
www.allitebooks.com

http://www.allitebooks.org

Yii Application
Development
Cookbook
Second Edition

A Cookbook covering both practical Yii application
development tips and the most important Yii features

Alexander Makarov

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Yii Application Development Cookbook
Second Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2011

Second edition: April 2013

Production Reference: 1150413

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-310-7

www.packtpub.com

Cover Image by Alexander Makarov (sam@rmcreative.ru)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Alexander Makarov

Reviewers
Maurizio Domba

Thomas Jantz

Acquisition Editor
Usha Iyer

Lead Technical Editor
Joel Noronha

Technical Editors
Hardik B. Soni

Ankita Meshram

Project Coordinator
Kranti Berde

Proofreaders
Maria Gould

Paul Hindle

Lawrence A. Herman

Indexer
Hemangini Bari

Graphics
Ronak Dhruv

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Alexander Makarav is an experienced engineer from Russia and has been a Yii
framework core team member since 2010. Before joining the Yii core team, he participated
in the CodeIgniter community growth in Russia. In 2009, he finished the Russian translation
of the framework documentation and created the Russian community website. In 2012, he
released the Russian version of the book along with Russian community members. In the
same year, he was the technical reviewer for three more books:

 f The Yii Book: Developing Web Applications Using the Yii PHP Framework,
Larry Ullman

 f Web Application Development with Yii and PHP, Jeff Winesett

 f Yii Rapid Application Development Hotshot, Lauren O'Meara and James Hamilton

In his free time, Alexander writes technical blog at http://rmcreative.ru/, speaks at
conferences, and enjoys movies, music, traveling, photography, and languages. He currently
resides in Voronezh, Russia with his beloved wife and daughter.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Maurizio Domba is a frontend and backend web developer with over 20 years of
professional experience in computer programming and 10 years in web development.
He is part of the Yii core development team since August 2010 and is an active member
of the Yii community.

At the moment he is developing intranet web applications for an export-import enterprise and
working on other international projects, always trying to help others to improve their code and
project usability.

When not programming the Web, he is programming his wife and kids, always with a smile on
his face, open-hearted and open-minded. He loves climbing, martial arts, meditation,
and salsa.

Thomas Jantz brings his background in language and art to his career as a web application
development consultant at Plum Flower Software. His projects include an emphasis on rapid
application development and user experience.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt
 f Copy and paste, print and bookmark content
 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Under the Hood 7

Introduction 7
Using getters and setters 7
Using Yii events 10
Using import and autoloading 17
Using exceptions 20
Configuring components 24
Configuring widget defaults 27
Using Yii core collections 28
Working with requests 32

Chapter 2: Router, Controller, and Views 37
Introduction 38
Configuring URL rules 38
Generating URLs by path 41
Using regular expressions in URL rules 45
Creating URL rules for static pages 48
Providing your own URL rules at runtime 51
Using a base controller 55
Using external actions 57
Displaying static pages with CViewAction 61
Using flash messages 63
Using the controller context in a view 64
Reusing views with partials 66
Using clips 68
Using decorators 70
Defining multiple layouts 71
Paginating and sorting data 73

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: AJAX and jQuery 77
Introduction 77
Loading a block through AJAX 77
Managing assets 83
Including resources in the page 88
Working with JSON 92
Passing configuration from PHP to JavaScript 95
Handling variable number of inputs 98
Rendering content at the client side 105

Chapter 4: Working with Forms 119
Introduction 119
Writing your own validators 119
Uploading files 122
Adding CAPTCHA 126
Customizing CAPTCHA 131
Creating a custom input widget with CInputWidget 134

Chapter 5: Testing Your Application 139
Introduction 139
Setting up the testing environment 139
Writing and running unit tests 143
Using fixtures 149
Testing the application with functional tests 155
Generating code coverage reports 160

Chapter 6: Database, Active Record, and Model Tricks 165
Introduction 166
Getting data from a database 166
Defining and using multiple DB connections 172
Using scopes to get models for different languages 175
Processing model fields with AR event-like methods 178
Applying markdown and HTML 181
Highlighting code with Yii 183
Automating timestamps 189
Setting up an author automatically 191
Implementing single table inheritance 193
Using CDbCriteria 197

Chapter 7: Using Zii Components 199
Introduction 199
Using data providers 199
Using grids 206

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Using lists 214
Creating custom grid columns 219

Chapter 8: Extending Yii 225
Introduction 225
Creating model behaviors 226
Creating components 232
Creating reusable controller actions 236
Creating reusable controllers 239
Creating a widget 243
Creating CLI commands 245
Creating filters 249
Creating modules 251
Creating a custom view renderer 258
Making extensions distribution-ready 263

Chapter 9: Error Handling, Debugging, and Logging 267
Introduction 267
Using different log routes 267
Analyzing the Yii error stack trace 274
Logging and using the context information 277
Implementing your own smart 404 handler 281

Chapter 10: Security 287
Introduction 287
Using controller filters 287
Using CHtml and CHtmlPurifier to prevent XSS 292
Preventing SQL injections 296
Preventing CSRF 301
Using RBAC 305

Chapter 11: Performance Tuning 313
Introduction 313
Following best practices 313
Speeding up session handling 317
Using cache dependencies and chains 321
Profiling an application with Yii 327
Leveraging HTTP caching 337

Chapter 12: Using External Code 343
Introduction 343
Using Zend Framework from Yii 343
Customizing the Yii autoloader 348
Using Kohana inside Yii 353

www.allitebooks.com

http://www.allitebooks.org

iv

Table of Contents

Using PEAR inside Yii 361
Using Composer with Yii 363

Chapter 13: Deployment 367
Introduction 367
Changing the Yii directory layout 367
Moving an application out of webroot 370
Sharing the framework directory 372
Moving configuration parts into separate files 374
Using multiple configurations to simplify the deployment 378
Implementing and executing cron jobs 381
Maintenance mode 383

Index 387

Preface
Yii is a very flexible and high-performance application development framework written in
PHP. It helps building web applications, from small to large-scale enterprise applications.
The framework name stands for Yes It Is (Yii). This is often the accurate and most concise
response to inquiries from those new to Yii such as: Is it fast? Is it secure? Is it professional?
Is it right for my next project? But the answer is an unequivocal, yes it is!

This cookbook contains 13 independent chapters full of recipes that will show you how to use
Yii efficiently. You will learn about the hidden framework gems, using core features, creating
your own reusable code base, using test-driven development, and many more topics that will
bring your knowledge to a whole new level!

What this book covers
Chapter 1, Under the Hood, provides information about the most interesting Yii features
hidden under the hood: events, import, autoloading, exceptions, component, widget
configuration, and many more.

Chapter 2, Router, Controller, and Views, is about handy things concerning the Yii URL
router, controllers, and views: URL rules, external actions and controllers, view clips,
decorators, and more.

Chapter 3, AJAX and jQuery, focuses on the Yii's client side that is built with jQuery—the most
widely used JavaScript library out there. It is very powerful and easy to learn and use. This
chapter focuses on Yii-specific tricks rather than jQuery itself.

Chapter 4, Working with Forms, shows how Yii makes working with forms a breeze and
documentation on it is almost complete. Still, there are some areas that need clarification
and examples. Some of the topics covered in this chapter are creating validators and input
widgets, uploading files, and using and customizing CAPTCHA.

Chapter 5, Testing Your Application, covers unit testing, functional testing, and generating
code coverage reports. Recipes follow a test-driven development approach. You will write tests
for several small applications and then implement functionality.

Preface

2

Chapter 6, Database, Active Record, and Model Tricks, is about working with databases
efficiently, when to use models and when not to, how to work with multiple databases, how to
automatically pre-process Active Record fields, and how to use powerful database criteria.

Chapter 7, Using Zii Components, covers data providers, grids, and lists: How to configure
sorting and searching, how to use grids with multiple related models, how to create your own
column types, and more.

Chapter 8, Extending Yii, shows not only how to implement your own Yii extension but also
how to make your extension reusable and useful for the community. In addition, we will focus
on many things you should do to make your extension as efficient as possible.

Chapter 9, Error Handling, Debugging, and Logging, reviews logging, analyzing the exception
stack trace, and own error handler implementation.

Chapter 10, Security, provides information about keeping your application secure according
to the general web application security principle "filter input, escape output." We will cover
topics such as creating your own controller filters, preventing XSS, CSRF, and SQL injections,
escaping output, and using role-based access control.

Chapter 11, Performance Tuning, shows how to configure Yii to gain extra performance. You
will learn a few best practices for developing an application that will run smoothly until you
have very high loads.

Chapter 12, Using External Code, focuses on using third-party code with Yii. We will use
Zend Framework, Kohana, and PEAR but you will be able to use any code after learning
how it works.

Chapter 13, Deployment, covers various tips that are especially useful on application
deployment, when developing an application in a team, or when you just want to make your
development environment more comfortable.

What you need for this book
In order to run the examples in this book, the following software will be required:

 f Web server: The 2.x version of Apache web server is preferred. Other versions and
web servers will work too, but configuration details are not provided.

 f Database server: The database server that can be used is MySQL 4+ with InnoDB
support (MySQL 5 or higher is recommended).

 f PHP: The PHP 5.2 or PHP 5.3 version can be used (PHP 5.3 recommended).

 f Yii: The latest Yii version can be used (1.1.x is recommended).

Preface

3

Additionally, the following tools are not strictly required but are used for specific recipes:

 f PHPUnit

 f Xdebug

 f Selenium RC

 f PEAR

 f Smarty

 f memcached

Who this book is for
If you are a developer with a good knowledge of PHP5, are familiar with the basics of Yii, have
checked its definitive guide, and have tried to develop applications using Yii, then this book is
for you. Knowledge of the object-oriented approach and MVC pattern will be a great advantage
as Yii uses these extensively.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "To declare
an event in your CComponent child class, you should add a method with a name starting
with on."

A block of code is set as follows:

defined('YII_DEBUG') or define('YII_DEBUG', false);
defined('YII_TRACE_LEVEL') or define('YII_TRACE_LEVEL', 0);

$yii=dirname(__FILE__).'/../framework/yii.php';
$config=dirname(__FILE__).'/../app/config/production.php';

require($yii);

Yii::createWebApplication($config)->run();

Any command-line input or output is written as follows:

cd path/to/protected/tests

phpunit unit/BBCodeTest.php

Preface

4

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Now, go to the Gii controller
generator and enter SecureController into the Base Class field."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send the author feedback about the book, simply fill in the form at
http://yiicookbook.org/feedback.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
To get the example code files for this book visit http://yiicookbook.org/code.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://yiicookbook.org/feedback, and entering
the details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded on the book website at http://yiicookbook.org/errata.

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact the book's author at http://yiicookbook.org/feedback. if you are
having a problem with any aspect of the book, and he will do his best to address it.

mailto:copyright@packtpub.com

1
Under the Hood

In this chapter, we will cover:

 f Using getters and setters

 f Using Yii events

 f Using import and autoloading

 f Using exceptions

 f Configuring components

 f Configuring widget defaults

 f Using Yii core collections

 f Working with requests

Introduction
In this chapter, we will cover the most interesting Yii features that are hidden "under the
hood". These are mostly described in the framework API, but since they are not mentioned
in the official guide (http://www.yiiframework.com/doc/guide/) or only mentioned
very briefly, only experienced Yii developers usually use these. However, the features
described here are relatively simple and using them makes development with Yii much
more fun and productive.

Using getters and setters
Yii has many features that came from other languages, such as Java or C#. One of them is
defining properties with getters and setters for any of the classes extended from CComponent
(that is, virtually any Yii class).

