEnabled
Whenever possible, the jQuery Mobile framework automatically uses Ajax for handling link
clicks and form submissions. This can be configured using the $.mobile.ajaxEnabled
property, which has a Boolean value of true by default. If Ajax is disabled or if its not
supported, then an ordinary HTTP request is used and a full page load occurs. URL
hash listening is also disabled. This recipe shows you how to configure the $.mobile.
ajaxEnabled property.

Getting ready
Copy the full code of this recipe from the code/07/ajax-enabled sources folder. You can
launch this code using the URL: http://localhost:8080/07/ajax-enabled/main.html.

How to do it...
1.	 In main.html, add the following script before including jquery.mobile.js:

$(document).bind("mobileinit", function() {
 $.mobile.ajaxEnabled = true;
});

2.	 Create the main page with a link to open page1.html:
<div id="main" data-role="page" data-theme="e">
 <div data-role="header" data-theme="a">
 <h1>Ajax Enabled</h1>
 </div>
 <div data-role="content">
 <p>This is the main page</p>

 <p>Open Page 1</p>

 </div>
</div>

3.	 Finally, create page1.html with a link to go back to main.html, as follows:
<div data-role="page" data-theme="e" data-add-back-
 btn="true">
 <div data-role="header">
 <h1>Page 1</h1>

Configurations

168

 </div>
 <div data-role=content>
 <p>Sub Page Contents</p>
 Go back
 </div>
</div>

How it works...
Add the given script in the code before including the reference to jquery.mobile.js. In the
script, add an event handler for the mobileinit event that gets triggered at the start of the
app. Here, set the configuration $.mobile.ajaxEnabled=true.

Since $.mobile.ajaxEnabled is true by default, you don't have
to explicitly set it in your code. It is included in this recipe, because
you will be changing this value to false later in the code.

Add the #main page. Create page1.html as shown in the code (note that the <head>
element is not present in page1.html). The #main page is displayed, as shown in the
following screenshot:

Click on the Open Page 1 button to open page1.html as follows. This page gets loaded via
Ajax, and the framework enhances the controls.

Chapter 7

169

Next, set the ajaxEnabled property to false in main.html, and reload the page.
Now, when page1.html is opened, the elements are not enhanced, as shown in the
following screenshot:

There's more...
When Ajax is disabled, the entire page is loaded. In page1.html, since the <head> element
with the links to the jQuery Mobile framework library is missing, the page does not get any
style or enhancements.

Configuring autoInitializePage
When you navigate to a new page or when a page is loaded in the DOM, the framework
initializes the page and makes it visible. This is controlled by the $.mobile.
intializePage property, which has a Boolean value of true by default. If this is set to
false, the page is not shown. You will have to manually set this back to true to show the
page. This recipe shows you how to do the same.

Getting ready
Copy the full code of this recipe from the code/07/auto-initialize sources folder.
You can launch this code by using the URL: http://localhost:8080/07/auto-
initialize/main.html.

How to do it...
1.	 In main.html, add the following script before including jquery.mobile.js:

$(document).bind("mobileinit", function() {
 $.mobile.autoInitializePage = false;
});

2.	 Create the main page with the following content:
<div data-role="content">
 A button
 <script>
 $.mobile.autoInitializePage = true;
 </script>
</div>

Configurations

170

How it works...
Add the given autoInitializePage script to the code before including the reference
to jquery.mobile.js. In the script, add an event handler for the mobileinit event
that gets triggered at the start of the app. Here, set the configuration $.mobile.
autoInitializePage=false. Finally, add the #main page. The page content will be
similar to the following screenshot:

The contents are initialized and visible as the value of $mobile.autoInitializePage is
manually set to true, as shown in the code. You can comment this line (in the page content
section) and reload the page to find that nothing gets shown.

There's more...
You can use this feature to delay displaying the page while you do some background work or
while you fetch data in the background from a server. It is useful when you manually handle
the changing of pages.

Configuring the default transitions
By default, the jQuery Mobile framework uses the fade transition while loading pages with
Ajax. The pop transition is used by default while opening dialogs with Ajax. This recipe shows
you how to set different default transitions for your app.

Getting ready
Copy the full code of this recipe from the code/07/default-transitions sources
folder. You can launch this code using the URL: http://localhost:8080/07/default-
transitions/main.hml.

Chapter 7

171

How to do it...
1.	 In main.html, add the following script before including jquery.mobile.js:

$(document).bind("mobileinit", function() {
 $.mobile.defaultDialogTransition = "flow";
 $.mobile.defaultPageTransition = "turn";
});

2.	 Create the #main page as follows:
<div id="main" data-role="page" data-theme="e">
 <div data-role="header">
 <h1>Configure Transitions</h1>
 </div>
 <div data-role=content>
 Open as Page
 Open as
Dialog
 </div>
</div>

3.	 Create #page1 as follows; this is a multi-page document:
<div id="page1" data-role="page" data-theme="e" data-add-back-
btn="true">
 <div data-role="header">
 <h1>Page 1</h1>
 </div>
 <div data-role=content>
 <p>Page 1 Content</p>
 </div>
</div>

How it works...
Create main.html and add the given script in the code before including the reference to
jquery.mobile.js. In the script, add an event handler for the mobileinit event that gets
triggered at the start of the app. Here, set the default transitions for pages and dialogs using
the $.mobile.defaultDialogTransition and $.mobile.defaultPageTransition
properties. Finally, add the #main and #page1 page containers as shown.

In #main, there are two buttons. The first one opens #page1 as a page and the second one
opens it as a dialog. You will see that the default transitions are changed. The page now uses
the turn transition and the dialog uses the flow transition.

Configurations

172

There's more...
You can also set both the page and the dialog default transitions to none. This will just load
the pages or dialogs without using any transitions:

$.mobile.defaultDialogTransition = "none";
$.mobile.defaultPageTransition = "none";

Using custom transitions
You can configure the framework to use your own custom transitions as default transitions.
You have to set the transition name as follows:

$.mobile.defaultDialogTransition = "myDialogTransition";
$.mobile.defaultPageTransition = "myPageTransition";

Transition fallbacks
The fade transition is the default transition and it uses 2D. All other transitions use 3D. Older
browsers and devices that do not support 3D transformations will fall back to using fade. You
can configure this default fall back transition to none or you can set it to your own custom 2D
transition. This can be done for each of the individual 3D transitions, as follows:

$.mobile.transitionFallbacks.slideout = "none";
$.mobile.transitionFallbacks.flip = "myCustom2DTransition";

See also
ff Chapter 2, Using CSS to create a bouncing page transition

ff Chapter 2, Using JS to create a Slide 'n Fade transition

Configuring ignoreContentEnabled
The jQuery Mobile framework automatically enhances controls and markup found in
a page. To skip enhancing certain sections of markup, you can use the $.mobile.
ignoreContentEnabled configuration (which is false by default). This recipe shows you
how to do the same.

Getting ready
Copy the full code of this recipe from the code/07/content-enabled sources folder.
You can launch this code using the URL: http://localhost:8080/07/content-
enabled/main.html.

Chapter 7

173

How to do it...
1.	 In main.html, add the following script before including jquery.mobile.js:

$(document).bind("mobileinit", function() {
 $.mobile.ignoreContentEnabled = true;
});

2.	 Create the #main page with the following content :
<div data-role="content">
 <div data-enhance="false">
 <input type="checkbox" name="chkbox1" id="chkbox1"
 checked />
 <label for="chkbox1">Checkbox</label>
 <input type="radio" name="radiobtn1" id="radiobtn1"
 checked />
 <label for="radiobtn1">Radio Button</label>
 </div>
 <div>
 <input type="checkbox" name="chkbox2" id="chkbox2"
 checked />
 <label for="chkbox2">Enhanced Checkbox</label>
 <input type="radio" name="radiobtn2" id="radiobtn2"
 checked />
 <label for="radiobtn2">Enhanced Radio Button</label>
 </div>
</div>

How it works...
Create main.html and add the given script in the code before including the reference
to jquery.mobile.js. In the script, add an event handler for the mobileinit
event that gets triggered at the start of the app. Here, set the property $.mobile.
ignoreContentEnabled=true. In #main, add two divs. Add a checkbox and a radio button
to each div. Set the attribute data-enhance=false to the first div. Now, the elements
added to this div are not enhanced by the framework. The elements in the second div are
automatically enhanced. The page is displayed as shown in the following screenshot:

Configurations

174

There's more...
When you use the $.mobile.ignoreContentEnabled=true configuration, it tells
the framework to avoid enhancing certain sections of markup. This is done by using the
data-enhance="false" attribute as shown in this recipe. Now, when the framework
encounters each control or markup, it first checks if the parent element has the data-enhance
attribute set to false. If so, it skips applying the style or any enhancements to the control.

Using $.mobile.ignoreContentEnabled and data-enhance
could cause performance degradation while the pages are enhanced.

Configuring the page loading and error
messages

By default, the jQuery Mobile framework shows a spinning animation with theme a and
without any text when loading a new page. If there is an error, the page load times out and an
error message Error Loading Page is shown, with theme e. This recipe shows you how to
change and customize the page loading and error messages.

Getting ready
Copy the full code of this recipe from the sources code/07/load-message folder. To try out
this recipe, launch the simple nodejs web server that is available in the folder code, by using
the following command:

node jqmserver.js

Then you can launch the code by using the URL: http://localhost:8080/07/load-
message/main.hml.

How to do it...
1.	 In main.html, add the following script before including jquery.mobile.js:

$(document).bind("mobileinit", function() {
 $.mobile.loadingMessage = "Fetching it...";
 $.mobile.loadingMessageTextVisible = true;
 $.mobile.loadingMessageTheme = "b";
 $.mobile.pageLoadErrorMessage = "Oops, it's missing!";
 $.mobile.pageLoadErrorMessageTheme = "b";
});

Chapter 7

175

2.	 Create the #main page with the following content:
<div data-role="content">
 Dummy page
</div>

How it works...
Create main.html, and add the given script before including the reference to jquery.
mobile.js. In the script, add an event handler for the mobileinit event that gets triggered
at the start of the app. Here, set the default page load messages and error messages as
shown in the code.

In #main, there is a link that tries to open the "/delay" page. This is a GET operation on the
nodejs server. The server handles this request and returns an error code after pausing for a
few seconds. The spin control with a text message is shown for this duration, as shown in the
following screenshot:

The error response causes the following error message to be shown:

Configurations

176

Configuring the default namespace
This recipe shows you how to configure the jQuery Mobile framework to use your custom
namespace for the data- attributes.

Getting ready
Copy the full code of this recipe from the code/07/namespace sources folder. You can
launch this code using the URL: http://localhost:8080/07/namespace/main.html.

How to do it...
1.	 In main.html, add the following script before including jquery.mobile.js:

$(document).bind("mobileinit", function() {
 $.mobile.ns = "my-";
});

2.	 Add the following style to the <head> tag:
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.1.1/
jquery.mobile-1.1.1.min.css" />
<style>
 .ui-mobile [data-my-role=page], .ui-mobile [data-my-
role=dialog],
 .ui-page { top: 0; left: 0; width: 100%; min-height: 100%;
 position: absolute; display: none; border: 0; }
</style>

3.	 Create the main page as follows:
<div id="main" data-my-role="page" data-my-theme="e">
 <div data-my-role="header" data-my-theme="a">
 <h1>Configure Namespace</h1>
 </div>
 <div data-my-role="content">
 <p>This is the main page</p>

 Open Dialog

 </div>
</div>

4.	 Create the #dialog page as follows; this is a multi-page document:
<div id="dialog" data-my-role="dialog" data-my-theme="e">
 <div data-my-role="header" data-my-theme="a">
 <h1>Dialog</h1>
 </div>

Chapter 7

177

 <div data-my-role="content">
 <p>This is a dialog</p>
 <a href="#" data-my-role="button" data-my-
 rel="back">Go Back
 </div>
</div>

How it works...
To use a custom namespace, you will have to override one specific selector in the
jquery.mobile.css file, the .ui-mobile [data-my-role=page], and the
.ui-mobile [data-my-role=dialog] selector. Override this style as shown in
the code. Using data-my-role means that the namespace is set to my.

Create main.html, and set this configuration by adding the preceding script before
including the reference to jquery.mobile.js. In the script, add an event handler for the
mobileinit event that gets triggered at the start of the app. Here, set the default namespace
by using the $.mobile.ns="my-"configuration . Add the #main and #dialog pages.

The following screenshot shows the page as seen through a DOM inspector:

You will note that the code also used the data-my- attributes. You will also observe that
the framework has added enhancements, and even these enhancements use the custom
namespace all across the page.

Use a trailing hyphen as in "my-" for the custom namespace.
It is easier to read the enhanced code this way.

Configurations

178

Configuring hashListeningEnabled and
subPageUrlKey

When you use a nested listview, the jQuery Mobile framework generates a sub page in the
form of pagename.html&ui-page=subpageidentifier. The hash segment before the
sub page URL key (&ui-page) is used by the framework for navigation. This recipe shows
you how to use a custom sub page URL key. It also shows you how to use the $.mobile.
hashListeningEnabled configuration.

Getting ready
Copy the full code of this recipe from the sources folder code/07/sub-page. You can launch
this code using the URL: http://localhost:8080/07/sub-page/main.html.

How to do it...
1.	 In main.html, add the following script before including jquery.mobile.js:

$(document).bind("mobileinit", function() {
 $.mobile.subPageUrlKey = "my-page";
 $.mobile.hashListeningEnabled = false;
});

2.	 Create the #main page with a nested list in its content as follows:
<div data-role="content">
 <ul data-role="listview" data-theme="e">
 Main Page Item 1
 Sub Page Items
 <ul data-role="listview">
 Sub Page Item A
 Sub Page Item B

</div>

How it works...
Create main.html, and add the given script in the code before including the reference to
jquery.mobile.js. In the script, add an event handler for the mobileinit event that gets
triggered at the start of the app. Here, set the $.mobile.subPageUrlKey="my-page" and
$.mobile.hashListeningEnabled=false configurations. Finally, add the #main page
with a nested list as shown in the code. The output will be similar to the following screenshot:

Chapter 7

179

Click on Sub Page Items, and open the nested list in a sub page. The address bar shows the
custom sub page URL key my-page, as shown in the following screenshot:

Now, go back using the browser Back button. The URL in the address bar gets updated, but
the page does not change back to the previous screen, as shown in the following code:

This is because hashListeningEnabled was configured to false at startup. This will
prevent the framework from listening and handling the location hash changes. If you set
the hashListeningEnabled to true (the default value) and reload the page, the page
navigation will work fine and the main list is shown again from the nested list.

V413HAV
Typewritten Text
V413HAV

Configurations

180

Configure hashListeningEnabled only if you want to
custom manage the hash changes instead of allowing the
framework to handle it.

See also
ff Chapter 7, Configurations, Configuring pushStateEnabled and linkBindingEnabled

Configuring pushStateEnabled and
linkBindingEnabled

When you click on a link, navigation happens and the URL hash is updated. The framework
allows you to replace the URL hash to a full path in browsers that support the history.
replaceState API. This recipe shows you how to do this using the $.mobile.
pushStateEnabled configuration. It also shows you how to use the $.mobile.
linkBindingEnabled configuration that allows the framework to automatically bind the
clicks on the anchor links in a document. Both these are true by default.

Getting ready
Copy the full code of this recipe from the sources code/07/push-state folder. You can
launch this code using the URL: http://localhost:8080/07/push-state/main.html.

How to do it...
1.	 In main.html, add the following script before including jquery.mobile.js:

$(document).bind("mobileinit", function() {
 $.mobile.linkBindingEnabled = true;
 $.mobile.pushStateEnabled = false;
});

2.	 Create the #main page with the following content:
<div data-role="content">
 Go to Page 1
</div>

3.	 Create page1.html as follows:
<div id="page1" data-role="page" data-theme="e">
 <div data-role="header">
 <h1>Header of Page 1</h1>
 </div>
 <div data-role="content">

Chapter 7

181

 Go Back
 </div>
</div>

How it works...
Create main.html, and add the given script in the code before including the reference to
jquery.mobile.js. In the script, add an event handler for the mobileinit event that
gets triggered at the start of the app. Here, set the $.mobile.pushStateEnabled=false
and $.mobile.linkBindingEnabled=true configurations. Finally, add the #main
page contents and page1.html, as shown in the code. The output will be similar to the
following screenshot:

When you open Page 1, the URL address bar has the full path appended to main.html, as
shown in the following screenshot:

This is because pushStateEnabled was set to false at startup. If you set this to
true (the default value) and reload the page, the URL hash is replaced and is shown
as http://localhost:8080/07/push-state/page1.html.

Set the pushStateEnabled configuration to false when Ajax is
not used or when external links are used extensively in your app.

Configurations

182

There's more...
In this recipe, the linkBindingEnabled configuration was set to true at startup
(its default value). If you set this to false and reload the page, you will notice that the
Go to Page 1 button does not get the active state when clicked. The framework does not
automatically bind the link clicks in this case.

Use the linkBindingEnabled configuration only if you want your
custom code (or another library) to handle the link clicks.

See also
ff Chapter 7, Configurations, Configuring hashListeningEnabled and subPageUrlKey

8
Events

In this chapter, we will cover:

ff Using orientation events

ff Using scroll events

ff Using touch events

ff Using virtual mouse events

ff Using page initialization events

ff Using page load and remove events

ff Using page change events

ff Using page transition and animation events

ff Using layout events

Introduction
The jQuery Mobile framework provides specific events in addition to the default native events
for both desktop and mobile platforms. It allows you to bind to these events using the jQuery
bind() or live() method, and thus allows you to perform custom actions. This chapter
shows you how to use the events that are available in the jQuery Mobile framework.

Using orientation events
The jQuery Mobile framework triggers an orientationchange event when the orientation
(portrait or landscape) of the mobile device is changed. This recipe shows you how to use the
orientationchange event.

Events

184

Getting ready
Copy the full code of this recipe from the code/08/orientation sources folder. You
can launch this code by using the URL http://localhost:8080/08/orientation/
main.html

How to do it...
Carry out the following steps:

1.	 Create main.html as follows:
<div id="main" data-role="page" data-theme="e">
 <div data-role="header" data-theme="a">
 <h1>Orientation Events</h1>
 </div>
 <div data-role="content">
 <p>Change orientation</p>
 </div>
</div>

2.	 Add script to handle the orientationchange event in the <head> section:
$(window).bind("orientationchange", function(event, data) {
 $("h1").html(data.orientation);
});

How it works...
Create main.html with page content, as shown in the preceding code snippet. Add the given
script and bind the orientationchange event to a callback function. Here, set the current
orientation of the device to the h1 header of the page. You can get the device orientation by
using the data.orientation property of the callback function.

When the page loads, change the orientation of the device; the header text will show portrait
or landscape based on the current orientation.

There's more...
In platforms where the orientation property is not supported ($.support.orientation is
false), or when the $.mobile.orientationChangeEnabled global configuration is set
to false, the framework binds the resize event handler to handle the orientation change of
the device.

Chapter 8

185

The orientationChangeEnabled global configuration
You can configure the $.mobile.orientationChangeEnabled configuration in the
mobileinit event handler, which gets invoked at the start of your app. This must be done
before including the jquery.mobile.js script.

$(document).bind("mobileinit", function() {
 $.mobile.orientationChangeEnabled = false;
});

Using scroll events
When you scroll, the jQuery Mobile framework fires the scrollstart event. When you stop
scrolling the scrollstop event is triggered. This recipe shows you how to use these
two events.

Getting ready
Copy the full code of this recipe from the code/08/scroll sources folder. You can launch
this code by using the URL http://localhost:8080/08/scroll/main.html

How to do it...
Carry out the following steps:

1.	 Create main.html with the page content div styled with a large value for its height,
so that the scroll bars appear:
<div id="main" data-role="page" data-theme="e">
 <div data-role="header" data-theme="a" data-
 position="fixed">
 <h1>Scroll Events</h1>
 </div>
 <div data-role="content">
 <div style="height: 1000px">Scroll now</div>
 </div>
</div>

2.	 Add the following script to the <head> section to handle the scroll events:
$(window).bind("scrollstart", function(event) {
 $("h1").html("Scrolling now...");
});
$(window).bind("scrollstop", function(event) {
 $("h1").html("Scrolling done!");
});

Events

186

How it works...
Create main.html as shown in the preceding code. Add a div container with a height
of 1000px to the page content. This will make the vertical scroll bars appear. Now, add the
given script to the <head> section of the page. Bind the scrollstart event to a callback
function that updates the page header text. Similarly bind the scrollstop event to a
callback function that updates the header text. Now, scroll the page holding the vertical scroll
bar handle. You can see the page header text showing "Scrolling now...", and when you
stop or pause scrolling, the text is updated to "Scrolling done!".

