
www.allitebooks.com

http://www.allitebooks.org

jQuery 2.0
Development
Cookbook

Over 80 recipes providing modern solutions to web
development problems with real-world examples

Leon Revill

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

jQuery 2.0 Development Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: February 2014

Production Reference: 1140214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-089-6

www.packtpub.com

Cover Image by Karl Moore (karl.moore@ukonline.co.uk)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Leon Revill

Reviewers
Gary Gilbert

Joni Halabi

Acquisition Editors
Akram Hussain

Sam Wood

Content Development Editor
Arvind Koul

Technical Editors
Dennis John

Pankaj Kadam

Gaurav Thingalaya

Copy Editors
Tanvi Gaitonde

Dipti Kapadia

Aditya Nair

Project Coordinator
Joel Goveya

Proofreaders
Maria Gould

Ameesha Green

Paul Hindle

Indexer
Rekha Nair

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

Leon Revill has over five years' commercial web development experience with PHP5 and
MySQL technologies on large and small projects. His development skillset extends over many
JavaScript technologies, such as jQuery, AngularJS, and NodeJS. Being an all-round tech
enthusiast, some of Leon's spare time is spent working on personal projects to allow him get
to grips with new technologies quickly. Leon runs a web development blog (http://www.
revillweb.com/), where he shares his knowledge in the form of articles and tutorials.

I would like to thank my friends and family, who have been incredibly
supportive while writing this book. A special thanks goes to Allýce
Wolverson, whose support during long days and difficult times has given me
the opportunity to complete this title.

Finally, I would like to thank everyone at Packt Publishing for all their hard
work in making this book possible.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Gary Gilbert first got his start with programming, hacking on Ti 99/4a and VIC-20 systems
in his early teens in Canada, and was instantly hooked. After graduating from University, Gary
moved to England to work for an IT consultancy, where he developed desktop applications.
Two years and seven addresses later, Gary found himself working for a government contractor
in Washington DC, building web applications using a variety of client/server technologies,
such as HTML and pure JavaScript. In early 2007, Gary was introduced to jQuery 1.1 and in
2010, he began developing web applications with jQuery full time.

Gary Gilbert is currently Deputy Manager of software development at CONTENS Software
GmbH in Munich, Germany, where he helps develop the company's next-generation content
management software.

I would like to personally thank the jQuery team for their dedication and
hard work in developing the library; their tireless efforts have made my work
much, much easier. I would also like to thank Packt Publishing for giving me
the opportunity to review this book.

Joni Halabi is a Senior User Experience Developer at Optaros with over 10 years' experience
in frontend website development. In this role, she has worked with a wide variety of clients to
provide them with robust and user-focused solutions.

Joni's technical expertise includes the frontend development of complex website designs on a
variety of popular frameworks, including Magento, Hybris, Drupal, and WordPress. Her talents
also include JavaScript and jQuery development, as well as code optimization to meet cross-
browser and mobile browser requirements.

Prior to Optaros, Joni managed and developed with a team of talented U/I engineers for
a Cambridge-based online gaming company and taught web development and graphic
design at several elementary schools in upstate New York. Joni is also a certified Magento
frontend developer.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Document Object Model Manipulation 5

Introduction 5
Selecting elements 6
Finding and selecting sibling elements 9
Creating DOM elements 11
Inserting content into an element 14
Modifying the DOM element properties 17
Adding and removing CSS classes to dynamically change their style 18
Enabling and disabling buttons by changing their properties 21
Updating an image within a page 24
Populating list elements 27
Understanding pagination 29
Removing DOM elements 36
Re-using DOM elements 38

Chapter 2: Interacting with the User by Making Use of jQuery Events 43
Introduction 43
Detecting button clicks 44
Detecting element clicks 46
Detecting change 48
Updating content based on user input 51
Detecting key press events on inputs 53
Restricting input character length 56
Changing page elements on mouse hover 58
Triggering events manually 61
Preventing event triggers 63
Creating a custom event 66

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: Loading and Manipulating Dynamic Content with
AJAX and JSON 69

Introduction 70
Loading HTML from a web server into a page 70
Using AJAX and handling server errors 76
Processing JSON data 79
Searching JavaScript objects 83
Sorting JavaScript objects 87
Caching JSON and AJAX requests 90
Creating a search feature 93
Creating an autosuggest feature 106
Waiting for an AJAX response 114

Chapter 4: Adding Attractive Visuals with jQuery Effects 119
Introduction 119
Sliding page elements 120
Hiding and showing elements 124
Fading elements 126
Toggling effects 130
Stopping effects 133
Chaining effects 136
Creating a basic photo gallery 138
Creating a blinking button 148
Removing elements with effects 151

Chapter 5: Form Handling 155
Introduction 155
Implementing basic form validation 156
Adding number validation 164
Adding credit card number validation 168
Adding date validation 170
Adding e-mail address validation 173
Implementing live form validation 175
Adding a password strength indicator 177
Adding anti-spam measures 184
Implementing input character restrictions 187

Chapter 6: User Interface 191
Introduction 191
Manipulating element CSS 192
Creating a news ticker 197
Creating sticky elements 201

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Implementing smooth scrolling 206
Creating a dynamic table of contents 210
Creating a basic drag-and-drop functionality 215
Creating a dynamic animated tree menu 221
Creating an accordion content slider 226
Creating tabbed content 232
Creating a modal pop up 236
Creating a draggable content pop up 240

Chapter 7: User Interface Animation 245
Introduction 245
Creating an animated login form 245
Adding photo zoom 253
Creating an animated content slider 258
Animating background images 263
Creating an animated navigation menu 267

Chapter 8: Understanding Plugin Development 275
Introduction 275
Creating a plugin template 276
Creating a tooltip plugin 277
Building a content and image slider plugin 281
Creating an RSS feed reader plugin 286
Coding an image cropper plugin from scratch 292

Chapter 9: jQuery UI 311
Introduction 311
Creating stylish and functional buttons 312
Creating dialog boxes for user information and input 315
Implementing progress bars within your application 319
Adding date picker interfaces to input boxes quickly 323
Creating an autocomplete search feature 327

Chapter 10: Working with jQuery Mobile 335
Introduction 335
Creating a basic mobile website template 336
Building a complete static website 338
Building a dynamic mobile website 341
Implementing the quick call functionality 348
Implementing the send SMS functionality 349
Adding mobile-friendly lists 351
Using touch-oriented events 355

www.allitebooks.com

http://www.allitebooks.org

iv

Table of Contents

Creating mobile-compatible forms 358
Building a complete registration and login system 363
Building a complete mobile web app 376

Index 389

Preface
jQuery 2.0 Development Cookbook will provide you with many reusable code recipes to create
common and unique website and web application elements, plugins, and interfaces using the
most popular client-side framework, jQuery. Following the step-by-step instructions for each of
the recipes will not only provide you with useable code, but also the understanding needed to
extend and improve on it.

What this book covers
Chapter 1, Document Object Model Manipulation, covers how to use jQuery to manipulate the
186 web page's HTML code on the client to create a rich and visual user experience.

Chapter 2, Interacting with the User by Making Use of jQuery Events, harnesses the power of
jQuery to detect and respond to user interactions, which creates intuitive user interfaces.

Chapter 3, Loading and Manipulating Dynamic Content with AJAX and JSON, utilizes jQuery's
AJAX functionality with JSON-formatted data to bring pages to life by updating content without
the need for a page refresh.

Chapter 4, Adding Attractive Visuals with jQuery Effects, explains how to add shine to your
website or web application with jQuery's effects and basic animations to create
unforgettable designs.

Chapter 5, Form Handling, covers how to use jQuery to build robust client-side validation and
an intuitive user experience for web forms.

Chapter 6, User Interface, covers how to break the mold and create powerfully intuitive
interfaces from scratch and engage the user with a high level of interactivity.

Chapter 7, User Interface Animation, covers how to extend upon jQuery's built-in animation
and combine CSS with jQuery to create fabulous website modules for use with any website.

Preface

2

Chapter 8, Understanding Plugin Development, explains how to create reusable code that
provides solutions to a range of common website and web application problems.

Chapter 9, jQuery UI, covers how to empower your website or web application with jQuery's
user interface library to create attractive and user-friendly page elements and interfaces.

Chapter 10, Working with jQuery Mobile, covers how to create a mobile and cross-platform-
ready website using jQuery's powerful mobile framework.

What you need for this book
For all the recipes in this book, you will require an IDE to write JavaScript, HTML, and CSS
code, and a web browser to execute your code. For some of the more advanced recipes in this
book, you will require a web server running MySQL and PHP.

Who this book is for
This book is for anyone who is either new to jQuery and looking to learn some basics, or
familiar with jQuery and looking to expand their knowledge and create some advanced
components for their website or web application. This book is an excellent resource for web
developers of all skill and experience levels.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Any code
within $(function(){ }); will be automatically executed by jQuery when the page
is loaded."

A block of code is set as follows:

<!DOCTYPE html>
<html>
<head>
 <title>Creating DOM elements</title>
 <script src="jquery.min.js"></script>
 <script></script>
</head>
<body>
<div id="container">
 <ul id="myList">
 List Item 1

Preface

3

 List Item 2
 List Item 3

</div>
</body>
</html>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "This will display a pop-up
window to the user that has the message Are you sure you want to delete this user?"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Preface

4

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/0896OS_GraphicsBundle.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Document Object

Model Manipulation

In this chapter, we will cover:

 f Selecting elements

 f Finding and selecting sibling elements

 f Creating DOM elements

 f Inserting content into an element

 f Modifying the DOM element properties

 f Adding and removing CSS classes to dynamically change their style

 f Enabling and disabling buttons by changing their properties

 f Updating an image within a page

 f Populating list elements

 f Understanding pagination

 f Removing DOM elements

 f Re-using DOM elements

Introduction
This chapter looks at the fundamental principles of jQuery—finding, selecting, and
manipulating DOM elements. jQuery makes it easy for JavaScript developers to select single
or multiple HTML page elements using a variety of methods.

Document Object Model Manipulation

6

Once the developer has selected these elements, jQuery provides the ability to manipulate
each of these elements in order to create a richer user experience through attribute
modifications such as style, disabled, and class.

Selecting elements
There are many ways in which you can use jQuery to select DOM elements. We will explore the
main methods here. For developers familiar with CSS, it is possible to use the same syntax
when selecting elements with jQuery (that is, #content, .content, and so on).

Getting ready
Open a blank HTML document within your text editor or IDE of choice. Ensure that you have
the latest version of jQuery downloaded and is easily accessible for inclusion into this
HTML document. When creating new HTML files within this chapter, ensure that they are all
within the same directory as the jQuery library file, making it easy to include into the
HTML document.

How to do it…
To understand how you can use jQuery to select a variety of DOM elements, perform each of
the following recipe steps:

1. Create a web page using the following HTML and JavaScript code:
<!DOCTYPE html>
<html>
<head>
 <title>Selecting Elements with jQuery</title>
 <script src="jquery.min.js"></script>
 <script>
 $(function(){
 var content = $("#content"); //Select the content
 div
 var span = $(".span-element"); //Select the span
 element
 var listelements = $("li"); //Select all the list
 elements
 });
 </script>
</head>
<body>
<div class="division-container">Some text within a div
 which has a class</div>

Chapter 1

7

<div id="content">Some text within a div which has an ID
 attribute</div>
A link
A second link
<ul class="info-list">
 List Item 1
 List Item 2
 List Item 3

<button>Button 1</button>
Span 1
</body>
</html>

2. To select any of these elements, use the jQuery's $() function. We can use this
function in conjunction with an identifier or CSS selector for an element we would like
to select; for example, its HTML tag li and ID #content or a class .content.

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How it works…
The simplest method of selecting a DOM element is by its ID. We know that all IDs within a
HTML document should be unique; therefore, by selecting an element with its ID, you will be
selecting a single element.

In reference to the preceding HTML document, if you wanted to select <div>, which has an ID
content, you can use the following jQuery code to select it:

$(function(){
 var content = $('#content');
});

This would make the DOM element available within the content variable. More on what this
means is covered later in the chapter.

Any code within $(function(){ }); will be automatically
executed by jQuery when the page is loaded.

Document Object Model Manipulation

8

We can also select elements in the same way using their class. The code is very similar to
the preceding example, except that we use the class prefix (.) instead of the ID prefix (#),
illustrated as follows:

$(function(){
 var span = $('.span-element');
});

Not only can we select elements based on some identifier we specify (that is, class or ID),
but we can also select elements based on their tag name. If you wanted to select all the li
elements within a page, you would use $('li'), illustrated as follows:

$(function(){
 var listelements = $('li');
 var i = 1;
 listelements.each(function(){
 console.log("Loop: " + i);
 i++;
 });
});

The preceding example uses the jQuery selector to select all the list elements within the page.
To demonstrate that listelements now contains multiple elements, we loop through these
and output some information to the console.

.each() is a jQuery function. Learn more about its uses in Chapter 3,
Loading and Manipulating Dynamic Content with AJAX and JSON.

The console output for the preceding example is as follows:

Loop: 1
Loop: 2
Loop: 3

You can access the JavaScript console in various ways depending on your
choice of browser:

 f Chrome: Ctrl + Shift + J (Mac: command + option + J)
 f Internet Explorer: F12
 f Firefox: Ctrl + Shift + K

Chapter 1

9

There's more…
It is also possible to select elements based on other properties such as their rel or
disabled attributes.

The following code shows us how we can select an anchor element that has a rel attribute of
nofollow:

$(function(){
 var nofollow = $('a[rel="nofollow"]');
});

See also
 f Finding and selecting sibling elements

Finding and selecting sibling elements
You may not always know the specific element that you need to select. You may only know
its parent, and therefore, you will need to search through the elements within the parent in
order to find the specific element that you are looking for. This recipe will show you how to find
elements through their parents in various ways.

Getting ready
Open your text editor or IDE with the latest version of jQuery, ready to be included into the
HTML page that you will create as part of this recipe.

How to do it…
To learn the various ways in which jQuery can help you to search for DOM elements based on
a parent element, perform each of the following steps:

1. Create a web page with the following HTML and JavaScript code:
<!DOCTYPE html>
<html>
<head>
 <title>Finding and selecting sibling elements</title>
 <script src="jquery.min.js"></script>
 <script>
 $(function(){
 var element1 = $('#content .top .top-left'); //Select the
top left division element

www.allitebooks.com

http://www.allitebooks.org

Document Object Model Manipulation

10

 var element2 = $('.parent').find('a'); //Select the
anchor element
 var element3 = $('.parent').find('.grandchild');
 //Select the grandchild element
 });
 </script>
</head>
<body>
<div class="division-container">Some text within a
div which has a many span elements.</
div>
<div id="content">
 <div class="top">
 <div class="top-left">Left</div>
 <div class="top-right">Right</div>
 </div>
</div>
<ul class="info-list">
 List Item 1
 List Item 2
 List Item 3

<ul class="second-info-list">
 Second List Item 1
 Second List Item 2
 Second List Item 3

<div class="parent">
 <div class="child">
 <div class="grandchild">
 A Link
 </div>
 </div>
</div>
</body>
</html>

2. This code uses multiple class names in the same way as you would use them with
CSS to select child elements from HTML. Alternatively, you can use jQuery's find()
function on a parent element to search within.

Chapter 1

11

How it works…
The simplest way to select a child element based on its parent is by using the same selectors
as you would in CSS (that is, .classname .anotherclass). Having said this, you do not
always know the exact location of the sibling element you are looking for. If this is the case, we
can use the useful jQuery's find() function. jQuery's find() function will search within the
specified parent element for the sibling element that you are looking for.

Based on the HTML within the How to do it… section, the following JavaScript illustrates how
you can access a child element directly in the same manner as you would in CSS:

$(function(){
 var element1 = $('#content .top .top-left');
});

This would make the DOM element available within the content variable. More on what this
means is covered later in the chapter.

To find a child element without knowing its exact location, we can use the following JavaScript
to locate the anchor within the <div class="grandchild"> element:

$(function(){
 var element2 = $('.parent').find('a');
});

Note that you only need to specify the parent selector and the element you are looking for.
The find() method simply traverses the DOM based on the specified parent element until it
either finds the element you are looking for or runs out of elements to check against. You can
use ID and class names within the find() method as well as HTML notations.

There's more…
You can also use CSS3 selectors such as :first-child and :last-child within $() to
help you select the required DOM element.

See also
 f Selecting elements

Creating DOM elements
To create rich and interactive user interfaces, we need to be able to dynamically add DOM
elements to a web page. Elements may need to be added to a web page based on user
interaction or another event such as page load.

Document Object Model Manipulation

12

Getting ready
For this recipe, you are going to need another blank HTML file. Create a new HTML file named
recipe-3.html within the same directory as the one used for the previous recipe's files.

How to do it…
Learn how to create DOM elements with jQuery by performing the following steps:

1. Add the following HTML code to your recipe-3.html file in order to create a basic
HTML page with an unordered list and include the jQuery library:
<!DOCTYPE html>
<html>
<head>
 <title>Creating DOM elements</title>
 <script src="jquery.min.js"></script>
 <script></script>
</head>
<body>
<div id="container">
 <ul id="myList">
 List Item 1
 List Item 2
 List Item 3

</div>
</body>
</html>

2. Add the following JavaScript within the script tags in the head of the HTML document.
The following JavaScript code will add two buttons to the DOM after the #myList
element utilizes jQuery's after() and insertAfter() functions:

$(function(){
 $('#myList').after("<button>Button 1</button>");
 $('<button>Button 2</button>').insertAfter("#myList");
});

Chapter 1

13

How it works…
To dynamically add DOM elements to any part of the document, we can use the append(),
addAfter(), after(), addBefore(), and before()functions of jQuery. The functions
after() and insertAfter() essentially perform the same action; the difference lies in
the order in which the expressions are specified. This is the same for insertBefore() and
before().

Based on the HTML file in the How to do it... section, the following JavaScript will add two
button elements after the unordered list element:

$(function(){
 $('#myList').after("<button>Button 1</button>");
 $('<button>Button 2</button>').insertAfter("#myList");
});

Once the preceding JavaScript has been executed, the HTML rendered in the browser should
be modified as follows:

<!DOCTYPE html>
<html>
<head>
 <title> Creating DOM elements</title>
 </head>
<body>
<div id="container">
 <ul id="myList">
 List Item 1
 List Item 2
 List Item 3

 <button>Button 2</button>
 <button>Button 1</button>
</div>
</body>
</html>

Note that even though the second button was added last, it is first in the HTML. This is
because we have specified that the button should be inserted after the unordered list
element. Both .before() and .insertBefore() jQuery methods work exactly in the same
way, except that the button elements would be above the unordered list element.

Document Object Model Manipulation

14

A common requirement of dynamic web pages and web applications is to be able to add new
items to a list. This is best achieved using the .append() function:

$(function(){
 $('#myList').append("List Item 4");
});

This JavaScript will add the new list item with the text List Item 4 to the bottom of the
#myList unordered list element. Alternatively, the prepend() function could be used to
insert the list item at the top of the list.

There's more…
jQuery provides developers with many ways to add, append, insert, and update elements into
the DOM that could not be demonstrated within a single recipe. Ensure that you are aware of
the alternatives by reading the jQuery documentation.

See also
 f Inserting content into an element

 f Removing DOM elements

 f Re-using DOM elements

Inserting content into an element
Interactive and dynamic web applications and websites not only require the web developer
to be able to create DOM elements but also require the developer to be able to add dynamic
content. This is easily achievable with another set of jQuery functions.

Getting ready
Create a blank HTML document named recipe-4.html, and ensure that you have the latest
version of jQuery available to be included within this HTML document.

How to do it…
Learn how to dynamically add content into the DOM by performing each of the following steps:

1. Add the following code to your newly created HTML document, which will create a
simple HTML web page:
<!DOCTYPE html>
<html>

Chapter 1

15

<head>
 <title>Insert content into an element</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>
<div id="container">
 <p>Here is some current HTML content</p>
</div>
<textarea id="myTextarea"></textarea>
</body>
</html>

2. Insert the following JavaScript code within the script tags in the document head. This
code will inject different HTML content and elements into the DOM at various points.

$(function(){
 //Remove the container elements current HTML
 $('#container').html("<p>I have replaced the all the HTML
within the #container element</p>");

 //Add some more HTML to the beginning of the container element
 $('#container').prepend("<p>Another paragraph that has been
prepended.</p>");

 //Add a button to the end of the container element after all
other HTML content
 $('#container').append("<button>A Button Appended</button>");

 //Add some text into the text area element
 $('#myTextarea').val("Added some text using .text()");
});

How it works…
The quickest way to add content to an element is to use the html() function. By providing
this function with a string as an argument, it will replace the selected element's current
DOM contents with the provided string. If no string is provided, this function will return the
element's DOM contents formatted as an HTML string.

Document Object Model Manipulation

16

Besides replacing the content of an element, we can also use append() and prepend() to
add additional content at the end and at the beginning of the current content, respectively.
Additionally, we have other functions available such as text(), which will decode any HTML
before it inserts the string within the element. The text() function is typically used for text
areas for this reason.

Based on the HTML provided in the previous section, we can alter the content of the
#container element using the jQuery functions previously discussed as follows:

$(function(){
$('#container').html("<p>I have replaced the all the HTML within
 the #container element</p>");

$('#container').prepend("<p>Another paragraph that has been
 prepended.</p>");

$('#container').append("<button>A Button Appended</button>");

$('#myTextarea').val("Added some text using .text()");
});

After each of these functions has been executed, the HTML file rendered by the browser will
be transformed, which is illustrated as follows:

<!DOCTYPE html>
<html>
<head>
 <title>Insert content into an element</title>
</head>
<body>
<div id="container">
 <p>Another paragraph that has been prepended.</p><p>I have
 replaced the all the HTML within the #container element</p>
 <button>A Button Appended</button>
</div>
<textarea id="myTextarea">Added some text using .text()</textarea>
</body>
</html>

See also
 f Creating DOM elements

Chapter 1

17

Modifying the DOM element properties
We can use jQuery to dynamically modify element properties such as class, style, and
disabled, which means that it is possible to visually alter and change the function of a range
of HTML elements.

Getting ready
Once again, this recipe requires an additional blank HTML document. Create a file named
recipe-5.html, and have it open and ready for editing.

How to do it…
Learn how to alter the properties of the DOM element by performing each of the
following steps:

1. Add the following HTML code to your blank recipe-5.html file in order to create a
basic HTML page with two types of inputs:
<!DOCTYPE html>
<html>
<head>
 <title>Modifying DOM element attributes and properties</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>
<input type="checkbox" />
<input type="text" />
</body>
</html>

2. Within the preceding HTML code, add the following JavaScript code inside the script
tags to disable the input, modify its value, and check the checkbox:

$(function(){
 //Set the checkbox to be checked
 $('input[type="checkbox"]').prop('checked', true);
 //Disable any text inputs
 $('input[type="text"]').prop('disabled', true);
 //Change the value of any text inputs
 $('input[type="text"]').val("This is a new Value!");
});

Document Object Model Manipulation

18

How it works…
jQuery provides us with a prop() function that will either retrieve the specified property if no
value is specified, or if a value is provided, it will alter the specified property on the selected
element. This can be used to change property values such as checked on a checkbox or the
disabled property on a text input. We could use the prop() function to alter the value of a
text input; however, it is preferable to use the val() function that is available specifically for
this task.

Typically, this would be done based on a user-triggered event, but to illustrate this as simply as
possible, the following JavaScript does so on page load:

$(function(){
 $('input[type="checkbox"]').prop('checked', true);
});

This JavaScript will check each input within the page that is of the type checkbox. Similarly,
we can alter the disabled state of a text input with only a few modifications:

$(function(){
 $('input[type="text"]').prop('disabled', true);
});

We can also use the val() function to add some text to each of these text inputs using the
following JavaScript:

$(function(){
 $('input[type="text"]').val("This is a new Value!");
});

Often, you can chain functions with jQuery. You can achieve the previous two actions by using
both the functions inline (that is, $('input[type="text"]').prop('disabled',
true).val("This is a new Value!");), and they will be executed in turn.

See also
 f Enabling and disabling buttons by changing their properties

 f Adding and removing CSS classes to dynamically change their style

Adding and removing CSS classes to
dynamically change their style

jQuery comes bundled with class manipulation functions in order to allow developers to easily
alter the style of any HTML element.

Chapter 1

19

Getting ready
For element style changes to be of any use, we first need to declare some styles within an
HTML document. The following HTML code has a range of styles and elements that we can
work with to illustrate this functionality of jQuery:

<!DOCTYPE html>
<html>
<head>
 <title>Add and remove CSS classes to dynamically change their
 style</title>
 <script src="jquery.min.js"></script>
 <script></script>
 <style type="text/css">
 .green {
 background-color: #008000;
 color: #FFFFFF;
 }
 .red {
 background-color: #FF0000;
 color: #FFFFFF;
 }
 .yellow {
 background-color: #FFFF00;
 color: #000000;
 }
 </style>
</head>
<body>
 <p id="sometext">
 Here is some text that can have different styles applied to
 it dynamically</p>
 <button id="green-btn">Green</button>
 <button id="red-btn">Red</button>
 <button id="yellow-btn">Yellow</button>
</body>
</html>

Within this HTML code, we have three buttons with their own unique IDs. We also have a
paragraph with an ID. There are three CSS classes defined: green, red, and yellow. With
jQuery, we can listen for the click of either of these buttons and then dynamically apply one of
these classes to the paragraph element.

www.allitebooks.com

http://www.allitebooks.org

Document Object Model Manipulation

20

If you save this HTML file and open it within a browser, you should have the following
web page:

How to do it…
1. Add the following JavaScript code within the script tags in the HTML page you have

just created:
$(function(){
 //Listen for a click event on the green button
$('#green-btn').click(function(){
 //When the green button has been clicked
 //Remove all classes current on the #sometext paragraph
 $('#sometext').removeClass();
 //Add the .green class to the #sometext paragraph
 $('#sometext').addClass('green');
});
 //Listen for a click on the red button
$('#red-btn').click(function(){
 //When the red button has been clicked
 //Remove all classes from the #sometext paragraph
 $('#sometext').removeClass();
 //Add the .red class to the #sometext paragraph
 $('#sometext').addClass('red');
 });
 //Listen for a click on the yellow button
 $('#yellow-btn').click(function(){
 //When the yellow button has been clicked
 //Remove all classes from the #sometext paragraph
 $('#sometext').removeClass();
 //Add the .yellow class to the #sometext paragraph
 $('#sometext').addClass('yellow');
 });
});

2. Opening the HTML document in your browser will now allow you to change the
#sometext paragraph style by selecting either of the three available buttons.

Chapter 1

21

How it works…
jQuery allows us to attach a click event handler to any element by using the click()
function. We can then execute a set of code of our choice by passing a function as
an argument to the click() method. To add a class to an element, we can use the
addClass() function and provide the class name as a string argument. This function will add
the specified class name to the selected element.

jQuery also provides us with a removeClass() function. This allows us to either remove a
specific class from an element by providing removeClass() with a string, or when a string is
not provided, it will remove all the classes from the selected element. We will need to use this
in order to prevent multiple classes being added to the paragraph element when either of the
buttons has been clicked more than once.

The following screenshot illustrates this web page after the Yellow button has been clicked:

See also
 f Modifying the DOM element properties

 f Enabling and disabling buttons by changing their properties

Enabling and disabling buttons by changing
their properties

The ability to dynamically enable and disable buttons is particularly useful for situations such
as saving data to a web server. In order to prevent a user from making multiple save requests
while the request is being made and the client is waiting for a response, you can dynamically
disable the save button. Once the client has received a response from the web server, you can
re-enable the save button.

This functionality can also be very effective in simple situations, such as enabling the search
button when the user has inputted a search term. This makes it clear to the user that they
cannot search unless a term has been entered.

Document Object Model Manipulation

22

Getting ready
Create a blank HTML document named recipe-7.html, and have it open and ready
for editing.

How to do it…
1. The following HTML code creates a web page with a search input and a search

button, which is disabled by default. Add the following code to recipe-7.html:
<!DOCTYPE html>
<html>
<head>
 <title>Enable and disable buttons by changing their
 properties </title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>
 <input type="text" id="search-input" />
 <button id="search-btn" disabled>Search</button>
</body>
</html>

2. Saving and opening this HTML in a browser should provide you with a very simple
web page having a single input and a disabled button as illustrated in the
following screenshot:

3. Add the following JavaScript within the script tags in the head section of the HTML
document created previously:
$(function(){
 //Listen for a key up event on the search input
$('#search-input').keyup(function(){
 //When a user presses and releases a key
 //Check to see if the length of the inputted
 //data is greater than 2
 if ($(this).val().length > 2) {
 //If the input length is greater than

Chapter 1

23

 //two then we enable the search button
 $('#search-btn').prop("disabled", false);
 } else {
 //If the input length is equal to 2 or less we
 disable the search button
 $('#search-btn').prop("disabled", true);
 }
});
});

4. Opening this page within a web browser will provide you with an input and a disabled
search button until you enter some text into the search input. When text is entered
into the search input and the length of the text is greater than two characters, the
search button will become available.

How it works…
Our aim is to enable the search button once there has been some text inputted into the
search input by the user. To do this, we need to attach a .keyup() event handler to the
search input. This will allow us to execute some code while the user is inputting some text. By
providing a function as an argument to the keyup() function, we can then check the inputted
data. If the input data has a length of two or more characters (as a search less than three
characters would be a little ambiguous), we can enable the search button.

Using the following JavaScript, we are able to listen for data input, check the input length, and
depending on this, enable or disable the search button:

$(function(){
$('#search-input').keyup(function(){
 if ($(this).val().length > 2) {
 $('#search-btn').prop("disabled", false);
 } else {
 $('#search-btn').prop("disabled", true);
 }
});
});

First of all, we attach the keyup event to the search input using $('#search-input').
keyup();, referencing its ID. Then, within the callback function, we are able to check the
length of the currently inputted text using $(this), which refers to the element to which we
have attached the keyup event. The val() function then gets the inputted text, and we can
use the length property to find its length. Using an if/else statement, we can decide if the
search button needs to be enabled or disabled.

To enable or disable the search button, we use jQuery's prop() function and set the disabled
property to either true or false.

Document Object Model Manipulation

24

See also
 f Modifying the DOM element properties

 f Adding and removing CSS classes to dynamically change their style

Updating an image within a page
jQuery allows the developer to dynamically change images on a web page. This recipe will
show you how to do this and also show you how to use a timestamp in order to prevent the
browser from using a cached image, which can often be a problem when swapping images
dynamically in this way.

Getting ready
For this recipe, you are going to need four different images. Ensure that you have four small
images named black.png, red.png, blue.png, and green.png available.

How to do it…
To understand how jQuery can be used to change an image, complete each of the
following steps:

1. Create a file named recipe-8.html within an easily accessible directory, and add
the following HTML code to this file:
<!DOCTYPE html>
<html>
<head>
 <title>Change an image source and tackle browser caching
 to ensure it is always updated</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>

 <div>
 <button id="red-btn">Red</button>
 <button id="green-btn">Green</button>
 <button id="blue-btn">Blue</button>
 </div>
</body>
</html>

Chapter 1

25

2. Within the directory where the recipe-8.html file is created, create another
directory called images and within this, add four images given as follows:

 � black.png

 � red.png

 � blue.png

 � green.png

3. Add the following JavaScript within the <script></script> tags of recipe-8.
html:
$(function(){
 //Listen for a click on the red button
$('#red-btn').click(function(){
 //When the red button has been clicked, change the source of
the #square image to be the red PNG
 $('#square').prop("src", "images/red.png");
});
 //Listen for a click on the green button
$('#green-btn').click(function(){
 //When the green button has been clicked, change the source of
the #square image to be the green PNG
 $('#square').prop("src", "images/green.png");
});
//Listen for a click on the blue button
$('#blue-btn').click(function(){
 //When the blue button has been clicked, change the source of
the #square image to be the blue PNG
 $('#square').prop("src", "images/blue.png");
});
});

4. Opening this web page within a browser will allow you to change the source of the
displayed image from the default black.png to another source depending on which
button is clicked.

How it works…
To change the source of an image, we can use jQuery's prop() function and specify the new
image name for the src property. To do this, when either of the buttons created using our
HTML code are clicked, a click event handler is attached for each button using .click(),
referencing the buttons' IDs, and then within the click() callback function,.prop() is
executed with the appropriate image source specified, shown as follows:

$(function(){
$('#red-btn').click(function(){

Document Object Model Manipulation

26

 $('#square').prop("src", "images/red.png");
});

$('#green-btn').click(function(){
 $('#square').prop("src", "images/green.png");
});

$('#blue-btn').click(function(){
 $('#square').prop("src", "images/blue.png");
});
});

There's more...
This recipe illustrates the way a jQuery developer can easily change an image's source using
a very simple example. A more realistic situation where this implementation will be used is
within a web application where an image can be uploaded, for example, when a user chooses
their avatar.

Traditionally, a user will be presented with a preview of their current avatar and then be able
to choose an image from their computer to upload. Using AJAX, the web page can send this
new image to the server; the server can then process and save this image and respond to the
client web page. The web page, using jQuery's prop() method, can then update the current
preview with the newly uploaded image and create a seamless transition without the need for
the page to be refreshed in order to display the new image.

A problem occurs when the server uses the same filename for the new image as the old one.
This is often the case when a user can only have one avatar; for the sake of simplicity, the
avatar image is then saved using the user's unique ID (for example, 123.png).

When the server responds to the client with the new image filename, as the filename is
the same, the browser will think that it is the same image. This may cause the browser to
use the cached version of the avatar image, which will be the old image. To prevent this
from happening, we can prepend a timestamp onto the image's filename. This will make
the browser treat the image as new and force it to load the new image. We can modify the
previous JavaScript to achieve the following:

$(function(){
$('#red-btn').click(function(){
 $('#square').prop("src", "images/red.png?t=" + new Date().
getTime());
});

$('#green-btn').click(function(){
 $('#square').prop("src", "images/green.png?t=" + new Date().
getTime());

Chapter 1

27

});

$('#blue-btn').click(function(){
 $('#square').prop("src", "images/blue.png?t=" + new Date().
getTime());
});
});

Using JavaScript's new Date() method, we create a new date that will be equal to the
current date and time equal to the current time in milliseconds. We then use .getTime() to
return a timestamp in milliseconds. When the source is updated, it will look as follows:

This code will force the browser to reload the image using the newly specified source, provided
the user does not update their image within the same millisecond (practically impossible).

Populating list elements
List elements are commonly used around the Web; they can be used to display search results,
menus, and navigational items to name a few. Thanks to CSS, they no longer need to be
boring, and it is possible to style list elements to make your data beautiful.

With jQuery, it is possible to populate a list element dynamically. This can be done directly
from a JavaScript array via an AJAX response, with data from a web server or some
other source.

Getting ready
Create a blank HTML document named recipe-9.html, and ensure that it is saved to a
location where the latest version of jQuery can be included.

How to do it…
Learn how to dynamically populate a list with jQuery by performing each of the
following recipes:

1. In order to demonstrate how you can use jQuery to populate a list element, we will
create a JavaScript array of objects. Add the following HTML and JavaScript code to
recipe-9.html, which you have just created:
<!DOCTYPE html>
<html>
<head>
 <title>Populating list elements</title>
 <script src="jquery.min.js"></script>

Document Object Model Manipulation

28

 <script type="text/javascript">
 var names = [
 {
 id: 1,
 firstname: 'Leon',
 lastname: 'Revill'
 },
 {
 id: 2,
 firstname: 'Allyce',
 lastname: 'Wolverson'
 },
 {
 id: 3,
 firstname: 'Harry',
 lastname: 'Round'
 },
 {
 id: 4,
 firstname: 'Chris',
 lastname: 'Wilshaw'
 }
];
 $(function(){

 });
 </script>
</head>
<body>
 <ul id="namelist">
</body>
</html>

At the top of our JavaScript code, we have created an array of objects
which includes a set of names. We are going to use this array to
populate the list element #namelist within the HTML code.

2. Add the following JavaScript within $(function(){});, just under the JavaScript
array. This JavaScript will use the objects within the JavaScript array we created in the
Getting ready section to populate the list element on our page.

$.each(names, function(index, obj){
$('#namelist').append("#" + obj.id + " " +
 obj.firstname + " " + obj.lastname + "");
});

Chapter 1

29

How it works…
We use jQuery's $.each() function to loop through each of the JavaScript objects within
the names array. Then, for each of these objects, we can create a element and insert
the values of the id, firstname, and lastname variables. Finally, we can use the jQuery
append() function to append the list element to the end of the unordered list.

Within the $.each() function, the first parameter is the array we wish to iterate through
and the second parameter is the function we wish to execute for each of the objects within
the names array. The specified function also has two arguments: index and obj. The
index argument will contain the current array index of the JavaScript object, and the obj
variable will contain the actual JavaScript object. Both these variables are available within the
specified callback function.

We are then able to reference obj.propertyName (replace propertyName with a property
of the object) in order to access specific parts of the object we wish to use. By doing this,
we construct a string and pass it to the append() function, which then appends it to the
specified #nameslist unordered list.

Open the HTML page within the browser, and you should see the list populated with the
names from the JavaScript array, illustrated as follows:

See also
 f Creating DOM elements

 f Re-using DOM elements

Understanding pagination
Pagination is the act of collating large amounts of data and presenting it to the user in small,
easy-to-read sections or pages.

With a combination of jQuery, JavaScript functions, and event handlers, we are able to easily
collate and present data to the user in pages.

www.allitebooks.com

http://www.allitebooks.org

Document Object Model Manipulation

30

Getting ready
To create a paginated set of data, we first need some data to paginate and then a location to
place the paginated data. Use the following code to create an HTML page:

<!DOCTYPE html>
<html>
<head>
 <title>Chapter 1 :: DOM Manipulation</title>
 <script src="jquery.min.js"></script>
 <script>
 var animals = [
 {
 id: 1,
 name: 'Dog',
 type: 'Mammal'
 },
 {
 id: 2,
 name: 'Cat',
 type: 'Mammal'
 },
 {
 id: 3,
 name: 'Goat',
 type: 'Mammal'
 },
 {
 id: 4,
 name: 'Lizard',
 type: 'Reptile'
 },
 {
 id: 5,
 name: 'Frog',
 type: 'Amphibian'
 },
 {
 id: 6,
 name: 'Spider',
 type: 'Arachnid'
 },
 {
 id: 7,

Chapter 1

31

 name: 'Crocodile',
 type: 'Reptile'
 },
 {
 id: 8,
 name: 'Tortoise',
 type: 'Reptile'
 },
 {
 id: 9,
 name: 'Barracuda',
 type: 'Fish'
 },
 {
 id: 10,
 name: 'Sheep',
 type: 'Mammal'
 },
 {
 id: 11,
 name: 'Lion',
 type: 'Mammal'
 },
 {
 id: 12,
 name: 'Seal',
 type: 'Mammal'
 }
];
 var pageSize = 4;
 var currentPage = 1;
 var pagedResults = [];
 var totalResults = animals.length;
 $(function(){
 });
 </script>
</head>
<body>
 <ul id="list">
 <button class="previous"><< Previous</button>
 <button class="next">Next >></button>
</body>
</html>

Document Object Model Manipulation

32

Within the JavaScript in this page, we have declared a large array of objects named animals,
which represents a set of animals. Below this array, we have declared four more variables,
which we will require in order to paginate the animals array:

 f pageSize: This indicates the amount of results we wish to be held on a
single page

 f currentPage: This indicates the current page that is being displayed

 f pagedResults: This indicates an array that contains a section of the animals
array, which represents the page

 f totalResults: This indicates the number of objects within the animals array; in
this case, 12

How to do it…
To create a dynamic list with pages, perform each of the following steps:

1. Directly after $(function(){}); but still within the <script></script> tags,
add the following JavaScript function:
function updateList() {
//Grab the required section of results from the animals
 list
var end = (currentPage * pageSize);
var start = (end - pageSize);
pagedResults = animals.slice(start, end);
//Empty the list element before repopulation
$('#list').empty();

//Disable the previous button if we are on the first page
if (currentPage <= 1) {
 $('.previous').prop("disabled", true);
}
//Enable the previous button if we are not on the first
 page
else {
 $('.previous').prop("disabled", false);
}

//Disable the next button if there are no more pages
if ((currentPage * pageSize) >= totalResults) {
 $('.next').prop("disabled", true);
}
//Enable the next button if there are results left to page
else {

Chapter 1

33

 $('.next').prop("disabled", false);
}

//Loop through the pages results and add them to the list
$.each(pagedResults, function(index, obj){
 $('#list').append("" + obj.name + " (" +
obj.type + ")");
});
}

2. Add the following JavaScript within $(function(){}); in the preceding HTML page:

//Populate the list on load
updateList();
$('.next').click(function(){
//Only increase the current page if there are enough results
if ((currentPage * pageSize) <= totalResults) currentPage++;
updateList();
});

$('.previous').click(function(){
//Only decrease the current page if it is currently greater than 1
if (currentPage > 1) currentPage--;
updateList();
});

How it works…
Although pagination can seem quite complicated, in principle, it is simple. We will need to
use jQuery's click() function to listen for click events on the next and previous buttons.
When these buttons are pressed, the currentPage variable is either incremented or
decremented based on which button is clicked. After this, the updateList() function takes
the currentPage value, works out which section of data it needs to use from the animals
array, populates the pagedResults array with this data, and then loads these results into
the HTML list element, #list.

Additionally, we will need to disable the next or previous buttons depending on which page
the user is currently viewing. If they are currently viewing the first page, the previous button
can be disabled using jQuery's prop() function to set its disabled property to true. If the
user is viewing the last page (which our function can work out using the totalResults,
currentPage, and pageSize variables), we need to disable the next button.

//Populate the list on load
updateList();
$('.next').click(function(){

Document Object Model Manipulation

34

//Only increase the current page if there are enough results
if ((currentPage * pageSize) <= totalResults) currentPage++;
updateList();
});

$('.previous').click(function(){
//Only decrease the current page if it is currently greater than 1
if (currentPage > 1) currentPage--;
updateList();
});

To expand on the well-commented code, the first thing we do is call a function named
updateList(), which we will look at a little later in this recipe.

Remember that any code within $(function(){}); is
executed on page load.

Next, we attach a click event handler to the next button by passing a callback function as an
argument. For this event function, we are able to specify some code to be executed every time
the next button is clicked. The code we specify increments the currentPage variable by 1. If
there is another page of data available, it works this out by forming the ((currentPage *
pageSize) <= totalResults) condition as part of the if statement.

Finally, as a part of this click function, we call the previously mentioned updateList()
function.

We apply the same logic to the previous button also, except that we are decrementing the
currentPage value if the current page is greater than one; hence, there is a page to go
back to.

Below $(function(){}); but still within the <script></script> tags, add the following
JavaScript function to your HTML page:

function updateList() {
//Grab the required section of results from the animals list
var end = (currentPage * pageSize);
var start = (end - pageSize);
pagedResults = animals.slice(start, end);
//Empty the list element before repopulation
$('#list').empty();

//Disable the previous button if we are on the first page
if (currentPage <= 1) {
 $('.previous').prop("disabled", true);
}

Chapter 1

35

//Enable the previous button if we are not on the first page
else {
 $('.previous').prop("disabled", false);
}

//Disable the next button if there are no more pages
if ((currentPage * pageSize) >= totalResults) {
 $('.next').prop("disabled", true);
}
//Enable the next button if there are results left to page
else {
 $('.next').prop("disabled", false);
}

//Loop through the pages results and add them to the list
$.each(pagedResults, function(index, obj){
 $('#list').append("" + obj.name + " (" + obj.
type + ")");
});
}

To maintain good practices, the code is well-commented once again. The first action that this
function performs is calculating which section of the animals array it needs to use. Once it
has calculated the start and end values, which are index values for the animals array (for
example, 0 to 4 for page one), it uses JavaScript's slice() function to copy this data from
the animals array to the pagedResults array.

Be careful to not use the similar, JavaScript's .splice() function as
this will actually remove the data from the animals array as well as
copy it to the pagedResults array. Additionally, slice() takes two
arguments: the first is a zero-indexed number stating the start location
of the array (that is, 0 is the beginning), and the second argument is
not the location within the array but the number of elements from the
starting point.

With the required results stored in the pagedResults array, it uses jQuery's empty()
function to empty the unordered list, #list, of any data. This is to prepare the list for
repopulation. Otherwise, when the next or previous button is clicked and the updateList()
function is run, the results will just get appended to the end of the current list and
not replaced.

Document Object Model Manipulation

36

The next section of code is to determine if the next and previous buttons need to be either
disabled or enabled. We can work out whether the previous buttons need to be disabled by
putting the condition (currentPage <= 1), which simply checks to see if the current page
is less than or equal to one; if it is, we need to disable the previous button; otherwise, we need
to enable it. This is done using jQuery's prop() function, which allows us to manipulate the
properties on selected elements; here, we change the disabled property to either true or
false. We can determine whether we need to disable the next button using ((currentPage
* pageSize) >= totalResults), which calculates whether there are enough objects
within the animals array to create the next page; if there are not, we disable the button, but
if there are, we enable it.

Finally, we use jQuery's $.each() function to iterate through each of the objects within
the pagedResults array and append a list element with the data from each object to the
unordered list on the page.

If you open the HTML page within the browser, you should see a similar page to the one
illustrated as follows:

On page load, the list is populated with the first page of results, as currentPage is set to 1
and the updateList() function is also set to run on page load, which disables the
previous button.

Removing DOM elements
jQuery makes it easy for the developer to completely remove DOM elements, which is often
useful when creating rich user interfaces. Having the ability to remove elements is useful in
situations where your interface represents some information from a database, and it provides
a way for the user to delete database items. If this UI is using AJAX to send the delete request
to the web server, you will need to reflect the delete action on the client side and remove the
element representing the database item.

Getting ready
Create a blank HTML document, and save it as recipe-11.html to an easily accessible
location on your computer.

Chapter 1

37

How to do it…
Understand how to remove DOM elements using jQuery by performing each of the
following steps:

1. Add the following HTML code to the recipe-11.html page you have just created:
<!DOCTYPE html>
<html>
<head>
 <title>Removing DOM elements</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>
 <ul id="list">
 Item 1 <button class="remove-btn">X</button>
 Item 2 <button class="remove-btn">X</button>
 Item 3 <button class="remove-btn">X</button>
 Item 4 <button class="remove-btn">X</button>

</body>
</html>

2. Within the <script></script> tags of the previous HTML document, add the
following JavaScript code:
$(function(){
//Listen for a click on any of the remove buttons
$('.remove-btn').click(function(){
 //When a remove button has been clicked
 //Select this buttons parent (the li element) and remove
 it
 $(this).parent().remove();
});
});

3. Open the HTML document in a browser and click on the remove button to remove the
selected list item.

Document Object Model Manipulation

38

How it works…
jQuery provides us with a remove() function, which will remove the selected element from
the DOM. In a situation as the one mentioned previously, you would have a list of items that
represent the records within the database. Each of these list items would provide a remove
button, allowing the user to delete the selected item.

In a real-world situation, this delete button would make an AJAX request to a web server, wait
for the response, and then remove the selected element on the client side. To keep this recipe
simple, we will just be looking at the JavaScript code to remove the element on the client side
and will not be working with AJAX.

Chapter 3, Loading and Manipulating Dynamic Content with AJAX
and JSON, contains a wealth of AJAX recipes.

We can use jQuery's click() function to listen for a click event on one of the delete buttons.
Then, we can use $(this).parent() to select the element we wish to delete,
because the delete button is a sibling of this list element. We can then use the remove()
method with no arguments to remove the selected list element.

See also
 f Creating DOM elements

 f Re-using DOM elements

Re-using DOM elements
When using jQuery to dynamically create elements such as list items, divisions, and input,
it can be useful to be able to re-use these elements without having to rewrite them within
JavaScript. Instead, it may be beneficial to copy the elements and just modify the sections you
wish to change.

Getting ready
Using the text editor of your choice, create a blank HTML document named recipe-12.
html, which is within a location that has easy access to the latest version of jQuery.

Chapter 1

39

How to do it…
Learn how to re-use DOM elements by performing each of the following recipe steps:

1. Within the recipe-12.html page you have just created, add the following HTML,
CSS, and JavaScript code:
<!DOCTYPE html>
<html>
<head>
 <title>Reusing DOM elements</title>
 <style type="text/css">
 .one {
 background-color: #CCC;
 color: #333;
 }
 .two {
 background-color: lawngreen;
 color: white;
 }
 .three {
 background-color: darkgreen;
 color: white;
 }
 .four {
 background-color: black;
 color: #666;
 }
 .dinosaur {
 background-color: darkred;
 color: red;
 }
 </style>
 <script src="jquery.min.js"></script>
 <script>
 var animals = [
 {
 id: 1,
 name: 'Dog',
 type: 'Mammal',
 class: 'one'
 },
 {
 id: 2,
 name: 'Cat',

www.allitebooks.com

http://www.allitebooks.org

Document Object Model Manipulation

40

 type: 'Mammal',
 class: 'one'
 },
 {
 id: 3,
 name: 'Goat',
 type: 'Mammal',
 class: 'one'
 },
 {
 id: 4,
 name: 'Lizard',
 type: 'Reptile',
 class: 'two'
 },
 {
 id: 5,
 name: 'Frog',
 type: 'Amphibian',
 class: 'three'
 },
 {
 id: 6,
 name: 'Spider',
 type: 'Arachnid',
 class: 'four'
 }
];
 $(function(){

 });
 </script>
</head>
<body>
<ul id="animal-list">
 <li class='dinosaur'>T-
 Rex <span
 class='type'>Dinosaur

</body>
</html>

Chapter 1

41

2. Within the HTML page you created from the preceding code, add the following
JavaScript within $(function(){});:
$.each(animals, function(index, obj){
//Clone the first element in the animal list
var listTemplate = $('#animal-list li').first().clone();
//Change its name to match this objects name
listTemplate.find('.name').html(obj.name);
//Changes its type to match this objects type
listTemplate.find('.type').html(obj.type);
//Remove all its current classes
listTemplate.removeClass();
//Add the class from this object
listTemplate.addClass(obj.class);
//Append the modified element to the end of the list
$('#animal-list').append(listTemplate);
});

3. If you open your newly created web page within a browser, you should be provided
with a populated list element that matches the objects within the JavaScript array
animals.

How it works…
By using jQuery's $.each() method, we are able to iterate through each of the objects within
the JavaScript animals array. Then, for each of the JavaScript objects, we clone the first
element in the unordered list using $('#animal-list li').first().clone(); and
store it within the listTemplate variable. This variable now holds a copy of the first list
element within the unordered list #animal-list. We can now manipulate this element as
we would do with any other DOM element. We are able to use jQuery's find() function to
locate the span elements with the .name and .type class names. We can then alter their
content to match the current object's name and type values. Next, we remove the previous
styles on the cloned element with removeClass() (not providing an argument will remove all
current classes without having to specify each one of them), and add the style that is specified
within the JavaScript object using the addClass() function that jQuery provides us with.
Finally, we can append the modified HTML element to the end of the list using append().

See also
 f Removing DOM elements

 f Creating DOM elements

2
Interacting with the
User by Making Use

of jQuery Events

In this chapter, we will cover:

 f Detecting button clicks

 f Detecting element clicks

 f Detecting change

 f Updating content based on user input

 f Detecting key press events on inputs

 f Restricting input character length

 f Changing page elements on mouse hover

 f Triggering events manually

 f Preventing event triggers

 f Creating a custom event

Introduction
This chapter looks at how you can make use of jQuery's many events to allow your interface to
respond to different user interactions, such as button clicks, and also how jQuery events can
help you with form validation.

Interacting with the User by Making Use of jQuery Events

44

Detecting button clicks
Clicking on website elements is a primary user interaction; therefore, detecting these clicks is
a very fundamental aspect in creating interactive web applications. There are various ways in
which jQuery developers can listen for certain button presses within their web page.

Getting ready
Using your favorite text editor or IDE, create a blank HTML page named recipe-1.html in
an easily accessible location.

How to do it…
Create two buttons with click event handlers by performing the following steps:

1. Add the following HTML code to recipe-1.html. Be sure to change the location of
the jQuery library in the JavaScript file, pointing it to where the latest version of jQuery
is downloaded on your computer.
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 2 :: jQuery Events</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>
 <button class="button1">Button 1</button>
 <button class="button2">Button 2</button>
</body>
</html>

2. Within the script tags, add the following JavaScript code, which attaches click event
handlers to both of the button elements:
$(function() {
 $('.button1').click(function(){
 alert("Button 1 clicked");
 });
 $('body').on("click", ".button2", function(){
 alert("Button 2 clicked");
 });
});

Chapter 2

45

3. Open recipe-1.html within a web page and click on either of the buttons. You will
be presented with a different JavaScript alert for each button, demonstrating that the
event handlers have been executed.

How it works…
We can use various selectors to select button elements and then attach event handlers to
these elements. In the preceding example, we select the first button using its class name,
.button1, and the second button using the class name .button2.

With each button selected via the $() method, we can choose a method for attaching a
click event to our buttons. The .click() method, as shown in the following code snippet, is
dedicated for this purpose. By passing a callback function as an argument, we can specify a
set of commands to be executed once the buttons have been clicked.

$('.button1').click(function(){
 alert("Button 1 clicked");
});

The preceding code will display the specified alert once the first button has been clicked. The
following code uses an alternative function, .on(), which also handles other event types:

$('body').on("click", ".button2", function(){
 alert("Button 2 clicked");
});

This method is a little different as we first select the container of our buttons and then specify
the button identifier (that is, .button2).

There's more...
The .on() method has some additional benefits over .click() alongside the previously
mentioned memory benefit. If any elements are added to the DOM dynamically after the
.click() function has been called, they will not have a click event attached. If the .on()
method is used, provided that the dynamically added elements are added within the specified
container, they will be caught by the click event handler. Consider the following code as an
example of this situation:

<!DOCTYPE html>
<html>
<head>
 <title>Chapter 2 :: jQuery Events</title>
 <script src="jquery.min.js"></script>
 <script>
 $(function(){
 $('.button1').click(function(){

Interacting with the User by Making Use of jQuery Events

46

 alert("Button 1 clicked");
 });
 $('body').on("click", ".button2", function(){
 alert("Button 2 clicked");
 });
 setTimeout(function(){
 $('.additional').append("<button
class='button1'>Button 1 again</button>");
 $('.additional').append("<button
class='button2'>Button 2 again</button>");
 }, 2000);
 });
 </script>
</head>
<body>
<button class="button1">Button 1</button>
<button class="button2">Button 2</button>
<div class="additional"></div>
</body>
</html>

This code will attach an event handler to each of the buttons on page load using the
.click() and .on() methods, respectively. Then, using the setTimeout() function, it
will dynamically add two more buttons to the DOM; one button with the .button1 class and
the other with the .button2 class. If you open this web page in a browser and wait for the
second set of buttons to be created and then click on the additional Button 1 button, no click
event will be fired. Click on the additional Button 2 button, and you will see the alert box being
fired as desired.

See also
 f Detecting element clicks

 f Detecting key press events on inputs

Detecting element clicks
Having the ability to detect if a user has clicked on elements other than buttons can provide
additional flexibility to your web application. You can attach click events to any HTML
elements, just as we did with the buttons in the previous recipe.

Chapter 2

47

Getting ready
To work through this recipe, we are first going to need a blank HTML page named recipe-2.
html, the same as in the other recipes. Remember that you need to have the latest version
of jQuery downloaded and easily accessible on your computer so that it can be included in
recipe-2.html.

How to do it…
To understand how you can detect user clicks on elements other than buttons, perform the
following steps:

1. Add the following HTML to the recipe-2.html page you have just created. This
HTML creates a very basic web page with an input, an anchor, and a division element.
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 2 :: jQuery Events</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>
Link 1
<input type="text" name="input1" />
<div class="clickme">Click Me!</div>
</body>
</html>

2. Within the script tags in the head tag of the HTML page we just created, add the
following JavaScript code. This JavaScript code uses two different methods of
attaching click event handlers to three DOM elements.
$(function() {
 $('a').click(function(){
 alert("You have clicked a link!");
 });
 $('body').on('click', 'input[type="text"]', function(){
 alert("You have clicked a text input!");
 });
 $('.clickme').click(function(){
 alert("You have clicked a division element");
 });
});

Interacting with the User by Making Use of jQuery Events

48

3. Ensure that all the changes have been saved and then open recipe-2.html in a
browser. When you click on any of the elements, you will be presented with a different
JavaScript alert, demonstrating that each of these click events are being caught by
the event handlers we created earlier in the recipe.

How it works…
We can select DOM elements using their tag names, such as a to select a link, and then use
the .click() or .on() functions to attach a click event handler, as shown in the following
code snippet. We can also use the CSS selector input[type="text"] to select all text
inputs on the page.

$('.clickme').click(function(){
 alert("You have clicked a division element");
});

The preceding jQuery code attaches a click event to each DOM element with the .clickme
class. These elements can be any DOM elements such as divs, buttons, links, inputs, and text
areas. This gives the jQuery developer the flexibility to be able to interpret user interactions
across all page elements.

See the Detecting button clicks recipe of this chapter to
understand the difference between .click() and .on() and
why .on() is the preferred implementation.

See also
 f Detecting button clicks

 f Detecting key press events on inputs

Detecting change
While creating dynamic and interactive websites and web applications, it is useful to know
when a user has changed something on the page, such as the value of a selected input, a text
input, or any other element that has a modifiable value.

Getting ready
Once more, create a new blank HTML document named recipe-3.html. Ensure that you
have the latest version of jQuery downloaded, which can be included into this HTML file.

Chapter 2

49

How to do it…
To learn how to attach change event handlers to various element types, perform the
following steps:

1. Add the following HTML code to the HTML document you have just created, and
update the reference to the jQuery library in order to ensure that the latest version of
jQuery is being included into the page:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 2 :: jQuery Events</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>
<select id="names">
 <option value="Leon">Leon</option>
 <option value="Allyce">Allyce</option>
 <option value="Jane">Jane</option>
</select>
<input type="text" value="The large cat sat on the mat" id="cat"
/>
</body>
</html>

2. Within the script tags, add the following JavaScript code to attach change event
handlers on the different elements:
$(function(){
 $('#names').change(function(){
 var newValue = $(this).val();
 alert("Input value changed to: " + newValue);
 });
 $('#cat').change(function(){
 var newValue = $(this).val();
 alert("Input value changed to: " + newValue);
 });
});

3. Ensure that all the changes have been saved. Now, open recipe-3.html in a web
browser; if you change the value of one of the elements on the page, you will be
presented with an alert informing you of the change.

www.allitebooks.com

http://www.allitebooks.org

Interacting with the User by Making Use of jQuery Events

50

How it works…
Selecting each input element using $() and then using the .change() function to attach a
change event handler allows us to specify the code to be executed once the user has changed
the value of each input.

Within the callback function, which is provided to the .change() function as an argument,
we can get the new value. Using this, which refers to the selected element, we can use
$(this).val() to retrieve the newly chosen value and display it within an alert.

If you open the web page within a browser and change the selected input value to Allyce, an
alert will be displayed similar to the one shown in the following screenshot:

This is done using .val() to return the value="Allyce" property on the selected option in
the drop-down input which has the change event handler attached.

When using the .change() event handler on a text input, this change event will not be fired
until the input box has lost focus, that is, the user has clicked on another part of the web
page. As it is often desirable to detect an immediate change, you should consider using a key
press event to catch these changes instead.

There's more...
The Detecting button clicks recipe discussed the benefits of using the .on() method over
using .click(). These benefits also apply in this situation as the .on() method can also be
used with the change event. Consider the following code:

$('body').on("change", "#names", function(){
 var newValue = $(this).val();
 alert("Input value changed to: " + newValue);
});

Chapter 2

51

See also
 f Detecting button clicks

 f Detecting key press events on inputs

 f Updating content based on user input

Updating content based on user input
jQuery allows developers to easily process user input and then update the page to reflect this
input. The previous recipes of this chapter have looked at detecting changes on input values
and clicks on various page elements. This recipe will help you to create a web page that will
update a header element based on the title that has been selected from a drop-down menu.

Getting ready
Create a blank HTML document named recipe-4.html, with the latest version of the jQuery
library downloaded and ready for use.