Under the Hood

8

From this recipe, you will learn how to define your own properties using getters and setters,
how to make your properties read-only, and how to hide custom processing behind native
PHP assignments.

How to do it...
1. As PHP does not have properties at the language level, we can only use getters and

setters in the following way:
class MyClass
{
 // hiding $property
 private $property;

 // getter
 public function getProperty()
 {
 return $this->property;
 }

 // setter
 public function setProperty($value)
 {
 $this->property = $value;
 }
}

$object = new MyClass();

// setting value
$object->setProperty('value');

// getting value
echo $object->getProperty();

2. This syntax is very common in the Java world but it is a bit long to use in PHP.
Still, we want to use the same functionality that C# properties gives us: calling
getters and setters like class members ($model->property instead of $model-
>getProperty()). With Yii, we can do it in the following way:
// extending CComponent is necessary
class MyClass extends CComponent
{
 private $property;

 public function getProperty()
 {

Chapter 1

9

 return $this->property;
 }

 public function setProperty($value)
 {
 $this->property = $value;
 }
}

$object = new MyClass();
$object->property = 'value'; // same as $object->
 setProperty('value');
echo $object->property; // same as $object->getProperty();

3. Using this feature, you can make properties read-only or write-only while keeping the
simple PHP syntax as follows:
class MyClass extends CComponent
{
 private $read = 'read only property';
 private $write = 'write only property';

 public function getRead()
 {
 return $this->read;
 }

 public function setWrite($value)
 {
 $this->write = $value;
 }
}

$object = new MyClass();

// gives us an error since we are trying to write
// to read-only property. Note that there's no setRead setter
// method.
$object->read = 'value';

// echoes 'read only property'
echo $object->read;

// gives us an error since we are trying to read
// to write-only property. Note that there's no getWrite getter
// method.
echo $object->write;

// writes 'value' to private $write
$object->write = 'value';

www.allitebooks.com

http://www.allitebooks.org

Under the Hood

10

Yii uses this technique extensively because almost everything is a component. For example,
when you call Yii::app()->user->id to get the currently logged in user ID, what's really
called is Yii::app()->getUser()->getId().

How it works...
To use getters and setters like properties, CComponent uses the PHP magic methods: __
get, __set, __isset, and __unset (http://php.net/manual/en/language.oop5.
magic.php). The following example shows what Yii 1.1 CComponent::__get looks like:

public function __get($name)
{
 $getter='get'.$name;
 if(method_exists($this,$getter))
 return $this->$getter();
…

This magic PHP method intercepts all calls to missing real properties, so when we call
$myClass->property, it receives property as the $name parameter. If a method
named getProperty exists, then PHP uses its return value as a property value.

There's more...
For further information, refer to the following URL:

http://www.php.net/manual/en/language.oop5.overloading.php#language.
oop5.overloading.members

See also
 f The Configuring components recipe

Using Yii events
Most Yii classes are extended from CComponent, which allows us to achieve great application
flexibility by using events. An event is a message indicating that the application did something.
We can register several event handlers that will react to certain event types. A handler can
get parameters from an event it works with and react accordingly. Using events allows us to
achieve great application flexibility.

In this recipe, you will learn how to declare and use both predefined and custom events in
your application.

Chapter 1

11

How to do it...
To declare an event in your CComponent child class, you should add a method with a
name starting with on. For example, if you add the onRegister method, you will get a
corresponding event declared.

A method used to declare an event becomes the default
event handler.

Typically, events are used like this:

 f Declare an event by adding a corresponding method

 f Attach one or multiple event handlers

 f The component raises an event by using the CComponent::raiseEvent method

 f All subscribed handlers are called automatically

Let's look at how we can attach an event handler to an event. To achieve it, we can use the
CComponent::attachEventHandler method. It accepts the following two parameters:

 f $name: Event name

 f $handler: Event handler; a standard PHP callback should be used

In PHP, we have several ways to define a callback as follows:

 f Use a global function and just pass its name as a string, such as 'my_function'.

 f Use a static class method. You should pass an array: array('ClassName',
'staticMethodName').

 f Use an object method: array($object, 'objectMethod').

 f Create and pass anonymous function using create_function as follows:
$component->attachEventHandler('onClick',
 create_function('$event', 'echo "Click!";'));

 f Since PHP 5.3, you can use anonymous functions without create_function:
$component->attachEventHandler('onClick', function($event){
 echo "Click!";
});

When you use CComponent::attachEventHandler, event
handler is added to the end of the handlers list.

Under the Hood

12

 f To keep your code shorter, you can use component properties to manage event
handlers as follows:
$component->onClick=$handler;
// or:
$component->onClick->add($handler);

 f To manage event handlers more precisely, you can get the handlers' list (CList)
using CComponent::getEventHandlers and work with it. For example, you can
attach an event handler the same way as with attachEventHandler using the
following code:
$component->getEventHandlers('onClick')->add($handler);

 f To add an event handler to the beginning of the handlers' list, use the following code:
$component->getEventHandlers('onClick')->insertAt(0,
$handler);

 f To delete a particular handler you can use CComponent::detachEventHandler
as follows:
$component->detachEventHandler('onClick', $handler);

 f Alternatively, get a list of handlers as shown earlier and delete handlers from it.

CComponent::hasEvent checks if the event specified is defined
in the component.

CComponent::hasEventHandler checks if there are handlers
attached to the event specified.

As we now know how to define and use handlers, let's review some real life examples
as follows:

 f It is a common practice to compress your application output using gzip to save client
bandwidth and speed up page loading time. If you have full access to your server,
then you can configure it to do so, but in some environments such as shared hosting,
you don't.

 f Fortunately, PHP can gzip the application output using output buffering and the
ob_gzhandler function. In order to do so, we should start buffering the output
when the application starts and release the gzipped output, when it completes.

 f Yii's application component has two events that will come in handy in this case:
CApplication::onBeginRequest and CApplication::onEndRequest. Let's
use them. Insert the following code snippet in the index.php file after configuring
an application but before running it:
…
require_once($yii);
$app = Yii::createWebApplication($config);

Chapter 1

13

// attaching a handler to application start
Yii::app()->onBeginRequest = function($event)
{
 // starting output buffering with gzip handler
 return ob_start("ob_gzhandler");
};
// attaching a handler to application end
Yii::app()->onEndRequest = function($event)
{
 // releasing output buffer
 return ob_end_flush();
};
$app->run();

There are many handy events defined inside Yii's core classes.
You can get them all by searching for the function on text in
the framework folder using your favorite IDE.

Now, let's look at another example. In Yii, you can translate strings to different languages
using Yii::t. As we all love perfect projects, all language translations should be up to date.

If they are not, we would like to receive an e-mail about it.

Events come in handy again here. In particular, the CMessageSource::onMissingTransl
ation event that is called when the translation for a string passed to Yii::t is missing.

This time we will use the application's configuration file protected/config/main.php to
attach an event handler as follows:

…
'components' => array(
 …
 // messages component class is CPhpMessageSource by default
 'messages' => array(
 // using static class method as event handler
 'onMissingTranslation' => array('MyEventHandler',
 'handleMissingTranslation'),
),
 …
)
…

Under the Hood

14

Now, we should implement our handler. Create protected/components/
MyEventHandler.php as follows:

class MyEventHandler
{
 static function handleMissingTranslation($event)
 {
 // event class for this event is CMissingTranslationEvent
 // so we can get some info about the message
 $text = implode("\n", array(
 'Language: '.$event->language,
 'Category:'.$event->category,
 'Message:'.$event->message
));
 // sending email
 mail('admin@example.com', 'Missing translation', $text);
 }
}

Let's look at another example. Let's assume we have a blog application and we need to send
an e-mail when there is a new comment (Comment) to the blog post (Post).

Comment is a standard AR model generated with Gii. Post is the same Gii-generated model
except for some customized methods. We will need a custom event, NewCommentEvent, to
store both Post and Comment models and a handler class, Notifier, that will do the work.

1. Let's start with protected/components/NewCommentEvent.php:
class NewCommentEvent extends CModelEvent {
 public $comment;
 public $post;
}

It is pretty simple, we have just added two properties.

2. Now let's move on to protected/models/Post.php. All standard AR methods are
omitted to emphasize what was added:
class Post extends CActiveRecord {
 // custom method for adding a comment
 // to current post
 function addComment(Comment $comment){
 $comment->post_id = $this->id;

 // creating event class instance
 $event = new NewCommentEvent($this);
 $event->post = $this;
 $event->comment = $comment;

 // triggering event

Chapter 1

15

 $this->onNewComment($event);
 return $event->isValid;
 }

 // defining onNewComment event
 public function onNewComment($event) {
 // Event is actually triggered here. This way we can use
 // onNewComment method instead of raiseEvent.
 $this->raiseEvent('onNewComment', $event);
 }
}

3. Now it is time to implement the Notifier class. Create protected/components/
Notifier.php as follows:
class Notifier {
 function comment($event){
 $text = "There was new comment from
 {$event->comment->author} on post {$event->post-
 >title}";
 mail('admin@example.com', 'New comment', $text);
 }
}

4. Now it is time to get these together in protected/controllers/
PostController.php:
class PostController extends CController
{
 function actionAddComment()
 {
 $post = Post::model()->findByPk(10);
 $notifier = new Notifier();

 // attaching event handler
 $post->onNewComment = array($notifier, 'comment');

 // in the real application data should come from $_POST

 $comment = new Comment();
 $comment->author = 'Sam Dark';
 $comment->text = 'Yii events are amazing!';

 // adding comment
 $post->addComment($comment);
 }
}

5. After the comment has been added, admin will receive an e-mail about it.

Under the Hood

16

There's more...
It is not always necessary to attach an event handler. Let's look at how we can handle an
event that is already declared inside an existing component by overriding a method of the
base class. For example, we have a form model UserForm used to collect some information
about our application user and we need to get the complete name from the first and the last
name entered by the user.

Fortunately, in CModel, which is the base class for all Yii models including form models, the
CModel::afterValidate method is defined. This method is called after a successful form
validation. Let's use it in our protected/models/UserForm.php model:

class UserForm extends CFormModel
{
 public $firstName;
 public $lastName;
 public $fullName;

 public function rules()
 {
 return array(
 // First name and last name are required
 array('firstName, lastName', 'required'),
);
 }

 function afterValidate()
 {
 // If this method was called then
 // the model is already filled
 // with data and data is valid
 // so we can use it safely:
 $this->fullName = $this->firstName.' '.$this->lastName;

 // It's important to call parent class method
 // so all other event handlers are called
 return parent::afterValidate();
 }
}

We need to call the parent method inside of the afterValidate function because parent
implementation calls onAfterValidate that actually raises events:

protected function afterValidate()
{
 $this->onAfterValidate(new CEvent($this));
}

Chapter 1

17

An event's method name should always be defined as function
eventHandler($event){…}, where $event is a CEvent
instance. The CEvent class contains just two properties named
sender and handled. The first property contains an object that
calls the current event, while the second can be used to prevent
calling all other, not yet executed handlers, by setting it to false.

The approach described here can be used to customize your Active Record models and
implement your own model behaviors.

Further reading
For further information, refer to the following URLs:

 f http://www.yiiframework.com/doc/api/CComponent/
#raiseEvent-detail

 f http://www.yiiframework.com/doc/api/
CComponent/#attachEventHandler-detail

 f http://www.yiiframework.com/doc/api/
CComponent/#getEventHandlers-detail

 f http://www.yiiframework.com/doc/api/
CComponent/#detachEventHandler-detail

See also
 f The Using getters and setters recipe

 f The Configuring components recipe

Using import and autoloading
When programming with PHP, one of the most annoying things is loading additional code with
include and require. Fortunately, you can do it automatically using the SPL class loader
(http://php.net/manual/en/function.spl-autoload.php).