There's more...
There is an issue as to how the scrollstart event works on iOS devices. DOM manipulation
is not allowed during scroll, and the event gets queued and triggered as soon as the scrolling
stops. So keep this in mind when you work with scroll events on iOS devices. You will have to
have to make your changes before scrolling starts and not as soon as it starts.

Using touch events
The jQuery Mobile framework provides five touch events. They are the tap, taphold, swipe,
swipeleft, and swiperight events. The tap event is fired when you tap the screen. If the
tap duration is longer, the taphold event is fired first and then the tap event is fired after
you lift your finger. When you swipe across the screen, the swipe event is fired first and then
the swipeleft or swiperight events are fired, based on the direction of your swipe action.
This recipe shows you how to use these touch events.

In this recipe, a yellow box is shown where you last tapped the screen. A green box is created
each time you tap and hold. You can also see how the swipe action works by swiping a blue
bar to the left or right edge of the screen.

Getting ready
Copy the full code of this recipe from the code/08/touch sources folder. You can launch this
code by using the URL http://localhost:8080/08/touch/main.html.

How to do it...
The steps to be followed are

1.	 In main.html, define the following styles in the <head> tag:
<style>
 .box { width:60px; height:60px; position:fixed }
 .yellow { background-color:yellow; z-index:1 }

Chapter 8

187

 .green { background-color:green; z-index:2 }
 .blue { background-color: blue; z-index:3; height:100% }
</style>

2.	 Add the page content with two <div> tags styled with the blue bar and yellow box:
<div id="content" data-role="content">
 <div id="movingbox" class="box yellow" style="top:0px;
left:0px"></div>
 <div id="edgebar" class="box blue" style="top:0px; left:0px"></
div>
</div>

3.	 Add the following script to the <head> section, to handle the tap and
taphold events:
var tapholdflag = false;
$("#main").live("tap", function(event) {
 var stylestr = "left:" + event.clientX + "px; top:"
 + event.clientY + "px;"
 if (tapholdflag) {
 var str = "<div class=''box green'' style=''" +
 stylestr + "''></div>";
 $("#content").append(str).trigger("create");
 } else {
 $("#movingbox").attr("style",
 stylestr).trigger("refresh");
 }
 tapholdflag = false;
});
$("#main").live("taphold", function(event) {
 tapholdflag = true;
});

4.	 Finally, handle the swipe, swipeleft, and swiperight events:
$("#main").live("swipe", function(event) {
 $.event.special.swipe.scrollSupressionThreshold = 15;
 $.event.special.swipe.durationThreshold = 1250;
 $.event.special.swipe.horizontalDistanceThreshold = 25;
 $.event.special.swipe.verticalDistanceThreshold = 50;
});
$("#main").live("swipeleft", function(event) {
 $("#edgebar").attr("style", "top:0px;
 left:0px").trigger("refresh");
});
$("#main").live("swiperight", function(event) {
 $("#edgebar").attr("style", "top:0px;
 right:0px").trigger("refresh");
});

Events

188

How it works...
In main.html, add the style tag and define the box, yellow, green, and blue
classes. Add an empty div tag with id="movingbox", and set the attribute class="box
yellow". This creates a 60px wide yellow-colored square. Next, add an empty div tag with
id="edgebar", and set the attribute class="box blue". This creates a 60px wide blue
bar on the edge of the screen as shown in the following screenshot. The yellow box is hidden
below the blue bar as it has a lower z-index value.

Now add the given script to the <head> section of main.html. Bind each of the five touch
events to callback functions as shown. If the tap duration is long, then it is taphold. So,
define a Boolean tapholdflag to track whether the tap event was taphold or not. Set this
to true in the taphold event handler, and clear it after the tap event is fired.

In the callback of the tap event, first check if tapholdflag is already set. If so, then this is
a taphold event. Create a new green box and call the "create" method as shown. If the
tapholdflag is false, then this is a simple tap. Update the new position of the yellow box,
and trigger the "refresh" method. Finally, clear tapholdflag and set it to false.

You can get the tap location by using the event.clientX and event.clientY parameters.
Set these values to the left and top style attributes of the box to update its position. The
screen looks similar to the following screenshot after a few tap and taphold events:

Chapter 8

189

Now, bind the swipe event to a callback function and configure the
swipe event properties as shown in the code. The code shows you how to
configure the scrollSupressionThreshold, durationThreshold,
horizontalDistanceThreshold, and verticalDistanceThreshold properties.

Bind the swipeleft event to a callback to set the left and top style attributes of the blue
bar and call the "refresh" method. This will move the bar to the left edge of the screen.
Similarly, bind the swiperight event to a callback to set the right and top style attributes
of the blue bar, and call "refresh". This will move the bar to the right edge of the screen.
Now, when you swipe towards the right side of the screen, the bar moves to the right edge, as
shown in the following screenshot; swipe towards the left side, and the bar moves back to the
left edge:

There's more...
In the code, the callback for the swipe event shows you how to configure the swipe event
properties. The available configurations are as follows:

ff scrollSupressionThreshold (10px by default): The swipe distance must be
more than this value for the event to be fired, else it is a scroll event

ff durationThreshold (1000ms by default): If the swipe duration is more than this
value, then the swipe event is prevented from being fired

ff horizontalDistanceThreshold (30px by default): The horizontal swipe distance
must be more than this value for the event to be fired

ff verticalDistanceThreshold (75px by default): The vertical swipe distance must
be less than this value for the event to be fired

Events

190

The tapholdThreshold property
The tap event is fired whenever you tap the screen. If the tap duration exceeds a certain
value (750ms by default), then this is treated as a taphold event. You can configure this
duration by setting the $.event.special.tap.tapholdThreshold property as follows:

$("#main").live("tap", function(event) {
 $.event.special.tap.tapholdThreshold = 1000;
});

The default tap event configurations work well for most of
the platforms. So modify them only if you have a very strong
reason to do so.

See also
ff The Using virtual mouse events recipe

Virtual mouse events
The jQuery Mobile framework provides virtual mouse or vmouse events to abstract the mouse
and touch events.

You don't have to write separate handlers for the touch and mouse events for each of the
supported platforms or devices. You just have to write the event handlers for the vmouse
events and this will work across various platforms. There are seven vmouse events supported
by the framework: vmousemove, vmouseover, vmouseout, vmousedown, vmouseup,
vclick, and vmousecancel. This recipe shows you how to use these vmouse events.

Getting ready
Copy the full code of this recipe from the code/08/vmouse sources folder. You can launch
this code by using the URL http://localhost:8080/08/vmouse/main.html.

How to do it...
The steps to be followed are:

1.	 Create main.html with content having seven div tags for the seven vmouse events,
as follows:
<div data-role="content">
 <div id="move"></div>
 <div id="over"></div>

Chapter 8

191

 <div id="out"></div>
 <div id="down"></div>
 <div id="up"></div>
 <div id="click"></div>
 <div id="cancel"></div>
</div>

2.	 Add the following script to the <head> section to handle the vmousemove,
vmouseover, and vmouseout events:
$("#main").live("pageinit", function(e) {
 $("#main").bind("vmousemove", function(e) {
 $("#move").html("<p>Move: " + e.clientX + ", "
 + e.clientY + "</p>");
 });
 $("#main").bind("vmouseover", function(e) {
 $("#over").html("<p>Over: " + e.clientX + ", "
 + e.clientY + "</p>");
 });
 $("#header").bind("vmouseout", function(e) {
 $("#out").html("<p>Out: " + e.clientX + ", " +
 e.clientY + "</p>");
 });

3.	 Next, handle the vmousedown, vmouseup, and vclick events:
 $("#main").bind("vmousedown", function(e) {
 var whichbtn;
 switch (e.which) {
 case 1: whichbtn = "Left Button"; break;
 case 2: whichbtn = "Center Button"; break;
 case 3: whichbtn = "Right Button"; break;
 default: whichbtn = "Tap"; break;
 }
 $("#down").html("<p>Down: " + e.clientX + ", "
 + e.clientY + " - " + whichbtn + " </p>");
 });
 $("#main").bind("vmouseup", function(e) {
 $("#up").html("<p>Up: " + e.clientX + ", " +
 e.clientY + "</p>");
 });
 $("#main").bind("vclick", function(e) {
 $("#click").html("<p>Click: " + e.clientX + ",
 " + e.clientY + "</p>");
 });

Events

192

4.	 Finally, handle the vmousecancel event, as follows:
 $("#main").bind("vmousecancel", function(e) {
 $("#cancel").html("<p>Cancel: " + e.clientX + ",
 " + e.clientY + "</p>");
 });
});

How it works...
Create main.html, and add seven empty divs to display the event locations for each of
the seven vmouse events. Add the given script and bind the callback functions for each of
the vmouse events, as shown in the pageinit event handler. Use the e.clientX and
e.clientY values of the event parameter passed to the callback function to get the location
of the vmouse event. When you load the page and move the mouse around performing
various mouse actions described, the screen is displayed as follows:

When the mouse is moved (or on a touchmove event), the vmousemove event is triggered.
The vmouseover event is triggered when the move action is done over an element to which
the event is bound. The vmouseout event is triggered when the move action goes out of the
element to which the event is bound. In the preceding code, the vmouseout event is bound
to the h1 header. Move your mouse over the header and out of it to see this parameter get
updated on the screen. The vmousedown event is triggered when the mouse is clicked (or
on a touchstart event). The vmouseup event follows the down event when the click is
over (touchend event). The vclick event is triggered along with the vmousedown and
vmouseup event on the click or tap action. In the vmousedown event handler, you can use
the event.which attribute to find which mouse button was clicked. This value is 0 for a tap
event. You can try and click the different buttons on your mouse to see the screen update
accordingly. Finally, the vmousecancel event is triggered when there is a mouse or touch
event that is canceled.

Chapter 8

193

There's more...
The framework provides the following three configurations for the vmouse events:

ff $.vmouse.moveDistanceThreshold (10px by default): If the move is more than
this value, then it is a scroll event. The vmousecancel event gets called and the
TouchMove event gets canceled.

ff $.vmouse.clickDistanceThreshold (10px by default): If a vmouse click event
was already captured, it is in the block list. Then, all vmouse clicks less than this
distance are ignored.

ff $.vmouse.resetTimerDuration (1500ms by default): If the interval between
vmouse clicks is more than this duration, then it is not a touch event. Scroll,
TouchMove, and TouchEnd events use this. The block list is cleared.

The default vmouse configurations work well for most of
the platforms. So modify them only if you have a very strong
reason to do so.

Mouse coordinates
This recipe shows you to use the event.clientX and event.clientY properties to get
the mouse coordinates. You can also get the screen and page coordinates using the event.
pageX, event.pageY, screen.pageX, and screen.pageY attributes.

Using vclick events on touch devices
On touch devices, the webkit browsers are known to process click events after a lag of about
300ms after the touchend event is triggered. This delay could result in a different target
being selected if the underlying object or background were to change within this gap. Another
issue would be to match the event with the corresponding target due to the time lag; for
example, when using event.preventDefault(). To avoid these issues on touch devices,
use the click event instead of the vclick event.

See also
ff The Using touch events recipe

Events

194

Page initialization events
The jQuery Mobile framework provides the page plugin which automatically handles page
initialization events. The pagebeforecreate event is fired before the page is created. The
pagecreate event is fired after the page is created but before the widgets are initialized. The
pageinit event is fired after the complete initialization. This recipe shows you how to use
these events.

Getting ready
Copy the full code of this recipe from the code/08/pageinit sources folder. You can launch
this code using the URL http://localhost:8080/08/pageinit/main.html

How to do it...
Carry out the following steps:

1.	 Create main.html with three empty <div> tags as follows:
<div id="content" data-role="content">
 <div id="div1"></div>
 <div id="div2"></div>
 <div id="div3"></div>
</div>

2.	 Add the following script to the <head> section to handle the pagebeforecreate
event:
var str = "Link";
$("#main").live("pagebeforecreate", function(event) {
 $("#div1").html("<p>DIV1 :</p>"+str);
});

3.	 Next, handle the pagecreate event:
$("#main").live("pagecreate", function(event) {
 $("#div1").find("a").attr("data-icon", "star");
});

4.	 Finally, handle the pageinit event:
$("#main").live("pageinit", function(event) {
 $("#div2").html("<p>DIV 2 :</p>"+str);
 $("#div3").html("<p>DIV 3 :</p>"+str);
 $("#div3").find("a").buttonMarkup({"icon": "star"});
});

Chapter 8

195

How it works...
In main.html, add three empty divs to the page content as shown. Add the given script
to the page. In the script, str is an HTML string for creating an anchor link with the data-
role="button" attribute.

Add the callback for the pagebeforecreate event, and set str to the div1 container.
Since the page was not yet created, the button in div1 is automatically initialized and
enhanced as seen in the following image.

Add the callback for the pagecreate event. Select the previous anchor button in div1 using
the jQuery find() method, and set its data-icon attribute. Since this change was made
after page initialization but before the button was initialized, the star icon is automatically
shown for the div1 button as shown in the following screenshot. Finally, add the callback for
the pageinit event and add str to both the div2 and div3 containers. At this point, the
page and widgets are already initialized and enhanced. Adding an anchor link will now show it
only as a native link without any enhancement for div2, as shown in the following screenshot.
But, for div3, find the anchor link and manually call the buttonmarkup method on the
button plugin, and set its icon to star. Now when you load the page, the link in div3 gets
enhanced as follows:

There's more...
You can trigger "create" or "refresh" on the plugins to let the jQuery Mobile framework
enhance the dynamic changes done to the page or the widgets after initialization.

Page initialization events fire only once
The page initialization events fire only once. So this is a good place to make any specific
initializations or to add your custom controls.

Events

196

Do not use $(document).ready()
The $(document).ready() handler only works when the first page is loaded or when the
DOM is ready for the first time. If you load a page via Ajax, then the ready() function is not
triggered. Whereas, the pageinit event is triggered whenever a page is created or loaded
and initialized. So, this is the best place to do post initialization activities in your app.

$(document).bind("pageinit", callback() {…});

Page load and remove events
The jQuery Mobile framework triggers the page load events whenever an external page is
loaded into the DOM. It fires the pagebeforeload event before loading the page and then
fires either the pageload or pageloadfailed event based on the status of the page load.
The pageremove event is fired when a page is removed from the DOM. This recipe shows you
how to use the page load and page remove events.

Getting ready
Copy the full code of this recipe from the code/08/pageload sources folder. You can launch
this code using the URL http://localhost:8080/08/pageload/main.html.

How to do it...
Carry out the following steps:

1.	 Create main.html with four buttons and an empty div element, as shown in the
following code snippet:
<div id="content" data-role="content">
 <a href="page1.html" data-role="button" data-
 inline="true">Page 1
 <a href="page2.html" data-role="button" data-
 inline="true">Page 2
 <a href="page3.html" data-role="button" data-
 inline="true">Page 3
 <a href="page4.html" data-role="button" data-
 inline="true">Page 4
 <div id="msgdiv"></div>
</div>

Chapter 8

197

2.	 Add the following script to the <head> section to handle the pagebeforeload event:
$(document).bind("pagebeforeload", function(event, data) {
 var str = "<p>LOADING PAGE ...</p>"
 + "<p>url: " + data.url + "</p>"
 + "<p>absUrl : " + data.absUrl + "</p>"
 + "<p>dataUrl : " + data.dataUrl + "</p>"
 + "<p>options.type: " + data.options.type + "</p>";
 var re = /page2.html/;
 if (data.url.search(re) !== -1) {
 str += "<p>ABORTED!!! page2.html does not
 exist.</p>";
 event.preventDefault();
 data.deferred.reject(data.absUrl, data.options);
 }
 re = /page4.html/;
 if (data.url.search(re) !== -1) {
 str += "<p>ABORTED!!! error dialog shown
 instead.</p>";
 event.preventDefault();
 data.deferred.resolve(data.absUrl, data.options,
 $("#subpage"));
 }
 $("#msgdiv").html(str).trigger("refresh");
});

3.	 Next, handle the pageload event:
$(document).bind("pageload", function(event, data) {
 var str = "<p>PAGE LOADED!</p><p>textStatus: " + data.textStatus
 + "</p><p>xhr.status : " + data.xhr.status + "</p>";
 $("#msgdiv").append(str).trigger("refresh");
});

4.	 Next, handle any error with the pageloadfailed event:
$(document).bind("pageloadfailed", function(event,
 data) {
 var str = "<p>PAGE LOAD FAILED!</p>"
 + "<p>textStatus: " + data.textStatus + "</p>"
 + "<p>xhr.status : " + data.xhr.status + "</p>"
 + "<p>errorThrown : " + data.errorThrown + "</p>";
 $("#msgdiv").append(str).trigger("refresh");
});

Events

198

5.	 Also handle the pageremove event:
$("#page1").live("pageremove", function(event) {
 $("#msgdiv").append("<p>PAGE
 REMOVED!</p>").trigger("refresh");
});

6.	 Now, create a dialog with id="dialog" as follows:
<div id="dialog" data-role="dialog" data-theme="e" data-add-back-
btn="true">
 <div data-role="header">
 <h1>Page Load Failed!</h1>
 </div>
 <div data-role="content">
 <p>There was an error</p>
 </div>
</div>

7.	 Finally, create page1.html with a button to go back to #main, as shown in the
following code snippet:
<div id="page1" data-role="page" data-theme="e">
 <div data-role="header">
 <h1>Header of Page 1</h1>
 </div>
 <div data-role="content">
 <a href="#" data-role="button" data-
 rel="back">Go to Main Page
 </div>
</div>

How it works...
In main.html, create the #main page and add four anchor links with the data-
role="button" and data-inline="true" attributes, to create four inline buttons. These
links point to page1.html, page2.html, page3.html, and page4.html. Also add an
empty div container with id="msgdiv" to display the messages. Next, add a dialog with
id="dialog" to main.html. Finally, create only page1.html, as shown, with a link to
return back to the main page. The other three pages are not created. Bind the page load and
page remove events to callback functions as given in the script. These callback functions have
two parameters available. The first is the event object and the second is the data object.

Chapter 8

199

In the callback of the pagebeforeload event, get the url, absUrl (absolute URL),
dataUrl (the data URL), and options.type properties from the data object. Display
them in the msgdiv container. The options object is the same that gets passed into the
$.mobile.loadPage() call.

In the callback of the pageload event, get the xhr.status (the jQuery XMLHttpRequest
object) and textStatus attributes that indicate page load success and display them in the
msgdiv container.

Add the pageloadfailed callback function to display the data.xhr.status and data.
errorThrown properties on page load error. Finally, add the pageremove callback function
and display a message that the page was removed.

Now, when you initially load the app and click on the Page 1 button to open page1.html, the
pagebeforeload event is triggered first, then the pageload event is fired after the page
is fully loaded. Navigate back to the main page and this triggers the pageremove event. You
can see these messages displayed, as shown in the following screenshot:

Events

200

Next, in the pagebeforeload event handler, use a regular expression search to check
whether the page requested or the data.url is page2.html (which does not exist). Display
a custom error message if page2.html was requested. Also prevent any further action on
this request by calling event.preventDefault(). The data.deferred.reject()
method must be finally called to reject the deferred object reference contained in the data
object. Now, when you click on the Page 2 button, the pageloadfailed event is not
triggered, as shown in the following screenshot, and the custom error message ABORTED!!!
page2.html does not exist. is displayed:

Click on the Page 3 button; it now tries to load page3.html, which is not present, and
displays an Error Loading Page default error message overlaid on the current page, as shown
in the following screenshot. You can also see the messages from the pageloadfailed event
handler here. There was no custom event handling done in this case.

Chapter 8

201

Finally, add code in the pagebeforeload callback function to search for page4.html in the
data.url object. If the string was found, redirect the request to load the #dialog dialog.
Also, display a custom message if page4.html was requested. Now, to prevent the default
action on pagebeforeevent, call the event.preventDefault() method. You must
also call the data.deferred.resolve() method to resolve the deferred object reference
contained in the data object. Then, open the #dialog page by passing it as the parameter
to the resolve method, as shown in the code. Now, when you click on the Page 4 button,
the custom error dialog popup is displayed. When you close the dialog, your custom message
ABORTED!!! error dialog shown instead. is displayed, as shown in the following screenshot.
You will note that the pageloadfailed event callback function did not get called.

There's more...
If you prevent the default page load events by calling the event.preventDefault()
method, then you must inform the framework to resume processing other changePage()
requests once you are done. You can do this by calling the reject() or resolve() methods
on the data.deferred object passed to the callback function of the event.