How to do it…
Using techniques similar to those you have learned in the previous recipes, perform the
following steps to make changes to the DOM based on user interaction:

1. Add the following HTML code to recipe-4.html, which you have just created; don't
forget to update the reference to the jQuery library. This HTML creates a basic HTML
web page with a drop-down menu element, allowing the user to choose a number of
titles. There is also a header element that we can manipulate with jQuery based on
user selection.
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 2 :: jQuery Events</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>
<select id="title">
<option value="#">Select your title...</option>
 <option value="1">Title 1</option>
 <option value="2">Title 2</option>

Interacting with the User by Making Use of jQuery Events

52

 <option value="3">Title 3</option>
</select>
<h1 id="main-title">No Title</h1>
</body>
</html>

2. Add the following JavaScript code within the script tags to attach a change event
handler to the select input #title:
$(function(){
 $('#title').change(function(){
 var titleText = "";
 switch ($(this).val()) {
 case "1":
 titleText = "This is the text for title 1";
 break;
 case "2":
 titleText = "This is the text for title 2";
 break;
 case "3":
 titleText = "This is the text for title 3";
 break;
 default:
 titleText = "No Title";
 }
 $('#main-title').html(titleText);
 });
});

3. Running this web page in a browser and selecting a new option from the drop-down
menu will update the text of the header accordingly.

How it works…
First, we instruct jQuery to attach a change event handler to the #title select input using
the following code:

$(function() {
 $('#title').change(function(){

 });
}

When the user changes the selected option in the drop-down input, the change event handler
is executed.

Chapter 2

53

In the function argument, we can use $(this) to refer to the #title select input and
then use $(this).val(); to get its selected value. Once we have this value, we can
perform any action we require using JavaScript. In this example, we determine which title has
been selected using a JavaScript switch statement, as shown in the following code snippet:

var titleText = "";
switch ($(this).val()) {
 case "1":
 titleText = "This is the text for title 1";
 break;
 case "2":
 titleText = "This is the text for title 2";
 break;
 case "3":
 titleText = "This is the text for title 3";
 break;
 default:
 titleText = "No Title";
}

Depending on the selected title value, we create some text which we then provide to
$('#main-title').html();. This will update the #main-title header element's HTML
to be the provided text.

This illustrates a very simple task of how a jQuery developer can process user input and
perform an action to alter the page.

See also
 f Detecting change

 f Changing page elements on mouse hover

Detecting key press events on inputs
jQuery provides three event functions that allow the jQuery developer to determine what key a
user is pressing, and when and how the user is pressing it. The .keyup() function is an event
handler that can be attached to an input and will be fired once the pressed key has been fully
released; likewise, .keydown()will be fired once the key has been fully pressed. The third
available event handler is .keypress(), which is fired instantly when a key is pressed.

These methods allow the developer to provide powerful client-side validation or to provide the
user with simple features such as triggering a form submission when the Enter key is pressed.

Interacting with the User by Making Use of jQuery Events

54

Getting ready
Create a blank HTML file named recipe-5.html which we can use for this recipe.

How to do it…
Use a variety of event handlers to detect user key press events by performing the
following steps:

1. Add the following HTML code to the web page you have just created. Update the
reference to the jQuery library to ensure that the latest version is being referenced
into the web page. This HTML creates a simple page that has an input and an
unordered list element, which we can use to output some event information in order
to illustrate what each part of our jQuery code is achieving.
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 2 :: jQuery Events</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>
<input type="text" class="myInput" />
<ul id="myList">
</body>
</html>

2. Within the script tags, add the following JavaScript code to attach both the keyup
and keydown event handlers:

$(function(){
 $('.myInput').keyup(function(){
 $('#myList').append("Key up!");
 });
 $('.myInput').keydown(function(event){
 $('#myList').append("Key down!");
 if (event.which == 13) {
 $('#myList').append("Enter key pressed!");
 }
 });
});

Chapter 2

55

How it works…
We can attach both the keyup and keydown event handlers by first selecting our .myInput
element and then specifying one of the event handler functions as shown in the
following code:

$('.myInput').keydown();

We have added an event variable as an argument to the callback function on the keydown
event. From this event variable, we can detect which key has been pressed using event.
which. This is often useful as we can determine whether the key that the user has just
pressed down is the Enter key, which we would be likely to want to perform a specific action
on, such as for form submission or when we want to trigger an AJAX call. In this example, we
simply append a list item to our #myList unordered list to illustrate the concept.

We replicate this procedure within our keyup event handler and use the .append() function
to append a new DOM element into the list.

Once you load this web page in a browser and enter text in the input box, you will be able to
see the events trigger as the list element updates on every key press. You will be able to see
something similar to the following screenshot:

There's more…
This recipe provides two examples with keydown and keyup. Try experimenting with the
code, and use the alternative keypress() function in the same way to see how it works.

Interacting with the User by Making Use of jQuery Events

56

See also
 f Detecting button clicks

 f Detecting element clicks

 f Restricting input character length

 f Detecting change

Restricting input character length
It is possible to limit the characters a user is able to input into a text field by utilizing jQuery's
keypress events. In some situations, this can be a powerful user experience feature, as the
user is visually aware of the characters that they cannot provide instead of having to wait for a
response from the server informing them of this error.

Getting ready
Once again, we are going to need a blank HTML document with the latest version of jQuery
to work through this recipe. Create recipe-6.html and ensure that you have jQuery
downloaded and ready to go.

How to do it…
Learn how to restrict a user from entering certain characters into a text input using jQuery by
performing the following steps:

1. Add the following HTML code to your newly created recipe-6.html file that creates
a basic HTML web page with a single input element:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 2 :: jQuery Events</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>
<input type="text" class="myInput" />
</body>
</html>

Chapter 2

57

2. Within the script tags of the HTML page, add the following JavaScript code, which
binds a keypress event handler to the input and prevents any nonalphanumeric
character input in the selected text input:
$(function() {
 $('.myInput').keypress(function (event) {
 var regex = new RegExp("^[a-zA-Z0-9]+$");
 var key = String.fromCharCode(event.which);
 if (!regex.test(key)) {
 return false;
 }
 });
});

3. Open recipe-6.html in a browser and attempt to type a nonalphanumeric
character into the input textbox; you will see that it is not possible to do so.

How it works…
We attach the keypress event handler to the .myInput element and specify the event
variable as an argument as shown in the following code snippet:

$('.myInput').keypress(function (event) {

});

This allows us to specify commands to be executed on keypress when the .myInput field
has focus.

We declare a regular expression variable which we can use to evaluate whether the entered
character is alphanumeric.

var regex = new RegExp("^[a-zA-Z0-9]+$");

Each key on the keyboard has a unique numeric code that can be accessed using event.
which. Then, to determine if the key pressed is alphanumeric, we need to retrieve its string
value (for example, alphanumeric value for f is 102), which can be done with the following code:

var key = String.fromCharCode(event.which);

This now allows us to apply the regular expression and determine if it meets our alphanumeric
requirements. If it does not, we prevent such key value from being entered by returning false
as follows:

if (!regex.test(key)) {
 return false;
}

Interacting with the User by Making Use of jQuery Events

58

We allow the character to be displayed in the textbox if the pressed key was a valid
alphanumeric character.

There's more...
It is important to understand that client-side validation such as this is a powerful user
experience feature, but it should never be solely relied upon. Any validation done on the client
side should always be mirrored on the server. This is because it is extremely easy for a user
to bypass client-side validation. It is often as easy as turning off JavaScript from the browser
settings. Remember that any client-side language such as JavaScript is completely open to
manipulation by the end user. For this reason, client-side validation should only be used as a
user experience enhancement and never a form of explicit validation of data input.

See also
 f Detecting key press events on inputs

Changing page elements on mouse hover
jQuery provides many ways to bind mouse event handlers that can give the jQuery developer
more control and flexibility than CSS pseudo classes such as :hover. These event handlers
make it possible to create a rich and interactive user experience based on user actions.

With the release of jQuery 2.0, jQuery no longer officially supports earlier
browsers such as IE6, IE7, and IE8. However, methods such as .hover()
can still provide benefits that will allow you to support earlier versions of
browsers. Be wary, however, that some parts of the jQuery library may no
longer work.

Getting ready
To demonstrate the mouse hover event, we need to firstly create a blank HTML document.
Create recipe-7.html in an easily accessible location on your computer.

How to do it…
The following are the steps to understand how jQuery can be used to detect when a user is
performing a hover action:

1. With your newly created HTML document, add the following HTML and CSS code to
create a web page with some basic form elements:
<!DOCTYPE html>

Chapter 2

59

<html>
<head>
 <title>Chapter 2 :: jQuery Events</title>
 <style type="text/css">
 .info {
 width: 530px;
 border: solid 2px yellow;
 padding: 10px;
 text-align: center;
 margin-top: 10px;
 display: none;
 }
 </style>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>
<label>Your Name:</label>
<input type="text" name="name" class="hoverinfo"
 rel="Please provide us with your name." />
<label>Your Email:</label>
<input type="text" name="email" class="hoverinfo"
 rel="Please provide us with your email address" />
<button class="hoverinfo" rel="Click here to submit your
 information to us">Submit</button>
<div class="info"></div>
</body>
</html>

2. Now we have a web page with three simple form elements and a div tag in which we
can display information about the hovered item. Use the following JavaScript code
and place it within the script tags to attach the mouseover and mouseleave event
handlers to each of the elements with the .hoverinfo class:
$(function(){
 $('.hoverinfo').mouseover(function(){
 $('.info').html($(this).attr("rel"));
 $('.info').fadeIn();
 }).mouseleave(function(){
 $('.info').hide();
 });
});

www.allitebooks.com

http://www.allitebooks.org

Interacting with the User by Making Use of jQuery Events

60

3. Open the web page in a browser and hover over the different form elements; you will
see the appropriate message displayed.

How it works…
We use the following CSS code to add some basic styles to our .info div element so that it
will stand out on the page once displayed:

.info {
 width: 530px;
 border: solid 2px yellow;
 padding: 10px;
 text-align: center;
 margin-top: 10px;
 display: none;
}

We have added display: none; to prevent the .info element from being displayed on
the screen, leaving this to the jQuery code.

We add the .hoverinfo class to each HTML element that includes extra information, so
we can identify them within our jQuery code. We then use the following code to attach both a
mouseover and mouseleave event handler to each of the .hoverinfo elements:

$('.hoverinfo').mouseover(function(){

}).mouseleave(function(){

});

The mouseover event handler will be executed when the users move their mouse over any of
the .hoverinfo elements. Similarly, the mouseleave event will be executed once the user's
mouse pointer has left any of the HTML elements with the .hoverinfo class.

Inside the mouseover event handler, we can use $(this).attr("rel"); to get the text
of the rel attribute (or the value of any HTML attribute) that we have added to each of the
.hoverinfo elements. This can then be used with the following code:

$('.info').html($(this).attr("rel"));
$('.info').fadeIn();

We pass the text from the rel attribute to the .html() function, which will replace the
existing HTML code inside the .info div element. We then use jQuery's .fadeIn() function
to provide an animation and show the .info element with the value from the rel attribute.

Chapter 2

61

Finally, the mouseleave event handler uses $('.info').hide(); to again hide the
element from view, allowing the process to be repeated once another of the .hoverinfo
element's mouseover events has been triggered.

There's more…
jQuery includes many additional mouse event handlers that can be used for a variety of user
interactions. Ensure that you choose the one most suitable for your situation. Visit the jQuery
documentation (http://api.jquery.com/category/events/mouse-events/) to
learn more.

See also
 f Updating content based on user input

Triggering events manually
There may be parts of your web application where reacting to events fired by user interaction
is not enough. jQuery allows us to manually trigger events from within our code.

Getting ready
When creating a web application, there may be times when you require a form that is handled
solely by your jQuery code and is not submitted as a typical HTML form, perhaps to make an
AJAX request instead. This is what we will demonstrate in this recipe. To get started, once
again create another blank HTML document named recipe-8.html. Ensure that it is placed
in an easily accessible location on your computer.

How to do it…
Learn how to manually trigger events from within JavaScript by performing the following steps:

1. Add the following HTML code to recipe-8.html in order to create a very basic web
page with a set of form elements and a submit button:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 2 :: jQuery Events</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>

Interacting with the User by Making Use of jQuery Events

62

</head>
<body>
<label>First Name:</label>
<input type="text" name="firstname" />
<label>Last Name:</label>
<input type="text" name="lastname" />
<label>Your Email:</label>
<input type="text" name="email" />
<button class="submit-btn">Submit</button>
</body>
</html>

2. Add the following jQuery code within the script tags to create an event handler for the
Submit button and to manually trigger the submit button click event when the user
presses Enter inside any of the text inputs:

$(function() {
 $('.submit-btn').on("click", function(){
 alert("Submit the form!");
 });
 $('input[type="text"]').keypress(function(event){
 if (event.which == 13) {
 $('.submit-btn').trigger("click");
 }
 });
});

How it works…
We often want to mimic typical behavior such as form submission when the Enter key is
pressed inside one of our form inputs. We can use the following code to listen for a key press
event on all of our text inputs:

$('input[type="text"]').keypress(function(event){
 if (event.which == 13) {
 $('.submit-btn').trigger("click");
 }
});

This code will be executed once the user has pressed a key inside a text input. When they do
so, we use event.which == 13 to check if the Enter key is pressed (that is, the character
code of Enter is 13). If it has been pressed, we use the jQuery function .trigger() and pass
the string click to manually trigger the click event on the selected element, which in this
case is .submit-btn.

Chapter 2

63

Using the following code, a click event handler can be attached to .submit-btn:

$('.submit-btn').on("click", function(){
 alert("Submit the form!");
});

The code within the function argument is executed and the alert is displayed.

There's more...
There are many other jQuery event handler functions that can be used to manually trigger an
event if no callback function is provided as an argument. For example, consider the following
code:

$('input[type="text"]').keypress(function(event){
 if (event.which == 13) {
 $('.submit-btn').click();
 }
});

This code uses the .click() function to manually trigger a click event, as opposed to using
the .trigger() function. There is no noticeable difference between the two methods, but
note that both are available.

Preventing event triggers
There are many situations where a jQuery developer will want to prevent the default browser
actions of events of normal HTML elements such as forms, buttons, or even their own event
handlers. jQuery provides the ability to stop these events. This allows the developer to
prevent situations such as multiple button clicks, multiple form submissions, and accidental
submissions, or generally allow the developer to change the normal behavior of typical events.

Getting ready
Create a blank HTML file named recipe-9.html and ensure that the latest version of the
jQuery library is available.

Interacting with the User by Making Use of jQuery Events

64

How to do it…
Understand how to prevent default browser actions by performing the following steps:

1. Add the following HTML code to recipe-9.html; ensure that you update the
reference to the jQuery library to the correct location on your computer:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 2 :: jQuery Events</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>
<form method="POST" id="myForm">
 <label>First Name:</label>
 <input type="text" name="firstname" />
 <label>Last Name:</label>
 <input type="text" name="lastname" />
 <label>Your Email:</label>
 <input type="text" name="email" />
 <button class="submit-btn">Submit</button>
</form>
</body>
</html>

2. Use the following jQuery code and place it within the script tags to catch the button
click of the Submit button and prevent the form from being submitted:
$(function() {
 $('.submit-btn').on("click", function(event){
 event.preventDefault();
 event.stopPropagation();
 var response = confirm("Are you sure you want to submit
 this form?");
 if (response) {
 $('#myForm').submit();
 }
 });
});

Chapter 2

65

3. Opening recipe-9.html in a browser and clicking on the Submit button will
present you with a JavaScript confirmation message, which will catch your response
and then submit the HTML form, depending on your choice. The form will not be
submitted until you have responded to this message box, thanks to the event.
preventDefault(); and event.stopPropagation(); methods.

How it works…
The following jQuery code allows us to click on the Submit button and create a click event
handler using the .on() function. We provide click as the first argument to specify that we
require the click event handler, and the .on() function provides an interface for many other
types of events.

$('.submit-btn').on("click", function(event){

});

We provide the event variable as an argument in the .on() callback function. We can then
use the following jQuery functions to create our desired effect:

event.preventDefault();
event.stopPropagation();

The event.prevenDefault(); function prevents the default action of the current
event; in this case, the form submission. This allows us to handle the event in our own way,
such as providing extra functionality or resulting in a different action entirely. The event.
stopPropagation(); function will prevent the event from bubbling up through the parent
and ancestor DOM elements. When an event is fired on an element, the event is also fired
on the parent and all ancestor elements within the DOM, and as a result, we can still fire the
event we are trying to initially prevent.

As we have used these methods to prevent the form submission, we can ask the user if they
are sure they would like to submit the form. We use the native JavaScript confirm() function
to do this as follows:

var response = confirm("Are you sure you want to submit this
 form?");
 if (response) {
 $('#myForm').submit();
}

We store the user's response in a variable which we can then evaluate. If they click on OK to
confirm the form submission, we can go ahead and submit the form using $('#myForm').
submit();. Otherwise, we do nothing and the form is not submitted.

Interacting with the User by Making Use of jQuery Events

66

See also
 f Triggering events manually

Creating a custom event
jQuery provides the developer with ways to handle built-in JavaScript events with functions
such as .click(), .hover(), and others. jQuery also allows developers to create their own
event types for additional functionality. With the creation of custom events, developers are
also able to pass data around their application more easily.

Getting ready
Create another blank HTML document named recipe-10.html in an easily
accessible location.

How to do it…
Learn how to create a custom event using jQuery by performing the following steps:

1. Add the following HTML code to this newly created HTML document. Remember
to update the reference to the jQuery library to point to its local location on your
computer.
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 2 :: jQuery Events</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>
 <button rel="green">Green</button>
 <button rel="blue">Blue</button>
 <p class="colourme"></p>
</body>
</html>

Chapter 2

67

2. We can now bind a custom event handler to our paragraph and trigger it when one
of our button elements is clicked. Add the following JavaScript code within the script
tags:
$(function() {
 $('.colourme').on("switchColour", function(event, colour,
 text){
 $(this).html(text);
 $(this).css("color", colour);
 });
 $("button").click(function(){
 var colour = $(this).attr("rel");
 $('.colourme').trigger("switchColour", colour, colour +
 ' button pressed... ']);
 });
});

3. Open your newly created web page, and by clicking on either of the two buttons,
you should see the paragraph text change along with its color, corresponding to the
button that was clicked.

How it works…
jQuery provides us with a .on() function that allows us to specify the name of the event we
wish to bind to the selected element. We can specify a built-in jQuery event or we can provide
the name of our own event. We do this using the following JavaScript code:

$('.colourme').bind("switchColour", function(event, colour, text){
 $(this).html(text);
 $(this).css("color", colour);
});

This code binds an event handler for our custom switchColour event to the paragraph
element with the colourme class. The second argument we provide to the .on() function
is a callback method that has its own three arguments: Event, which holds the event
information, and then colour and text, which are our own custom properties that we can
use later.

Within the function, we use $(this).html(text); in order to change the content of the
currently selected .colourme paragraph element to be the text provided within the text
variable. We also apply some CSS using $(this).css("color", colour); (use the
spelling color not colour) that changes the color of the text to that of the value provided as
the colour variable.

Interacting with the User by Making Use of jQuery Events

68

Now that our custom event has been created, we need to be able to trigger this event, which
can be done using the following code:

$("button").click(function(){
 var colour = $(this).attr("rel");
 $('.colourme').trigger("switchColour", [colour, colour + '
 button pressed... ']);
});

In the preceding JavaScript code, we use the jQuery provided .click() function to execute
a set of code once either of the button elements have been clicked. Within the click event
handler, we first retrieve the rel attribute of the element, which we specified as a variable
colour in the HTML.

We then use the .trigger() function and specify our custom event to be triggered. We
provide a second parameter as an array, containing both the variables we specified in our
custom event using .on(), colour, and text.

The .trigger() function will fire our custom event and provide any bound elements with
the information we provide. The .colourme paragraph that is bound to this event will have its
inner HTML changed and its CSS color property modified to become the specified color.

3
Loading and

Manipulating Dynamic
Content with

AJAX and JSON

In this chapter, we will cover:

 f Loading HTML from a web server into a page

 f Using AJAX and handling server errors

 f Processing JSON data

 f Searching JavaScript objects

 f Sorting JavaScript objects

 f Caching JSON and AJAX requests

 f Creating a search feature

 f Creating an autosuggest feature

 f Waiting for an AJAX response

Loading and Manipulating Dynamic Content with AJAX and JSON

70

Introduction
jQuery allows the developer to make AJAX calls that will update website content without the
need for refreshing a complete web page. jQuery's AJAX functionality adds an additional
dimension to a website that allows it to become more of a web application. This chapter looks
at how a developer can make these AJAX requests, receive data, and process it. In addition to
processing and utilizing data received from an AJAX request, this chapter also looks at some
of the other major features of AJAX including search and suggestion.

For most of the recipes in this chapter, you will either need to run a web server on your local
machine or have access to an online web server. Some basic knowledge of PHP and MySQL
will be useful as the required web server will make use of these technologies. To learn more
about these technologies, you can refer to the following resources:

 f To learn more on PHP, refer to http://www.php.net

 f To learn more on MySQL, refer to http://www.mysql.com

Loading HTML from a web server into a page
At the most basic level, AJAX allows us to update a single page element with new content from
a web server. This recipe looks at how we can set up some data to be received from a web
server with PHP and how we can then receive this data and apply it to our web page.

Getting ready
Ensure that you have a web server running and have access to its web root.

How to do it…
Perform the following steps to create the required PHP, MySQL, and HTML in order to
understand how to use jQuery with AJAX:

1. Before we can request for any data from the web server to be displayed within our
web page, we need to be able to serve this data from a web server. Create a PHP file
named request-1.php. Add the following PHP code and save it within the web root
of your web server:
<?php
 $num = rand(1, 5);
 switch ($num) {
 case 1:
 $quote = "Learn from yesterday, live for today, hope
 for tomorrow. The important thing is not to stop
 questioning.";

Chapter 3

71

 break;
 case 2:
 $quote = "Only two things are infinite, the universe
 and human stupidity, and I'm not sure about the
 former.";
 break;
 case 3:
 $quote = "The difference between stupidity and genius
 is that genius has its limits.";
 break;
 case 4:
 $quote = "Try not to become a man of success, but
 rather try to become a man of value.";
 break;
 case 5:
 $quote = "Any man who can drive safely while kissing
 a pretty girl is simply not giving the kiss the
 attention it deserves.";
 break;
 }
 echo $quote;

2. The second step is to create a jQuery-powered HTML page that can request data from
our PHP script. Within the web root of your web server, create an HTML file named
recipe-1.html and add the following HTML code to it:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 3 :: AJAX & JSON</title>
 <script src="jquery.min.js"></script>
 <style type="text/css">

 </style>
 <script>

 </script>
</head>
<body>
 <div class="left">
 Famous
Einstein Quotes
 </div>
 <div class="right">
 <p class="quote"></p>
 <button class="refresh">Get Quote</button>

Loading and Manipulating Dynamic Content with AJAX and JSON

72

 </div>
</body>
</html>

3. We are now going to use CSS in order to add styles to our HTML page. Add the
following CSS code within the <style type="text/css"></style> tags in the
recipe-1.html file:
.left {
 width: 200px;
 background-color: #CCC;
 float: left;
 height: 100px;
 text-align: center;
 font-size: 25px;
 padding: 40px 10px 10px 10px;
}
.right {
 width: 300px;
 float: left;
 margin-left: 10px;
 background-color: #333;
 color: #FFF;
 height: 120px;
 font-size: 20px;
 position: relative;
 padding: 20px 10px 10px 10px;
}
.refresh {
 position: absolute;
 right: 5px;
 top: 5px;

}

4. The final step is to add some jQuery code in order to request data from the PHP script
and load it into our web page. Within the script tags in the header of the recipe-1.
html file, add the following jQuery code:

$(function() {
 $('.refresh').click(function() {
 $.ajax({
 url: '/request-1.php',
 type: 'GET'
 }).done(function(data){

Chapter 3

73

 $('.quote').html(data);
 });
 });
});

How it works…
Now, let us understand the steps performed previously in detail.

PHP
The aim of using the PHP script is to provide a random quote by Albert Einstein as a string. To
be able to do this at random, we first need to generate a random number. This is done using
the PHP rand() function as follows:

$num = rand(1, 5);

This will create a variable with a random integer value between 1 to 5. We can then use this
random number to determine which quote to output. We use a switch statement based on the
$num variable to create a $quote variable with a random Einstein quote:

switch ($num) {
 case 1:
 $quote = "Learn from yesterday, live for today, hope for
 tomorrow. The important thing is not to stop
 questioning.";
 break;
 case 2:
 $quote = "Only two things are infinite, the universe and
 human stupidity, and I'm not sure about the former.";
 break;
 case 3:
 $quote = "The difference between stupidity and genius is
 that genius has its limits.";
 break;
 case 4:
 $quote = "Try not to become a man of success, but rather try
 to become a man of value.";
 break;
 case 5:
 $quote = "Any man who can drive safely while kissing a
 pretty girl is simply not giving the kiss the attention it
 deserves.";
 break;
 }

Loading and Manipulating Dynamic Content with AJAX and JSON

74

Finally, we echo the value of $quote:

echo $quote;

If you were to visit this file served from a web server (that is, http://localhost/request.
php) in your browser, you will be presented with a random quote every time you refresh the
page, as shown in the following screenshot:

HTML
We need an HTML page to load our PHP-generated quote. Within the HTML, we define a
simple HTML layout. We create a division element with the class left. This box simply holds
the title Famous Einstein Quotes. We define a second div element with the class right and
two child elements, a paragraph and a button.

In the preceding screenshot, the box on the right-hand side made up of the paragraph
element with a quote class is where we will load our dynamic content using jQuery. We will
use the button to allow the user to trigger the dynamic load of the quote. Note that you could
also load the quote on page load without the need of user interaction.

CSS
To make the web page containing our dynamic quotes, we use some very basic CSS to style
and align the various elements we have created in our HTML as follows:

.left {
 width: 200px;
 background-color: #CCC;
 float: left;
 height: 100px;
 text-align: center;
 font-size: 25px;
 padding: 10px;
 padding-top: 40px;
}

Chapter 3

75

We make the div element with the left class have a static width and height and then force it to
float on the left-hand side of the browser window. A static height is set to ensure that both the
left and right div elements are of equal height. We also add some basic text formatting including
line-height, text-align, and font-size, which are self-explanatory. We also change the
background color of the div element and add some padding for further text alignment.

.right {
 width: 300px;
 float: left;
 margin-left: 10px;
 background-color: #333;
 color: #FFF;
 height: 120px;
 font-size: 20px;
 position: relative;
 padding: 10px;
 padding-top: 20px;
}

We add very similar styles to the right-hand side division element with the addition of
position: relative;, which allows us to prevent sibling elements with an absolute
position from floating outside this div element.

.refresh {
 position: absolute;
 right: 5px;
 top: 5px;
}

As the parent .right division element has a relative position, we can make the position of
the .refresh button absolute and set the top and right position values as static, forcing the
button to float to the top-right corner of our .right division box.

jQuery
Using jQuery, we can make a request to the request.php page we created earlier, which is
on our web server. First, we create an event handler and attach it to the refresh button, so we
can make a request when the user clicks on this button.

$('.refresh').click(function() {

});

Any code within function(){} will be executed when the user clicks on the .refresh
button. Within this callback function, we can make the AJAX request using $ajax, which is
provided by jQuery:

$.ajax({
 url: '/request.php',

Loading and Manipulating Dynamic Content with AJAX and JSON

76

 type: 'GET'
}).done(function(data){
 $('.quote').html(data);
});

We provide $.ajax() with an object, which allows us to specify a set of parameters required
to make the AJAX call. In this example, we provide the url and type parameters that tell
jQuery where to make the request and what kind of request it should be.

Read the documentation on $.ajax() to learn more about other
parameters that can be provided. The API documentation can be
found at http://api.jquery.com/jQuery.ajax/.

Additionally, we append a .done() function after the AJAX request method and provide it
with a callback function that accepts the argument data. This data argument will hold the
response from the server. Within the callback function, we use $('.quote').html(data);
to replace the HTML in the .quote paragraph with the response from our PHP script. If a user
visits this HTML page and clicks on the Get Quote button, they will be presented with a result
as shown in the following screenshot:

See also
 f Creating a search feature

 f Creating an autosuggest feature

 f Waiting for an AJAX response

Using AJAX and handling server errors
In an ideal world, your web application would never go wrong. Unfortunately, this is not the
case, and web developers need to gracefully handle errors and provide the user with
useful feedback.

Chapter 3

77

For example, system errors occur when a server cannot be reached or a file/web page is
missing. System errors are typically unavoidable and out of the user's control. They differ from
application errors such as invalid data input, which a user can correct.

Getting ready
Since this recipe deals with AJAX errors and we will be calling a PHP script that does not exist,
we only require HTML and JavaScript for this recipe. Create a blank HTML document named
recipe-2.html and ensure that you have the latest version of jQuery downloaded and
ready for use.

How to do it…
Learn how to handle AJAX errors by carefully performing the following steps:

1. Add the following HTML code to create a simple web page with a single button that
will trigger an AJAX request:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 3 :: AJAX & JSON</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>
 <button id="makeRequest">Make AJAX request</button>
</body>
</html>

2. Within the script tags, add the following jQuery code that will make an AJAX request to
a nonexistent file when the #makeRequest button has been clicked:
$(function() {
 $('#makeRequest').click(function() {
 $.ajax({
 url: 'i-do-not-exist.html',
 type: 'GET'
 }).done(function(data){
 //Will not succeed as no file exists
 });
 });
});

Loading and Manipulating Dynamic Content with AJAX and JSON

78

3. Under the AJAX request (but still within $(function(){});), add the following
code, which will create a global AJAX error event handler that is fired every time an
AJAX request fails:

$(document).ajaxError(function(event, request, settings) {
 alert("Error trying to reach '" + settings.url + "'.
 ERROR CODE: " + request.status + " ERROR MESSAGE: " +
 request.statusText);
});

How it works…
The HTML page we created is self-explanatory. We create a button that can trigger the AJAX
request. This is obviously the simplest example to illustrate the error handling concept, which
can then be applied to any AJAX request situation using jQuery.

We create an event handler for the #makeRequest button and provide a callback function to
be executed on-click as follows:

$('#makeRequest').click(function() {
 $.ajax({
 url: 'i-do-not-exist.html',
 type: 'GET'
 }).done(function(data){
 //Will not succeed as no file exists
 });
});

We add the AJAX request within the callback function using the $.ajax() function provided
by jQuery. We then pass a JavaScript object to this method, where we specify the URL of a
nonexistent file and the type of the request; in this case, GET. Note that the .done() function
chained onto the $.ajax() function will never be executed if the AJAX request fails.

We create a global AJAX error handler and attach it to the document so that it will catch all
AJAX errors within our page:

$(document).ajaxError(function(event, request, settings) {
 alert("Error trying to reach '" + settings.url + "'. ERROR CODE:
 " + request.status + " ERROR MESSAGE: " + request.statusText);
});

There are three arguments provided to the callback function of the .ajaxError method that
we can use to learn more about the error. In this example, we extract the target URL from the
settings variable and the status information from the request object.

Chapter 3

79

If you open this HTML file in a web browser and click on the #makeRequest button, you will
be presented with a JavaScript alert box that provides you information about the error, as
shown in the following screenshot:

There's more…
In this example, we created a global AJAX error handler to catch all the AJAX request errors
within our page. A global AJAX error handler is ideal for request errors such as file missing
or host unreachable. In these cases, errors can be handled in the same way for all AJAX
requests, and more specific information about an individual request is not required.

There might be instances in your application where you may need to handle one or more AJAX
request errors differently. For this, you can use the .fail() function, which is used in the
same way as .done(). The following jQuery code provides an example usage of .fail() to
achieve the same result for a simple AJAX request as our global error handler:

$.ajax({
 url: 'i-do-not-exist.html',
 type: 'GET'
}).done(function(data){
 //Will not succeed as now file exists
}).fail(function(event){
 alert("An error occurred. Error Code: " + event.status);
});

Note that there is less information directly available about the error.

Processing JSON data
JavaScript Object Notation (JSON) provides web developers with a clean and efficient way to
encode data. JSON is a widely adopted format. It simplifies data processing and manipulation.
To read more about why you should use JSON, visit http://www.revillweb.com/why-
use-json/.

Loading and Manipulating Dynamic Content with AJAX and JSON

80

Getting ready
Ensure that your web server is running and you have access to the web root where you can
save/upload the files that you will create as part of this recipe.

How to do it…
Learn how to use JSON-formatted data with JavaScript by performing the following steps:

1. Create a PHP file named request-3.php and save it to the web root of your web
server. Use the following PHP code to create and output a list of names as JSON data:
<?php
 //Create an array of people
 $people = array(
 1 => array(
 "firstname" => "Luke",
 "lastname" => "Skywalker"
),
 2 => array(
 "firstname" => "Darth",
 "lastname" => "Vader"
),
 3 => array(
 "firstname" => "Mace",
 "lastname" => "Windu"
)
);
 //Ensure the browser is expecting the correct content
 //type format and charset
 header("Content-Type: application/json; charset=UTF-8");
 //Encode the array of people into JSON data
 echo json_encode($people);
?>

2. Create an HTML page named recipe-3.html within the web root of your web
server. Add the following HTML to this page, which creates an unordered list element
that can be populated with our JSON data once processed:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 3 :: AJAX & JSON</title>
 <script src="jquery.min.js"></script>
 <script>

Chapter 3

81

 </script>
</head>
<body>
 <ul id="peopleList">
</body>
</html>

3. Within the script tags in the head tag of the HTML page, add the following jQuery
code to perform an AJAX request to the request-3.php page created earlier:
$(function(){
 $.ajax({
 url: '/request-3.php',
 type: 'GET'
 }).done(function(data){

 });
});

4. Within the .done() callback function, use the jQuery $.each() function to process
the JSON data returned from our PHP page and add a new list item for each person to
the list within our HTML page:
$.each(data, function(key, value) {
 $('#peopleList').append("#" + key + " " +
 value.firstname + " " + value.lastname + "");
});

How it works…
Now, let us understand the steps performed previously in detail.

PHP
In a real-world application, you would typically be retrieving data from a database. In this
recipe, we are creating a simple, two-dimensional array of names that will act as our
database, allowing us to concentrate on the jQuery code.

$people = array(
 1 => array(
 "firstname" => "Luke",
 "lastname" => "Skywalker"
),
 2 => array(
 "firstname" => "Darth",
 "lastname" => "Vader"
),
 3 => array(
 "firstname" => "Mace",
 "lastname" => "Windu"
)
);

Loading and Manipulating Dynamic Content with AJAX and JSON

82

Next, we manually specify the response content type and character set. The content type and
character set of the response should be specified so that the web browser and jQuery code
know the format in which to expect the data. Most web browsers will work this out without
an issue. However, Internet Explorer 9 and lower versions are particularly problematic in this
area, and it is always good practice to manually specify the content type and charset using the
PHP's header() function:

header("Content-Type: application/json; charset=UTF-8");

Note that we have set the charset as UTF-8, not utf8 or utf-8. Once again, most browsers
will be fine with either, but some earlier Internet Explorer versions will produce undesirable
effects if the character set is not formatted correctly.

The browser-related issues mentioned in this recipe are not likely
to occur within this example with such simple data. This is a best
practice and will provide a greater benefit to larger and more
complex web applications that use AJAX and JSON.

Finally, we encode our PHP array in the JSON format using the PHP provided json_encode()
function and output the results using echo as follows:

echo json_encode($people);

If you visit the request-3.php page directly, you will see the output of the people array
within the browser window in the following format:

{"1":{"firstname":"Luke","lastname":"Skywalker"},"2":{"firstname":
"Darth","lastname":"Vader"},"3":{"firstname":"Mace",
"lastname":"Windu"}}

Alternatively, using the browser developer tools and selecting the network tab, you can view
the response in a more readable manner.

HTML
Our HTML page does nothing more than include the jQuery library and creates an HTML
unordered list element, which we can populate with the JSON data once processed by jQuery.

jQuery
Putting our code within $(function(){});will lead to its execution on page load. We use
jQuery's $.ajax() functionality to make the AJAX request to our previously created PHP file
as follows:

$.ajax({
 url: '/request.php',
 type: 'GET'
}).done(function(data){
});

Chapter 3

83

By providing the url and type parameters within an object to this method, we tell a method
to make a GET request to the request-3.php file present in the web root of our web server.
We then append a .done() function onto the $.ajax(); method, which will be executed
when the request has been made successfully. The .done() method takes a callback
function as an argument with the data variable that contains all the response data from the
request—the JSON data from the PHP file.

Now that we have the response data available within the data variable, we can process the
JSON data and populate our HTML list element using the following code:

$.each(data, function(key, value) {
 $('#peopleList').append("#" + key + " " + value.firstname +
 " " + value.lastname + "");
});

$.each(); is another function provided by jQuery which allows us to loop through a set
of data that is specified as the first argument in this example (that is, data). The second
argument is the callback function to execute for each of the items found within the data
variable. This callback function also takes two arguments, key and value. Using these
variables, we can get all the information from the JSON data including the array key (for
example, 1, 2, 3, and so on) and the values; the first and last names for each object.

Finally, we select the #peopleList element, and we use the append() function to append
an HTML list item to the unordered list with the data from each of the people JSON objects.

See also
 f Searching JavaScript objects

 f Sorting JavaScript objects

Searching JavaScript objects
With objects being the main method of holding data within your application, it can be very
useful to be able to find objects matching a certain criteria. jQuery does not provide a direct
method for us to search through objects and arrays of objects; however, we can easily create
this functionality.

Getting ready
Using your favorite text editor, create a blank HTML document named recipe-4.html, and
ensure that you have the latest version of jQuery installed. Add the following HTML code to
this HTML file:

<!DOCTYPE html>
<html>

Loading and Manipulating Dynamic Content with AJAX and JSON

84

<head>
 <title>Chapter 3 :: AJAX & JSON</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body></body>
</html>

Ensure that you update the reference to the jQuery library to point out the location where it is
saved on your computer. This HTML page provides us with a web page where we can execute
JavaScript for this recipe.

How to do it…
Create a JavaScript function that will make searching through an object easy by performing
the following steps:

1. Within the script tags of the newly created recipe-4.html page, create an array of
objects on which we can perform searches:
var people = [
{
 title: "Mr",
 firstname: "John",
 lastname: "Doe"
},
{
 title: "Mrs",
 firstname: "Jane",
 lastname: "Doe"
},
{
 title: "Sir",
 firstname: "Johnathan",
 lastname: "Williams"
},
{
 title: "Sir",
 firstname: "Edward",
 lastname: "Tailor"
}
];

Chapter 3

85

2. Below this array of objects, add the following recursive function that we can use
to iterate through the preceding objects and find matches based on the provided
arguments:
function findObjects(parameter, value, object) {
 var matches = [];
 for (var i in object) {
 if (typeof object[i] == 'object') {
 matches = matches.concat(findObjects(parameter,
 value, object[i]));
 } else if (i == parameter && object[parameter] ==
 value) {
 matches.push(object);
 }
 }
return matches;
}

3. Call the function by specifying the parameter you would like to look for, the value you
would like to match, and then the object/objects you would like to search through:
var results = findObjects("title", "Sir", people);
console.log(results);

4. Open recipe-4.html in a browser and then the JavaScript console (Ctrl + Shift + J
in Chrome); you will be presented with the results of the search.

How it works…
First of all, an array of objects representing people is created. This does not need to be a static
set of data and could have been loaded from an AJAX request as seen in the previous recipes.

Our findObjects() function will allow us to search through an object or an array of objects.
This function takes three arguments. The first argument is parameter, which is the object we
want to search within; in this example, title. The second argument is the actual value we
want to find matches against; the above example uses Sir. The final argument is the array of
objects we created.

We first create an empty array within the function, which will hold each of the objects that
match our specified criteria:

var matches = [];

Using the native JavaScript for loop, we can iterate through the object/objects.

for (var i in object) {
}

Loading and Manipulating Dynamic Content with AJAX and JSON

86

If we provide an array of objects, object[i] will represent a different object within the array
on each iteration. If we provided a single object, then i will be a different property within the
provided object on each iteration.

Since JavaScript objects can also hold other objects or arrays, we need to allow for recursion
so that we can search through an infinite depth of objects. To do this, we first check to see if
object[i] (the currently iterated object or property value) is an object. If it is, we call our
findObjects() function from within itself and provide the current object as the
last argument:

if (typeof object[i] == 'object') {
 matches = matches.concat(findObjects(parameter, value,
 object[i]));
}

As the findObjects() function will return an array of matches, we use matches =
matches.concat() to add the array of returned results to the current array of matches. We
add an else if statement to filter instances where the value is not an object.

if (typeof object[i] == 'object') {
 matches = matches.concat(findObjects(parameter, value,
 object[i]));
} else if (i == parameter && object[parameter] == value) {
 matches.push(object);
}

Within the else if statement, we check to see if the current property (represented by i)
matches the parameter we provided as an argument. If this is true, we check whether the
value for this property matches the value we provided as an argument. If this is also true, we
use matches.push(object) to add the current object to the matches array. Finally, once
we have iterated through all the objects and properties, we return the matches array.

In the preceding example, we then simply use console.log(); to output the array of
matching objects to the browser's JavaScript console. This array can be used in any manner,
such as to populate an HTML list element.

There's more…
Searching through JavaScript objects will often become a common part of your application.
Be sure to make functions such as this as universal as possible, and do not code them for
a single operation. You will then be able to make this function globally available within your
application and re-use it throughout. Also, be careful when writing recursive functions, as it is
easy to create infinite loops and complex, unreadable code.

Chapter 3

87

See also
 f Processing JSON data

 f Sorting JavaScript objects

Sorting JavaScript objects
Along with the ability to efficiently find objects that match a criteria, you will often require your
objects to be in a certain order for outputting.

Getting ready
As with the previous recipe, create an HTML page named recipe-5.html where we can add
and execute JavaScript code for this recipe using the following code:

<!DOCTYPE html>
<html>
<head>
 <title>Chapter 3 :: AJAX & JSON</title>
 <script src="jquery.min.js"></script>
 <script >

 </script>
</head>
<body></body>
</html>

Update the reference to the jQuery library in order to ensure that it includes the correct file on
your computer.

How to do it…
Create a reusable function to sort a JavaScript object by performing the following step-by-step
instructions:

1. Within the script tags in the recipe-5.html file you have just created, add the
following JavaScript code:
var people = [
 {
 title: "Mrs",
 firstname: "Jane",
 lastname: "Doe"
 },

Loading and Manipulating Dynamic Content with AJAX and JSON

88

 {
 title: "Sir",
 firstname: "Johnathan",
 lastname: "Williams"
 },
 {
 title: "Mr",
 firstname: "John",
 lastname: "Andrews"
 },
 {
 title: "Sir",

 firstname: "Edward",
 lastname: "Tailor"
 }
];

2. Below this array, add the following function that can be used to sort JavaScript
objects within an array:
function sortObjectsByParam(param) {
 return function(a, b) {
 if (a[param] == b[param]) { return 0; }
 if (a[param] > b[param]) { return 1; }
 else { return -1; }
 }
}

3. Use this function with the native JavaScript .sort() function as follows:
people.sort(sortObjectsByParam("lastname"));
console.log(people);

4. Opening this web page in a browser and looking at the JavaScript console will provide
you with a list of the objects we created in the JavaScript array in step 1. The difference
is that they will be ordered by the last name as opposed to their original order.

How it works…
We must have an array of objects to successfully use our .sort() function to reorder them.
This array of objects can be static, as in the example, or can be loaded from a server via an
AJAX request.

Chapter 3

89

JavaScript provides a .sort() function, which takes a function as an argument and provides
two arguments to this callback function. The typical usage of .sort() would be as follows:

people.sort(function(a, b){
 //Compare objects here
});

The a and b arguments are two objects from the array. We can compare these two objects
and determine which object needs to be placed before the other.

In our example, we require some additional functionality; we need to be able to specify which
parameter on which we want to sort the objects. As we cannot provide the .sort() callback
function with an additional argument, we wrap the callback in another function as follows:

function sortObjectsByParam(param) {
 return function(a, b) {

 }
}

We can then specify a property on which to sort the objects, which can then be used within
the callback function. The callback function must return either 0 or a positive or negative
number. In our example, 0 means that no sorting is required and that both objects are equal.
1 means that a should be placed before b and -1 means that b should be placed before a.
We can do this evaluation within the callback function as follows:

function sortObjectsByParam(param) {
 return function(a, b) {
 if (a[param] == b[param]) { return 0; }
 if (a[param] > b[param]) { return 1; }
 else { return -1; }
 }
}

We use a[param] and b[param] to check only the specified parameter of the objects. We
can now use this function in conjunction with the native JavaScript .sort() function to
reorder our objects based on the specified parameter as follows:

$(function(){
 people.sort(sortObjectsByParam("lastname"));
 console.log(people);
});

This would alphabetically reorder the array of objects we created earlier by their last name.
So, the object Mr John Andrews would be the first in the array and so on.

Loading and Manipulating Dynamic Content with AJAX and JSON

90

There's more…
Similar to the function used for searching objects, this function should not be coded for a
single operation so that it can be used throughout your application. Reusable code will make
your application more manageable and easier to debug.

See also
 f Processing JSON data

 f Searching JavaScript objects

Caching JSON and AJAX requests
One way by which a web developer can increase the speed of his/her web application is by
limiting the number of requests made to the web server. It is very important to ensure that you
are making data calls only when you need to. We can use caching to ensure that requests are
made only when a new set of data is required.

Getting ready
Ensure that your web server is up and running and you have permission to add files to the
server's web root directory.

How to do it…
Learn how to speed up your JavaScript applications using simple caching methods by
performing the following instructions:

1. Create a PHP file named request-6.php in the web root of your web server. Use the
following PHP code to create and output a list of names as JSON data:
<?php
 //Create an array of people
 $people = array(
 1 => array(
 "firstname" => "Luke",
 "lastname" => "Skywalker"
),
 2 => array(
 "firstname" => "Darth",
 "lastname" => "Vader"
),
 3 => array(

Chapter 3

91

 "firstname" => "Mace",
 "lastname" => "Windu"
)
);
 //Ensure the browser is expecting the correct content
 //type format and charset
 header("Content-Type: application/json; charset=UTF-8");
 //Encode the array of people into JSON data
 echo json_encode($people);

2. Use the following HTML code to create a page named recipe-6.html within the
web root of your web server so that you can make AJAX requests to your PHP file:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 3 :: AJAX & JSON</title>
 <script src="jquery.min.js"></script>
 <script>

 </script>
</head>
<body>
 <ul id="peopleList">
 <button class="getPeople">Get People</button>
</body>
</html>

3. Within the script tags in the head tag of the HTML page, add the following jQuery
code to make an AJAX request to retrieve the people array created in the PHP file
and then cache the results:

var cache = [];
$(function(){
 $('.getPeople').click(function(){
 if (cache.length == 0) {
 $.ajax({
 url: '/request-6.php',
 type: 'GET',
 async: false
 }).done(function(data){
 cache = data;
 });
 }
 $('#peopleList').empty();
 $.each(cache, function(key, value){

Loading and Manipulating Dynamic Content with AJAX and JSON

92

 $('#peopleList').append("#" + key + " " +
 value.firstname + " " + value.lastname + "");
 });
 });
});

How it works…
Now, let us understand the steps performed previously in detail.

PHP
Please refer to the previous recipe, Processing JSON data, of this chapter for a detailed look
at how this PHP code works.

HTML
The HTML page we created is very basic and does not require a great deal of explanation. We
simply create an unordered list element, which we can populate with jQuery, and a button,
which the user can click on to trigger the AJAX request to load the JSON data from the PHP file.

jQuery
First, we create an empty JavaScript array that we can use to cache the data received from
AJAX requests as follows:

var cache = [];

Then, within $(function(){});, which will be executed on page load, we attach a click
event handler to the .getPeople button.

$(function(){
 $('.getPeople').click(function(){

 });
});

Within the callback function for this event handler, we check to see if there is currently
anything within the cache array by evaluating its length:

if (cache.length == 0) {

}

If there is nothing in the cache array, we do not have any cached data. We need to make
an AJAX request to our PHP file in order to get the JSON data as shown in the following code
snippet. This will ensure that an AJAX request is made only when data is required, and a
request will not be made every time the button is clicked.

if (cache.length == 0) {
 $.ajax({
 url: '/request.php',

Chapter 3

93

 type: 'GET',
 async: false
 }).success(function(data){
 cache = data;
 });
}

On the success of the AJAX request, we store the results within our cache array. Note that
we have set the async property to false, meaning that any JavaScript code below the AJAX
request will not be executed until there has been a response. This is to prevent the HTML list
being populated before the cache array has been populated with data. This would not be the
ideal solution for large applications because this can cause the browser to hang or crash if the
AJAX request takes a long time to respond. Read the Waiting for an AJAX response recipe of
this chapter to learn the preferred method of waiting for AJAX request completion.

With the cache array populated, we can use it to add items to our HTML unordered list. We
use the jQuery $.each() function, which allows us to iterate through each of the objects
within the cache array. For each of these objects, we use .append() to add a list item along
with the data from the object to the #peopleList list.

$('#peopleList').empty();
$.each(cache, function(key, value){
 $('#peopleList').append("#" + key + " " + value.firstname +
 " " + value.lastname + "");
});

Before we populate the list, we first use $('#peopleList').empty(); to empty the list in
the DOM. This is to prevent additional button clicks from adding duplicate items.

There's more…
This method of caching data can speed up your web application. This method, however, will
not be suitable for situations where the requested data is changing frequently, as the user will
only get updated data when they refresh or revisit the page.

AJAX requests in jQuery have their own form of caching, which is essentially the same as the
browser cache. Through the settings provided to the $.ajax() function, you can control how
this type of cache works. Although this cache can be useful, it does not offer the same level of
control as the manual caching method we implemented in this recipe.

Creating a search feature
Allowing your users to search through data within your web application is a basic principle.
This recipe will show you how to create a fast and efficient search feature that uses jQuery
and AJAX with a PHP and MySQL backend.

Loading and Manipulating Dynamic Content with AJAX and JSON

94

Getting ready
This recipe not only requires that you have a running web server that has PHP5, but you will
also need a MySQL server that is ready to accept connections from PHP scripts.

How to do it…
Learn how to create a search feature from scratch, which will show you valuable jQuery
principles in action, by performing the following steps:

1. We need to create a database and a table to store the data that the users will be able
to search. Create a database named jquerycookbook on your database server,
and use the following SQL code to create and populate a table with some data:
USE `jquerycookbook`;

CREATE TABLE IF NOT EXISTS `stationary` (
 `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
 `title` varchar(128) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=6 ;

INSERT INTO `stationary` (`id`, `title`) VALUES
(1, 'Ruler'),
(2, 'Pencil'),
(3, 'Pen'),
(4, 'Rubber'),
(5, 'Sharpener');

2. In order to allow the users to search the data present in our database from their
browser (the client), we need to be able to extract the information from the database
based on their search. We can do this using PHP to query the MySQL database for
data based on the search term, which will be provided by the user via the client.
Before we can do this, we need to be able to connect to the database we just created.
Create a PHP file named db.inc.php within the web root of your web server and
add the following code:
<?php
 $dbhost = 'localhost'; //hostname
 $dbuser = 'root'; //database username
 $dbpass = ''; //database password
 $dbname = 'jquerycookbook'; //database name

 $db = new mysqli($dbhost, $dbuser, $dbpass);

 $db->select_db($dbname);

Chapter 3

95

 if($db->connect_errno > 0){
 die('ERROR! - COULD NOT CONNECT TO mySQL
 DATABASE: ' . $db->connect_error);
 }

3. Be sure to change the $dbhost, $dbuser, and $dbpass values to match
your configuration.

4. Create a PHP file named search.php in the web root of your web server and add the
following code:
<?php
 //Prepare an object to hold data we are going to send
 //back to the jQuery
 $data = new stdClass;
 $data->success = false;
 $data->results = array();
 $data->error = NULL;
 //Has the text been posted?
 if (isset($_POST['text'])) {
 //Connect to the database
 require_once('db.inc.php');
 //Escape the text to prevent SQL injection
 $text = $db->real_escape_string($_POST['text']);
 //Run a LIKE query to search for titles that are like
 //the entered text
 $q = "SELECT * FROM `stationary` WHERE `title`
 LIKE '%{$text}%'";
 $result = $db->query($q);
 //Did the query complete successfully?
 if (!$result) {
 //If not add an error to the data array
 $data->error = "Could not query database for search
 results, MYSQL ERROR: " . $db->error;
 } else {
 //Loop through the results and add to the results
 //array
 while ($row = $result->fetch_assoc()) {
 $data->results[] = array(
 'id' => $row['id'],
 'title' => $row['title']
);
 }
 //Everything went to plan so set success to true
 $data->success = true;
 }

Loading and Manipulating Dynamic Content with AJAX and JSON

96

 }
 //Set the content type for a json object and ensure
 //charset is UTF-8. Not utf8 otherwise it will not work in IE
 header("Content-Type: application/json; charset=UTF-8");
 //json encode the data
 echo json_encode($data);

5. Create an HTML file named recipe-7.html in the web root of your web server
using the following HTML code:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 3 :: AJAX & JSON</title>
 <script src="jquery.min.js"></script>
 <script src='script-7.js'></script>
 <link href='style-7.css' rel="stylesheet" />
</head>
<body>
 <div id='frame'>
 <div class='search'>
 <div class='header'>
 <h1>Chapter 3 :: Search Feature</h1>
 <input type='text' id='text' />
 <button id='search'>Search</button>
 </div>
 <div id='results-holder'>
 <div class="loading-holder">
 <div class="loading">Loading...</div>
 </div>
 <ul id='results-list'>
 </div>
 </div>
 </div>
</body>
</html>

6. To make our search feature more attractive, we can use CSS to style the HTML page
we have just created. You may have noticed that within the HTML page header, we
included a CSS file named style-7.css. Create the style-7.css file, save it to
the web root of your web server, and add the following CSS code:
/* Include a web font from Google */
@import url(http://fonts.googleapis.com/css?family=Denk+One);
/* Basic CSS for positioning etc */

Chapter 3

97

body {
 font-family: 'Denk One', sans-serif;
}
#frame {
 width: 500px;
 margin: 125px auto auto auto;
 border: solid 1px #CCC;
 /* SOME CSS3 DIV SHADOW */
 -webkit-box-shadow: 0 0 10px #CCC;
 -moz-box-shadow: 0 0 10px #CCC;
 box-shadow: 0 0 10px #CCC;
 /* CSS3 ROUNDED CORNERS */
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
 -khtml-border-radius: 5px;
 border-radius: 5px;
 background-color: #FFF;
}
.search .header {
 margin: 25px;
}
.search .header {
 text-align: center;
}
.search .header input {
 width: 350px;
}
#results-holder {
 min-height: 200px;
}
.loading {
 text-align: center;
 line-height: 30px;
 display: none; /* DONT DISPLAY BY DEFAULT */
}
.loading-holder {
 height: 30px;
}
/* Styling for the results list */
#results-list {
 margin: 0;
 padding: 0;
 list-style: none; /* REMOVE THE BULLET POINTS */
}

Loading and Manipulating Dynamic Content with AJAX and JSON

98

#results-list li {
 line-height: 30px;
 border-bottom: solid 1px #CCC;
 padding: 5px 5px 5px 10px;
 color: #333;
}
/* REMOVE THE BORDER FROM THE LAST LIST ELEMENT SO IT DOESN'T
CLASS WITH THE FRAME BORDER */
#results-list li:last-child {
 border: none;
}

/* STYLE THE NO RESULTS LIST ITEM */
#results-list .no-results {
 text-align: center;
 font-weight: bold;
 font-size: 14px;
}

7. Using jQuery, we will be able to accept the user's search query and send the request
to our PHP script. Create a JavaScript file named script-7.js within the web root
of your web server. Note that this was also included within the header of the HTML
file. Add the following jQuery code to this file:
$(function(){
 //Hide the result list on load
 $('#results-list').hide();
 //Click event when search button is pressed
 $('#search').click(function(){
 doSearch();
 });
 //Keypress event to see if enter was pressed in text
 //input
 $('#text').keydown(function(e){
 if(e.keyCode == 13){
 doSearch();
 }
 });
});

function doSearch() {
 var searchText = $('#text').val();
 //Rehide the search results
 $('#results-list').hide();
 $.ajax({

Chapter 3

99

 url: '/search.php',
 type: 'POST',
 data: {
 'text': searchText
 },
 beforeSend: function(){
 $('.loading').fadeIn();
 },
 success: function(data) {
 $('.loading').fadeOut();
 //Was everything successful, no errors in the PHP
 //script
 if (data.success) {
 $('#results-list').empty();
 if(data.results.length > 0) {
 $.each(data.results, function(){
 $('#results-list').append("" + this.title +
 "");
 });
 } else {
 $('#results-list').append("<li class=
 'no-results'>Your search did not return any
 results");
 }
 //Show the results list
 $('#results-list').fadeIn();
 } else {
 //Display the error message
 alert(data.error);
 }
 }
 });
}

Loading and Manipulating Dynamic Content with AJAX and JSON

100

8. Visiting the recipe-7.html file on your web server will present you with a simply-
styled search input, allowing you to perform a search on the stationary items we
added to our MySQL database. The following screenshot is similar to the one you will
see after a search is completed:

How it works…
Now, let us understand the steps performed previously in detail.

SQL
With the SQL code, we simply tell the SQL script to use the jquerycookbook database that
we created; we create a table named stationary and then insert five stationary items into
the table.

PHP
The first PHP script we created, db.inc.php, was simply to connect to the database we
created, which will then allow us to query the data within it. We created four variables to hold
the hostname of the database server (typically localhost), the username, the password, and
finally the name of the database to which we wish to connect.

$dbhost = 'localhost'; //hostname
$dbuser = 'root'; //database username
$dbpass = ''; //database password
$dbname = 'jquerycookbook'; //database name

After we have this information available within our PHP script, we create a new mysqli
connection and select the jquerycookbook database for use.

$db = new mysqli($dbhost, $dbuser, $dbpass);
$db->select_db($dbname);

Chapter 3

101

Finally, we add some basic error handling code that would stop any further execution if the
connection to the database server failed. We also provide some information about the error
for debugging.

if ($db->connect_errno > 0){
 die('ERROR! - COULD NOT CONNECT TO mySQL
 DATABASE: ' . $db->connect_error);
}

Now that we have a script that we can call in order to connect to our database, it is possible
for us to write the PHP script that will take information from the client and perform queries on
the database.

First, we create an object named $data to hold the results and any errors from the script. We
create this object using PHP's stdClass as follows:

$data = new stdClass;
$data->success = false;
$data->results = array();
$data->error = NULL;

Next, we check to see if the request from the client included some POST information with
text as the key. This prevents the script from running needlessly if we have no query text.

if (isset($_POST['text'])) {

PHP's isset() function simply checks to see if the provided argument is set and available
for use. If there has been some data posted to the script with the key text, we can continue
to connect to the database by including our database connection script using require_
once();. There are various ways by which you can include additional PHP files. We use
require_once() because we cannot continue with the execution without the database
connection. If the specified file is not found when using require_once(), the script provides
a fatal error and ceases the execution.

if (isset($_POST['text'])) {
 //Connect to the database
 require_once('db.inc.php');
 //Escape the text to prevent SQL injection
 $text = $db->real_escape_string($_POST['text']);
}

Loading and Manipulating Dynamic Content with AJAX and JSON

102

After including the database connection file and connecting to the database, we can refer
to the $db connection variable that is instantiated within that file. We then use the real_
escape_string() function that will remove any harmful characters from the provided text
string with the aim to prevent a security breach, such as MySQL injection (read more on this
at http://dev.mysql.com/tech-resources/articles/guide-to-php-security-
ch3.pdf). We put $_POST['text'] through this function and store the result in a $text
variable, which we can now safely use within MySQL queries.

$q = "SELECT * FROM `stationary` WHERE `title` LIKE '%{$text}%'";
$result = $db->query($q);
if (!$result) {
 $data->error = "Could not query database for search results,
 MYSQL ERROR: " . $db->error;
} else {

}

We construct a MySQL LIKE query using the $text string and then use $result = $db-
>query($q); to execute the query on the database. We first evaluate the $result variable
for a false value to determine if the query was executed successfully. If the query isn't
executed successfully, we store an error within the $data object.

If the query is executed successfully, we can prepare the results to send back to the client
as follows:

if (!$result) {
 $data->error = "Could not query database for search results,
 MYSQL ERROR: " . $db->error;
} else {
 while ($row = $result->fetch_assoc()) {
 $data->results[] = array(
 'id' => $row['id'],
 'title' => $row['title']
);
 }
 $data->success = true;
}

By using a while loop with $result->fetch_assoc(), we are able to iterate through
each of the results returned from the database query. We can then extract the information
we require and store each item within the results array in the $data object. Once this is
complete, we set the success variable of the $data object to true, which will tell the jQuery
within the client that everything went according to plan.