Autoloading is one of the features that Yii relies on. Still, there are many questions about it on
the forums. Let's get it clear and show how we can use it.

When we use a class, for example, CDbCriteria, we are not including it explicitly so PHP
initially cannot find it and tries to rely on the autoloading feature; the SPL autoloader, to be
precise. In most cases, the Yii default autoloader (YiiBase::autoload) will be used.

Under the Hood

18

For the sake of speed and simplicity, almost all core framework classes are loaded
when needed without including or importing them explicitly. It's done through the
YiiBase::$_coreClasses map, so loading core classes is very fast. Zii classes,
such as CMenu, extension classes, or your own classes are not loaded automatically,
so we need to import them first.

To import classes, we will use Yii::import:

 f import does not include a class immediately by default

 f It does not include a class if it is not used

 f It will not load a class twice, so it is safe to import the same class multiple times

How to do it...
1. Let's assume that we have a custom class named LyricsFinder that finds lyrics

for a given song. We have put it under protected/apis/lyrics/ and in our
protected/controllers/TestController.php. We are trying to use it in the
following way:
class TestController extends CController
{
 public function actionIndex($song)
 {
 $lyric = 'Nothing was found.';
 $finder = new LyricsFinder();

 if(!empty($song))
 $lyric = $finder->getText($song);

 echo $lyric;
 }
}

2. When executing it, we will get the following PHP error:
include(LyricsFinder.php): failed to open stream: No such file or
directory.

3. Yii helps us there a bit because at the error screen, we can see that the autoloader fails
because it doesn't know where to look for our class. Therefore, let's modify our code:
class TestController extends CController
{
 public function actionIndex($song)
 {
 $lyric = 'Nothing was found.';

 // importing a class
 Yii::import('application.apis.lyrics.LyricsFinder');

Chapter 1

19

 $finder = new LyricsFinder();

 if(!empty($song))
 $lyric = $finder->getText($song);

 echo $lyric;
 }
}

Now our code works.

The built-in Yii class loader requires that each class should be
placed into a separate file named the same as the class itself.
When developing using case insensitive filesystems such as
ones used by Windows, make sure you're using the same case in
both the filename and code since it can be a problem when you
deploy your code to a case sensitive Linux server.

How it works...
Let's look at application.apis.lyrics.LyricsFinder.

application is a standard alias that points to your application's protected folder and is
translated into a filesystem path. The following table shows some more standard aliases:

Alias Path
application path_to_webroot/protected

system path_to_webroot/framework

zii path_to_webroot/framework/zii

webroot path_to_webroot

ext path_to_webroot/protected/extensions

You can define your own aliases using the
Yii::setPathOfAlias method. Typically, it can be done
as the first lines of protected/config/main.php, so
all other config parts will be able to use these new aliases.

apis.lyrics are translated to apis/lyrics and are appended to a path retrieved from
the application alias, and LyricsFinder is the class name we want to import.

If LyricsFinder requires some additional classes located in its directory, then we can use
Yii::import('application.apis.lyrics.*') to import the whole directory. Note that
* does not include subfolders, so if you need lyrics/includes, you should add another
import statement: Yii::import('application.apis.lyrics.includes.*').

www.allitebooks.com

http://www.allitebooks.org

Under the Hood

20

For performance reasons, it is better to use explicit paths with a class name instead of * if you
are importing a single class.

There's more...
If you want your classes to be imported automatically like with Yii's core classes, then you can
configure global imports in your main.php configuration file:

return array(
 // …

 // global imports
 'import'=>array(
 'application.models.*',
 'application.components.*',
 'application.apis.lyrics.*',
 'application.apis.lyrics.includes.*',
 'application.apis.albums.AlbumFinder',
),

Note that using *, with a huge amount of global imports could slow your application down as
there will be too many directories to check.

Downloading the example code

To get the example code files for this book visit
http://yiicookbook.org/code.

Using exceptions
Exceptions are a core PHP feature, but they are seldom used fairly. Yii makes exceptions
very useful.

There are two main areas where Yii exceptions come in handy, which are as follows:

 f Exceptions allow the simplifying of the process of detecting and fixing application
errors and special situations, such as database connection failure or API failure

 f Exceptions allow the generating of different HTTP responses in a very clean way

Generally, an exception should be thrown when a component cannot handle a special
situation, such as the one said earlier, and needs to leave it to higher-level components.

Chapter 1

21

How to do it…
1. Let's assume that we have an application/apis/lyrics/LyricsFinder.php

class that makes an HTTP request to an API using CURL and returns lyrics for a song
based on its name. This is how we can use exceptions inside of it:
// create some custom exceptions to be able to catch them
// specifically if needed

// general lyrics finder exception
class LyricsFinderException extends CException {}

// used when there is a connection problem
class LyricsFinderHTTPException extends LyricsFinderException{}

class LyricsFinder
{
 private $apiUrl = 'http://example.com/lyricsapi&songtitle=%s';

 function getText($songTitle)
 {
 $url = $this->getRequestUrl($songTitle);
 $curl = curl_init();
 curl_setopt($curl, CURLOPT_URL, $url);
 curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);
 $result = curl_exec($curl);

 // if there is an HTTP error, we'll throw an
 // exception
 if($result===false)
 {
 $errorText = curl_error($curl);
 curl_close($url);
 throw new LyricsFinderHTTPException($errorText);
 }

 curl_close($curl);
 return $result;
 }

 private function getRequestUrl($songTitle)
 {
 return sprintf($this->apiUrl, urlencode($songTitle));
 }
}

Under the Hood

22

2. As we don't know how a specific application needs to handle its API connection,
we will leave it to the application itself by throwing a custom exception
LyricsFinderHTTPException. This is how we can handle it in our protected/
controllers/TestController.php class:
class TestController extends CController
{
 public function actionIndex($song)
 {
 $lyric = 'Nothing was found.';

 // importing api class
 Yii::import('application.apis.lyrics.LyricsFinder');

 $finder = new LyricsFinder();

 if(!empty($song))
 {
 // We don't want to show user an error.
 // Instead we want to apologize and
 // invite him to try again later.
 try {
 $lyric = $finder->getText($song);
 }
 // we are looking for specific exception here
 catch (LyricsFinderHTTPException $e)
 {
 echo 'Sorry, we cannot process your request. Try
 again later.';
 }
 }

 echo $lyric;
 }
}

3. Another usage of Yii exceptions is the generation of different HTTP responses
by throwing CHttpException. For example, an action that displays a blog post
represented by a Post model loaded by its ID will look like this:
class PostController extends CController
{
 function actionView()
 {
 if(!isset($_GET['id']))
 // If there is no post ID supplied, request is

Chapter 1

23

 // definitely wrong.
 // According to HTTP specification its code is 400.
 throw new CHttpException(400);

 // Finding a post by its ID
 $post = Post::model()->findByPk($_GET['id']);

 if(!$post)
 // If there is no post with ID specified we'll
 // generate HTTP response with code 404 Not Found.
 throw new CHttpException(404);

 // If everything is OK, render a post
 $this->render('post', array('model' => $post));
 }
}

How it works…
Yii converts all non-fatal application errors to CException automatically.

Additionally, the default exception handler raises either the onError event or the
onException event. The default event handler writes a log message with the error level set
to error. Additionally, if your application's YII_DEBUG constant is set to true, unhandled
exceptions or errors will be displayed at a handy error screen. This screen includes a call stack
trace, a code area where the exception was raised, and the file and line where you can look
for the code to fix.

There's more...
For further information, refer to the following URLs:

 f http://php.net/manual/en/language.exceptions.php

 f http://www.yiiframework.com/doc/api/CException/

 f http://www.yiiframework.com/doc/api/CHttpException/

Under the Hood

24

Configuring components
Yii is a very customizable framework. Moreover, as in every customizable code, there should
be a convenient way to set up different application parts. So in Yii, this is provided through a
configuration file named main.php located at protected/config/.

How to do it…
If you have worked with Yii before, then you have probably configured a database connection:

return array(
 …
 'components'=>array(
 'db'=>array(
 'class'=>'system.db.CDbConnection',
 'connectionString'=>'mysql:host=localhost;
 dbname=database_name',
 'username'=>'root',
 'password'=>'',
 'charset'=>'utf8',
),
 …
),
 …
);

This way of configuring a component is used when you want to use a component across all
application parts. With the preceding configuration, you can access a component by its name,
such as Yii::app()->db.

How it works…
When you are using the Yii::app()->db component for the first time directly or through
the Active Record model, Yii creates a component and initializes its public properties with the
corresponding values provided in the db array under the components section of the main.
php application configuration file. In the preceding code, the 'connectionString' value
will be assigned to CDbConnection::connectionString, the 'username' value will be
assigned to CDbConnection::username, and so on.

If you want to find out what 'charset' stands for or want to know what else you can configure
in the db component, then you need to know its class. In case of the db component, the class
is CDbConnection. You can refer to its API page at http://www.yiiframework.com/
doc/api/CDbConnection/ and look for its public properties that you can set from config.

Chapter 1

25

In the preceding code, the 'class' property is a bit special because it is used to specify the
component's class name. It does not exist in the CDbConnection class. Therefore, it can be
used to override a class as follows:

return array(
 …
 'components'=>array(
 'db'=>array(
 'class'=>'application.components.MyDbConnection',
 …
),
 …
),
 …
);

This way, you can override each application's component and it is very useful whenever a
standard component does not fit your application.

There's more...
Now, let's find out which standard Yii application components you can configure. There are two
application types bundled with Yii which are as follows:

 f Web application (CWebApplication)

 f Console application (CConsoleApplication)

Both are extended from CApplication, so both console and web applications are sharing
its components.

You can get the component names from API pages (http://www.yiiframework.com/
doc/api/) and the source code of the registerCoreComponents application method,
but let's list them here so that it can be used as a reference.

Both console and web application components are listed in the following table:

Component name Default/suggested
component class

Description

coreMessages CPhpMessageSource This component provides the source for
translating Yii framework messages.

db CDbConnection This component provides a database connection.
messages CPhpMessageSource This component provides the source for

translating application messages.
errorHandler CErrorHandler This component handles PHP errors and

uncaught exceptions.

Under the Hood

26

Component name Default/suggested
component class

Description

securityManager CSecurityManager This component provides security-related
services, such as hashing, encryption, and so on.

statePersister CStatePersister This component provides global state persistence
methods.

format CFormatter This component provides a set of commonly
used data formatting methods.

cache CFileCache This component provides a caching feature.

Additional components available only for web application are listed in the following table:

Component name Default component class Description
session CHttpSession This component provides the session-

related functionalities.
request CHttpRequest This component encapsulates the

$_SERVER variable and resolves its
inconsistency among different web
servers. It also manages the cookies sent
from and to the user.

urlManager CUrlManager URL router; used for both generating and
resolving application URLs.

assetManager CAssetManager This component manages the publishing of
private asset files.

user CWebUser This component represents the user's
session information.

themeManager CThemeManager This component manages themes.
authManager CPhpAuthManager This component manages role-based

access control (RBAC).
clientScript CClientScript This component manages client scripts

(JavaScript and CSS).
widgetFactory CWidgetFactory This component creates widgets and

supports widget skinning.

You can add your own application components (classes extended from CComponent) by simply
adding new configuration items and pointing their class properties to your custom classes.