See also
ff The Using loadPage() to load a page recipe in Chapter 9, Methods and Utilities

Page change events
The jQuery Mobile framework triggers page change events whenever a page is loaded by
the $.mobile.changePage() method into the DOM. The pagebeforechange event is
fired first, before the page changes. Then, either the pagechange event (on success) or the
pagechangefailed event (on failure) is fired. This recipe shows you how to use the page
change events.

Events

202

Getting ready
Copy the full code of this recipe from the code/08/pagechange sources folder. You can
launch this code using the URL http://localhost:8080/08/pagechange/main.html.

How to do it...
Carry out the following steps:

1.	 Create main.html with two links to open two dialogs and an empty div element in
its page content, as follows:
<div id="content" data-role="content">
 Dialog 1
 Dialog 2
 <div id="msgdiv"></div>
</div>

2.	 Add the following script to the <head> section to handle the pagebeforechange
event:
$(document).bind("pagebeforechange", function(event, data) {
 var str = "<p>CHANGING PAGE ...</p><p>toPage: ";
 str += (!!data.toPage.attr)? data.toPage.attr("data-
 url") : data.toPage;
 str += "</p>";
 $("#msgdiv").html(str).trigger("refresh");
 $("#dialogdiv").html(str).trigger("refresh");
});

3.	 Next, handle the pagechange event:
$(document).bind("pagechange", function(event, data) {
 var str = "<p>CHANGED PAGE ...</p><p>fromPage: ";
 str += (!!data.options.fromPage && !!data.options.fromPage.
attr)?
 data.options.fromPage.attr("data-url") : "none";
 str += "</p><p>options.transition: " + data.options.transition +
"</p>";
 $("#msgdiv").append(str).trigger("refresh");
 $("#dialogdiv").append(str).trigger("refresh");
});

Chapter 8

203

4.	 Next, handle any error with the pagechangefailed event:
$(document).bind("pagechangefailed", function(event,
 data) {
 var str = "<p>PAGE CHANGE FAILED ...</p>";
 $("#msgdiv").append(str).trigger("refresh");
});

5.	 Finally, create the #dialog1 dialog as follows. The second dialog, #dialog2,
is not created.
<div id="dialog1" data-role="dialog" data-theme="e"
 data-add-back-btn="true">
 <div data-role="header">
 <h1>Dialog Header</h1>
 </div>
 <div data-role="content">
 <div id="dialogdiv"></div>
 </div>
</div>

How it works...
In main.html, add two anchor links with data-role="button" to the content of the
#main page. These links point to the #dialog1 and #dialog2 dialogs. Also, add an empty
div container with id="msgdiv" to display the messages. Finally, add only one dialog with
id="dialog1" to main.html. Add an empty div container with id="dialogdiv" to this
dialog. The other dialog is not created. Bind the page change events to the callback functions
as given in the script. These call back functions have two parameters available. The first is the
event object and the second is the data object.

In the callback of the pagebeforechange event, get the data.toPage (target page)
attribute. This can either be a string or an object. Check if this is an object (if it has the
toPage attribute) and then use the data.toPage.data-url string. Display the toPage
message in both the message div containers.

In the callback of the pagechange event, get the data.fromPage (source page) attribute.
Check again whether this is an object or a string and display the data.fromPage.data-
url string if it is an object in both the message div containers. Also, the data.options
object has properties, such as transition, that you can use.

Events

204

Finally, in the callback for the pagechangefailed event, display a custom error message.
When the page loads for the first time, you can see the following image. The text main is
shown for toPage; there is no fromPage here:

Click on the Dialog 1 button and the following dialog box will be shown. The toPage value is
dialog1 and fromPage is main. The transition that was used is shown as pop, which is the
default transition for the dialog:

Close this dialog box, and the #main page opens , which displays a message similar to
the one shown in the following screenshot. toPage is main and fromPage is dialog1.
The transition used is again shown as pop:

Chapter 8

205

Finally, click on Dialog 2 button; since #dialog2 does not exist, the custom error message
PAGE CHANGE FAILED is shown, as you can see in the following screenshot, from the
pagechangefailed callback:

There's more...
You can prevent the default page change action by calling the event.preventDefault()
method in the pagebeforechange event handler. You can redirect the navigation to another
page here using the $.mobile.changePage() method.

Sequence of pagechange event
After the pagebeforechange event is triggered, the changePage() request loads the page
into the DOM, and then the transition of the page occurs. The pageshow and pagehide
events are triggered at this point. Finally, the pagechange event is fired only after this.

See also
ff The Using changePage() to change a page recipe in Chapter 9, Methods and Utilities

Page transition and animation events
During page navigation, the current page transitions out and the new active page transitions
in. Animation is used where supported. The jQuery Mobile framework triggers four page
transition events during page navigation, which are listed as follows:

ff pagebeforehide: This event is triggered before the current page is hidden

ff pagehide: This event is fired once the current page is hidden

ff pagebeforeshow: This event is fired before the new active page is shown

ff pageshow: This event is triggered once the active page is shown

Events

206

You can also access the animationComplete plugin to perform custom actions as soon as
the animation is completed. This recipe shows you how to use the page transition events and
also how to use the animationComplete plugin.

Getting ready
Copy the full code of this recipe from the code/08/transition sources folder. You can
launch this code using the URL http://localhost:8080/08/transition/main.html.

How to do it...
Carry out the following steps:

1.	 Create main.html, and add #main page with a link to open the #page page and an
empty div container, as shown in the following code snippet:
<div id="main" data-role="page" data-theme="e">
 <div data-role="header">
 <h1>Page Transition and Animation Events</h1>
 </div>
 <div id="content" data-role="content">
 <a href="#page" data-role="button" data-
 transition="slide">Page 1
 <div id="msgdiv"></div>
</div>

2.	 Create the #page page, as follows, with a button to go back to #main and an empty
div container to display messages:
<div id="page" data-role="page" data-theme="e">
 <div data-role="header">
 <h1>Page Header</h1>
 </div>
 <div data-role="content">
 Go Back
 <div id="pagediv"></div>
</div>

3.	 Add the following script to the <head> section, to clear the message div containers
whenever a link is clicked:
$("#main").live("pageinit", function(event) {
 $("a").bind("click", function(event, ui) {
 $("#msgdiv").html("");
 $("#pagediv").html("");
 });
});

Chapter 8

207

4.	 Handle the pagebeforeshow event:
$(document).bind("pagebeforeshow", function(event, data) {
 var str = "<p>BEFORE PAGE SHOW ...</p><p>Previous
 Page: ";
 str += (!!data.prevPage.attr)?
 data.prevPage.attr("data-url") : "none";
 str += "</p>";
 $("#msgdiv").append(str).trigger("refresh");
 $("#pagediv").append(str).trigger("refresh");
});

5.	 Handle the pagebeforehide event:
$(document).bind("pagebeforehide", function(event,
 data) {
 $(data.nextPage).animationComplete(anim);
 var str = "<p>BEFORE PAGE HIDE ...</p><p>Current Page: ";
 str += (!!data.nextPage.attr)?
 data.nextPage.attr("data-url") : "none";
 str += "</p>";
 $("#msgdiv").append(str).trigger("refresh");
 $("#pagediv").append(str).trigger("refresh");
});

6.	 Handle the pageshow event:
$(document).bind("pageshow", function(event, data) {
 var str = "<p>PAGE SHOW!</p><p>Previous Page: ";
 str += (!!data.prevPage.attr)?
 data.prevPage.attr("data-url") : "none";
 str += "</p>";
 $("#msgdiv").append(str).trigger("refresh");
 $("#pagediv").append(str).trigger("refresh");
});

7.	 Handle the pagehide event:
$(document).bind("pagehide", function(event, data) {
 var str = "<p>PAGE HIDE!</p><p>Current Page: ";
 str += (!!data.nextPage.attr)?
 data.nextPage.attr("data-url") : "none";
 str += "</p>";
 $("#msgdiv").append(str).trigger("refresh");
 $("#pagediv").append(str).trigger("refresh");
});

Events

208

8.	 Add the callback function for the animationComplete() method:
anim = function() {
 $("#msgdiv").append("ANIMATION
 DONE!!!").trigger("refresh");
 $("#pagediv").append("ANIMATION
 DONE!!!").trigger("refresh");
}

How it works...
Create main.html and add an anchor link with data-role="button" to the content of
the #main page. This link opens the #page page in main.html. Create the #page page,
as shown with a link to go back to #main. Add empty #msgdiv and #pagediv containers
to the pages respectively, to display messages. Bind the click event of the anchor link in
the pageinit event handler, and clear any previously displayed messages. This callback is
triggered whenever you click on the links in the app.

Now, bind the four page transition events to their callback functions as given in the script.
These callback functions have two parameters available. The first is the event object and the
second is the data object.

In the callback of the pagebeforeshow event, get the data.prevPage (previous page)
object. This can be empty on first load. Check if it is available (if it has the prevPage
attribute) and use the data.prevPage.data-url string. Display the prevPage message in
both the message div containers. Use similar logic in the callback for the pagehide event.

Similarly, in the callback of the pagebeforehide and pagehide events, obtain and display
the data.toPage (source page) property. Finally, invoke the animationComplete plugin
and define the anim callback function, as shown in the pagebeforehide event handler.
Write code in the anim() function to display a simple ANIMATION DONE!!! message in both
the div containers, as shown.

When the page loads for the first time, you can see the following image with the
pagebeforeshow and pageshow event handlers being called. prevPage is undefined at
this point of time.

Chapter 8

209

Click on the Page 1 button to open #page. You can see messages from the pagebeforehide
and pagebeforeshow event handlers saying that Current Page is page and Previous Page is
main. Then, you can see the ANIMATION DONE!!! message from the animationComplete()
callback. The page is visible at this point, and the messages from the pagehide and pageshow
events can also be seen:

Click on the Go Back button. Now, #main is shown and the messages are displayed as
before. This time, Current Page is main and Previous Page is page:

Events

210

There's more...
On first load, the pagebeforeshow and pageshow event handlers show an empty
data.nextPage object. To display proper values on first load, these two events must be
bound to their callback functions in the mobileinit handler, when the page loads and
before loading the jquery.mobile.js script file, as shown in the following code snippet:

<script>
 $(document).bind("mobileinit", function() {
 $(document).bind("pagebeforeshow", function(event, data) {
 alert(data.nextPage);
 });
 $(document).bind("pageshow", function(event, data) {
 alert(data.nextPage);
 });
});
</script>
<script src="http://code.jquery.com/mobile/1.1.1/jquery.mobile-
1.1.1.min.js"></script>

See also
ff The Configuring the default transitions recipe in Chapter 7, Configurations

Using layout events
Components, such as list views and collapsible blocks, are dynamically resized by user
interactions. This could cause overlap of controls or positioning issues. To prevent this, these
components trigger the updatelayout event, and the jQuery Mobile framework updates the
entire document and ensures that all components are laid out correctly. This recipe shows you
how to use the updatelayout event.

Getting ready
Copy the full code of this recipe from the code/08/layout sources folder. You can launch
this code by using the URL http://localhost:8080/08/layout/main.html.

Chapter 8

211

How to do it...
Carry out the following steps:

1.	 Create main.html with three collapsible blocks and a <div> container, as shown in
the following code snippet:
<div data-role="content">
 <div id="msgdiv">Collapsible Blocks</div>
 <div data-role="collapsible" data-theme="a" data-
 collapsed="false">
 <h3>Tallest Mountain</h3>
 Mt. Everest
 </div>
 <div data-role="collapsible" data-theme="a" data-
 collapsed="false">
 <h3>Longest River</h3>
 R. Nile
 </div>
 <div data-role="collapsible" data-theme="a" data-
 collapsed="false">
 <h3>Largest Ocean</h3>
 Pacific
 </div>
</div>

2.	 Add the following script to the <head> section, to handle the updatelayout event:
$("#main").live("pageshow", function(event, ui) {
 $("div").bind("updatelayout", function(event) {
 $("#msgdiv").html("updatelayout on : " + event.target.
innerHTML);
 });
});

How it works...
In main.html, add a div container with id="msgdiv" to the page content. Add three
collapsible blocks with the data-collapsed="false" attribute. Add the given script to
bind the pageshow event (which gets fired on page show), to an event handler. Here, bind
the updatelayout event to a callback function. In this callback, use the event.target.
innerHTML property to get the text of the collapsible block on which the updatelayout
event was called. Display it in the msgdiv block as shown. Now, when you load the page, the
three collapsible blocks are seen expanded.

Events

212

Click on the first block that says Tallest Mountain. You will see it collapse and msgdiv text
being updated to show updatelayout on: Mt. Everest, as shown in the following screenshot:

There's more...
The jQuery Mobile framework updates the layout and adjusts the positions as required for
most of the scenarios when you add or manipulate components or toggle their visibility in
your page. You have to trigger the create or refresh method on these elements. But there
may be occasions in which the framework does not handle the positioning properly when
you add or manipulate controls or toggle their visibility. In such cases, you can trigger the
updatelayout event and inform the framework to update all components and reposition
them. You can do this by using the following code:

(yourselector).trigger("updatelayout");

9
Methods and Utilities

In this chapter, we will cover the following recipes:

ff Using loadPage() to load a page

ff Using changePage() to change a page

ff Using jqmData() and jqmRemoveData()

ff Using jqmEnhanceable()

ff Using jqmHijackable()

ff Using $.mobile.base

ff Parsing an URL

ff Using $.mobile.path utility methods

ff Using silent scrolling

Introduction
The jQuery Mobile framework provides numerous methods and utilities that work on the
$.mobile object. This chapter shows you how to use these methods and utilities.

The source files for all the recipes in this chapter are available under the code/09 folder of
the archive. Each recipe is listed in its own sub-folder, which is named accordingly.

Using loadPage() to load a page
Using the $.mobile.loadPage() method, you can load an external page in the background
into the DOM and enhance its contents without affecting the current page. This recipe shows
you how to do the same.

Methods and Utilities

214

Getting ready
Copy the full code of this recipe from the code/09/loadpage source folder. You can launch
this code by using the URL: http://localhost:8080/09/loadpage/main.html.

How to do it...
1.	 Create main.html with the page id="main", and add an empty div tag and a link

to #page1, shown as follows:
<div data-role="content">
 <div id="msgdiv"></div>
 Show Page 1
</div>

2.	 Add an event handler for the pagebeforeshow event of #main, and load #page1
using the loadPage() method:
$("#main").live("pagebeforeshow", function(event, data) {
 $("#msgdiv").html("<p>Current Active Page : "
 + $.mobile.activePage.attr("data-url") + "</p>");
 $.mobile.loadPage("page1.html", {role: "dialog"});
});

3.	 Add an event handler for the pagebeforeshow event of #page1 to update the
displayed message:
$("#page1").live("pagebeforeshow", function(event, data) {
 $("#page1content").html("<p>Current Active Page : "
 + $.mobile.activePage.attr("data-url") + "</p>");
});

4.	 Finally, create page1.html, shown as follows:
<div id="page1" data-role="page" data-theme="e">
 <div data-role="header">
 <h1>Header of Page 1</h1>
 </div>
 <div id="page1content" data-role="content"></div>
</div>

Chapter 9

215

How it works...
Create main.html with #main page, and add an empty div with id="msgdiv" and a link to
open #page1 in it. The #page1 reference is not yet available during pageinit, as it comes
from the external page1.html file. Add the event handler for the pagebeforeshow event on
the #main page. Here, obtain the current active page using the $.mobile.activePage()
method, and display its data-url attribute in #msgdiv using the jQuery attr() method.
Next, load page1.html using the $.mobile.loadPage() call. Also, set the loadPage()
options, and set the role attribute to dialog. The page now gets loaded in the background.

Add an event handler for the pagebeforeshow event of #page1. Obtain data-url of the
active page, as done previously, and display it in the #page1content div container. Finally,
create page1.html with an empty div with id="page1content".

When main.html loads, you will see the Show Page 1 button. Click on it, and page1.html
will be shown as a dialog box using the default pop transition. Also, the active page data URL
will be correctly shown in both the pages.

There's more...
$.mobile.loadPage() returns a deferred promise object, which automatically gets
resolved once the page is enhanced and loaded into the DOM.

The loadPage() options
The loadPage() method takes in an optional options object as the second argument. The
following properties can be set on the options object:

ff data: This is the data for the Ajax page request

ff loadMsgDelay (50 seconds by default): This is the delay before the page load
message is shown

ff pageContainer: This is the element that contains the loaded page

ff reloadPage (false by default): This forces the page to be reloaded

ff role: This is the data-role value for the page load

ff showLoadMsg (false by default): This decides whether to display the page load
message or not

ff type (get by default): This specifies the type of Ajax request (get or post)

See also
ff The Using changePage() to change a page recipe

ff The Using page load and remove events recipe in Chapter 8, Events

Methods and Utilities

216

Using changePage() to change a page
This recipe shows you how to use the $.mobile.changePage() method to change from
one page to another using JavaScript. This recipe extends the Using a split button list recipe
from Chapter 6, List Views, and displays the selected image from the list item in a new page.

Getting ready
Copy the full code of this recipe from the code/09/changepage source folder. Also, revisit
the Using a split button list recipe from Chapter 6. You can launch this code by using the URL:
http://localhost:8080/09/changepage/main.html.

How to do it...
1.	 Create main.html with a split button list, with the href attribute for the tag

having a file parameter, with the path for the image file in the left button, as follows:
<div data-role="content">
 <ul data-role="listview" data-inset="true"
 data-theme="b" data-split-theme="e"
 data-split-icon="arrow-d">

 <img style="margin: 10px"
 src="../../resources/images/img1.png" />
 <h3>Lal Bagh</h3>

 Download

 <img style="margin: 10px"
 src="../../resources/images/img2.png" />
 <h3>Peacock</h3>

 Download

 <img style="margin: 10px"
 src="../../resources/images/img3.png"
 height=75% />
 <h3>Ganesha</h3>

 Download

Chapter 9

217

</div>

2.	 Add the #viewphoto page, and open it when the left part of the split button is
clicked:
<div id="viewphoto" data-role="page" data-theme="e" data-add-back-
btn="true">
….....
 <div data-role="content">
 <div id="imgid">
 <p>Displaying Image ...</p>
 </div>
 </div>
</div>

3.	 Add the following script to the <head> section, and call $.mobile.changePage()
in the pagebeforechange event handler:
$(document).live("pagebeforechange", function(e, data) {
 if (typeof data.toPage === "string") {
 var u = $.mobile.path.parseUrl(data.toPage);
 var re = /^#viewphoto&file/;
 if (u.hash.search(re) !== -1) {
 $.mobile.changePage("main.html#viewphoto",
 {
 transition: "pop",
 dataUrl: u.hash.split("=")[1],
 type: "get"
 });
 e.preventDefault();
 }
 }
});

4.	 Display the image in the pagebeforeshow event handler of the #viewphoto page:
$("#viewphoto").live("pagebeforeshow", function(e, data) {
 var u = $.mobile.path.parseUrl(document.location.href);
 var re = /^#img/;
 if (u.hash.search(re) !== -1) {
 var str="";
 $("#imgid").html(str).trigger("refresh");
 }
});

Methods and Utilities

218

How it works...
Add the split button list and the #viewphoto page in main.html, as shown in the code. Add
an empty #imgid attribute to the div tag in the #viewphoto page, to show the full image.
The split button list and the #viewphoto page code are already explained in Chapter 6.
The href attribute of the right button just points to #, as it is not used in this recipe. Change
the list item href attribute in the left buttons to include the file parameter; for example,
href="#viewphoto&file=img1.png". When the app is launched, the following screen is
displayed with thumbnails, as shown in the split button list.

But, nothing happens when you click on the split list buttons, as the framework does not
understand the file parameter with the href attribute. To open and display the image, you will
have to manually handle the page change. To manually invoke pageChange(), add an event
handler for the pagebeforechange event. Here, check if the target page (data.toPage)
is an URL string, and obtain the URL components using the $.mobile.path.parseUrl()
method. Now, search for the file parameter in the URL hash using the regular expression—
#viewphoto&file. If it is found, then it is a request to view the image. You must now handle
the page change.

Call the pageChange() method and pass it the main.html#viewphoto URL. Also, set
the options argument with custom values for transition, type, and dataUrl. You
can store the filename information in dataUrl by splitting the URL hash as shown. Finally,
prevent the default pagebeforechange event handling, as you are already handling the
page change here.

Chapter 9

219

Next, you will have to query the URL string provided to pageChange() for the file
parameter, and display the image. To do this, add an event handler for the pagebeforeshow
event of the #viewphoto page. Get the URL components using the $.mobile.path.
parseUrl() method. Search for the img expression; if found, get the filename from the URL
hash and display the image in the #imgid div container, as shown in the code. Now, if you
click on any list item, the corresponding image is displayed in a larger size in the #viewphoto
page, as shown in the following screenshot:

There's more...
The $.mobile.changePage() method uses the $.mobile.loadPage() method
internally to fetch the new page during the page change.