Finally, we set the headers in order to force the jQuery to expect JSON data, encode our
$data object into JSON, and output the encoded data as follows:

header("Content-Type: application/json; charset=UTF-8");
echo json_encode($data);

Chapter 3

103

HTML
The HTML page we created provides the user with an input where they can type in their search
query and a button to submit the search. It provides us with an unordered list element to
display the results to the user. We also create a div element showing a Loading… message
with the help of jQuery, which will be displayed when the AJAX request is made.

CSS
The CSS we created positions our HTML elements on the page and styles each item to provide
a greater user experience. Note that we are using Google Fonts to add additional aesthetics to
our search feature; you can read more about this at http://www.google.com/fonts/.

jQuery
Within the script-7.js file, we perform three actions on page load as shown in the
following code snippet:

$(function(){
 $('#results-list').hide();
 $('#search').click(function(){
 doSearch();
 });
 $('#text').keydown(function(e){
 if(e.keyCode == 13){
 doSearch();
 }
 });
});

Firstly, we hide the results list using $('#results-list').hide(); so that it will be
hidden by default. We then attach a click event handler to the search button which will
perform the search when this button is clicked. Within the callback function for this event
handler, we call the doSearch(); function, which is declared later in our JavaScript file. The
final action that we perform on page load is adding a keydown event handler to the search
input which allows us to detect if the Enter key has been pressed. If it has, we can call the
doSearch(); function to trigger the search.

The doSearch() function performs the AJAX request, sending the search query text to the
PHP script. It also processes the response and updates the HTML page appropriately. The
function gets the inputted text from the search input using $('#text').val(); and stores
it in the searchText variable for use. It also hides #results-list to ensure that it is
always hidden before the AJAX request is made, providing room to display the loading text.

function doSearch() {
 var searchText = $('#text').val();
 $('#results-list').hide();
}

Loading and Manipulating Dynamic Content with AJAX and JSON

104

This function uses the jQuery-provided $.ajax() method to set up and make an AJAX
request to our search.php script:

$.ajax({
 url: '/search.php',
 type: 'POST',
 data: {
 'text': searchText
 },
 beforeSend: function(){
 $('.loading').fadeIn();
 },
 success: function(data) {
 $('.loading').fadeOut();
 }
});

The initial parameters we provide to the AJAX function are the URLs in which we wish to make
the request, the type of request we would like to make, and the data we would like to send
with the request. We specify the request target as the search.php file and the request type
as POST, so we can send data to the PHP file without needing it to be within the URL. Within
the data object, we put the searchText variable with a key of text, which will be picked up
by our PHP script that we created earlier, allowing it to use the user-inputted text.

We include beforeSend after these initial parameters, which allows us to specify a callback
function to be executed just before the AJAX request is made. We are able to add some
animation and show the .loading div element within this function using $('.loading').
fadeIn();. This will display the Loading… text, informing the user that the request is in
progress. Within the success callback function, which is executed once the request is
successful and a response has been received, we are able to hide the Loading… div element
with some additional animation using $('.loading').fadeOut();.

The success callback function has the data argument which will hold all of the response
data from the PHP file. Looking back at the PHP script, you will remember the $data object
we created to store information about the response. We check to see if the success property
of this object is set to true, meaning that the query was successful.

success: function(data) {
 $('.loading').fadeOut();
 if (data.success) {

} else {
 alert(data.error);
 }
}

Chapter 3

105

If the success property is not set to true and something does go wrong, we then use
alert(data.error); to alert the user with the error message created by the search.php
script.

If data.success is set to true, we can process the search results and update the HTML
page as follows:

success: function(data) {
 $('.loading').fadeOut();
 if (data.success) {
 $('#results-list').empty();
 if(data.results.length > 0) {
 $.each(data.results, function(){
 $('#results-list').append("" + this.title + "");
 });
 } else {
 $('#results-list').append("<li class='no-results'>Your
 search did not return any results");
 }
 $('#results-list').fadeIn();
 } else {
 alert(data.error);
 }
}

Within the if statement, we empty the results list of any data to prevent multiple searches
from duplicating results. We do this using $('#results-list').empty();. Then, we
check the length of results. If there are results, we need to process them; otherwise, we
display a message to the users informing them that their search did not return any results.
This is done with the following code:

$('#results-list').append("<li class='no-results'>Your search did
 not return any results");

If the data.results.length > 0 condition is evaluated as true, it means that there are
results to display, and hence, we use the jQuery $.each() function to iterate through each of
the results in the response and append them to the results list as follows:

$.each(data.results, function(){
 $('#results-list').append("" + this.title + "");
});

Now, the users' search results will be visible within the list.

Loading and Manipulating Dynamic Content with AJAX and JSON

106

See also
 f Creating an autosuggest feature

Creating an autosuggest feature
Autosuggest features are in abundance on the Internet. There are many plugins available for
jQuery and jQuery UI which will allow you to add the autosuggest feature to your site quickly
and easily. This recipe will show you how to create one from scratch which you can customize
and add your own unique features to.

Getting ready
The server-side code for this recipe mirrors that of the previous one. Ensure that you have a
web server and a MySQL database server running and ready to use.

How to do it…
The following are the steps to create an autosuggest feature:

1. Please refer to the previous recipe of this chapter, Creating a search feature, to
create and set up a stationary database and the search.php script. We will be
using the exact same code for the autosuggest feature.

2. Within the web root of your web server, create an HTML file named recipe-8.html.
Add the following HTML code to create the basics of the autosuggest user interface:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 3 :: AJAX & JSON</title>
 <script src="jquery.min.js"></script>
 <script src='script-8.js'></script>
 <link href='style-8.css' rel="stylesheet" />
</head>
<body>
 <div id='frame'>
 <div class='search'>
 <div class='header'>
 <h1>Chapter 3 :: Auto-Suggest</h1>
 </div>
 <div class="suggest-input">
 <input type='text' id='text' />
 <ul class="suggest-list">

Chapter 3

107

 </div>
 </div>
 </div>
</body>
</html>

3. You may have noticed that within the header of our recipe-8.html file, we have
included a cascading stylesheet named style-8.css. Create this file and save it
within the web root of your web server. Add the following CSS code, which will style
and position the HTML elements within recipe-8.html:
/* Include a web font from Google */
@import url(http://fonts.googleapis.com/css?family=Denk+One);
/* Basic CSS for positioning etc */
body {
 font-family: 'Denk One', sans-serif;
}
#frame {
 width: 500px;
 margin: 125px auto auto auto;
 border: solid 1px #CCC;
 /* SOME CSS3 DIV SHADOW */
 -webkit-box-shadow: 0 0 10px #CCC;
 -moz-box-shadow: 0 0 10px #CCC;
 box-shadow: 0 0 10px #CCC;
 /* CSS3 ROUNDED CORNERS */
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
 -khtml-border-radius: 5px;
 border-radius: 5px;
 background-color: #FFF;
}
.search .header {
 margin: 25px;
}
.search .header {
 text-align: center;
}
.suggest-input input {
 width: 440px;
}
.suggest-input {
 position: relative;
 padding: 25px;
}

Loading and Manipulating Dynamic Content with AJAX and JSON

108

/* SUGGESTION LIST STYLES */
.suggest-list {
 position: absolute;
 width: 424px;
 background-color: #f1f1f1;
 margin: 0;
 left: 25px;
 top: 50px;
 z-index: 100;
 display: none;
 list-style: none;
 padding: 10px;
}

4. Along with the CSS file, we are also including script-8.js into our HTML page.
Create this JavaScript file and add the following code:
$(function(){
 $('#text').keyup(function(e){
 if ($('#text').val().length > 2) {
 $('.suggest-list').show();
 makeSuggestion();
 } else {
 $('.suggest-list').hide();
 }
 });
 $('.search').on("click", ".suggestion", function(){
 $('#text').val($(this).html());
 });
});

function makeSuggestion() {
 var searchText = $('#text').val();
 $('.suggest-list').empty();
 $.ajax({
 url: '/search.php',
 type: 'POST',
 data: {
 'text': searchText
 },
 beforeSend: function(){
 $('.suggest-list').append("<li class=
 'loading'>Loading...");
 },
 success: function(data) {

Chapter 3

109

 if (data.success) {
 $('.suggest-list').empty();
 if(data.results.length > 0) {
 $.each(data.results, function(){
 $('.suggest-list').append("<a href='#'
 class='suggestion'>" + this.title +
 "");
 });
 } else {
 $('.suggest-list').append("<li class=
 'no-results'>Nothing to suggest...");
 }
 } else {
 alert(data.error);
 }
 }
 });
}

5. Visiting recipe-8.html served by a web server will present you with the
autosuggest feature. It will suggest items based on the text inputted into the textbox
as you type. There will be no suggestions until the user inputs more than two
characters. This is shown in the following screenshot:

How it works…
Now, let us understand the steps performed previously in detail.

SQL and PHP
Please refer to the previous recipe of this chapter, Creating a search feature, which will
explain in detail how the SQL and PHP code is created.

Loading and Manipulating Dynamic Content with AJAX and JSON

110

HTML
The HTML file we created is very simple. We create an input box which allows the user to
input text, and we create an unordered list element which we can populate with suggestions
using jQuery.

CSS
The CSS code we created adds basic styling to our feature, which includes the positioning of
the main text input area.

The main task of this CSS code is to position the suggestion list such that suggestions
are displayed directly below the input box. For this to be possible, we first need to set the
position of the .suggest-input div element to relative. This will allow us to have sibling
elements which are absolutely positioned, without them floating off to other areas of the page.

.suggest-input {
 position: relative;
 padding: 25px;
}

With this positioning set, we can go ahead and add the required styles to our .suggest-list
element, which will hold the suggestions. We need to position the element directly below the
input box. This means that we will need to make the .suggest-list element the same width
as the input box. We also need to ensure that the left and top positions of the .suggest-list
element are specified, taking into account the size and padding of the input textbox.

.suggest-list {
 position: absolute;
 width: 424px;
 background-color: #f1f1f1;
 margin: 0px;
 padding: 0px;
 left: 25px;
 top: 50px;
 z-index: 100;
 display: none;
 list-style: none;
 padding: 10px;
}

In this section of CSS, we remove any default padding and margins from the list element and
set its position to absolute. Any element with absolute positioning will not be affected by other
elements on the page, apart from their parents if they have a relative position. This leaves us
to be able to set its left and top positional values to control exactly where it will sit in relation to
the text input. We also set the z-index value of this element to 100 to ensure that it will always
float above the other elements on the page. Finally, we use display: none;, which will make
this element hidden by default as we want to display this dynamically with jQuery.

Chapter 3

111

jQuery
Within our script-8.js file, we perform two actions when the page is loaded as follows:

$(function(){
 $('#text').keyup(function(e){
 if ($('#text').val().length > 2) {
 $('.suggest-list').show();
 makeSuggestion();
 } else {
 $('.suggest-list').hide();
 }
 });
 $('.search').on("click", ".suggestion", function(){
 $('#text').val($(this).html());
 });
});

The former action is to attach a keyup event handler to the text input. This event handler
will execute when the user enters a character into the input box and releases a key. Within
the callback function, we check the current length of the text input using $('#text').
val();. If this value is greater than 2, we need to look for some suggestions; so, we call the
makeSuggestion() function, which is declared further down in the JavaScript file. We also
show the .suggest-list element using $('.suggest-list').show(); so that it is
visible to the user. If the inputted text is less than two characters in length, all we do is ensure
that the .suggest-list is hidden with $('.suggest-list').hide();.

The latter action we perform on page load is to attach another event handler. This event
handler will listen for clicks on any element with the .suggestion class. We use the .on()
function provided by jQuery so that we can listen for click events on elements that have been
dynamically added to the DOM, which is not possible using the .click() function. Please
refer to the Detecting button clicks recipe in Chapter 2, Interacting with the User by Making
Use of jQuery Events, to learn more about these event handler functions. Within the callback
function of this event handler, we get the HTML code of the clicked element using $(this).
html(). Provide this to the $('#text').val(); function, which will update the value of
the text input. This will be used to allow the user to click on a suggestion and update the text
input with its value.

Our makeSuggestion() function takes the text from the input element and sends an AJAX
request to our search.php file to query the database and look for anything similar to what
the user has inputted. This function then takes the results and populates the .suggest-
list list for the user to select.

The first part of the function gets the current value of the text input and empties the
.suggest-list unordered list element.

var searchText = $('#text').val();
$('.suggest-list').empty();

Loading and Manipulating Dynamic Content with AJAX and JSON

112

Next, we use the $.ajax() function to set up the AJAX request. We specify the search.
php file as the target, using the url parameter, the request type as POST, and provide the
inputted text as data to be sent to the PHP file. Please refer to the Creating a search feature
recipe for greater detail on this.

$.ajax({
 url: 'search.php',
 type: 'POST',
 data: {
 'text': searchText
 },
 beforeSend: function(){
 $('.suggest-list').append("<li
 class='loading'>Loading...");
 },
 success: function(data) {

 }
});

We use the beforeSend parameter and provide a callback function that appends a list item
with the .suggest-list element with the text Loading…. This callback function will be
executed just before the AJAX request is made, allowing us to inform the user that the request
is loading, as shown in the following screenshot:

The success callback function, which is executed when the request has been successful, is
the function where we check to see if the database query has returned the desired results; if
there are any suggestions to populate the list with.

success: function(data) {
 if (data.success) {
 $('.suggest-list').empty();
 if(data.results.length > 0) {

Chapter 3

113

 $.each(data.results, function(){
 $('.suggest-list').append("<a href=
 '#' class='suggestion'>" + this.title + "");
 });
 } else {
 $('.suggest-list').append("<li class='no-results'>
 Nothing to suggest...");
 }
 } else {
 alert(data.error);
 }
}

The data argument within the success callback function holds all the data sent from
the PHP file. The object we created to send back to the client in the PHP has a success
parameter, which we can use to check if everything went according to plan.

if (data.success) {

} else {
 alert(data.error);
}

If something went wrong, we display the error message as an alert, which is provided by the
PHP within the error parameter.

If the query is executed successfully, we first empty the suggestion list once more to
remove the loading item that was added in the beforeSend() callback function. We
then check the length of the results using data.results.length to see if there are any
suggestions with which we can populate our list element. If there are, we use the jQuery
$.each() function to iterate through each item and append it to our .suggest-list
element. We also wrap the suggestion in the <a> tags with the .suggestion class.
Clicking on these suggestions will fire the event handler we created earlier and then update
the text input with the suggested text.

There's more…
Since the autosuggest feature is such a common implementation on modern websites and
web applications, there are many jQuery plugins available to help you add this feature to your
application. jQuery UI, which is jQuery's own user interface framework, has an autosuggest
module readily available. You should investigate this further to see if your application can benefit
from this ready-built solution. Chapter 9, jQuery UI, is dedicated to jQuery UI, as the name
suggests, and you will also find an entire recipe on implementing the autocomplete feature.

Loading and Manipulating Dynamic Content with AJAX and JSON

114

See also
 f Creating a search feature

Waiting for an AJAX response
The default behavior of jQuery AJAX requests is that they run asynchronously, which means
that you can run many AJAX requests or other JavaScript processes at the same time. If you
call the $.ajax() function with the default settings, any JavaScript code after this AJAX
request will be executed without waiting for a response. In most cases, this is the desired
behavior, but there are some situations where you will want to prevent further execution
until there has been a response to the AJAX call. This may be because you require some
information from the first AJAX call to make a second, or just that your application requires
data from the first call before it can run the second. There are a few ways to achieve this;
refer to the Caching JSON and AJAX requests recipe of this chapter to see a very basic
implementation where you simply turn off the asynchronous behavior. The preferred
implementation though uses jQuery's .when() and .done() functions.

Getting ready
Ensure that your web server is up and running and you have access to add files to the
web root.

How to do it…
Understand the correct way to wait for an AJAX response with jQuery by performing the
following steps:

1. Create an HTML file named recipe-9.html in the web root of your web server. Add
the following code, which has a button that can trigger a series of AJAX requests and
an element that can be updated with information about the responses:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 3 :: AJAX & JSON</title>
 <script src="jquery.min.js"></script>
 <script src="script-9.js"></script>
</head>
<body>
 <button class="load">Load</button>
 <div class="info"></div>
</body>
</html>

Chapter 3

115

2. To be able to wait for a set of AJAX requests, we need to be able to make successful
calls to the web server. Create a PHP file named loading1.php in the web root of
your web server and add the following code to simulate a working PHP script. In your
application, this could be any PHP script.
<?php
for ($i = 1; $i <= 2; $i++) {
 sleep(1);
}
echo "Call 1 complete.";

3. Create another PHP file named loading2.php within the web root of your web
server and add the following code:
<?php
for ($i = 1; $i <= 5; $i++) {
 sleep(1);
}
echo "Call 2 complete.";

4. You may have noticed that within the header of the HTML page, we included
script-9.js. Create this file and save it in the web root of your web server, adding
the following code:
$(function(){
 $('.load').click(function(){
 $.when(call1(), call2()).done(function(c1, c2){
 $('.info').append("Both AJAX requests complete!");
 });
 });
});
function call1() {
 return $.ajax({
 url: '/loading1.php',
 type: 'GET'
 }).success(function(data){
 $('.info').append(data);
 });
}
function call2() {
 return $.ajax({
 url: '/loading2.php',
 type: 'GET'
 }).success(function(data){
 $('.info').append(data);
 });
}

Loading and Manipulating Dynamic Content with AJAX and JSON

116

5. Opening recipe-9.html within a web browser and clicking on the Load button will
give you the output from each of the AJAX calls. Finally, you will see the output from
the .done() function, which is only executed once both the AJAX requests have
been completed.

How it works…
Now, let us understand the steps performed previously in detail.

HTML
Our very basic HTML page simply creates a button that will trigger the AJAX requests and
provides an HTML element for us to update with data from the responses.

PHP
The two PHP scripts we created are just to simulate the end points for the AJAX calls. Both
scripts are nearly identical, with two subtle differences. The loading1.php script loops
twice, calls the PHP sleep() method, and provides 1 as an argument. This will pause the
script for 1 second on each iteration of the for loop.

<?php
 for ($i = 1; $i <= 2; $i++) {
 sleep(1);
 }
 echo "Call 1 complete.";
?>

After the execution of the for loop, the script outputs the Call 1 complete message,
which can then be displayed in the web browser using jQuery. The second script, loading2.
php, is the same, except that its for loop iterates five times and we provide a different output
to differentiate between the two scripts.

The two scripts loop a different number of times to make sure that the former script will
complete first, allowing us to demonstrate that we can wait for both scripts to complete within
our jQuery code.

jQuery
In our JavaScript file, we attach a click event handler to the .load button that will be created
on page load. Within the callback function for this event, we use the jQuery $.when()
function and provide the results of the call1() and call2() functions as arguments. We
then chain .done() at the end of the $.when() function, which will be executed once the
when() function is complete. Within the .done() function, we provide a callback, which
allows us to provide an argument for each of the functions we provided to $.when(). As the
functions we provided to $.when() are AJAX requests, the arguments provided within the
callback of the .done() function will all contain the response, status, and the jqXHR object
from each of the AJAX requests.

Chapter 3

117

The jqXHR object is the return value of the jQuery $.ajax() function, which holds a lot
of information regarding the AJAX request. The .done() function will not be executed until
call1() and call2() have received a complete response from their respective AJAX
requests and have finished executing.

$(function(){
 $('.load').click(function(){
 $.when(call1(), call2()).done(function(c1, c2){
 $('.info').append("Both AJAX requests complete!");
 });
 });
});

Within the callback for the .done() function, we append some text to the .info HTML
element showing that both the AJAX calls within $.when() are complete.

The two call functions we created simply return $.ajax(), which both make a GET request
to the PHP files we created. For each of these AJAX requests, we append the .success()
function that will be executed once the respective AJAX call has been successful. Within the
callback function for .success(), we append the response of the call to the .info HTML
element using $('.info').append();.

If you visit the root of your web server with a browser and select the load button, you will
first see the response from the loading1.php script added to the .info div element.
Shortly after, you will see the response from the loading2.php script and the text from the
.done() callback added.

See also
 f Caching JSON and AJAX requests

4
Adding Attractive

Visuals with
jQuery Effects

In this chapter, we will cover:

 f Sliding page elements

 f Hiding and showing elements

 f Fading elements

 f Toggling effects

 f Stopping effects

 f Chaining effects

 f Creating a basic photo gallery

 f Creating a blinking button

 f Removing elements with effects

Introduction
This chapter will show you how to add simple effects to your interfaces to increase the overall
aesthetics and user experience of your website. Adding basic effects to elements can have
a huge impact on user's impressions. jQuery provides functions that allow the developer to
quickly add effects such as slide, fade, hide, and more.

Adding Attractive Visuals with jQuery Effects

120

Sliding page elements
The ability to slide page elements allows the developer to create an array of interfaces such as
the accordion. This recipe will show you how to apply the slide effect to a range of elements.

Getting ready
Using your favorite text editor or IDE, create a blank HTML page in an easily accessible
location and save this file as recipe-1.html. Ensure that you have the latest version of
jQuery downloaded at the same location as this HTML file.

How to do it…
Learn how to use jQuery to slide page elements by performing the following steps:

1. Add the following HTML code to recipe-1.html. Be sure to change the source
location of the jQuery library, pointing it to where the latest version of jQuery is
downloaded and placed on your computer.
<!DOCTYPE html>
<html>
<head>
 <script src="jquery.min.js"></script>
 <script src="recipe-1.js"></script>
 <title>Chapter 4 :: JQuery Effects</title>
 <link type="text/css" media="screen" rel="stylesheet"
 href="recipe-1.css" />
</head>
<body>
 <div class="frame">
 <div class="actions">
 <button id="down">Slide Down</button>
 <button id="up">Slide Up</button>
 </div>
 <div class="box one"></div>
 <div class="box two"></div>
 <div class="box three"></div>
 <div class="box four"></div>
 </div>
</body>
</html>

Chapter 4

121

2. You may have noticed that, in addition to the jQuery library file, we also included a
second JavaScript file named recipe-1.js. Create this JavaScript file and save
it in the same directory as the HTML file. Add the following JavaScript code to the
recipe-1.js file:
$(function(){
 $('#up').click(function(){
 $('.one').slideUp(4000);
 $('.two').slideUp(3000);
 $('.three').slideUp(2000);
 $('.four').slideUp(1000);
 });
 $('#down').click(function(){
 $('.one').slideDown(4000);
 $('.two').slideDown(3000);
 $('.three').slideDown(2000);
 $('.four').slideDown(1000);
 });
});

3. Along with these two JavaScript files, we have also included a CSS file to add some
style to our HTML elements. Create recipe-1.css within the same directory and
add the following code:
.frame {
 width: 530px;
 height: 190px;
 margin: 50px auto auto auto;
 background-color: #E1E1E1;
 padding: 10px;
}
.frame .box {
 width: 125px;
 height: 125px;
 float: left;
 margin-right: 10px;
}
.frame .box:last-child {
 margin-right: 0;
}
.frame .actions {
 background-color: #333333;
 margin-bottom: 10px;
 text-align: center;
 padding: 10px;
}

Adding Attractive Visuals with jQuery Effects

122

.frame .actions button {
 height: 35px;
}
.one {
 background-color: red;
}
.two {
 background-color: green;
}
.three {
 background-color: blue;
}
.four {
 background-color: orange;
}

4. Open recipe-1.html in a web browser and you should see a web page similar to
the following screenshot:

5. Click on the Slide Up button to see the slide up effect applied to each of the colored
box elements at different speeds; then click on Slide Down to see the reverse.

How it works…
Now, let's understand the steps performed previously in detail.

HTML
The HTML file that we created for this recipe simply creates four boxes using div elements
and then provides two buttons that can be used in conjunction with jQuery to trigger the
element effects.

Chapter 4

123

jQuery
We wrap all our JavaScript code within $(function(){});. This will ensure our code is
executed on page load. Inside the function, we attach a click event to each of the buttons as
demonstrated in the following code snippet:

$('#up').click(function(){
 $('.one').slideUp(4000);
 $('.two').slideUp(3000);
 $('.three').slideUp(2000);
 $('.four').slideUp(1000);
});
$('#down').click(function(){
 $('.one').slideDown(4000);
 $('.two').slideDown(3000);
 $('.three').slideDown(2000);
 $('.four').slideDown(1000);
});

The .click() function allows us to provide a set of code to be executed when the
corresponding button has been clicked by the user. Inside the callback function for each
of the .click() methods, we select the div element of each box and use the jQuery
.slideUp() and .slideDown() functions, depending on which button has been clicked.

The jQuery slide functions allow you to specify a range of parameters. In the preceding
example, we have specified the effect duration in milliseconds. This allows us to control the
time taken for each of the box elements to slide up or down, providing a waterfall effect.

CSS
The CSS file we created adds style and positions each of the HTML elements, allowing us to
best showcase the jQuery slide functionality. It allows us to change the background color of
each of the boxes and allows us to center-align the interface.

There's more...
In the previous example, if you click on both the Slide Up and Slide Down buttons multiple
times, you may notice some flicker between the different box elements. This flicker occurs
because when the slide up effect is complete, the CSS display property of the box element
is set to none. This means that not only will the element be invisible but it also will not affect
any neighboring elements in terms of position.

Adding Attractive Visuals with jQuery Effects

124

Therefore, the element that is set to float left will have room to move further left as the box
element that has completed its slide up effect is no longer in the way. This is shown in the
following screenshot:

Here you can see the second, green box element has its display value set to none, causing
the other box elements to float further to the left. The display may flicker more when the
slide animations have been triggered multiple times and elements have to shift to the left as
additional elements become invisible. Issues such as this can be prevented by not allowing
the trigger to trigger the effects multiple times. A simple solution to this has been explained in
the Creating a basic photo gallery recipe later on in this chapter.

See also
 f Fading elements

 f Hiding and showing elements

 f Creating a basic photo gallery

Hiding and showing elements
jQuery includes functions that will allow you to simply hide and show elements, although you
can use these functions in conjunction with other effects.

Getting ready
Create a new HTML file named recipe-2.html and save it to the same folder as your
jQuery library.

Chapter 4

125

How to do it…
Understand how you can use jQuery to easily hide and show elements in the DOM by
performing the following steps:

1. In recipe-2.html, add the following HTML code. Ensure that the reference to the
jQuery library is pointing to the correct location and filename of your downloaded
version.
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 4 :: JQuery Effects :: Recipe 2</title>
 <script src="jquery.min.js"></script>
 <script src="recipe-2.js"></script>
</head>
<body>
<button class="show">Show</button>
<button class="hide">Hide</button>
<p class="text">Hiding and showing HTML elements with
 jQuery is so easy!</p>
</body>
</html>

2. Create a JavaScript file named recipe-2.js and save it within the same directory
as the HTML file you have just created. Add the following JavaScript code to this file:
$(function(){
 $('#show').click(function(){
 $('.text').show();
 });
 $('#hide').click(function(){
 $('.text').hide();
 });
});

3. Opening recipe-2.html in a web browser will present you with a very basic web
page that has two buttons and some text. Clicking on the Show and Hide buttons will
perform the associated effect on the text, demonstrating how simple it is to show and
hide elements with jQuery.

Adding Attractive Visuals with jQuery Effects

126

How it works…
Now, let's understand the steps performed previously in detail.

HTML
The HTML code used in this recipe is very basic and needs little explanation. The HTML code
creates a web page with two buttons. Each has its own ID—show and hide. There is also a
single paragraph element with a text class. The IDs will be used by jQuery to listen a click
event and perform effects on the paragraph element.

jQuery
Similar to the previous recipe, we attach a click event handler to each of the buttons. This
allows us to perform the effects based on which button has been clicked. To do this, we use
the following code:

$('#show').click(function(){
 $('.text').show();
});
$('#hide').click(function(){
 $('.text').hide();
});

To perform the show and hide effects, we use the corresponding jQuery functions, show()
and hide(). These jQuery functions simply toggle the display property of the selected
element (in this case, the paragraph element is of the text class). The display property is
set to none to hide the element; it is set to block to show the element.

There's more…
There are additional benefits to using jQuery's show() and hide() functions. Using jQuery,
you can show and hide elements based on their inner HTML code. You can also use the
show() and hide() functions in conjunction with other jQuery effects or animations.

See also
 f Fading elements

 f Sliding page elements

Fading elements
If showing or hiding elements is not enough, jQuery provides the ability to fade HTML
elements in and out. This recipe utilizes the jQuery's fade-in and fade-out functionalities to
add more effect when choosing to display or hide elements.

Chapter 4

127

Getting ready
Create a blank HTML file named recipe-3.html and save it in the same directory as the
latest version of jQuery.

How to do it…
Use jQuery to fade DOM elements in and out by performing the following steps:

1. Add the following HTML code to recipe-3.html, ensuring the reference to the
jQuery library is correct:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 4 :: JQuery Effects :: Recipe 3</title>
 <script src="jquery.min.js"></script>
 <script src="recipe-3.js"></script>
 <link type="text/css" media="screen" rel="stylesheet"
 href="recipe-3.css" />
</head>
<body>
 <div class="frame">
 <div class="top">
 <label>Add Item:</label>
 <input type="text" id="new-item" />
 <button id="add-new-item">Add</button>
 </div>
 <ol class="list">
 </div>
</body>
</html>

2. Create a CSS file in the same directory. Save it as recipe-3.css and add the
following code to style the HTML page:
.frame {
 width: 500px;
 min-height: 200px;
 margin: 50px auto auto auto;
 background-color: #E1E1E1;
 padding: 10px;
}
.top {
 background-color: #333333;
 padding: 10px;

Adding Attractive Visuals with jQuery Effects

128

 text-align: center;
 color: #FFF;
}
.list li {
 line-height: 30px;
}

3. Create a JavaScript file named recipe-3.js and add the following jQuery code:
$(function(){
 $('#add-new-item').click(function(){
 var item = $('#new-item').val();
 if (item.length > 0) {
 var newItem = $("" + item + "").fadeIn();
 $('.list').append(newItem);
 $('#new-item').val("");
 }
 });
});

4. Open recipe-3.html in a web browser and you will be presented with a web page
similar to the following screenshot:

5. Entering some text into the Add Item textbox and clicking on the Add button will
append the inputted text to a list using the jQuery fade effect.

Chapter 4

129

How it works…
Now, let's understand the steps performed previously in detail.

HTML
The HTML code creates a simple interface that includes the text input with a button and an
empty ordered list element, which can then be populated with jQuery.

CSS
A CSS file was added to position and style the simple user interface so we could better
demonstrate the fade effect with jQuery.

jQuery
First of all, the jQuery code attaches a click event to the Add button using the following code:

$(function(){
 $('#add-new-item').click(function(){

 });
});

We add the following code to this callback function to provide the desired effect of adding the
input text to the list using the fadeIn() function:

var item = $('#new-item').val();
if (item.length > 0) {
var newItem = $("" + item + "");
$('.list').append(newItem).fadeIn();
$('#new-item').val("");
}

This code creates the item variable and assigns the value of the input box to it using $('#new-
item').val(). We then check to see if the length of this value is greater than zero, as we
do not want to add blank items to the list. We are able to check the length of a string with
JavaScript by simply using variablename.length (in this example, item.length).

Within this if statement, we create another variable named newItem. We assign to it a newly
created HTML list item element with the value from the input box using the item variable. We
wrap the list item within jQuery's selector ($()), allowing us to use the fadeIn() function on
this DOM element.

Now that we have a list item, we can append it to the ordered list element with the class name
list by using the jQuery-provided append() function. This will add the newly created DOM
element as the last child of the ordered list. Because we used the fadeIn() function on this
DOM element, it will firstly appear hidden and then fade in, giving us our desired effect.

Adding Attractive Visuals with jQuery Effects

130

There's more…
Within this recipe, we used the fadeIn() function, which allows us to take an element from
invisible to visible with the fade effect. jQuery also provides us with a fadeOut() function
that offers the reverse functionality. Both of these functions take a range of parameters,
allowing the developer to adjust the behavior. The primary parameter is duration, which allows
us to specify how long it takes the element to fade in or out in milliseconds. Read about the
available options for these functions at http://api.jquery.com/fadeIn/.

Additionally, jQuery provides a fadeTo() function, allowing you to adjust the opacity of an
element if you do not want to completely hide or show it once the effect has completed. Read
more about this functionality at http://api.jquery.com/fadeTo/.

See also
 f Removing elements with effects

 f Creating a basic photo gallery

 f Creating a blinking button

Toggling effects
Many of the jQuery effects have opposing functions, such as hide() and show() and
fadeIn() and fadeOut(). So far, the recipes in this chapter have handled each of these
functions separately; for example, one button to show and another to hide. For some of these
functions, jQuery provides us with the ability to be able to toggle these opposing effects. This
is beneficial because we do not need to deal with each case separately or decide which of the
two we need to use. This recipe will look at the toggle functions and show you how they can
be used.

Getting ready
In your favorite text editor or IDE, create a blank HTML file named recipe-4.html and save
it in the same directory as your jQuery library.

How to do it…
1. Add the following HTML code to recipe-4.html to create a basic web page:

<!DOCTYPE html>
<html>
<head>
 <script src="jquery.min.js"></script>
 <script src="recipe-4.js"></script>

Chapter 4

131

 <title>Chapter 4 :: JQuery Effects :: Recipe 4</title>
</head>
<body>
 <div>
 <button class="fadeToggle">Toggle Fade!</button>
 <button class="slideToggle">Toggle Slide!</button>
 <button class="hideToggle">Toggle Hide!</button>
 </div>
 <p class="text">Here is some text that can be faded in
 and out! Here is some text that can be faded in and
 out! Here is some text that can be faded in and out!
 Here is some text that can be faded in and out! Here is
 some text that can be faded in and out! Here is some
 text that can be faded in and out! Here is some text
 that can be faded in and out! Here is some text that
 can be faded in and out! Here is some text that can be
 faded in and out! Here is some text that can be faded
 in and out! Here is some text that can be faded in and
 out! Here is some text that can be faded in and
 out!</p>
</body>
</html>

2. You may have noticed that we are including a JavaScript file in this HTML page.
Create this JavaScript file in the same directory as recipe-4.html and save it
as recipe-4.js. Add the following jQuery code to this file to attach click event
handlers to the button elements within the HTML:
$(function(){
 $('.fadeToggle').click(function(){
 $('.text').fadeToggle();
 });
 $('.slideToggle').click(function(){
 $('.text').slideToggle();
 });
 $('.hideToggle').click(function(){
 $('.text').toggle();
 });
});

Adding Attractive Visuals with jQuery Effects

132

3. Open recipe-4.html in a web browser and you should see a web page similar to
the following screenshot:

4. Clicking on one of the buttons will toggle the associated effect and apply it to the
paragraph element.

How it works…
Now, let's understand the steps performed previously in detail.

HTML
The HTML code in this recipe creates a paragraph element with some text. This element
has the class name of text, which allows us to select this element and perform a range of
effects. In addition to this paragraph element, the HTML provides three different buttons.
Each button has a different class name, allowing us to detect each individual click with jQuery
and perform different effects based on the clicked button.

jQuery
The jQuery code in this recipe is very basic. On page load, we attach a click event handler to
each of the buttons. Each click event handler has a different toggle function inside its
callback function.

jQuery's toggle functions determine the state of the selected element and then perform the
opposing effect. This means that we do not need to program this logic into our application and
can offload it to jQuery. By using the toggleFade() function, we can use one line of code
to fade the paragraph element in or out without having to code for each scenario, as we have
done in previous recipes. The same goes for the slideToggle() method, which performs
the slide animation. Finally, we can use the toggle method, which simply hides or shows the
selected element.

Chapter 4

133

There's more…
Like other jQuery effect functions, the toggle functions take a set of optional parameters. The
main parameter is the effect duration. The following code will force the slide effect to last for
1000 milliseconds:

$('.slideToggle').click(function(){
$('.text').slideToggle(1000);
});

You can read about the other available options as part of the jQuery API documentation, which
can be found at http://api.jquery.com/slideToggle/.

Stopping effects
As your application grows and you begin to have more complex effects, you may want to be
able to stop these effects and transitions. This could be due to a user action that negates the
requirement for a current effect or some other form of event.

Getting ready
Create a blank HTML document named recipe-5.html and save it to the same directory as
the latest version of the jQuery library.

How to do it…
Learn to stop jQuery effects by performing the following steps:

1. Add the following HTML code to recipe-5.html to create a basic web page that will
allow us to demonstrate how to stop effects:
<!DOCTYPE html>
<html>
<head>
 <script src="jquery.min.js"></script>
 <script src="recipe-5.js"></script>
 <title>Chapter 4 :: JQuery Effects :: Recipe 5 </title>
 <link type="text/css" media="screen" rel="stylesheet"
href="recipe-5.css" />
</head>
<body>
<div class="frame">
 <div class="actions">
 <button id="slide">Slide</button>

Adding Attractive Visuals with jQuery Effects

134

 <button id="stop">Stop</button>
 <button id="Finish">Finish</button>
 </div>
 <ul class="output">
 <div class="slideMe"></div>
</div>
</body>
</html>

2. To allow us to better demonstrate the jQuery effects, we need to add some CSS
code to style and position the HTML elements in recipe-5.html. Create a CSS file
named recipe-5.css in the same directory and add the following code:
.frame {
 width: 600px;
 margin: auto;
 background-color: #CCC;
 padding: 10px;
}
.actions {
 padding: 10px;
 background-color: #333;
 text-align: center;
}
.slideMe {
 background-color: green;
 height: 150px;
 margin-top: 10px;
}

3. To start and stop the jQuery effects, create a JavaScript file named recipe-5.js
and save it in the same directory as the HTML and CSS files. Add the following jQuery
code:
$(function(){
 $('#slide').click(function(){
 $('.slideMe').slideToggle(1000, function(){
 $('.output').append("Slide effect completed.
 ");
 });
 });
 $('#stop').click(function(){
 $('.slideMe').stop();
 });
 $('#finish').click(function(){

Chapter 4

135

 $('.slideMe').finish();
 });
});

4. Open recipe-5.html in a web browser and you will be presented with a web page
similar to the following screenshot:

5. Clicking on the Slide button will begin the effect, and the green box division element
will start to slide upward for 1000 milliseconds. Clicking on the Stop button will stop
the effect at the point that you clicked it, and the Finish button will instantly complete
the effect.

How it works…
Now, let's understand the steps performed previously in detail.

HTML
Our simple HTML for this recipe provides us with a division element to which jQuery can apply
effects, some buttons that can be used to trigger jQuery code, and a list that we can use to
output some information about the executed jQuery code.

CSS
The CSS code that was included into the HTML page allows us to position each of the HTML
elements in a way that allows us to easily demonstrate the effects in this recipe.

jQuery
We attach three different click event handlers to the three buttons in our HTML page,
selecting them by using their IDs: slide, stop, and finish. Within the callback functions to
these event handlers, we start the slide effect using the following code:

$('#slide').click(function(){
$('.slideMe').slideToggle(1000, function(){
 $('.output').append("Slide effect completed.");
});
});

Adding Attractive Visuals with jQuery Effects

136

We have used the slideToggle() function to start either the slide down or slide up effect
based on whether the slideMe division element is currently visible or not. We provide the
slideToggle() function with two parameters. The first parameter is the duration in which
we wish the slide effect to take effect. The second parameter is a callback function, which will
be executed once the animation has been finished.

Inside this callback function, we append a list item to the unordered list element with the
class name output. This means that when the slide effect has fully completed, a new list
item will be visible within the output list. We have done this to demonstrate the difference
between stopping an effect and finishing one, which is described later in this section.

The other two event handlers, described in the following code snippet, select the slideMe
division element the same way as the previously mentioned event handler does, except these
do not start an effect but stop the current one:

$('#stop').click(function(){
 $('.slideMe').stop();
});
$('#finish').click(function(){
 $('.slideMe').finish();
});

The stop() function will halt any currently running effects on the selected element. If the
slide-up effect was half-way through completion and you clicked on Stop, you will see half of
the green slideMe division element. The stop() function does not complete the slide effect,
and therefore the slideToggle() callback function will not be executed and a list item will
not be added to the output list. On the contrary, the finish() function instantly completes
any effects being executed on the selected element. This means that if the slide-up effect was
half-way through completion and you clicked on Finish, the slideMe division element will
instantly become invisible and then a new item added to the output list, reading Slide effect
completed. If there is code inside an effects callback function that is vital to your application,
you can use finish() to ensure it is executed. Alternatively, you may not want to execute this
code and/or want to visibly stop the effect; in this case, you would use stop().

Chaining effects
jQuery allows us to chain the different effect functions onto a single selected element. This
allows us to easily perform multiple effects in a sequential order.

Chapter 4

137

How to do it…
Learn to use a powerful feature of jQuery to write better code by performing the
following steps:

1. Create a blank HTML file named recipe-6.html and save it to an easily accessible
location on your computer. Add the following HTML code to this file, ensuring to
update the reference to the jQuery library:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 4 :: JQuery Effects :: Recipe 6</title>
 <script src="jquery.min.js"></script>
 <script src="recipe-6.js"></script>
 <link type="text/css" media="screen" rel="stylesheet"
 href="recipe-6.css" />
</head>
<body>
 <button id="start">Start</button>
 <div class="box"></div>
</body>
</html>

2. Create a CSS file named recipe-6.css and add the following code:
.box {
 width: 200px;
 height: 200px;
 background-color: red;
}
Create a JavaScript file and save it as recipe-6.js. Add
 the following JavaScript code.
$(function(){
 $('#start').click(function(){
$('.box').fadeOut().fadeIn().slideUp().slideDown().fadeTo
 (1000, 0.1).fadeTo(1000, 1);
 });
});

3. Open the recipe-6.html file in a web page and click on the Start button. The red-
colored box will perform a range of effects.

Adding Attractive Visuals with jQuery Effects

138

How it works…
This recipe provides a very simple example as to how you can chain the different effect
functions that jQuery provides. In this example, we perform fadeOut(), fadeIn,
slideUp(), slideDown(), and two fadeTo() effects on the box div element. Each of
these effects will be executed in turn due to the following code, which is placed within the
click event handler callback function for the start button:

$('.box').fadeOut().fadeIn().slideUp().slideDown()
 .fadeTo(1000, 0.1).fadeTo(1000, 1);

The fadeTo() functions, which animate and alter the selected elements' opacity, have been
provided with two parameters. The first parameter is the duration of the effect in milliseconds
and the second is the opacity the effect should finish on.

See also
 f Creating a basic photo gallery

Creating a basic photo gallery
Most people are aware that there are many jQuery photo gallery implementations available
on the Web; many as jQuery plugins, which allow for quick implementation. There are benefits
to taking the time to learn how to create your own. You will gain a deep understanding of how
some of these plugins work, making it easier for you to customize them to better suit your
needs. You will also learn more great features of jQuery and how to implement some of the
skills you have learned earlier in this book.

Getting ready
We will first need a blank HTML file named recipe-7.html saved in the same directory
as the latest version of jQuery. To create an image gallery, we are also going to need some
images. Find a variety of images freely available on the Internet for use in this recipe. Save at
least eight images within a folder named images in the same directory as the recipe-7.
html file.

How to do it…
Learn how to create an attractive photo gallery from scratch with jQuery by performing the
following steps:

1. Add the following HTML code to recipe-7.html to create our web page and image
gallery HTML template:

Chapter 4

139

<!DOCTYPE html>
<html>
<head>
 <script src="jquery.min.js"></script>
 <script src="recipe-7.js"></script>
 <link rel="stylesheet" type="text/css" href=
 "recipe-7.css" media="screen" />
 <title>Chapter 4 :: JQuery Events :: Recipe 7 - jQuery
 image gallery</title>
</head>
<body>
 <div class="gallery" data-thumb-width="150">
 <div class="frame">

 </div>
 <div class="bottom">
 <a href="#" class="arrow left-arrow" data-direction=
 "left"><i class="arrow-left"></i>
 <a href="#" class="arrow right-arrow" data-direction=
 "right"><i class="arrow-right"></i>
 <div class="thumbs"></div>
 </div>
 </div>
</body>
</html>

2. Update the source (src="") for each image inside the frame division element to
point to the images you have just added.

3. Create a CSS file in the same directory as recipe-7.html named recipe-7.css
and add the following CSS code to style our gallery:
body {
 margin: 0;
 padding: 0;
 background-color: #333;
}
.gallery {
 width: 600px;

Adding Attractive Visuals with jQuery Effects

140

 margin: 50px auto auto auto;
 position: relative;
}
.gallery .frame {
 height: 450px;
 margin-bottom: 10px;
 position: relative;
}
.gallery .frame img {
 display: block;
 width: 100%;
 position: absolute;
 left: 0;
 top: 0;
}
.gallery .bottom {
 overflow: hidden;
}
.gallery .thumbs {
 height: 120px;
 white-space: nowrap;
 text-align: center;
}
.gallery .thumbs a {
 display: inline-block;
 opacity: 0.5;
 -webkit-transition: opacity 0.5s ease-in-out;
 -moz-transition: opacity 0.5s ease-in-out;
 -ms-transition: opacity 0.5s ease-in-out;
 -o-transition: opacity 0.5s ease-in-out;
 transition: opacity 0.5s ease-in-out;
}
.gallery .thumbs a:hover {
 opacity: 1.0;
}
.gallery .arrow {
 width: 50px;
 height: 50px;
 background-color: #000;
 position: absolute;
 -webkit-border-radius: 50px;
 -moz-border-radius: 50px;
 border-radius: 50px;
 bottom: 35px;

Chapter 4

141

}
.gallery .arrow.disabled {
 background-color: #252525;
}
.gallery .left-arrow {
 left: -60px;
}
.gallery .right-arrow {
 right: -60px;
}
.gallery .arrow-right {
 width: 0;
 height: 0;
 border-top: 12px solid transparent;
 border-bottom: 12px solid transparent;
 border-left: 12px solid #1a1a1a;
 position: absolute;
 right: 16px;
 top: 13px;
}
.gallery .arrow-left {
 width: 0;
 height: 0;
 border-top: 12px solid transparent;
 border-bottom: 12px solid transparent;
 border-right:12px solid #1a1a1a;
 position: absolute;
 right: 21px;
 top: 13px;
}

4. Create a JavaScript file named recipe-7.js and add the following JavaScript code
to ignite our gallery into action:
/** DECLARE SOME DEFAULT VARIABLES WHICH WILL BE USED
 THROUGHOUT **/
var images;
var imageWidth;
$(function(){
 imageWidth = $('.gallery').data("thumb-width");
 /** COLLECT ALL THE IMAGES FROM WITHIN THE .gallery DIV
 **/
 images = $('.gallery').find('img');
 /** FOR EACH OF THESE IMAGES, CREATE A THUMBNAIL AND ADD
 A CLASS TO IDENTIFY THE IMAGE AND THUMBNAIL
 RELATIONSHIP **/

Adding Attractive Visuals with jQuery Effects

142

 $.each(images, function(index, value){
 $(value).addClass("img" + index);
 $('.gallery .thumbs').append("<a href='#' data-index=
 '" + index + "' class='thumb'><img src='" +
 $(this).prop("src") + "' width='" + imageWidth +
 "' height='120' border='0' />");
 });
 /** UPDATE THE SCROLL BUTTONS **/
 updateScrollButtons();
 /** EVENT HANDLERS FOR SCROLL BUTTONS **/
 $('.arrow').click(function(){
 var element = $(this);
 if (!element.hasClass('disabled')) {
 element.addClass('disabled');
 var scrollString = "-=";
 if ($(this).data("direction") == "left") {
 scrollString = "+=";
 }
 $('.thumbs').animate({
 marginLeft: scrollString + imageWidth + "px"
 }, "fast", function(){
 element.removeClass('disabled');
 updateScrollButtons();
 });
 }
 });
 /** EVENT HANDLERS FOR IMAGES **/
 $('.gallery').on("click", ".thumb", function(){
 var thumb = $(this);
 var image = $('.img' + thumb.data('index'));
 $.each(images, function(index, value){
 if (!$(value).hasClass('img' + thumb.data('index')))
 {
 $(value).hide();
 }
 });
 if (image.css("display") != "block") {
 image.fadeIn();
 }
 });
});
function updateScrollButtons() {
 var thumbs = $('.thumbs');
 var thumbsMarginLeft = parseInt(thumbs.css
 ("margin-left"));

Chapter 4

143

 var thumbsMaxWidth = (images.length * imageWidth);
 if (thumbsMarginLeft >= 0) {
 $('.left-arrow').addClass('disabled');
 } else {
 $('.left-arrow').removeClass('disabled');
 }
 if ((thumbsMarginLeft * -1) >=
 (thumbsMaxWidth - thumbs.width() / 2)) {
 $('.right-arrow').addClass('disabled');
 } else {
 $('.right-arrow').removeClass('disabled');
 }
}

5. Open recipe-7.html in a web browser and you will be presented with a jQuery
image gallery similar to the following screenshot:

6. Selecting the left and right arrows will allow you to scroll through the photos, and
clicking on a photo will show the larger version in the main frame.

Adding Attractive Visuals with jQuery Effects

144

How it works…
Now, let us understand the steps performed previously in detail.

HTML
Thanks to jQuery, we are able to create an attractive and functional gallery with a minimal
amount of HTML code. In addition to the basic HTML document structure, we define a division
element with the class gallery. The following is the division element code that the jQuery
will use to base most of its DOM interactions:

<div class="gallery" data-thumb-width="150"></div>

Additionally, we also use the HTML5 data attribute to define the thumbnail width. Our jQuery
code will use this value to size the thumbnails.

Using the following HTML code, we also create a division element with the class name of
frame whose siblings are the images that we want to display within our gallery:

<div class="frame">

</div>

Finally, in our HTML, we create a left and right arrow, which will be used in conjunction with
jQuery to scroll through the image thumbnails. We also create a div element with the class
thumbs, which will be populated with the thumbnail images using the following jQuery code:

<div class="bottom">
<i
class="arrow-left"></i>
<i
class="arrow-right"></i>
<div class="thumbs"></div>
</div>

CSS
Most of the CSS code used in this recipe is very basic and simply places elements in the
appropriate place on the page. The main gallery division element is set to 600 pixels in width
and to be centered on the screen. To allow us to place the left and right arrows outside the
gallery frame, we set their position to absolute and use negative margins to push them further
left and right.

Chapter 4

145

The main thumbnail scrolling section has its overflow value set to hidden, preventing the
bulk of the thumbnails from being displayed. This allows us to scroll these elements into view
using jQuery. The thumbnails themselves have their display value set to inline-block,
allowing them to stack next to each other in a single line, left to right.

For additional effect, we have also used some basic CSS animations. The thumbnails have
their opacity set to 0.5 so that they do not become the prominent focus of the application.
CSS transitions are used to create a fade in effect when the user hovers over the thumbnails,
as follows:

.gallery .thumbs a {
 display: inline-block;
 opacity: 0.5;
 -webkit-transition: opacity 0.5s ease-in-out;
 -moz-transition: opacity 0.5s ease-in-out;
 -ms-transition: opacity 0.5s ease-in-out;
 -o-transition: opacity 0.5s ease-in-out;
 transition: opacity 0.5s ease-in-out;
}
.gallery .thumbs a:hover {
 opacity: 1.0;
}

In addition to the official CSS3 transition property, we are also using the browser-specific
alternatives to ensure the CSS animations work in all of the most popular browsers.

-webkit-transition: opacity 0.5s ease-in-out;
-moz-transition: opacity 0.5s ease-in-out;
-ms-transition: opacity 0.5s ease-in-out;
-o-transition: opacity 0.5s ease-in-out;

jQuery
Two variables are declared at the beginning of the JavaScript file so their values can be used
throughout the application; these are known as global variables. The bulk of the application
code is placed within the jQuery on-load function so that the code is executed once the page
has been loaded, as follows:

var images;
var imageWidth;
$(function(){
 imageWidth = $('.gallery').data("thumb-width");
 /** COLLECT ALL THE IMAGES FROM WITHIN THE .gallery DIV **/
 images = $('.gallery').find('img');
 /** FOR EACH OF THESE IMAGES, CREATE A THUMBNAIL AND ADD A CLASS
 TO IDENTIFY THE IMAGE AND THUMBNAIL RELATIONSHIP **/
 $.each(images, function(index, value){
 $(value).addClass("img" + index);

Adding Attractive Visuals with jQuery Effects

146

 $('.gallery .thumbs').append("<a href='#' data-index='" +
 index + "' class='thumb'><img src='" + $(this).prop("src") +
 "' width='" + imageWidth + "' height='120' border='0' />
 ");
 });
});

The jQuery data() function is used to extract the thumbnail width from the HTML code that
we created earlier. This value is then stored within the imageWidth variable for use later in
the application. The $('.gallery').find('img') function is used to search for all the
img elements within the gallery div element and store them as an array in the images
variable. jQuery's $.each() function is used to iterate through each of the img elements in
the images array. Inside the callback function of $.each(), we first use the addClass()
function to add a class to the main image element based on the array index (that is, img0,
img1, and so on). Then, an anchor element is created with an image inside and the width set
using the imageWidth variable declared earlier. Using the append() function, the anchor
element is then inserted into the DOM inside the thumbs div element. Additionally, the data-
index property value of this anchor is set to match the class name of the larger image.

In the $.each() function, we call a custom function named updateScrollButtons,
which is declared at the end of the JavaScript file. This function is used to determine whether
the arrow buttons should be enabled based on the current position of the thumbnails. This
prevents the user from scrolling the thumbnails out of the bottom section of the image gallery.
Once the user has scrolled right to the last thumbnail, the right arrow button is disabled. Once
the user has scrolled left to the first thumbnail, the left arrow button is disabled.

Next, using the following code we attach a click event handler to each of the arrow buttons so
we can detect when the user wants to scroll through the thumbnail images.

$('.arrow').click(function(){
var element = $(this);
if (!element.hasClass('disabled')) {
 element.addClass('disabled');
 var scrollString = "-=";
 if ($(this).data("direction") == "left") {
 scrollString = "+=";
 }
 $('.thumbs').animate({
 marginLeft: scrollString + imageWidth + "px"
 }, "fast", function(){
 element.removeClass('disabled');
 updateScrollButtons();
 });
}
});

Chapter 4

147

In the callback function of the click event handler, we first declare a variable and store
the click element within it referring to $(this), meaning the clicked element. Using this
variable, we can use the jQuery function hasClass to determine if the clicked element has
the class disabled. We wrap all the code within this function inside an if statement so
that none of this code will be executed if the clicked element has the disabled class. In the
if statement, we use addClass to add the disabled class to the clicked element. This is
to prevent the user from being able to spam-click on the scroll arrows and cause undesired
animations.

We also have a variable declared named scrollString that has the default value of -=.
This value will be used within the jQuery animate() function that will provide the scrolling
animation to our thumbnails. Depending on the data-direction property value of the
arrow that is clicked, this value will either stay as -=, meaning that the left margin of the
thumbs div will be taken away from (that is, scrolled right), or the value will change to +=,
meaning that the left margin will be added to (that is, scrolled left).

Finally, within this event handler callback function, the jQuery animate() function is used
to modify the left margin of the thumbs div element, which provides the scrolling effect. The
imageWidth variable is used once more to set the scroll position to match the width of the
thumbnails as follows:

$('.gallery').on("click", ".thumb", function(){
var thumb = $(this);
var image = $('.' + thumb.attr('rel'));
$.each(images, function(index, value){
 if (!$(value).hasClass(thumb.attr('rel'))) {
 $(value).hide();
 }
});
if (image.css("display") != "block") {
 image.fadeIn();
}
});

The next section of code attaches a click event handler to the gallery div element. The click
event handler listens for clicks on any element with the class thumb. This allows us to specify
code to be executed once a thumbnail has been clicked. In the callback function, we select
the clicked thumbnail and store the element reference in the thumb variable. We also use the
clicked elements' data-index property value to select the larger image, storing its reference
within image.

Once again, we use the $.each() function to iterate through all of the images. We hide
each image that does not match the image in the clicked thumbnail. This is so that only the
selected image appears in the main viewing panel. We also use the css() function to check
the display property of the larger image to determine if the image is currently visible. If not,
we use the jQuery fade in effect to show it, completing the image gallery functionality.

Adding Attractive Visuals with jQuery Effects

148

Creating a blinking button
Using jQuery's effect functions, we can create a blinking button that can be used in a web
application or website to draw the user's attention.

Getting ready
Create a blank HTML document named recipe-8.html and ensure you have the latest
version of jQuery downloaded and ready to be included in this HTML file.

How to do it…
Learn how jQuery can be used to create a simple blinking button effect by performing the
following steps:

1. Add the following code to recipe-8.html, which you have just created,
remembering to update the reference to the jQuery library.
<!DOCTYPE html>
<html>
<head>
 <script src="jquery.min.js"></script>
 <script src="recipe-8.js"></script>
 <title>Chapter 4 :: JQuery Effects :: Recipe 8 </title>
 <link type="text/css" media="screen" rel="stylesheet"
 href="recipe-8.css" />
</head>
<body>
<div class="frame">
 <h1>Newsletter!</h1>
 <p>Enter your email address below to sign-up for our
 monthly newsletter.</p>
 <form>
 <input type="text" class="email-input" name="email"
 placeholder="Your Email" />
 <button class="blinker">Sign-up Now!</button>
 </form>
</div>
</body>
</html>

2. Create a CSS file named recipe-8.css and add the following CSS code to add style
to the newsletter form created in the HTML:
@import url(http://fonts.googleapis.com/css?family=Leckerli+One);
@import url(http://fonts.googleapis.com/css?family=Happy+Monkey);

Chapter 4

149

body {
 background-color: #333333;
 font-family: 'Happy Monkey', cursive;
}
h1 {
 font-family: 'Leckerli One', cursive;
 font-size: 60px;
 line-height: 80px;
 padding: 0;
 margin: 0;
 text-align: center;
 color: #333;
}
.frame {
 width: 500px;
 margin: 50px auto auto auto;
 height: 300px;
 background-color: #FFF;
 box-shadow: #000 3px 3px 2px;
 border-radius: 10px;
 padding: 20px;
 text-align: center;
}
.frame p {
 font-size: 18px;
 line-height: 25px;
}
.frame form .email-input {
 height: 40px;
 font-size: 30px;
 width: 400px;
 font-family: 'Happy Monkey', cursive;
}
.frame form .blinker {
 height: 40px;
 width: 150px;
 font-size: 20px;
 margin-top: 20px;
 font-family: 'Happy Monkey', cursive;
}

3. Create a JavaScript file in the same directory as the CSS and HTML files. Save this file
as recipe-8.js and add the following jQuery code:
$(function(){
 $('.email-input').on('focus', function(){

Adding Attractive Visuals with jQuery Effects

150

 $('.blinker').fadeTo(300, 0.1).fadeTo(300, 1);
 })
});

4. Open recipe-8.html in a web browser and you will be presented with a web page
similar to the following screenshot:

5. Clicking inside the textbox will cause the Sign-up Now! button to blink to draw the
user's attention.

How it works…
The HTML and CSS code used in this recipe creates a page that allows a user to sign up for
a newsletter subscription. There are no complex elements in the HTML or CSS code, so no
further explanation is necessary.

This recipe provides a simple example that demonstrates how we can use jQuery to give the
appearance of a blinking button. The idea is that when the user clicks inside the textbox to
input an e-mail address, the Sign-up Now! button will blink to draw their attention.

In our jQuery code, we first attach an event handler to the text input for focus. The focus
event is triggered when an element on the page receives the attention of the user, either by
tabbing to the form element or by clicking on it. In the callback function to this event handler,
we use the fadeTo() jQuery effect function to sequentially fade out and fade in the button,
creating the blinking effect. The fadeTo() function, in this example, takes two arguments,
effect duration and element opacity. We specify the opacity of the element to be 0.1 within
the first fadeTo() function to fade out the button. Then we specify 1.0 to fade the button
back in. We can control the speed of the effect by altering the specified duration, which is set
to 300 milliseconds.

Chapter 4

151

There's more…
There are many ways to create the blinking effect with jQuery. In Chapter 6, User Interface,
you will learn to alter the CSS attributes of elements, which will allow you to add drop-shadows
and colored borders to greatly enhance the blinking effect. The fadeTo() function provides
the easiest way to create this effect, but be aware that there are alternatives that can provide
a greater impact that may be more suitable to your needs.

When forcing elements to blink, move, or flash to draw the user's attention, you must be very
careful not to cause annoyance, as this may have the reverse effect of turning them away.
Effects such as these should only be used as subtle hints to prompt the user's interaction with
your user interface.

See also
 f Fading elements

 f Creating a basic photo gallery

Removing elements with effects
You will often create interfaces such as lists or tables that will be representing data from a
database. If the interface is for management purposes, you will typically be able to add, edit,
and remove these items. We can use jQuery effects to add to the user experience when these
items are added, as described in the Fading elements recipe. We can also provide effects
when removing an item from the DOM. Thanks to jQuery, it is very easy to do.