Chapter 1

27

Configuring widget defaults
In Yii, code pieces commonly used in views are placed into widgets. For example, a widget can
render a tag cloud or provide a custom form input type. Core widgets are highly configurable
and are used in views as follows:

<?$this->widget('CLinkPager', array(
'pages' => $pages,
'pageSize' => 15,
))?>

In the preceding code, we are using $this->widget that calls a CLinkPager widget with
an array of parameters to display a pagination. pages and pageSize are both assigned to
the corresponding public properties of the CLinkPager widget before it is rendered.

Note that we have changed the count of items per page to 15 in our example. If we want our
pagination to display 15 items per page on all pages of our application, then we will need to
provide a pageSize parameter with a value of 15 for all CLinkPager widget calls. Is there a
better way? Definitely, yes.

How to do it…
A Yii web application provides a bunch of components. One of them is a widget factory that
since Yii 1.1.3 can be used to set widget defaults.

1. Let's use it to set pageSize application-wide. We will need to edit the main.php
application configuration file as follows:
return array(
 …
 'components'=>array(
 'widgetFactory'=>array(
 'widgets'=>array(
 'CLinkPager'=>array(
 'pageSize'=>15,
),
 …
),
),
 …
),
);

2. Now, the default value for pageSize of CLinkPager will be 15, so if we omit this
parameter for all the CLinkPager classes of the application then it will be 15,
application-wide.

Under the Hood

28

3. Moreover, we still can override the pageSize value for a specific widget:

<?$this->widget('CLinkPager', array(
'pages' => $pages,
'pageSize' => 5,
))?>

This works much like the CSS cascade. You set the default overall style in an external file, but
can still override this through inline styles for individual widgets.

See also
 f The Configuring components recipe

Using Yii core collections
Yii has a set of collection classes used mainly for internal purposes which are not described in
the definitive guide, but are still very useful for applications:

 f Lists: CList, CTypedList

 f Maps: CMap, CAttributeCollection

 f Queue: CQueue

 f Stack: CStack

How to do it…
All collections implement SPL IteratorAggregate, Traversable, and Countable. Lists
and maps also implement SPL ArrayAccess. It allows the use of collections like a standard
PHP construct. The following is a snippet from the CList API:

 f The following is the code snippet from the CList API:
// append at the end
$list[]=$item;

// $index must be between 0 and $list->Count
$list[$index]=$item;

// remove the item at $index
unset($list[$index]);

// if the list has an item at $index
if(isset($list[$index]))

Chapter 1

29

// traverse each item in the list
foreach($list as $index=>$item)

// returns the number of items in the list
$n=count($list);

 f CList is an integer-indexed collection. Compared to the native PHP array, it adds
stricter checks, can be used in OO fashion, and allows to make a collection read-only:
$list = new CList();
$list->add('python');
$list->add('php');
$list->add('java')

if($list->contains('php'))
 $list->remove('java');

$anotherList = new CList(array('python', 'ruby'));
$list->mergeWith($anotherList);

$list->setReadOnly(true);

print_r($list->toArray());

 f There is another list collection named CTypedList that ensures that the list
contains only items of a certain type:
$typedList = new CTypedList('Post');
$typedList->add(new Post());
$typedList->add(new Comment());

As we are trying to add a comment to the Post list, the preceding code will give you
the following exception:

CTypedList<Post> can only hold objects of Post class.

 f CMap allows using every value, integer or not, as a key. Just like in CList, it can also
be used in the native PHP style, has almost the same set of OO methods, and allows
making a collection read-only:
$map = new CMap();
$map->add('php', array('facebook', 'wikipedia', 'wordpress',
'drupal'));
$map->add('ruby', array('basecamp', 'twitter'));
print_r($map->getKeys());

www.allitebooks.com

http://www.allitebooks.org

Under the Hood

30

 f There is also one handy static method named CMap::mergeArray that can be used
to recursively merge two associative arrays while replacing scalar values:
$apps1 = array(
 'apps' => array(
 'task tracking',
 'bug tracking',
),
 'is_new' => false
);

$apps2 = array(
 'apps' => array(
 'blog',
 'task tracking',
),
 'todo' => array(
 'buy milk',
),
 'is_new' => true
);

$apps = CMap::mergeArray($apps1, $apps2);
CVarDumper::dump($apps, 10, true);

The result of the preceding code is as follows:

array
(
 'apps' => array
 (
 '0' => 'task tracking'
 '1' => 'bug tracking'
 '2' => 'blog'
 '3' => 'task tracking'
)
 'is_new' => true
 'todo' => array
 (
 '0' => 'buy milk'
)
)

Chapter 1

31

 f CAttributeCollection includes all of the CMap functionality and can work with
data just like properties:
$col = new CAttributeCollection();

// $col->add('name','Alexander');
$col->name='Alexander';

// echo $col->itemAt('name');
echo $col->name;

 f CQueue and CStack implements a queue and a stack respectively. A queue works as
FIFO: first in, first out, and the stack is LIFO: last in, first out. In the same way as list and
map collections, these can be used in native PHP style and have OO style methods:
$queue = new CQueue();

// add some tasks
$queue->enqueue(new Task('buy milk'));
$queue->enqueue(new Task('feed a cat'));
$queue->enqueue(new Task('write yii cookbook'));

// complete a task (remove from queue and return it)
echo 'Done with '.$queue->dequeue();
echo count($queue).' items left.';
// return next item without removing it
echo 'Next one is '.$queue->peek();

foreach($queue as $task)
 print_r($task);

$garage = new CStack();

// getting some cars into the garage
$garage->push(new Car('Ferrari'));
$garage->push(new Car('Porsche'));
$garage->push(new Car('Kamaz'));
// Ferrari and Porsche can't get out
// since there is…
echo $garage->peek(); // Kamaz!

// we need to get Kamaz out first
$garage->pop();
$porsche = $garage->pop();
$porsche->drive();

Under the Hood

32

Working with requests
You can work with request data directly using PHP superglobals such as $_SERVER, $_GET,
or $_POST but the better way is to use Yii's powerful CHttpRequest class that resolves
inconsistencies among different web servers, manages cookies, provides some additional
security, and has a nice set of OO methods.

How to do it…
You can access the request component in your web application by using
Yii::app()->getRequest(). So, let's review the most useful methods and
their usage, methods that return different parts of the current URL. In the following
table, the returned parts are marked with a bold font.

Methods Results
getUrl http://cookbook.local/test/index?var=val

getHostInfo http://cookbook.local/test/index?var=val

getPathInfo http://cookbook.local/test/index?var=val

getRequestUri http://cookbook.local/test/index?var=val

getQueryString http://cookbook.local/test/index?var=val

The methods that allow us to ensure the request types are getIsPostRequest,
getIsAjaxRequest, and getRequestType.

 f For example, we can use getIsAjaxRequest to serve different content based on
the request type:
class TestController extends CController
{
 public function actionIndex()
 {
 if(Yii::app()->request->isAjaxRequest)
 $this->renderPartial('test');
 else
 $this->render('test');
 }
}

In the preceding code, we are rendering a view without a layout if the request is made
through AJAX.

Chapter 1

33

 f While PHP provides superglobals for both POST and GET, Yii allows us to omit some
additional checks:
class TestController extends CController
{
 public function actionIndex()
 {
 $request = Yii::app()->request;

 $param = $request->getParam('id', 1);
 // equals to
 $param = isset($_REQUEST['id']) ? $_REQUEST['id'] : 1;

 $param = $request->getQuery('id');
 // equals to
 $param = isset($_GET['id']) ? $_GET['id'] : null;

 $param = $request->getPost('id', 1);
 // equals to
 $param = isset($_POST['id']) ? $_POST['id'] : 1;
 }
}

 f getPreferredLanguage tries to determine the user's preferred language. It can't
be completely accurate, but it is good to use it as a fallback in case the user has not
specified a preferred language manually.
class TestController extends CController
{
 public function actionIndex()
 {
 $request = Yii::app()->request;
 $lang = $request->preferredLanguage;

 // Trying to get language setting from
 // Settings table that holds id of the user,
 // setting name and setting value.
 $criteria = new CDbCriteria();
 $criteria->compare('user_id', $request-
 >getQuery('userid'));
 $criteria->compare('key', 'language');
 $setting = Settings::model()->find($criteria);
 if($setting)
 $lang = $setting->value;

Under the Hood

34

 Yii::app()->setLanguage($lang);

 echo Yii::t('app', 'Language is: ').$lang;
 }
}

 f sendFile allows us to initiate a file download as follows:
class TestController extends CController
{
 public function actionIndex()
 {
 $request = Yii::app()->getRequest();
 $request->sendFile('test.txt', 'File content goes
 here.');
 }
}

This action will trigger a file download and send all necessary headers, including
content type (mimetype) and content length. The MIME type, if not set manually
as a third parameter, will be guessed based on the filename's extension.

 f The last thing we are going to show in this chapter is the getCookies method.
It returns a CCookieCollection class instance that allows us to work with
cookies. As CCookieCollection extends CMap, we can use some native PHP
methods as follows:
class TestController extends CController
{
 public function actionIndex()
 {
 $request = Yii::app()->request;
 // getting a cookie
 $cookie = $request->cookies['test'];
 if($cookie)
 // printing cookie value
 echo $cookie->value;
 else {
 // creating new cookie
 $cookie=new CHttpCookie('test','I am a cookie!');
 $request->cookies['test'] = $cookie;
 }
}

Chapter 1

35

There's more...
If you are working with a lot of cookie values and want to shorten the code provided, then you
can use a helper as follows:

class Cookie
{
 public static function get($name)
 {
 $cookie=Yii::app()->request->cookies[$name];
 if(!$cookie)
 return null;

 return $cookie->value;
 }

 public static function set($name, $value, $expiration=0)
 {
 $cookie=new CHttpCookie($name,$value);
 $cookie->expire = $expiration;
 Yii::app()->request->cookies[$name]=$cookie;
 }
}

After you drop this code into protected/components/Cookie.php, you will be able to
perform the following:

class TestController extends CController
{
 public function actionIndex()
 {
 $cookie = Cookie::get('test');
 if($cookie)
 echo $cookie;
 else
 Cookie::set('test','I am a cookie!!');
 }
}

2
Router, Controller,

and Views

In this chapter, we will cover:

 f Configuring URL rules

 f Generating URLs by path

 f Using regular expressions in URL rules

 f Creating URL rules for static pages

 f Providing your own URL rules at runtime

 f Using a base controller

 f Using external actions

 f Displaying static pages with CViewAction

 f Using flash messages

 f Using the controller context in a view

 f Reusing views with partials

 f Using clips

 f Using decorators

 f Defining multiple layouts

 f Paginating and sorting data

Router, Controller, and Views

38

Introduction
This chapter will help you to learn some handy things about the Yii URL router, controllers, and
views. You will be able to make your controllers and views more flexible.

Configuring URL rules
The Yii URL router is quite powerful and does two main tasks: it resolves URLs into internal
routes and creates URLs from these routes. Router rules description is scattered over the official
Yii guide and API docs. Let's try to understand how to configure application rules by example.

Getting ready
1. Create a fresh Yii application using yiic webapp as described in the official guide

(http://www.yiiframework.com/doc/guide/) and find your protected/
config/main.php file. It should contain the following:
// application components
'components'=>array(
 …
 // uncomment the following to enable URLs in path-format
'urlManager'=>array(
 'urlFormat'=>'path',
 'rules'=>array(
 '<controller:\w+>/<id:\d+>'=>'<controller>/view',
 '<controller:\w+>/<action:\w+>/<id:\
 d+>'=>'<controller>/<action>',
 '<controller:\w+>/<action:\
 w+>'=>'<controller>/<action>',
),
),

2. Delete everything from rules as we are going to start from scratch.

3. In your protected/controllers directory, create WebsiteController.php
with the following code inside it:
class WebsiteController extends CController
{
 public function actionIndex()
 {
 echo "index";
 }

 public function actionPage($alias)
 {

Chapter 2

39

 echo "Page is $alias.";
 }
}

This is the application controller that we are going to customize URLs for.