The changePage() options
The changePage() method takes in an optional options object as the second argument.
The following properties can be set on the options object:

ff allowSamePageTransition (false by default): Transitions to the
current active page are ignored by default, but can be enabled by using the
allowSamePageTransition option

ff changeHash (true by default): This updates hash in the location bar

ff data: This is the data for the Ajax page request

ff dataUrl: This is the URL to update the browser location after page change

ff pageContainer: This is the element that contains the loaded page

Methods and Utilities

220

ff reloadPage (false by default): This forces the page to be reloaded

ff reverse (false by default): This is the direction of transition for page show

ff role: This provides the data-role value for showing the page

ff showLoadMsg (false by default): This decides whether or not to display the page
load message

ff transition: This is the transition to be used for page change

ff type (get by default): This specifies the type of Ajax request (get or post)

See also
ff The Using loadPage() to load a page and Parsing a URL recipes

ff The Using a split button list recipe, in Chapter 6, List Views

ff The Using page load and remove events recipe in Chapter 8, Events

Using jqmData() and jqmRemoveData()
The jqmData() and jqmRemoveData() methods are available to add or remove data
attributes to the elements of a jQuery mobile app. They automatically handle custom
namespaces. This recipe shows you how to use these methods.

Getting ready
Copy the full code of this recipe from the code/09/jqmdata source folder. You can launch
this code by using the URL: http://localhost:8080/09/jqmdata/main.html.

How to do it...
1.	 Add the following script to main.html before including jquery.mobile.js:

$(document).bind("mobileinit", function() {
 $.mobile.ns = "my-";
});

2.	 Add two text inputs and a button to the page, as follows:
<div data-my-role="content">
 <div data-role="fieldcontain">
 <label for="pgtheme">Page Theme : </label>
 <input type="text" id="pgtheme" />
 </div>
 <div data-role="fieldcontain">
 <label for="customdata">Custom Data : </label>

Chapter 9

221

 <input type="text" id="customdata" />
 </div>
 <button id="clearbtn">Clear Custom Data</button>
</div>

3.	 Add the following script to the <head> section to invoke the jqmData() and
jqmRemoveData() methods:
$("#main").live("pageinit", function(event) {
 var pg = $("div:jqmData(role='page')");
 pg.jqmData("custom", "Custom data text");
 $("#pgtheme").attr("value", pg.jqmData("theme"));
 $("#customdata").attr("value", pg.jqmData("custom"));
 $("#clearbtn").bind("click", function(event, ui) {
 pg.jqmRemoveData("custom");
 $("#customdata").attr("value",
 ""+pg.jqmData("custom")); 	
 });
});

How it works...
In main.html, add an event handler for the mobileinit event, before including the
reference to jquery.mobile.js. This is invoked at the start of the app. Here, set the
$.mobile.ns="my-" namespace configuration.

Add two text inputs with id="pgtheme" and id="customdata" to display the page
theme and custom data, respectively. Add a button with id="clearbtn". Next, bind the
pageinit event to a callback function. In this function, get the page element using the
div:jqmData(role='page') custom selector. Using jqmData() ensures that the lookup
of the data attribute (data-my-role) with a custom namespace is automatically handled.

Set a Custom Data attribute on the page with the value Custom data text using the
jqmData() method, as shown in the following screenshot. Finally, display the Page Theme
and Custom Data attributes in the two text inputs. The page is displayed as follows:

Methods and Utilities

222

Next, add a click event handler for #clearbtn to remove the custom data attribute set on
the page using the jqmRemoveData() method, and update the value of the Custom Data text
field. Now, when you click on the Clear Custom Data button, the text input will display undefined.

There's more...
The jQuery methods data(), hasData(), and removeData(), do not take the namespace
of the data- attributes into consideration. You will have to write a custom code to handle it.
Instead, use the jqmData() and jqmRemoveData() methods, as shown in this recipe. You
can inspect the code using a DOM inspector to verify the use of a custom namespace.

See also
ff The Configuring the default namespace recipe in Chapter 7, Configurations

Using jqmEnhanceable()
When data-enhance="false" is set on a parent element, it is inherited by all the child
elements. To search for elements that can use manual enhancements or for custom plugin
authoring, the jQuery Mobile framework provides a filter method called jqmEnhanceable().
This recipe shows you how to use it.

Getting ready
Copy the full code of this recipe from the code/09/jqmenhance source folder. You can
launch this code using the URL http://localhost:8080/09/jqmenhance/main.html.

How to do it...
1.	 Add the following script to main.html before including jquery.mobile.js:

$(document).bind("mobileinit", function() {
 $.mobile.ignoreContentEnabled = true;
});

2.	 Add two anchor buttons to the page as shown. The second button is within a div tag
which has data-enhance="false".
<div data-role="content">
 <div>
 Link 1
 </div>
 <div data-enhance="false">
 Link 2
 </div>
</div>

Chapter 9

223

3.	 Add the following script to the <head> section to invoke the jqmEnhanceable()
method:
$("#main").live("pagecreate", function(event) {
 $("a").jqmEnhanceable().attr("data-role", "button");
});

How it works...
In main.html, add an event handler for the mobileinit event before including the
reference to jquery.mobile.js, which is invoked at the start of the app. Set the
$.mobile.ignoreContentEnabled=true configuration.

Add two div tags to the content of #main. Add a # link to both these div tags. Do not set
the data-role="button" attribute on either of the links. The second div tag has
the data-enhance="false" attribute set. Next, bind the pagecreate event to an
event handler. At this point, the page is already initialzied, but the widgets are yet
to be enhanced. Now invoke the jqmEnhanceable() method on the anchor element,
as shown. This filters and provides only those anchor elements that do not have data-
enhance="false" inherited from its parent. So, in the code, Link 1 is made available.
Set its data-role attribute to button using the jQuery attr() call, as shown in the code.

Now, when you open the app, only Link 1 is enhanced to a button and Link 2 is not enhanced,
as shown in the following screenshot:

There's more...
The jqmEnhanceable() method works only when the $.mobile.
ignoreContentEnabled=true configuration is set. The parent node of each element is
visited and checked for the data-enhance value, and any parent that has a false setting is
removed with its child elements from the filtered set.

Using jqmEnhanceable() on even a small set of elements is costly,
as all the parent elements are checked for the data-enhance value.

Methods and Utilities

224

See also
ff The Using jqmHijackable() recipe

Using jqmHijackable
When data-ajax="false" is set on a parent element, this is inherited by all the child
elements. A filter method called jqmHijackable() is available to search for child elements
that can use custom forms and link binding. This recipe shows you how to use this method.

Getting ready
Copy the full code of this recipe from the code/09/jqmhijack source folder. You can launch
this code by using the URL: http://localhost:8080/09/jqmhijack/main.html.

How to do it...
1.	 Add the following script to main.html before including jquery.mobile.js:

$(document).bind("mobileinit", function() {
 $.mobile.ignoreContentEnabled = true;
});

2.	 Add two anchor buttons to the page, as shown. The second button is within a div
tag, which has data-ajax="false":
<div data-role="content">
 <div>
 Link 1
 </div>
 <div data-ajax="false">
 Link 2
 </div>
</div>

3.	 Add the following script to the <head> section to invoke the jqmHijackable()
method:
$("#main").live("pageinit", function(event) {
 $("a").jqmHijackable().each(function() {
 $(this).attr("data-transition", "flip");
 });
});

Chapter 9

225

4.	 Finally, create page1.html, as shown in the following code snippet:
<div id="page1" data-role="page" data-theme="e">
….....
 <div data-role="content">
 <p>Page 1 Content</p>
 <a href="main.html" data-direction="reverse" data-ajax="false"
 data-role="button">Go Back
 </div>
</div>

How it works...
In main.html, add an event handler for the mobileinit event before including the
reference to jquery.mobile.js. This is invoked at the start of the app. Set the $.mobile.
ignoreContentEnabled=true configuration.

Add two div tags to the content of #main. Add a link to the external page1.html file in
both these div tags. The second div tag has the data-ajax="false" attribute set. Next,
bind the pageinit event to an event handler, and invoke the jqmHijackable() method
on the anchor element, as shown. This filters and provides only those anchor elements that
do not have data-ajax="false" inherited from their parent. So, in the code, Link 1 is
made available. Set its data-transition attribute to flip using the jQuery attr() call,
as shown in the code. Finally, create page1.html, and add the Go Back link to return to the
#main page.

Now, when you click on Link 1, page1.html opens with the flip transition. But, if you click on
Link 2, page1.html is opened without the flip.

There's more...
In this recipe, Link 2 opens page1.html using data-ajax="false". This will clear main.
html from the DOM. Returning back to main.html will load main.html into the DOM, but
will not trigger the mobileinit event. This will cause Link 1 to not use the flip transition
when opening page1.html. To work around this issue, add the data-ajax="false"
attribute to return the link in page1.html. This will reload main.html into DOM freshly and
trigger the mobileinit event. Now, moving from main.html to page1.html via both links
works smoothly any number of times.

$.mobile.ignoreContentEnabled configuration
The jqmHijackable() method works only when the $.mobile.
ignoreContentEnabled=true configuration is set. The parent node of each element is
visited and checked for the data-ajax value, and any parent that has a false setting is
removed with its child elements from the filtered set.

Methods and Utilities

226

Using jqmHijackable() on even a small set of elements is costly,
as all the parent elements are checked for the data-ajax value.

See also
ff The Using jqmEnhanceable() recipe

Using $.mobile.base
The $.mobile.base object provides the reference to the original document base. You can
set a custom value on the base object using the set() method. You can use the reset()
method to revert to the original value. This recipe shows you how to use these utility methods.

Getting ready
Copy the full code of this recipe from the code/09/base source folder. You can launch this
code by using the URL: http://localhost:8080/09/base/main.html.

How to do it...
1.	 Create main.html with two buttons, as shown in the following code snippet:

<div id="content" data-role="content">
 <div id="dispdiv"></div>
 <button id="changebtn">Set Document Base</button>
 <button id="resetbtn">Reset Document Base</button>
</div>

2.	 Add the following script to display the document base object values:
function disp() {
 var str = "<p>Original Document Base: " + $.mobile.
getDocumentBase()
 + "</p>" + "<p>Document Base set to : "
 + $.mobile.base.element.attr("href");
 $("#dispdiv").html(str);
}

3.	 Invoke the $.mobile.base utility methods in the pageinit event handler:
$("#main").live("pageinit", function(event) {
 disp();
 $("#changebtn").bind("click", function(event, ui) {
 $.mobile.base.set("http://localhost:8080/");

Chapter 9

227

 disp();
 });
 $("#resetbtn").bind("click", function(event, ui) {
 $.mobile.base.reset();
 disp();
 });
});

How it works...
Add an empty div tag with id="dispdiv", and add two buttons (#changebtn and
#resetbtn) to main.html, as shown. Add a disp()function to display the current
document base and the original document base values in the #dispdiv div container. You
can get the original document base using the $.mobile.getDocumentBase() method.
Invoke the disp() function on the pageinit event. On first load, the base values are
displayed as follows:

Now, bind the click event of the #changebtn to an event handler, and set the document base
to a custom value using the $.mobile.base.set() method. Click on the Set Document
Base button now, and the custom base is displayed, as shown in the following screenshot:

Methods and Utilities

228

Bind #resetbtn to an event handler, and reset the document base by calling the
$.mobile.base.reset() method. Click on the Reset Document Base button and you will
see that the base value has been reverted.

Parsing an URL
The $.mobile.path object provides properties and methods that you can use to work with
URLs. This recipe shows you how to fetch the components of a URL using the $.mobile.
path.parseUrl() method.

Getting ready
Copy the full code of this recipe from the code/09/parseurl source folder. You can launch
this code by using the URL: http://localhost:8080/09/parseurl/main.html.

How to do it...
1.	 Create main.html with an empty div tag and an anchor link, as shown in the

following code snippet:
<div data-role="content">
 <div id="msgdiv"></div>
 <a href="http://user:pwd@localhost:8080/09/main.html?img=img1.
png#imgview"
 data-role="button">Link 1
</div>

2.	 Add the following script to the <head> section to fetch the URL of the anchor button
when it is clicked:
$("#main").live("pageinit", function(event) {
 dispPath($.mobile.getDocumentUrl());
 $("a").bind("click", function(event, ui) {
 dispPath($(this).attr("href"));
 event.preventDefault();
 event.stopPropagation();
 });

3.	 Add the following method to display the various components of the URL:
 function dispPath(urlstr) {
 var urlcomp = $.mobile.path.parseUrl(urlstr);
 var str = "<p>href: " + urlcomp.href + "</p>"
 + "<p>hrefNoHash: " + urlcomp.hrefNoHash + "</p>"
 + "<p>hrefNoSearch: " + urlcomp.hrefNoSearch + "</p>"
 + "<p>domain: " + urlcomp.domain + "</p>"
 + "<p>protocol: " + urlcomp.protocol + "</p>"
 + "<p>authority: " + urlcomp.authority + "</p>"

Chapter 9

229

 + "<p>username: " + urlcomp.username + "</p>"
 + "<p>password: " + urlcomp.password + "</p>"
 + "<p>host: " + urlcomp.host + "</p>"
 + "<p>hostname: " + urlcomp.hostname + "</p>"
 + "<p>port: " + urlcomp.port + "</p>"
 + "<p>pathname: " + urlcomp.pathname + "</p>"
 + "<p>directory: " + urlcomp.directory + "</p>"
 + "<p>filename: " + urlcomp.filename + "</p>"
 + "<p>hash: " + urlcomp.hash + "</p>"
 + "<p>search: " + urlcomp.search + "</p>";
 $("#msgdiv").html(str);
 }
});

How it works...
Add an empty div tag with id="msgdiv" to main.html. Add a link with a complex href
string, as shown in the code. Create a dispPath function that takes in a URL string. Here,
call the $.mobile.path.parseUrl method to obtain an object (#urlcomp) that contains
the various components of the URL. Display these URL components in the #msgdiv div
container. When the app is first loaded, call the dispPath() method in the pageinit
event handler, and pass it to the document URL parameter got, by calling the $.mobile.
getDocumentUrl() method. The following screenshot is displayed on first load:

Methods and Utilities

230

Next, add an event handler for the click event of the anchor link. Invoke the dispPath()
function, and pass it the href attribute as the parameter. Get the href attribute by
calling the jQuery attr("href") method on the anchor object. Finally, call the event.
preventDefault() and event.stopPropagation() methods to prevent the default
action of the click event. Now, when you click on Link 1, the URL components of the complex
href attribute are displayed as follows:

There's more...
The $.mobile.parseUrl() method returns an object that contains the string values of
the various URL components as follows; empty strings are stored when a particular URL
component is not used:

ff href: This is the original URL that was parsed

ff hrefNoHash: This is the href attribute without the hash component

ff hrefNoSearch: This is the href attribute without the search query and hash

Chapter 9

231

ff domain: This has the protocol and authority components

ff protocol: This is the protocol (includes the : character)

ff authority: This has the username, password, and host components

ff username: This is the username

ff password: This is the password

ff host: This is the host and port

ff hostname: This is the name of the host

ff port: This is the port (can be empty if the protocol uses its default port)

ff pathname: This is the path of the file or directory referenced

ff directory: This is the directory part of the pathname without filename

ff filename: This is the filename part of the pathname without directory

ff hash: This is the hash component (includes the # character)

ff search: This is the query component (includes the ? character)

See also
ff The Using $.mobile.path utility methods recipe

Using $.mobile.path utility methods
This recipe shows you how to use the utility methods provided by the $.mobile.path object
in your app.

Getting ready
Copy the full code of this recipe from the code/09/path source folder. You can launch this
code by using the URL: http://localhost:8080/09/path/main.html.

How to do it...
1.	 Create the main.html page with four anchor links, as shown in the following

code snippet:
<div data-role="content">
 <div id="msgdiv"></div>
 <a href="http://localhost:8080/09/base/main.html"
 data-role="button">
 1: http://localhost:8080/09/base/main.html

Methods and Utilities

232

 <a href="http://localhost:8080/09/base/" data-
 role="button">
 2: http://localhost:8080/09/base/

 3: page1.html

 4: ../
</div>

2.	 Add the following script to the <head> section to get the URL of the link clicked.
$("#main").live("pageinit", function(event) {
 var docurl = $.mobile.getDocumentUrl();
 $("a").bind("click", function(event, ui) {
 dispPath($(this).attr("href"));
 event.preventDefault();
 event.stopPropagation();
 });

3.	 Add the disppath() function to display the output of the $.mobile.path
utility methods:
function dispPath(urlstr) {
 var urlcomp = $.mobile.path.parseUrl(urlstr);
 var str = "<p>Base: " + docurl + "</p>"
 + "<p>Page: " + urlcomp.href + "</p>"
 + "<p>Same Domain: " + $.mobile.path.isSameDomain(
 docurl, urlcomp) + "</p>"
 + "<p>is Absolute: "
 + $.mobile.path.isAbsoluteUrl(urlcomp) + "</p>"
 + "<p>is Relative: "
 + $.mobile.path.isRelativeUrl(urlcomp) + "</p>";
 if ($.mobile.path.isRelativeUrl(urlcomp)) {
 str += "<p>Make Absolute Path: "
 + $.mobile.path.makePathAbsolute(urlcomp.href,
 $.mobile.path.parseUrl(docurl).pathname) + "</p>"
 + "<p>Make Absolute Url: "
 + $.mobile.path.makeUrlAbsolute(urlcomp.href,
 docurl) + "</p>"
 }
 $("#msgdiv").html(str);
 }
});

Chapter 9

233

How it works...
Add an empty div tag with id="msgdiv" to main.html. Add four links with different URLs,
as shown in the code. Add script to the <head> section to obtain the original document URL
(#docurl) of the page using the $.mobile.getDocumentUrl() method in the pageinit
event handler. Use this URL as the reference point for comparison in this recipe.

Next, add an event handler for the click event of the four anchor links. Invoke the
dispPath() function, and pass it the link href attribute as the parameter. You can obtain
the href attribute by calling the jQuery attr("href") method on the anchor object. Also
call the event.preventDefault() and event.stopPropagation() methods in this
event handler to prevent any further action on the click event.

In the dispPath function, call the $.mobile.path.parseUrl method to obtain the href
component of the URL passed in. Now, invoke the various $.mobile.path utility methods,
and display their outputs in the #msgdiv div container, as shown in the code. Call the
isRelativeUrl() method to check if the URL passed in is relative. Convert it to an absolute
value using the makePathAbsolute() and makeUrlAbsolute() methods. The original
document URL is used as reference for these conversions.

When the page loads, you will see four link buttons. Click on the first link
http://localhost:8080/09/path/main.html, and an output similar to
the following screenshot will be shown. The URL is in the same domain as the
reference URL, and the URL is also absolute.

The second link, http://localhost:8080/09/base/, points to a folder. The following
output is seen; the domain is same and the URL is absolute:

Methods and Utilities

234

The third link, page1.html, is a relative URL. The absolute path and the absolute URL are
computed using the reference URL and displayed, as shown in the following screenshot; the
Same Domain value is false here.

The final link points to the parent directory, ../, and is again a relative URL. The absolute
path and URL is computed using the reference URL, and is displayed as shown in the following
screenshot; the Same Domain value is false again:

There's more...
The $.mobile.path utility methods used in this recipe are as follows:

ff isAbsoluteUrl: Checks if a given URL is absolute

ff isRelativeUrl: Checks if a given URL is relative

ff makePathAbsolute: Converts a relative path to absolute; the method uses a
reference path argument for the conversion

ff makeUrlAbsolute: Converts a relative URL to absolute; the method uses a
reference URL argument for the conversion

ff isSameDomain: Checks if two URLs belong to the same domain

Chapter 9

235

See also
ff The Parsing an URL recipe

Using silent scrolling
You can use the $.mobile.silentScroll method to scroll to any vertical position on
your page, without triggering the scroll event listeners. This recipe shows you how to use
silent scrolling.

Getting ready
Copy the full code of this recipe from the code/09/silentscroll source folder. You can launch
this code by using the URL: http://localhost:8080/09/silentscroll/main.html.