Getting ready
As with the other recipes in this chapter, you are going to need a blank HTML document. Save
this document as recipe-9.html and ensure it is within the same directory as the latest
version of jQuery.

How to do it…
Understand how you can remove DOM elements with effects by performing the
following steps:

1. Add the following HTML code to the HTML document you have just created:
<!DOCTYPE html>
<html>
<head>
 <script src="jquery.min.js"></script>
 <script src="recipe-9.js"></script>

Adding Attractive Visuals with jQuery Effects

152

 <title>Chapter 4 :: JQuery Effects :: Recipe 9 </title>
 <link type="text/css" media="screen" rel="stylesheet"
 href="recipe-9.css" />
</head>
<body>
<div class="frame">
 <h1>User Management</h1>
 <table width="100%" id="user-table">
 <thead>
 <tr>
 <th>Username</th>
 <th>Email</th>
 <th>Full Name</th>
 <th>Date of Birth</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>jd101</td>
 <td>j.doe@somewhere.com</td>
 <td>John Doe</td>
 <td>16-05-1987</td>
 <td><button class="delete">Delete</button></td>
 </tr>
 <tr>
 <td>msmith17</td>
 <td>smithy@nowhere.com</td>
 <td>Jane Smith</td>
 <td>18-08-1988</td>
 <td><button class="delete">Delete</button></td>
 </tr>
 <tr>
 <td>tommy22</td>
 <td>tom@idontknow.com</td>
 <td>Thomas Knowhow</td>
 <td>10-08-1980</td>
 <td><button class="delete">Delete</button></td>
 </tr>
 </tbody>
 </table>
</div>
</body>
</html>

Chapter 4

153

2. You may have noticed the CSS file included in the header of the previous HTML code.
Create recipe-9.css and add the following CSS code:
@import url(http://fonts.googleapis.com/css?family=Lato:300,400);
body {
 background-color: #333333;
 font-family: 'Lato', sans-serif;
}
h1 {
 line-height: 60px;
 padding: 0;
 margin: 0 0 15px 0;
 text-align: center;
 color: #333;
 font-weight: 300;
}
.frame {
 width: 700px;
 margin: 50px auto auto auto;
 background-color: #FFF;
 box-shadow: #000 3px 3px 2px;
 border-radius: 10px;
 padding: 20px;
 text-align: center;
}

3. In addition to the CSS file, a JavaScript file is also included in the HTML page. Create
a JavaScript file named recipe-9.js and save it in the same directory as the HTML
and CSS files. Add the following jQuery code to this file:
$(function(){
 $('#user-table').on("click", ".delete", function(){
 var response = confirm("Are you sure you want to delete
 this user?");
 if (response) {
 $(this).parent().parent().fadeOut().remove();
 }
 });
});

4. Open recipe-9.html in a web browser and you will be presented with a simple
user management UI. Clicking on the Delete button next to any entry will prompt you
to confirm that you would like to delete. When the user clicks on OK, the entry for that
particular user will fade out and be removed from the DOM.

Adding Attractive Visuals with jQuery Effects

154

How it works…
This recipe too has basic HTML and CSS code that needs no explanation. Instead, let's
concentrate on the jQuery code.

All of our jQuery code is wrapped in $(function(){});, which is the jQuery on-load
function, allowing us to execute on page load. We attach a click event handler to the user
table and listen for clicks on any elements with the delete class as follows. From the HTML
code, you will know these elements are the delete buttons.

$('#user-table').on("click", ".delete", function(){

});

Inside the callback function to this event handler, we use the native JavaScript function
confirm() and assign its output to the response variable. This will display a pop-up
window to the user that has the message Are you sure you want to delete this user?. If the
user clicks on OK, the response variable will equal true. If they click on Cancel, it will be
false. By using this response variable, we can determine whether they want to go ahead
and delete the user. If they do, we can remove the table row from the DOM.

To remove the table row, we first need to select it. We can refer to $(this), which is the
clicked item (in this case, the button), then select its parents' parent, which is the tr table.
This is done using the following code:

$(this).parent().parent().fadeOut().remove();

We then use the fadeOut() function to apply the effect and use the remove() function to
remove the element from the DOM.

There's more…
This simple user interface would typically be coupled with server-side calls, which would
also remove the user entry from the database. Take a look back at Chapter 3, Loading and
Manipulating Dynamic Content with AJAX and JSON, to see how this can be done using jQuery
and AJAX.

See also
 f Fading elements

5
Form Handling

In this chapter, we will look at how to create robust and attractive web forms with animation,
validation, and user feedback. We will cover:

 f Implementing basic form validation

 f Adding number validation

 f Adding credit card number validation

 f Adding date validation

 f Adding e-mail address validation

 f Implementing live form validation

 f Adding a password strength indicator

 f Adding anti-spam measures

 f Implementing input character restrictions

Introduction
Collecting user data is a basic function of many websites and web applications, from simple
data collection techniques such as registration or login information, to more complex
scenarios such as payment or billing information. It is important that only relevant and
complete information is collected from the user. To ensure this, the web developer must
enforce validation on all data input. It is also important to provide a good user experience
while enforcing this data integrity. This can be done by providing useful feedback to the user
regarding any validation errors their data may have caused. This chapter will show you how
to create an attractive web form that enforces data integrity while keeping a high-quality
user experience.

Form Handling

156

A very important point to note is that any JavaScript or jQuery validation is open to
manipulation by the user. JavaScript and jQuery resides within the web browser, so a user with
little knowledge can easily modify the code to bypass any client-side validation techniques.
This means that client-side validation cannot be totally relied on to prevent the user from
submitting invalid data. Any validation done within the client side must be replicated on the
server, which is not open for manipulation by the user.

We use client-side validation to improve the user experience. Because of this, the user does
not need to wait for a server response.

Implementing basic form validation
At the most basic level of form validation, you will need to be able to prevent the user from
submitting empty values. This recipe will provide the HTML and CSS code for a web form that
will be used for recipes 1 through 8 of this chapter.

Getting ready
Using your favorite text editor or IDE, create a blank HTML page in an easily accessible
location and save this file as recipe-1.html. Ensure that you have the latest version of
jQuery downloaded to the same location as this HTML file.

This HTML page will form the basis of most of this chapter, so remember to keep it after you
have completed this recipe.

How to do it…
Learn how to implement basic form validation with jQuery by performing the following steps:

1. Add the following HTML code to index.html. Be sure to change the source location
of the JavaScript included for the jQuery library, pointing it to where the latest version
of jQuery is downloaded on your computer.
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/html">
<head>
 <title>Chapter 5 :: Recipe 1</title>
 <link type="text/css" media="screen" rel="stylesheet"
href="styles.css" />
 <script src="jquery.min.js"></script>
 <script src="validation.js"></script>
</head>
<body>
 <form id="webForm" method="POST">
 <div class="header">

Chapter 5

157

 <h1>Register</h1>
 </div>
 <div class="input-frame">
 <label for="firstName">First Name:</label>
 <input name="firstName" id="firstName" type="text"
 class="required" />
 </div>
 <div class="input-frame">
 <label for="lastName">Last Name:</label>
 <input name="lastName" id="lastName" type="text"
 class="required" />
 </div>
 <div class="input-frame">
 <label for="email">Email:</label>
 <input name="email" id="email" type="text"
 class="required email" />
 </div>
 <div class="input-frame">
 <label for="number">Telephone:</label>
 <input name="number" id="number" type="text"
 class="number" />
 </div>
 <div class="input-frame">
 <label for="dob">Date of Birth:</label>
 <input name="dob" id="dob" type="text"
 class="required date"
 placeholder="DD/MM/YYYY"/>
 </div>
 <div class="input-frame">
 <label for="creditCard">Credit Card #:</label>
 <input name="creditCard" id="creditCard"
 type="text" class="required credit-card" />
 </div>
 <div class="input-frame">
 <label for="password">Password:</label>
 <input name="password" id="password"
 type="password" class="required" />
 </div>
 <div class="input-frame">
 <label for="confirmPassword">Confirm
 Password:</label>
 <input name="confirmPassword"
 id="confirmPassword" type="password"
 class="required" />
 </div>

Form Handling

158

 <div class="actions">
 <button class="submit-btn">Submit</button>
 </div>
 </form>
</body>
</html>

2. Create a CSS file named styles.css in the same directory and add the following
CSS code to add style to our HTML page and form:
@import url(http://fonts.googleapis.com/css?family=Ubuntu);
body {
 background-color: #FFF;
 font-family: 'Ubuntu', sans-serif;
}
form {
 width: 500px;
 padding: 20px;
 background-color: #333;
 border-radius: 5px;
 margin: 10px auto auto auto;
 color: #747474;
 border: solid 2px #000;
}
form label {
 font-size: 14px;
 line-height: 30px;
 width: 27%;
 display: inline-block;
 text-align: right;
}
.input-frame {
 clear: both;
 margin-bottom: 25px;
 position: relative;
}
form input {
 height: 30px;
 width: 330px;
 margin-left: 10px;
 background-color: #191919;
 border: solid 1px #404040;
 padding-left: 10px;
 color: #DB7400;
}

Chapter 5

159

form input:hover {
 background-color: #262626;
}
form input:focus {
 border-color: #DB7400;
}
form .header {
 margin: -20px -20px 25px -20px;
 padding: 10px 10px 10px 20px;
 position: relative;
 background-color: #DB7400;
 border-top-left-radius: 4px;
 border-top-right-radius: 4px;
}
form .header h1 {
 line-height: 50px;
 margin: 0px;
 padding: 0px;
 color: #FFF;
 font-weight: normal;
}
.actions {
 text-align: right;
}
.submit-btn {
 background-color: #DB7400;
 border: solid 1px #000;
 border-radius: 5px;
 color: #FFF;
 padding: 10px 20px 10px 20px;
 text-decoration: none;
 cursor: pointer;
}
.error input {
 border-color: red;
}
.error-data {
 color: red;
 font-size: 11px;
 position: absolute;
 bottom: -15px;
 left: 30%;
}

Form Handling

160

3. In addition to the jQuery library, the previous HTML page also uses another JavaScript
file. Create a blank JavaScript file in the directory where the index.html file is
saved. Save this file as validation.js and add the following JavaScript code:
$(function(){
 $('.submit-btn').click(function(event){
 //Prevent form submission
 event.preventDefault();
 var inputs = $('input');
 var isError = false;
 //Remove old errors
 $('.input-frame').removeClass('error');
 $('.error-data').remove();
 for (var i = 0; i < inputs.length; i++) {
 var input = inputs[i];
 if ($(input).hasClass('required') &&
 !validateRequired($(input).val())) {
 addErrorData($(input), "This is a required
 field");
 isError = true;
 }

 }
 if (isError === false) {
 //No errors, submit the form
 $('#webForm').submit();
 }
 });
});

function validateRequired(value) {
 if (value == "") return false;
 return true;
}

function addErrorData(element, error) {
 element.parent().addClass("error");
 element.after("<div class='error-data'>" + error + "</div>");
}

Chapter 5

161

4. Open index.html in a web browser and you should see a form similar to the
following screenshot:

5. If you click on the Submit button to submit an empty form, you will be presented with
error messages under the required fields.

How it works…
Now, let us understand the steps performed previously in detail.

HTML
The HTML creates a web form with various fields that will take a range of data inputs,
including text, date of birth, and credit card number. This page forms the basis for most of
this chapter. Each of the input elements has been given different classes depending on what
type of validation they require. For this recipe, our JavaScript will only look at the required
class, which indicates a required field and therefore cannot be blank. Other classes have been
added to the input fields, such as date and number, which will be used in the later recipes in
this chapter.

Form Handling

162

CSS
Basic CSS has been added to create an attractive web form. The CSS code styles the input
fields so they blend in with the form itself and adds a hover effect. The Google Web Font
Ubuntu has also been used to improve the look of the form.

jQuery
The first part of the jQuery code is wrapped within $(function(){});, which will ensure
the code is executed on page load. Inside this wrapper, we attach a click event handler to the
form submit button, shown as follows:

$(function(){
 $('.submit-btn').click(function(event){
 //Prevent form submission
 event.preventDefault();

 });
});

As we want to handle the form submission based on whether valid data has been provided,
we use event.preventDefault(); to initially stop the form from submitting, allowing us to
perform the validation first, shown as follows:

var inputs = $('input');
var isError = false;

After the preventDefault code, an inputs variable is declared to hold all the input
elements within the page, using $('input') to select them. Additionally, we create an
isError variable, setting it to false. This will be a flag to determine if our validation code
has discovered an error within the form. These variable declarations are shown previously.
Using the length of the inputs variable, we are able to loop through all of the inputs on the
page. We create an input variable for each input that is iterated over, which can be used to
perform actions on the current input element using jQuery. This is done with the following
code:

for (var i = 0; i < inputs.length; i++) {
var input = inputs[i];
}

After the input variable has been declared and assigned the current input, any previous error
classes or data is removed from the element using the following code:

$(input).parent().removeClass('error');
$(input).next('.error-data').remove();

Chapter 5

163

The first line removes the error class from the input's parent (.input-frame), which adds
the red border to the input element. The second line removes the error information that is
displayed under the input if the validation check has determined that this input has
invalid data.

Next, jQuery's hasClass() function is used to determine if the current input element has the
required class. If the current element does have this class, we need to perform the required
validation to make sure this field contains data. We call the validateRequired() function
within the if statement and pass through the value of the current input, shown as follows:

if ($(input).hasClass('required') && !validateRequired($(input).
val())) {
addErrorData($(input), "This is a required field");
 isError = true;
}

We call the validateRequired() function prepended with an exclamation mark to check to
determine if this function's results are equal to false; therefore, if the current input has the
required class and validateRequired() returns false, the value of the current input is
invalid. If this is the case, we call the addErrorData() function inside the if statement with
the current input and the error message, which will be displayed under the input. We
also set the isError variable to true, so that later on in the code, we will know a validation
error occurred.

The JavaScript's for loop will repeat these steps for each of the selected input elements
on the page. After the for loop has completed, we check if the isError flag is still set to
false. If so, we use jQuery to manually submit the form, shown as follows:

if (isError === false) {
 //No errors, submit the form
 $('#webForm').submit();
}

Note that the operator === is used to compare the variable type of isError (that
is, Boolean) as well as its value. At the bottom of the JavaScript file, we declare
our two functions that have been called earlier in the script. The first function,
validateRequired(), simply takes the input value and checks to see if it is blank or not.
If the value is blank, the function returns false, meaning validation failed; otherwise, the
function returns true. This can be coded as follows:

function validateRequired(value) {
 if (value == "") return false;
 return true;
}

Form Handling

164

The second function used is the addErrorData() function, which takes the current input
and an error message. It uses jQuery's addClass() function to add the error class to the
input's parent, which will display the red border on the input element using CSS. It then uses
jQuery's after() function to insert a division element into the DOM, which will display the
specified error message under the current input field, shown as follows:

function validateRequired(value) {
 if (value == "") return false;
 return true;
}
function addErrorData(element, error) {
 element.parent().addClass("error");
 element.after("<div class='error-data'>" + error + "</div>");
}

There's more...
This structure allows us to easily add additional validation to our web form. Because the
JavaScript is iterating over all of the input fields in the form, we can easily check for additional
classes, such as date, number, and credit-card, and call extra functions to provide the
alternative validation. The other recipes in this chapter will look in detail at the additional
validation types and add these functions to the current validation.js file.

See also
 f Implementing input character restrictions

Adding number validation
When collecting data from a user, there are many situations when you will want to only allow
numbers in a form field. Examples of this could be telephone numbers, PIN codes, or ZIP
codes, to name a few. This recipe will show you how to validate the telephone number field
within the form we created in the previous recipe.

Getting ready
Ensure that you have completed the previous recipe and have the same files available. Open
validation.js in your text editor or IDE of choice.

Chapter 5

165

How to do it…
Add number validation to the form you created in the previous recipe by performing the
following steps:

1. Update validation.js to be as follows, adding the valdiateNumber() function
with an additional hasClass('number') check inside the for loop:
$(function(){
 $('.submit-btn').click(function(event){
 //Prevent form submission
 event.preventDefault();
 var inputs = $('input');
 var isError = false;
 //Remove old errors
 $('.input-frame').removeClass('error');
 $('.error-data').remove();
 for (var i = 0; i < inputs.length; i++) {
 var input = inputs[i];

 if ($(input).hasClass('required') &&
 !validateRequired($(input).val())) {
 addErrorData($(input), "This is a required
 field");
 isError = true;
 }
/* Code for this recipe */
 if ($(input).hasClass('number') &&
 !validateNumber($(input).val())) {
 addErrorData($(input), "This field can only
 contain numbers");
 isError = true;
 }
/* --- */

 }
 if (isError === false) {
 //No errors, submit the form
 $('#webForm').submit();
 }
 });
});

function validateRequired(value) {
 if (value == "") return false;

Form Handling

166

 return true;
}

/* Code for this recipe */
function validateNumber(value) {
 if (value != "") {
 return !isNaN(parseInt(value, 10)) && isFinite(value);
 //isFinite, in case letter is on the end
 }
 return true;
}
/* --- */
function addErrorData(element, error) {
 element.parent().addClass("error");
 element.after("<div class='error-data'>" + error + "</div>");
}

2. Open index.html in a web browser, input something other than a valid integer into
the telephone number field, and click on the Submit button. You will be presented
with a form similar to the following screenshot:

Chapter 5

167

How it works…
First, we add an additional if statement to the main for loop of validation.js to check
to see if the current input field has the class number, as follows:

if ($(input).hasClass('number') &&
 !validateNumber($(input).val())) {
 addErrorData($(input), "This field can only contain numbers");
 isError = true;
}

If it does, this input value needs to be validated for a number. To do this, we call the
validateNumber function inline within the if statement:

function validateNumber(value) {
 if (value != "") {
 return !isNaN(parseInt(value, 10)) && isFinite(value);
 //isFinite, in case letter is on the end
 }
 return true;
}

This function takes the value of the current input field as an argument. It first checks to see
if the value is blank. If it is, we do not need to perform any validation here because this is
handled by the validateRequired() function from the first recipe of this chapter.

If there is a value to validate, a range of actions are performed on the return statement.
First, the value is parsed as an integer and passed to the isNaN() function. The JavaScript
isNaN() function simply checks to see if the provided value is NaN (Not a Number). In
JavaScript, if you try to parse a value as an integer and that value is not actually an integer,
you will get the NaN value. The first part of the return statement is to ensure that the
provided value is a valid integer. However, this does not prevent the user from inputting invalid
characters. If the user was to input 12345ABCD, the parseInt function would ignore ABCD
and just parse 12345, and therefore the validation would pass. To prevent this situation, we
also use the isFinite function, which returns false if provided with 12345ABCD.

See also
 f Adding credit card number validation

Form Handling

168

Adding credit card number validation
Number validation could be enough validation for a credit card number; however, using
regular expressions, it is possible to check for number combinations to match credit card
numbers from Visa, MasterCard, American Express, and more.

Getting ready
Make sure that you have validation.js from the previous two recipes in this chapter open
and ready for modification.

How to do it…
Use jQuery to provide form input validation for credit card numbers by performing the following
step-by-step instructions:

1. Update validation.js to add the credit card validation function and the additional
class check on the input fields:
$(function(){
 $('.submit-btn').click(function(event){
 //Prevent form submission
 event.preventDefault();
 var inputs = $('input');
 var isError = false;
 for (var i = 0; i < inputs.length; i++) {

// -- JavaScript from previous two recipes hidden

 if ($(input).hasClass('credit-card') &&
 !validateCreditCard($(input).val())) {
 addErrorData($(input), "Invalid credit card
 number");
 isError = true;
 }

 }
// -- JavaScript from previous two recipes hidden
 });
});

// -- JavaScript from previous two recipes hidden

function validateCreditCard(value) {

Chapter 5

169

 if (value != "") {
 return /^(?:4[0-9]{12}(?:[0-9]{3})?|5[1-5][0-9]
{14}|6(?:011|5[0-9][0-9])[0-9]{12}|3[47][0-9]{13}|3(?:0[0-5]|[68]
[0-9])[0-9]{11}|(?:2131|1800|35\d{3})\d{11})$/.test(value);
 }
 return true;
}
// -- JavaScript from previous two recipes hidden
}

2. Open index.html and input an invalid credit card number. You will be presented
with the following error information in the form:

How it works…
To add credit card validation, as with the previous two recipes, we added an additional check
in the main for loop to look for the credit-card class on the input elements, as follows:

if ($(input).hasClass('credit-card') &&
 !validateCreditCard($(input).val())) {
 addErrorData($(input), "Invalid credit card number");
 isError = true;
}

Form Handling

170

The validateCreditCard function is also added, which uses a regular expression to
validate the input value, as follows:

function validateCreditCard(value) {
 if (value != "") {
 return /^(?:4[0-9]{12}(?:[0-9]{3})?|5[1-5][0-
 9]{14}|6(?:011|5[0-9][0-9])[0-9]{12}|3[47][0-
 9]{13}|3(?:0[0-5]|[68][0-9])[0-
 9]{11}|(?:2131|1800|35\d{3})\d{11})$/.test(value);
 }
 return true;
}

The first part of this function determines if the provided value is blank. If it isn't, the function
will perform further validation; otherwise, it will return true. Most credit card numbers
start with a prefix, which allows us to add additional validation to the inputted value on
top of numeric validation. The regular expression used in this function will allow for Visa,
MasterCard, American Express, Diners Club, Discover, and JCB cards.

See also
 f Adding number validation

Adding date validation
Dates are common items of data, and it is important that the user be able to easily input
a date into your web form. Typically, you would use a date picker that has date validation
included to provide an easy input method. This recipe shows you how to manually validate a
date in the UK format (that is, DD/MM/YYYY). Date pickers are covered in Chapter 9, jQuery
UI, using the popular jQuery UI framework. Refer to the See also section of this recipe for
more information.

Getting ready
Continuing the trend of the previous recipes of this chapter, ensure that you have
validation.js open and ready for modification and that you have completed the previous
three recipes.

How to do it…
Add date validation to your web form by performing the following simple steps:

1. Update validation.js to add the additional date validation function and class
check within the main for loop, shown as follows:

Chapter 5

171

$(function(){
 $('.submit-btn').click(function(event){

// -- JavaScript from previous three recipes hidden

 for (var i = 0; i < inputs.length; i++) {

// -- JavaScript from previous three recipes hidden

 if ($(input).hasClass('date') &&
 !validateDate($(input).val())) {
 addErrorData($(input), "Invalid date
 provided");
 isError = true;
 }

 // -- JavaScript from previous three recipes hidden

 }
 // -- JavaScript from previous three recipes hidden });
});

// -- JavaScript from previous three recipes hidden

function validateDate(value) {
 if (value != "") {
 if (/^\d{2}([.\/-])\d{2}\1\d{4}$/.test(value)) {
 // Remove leading zeros
 value = value.replace(/0*(\d*)/gi,"$1");
 var dateValues = value.split(/[\.|\/|-]/);
 // Correct the month value as month index starts
 at 0 now 1 (e.g. 0 = Jan, 1 = Feb)
 dateValues[1]--;
 var date = new Date(dateValues[2], dateValues[1],
 dateValues[0]);
 if (
 date.getDate() == dateValues[0] &&
 date.getMonth() == dateValues[1] &&
 date.getFullYear() == dateValues[2]
) {
 return true;
 }
 }
 return false;
 } else {

Form Handling

172

 return true;
 }
}

// -- JavaScript from previous three recipes hidden

2. Open index.html in a web browser, input an invalid date, and click on Submit to
generate the invalid date error, shown in the following screenshot:

How it works…
Once again, we add an additional class check to the main for loop to see if the current input
needs to have date validation applied. If it does, the validateDate() function is called.

Just like the other validation functions, we first check to see if the value is blank. If it is not
blank, the value can be validated. A regular expression is used to determine if the string value
provided is of a valid date format, as follows:

if (/^\d{2}([.\/-])\d{2}\1\d{4}$/.test(value)) {

This test will pass if the provided value is separated with a slash, a hyphen, or a full stop and
where the first two parts consist of two numbers and the last part consists of four numbers.
This will ensure the provided value is DD/MM/YYYY, as required.

Chapter 5

173

If this test passes, the next step is to remove all of the leading zeros so that the provided date
string can be converted into a date object with JavaScript (for example, 08-08-1989 will
become 8-8-1989). The code for the same is as follows:

value = value.replace(/0*(\d*)/gi,"$1");

After this, an array is created as follows, splitting the date string on either -, /, or:

var dateValues = value.split(/[\.|\/|-]/);

Now, it is possible to use these date values to create a JavaScript date object and test its
validity. Before this can happen, we must convert the month value. JavaScript months start
from 0, whereas our user will have started from 1. For example, the user will use 1 for January,
2 for February, and so on, whereas JavaScript uses 0 for January, 1 for February, and so on. To
account for this, we simply subtract 1 from the provided date value, shown as follows:

dateValues[1]--;

With this done, it is possible to create the JavaScript date object and check that the outcome
matches the input date, proving its validity:

var date = new Date(dateValues[2], dateValues[1], dateValues[0]);
if (
 date.getDate() == dateValues[0] &&
 date.getMonth() == dateValues[1] &&
 date.getFullYear() == dateValues[2]
) {
 return true;
}

See also
 f The Adding date picker interfaces to input boxes quickly recipe in

Chapter 9, jQuery UI

Adding e-mail address validation
E-mail address validation is one of the most common types of validation on the Web. Most
people would believe that a valid e-mail address only contains alphanumeric characters with
the exception of the @ symbol and a full stop. While most e-mail addresses are typically of this
format, a valid e-mail address can actually contain a variety of other characters. This recipe
will show you how to add e-mail validation to the web form we have been using in the last
four recipes.

Form Handling

174

How to do it…
Create e-mail validation that can be reused again and again by performing the following
instructions:

1. Add the additional hasClass check and if statement to the main for loop in
validation.js as follows:
if ($(input).hasClass('email') &&
 !validateEmail($($(input)).val())) {
 addErrorData($(input), "Invalid email address
 provided");
 isError = true;
}

2. Add the following validateEmail() function to the end of validation.js:
function validateEmail(value) {
 if (value != "") {
 return /[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-
9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-
9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?/i.test(value);
 }
 return true;
}

3. Open index.html in a web browser, input an invalid e-mail address, and submit the
form. You will be presented with an appropriate error in the same fashion as the other
types of validation errors.

How it works…
The e-mail validation function, however simple, contains a complex regular expression to
validate an e-mail address to a practical version of RFC 5322 standards, which was provided
by http://www.regular-expressions.info/email.html.

The first part of the validateEmail() function checks to see if there is a value to validate.
If so, it uses the complex regular expression to test the string values' validity, returning true
or false accordingly.

Finally, as with the other validation functions, there is the class check inside the main for
loop, which determines which inputs need to be validated for e-mail addresses. If these input
fields fail validation, it will provide the appropriate error output on screen.

Chapter 5

175

There's more…
It is important to understand that this method of e-mail validation only validates the syntax to
cut down on the amount of rubbish data provided by users. To truly validate an e-mail address,
you would have to actually send an e-mail to verify that it exists and is ready to receive e-mail.

Implementing live form validation
It can be very useful for the user to get real-time feedback regarding validation errors as they
type in your web form. If you are performing client-side validation with JavaScript as well as
server-side validation, this can be achieved easily as you do not need to send a request to the
server every time the user types in an input—you can do it all within the client. Once again, it
is very important that the same data undergoes additional validation on the server side. The
server-side validation can then be fed back to the web form after the user has submitted
the form.

Getting ready
This recipe will adapt the client-side validation that has been created as part of the last five
recipes. Ensure that you have completed these recipes beforehand.

How to do it…
Provide real-time validation to users by performing the following steps:

1. First, we need to move all of the class checks from the for loop into their own
function so that they can be reused. Move all of the if statements, which perform
the hasClass checks for required, email, number, date, and credit-card,
into a function called doValidation(), shown as follows:
// --- Hidden JavaScript from previous recipes

function doValidation(input) {
 //Remove old errors
 $(input).parent().removeClass('error');
 $(input).next('.error-data').remove();
 if ($(input).hasClass('required') &&
 !validateRequired($(input).val())) {
 addErrorData($(input), "This is a required field");
 }
 if ($(input).hasClass('email') &&
 !validateEmail($($(input)).val())) {
 addErrorData($(input), "Invalid email address
 provided");

Form Handling

176

 }
 if ($(input).hasClass('number') &&
 !validateNumber($(input).val())) {
 addErrorData($(input), "This field can only contain
 numbers");
 }
 if ($(input).hasClass('date') &&
 !validateDate($(input).val())) {
 addErrorData($(input), "Invalid date provided");
 }
 if ($(input).hasClass('credit-card') &&
 !validateCreditCard($(input).val())) {
 addErrorData($(input), "Invalid credit card number");
 }
}

// --- Hidden JavaScript

2. Now, we need to update the main for loop to use this function so that the form
validation is still performed when the user clicks on the submit button, as follows:
for (var i = 0; i < inputs.length; i++) {
 var input = inputs[i];
 doValidation(input);
}

3. Update the isError check after the for loop to use an alternative method to
determine if there were errors so that the form can still be submitted, as follows:
if ($('.error-data').length == 0) {
 //No errors, submit the form
 $('#webForm').submit();
}

4. To perform validation on the field that the user is typing into, we need to call the
doValidation() function on the keyup event. Add the following code inside the
$(function(){}); block to attach a keyup event handler to each of the form
inputs:
$('input').on("keyup", function(){
 doValidation($(this));
});

5. Open index.html in a web browser, start typing inside the e-mail field, and you will
be provided with the appropriate error message as you type until you have entered a
valid e-mail address.

Chapter 5

177

How it works…
It is easy to adapt the previous validation code to provide real-time validation for the user.
Moving the main validation triggers to another function means that the code can be reused
without the need for duplication. The function that holds these triggers takes one argument,
which is the input it needs to perform the validation checks on. The for loop is still used to
provide this input, shown as follows:

for (var i = 0; i < inputs.length; i++) {
 var input = inputs[i];
 doValidation(input);
}

Instead of relying on the doValidation function to return an isError value, we look to
the DOM directly to see if there are any errors being displayed on screen by looking for any
elements with the error-data class, as follows:

if ($('.error-data').length == 0) {
 //No errors, submit the form
 $('#webForm').submit();
}

If there are no errors, the form is submitted manually as before.

To provide real-time validation, a keyup event handler is attached to each of the form inputs
using the following jQuery code:

$('input').on("keyup", function(){
 doValidation($(this));
});

The callback function for the on() method will be executed every time the user presses and
releases a key inside one of the input fields. It is then possible to use $(this), which refers
to the input that triggered the event, thereby providing the doValidation() function with
the input object it requires to perform the validation checks.

Adding a password strength indicator
Users like to create a really simple password that is easy to remember, such as cat, john, or
even password. However, most people, especially web developers, know that these types of
passwords are too insecure and are incredibly easy to decrypt from an encrypted database
using techniques such as a dictionary attack, for example. Password strength indicators are
useful to nudge the user in the right direction of using more complex passwords.

Form Handling

178

Getting ready
To be able to validate password strength, we need to create some rules that our code will use.
There are no hard-and-fast rules regarding this, but plenty of information can be found online
about what types of passwords are best. We will give the password a score out of five, one
point for each of the following rules:

 f It is greater than six characters in length

 f It is greater than eight characters

 f It has both upper and lowercase characters

 f It has at least one number

 f It has one of the following symbols: @, $,!, &, and ^

This recipe will add password strength indicator to the web form that we have been creating
over the last six recipes. Ensure that you have the code from these recipes available before
you begin this recipe.

How to do it…
Create an effective password strength indicator for web forms by performing each of the
following steps:

1. Update index.html, adding some additional classes to the password form elements
and also some additional HTML, which will create the password strength indicator, as
follows:
// --- ADDITIONAL HTML HIDDEN
<div class="input-frame">
<label for="password">Password:</label>
<input name="password" id="password" type="password"
class="required password" />
<div class="password-strength">
 <div class="inner"></div>
 <div class="text"></div>
</div>
</div>
<div class="input-frame">
<label for="confirmPassword">Confirm Password:</label>
<input name="confirmPassword" id="confirmPassword" type="password"
class="confirm-password" />
</div>
// --- ADDITIONAL HTML HIDDEN

Chapter 5

179

2. Add the following styles to the end of styles.css to position the strength indicator
under the password field. These styles will also allow the strength indicator to act as a
load bar showing the percentage of password strength.
.password-strength {
 position: absolute;
 width: 150px;
 height: 20px;
 left: 69%;
 top: 35px;
 line-height: 20px;
 border: solid 1px #191919;
}
.password-strength .inner {
 position: absolute;
 left: 0;
 top: 0;
}
.password-strength .text {
 font-size: 11px;
 color: #FFF;
 text-align: center;
 position: relative;
 z-index: 10;
}

3. Add the validatePasswords() function to the end of validation.js, which will
be used to ensure both passwords are entered and that they match, as follows:
// --- HIDDEN JAVASCRIPT
function validatePasswords(value) {
 var password = $('.password').val();
 if (value == "") {
 return "Both passwords are required";
 } else if (value != password) {
 return "Passwords do not match";
 }
 return true;
}

4. Add the following code to the end of the doValidation() function to run the
validatePasswords() function on the confirm-password input:
function doValidation(input) {
// --- HIDDEN JAVASCRIPT
if ($(input).hasClass('confirm-password')) {
 var result = validatePasswords($(input).val());

Form Handling

180

 if (result != true) {
 addErrorData($(input), result);
 }
 }
}

5. Add the following keyup event handler inside the $(function(){}); block in
validation.js to score the password strength when the user types in the first
password field:
$('.password').on("keyup", function(){
 var score = 0;
 var password = $('.password');
 var passwordAgain = $('.confirm-password');
 //Remove any old errors for the password fields
 password.parent().removeClass('error');
 password.next('.error-data').remove();
 passwordAgain.parent().removeClass('error');
 passwordAgain.next('.error-data').remove();
 //Password is greater than 6 characters
 if (password.val().length > 6) {
 score++;
 }
 //Password is greater than 8 characters
 if (password.val().length > 8) {
 score++;
 }
 //Password has both uppercase and lowercase characters
 if (/(?=.*[A-Z])(?=.*[a-z])/.test(password.val())) {
 score++;
 }
 //Password has at least one number
 if (/(?=.*[0-9])/.test(password.val())) {
 score++;
 }
 //Password has at least one symbol (@$!&^) character
 if (/@|\$|\!|&|\^/.test(password.val())) {
 score++;
 }
 var fill = (100 - ((score * 2) * 10));
 var percent = (100 - fill);
 var level,
 colour;
 switch (score) {
 case 0:

Chapter 5

181

 case 1:
 level = "Weak";
 colour = "green";
 break;
 case 2:
 case 3:
 level = "Medium";
 colour = "orange";
 break;
 case 4:
 level = "Strong";
 colour = "red";
 break;
 case 5:
 level = "Excellent";
 colour = "purple";
 break;
 }
 $('.password-strength .inner').css('right', fill +
 "%").css('background-color', colour);
 $('.password-strength .text').html(level + " (" + percent +
 "%)");
 });

6. Open index.html in a web browser and you will see an additional black box
under the first password field. Start typing in a password and this field will provide
information on the password strength as you type. This is illustrated in the
following screenshot:

How it works…
The HTML for the indicator itself has an inner element and a text element. The text
element is used by jQuery to display the password strength and percentage based on the
calculated score of the inputted password. The inner element is used to form the colored
bar. Based on the calculated score, jQuery is used to change the inner element's color and
positioning, creating the load bar impression, which can be seen in the previous screenshot.

Form Handling

182

The CSS used needs little explanation since it provides basic styles and positioning. The
inner element has an absolute position so that it can fill the password-strength element
at different percentages. The text division has its z-index parameter set to ensure that the
text will always display above the inner element.

The validatePasswords function, which was created as part of this recipe, simply
adds basic password validation to our application. It checks to ensure that the confirm-
password field has been filled and that the value matches the first password field. An
additional check is added to the doValdiation function to ensure this validation gets
applied along with the other validation methods created in earlier recipes.

To update the password strength indicator as the user types within the password field, the
same method is used as that used in the Implementing live form validation recipe, which is
to use the keyup event. An event handler is attached to the password field using the jQuery
on() function, shown as follows:

$('.password').on("keyup", function(){
});

The code to calculate the score and update the password-strength HTML element is
then placed within the callback function to this event handler. The first part of this code is to
remove any current errors displayed for the password fields.

After this, there are a series of if statements which validate the password against the rules
that were defined at the beginning of this recipe. The first basic validation is the password
length, shown as follows:

//Password is greater than 6 characters
if (password.val().length > 6) {
 score++;
}
//Password is greater than 8 characters
if (password.val().length > 8) {
 score++;
}

The score variable is incremented by 1 using score++ every time a validation condition
is met.

The more complex rules use regular expressions to determine whether the password value
meets the requirements for the additional score points, shown as follows:

//Password has both uppercase and lowercase characters
if (/(?=.*[A-Z])(?=.*[a-z])/.test(password.val())) {
 score++;
}
//Password has at least one number

Chapter 5

183

if (/(?=.*[0-9])/.test(password.val())) {
 score++;
}
//Password has at least one symbol (@$!&^) character
if (/@|\$|\!|&|\^/.test(password.val())) {
 score++;
}

After all five rules have been considered, the final score is used to calculate the fill value. The
fill value is the percentage of the inner element that needs to be filled from the right-hand
side of the strength indicator. This allows us to create the load bar effect. In addition to the fill
value, a normal percentage is calculated to be displayed along with the strength level text as
follows:

var fill = (100 - ((score * 2) * 10));
var percent = (100 - fill);

After this, the score value is used once more to determine the background color of the inner
element and the strength level text as follows:

var level,
colour;
switch (score) {
case 0:
case 1:
 level = "Weak";
 colour = "green";
break;
case 2:
case 3:
 level = "Medium";
 colour = "orange";
 break;
case 4:
 level = "Strong";
 colour = "red";
break;
case 5:
 level = "Excellent";
 colour = "purple";
break;
}

Form Handling

184

Finally, using the jQuery password-strength, the HTML code is updated with the acquired
information to display the results to the user, as follows:

$('.password-strength .inner').css('right', fill +
 "%").css('background-color', colour);
$('.password-strength .text').html(level + " (" + percent + "%)");

There's more…
This code should be easily adaptable so that you can add your own rules regarding password
strength. There are many discussions and resources online to point you to what a strong
password should look like.

See also
 f Implementing live form validation

Adding anti-spam measures
Most web developers will know that if you have a contact form or any kind of web form
publically available on your website, there will be web bot submissions and a lot of spam.
Most web bots will be thwarted by the JavaScript-only web form we have been creating over
the last seven recipes, but with browser automation and web bots becoming ever cleverer, it is
still important to add anti-spam measures to your web forms.

Getting ready
Ensure that you have completed the last seven recipes and have the code readily available.
Remember that if you would just like to use the code without fully understanding how it works,
skip to the end of this chapter, to the How it works... section, to grab it all.

How to do it…
Add simple anti-spam measures to your web form by performing each of the following steps:

1. Update index.html to have an additional form input under the input labeled
Confirm Password as follows:
<!-- HIDDEN HTML CODE -->
<div class="input-frame">
 <label>Confirm Password:</label>
 <input type="password" class="confirm-password" />
</div>
<div class="input-frame">

Chapter 5

185

 <label>Enter the number <span class="anti-spam-
 number">:</label>
 <input type="text" class="required anti-spam-input" />
</div>
<!-- HIDDEN HTML CODE -->

2. Using JavaScript, generate a random number between 1 and 100 at the top of
validation.js using the following code:
var spamNumber = Math.floor(Math.random() * (100 - 1 + 1))
 + 1;
$(function(){
// --- HIDDEN JAVASCRIPT CODE

3. At the very end of the $(function(){}); jQuery block, add the following code to
update the HTML anti-spam-number span element with the random number:
// --- HIDDEN JAVASCRIPT CODE
$('.anti-spam-number').html(spamNumber);
});

4. Add the following additional validation check to the end of the doValidation()
function:
if ($(input).hasClass('anti-spam-input') &&
 !validateAntiSpam($(input).val())) {
 addErrorData($(input), "Incorrect Anti-Spam answer");
}

5. Finally, at the end of validation.js, add the validateAntiSpam() function,
which is called by the previous code:
// --- HIDDEN JAVASCRIPT CODE
function validateAntiSpam(value) {
 if (value != "") {
 if (parseInt(value)!= spamNumber) return false;
 }
 return true;
}

6. Open index.html in a web browser and you will see the additional anti-spam form
input field. Every time you refresh the page, it will ask you to input a different number.

Form Handling

186

How it works…
By declaring the spamNumber global variable outside any function, it is available for use by
the whole JavaScript file. A new number between 1 and 100 is generated on every page load
so that a web bot cannot store the answer and submit the form. Within the HTML code, there
is a span element with the class anti-spam-number, which is updated with a random
number on page load using the following code:

$('.anti-spam-number').html(spamNumber);

This will ensure the user is being told to input the correct number. We created an additional
validation function named validateAntiSpam and called it from the doValidation()
function for all inputs that have the anti-spam-input class. This will then validate the user-
entered number with the globally available spamNumber variable, shown as follows:

function validateAntiSpam(value) {
 if (value != "") {
 if (parseInt(value)!= spamNumber) return false;
 }
 return true;
}

Note that the input is parsed as an integer to ensure a number-on-number comparison. If the
values do not match, this function will return false so that the doValidation() function
can create the appropriate error message on-screen for the user.

There's more…
This type of client-side spam validation cannot be completely relied upon. It is effective towards
general web bots that are not directly targeting your website. If someone wants to write a bot
script specific to your site, bypassing this JavaScript would not be a difficult process. If you think
this is possible, more extreme server-side spam prevention must be used.

There are many effective spam-prevention methods available for free on the Internet. The
most popular are CAPTCHAs. One of the most popular CAPTCHAs is available for free by
Google at http://www.google.com/recaptcha.

See also
 f Adding a password strength indicator

Chapter 5

187

Implementing input character restrictions
Until now, all of the recipes in this chapter have concentrated on input validation and
providing appropriate feedback to the user. There are situations where it is better to simply
prevent the user from inputting invalid characters in the first place. This method would not
typically be used, because it can be confusing for some users; for example, if they are not
being told why they cannot input %. A situation where this would work is a login form. If you
know your registration system does not allow % in the username, you know that the user
would be inputting % by mistake, and therefore preventing the input is acceptable. This recipe
provides a method to prevent users from inputting non-alphanumeric characters into an
input field.

Getting ready
This recipe does not use any code from the last eight recipes; however, there are similarities
in the CSS code. To complete this recipe, you are going to need three files. Create recipe-9.
html, recipe-9.js, and recipe-9.css in the same directory as you have stored the
latest version of jQuery.

How to do it…
Use jQuery to prevent users from inputting invalid chapters into text inputs by performing the
following steps:

1. Add the following HTML code to recipe-9.html. This creates a basic login form and
includes the two other files along with the jQuery library:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/html">
<head>
 <title>Chapter 5 :: Recipe 7</title>
 <link type="text/css" media="screen" rel="stylesheet"
href="recipe-9.css" />
 <script src="jquery.min.js"></script>
 <script src="recipe-9.js"></script>
</head>
<body>
<form id="webForm" method="POST">
 <div class="header">
 <h1>Register</h1>
 </div>
 <div class="input-frame">
 <label for="username">Username:</label>

Form Handling

188

 <input name="username" id="username" type="text"
class="username" />
 </div>
 <div class="input-frame">
 <label for="password">Password:</label>
 <input name="password" id="password" type="text"
class="required" />
 </div>
 <div class="actions">
 <button class="submit-btn">Submit</button>
 </div>
</form>
</body>
</html>

2. Add the following CSS code to recipe-9.css, which adds style to the login form:
@import url(http://fonts.googleapis.com/css?family=Ubuntu);
body {
 background-color: #FFF;
 font-family: 'Ubuntu', sans-serif;
}
form {
 width: 500px;
 margin: 10px auto auto auto;
 padding: 20px;
 background-color: #333;
 border-radius: 5px;
 color: #747474;
 border: solid 2px #000;
}
form label {
 font-size: 14px;
 line-height: 30px;
 padding-bottom: 8px;
 width: 140px;
 display: inline-block;
 text-align: right;
}
.input-frame {
 clear: both;
 margin-bottom: 25px;
 position: relative;
}
form input {

Chapter 5

189

 height: 30px;
 width: 330px;
 margin-left: 10px;
 background-color: #191919;
 border: solid 1px #404040;
 padding-left: 10px;
 color: #DB7400;
}
form input:hover {
 background-color: #262626;
}
form input:focus {
 border-color: #DB7400;
}
form .header {
 margin: -20px -20px 25px -20px;
 padding: 10px 10px 10px 20px;
 position: relative;
 background-color: #DB7400;
 border-top-left-radius: 4px;
 border-top-right-radius: 4px;
}
form .header h1 {
 line-height: 50px;
 margin: 0;
 padding: 0;
 color: #FFF;
 font-weight: normal;
}
.actions {
 text-align: right;
}
.submit-btn {
 background-color: #DB7400;
 border: solid 1px #000;
 border-radius: 5px;
 color: #FFF;
 padding: 10px 20px 10px 20px;
 text-decoration: none;
 cursor: pointer;
}

Form Handling

190

3. Add the following JavaScript code to recipe-9.js in order to watch for user input
on the username field and ensure non-alphanumeric characters are not inputted:
$(function(){
 $('.username').on("keypress", function(event){
 //Get key press character code
 var key = String.fromCharCode(event.which);
 if (/[^a-zA-Z\d\s:]/.test(key)) {
 event.preventDefault();
 return false;
 }
 });
});

4. Open recipe-9.html in a web browser and attempt to input a non-alphanumeric
character (for example, $) inside the username field. You will see it will not be placed
inside the field.

How it works…
A key press event handler is attached to the username field on page load. The callback
function for this event handler has a single argument, which is the event object. This
event object provides access to the key code of the key that the user is pressing. When the
username field has focus and the user presses a key, the callback function is executed.

First, String.fromCharCode(event.which); is used to get the string value of the
pressed key; for example, D, H, and 4. A regular expression is then used to determine whether
or not this character is alphanumeric. If not, the character is prevented from being inputted
into the form field using the following code:

if (/[^a-zA-Z\d\s:]/.test(key)) {
 event.preventDefault();
 return false;
}

There's more…
Ensure that the event used in this recipe is the keypress event. If an alternative event is
used, such as keydown, you may not achieve the desired result. If the keydown event is
used, when the user presses Shift + 4 to input a $ symbol, the keydown event will provide its
event handler as just 4, and not $, therefore passing validation.

6
User Interface

In this chapter, we will cover the following topics:

 f Manipulating element CSS

 f Creating a news ticker

 f Creating sticky elements

 f Implementing smooth scrolling

 f Creating a dynamic table of contents

 f Creating a basic drag-and-drop functionality

 f Creating a dynamic animated tree menu

 f Creating an accordion content slider

 f Creating tabbed content

 f Creating a modal pop up

 f Creating a draggable content pop up

Introduction
jQuery empowers developers with the ability to easily create complex user interface elements.
Because of this, there are a vast amount of jQuery plugins that allow developers to quickly
add such interfaces to their site. Additionally, jQuery's own UI framework houses many popular
interface elements, such as accordions, tabular content, modals, and more. If you would
like to know how to use jQuery UI for your own site, skip directly to Chapter 9, jQuery UI. This
chapter will focus on developing some of these popular UI elements from scratch, providing
for unlimited customizability and allowing you to gain an understanding of how these other
plugins work.

User Interface

192

Manipulating element CSS
jQuery allows developers to access the CSS properties of DOM elements directly. This provides
an easy way to alter the look and feel of your application based on data within your JavaScript.
This recipe will show you how to manipulate DOM CSS in various elements.

Getting ready
You are going to need three files for this recipe. Using your editor of choice, create
recipe-1.html, recipe-1.js, and recipe-1.css in the same directory as the latest
version of the jQuery library.

How to do it…
Of the three files you have just created, open each one for editing and perform the
following steps:

1. Add the following HTML code to recipe-1.html; be sure to change the source
location of the JavaScript included for the jQuery library, pointing it to where the latest
version of jQuery is downloaded on your computer:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 6 :: Recipe 1</title>
 <link href="recipe-1.css" rel="stylesheet"
 type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="recipe-1.js"></script>
</head>
<body>
 <div class="header">
 <h1>ALTER ELEMENT CSS WITH JQUERY</h1>
 </div>
 <div class="content-frame">
 <div class="left">
 <h1>SOME TITLE HERE</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.</p>

Chapter 6

193

 <h2>SOME KIND OF SUBTITLE HERE</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.</p>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.</p>
 </div>
 <div class="right">
 <h3>TITLE COLOUR</h3>
 <select class="title-colour">
 <option value="#">Default</option>
 <option value="red">Red</option>
 <option value="green">Green</option>
 <option value="orange">Orange</option>
 <option value="blue">Blue</option>
 </select>
 <h3>PARAGRAPH SIZE</h3>
 <select class="p-size">
 <option value="#">Default</option>
 <option value="10px">10px</option>
 <option value="15px">15px</option>
 <option value="20px">20px</option>
 <option value="25px">25px</option>
 </select>
 </div>
 </div>
</body>
</html>

2. Add the following CSS code to recipe-1.css:
body {
 margin: 0;
 background-color: #5dace7;
}
.header {

User Interface

194

 height: 150px;
 background-color: #0174cd;
}
.header h1 {
 margin: 0 50px 0 50px;
 padding: 0;
 line-height: 100px;
 font-size: 40px;
 color: #FFFFFF;
}
.content-frame {
 margin: -50px 50px 0 50px;
 background-color: #FFFFFF;
 border-radius: 10px;
 min-height: 500px;
 position: relative;
}
.content-frame .left {
 margin-right: 20%;
 padding: 20px;
}
.content-frame .left h1 {
 margin: 0;
}
.content-frame .right {
 width: 16%;
 padding: 2%;
 position: absolute;
 top: 0;
 right: 0;
 background-color: #F1F1F1;
 border-top-right-radius: 10px;
 border-bottom-right-radius: 10px;
}
.content-frame .right h3 {
 margin: 0;
 line-height: 30px;
 color: #333333;
}
.content-frame .right select {
 width: 100%;
}

Chapter 6

195

3. Add the following jQuery code to recipe-1.js to add functionality to the select
dropdowns within the HTML code:
$(function(){
 $('.title-colour').on("change", function(){
 var colour = $(this).val();
 if (colour == "#") {
 colour = "";
 }
 $('h1, h2').css("color", colour);
 });
 $('.p-size').on("change", function(){
 var size = $(this).val();
 if (size == "#") {
 size = "";
 }
 $('p').css("font-size", size);
 });
});

4. Open recipe-1.html in a web browser and you should see the following
simple web page:

5. Use the drop-down menus on the right-hand side to alter the CSS for the header and
paragraph elements.

User Interface

196

How it works…
The HTML creates a basic web page to provide elements such that their CSS can be
manipulated by jQuery and a simple interface to initiate these changes. The CSS code in
recipe-1.css adds basic styling to create our web page layout.

To change an element's CSS, a change event handler is attached to both select dropdowns
using their respective class names:

$(function(){
 $('.title-colour').on("change", function(){

});
$('.p-size').on("change", function(){

});
});

This will allow us to execute some code when the user changes the values of either the title
color (title-colour) or paragraph size (p-size) dropdowns. Using $(this).val(), it is
possible to get the value of the selected option, as shown in the following code snippet:

$(function(){
 $('.title-colour').on("change", function(){
 var colour = $(this).val();
 if (colour == "#") {
 colour = "";
 }
 $('h1, h2').css("color", colour);
 });
 $('.p-size').on("change", function(){
 var size = $(this).val();
 if (size == "#") {
 size = "";
 }
 $('p').css("font-size", size);
 });
});

Using either the colour or size variable, which hold the selected values of their respective
dropdowns, we determine whether or not the default option has been selected using its value
#. If it has been selected, we set the colour or size value to blank, allowing the user to
reset the manipulated CSS to the default values.

Chapter 6

197

If an option other than the default has been chosen, the value will be used in conjunction
with the appropriate CSS option in the jQuery css() function as highlighted in the following
code snippet:

$(function(){
 $('.title-colour').on("change", function(){
 var colour = $(this).val();
 if (colour == "#") colour = "";
 $('h1, h2').css("color", colour);
 });
 $('.p-size').on("change", function(){
 var size = $(this).val();
 if (size == "#") size = "";
 $('p').css("font-size", size);
 });
});

Creating a news ticker
This recipe will show you how to create a simple news ticker with a stop/pause functionality.
A news ticker is a great way to display a lot of information such as tweets, quotes, or general
news items in a small space.

Getting ready
Once again, you are going to need to create three files. Create recipe-2.html, recipe-2.
css, and recipe-2.js in the same directory as the latest version of jQuery.

How to do it…
Carry out the following step-by-step instructions to create an animated news ticker:

1. Add the following HTML code to recipe-2.html to create a simple web page and
content for our ticker:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 6 :: Recipe 2</title>
 <link href="recipe-2.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="recipe-2.js"></script>
</head>
<body>

User Interface

198

<div class="header">
 <h1>CONTENT TICKER</h1>
</div>
<div class="content-frame">
 <ul id="ticker">
 Learn from yesterday, live for today, hope for
tomorrow. The important thing is not to stop questioning
 Try not to become a man of success, but rather try to
become a man of value
 Logic will get you from A to B. Imagination will take
you everywhere
 Reality is merely an illusion, albeit a very
persistent one

</div>
</body>
</html>

2. Add the following simple CSS to recipe-2.css to add styles to our web page:
body {
 margin: 0;
 background-color: #5dace7;
}
.header {
 height: 130px;
 background-color: #0174cd;
}
.header h1 {
 margin: 0 50px 0 50px;
 padding: 0;
 line-height: 100px;
 font-size: 40px;
 color: #FFFFFF;
}
.content-frame {
 margin: -30px 50px 0 50px;
 background-color: #FFFFFF;
 border-radius: 10px;
 height: 50px;
 position: relative;
 padding: 0 20px 0 20px;
 overflow: hidden;
}
.content-frame ul {
 list-style: none;

Chapter 6

199

 margin: 0;
 padding: 0;
}
.content-frame ul li {
 line-height: 50px;
}

3. Add the following jQuery code to recipe-2.js to make our ticker active:
var tick = null;
var interval = 2000;
$(function(){
 tick = setInterval(function(){
 ticker()
 }, interval);
 $('.content-frame').on("mouseover", function(){
 clearInterval(tick);
 });
 $('.content-frame').on("mouseout", function(){
 tick = setInterval(function(){
 ticker()
 }, interval);
 });
});
function ticker() {
 $('#ticker li:first-child').slideUp(function(){
 $(this).appendTo($('#ticker')).slideDown();
 });
}

4. Opening recipe-2.html in a web browser will present you with a simple web page
and an animated ticker that shows a different quote by Einstein every two seconds.

How it works…
Because the HTML and CSS code are very simple, the only explanation needed is for the
jQuery code. Note that the HTML web page holds an unordered list element with four Einstein
quotes inside a division element called content-frame. The content-frame element has
its overflow attribute set to hidden so that only one quote is visible at a time.

At the top of the recipe-2.js file, two variables are declared: tick and interval. The
tick variable is where the JavaScript setInterval() function will be declared. The
JavaScript setInterval() function allows us to specify a function and an interval. The
specified function will then be called again over the specified interval. This allows us to loop
through the news ticker content.

User Interface

200

By declaring the tick variable at the top of the JavaScript file, we can stop the interval at a
later point to add the pause functionality. The interval variable simply holds the number
of milliseconds we want the setInterval() function to wait before it calls the specified
function again:

var tick = null;
var interval = 2000;
$(function(){

});

Inside the jQuery on-load function, we assign the tick variable to the setInterval()
function, specify that the function be called again, and then use the interval variable to set
the interval duration, as shown in the following code snippet:

$(function(){
 tick = setInterval(function(){
 ticker();
 }, interval);
});

To add the stop/start functionality, according to which the ticker will stop when the user
hovers over it and start up again when they move their mouse away, we need to attach two
event handlers to the content-frame division element as follows:

$(function(){
 tick = setInterval(function(){
 ticker()
 }, interval);
 $('.content-frame').on("mouseover", function(){
 clearInterval(tick);
 });
 $('.content-frame').on("mouseout", function(){
 tick = setInterval(function(){
 ticker()
 }, interval);
 });
});

The mouseover event handler uses the JavaScript clearInterval() function and is
passed the tick variable as an argument. This will stop the setInterval() function
from calling the ticker() function again when the user hovers over the content-frame
element. Within the callback function to the mouseout event, the tick variable is declared
again with the same setInterval() function as before, reinitializing the news ticker and
starting it again.

Chapter 6

201

Finally, there is the ticker() function itself. This function takes the first list element and
slides it upwards using the jQuery slideUp() function. This provides the effect of the
next element moving into view. It then takes the element that has been hidden using the
slideUp() function and moves it to the end of the ticker list using appendTo(). Finally,
it slides this element back down using slideDown(), so it is ready for display when it
eventually moves to the top of the list again. This is shown in the following code snippet:

function ticker() {
 $('#ticker li:first-child').slideUp(function(){
 $(this).appendTo($('#ticker')).slideDown();
 });
}

There's more…
It is possible to adopt the start and stop functionality any way you like, for example, using start
and stop buttons or even a single pause button to make it more obvious that it is possible
to pause the ticker. The benefit of the method used in this recipe is that links will often be
displayed within the ticker content. When the user goes to click on a link within the ticker, the
ticker will stop, allowing them to click on the link instead of the link moving away before they
can initiate the click.

See also
 f Creating a dynamic table of contents

Creating sticky elements
Sticky elements are page elements that stick to a position within the user's browser, even as
they scroll. Sticky elements are used to always keep content within the user's line of sight.
This content could be navigation, important information, or even advertising. This recipe will
show you how to create sticky elements and also use jQuery to activate them when the user
scrolls to a certain point on the page.

Getting ready
Using your favorite editor, create three files named recipe-3.html, recipe-3.css, and
recipe-3.js, ensuring that they are in the same directory as your jQuery library.

User Interface

202

How to do it…
For each of the newly created files, perform the following steps:

1. Add the following HTML code to recipe-3.html; it creates a long web page that is
scrollable and a div element with some important content that needs to stay within
the user's view at all times:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 6 :: Recipe 3</title>
 <link href="recipe-3.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="recipe-3.js"></script>
</head>
<body>
<div class="header">
 <h1>STICKY ELEMENTS RECIPE</h1>
</div>
<div class="content-frame">
 <div class="left">
 <h1>STICKY ELEMENTS</h1>
 <p>Sticky elements are great to keep important content
within the users view, such as share buttons, navigation and also
table of contents.</p>
 <p>Scroll down this page and when you are about to go past
the important content on the right hand side, it will start to
follow you down the screen.</p>
 </div>
 <div class="right">

 Navigation Item 1
 Navigation Item 2
 Navigation Item 3
 Navigation Item 4
 Navigation Item 5
 Navigation Item 6

 <div class="important">
 <p>Here is some important content.</p>
 </div>
 </div>
</div>
</body>
</html>

Chapter 6

203

2. To style this page, add the following CSS code to recipe-3.css; there is also a
sticky class within this code, which will be applied to the important elements by
jQuery when users scroll down the page:
@import url(http://fonts.googleapis.com/css?family=Ubuntu);
body {
 margin: 0;
 background-color: #5dace7;
 font-family: 'Ubuntu', sans-serif;
}
.header {
 height: 150px;
 background-color: #0174cd;
}
.header h1 {
 width: 1000px;
 margin: auto;
 padding: 0;
 line-height: 100px;
 font-size: 40px;
 color: #FFFFFF;
}
.content-frame {
 margin: -50px auto auto auto;
 width: 1000px;
 background-color: #FFFFFF;
 border-radius: 10px;
 min-height: 1300px;
 position: relative;
}
.content-frame .left {
 margin-right: 240px;
 padding: 20px;
}
.content-frame .left h1 {
 margin: 0;
}
.content-frame .right {
 width: 200px;
 padding: 10px;
 position: absolute;
 top: 0;
 right: 0;
 background-color: #F1F1F1;
 border-top-right-radius: 10px;

User Interface

204

 border-bottom-right-radius: 10px;
}
.content-frame .right .important {
 border: solid 1px #CCCCCC;
 text-align: center;
 width: 200px;
}
.sticky {
 position: fixed;
 top: 10px;
}

3. Finally, add the following jQuery code to recipe-3.js, which will activate the sticky
element when the user tries to scroll past it:

var importantOrigin = {};
$(function(){
 importantOrigin = $('.important').offset();
 $(window).scroll(function(){
 sticky();
 });
});
function sticky() {
 var _important = $('.important');
 var scrollPosition = $('body, html').scrollTop();
 if (importantOrigin.top < scrollPosition) {
 _important.addClass("sticky");
 } else {
 _important.removeClass("sticky");
 }
}

How it works…
At the top of recipe-3.js, there is a variable called importantOrigin, which will be
used to store the original position of the important division element. Within the jQuery on-
load block, $('.important').offset() is used to get the top and left positions of the
important element and stores these values in the previously created importantOrigin
variable. This is shown in the following code snippet:

var importantOrigin = {};
$(function(){
 importantOrigin = $('.important').offset();
 $(window).scroll(function(){

Chapter 6

205

 sticky();
 });
});

The jQuery scroll() function is used to execute the sticky() method every time the user
scrolls on the page:

function sticky() {
 var _important = $('.important');
 var scrollPosition = $('body, html').scrollTop();
 if (importantOrigin.top < scrollPosition) {
 _important.addClass("sticky");
 } else {
 _important.removeClass("sticky");
 }
}

The sticky() method gets the current vertical position of the page using $('body,
html').scrollTop() and then uses this to compare against the important element's top
position. If the user has scrolled past the important element, the sticky CSS class is applied
to the important element using the addClass() method:

.sticky {
 position: fixed;
 top: 10px;
}

If the page's current vertical position is lower than the top of the sticky element, the
sticky class is removed with removeClass(), setting the important element back into its
original state. Using position: fixed; in the CSS, it is possible to make an element stick
to a certain point on the page. Using jQuery to conditionally apply this CSS, we can control
when the element sticks, because it is typically not desired until the user scrolls past the
element so that it is no longer visible on the screen.