4. Configure your application server to use clean URLs. If you are using Apache with
mod_rewrite and AllowOverride turned on, then you should add the following
lines to the .htaccess file under your webroot folder:
Options +FollowSymLinks
IndexIgnore */*
RewriteEngine on

if a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

otherwise forward it to index.php
RewriteRule . index.php

How to do it...
Our website should display the index page at /home and all other pages at /page/<alias_
here>. Additionally, /about should lead to a page with the alias about.

1. Add the following to your rules in protected/config/main.php:
'home' => 'website/index',
'<alias:about>' => 'website/page',
'page/<alias>' => 'website/page',

2. After saving your changes, you should be able to browse the following URLs:

 � /home

 � /about

 � /page/about

 � /page/test

The following screenshot shows part of a page that opens when the /about URL is used:

www.allitebooks.com

http://www.allitebooks.org

Router, Controller, and Views

40

How it works...
Let's review what was done and why it works. We'll start with the rightmost part of the
first rule:

'home' => 'website/index',

What is website/index exactly? In the Yii application, each controller and its actions have
corresponding internal routes. A format for an internal route is moduleID/controllerID/
actionID. For example, the actionPage method of WebsiteController corresponds
to the website/page route. So, in order to get the controller ID, you should take its name
without the Controller postfix and make its first letter lowercase. To get an action ID,
you should take the action method name without the action prefix and, again, make its
first letter lowercase.

Now, what is home? To understand it in a better way, we need to know, at least superficially,
what's happening when we access our application using different URLs.

When we use /home, the URL router checks our rules one by one starting from the top,
trying to match the URL entered with the rule. If the match is found, then the router gets the
controller and its action from an internal route assigned to the rule and is executing it. So, /
home is the URL pattern that defines which URLs will be processed by the rule it belongs to.

The fewer rules you have, the fewer checks are needed if the
URLs do not match. Fewer URLs means more performance.

There's more...
You can also create parameterized rules using a special syntax. Let's review the third rule:

'page/<alias>' => 'website/page',

Here, we are defining an alias parameter that should be specified in the URL after /page/.
It can be virtually anything and it will be passed as the $alias parameter to WebsiteContr
oller::actionPage($alias).

You can define a pattern for such a parameter. We did it for the second rule:

'<alias:about>' => 'website/page',

The alias here should match about, otherwise, the rule will not be applied.

Chapter 2

41

Further reading
For further information, refer to the following URLs:

 f http://www.yiiframework.com/doc/guide/1.1/en/basics.controller

 f http://www.yiiframework.com/doc/guide/en/topics.url

 f http://www.yiiframework.com/doc/api/1.1/CUrlManager

 f http://www.yiiframework.com/doc/api/1.1/CUrlRule

See also
 f The Using regular expressions in URL rules recipe

 f The Creating URL rules for static pages recipe

 f The Providing your own URL rules at runtime recipe

Generating URLs by path
Yii allows you to not only route your URLs to different controller actions but also to generate a
URL by specifying a proper internal route and its parameters. This is really useful because you
can focus on internal routes while developing your application, and only worry about real URLs
before going live.

Never specify URLs directly and make sure you use the Yii URL
toolset. It will allow you to change URLs without rewriting a lot
of application code.

Getting ready
1. Create a fresh Yii application using yiic webapp as described in the official guide and

find your protected/config/main.php file. Replace the rules array as follows:
// application components
'components'=>array(
 …
 // uncomment the following to enable URLs in path-format
 /*
 'urlManager'=>array(
 'urlFormat'=>'path',
 'rules'=>array(
 '<alias:about>' => 'website/page',
 'page/about/<alias:authors>' => 'website/page',
 'page/<alias>' => 'website/page',
),

Router, Controller, and Views

42

2. In your protected/controllers directory, create WebsiteController with the
following code inside:
class WebsiteController extends CController
{
 public function actionIndex()
 {
 echo "index";
 }

 public function actionPage($alias)
 {
 echo "Page is $alias.";
 }
}

This is our application controller that we are going to generate custom URLs for.

3. Configure your application server to use clean URLs. If you are using Apache with
mod_rewrite and AllowOverride turned on, then you should add the following
lines to the .htaccess file under your webroot folder:
Options +FollowSymLinks
IndexIgnore */*
RewriteEngine on

if a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

otherwise forward it to index.php
RewriteRule . index.php

How to do it...
We need to generate URLs pointing to the index and page actions of WebsiteController.
Depending on where we need it, there are different ways for doing it, but the basics are the
same. Let's list some methods that generate URLs.

CHtml::link() and some other CHtml methods, such as form, refresh, and ajaxLink,
all accept URLs and are typically used in views. These use CHtml::normalizeUrl internally
to resolve internal routes. Therefore, you should pass data in one of the following formats:

 f URL string: In this case, the URL passed will be used as is

 f array(internal route, param => value, param => value, …): In this
case, a URL will be generated

Chapter 2

43

What is internal route? Each controller and its actions have corresponding routes. A
format for a route is moduleID/controllerID/actionID. For example, the actionPage
method of WebsiteController corresponds to the website/page route. To get a
controller ID, you should take its name without the Controller postfix and make its first
letter lowercase. To get an action ID, you should take the action method name without the
action prefix and, again, make its first letter lowercase.

Parameters are the $_GET variables that will be passed to an action with an internal route
specified. For example, if we want to create a URL to WebsiteController::actionIndex
that passes the $_GET['name'] parameter to it, it can be done like this:

echo CHtml::link('Click me!', array('website/index',
 'name' => 'Qiang'));

URLs are also helpful when using the controller. Inside the controller, you can use createUrl
and createAbsoluteUrl to get both relative and absolute URLs:

class WebsiteController extends CController
{
 public function actionTest()
 {
 echo $this->createUrl('website/page', array('alias' =>
 'about'));
 echo '
';
 echo $this->createAbsoluteUrl('website/page',
 array('alias' => 'test'));
 }

 // the rest of the methods

}

As we have URL rules defined in the router configuration, we will get the following URLs:

 f /about

 f http://example.com/page/test

Relative URLs can be used inside your application while absolute ones should be used for
pointing to locations outside of your website (like other websites) or for linking to resources
meant to be accessed from outside (RSS feeds, e-mails, and so on).

Router, Controller, and Views

44

When you cannot get a controller instance, for example, when you implement a console
application, you can use the application's methods:

echo Yii::app()->createUrl('website/page', 'alias' => 'about');
echo Yii::app()->createAbsoluteUrl('website/page', 'alias' =>
'test');

The difference is that when using controller-specific methods, you can omit both controller
and module names. In this case, the current module name and the current controller name
are used:

class MyController extends CController
{
 public function actionIndex()
 {
 // As we're inside of controller, createUrl will assume that
 // URL is for current controller
 echo $this->createUrl('index');
 }
}

How it works...
All URL building tools we have reviewed internally use the CWebApplication:: createUrl
method that calls CUrlManager::createUrl. It tries to apply routing rules one by one,
starting from the top. The first matched rule is applied. If no rules are matched, then the
default URL form is generated.

There's more...
For further information, refer to the following URLs:

 f http://www.yiiframework.com/doc/guide/en/basics.controller

 f http://www.yiiframework.com/doc/guide/en/topics.url

 f http://www.yiiframework.com/doc/api/CUrlManager

 f http://www.yiiframework.com/doc/api/CHtml/#normalizeUrl-detail

 f http://www.yiiframework.com/doc/api/CHtml/#link-detail

 f http://www.yiiframework.com/doc/api/CController/#createUrl-
detail

 f http://www.yiiframework.com/doc/api/CWebApplication/#createUrl-
detail

Chapter 2

45

See also
 f The Configuring URL rules recipe

 f The Creating URL rules for static pages recipe

 f The Providing your own URL rules at runtime recipe

Using regular expressions in URL rules
One of the hidden features of the Yii URL router is that you can use regular expressions that
are pretty powerful when it comes to strings handling.

Getting ready
1. Create a fresh Yii application using yiic webapp as described in the official guide

and find your protected/config/main.php file. It should contain the following:
// application components
'components'=>array(
 …
 // uncomment the following to enable URLs in path-format
 /*
 'urlManager'=>array(
 'urlFormat'=>'path',
 'rules'=>array(
 '<controller:\w+>/<id:\d+>'=>'<controller>/view',
 '<controller:\w+>/<action:\w+>/<id:\
 d+>'=>'<controller>/<action>',
 '<controller:\w+>/<action:\
 w+>'=>'<controller>/<action>',
),
),

2. Delete everything from rules as we are going to start from scratch.

3. In your protected/controllers directory, create PostController.php with
the following code inside it:
class PostController extends CController
{
 public function actionView($alias)
 {
 echo "Showing post with alias $alias.";
 }

Router, Controller, and Views

46

 public function actionIndex($order = 'DESC')
 {
 echo "Showing posts ordered $order.";
 }

 public function actionHello($name)
 {
 echo "Hello, $name!";
 }
}

This is our application controller that we are going to access using our custom URLs.

4. Configure your application server to use clean URLs. If you are using Apache with
mod_rewrite and AllowOverride turned on, then you should add the following
lines to the .htaccess file under your webroot folder:
Options +FollowSymLinks
IndexIgnore */*
RewriteEngine on

if a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

otherwise forward it to index.php
RewriteRule . index.php

How to do it...
We want our PostController action to accept parameters according to some specified
rules and give the 404 not found HTTP response for all parameters that do not match. In
addition, post/index should have an alias URL, archive.

Let's use regular expressions in the configuration file to achieve this:

'post/<alias:[-a-z]+>' => 'post/view',
'(posts|archive)' => 'post/index',
'(posts|archive)/<order:(DESC|ASC)>' => 'post/index',
'sayhello/<name>' => 'post/hello',

The following URLs will be successful:
 f http://example.com/post/test-post

 f http://example.com/posts

 f http://example.com/archive

 f http://example.com/posts/ASC

 f http://example.com/sayhello/ААААААААА

Chapter 2

47

The following URLs will fail:
 f http://example.com/archive/test

 f http://example.com/post/another_post

The following screenshot shows that the URL http://example.com/post/test-post
has run successfully:

The following screenshot shows that the URL http://example.com/archive/test did
not run successfully and encountered an error:

Router, Controller, and Views

48

How it works...
You can use regular expressions in both parameter definition and the rest of the rule. Let's
read our rules one by one.

'post/<alias:[-a-z]+>' => 'post/view',

The alias parameter should contain one or more English letters or a dash. No other symbols
are allowed.

'(posts|archive)' => 'post/index',

Both posts and archive lead to post/index.

'(posts|archive)/<order:(DESC|ASC)>' => 'post/index',

Both posts and archive lead to post/index. The order parameter can only accept two
values: DESC and ASC.

'sayhello/<name>' => 'post/hello',

You should specify the name part but there are no restrictions on what characters are allowed.

Note that regardless of the rule used, the developer should never assume that input data
is safe.

There's more...
To learn more about regular expressions, you can use the following sources:

 f http://www.php.net/manual/en/reference.pcre.pattern.syntax.php

 f Mastering Regular Expressions, Jeffrey Friedl available at http://regex.info/

See also
 f The Configuring URL rules recipe

Creating URL rules for static pages
A website typically contains some static pages. Usually, they include /about, /contact, /
tos, and so on, and it is common to handle these pages in a single controller action. Let's find
a way to create URL rules for these types of pages.