How to do it...
1.	 Create main.html with an empty div tag and two buttons that will be used to scroll

to the top and bottom of the page:
<div data-role="content">
 <button id="bottombtn">Page Bottom</button>
 <div id="dispdiv"></div>
 <button id="topbtn">Page Top</button>
</div>

2.	 Add the following script to the <head> section to create a lengthy page:
$("#main").live("pageinit", function(event) {
 var str="";
 for (var i=0; i<100; i++) {
 str += i + "
";
 }
 $("#dispdiv").html(str);

3.	 Now, based on the button clicked, scroll to the top or bottom of the page:
 $("#topbtn").bind("click", function(event, ui) {
 $.mobile.silentScroll($.mobile.defaultHomeScroll);
 });
 $("#bottombtn").bind("click", function(event, ui) {
 $.mobile.silentScroll(2000);
 });
});

Methods and Utilities

236

How it works...
Add two buttons with IDs bottombtn and topbtn to main.html. Create an empty div tag
with id="dispdiv", and populate it with some lengthy content. Here, a script is used on the
pageinit event to add 100 lines of text in a loop to #dispdiv. The page is initially displayed
as follows:

Bind the click event of the #bottombtn button to call $.mobile.silentScroll with
a large value (2000px here) as the Y parameter. Now, when you click on the Page Bottom
button, the page scrolls to the Y position (2000px) which is at the bottom of the document, as
shown in the following screenshot:

Chapter 9

237

Next, bind the click event of the #topbtn button, and pass the $.mobile.
defaultHomeScroll property as a parameter to $.mobile.silentScroll. Now, click on
the Page Top button, and the page scrolls back to the top.

There's more...
The silentScroll method does not invoke the scroll event listeners. Add the following
code to verify that the alert is not shown when you click on any of the buttons. But the alert is
shown when you use the scrollbar.

$(window).bind("scrollstop", function(event) {
 alert("Scroll event was fired");
});

The $.mobile.defaultHomeScroll Property
The $.mobile.defaultHomeScroll property used in this recipe is internally used by
the jQuery Mobile framework to scroll to the top of the page. This value is obtained from the
browser using the $.support.scrollTop property. If this value is not 0, the framework sets
it to 0.

See also
ff The Using Scroll Events recipe in Chapter 8, Events

10
The Theme Framework

In this chapter, we will cover the following recipes:

ff Theming a nested list

ff Using a custom background

ff Using custom fonts

ff Styling corners

ff Overriding the global Active State theme

ff Overriding an existing swatch

ff Using the ThemeRoller tool to create a swatch

Introduction
The jQuery Mobile framework provides a lightweight theming system, which supports many
CSS3 properties, such as rounded corners, shadows, and gradients. It also provides a
lightweight icon set in a sprite that you can use in your mobile apps (Icon Sprites are covered
in Chapter 4, Buttons and Content Formatting). The framework provides five default swatches
(a to e) and can support up to 26 swatches. These swatches can provide a different look and
feel to your apps.

Theming a nested list
When you theme a nested list differently from the page theme, the list sub page will
look inconsistent compared to the main page. This is described in the Using a Nested
List recipe, in Chapter 6, List Views. This recipe shows you how to theme a nested list
in a consistent manner.

The Theme Framework

240

Getting ready
Copy the full code of this recipe from the code/10/nested-list folder. You can launch this
code using the URL http://localhost:8080/10/nested-list/main.html.

How to do it...
1.	 Create main.html with the #main page having a nested list, as follows:

<div id='main' data-role='page' data-theme='a'>
 <div data-role='header' data-theme='a'>
 <h1>Movies</h1>
 </div>
 <div data-role='content'>
 <ul data-role='listview' data-header-theme='a' data-
 theme='b' data-inset='true'>
 Director 1
 <ul data-role='listview' data-inset='true'>
 Movie 1
 Movie 2
 Movie 3

 Director 2
 <ul data-theme='a' data-role='listview' data-
 inset='true'>
 <li data-theme='b'>Movie A
 <li data-theme='b'>Movie B
 <li data-theme='b'>Movie C

 </div>
</div>

How it works...
In main.html, add the #main page with data-theme='a' to give it a black theme. Add
a black colored header with data-theme='a'. Add a blue colored list view to the page
content with data-theme='b'. Set its header to have a black color with data-header-
theme='a'. Add two items, Director 1 and Director 2, to this list. The list will now appear
as shown in the following screenshot:

Chapter 10

241

Add nested lists to both these list items. The first nested list does not specify any additional
theme attributes. When you click on the first list item, the subpage with movies for Director 1
is shown. You will notice that the subpage has a background of data-theme='b', and it does
not look consistent with the main page, as shown in the following screenshot:

Now, set data-theme='a' on the second nested list. Add the data-theme='b' attribute
to each of the nested list items. This will create the subpage with a black background.
The nested list items get the blue color. The subpage appears, as shown in the following
screenshot; it is now consistent with the main page:

See also
ff The Using a nested list recipe in Chapter 6, List Views

The Theme Framework

242

Using a custom background
This recipe shows you how to use a custom background in your app.

Getting ready
Copy the full code of this recipe from the code/10/custom-background source folder.
You can launch this code using the URL: http://localhost:8080/10/custom-
background/main.html.

How to do it...
1.	 Create main.html and define the orangebar and orangebody classes in the

<head> section, as follows:
<style>
 .orangebar {
 border: 1px solid #e3b264;
 background: #f7e0bb;
 color: #000;
 text-shadow: 0 1px 0 #bfbfbf;
 background-image: -webkit-gradient(linear, left top,
 left bottom,
 from(#f7e0bb), to(#f7bd5e));
 background-image: -webkit-linear-gradient(#f7e0bb ,
 #f7bd5e);
 background-image: -moz-linear-gradient(#f7e0bb ,
 #f7bd5e);
 background-image: -ms-linear-gradient(#f7e0bb ,
 #f7bd5e);
 background-image: -o-linear-gradient(#f7e0bb ,
 #f7bd5e);
 background-image: linear-gradient(#f7e0bb , #f7bd5e);
 }
 .orangebody {
 border: 1px solid #e3b264;
 background: #f4ffde;
 color: #000;
 text-shadow: 0 1px 0 #bfbfbf;
 background-image: -webkit-gradient(linear, left top,
 left bottom,
 from(#fef9f1), to(#f2d5a6));
 background-image: -webkit-linear-gradient(#fef9f1 ,
 #f2d5a6);

Chapter 10

243

 background-image: -moz-linear-gradient(#fef9f1 ,
 #f2d5a6);
 background-image: -ms-linear-gradient(#fef9f1 ,
 #f2d5a6);
 background-image: -o-linear-gradient(#fef9f1 ,
 #f2d5a6);
 background-image: linear-gradient(#fef9f1 , #f2d5a6);
 }
</style>

2.	 Add the #main page with the following content:
<div id='main' data-role='page' class='orangebody'>
 <div data-role='header' class='orangebar'>
 <h1>Orange Background</h1>
 </div>
 <div data-role='content'>
 <p>Page Content</p>
 </div>
</div>

How it works...
In main.html, define the orangebar and orangebody classes in the <style> tag. Define
the values for the border, background, and background-image CSS properties. Specify
a linear gradient with multiple vendor-specific values for the background-image attribute.
Create the #main page and style the page to use the orangebody class. Style the header to
use the orangebar class. The page is now displayed with an orange background, as shown
in the following screenshot:

The Theme Framework

244

There's more...
This recipe shows you how to quickly change the background of your page and its
header. But if you add a button or any control to this page, the control would get the
default theme and would look out of place. You will have to theme the controls to match
the page. Instead of manually setting the theme for each and every element, you can create
themes or modify the existing themes using the jQuery Mobile ThemeRoller tool available at
http://www.jquerymobile.com/themeroller.

It is better to use a separate CSS file to store the style info. In this
way the style is kept separate from the HTML or document structure,
making it easier to maintain and upgrade the styles later.

See also
ff The Theming the active state and Using the ThemeRoller tool to create a

swatch recipes

ff The Using CSS to create a bouncing page transition recipe in Chapter 2, Pages and
Dialogs: This recipe provides details on vendor prefixes

Using custom fonts
The jQuery Mobile framework uses Helvetica, Arial, and Sans Serif fonts by default. This recipe
shows how to include and use other fonts in your app.

Getting ready
Copy the full code of this recipe from the code/10/custom-font source folder. The Komika
TrueType Font used in this recipe is available in the code/resources/font folder. The
Syncopate Web Font is used from the Google Web Fonts site. You can launch this code using
the URL: http://localhost:8080/10/custom-font/main.html.

How to do it...
1.	 Create main.html, and add the link to the Syncopate Google web font stylesheet,

as follows:
<link rel='stylesheet' href='http://code.jquery.com/mobile/1.1.1/
jquery.mobile-1.1.1.min.css' />
<link rel='stylesheet' href='http://fonts.googleapis.com/css?famil
y=Syncopate:400,700'/>

Chapter 10

245

2.	 Define style classes to use the two custom fonts in the <style> tag:
<style>
 h1 {font-family: 'Syncopate', sans-serif; }
 .divstyle {font-family: 'Syncopate'; font-weight: 400; }
 @font-face {
 font-family: KomikaDisplay;
 src: url('../../resources/font/Komika_display.ttf');
 }
 .komikafont { font-family: KomikaDisplay; }
</style>

3.	 Add the #main page container using the custom fonts as follows:
<div id='main' data-role='page' data-theme='a'>
 <div data-role='header'>
 <h1>Custom Font</h1>
 </div>
 <div data-role='content'>
 <p>In Default font</p>
 <div class='komikafont'><p>In Komika Display Font</p></div>
 <div class='divstyle'><p>In Syncopate Font</p></div>
 </div>
</div>

How it works...
Create main.html, and add the link to the Syncopate stylesheet from the Google Web
Fonts site after including the jQuery Mobile stylesheet, as shown. Define the header h1
to use Syncopate and sans-serif fonts using the font-family CSS attribute. Create
a CSS class called divstyle, and set the font-family attribute to Syncopate with
font-weight of 400. To include the Komika Display TrueType Font, define the font family
using the CSS @font-face feature. Point its source to the location of the .ttf file. Finally,
define a komikafont class, and set its font-family to KomikaDisplay.

Now, create the #main page with header h1. The header will now use the Syncopate web font.
Add a div tag with class='komikafont' to the page content, and the text in this div tag will
use the Komika Display font. Finally, add another div tag with class='divstyle', and this
will use the Syncopate font with a font weight of 400. The screen will be displayed as follows:

The Theme Framework

246

There's more...
This recipe shows you how to use custom fonts for specific elements. To globally change
fonts across your entire application, use the jQuery Mobile ThemeRoller tool available at
http://www.jquerymobile.com/themeroller. The following screenshot shows you the
Verdana font being set globally:

Using TrueType fonts
TrueType (TTF) or OpenType fonts are mostly supported in all the modern browsers.
You will have to take care if you are targeting older browsers or most of the older devices
and feature phones, as the fonts might not be supported with @font-face. You can refer to
http://www.caniuse.com/#search=ttf to get the updated status of support for TTF in
various browsers. You will note that older versions of iOS do not support TTF. You might have
to use SVG fonts instead.

Downloading the fonts
You can visit and use other web fonts from the Google Web Fonts page at
http://www.google.com/webfonts. All the fonts are open source and can be
used freely. The Komika Display font designed by Apostrophic Labs, is available at the
Font Squirrel web page (http://www.fontsquirrel.com/fonts/Komika-Display).
The Font Squirrel website has a large number of fonts available, all as freeware.

See also
ff The Using the ThemeRoller tool to create a swatch recipe

http://www.google.com/webfonts
http://www.google.com/webfonts
http://www.fontsquirrel.com/fonts/Komika-Display
http://www.fontsquirrel.com/fonts/Komika-Display

Chapter 10

247

Styling corners
This recipe shows you how to use different corner styles that are readily available with
jQuery Mobile.

Getting ready
Copy the full code of this recipe from the code/10/corner-styles source folder.
You can launch this code using the URL: http://localhost:8080/10/corner-styles/
main.html.

How to do it...
1.	 Create main.html, and add the following <style> tag to its <head> section:

<style>
 .mydiv { border: 2px solid #000; margin: 5px; text-align:
center; }
</style>

2.	 Create the #main page with four div elements in a layout grid, as follows:
<div id='main' data-role='page' data-theme='a'>
 <div data-role='header' data-theme='e' class='ui-
 corner-top' style='margin-top: 10px'>
 <h1>Header Text</h1>
 </div>
 <div id='content' data-theme='e' data-role='content'>
 <fieldset data-role='controlgroup' data-
 type='horizontal' class='ui-grid-a'>
 <div class='ui-block-a ui-corner-tl mydiv'
 style='width: 45%'><p>Top Left</p></div>
 <div class='ui-block-b ui-corner-tr mydiv'
 style='width: 45%'><p>Top Right</p></div>
 <div class='ui-block-a ui-corner-bl mydiv'
 style='width: 45%'><p>Bottom Left</p></div>
 <div class='ui-block-b ui-corner-br mydiv'
 style='width: 45%'><p>Bottom Right</p></div>
 </fieldset>
 </div>
 <div data-role='footer' class='ui-corner-bottom' data-
 theme='e'>
 <h4>Footer Text</h4>
 </div>
</div>

The Theme Framework

248

How it works...
In main.html, define the .mydiv class with a border, margin, and center aligned text as
shown. Create the #main page and style the header with class='ui-corner-top'. This
will add corners on the top side of the header. Define the footer with class='ui-corner-
bottom', to add bottom corners to the footer. Do not add any style to the content div, so
the class='ui-corner-none' style is used by default. Now, add four div tags in two rows
using a two column layout grid (grid-a). Style these div tags using the mydiv class. Also,
add the different corner styles (ui-corner-tl, ui-corner-tr, ui-corner-bl, and ui-
corner-br) to these div tags respectively. The four div tags are now styled as follows:

There's more...
You can globally set the corner radius using the jQuery Mobile ThemeRoller tool available at
http://www.jquerymobile.com/themeroller.

Chapter 10

249

See also
ff The Using the ThemeRoller tool to create a swatch recipe

ff The Grouping Radio Buttons in a Grid recipe in Chapter 5, Forms

Overriding the global Active State theme
The jQuery Mobile framework uses a bright blue color to indicate the active state for buttons and
other controls. This Active State theme is consistent for all the default swatches and cannot be
overridden via markup. This recipe shows you how to override the Active State theme.

Getting ready
Copy the full code of this recipe from the code/10/active-state source folder. You can
launch this code using the URL: http://localhost:8080/10/active-state/main.
html.

How to do it...
1.	 Create the active-state.css stylesheet to style the active state, as follows:

.ui-btn-active {
 border: 1px solid #137000;
 background: #93ff86;
 font-weight: bold;
 color: #000;
 text-shadow: 0 1px 1px #eee;
 cursor: pointer;
 text-decoration: none;
 background-image: -webkit-gradient(linear, left top,
 left bottom, from(#a1ff93), to(#14b800));
 background-image: -webkit-linear-gradient(#a1ff93,
 #14b800);
 background-image: -moz-linear-gradient(#a1ff93,
 #14b800);
 background-image: -ms-linear-gradient(#a1ff93,
 #14b800);
 background-image: -o-linear-gradient(#a1ff93,
 #14b800);
 background-image: linear-gradient(#a1ff93, #14b800);
 font-family: Helvetica, Arial, sans-serif;
}

The Theme Framework

250

2.	 Specify the style for the on focus event:
.ui-focus, .ui-btn:focus {
 -moz-box-shadow: 0px 0px 12px #37bf37;
 -webkit-box-shadow: 0px 0px 12px #37bf37;
 box-shadow: 0px 0px 12px #37bf37;
}

3.	 Specify the on state style for the checkbox and radio button controls:
.ui-checkbox-on .ui-icon, .ui-radio-on .ui-icon {
 background-color: #50cf44;
}

4.	 Include the preceding stylesheet in main.html:
<link rel='stylesheet' href='http://code.jquery.com/mobile/1.1.1/
jquery.mobile-1.1.1.min.css' />
<link rel='stylesheet' href='./active-state.css' />

5.	 Now, create a header with a navbar control in the #main page:
<div id='main' data-role='page' data-theme='a'>
 <div data-role='header'>
 <h1>Active State</h1>
 <div data-role='navbar'>

 Nav1
 <a href='#' class='ui-btn-
 active'>Nav2
 Nav3

 </div>
 </div>

6.	 Finally, add the page content with a horizontal checkbox, a vertical checkbox, and a
slider, as follows:
 <div data-role='content'>
 <div data-role='fieldcontain'>
 <fieldset data-role='controlgroup' data-
 type='horizontal'>
 <legend>CheckBox</legend>
 <input type='checkbox' name='hchkbox'
 id='hchkbox'/>
 <label for='hchkbox'>Horizontal</label>
 </fieldset>
 </div>
 <div data-role='fieldcontain'>
 <fieldset data-role='controlgroup'>

Chapter 10

251

 <legend>CheckBox</legend>
 <input type='checkbox' name='vchkbox'
 id='vchkbox'/>
 <label for='vchkbox'>Vertical</label>
 </fieldset>
 </div>
 <div data-role='fieldcontain'>
 <label for='sldr'>Input slider:</label>
 <input type='range' name='sldr' id='sldr'
 value='50' min='0' max='100' data-
 highlight='true' />
 </div>
 </div>
</div>

How it works...
Create the active-state.css stylesheet to keep the style info separate from the HTML
file. The active state, the on focus event, and the on state style of the checkbox and radio
button controls use the bright blue theme by default. You can override them in the CSS file,
as shown in the code. First, override the .ui-btn-active class, and specify your settings
for the border, background, color, and background-image CSS attributes. Next,
override the .ui-focus and .ui-btn:focus classes, and specify the color for the
box-shadow .ui-checkbox-on and .ui-radio-on styles, as shown in the code.

Create main.html, and add a navbar control to the header. Add the ui-btn-active class
to the second link in navbar. You will see the active state set on the second link when the
page loads. Next, add a horizontal and vertical group of checkbox controls. Finally, add an
input slider to the page. The page now loads, as displayed in the following screenshot, with
the default bright blue active state theme replaced with a fluorescent green theme:

The Theme Framework

252

There's more...
You can also globally set the active status theme using the jQuery Mobile ThemeRoller tool
available at http://www.jquerymobile.com/themeroller.

See also
ff The Using the ThemeRoller tool to create a swatch recipe

ff The Using CSS to create a bouncing page transition recipe in Chapter 2, Pages and
Dialogs: This recipe provides a note on vendor prefixes

ff The Configuring the active classes recipe in Chapter 7, Configurations

Overriding an existing swatch
The jQueryMobile framework uses the ui-btn-hover class to theme the button hover
event. This recipe shows you how to override the style for the button hover event of an
existing swatch.

Getting ready
Copy the full code of this recipe from the code/10/button-hover source folder. You can
launch this code using the URL: http://localhost:8080/10/button-hover/main.
html.

Chapter 10

253

How to do it...
1.	 Create main.html, and add the following <style> tag to the <head> section:

<link rel='stylesheet' href=
 'http://code.jquery.com/mobile/1.1.1/jquery.mobile-
 1.1.1.min.css' />
<style>
 .ui-btn-hover-a {
 border: 1px solid #115e00;
 background: #51b54a;
 font-weight: bold;
 color: #fff;
 text-shadow: 0 1px 1px #197d19;
 background-image: -webkit-gradient(linear, left top,
 left bottom, from(#7ad66f), to(#41a343));
 background-image: -webkit-linear-gradient(#7ad66f,
 #41a343);
 background-image: -moz-linear-gradient(#7ad66f,
 #41a343);
 background-image: -ms-linear-gradient(#7ad66f,
 #41a343);
 background-image: -o-linear-gradient(#7ad66f,
 #41a343);
 background-image: linear-gradient(#7ad66f, #41a343); }
</style>

2.	 Create the #main page and add a button to the page content:
 button

How it works...
In main.html, define the override for the .ui-btn-hover-a class after linking the
 jQuery Mobile stylesheet, as shown in the code. Specify the border, background,
color, text-shadow, and background-image CSS attributes. Create the #main
page with data-theme='a', and add a button to the page content. Load the page,
and on button hover you will see that the button gets a bright green color instead of the
default hover style, as shown in the following screenshot:

The Theme Framework

254

There's more...
You can also theme the button hover for swatch A using the jQuery Mobile ThemeRoller tool
available at http://www.jquerymobile.com/themeroller.

The buttonMarkup.hoverDelay configuration
You can configure the delay for the button hover by setting the buttonMarkup.hoverDelay
(defaults to 200 ms) configuration on mobileinit. But take care, as using values that are
too large or too small will impact the user experience. You can use the following code to
configure this property:

$(document).bind('mobileinit', function() {
 $.mobile.buttonMarkup.hoverDelay = 500;
});

See also
ff The Using the ThemeRoller tool to create a swatch recipe

ff The Using CSS to create a bouncing page transition recipe in Chapter 2, Pages and
Dialogs: This recipe provides a note on vendor prefixes

Chapter 10

255

Using the ThemeRoller tool to create a
swatch

This recipe shows you how to create a swatch using the jQueryMobile ThemeRoller web tool.