There's more…
There is a popular jQuery plugin called sticky.js, which can be found at http://
stickyjs.com/. This plugin uses the same principles that you have learned as part of this
recipe and bundles all of the functionality into a plugin so that it is easy to reuse.

See also
 f Creating a dynamic table of contents

User Interface

206

Implementing smooth scrolling
Anchor links to navigate to different sections of the page are useful to allow users to easily
bypass the information in which they are not interested and go directly to that in which they
are. However, when there is a lot of textual data on the screen, jumping between these
different sections can often be confusing for the user. Using smooth scrolling and animating
the screen to slowly move up or down to the selected section, it is easier for a user to visualize
where they have navigated to without getting disorientated.

Getting ready
Simply create the three standard recipe files, recipe-4.html, recipe-4.css, and
recipe-4.js, and save them to the same directory as the latest version of the jQuery library.

How to do it…
Perform the following simple steps to add smooth scrolling to a website or web page:

1. Create a long web page by adding the following HTML code to recipe-4.html:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 6 :: Recipe 4</title>
 <link href="recipe-4.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="recipe-4.js"></script>
</head>
<body>
<div class="header">
 <h1 id="top">SMOOTH SCROLLING RECIPE</h1>
</div>
<div class="content-frame">
 <div class="left">
 <h2 id="one">SECTION 1 <a href="#top" class="top-
link">[TOP]</h2>
 <div class="section"></div>
 <h2 id="two">SECTION 2 <a href="#top" class="top-
link">[TOP]</h2>
 <div class="section"></div>
 <h2 id="three">SECTION 3 <a href="#top" class="top-
link">[TOP]</h2>
 <div class="section"></div>

Chapter 6

207

 <h2 id="four">SECTION 4 <a href="#top" class="top-
link">[TOP]</h2>
 <div class="section"></div>
 </div>
 <div class="right">
 <h2>NAVIGATION</h2>

 SECTION ONE
 SECTION TWO
 SECTION THREE
 SECTION FOUR
 <a href="http://www.google.com" target="_
blank">EXTERNAL LINK
 EMPTY LINK

 </div>
</div>
</body>
</html>

2. Style this page by adding the following CSS code to recipe-4.css, which is
included in the preceding HTML page:
@import url(http://fonts.googleapis.com/css?family=Ubuntu);
body {
 margin: 0;
 background-color: #5dace7;
 font-family: 'Ubuntu', sans-serif;
}
.header {
 height: 150px;
 background-color: #0174cd;
}
.header h1 {
 width: 1000px;
 margin: auto;
 padding: 0;
 line-height: 100px;
 font-size: 40px;
 color: #FFFFFF;
}
.content-frame {
 margin: -50px auto auto auto;
 width: 1000px;
 background-color: #FFFFFF;

User Interface

208

 border-radius: 10px;
 min-height: 1300px;
 position: relative;
}
.content-frame .left {
 margin-right: 240px;
 padding: 20px;
}
.content-frame .left h1 {
 margin: 0;
}
.content-frame .right {
 width: 200px;
 padding: 10px;
 position: absolute;
 top: 0;
 right: 0;
 background-color: #F1F1F1;
 border-top-right-radius: 10px;
 border-bottom-right-radius: 10px;
}
.content-frame .right h2 {
 margin: 0;
 padding: 0;
}
.section {
 height: 400px;
 background-color: #CCCCCC;
 margin-bottom: 20px;
}
.top-link {
 width: 50px;
 text-align: right;
 float: right;
 font-size: 12px;
}

3. Add the following jQuery code to recipe-4.js to catch anchor element clicks and
provide the smooth-scrolling effect:

$(function(){
 $('a[href*=#]:not([href=#])').click(function(){
 if (this.hash.length > 0) {
 $('body, html').animate({
 scrollTop: $(this.hash).offset().top

Chapter 6

209

 }, 1000);
 }
 return false;
 });
});

How it works…
The jQuery code first attaches a click event handler to certain anchor elements:

$(function(){
 $('a[href*=#]:not([href=#])').click(function(){

 });
});

The preceding code will only attach a click event handler to anchors with a hash (#) in
their href attribute. The :not([href=#]) is also used so that event handlers will not be
attached to anchors that have only a hash as their href attribute. Now we can specify code to
be executed for the links on the page that navigate to other sections on the same page. Blank
and external links will be ignored and operate as usual.

Within the click event handler callback() function, we can use this.hash to retrieve
the hash value in the href attribute of the clicked anchor element. If the anchor links to
#two, we would receive the string value "#two". Using this.hash.length, we can ensure
that the value is valid and that we can continue to provide the smooth scroll animation:

$(function(){
 $('a[href*=#]:not([href=#])').click(function(){
 if (this.hash.length > 0) {

 }
 return false;
 });
});

Inside the if statement of this.hash.length, we use the jQuery animate() function as
follows to animate and scroll the user to the location of the anchor target:

$('body, html').animate({
 scrollTop: $(this.hash).offset().top
}, 1000);

The scrollTop parameter is the location to which the animation should scroll. We get this
location by selecting the target element using $(this.hash) and then using the jQuery
offset() function to get its top position.

User Interface

210

Finally, we return false after the if statement of this.hash.length to prevent the
default action of the click event. If you remove return false, you will get a flicker on the
screen because the default action of the click event (which would send the user to the linked
section) occurs just before the animation kicks in.

See also
 f Creating a dynamic table of contents

Creating a dynamic table of contents
A table of contents is a common way to allow users to quickly get to the section of content
they are looking for. With jQuery, it is possible to create a table of contents dynamically, based
on the HTML header elements on the page. This is very useful for blog posts or other sites
that have lots of different content pages.

Getting ready
Create recipe-5.html, recipe-5.css, and recipe-5.js as before and have all three
open and ready for editing.

How to do it…
With the required files created, perform the following steps to create a dynamic table
of contents:

1. Create a basic web page using the following HTML code, adding it to recipe-5.
html:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 6 :: Recipe 5</title>
 <link href="recipe-5.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="recipe-5.js"></script>
</head>
<body>
</body>
</html>

Chapter 6

211

2. Add the following HTML code to recipe-5.html within the body tags you have just
added; this will create a page with sectioned content and an ordered list element that
can be populated with content:
<div class="header">
 <h1>DYNAMIC TABLE OF CONTENTS</h1>
</div>
<div class="content-frame">
 <div class="left">
 <h1 id="one">MAIN HEADING</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat.</p>
 <h2 id="two">SUBTITLE</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua.</p>
 <h3 id="three">SUB-SUBTITLE</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat.</p>
 <h2 id="four">SUBTITLE</h2>
 <p>Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.</p>
 <h3 id="five">SUB-SUBTITLE</h3>
 <p>Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.</p>
 <p>Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.</p>
 <h4 id="six">SUB-SUB-SUBTITLE</h4>
 <p>Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.</p>
 </div>
 <div class="right">
 <h2>CONTENTS</h2>
 <ol class="contents">
 </div>
</div>

3. Add the following CSS to recipe-5.css to add basic styles to this page. This CSS
code is once again very similar to that in the last two recipes of this chapter:
@import url(http://fonts.googleapis.com/css?family=Ubuntu);
body {
 margin: 0;
 background-color: #5dace7;

User Interface

212

 font-family: 'Ubuntu', sans-serif;
}
.header {
 height: 150px;
 background-color: #0174cd;
}
.header h1 {
 width: 1000px;
 margin: auto;
 padding: 0;
 line-height: 100px;
 font-size: 40px;
 color: #FFFFFF;
}
.content-frame {
 margin: -50px auto auto auto;
 width: 1000px;
 background-color: #FFFFFF;
 border-radius: 10px;
 min-height: 1300px;
 position: relative;
}
.content-frame .left {
 margin-right: 240px;
 padding: 20px;
}
.content-frame .left h1 {
 margin: 0;
}
.content-frame .right {
 width: 200px;
 padding: 10px;
 position: absolute;
 top: 0;
 bottom: 0;
 right: 0;
 background-color: #F1F1F1;
 border-top-right-radius: 10px;
 border-bottom-right-radius: 10px;
}
.content-frame .right h2 {
 margin: 0;
 padding: 0;
}

Chapter 6

213

4. Add the following jQuery code to recipe-5.js, which will populate the ordered list
based on the headed sections in the HTML page we have just created:
$(function(){
 var _contents = $('.content-frame .left');
 var _headers = _contents.find("h1, h2, h3, h4");
 _headers.each(function(index, value){
 var _header = $(value);
 var level = parseInt(_header.context.localName.
replace("h", ""));
 if (typeof _header.attr("id") != "undefined") {
 var listItem = $("<a href='#" + _header.attr("id")
+ "'>" + _header.html() + "");
 } else {
 var listItem = $("" + _header.html() + "");
 }
 listItem.css("padding-left", (level * 5));
 $('.contents').append($(listItem));
 });
});

5. Opening recipe-5.html in a web page will present you with the content to the left-
hand side of the screen and the dynamically-generated contents list to the right-hand
side as shown in the following screenshot:

How it works…
The HTML code provides a content pane with various sections headed by h1, h2, h3, and h4
tags and an empty ordered list element.

User Interface

214

Our jQuery code first selects the content section and then finds all of the header elements
inside it using the jQuery find() function and specifying h1, h2, h3, h4 as the only
argument. This will create an array of the found elements and store them in the _headers
array as shown in the following code snippet:

$(function(){
 var _contents = $('.content-frame .left');
 var _headers = _contents.find("h1, h2, h3, h4");
// --- HIDDEN CODE
});

Using the jQuery each() function, it is then possible to iterate through all of the found header
elements and construct the table of contents. The local variable _header is first declared and
the current header element is stored in this variable.

To be able to indent subsections in the table of contents, making it easier for the user to see
the content structure, the code needs to determine what level the current header is at: h1
being the top level and h5 being the bottom. Using _header.context.localName, we can
get the tag of the header element (for example, h1) and remove the "h" with the JavaScript
replace(). Then, we can convert the remaining value to an integer using parseInt(). We
are left with a value we can use to determine the level of the header element. This process is
shown in the following code snippet:

$(function(){
 var _contents = $('.content-frame .left');
 var _headers = _contents.find("h1, h2, h3, h4");
 _headers.each(function(index, value){
 var _header = $(value);
 var level = parseInt(_header.context.localName.replace("h",
""));
 // --- HIDDEN CODE
 });
});

Now we can create the list element, which we will insert into the ordered list. In order to link
the items in the table of contents to the appropriate section of content, we need to check to
see whether or not the header element has an ID that we can link to. If it does, we create a list
element with a link; otherwise, we create a basic list element by executing the following code:

$(function(){
 var _contents = $('.content-frame .left');
 var _headers = _contents.find("h1, h2, h3, h4");
 _headers.each(function(index, value){
 var _header = $(value);
 var level = parseInt(_header.context.localName.replace("h",
""));

Chapter 6

215

 if (typeof _header.attr("id") != "undefined") {
 var listItem = $("<a href='#" + _header.attr("id") +
"'>" + _header.html() + "");
 } else {
 var listItem = $("" + _header.html() + "");
 }
 listItem.css("padding-left", (level * 5));
 $('.contents').append($(listItem));
 });
});

Finally, once the list item has been created, the css() function and the level variable are
used to add the required padding for indentation and the created list item is appended to the
content's ordered list.

There's more…
You could combine this recipe with both the Implementing smooth scrolling and Creating
sticky elements recipes to force the table of contents to follow the user down the page and
also provide scrolling animation for a better user experience.

See also
 f Creating sticky elements

 f Implementing smooth scrolling

Creating a basic drag-and-drop functionality
It is possible to create interesting and intuitive interfaces by adding drag-and-drop elements
to your site. jQuery UI comes with a built-in plugin for drag-and-drop interfaces. This recipe
will show you how to create a basic drag-and-drop functionality without the use of any plugins,
giving you the freedom and understanding to expand the code.

Getting ready
Create a blank HTML page called recipe-6.html with the recipe-6.css and recipe-6.
js files in the same directory as the latest version of the jQuery library.

User Interface

216

How to do it…
Carry out the following step-by-step instructions to complete this recipe:

1. Add the following HTML code to recipe-6.html, creating a basic HTML page with
three draggable elements in a container div:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 6 :: Recipe 6</title>
 <link href="recipe-6.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="recipe-6.js"></script>
</head>
<body>
 <div class="container">
 <div class="draggable"></div>
 <div class="draggable"></div>
 <div class="draggable"></div>
 </div>
</body>
</html>

2. Add the following CSS code to recipe-6.css to style the HTML page and
draggable elements:
.container {
 width: 800px;
 height: 500px;
 border: solid 2px #333333;
 margin: 20px auto auto auto;
}
.draggable {
 width: 120px;
 height: 120px;
 margin: 10px;
 background-color: darkred;
 cursor: pointer;
}
.draggable.dragging {
 box-shadow: 5px 5px 5px #CCC;
}

Chapter 6

217

3. Insert the following jQuery code in recipe-6.js to apply the drag-and-drop
functionality to the draggable elements:
$(function(){
 $('.draggable').on("mousedown", function(){
 $(this).addClass('dragging');
 }).on("mousemove mouseout", function(event){
 if ($(this).hasClass("dragging")) {
 //Get the parents position
 var parentPosition = $(this).parent().offset();

 //Don't allow the draggable element to go over the
parent's left and right
 var left = (event.pageX - ($(this).width() / 2));
 var parentRight = parentPosition.left + $(this).
parent().width();
 if (left > (parentRight - $(this).width())){
 left = (parentRight - $(this).width());
 } else if(left <= parentPosition.left) {
 left = parentPosition.left;
 }

 //Don't allow the draggable element to go over the
parent's top and bottom
 var top = (event.pageY - ($(this).height() / 2));
 var parentBottom = parentPosition.top + $(this).
parent().height();
 if (top > (parentBottom - $(this).height())) {
 top = (parentBottom - $(this).height());
 } else if (top <= parentPosition.top) {
 top = parentPosition.top;
 }

 //Set new position
 $(this).css({
 top: top + "px",
 left: left + "px",
 position: "absolute"
 });
 }
 }).on("mouseup", function(){
 $(this).removeClass('dragging');
 });
});

User Interface

218

4. Open recipe-6.html in a web browser and click on one of the red boxes. This will
apply the dragging CSS class to the element, allowing you to move it around the
page within the frame division.

How it works…
The HTML page provides a container div element that acts as the container for the
draggable elements. There are three additional div elements inside the frame element.
These three elements have the draggable class, which jQuery will use to apply the drag-and-
drop functionality.

The CSS code used in the recipe creates a border on the frame element and sets the height,
width, and background color for the draggable elements. There is also a dragging class,
which applies a drop shadow to the draggable elements when they are being moved.

Within the jQuery code itself, a series of mouse events are used to create the drag-and-drop
functionality. The jQuery on() function is used to apply the different event handlers to the
draggable elements. The first event handler applied to the draggable elements is the
mousedown event as shown in the following code:

$('.draggable').on("mousedown", function(){
 $(this).addClass('dragging');
})

This simply adds the dragging class to the element that has just been clicked (mousedown).

The next event handler to be attached is for both the mousemove and mouseout events.
This allows us to update the clicked element's position based on the mouse's position when
the user moves the mouse pointer while still clicking on the selected element. We also use
the same code for the mouseout event for when the user moves too quickly and brings the
mouse pointer out of the selected draggable box. The box's position will then be updated to
the mouse's position thanks to the same code being attached to the mouseout event:

.on("mousemove mouseout", function(event){
 if ($(this).hasClass("dragging")) {
 //Get the parents position
 var parentPosition = $(this).parent().offset();

 //Don't allow the draggable element to over the
parent's left and right
 var left = (event.pageX - ($(this).width() / 2));
 var parentRight = parentPosition.left + $(this).
parent().width();
 if (left > (parentRight - $(this).width())) {
 left = (parentRight - $(this).width());
 } else if(left <= parentPosition.left) {

Chapter 6

219

 left = parentPosition.left;
 }

 //Don't allow the draggable element to go over the
parent's top and bottom
 var top = (event.pageY - ($(this).height() / 2));
 var parentBottom = parentPosition.top + $(this).
parent().height();
 if (top > (parentBottom - $(this).height())) {
 top = (parentBottom - $(this).height());
 } else if (top <= parentPosition.top) {
 top = parentPosition.top;
 }

 //Set new position
 $(this).css({
 top: top + "px",
 left: left + "px",
 position: "absolute"
 });
 }
 })

The callback function for these two events is where the main functionality is added. This code
looks complex, but it is easy to understand once we break it down. First and foremost, nothing
will be done unless the clicked element has the dragging class. This is done using the
following if statement that checks for the dragging class:

if ($(this).hasClass("dragging")) {
 //MAIN FUNCTIONALITY HERE
}

Inside this if statement, we first get the clicked element's parent's position (the frame
element) so we can work out the boundary for the draggable elements:

var parentPosition = $(this).parent().offset();

The next block of code looks at the clicked element's position and determines whether or not
this is less than the frame element's left position or greater than the container element's
right position. If it is either, the dragging element's position is set to the boundary limit
instead of the mouse pointer's position, stopping the user from being able to drag the element
outside of the left and right boundaries of the container element:

//Don't allow the draggable element to over the parent's left and
right
var left = (event.pageX - ($(this).width() / 2));

User Interface

220

var parentRight = parentPosition.left + $(this).parent().width();
if (left > (parentRight - $(this).width())) {
left = (parentRight - $(this).width());
} else if(left <= parentPosition.left) {
left = parentPosition.left;
}

If the draggable element's position is not over the boundary, its position is updated to the
mouse pointer's left position minus the width of the dragging element so that the mouse
pointer is always in the center of the element while dragging.

Next, the same logic is applied for the top and bottom boundaries:

//Don't allow the draggable element to go over the parent's top and
bottom
var top = (event.pageY - ($(this).height() / 2));
var parentBottom = parentPosition.top + $(this).parent().height();
if (top > (parentBottom - $(this).height())) {
 top = (parentBottom - $(this).height());
} else if (top <= parentPosition.top) {
 top = parentPosition.top;
}

Finally, now that the new top and left positions for the draggable element have been
calculated, knowing that it is either the mouse pointer's position minus the width/height of the
draggable element divided by two or the boundary limits, the jQuery CSS function is used to
apply these positions while also setting the CSS position attribute to absolute:

//Set new position
$(this).css({
top: top + "px",
left: left + "px",
position: "absolute"
});

And last of all, a final event is used—the mouseup event—which is fired when the user
releases the click from the dragging element. When this happens, the dragging CSS class
is removed from the dragged element:

.on("mouseup", function(){
 $(this).removeClass('dragging');
});

See also
 f Creating a draggable content pop up

Chapter 6

221

Creating a dynamic animated tree menu
Tree menus are a great way to display a lot of information in a confined space and allow users
to choose the information they wish to see. This recipe will show you how to dynamically
create a tree menu based on a set of JSON objects with slide up and down effects.

Getting ready
Create recipe-7.html, recipe-7.js, and recipe-7.css for this recipe, ensuring that
they are saved in the same directory as the latest version of jQuery.

How to do it…
To create an animated tree menu, ensure you complete all of the following instructions:

1. Add the following HTML code to recipe-7.html to create the basic web page
required for this recipe:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 6 :: Recipe 7</title>
 <link href="recipe-7.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="recipe-7.js"></script>
</head>
<body>
<div class="container">
 <div class="list-container"></div>
</div>
</body>
</html>

2. Add the following styles to recipe-7.css:
.list-container {
 width: 800px;
 margin: 20px auto auto auto;
}
ul {
 margin: 0;
 padding: 0;
 list-style: none;
}
ul li {

User Interface

222

 line-height: 25px;
 margin: 5px 0 5px 0;
 position: relative;
 padding: 0 0 0 5px;
 color: #666;
}
ul li a {
 display: block;
 background-color: #333;
 padding: 0 0 0 30px;
 margin-left: -5px;
 text-decoration: none;
 color: #FFF;
}
.arrow {
 position: absolute;
 width: 20px;
 height: 20px;
 left: 5px;
 top: 2px;
}
.right-arrow {
 width: 0;
 height: 0;
 border-top: 10px solid transparent;
 border-bottom: 10px solid transparent;
 border-left: 10px solid white;
}
.down-arrow {
 width: 0;
 border-left: 10px solid transparent;
 border-right: 10px solid transparent;
 border-top: 10px solid white;
 top: 7px;
}
.list-bg {
 background-color: #F1F1F1;
}

3. Add the following jQuery code to recipe-7.js, which provides the data and
functionality to create the dynamic tree menu:
var tree = [
 {
 name: "Fastolph Bolger",

Chapter 6

223

 children: []
 },
 {
 name: "Laura Grubb",
 children: [
 {
 name: "Bungo",
 children: [
 {
 name: "Bilbo",
 children: []
 }
]
 },
 {
 name: "Belba",
 children: []
 },
 {
 name: "Longo",
 children: [
 {
 name: "Otho Sackville-Baggins",
 children: [
 {
 name: "Lotho",
 children: []
 }
]
 }
]
 }
]
 },
 {
 name: "Ponto",
 children: [
 {
 name: "Rosa",
 children: [
 {
 name: "Peregrin Took",
 children: []
 }

User Interface

224

]
 }
]
 }
];
$(function(){
 var list = createList(tree, 1);
 $('.list-container').html(list);
 $(document).on('click', '.show-children', function(){
 $(this).next('ul').slideToggle();
 $(this).find('.right-arrow').toggleClass('down-arrow');
 });
});

function createList(children, level) {
 var style = "margin-left: " + (10 * level) + "px;"
 if (level > 1) {
 style += "display: none;";
 }
 var list = "<ul style='" + style + "'>";
 level++;
 for (var i = 0; i < children.length; i++) {
 if (children[i].children.length > 0) {
 list += "<a href='javascript:void(0)' class='show-
children'><div class='arrow right-arrow'></div> " + children[i].
name + "";
 list += createList(children[i].children, level);
 list += "";
 } else {
 list += "<li class='list-bg'>" + children[i].name +
"";
 }
 }
 list += "";
 return list;
}

4. Open recipe-7.html in a web browser and click on the highlighted list items to
expand the list for items that have children, as depicted in the following screenshot:

Chapter 6

225

How it works…
The HTML code contains only the basic elements for a valid HTML page and a list-
container division element that the jQuery code will use to insert the list HTML once it has
been created. The CSS code contains basic list styles as well as some styles to create the
right and down arrows, as shown in the previous screenshot.

The first part of the JavaScript code is an array of objects that represents a family tree. Each
person in the family tree can have children, and there is no limit to the depth of the tree.

The main functionality of the jQuery code is within the createList() function. This
function takes two arguments: an array of objects (children) and the current list level. Within
this function, some inline styles are calculated based on the value of level. If the current
value of level is not 1, meaning the current level is not the topmost level, the list is hidden
by default. A left margin is also applied to the list based on the level, so that with each
level lower, the list is moved further to the right to create the typical tree view you see in
applications. A list variable is created and the HTML for an unordered list element is added
to it. Next, each of the objects provided are looped through and a list item is created for each
one. The length of the object's children property is checked to determine whether or not
the current object has any children itself. If it has children, a link and right arrow are added
to the list. Then, the createList() function is called recursively with the updated level and
the current object's own children. This function will return the HTML for an unordered list
populated with the object's own children. This will happen for each of the objects within the
tree variable until the list has been fully created. Then, using $('.list-container').
html(list);, the list is inserted into the DOM and will become visible on the page.

Because all list items except for the top-level items are hidden, a click event handler needs
to be attached to each of the list items that have children, as shown in the following code:

$(document).on('click', '.show-children', function(){
 $(this).next('ul').slideToggle();

User Interface

226

 $(this).find('.right-arrow').toggleClass('down-arrow');
});

A single event that will listen for clicks on any element with the show-children class is
attached to the document. When one of these items has been clicked, the slideToggle()
function is used on the next unordered list element (the children list) to either slide it up or
down. The toggleClass() function is also used on the arrow element to make the arrow
point down when the children list is open.

There's more…
This recipe uses a static JavaScript array, but it could easily be adapted to load a set of JSON
objects from a web server.

See also
 f Creating an accordion content slider

 f Creating tabbed content

Creating an accordion content slider
An accordion allows the user to easily skip through content. There are many jQuery plugins
that provide the accordion functionality. However, this recipe will show you how to create a
simple and attractive jQuery accordion content slider from scratch.

Getting ready
Create recipe-8.html, recipe-8.css, and recipe-8.js in the same directory as the
jQuery library.

How to do it…
With your newly created files open, complete the following step-by-step instructions:

1. Add the following HTML code to recipe-8.html to create a basic web page with the
accordion and content:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 6 :: Recipe 8</title>
 <link href="recipe-8.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"script>

Chapter 6

227

 <script src="recipe-8.js"></script>
</head>
<body>
<div class="container">
 <div class="accordion">
 <section>
 <div class='arrow right-
arrow down-arrow'></div> Section 1
 <div class="content">
 <p>Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.</p>
 </div>
 </section>
 <section>
 <div class='arrow right-
arrow'></div> Section 2
 <div class="content">
 <p>Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.</p>
 <p>Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.</p>
 </div>
 </section>
 <section>
 <div class='arrow right-
arrow'></div> Section 3
 <div class="content">

User Interface

228

 <p>Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.</p>
 </div>
 </section>
 </div>
</div>
</body>
</html>

2. Add the following CSS code to recipe-8.css to add styles to the accordion:
.container {
 width: 800px;
 margin: 20px auto auto auto;
}
.accordion section a.header {
 display: block;
 line-height: 30px;
 /* fallback */
 background-color: #333333;
 background-repeat: repeat-x;
 /* Safari 4-5, Chrome 1-9 */
 background: -webkit-gradient(linear, 0% 0%, 0% 100%,
from(#666666), to(#333333));
 /* Safari 5.1, Chrome 10+ */
 background: -webkit-linear-gradient(top, #666666, #333333);
 /* Firefox 3.6+ */
 background: -moz-linear-gradient(top, #666666, #333333);
 /* IE 10 */
 background: -ms-linear-gradient(top, #666666, #333333);
 /* Opera 11.10+ */
 background: -o-linear-gradient(top, #666666, #333333);
 padding: 0 10px 0 30px;
 position: relative;
 text-decoration: none;
 color: #FFFFFF;
 border-radius: 5px;
}
.accordion section .content {
 padding: 10px;

Chapter 6

229

 margin: 0 3px 0 3px;
 background-color: #F1F1F1;
 color: #333333;
}

.accordion section .content p {
 margin-top: 0;
}

.arrow {
 position: absolute;
 width: 20px;
 height: 20px;
 left: 10px;
 top: 5px;
}
.right-arrow {
 width: 0;
 height: 0;
 border-top: 10px solid transparent;
 border-bottom: 10px solid transparent;
 border-left: 10px solid white;
}
.down-arrow {
 width: 0;
 border-left: 10px solid transparent;
 border-right: 10px solid transparent;
 border-top: 10px solid white;
 top: 10px;
 left: 6px;
}

3. Add the following jQuery code to recipe-8.js to ignite the accordion content slider
into action:
$(function(){
 //Hide all accordion content except the first one
 $('.accordion section:not(:first-child) .content').hide();
 $(document).on("click", ".accordion a.header", function(){
 var _contents = $('.accordion section .content');
 var _currentContent = $(this).parent().find('.content');
 for (var i = 0; i < _contents.length; i++) {
 var content = $(_contents[i]);
 //Only slide the element up if its not the currently
selected element

User Interface

230

 if (content[0] != _currentContent[0]) {
 content.slideUp();
 content.parent().find('.right-arrow').
removeClass('down-arrow');
 }
 }
 _currentContent.slideDown();
 _currentContent.parent().find('.right-arrow').
addClass('down-arrow');
 });
});

4. Open recipe-8.html in a web browser and you will be provided with the interactive
accordion content slider shown in the following screenshot:

How it works…
The HTML code used in this recipe creates a basic web page that contains the main accordion
markup. There is a main accordion division element that contains several sections. Each
section contains an anchor tag with the class header and a content division element that
holds the accordion's content. The jQuery code uses the header anchor element to hide and
show the content sections based on the anchor element that was clicked by the user.

The CSS code is very simple and adds basic styles to the accordion. Like in the previous
recipe, we are using CSS right and down arrows to indicate whether a section is open or
closed. We also use CSS3 gradients to add a gradient background to the accordion headers.

Thanks to the nature of jQuery, we are able to create the entire accordion with only 18 lines of
JavaScript. The first part of the jQuery code hides all of the accordion content sections except
for the first one:

$('.accordion .section:not(:first-child) .content').hide();

Chapter 6

231

Then, a click event handler is attached to the document to listen for clicks on any of the
accordion content headers, as shown in the following code snippet:

$(document).on("click", ".accordion a.header", function(){

});

Inside the callback function to this event, we select all of the accordion content sections and
get the one that belongs to the currently clicked header element:

var _contents = $('.accordion .section .content');
var _currentContent = $(this).parent().find('.content');

When an accordion section is selected, we only want that one to be displayed. To do this, all
of the content sections in the following code are looped through to hide them, apart from the
selected section:

for (var i = 0; i < _contents.length; i++) {
var content = $(_contents[i]);
//Only slide the element up if it's not the currently selected element
if (content[0] != _currentContent[0]) {
 content.slideUp();
 content.parent().find('.right-arrow').removeClass('down-arrow');
}
}

Using the jQuery slideUp() function, we can hide the elements with the slide effect. The
arrow in the header is also changed to the right arrow, indicating that the content has not
been expanded.

Finally, the selected content section is expanded and the down arrow added to indicate that
the content has been expanded, as shown in the following code:

_currentContent.slideDown();
_currentContent.parent().find('.right-arrow').addClass('down-arrow');

See also
 f Creating a dynamic animated tree menu

 f Creating tabbed content

User Interface

232

Creating tabbed content
Similar to an accordion, tabbed content is another great way to display a lot of information
on a single page, allowing users to skip through to the sections that are important to them.
Like in the previous recipe, there are many jQuery plugins that provide this functionality. This
recipe shows you how to create this functionality on your own from scratch, providing you with
a deeper understanding of the inner workings of these types of user interfaces.

Getting ready
Create the usual files required for a recipe, recipe-9.html, recipe-9.css, and
recipe-9.js, in the same directory as the jQuery library.

How to do it…
Complete all of the following step-by-step instructions:

1. Create a basic web page in recipe-9.html using the following HTML code:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 6 :: Recipe 9</title>
 <link href="recipe-9.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="recipe-9.js"></script>
</head>
<body>
</body>
</html>

2. In the body tags of the HTML page you just created, add the following HTML code to
create the tabbed content:
<div class="container">
 <div class="tabs">
 <ul class="tab-nav">
 Section
1Section 2Section 3

 <div class="tab-content">
 <div class="section" id="section1">
 <p>Section 1 content...</p>

Chapter 6

233

 <p>Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.</p>
 </div>
 <div class="section" id="section2">
 <p>Section 2 content...</p>
 <p>Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.</p>
 <p>Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.</p>
 </div>
 <div class="section" id="section3">
 <p>Section 3 content...</p>
 <p>Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.</p>
 </div>
 </div>
 </div>
</div>

3. Open recipe-9.css and add the following CSS code to style the tabbed content
and display the first set of content on page load:
.container {
 width: 800px;

User Interface

234

 margin: 20px auto auto auto;
}
.tabs .tab-nav {
 margin: 0;
 padding: 0;
 list-style: none;
 background-color: #E1E1E1;
 border-top-right-radius: 5px;
 border-top-left-radius: 5px;
}
.tabs .tab-nav li {
 display: inline-block;
}
.tabs .tab-nav li a {
 display: block;
 text-decoration: none;
 text-align: center;
 line-height: 50px;
 color: #FFF;
 background-color: #333;
 padding: 0 20px 0 20px;
 border-right: solid 1px #5c5c5c;
}
.tabs .tab-nav li a:hover, .tabs .tab-nav li a.active {
 background-color: #5c5c5c;
}
.tabs .tab-nav li:first-child a {
 border-top-left-radius: 5px;
}
.tabs .tab-nav li:last-child a {
 border-top-right-radius: 5px;
 border-right: none;
}
.tabs .section {
 padding: 10px;
 background-color: #F1F1F1;
 border-bottom-right-radius: 5px;
 border-bottom-left-radius: 5px;
}
.tabs .section p {
 margin-top: 0;
}

.tabs .section:not(:first-child) {

Chapter 6

235

 display: none;
}

4. Insert the following jQuery in recipe-9.js:
$(function(){
 $(document).on("click", ".tabs .tab-nav a", function(){
 var contentId = this.hash;
 $('.tab-nav a').removeClass("active");
 $(this).addClass("active");
 $('.tab-content .section').hide();
 $(contentId).fadeIn();
 });
});

5. Open recipe-9.html in a web browser and click on the section tabs to switch
between the content sections.

How it works…
This is a quick and simple recipe, but it has a powerful outcome. The HTML code in this recipe
creates the tab section, which contains navigation and content. Each of the content division
elements has an ID that corresponds to the links in the navigation. For example, to link to the
section1 content, there needs to be a corresponding link within the navigation linking to
#content1 as follows: TITLE HERE. This allows jQuery to
know which section of content to make visible when a tab is clicked.

The CSS in this recipe is very simple and needs no further explanation.

With only nine lines of JavaScript, this is a very simple recipe indeed. The jQuery code
attaches a click event handler to the document body, listening for clicks on the tab navigation.
When one of these tabs is clicked, the content section ID is collected from the anchor hash
as follows:

$(document).on("click", ".tabs .tab-nav a", function(){
 var contentId = this.hash;
});

Next, the active class is removed from all of the tab navigation items and added to the clicked
item. This class is used to show which tab is currently active by changing the background color
using CSS as follows:

$('.tab-nav a').removeClass("active");
$(this).addClass("active");

User Interface

236

Finally, all of the content sections are hidden, and then, using the recently acquired content ID
of the selected tab, the chosen content is made visible using the fadeIn() function, applying
an animation as the content appears:

$('.tab-content .section').hide();
$(contentId).fadeIn();

There's more…
This recipe uses the fade-in animation provided by jQuery to show the selected content. By
looking back at Chapter 4, Adding Attractive Visuals with jQuery Effects, you will be able to
use any of the effects and animations described in that chapter to show and hide the content
in this recipe.

Creating a modal pop up
A modal is a pop up within a web page that overlays over all other content and focuses the
reader's attention. A modal is often opened based on user interaction, such as clicking a
button. This recipe will show you how to create a simple modal that is opened at the pressing
of a button and can be closed from within the modal.

Getting ready
Once again, create recipe-10.html, recipe-10.css, and recipe-10.js before you
start this recipe, ensuring that the latest version of jQuery is available in the same directory as
these files.

How to do it…
Perform the following steps to create the modal pop up:

1. Add the following HTML to recipe-10.html to create a basic web page and the
code that constructs the modal pop up:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 6 :: Recipe 10</title>
 <link href="recipe-10.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="recipe-10.js"></script>
</head>
<body>

Chapter 6

237

 <button class="openModal">Open Modal</button>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id est laborum.</p>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id est laborum.</p>
 <div class="modal">
 <div class="modal-header">
 <h3>Modal Header Text <a class="close-modal"
href="#">×</h3>
 </div>
 <div class="modal-body">
 <p>This is some modal content text.</p>
 </div>
 <div class="modal-footer">
 <button class="modalOK close-modal">OK</button>
 </div>
 </div>
 <div class="modal-backdrop"></div>
</body>
</html>

2. Add the following CSS code to recipe-10.css to style the modal and allow it to
cover all other content on the page:
.modal-backdrop {
 background-color: rgba(0, 0, 0, 0.61);
 position: absolute;
 top: 0;
 bottom: 0;
 left: 0;
 right: 0;
 display: none;
}
.modal {
 width: 500px;
 position: absolute;
 top: 25%;

User Interface

238

 z-index: 1020;
 background-color: #FFF;
 border-radius: 6px;
 display: none;
}
.modal-header {
 background-color: #333;
 color: #FFF;
 border-top-right-radius: 5px;
 border-top-left-radius: 5px;
}
.modal-header h3 {
 margin: 0;
 padding: 0 10px 0 10px;
 line-height: 40px;
}
.modal-header h3 .close-modal {
 float: right;
 text-decoration: none;
 color: #FFF;
}
.modal-footer {
 background-color: #F1F1F1;
 padding: 0 10px 0 10px;
 line-height: 40px;
 text-align: right;
 border-bottom-right-radius: 5px;
 border-bottom-left-radius: 5px;
 border-top: solid 1px #CCC;
}
.modal-body {
 padding: 0 10px 0 10px;
}

3. Add the following jQuery code to recipe-10.js to open the modal, center it, and
allow the user to close it:
$(function(){
 modalPosition();
 $(window).resize(function(){
 modalPosition();
 });
 $('.openModal').click(function(){
 $('.modal, .modal-backdrop').fadeIn('fast');
 });

Chapter 6

239

 $('.close-modal').click(function(){
 $('.modal, .modal-backdrop').fadeOut('fast');
 });
});
function modalPosition() {
 var width = $('.modal').width();
 var pageWidth = $(window).width();
 var x = (pageWidth / 2) - (width / 2);
 $('.modal').css({left: x + "px"});
}

4. Open recipe-10.html in a web browser and click on the Open Modal button. You
should be presented with the modal pop up shown in the following screenshot:

How it works…
The HTML creates the basic web page and code to create the modal. The modal itself consists
of a main modal container, a header, a body, and a footer. The footer contains the actions,
which in this case is the OK button, the header holds the title and the close button, and the
body contains the modal content.

The CSS applies the absolute position style to the modal, allowing it to move freely throughout
the page without being hindered by other content. To create the modal backdrop, its position
is set to absolute and its left, right, top, and bottom positions are set to 0, allowing it to
expand and cover the entire page. A z-index value is set on the modal and its backdrop
elements, ensuring that they always sit above other content and that the modal is above
the backdrop.

The jQuery code applies click event handlers to the modal open button and any element that
has the close-modal class. The fadeIn() and fadeOut() functions provided by jQuery
are used to show the modal. The fast argument is passed to both of these functions to
speed up the animation.

User Interface

240

Additionally, the jQuery code is used to calculate the modal's left position, allowing it to always
sit at the center of the screen. The modalPosition() function is called on page load and
when the browser window is resized as follows:

$(function(){
 modalPosition();
 $(window).resize(function(){
 modalPosition();
});
});

This ensures that the modal will remain in the center of the browser window, even if the user
changes the width of the window.

The modalPosition() function uses the modal's width and the browser window's width to
calculate the modal's left position. The function then uses the jQuery css() function to set
this value to the modal.

There's more…
Twitter Bootstrap is a very popular HTML framework that comes with a brilliant modal
implementation that is ready for use out of the box. Now that you know how modals work, you
could benefit from the complete solution that Twitter Bootstrap offers.

See also
 f Creating a draggable content pop up

Creating a draggable content pop up
A draggable content pop up is similar to a modal window. However, it is movable by the user
and does not come with a backdrop to focus the user's attention, allowing them to view other
content at the same time. This recipe will adapt the modal code used in the preceding recipe
and the jQuery code from the Creating a basic drag-and-drop functionality recipe that you saw
earlier in this chapter.

Getting ready
Even though we will be re-using code from previous chapters, ensure that you have
recipe-11.html, recipe-11.css, and recipe-11.js created and ready for use.

Chapter 6

241

How to do it…
Perform the following steps:

1. Add the following HTML code to recipe-11.html to create a modal and a basic
web page:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 6 :: Recipe 11</title>
 <link href="recipe-11.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="recipe-11.js"></script>
</head>
<body>
<button class="openModal">Open Modal</button>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id est laborum.</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id est laborum.</p>
<div class="modal draggable">
 <div class="modal-header">
 <h3>Modal Header Text <a class="close-modal"
href="#">×</h3>
 </div>
 <div class="modal-body">
 <p>This is some modal content text.</p>
 </div>
 <div class="modal-footer">
 <button class="modalOK close-modal">OK</button>
 </div>
</div>
</body>
</html>

User Interface

242

2. Add the following CSS code to recipe-11.css to style the modal:
.modal {
 width: 500px;
 position: absolute;
 top: 25%;
 z-index: 600;
 background-color: #FFF;
 border-radius: 6px;
 display: none;
 box-shadow: 3px 3px 5px #CCC;
}
.modal-header {
 background-color: #333;
 color: #FFF;
 border-top-right-radius: 5px;
 border-top-left-radius: 5px;
}
.modal-header h3 {
 margin: 0;
 padding: 0 10px 0 10px;
 line-height: 40px;
}
.modal-header h3 .close-modal {
 float: right;
 text-decoration: none;
 color: #FFF;
}
.modal-footer {
 background-color: #F1F1F1;
 padding: 0 10px 0 10px;
 line-height: 40px;
 text-align: right;
 border-bottom-right-radius: 5px;
 border-bottom-left-radius: 5px;
 border-top: solid 1px #CCC;
}
.modal-body {
 padding: 0 10px 0 10px;
}

3. Insert the following jQuery code into recipe-11.js to allow the modal to be
opened, closed, and dragged:
$(function(){
 modalPosition();

Chapter 6

243

 $('.openModal').click(function(){
 $('.modal, .modal-backdrop').fadeIn('fast');
 });
 $('.close-modal').click(function(){
 $('.modal, .modal-backdrop').fadeOut('fast');
 });
 $('.draggable').on("mousedown", function(){
 $(this).addClass('dragging');
 }).on("mousemove mouseout", function(event){
 if ($(this).hasClass("dragging")) {
 //Don't allow the draggable element to go over the
parent's left and right
 var left = (event.pageX - ($(this).width() / 2));
 if (left > ($(window).width() - $(this).width())) {
 left = ($(window).width() - $(this).width());
 } else if(left <= 0) {
 left = 0;
 }
 //Don't allow the draggable element to go over the
parent's top and bottom
 var top = (event.pageY - ($(this).height() / 2));
 if (top > ($(window).height() - $(this).height())) {
 top = ($(window).height() - $(this).height());
 } else if (top <= 0) {
 top = 0;
 }
 //Set new position
 $(this).css({
 top: top + "px",
 left: left + "px",
 position: "absolute"
 });
 }
 }).on("mouseup", function(){
 $(this).removeClass('dragging');
 });
});
function modalPosition() {
 var width = $('.modal').width();
 var pageWidth = $(window).width();
 var x = (pageWidth / 2) - (width / 2);
 $('.modal').css({left: x + "px"});
}

User Interface

244

4. Open recipe-11.html in a web browser and click on the Open Modal button as in
the previous recipe. You will be presented with the same modal pop up without the
backdrop, allowing you to clearly see the rest of the page content. You will also be
able to drag the modal around the page by clicking and dragging the mouse pointer.

How it works…
The previous recipes that have been adapted to create the draggable content modal go into
great detail to explain how the modal and the draggable elements work, so that will not be
repeated in this section.

The main difference with the HTML from the previous modal recipe is that there is no modal
backdrop and the modal element has the additional class draggable, which is used by
jQuery to apply the drag functionality to elements.

The CSS remains very much the same, except that the code for the backdrop has
been removed and a drop shadow has been added to the modal using the CSS
box-shadow attribute.

The jQuery uses the same code as the previous modal recipe with the window resize event
handler removed. This event handler was removed because the modal can be moved
by the user, so there is no need to keep the modal toward the center of the page. The
modalPosition() function is only called on page load so that the modal is at the center
of the page when it is first opened.

The code used from the basic drag-and-drop recipe is very similar, except that instead of using
the draggable element's parent as the boundary, the browser window is used. This removes
some complexity because we know that the window's left and right positions are always 0.

See also
 f Creating a basic drag-and-drop functionality

 f Creating a modal pop up

7
User Interface

Animation

In this chapter, we will cover the following topics:

 f Creating an animated login form

 f Adding photo zoom

 f Creating an animated content slider

 f Animating background images

 f Creating an animated navigation menu

Introduction
Using jQuery, it is possible to enhance common user interface elements with attractive
animations. These animations can supply interactive actions to heighten the user experience
of any website or web application. This chapter shows you how to create some popular user
interfaces with modern animations, which you can use in new projects or current websites.

Creating an animated login form
The login form is the main entry point to many of the websites and web applications—first
impressions are everything. Using jQuery animations, we can create a login form that is
animated when it is opened, closed, and there's an error, creating a quality user experience
that is reinforced through the animations.

User Interface Animation

246

This recipe requires a web server that supports PHP. This sever can be hosted in the cloud or
a simple local development server. Before starting with this recipe, ensure that you have this
set up.

Getting ready
Create recipe-1.html, recipe-1.js, and recipe.css in the same directory as the
latest version of the jQuery library. As we are creating a login form, we are also going to need
a PHP script on which to post our login data. Create a PHP file named index.php inside the
web root of a web server and add the following code:

$response = new stdClass;
$response->success = false;
$response->error = "Username and password must be provided";
if (isset($_POST['username']) && isset($_POST['password'])) {
 $username = $_POST['username'];
 $password = $_POST['password'];
 if ($username == "MyUsername" && $password == "MyPassword") {
 $response->success = true;
 } else {
 $response->error = "Incorrect login credentials";
 }
}
header("Content-type: application/json; charset=UTF-8");
echo json_encode($response);

In a real-world implementation, the PHP script would authenticate the user's credentials
against a database record. To keep this recipe simple and focus on the jQuery code, our PHP
code simply performs a string comparison of the user-submitted username and password for
MyUsername and MyPassword.

How to do it…
To create the animated login form that uses the preceding PHP script, perform the following
step-by-step instructions:

1. Add the following HTML code to recipe-1.html, which creates the login form and
the button to open it:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 7 :: Recipe 1</title>
 <link href="recipe-1.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>

Chapter 7

247

 <script src="recipe-1.js"></script>
</head>
<body>
 <button class="open-login">Open Login Box</button>
 <div class="login-frame">
 <div class="login-box">
 <div class="login-msg">Please login below</div>
 <div class="form-group">
 <label class="form-label">Username:</label>
 <input type="text" class="form-control" id="username"
/>
 </div>
 <div class="form-group">
 <label class="form-label">Password:</label>
 <input type="text" class="form-control" id="password"
/>
 </div>
 <div class="login-actions">
 <button class="btn login-btn">Login</button>
 <button class="btn close-login">Cancel</button>
 </div>
 </div>
 </div>
</body>
</html>

2. Add the following CSS code to recipe-1.css to add basic styles to the web page:
.login-frame {
 position: absolute;
 top: 0;
 bottom: 0;
 left: 0;
 right: 0;
 display: none;
}
.login-box {
 width: 400px;
 height: 165px;
 padding: 20px;
 margin: auto;
 top: -165px;
 box-shadow: 0 0 10px #CCC;
 border-radius: 5px;
 position: relative;

User Interface Animation

248

}
.form-group {
 margin-bottom: 10px;
}
.form-group .form-control {
 margin-left: 55px;
 width: 275px;
 height: 30px;
 padding: 0 5px 0 5px;
 font-size: 16px;
 border-radius: 5px;
 border: solid 1px #CCCCCC;
 color: #999;
}
.form-group .form-label {
 width: 50px;
 font-size: 18px;
 display: block;
 float: left;
 line-height: 30px;
 padding-left: 5px;
 color: #333;
}
.login-msg {
 border: solid 1px #bce8f1;
 text-align: center;
 line-height: 30px;
 margin-bottom: 10px;
 border-radius: 5px;
 color: rgba(58, 135, 173, 0.90);
 background-color: rgba(217, 237, 247, 0.99);
}
.login-msg.success {
 color: rgba(70, 136, 71, 0.96);
 background-color: rgba(223, 240, 216, 0.97);
 border-color: rgba(214, 233, 198, 0.98);
}
.login-msg.error {
 color: rgba(185, 74, 72, 0.98);
 background-color: rgba(242, 222, 222, 0.98);
 border-color: rgba(238, 211, 215, 0.98);
}
.login-actions {
 text-align: right;

Chapter 7

249

}
.btn {
 height: 40px;
 width: 100px;
 display: inline-block;
 padding: 6px 12px;
 margin-bottom: 0;
 font-size: 14px;
 text-align: center;
 white-space: nowrap;
 vertical-align: middle;
 cursor: pointer;
 border: 1px solid transparent;
 border-radius: 4px;
}

.login-btn {
 color: #ffffff;
 background-color: #5cb85c;
 border-color: #4cae4c;
}
.login-btn:hover {
 background-color: #458a45;
}
.close-login {
 color: #ffffff;
 background-color: #d2322d;
 border-color: #ac2925;
}
.close-login:hover {
 background-color: #ac2c2c;
}

3. Add the following jQuery code to recipe-1.js to allow the user to open and use the
login form:
$(function(){
 $(document).on('click', '.open-login', function(){
 $('.login-frame').fadeIn(500);
 $('.login-box').animate({'top' : '50px'}, 500);
 });
 $(document).on('click', '.close-login', function(){
 $('.login-box').animate({'top' : '-165px'}, 500);
 $('.login-frame').fadeOut(500);
 });

User Interface Animation

250

 $(document).on('click', '.login-btn', function(){
 var username = $('#username').val();
 var password = $('#password').val();
 $.ajax({
 url: '/index.php',
 type: 'POST',
 data: {
 'username': username,
 'password': password
 },
 success: function(response) {
 var _loginMsg = $('.login-msg');
 if (response.success) {
 _loginMsg.addClass("success").removeClass("error");
 _loginMsg.html("Login was successful!");
 } else {
 _loginMsg.addClass("error").removeClass("success");
 _loginMsg.html(response.error);
 $('.login-box')
 .animate({ left: -25 }, 20)
 .animate({ left: 0 }, 60)
 .animate({ left: 25 }, 20)
 .animate({ left: 0 }, 60);
 }
 }
 });
 });
});

4. Open recipe-1.html in a web browser, click on the Open Login Box button, and
you will be presented with the interface shown in the following screenshot:

Chapter 7

251

How it works…
A website that allows users to have accounts and log in to them will typically have a login
button available somewhere in the main navigation. The HTML code in this recipe creates a
very basic web page with a single button to represent where the user can access the login
form. The HTML code also provides the basic login form, which by default is hidden using CSS.
The CSS code provides the positioning for the login form and the styles for the login errors and
form buttons. In addition to the CSS that initially hides the login form, it also sets the value
of the login form's top position to a negative number, forcing the login form off the page. This
allows us to create slide-in animation to bring the login box into the user's view.

The first part of the jQuery code creates a click event handler that listens for a click on the
login button, shown as follows:

$(document).on('click', '.open-login', function(){
 $('.login-frame').fadeIn(500);
 $('.login-box').animate({'top' : '50px'}, 500);
});

When the button with the open-login class is clicked on by the user, the jQuery's
fadeIn() function is used to fade in the hidden login form and the animate() function is
used to move the login form onto the screen, creating the slide-in effect.

A click event handler is created to listen for the close-login button being clicked on, which
then triggers the reverse animation to fade the login box out and move it off the screen,
shown as follows:

$(document).on('click', '.close-login', function(){
 $('.login-box').animate({'top' : '-165px'}, 500);
 $('.login-frame').fadeOut(500);
});

Both animation functions have the duration set to 500
milliseconds, allowing the fade and position animations to start
and finish at the same time.

The main functionality of this recipe is placed within the callback function for the login
button's click event handler; this is shown as follows:

$(document).on('click', '.login-btn', function(){
 // -- HIDDEN CODE --
});

User Interface Animation

252

This click event handler, which listens for a click on the login button, takes the input data and
submits it to the PHP script we created at the beginning of this recipe. First, the username
and password are collected from the form and stored in the username and password
variables, shown as follows:

var username = $('#username').val();
var password = $('#password').val();

This data is then sent to the PHP script using jQuery's built-in AJAX functionality:

$.ajax({
 url: 'http://localhost:8003/index.php',
 type: 'POST',
 data: {
 'username': username,
 'password': password
 },
 success: function(response) {
 // --- HIDDEN CODE
 }
});

The previous code creates an AJAX POST request by specifying the URL of the PHP file
and setting the type parameter to POST. A data object is also provided, which holds the
information from the form.

A callback function is specified for the success parameter; this is called on a successful
response from the PHP script, which is shown as follows:

success: function(response) {
 var _loginMsg = $('.login-msg');
 if (response.success) {
 // -- HIDDEN CODE
 } else {
 // -- HIDDEN CODE
 }

By creating our PHP code, we know that the response will hold a success value of either true
or false. If the success value is false, there will be an error message to go with it. There is
an additional way that an AJAX request can fail; this is caused by a server error, for example,
500 file not found. To handle these errors, the jQuery AJAX .fail() function should be
used. Read more about that at http://api.jquery.com/jquery.ajax/.

Within the success callback function, we select the login-msg element, which will be used
to print any messages on screen. The success value provided by the PHP script is evaluated to
determine whether or not the login was successful.

Chapter 7

253

If the login was successful, the login-msg element is updated with a message informing
the user that the login is successful and the success class is added to turn the message
element green in color, shown as follows:

_loginMsg.addClass("success").removeClass("error");
_loginMsg.html("Login was successful!");

The removeClass() function is used to ensure that the error class is not present as a
remnant of any previous login attempts. In a real-world situation, you may want to redirect the
user to the members' area of the website. This code can be replaced to do just that; see the
There's more… section of this recipe.

If the login attempt is not successful, the error class is added to the login-msg element
with the message from the PHP script. We use response.error to retrieve this data. A
series of animation functions are also used to move the login box from left to right to create
the shake effect, emphasizing the error to the user; this is shown as follows:

_loginMsg.addClass("error").removeClass("success");
_loginMsg.html(response.error);
$('.login-box')
 .animate({ left: -25 }, 20)
 .animate({ left: 0 }, 60)
 .animate({ left: 25 }, 20)
 .animate({ left: 0 }, 60);
}

There's more…
The successful login section of the jQuery callback can be easily replaced to redirect the user,
if desired. Native JavaScript code can be used to send the user to the desired page using
the following code, replacing /memebers.php with the appropriate URL, which is shown
as follows:

window.location.href = "/members.php";

See also
 f Chapter 5, Form Handling

Adding photo zoom
Photo zoom is a great effect that can be used in many interfaces to add extra user interaction
to a photo gallery or product page so that the user can see smaller images clearly. This recipe
will show you how to add the photo zoom effect to four images in a list.

User Interface Animation

254

Getting ready
You are going to need four images to use in this recipe. Make sure they are fewer than 800
px wide and 600 px high. Once you have collected the four images that will be used in this
recipe, create recipe-2.html, recipe-2.css, and recipe-2.js in the same directory
as these images and the jQuery library.

How to do it…
Perform the following instructions to add the zoom effect to your chosen images:

1. Add the following HTML code to recipe-2.html; ensure that you update the image
references that correspond to the images you have chosen:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 7 :: Recipe 2</title>
 <link href="recipe-2.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="recipe-2.js"></script>
</head>
<body>
 <div class="container">
 <ul class="photos">

 </div>
</body>
</html>

2. Add the following CSS code to recipe-2.css to style and position the images:
body {
 background-color: #333;
}
.container {
 width: 600px;
 height: 600px;
 margin: 50px auto auto auto;
}
.photos {

Chapter 7

255

 list-style: none;
 margin: 0;
 padding: 0;
}
.photos li {
 display: inline-block;
 width: 290px;
 height: 250px;
 background-color: #E1E1E1;
 margin: 0 5px 5px 0;
 overflow: hidden;
 position: relative;
 cursor: pointer;
}
.photos li img {
 top: -50%;
 left: -50%;
 position: absolute;
 opacity: 0.5;
}

3. Add the following jQuery code to recipe-2.js to add the photo zoom animation to
the images when the user hovers over them:
var images = [];
$(function(){
 $(document).on("mouseover", ".photos li", function(){
 var _image = $(this).find('img');
 _image.finish();
 images[$(this).index()] = {
 width: _image.width(),
 height: _image.height()
 };
 _image.animate({
 width: '290px',
 height: '250px',
 top: 0,
 left: 0,
 opacity: 1.0
 });
 }).on("mouseout", ".photos li", function(){
 var _image = $(this).find('img');
 _image.finish();
 _image.animate({
 width: images[$(this).index()].width + "px",

User Interface Animation

256

 height: images[$(this).index()].height + "px",
 top: '-50%',
 left: '-50%',
 opacity: 0.5
 });
 });
});

4. Open recipe-2.html in a web browser, and hover over one of the four images to
see the zoom animation, shown as follows:

How it works…
The HTML code in this recipe is very basic and simply creates a division element with the
class name container, which is centered on the page using CSS. Inside the frame division,
there is an unordered list element that has four children, each containing an image.

The CSS code removes any margin and padding from the unordered list, sets its children to
display inline, and sets each child element's overflow property to hidden. This is to allow us
to initially load the images larger than the list element without showing any overflow to provide
the zoomed-in effect.

The CSS code also sets the image's top and left positions to -50% so that they are centered
inside the list element. The image's opacity is also set to 0.5 to prevent the images from
standing out initially.

Chapter 7

257

At the beginning of the jQuery code, an images variable is declared, which is used to store
image data that can be reused later in the code. Within the jQuery on-load block, two event
handlers are attached to the document to listen for mouseover and mouseout events on the
photo list elements, as shown in the following code:

$(document).on("mouseover", ".photos li", function(){
 // -- HIDDEN CODE
}).on("mouseout", ".photos li", function(){
 // -- HIDDEN CODE
});

Inside the mouseover event handler, $(this).find('img') is used to find the image
within the hovered list element. With this image selected, its size is stored in the images
variable using $(this).index() to get the list element's index, as follows:

images[$(this).index()] = {
 width: _image.width(),
 height: _image.height()
};

Then, using the jQuery's animate() function, the image's width and height are set to match
the size of the list element to create the zoom-out effect. Its top and left positions are also
set to 0, overwriting the -50% positions set within the CSS to ensure that the image fills 100
percent of the list element. The image's opacity is set to 1 (that is, 100 percent) so that the
hovered and zoomed-in image stands out among the other images. The code for this is shown
as follows:

_image.animate({
 width: '290px',
 height: '250px',
 top: 0,
 left: 0,
 opacity: 1.0
});

Inside the mouseout event handler, the previously discussed animation is effectively reversed
using the stored image information and resets the image back to where it was before the
mouse hover, executed as follows:

var _image = $(this).find('img');
_image.finish();
_image.animate({
 width: images[$(this).index()].width + "px",
 height: images[$(this).index()].height + "px",
 top: '-50%',
 left: '-50%',
 opacity: 0.5
});

User Interface Animation

258

In the preceding code, you can see that the images array is referenced using $(this).
index() to get the image's original height and width. Its top and left positions are once again
set to -50%, centering it inside the list element.

_image.finish(); is used in both the event handler callbacks to
finish any current animation. This prevents strange results when the
user rapidly toggles from one image to the other.

See also
 f Creating an animated navigation menu

Creating an animated content slider
You are probably aware that there is a whole forest of jQuery content slider plugins, tutorials,
and downloadable scripts online, which are available for use and most of the content is free
of charge. Content sliders are incredibly popular because they are a very attractive and eye-
catching way to display important content to a user, such as images, news, and promotions.
This recipe will show you how easy it is to create a content slider with jQuery. The slider used
in this recipe will allow you to easily customize its look and feel using CSS so you can make it
your own.