Chapter 2

49

Getting ready
1. Create a fresh Yii application using yiic webapp as described in the official guide

and find your protected/config/main.php file. It should contain the following:
// application components
'components'=>array(
 …
 // uncomment the following to enable URLs in path-format
 /*
 'urlManager'=>array(
 'urlFormat'=>'path',
 'rules'=>array(
 '<controller:\w+>/<id:\d+>'=>'<controller>/view',
 '<controller:\w+>/<action:\w+>/<id:\
 d+>'=>'<controller>/<action>',
 '<controller:\w+>/<action:\w+>'=>'<controller>/<action>',
),
),

2. Delete everything from rules as we are going to start from scratch.

3. In your protected/controllers directory, create WebsiteController.php
with the following code:
class WebsiteController extends CController
{
 public function actionPage($alias)
 {
 echo "Page is $alias.";
 }
}

4. Configure your application server to use clean URLs. If you are using Apache with
mod_rewrite and AllowOverride turned on, you should add the following lines to
the .htaccess file under your webroot folder:

Options +FollowSymLinks
IndexIgnore */*
RewriteEngine on

if a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

otherwise forward it to index.php
RewriteRule . index.php

www.allitebooks.com

http://www.allitebooks.org

Router, Controller, and Views

50

How to do it...
The most straightforward way is to define a rule for each page, as follows:

'<alias:about>' => 'website/page',
'<alias:contact>' => 'website/page',
'<alias:tos>' => 'website/page',

Using regular expressions, we can compact it to a single rule:

'<alias:(about|contact|tos)>' => 'website/page',

Now, what if we want the URL to be /tos and an alias parameter to be
terms_of_service?

No problem, we can use default parameters to achieve it:

'tos' => array('website/page', 'defaultParams' => array('alias' =>
'terms_of_service')),

OK. What if we have many pages and want to be able to dynamically create pages without
adding more rules or changing existing ones?

We can achieve this with the following rule:

'<alias>' => 'website/page'

As this rule matches everything, we need to place it last, so it won't affect all other rules.
In addition, default rules with one slug, such as controller name, will stop working. To
overcome this issue, we need to add default rules, which we deleted in the Getting ready
section of this recipe.

How it works...
Let's read the rules we just wrote.

'<alias:about>' => 'website/page',

If the URL is /about, then pass it as the alias parameter to website/page.

'<alias:(about|contact|tos)>' => 'website/page',

If the URL is /about or /contact or /tos, then pass it as the alias parameter to
website/page.

'tos' => array('website/page', 'defaultParams' => array('alias' =>
'terms_of_service')),

When the URL is /tos, pass terms_of_service as the alias parameter value.

Chapter 2

51

This rule is a bit special because it uses the default parameter option. The default parameter
allows you to set a value that will be used if a parameter with a name specified is omitted.
When you need to specify an option for the rule, you should use an array notation:

'pattern' => array('internal/route', 'option' => 'value', 'option' =>
'value', …),

For a list of options you can set, refer to the following API page:

http://www.yiiframework.com/doc/api/1.1/CUrlRule

As the last step we've re-added default rules:

'<controller:\w+>/<id:\d+>'=>'<controller>/view',
'<controller:\w+>/<action:\w+>/<id:\d+>'=>'<controller>/<action>',
'<controller:\w+>/<action:\w+>'=>'<controller>/<action>',

These are matching common URLs such as /user/123, /user/edit/123, or /user/add.
The reason for adding these again is the fact that the <alias> rule matches everything.
That means the URL manager will always stop at this rule and will never try to apply a default
convention. In order to get it back we should put default rules before <alias>.

See also
 f The Configuring URL rules recipe

 f The Using regular expressions in URL rules recipe

Providing your own URL rules at runtime
When you are developing an application with a pluggable module architecture, you most likely
need to somehow inject your module-specific rules into an existing application.

Getting ready
1. Set up a new application using yiic webapp.

2. Add .htaccess, shown in the official URL management guide to your webroot folder.

3. Uncomment the urlManager section in protected/config/main.php and add
'showScriptName' => false.

4. Generate the page module using Gii. You need to uncomment the gii section under
modules and set a password. Then, open http://localhost/gii in your browser.

5. Don't forget to add your new module to the modules list in your application
configuration.

Router, Controller, and Views

52

The Yii code generator is shown in the following screenshot:

How to do it...
1. Create ModuleUrlManager.php in your protected/components directory with

the following code inside it:
<?php
class ModuleUrlManager
{
 static function collectRules()
 {
 if(!empty(Yii::app()->modules))
 {
 foreach(Yii::app()->modules as $moduleName =>
 $config)
 {
 $module = Yii::app()->getModule($moduleName);
 if(!empty($module->urlRules))
 {
 Yii::app()->getUrlManager()->addRules
 ($module->urlRules);
 }
 }
 }
 return true;
 }
}

Chapter 2

53

2. In your application configuration file, add the following line:
'onBeginRequest' => array('ModuleUrlManager', 'collectRules'),

3. Now, in your page module, you can add custom rules. To do so, open PageModule.
php and add:
public $urlRules = array(
 'test' => 'page/default/index',
);

4. To test if it works, open your browser and go to http://example.com/test. This
page should look like the one shown in the following screenshot:

This is the view content for action "index". The action belongs to the controller "DefaultController" in
the "page" module.

5. You can still override URL rules from your main application configuration file. So,
what you specify in module's urlRules is used only when the main application
rules don't match.

How it works...
Let's review the ModuleUrlManager::collectRules method.

If there are modules defined in our application, then we are checking if the urlRules public
property exists. If it does, then there are some rules defined in the module and they are added
using CUrlManager::addRules.

The CUrlManager::addRules description says, "In order to make the new rules effective,
this method must be called before CWebApplication::processRequest."

Router, Controller, and Views

54

Now, let's check how our application works. In our index.php file, we have the following line:

Yii::createWebApplication($config)->run();

After being initialized with the configuration, we call CWebApplication::run():

public function run()
{
 if($this->hasEventHandler('onBeginRequest'))
 $this->onBeginRequest(new CEvent($this));
 $this->processRequest();
 if($this->hasEventHandler('onEndRequest'))
 $this->onEndRequest(new CEvent($this));
}

As we can see, there is an onBeginRequest event raised just before calling
processRequest. That is why we are attaching our class method to it.

There's more...
As instantiating all application modules on every request is not good for performance, it is
good to cache module rules. Caching strategy can vary depending on your application. Let's
implement a simple one:

<?php
class ModuleUrlManager
{
 static function collectRules()
 {
 if(!empty(Yii::app()->modules))
 {
 $cache = Yii::app()->getCache();

 foreach(Yii::app()->modules as $moduleName => $config)
 {
 $urlRules = false;

 if($cache)
 $urlRules = $cache->get('module.urls.'.$moduleName);

 if($urlRules===false){
 $urlRules = array();
 $module = Yii::app()->getModule($moduleName);
 if(isset($module->urlRules))
 $urlRules = $module->urlRules;

Chapter 2

55

 if($cache)
 $cache->set('module.urls.'.$moduleName, $urlRules);
 }
 if(!empty($urlRules))
 Yii::app()->getUrlManager()->addRules($urlRules);
 }
 }

 return true;
 }
}

This implementation caches URL rules per module. So, adding new modules is not a problem
but changing existing ones requires you to flush the cache manually using Yii::app()-
>cache->flush().

In order to see it in action, you need to define the cache under the components section of
your protected/config/main.php file, as follows:

'cache' => array(
 'class' => 'CFileCache',
),

See also
 f The Configuring URL rules recipe

Using a base controller
In many frameworks, the concept of a base controller that is being extended by other ones is
described right in the guide. In Yii, it is not in the guide as you can achieve flexibility in many
other ways. Still, using a base controller is possible and can be useful.

Getting ready
We are going to set up a new application using yiic webapp.

Let's say we want to add some controllers that will be accessible only when the user is
logged in. We can surely set this constraint for each controller separately, but we will do
it in a better way.

Router, Controller, and Views

56

How to do it...
1. First, we will need a base controller that our user-only controllers will use. Let's

create SecureController.php in the protected/components directory with
the following code:
<?php
class SecureController extends Controller
{
 public function filters()
 {
 return array(
 'accessControl',
);
 }

 public function accessRules()
 {
 return array(
 array('allow',
 'users'=>array('@'),
),
 array('deny',
 'users'=>array('*'),
),
);
 }
}

2. Now, go to the Gii controller generator and enter SecureController into the Base
Class field. You will get something like this:
class TestController extends SecureController
{
 public function actionIndex()
 {
 $this->render('index');
 }
 …
}

3. Now, your TestController index will be only accessible if the user is logged in,
even though we have not declared it explicitly in the TestController class. You
can check it by visiting /index.php?r=test/index while not being logged in.

Chapter 2

57

How it works...
The trick is nothing more than a basic class inheritance. If filters or accessRules is not
found in TestController, then it will be called from SecureController.

Using external actions
In Yii, you can define controller actions as separate classes and then connect them to your
controllers. This way, you can reuse some common functionality.

For example, you can move the backend for autocomplete fields to an action and save some
time by not having to write it over and over again.

Another simple example that we will review is deleting a model.

Getting ready
1. Set up a new application using yiic webapp.

2. Create a database schema with the following script:
CREATE TABLE `post` (
 `id` int(10) unsigned NOT NULL auto_increment,
 `created_on` int(11) unsigned NOT NULL,
 `title` varchar(255) NOT NULL,
 `content` text NOT NULL,
 PRIMARY KEY (`id`)
);

CREATE TABLE `user` (
 `id` int(10) unsigned NOT NULL auto_increment,
 `username` varchar(200) NOT NULL,
 `password` char(40) NOT NULL,
 PRIMARY KEY (`id`)
);

3. Generate the Post and User models using Gii. Add some data to the tables.

Router, Controller, and Views

58

How to do it...
1. Let's write protected/controllers/PostController.php. It is a usual delete

action for posts:
class PostController extends CController
{
 function actionIndex()
 {
 $posts = Post::model()->findAll();
 $this->render('index', array(
 'posts' => $posts,
));
 }

 function actionDelete($id)
 {
 $post = Post::model()->findByPk($id);
 if(!$post)
 throw new CHttpException(404);

 if($post->delete())
 $this->redirect('post/index');

 throw new CHttpException(500);
 }
}

We have defined two actions. One lists all posts and another deletes a specified post
if it exists and redirects back to the index action. You can try these using /index.
php?r=post/index and /index.php?r=post/delete&id=1.