Getting ready
The code in this recipe was created using the the jQueryMobile ThemeRoller web tool
available at http://www.jquerymobile.com/themeroller. The code is available
in the code/10/myTheme source folder. You can launch this code using the URL
http://localhost:8080/10/myTheme/index.html.

How to do it...
1.	 Generate the myTheme.css file using the jQueryMobile ThemeRoller tool. It gets

included in the generated index.html file, as follows:
<link rel='stylesheet' href='themes/myTheme.min.css' />
<link rel="stylesheet"
 href="http://code.jquery.com/mobile
 /1.1.1/jquery.mobile.structure-1.1.1.min.css" />
<script src="http://code.jquery.com/jquery-1.7.1.min.js">
</script>
<script src="http://code.jquery.com/mobile/
 1.1.1/jquery.mobile-1.1.1.min.js"></script>

2.	 The <body> content in index.html gets generated as follows:
<div data-role="page" data-theme="a">
 <div data-role="header" data-position="inline">
 <h1>It Worked!</h1>
 </div>
 <div data-role="content" data-theme="a">
 <p>
 Your theme was successfully downloaded. You can use
 this page as a reference for how to link it up!
 </p>
 <pre> </pre>
 <p>
 This is content color swatch "A" and a preview of a
 link.
 </p>
 <label for="slider1">Input slider:</label>
 <input type="range" name="slider1" id="slider1"

The Theme Framework

256

 value="50" min="0" max="100" data-theme="a" />
 <fieldset data-role="controlgroup" data-
 type="horizontal" data-role="fieldcontain">
 <legend>Cache settings:</legend>
 <input type="radio" name="radio-choice-a1" id=
 "radio-choice-a1" value="on" checked="checked" />
 <label for="radio-choice-a1">On</label>
 <input type="radio" name="radio-choice-a1" id=
 "radio-choice-b1" value="off" />
 <label for="radio-choice-b1">Off</label>
 </fieldset>
 </div>
</div>

How it works...
Launch the jQuery Mobile ThemeRoller web tool. You will see the available swatches in the left
pane called the Inspector pane. The swatch always starts with A, and you can add, duplicate,
or delete swatches. The other swatches are immediately sorted alphabetically. You can create
up to 26 swatches (A to Z). You can directly modify the CSS properties in the Inspector pane.

Chapter 10

257

Instead of manually entering the colors, you can also use the Adobe Kuler swatch bar available
at the top of the screen. Drag-and-drop the color of your choice directly on a component in the
preview screen. The component gets updated immediately with the new color.

You can click the Kuler Swatches link, and access multiple ready-to-use color combinations
that are available online.

Now, drag-and-drop the colors of your choice on the screen components. You will see that the
screen preview(shown in the following image), instantly reflects the theme change. You can
also theme the active state here.

The Theme Framework

258

Once the theme is ready, you can download it by clicking on the Download button at the top of
the screen. Provide a name and download the zip file. The zip file contains the required icons,
CSS files, and also a sample index.html file. The new theme is displayed when you extract
these files and open the index.html file.

The jquery.mobile.css file is not used in the generated index.html
file. Instead, it contains the links to myTheme.css (for the custom theme)
and jquery.mobile.structure.css (structure-related CSS properties).
Keeping the theme-able properties separate makes it easier to maintain,
upgrade, and also to share your themes.

There's more...
You can synchronize the Preview pane and the Inspector pane using the Inspector on/
off button at the top of the ThemeRoller tool. Hovering on any control in the Preview pane
highlights the control with a blue border. Click on the control to open its CSS settings in the
Inspector pane. This is very handy while developing themes.

Importing and upgrading themes
You can import your existing CSS themes into the ThemeRoller tool and extend them to
create new themes. You can also upgrade the older versions of jQuery Mobile themes to
the latest v1.1.1 using ThemeRoller. Click on the Import or Upgrade button at the top of the
ThemeRoller screen to open the Import Theme dialog box.

Chapter 10

259

You can copy-paste your existing theme and click on the Import button. The new upgraded
theme is ready and loaded in the tool. You can also load the default theme provided by the
jQuery Mobile framework by clicking on the Import Default Theme option at the top of the
Import dialog box. This loads the five default swatches into ThemeRoller. You can now use
this set as a starting point to create fresh themes.

Sharing themes
The ThemeRoller tool also provides a cool feature to share your work with others. Click on the
Share Theme Link button at the top of the tool to get the link that you can share with others.
Anyone with this link can directly access, use, or work on a copy of your theme.

11
HTML5 and jQuery

Mobile
In this chapter, we will cover the following recipes:

ff Using the new HTML5 semantics

ff Improving speed and taking your application offline

ff Using Web Workers for intensive tasks

ff Using local and session storage

ff 2D drawing with Canvas

ff Applying Gaussian blur on a SVG image

ff Tracking your location with the Geolocation API

ff Playing music with the <audio> element

ff Viewing videos with the <video> element

Introduction
HTML5 introduces new semantics and many new cool features, such as Application Cache,
2D Canvas, Geolocation, Local and Session Storage, Web Workers, and support for audio
and video. The jQuery Mobile framework is built on HTML5 and CSS3, and provides excellent
support for these new semantics and new features. This chapter introduces some of these
features that you can use in your jQuery Mobile apps.

There are many resources on the web for learning HTML5. To mention a
few, you can read more at HTML5 Rocks (http://www.html5rocks.
com/en), HTML5 Demos (http://www.html5demos.com), and the
Mozilla Developer Network (https://developer.mozilla.org/
en-US/docs/HTML/HTML5).

https://developer.mozilla.org/en-US/docs/HTML/HTML5/HTML5_Thematic_Classification
https://developer.mozilla.org/en-US/docs/HTML/HTML5/HTML5_Thematic_Classification

HTML5 and jQuery Mobile

262

The support for HTML5 elements and features on various browsers and platforms is varied.
You will have to take care while using a particular feature and ensure that it works on your
target platforms. This level of support continues to improve with every passing day.

http://www.caniuse.com has a good reference on
the updated status of platform support available for the
various HTML5 features.

Using the new HTML5 semantics
HTML5 defines new semantics to better organize an HTML document into more logical
sections. This recipe shows you how to use the new HTML5 semantics to define your jQuery
Mobile app. The following HTML5 elements are covered in this recipe:

ff section: This defines the section in a document. Headers, footers, and the page
content are all sections.

ff header: This defines the document header.

ff footer: This defines the document footer.

ff aside: This defines the additional content related to the main content of the
document, usually placed as a sidebar.

ff article: This defines the content related to the document, but it can also stand
alone and can be independently distributed.

ff nav: This is a section providing navigation links and can contain one or more
anchor links.

Getting ready
Copy the full code of this recipe from the code/11/semantics folder. You can launch this
code using the URL: http://localhost:8080/11/semantics/main.html.

How to do it...
The steps to be followed are as follows:

1.	 Create main.html that uses the new HTML5 semantics for the page; do not use the
<div> tag here:
<section id='main' data-role='page' data-theme='a'>
 <header data-role='header' data-theme='b'>
 <h1>New HTML5 Tags</h1>
 </header>
 <section data-role='content'>

V413HAV
Typewritten Text
V413HAV

Chapter 11

263

 Main content goes here
 <aside style='border: 2px; border-style: solid;
 border-color: #666'>
 <h3>Aside</h3>
 Standalone content but related to main
 </aside>
 <section>
 <h3>Articles</h3>
 <article>
 <h4>Item 1</h4>
 Item 1 description here
 </article>
 <article>
 <h4>Item 2</h4>
 Item 2 description here
 </article>
 </section>
 </section>
 <footer data-role='footer' data-theme='b'>
 <nav class='ui-bar' data-theme='d'>
 Link 1
 <a href='#' data-role='button' class='ui-btn-
 right'>Link 2
 </nav>
 </footer>
</section>

How it works...
Create main.html, and add the #main page to it using a <section> tag with the
data-role='page' attribute. Add the <header> tag with data-role='header'
to create the page header. Next, add a <section> tag with data-role='content'
to create the page content section. Finally, add the footer with the <footer> tag with
the data-role='footer'attribute. You now have the page with a header, content,
and footer ready. You will note that <div> has not been used so far.

HTML5 and jQuery Mobile

264

Add the <aside> and <article> elements to the page content, as shown in the code.
Since there are multiple articles, you can group them in a <section> element. Finally, add
a <nav> element with two button links to the page footer. Add the ui-btn-right class to
move the second button to the right side of the screen. Now, when you launch the app, the
following screen will be displayed:

There's more...
HTML5 supports many more new elements, such as:

ff figure: This is used to contain images, photos, diagrams, illustrations, and so on.

ff figcaption: This defines the caption for <figure>.

ff hgroup: This is used to group a set of header elements (<h1>,<h2>, and so on).

ff mark: This is used to highlight the text.

ff meter: This is used to specify a numeric value within a min-max range. You can also
specify a threshold value (low and high).

ff progress: This is used to indicate progress.

ff time: This is used to mark up a date/time value.

About using <div>
Prior to HTML5, <div> was used as the container to group elements. But this was not very
descriptive. The HTML5 document structure is much more descriptive and meaningful with
header, footer, and so on.

Chapter 11

265

When using HTML5, use <div> to group elements that do
not fit the description of any of the new HTML5 elements,
such as <section>.

Using <section> with jQuery Mobile
Support for HTML5 semantics is varied and improving in the numerous platforms available on
the market today. As of v1.1.1, the jQuery Mobile framework recommends using the <div>
element with the data-role attribute to specify the various page components, such as
header and footer. This is to ensure compatibility with the older versions of browsers, such as
IE8, and also to support the maximum number of devices and platforms. This would definitely
change in a near future version of jQuery Mobile, when support for the older browsers is
dropped. Till then, use the new HTML5 elements, keeping your target users in mind.

Improving speed and taking your application
offline

HTML5 introduced a new feature called Application Cache that allows your web app to cache
network resources locally. You can also control and configure this cache much better than the
earlier browser caching techniques. With Application Cache, your mobile app can work better,
even in situations where there is slow or no network coverage. Your app is faster, as it can find
many of the resources stored locally instead of fetching them from the server. This also helps
the user with lower data transfer costs that would be charged by the service provider.

This recipe shows you how to use the Application Cache feature in your jQuery Mobile app. It
also shows you how to use a locally stored jQuery Mobile library instead of fetching the library
files from the CDN.

Getting ready
Copy the full code of this recipe from the code/11/appcache folder. You will have to host
this code on a web server to see how Application Cache works. The sources folder contains a
nodejs web server that you can use to run this app. You can launch this code using the URL:
http://localhost:8080/11/appcache/main.html.

How to do it...
The steps to be followed are:

1.	 Create main.html, and specify the manifest file in the <html> tag:
<!DOCTYPE html>
<html manifest="jqmcookbook.appcache">

HTML5 and jQuery Mobile

266

2.	 Add the following three links to the page content in main.html:
<div data-role="content">
 CACHE
 FALLBACK
 NETWORK
</div>

3.	 Create the following jqmcookbook.appcache manifest file and specify the files that
are to be cached:
CACHE MANIFEST
jQuery Mobile Cookbook Edition 1.0

Cached resources (also caching jQuery Mobile files for offline access)
CACHE:
main.html
cached.html
http://code.jquery.com/mobile/1.1.1/jquery.mobile-1.1.1.min.css
http://code.jquery.com/jquery-1.7.1.min.js
http://code.jquery.com/mobile/1.1.1/jquery.mobile-1.1.1.min.js

offline.html will be displayed as fall back
FALLBACK:
online.html offline.html

Accessible only when online
NETWORK:
network.html

4.	 Create the following cached.html file, which gets cached by the app, and is
available for offline access:
<!-- Cached Page : Cached and works offline too -->
<div id="cached" data-role="page">
 <div data-role="content">
 <h1>
 This page is shown from cache and even works when
 offline
 </h1>
 <a href="#" data-role="button" data-rel="back"
 data-theme="b">Go Back
 </div>
</div>

Chapter 11

267

5.	 Create the following online.html file, which does not get cached and is fetched
from the network every time it is accessed:
<!-- Online Page : Shown only when Online -->
<div id="online" data-role="page">
 <div data-role="content">
 <h1>This page is shown only when online</h1>
 <a href="#" data-role="button" data-rel="back"
 data-theme="b">Go Back
 </div>
</div>

6.	 Create the following offline.html file that gets cached and is used as a fallback
when the online.html page is not accessible over the network:
<!-- Offline Page : Shown as a fall back -->
<div id="offline" data-role="page">
 <div data-role="content">
 <h1>This is a fallback for online.html</h1>
 <a href="#" data-role="button" data-rel="back"
 data-theme="b">Go Back
 </div>
</div>

7.	 Finally, create the following network.html file that does not get cached, and is
always fetched from the network; it does not use any fallback:
<!-- Network Page : Shown only when online -->
<div id="network" data-role="page">
 <div data-role="content">
 <h1>This is always fetched from the network</h1>
 <a href="#" data-role="button" data-rel="back"
 data-theme="b">Go Back
 </div>
</div>

How it works...
Create main.html, and specify jqmcookbook.appcache as the manifest file in its <html>
tag. This indicates to the browser that the HTML file should be cached. It also indicates that
the manifest file must be processed for finding all the resources that are to be cached locally.
Add three links for the cached.html, online.html, and network.html pages, as shown.
These will be used as the resources that will be cached in this recipe.

HTML5 and jQuery Mobile

268

Create the jqmcookbook.appcache manifest file with the text CACHE MANIFEST specified
in its first line. You can add comments to the manifest file, and they start with the # character.
Now, add the resources to be cached by your app to the manifest file. Each filename must be
on a separate line, and you can use relative or absolute paths. The Cache Manifest file has
three sections identified by the CACHE, FALLBACK, and NETWORK headers.

Define the default CACHE section and list the files that should be cached locally. Add main.
html and cached.html to this section. When you launch the app and click on the first
button, it opens cached.html regardless of whether the device is online or offline.

Images, icons, stylesheets, JavaScript, and other static files
are the resources that you should cache locally.

Cached files are downloaded only at the first time. When the app tries to access any of these
files, they are always fetched from the cache first or, only if not available, they are fetched
from the server.

It is good practice to cache the main HTML file (with the
manifest defined in its <html> tag) in your app.

Next, define the FALLBACK section with two filenames in each line. Specify online.html
as the first file, and then specify the fallback as offline.html. Now, when you click on the
second button in the app, online.html is shown only if the device is online. If the device
goes offline, then offline.html is automatically shown from the cache. Here, the first file is
always fetched from the network and is never cached.

Finally, define the NETWORK section with network.html listed in it. Use this section to define
the list of files that should never be cached in your app. These files are always fetched from
the network. Now, when you click on the third button, network.html is shown only if the
device is online, and an error is shown if the device is offline.

There's more...
You can see the list of currently cached files in your browser using the developer/debugging
tools that most browsers provide today. The following screenshot shows the Chrome Developer
Tool's view of the resources that have been cached for the main.html file in this recipe. The
files listed in the manifest are all seen in the Application Cache section.

Chapter 11

269

Restriction on the cache size
There is a browser limitation on how much data you can store locally. Usually it is 5 to 10 MBs,
and requires the user's permission to go over this limit. Some browsers, such as Chrome,
allow you to set this value as unlimited. So, cache files with care and include the resources
that you access often. Also include resources that you need to take your app offline.

Refreshing the Application Cache
Each time the main.html file is accessed, the remote manifest file is fetched and is compared
with the local manifest file. Only if the manifest has changed (this could be even just a
comment), the new manifest file is fetched. Then the cache will be cleared and the entire set
of cached files will be refreshed from the server. The flip side to this is that, just adding a single
new file to the manifest file will trigger a full refresh, even if none of the other files have changed.

Using a version number in the comment of the manifest file is a
good way of keeping the cached files updated.

HTML5 and jQuery Mobile

270

The MIME type of the manifest file
You should always serve the manifest file with the MIME type of text/cache-manifest. You can
name this manifest anything. Your server should be able to recognize this MIME type. If it does
not, you should add this MIME type to your server configuration. The nodejs web server that is
shipped with the sources for this cookbook, already supports the text/cache-manifest MIME type.

The Ajax pre-filter workaround
Application Cache does not work properly on some browsers and the Ajax pre-filter workaround
is required in this case. In these browsers, a successful Ajax call returns a 0 HTTP status on
success. To work around this, you should use a jQuery Ajax pre-filter and set the isLocal
attribute to true. The detailed github discussion thread on using the isLocal workaround is
available at https://github.com/jquery/jquery-mobile/issues/1579.

See also
ff The Using Web Workers for intensive tasks recipe

ff Chapter 2, Pages and Dialogs, The Prefetching pages for faster navigation and
The Using the DOM cache to improve performance recipes

Using Web Workers for intensive tasks
When you run a script that does some complex or lengthy activity, the browser thread
freezes and does not respond till the task is complete. This can be overcome by using a Web
Worker—a background independent thread that is used to run JavaScript. The browser thread
is not blocked, and thus can continue to respond to user actions. This recipe shows you how
to use Web Workers.

Getting ready
Copy the full code of this recipe from the code/11/webworkers folder. You can launch this
code using the URL: http://localhost:8080/11/webworkers/main.html.

How to do it...
The steps to be performed are as follows:

1.	 Create main.html with a checkbox and a slider as its page content:
<div data-role='content'>
 <div id='msgdiv'></div>
 <div data-role='fieldcontain'>
 <input type="range" name="myslider" id="myslider"
 value='0' min="0" max="100" />

Chapter 11

271

 <label for="myslider">Slide me:</label>
 </div>
 <div data-role='fieldcontain'>
 <input type="checkbox" name="countchk" id="countchk" />
 <label for="countchk">Count with Webworkers</label>
 </div>
</div>

2.	 Add the following script to trigger a long running loop when the checkbox is clicked.
When checked, the loop is run in a Web worker and there is no UI freeze, and you can
continue to use the page. When the checkbox is unchecked, immediately everything
freezes till the loop is done.
$('#main').live('pageinit', function(event) {
 $('#countchk').bind('change', function(event, ui) {
 if($('#countchk').prop("checked")) {
 $('#msgdiv').html('Worker is counting ...');
 var myworker = new Worker('webworker.js');
 myworker.onmessage = function(event) {
 $('#msgdiv').html(event.data);
 }
 myworker.postMessage('start'); 	
 } else {
 $('#msgdiv').html('Started Counting ...'); 	

 var count = 0;
 for (var i=1; i<=10000000000; i++)
 count++;
 $('#msgdiv').html('Loops : ' + count);

 }
 });
});

3.	 Finally, add the webworker.js JavaScript file to handle the loop:
self.onmessage = function(event) {
 var count = 0;
 for (var i=1; i<10000000000; i++)
 count++;
 self.postMessage('Worker Loops : ' + count);
};

HTML5 and jQuery Mobile

272

How it works...
Create main.html, and add a slider and a checkbox with id='countchk' to the content
of #main. Also, add an empty #msgdiv attribute to display the messages. Bind the change
event of the checkbox to an event handler in the pageinit callback.

When the checkbox is selected, trigger the loop in a Web Worker. Initiate the Web Worker by
calling new Worker(), and pass it the name of the JavaScript webworker.js file. Define
the onmessage event handler to handle messages received by the worker. You can display
this message in #msgdiv. Finally, invoke the worker by posting a start message to it. This
message can be anything, and the code must be written in the worker to handle it. In the file
webworker.js, define the onmessage callback to handle the incoming message from the
browser thread. Run the loop and return an appropriate message to the main thread.

When you launch the page and select the checkbox, the loop is initiated in a Web Worker. You
can use the slider and see the messages being updated in the page even though the loop is
still running:

When the checkbox is not selected, the loop runs in the main browser thread itself. Now, the
entire UI freezes even before the checkbox can reflect your click, and the UI responds only
after the loop is completed:

Chapter 11

273

There's more...
Support for Web Workers might not be available in all browsers. You can check for the Web
Worker support in your app by calling the following code, which checks for the presence of the
Worker property of the window object. If undefined, the feature is not available.

if (!!window.Worker)
 // Web workers are supported
else
 // Web workers are not supported

Using Modernizr to check for Web Worker support
Modernizr (available at http://www.modernizr.com) is a very popular and handy library
that can be used to detect the support for Web Workers and other HTML5 and CSS3 features
in your browser. It provides polyfills or fallbacks in case a particular property is not supported
in a browser. It comes with an MIT license, and can be freely used. The Modernizr.
webworkers property would be defined and available if your browser supports Web Workers.