Getting ready
Create the usual recipe files: recipe-3.html, recipe-3.css and recipe-3.js in the
same directory as your jQuery library.

How to do it…
Perform the following step-by-step instructions to create the attractive content slider:

1. Add the following HTML code to recipe-3.html, which creates the basic web page
and the structure of the content slider:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 7 :: Recipe 3</title>
 <link href="recipe-3.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="recipe-3.js"></script>
</head>
<body>

Chapter 7

259

 <div class="slider-frame">
 <ul class="slider-content">

 <h1>Section 1</h1>
 <p>Some content for section one.</p>

 <h1>Section 2</h1>
 <p>Some content for section two.</p>

 <h1>Section 3</h1>
 <p>Some content for section three.</p>

 <h1>Section 4</h1>
 <p>Some content for section four.</p>

 <ul class="slider-nav">
 </div>
</body>
</html>

2. Add the following CSS code to recipe-3.css to add basic styling and position the
content slider:
.slider-frame {
 width: 600px;
 height: 250px;
 margin: 50px auto auto auto;
 overflow: hidden;
 position: relative;
}
.slider-content {
 margin: 0;
 padding: 0;
 list-style: none;
 position: relative;
}
.slider-content li {
 float: left;
 width: 600px;
 height: 250px;
 background-color: #E1E1E1;

User Interface Animation

260

}
.slider-content li h1 {
 margin: 10px;
}
.slider-content li p {
 margin: 10px;
}
.slider-nav {
 list-style: none;
 padding: 0;
 margin: 0;
 height: 35px;
 position: absolute;
 bottom: 0;
 left: 0;
 right: 0;
 text-align: center;
}
.slider-nav li {
 display: inline-block;
 margin-right: 5px;
}
.slider-nav li a {
 display: block;
 color: #FFF;
 text-decoration: none;
 border-radius: 30px;
 background-color: #333;
 width: 25px;
 height: 25px;
 text-align: center;
 line-height: 25px;
}
.slider-nav li a:hover {
 background-color: #000;
}
.slider-nav li a.active {
 background-color: #FFF;
 color: #333;
}

Chapter 7

261

3. Add the following jQuery code to recipe-3.js to allow the user to toggle between
the content slides:

$(function(){
 var _sliderContent = $('.slider-content li');
 for (var i = 0; i < _sliderContent.length; i++) {
 $('.slider-nav').append("<a href='#" + i + "' " +
 ((i == 0) ? "class='active'" : "") + ">" + (i + 1)
 + "");
 }
 $('.slider-content').width((600 * _sliderContent.length)
 + "px");
 $(document).on("click", ".slider-nav li a", function(){
 var index = this.hash.replace("#", "");
 $(".slider-nav li a").removeClass("active");
 $(this).addClass("active");
 $('.slider-content').animate({
 left: -(index * 600) + "px"
 });
 });
});

How it works…
The slider content is an unordered list whose children contain the content that is to be
displayed within each slide. Underneath the content list is another unordered list element,
which will be populated dynamically by jQuery to create the navigation between each slide.

The CSS code in this recipe is used to position the slider frame and set its static width and
height. The slider frame's overflow value is set to hidden so that only one slide is visible at a
time. The slider content list item elements are set to float left so that they are displayed
inline, making it possible to shift them into view using jQuery animations.

The first section of the jQuery code selects all of the slider content children and stores them
within a local variable. For each slider content list element, a navigation list item is created
and appended to the slider-nav unordered list, which links to the slider content's index as
shown in the following code; the active class is also added to the first navigation anchor:

var _sliderContent = $('.slider-content li');
for (var i = 0; i < _sliderContent.length; i++) {
 $('.slider-nav').append("<a href='#" + i + "' " + ((i ==
 0) ? "class='active'" : "") + ">" + (i + 1) + "");
}

User Interface Animation

262

In order for the slider content items to float in line with each other, the slider-content
unordered list element needs to be wide enough to allow it. As the CSS code cannot know
how many slides the slider has, jQuery is used to count the number of content items and then
multiply this value by the slider's width, applying this result to the slider-content element
using the jQuery width() function, as follows:

$('.slider-content').width((600 * _sliderContent.length) + "px");

Executing the previous code will ensure that the slider-content unordered list element is
wide enough to allow for the inline positioning of each of the list elements.

The last part of the jQuery code attaches a click event handler to the document to listen for
clicks on the slider navigation. When the user clicks on one of the navigation elements, the
callback function for this handler is called as follows:

$(document).on("click", ".slider-nav li a", function(){
 var index = this.hash.replace("#", "");
 $(".slider-nav li a").removeClass("active");
 $(this).addClass("active");
 $('.slider-content').animate({
 left: -(index * 600) + "px"
 });
});

Within the callback function, the hash value of the clicked link is retrieved using var index
= this.hash.replace("#", "");, which will result in the index integer of the slide.
Using this value, the jQuery animate() function can be used to set a negative-left position
on the slider-content unordered list element; this will animate the slider content to show
the selected slide. The removeClass() function is used to remove the active class from all
of the anchor elements within the navigation list. Then, addClass is used to add the active
class to the clicked element. This will indicate to the user which slide in the navigation has
been selected, because it will be lighter in color than the other navigation items.

There's more…
Many of the popular jQuery content sliders have an auto mode in which each of the
content slides are looped through automatically without any user interaction. This can be
easily achieved by adding a little more jQuery code to the recipe. Add the following jQuery
code to recipe-3.js at the bottom of the $(function(){}); block if you would like
this functionality:

var count = 0;
setInterval(function(){
 if (count >= _sliderContent.length) count = 0;
 $('.slider-content').animate({
 left: -(count * 600) + "px"

Chapter 7

263

 });
 $(".slider-nav li a").removeClass("active");
 $(".slider-nav li").find("a[href='#" + count +
 "']").addClass("active");
 count++;
}, 3000);

Using the native JavaScript function setInterval(), it is possible to execute a function
continuously for a specified interval. In the preceding example, the specified function will be
executed after every 3000 milliseconds.

In the preceding code, a count variable is declared to keep track of the current slide. Inside
the function provided to setInterval, the count value is set to 0 if it has reached the
maximum amount of available slides. The jQuery animation function is then used in the same
way as the click event handler to animate the next content slide into view. Once again, $(".
slider-nav li a").removeClass("active"); is used to remove the active class
from all of the navigation anchors and then $(".slider-nav li").find("a[href='#"
+ count + "']").addClass("active"); is used to add the class only to the element
that links to the next content slide. Finally, the count is incremented so that the next iteration
animates the next content slide in view.

It is also worth mentioning that every time the jQuery's append() function is called, the DOM
is redrawn. This can cause the application to slow down if many items are added using the
append() function, like in this recipe. A simple way to avoid this is by creating a string of all
the list elements that are to be added and include a single append() function after the loop.

See also
 f Animating background images

Animating background images
Fullscreen image backgrounds can provide a very attractive splash screen for any website.
This recipe will show you how to use jQuery to dynamically change the background image of
your website.

Getting ready
Create recipe-4.html, recipe-4.css, and recipe-4.js in the same directory as
the jQuery library. For this recipe, you will also need a set of images that will be used as the
background images. Find three or four large images (upto 1280 X 1024 px in size), and save
them in the same directory as the three files you have just created.

User Interface Animation

264

How to do it…
Have the three files you have just created open and ready for editing.

1. Add the following HTML code to recipe-4.html to create the basic web page and
elements to hold the background image and text:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 7 :: Recipe 4</title>
 <link href="recipe-4.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="recipe-4.js"></script>
</head>
<body>
 <div class="background"></div>
 <div class="text-frame">
 <div class="text-inner">
 <h1>BACKGROUND IMAGE ANIMATION</h1>
 <p>This recipe shows you how to alternate the
 background image of an element using jQuery
 animations.</p>
 </div>
 </div>
</body>
</html>

2. Add the following CSS code to recipe-4.css to apply basic styles to the newly
created web page; ensure that you update the image reference to correspond with
one of your chosen images:
body {
 background-color: #333;
}
.background {
 background: url(recipe-4-1.jpg) no-repeat center center
 fixed;
 -webkit-background-size: cover;
 -moz-background-size: cover;
 -o-background-size: cover;
 background-size: cover;
 position: absolute;
 top: 0;
 bottom: 0;
 left: 0;

Chapter 7

265

 right: 0;
}
.text-frame {
 position: absolute;
 top: 0;
 bottom: 0;
 left: 0;
 right: 0;
}
.text-inner {
 width: 600px;
 margin: 15% auto auto auto;
 background-color: rgba(0, 0, 0, 0.78);
 padding: 20px;
 color: #E1E1E1;
 border-radius: 5px;
}
.text-inner h1 {
 margin: 0;
 padding: 0;
}
.text-inner p {
 font-size: 22px;
 line-height: 30px;
 margin: 5px 0 5px 0;
 color: #CCC;
}

3. Add the following jQuery code to recipe-4.js to activate the background animation
in the background division element that you have just added to recipe-4.html:
var _images = ['recipe-4-1.jpg', 'recipe-4-2.jpg', 'recipe-4-3.
jpg'];
var index = 1;
$(function(){
 setInterval(function(){
 if (index >= _images.length) index = 0;
 $('.background').animate({
 opacity: 0
 }, 1500, function(){
 $(this).css({
 'background-image': "url('" + _images[index] +
 "')"
 }).animate({
 opacity: 1

User Interface Animation

266

 }, 1500);
 index++;
 });
 }, 6000);
});

4. Update the filenames in the _images array at the beginning of recipe-4.js to
match the filenames of the images you have chosen for this recipe.

How it works…
The basic web page created in this recipe has two main parts. Firstly, there is a division
element with the background class, which is made to fill the entire screen and use the
chosen images as its background. Secondly, there is a text-frame division element, which
simply holds some text floating in the center of the screen.

The CSS code in recipe-4.css sets the background element's position to absolute and
its left, right, bottom, and top positions to 0, forcing it to fill the entire screen. Its background
property is then set using the following code:

background: url(recipe-4-1.jpg) no-repeat center center fixed;
-webkit-background-size: cover;
-moz-background-size: cover;
-o-background-size: cover;
background-size: cover;

The background option sets one of the chosen images as its initial background and ensures
that it is centered and fixed. The background-size property is used to ensure that the
background image always fills 100 percent of the background division element.

A similar CSS is used to ensure that the text-frame element fills the screen, and using
percent and auto margins, the text-inner element that holds the text is centered vertically
and horizontally.

The _images array at the beginning of recipe-4.js holds the references to the chosen
background images. The index variable is used to keep track of the currently displayed
background image. Within the jQuery on-load function, setInterval is declared to execute
a set of animations to change the background image every six seconds. This is similar to the
previous recipe's There's more... section.

Chapter 7

267

Because the jQuery's animate() function does not support animating the background
image directly, we have to provide a workaround. Inside the setInterval() function, the
animate() function is used on the background element's opacity to fade the element out.
Then, by specifying a callback for the jQuery's animate() function, the background element's
background-image property is modified using jQuery's css() function as soon as the
animation is completed. Using css(), the background image is changed and the animate()
function is used again to change the opacity back to 1, which fades in the element. Using the
index value to reference the _images array, it is possible to select a different background
image for every iteration of the setInterval() function, as follows:

$(this).css({
 'background-image': "url('" + _images[index] + "')"
}).animate({
 opacity: 1
}, 1500);
index++;

Once the last animation is completed, the index value is incremented by one to ensure that
the next iteration displays a different image.

See also
 f Creating an animated content slider

Creating an animated navigation menu
Your website's navigation allows your visitors to easily find the content hosted on your site.
Providing the user with a fun and interactive navigation menu that is also easy to use can
make a lasting impression on them. This recipe shows you how to create a modern animated
navigation menu.

Getting ready
Create recipe-5.html, recipe-5.css, and recipe-5.js in the same directory as the
latest version of the jQuery library.

User Interface Animation

268

How to do it…
Perform all of the following steps to create a unique and modern animated navigation menu
for any site:

1. Add the following HTML to recipe-5.html to create the basic web page, and
include the newly created files along with the jQuery library:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 7 :: Recipe 5</title>
 <link href="recipe-5.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="recipe-5.js"></script>
</head>
<body>
</body>
</html>

2. Inside the body tags of the HTML code you have just added to recipe-5.html, add
the following code to create the structure for the navigation menu:
<div class="container">
 <ul class="navigation">

 <div class="link-content">
 <div class="nav-item">HOME</div>
 <div class="nav-item hover">HOME</div>
 </div>

 <div class="link-content">
 <div class="nav-item">ABOUT <div
 class="down-arrow"></div></div>
 <div class="nav-item hover">ABOUT <div
 class="down-arrow"></div></div>
 </div>

 <ul class="sub-nav">

Chapter 7

269

 <div class="sub-link-content">
 <div class="sub-nav-item">SECTION
 1</div>
 <div class="sub-nav-item
 hover">SECTION 1</div>
 </div>

 <div class="sub-link-content">
 <div class="sub-nav-item">SECTION
 2</div>
 <div class="sub-nav-item
 hover">SECTION 2</div>
 </div>

 <div class="sub-link-content">
 <div class="sub-nav-item">SECTION
 3</div>
 <div class="sub-nav-item
 hover">SECTION 3</div>
 </div>

 <div class="link-content">
 <div class="nav-item">CONTACT</div>
 <div class="nav-item hover">CONTACT</div>
 </div>

</div>

3. Add the following CSS code to recipe-5.css to provide basic styling to the
navigation menu and web page:
.container {
 width: 800px;
 margin: 100px auto auto auto;

User Interface Animation

270

}
.navigation {
 margin: 0;
 padding: 0;
 list-style: none;
 background-color: #333;
 height: 50px;
}
.navigation li {
 float: left;
 position: relative;
}
.navigation li a {
 display: block;
 text-align: center;
 color: #FFF;
 text-decoration: none;
 overflow: hidden;
 height: 50px;
}
.navigation li a .nav-item {
 line-height: 50px;
 padding: 0 15px 0 15px;
 height: 50px;
}
.navigation li a .nav-item.hover {
 background-color: #ff3600;
}
.sub-nav {
 list-style: none;
 margin: 0;
 padding: 50px 0 0 0;
 opacity: 0;
 position: absolute;
 top: 0;
 left: -10000px;
 opacity: 0;
}
.sub-nav li {
 display: block;
 height: 40px;
}
.sub-nav li a {
 display: block;

Chapter 7

271

 width: 120px;
 height: 40px;
 line-height: 40px;
 text-align: center;
 color: #FFF;
 background-color: #333333;
}
.sub-nav li a .sub-link-content {
 width: 240px;
}
.sub-nav li a .sub-nav-item {
 float: left;
 width: 120px;
}
.sub-nav li a .sub-nav-item.hover {
 background-color: #ff3600;
}
.down-arrow {
 width: 0;
 border-left: 7px solid transparent;
 border-right: 7px solid transparent;
 border-top: 7px solid white;
 display: inline-block;
 vertical-align: middle;
 margin: -5px 0 0 5px;
}

4. To add the animations to the navigation menu based on user interaction, add the
following jQuery code to recipe-5.js:
$(function(){
 //Base navigation
 $(document).on("mouseenter", "ul.navigation li a.link-
 base", function(){
 $(this).find(".link-content").stop().animate({
 marginTop: -50
 }, 200, function(){
 $(this).parent().parent().find('.sub-nav').css({
 left: 0
 }).animate({
 opacity: 1
 });
 });
 }).on("mouseleave", "ul.navigation li a", function(){

User Interface Animation

272

 //Only reverse the animation if this link doesn't
 have a sub menu
 if ($(this).parent().find('.sub-nav').length == 0) {
 $(this).find(".link-content").stop().animate({
 marginTop: 0
 }, 200);
 }
 }).on("mouseleave", "ul.navigation li .sub-nav",
 function(){
 $(this).animate({
 opacity: 0
 }, 200, function(){
 $(this).css({
 left: -10000
 });
 //When the mouse leaves the sub menu, also reverse
 the base link animation
 $(this).parent().find('.link-
 content').stop().animate({
 marginTop: 0
 }, 200);
 });
 }).on("mouseenter", "ul.sub-nav li a", function(){
 $(this).find(".sub-link-content").stop().animate({
 marginLeft: -120
 }, 200);
 }).on("mouseleave", "ul.navigation li a", function(){
 $(this).find(".sub-link-content").stop().animate({
 marginLeft: 0
 }, 200);
 });
});

5. Open recipe-5.html in a web browser, and you will be presented with a simplistic
navigation menu. Hovering over the About item will activate an animation and
present you with the associated submenu as shown in the following screenshot:

Chapter 7

273

How it works…
This recipe's code will be easy to understand when we break it down piece by piece. The HTML
code used to create the navigation menu has a division element with the class frame, which
acts as the menu container to control the width and position.

The menu itself consists of an unordered list element with the navigation class. Within this
list, there are multiple first-level list elements with anchors acting as the menu page links.

Each of these first-level links has a link-content container element that holds two nav-
item division elements. Styling two of these nav-item elements differently with CSS allows
us to create the drop-in animation as we are only showing one of these at once.

The about first-level navigation item also has a submenu. To achieve this, the list item
contains another unordered list with the sub-nav class. Using CSS, this subnavigation
element is placed over the original first-level page link when visible so that the cursor is not
moved from that area. This allows us to keep the original link in the hovered state and the
submenu open until the user's mouse leaves the submenu entirely.

The submenu page links follow the same structure as the first-level links in which they have
two item elements with the same text. This is to allow us to create a similar hover animation.

Within recipe-5.js, the first part attaches a mouseenter event handler to the document
to look for the mouse pointer entering one of the navigation first-level links, as follows:

$(document).on("mouseenter", "ul.navigation li a.link-base",
function(){
 $(this).find(".link-content").stop().animate({
 marginTop: -50
 }, 200, function(){
 $(this).parent().parent().find('.sub-nav').css({
 left: 0
 }).animate({
 opacity: 1
 });
 });
})

When this happens, the animate() function is used on the link's link-content child to
sets its top margin to -50. This will move the second nav-item class into a view that has its
background styled orange with CSS. After 200 milliseconds, when the animation is complete,
an additional callback function is called.

This will execute the code to open any subnavigation menus that the currently hovered item
contains. Using the css() function to first set the subnavigation's left position to 0, bringing it
onto the screen, and then using the animate() function to set the opacity of the element to
1, will fade the image into view. The subnavigation elements are originally positioned off the
screen using a left position of -10000 so that they do not get in the way of any clicks the user
may perform on the page.

User Interface Animation

274

The second event handler is for the mouseleave event. This event handler checks to see
whether or not the top-level link, which has just been set to left, has a subnavigation menu
using if ($(this).parent().find('.sub-nav').length == 0). If it does not, the
hover animation is reversed, setting the link-content element's top margin back to 0. This
allows us to leave the hovered state active while the user is navigating the submenu.

The next event handler is another mouseleave event, which handles the user leaving the
submenu, as follows:

.on("mouseleave", "ul.navigation li .sub-nav", function(){
 $(this).animate({
 opacity: 0
 }, 200, function(){
 $(this).css({
 left: -10000
 });
 //When the mouse leaves the sub menu, also reverse the base
 link animation
 $(this).parent().find('.link-content').stop().animate({
 marginTop: 0
 }, 200);
 });
})

Once the user's mouse has left the submenu, the animate() function is used to set the
submenu's opacity to 0, fading it out. Then, after the 200-millisecond animation has been
completed, the css() function is used to move the submenu -10000 pixels off the screen.
Finally, using find() to select the first-level link-content element, the original hover
animation is reversed, putting the menu back to its dormant state.

There are two additional event handlers attached to the document. The additional mouseenter
and mouseleave events are used to create the hover animations for the submenu items. The
same code and technique is used for first-level navigation menu, except that instead of changing
the top margin, the left margin is changed to animate the sub-link-content elements from
left to right as opposed to top to bottom.

See also
 f Creating an animated content slider

 f Animating background images

8
Understanding

Plugin Development

In this chapter, we will cover the following topics:

 f Creating a plugin template

 f Creating a tooltip plugin

 f Building a content and image slider plugin

 f Creating an RSS feed reader plugin

 f Coding an image cropper plugin from scratch

Introduction
jQuery plugins allow the developer to write portable code that can be reused within any jQuery
project quickly. As part of this book, we have created a lot of functionality that you may want
to use in multiple projects. By creating a jQuery plugin with the required functionality, you can
abstract the complexity of this functionality and make it simple to include wherever you need it.

Before you start this chapter, create an easily accessible directory called chapter8.
Within this folder, add the latest version of the jQuery library, which will be used throughout
this chapter.

Understanding Plugin Development

276

Creating a plugin template
Creating jQuery plugins has become very popular over the years, and there are many articles
and discussions online about plugin creation best practices. Many of these articles discuss
in depth how to create a plugin template that can be used as the starting point for any jQuery
plugin. This recipe will show you how to create your own jQuery plugin template that will be
used throughout this chapter.

Getting ready
Inside the chapter8 folder that was created earlier, create a JavaScript file called jquery.
plugin-template.js.

How to do it…
To create a basic plugin template that will form the basis of all the plugins used within this
chapter, add the following code to jquery.plugin-template.js:

;(function ($) {

 var name = 'pluginName';
 Plugin.prototype = {
 defaults: {

 }
 };

 // The actual plugin constructor
 function Plugin(element, options) {
 var $scope = this;
 $scope.$element = $(element);
 $scope.element = element;
 $scope.options = $.extend({}, this.defaults, options);
 $scope.init = function () {

 }
 }

 $.fn[name] = function (options) {
 return this.each(function () {
 new Plugin(this, options).init();
 });
 }
})(jQuery);

Chapter 8

277

How it works…
Read through the plugin documentation on the jQuery website (http://learn.jquery.
com/plugins/basic-plugin-creation/) to see a set of guidelines and best practices
to adhere to.

The plugin created in this recipe uses simple concepts and best practices to
create a lightweight plugin template. There is a popular article (http://coding.
smashingmagazine.com/2011/10/11/essential-jquery-plugin-patterns/)
by Addy Osmani that provides great insight into plugin authoring while adhering to these
recommended best practices.

Looking at our plugin template, the first point to note is the semicolon at the start of the
document. This is included to ensure that any previously included plugins or scripts have been
closed properly.

To conform to the jQuery authoring recommendations, the entire plugin is wrapped inside
an Immediately-Invoked Function Expression (IIFE) to provide scope to the plugin. jQuery
is provided to the IIFE as the local variable $ to allow developers to be able to reference the
jQuery library in the usual manner without conflicts.

Within the plugin constructor, a $scope variable is declared so that it is clear what represents
the plugin's scope. The element that the plugin is being initialized from is then assigned to the
plugin's scope along with any provided plugin options. The jQuery extend() function is used
to merge the defaults object with the options object, overwriting any defaults that may
have been provided within options. Finally, the init() function is added to the plugin's
scope, which is where you will place the plugin's initialization code, as follows:

$.fn[name] = function (options) {
 return this.each(function () {
 new Plugin(this, options).init();
 });
}

The preceding code makes the plugin available just as any other jQuery object method using
the specified plugin name ($('.element').pluginName();). Using this.each(), it will
create a new plugin instance for each of the elements the plugin is initiated on and will call
the plugin's init() function.

Creating a tooltip plugin
Tooltips are a popular way to show additional information to the user about the UI they are
using. This recipe will show you how to create your own basic tooltip plugin that you can easily
use in all of your projects.

Understanding Plugin Development

278

Getting ready
Copy the jquery.plugin-template.js file and create jquery.tooltip.js, which
will become the plugin file for this recipe. Create recipe-2.html and recipe-2.js in the
same directory as the plugin file and the jQuery library.

How to do it…
To create a simple tooltip plugin and sample web page, perform the following steps:

1. Add the following HTML to recipe-2.html to create a very simple web page with
elements that can have a tooltip:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 8 :: Recipe 2</title>
 <script src="jquery.min.js"></script>
 <script src="jquery.tooltip.js"></script>
 <script src="recipe-2.js"></script>
</head>
<body>
<p><input type="text" class="hasTooltip" data-title="This is a
tooltip on an input box" /></p>
<p><a href="http://www.google.com/" target="_blank"
class="hasTooltip" title="External link to http://www.google.
com/">Google.com</p>
<button class="hasTooltip" data-title="A button with a
tooltip">Button</button>
</body>
</html>

2. At the top of jquery.tooltip.js, update the name variable and set the plugin
defaults to be as follows:
var name = 'tooltip';
Plugin.prototype = {
defaults: {
 'height': 30,
 'fadeInDelay': 200
}

};

Chapter 8

279

3. Update the $scope.init() function with the following code:
$scope.init = function() {
$scope._text = (typeof $scope.$element.data('title') !=
"undefined") ? $scope.$element.data('title') : $scope.$element.
prop("title");
 //Only display the tooltip if a title has been
specified
 if (typeof $scope._text != "undefined") {
 var $html = $("<div class='tooltip-frame'>"
 + "<div class='tooltip-arrow'></div>"
 + "<div class='tooltip-text'>" + $scope._
text + "</div>"
 + "</div>");

 $html.css({
 'position': 'absolute',
 'text-align': 'center',
 'height': $scope.options.height,
 'line-height': $scope.options.height + "px",
 'left': $scope.$element.offset().left +
$scope.$element.outerWidth() + 15,
 'top': $scope.$element.offset().top +
($scope.$element.outerHeight() / 2) - ($scope.options.height / 2),
 'background-color': 'rgba(0, 0, 0, 0.81)',
 'color': '#FFF',
 'padding': '0 10px 0 10px',
 'border-radius': '5px',
 'opact': 'none'
 }).find('.tooltip-arrow').css({
 'width': 0,
 'height': 0,
 'border-top': '10px solid transparent',
 'border-bottom': '10px solid transparent',
 'border-right': '10px solid rgba(0, 0, 0,
0.81)',
 'position': 'absolute',
 'left': '-10px',
 'top': (($scope.options.height / 2) - 10)
 });

 $scope.$element.on("mouseover", function(){
 $html.fadeIn($scope.options.fadeInDelay);
 $scope.$element.after($html);
 }).on("mouseout", function(){

Understanding Plugin Development

280

 $html.remove();
 });
 }
 }

4. Add the following jQuery code to recipe-2.js to initialize the tooltip plugin for all
the HTML elements with the hasTooltip class:
$(function(){
 $('.hasTooltip').tooltip();
});

5. Open recipe-2.html in a web browser and hover over one of the elements on the
screen to see a tooltip appear.

How it works…
The HTML page created as part of this recipe is used only to provide a few elements to which
a tooltip can be attached.

The first change to the plugin template is to set the default settings. In this case, we have set
the tooltip height and the fade-in animation duration. You can introduce additional features of
your own by adding these features to the default settings here.

When the plugin is initialized for each of the selected elements, the init() function is called,
which contains most of the logic for this plugin.

The plugin template makes the "jQueryfied" version of the element available through
$scope.$element. We can use the prop() and data() functions to check for a title
specified on the element and store this in $scope._text, which will be used as the
tooltip text.

This variable is then checked to ensure there is some text available to display. If there is no
text, we do not show a tooltip.

If $scope._text is defined, we create the tooltip HTML using the following code:

var $html = $("<div class='tooltip-frame'>"
 + "<div class='tooltip-arrow'></div>"
 + "<div class='tooltip-text'>" + $scope._text + "</div>"
 + "</div>");

The var statement is important to ensure that a new tooltip element is created for each of the
selected elements. By wrapping the HTML code within $(), it is possible for us to use jQuery
functions on this element before we insert it into the DOM. The HTML code for the tooltip adds
the title text and creates an element that will display the left arrow.

Chapter 8

281

Using the jQuery css() function, a range of CSS styles are applied to the newly created
HTML code to position and style the tooltip. The left and top positions of the tooltip are
calculated using the offset, width, and height of the selected element on which the tooltip
will be displayed. Note that the outerWidth() and outerHeight() functions are used as
opposed to the width()/height() functions to include the padding and borders and the
returned dimensions.

The jQuery find() function is also used in conjunction with the css() function to add the
styles to the left arrow.

Finally, two event listeners are attached to the selected element so that the tooltip is shown
when the user's mouse moves over the element and is removed when the user's mouse
moves out. The fadeIn() function takes the duration parameter from the defaults
object, which can be overridden when the tooltip plugin is initialized.

To initialize the tooltip plugin for all elements that have the hasTooltip class, the following
jQuery code is added to recipe-2.js:

$(function(){
 $('.hasTooltip').tooltip();
});

This is where you could overwrite the defaults, for example, using the following code:

$(function(){
 $('.hasTooltip').tooltip({
 'height': 50,
 'fadeInDelay': 500
 });
});

There's more…
This recipe provides a very basic tooltip plugin. You could expand on this recipe to add many
additional features, such as positioning, and allow the plugin user to specify which event the
tooltip opens on.

Building a content and image slider plugin
In Chapter 7, User Interface Animation, you were shown how to create a simple content
slider using jQuery. This recipe will show you how to turn that recipe into a reusable jQuery
plugin with the addition of being able to add images to the slider. You do not need to read the
previous recipe to complete this one, but it is recommended to do so for you to get a better
understanding of how the code works.

Understanding Plugin Development

282

Getting ready
Copy the jquery.plugin-template.js file and rename it to jquery.slider.js,
which will become the plugin for this recipe. You will also need to find an image 600 pixels
wide and 250 pixels high that will be used in the slider. Finally, create recipe-3.html,
slider.css, and recipe-3.js in the same directory as the jquery.slider.js file and
the jQuery library.

How to do it…
Perform the following steps to create your image and a content slider plugin:

1. Add the following HTML to recipe-3.html:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 8 :: Recipe 3</title>
 <link href="slider.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="jquery.slider.js"></script>
 <script src="recipe-3.js"></script>
</head>
<body>
<div class="mySlider">
 <div>Slider Content 1</div>

 <div>Slider Content 3</div>
 <div>Slider Content 4</div>
</div>
</body>
</html>

2. At the top of jquery.slider.js, update the plugin name to slider and set the
defaults as follows:
var name = 'slider';
Plugin.prototype = {
 defaults: {
 width: 600,
 height: 250
}
};

Chapter 8

283

3. Update the plugin's $scope.init() function to be the following:
$scope.init = function () {
$scope.$element.addClass("slider-frame").css({
 width: $scope.options.width,
 height: $scope.options.height
});
$scope.$element.append('<ul class="slider-nav">');
var _sliderItems = $scope.$element.find('div, img');
_sliderItems.wrapAll("<div class='slider-content'></div>");
$scope.$element.find('.slider-content').css({
 width: $scope.options.width * _sliderItems.length,
 position: 'relative'
});
_sliderItems.css({
 float: 'left',
 width: $scope.options.width,
 height: $scope.options.height
});
var _sliderNav = $scope.$element.find('.slider-nav');
for (var i = 0; i < _sliderItems.length; i++) {
 _sliderNav.append("<a href='#" + i + "' " + ((i == 0) ?
"class='active'" : "") + ">" + (i + 1) + "");
}
_sliderNav.on("click", "li a", function(){
 var index = this.hash.replace("#", "");
 _sliderNav.find('li a').removeClass("active");
 $(this).addClass("active");
 $scope.$element.find('.slider-content').animate({
 left: -(index * $scope.options.width) + "px"
 });
});
}

4. Add the following jQuery code to recipe-3.js to initialize the slider plugin:
$(function(){
 $('.mySlider').slider();
});

5. Add the following CSS code to slider.css:
.slider-frame {
 overflow: hidden;
 position: relative;
 margin: auto;
 border: solid 1px #CCC;

Understanding Plugin Development

284

}
.slider-nav {
 list-style: none;
 padding: 0;
 margin: 0;
 height: 35px;
 position: absolute;
 bottom: 0;
 left: 0;
 right: 0;
 text-align: center;
}
.slider-nav li {
 display: inline-block;
 margin-right: 5px;
}
.slider-nav li a {
 display: block;
 color: #FFF;
 text-decoration: none;
 border-radius: 30px;
 background-color: #333;
 width: 25px;
 height: 25px;
 text-align: center;
 line-height: 25px;
}
.slider-nav li a:hover {
 background-color: #000;
}
.slider-nav li a.active {
 background-color: #FFF;
 color: #333;
}

6. Open recipe-3.html within a web browser and you will be presented with a
dynamically created image and content slider.

How it works…
The HTML page sets up the required HTML for the slider plugin. There is a container division
with children that the slider plugin will use as slides. The children can be either division
elements or images.

Chapter 8

285

The jQuery code in recipe-3.js selects the mySlider division element and initializes the
slider plugin.

The plugin template we created earlier takes care of the jQuery plugin setup. The functionality
for our slider plugin goes inside the init() function. At the start of this function, the
slider-frame class is added to the selected element (.mySlider) so that it inherits some
basics styles from the slider.css stylesheet. Using values from the options object, the
width and height of the element are set using the jQuery css() function as follows:

$scope.$element.addClass("slider-frame").css({
width: this.options.width,
height: this.options.height
});

After this, $scope.$element.append('<ul class="slider-nav">'); is used
to insert an empty unordered list into the slider, which is ready for the creation of the slide
navigation.

The next section of the code sets up the slider for the animation. As explained in the Creating
an animated content slider recipe in Chapter 7, User Interface Animation, a slider needs the
width of its container to be the combined width of its slides so that the slides can float next to
each other and be moved into view using an animation, as shown in the following code:

var _sliderItems = $scope.$element.find('div, img');
_sliderItems.wrapAll("<div class='slider-content'></div>");
$scope.$element.find('.slider-content').css({
width: $scope.options.width * _sliderItems.length,
position: 'relative'
});

To achieve this, the slider's children (the slides) are selected and then wrapped inside a
division element using the jQuery wrapAll() function. The width of this element is set to be
the width of an individual slide times the number of slides in the slider. To float each of the
slides, the css() function is used to set the float property as shown in the following code:

_sliderItems.css({
 float: 'left',
 width: $scope.options.width,
 height: $scope.options.height
});

With each slide configured, the next step in the code is to add a list item for each slide to the
slider-nav unordered list element to form the navigation:

var _sliderNav = $scope.$element.find('.slider-nav');
for (var i = 0; i < _sliderItems.length; i++) {

Understanding Plugin Development

286

 _sliderNav.append("<a href='#" + i + "' " + ((i == 0) ?
"class='active'" : "") + ">" + (i + 1) + "");
 }

The final stage of the plugin is to listen for clicks on the anchor elements within the
navigation list, which is coded as follows, to allow the user to change the visible slide
using this navigation:

_sliderNav.on("click", "li a", function(){
 var index = this.hash.replace("#", "");
 _sliderNav.find('li a').removeClass("active");
 $(this).addClass("active");
 $scope.$element.find('.slider-content').animate({
 left: -(index * $scope.options.width) + "px"
});
});

When the user clicks on a link, the animate() function is used to change the slider-
content division element's left position based on the selected link. Read more about this in
the Creating an animated content slider recipe in Chapter 7, User Interface Animation.

There's more…
To add the popular auto-slider effect to this plugin, take a look back to the Creating an
animated content slider recipe in Chapter 7, User Interface Animation.

See also
 f The Creating an animated content slider recipe in Chapter 7, User Interface

Animation

Creating an RSS feed reader plugin
RSS feed readers are very popular additions to many websites. This recipe will show you how
to create a configurable feed reader plugin utilizing the Google Feed API, allowing you to easily
re-use the plugin on any website.

Getting ready
Once again, copy the jquery.plugin-template.js file and rename it to jquery.
rssreader.js to provide the base for this recipe's plugin. Inside the same directory, create
recipe-4.js, rssreader.css, and recipe-4.html.

Chapter 8

287

How to do it…
To create the RSS reader plugin, perform the following steps:

1. Add the following HTML code to recipe-4.html to create a basic web page and to
make the Google Feed API available for use within the page:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 8 :: Recipe 4</title>
 <link href="rssreader.css" rel="stylesheet" type="text/css" />
 <script src="jquery.min.js"></script>
 <script src="https://www.google.com/jsapi"></script>
 <script type="text/javascript">
 google.load("feeds", "1");
 </script>
 <script src="jquery.rssreader.js"></script>
 <script src="recipe-4.js"></script>
</head>
<body>
<div class="myRSSContent"></div>
</body>
</html>

2. Add the following CSS code to rssreader.css to create the styles for the RSS
reader:
@import url(http://fonts.googleapis.com/css?family=Source+Sans+P
ro:200,300,400);
.rssreader-frame {
 background-color: #333;
 border-radius: 5px;
 border: solid 1px #1f1f1f;
 padding: 0 10px 10px 10px;
 font-family: 'Source Sans Pro', sans-serif !important;
}
.rssreader-frame h1 {
 margin: 5px 0 5px 0;
 padding: 0;
 font-size: 22px;
 color: #FFF;
 line-height: 30px;
 font-weight: 200;
}
.rssreader-frame ul {

Understanding Plugin Development

288

 margin: 0;
 padding: 0;
 list-style: none;
}
.rssreader-frame ul h4 {
 margin: 0;
 position: relative;
 font-weight: 200;
 color: #E1E1E1;
}
.rssreader-frame p.description {
 margin: 0 -10px 10px -10px;
 padding: 0 10px 10px 10px;
 color: #CCC;
 font-size: 12px;
 border-bottom: solid 1px #494949;
}
.rssreader-frame ul h4 a {
 line-height: 25px;
 margin-right: 110px;
 display: block;
 text-decoration: none;
 color: #8bd;
}
.rssreader-frame ul h4 .entry-date {
 width: 100px;
 position: absolute;
 right: 0;
 top: 0;
 height: 25px;
 line-height: 25px;
 text-align: right;
}
.rssreader-frame ul li p {
 color: #666;
 margin: 0 0 10px 0;
 padding: 0 0 10px 0;
 border-bottom: dotted 1px #494949;
}

3. At the top of jquery.rssreader.js, update the defaults object and the name
variable to be as follows:
var name = 'rssreader';
Plugin.prototype = {

Chapter 8

289

defaults: {
 url: 'http://feeds.bbci.co.uk/news/technology/rss.xml',
 amount: 5,
 width: null,
 height: null
 }
};

4. Update the plugin init() function to include the following code:
 $scope.init = function () {
 $scope.$element.addClass("rssreader-frame");
 if ($scope.options.width != null) {
 $scope.$element.width($scope.options.width);
 }
 var feed = new google.feeds.Feed($scope.options.url);
 feed.setNumEntries($scope.options.amount);
 feed.load(function(result) {
 if (!result.error) {
 var _title = $("<h1>" + result.feed.title +
"</h1>");
 var _description = $("<p class='description'>"
+ result.feed.description + "</p>");
 var _feedList = $("<ul class='feed-list'></
ul>");
 for (var i = 0; i < result.feed.entries.
length; i++) {
 var entry = result.feed.entries[i];
 var date = new Date(entry.publishedDate);
 var dateString = date.getDate() + "/" +
(date.getMonth() + 1) + "/" + date.getFullYear();
 var _listElement = $("");
 _listElement.append("<h4><a href='" +
entry.link + "'>" + entry.title + "<div class='entry-date'>" +
dateString + "</div></h4>");
 _listElement.append("<p>" + entry.content
+ "</p>");
 _feedList.append(_listElement);
 }
 $scope.$element.append(_title);
 $scope.$element.append(_description);
 $scope.$element.append(_feedList);
 if ($scope.options.height != null && (_
feedList.outerHeight() + _title.outerHeight()) > $scope.options.
height) {
 _feedList.css({

Understanding Plugin Development

290

 'height': ($scope.options.height - _
title.outerHeight()),
 'overflow-y': 'scroll',
 'padding-right': 10
 });
 }
 }
 });
 }

5. Add the following few lines of jQuery to recipe-4.js to initialize the plugin for the
myRSSContent element:
$(function(){
 $('.myRSSContent').rssreader({
 width: 400,
 height: 300
 });
});

6. Open recipe-4.html in a web browser and you will be presented with the following
RSS reader:

Chapter 8

291

How it works…
The HTML code that creates the web page for this recipe has a single division element
that is used to initialize the RSS reader plugin and acts as the container for the RSS content.
Additionally, the Google Feed API is used and included in this page above the jquery.
rssreader.js file. Using the Google Feed API means that we can easily create a plugin
without requiring any server-side work. This also makes the plugin easily portable to any
website. Read more about this API at https://developers.google.com/feed/v1/
devguide#hiworld.

The CSS code styles the RSS reader elements that are created within the plugin itself. No
further explanation of this code is needed.

As with the other plugins in this chapter, the template takes care of the plugin setup and our
plugin functionality goes inside the init() function, which is executed once the plugin has
been initialized.

The first part of this function adds the rssreader-frame class to the selected element,
which the CSS code uses to apply a variety of styles. Then, looking at the options variable, a
width is set on the selected element if one has been provided.

Using the Google Feed API, the feed request is configured using the URL and amount values
of the options object as follows. This will tell the API where to collect the RSS content and
how many items to return.

var feed = new google.feeds.Feed($scope.options.url);
feed.setNumEntries($scope.options.amount);

After this, the load() function is used to make the request with a callback function specified,
as shown in the following code:

feed.load(function(result) {
if (!result.error) {
// -- HIDDEN CODE
}
}

If no error has occurred, a header, description, and unordered list elements are created and
stored in local variables, as specified by the following code:

var _title = $("<h1>" + result.feed.title + "</h1>");
var _description = $("<p class='description'>" + result.feed.
description + "</p>");
var _feedList = $("<ul class='feed-list'>");

Understanding Plugin Development

292

Using the result.feed object, it is possible to extract the feed title and description to be
placed within these elements. These elements are created and wrapped inside the jQuery
selected ($()) so that jQuery's functions will be available on these elements for later use.

We then loop through each of the entries and create a list item for each. Within each list item,
we add the feed content, date, title, and link. Using the JavaScript Date() function, a more
readable date is created to insert into the DOM. To add each of the elements to the unordered
list element that was previously created, _feedList.append(_listElement); is used.

The title, description, and the list, which is now fully populated with RSS content, can be
inserted into the DOM using the following code:

$scope.$element.append(_title);
$scope.$element.append(_description);
$scope.$element.append(_feedList);

Finally, the following code is used to apply any specified height to the RSS feed reader and
add a scrollbar if the content is too big to fit within the specified height:

if ($scope.options.height != null && (_feedList.outerHeight() + _
title.outerHeight()) > $scope.options.height) {
 _feedList.css({
 'height': ($scope.options.height - _title.outerHeight()),
 'overflow-y': 'scroll',
 'padding-right': 10
});
}

See also
 f The Creating a news ticker recipe in Chapter 6, User Interface

Coding an image cropper plugin from
scratch

When allowing users to upload their own images, whether it be for a profile picture or some
other use, giving them the ability to trim the image down within the browser provides a huge
benefit to the user. This is because most users would not know how to alter the image using a
third-party application such as Photoshop. There are many image cropper plugins available on
the Internet for free and many tutorials to help you use them, but there are very few examples
that provide you with the entire solution. This recipe will show you how to create your own
image cropper plugin from scratch, how to upload the image to a web server, and how to take
data from the image cropper to resize and save the image to the user's specification.

Chapter 8

293

Getting ready
This recipe is quite complex as it includes both client- and server-side code, so ensure you
follow each step carefully. Before you begin this recipe, set up the following directory structure
in the web root of your web server:

Going by the preceding structure, you need to create the includes and uploads folders
in your web root (www in the preceding figure). Within the includes folder, save the jQuery
library and create the following four files:

 f imagecrop.css

 f jquery.imagecrop.js (copy the jquery.plugin-template.js file as before
to create the basis of this plugin)

 f recipe-5.css

 f recipe-5.js

Within the web root itself, you need to create the index.html and upload.php files.

This recipe will not work in IE9 or below as older browsers do
not offer support for the XMLHttpRequest, FormData, and
FileReader APIs.

How to do it…
Carefully follow each of the following steps and then read the How it works… section to get a
full understanding of the plugin and its associated code:

1. Add the following HTML code to index.html to create a web page with the image
upload form:
<!DOCTYPE html>
<html>

Understanding Plugin Development

294

<head>
 <title>Chapter 8 :: Recipe 5 - Image Crop Plugin</title>
 <link href="includes/imagecrop.css" rel="stylesheet"
type="text/css" />
 <link href="includes/recipe-5.css" rel="stylesheet"
type="text/css" />
 <script src="includes/jquery.min.js"></script>
 <script src="includes/jquery.imagecrop.js"></script>
 <script src="includes/recipe-5.js"></script>
</head>
<body>
 <div class="container">
 <h3>#1: Select Image</h3>
 <input type="file" id="selectedImage" />
 <h3>#2: Crop Image</h3>
 <div class="image-preview">
 <div class="preview-msg">Select and image to upload</
div>

 </div>
 <h3>#3: Upload</h3>
 <div class="progress-bar"><div class="inner"></div></div>
 <div class="actions">
 <button class="upload-button">Upload</button>
 </div>
 </div>
</body>
</html>

2. Put the following CSS code into recipe-5.css to style the HTML page and form you
just created:
@import url(http://fonts.googleapis.com/css?family=Source+Sans+P
ro:200,300,400);
body {
 background-color: #F1F1F1;
 font-family: 'Source Sans Pro', sans-serif !important;
}
h1, h2, h3 {
 font-weight: 300;
 margin: 0;
}
.container {
 width: 800px;
 margin: 50px auto auto auto;
 background-color: #FFFFFF;

Chapter 8

295

 padding: 20px;
 border: solid 1px #E1E1E1;
}
.container h3 {
 line-height: 40px;
}
.container .image-preview {
 border: solid 1px #E1E1E1;
 width: 800px;
 height: 600px;
 overflow: hidden;
 margin: auto;
 position: relative;
}
.container .image-preview .preview-msg {
 position: absolute;
 top: 0;
 left: 0;
 right: 0;
 bottom: 0;
 background-color: #F1F1F1;
 text-align: center;
 font-size: 22px;
 line-height: 600px;
 font-weight: 300;
 z-index: 1;
}
#croppable-image {
 position: relative;
 z-index: 2;
}
.container .progress-bar {
 height: 30px;
 border: solid 1px #E1E1E1;
}
.container .progress-bar .inner {
 height: 30px;
 width: 0;
 background-color: #54ee86;
}
.container .actions {
 text-align: right;
 margin-top: 10px;
}

Understanding Plugin Development

296

.container .actions .upload-button {
 height: 30px;
 width: 60px;
}

3. Add the following jQuery code to recipe-5.js, which will allow the user to select
and preview an image from their local filesystem and then initiate the image crop
plugin:
$(function(){
 var _selectedFile;
 $(document).on("change", "#selectedImage", function(){
 var reader = new FileReader();
 var files = $(this).prop("files");
 if (files.length > 0) {
 _selectedFile = files[0];
 reader.onload = function() {
 var image = new Image;
 image.src = this.result;
 if (image.width > 800 || image.height > 600) {
 alert("Image cannot be larger that 800x600");
 } else {
 $('.preview-msg').hide();
 $('#croppable-image').prop("src", this.
result).fadeIn().imagecrop();
 }
 };
 reader.readAsDataURL(_selectedFile);
 }
 });
 $(document).on("click", ".upload-button", function(){
 var _selectedImage = $('#croppable-image');
 if (_selectedImage.data("selection-width") > 0 && _
selectedImage.data("selection-height") > 0) {
 var data = new FormData();
 data.append("image", _selectedFile);
 data.append("selection-width", _selectedImage.
data("selection-width"));
 data.append("selection-height", _selectedImage.
data("selection-height"));
 data.append("selection-left", _selectedImage.
data("selection-x"));
 data.append("selection-top", _selectedImage.
data("selection-y"));
 var xhr = new XMLHttpRequest();
 xhr.open("POST", "/upload.php");

Chapter 8

297

 xhr.onprogress = function(event) {
 var percent = (event.loaded / event.total * 100);
 $('.progress-bar .inner').width(percent + "%");
 }
 xhr.onload = function() {
 var response = JSON.parse(this.response);
 if (response.success == false) {
 alert(response.error);
 }
 }
 xhr.send(data);
 } else {
 alert("Please crop the image before upload");
 }
 });
});

4. In jquery.imagecrop.js, update the plugin name and defaults as shown in the
following code snippet:
var name = 'imagecrop';
 Plugin.prototype = {
 defaults: {
 minWidth: 100,
 minHeight: 100
 }
};

5. In the plugin constructor created by the plugin template file, add the following
declarations directly after $scope.options is declared, as shown in the following
code snippet:
$scope.options = $.extend({}, this.defaults, options);
$scope.imageSelection = {
 start: {
 x: 0,
 y: 0
 },
 end: {
 x: 0,
 y: 0
 },
 top: 0,
 left: 0
};
var _frame;

Understanding Plugin Development

298

var _overlayLayer;
var _selectionLayer;
var _selectionOutline;

6. Update the plugin $scope.init() function to include the following code:
//Has this element already been initialised?
if (typeof $scope.$element.data("selection-x") != "undefined") {
 //Yes, so reuse the DOM elements...
 _frame = $(document).find('.crop-frame').css({
 width: $scope.$element.width(),
 height: $scope.$element.height()
 });
 _overlayLayer = $(document).find('.overlay-layer');
 _selectionLayer = $(document).find('.selection-layer');
 _selectionOutline = $(document).find('.selection-outline');
} else {
 //No, let's initialise then...
 _frame = $("<div class='crop-frame'></div>").css({
 width: $scope.$element.width(),
 height: $scope.$element.height()
 });
 _overlayLayer = $("<div class='overlay-layer'></div>");
 _selectionLayer = $("<div class='selection-layer'></div>");
 _selectionOutline = $("<div class='selection-outline'></div>");
 //Wrap the image with the frame
 $scope.$element.wrap(_frame);
 _overlayLayer.insertAfter($scope.$element);
 _selectionLayer.insertAfter($scope.$element);
 _selectionOutline.insertAfter($scope.$element);
 /** EVENTS **/
 _selectionLayer.on("mousedown", $scope.onSelectionStart);
 _selectionLayer.on("mouseup", $scope.onSelectionEnd);
 _selectionOutline.on("mouseup", $scope.onSelectionEnd);
 _selectionOutline.on("mousedown", $scope.onSelectionMove);
}
$scope.updateElementData();
/** UPDATE THE OUTLINE BACKGROUND **/
_selectionOutline.css({
 'background': 'url(' + $scope.$element.prop("src") + ')',
 'display': 'none'
});

Chapter 8

299

7. Directly after the $scope.init() function, add the following additional functions:
/**
* MAKING THE SELECTION
*/
$scope.onSelectionStart = function(event) {
 $scope.imageSelection.start = $scope.getMousePosition(event);
 _selectionLayer.bind({
 mousemove: function(event) {
 $scope.imageSelection.end = $scope.getMousePosition(event);
 $scope.drawSelection();
 }
 });
};
$scope.onSelectionEnd = function() {
 _selectionLayer.unbind("mousemove");
 //Hide the element if it doesn't not meet the minimum specified
dimensions
 if (
 $scope.getSelectionDimentions().width < $scope.options.
minWidth || $scope.getSelectionDimentions().height < $scope.
options.minHeight
) {
 _selectionOutline.hide();
 }
 _selectionOutline.css({
 'z-index': 1001
 });
};
$scope.drawSelection = function() {
 _selectionOutline.show();
 //The smallest top value and the smallest left value are used
to set the position of the element
 $scope.imageSelection.top = ($scope.imageSelection.end.y <
$scope.imageSelection.start.y) ? $scope.imageSelection.end.y :
$scope.imageSelection.start.y;
$scope.imageSelection.left = ($scope.imageSelection.end.x <
$scope.imageSelection.start.x) ? $scope.imageSelection.end.x :
$scope.imageSelection.start.x;
_selectionOutline.css({
 position: 'absolute',
 top: $scope.imageSelection.top,
 left: $scope.imageSelection.left,
 width: $scope.getSelectionDimentions().width,
 height: $scope.getSelectionDimentions().height,

Understanding Plugin Development

300

 'background-position': '-' + $scope.imageSelection.left + 'px
-' + $scope.imageSelection.top + 'px'
});
$scope.updateElementData();
};
 /**
* MOVING THE SELECTION
*/
$scope.onSelectionMove = function() {
 //Prevent trigger the selection events
 _selectionOutline.addClass('dragging');
 _selectionOutline.on("mousemove mouseout", function(event){
 if ($(this).hasClass("dragging")) {
 var left = ($scope.getMousePosition(event).x - ($(this).
width() / 2));
 //Don't allow the draggable element to over the parent's
left and right
 if (left < 0) left = 0;
 if ((left + $(this).width()) > _selectionLayer.width())
left = (_selectionLayer.width() - $(this).outerWidth());
 var top = ($scope.getMousePosition(event).y - ($(this).
height() / 2));
 //Don't allow the draggable element to go over the
parent's top and bottom
 if (top < 0) top = 0;
 if ((top + $(this).height()) > _selectionLayer.height())
top = (_selectionLayer.height() - $(this).outerHeight());
 $scope.imageSelection.left = left;
 $scope.imageSelection.top = top;
 //Set new position
 $(this).css({
 top: $scope.imageSelection.top,
 left: $scope.imageSelection.left,
 'background-position': '-' + $scope.imageSelection.left
+ 'px -' + $scope.imageSelection.top + 'px'
 });
 }
 }).on("mouseup", function(){
 $(this).removeClass('dragging'); $scope.
updateElementData();
 });
}

Chapter 8

301

8. Insert the following helper functions under the functions you have added:
/**
* HELPER FUNCTIONS
*/
$scope.getMousePosition = function(event) {
 return {
 y: (event.pageY - _selectionLayer.offset().top),
 x: (event.pageX - _selectionLayer.offset().left)
 };
};
$scope.getSelectionDimentions = function() {
 //Work out the width and height based on the start and end
positions
 var width = ($scope.imageSelection.end.x - $scope.
imageSelection.start.x);
 var height = ($scope.imageSelection.end.y - $scope.
imageSelection.start.y);
 //If any negatives turn them into positives
 if (height < 0) height = (height * -1);
 if (width < 0) width = (width * -1);
 return {
 width: width,
 height: height,
 x: $scope.imageSelection.start.x,
 y: $scope.imageSelection.start.y
 };
}
$scope.updateElementData = function() {
 $scope.$element.data({
 "selection-x": $scope.imageSelection.left,
 "selection-y": $scope.imageSelection.top,
 "selection-width": $scope.getSelectionDimentions().width,
 "selection-height": $scope.getSelectionDimentions().height
 });
}

9. Add the following CSS code to imagecrop.css to add styles to the elements that
are created by the image crop plugin:
.crop-frame {
 position: relative;
 margin: auto;
}
.selection-layer {
 position: absolute;

Understanding Plugin Development

302

 top: 0;
 left: 0;
 right: 0;
 bottom: 0;
 z-index: 1000;
}
.selection-outline {
 border: dotted 1px #000000;
 z-index: 999;
}
.selection-outline:hover, .selection-outline:active {
 cursor: move;
}
.overlay-layer {
 background-color: rgba(255, 255, 255, 0.60);
 position: absolute;
 top: 0;
 left: 0;
 right: 0;
 bottom: 0;
 z-index: 998;
}

10. Finally, add the following PHP code to upload.php, which will take data from
the web form you have just created and then crop the image and save it into the
uploads directory:
<?php
if (isset($_FILES['image'])) {
 $response = array(
 "success" => false,
 "error" => ""
);
 //GET SELECTION DATA
 $selectionWidth = (isset($_POST['selection-width'])) ? $_
POST['selection-width'] : 0;
 $selectionHeight = (isset($_POST['selection-height'])) ? $_
POST['selection-height'] : 0;
 $selectionTop = (isset($_POST['selection-top'])) ? $_
POST['selection-top'] : 0;
 $selectionLeft = (isset($_POST['selection-left'])) ? $_
POST['selection-left'] : 0;
 //GET IMAGE DATA
 $fileName = $_FILES['image']['name'];
 $ext = pathinfo($fileName, PATHINFO_EXTENSION);
 if ($selectionWidth > 800 || $selectionHeight > 600) {

Chapter 8

303

 $response["error"] = "Image cannot be larger than 800 x
600";
 } else if (!in_array($ext, array("png", "jpg"))) {
 $response["error"] = "Invalid file type";
 } else {
if ($ext == "png") {
$source = imagecreatefrompng($_FILES['image']['tmp_name']);
 } else {
$source = imagecreatefromjpeg($_FILES['image']['tmp_name']);
 } $dest = imagecreatetruecolor($selectionWidth,
$selectionHeight);
imagecopyresampled($dest, $source, 0, 0, $selectionLeft,
$selectionTop, $selectionWidth, $selectionHeight, $selectionWidth,
$selectionHeight);
 $path = "/uploads/";
 if (!imagejpeg($dest, getcwd() . $path . $fileName, 100))
{
 $response["error"] = "Could not save uploaded file";
 } else {
 $response["success"] = true;
 }
 }
 header("Content-Type: application/json; charset=UTF-8");
 echo json_encode($response);
}

11. Navigate to the index.html file in your web browser and you will be presented
with a simple web form with three steps. By selecting the Choose File button and
selecting an image from your computer, you will see the image displayed inside the
preview box. In the preview box, you will be able to click-and-drag a selection over the
image. Once you have done this, clicking on Upload will upload the image to the web
server (indicated by the progress bar) and the image will be cropped and saved inside
the uploads folder you created earlier.

How it works…
It is important to understand the different sections of this recipe. The first element of this
recipe is the upload form itself, which provides the ability to view the user-selected image
within the browser before upload. The second element of this recipe is the image crop plugin
itself, which is what we will focus on the most. Finally, to provide the complete solution, there
is the upload element of this recipe, which takes data that the image crop plugin has provided
and posts it to a PHP script. This PHP script then takes this data to crop and saves the image
to the user's specification.

Understanding Plugin Development

304

Image selection and preview
The HTML code in index.html creates a basic interface with a file input element. When the
user clicks on the Choose File button, a browse window will open, allowing them to select a
file from their computer. Using JavaScript's FileReader class, it is possible for us to read this
file and display it within the browser. Looking at recipe-5.js, you will see a change event
handler with the code to do this.

At this point within the code, there is a basic validation check to ensure that the selected
image is not bigger than 800 x 600 pixels. If it is, an alert is shown to the user and the image
is not loaded.

When the image has finally loaded, the source property for the #cropableImage element
is updated to be the selected image, displaying it on screen. Finally, the image crop plugin is
initialized on the image element as follows:

$('#croppable-image').prop("src", this.result).fadeIn().imagecrop();

Image crop plugin
The image crop plugin dynamically creates a range of elements that act as layers and
containers to allow us to let the user make a selection. To make it easier to understand what
each of the layers is trying to achieve, they have been illustrated in the following figure:

Chapter 8

305

The Overlay layer fades out most of the image with a white background and an opacity of
0.6. The Selection layer is the layer that listens for mouse events indicating that the user is
making a selection. The main reason for this is that if the mouse events were attached to the
image itself, we would have difficulty with some browsers that allow you to drag the image
away with a visual representation of the image, which would get in the way of our functionality.
The Selection Outline layer is what is drawn by the plugin as the user is making a selection.
Its background is the selected image, except the position is adjusted so it only shows the
section of the selected image that has been selected, providing focus over the original image
that has the overlay obscuring it.

When the plugin is initialized, there is a set of local variables and defaults declared that the
plugin will use throughout its operation; these are shown in the following code snippet:

$scope.imageSelection = {
start: {
 x: 0,
 y: 0
},
end: {
 x: 0,
 y: 0
},
top: 0,
left: 0
};
var _frame;
var _overlayLayer;
var _selectionLayer;
var _selectionOutline;

The variables prepended with var will store the different DOM elements that represent the
layers. The imageSelection object stores the user's initial click coordinates and then the
coordinates when the user finishes making a selection. We can then use these coordinates
to calculate the width and position of the selection. The top and left parameters store the
finalized coordinates of the selection once the width and height have been calculated.

Inside the init() function of the plugin, there is an initial check to determine if the image
has been initialized before. If so, the layer DOM elements have already been created and
inserted, as shown in the following code snippet:

if (typeof $scope.$element.data("selection-x") != "undefined") {
 // -- HIDDEN CODE
} else {
 // -- HIDDEN CODE
}

Understanding Plugin Development

306

If the DOM elements are available, the jQuery find() function is used to select the elements
and store them within the associated variable. If not, they are created and stored. A scenario
where the plugin may have already been initialized for the image is when the user decides to
change the selected image. The image source changes, but DOM elements can stay in place
and be reused with different dimensions.