2. Now, let's do the same in a separate action class. Create DeleteAction.php in
your protected/components directory as follows:
class DeleteAction extends CAction
{
 function run()
 {
 if(empty($_GET['id']))
 throw new CHttpException(404);

 $post = Post::model()->findByPk($_GET['id']);

 if(!$post)
 throw new CHttpException(404);

Chapter 2

59

 if($post->delete())
 $this->redirect('post/index');

 throw new CHttpException(500);
 }
}

3. Let's use it inside our controller. Delete actionDelete; we will not need it anymore.
Then, add the actions method:
class PostController extends CController
{
 function actions()
 {
 return array(
 'delete' => 'DeleteAction',
);
 }

 …

}

4. Try /index.php?r=post/delete&id=2 again. It should work exactly the
same way as it did last time. Now, we are using the external delete action for
PostController, but what about UserController? To use DeleteAction
with UserController we need to customize it first. We do this as follows:
class DeleteAction extends CAction
{
 public $pk = 'id';
 public $redirectTo = 'index';
 public $modelClass;

 function run()
 {
 if(empty($_GET[$this->pk]))
 throw new CHttpException(404);

 $model = CActiveRecord::model($this->modelClass)
 ->findByPk($_GET[$this->pk]);

 if(!$model)
 throw new CHttpException(404);

www.allitebooks.com

http://www.allitebooks.org

Router, Controller, and Views

60

 if($model->delete())
 $this->redirect($this->redirectTo);

 throw new CHttpException(500);
 }
}

5. Now, we can use this action for both PostController and UserController. For
PostController, we do this as follows:
class PostController extends CController
{
 function actions()
 {
 return array(
 'delete' => array(
 'class' => 'DeleteAction',
 'modelClass' => 'Post',
);
);
 }

 …

}

6. For UserController, we do this as follows:
class UserController extends CController
{
 function actions()
 {
 return array(
 'delete' => array(
 'class' => 'DeleteAction',
 'modelClass' => 'User',
),
);
 }

 …

}

7. Try using /index.php?r=post/delete&id=3 and /index.php?r=user/
delete&id=1.

This way, you can save yourself a lot of time by implementing and reusing external actions for
tasks of a similar type.

Chapter 2

61

How it works...
Every controller can be built from external actions like a puzzle from pieces. The difference
is that you can make external actions very flexible and reuse them in many places. In the
final version of DeleteAction, we defined some public properties. As DeleteAction is a
component, we can set its properties through the configuration file. In our case, we pass the
configuration into the action's controller method, used to add actions to a module.

There's more…
For further information, refer to the following URLs:

 f http://www.yiiframework.com/doc/api/CAction/

 f http://www.yiiframework.com/doc/api/CController#actions-detail

Displaying static pages with CViewAction
If you have a few static pages and aren't going to change them very frequently, then it's not
worth querying the database and implementing page management for them.

Getting ready
Set up a new application using yiic webapp.

How to do it...
1. We just need to connect CViewAction to our controller.

class SiteController extends CController
{
 function actions()
 {
 return array(
 'page'=>array(
 'class'=>'CViewAction',
),
);
 }
}

2. Now, put your pages into protected/views/site/pages, and name them
about.php and contact.php.

Router, Controller, and Views

62

3. Now, you can try your pages by typing in the URL http://example.com/index.
php?r=site/page&view=contact.

4. Alternatively, you can type in the URL http://example.com/site/page/view/
about, if you have configured clean URLs with a path format.

How it works...
We connect the external action named CViewAction that simply tries to find a view named
the same as the $_GET parameter supplied. If it is there, it displays it. If not, then it will give
you a 404 not found page.

There's more...
There are some useful CViewAction parameters we can use. These are listed in the
following table:

Parameter name Description
basePath This is a base path alias that is prepended to a view name. The default is

pages. That means a page named faq.company will be translated to
protected/views/pages/faq/company.php.

defaultView This is a name of a page to render when there is no $_GET parameter
supplied. The default is index.

layout The layout used to render a page. By default, the controller layout is used.
If it is set to null, then no layout is applied.

renderAsText If set to true, then the page will be rendered as is. Otherwise, the PHP
inside will be executed.

viewParam The name of the $_GET parameter used to pass the page name to
CViewAction. The default is view.

Further reading
For further information, refer to the following URL:

http://www.yiiframework.com/doc/api/CViewAction

See also
 f The Using external actions recipe

Chapter 2

63

Using flash messages
When you are editing a model with a form, when you are deleting a model, or doing any
other operation, it is good to tell users if it went well or if there was an error. Typically, after
some kind of action, such as editing a form, a redirect will happen and we need to display a
message on the page we want to go to. However, how do we pass it from the current page to
the redirect target and clean up afterwards? Flash messages will help us.

Getting ready
Set up a new application using yiic webapp.

How to do it...
1. Let's create a protected/controllers/WebsiteController.php controller

as follows:
class WebsiteController extends CController
{
 function actionOk()
 {
 Yii::app()->user->setFlash('success', 'Everything
 went fine!');
 $this->redirect('index');
 }

 function actionBad()
 {
 Yii::app()->user->setFlash('error', 'Everything went
 wrong!');
 $this->redirect('index');
 }

 function actionIndex()
 {
 $this->render('index');
 }
}

2. Additionally, create the protected/views/website/index.php view as follows:
<?php if(Yii::app()->user->hasFlash('success')):?>
<div class="flash-notice">
 <?php echo Yii::app()->user->getFlash('success')?>
</div>

Router, Controller, and Views

64

<?php endif?>
<?php if(Yii::app()->user->hasFlash('error')):?>
<div class="flash-error">
 <?php echo Yii::app()->user->getFlash('error')?>
</div>
<?php endif?>

3. Now, if we go to http://example.com/website/ok, we'll be redirected to
http://example.com/website/index and a success message will be displayed.
Moreover, if we go to http://example.com/website/bad, we will be redirected
to the same page, but with an error message. Refreshing the index page will hide
the message.

How it works...
We set a flash message with Yii::app()->user->setFlash('success',
'Everything went fine!'), for example, calling CWebUser::setFlash. Internally,
it saves a message into a user state, so at the lowest level, our message is being kept in
$_SESSION until Yii::app()->user->getFlash('success') is called and the
$_SESSION key is deleted.

There's more…
The following URL contains an API reference of CWebUser and will help you to understand
flash messages better:

http://www.yiiframework.com/doc/api/CWebUser

Using the controller context in a view
Yii views are pretty powerful and have many features. One of them is that you can use
controller context in a view. So, let's try it.

Getting ready
Set up a new application using yiic webapp.

Chapter 2

65

How to do it...
1. Create a controller as follows:

class WebsiteController extends CController
{
 function actionIndex()
 {
 $this->pageTitle = 'Controller context test';
 $this->render('index');
 }

 function hello()
 {
 if(!empty($_GET['name']))
 echo 'Hello, '.$_GET['name'].'!';
 }
}

2. Now, we will create a view showing what we can do:
<h1><?php echo $this->pageTitle?></h1>
<p>Hello call. <?php $this->hello()?></p>
<?php $this->widget('zii.widgets.CMenu',array(
 'items'=>array(
 array('label'=>'Home', 'url'=>array('index')),
 array('label'=>'Yiiframework home',
 'url'=>'http://yiiframework.ru/'),
),
))?>

3. In order to test it you can follow /index.php?r=website/index.

How it works...
We are using $this in a view to refer to a currently running controller. When doing it, we can
call a controller method and access its properties. The most useful property is pageTitle,
which refers to the current page title. There are many built-in methods that are extremely
useful in views such as renderPartials and widget.

There's more…
The following URL contains API documentation for CController where you can get a good
list of methods you can use in your view:

http://www.yiiframework.com/doc/api/CController

Router, Controller, and Views

66

Reusing views with partials
Yii supports partials, so if you have a block without much logic that you want to reuse or want
to implement e-mail templates, partials are the right way to go about this.

Getting ready
1. Set up a new application using yiic webapp.

2. Create WebsiteController as follows:
class WebsiteController extends CController
{
 function actionIndex()
 {
 $this->render('index');
 }
}

3. Set up a database using the following SQL:
CREATE TABLE `user` (
 `id` int(10) unsigned NOT NULL auto_increment,
 `name` varchar(200) NOT NULL,
 `email` varchar(200) NOT NULL,
 PRIMARY KEY (`id`)
);

4. Use Gii to generate the User model.

5. Add some data to the user table.

How to do it...
We will start with a reusable block. For example, we need to embed a YouTube video on
several website pages. Let's implement a reusable template for it.

1. Create a view file named protected/views/common/youtube.php and paste an
embed code from YouTube. You will get something like the following:
<object width="480" height="385"><param name="movie"
value="http://www.youtube.com/v/S6u7ylr0zIg?fs=1 "></
param><param name="allowFullScreen" value="true"></
param><param name="allowscriptaccess" value="always"></
param><embed src="http://www.youtube.com/v/S6u7ylr0zIg?fs=1"
type="application/x-shockwave-flash" allowscriptaccess="always"
allowfullscreen="true" width="480" height="385"></embed></object>

Chapter 2

67

2. Now, we need to make it reusable. We want to be able to set the video ID, width, and
height. Let's make the width and height optional, as follows:
<object width="<?php echo!empty($width) ? $width : 480?>"
height="<?php echo!empty($height) ? $height: 385?>"><param
name="movie" value="http://www.youtube.com/v/<?php echo
$id?>?fs=1 "></param><param name="allowFullScreen" value="true"></
param><param name="allowscriptaccess" value="always"></
param><embed src="http://www.youtube.com/v/<?php echo $id?>?fs=1"
type="application/x-shockwave-flash" allowscriptaccess="always"
allowfullscreen="true" width="<?php echo !empty($width) ? $width
: 480?>" height="<?php echo !empty($height) ? $height: 385?>"></
embed></object>

3. Now, you can use it in your protected/views/site/index.php file like this:
<?php $this->renderPartial('//common/youtube', array(
 'id' => '8Rp-CaIKvQs', // you can get this id by simply
 looking at video URL
 'width' => 320,
 'height' => 256,
))?>

Looks better, right? Note that we have used // to reference a view. This means that
Yii will look for a view starting from protected/views, not taking the controller
name into account.

4. Now, let's send some e-mails. As we are unable to write unique letters to thousands
of users, we will use a template but will make it customized. Let's add a new method
to protected/controllers/SiteController.php as follows:
class SiteController extends CController
{
 public function actionSendmails()
 {
 $users = User::model()->findAll();
 foreach($users as $user)
 {
 $this->sendEmail('welcome', $user->email, 'Welcome to the
 website!', array('user' => $user));
 }
 echo 'Emails were sent.';
 }

 function sendEmail($template, $to, $subject, $data)
 {
 mail($to, $subject, $this->renderPartial
 ('//email/'.$template, $data, true));
 }
}

Router, Controller, and Views

68

5. Here is our template, protected/views/email/welcome.php:
Hello <?php echo $user->name?>,

Welcome to the website!

You can go check our new videos section. There are funny raccoons.

Yours,
Website team.

6. That's it. In order to test it, go to /index.php?r=site/sendmails. Note that you
need to configure PHP to be able to send e-mails. Instead you can just echo the result
without actually sending it.

How it works...
CController::renderPartial does the same template processing as
CController::render, except the former does not use layout. As we can access the
current controller in a view using $this, we can use its renderPartial to use a view
within another view. renderPartial is also useful when dealing with AJAX as you don't
need the layout rendered in this case.

There's more…
For further information, refer to the following URL:

http://www.yiiframework.com/doc/api/CController/#renderPartial-detail

See also
 f The Using the controller context in a view recipe

Using clips
One of the Yii features you can use in your views is clips. The basic idea is that you can record
some output and then reuse it later in a view. A good example would be defining additional
content regions for your layout and filling them elsewhere.

Getting ready
Set up a new application using yiic webapp.

Chapter 2

69

How to do it...
1. For our example, we need to define two regions in our layout: beforeContent and

footer. Open protected/views/layouts/main.php and insert the following
code line just before the content output (<?php echo $content; ?>):
<?php if(!empty($this->clips['beforeContent'])) echo
 $this->clips['beforeContent']?>

Then, insert the following into <div id="footer">:

<?php if(!empty($this->clips['footer'])) echo
 $this->clips['footer']?>

2. That is it! Now, we need to fill these regions somehow. We will use a controller
action for the beforeContent region. Open protected/controllers/
SiteController.php and add the following code to actionIndex:
$this->beginClip('beforeContent');
echo 'Your IP is '.Yii::app()->request->userHostAddress;
$this->endClip();

3. As for footer, we will set its content from a view. Open protected/views/site/
index.php and add the following code:
<?php $this->beginClip('footer')?>
This application was built with Yii.
<?php $this->endClip()?>

4. Now, when you open your website's index page, you should get your IP just before the
page content and a "built with" note in the footer.