See also
ff The Improving speed and taking your application offline recipe

Using local and session storage
Cookies was the mechanism used to store client-side information earlier. But a cookie can
only store up to 4 KB of data, which is sent to the server with every single request. Web
Storage is the client-side storage standard introduced with HTML5. It has two types: Local
Storage and Session Storage. Data stored in Session Storage is available till the user's
session is active, and is lost once the session ends. Local Storage data is persisted across
sessions. This recipe shows you how to use Local Storage and Session Storage.

Getting ready
Copy the full code of this recipe from the code/11/storage folder. You can launch this code
using the URL: http://localhost:8080/11/storage/main.html.

HTML5 and jQuery Mobile

274

How to do it...
The steps to be followed are:

1.	 Create main.html with its page content having three text fields and a Save button:
<div data-role='content'>
 <div data-role='fieldcontain'>
 <label for='nostore'>No Storage</label>
 <input type="text" id="nostore" name="nostore"
 autofocus placeholder="Enter text" value="" />
 </div>
 <div data-role='fieldcontain'>
 <label for='sessionstore'>Session Storage</label>
 <input type="text" id="sessionstore"
 name="sessionstore" placeholder="Enter text"
 value="" />
 </div>
 <div data-role='fieldcontain'>
 <label for='localstore'>Local Storage</label>
 <input type="text" id="localstore" name="localstore"
 placeholder="Enter text" value="" />
 </div>
 <button id='savebtn'>Save</button>
</div>

2.	 Add the following script to persist the text field contents by clicking on the
Save button:
$('#main').live('pageinit', function(event) {
 $('#savebtn').bind('click', function(event, ui) {
 window.localStorage.setItem('localval', $('#localstore').
val());
 window.sessionStorage.setItem('sessionval',
$('#sessionstore').val());
 });
});

3.	 Finally, restore the persisted values when the page is shown:
$('#main').live('pageshow', function(event, data) {
 $('#localstore').val(window.localStorage.getItem('localval'));
 $('#sessionstore').val(window.sessionStorage.
getItem('sessionval'));
});

4.	 Refresh the page, and later close and reopen the page to see how these persisted
values behave over a single session and across multiple sessions.

Chapter 11

275

How it works...
Add three texts with IDs: nostore, sessionstore, and localstore. Add a button with
id='savebtn', and bind its click event to a callback in the pageinit event handler.
In the callback, persist the text fields by calling the setItem() method with unique
keys (localval and sessionval) on the window.sessionStorage and window.
localStorage objects respectively.

To restore these persisted values when the page reloads or refreshes, add an event
handler to the pageshow event. Pass the localval key to the window.localStorage.
getItem() function to read from local storage. Pass the sessionval key to window.
sessionStorage.getItem() to read from session storage. Set these values to the
respective text fields.

When the app loads, enter the text values and click on the Save button to persist them.

Next, refresh the browser to reload the page. The session is still alive, and you will see the
local and session storage values get restored. The first field is cleared as it was not persisted,
as shown in the following screenshot:

HTML5 and jQuery Mobile

276

Finally, close the app and reopen it. This time, the session is terminated. You will see that only
the Local Storage data is shown and the other two text fields are cleared:

There's more...
Support for Web Storage might not be available in all browsers. You can check if the window
object has a valid localstorage or sessionStorage property to verify if you can use the
feature by running the following code:

If (('localStorage' in window) && window['localStorage'] !== null)
 // Local storage is supported
If (('sessionStorage' in window) && window['sessionStorage'] !== null)
 // Session storage is supported

You can also use the free Modernizr library to test for Web Storage support by checking
if the Modernizr.localstorage and the Modernizr.sessionstorage properties
are valid.

Inspecting the Web Storage
You can open the developer tools in your browser and inspect the current set of key-values
stored in your browser for the Local and Session Storage. The following screenshot shows the
Local Storage key-value that was saved in this recipe:

Chapter 11

277

The following screenshot shows the key-value stored using Session Storage:

WebSQL Storage
WebSQL Storage is another feature that was defined in HTML5 to store client-side data. It
uses SQLite queries to perform the data operations. Both IE and Firefox do not support this
feature. This specification is no longer being maintained and might be dropped going forward.

IndexedDB Storage
The IndexedDB Storage is another form of client-side storage using indexed data queries.
Only Firefox and Chrome browsers support this feature well at the time of writing this recipe.
Older IE versions, Safari, and Opera do not support this feature.

2D drawing with Canvas
Canvas is a rectangular region in your web page where you can draw 2D shapes using
JavaScript, and also render bitmap images. It is used for graphs, animations, images, photo
compositions, real-time video processing, and games. This recipe shows you how to use the
Canvas in your jQuery Mobile app.

Getting ready
Copy the full code of this recipe from the code/11/canvas folder. You can launch this code
using the URL: http://localhost:8080/11/canvas/main.html.

HTML5 and jQuery Mobile

278

How to do it...
The steps to be followed are:

1.	 Create main.html with its page content having a canvas element:
<div data-role='content'>
 <canvas id="myCanvas" width="500" height="500">
 Canvas is not supported on your browser
 </canvas>
</div>

2.	 Add the following script to get the 2D context, and then draw two rectangles:
$('#main').live('pageinit', function(event) {
 var cxt = $('#myCanvas')[0].getContext("2d");
 cxt.fillStyle = '#5f98c5';
 cxt.fillRect(20,20, 100, 100);
 cxt.strokeRect(10,10,120, 120);
});

How it works...
Create main.html, and add a <canvas> element with id='mycanvas' to the #main
page with width and height of 500 pixels. The text Canvas is not supported on your
browser is shown if the browser does not support the Canvas feature. Next, add a script
to the pageinit callback function to get the 2D context (cxt) of the mycanvas element.
Define the fillStyle of cxt with a grey shade #5f98c5. Now, draw a filled rectangle
using fillRect(), passing the origin, length, and breadth as parameters. Next, use
strokeRect() to draw a rectangle outline without any fill. The screen is now displayed,
as shown in the following screenshot:

Chapter 11

279

There's more...
This recipe just gives a basic introduction to the Canvas element, and shows you how to use it
in your jQuery Mobile app. The Canvas is a very powerful element and supports a wide array
of APIs. You can set colors, styles, gradients, patterns, fonts, and text alignment. You can
draw geometric shapes, such as lines, rectangles, paths, arcs, and bezier curves. The canvas
supports transformation APIs, such as scale, rotate, translate, and transform. You can draw
images and also manipulate them at a pixel level. Canvas helps in photo composition. You can
also save the drawing state of the canvas in a stack, and restore any previous saved drawing
state from the stack.

The elements drawn on a canvas take in absolute coordinates.
So, take care while using these values, keeping in mind the actual
screen size of your target devices.

See also
ff The Applying Gaussian blur on a SVG image recipe

Applying Gaussian blur on a SVG image
Scalable Vector Graphics (SVG) is a family of specifications for 2D Scalable Vector Graphics.
They are XML-based and can be static or dynamic (animated or interactive). This recipe shows
you how to use a SVG image in your app, and apply a Gaussian filter when you click on it.

Getting ready
Copy the full code of this recipe from the code/11/svg folder. The SVG image is
available in the code/resources/images folder. You can launch this code using
the URL: http://localhost:8080/11/svg/main.html.

How to do it...
The steps to be followed are:

1.	 Create main.html with a SVG element in its page content. Draw a SVG rectangle
and display the SVG image within the rectangle:
<div data-role='content'>
 <svg xmlns="http://www.w3.org/2000/svg" version="1.1">
 <defs>
 <filter id="gausfilter" x="0" y="0">
 <feGaussianBlur in="SourceGraphic"

HTML5 and jQuery Mobile

280

 stdDeviation="5" />
 </filter>
 </defs>
 <rect width="180px" height="220px" x='10' y='10'
 style="fill:none;stroke-
 width:2;stroke:rgb(0,0,0)"/>
 <image id='svgimg' width='160px' height='200px'
 x='20' y='20'
 xlink:href='../../resources/images
 /Chrisdesign_green_comic_egg.svg'>
 </image>
 </svg>
</div>

2.	 Apply the Guassian filter to the SVG image when the image is clicked:
$('#main').live('pageinit', function(event) {
 $('#svgimg').bind('click', function(event, ui) {
 $(this).attr('filter',
 'url(#gausfilter)').trigger('refresh');
 });
});

How it works...
Create main.html, and add a <svg> element to its page content. Specify the SVG
namespace and version, as shown in the code. Create a rectangle using the <rect> element,
and specify its attributes, such as the width, height, and x and y positions, and also set its
stroke style. Next, add an <image> element with id='svgimg' pointing to the SVG image,
and specify the image's location, position, and size to be used. When you load the page, the
following screenshot will be shown:

Chapter 11

281

Now, define the Gaussian filter by adding a <filter> element with id='gausfilter'
inside a <defs> element. Add the <feGaussianBlur> element inside <filter>, and set
a standard deviation of 5. Finally, bind the click event on the #svgimg image to an event
handler in the pageinit callback function. Here, add the filter='gausfilter' attribute
to the <image> tag using the jQuery attr() call. Now, when you click on the SVG image, the
Gaussian blur gets applied, as shown in the following screenshot:

There's more...
SVG supports vector graphics, raster graphics, and text elements. It allows you to
transform, clip paths, apply alpha masks, and filter effects on the SVG images. The
SVG image used in this recipe was designed and contributed to the Open Clipart website
at http://openclipart.org, by ChrisDesign (http://chrisdesign.wordpress.com).
The Open Clipart website also has thousands of free SVG images available in the public domain.

SVG Tiny specification
The SVG specification has a mobile version, and it is called the SVG Tiny (SVGT) specification.
Currently, SVGT v1.2 is the W3C recommendation. It has good support on most of the mobile
devices and platforms, and support for it continues to improve by the day.

See also
ff The 2D drawing with Canvas recipe

HTML5 and jQuery Mobile

282

Tracking your location with the Geolocation
API

The Geolocation API is a separate specification and is part of the HTML5 stack. You can use
JavaScript and locate the client device location using various techniques, such as IP address,
Wi-Fi, GSM/CDMA cell IDs, or device Global Positioning System (GPS). This recipe shows you
how to find the current location using the Geolocation API in your app.

Getting ready
Copy the full code of this recipe from the code/11/geolocation folder. You can launch this
code using the URL: http://localhost:8080/11/geolocation/main.html.

How to do it...
The steps to be followed are:

1.	 Create main.html with an empty div tag to display the geolocation information.
<div data-role='content'>
 <p>You current Position is ...</p>
 <div id='geopos'></div>
</div>

2.	 Invoke the getCurrentPosition() method to obtain the current location using a
show_pos() callback function.
$('#main').live('pageinit', function(event) {
 if (navigator.geolocation)
 navigator.geolocation.getCurrentPosition(show_pos);
 else
 $('#geopos').html('Error: Unable to get your position!');
});

3.	 Finally, display the current location in the show_pos() callback function:
function show_pos(pos) {
 var geostr = '<p>Latitude (deg): '
 + pos.coords.latitude
 + '</p><p>Longitude (deg): ' + pos.coords.longitude
 + '</p><p>Altitude (m): ' + pos.coords.altitude
 + '</p><p>Accuracy (m): ' + pos.coords.accuracy
 + '</p><p>AltitudeAccuracy (m): '
 + pos.coords.altitudeAccuracy
 + '</p><p>Heading (deg): ' + pos.coords.heading
 + '</p><p>Speed (m/s): ' + pos.coords.speed

Chapter 11

283

 + '</p><p>Timestamp: '+ pos.timestamp;
 $('#geopos').html(geostr);
}

How it works...
Create main.html, and add an empty div tag with id='geopos' to the #main page to display
the location information. Use the pageinit event handler to first check if the navigator.
geolocation object is available. If available, invoke the getCurrentPosition() method
with a callback function, show_pos(), to get the location information. The show_pos()
callback function can access the position (pos) object, which has the various properties of the
current location. Access pos.coords to obtain information, such as the latitude, longitude,
altitude, and accuracy. The pos object also has an associated timestamp for the current location
reading. Now, display the location details in the #geopos attribute of div.

When you launch the app, the browser first asks your permission to access the location
information. Once you agree, the following location details are shown on the screen:

The Geolocation API specification mandates that the user
location information is confidential, and that the browser should
warn and obtain the user's permission before accessing or
sharing this information.

HTML5 and jQuery Mobile

284

There's more...
In this recipe, the getCurrentPosition() call pings for the user location only once,
and displays the information using the show_pos()callback function. But, if you
wish to track a moving device, you can access continuous location readings using the
watchCurrentPosition() call. The syntax remains the same, but this method continuously
and periodically keeps pinging for the device location and invokes the show_pos() callback
every time. This method also populates the pos.coords.speed and pos.coords.heading
attributes to give feedback on the speed and direction of the moving device. The user is
prompted for permission to share the location details only on the first call.

if (navigator.geolocation)
 navigator.geolocation.watchCurrentPosition(show_pos);

Google Gears
Prior to the Geolocation API specification, the Google Gears JavaScript library was very popular
for fetching location information. Google Gears subsequently contributed quite a bit to the
development of the Geolocation API and is now deprecated.

Geolocation on desktop browsers
The location information obtained on desktop browsers is based on the IP and MAC address
details obtained from the ISP servers. So, this information has a wide accuracy margin,
sometimes in the range of a few kilometers, whereas mobile devices rely on the network
towers and on GPS devices (if enabled) for positioning. Thus mobile devices can very
accurately pinpoint the position, altitude, speed, and heading information within a range of a
few meters.

Playing music with the <audio> element
HTML5 introduced a new <audio> element that can be used to play audio files directly in the
browser. Prior to this, browsers had to use plugins, such as Flash Player, Real Player, or Quick
Time to play audio files. The <audio> element provides a lightweight alternative, and this
recipe shows you how to use it in your app to play audio files.

Getting ready
Copy the full code of this recipe from the code/11/audio folder. The audio snips are
available in the code/resources/audio folder. You can launch this code using the URL:
http://localhost:8080/11/audio/main.html.

Chapter 11

285

How to do it...
The steps to be followed are:

1.	 Create main.html with the <audio> element in its page content:
<div data-role='content'>
 <audio controls autoplay preload='auto'>
 <source src='../../resources/audio/song.mp3'
 type='audio/mpeg' />
 <source src='../../resources/audio/song.oga'
 type='audio/ogg' />
 <source src='../../resources/audio/song.webma'
 type='audio/webm' />
 <p>Browser does not support audio tag</p>
 </audio>
</div>

How it works...
Add the <audio> element to the #main page with the controls, autoplay, and preload
attributes. The controls attribute displays the play button, volume slider, and other controls.
The preload='auto' option indicates that the browser can start streaming the audio file in
the background as soon as the page is ready. The autoplay attribute tells the browser that it
can directly start playing the audio file when downloaded and ready.

The <audio> element also supports a loop attribute,
which keeps the audio playing in a continuous loop.

Different browsers support different audio formats, and the first supported audio format is
picked and played. So, add URL links to the audio file in the .mp3, .oga, and .webma formats
using the <source> element, as shown in the code. One of these three audio formats will be
recognized by most browsers. Finally, add an error message, Browser does not support
audio tag, at the end. This message is displayed if the browser does not support the audio
element. Now, when you load the page, the screenshot similar to the following is seen, and
the audio file starts to play:

HTML5 and jQuery Mobile

286

There's more...
Older browsers, such as IE8, do not support the <audio> element. You will have to use a
flash fallback mechanism in this case.

For a note on audio formats and codecs, using the flash fallback and HTML5 media players,
refer to the next recipe on the <video> element.

See also
ff The Viewing videos with the <video> element recipe

Viewing videos with the <video> element
HTML5 introduced a new <video> element to play video files directly in the browser. Prior
to this, browsers had to use plugins, such as Flash Player, Real Player, or Quick Time to play
video files. The <video> element is a lightweight alternative, and this recipe shows you how
to use it in your app to view videos.

Getting ready
Copy the full code of this recipe from the code/11/video folder. The video snips are
available in the code/resources/video folder. You can launch this code using the URL:
http://localhost:8080/11/video/main.html.

How to do it...
The steps to be followed are:

1.	 Create main.html with the <video> element in its page content:
<div data-role='content'>
 <video controls autoplay preload='auto' width='300'
 height='300'>
 <source src='../../resources/video/spiral.mp4'
 type='video/mpeg' />
 <source src='../../resources/video/spiral.ogv'
 type='video/ogg' />
 <source src='../../resources/video/spiral.webmv'
 type='video/webm' />
 <p>Browser does not support video tag</p>
 </video>
</div>

Chapter 11

287

How it works...
Add the <video> element to the #main page with the controls, autoplay, and preload
attributes. The controls attribute displays the play button, volume slider, full screen
button, and other controls. The preload='auto' option indicates that the browser can
start streaming the video file in the background as soon as the page is ready. The autoplay
attribute tells the browser that it can directly play the video when ready. Also, add the width
and height attributes to size the video in pixels.

Different browsers support different video formats, and the first supported video format is
picked and played. So, add URL links to the video files in the .mp4, .ogv, and .webmv formats
using the <source> element, as shown in the code. One of these three video formats will be
recognized by most browsers. Finally, add an error message, Browser does not support
video tag, at the end. This message is displayed if the browser does not support the video
element. Now, when you load the page, a screenshot similar to the following is shown, and the
video file starts to play:

There's more...
The <video> tag also supports a few additional attributes, such as loop (to play the video
in a continuous loop), muted (to turn off the audio), and poster (the URL of the image to be
displayed at the beginning as a poster, before the video begins to play).

HTML5 and jQuery Mobile

288

Set preload to auto to automatically download the media file, as
some browsers do not support preload due to security reasons.

The flash fallback
Older browsers, such as IE8, do not support the <video> and <audio> elements. You can
still play HTML5 audio and video in unsupported browsers by using a flash player as the
fallback mechanism. You have to embed the player using the <object> tag at the end of the
<video> or <audio> element. The browser in this case does not recognize the new HTML5
tags, and falls through to play the audio/video using the flash fallback.

The Codecs
There are multiple audio/video formats that are popular on the web today. The support is
varied in different browsers, which support only specific audio/video codecs. You have to
ensure that your app works on maximum platforms, by including different formats of the same
audio/video files, if necessary, as shown in this recipe. Detailed information on this matter,
including tables showing the support matrix, is available at http://diveintohtml5.
info/video.html.

The Audio and Video API
Audio API and Video API are now available for you to directly control the <audio> and
<video> elements using JavaScript. They allow you to trigger actions (play, pause, and so on)
and listen to events (playing, ended, and so on).

HTML5 media players
The HTML5 tags by themselves give you very plain looking UI and controls. You can enhance
the look and feel and add additional features using the Audio and Video API. Instead, with
minimal effort, you can also use any of the popular libraries that are available, such as
jPlayer (http://jplayer.org), MediaElement.js (http://mediaelementjs.com), JW
Player (http://longtailvideo.com), Video.js (http://videojs.com), and Audio.js
(http://kolber.github.com/audiojs/).