When the layer elements are first created, a container division element with the crop-frame
class is created with the same dimensions as the selected image, as shown in the following
code snippet:

_frame = $("<div class='crop-frame'></div>").css({
 width: $scope.$element.width(),
 height: $scope.$element.height()
});

It is very important that the user selection matches the actual image pixel dimensions
exactly; otherwise, cropping calculations will be incorrect. The selected image element is then
wrapped within this frame using the jQuery wrap() function as follows:

$scope.$element.wrap(_frame);
_overlayLayer.insertAfter($scope.$element);
_selectionLayer.insertAfter($scope.$element);
_selectionOutline.insertAfter($scope.$element);

The other created layers are inserted after the selected image element inside the crop-
frame division, as shown in the previous code.

The final part of the layer creation attaches various event handler functions that deal will
different parts of the selection process:

_selectionLayer.on("mousedown", $scope.onSelectionStart);
_selectionLayer.on("mouseup", $scope.onSelectionEnd);
_selectionOutline.on("mouseup", $scope.onSelectionEnd);
_selectionOutline.on("mousedown", $scope.onSelectionMove);

Each of the functions specified here are declared later on within the plugin class. At the end
of the init() function, the updateElementData() function is called, which sets the initial
selection dimensions on the selected image element (for example, selection-x) and sets
the background image on the Selection Outline layer.

When the user first clicks on the Selection layer, the mouse position is stored as the start
coordinates. Then, as the user drags the mouse to make a selection, the new mouse
coordinates are stored as end coordinates and the drawSelection() function is called. The
drawSelection() function uses the start and end coordinates to calculate the width and
height of the selection and updates the Selection Outline layer's CSS to show this, as follows:

$scope.drawSelection = function() {
 _selectionOutline.show();

Chapter 8

307

 //The smallest top value and the smallest left value are used to
set the position of the element
$scope.imageSelection.top = ($scope.imageSelection.end.y < $scope.
imageSelection.start.y) ? $scope.imageSelection.end.y : $scope.
imageSelection.start.y;
$scope.imageSelection.left = ($scope.imageSelection.end.x < $scope.
imageSelection.start.x) ? $scope.imageSelection.end.x : $scope.
imageSelection.start.x;
_selectionOutline.css({
 position: 'absolute',
 top: $scope.imageSelection.top,
 left: $scope.imageSelection.left,
 width: $scope.getSelectionDimentions().width,
 height: $scope.getSelectionDimentions().height,
 'background-position': '-' + $scope.imageSelection.left + 'px -' +
$scope.imageSelection.top + 'px'
});
$scope.updateElementData();
};

As part of this function, the background position of the Selection Outline layer is updated to
show the actual selection and the updateElementData() function is called to apply the
new selection data onto the selected image.

When the user has finished the selection and releases the mouse button, the
onSelectionEnd() function is called. This function determines whether the selection is
smaller than the minimum allowed; if so, the selection is hidden. The mouse move event
is unbound from the Selection layer to avoid any conflicts with later functionality, and the
Selection Outline layer's z-index property is updated so that the Selection Outline layer
moves above the Selection layer, allowing for the drag functionality. The drag functionality was
covered in detail in the Creating a basic drag-and-drop functionality recipe in Chapter 6, User
Interface. Refer to that recipe for a detailed explanation.

Image upload
In recipe-5.js, an event handler is attached to the click event for the Upload button. Inside
the callback function for this event, it is first determined if a selection has been made by the
user. If not, an alert is displayed, asking the user to make a crop selection.

If a valid selection has been made, a new FormData object is created to store the data to be
uploaded to the PHP script as follows:

var data = new FormData();
data.append("image", _selectedFile);
data.append("selection-width", _selectedImage.data("selection-
width"));

Understanding Plugin Development

308

data.append("selection-height", _selectedImage.data("selection-
height"));
data.append("selection-left", _selectedImage.data("selection-x"));
data.append("selection-top", _selectedImage.data("selection-y"));

The _selectedFile variable contains the reference to the selected file, which is made
available within the change event on the file input.

With the required data stored inside the FormData object, a new XMLHttpRequest object is
created to send the data to the PHP upload script as shown in the following code snippet:

var xhr = new XMLHttpRequest();
xhr.open("POST", "/upload.php");
xhr.onprogress = function(event) {
 var percent = (event.loaded / event.total * 100);
 $('.progress-bar .inner').width(percent + "%");
}
xhr.onload = function() {
 var response = JSON.parse(this.response);
 if (response.success == false) {
 alert(response.error);
}
}
xhr.send(data);

This code is self-explanatory and simply allows us to POST directly from JavaScript without
the need for an HTML form. The onprogress() function is called by the XHR request as the
image is being uploaded and allows us to update the progress bar on the HTML page to reflect
the upload's progress. The onload() function is called when the operation has completed,
allowing us to display any errors that occurred.

Cropping and saving the image with PHP
The PHP script is relatively simple. It accepts and stores the information provided via the
POST request from the JavaScript and does some basic validation on the image width and
extension, only allowing JPG and PNG images.

If the image passes validation, either imagecreatefrompng() or
imagecreatefromjpeg() is used to create an image resource in PHP based on the
provided image. Then, a blank image is created with the specified crop dimensions as shown
in the following line of code:

$dest = imagecreatetruecolor($selectionWidth, $selectionHeight);

Chapter 8

309

You can think of this blank image as a canvas that PHP will use to paint the modified image
on. Then, the provided image is cropped and the new image is stored on the blank canvas
using imagecopyresampled() as follows:

imagecopyresampled($dest, $source, 0, 0, $selectionLeft,
$selectionTop, $selectionWidth, $selectionHeight, $selectionWidth,
$selectionHeight);

Finally, the new image is saved to disk in the uploads directory that was created at the
beginning of this recipe, as follows:

imagejpeg($dest, getcwd() . $path . $fileName, 100)

You should see the new image when you open the uploads directory.

There's more…
This recipe provides a basic complete solution to previewing, cropping, uploading, and saving
an image, but there are many improvements that can be made. The validation on both the
client and server side could be dramatically improved to allow for additional image types and
to check for file size as well as dimensions.

When FileReader is reading the local file into the browser, a loader or progress bar could
also be added in the same way that the progress bar is implemented for the upload section.

Finally, the drag functionality could be improved so that the selection area's middle does not
"snap" to the mouse pointer, since this can be confusing for the user.

See also
 f The Creating a basic drag-and-drop functionality recipe in Chapter 6, User Interface

9
jQuery UI

In this chapter, we will cover:

 f Creating stylish and functional buttons

 f Creating dialog boxes for user information and input

 f Implementing progress bars within your application

 f Adding date picker interfaces to input boxes quickly

 f Creating an autocomplete search feature

Introduction
jQuery UI is a user interface library that is built on top of the jQuery JavaScript library. jQuery
UI provides many interactive plugins, effects, and interface elements that the developer can
use within their interfaces. This chapter will demonstrate jQuery UI's most common elements
such as buttons and date pickers and show you how to add them to your website or web
application quickly.

Before you start this chapter, ensure that you have visited http://jqueryui.com/ and
downloaded the jQuery UI library. Download the library via the Download Builder on their
website; make sure all the default options remain selected. The version of jQuery UI that is
used in this chapter is v1.10.3, but most recipes will work with newer versions. Their website
also provides a wealth of documentation and examples to get you started with jQuery UI.

To start with the recipes in this chapter, create an easily accessible folder named chapter9
and place the jQuery library inside it. Create a subfolder named jquery-ui, and place the
css and js folders from the jQuery UI library inside this subfolder.

jQuery UI

312

Creating stylish and functional buttons
It is relatively easy to create stylish buttons quickly with CSS3, but adding additional
functionality often requires more investment in terms of time. jQuery UI provides a button
API that can be used to create a wide range of button controls, which can be easily added to
UIs and interacted with inside JavaScript code. This recipe shows you how to create common
button controls so that you can re-use the code at your convenience.

Getting ready
Inside the chapter9 folder that was created earlier, create recipe-1.html and
recipe-1.js.

How to do it…
To create a range of different button controls using the jQuery UI library, perform the
following steps:

1. Add the following HTML code to recipe-1.html in order to add various button
elements, ensuring that you update the references to the jQuery and jQuery UI
libraries where required:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 9 :: Recipe 1</title>
 <script src="jquery.min.js"></script>
 <script src="jquery-ui/js/jquery-ui-1.10.3.custom.min.js"></
script>
 <link type="text/css" rel="stylesheet" href="jquery-ui/css/ui-
lightness/jquery-ui-1.10.3.custom.min.css" />
 <script src="recipe-1.js"></script>
</head>
<body>
 <h3>Default buttons: a, button and input</h3>
 Button 1
 <button>Button 2</button>
 <input type="submit" name="button3" value="Button 3" />
 <h3>Button options: Disabled, Custom Label and icons</h3>
 <button class="button4">Button 4: Disabled</button>
 <button class="button5">Button 5</button>
 <button class="button6">Button 6 with icons</button>
 <h3>Button Sets: Radio and Checkbox's</h3>
 <div class="buttonSet1">

Chapter 9

313

 <button>One</button>
 <button>Two</button>
 <button>Three</button>
 </div>
 <div class="buttonSet2">
 <input type="checkbox" id="check1" /><label
for="check1">Check 1</label>
 <input type="checkbox" id="check2" /><label
for="check2">Check 2</label>
 <input type="checkbox" id="check3" /><label
for="check3">Check 3</label>
 </div>
 <h3>Buttons with events</h3>
 <button class="enableDisable">Enable/Disable</button>
</body>
</html>

2. Add the following jQuery code to recipe-1.js in order to apply UI styling and
functionality to the button elements:
$(function(){
 //Default buttons
 $('a, button, input[type=submit]').button();
 //Button options
 $('#button4').button('option', 'disabled', true);
 $('#button5').button({label: 'Button 5 with custom label'});
 $('#button6').button('option', 'icons', {primary: 'ui-icon-
arrowthick-1-e', secondary: 'ui-icon-circle-arrow-e'});
 //Button sets
 $('.buttonSet1').buttonset();
 $('.buttonSet2').buttonset();
 //Button events
 $('.enableDisable').button().click(function(){
 var _button4 = $('.button4');
 if (_button4.button('option', 'disabled')) {
 _button4.button('option', 'disabled', false);
 } else {
 _button4.button('option', 'disabled', true);
 }
 });
});

jQuery UI

314

3. Open recipe-1.html in a web browser and you will be presented with various
button elements styled with the default jQuery UI theme.

How it works…
HTML provides a range of different button elements that can be used by the jQuery UI button
API. By looking at this web page, you will be able to see how the following elements work and
re-use the code at your convenience:

 f Default buttons that include a, input, and button elements

 f Default buttons with options such as custom labels, icons, and disabled

 f Buttons sets that allow for checkbox and radio button functionality

 f Events on buttons

To initialize the jQuery UI button API, select a button or a set of button elements in the typical
jQuery way and use the button() function, shown as follows:

$('a, button, input[type=submit]').button();

This will apply the jQuery UI CSS and additional functionality to the selected buttons. The
button() function also takes a range of options in order to allow you to individually manipulate
the button elements. This is shown in the Button options section in recipe-1.js.

By grouping buttons within the HTML code and using the buttonset() function, you can
create a set of buttons that work together to form a checkbox or radio button functionality,
shown as follows:

<div class="buttonSet1">
 <button>One</button>
 <button>Two</button>
 <button>Three</button>
</div>

Chapter 9

315

You can still interact with the HTML button elements using normal jQuery to attach events
and perform actions. With this recipe, the button labeled Enable/Disable has a click event
handler attached, shown as follows:

$('.enableDisable').button().click(function(){
 var _button4 = $('.button4');
 if (_button4.button('option', 'disabled')) {
 _button4.button('option', 'disabled', false);
 } else {
 _button4.button('option', 'disabled', true);
 }
});

This uses the button('option') functionality provided by jQuery UI to check the disabled
state of the button and then set it to true or false based on its current state. With
recipe-1.html open in a web browser, clicking on this button will visually enable and
disable the button labeled Button 4. Note that in the above example, the click() function
can be chained after the button() function for convenience.

There's more…
There are more button types available as part of the jQuery UI library. Head over to the
documentation provided on their website (http://jqueryui.com/button/) for simple
examples and more detail.

See also
 f Creating dialog boxes for user information and input

Creating dialog boxes for user information
and input

In Chapter 6, User Interface, you were shown how to create your own modal pop ups. jQuery
UI provides an easy-to-use API that helps you to quickly add modals or dialogs to your
application. This recipe will look at the default behavior of jQuery UI's dialogs and show you
how to use them. Once again, this recipe is designed so that you can easily find the code you
need and re-use it at your convenience.

Getting ready
In the chapter9 folder, create recipe-2.html and recipe-2.js and have them open
and ready for editing.

jQuery UI

316

How to do it…
To understand how to quickly add dialogs or modals to your application, perform the
following steps:

1. Add the following HTML to recipe-2.html in order to create the button and dialog
elements for use within the JavaScript code:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 9 :: Recipe 2</title>
 <script src="jquery.min.js"></script>
 <script src="jquery-ui/js/jquery-ui-1.10.3.custom.min.js"></
script>
 <link type="text/css" rel="stylesheet" href="jquery-ui/css/ui-
lightness/jquery-ui-1.10.3.custom.min.css" />
 <script src="recipe-2.js"></script>
</head>
<body>
<div class="actions">
 <button id="openSecondDialog">Open Second Dialog with
Animation</button>
 <button id="openModalDialog">Open Modal Dialog</button>
 <button id="openConfirmationDialog">Open Confirmation Dialog</
button>
</div>
<div id="default-dialog" title="Default Dialog">
 <p>This is a dialog with default behaviour.</p>
</div>
<div id="second-dialog" title="Second Dialog">
 <p>This is a dialog with animation that is opened by a
button.</p>
</div>
<div id="modal-dialog" title="Modal Dialog">
 <p>This is a modal dialog.</p>
</div>
<div id="confirmation-dialog" title="Confirmation Dialog">
 <p>Are you sure you want to close this dialog?</p>
</div>
</body>
</html>

Chapter 9

317

2. Add the following JavaScript code to recipe-2.js in order to initialize the dialog
elements and buttons that open them:
 $(function(){
 //Set up the dialog elements
 $('#default-dialog').dialog();
 $('#second-dialog').dialog({
 autoOpen: false,
 show: {
 effect: "fade",
 duration: 500
 },
 hide: {
 effect: "explode",
 duration: 1000
 }
 });
 $('#modal-dialog').dialog({
 autoOpen: false,
 modal: true
 });
 $('#confirmation-dialog').dialog({
 autoOpen: false,
 resizable: false,
 buttons: {
 "Yes": function() {
 $(this).dialog("close");
 },
 "No": function() {
 alert("Your dialog will stay open.");
 }
 }
 });
 //Set up button elements
 $('.actions').buttonset();
 $('#openSecondDialog').click(function(){
 $('#second-dialog').dialog("open");
 });
 $('#openModalDialog').click(function(){
 $('#modal-dialog').dialog("open");
 });
 $('#openConfirmationDialog').click(function(){
 $('#confirmation-dialog').dialog("open");
 });
});

jQuery UI

318

3. Open recipe-2.html in a web browser and you will be presented with the default
dialog already open. Use the buttons within the button set to open a variety of other
dialog types.

How it works…
As with the previous recipe, the HTML code creates the elements that the jQuery UI library will
use to apply the required functionality and styling. There are four dialog elements in the page
and three buttons that open the additional dialogs.

The JavaScript code initializes each of the dialog elements, in turn providing different options
and settings. The first dialog element, #default-dialog, is initialized with no options by
simply using the following jQuery UI code:

$('#default-dialog').dialog();

This will turn the #default-dialog HTML element into a jQuery UI dialog and display it on
the screen.

The second dialog is initialized with the autoOpen option set to false, so it will not be
automatically opened when the user first visits the page. To open this dialog, the user must
click on the button labeled Open Second Dialog with Animation. The second dialog has some
animation options provided, shown as follows:

$('#second-dialog').dialog({
 autoOpen: false,
 show: {
 effect: "fade",
 duration: 500
},
hide: {
 effect: "explode",
 duration: 1000
 }
});

This will ensure that the fade animation is used when the dialog is opened and the
explode animation is used when the dialog is closed. Read the jQuery UI dialog
documentation (http://api.jqueryui.com/dialog/) to discover the available
animations that you can use.

The third dialog is a modal dialog. By simply adding the modal: true option to the
dialog() function when the modal is opened, a backdrop that obscures the view from the
rest of the page is added.

Chapter 9

319

The fourth dialog in this recipe is a confirmation dialog. Using the buttons option, you can
specify a number of buttons and callback to hold the button actions, shown as follows:

$('#confirmation-dialog').dialog({
 autoOpen: false,
 resizable: false,
 buttons: {
 "Yes": function() {
 $(this).dialog("close");
 },
 "No": function() {
 alert("Your dialog will stay open.");
 }
 }
});

The resize option is also set to false to override the default behavior of allowing the user to
be able to change the size of the dialog.

There's more…
By reading the documentation (http://api.jqueryui.com/dialog/), you will find more
dialog types at your disposal. The form dialog is particularly useful to quickly retrieve user
input with built-in validation functions.

See also
 f Creating stylish and functional buttons

Implementing progress bars within your
application

Progress bars allow users to have detailed information regarding a process that your
application is performing. Progress bars are the ideal solution to update the user on the
progress of a task that they have requested, which could take a long time to complete. This
action could be a file upload or some other lengthy server-side process. This recipe will show
you how to use the jQuery UI progress bar API to easily add progress bars to your application.

Getting ready
Create recipe-3.html, recipe-3.js, and recipe-3.css in the chapter9 folder you
created earlier.

jQuery UI

320

How to do it…
To learn how to add a progress bar into your application quickly, perform the following steps:

1. Add the following HTML code to recipe-3.html in order to create a web page with
the required progress bar HTML elements:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 9 :: Recipe 3</title>
 <script src="jquery.min.js"></script>
 <script src="jquery-ui/js/jquery-ui-1.10.3.custom.min.js"></
script>
 <link type="text/css" rel="stylesheet" href="jquery-ui/css/ui-
lightness/jquery-ui-1.10.3.custom.min.css" />
 <link type="text/css" rel="stylesheet" href="recipe-3.css" />
 <script src="recipe-3.js"></script>
</head>
<body>
<div class="progress-bar"><div class="progress-label">Press "Start
Progress" to begin load...</div></div>
<button class="start-progress">Start Progress</button>
</body>
</html>

2. Add the following CSS code to recipe-3.css in order to provide some basic styles
to the progress bar label:
.progress-bar {
 position: relative;
}
.progress-label {
 position: absolute;
 left: 0;
 top: 0;
 right: 0;
 bottom: 0;
 text-align: center;
 line-height: 35px;
}

3. Add the following JavaScript code to recipe-3.js to initialize the progress bar and
provide functionality to the start progress button:
$(function(){
 var progressBar = $('.progress-bar');

Chapter 9

321

 var progressLabel = $('.progress-label');
 progressBar.progressbar({
 change: function() {
 progressLabel.text(progressBar.progressbar("value") + "%
 complete...");
 },
 complete: function() {
 progressLabel.text("Completed!");
 }
 });
 $('.start-progress').button().click(doStuff);
 function doStuff() {
 var progressValue =
 ((progressBar.progressbar("value") || 0) + 1);
 progressBar.progressbar("value", progressValue);
 if (progressValue < 100) {
 setTimeout(doStuff, 100);
 }
 }
});

4. Open recipe-3.html in a web browser and click on the Start Progress button. The
progress bar will jump to life and begin to show you the progress until it has reached
100 percent.

How it works…
The HTML page creates two elements that jQuery UI will use to create the progress bar and
the label:

<div class="progress-bar"><div class="progress-label">Press "Start
 Progress" to being load...</div></div>

The default label text is added into the label element, which will be displayed when the user
first visits the web page. A Start Progress button has also been added to the web page so
that the user can initiate the load action.

jQuery UI

322

The load action in this recipe is simply a fake process. You could easily reuse this code in
conjunction with an XmlHttpRequest for image uploads, such as the code that was used in
the Coding an image cropper plugin from scratch recipe in Chapter 8, Understanding Plugin
Development.

To initialize the progress bar in the progress-bar element that was added to the HTML
page, the progressbar() function is used:

progressBar.progressbar({
 change: function() {
 progressLabel.text(progressBar.progressbar("value") + "%
 complete...");
 },
 complete: function() {
 progressLabel.text("Completed!");
 }
});

An object with two properties is provided to this function to set up the change and complete
the event callback functions. This allows us to perform actions when the progress value has
changed and when the progress has been completed. In this recipe, we simply update the
progress label to inform the user of the complete percent value. Ensure that you read the
documentation (http://jqueryui.com/progressbar/) so that you are aware of all the
options available.

By using progressBar.progressbar("value"), it is possible to retrieve the progress
value from the progress bar element. This value can then be used to update the progress
label text.

The doStuff() function, which is called when the user clicks on the Start Progress button,
acts as the progress. It uses setTimeout() to recall itself every 100 milliseconds and then
increments the progress bar value as follows:

var progressValue = ((progressBar.progressbar("value") || 0) + 1);
progressBar.progressbar("value", progressValue);

See also
 f The Coding an image cropper plugin from scratch recipe in Chapter 8, Understanding

Plugin Development

Chapter 9

323

Adding date picker interfaces to input
boxes quickly

Date pickers provide the user with an easy-to-use interface to allow them to quickly select the
date they require. jQuery UI provides a date picker that can be quickly added to input fields.
The date picker provides many configuration options such as date formatting and restrictions,
making it easier for the developer to limit the user's input accordingly. This recipe will show
you how to add the date picker to two input fields, change the date format of the date pickers,
and also apply date limits to each of the fields.

Getting ready
As with the previous recipe, create recipe-4.html, recipe-4.js, and recipe-4.css
within the chapter9 folder you created earlier.

How to do it…
Perform each of the following steps to create a simple interface with two date pickers and
configuration options:

1. Insert the following HTML code into recipe-4.html to create the basic web page
and UI with date picker elements:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 9 :: Recipe 4</title>
 <script src="jquery.min.js"></script>
 <script src="jquery-ui/js/jquery-ui-1.10.3.custom.min.js"></
script>
 <link type="text/css" rel="stylesheet" href="jquery-ui/css/ui-
lightness/jquery-ui-1.10.3.custom.min.css" />
 <link type="text/css" rel="stylesheet" href="recipe-4.css" />
 <script src="recipe-4.js"></script>
</head>
<body>
 <div class="frame">
 <div class="settings">
 <label>Restrict:</label>
 <select class="restrict">
 <option value="1">1 Year</option>
 <option value="2">2 Years</option>
 <option value="3">3 Years</option>
 </select>

jQuery UI

324

 <label>Format:</label>
 <select class="formatDate">
 <option value="dd/mm/yy">English Format</option>
 <option value="mm/dd/yy">American Format</option>
 </select>
 </div>
 <div class="datepickers">
 Start: <input type="text" class="start" />
 End: <input type="text" class="end" />
 </div>
 </div>
</body>
</html>

2. Add the following CSS to recipe-4.css in order to provide a basic style and
positioning to the UI:
.frame {
 width: 500px;
 margin: 100px auto auto auto;
 background-color: #494949;
 border-radius: 5px;
 box-shadow: 5px 5px 5px #CCC;
}
.frame .settings {
 line-height: 40px;
 text-align: center;
 background-color: #333;
 color: #FFF;
 border-top-left-radius: 5px;
 border-top-right-radius: 5px;
}
.frame .datepickers {
 line-height: 100px;
 text-align: center;
 color: #CCC;
}

3. Add the following jQuery code to recipe-4.js in order to set up the date picker
elements and provide functionality to the additional elements within recipe-4.
html:
$(function(){
 var _start = $('.start');
 var _end = $('.end');
 var _restrict = $('.restrict');

Chapter 9

325

 var _formatDate = $('.formatDate');
 var _dateFormat = 'dd/mm/yy';
 _start.datepicker({
 dateFormat: _dateFormat,
 minDate: new Date(),
 onClose: function(selectedDate) {
 _end.datepicker("option", "minDate", selectedDate);
 restrictDates();
 }
 });
 _end.datepicker({
 dateFormat: _dateFormat,
 onClose: function(selectedDate) {
 _start.datepicker("option", "maxDate", selectedDate);
 }
 });
 _formatDate.change(function(){
 _dateFormat = _formatDate.val();
 _start.datepicker("option", "dateFormat", _dateFormat);
 _end.datepicker("option", "dateFormat", _dateFormat);
 });
 _restrict.change(function(){
 restrictDates();
 });
 function restrictDates() {
 var maxDate = _start.datepicker("getDate");
 if (maxDate != null) {
 maxDate.setFullYear(maxDate.getFullYear() + parseInt(_
restrict.val()));
 _end.datepicker("option", "maxDate", maxDate);
}
 }
});

4. Open recipe-4.html within a web browser and you will be presented with a
simple interface with two inputs and two drop-down menus. The two inputs labeled
start and end will provide you with a date picker interface when you click inside
the input fields. You can then use the date picker to select a date to be inserted in
the associated input. By using the two dropdowns, you can change the behavior
of the dates and the date pickers. The format options will change the date format
to either English or American. The restriction dropdown will allow you to select the
maximum number of years that the end date picker will allow the user to select past
the selected start date.

jQuery UI

326

How it works…
HTML and CSS provides us with a simple interface that can be used with jQuery UI to
demonstrate some of the date picker capabilities. At the top of recipe-4.js, there are
some variables holding references to the different HTML elements that will be used by jQuery
and a variable holding the English date format.

To add a date picker to an input element, the jQuery UI datepicker() function is used with
the required options:

_start.datepicker({
 dateFormat: _dateFormat,
 minDate: new Date(),
 onClose: function(selectedDate) {
 _end.datepicker("option", "minDate", selectedDate);
 restrictDates();
 }
});

The dateFormat option sets the format for the selected date picker. The minDate option
sets the minimum date that the date picker will allow the user to select; new Date() is used
to set this restriction to the current date. The function specified for onClose will be executed
when the date picker has been closed. Within this function, the minDate option is set for the
end input. This will ensure that the user will not be able to choose an end date that is before
the selected start date. The restrictDates() function is also being called from here. The
restrictDates() function is defined as follows:

function restrictDates() {
 var maxDate = _start.datepicker("getDate");
 if (maxDate != null) {
 maxDate.setFullYear(maxDate.getFullYear() +
 parseInt(_restrict.val()));
 _end.datepicker("option", "maxDate", maxDate);
 }
}

This function applies a restriction to the end date picker so that the user cannot select an end
date which is n years greater than the selected start date. Here, n is the value specified by
the Restrict drop-down menu. Just as minDate is set, the maxDate is set using the selected
start date plus the amount of specified years. This function is also called using the change()
function when the user changes the drop-down selection.

Chapter 9

327

When the user chooses to change the date format, the following code is used to update the
format for each of the date picker elements:

_formatDate.change(function(){
 _dateFormat = _formatDate.val();
 _start.datepicker("option", "dateFormat", _dateFormat);
 _end.datepicker("option", "dateFormat", _dateFormat);
});

There are many options available as part of the date picker API. Read the documentation
(http://api.jqueryui.com/datepicker/) to learn what other options are available.

Creating an autocomplete search feature
This recipe will show you how to suggest search terms to a user as they are typing into a
search input. This is a very popular feature and can be very helpful to the user as it provides
them with some insight into what search results will be available before they have even made
the search. jQuery UI provides the autocomplete functionality that can be quickly added to
any input element.

Getting ready
Create recipe-5.html, recipe-5.js, and recipe-5.css in the chapter9 folder, where
you have saved the other recipe files.

This recipe utilizes a quality API provided by Trakt.tv (http://trakt.tv/api-docs/). You
will need to register (for free) and obtain an API key before you can begin this recipe. Once you
have registered, you can find your API key on the following page: http://trakt.tv/api-
docs/authentication.

At the point of writing this recipe, there is a known bug within Google Chrome,
where if you are trying to call an external source using AJAX in jQuery from
your local machine (that is, accessing recipe-5.html using file://
instead of http(s)://), you may receive an Access-Control-Allow-
Origin error. If you do experience this problem, either serve your recipe
files through a web server or use an alternate browser.

To demonstrate how the autocomplete feature can be used in a real-world situation, this
recipe will use the API specified above to create a related TV show search. It will allow the user
to search for a TV show (with suggestions from autocomplete), and once the user has selected
one, shows related to the selected one will be displayed.

jQuery UI

328

How to do it…
To add the autosearch feature, perform the following instructions:

1. Add the following HTML code to recipe-5.html in order to create the basic web
page:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 9 :: Recipe 5</title>
 <script src="jquery.min.js"></script>
 <script src="jquery-ui/js/jquery-ui-1.10.3.custom.min.js"></
script>
 <link type="text/css" rel="stylesheet" href="jquery-ui/css/ui-
lightness/jquery-ui-1.10.3.custom.min.css" />
 <link type="text/css" rel="stylesheet" href="recipe-5.css" />
 <script src="recipe-5.js"></script>
</head>
<body>
<div class="frame">
 <h1>RELATED TV SHOWS</h1>
 <div class="head">
 <p>Find TV shows related to your favorites.</p>
 <div class="search-input-frame">
 <input type="text" id="searchInput"
 placeholder="Search for a TV show..." />
 </div>
 </div>
 <div class="results">
 <div class="searching">Searching for related
 shows...</div>
 <ul id="results-list">
 </div>
</div>
</body>
</html>

2. Place the following CSS in recipe-5.css to turn the HTML code into an attractive
looking web page:
@import url(http://fonts.googleapis.com/
css?family=Roboto:400,300,100);
body {
 background-color: #333;
 font-family: 'Roboto', sans-serif;

Chapter 9

329

}
.frame {
 width: 800px;
 background-color: #FFF;
 margin: 100px auto auto auto;
 padding: 20px;
 border-radius: 5px;
}
.frame h1 {
 margin: -93px 0 0 0;
 color: #FFF;
 font-size: 70px;
 text-align: center;
}
.frame h1 span {
 color: #00B5B5;
}
.search-input-frame #searchInput {
 width: 780px;
 border: none;
 font-weight: bold;
 color: #999;
 background: #373737;
 font-size: 14px;
 height: 40px;
 padding: 0 0 0 10px;
 margin: 0;
 border-radius: 5px;
 line-height: 40px;
}
.frame .head p {
 font-style: italic;
 text-align: center;
}
.frame .results ul {
 list-style: none;
 margin: 10px 0 0 5px;
 padding: 0;
}
.frame .results ul li {
 line-height: 30px;
 font-size: 18px;
}
.frame .results .searching {

jQuery UI

330

 display: none;
 text-align: center;
 font-style: italic;
 font-size: 18px;
 line-height: 100px;
}
.frame .results ul li.no-results {
 line-height: 100px;
 text-align: center;
 font-size: 16px;
 font-weight: bold;
}

3. Add the following jQuery to recipe-5.js in order to initialize the autocomplete
functionality on the search input element:
$(function(){
 $('#searchInput').autocomplete({
 minLength: 2,
 source: function(input, response) {
 },
 select: function (event, ui) {
 }
 });
});

4. Within the source function you have just added, insert the following code to make
a call to the Trakt.tv API based on the user's input to provide the autocomplete
functionality with data to display. Ensure that you replace [API KEY HERE] with
your Trakt.tv API key, as shown in the following code:
$.ajax({
type: 'GET',
url: 'http://api.trakt.tv/search/shows.json/[API KEY HERE]?query='
+ input.term + "&limit=10",
dataType: 'jsonp',
success: function(data) {
 var results = [];
for (var i = 0; i < data.length; i++) {
results.push({
id: data[i].tvdb_id,
label: data[i].title,
value: data[i].title
 });
 }

Chapter 9

331

 response(results);
}
});

5. To populate the main results list based on the user's autocomplete section, add
the following jQuery code to the select function you have just added. Once again,
remember to replace [API KEY HERE] with your API key:
var showId = ui.item.id;
var _searchingMsg = $('.searching');
var _resultList = $('#results-list');
_resultList.empty();
_searchingMsg.fadeIn();
$.ajax({
type: 'GET',
 url: 'http://api.trakt.tv/show/related.json/[API KEY HERE]/' +
showId,
 dataType: 'jsonp',
success: function(data) {
_searchingMsg.hide();
for (var i = 0; i < data.length; i++) {
 resultList.append("<a target='_blank' href='" +
 data[i].url + "'>" + data[i].title + "");
}
}
});

6. Open recipe-5.html in a web browser and search for your favorite TV show:

jQuery UI

332

How it works…
The jQuery UI autocomplete function wraps up all the complexity so that the developer only
needs to think about providing it with the data and the action after selection, if any.

The HTML page in this recipe creates a web page that provides an input the user can search
within. This input is then selected within the jQuery code, and the autocomplete() function
is used to initialize the autocomplete functionality on the selected element, shown
as follows:

$('#searchInput').autocomplete({
 minLength: 2,
 source: function(input, response) {

},
select: function (event, ui) {

}
});

The source property on the object provided to the autocomplete() function is the data
that is used in the dropdown displayed to the user. The source property can either be an
array, string, or function. When source is a string, it expects the value to be a resource URL
providing the data in the expected format. Because we are using an external API that will
not provide the data in the expected format, we use the third option and do some additional
processing within the function. The minLength property allows us to control how many
characters the user must input before the autocomplete functionality kicks into action.

First, the data needs to be retrieved from Trackt.tv. To do this, the familiar jQuery $.ajax()
function is used:

$.ajax({
 type: 'GET',
 url: 'http://api.trakt.tv/search/shows.json/[API KEY
 HERE]?query=' + input.term + "&limit=10",
 dataType: 'jsonp',
 success: function(data) {

}
});

The source() function takes two arguments: input (object) and response (function).
Using input.term, we can get the value that the user entered into the search input text box
and insert it into the API URL to search for TV shows. The limit query string variable is set to
10 so that only 10 results will be returned.

Chapter 9

333

Note that on both the AJAX requests within this recipe, the dataType attribute has been set
to jsonp. This is to prevent any cross-domain issues when working with the API. Read more
about jQuery's JSONP at http://www.jquery4u.com/json/jsonp-examples/.

If the request is successful, we can loop through all the results and create an array in the
format that the autocomplete functionality expects, shown as follows:

var results = [];
for (var i = 0; i < data.length; i++) {
 results.push({
 id: data[i].tvdb_id,
 label: data[i].title,
 value: data[i].title
});
}
response(results);

The response() function is called, which was the second argument to the source()
function; this will send the results to the autocomplete feature for display.

The next piece of functionality in these recipes occurs when the user selects an option
from the autocomplete suggest list. The select property on the object provided to the
autocomplete() function takes a callback function that is executed when the user makes
a selection. Using the ui argument, it is then possible to retrieve data from the object that
represents the user's selection. In this case, we require the ID so that we can pass it back to
the Trackt.tv API and retrieve a list of related TV shows:

var showId = ui.item.id;

This variable is used as a part of another $.ajax() request. On the success of this request,
the results are looped through and a list item is inserted into the result list for each of the
related TV shows. A link to a Trakt.tv web page with more information about each of the shows
is also added, shown as follows:

for (var i = 0; i < data.length; i++) {
 resultList.append("<a target='_blank' href='" + data[i].url
 + "'>" + data[i].title + "");
}

See also
 f The Creating an autosuggest feature recipe in Chapter 3, Loading and Manipulating

Dynamic Content with AJAX and JSON

10
Working with

jQuery Mobile

In this chapter, we will cover the following topics:

 f Creating a basic mobile website template

 f Building a complete static website

 f Building a dynamic mobile website

 f Implementing the quick call functionality

 f Implementing the send SMS functionality

 f Adding mobile-friendly lists

 f Using touch-oriented events

 f Creating mobile-compatible forms

 f Building a complete registration and login system

 f Building a complete mobile web app

Introduction
jQuery Mobile is a beautifully crafted framework built to make it easier to create mobile-
friendly websites and applications. jQuery Mobile incorporates themeable UI elements tailored
for the mobile experience and provides custom events targeting special events on touch
screen devices.

This chapter provides an introduction to jQuery Mobile and insights into its capabilities. In this
chapter, you will learn how to create a basic mobile website that utilizes common elements
such as buttons and lists. You will then go on to learn about some of the mobile-specific
features such as Touch to Call.

Working with jQuery Mobile

336

Before you start this chapter, ensure you have downloaded the latest release of the jQuery
Mobile framework from the jQuery website (http://jquerymobile.com/download).
Create a folder named chapter10 where you will save all your recipe files for this chapter.
Within this folder, create a folder named jquery-mobile and place the main jQuery Mobile
JavaScript and CSS files in it, including the images folder, which will hold all the icon sprites
referenced in the CSS.

The version of jQuery Mobile used within this chapter is 1.3.2, but most recipes will work with
newer releases.

For some recipes in this chapter, you will require a web server running PHP and MySQL.
This web server could be either a local development server or one hosted within the cloud.
You will also need access to a MySQL admin interface such as PHPMyAdmin so you can run
SQL scripts.

Creating a basic mobile website template
This recipe will show you what the basic layout for a simple jQuery Mobile web page looks like.
You will also be able to use this HTML page as a template for future jQuery mobile projects.

Getting ready
Within the chapter10 folder that you created earlier, create recipe-1.html.

How to do it…
Insert the following HTML code into recipe-1.html to create a very basic jQuery Mobile
single page website:

<!DOCTYPE html>
<html>
<head>
 <title>Chapter 10 :: jQuery Mobile Template</title>
 <meta name="viewport" content="width=device-width, initial-
scale=1" />
 <link rel="stylesheet" href="jquery-mobile/jquery.mobile.min.css"
/>
 <script src="jquery.min.js"></script>
 <script src="jquery-mobile/jquery.mobile.min.js"></script>
</head>
<body>
<div data-role="page">
 <header data-role="header">

Chapter 10

337

 <h1>Chapter 10 :: Recipe 1 :: jQuery Mobile Webpage Template</
h1>
 </header>
 <div data-role="content">
 <p>This is where your page content will go.</p>
 </div>
 <footer data-role="footer">
 <h4>Look how easy it is to add a styled footer</h4>
 </footer>
</div>
</body>
</html>

Ensure you update references to the jQuery libraries and CSS to reflect your downloaded files.
Open recipe-1.html in a web browser and you will see how quickly you can create a basic
mobile-friendly web page with jQuery Mobile.

How it works…
At first glance, the template page doesn't look much different from a typical HTML web
page. The HTML5 standardized document type is declared with <!DOCTYPE html> and the
required CSS and JavaScript are included within the head of the document.

What does differ is the viewport's meta tag, which is not always present in typical HTML pages.
This tells the browser how it should set the page dimensions and zoom level. If these are not set,
most mobile devices will use a virtual width, making the web page look zoomed out.

The data- attribute is a new HTML5 implementation, allowing for custom
element attributes while still providing valid markup. These data-*
attributes allow you to store arbitrary information about a particular
element, and jQuery Mobile utilizes this ability.

With jQuery Mobile, you use the data-role attribute to indicate the purpose of elements. In
the simple template we created in this recipe, we used the page, header, content, and footer
roles to create the structure for a simple page. Each of these roles are self-explanatory, but
they will also become clearer throughout this chapter.

There's more…
As with all jQuery implementations, there is a wealth of documentation available (http://
jquerymobile.com) that all developers should utilize. To get the most out of jQuery Mobile,
ensure you read the documentation.

Working with jQuery Mobile

338

See also
 f Building a complete static website

Building a complete static website
This recipe will show you how to quickly create a simple static website using jQuery Mobile.
Using the template created in the previous recipe, it only takes adding additional elements
with the correct roles to create extra pages and the navigation between them.

Getting ready
Create recipe-2.html in the chapter10 folder you created earlier and ensure you have
your newly created jQuery Mobile template ready.

How to do it…
To create a functional mobile website using jQuery Mobile, perform the following steps:

1. Copy the jQuery Mobile template you created earlier into recipe-2.html and
remove everything within the <body> tags as shown in the following code snippet:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 10 :: jQuery Mobile Template</title>
 <meta name="viewport" content="width=device-width, initial-
scale=1" />
 <link rel="stylesheet" href="jquery-mobile/jquery.mobile.min.
css" />
 <script src="jquery.min.js"></script>
 <script src="jquery-mobile/jquery.mobile.min.js"></script>
</head>
<body>

</body>
</html>

2. Insert the following code in between the <body> tags to create the home page for
the simple static website:
<div data-role="page" id="home">
 <header data-role="header">
 <h1>Home Page</h1>
 </header>

Chapter 10

339

 <div data-role="content">
 <p>This is the content for the home page. You can choose
to go to another page using the buttons below.</p>
 About</
a>
 <a href="#contact" data-role="button" data-
theme="a">Contact
 </div>
 <footer data-role="footer">
 <h4>Chapter 10 :: Recipe 2</h4>
 </footer>
</div>

3. To create an about page that is linked to the home page, add the following code after
the home page declaration but still within the <body> tags:
<div data-role="page" id="about" data-title="About Page">
 <header data-role="header">
 <h1><a href="#home" data-role="button" data-theme="b"
data-icon="arrow-l" data-inline="true">Back About Page</h1>
 </header>
 <div data-role="content">
 <p>This is the content for the about page.</p>
 </div>
 <footer data-role="footer">
 <h4>Chapter 10 :: Recipe 2</h4>
 </footer>
</div>

4. Repeat the previous step with the following code to add the final contact page:
<div data-role="page" id="about" data-title="About Page">
 <header data-role="header">
 <h1><a href="#home" data-role="button" data-theme="b"
data-icon="arrow-l" data-inline="true">Back About Page</h1>
 </header>
 <div data-role="content">
 <p>This is the content for the about page.</p>
 </div>
 <footer data-role="footer">
 <h4>Chapter 10 :: Recipe 2</h4>
 </footer>
</div>

5. Open recipe-2.html in a web browser and you will be presented with the mobile
website, and you will be able to use the buttons on the home page to navigate to and
from the about and contact pages.

Working with jQuery Mobile

340

How it works…
In this recipe's code, you will see the data-role attribute used many times to indicate the
function of many of the HTML elements. To declare multiple pages, you simply re-use the
basic page structure that was used within the template and change the contents as required.
Consider the following example:

<div data-role="page" id="about" data-title="About Page">
 <header data-role="header">

 </header>
 <div data-role="content">

 </div>
 <footer data-role="footer">

 </footer>
</div>

This is the basic structure for the about page used within this recipe. The main div element
is indicated as a page using data-role="page". To allow for navigation to this page, a
unique ID is defined as about in the same way you would any HTML element (id="about").
There is the additional attribute of data-title on the page division that makes it possible to
overwrite the content of the <title> tag in the document head so that the page title can be
changed on a per-page basis.

You can use an anchor element to create an internal link to one of the pages created in this
way, as shown in the following line of code:

About

When users click on the link, they will be presented with the page that has the unique ID
about, indicated within the href attribute as #about. The default page transition will also
be used to provide a smooth navigation effect. The data-role="button" attribute is used
to style the element into a button and the data-theme="a" attribute specifies which theme
to use for styling. Read the mentioned documentation to see what themes are available by
default and also how to create your own.

See also
 f Creating a basic mobile website template

 f Building a dynamic mobile website

Chapter 10

341

Building a dynamic mobile website
In the previous recipe, we created a basic website that would allow you to provide content to
a user and update it manually relatively easy. In most situations, this would not be enough.
Most websites today rely on some form of database to provide them with rich, new content on
a regular basis, and it should be no different with mobile websites. This recipe will show you
how to use PHP with jQuery Mobile to create dynamic pages with content served from a
web server.

Getting ready
You are going to need to create the following directory structure in the web root of your web
server. In the following figure, www is the web root; this may be different for you:

In the web root of your web server (www), create an includes folder and the files index.
html and categories.php. Within the includes folder, create a subfolder named jquery-
mobile and ensure all the jQuery Mobile library files have been copied into it. Also, within the
includes folder, create script.js and add the jQuery library (jquery.min.js).

How to do it…
To create a dynamic mobile website using PHP, carefully perform the following steps:

1. Re-using the structure that was created as part of the template in the first recipe, add
the following code to index.html. This will create a home page and an additional
blank page with the ID of categorypage.
<!DOCTYPE html>
<html>

Working with jQuery Mobile

342

<head>
 <title>Chapter 10 :: Recipe 3</title>
 <meta name="viewport" content="width=device-width, initial-
scale=1" />
 <link rel="stylesheet" href="includes/jquery-mobile/jquery.
mobile.min.css" />
 <script src="includes/jquery.min.js"></script>
 <script src="includes/jquery-mobile/jquery.mobile.min.js"></
script>
 <script src="includes/script.js"></script>
</head>
<body>
<div id="home" data-role="page">
 <header data-role="header"><h1>Dynamic page creation demo</
h1></header>
 <div data-role="content">
 <h2>Select a category:</h2>
 <a href="#categorypage?cat=colours" data-
role="button">Colours
 <a href="#categorypage?cat=shapes" data-
role="button">Shapes
 <a href="#categorypage?cat=sounds" data-
role="button">Sounds
 </div>
</div>
<div id="categorypage" data-role="page">
 <div data-role="header"><h1></h1></div>
 <div data-role="content"></div>
</div>
</body>
</html>

2. Add the following PHP code to categories.php to be able to provide content on
request to the jQuery Mobile site:
<?php
$categories = array(
 "colours" => array(
 "title" => "Colours",
 "description" => "Some of my favorite colours",
 "items" => array(
 "Black",
 "Green",
 "Red",
 "Blue",
 "Purple"

Chapter 10

343

)
),
 "shapes" => array(
 "title" => "Shapes",
 "description" => "Some shapes I really like",
 "items" => array(
 "Triangle",
 "Circle",
 "Square"
)
),
 "sounds" => array(
 "title" => "Sounds",
 "description" => "Some crazy sounds",
 "items" => array(
 "Buzz",
 "Swish",
 "Boom!",
 "Tick"
)
)
);
if (isset($_POST['category'])) {
 $response = array(
 "success" => true,
 "data" => array()
);
 $category = $_POST['category'];
 if (isset($categories[$category])) {
 $response["data"] = $categories[$category];
 } else {
 $response["success"] = false;
 $response["data"] = "Invalid category provided";
 }
 header("Content-Type: application/json; charset-UTF-8");
 echo json_encode($response);
}

3. To catch the user request for one of the dynamic pages, add the following jQuery
code to script.js, which will listen for the pagebeforechange event. This allows
us to intercept just before the user is sent to the category page.
$(document).bind("pagebeforechange", function(e, data) {
 if (typeof data.toPage === "string") {
 var urlObject = $.mobile.path.parseUrl(data.toPage);

Working with jQuery Mobile

344

 if (urlObject.hash.search(/^#categorypage/) !== -1 &&
urlObject.hash.search(/cat=*/) !== -1) {
 displayCategory(urlObject, data.options);
 //We are handling the change page event ourselves so
prevent the default behaviour
 e.preventDefault();
 }
 }
});

4. To be able to generate the dynamic page, content from the PHP script is required. Add
the following JavaScript function to the end of script.js to make an AJAX request
to collect this data and generate the markup for the dynamic page:
function displayCategory(urlObject, options) {
 var catName = urlObject.hash.replace(/.*cat=/, "");
 var pageId = urlObject.hash.replace(/\?.*$/, "");
 var _page = $(pageId);
 var _header = _page.children(":jqmData(role=header)");
 var _content = _page.children(":jqmData(role=content)");
 $.ajax({
 url: 'categories.php',
 type: 'POST',
 data: {
 category: catName
 },
 success: function(response) {
 if (response.success) {
 var category = response.data;
 //Add title to header
 _header.find("h1").html(category.title);
 //Create content HTML
 var contentHtml = "<p>" + category.description +
":</p>";
 for (var i = 0; i < category.items.length; i++) {
 var item = category.items[i];
 contentHtml += "" + item + "";
 }
 contentHtml += "";
 _content.html(contentHtml);
 //Update the URL to reflect the page the user is
actually on
 _page.data("url", urlObject.href);
 $.mobile.changePage(_page, options);
 } else {
 alert(response.data);

Chapter 10

345

 }
 }
 });
}

5. Go to your newly created mobile website via your web browser (for example, http://
localhost/) and you will be presented with the home page, which provides a button
for three different categories. Click on one of these buttons to be taken to a new page
with the content displayed served from the PHP script you have just created.

How it works…
The HTML code that is used to create the mobile site in this recipe differs little from the
previous static mobile site. The only difference is that there is only one additional page with
no title or content. This is because the additional page will be re-used to create multiple pages
dynamically, and its title and content will be set based on the user request.

The HTML code within index.html creates the home page with three buttons labeled
Colours, Shapes, and Sounds. Each of these buttons is a link to the same internal page with
some additional information, as shown in the following line of code:

#categorypage?cat=colours

Each of the buttons provide a different value for the cat variable representing the different
category pages. When the user clicks on one of these pages, the default behavior is for jQuery
Mobile to navigate the user to this internal page. As we are creating these internal pages
dynamically, we need to intercept this behavior, collect the requested category content from a
PHP script, and then generate the page. To do this, we bind to the pagebeforechange event
as follows:

$(document).bind("pagebeforechange", function(e, data) {
 if (typeof data.toPage === "string") {
 var urlObject = $.mobile.path.parseUrl(data.toPage);
 if (urlObject.hash.search(/^#categorypage/) !== -1 &&
urlObject.hash.search(/cat=*/) !== -1) {
 displayCategory(urlObject, data.options);
 //We are handling the change page event ourselves to
prevent the default behaviour
 e.preventDefault();
 }
 }
});

Working with jQuery Mobile

346

As we only want to intercept certain page requests, there are a few checks we perform before
we ask for the dynamic content. We can get the request URL from the data object provided to
the event handler function. We first check that the URL is a string as follows:

if (typeof data.toPage === "string") {

If it is a string, it is parsed to a URL object as follows:

var urlObject = $.mobile.path.parseUrl(data.toPage);

Once the URL object has been created, it is possible to perform two final checks to see if the
requested page is one of the category pages, as follows:

if (urlObject.hash.search(/^#categorypage/) !== -1 && urlObject.hash.
search(/cat=*/) !== -1) {

Using the search() function, it is possible to search for the string #categorypage to check
if it is the category page being requested, and then again to check that a cat variable has
also been provided.

If these checks pass, the displayCategory() function is called to collect and render the
content for the dynamic page. e.preventDefault() is also used to stop jQuery Mobile
from navigating the user to the requested page before it has been generated with the dynamic
content.

At the top of the displayCategory() function, there are a series of variables declared
as follows:

var catName = urlObject.hash.replace(/.*cat=/, "");
var pageId = urlObject.hash.replace(/\?.*$/, "");
var _page = $(pageId);
var _header = _page.children(":jqmData(role=header)");
var _content = _page.children(":jqmData(role=content)");

The first two take values from the request URL, the requested category, and the page ID (that
is, #categorypage).

The page ID is then used to select the page DOM element from index.html using the
typical jQuery selector. Then, using the page element, it is possible to find and store the
DOM elements for the page header and content, which we can manipulate later using
standard jQuery.

An AJAX request using jQuery's $.ajax() function is then used to make a POST request to
categories.php, specifying the value of catName, which was taken from the request
page URL.

Chapter 10

347

This categories.php PHP script holds a multidimensional array that stores data for the
three different categories. This PHP script takes the posted category and checks to see if
there is a matching category within the $categories array using isset(). If there is, the
$response array's data value is updated to include the data for the requested category. If
there is no data for the requested category, the $response array's success value is set to
false and an error message is provided.

Finally, the PHP script sets the content type and charset before it encodes the $response
array as JSON and outputs it.

The AJAX request made from the displayCategory() function will receive this JSON data
and process it accordingly.

By checking if response.success is true, it is possible to determine if there is some data
to display for the requested category. If there is, the page's title can be added along with the
HTML code created for the content, as shown in the following code:

var category = response.data;
//Add title to header
_header.find("h1").html(category.title);
//Create content HTML
var contentHtml = "<p>" + category.description + ":</p>";
for (var i = 0; i < category.items.length; i++) {
var item = category.items[i];
contentHtml += "" + item + "";
}
contentHtml += "";
_content.html(contentHtml);

To ensure that the URL reflects the page the user is viewing, the jQuery data() function is
used to set the url attribute on the categorypage element as follows:

_page.data("url", urlObject.href);

Finally, the changePage() function is called to navigate the user to the newly generated
page, where they will be presented with the requested content served from the PHP script.
The changePage() function will also insert an entry into the browser history to provide
typical browser navigation behavior.

There's more…
The PHP script in this recipe that provides the content to populate the additional category
pages holds this content within a PHP array. This is just for demonstrative purposes and could
easily be the content that is stored within a database accessible by the PHP script.

Working with jQuery Mobile

348

See also
 f Building a complete static website

Implementing the quick call functionality
HTML5 allows developers to tell the browser to launch an application to make a phone call
in the same way you would do for an e-mail. This recipe will show you how to do this with a
jQuery Mobile button so that when users click on this button, their default call application will
open with a prepopulated telephone number.

Getting ready
Within the chapter10 folder, create recipe-4.html for use within this recipe.

How to do it…
To allow users to be able to click on a button to make a phone call without having to copy and
paste a number into their call application, perform the following simple steps:

1. Re-using the mobile website template, add the following HTML code into recipe-4.
html:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 10 :: jQuery Mobile Template</title>
 <meta name="viewport" content="width=device-width, initial-
scale=1" />
 <link rel="stylesheet" href="jquery-mobile/jquery.mobile.min.
css" />
 <script src="jquery.min.js"></script>
 <script src="jquery-mobile/jquery.mobile.min.js"></script>
</head>
<body>
<div data-role="page">
 <header data-role="header">
 <h1>Chapter 10 :: Recipe 4</h1>
 </header>
 <div data-role="content">

 </div>
 <footer data-role="footer">

Chapter 10

349

 <h4>The HTML5 tel: attribute allows you to provide
interaction to telephone numbers</h4>
 </footer>
</div>
</body>
</html>

2. Add a button into the content section of the home page with the tel: attribute that
will launch the call application once pressed as follows:
<p>This is my simple mobile website, click the button below to
call me!</p>
Call Me!

3. Opening recipe-4.html in Google Chrome and pressing the Call Me! button will
present you with an alert informing you that the website is requesting an external
application to be opened. Opening the web page on your mobile browser will open
your device's default call application, allowing you to make a call with the number
specified on the button element.

How it works…
For many years, the mailto: attribute has been available to allow websites to open the
user's default mail client. An example is shown in the following line of code:

E-Mail Me

HTML5 allows some additional attributes that work in a similar way to allow for additional
functionality. The tel: attribute is one of them. Browsers that support this attribute will open
the default calling application installed on the device or computer when the user clicks on the
link. Note that to open Skype, a popular VOIP application, you may need to use an alternative
attribute called callto:.

See also
 f Implementing the send SMS functionality

Implementing the send SMS functionality
The previous recipe covered making a call directly from your mobile website. Making it easy
for the user to send an SMS is also a useful feature. This recipe will show you how to add a
button that, when clicked, will open the default SMS client on the user's device.

Working with jQuery Mobile

350

Getting ready
Create recipe-5.html in the chapter10 folder you created before starting this chapter.

How to do it…
It is easy to allow users to be able to quickly send an SMS message to you via your mobile
website. Perform the following simple steps to learn how:

1. Once more, using the jQuery Mobile template created in the first recipe of this
chapter, create a simple mobile website within recipe-5.html using the following
code:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 10 :: Recipe 5</title>
 <meta name="viewport" content="width=device-width, initial-
scale=1" />
 <link rel="stylesheet" href="jquery-mobile/jquery.mobile.min.
css" />
 <script src="jquery.min.js"></script>
 <script src="jquery-mobile/jquery.mobile.min.js"></script>
</head>
<body>
<div data-role="page">
 <header data-role="header">
 <h1>Chapter 10 :: Recipe 5</h1>
 </header>
 <div data-role="content">

 </div>
 <footer data-role="footer">
 <h4>Use the HTML5 sms: attribute to open the default SMS
client on click</h4>
 </footer>
</div>
</body>
</html>

2. Add the following text and anchor element within the content section of the home
page in recipe-5.html:
<p>This is my simple mobile website, click the button below to
send me an SMS message!</p>
SMS Me!

Chapter 10

351

3. Open recipe-5.html on a mobile device and click on the SMS Me! button. Your
default SMS client will open with the recipient field already populated with the
number specified in the HTML.

How it works…
In addition to the new tel: attribute provided by HTML5, the sms: attribute is also available.
This will tell compatible devices to open the default SMS client with the telephone number
specified. An example is shown in the following line of code:

SMS Me!

This anchor element also has the data-role attribute and the value of a button so that
jQuery Mobile adds the appropriate styling for a simple button.

There's more…
In addition to the telephone number, it is also possible to specify some text to be
automatically added to the message body; change the anchor element as follows to add this
functionality:

<a href="sms:01234 567891?body=This is some text in the body" data-
role="button">SMS Me!

See also
 f Implementing the quick call functionality

Adding mobile-friendly lists
There have been various recipes throughout this cookbook that utilize HTML lists to
present data in a simple and effective way. jQuery Mobile allows developers to quickly add
mobile-and touch-friendly lists to their jQuery Mobile website. This recipe provides you with
multiple examples of the more common types of lists made available by jQuery Mobile. You
can copy and re-use the code for these lists at your convenience.

Getting ready
Within the chapter10 folder you created earlier, create a single HTML file called
recipe-6.html.

Working with jQuery Mobile

352

How to do it…
To understand how to add different types of lists that are mobile-friendly, perform the
following steps:

1. Create a basic jQuery Mobile site by adding the following HTML to recipe-6.html:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 10 :: Recipe 6</title>
 <meta name="viewport" content="width=device-width, initial-
scale=1" />
 <link rel="stylesheet" href="jquery-mobile/jquery.mobile.min.
css" />
 <script src="jquery.min.js"></script>
 <script src="jquery-mobile/jquery.mobile.min.js"></script>
</head>
<body>
<div data-role="page">
 <header data-role="header">
 <h1>Chapter 10 :: Recipe 6 :: Lists</h1>
 </header>
 <div data-role="content">

 </div>
</div>
</body>
</html>

2. To create the most common list type—a basic linked list—add the following code in the
content division element in recipe-6.html:
<p>This page contains a selection of list examples for you to
reuse at your convenience.</p>
<h2>Basic linked list</h2>
<ul data-role="listview">
Linked Item 1
Linked Item 2
Linked Item 3

3. To create a nested list, add the following HTML structure within the content division
element. Make note of the comment within the HTML that, for this list to work
correctly, you will need to serve recipe-6.html from a web server. The reason for
this is given in the How to do it... section of this recipe.

Chapter 10

353

<h2>Nested list</h2>
<p>Please note that the sub-list will not work if you have
opened recipe-6.html directly in a web browser. For the sub-
list navigation to work you must serve this HTML file from a web
server. i.e. http://localhost/recipe-6.html.</p>
<ul data-role="listview">
Top Level Item 1
Top Level Item 2
Top Level Item 3 - With Sub-Level
<ul data-role="listview">
Second Level Item 1
Second Level Item 2

4. When displaying content within a list, there may be a need to allow the user to
interact with each list item in multiple ways. jQuery Mobile allows the developer
to easily add buttons alongside the list elements with icons to reinforce their
functionality. Use the data-split-icon attribute to add this functionality to a list
as shown in the following code:
<h2>List items with buttons</h2>
<ul data-role="listview" data-split-icon="delete">
Jane Doe
John Doe
James Mathews

5. Long lists can become cumbersome to navigate. jQuery Mobile allows the developer
to quickly add a filter option to any list, which will allow the user to look for the list
items they require. To add a list with this functionality, use the following code:
<h2>List with filter</h2>
<ul data-role="listview" data-filter="true">
Cat
Dog
Lizard
Rabbit

Working with jQuery Mobile

354

6. Opening recipe-6.html within a web browser will present you with a range
of list examples, as shown in the following screenshot, that you can use at your
convenience in future projects:

How it works…
Using the data-role="listview" attribute and value, it is possible to turn a basic HTML
list into a mobile-friendly implementation. jQuery Mobile, as it does with buttons and other
elements, will automatically add the styling.

If you refer to the documentation (http://jquerymobile.com/demos/1.2.1/docs/
lists/docs-lists.html), you will get a complete list of all of the available list types along
with detailed examples.

The majority of the examples used in this recipe are simple and self-explanatory. The nested
list part of the recipe has some additional functionality that may not be obvious. With most
mobile devices, the screen space is very limited, especially in portrait mode. Because of this,
it would not make sense to allow nested lists to act in their traditional way, which is to expand
to the right with a different indentation, as illustrated in the following list:

 f Top Level Item 1

 f Top Level Item 2

 f Top Level Item 3 – With Sublevel

 � Second Level Item 1

 � Second Level Item 2

To save space and provide a better user experience, when you add a nested list, jQuery
Mobile will create an additional page with the sublist items within. When the user selects a list
item that has a list within itself, they are taken to an additional page where the sublevel items
are displayed.