See also
ff The Playing music with the <audio> element recipe

http://diveintohtml5.info/video.html
http://diveintohtml5.info/video.html
http://diveintohtml5.info/video.html
http://jplayer.org/
http://jplayer.org/
http://mediaelementjs.com/
http://longtailvideo.com/
http://longtailvideo.com/
http://videojs.com/
http://kolber.github.com/audiojs/
http://kolber.github.com/audiojs/

Index
Symbols
3D page transitions

with, persistent navbars 63
$(document).ready() handler 196
$.mobile.base object 226-228
$.mobile.defaultHomeScroll Property 237
$.mobile.getDocumentUrl() methodt 229
$.mobile.path.get() method 133
$.mobile.path.parseUrl() method 228
$.mobile.path utility methods

isAbsoluteUrl 234
isRelativeUrl 234
isSameDomain 234
makePathAbsolute 234
makeUrlAbsolute 234
using 231-234

$.vmouse.clickDistanceThreshold 193
$.vmouse.moveDistanceThreshold 193
$.vmouse.resetTimerDuration 193
<audio> element

about 284
used, for playing music 284-286

<div>
using 264

.get() method 132
<head> tag 10
@media query 82
<meta> tag 10
<section>

using, with jQuery Mobile 265
<video> element

used, for viewing videos 286, 287
<video> tag 287

A
accessible form

creating 133-135
accordions 77, 92
activeBtnClass class 163
active classes

configuring 163-166
active-state.css stylesheet 249
Active State theme

about 249
overriding 249-251

Adobe Kuler swatch bar 257
ajaxEnabled

configuring 167-169
Ajax GET request

about 130
Ajax response 133

Ajax pre-filter workaround, Application
Cache 270

Ajax Response 130
alternate icons

using, in collapsible 89, 91
Android Play Store 135
animate() function 43
animationComplete() method 208
animationComplete plugin

using 208
Application Cache

about 265
Ajax pre-filter workaround 270
cache size, restricting 269
MIME type, of manifest file 270
refreshing 269

290

using, in jQuery Mobile app 265-268
attr() method 225
Audio API 288
Audio.js

URL 288
authority component 231
autoInitializePage

configuring 169

B
Blog Comments Form 123
bouncing page transition

creating, CSS used 36, 38
button

custom icon, using 80-82
markup options 79

button hover event 252
buttonMarkup.hoverDelay configuration 254
buttonMarkup() method 80, 106, 195
button plugin 78
buttons 78

C
cache size, Application Cache

restricting 269
Canvas

2D drawing, with 277, 278
about 277-279

changePage() method
about 47
used, for changing page 216-219

charCodeAt() method 141
checkbox controls

auto-initializing 117
checkbox group

customizing 115-117
checkboxradio plugin 113, 117
ChromeVox extension 136
client device location

tracking, with Geolocation API 282, 283
codecs 288
collapsible 89

collapsible blocks 77
collapsible sets 77, 92
color swatches 11
content, list items

collapsible content, adding 150
formatting 147-150

Cookies 273
corners

styling 247, 248
Count Bubbles 147
CSS

customizing 35
used, for creating bouncing page

transition 36-38
custom background

using 242, 243
custom error pop up

creating, History API used 48-52
custom fonts

using 244-246
custom icon

data-iconpos, using 83
data-inline, using 83
shadows and corners, using 83
using, in button 80-82

custom icon sprite
adding, to standard icon set 83-85

customized back button
adding, to header 70-73

customized round button
adding, to header 66, 67

custom layout grid
content, adding 96
creating 94, 95

custom numbered list
creating 140, 141
working 141, 142

custom search filter
creating 155, 156
working 157, 158

customtransition.css file
vendor prefixes, adding 39

Custom Transitions
using 172

291

D
data

fetching, GET used 130-132
data-attribute

used, for configuring list divider theme 159
used, for configuring list search filters 159

data- attributes
about 79
data-corners 79
data-icon 79
data-iconpos 79
data-iconshadow 79
data-inline 79
data-shadow 79
data-theme 79

data.deferred.reject() method 200
data.deferred.resolve() method 201
data-dom-cache attribute 29
data-inset attribute 139
data() method 222
data-placeholder attribute 122
data-prefetch attribute 25
data-role=’none’ attribute 108
data-theme attribute 92
data-url attribute

used, for handling login page
navigation 44-47

using, as href link 48
default icon sprite

replacing 86, 88
default namespace

configuring 176, 177
default transitions

configuring 170, 171
deferred.resolve() function 43
desktop voice readers 136
Dialog

about 17
building, with custom styled header 32
custom styling 32-35

directory component 231
disppath() function 232
dispPath() method 229
domain component 231

DOM cache
limitations 32
using 29, 30
working 31

durationThreshold
about 189
configuring 189

dynamically added button
scripting 78, 79

E
each() method 141
errMsg() error handler 132
errordialog.html 49
error messages

configuring 174, 175
event.clientX parameter 188
event.clientY parameter 188
event.pageX attribute 193
event.pageY attribute 193
event.preventDefault() method 200, 201,

230, 233
event.stopPropagation() method 230, 233
event.target.innerHTML property 211
existing swatch

overriding 252, 253

F
fade transition 36, 170
fallbacks 273
filename component 231
filtertext attribute 158
fixedtoolbar plugin 59
fixed toolbars

about 55
fixed CSS property 59
fullscreen mode 55
position 59
using 55-58

fixed toolbar visibility
toggling 59
toggling, JavaScript used 59

flash fallback 288

292

flip switch control
creating 117-120

fonts
downloading 246

footer
about 9, 55
layout grid, adding 73-75

form controls
mini version 107
styling natively 105, 106

forms
submitting, POST used 126-129
Unique IDs 126
validating 123-125

Form submission defaults 133
fromCharCode() method 141

G
Gaussian blur

applying, on SVG image 279, 280
Geolocation

on desktop browsers 284
Geolocation API

about 282
used, for tracking location 282-284

getCurrentPosition() method 282
Global Positioning System (GPS) 282
Google Gears JavaScript library 284
Google Web Fonts site 244
grid layout

adding, to container 96

H
hasData() method 222
hash component 231
hashListeningEnabled

configuring 178, 179
header

about 9, 55
customized back button, adding 70-73
customized round button, adding 66-68
customizing, with multiple buttons 64-66
image, adding 69, 70

header theme option, nested list

configuring 144
History API

about 52
used, for creating custom error pop up 48-52

history.back() method 51, 52
history.forward() method 52
history.go() method 52
horizontalDistanceThreshold

about 189
configuring 189

host component 231
hostname component 231
href component 230
hrefNoHash 230
hrefNoHash component 230
HTML5

<audio> element 284
<video> element 286
about 8, 261
Application Cache feature 265

HTML5 media players
Audio.js 288
jPlayer 288
JW Player 288
MediaElement.js 288
Video.js 288

HTML5 semantics
<div>, using 264
article 262
aside 262
figcaption 264
figure 264
footer 262
header 262
hgroup 264
mark 264
meter 264
nav 262
progress 264
section 262
time 264
using 262
working 263, 264

HTTP GET 105
HTTP POST 105

293

I
icon disc 81
icon sprite 83
ignoreContentEnabled

configuring 172, 173
image

adding, to header 69, 70
image icons

displaying, with list items 154, 155
IndexedDB Storage 277
inset list

about 138
working 138

Inspector pane 256
invalid icon name

specifying 86
isAbsoluteUrl method 234
isRelativeUrl() method 233, 234
isSameDomain method 234

J
JavaScript

used, for creating slidefade effect 40-42
used, for modifying list 159-162

jPlayer
URL 288

jqmcookbook.appcache manifest file 268
jqmData() method

used, for adding data attributes 220, 221
jqmEnhanceable() method

using 222, 223
jqmHijackable() method

$.mobile.ignoreContentEnabled 225
using 224, 225

jqmRemoveData() method
used, for removing data attributes 220, 221

jQuery .extend() call
using 166

jQuery find() method 143
jQuery Mobile application

about 9
page 9
pages, prefetching 25-28
writing 9-11

jQuery Mobile Content Delivery Network (CDN)
site 10

jQuery Mobile framework
$.mobile.base object 226
$.mobile.path utility methods 231
about 7
accessible form, creating 133-135
active classes, configuring 163-166
ajaxEnabled, configuring 167-169
animation events 206
autoInitializePage, configuring 169, 170
changePage() 216
checkbox group, customizing 113-117
data, fetching using GET 130-132
default namespace, configuring 176, 177
default transitions, configuring 170, 171
Dialog 17
Dialog, custom styling 32-35
DOM cache, using 29, 30
error messages, configuring 174, 175
flip switch control, creating 117-120
forms 105
form, submitting using POST 126-129
forms, validating 123-125
hashListeningEnabled, configuring 178, 179
ignoreContentEnabled, configuring 172, 173
jqmData() 220
jqmEnhanceable() 222
jqmHijackable() 224
jqmRemoveData() 220
layout events 210
linkBindingEnabled, configuring 180-182
list view 137
loadPage() 213
multi-page template application,

writing 22-24
orientation events 183
Page 17
page change events 201
page initialization events 194
page load and remove events 196
page loading, configuring 174, 175
page transition events 205
pushStateEnabled, configuring 180-182
radio buttons, grouping in grid 110, 112
scroll events 185

294

select menu, auto-initializing 120-122
silent scrolling 235-237
single-page template application,

writing 18-20
slider control, creating 117-120
subPageUrlKey, configuring 178, 179
text controls, disabling 108-110
Theme Framework 239
toolbars 55
touch events 186
URL, parsing 228
virtual mouse events 190

jquery.mobile.js script 166
jQuery Mobile ThemeRoller tool

URL 244
jQuery Mobile v1.1.1 11
JS Bin

about 12
URL 12
used, for creating simple application 12-15

JS Bin web application tool
URL 12

JSON
about 99
used, for data storage 103
used, for data transfer 103

JSON content
using 99-102

JSON Parser 103
JS transitions

comparing, CSS3 transitions 44
JW Player

URL 288

K
Komika TrueType Font 244

L
layout events

about 210
updatelayout event 210
using 210, 211
working 211, 212

Layout Grid 77

about 73, 94
adding, to footer 73, 74
next row, breaking to 75
size of controls 75

linkBindingEnabled
configuring 180-182

list
modifying, with JavaScript 159-162

list divider theme
configuring, data-attribute used 159

list items
content, formatting 147-150
custom numbered list 140
custom search filter 155
icons, displaying 154
inset list 138
nested list 142
non-inset list 138
read-only nested list 145
split button list 150
theme, setting 140

List Search Filter 155
list search filters

configuring, data-attribute used 159
listview plugin 143
listview theme

setting 140
loadPage() method

about 25
used, for loading page 213-215

Local Storage
about 273
using 273-276

login page navigation
handling, data-url attribute used 44-47

M
makePathAbsolute() method 233, 234
makeUrlAbsolute() method 233, 234
MediaElement.js

URL 288
MIT license 273
Mobile Accessibility 135
mobileinit event 106, 165, 171

295

mobileinit event handler 166
Modernizr

about 273
URL 273
used, for checking Web Worker support 273

Modernizr library 276
mouse coordinates 193
msgdiv block 211
multi-page template application

Ajax navigation, turning off 25
page container, mandatory 25
transitions, using 25
writing 22-24

multiple buttons
used, for customizing header 64-66

multiple controls
styling natively 108

music
playing, with <audio> element 284-286

mycustomTransition function 43

N
native browser rendering

used, for XML content 99
native styling, form controls

working 106
Navbar widget 59
nested accordion

about 92
creating 92-94
working 93, 94

nested list
about 142
header theme option, configuring 144
sub page header, theming 144
theming 239, 240
using 142
working 143, 144

non-Ajax form submission
ways 130

non-inset list
about 138
working 139

numbered list 140

O
OpenType fonts 246
options

used, for auto-initializing select
menu 120, 121

orangebar class 243
orangebody class 243
orientationChangeEnabled

configuring 185
using 184
working 184

orientationchange event
handling 184

orientation events
orientationChangeEnabled global

configuration 185
orientationchange event 183
using 183

P
Page

about 17
prefetching 25-27

pagebeforechange event
about 201
handling 202

pagebeforecreate event
about 195
handling 194

pagebeforehide event
about 205
handling 207

pagebeforeload event 196
handling 197

pagebeforeload event handler 200
pagebeforeshow event

about 205
handling 207

page change events
about 201
handling 202
pagebeforechange event 201
pagechange event 201

296

pagechangefailed event 201
sequence 205
using 202, 203
working 203-205

pagechangefailed event
about 201
handling 203

page content 9
pagecreate event

about 195, 223
handling 194

pagehide event
about 205
handling 207

pageinit event
about 195
handling 194

pageinit event handler 79, 122, 208
page initialization events

about 194, 195
pagebeforecreate event 194
pagecreate event 194
pageinit event 194
using 194
working 195

page, jQuery Mobile application
footer 9
header 9
page content 9

page load and page remove events
about 196
pagebeforeload event 196, 199
pageload event 199
pageloadfailed event 196
pageremove event 196
using 196, 197
working 198-201

pageload event 196
handling 197

pageloadfailed callback function 199
pageloadfailed event 196

handling 197
page loading

configuring 174, 175
page plugin 108

pageremove event 196
handling 198

pageshow event
about 205
handling 207

Page theme 11
page transition events

about 205
pagebeforehide 205
pagebeforeshow 205
pagehide 205
pageshow 205
using 206
working 208-210

password component 231
pathname component 231
persistent navbars

3D page transitions 63
about 59
using 59-63

PNG-8 format 82
Polyfills 59, 273
popstate event 53
pop transition 36, 170
popup widget 53
port component 231
prefetch feature 25
Progressive Enhancement 40
protocol component 231
pushStateEnabled

configuring 180-182
pushState() method 52

R
radio buttons

grouping, in grid 110-112
read-only nested list

about 145
creating 145
using 145
working 146, 147

removeData() method 222
replaceState() method 52
reset() method 226

297

S
Scalable Vector Graphics (SVG) 279
screen.pageX attribute 193
screen.pageY attribute 193
scrollstart event

using 185
working 186

scrollstop event
about 185
using 185
working 186

scrollSupressionThreshold
about 189
configuring 189

search component 231
searchValue parameter 158
select menu

auto-initializing, options used 120-122
closing 123
opening 123

selectmenu plugin 123
self-submitting form 126
Session Storage

about 273
using 273-276

sessionStorage property 276
set() method 226
show() function 43
show_pos() callback function 283
showScores() function 132
silent scrolling

using 235, 236
silentScroll method 237
simple jQuery Mobile application

creating, JS Bin used 12-14
single-page template application

about 18
Ajax navigation, turning off 21
data-direction attribute, using 21
data-rel attribute, using 21
page container, optional 21
writing 18-20

slidefade effect
creating 40
creating, JS used 40-43

slider control
auto-initializing 120
creating 117-120

slider plugin 120
Spiel 135
split button list

about 150
configuring, listview options used 153
creating 150
using 150, 151
working 152, 153

split icon 150
standard HTML form element 105
sub-hash urls

working with 48
submit() method 132
subPageUrlKey

configuring 178, 179
SVG image

Gaussian blur, applying 279-281
SVG Tiny specification 281
SVGT v1.2 281
swatch

creating, ThemeRoller tool used 255, 256
swatch A 254
swipe event

about 186
handling 187

swipeleft event
about 186
handling 187

swiperight event
about 186
handling 187

Syncopate Web Font 244

T
TalkBack 135
tap event 186
taphold event 186
tapholdThreshold property 190
text controls

auto-initializing 110
disabling 108-110

textinput plugin 109

298

text parameter 158
theme

setting, to collapsible header 92
Theme Framework

about 239
Active State theme, overriding 249-251
corners styling 247, 248
custom background, using 242, 243
custom fonts, using 244-246
existing swatch, overriding 252, 253
nested list, theming 239-241
ThemeRoller tool, used for creating

swatch 255-258
ThemeRoller tool

used, for creating swatch 255-259
themes

importing 258
sharing 259
upgrading 259

toolbars, jQuery Mobile framework
fixed toolbars 55
footer 55
header 55
persistent navbars 59

touch events
swipe 186
swipeleft 186
swiperight 186
tap 186
taphold 186
using 186
working 188, 189

transition fallbacks 172
translateY property 38
TrueType (TTF) 246

U
updatelayout event

about 210
handling 211

URL
parsing 228-230

URL components
authority 231
directory 231
domain 231
filename 231
hash 231
host 231
hostname 231
href 230
hrefNoHash 230
hrefNoSearch 230
password 231
pathname 231
port 231
protocol 231
search 231
username 231

username component 231

V
vclick event

about 190
handling 191
using, in touch devices 193

vendor prefixes
about 39
adding, to customtransition.css file 39

verticalDistanceThreshold
about 189
configuring 189

Video API 288
Video.js

URL 288
videos

viewing, with <video> element 286, 287
virtual mouse events

about 190
mouse coordinates 193
using 190, 192
vclick 190
vmousecancel 190
vmousedown 190

299

vmousemove 190
vmouseout 190
vmouseover 190
vmouseup 190
working 192

vmousecancel event 190
vmousedown event 190

handling 191
vmousemove event 190

handling 191
vmouseout event 190

handling 191
vmouseover event 190

handling 191
vmouseup event 190

handling 191
VoiceOver 135

W
WAI-ARIA 133
WebSQL Storage 277
Web Storage

about 273
inspecting 276

Web Workers
using, for intensive tasks 270-273

X
XML content

native browser rendering, using 99
using 96-99

Thank you for buying

jQuery Mobile Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

jQuery Mobile Web
Development Essentials
ISBN: 978-1-84951-726-3 Paperback: 246 pages

Learn to use the touch-optimized, cross-device,
cross-platform jQM web framework for smartphones
and tablets

1.	 Create websites that work beautifully on a wide
range of mobile devices with jQuery mobile

2.	 Learn to prepare your jQuery mobile project by
learning through three sample applications

3.	 Packed with easy to follow examples and clear
explanations of how to easily build mobile-
optimized websites

PhoneGap Beginner's Guide
ISBN: 978-1-84951-536-8 Paperback: 328 pages

Build cross-platform mobile applications with the
PhoneGap open source development framework

1.	 Learn how to use the PhoneGap mobile
application framework

2.	 Develop cross-platform code for iOS, Android,
BlackBerry, and more

3.	 Write robust and extensible JavaScript code

4.	 Master new HTML5 and CSS3 APIs

5.	 Full of practical tutorials to get you writing code
right away

Please check www.PacktPub.com for information on our titles

PhoneGap Mobile Application
Development Cookbook
ISBN: 978-1-84951-858-1 Paperback: 316 pages

Over 50 recipes to create mobile applications using the
PhoneGap API with examples and clear instructions

1.	 Use the PhoneGap API to create native mobile
applications that work on a wide range of mobile
devices

2.	 Discover the native device features and
functions you can access and include within your
applications

3.	 Packed with clear and concise examples to show
you how to easily build native mobile applications

jQuery for Designers:
Beginner’s Guide
ISBN: 978-1-84951-670-9 Paperback: 332 pages

An approachable introduction to web design in jQuery for
non-programmers

1.	 Enhance the user experience of your site by
adding useful jQuery features

2.	 Learn the basics of adding impressive jQuery
effects and animations even if you've never
written a line of JavaScript

3.	 Easy step-by-step approach shows you everything
you need to know to get started improving your
website with jQuery

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Get Rolling
	Introduction
	Writing your first jQuery Mobile application
	Using JS Bin to create a simple application

	Chapter 2:
Pages and Dialogs
	Introduction
	Writing a single-page template application
	Writing a multi-page template application
	Prefetching pages for faster navigation
	Using the DOM cache to improve performance
	Custom styling a dialog
	Using CSS to create a bouncing page transition
	Using JS to create a slide and fade page transition
	Using data-url to handle the login page navigation
	Using History API to create a custom error pop up

	Chapter 3:
Toolbars
	Introduction
	Using fullscreen fixed toolbars
	Using persistent navbars in toolbars
	Customizing the header with multiple buttons
	Adding a customized round button to the header
	Adding an image to the header
	Adding a customized back button
	Adding a layout grid to the footer

	Chapter 4:
Buttons and Content Formatting
	Introduction
	Scripting a dynamically added button
	Using a custom icon in a button
	Adding a custom icon sprite
	Replacing the default icon sprite
	Using alternate icons in a collapsible
	Creating a nested accordion
	Creating a custom layout grid
	Using XML content
	Using JSON content

	Chapter 5:
Forms
	Introduction
	Native styling of form controls
	Disabling text controls
	Grouping radio buttons in a grid
	Customizing a checkbox group
	Creating dynamic flip switch and slider controls
	Using options to auto-initialize a select menu
	Validating forms
	Submitting a form using POST
	Fetching data using GET
	Creating an accessible form

	Chapter 6:
List Views
	Introduction
	Using inset and non-inset lists
	Creating a custom numbered list
	Using a nested list
	Using a read-only nested list
	Formatting content in a list
	Using a split button list
	Using image icons
	Creating a custom search filter
	Modifying a list with JavaScript

	Chapter 7:
Configurations
	Introduction
	Configuring the active classes
	Configuring ajaxEnabled
	Configuring autoInitializePage
	Configuring the default transitions
	Configuring ignoreContentEnabled
	Configuring the page loading and error messages
	Configuring the default namespace
	Configuring hashListeningEnabled and subPageUrlKey
	Configuring pushStateEnabled and linkBindingEnabled

	Chapter 8:
Events
	Introduction
	Using orientation events
	Using scroll events
	Using touch events
	Virtual mouse events
	Page initialization events
	Page load and remove events
	Page change events
	Page transition and animation events
	Using layout events

	Chapter 9:
Methods and Utilities
	Introduction
	Using loadPage() to load a page
	Using changePage() to change a page
	Using jqmData() and jqmRemoveData()
	Using jqmEnhanceable()
	Using jqmHijackable
	Using $.mobile.base
	Parsing an URL
	Using $.mobile.path utility methods
	Using silent scrolling

	Chapter 10:
The Theme Framework
	Introduction
	Theming a nested list
	Using a custom background
	Using custom fonts
	Styling corners
	Overriding the global Active State theme
	Overriding an existing swatch
	Using the ThemeRoller tool to create a swatch

	Chapter 11:
HTML5 and jQuery Mobile
	Introduction
	Using the new HTML5 semantics
	Improving speed and taking your application offline
	Using Web Workers for intensive tasks
	Using local and session storage
	2D drawing with Canvas
	Applying Gaussian blur on a SVG image
	Tracking your location with the Geolocation API
	Playing music with the <audio> element
	Viewing videos with the <video> element

	Index