Chapter 10

355

At the time of writing this recipe, the additional page created for the sublevel items does not
work unless the page is served from a web server using HTTP.

One of the more powerful examples within this recipe is the ability to quickly add a filter to
your lists. Simply by adding the data-filter="true" attribute and value on the HTML list,
jQuery Mobile automatically adds the filter input to the top of the list, allowing the user to filter
out unwanted list items.

Using touch-oriented events
Along with typical events available with jQuery, such as click and hover, jQuery Mobile
makes touch-centric events available to the developer. Using these events, it is possible to
add extra functionality to your mobile application for these additional user interactions. This
recipe provides samples for many of these useful events that will allow you to re-use them at
your convenience.

Getting ready
Within the web root of your web server, create recipe-7.html and recipe-7.js.

How to do it…
To learn which touch-centric events are available and how to use them, perform the
following steps:

1. Create a basic mobile website with an empty list by adding the following HTML to
recipe-7.html. Make sure you update the references to the included libraries
where required.
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 11 :: Recipe 1</title>
 <meta name="viewport" content="width=device-width, initial-
scale=1" />
 <link rel="stylesheet" href="includes/jquery-mobile/jquery.
mobile.min.css" />
 <script src="includes/jquery.min.js"></script>
 <script src="includes/jquery-mobile/jquery.mobile.min.js"></
script>
 <script src="recipe-7.js"></script>
</head>
<body>
<div data-role="page">
 <header data-role="header">

Working with jQuery Mobile

356

 <h1>Chapter 10 :: Recipe 7 :: jQuery Mobile Touch Events</
h1>
 </header>
 <div data-role="content">
 <p>Perform various touch events and watch the output
below.</p>
 <ul id="touch-event-response" data-role="listview">
 </div>
</div>
</body>
</html>

2. At the top of recipe-7.js, add the following function, which will add a new list item
to the list you have just created within recipe-7.html:
function addEvent(msg) {
 var _list = $('#touch-event-response');
 _list.append("" + msg + "");
 _list.listview('refresh');
}

3. To add a new list item when the user performs a tap, add the following JavaScript
code to recipe-7.js:
$(function(){
 $(document).bind('tap', function(){
 addEvent("Tap");
 });
});

4. To listen for the taphold event and add a new list item, add the following code
directly under the previous .bind() statement within the $(function(){}) block:
$(document).bind('taphold', function(){
addEvent("Tap & Hold");
});

5. The same can be done to listen for the swipe event. Append the following .bind()
definition:
$(document).bind('swipe', function(){
addEvent("Swipe");
});

6. To clear the list when the user swipes left, append the following JavaScript code:
$(document).bind('swipeleft', function(){
$('#touch-event-response').empty();
});

Chapter 10

357

7. Finally, to detect when the user changes the device's orientation, add the following
code after the swipeleft bind definition:
$(window).bind('orientationchange', function(event){
addEvent("Orientation changed to: " + event.orientation);
});

8. With a mobile- and touch-compatible device, open recipe-7.html and perform a
range of touch events to see the appropriate responses added to the list. When you
swipe left, the list should empty, and when you change the device's orientation, a new
list item will be added, indicating the new orientation (portrait or landscape).

How it works…
By using the following code, it is possible to listen for various events that jQuery Mobile
makes available:

$(document).bind('[EVENT]', function() {
});

To see the full list of events that are available, read the documentation (http://
jquerymobile.com/demos/1.2.1/docs/api/events.html) on the jQuery Mobile
website, which provides a comprehensive list with examples.

Within this recipe, the addEvent() function takes a string that it will append to the list
element created within the simple mobile website in recipe-7.html. When you manipulate
a jQuery Mobile list with JavaScript, you must call the refresh method to ensure that the
styling is reapplied to the newly added elements. This is shown in the following code:

var _list = $('#touch-event-response');
_list.append("" + msg + "");
_list.listview('refresh');

Knowing when the user changes the device's orientation can be useful to rearrange elements
on the page to improve the user experience. With jQuery Mobile, this is very easy to do. Simply
bind to the orientationchange event and ready the orientation property of the event
object to determine what the new orientation is, as shown in the following code:

$(window).bind('orientationchange', function(event){
addEvent("Orientation changed to: " + event.orientation);
});

Note that unlike the other events in this recipe, this had been bound to window and not
document, as document is unaware of the browser or device orientation.

Working with jQuery Mobile

358

See also
 f Chapter 2, Interacting with the User by Making Use of jQuery Events

Creating mobile-compatible forms
jQuery Mobile provides a wide array of form components that are similar to the jQuery
UI offering but optimized for mobile devices. This recipe provides examples of the more
commonly used form elements so that you can re-use them at your convenience.

Getting ready
Within the chapter10 folder you created earlier, create recipe-8.html.

How to do it…
To learn what form elements are made available by jQuery Mobile and how to use them,
perform each of the following steps:

1. Create a simple jQuery Mobile website to hold all the examples. Add the following
HTML code to recipe-8.html:
<!DOCTYPE html>
<html>
<head>
 <title>Chapter 10 :: Recipe 8</title>
 <meta name="viewport" content="width=device-width, initial-
scale=1" />
 <link rel="stylesheet" href="jquery-mobile/jquery.mobile.min.
css" />
 <script src="jquery.min.js"></script>
 <script src="jquery-mobile/jquery.mobile.min.js"></script>
</head>
<body>
<div data-role="page" id="home">
 <header data-role="header" data-theme="b">
 <h1>Chapter 10 :: Recipe 8</h1>
 </header>
 <div data-role="content">
 </div>
</div>
</body>
</html>

Chapter 10

359

2. Add the following code inside the content division element you have just added to
create a range of text input elements:
<h1>Text Input</h1>
<div data-role="fieldcontain">
<label for="textInput">Text input:</label>
<input type="text" name="textInput" id="textInput" />
</div>
<div data-role="fieldcontain">
<label for="textArea">Text area:</label>
<textarea id="textArea" name="textArea"></textarea>
</div>
<div data-role="fieldcontain">
<label for="textSearch">Text search:</label>
<input type="text" name="textSearch" id="textSearch" data-
type="search">
</div>

3. To create two different varieties of select menus, add the following code under the
text inputs:
<h1>Select Menu</h1>
<div data-role="fieldcontain">
<label for="simpleSelect">Simple select:</label>
<select id="simpleSelect">
<option value="1">Option 1</option>
<option value="2">Option 2</option>
 <option value="3">Option 3</option>
</select>
</div>
<div data-role="fieldcontain">
<label for="customSelect">Custom select:</label>
<select id="customSelect" data-native-menu="false">
<option value="1">Option 1</option>
<option value="2">Option 2</option>
 <option value="3">Option 3</option>
</select>
</div>

4. To create checkboxes and radio buttons, use the following code:
<h1>Selection</h1>
<h2>Checkboxes</h2>
<fieldset data-role="controlgroup">
<input type="checkbox" name="checkbox-1" id="checkbox-1">
<label for="checkbox-1">Option 1</label>

Working with jQuery Mobile

360

<input type="checkbox" name="checkbox-2" id="checkbox-2">
<label for="checkbox-2">Option 2</label>
<input type="checkbox" name="checkbox-3" id="checkbox-3">
<label for="checkbox-3">Option 3</label>
</fieldset>
<h2>Radio buttons</h2>
<fieldset data-role="controlgroup">
<input type="radio" name="radio-1" id="radio-1">
<label for="radio-1">Option 1</label>
<input type="radio" name="radio-1" id="radio-2">
<label for="radio-2">Option 2</label>
<input type="radio" name="radio-1" id="radio-3">
<label for="radio-3">Option 3</label>
</fieldset>
<h2>Inline selection</h2>
<fieldset data-role="controlgroup" data-type="horizontal">
<input type="checkbox" name="checkbox-1" id="checkbox-4">
<label for="checkbox-4">Option 1</label>
<input type="checkbox" name="checkbox-2" id="checkbox-5">
<label for="checkbox-5">Option 2</label>
<input type="checkbox" name="checkbox-3" id="checkbox-6">
<label for="checkbox-6">Option 3</label>
</fieldset>
<fieldset data-role="controlgroup" data-type="horizontal">
<input type="radio" name="radio-2" id="radio-4">
<label for="radio-4">Option 1</label>
<input type="radio" name="radio-2" id="radio-5">
<label for="radio-5">Option 2</label>
<input type="radio" name="radio-2" id="radio-6">
<label for="radio-6">Option 3</label>
</fieldset>

5. Finally, to create some additional elements—a switch and slider—add the
following code:
<h1>Additional</h1>
<div data-role="fieldcontain">
<label for="switch">Switch:</label>
<select id="switch" data-role="slider">
<option value="1">On</option>
 <option value="0">Off</option>
</select>
</div>
<div data-role="fieldcontain">

Chapter 10

361

<label for="slider">Slider:</label>
<input type="number" data-type="range" name="slider" id="slider"
value="50" min="0" max="100" data-highlight="true">
</div>

6. Opening recipe-8.html in a web browser will present you with a range of different
form elements. You can then easily select and re-use the code for any of the element
types, as shown in the following screenshot:

How it works…
Each type of jQuery Mobile element used within this recipe is explained in detail in the
following sections.

Text input
jQuery Mobile provides different text input elements. The typical text input and text area
elements are easily created by adding a label and either an input or textarea element
inside a div element with the fieldcontain class, as shown in the following code:

<div data-role="fieldcontain">
<label for="textInput">Text input:</label>
<input type="text" name="textInput" id="textInput" />
</div>

Working with jQuery Mobile

362

To create a search input, simply add data-type="search" to the input element. This
adds a search icon to the input element and also provides a clear button once the user has
entered some text.

Select menu
The two select menus provided as examples in this recipe look identical at face value. When
you select the first simple example, you are provided with a dropdown that looks like a typical
select menu on a normal non-mobile-optimized website.

The second example, which has the additional data-native-menu="false" attribute
added, provides a different selection menu once clicked. This additional menu makes it easier
to make a selection using a touch interface. The following screenshot provides a comparison
of the two types of select menus:

Checkboxes and radio buttons
Using a fieldset element with the data-role="controlgroup" attribute, it is very easy
to create checkboxes and radio buttons, as shown in the following code snippet:

<fieldset data-role="controlgroup">
<input type="checkbox" name="checkbox-1" id="checkbox-1">
<label for="checkbox-1">Option 1</label>
<input type="checkbox" name="checkbox-2" id="checkbox-2">
<label for="checkbox-2">Option 2</label>
<input type="checkbox" name="checkbox-3" id="checkbox-3">
<label for="checkbox-3">Option 3</label>
</fieldset>

To create a set of radio buttons, you can re-use the preceding code, changing the type
attribute to radio and ensuring they all have the same value within the name attribute.

In addition to these interface elements, jQuery Mobile makes it possible to have an inline
equivalent. Simply add the data-type="horizontal" attribute onto the fieldset
element to get the inline version of either checkboxes or radio buttons.

Chapter 10

363

Additional
The final two elements provided as part of this recipe are a switch and a slider. The switch
element is essentially a select menu with only two options, but presented in a more touch-
friendly manner. The slider element is created by adding the data-type="range"
attribute to a number input (as shown in the following code), which allows a user to easily
enter and change a numeric value on a form:

<div data-role="fieldcontain">
<label for="slider">Slider:</label>
<input type="number" data-type="range" name="slider" id="slider"
value="50" min="0" max="100" data-highlight="true">
</div>

There's more…
All of the examples provided as part of this recipe are displayed at the default size. jQuery
Mobile provides all its form elements with an additional smaller size for situations where the
default is a little too large.

To use the mini equivalent, add the attribute data-mini="true" to elements requiring the
smaller size.

Building a complete registration and
login system

This recipe shows you how to create a simple register and login system from scratch using
jQuery Mobile and PHP with a MySQL database. This recipe will form the base for a complete
web application in the next recipe of this chapter.

Getting ready
You should already have a PHP and MySQL server available that will be utilized to complete
this recipe. Within the web root of your web server, create index2.html and script2.js,
which will hold the main functionality of the application.

How to do it…
To create a complete registration and login system, ensure you follow each of the following
instructions carefully:

1. Add the following HTML code to index2.html to create a simple jQuery Mobile
website and home page:
<!DOCTYPE html>
<html>

Working with jQuery Mobile

364

<head>
 <title>Chapter 10 :: Register & Login</title>
 <meta name="viewport" content="width=device-width, initial-
scale=1" />
 <link rel="stylesheet" href="includes/jquery-mobile/jquery.
mobile.min.css" />
 <script src="includes/jquery.min.js"></script>
 <script src="includes/jquery-mobile/jquery.mobile.min.js"></
script>
 <script src="script2.js"></script>
 <link rel="stylesheet" href="styles.css" />
</head>
<body>
<div data-role="page" id="home">
 <header data-role="header" data-theme="b">
 <h1><a href="#home" data-role="button" data-icon="home"
data-iconpos="notext" data-inline="true"> Home Page</h1>
 </header>
 <div data-role="content">
 <p>Welcome to my community.</p>
 <a data-role="button" href="#login">Login
 <a data-role="button" data-theme="a"
href="#register">Register
 </div>
</div>
</body>
</html>

2. Use the following HTML to add a login page to index2.html:
<div data-role="page" id="login" data-title="Login">
 <header data-role="header" data-theme="b">
 <h1><a href="#home" data-role="button" data-icon="home"
data-iconpos="notext" data-inline="true"> Login</h1>
 </header>
 <div data-role="content">
 <div data-role="fieldcontain">
 <label for="login-username">Username:</label>
 <input type="text" name="username" id="login-username"
value="" />
 </div>
 <div data-role="fieldcontain">
 <label for="login-password">Password:</label>
 <input type="password" name="password" id="login-
password" value="" />
 </div>

Chapter 10

365

 <button data-role="button" id="login-account" data-
theme="a">Login</button>
 <p>Don't have an account? Register</
a>.</p>
 </div>
</div>

3. A registration page can also be created using the following HTML code, ensuring
the page code is added within the body section of the HTML document in index2.
html:
<div data-role="page" id="register" data-title="Register">
 <header data-role="header" data-theme="b">
 <h1><a href="#home" data-role="button" data-icon="home"
data-iconpos="notext" data-inline="true"> Register</h1>
 </header>
 <div data-role="content">
 <div data-role="fieldcontain">
 <label for="register-username">Username:</label>
 <input type="text" name="username" id="register-
username" value="" />
 </div>
 <div data-role="fieldcontain">
 <label for="register-password">Password:</label>
 <input type="password" name="password" id="register-
password" value="" />
 </div>
 <div data-role="fieldcontain">
 <label for="register-passwordagain">Password Again:</
label>
 <input type="password" name="register-passwordagain"
id="register-passwordagain" value="" />
 </div>
 <button data-role="button" id="register-account" data-
theme="a">Register</button>
 <p>Already have an account? Login.</
p>
 </div>
</div>

4. The final page to add is the member page. Create this using the following HTML code:
<div data-role="page" id="member">
 <header data-role="header" data-theme="b">
 <h1><a href="#home" data-role="button" data-icon="home"
data-iconpos="notext" data-inline="true"> Member's Page</h1>
 </header>

Working with jQuery Mobile

366

 <div data-role="content">
 <p>You're logged in.</p>
 <button data-role="button" data-theme="a"
id="logout">Logout</button>
 </div>
</div>

5. Using the following SQL code, create a database called chapter10 and a table
called user within your MySQL database:
SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO";
SET time_zone = "+00:00";

--
-- Database: `chapter10`
--
CREATE DATABASE `chapter10` DEFAULT CHARACTER SET latin1 COLLATE
latin1_swedish_ci;
USE `chapter10`;

-- --

--
-- Table structure for table `user`
--

CREATE TABLE IF NOT EXISTS `user` (
 `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
 `username` varchar(128) DEFAULT NULL,
 `password` varchar(512) DEFAULT NULL,
 UNIQUE KEY `id` (`id`),
 UNIQUE KEY `username` (`username`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=8;

6. Create connect.db.php in the web root of your web server and add the following
PHP code to connect to the chapter10 database. Update the database username
and password if required.
<?php
$mysqli = new mysqli("localhost", "root", "", "chapter10");
if ($mysqli->connect_errno) {
 die("Failed to connect to MySQL: (" . $mysqli->connect_errno .
") " . $mysqli->connect_error);
}
$pwsalt = "TH1SISF0RCHAPTER10";

Chapter 10

367

7. To be able to add new users to the user table, create register.php within the web
root of your web server and add the following PHP code:
<?php
require_once("connect.db.php");
$username = isset($_POST['username']) ? strtolower($_
POST['username']) : "";
$password = isset($_POST['password']) ? $_POST['password'] : "";
$passwordAgain = isset($_POST['passwordagain']) ? $_
POST['passwordagain'] : "";

$response = array(
 "success" => false,
 "errors" => array()
);

if (strlen($username) < 3 || strlen($username) > 32) {
 $response["errors"]["username"] = "Username must be between 3
and 64 characters in length";
} else {
 $query = "SELECT `id` FROM `user` WHERE `username` = ? LIMIT
1";
 $stmt = $mysqli->stmt_init();
 if ($stmt->prepare($query)) {
 $stmt->bind_param("s", $username);
 if ($stmt->execute()) {
 $stmt->store_result();
 if ($stmt->num_rows > 0) {
 $response["errors"]["username"] = "Username has
already been taken";
 }
 } else {
 $response["errors"]["username"] = "Could not execute
query";
 }
 } else {
 $response["errors"]["username"] = "Could query database
for existing usernames";
 }
 $stmt->close();
}

if (strlen($password) < 6 || strlen($password) > 32) {
 $response["errors"]["password"] = "Password must be between 6
and 32 characters in length";
}

Working with jQuery Mobile

368

if ($password != $passwordAgain) {
 $response["errors"]["passwordagain"] = "Passwords must match";
}

if (empty($response["errors"])) {
 $query = "INSERT INTO `user` (`username`, `password`) VALUES
(?, ?)";
 $stmt = $mysqli->stmt_init();
 if ($stmt->prepare($query)) {
 $password = crypt($password, $pwsalt);
 $stmt->bind_param("ss", $username, $password);
 if ($stmt->execute()) {
 $stmt->close();
 $response["success"] = true;
 } else {
 $response["errors"]["username"] = "Could not execute
query";
 }
 } else {
 $response["errors"]["username"] = "Could not insert new
user, please try again";
 }
}
$mysqli->close();
header("Content-Type: application/json; charset=UTF-8");
echo json_encode($response);

8. To allow users to log in with their newly created account, create login.php within
the web root of your web server and add the following PHP code:
<?php
session_start();
require_once("connect.db.php");
$username = isset($_POST['username']) ? strtolower($_
POST['username']) : "";
$password = isset($_POST['password']) ? $_POST['password'] : "";

$response = array(
 "success" => false,
 "error" => "",
 "user" => array()
);

$query = "SELECT `id` FROM `user` WHERE `username` = ? AND
`password` = ? LIMIT 1";
$stmt = $mysqli->stmt_init();

Chapter 10

369

if ($stmt->prepare($query)) {
 $password = crypt($password, $pwsalt);
 $stmt->bind_param("ss", $username, $password);
 if ($stmt->execute()) {
 $res = $stmt->get_result();
 if ($res->num_rows > 0) {
 $row = $res->fetch_assoc();
 $response["success"] = true;
 $_SESSION['uid'] = $response["user"]["id"] =
$row["id"];
 $_SESSION['username'] = $response["user"]["username"]
= $username;
 } else {
 $response["error"] = "Incorrect username or password";
 }
 } else {
 $response["error"] = "Could not execute query";
 }
} else {
 $response["error"] = "Could not query database";
}
$stmt->close();
$mysqli->close();
header("Content-Type: application/json; charset=UTF-8");
echo json_encode($response);

9. For the logout functionality, create logout.php within the same directory as
login.php and add the following code:
<?php
session_start();
$response = array(
 "success" => false,
 "error" => ""
);
if (isset($_SESSION["uid"]) && isset($_SESSION["username"])) {
 $_SESSION = array();
 session_destroy();
 $response["success"] = true;
} else {
 $response["success"] = false;
 $response["error"] = "Not logged in";
}
header("Content-Type: application/json; charset=UTF-8");
echo json_encode($response);

Working with jQuery Mobile

370

10. To allow a user to be able to submit their information for registration, add the
following JavaScript code to script2.js within the jQuery on-load block
($(function(){});):

$('#register-account').click(function(){
 $('.input-error').remove();
 var data = {
 username: $('#register-username').val(),
 password: $('#register-password').val(),
 passwordagain: $('#register-passwordagain').val()
 };
 $.ajax({
 type: 'POST',
 url: 'register.php',
 data: data,
 beforeSend: function() {
 $.mobile.loading('show');
 },
 success: function(data) {
 $.mobile.loading('hide');
 if (data.success) {
 $.mobile.showPageLoadingMsg("b", "Registration
successful! You may now login.", true);
 } else {
 $.each(data.errors, function(key, value){
 $('#register-' + key).parent().after("<div
class='input-error'>" + value + "</div>");
 });
 }
 }
 });
 });

11. To react when the user attempts to log in from the login page, add the following
JavaScript code to script2.js under the code you have just added for registration:
$('#login-account').click(function(){
 var data = {
 username: $('#login-username').val(),
 password: $('#login-password').val()
 };
 $.ajax({
 type: 'POST',
 url: 'login.php',
 data: data,
 beforeSend: function() {

Chapter 10

371

 $.mobile.loading('show');
 },
 success: function(data) {
 $.mobile.loading('hide');
 if (data.success) {
 $.mobile.showPageLoadingMsg("b", "Login
Successful", true);
 localStorage.setItem("user", JSON.
stringify(data.user));
 $.mobile.changePage("#member");
 } else {
 $.mobile.showPageLoadingMsg("b", data.error,
true);
 }
 }
 });
 });

12. To allow the user to be able to click on the logout button and be logged out, add the
following code to script2.js:
 $('#logout').click(function(){
 $.ajax({
 type: 'POST',
 url: 'logout.php',
 beforeSend: function() {
 $.mobile.loading('show');
 },
 success: function(data) {
 $.mobile.loading('hide');
 if (data.success) {
 localStorage.removeItem("user");
 $.mobile.changePage("#home");
 } else {
 $.mobile.showPageLoadingMsg("b", data.error,
true);
 }
 }
 });
 });

13. To prevent access to the members page, add the following code to check if the user is
logged in when they try to navigate to this page:
$(document).bind("pagebeforechange", function(e, data) {
 if (typeof data.toPage === "string") {
 var urlObject = $.mobile.path.parseUrl(data.toPage);

Working with jQuery Mobile

372

 if (urlObject.hash.search(/^#member/) !== -1) {
 if (getUser() === false) {
 e.preventDefault();
 $.mobile.showPageLoadingMsg("b", "You must be
logged in to access this page", true);
 setTimeout(function(){
 $.mobile.hidePageLoadingMsg();
 $.mobile.changePage("#home");
 }, 1500);
 }
 }
 }
 });

14. The preceding code uses the getUser() function to determine if the user has been
logged in or not. Add the following function to the end of script2.js, ensuring it is
added outside the $(function(){}); block:
function getUser() {
 var user = localStorage.getItem("user");
 if (user == null) {
 return false;
 } else {
 return JSON.parse(user);
 }
}

15. To add some basic styling to the error messages within the web root of your web
server, create a file named styles.css and add the following CSS code:
.input-error {
 position: absolute;
 font-size: 10px;
 color: #ff0800;
}

16. Visiting your web server that is serving index2.html will allow you to register an
account. If you attempt to visit the members page without being logged in, you will
get a message saying you must be logged in and will then be sent back to the
home page.

How it works…
Each section of code created within this recipe is explained in detail in the following sections.

Chapter 10

373

HTML
The HTML within index2.html creates a simple jQuery Mobile website with the following
four pages:

 f The home page

 f The register page

 f The login page

 f The members page

The home page provides links to both the login and register pages, and each of these pages
link to each other respectively. The members page has a logout button that allows the user
to log out once they have gotten access to the members page. The HTML code is simple, and
each element has been explained in detail in the previous recipes of this chapter.

SQL
The SQL code that is provided as part of this recipe can be used to create the required
chapter10 database and the user table, which stores the user accounts.

PHP
There are four PHP files created within this recipe. The first is connect.db.php, which
establishes a connection to the MySQL database and is included within the other three PHP
files. The PHP mysqli class is used to connect and query the MySQL database throughout
the PHP files in this recipe. You can find more information about this class on PHP.net
(http://www.php.net/mysqli).

The register.php file takes a set of values via a POST request. These values are as follows:

 f Username

 f Password

 f Password again

The PHP script performs basic validation for all three inputs to ensure that the username
specified is between 3 and 32 characters long and that a password has been provided that
is at least 6 characters in length. It also ensures that both passwords match and queries the
database to ensure the requested username has not already been taken.

If it passes all validations, a new user is inserted into the database, which will then allow this
user to log in using the specified details. It is important to note that the password is encrypted
using the PHP crypt() function with the default settings. This is a simple encryption method,
and greater encryption techniques should be used in a production environment.

The login.php script takes a username and password via a POST request and queries the
user table to see if there are any matching user credentials; if so, a PHP session is created for
that user and a user object returned to the client.

Working with jQuery Mobile

374

The logout.php script simply destroys the PHP session if one exists, logging out the user.

Each of these PHP scripts return data in a standard format that has been used multiple
times throughout this cookbook. At the top of each script, an array is created as shown in the
following code:

$response = array(
 "success" => false,
 "errors" => array()
);

If the script is successful and no errors are needed to be output, the success value is changed
to true and the errors array left empty. In the case of the register.php script, when one
of the inputs fail validation, an associative array is returned with the key matching the input.
The following is an example:

$response["errors"]["username"] = "Username has already been taken";

This is so that the JavaScript on the client knows which input to place the error message
under, making it easier for the user to understand what changes they need to make.

When the response array is output, it is converted to a JSON object, and the content type and
charset is set appropriately using the PHP header() function, as shown in the following code:

header("Content-Type: application/json; charset=UTF-8");
echo json_encode($response);

JavaScript
The JavaScript used within this recipe is simple and nothing new. There are three click event
handlers created for the register, login, and logout buttons. The callback function provided
to each of these event handlers collects data from the associated form and uses the jQuery
$.ajax() function to make a POST request to the register.php, login.php, or logout.
php scripts respectively. AJAX with jQuery has been covered extensively in Chapter 3, Loading
and Manipulating Dynamic Content with AJAX and JSON.

For each of the AJAX requests, the beforeSend() function is used to open and show a
spinner image to the user, indicating a request is being made. This spinner image is then
removed on the success of the AJAX request. This is shown in the following code:

$.ajax({
type: 'POST',
url: 'register.php',
data: data,
beforeSend: function() {
$.mobile.loading('show');
},
success: function(data) {

Chapter 10

375

 $.mobile.loading('hide');
// -- HIDDEN CODE
}
});

Also, as shown in the following code, within the success() function for each of the
AJAX requests, the $.mobile.showPageLoadingMsg() function is used to display a
message to the user for various reasons, either on error or for information regarding a
successful registration:

$.mobile.showPageLoadingMsg("b", "Registration successful! You may now
login.", true);

The first argument to the function is the theme, the second is the message you wish to
display, and setting the third argument to true will remove the spinner image, just displaying
the simple text message.

As previously mentioned, the login.php script returns an object that represents the newly
logged-in user. As the client JavaScript has no sense of PHP sessions, this user object needs
to be stored locally so that the client is aware of the logged-in user. To do this, local storage is
used, as shown in the following line of code:

localStorage.setItem("user", JSON.stringify(data.user));

Local storage will only allow you to store a string, but we need to store an entire object. To
get around this, we convert the object to a JSON string, which can then be converted to an
object again when retrieved from local storage. The preceding example uses the JSON.
stringify() function to convert the user object to a string and stores it in local storage
under the name user.

The getUser() function is then used to retrieve and convert the string value to an object, or
return false if there is no currently logged-in user:

function getUser() {
 var user = localStorage.getItem("user");
 if (user == null) {
 return false;
 } else {
 return JSON.parse(user);
 }
}

When the AJAX call to the logout.php script that destroys the server session is successful,
localStorage.removeItem("user") is also used to remove the user object on the client.

Working with jQuery Mobile

376

The final element of the JavaScript within this recipe is restricting access to the members
page. Note that any restriction enforced using client-side code can be bypassed by any user
with the right knowledge. This type of client-side restriction is only used to enhance the user
experience, and it is always a requirement that the server side prevent access to any actions
that users shouldn't be able to perform.

Within the Building a dynamic mobile website recipe, the jQuery Mobile pagebeforechange
event was used to detect the user trying to access a certain page. This same functionality
is used within this recipe to catch when the user is trying to access the members page. The
getUser() function is then used to determine if the user is logged in or not. If they are not
logged in, they are prevented from navigating to the members page and sent back to the
home page after being told they must be logged in to access the members page.

There's more…
Currently, to submit any of the forms on the website, the user is required to click on or press
the associated button. To improve on this, it would be beneficial if the user could press the
Enter key or the mobile-equivalent go button from within any of the inputs in the form.

See also
 f Building a dynamic mobile website

Building a complete mobile web app
This recipe shows you how to create a simple but complete web app that allows registered
users to write notes that can be accessed on all devices. The notes app extends upon the
previous login and register recipe to allow the logged-in user to create and manage a note or a
to-do list.

Getting ready
Before you start this recipe, ensure you have completed the previous recipe, Building a
complete register and login system. You will still need a web server running PHP and MySQL to
complete this recipe.

How to do it…
To create a complete mobile web app that can be accessed on all mobile and desktop
devices, perform the following steps:

1. To store the user-created notes, another database table is required. Use the following
SQL code to create a table within the chapter10 database called note:

Chapter 10

377

CREATE TABLE IF NOT EXISTS `note` (
 `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
 `user_id` bigint(20) unsigned NOT NULL,
 `text` varchar(2048) DEFAULT NULL,
 `added` datetime DEFAULT NULL,
 UNIQUE KEY `id` (`id`),
 KEY `user_id` (`user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

ALTER TABLE `note`
 ADD CONSTRAINT `note_ibfk_1` FOREIGN KEY (`user_id`) REFERENCES
`user` (`id`) ON DELETE CASCADE ON UPDATE CASCADE;

2. While most of the pages defined within index2.html stay the same, we need to
update the members page to have a button that takes the user to their current notes.
Update the members page with the following HTML in index2.html:
<div data-role="page" id="member">
 <div data-role="header" data-theme="b">
 <h1><a href="#home" data-role="button" data-icon="home"
data-iconpos="notext" data-inline="true"> Member's Page</h1>
 </div>
 <div data-role="content">
 <p>Welcome </
strong>, what would you like to do?</p>
 <a href="#notes" data-role="button" data-inline="true"
data-icon="arrow-r">View Notes
 <button data-role="button" data-theme="a" id="logout"
data-inline="true" data-icon="delete">Logout</button>
 </div>
</div>

3. We now need to create the notes page that this new button takes the user to. Use the
following HTML code to create the notes page, adding it after the members page in
index2.html:

<div data-role="page" id="notes">
 <div data-role="header" data-theme="b">
 <h1><a href="#home" data-role="button" data-icon="home"
data-iconpos="notext" data-inline="true"> Your Notes</h1>
 </div>
 <div data-role="content">
 <h1>Your Notes <a href="#add-note" data-icon="plus" data-
role="button" data-inline="true">Add note<a href="#member"
data-theme="e" data-icon="back" data-role="button" data-
inline="true">Back</h1>
 <ul data-role="listview" data-filter="true" id="current-
notes" data-icon="delete">

Working with jQuery Mobile

378

 </div>
</div>

4. With the notes page, the user will be able to view their current notes, so there needs
to be a way to create new notes. Using the following HTML code, add the create note
page to index2.html:
<div data-role="page" id="add-note" data-title="Add new note">
 <div data-role="header" data-theme="b">
 <h1>Add new note</h1>
 </div>
 <div data-role="content">
 <textarea id="note-text"></textarea>
 <div class='input-error' style="display: none;" id="note-
error"></div>
 <div class="actions">
 <button data-role="button" id="save-new-note" data-
theme="a" data-icon="check" data-inline="true">Save</button>
 <a href="#notes" data-role="button" data-theme="e"
data-icon="delete" data-inline="true">Cancel
 </div>
 </div>
</div>

5. With the new database table created and the HTML UI updated for the additional
functionality, we now need to create the PHP that provides the interaction to the
database. To enable a user to create a new note, within the web root of your web
server, create a file named addNote.php and insert the following code:
<?php
session_start();

require_once("connect.db.php");
$text = isset($_POST['text']) ? $_POST['text'] : "";

$response = array(
 "success" => false,
 "error" => "",
 "note" => array()
);

if (!isset($_SESSION['uid'])) {
 $response["error"] = "You must be logged in to add a new
note";
} else if (strlen($text) <= 0 || strlen($text) > 1024) {
 $response["error"] = "A note must be between 1 and 1024
characters in length";

Chapter 10

379

} else {
 $query = "INSERT INTO `note` (`user_id`, `text`, `added`)
VALUES (?, ?, ?)";
 $stmt = $mysqli->stmt_init();
 if ($stmt->prepare($query)) {
 $now = date("Y-m-d H:i:s");
 $stmt->bind_param("sss", $_SESSION['uid'], $text, $now);
 if ($stmt->execute()) {
 $stmt->close();
 $response["success"] = true;
 $response["note"] = array(
 "id" => $mysqli->insert_id,
 "text" => $text,
 "added" => $now
);
 } else {
 $response["error"] = "Could not execute query";
 }
 } else {
 $response["error"] = "Could not insert new note, please
try again";
 }
}
$mysqli->close();
header("Content-Type: application/json; charset=UTF-8");
echo json_encode($response);

6. To populate the notes page with the user's current notes, we need to be able to
retrieve the notes from the database. Create a file named getNotes.php and add
the following PHP code:
<?php
session_start();
require_once("connect.db.php");

$response = array(
 "success" => false,
 "error" => "",
 "notes" => array()
);

if (!isset($_SESSION['uid'])) {
 $response["error"] = "You must be logged in to add a new
note";
} else {

Working with jQuery Mobile

380

 $query = "SELECT * FROM `note` WHERE `user_id` = ? ORDER BY
`added` DESC";
 $stmt = $mysqli->stmt_init();
 if ($stmt->prepare($query)) {
 $stmt->bind_param("s", $_SESSION['uid']);
 if ($stmt->execute()) {
 $res = $stmt->get_result();
 $response["success"] = true;
 if ($res->num_rows > 0) {
 while ($row = $res->fetch_assoc()) {
 $response["notes"][] = array(
 "id" => $row["id"],
 "text" => $row["text"],
 "added" => $row["added"]
);
 }
 }
 } else {
 $response["error"] = "Could not execute query";
 }
 } else {
 $response["error"] = "Could not query database";
 }
 $stmt->close();
}
$mysqli->close();
header("Content-Type: application/json; charset=UTF-8");
echo json_encode($response);

7. The user also needs to be able to remove unwanted notes. For this, within the web
root of your web server, create a file named deleteNote.php and add the following
code:
<?php
session_start();

require_once("connect.db.php");
$id = isset($_POST['id']) ? (int)$_POST['id'] : 0;

$response = array(
 "success" => false,
 "error" => ""
);

if (!isset($_SESSION['uid'])) {

Chapter 10

381

 $response["error"] = "You must be logged in to delete a note";
} else if ($id <= 0) {
 $response["error"] = "Invalid note ID specified";
} else {
 $query = "DELETE FROM `note` WHERE `id` = ?";
 $stmt = $mysqli->stmt_init();
 if ($stmt->prepare($query)) {
 $stmt->bind_param("i", $id);
 if ($stmt->execute()) {
 $stmt->close();
 $response["success"] = true;
 } else {
 $response["error"] = "Could not execute query";
 }
 } else {
 $response["error"] = "Could not insert new note, please
try again";
 }
}
$mysqli->close();
header("Content-Type: application/json; charset=UTF-8");
echo json_encode($response);

8. With all the backend code in place, we can now add JavaScript to link the user
interface and this backend code together. First of all, we need to make a few changes
to the original JavaScript code from the previous recipe within script2.js. At the
top of script2.js, but still within the jQuery on-load block $(function(){});,
add the following line of code:
var _currentNotes = $('#current-notes');

9. Within the success() function for the logout AJAX call, just before $.mobile.
changePage("#home");, add the following line of code:
_currentNotes.data("initialized", false);

10. Within the pagebeforechange event handler, we need to add some code so that
we can display the currently logged-in user's username within the members page.
Update the code as follows, adding $('.username').html(user.username);:

if (urlObject.hash.search(/^#member/) !== -1) {
var user = getUser();
if (user === false) {
 e.preventDefault();
$.mobile.showPageLoadingMsg("b", "You must be logged in to access
this page", true);
setTimeout(function(){

Working with jQuery Mobile

382

$.mobile.hidePageLoadingMsg();
$.mobile.changePage("#home");
}, 1500);
} else {
 $('.username').html(user.username);
}
}

11. With the required JavaScript updates made, we need to add the additional
functionality. To allow the user to add a new note, insert the following code into
script2.js to catch when the user clicks on the save note button:
$('#save-new-note').click(function(){
 $('#note-error').hide();
 var _text = $('#note-text');
 $.ajax({
 type: 'POST',
 url: 'addNote.php',
 data: {
 'text': _text.val()
 },
 beforeSend: function() {
 $.mobile.loading('show');
 },
 success: function(data) {
 $.mobile.loading('hide');
 if (data.success) {
 _text.val("");
 _currentNotes.prepend(createNoteItem(data.
note));
 //If the list view has already been
initialized then we need to refresh it
 if (_currentNotes.hasClass('ui-listview')) {
 _currentNotes.listview('refresh');
 }
 $.mobile.changePage("#notes");
 } else {
 $('#note-error').html(data.error).fadeIn();
 }
 }
 });
 });

Chapter 10

383

12. To populate the notes page with any currently available notes, we need to add some
additional functionality to the pagebeforechange event handler. Update the code
as follows (some code has been hidden for illustrative purposes):
$(document).bind("pagebeforechange", function(e, data) {
 if (typeof data.toPage === "string") {
 var urlObject = $.mobile.path.parseUrl(data.toPage);
 if (urlObject.hash.search(/^#member/) !== -1) {
 //HIDDEN CODE – DO NOT REMOVE
 } else if(urlObject.hash.search(/^#notes/) !== -1) {
 if (_currentNotes.data("initialized") != true) {
 e.preventDefault();
 _currentNotes.empty();
 _currentNotes.data("initialized", true);
 $.ajax({
 type: 'GET',
 url: 'getNotes.php',
 beforeSend: function() {
 $.mobile.loading('show');
 },
 success: function(data) {
 $.mobile.loading('hide');
 if (data.success) {
 for (var i = 0; i < data.notes.length; i++) {
 _currentNotes.append(createNoteItem(data.notes[i]));
 }
 //If the list view has already been initialized then we
need to refresh it
 if (_currentNotes.hasClass('ui-listview')) {
_currentNotes.listview("refresh");
 }
 $.mobile.changePage("#notes");
 } else {
 alert(data.error);
 }
 }
 });
 }
 }
 }
});

Working with jQuery Mobile

384

13. The currently available notes that are listed need to be clickable to allow users to
delete them. Add the following code within script2.js to listen for a click on one of
the current note list items to then make an AJAX call to the deleteNote.php script:
$(document).on('click', '.delete-note', function(){
 var _listItem = $(this).closest('li');
 var id = _listItem.data("id");
 var response = confirm("Are you sure you want to delete
this note?");
 if (response) {
 $.ajax({
 type: 'POST',
 url: 'deleteNote.php',
 data: {
 'id': id
 },
 beforeSend: function() {
 $.mobile.loading('show');
 },
 success: function(data) {
 $.mobile.loading('hide');
 if (data.success) {
 _listItem.remove();
 _currentNotes.listview("refresh");
 } else {
 alert(data.error);
 }
 }
 });
 }
 });

14. Finally, add the following function outside the jQuery on-load block ($(function()
{});), which constructs a list item for a note:
function createNoteItem(note) {
 return "<li data-id='" + note.id + "'>" + note.text + "</
a>";
}

15. By visiting index2.html served from a web server, you will be able to register an
account and then log in, just as with the previous recipe. Once logged in, tapping on
the View Notes button will take you to a page with an empty list. Click on the Add
note button to add a new note. Once a new note has been added, you will be taken
back to the current note's list with your new note showing. You can remove this note
by clicking on it and confirming that you wish to delete it. You can access your notes
on multiple devices across logged-in sessions.

Chapter 10

385

How it works…
Each section of the code for this recipe is explained in detail in the following sections.

HTML
The HTML code within this recipe adds a few extra pages so that the logged-in user can create
a note and view the previous ones. The notes page uses a listview with a filter that was shown
within the Adding mobile-friendly lists recipe of this chapter.

SQL
The simple SQL code within this recipe creates an additional table called note that is used to
store all of the user's notes. A foreign key relationship is also defined between the user_id
field on the note table and the id field on the user table.

PHP
All PHP scripts within this recipe use the same database connection file and structure as the
previous recipe. There are an additional three PHP scripts created for this recipe, as follows:

 f addNote.php: This script takes a POST request with the text for a note. It then
checks to see if there is a currently logged-in user using the PHP $_SESSION
super global. If there is a logged-in user, the provided text is validated to ensure it
is between 0 and 1024 characters in length. If it is, it is inserted into the database
with the logged-in user's ID and an added date. To get the database ID for the newly
created note item, $mysqli->insert_id is used. This is then returned within the
note object, which is sent back to the requesting script.

Working with jQuery Mobile

386

 f deleteNote.php: This script, like addNote.php, takes a POST request with a note
ID as a parameter. It also checks to ensure there is a logged-in user and, if so, will
then use a simple SQL query to delete the specified note from the database.

 f getNotes.php: By using the logged-in user's ID, all notes for that user are retrieved
from the database and converted to JSON so that they can populate a list element
using JavaScript.

If a PHP script requires access to session data, the session_
start() function must be called at the top of the script, before
any other code.

JavaScript
At the top of script2.js, the _currentNotes variable is declared as shown in the
following line of code:

var _currentNotes = $('#current-notes');

This is because the current note's list is required throughout the code, and by re-using the
same variable, jQuery is not forced to reselect the element multiple times.

To dynamically populate the #current-notes list element with the currently logged-in user's
notes from the database, the pagebeforechange event is exploited once again. With an
additional check as part of an if...else statement, it is possible to determine when the
user tries to go to the notes page, as illustrated by the following line of code:

else if(urlObject.hash.search(/^#notes/) !== -1) {

When the user does visit this page using _currentNotes.data("initialized"), it is
possible to check if the list has already been populated. If the initialized data attribute has
already been set, then it has been populated, and there is no need to go and get all the data
from the database again. If the initialized attribute has not been set to true, an AJAX call is
made to collect the current notes and populate the list as shown in the following code:

_currentNotes.empty();
 _currentNotes.data("initialized", true);
 $.ajax({
 type: 'GET',
 url: 'getNotes.php',
 beforeSend: function() {
 $.mobile.loading('show');
 },
 success: function(data) {
 $.mobile.loading('hide');
 if (data.success) {

Chapter 10

387

 for (var i = 0; i < data.notes.length; i++) {
 _currentNotes.append(createNoteItem(data.notes[i]));
 }
 //If the list view has already been initialized then we need to
refresh it
if (_currentNotes.hasClass('ui-listview')) {
_currentNotes.listview("refresh");
 }
 $.mobile.changePage("#notes");
 } else {
 alert(data.error);
 }
 }
 });

The _currentNotes.data("initialized", true); line is used to set the initialized
attribute to true so that when the user returns to the page, the script knows not to recollect
the data. The AJAX call is made to the getNotes.php script and then a new list item is
created using the createNoteItem() function for every returned note object.

If jQuery Mobile has already initiated the #current-notes list (meaning the user has
already been to the page once before), the listview will need to be refreshed. This is done
using the following code, taken from the success() function of the AJAX call:

//If the list view has already been initialized then we need to
refresh it
if (_currentNotes.hasClass('ui-listview')) {
 _currentNotes.listview("refresh");
 }

The create note and delete note functionalities within this recipe are very simple and have
been covered numerous times throughout this book. As an overview, when either the save
note button or the note list item is clicked, an AJAX call is made to the addNote.php or
deleteNote.php script respectively.

When adding a new note, the following code is used to prepend the new note item to the
current note's list and send the user back to the notes page:

_currentNotes.prepend(createNoteItem(data.note));
//If the list view has already been initialized then we need to
refresh it
if (_currentNotes.hasClass('ui-listview')) {
_currentNotes.listview('refresh');
}
$.mobile.changePage("#notes");

Working with jQuery Mobile

388

When deleting a note, the following code is used to remove the deleted note item:

var _listItem = $(this).closest('li');
_listItem.remove();

Because jQuery Mobile adds a lot of additional elements to the DOM for styling the list, the
closest() function is used to find the list element when the anchor (within the list) is
clicked. Additionally, note that $(document).on('click', '.delete-note' is used as
opposed to $('.delete-note').click() so that the click event handler is triggered
for dynamically added elements. This was covered in Chapter 2, Interacting with the User by
Making Use of jQuery Events.

There's more…
This recipe provides a very simple example of a complete mobile web application. There are
many aspects that could be improved upon but were left out to ensure this recipe was kept as
concise as possible.

One element that could be improved upon would be the security aspects of the deleteNote.
php script. The script will currently allow the logged-in user to delete any note provided the
correct ID is specified. A user with some knowledge could hijack the request by specifying
a note ID of their choice, potentially deleting a note from another user. This can easily be
avoided by checking if the specified note ID belongs to the logged-in user.

See also
 f Chapter 2, Interacting with the User by Making Use of jQuery Events

 f Building a complete registration and login system

Index
Symbols
$.ajax() function 114, 116, 346
$.ajax() method 104
$.each() function 36, 105, 147
$.each() method 41
$.mobile.showPageLoadingMsg() function

375
$scope.init() function 279, 299
$.when() function 116
.ajaxError method 78
.append() function 55
.change() event handler 50
.change() function 50
.click() function 63, 68
.click() method 45
.done() function 117
.done() method 83
.fadeIn() function 60
.fail() function 79
.hoverinfo class 60
_image.finish(); 258
#makeRequest button 78, 79
.on() function 67, 111
 rand() function 73
.sort() function 89
.splice() function 35
.success() function 117
.trigger() function 68

A
About item 272
accordion 226
accordion content slider

creating 226-229

working 230, 231
addClass() function 21, 41, 146, 164
addErrorData() function 163, 164
addEvent() function 357
Add note button 384
after() function 164
AJAX errors

handling 77-79
AJAX requests

caching 90-93
AJAX response

about 114
waiting 114-117

animated content slider
about 258
creating 258-261
working 261-263

animated login form
creating 246-250
working 251-253

animated navigation menu
about 267
creating 268-272
working 273, 274

animate() function 147, 209, 274, 286
anti-spam measures

about 184
adding 184
working 186

append() function 29, 83
autocomplete() function 332, 333
autocomplete search feature

about 327
adding 328-333

autoOpen option 318

390

autosuggest feature
about 106
creating 106-109
working 110-113

B
background images

animating 264-267
basic drag-and-drop functionality

about 215
creating 216-220

basic form validation
about 156
CSS 162
HTML 161
implementing 156-161
jQuery 162-164

before()functions 13
beforeSend() function 374
beforeSend parameter 112
blinking button

creating, jQuery used 148-151
box-shadow attribute 244
button clicks

detecting 45, 46
button() function 314
buttons

disabling, by property change 21-23
enabling, by property change 21, 23

buttonset() function 314

C
Call Me! button 349
call application functionality

implementing 348, 349
callback() function 209
callto: attribute 349
change event handlers

attaching 49, 50
change() function 326
changePage() function 347
Choose File button 304
clearInterval() function 200
click() function 38, 315

client-side validation
using 155, 156

closest() function 388
complete mobile web app

about 376
creating 376-384
HTML code 385
JavaScript 386-388
PHP scripts 385
SQL code 385

complete registration
creating 363-372

content based user input
updating 51-53

content slider plugin
and image, creating 282-286

createList() function 225
createNoteItem() function 387
crypt() function 373
CSS 162
CSS classes

adding, for style modifications 19
removing, for style modifications 19-21

css() function 215, 267, 274
currentPage variables 32
custom event

about 66
creating 66-68

D
data- attribute 337
data() function 347
data-role attribute 337
data-split-icon attribute 353
dateFormat option 326
Date() function 292
datepicker() function 326
date pickers

about 323
adding, to input boxes 323-326

date validation
about 170
adding 170, 172

dialog boxes
adding, to application 316-318

391

dialog() function 318
displayCategory() function 346, 347
DOM CSS

manipulating 192-195
working 196, 197

DOM elements
content, inserting into 14, 15
creating 11-14
properties, modifying 17, 18
removing 36, 38
removing, with effects 151-154
re-using 38, 41
selecting 6-9

doSearch() function 103
doSearch(); function 103
doStuff() function 322
doValidation() function 177, 179, 185, 186
draggable class 218
draggable content pop up

about 240
creating 241-244

dragging class 219
drawSelection() function 306
dynamic animated tree menu

creating 222-225
dynamic list

creating, with pages 32-36
dynamic mobile website

creating, PHP used 341-347
dynamic table of contents

creating 210-213
working 213-215

E
each() function 214
effects

used, for DOM elements removing 151-154
elements

fading 126-130
hiding, jQuery used 125, 126
showing, jQuery used 125, 126

e-mail address validation
about 173
adding 174

empty() function 35

event.prevenDefault(); function 65
events

triggerring, manually 61-63
event.stopPropagation(); function 65
event triggers

about 63
preventing 64, 65

extend() function 277

F
fadeIn effects 138
fadeIn() function 130, 239, 251, 281
fadeOut() effects 138
fadeOut() function 154, 239
fadeTo() function 150, 151
find() function 41, 214
find() method 11
findObjects() function 85, 86
functional buttons, jQuery UI

creating 312-314
functional mobile website

creating, with jQuery Mobile 338, 339

G
getUser() function 372, 375, 376

H
hasClass function 163
hide() function 126
hover action

detecting, with jQuery 58-60
HTML

about 161
loading, from web server to page 70-76

html() function 15

I
image

and content slider plugin, creating 282-286
updating, within page 24-27

image cropper plugin
about 292
coding, from scratch 293-303

392

image, cropping with PHP 308, 309
image crop plugin 304-307
image preview 304
image, saving with PHP 308, 309
image selection 304
image, uploading 307, 308

image crop plugin 304-307
Immediately-Invoked Function Expression

(IIFE) 277
input character length

restricting 56, 57
input character restrictions

implementing 187-190
isFinite function 167
isNaN() function 167
isset() function 101

J
JavaScript console

accessing, ways 8
JavaScript Object Notation (JSON) 79
JavaScript objects

searching 83-86
sorting 87-89

jQuery
about 162-164
autocomplete search feature, creating 327-

333
buttons, disabling 21
buttons, enabling 21
content, inserting into element 14
CSS classes, adding for style modification 18
CSS classes, removing for style modification

19
DOM element properties, modifying 17
DOM elements, creating 11
DOM elements, removing 36
DOM elements, re-using 38, 41
DOM elements, selecting 6
events, using 43
list elements, populating 27
page image, updating 24
pagination 29
principles 5
sibling elements, searching 9
sibling elements, selecting 9

used, for blinking button creating 148-151
used, for element displaying 125, 126
used, for element fading 126-130
used, for element hiding 125, 126
used, for hover action detecting 58-60
used, for page elements sliding 120-124
used, for photo gallery creating 138-147

jQuery effects
about 133
chaining 137, 138
stopping 133-136
toggling 130-133

jQuery Mobile
about 335
used, for functional mobile website creating

338-340
version 336

jQuery Mobile web page
creating 336, 337

jQuery plugins 275
jQuery plugin template

creating 276, 277
jQuery UI

about 311
functional buttons, creating 312-314
stylish buttons, creating 312-314

jQuery website 336
JSON 79
JSON data

processing 80-83
json_encode() function 82
JSON request

caching 90-93
JSON.stringify() function 375

K
keydown event 190
key press input events

detecting 53, 55
keyup event 23

L
list elements

populating 27-29
live form validation

about 175

393

adding 175, 176
working 177

load() function 291
login form

about 245
login system

creating 363-372
HTML code 373
JavaScript, using 374-376
PHP code 373, 374
SQL code 373

M
mailto: attribute 349
makeSuggestion() function 111
minDate option 326
minLength property 332
mobile-compatible forms

about 358
additional 363
Checkboxes 362
creating 358, 359, 361
radio buttons 362
select menu 362
Text input 361, 362

mobile-friendly lists
adding 352
working 354, 355

modal 236
modal pop up

creating 236- 240
modalPosition() function 240, 244
modals

adding, to application 316-319
modal: true option 318
mouseout event 218
mouseover event handler 60
MySQL

URL 70

N
NaN (Not a Number) 167
nav-item class 273
new Date() method 27
news ticker

about 197

 creating 197-199
working 199, 201

number
validating 164

number validation
adding 165-167
credit card number validation, adding 168-

170
for credit card number 168

O
on() function 182, 218
onload() function 308
on() method 177
onprogress() function 308
onSelectionEnd() function 307
orientationchange event 357
outerHeight() function 281
outerWidth() function 281
Overlay layer 305

P
page

HTML loading, from web server to 70-76
images, updating 24-27

pagebeforechange event 343, 376
pagedResults variables 32
page elements

sliding 120
sliding, jQuery used 120-124

pageSize variables 32
paginated data set

creating 30-36
pagination 29
parseInt function 167
password strength indicator

about 177
adding 178-184

photo gallery
about 138
creating 138-143
working 144-147

photo zoom
about 253
adding, to images 254, 255
working 256, 257

394

PHP
URL 70
used, for dynamic mobile website creating

341-347
PHP scripts

addNote.php 385
deleteNote.php 386
getNotes.php 386

prepend() function 14
progressbar() function 322
progress bars

about 319
adding, to applications 319-322

prop() function 33
prop() method 26

R
real_escape_string() function 102
real-time validation. See live form validation
removeClass() function 21, 253, 262
remove() function 38
response() function 333
restrictDates() function 326
RSS feed reader plugin

about 286
creating 287-292

rssreader-frame class 291

S
scroll() function 205
scrollTop parameter 209
search feature

about 93
creating 94-100
working 100-105

search() function 346
Selection layer 305
Selection Outline layer 305
send SMS functionality

implementing 350, 351
setInterval() function 200, 267
setTimeout() function 46
show() function 126
sibling elements

finding 9-11
selecting 9-11

sleep() method 116
slideDown() effects 138
slideToggle() function 136, 226
slideUp() effects 138
slideUp() function 201, 231
smooth scrolling

implementing 206-209
using 206

sms: attribute 351
source() function 332
source property 332
Start Progress button 321
sticky elements

about 201
creating 202-204
working 204, 205

sticky.js plugin 205
stop() function 136
stylish buttons, jQuery UI

creating 312-314
success() function 381, 387
success parameter 113
swipe event 356

T
tabbed content

creating 232-235
table of contents 210
taphold event 356
tel: attribute 351
text() function 16
ticker() function 201
toggleClass() function 226
toggleFade() function 132
tooltip plugin

about 277
creating 278-281

totalResults variables 32
touch-oriented events

using 355, 356
working 357

Touch to Call 335
Trakt.tv 327
tree menus 221
two buttons, with click event handlers

creating 44

395

U
updateElementData() function 306, 307
updateList() function 36
user element clicks

detecting 47, 48

V
valdiateNumber() function 165
val() function 23
validateAntiSpam() function 185
validateCreditCard function 170
validateDate() function 172

validateEmail() function 174
validateNumber function 167
validatePasswords() function 179, 182
validateRequired() function 163, 167
View Notes button 384

W
website elements

clicking on 44
wrapAll() function 285
wrap() function 306

Thank you for buying

jQuery 2.0 Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

jQuery UI 1.10: The User
Interface Library for jQuery
ISBN: 978-1-78216-220-9 Paperback: 502 pages

Build highly interactive web applications with
ready-to-use widgets

1. Packed with clear explanations of how to easily
design elegant and powerful frontend interfaces
for your web applications.

2. A section covering the widget factory including an
in-depth example of how to build a custom jQuery
UI widget.

3. Revised with updated code and targeted at both
jQuery UI 1.10 and jQuery 2.

jQuery Game Development
Essentials
ISBN: 978-1-84969-506-0 Paperback: 244 pages

Learn how to make fun and addictive multi-platform
games using jQuery

1. Discover how you can create a fantastic RPG,
arcade game, or platformer using jQuery!

2. Learn how you can integrate your game with
various social networks, create multiplayer
experiences, and also ensure compatibility with
mobile devices.

3. Create your very own framework, harnessing the
very best design patterns and proven techniques
along the way.

Please check www.PacktPub.com for information on our titles

jQuery 2.0 Animation
Techniques: Beginner's Guide
ISBN: 978-1-78216-964-2 Paperback: 292 pages

Bring your websites to life with animations using jQuery

1. Get going with jQuery's animation methods and
build a toolkit of ready-to-use animations using
jQuery 2.0.

2. Over 50 detailed examples on different types of
web page animations.

3. Create both simple and complex animations using
clear, step-by-step instructions, accompanied with
screenshots.

Instant jQuery Boilerplate for
Plugins
ISBN: 978-1-84951-970-0 Paperback: 82 pages

Get started with jQuery plugin development with this
rapid-paced guide

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Build your first basic jQuery Plugin.

3. Learn how to make your plugin configurable.

4. Get to grips with the structure of jQuery Boilerplate.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Document Object Model Manipulation
	Introduction
	Selecting elements
	Finding and selecting sibling elements
	Creating DOM elements
	Inserting content into an element
	Modifying the DOM element properties
	Adding and removing CSS classes to dynamically change their style
	Enabling and disabling buttons by changing their properties
	Updating an image within a page
	Populating list elements
	Understanding pagination
	Removing DOM elements
	Re-using DOM elements

	Chapter 2: Interacting with the User by Making Use of jQuery Events
	Introduction
	Detecting button clicks
	Detecting element clicks
	Detecting change
	Updating content based on user input
	Detecting key press events on inputs
	Restricting input character length
	Changing page elements on mouse hover
	Triggering events manually
	Preventing event triggers
	Creating a custom event

	Chapter 3: Loading and Manipulating Dynamic Content with AJAX and JSON
	Introduction
	Loading HTML from a web server into a page
	Using AJAX and handling server errors
	Processing JSON data
	Searching JavaScript objects
	Sorting JavaScript objects
	Caching JSON and AJAX requests
	Creating a search feature
	Creating an autosuggest feature
	Waiting for an AJAX response

	Chapter 4: Adding Attractive Visuals with jQuery Effects
	Introduction
	Sliding page elements
	Hiding and showing elements
	Fading elements
	Toggling effects
	Stopping effects
	Chaining effects
	Creating a basic photo gallery
	Creating a blinking button
	Removing elements with effects

	Chapter 5: Form Handling
	Introduction
	Implementing basic form validation
	Adding number validation
	Adding credit card number validation
	Adding date validation
	Adding e-mail address validation
	Implementing live form validation
	Adding a password strength indicator
	Adding anti-spam measures
	Implementing input character restrictions

	Chapter 6: User Interface
	Introduction
	Manipulating element CSS
	Creating a news ticker
	Creating sticky elements
	Implementing smooth scrolling
	Creating a dynamic table of contents
	Creating a basic drag-and-drop functionality
	Creating a dynamic animated tree menu
	Creating an accordion content slider
	Creating tabbed content
	Creating a modal pop up
	Creating a draggable content pop up

	Chapter 7: User Interface Animation
	Introduction
	Creating an animated login form
	Adding photo zoom
	Creating an animated content slider
	Animating background images
	Creating an animated navigation menu

	Chapter 8: Understanding Plugin Development
	Introduction
	Creating a plugin template
	Creating a tooltip plugin
	Building a content and image slider plugin
	Creating an RSS feed reader plugin
	Coding an image cropper plugin from scratch

	Chapter 9: jQuery UI
	Introduction
	Creating stylish and functional buttons
	Creating dialog boxes for user information and input
	Implementing progress bars within your application
	Adding date picker interfaces to input
boxes quickly
	Creating an autocomplete search feature

	Chapter 10: Working with jQuery Mobile
	Introduction
	Creating a basic mobile website template
	Building a complete static website
	Building a dynamic mobile website
	Implementing the quick call functionality
	Implementing the send SMS functionality
	Adding mobile-friendly lists
	Using touch-oriented events
	Creating mobile-compatible forms
	Building a complete registration and
login system
	Building a complete mobile web app

	Index