How it works...
We mark regions with the code that just checks for existence of a clip specified, and if the
clip exists, the code outputs it. Then, we record content for clips we defined using special
controller methods named beginClip and endClip.

See also
 f The Using the controller context in a view recipe

Router, Controller, and Views

70

Using decorators
In Yii, we can enclose content into a decorator. The common usage of decorators is
layout. Yes, when you are rendering a view using the render method of your controller,
Yii automatically decorates it with the main layout. Let's create a simple decorator that will
properly format quotes.

Getting ready
Set up a new application using yiic webapp.

How to do it...
1. First, we will create a decorator file, protected/views/decorators/quote.php:

<div class="quote">
 “<?php echo $content?>”, <?php echo $author?>
</div>

2. Now in protected/views/site/index.php, we will use our decorator:
<?php $this->beginContent('//decorators/quote', array('author' =>
'Edward A. Murphy'))?>
If anything bad can happen, it probably will
<?php $this->endContent()?>

3. Now, your home page should include the following markup:
<div class="quote">
 “If anything bad can happen, it probably will”,
Edward A. Murphy
</div>

How it works...
Decorators are pretty simple. Everything between beginContent and endContent is
rendered into a $content variable and passed into a decorator template. Then, the
decorator template is rendered and inserted in the place where endContent was called.
We can pass additional variables into the decorator template using a second parameter of
beginContent, such as the one we did for the author.

Note that we have used //decorators/quote as the view
path. This means that the view will be searched starting from
either the theme views root or the application views root.

Chapter 2

71

There's more…
The following URL provides more details about decorators:

http://www.yiiframework.com/doc/api/CContentDecorator/

See also
 f The Using the controller context in a view recipe

Defining multiple layouts
Most applications use a single layout for all their views. However, there are situations when
multiple layouts are needed. For example, an application can use different layouts on different
pages: two additional columns for blogs, one additional column for articles, and no additional
columns for portfolios.

Getting ready
Set up a new application using yiic webapp.

How to do it...
1. Create two layouts in protected/views/layouts: blog and articles. Blog will

contain the following code:
<?php $this->beginContent('//layouts/main')?>
<div>
<?php echo $content?>
</div>
<div class="sidebar tags">

 PHP
 Yii

</div>
<div class="sidebar links">

 Yiiframework
 PHP

</div>
<?php $this->endContent()?>

Router, Controller, and Views

72

2. Articles will contain the following code:
<?php $this->beginContent('//layouts/main')?>
<div>
<?php echo $content?>
</div>
<div class="sidebar toc">

 1. Introduction
 2. Quick start

</div>
<?php $this->endContent()?>

3. Create three controllers named BlogController, ArticleController, and
PortfolioController with index actions in all three:
class BlogController extends Controller
{
 function actionIndex()
 {
 $this->layout = 'blog';
 $this->render('//site/index');
 }
}

class ArticleController extends Controller
{
 function actionIndex()
 {
 $this->layout = 'articles';
 $this->render('//site/index');
 }
}

class PortfolioController extends Controller
{
 function actionIndex()
 {
 $this->render('//site/index');
 }
}

4. Now try http://example.com/blog, http://example.com/article, and
http://example.com/portfolio.

Chapter 2

73

How it works...
We defined two additional layouts for the blog and articles. As we don't want to
copy and paste common parts from the main layout, we apply additional layout
decorators using $this->beginContent and $this->endContent, as shown
in the following diagram:

content

m
ain

content

blogs2 s3

s1

articles

content
blog main

articles main

content s2 s3

content s1

So, we use a view rendered inside articles layout as the main layout's $content.

See also
 f The Using the controller context in a view recipe

 f The Using decorators recipe

Paginating and sorting data
In the latest Yii releases, the focus was moved from using Active Record directly to grids, lists,
and data providers. Still, sometimes it is better to use Active Record directly. Let's see how to
list paginated AR records with the ability to sort them.

Router, Controller, and Views

74

Getting ready
1. Set up a new application using yiic webapp.

2. Create a database structure table post with id and title as fields, and add
10 to 20 records.

3. Generate the Post model using Gii.

How to do it...
1. First, you need to create protected/controllers/PostController.php:

class PostController extends Controller
{
 function actionIndex()
 {
 $criteria = new CDbCriteria();
 $count=Post::model()->count($criteria);
 $pages=new CPagination($count);

 // elements per page
 $pages->pageSize=5;
 $pages->applyLimit($criteria);

 // sorting
 $sort = new CSort('Post');
 $sort->attributes = array(
 'id',
 'title',
);
 $sort->applyOrder($criteria);

 $models = Post::model()->findAll($criteria);

 $this->render('index', array(
 'models' => $models,
 'pages' => $pages,
 'sort' => $sort,
));
 }
}

Chapter 2

75

2. Now, let's implement protected/views/post/index.php as follows:
<p><?php echo $sort->link('id')?></p>
<p><?php echo $sort->link('title')?></p>

<?php foreach($models as $model):?>

 <h2><?php echo $model->id?> - <?php echo $model->title?></h2>

<?php endforeach?>

<?php $this->widget('CLinkPager', array(
 'pages' => $pages,
))?>

3. Try to load http://example.com/post. You should get a working pagination and
links that allow sorting the list by id or by title.

How it works...
First, we got the total models count and initialized the new pagination component instance
with it. Then, we used the applyLimit method to apply the limits and offsets to the criteria
we have used for the count request. After that, we created a sorter instance for the model,
specifying model attributes we wanted to sort by and applying order conditions to the criteria
by calling applyOrder. Then, we passed the modified criteria to findAll. At this step, we
have the models list, pages, and data used for the link pager, and the sorter that we use to
generate sorting links.

In a view, we use data we gathered. First, we generate links with the CSort::link
method. Then, we list the models. Finally, using the CLinkPager widgets, we render
the pagination control.

There's more…
Visit the following links to get more information about pagination and sorting:

 f http://www.yiiframework.com/doc/api/CPagination/

 f http://www.yiiframework.com/doc/api/CSort/

3
AJAX and jQuery

In this chapter, we will cover:

 f Loading a block through AJAX

 f Managing assets

 f Including resources into the page

 f Working with JSON

 f Passing configuration from PHP to JavaScript

 f Handling variable number of inputs

 f Rendering content at the client side

Introduction
Yii's client side is built with jQuery—the most widely used JavaScript library, which is very
powerful and simple to learn and use. In this chapter, we will focus on Yii-specific tricks
rather than jQuery itself. If you need to learn more about jQuery, then please refer to its
documentation at http://docs.jquery.com/.

Loading a block through AJAX
Nowadays, it's common when part of a page is loaded asynchronously, that is, without
reloading the rest of the page. Let's implement the quotes box, which will display random
quotes and will have the Next quote link to show the next one.

AJAX and jQuery

78

Getting ready
1. Create a fresh Yii application using yiic webapp as described in the official guide.

2. Configure the application to use clean URLs.

How to do it...
Carry out the following steps:

1. Create a new controller named protected/controllers/QuoteController.
php as follows:
<?php
class QuoteController extends Controller
{
 private $quotes = array(
 array('Walking on water and developing software from a
specification are easy if both are frozen.', 'Edward V Berard'),
 array('It always takes longer than you expect, even when you
take into account Hofstadter’s Law.', 'Hofstadter’s
Law'),
 array('Always code as if the guy who ends up maintaining
your code will be a violent psychopath who knows where you live.',
'Rick Osborne'),
 array('I have always wished for my computer to be as easy to
use as my telephone; my wish has come true because I can no longer
figure out how to use my telephone.', 'Bjarne Stroustrup'),
 array('Java is to JavaScript what Car is to Carpet.', 'Chris
Heilmann'),
);

 private function getRandomQuote()
 {
 return $this->quotes[array_rand($this->quotes)];
 }

 function actionIndex()
 {
 $this->render('index', array(
 'quote' => $this->getRandomQuote()
));
 }

Chapter 3

79

 function actionGetQuote()
 {
 $this->renderPartial('_quote', array(
 'quote' => $this->getRandomQuote(),
));
 }
}

2. We will require two views. The first is protected/views/quote/index.php:
<h2>Quote of the day</h2>
<div id="quote-of-the-day">
 <?php $this->renderPartial('_quote', array(
 'quote' => $quote,
))?>
</div>
<?php echo CHtml::ajaxLink('Next quote', array('getQuote'),
array('update' => '#quote-of-the-day'))?>

The second view named protected/views/quote/_quote.php is as follows:
“<?php echo $quote[0]?>”, <?php echo $quote[1]?>

3. That's it! Now, try to access your quote controller and click on the Next quote link, as
shown in the following screenshot:

How it works...
First, we define a list of quotes in the controller's private property, $quotes, and create a
method to get a random quote. In a real application, you will probably get a quote from a
database using DAO, the query builder, or an Active Record.

AJAX and jQuery

80

Then, we define a view for the index action and _quote, which is used in the getQuote
action that renders it without layout and the index view as a partial. In the view action,
we use CHtml::ajaxLink to create a link that makes a request to the getQuote action
and updates the HTML element with the ID of quote-of-the-day. This is done with a
response CHtml::ajaxLink that generates the following code in the resulting HTML
page (reformatted):

<script type="text/javascript">
/*<![CDATA[*/
jQuery(function($) {
 jQuery('body').delegate('#yt0','click',function(){
 jQuery.ajax({
 'url':'/quote/getQuote',
 'cache':false,
 'success':function(html){
 jQuery("#quote-of-the-day").html(html)
 }
 });
 return false;
 });
});
/*]]>*/
</script>

As jQuery is being used, Yii includes it in the page automatically and does so only once, no
matter how many times we are using it.

You can see that Yii generated a #yt0 ID for us. That is great
because you don't have to worry about setting IDs manually.
Nevertheless, if you are loading a part of the page through
AJAX and this part includes JavaScript-enabled widgets or
the CHtml AJAX helpers, then you need to set IDs manually
because of a possible ID intersection.

There's more...
If you want to customize the success callback, then you can do this by setting it through a
third parameter as follows:

<?php echo CHtml::ajaxLink('Next quote', array('getQuote'),
array('success' => new CJavaScriptExpression('function(data){
 alert(data);
}')))?>

Chapter 3

81

Note that we wrapped the JavaScript code with
CJavaScriptExpression. This is required when you want to
use JavaScript instead of a string, as in the example we just saw.

In some cases, it is not desirable to allow a non-AJAX access to the getQuote action. There
are two ways that we can limit its usage to AJAX-only. First, you can use the built-in ajaxOnly
filter as follows:

class QuoteController extends Controller
{
 function filters()
 {
 return array(
 'ajaxOnly + getQuote',
);
 }
…

After adding this, a user who tries to use the getQuote action directly will get a 400 Bad
Request HTTP error.

The second way is to detect if a request is made through AJAX with a special request method.
For example, if we want to show the standard 404 not found page, we can do this as follows:

function actionGetQuote()
{
 if(!Yii::app()->request->isAjaxRequest)
 throw new CHttpException(404);

 $this->renderPartial('_quote', array(
 'quote' => $this->getRandomQuote(),
));
}

Similarly, we can use one action to serve both AJAX and non-AJAX responses:

function actionGetQuote()
{
 $quote = $this->getRandomQuote();
 if(Yii::app()->request->isAjaxRequest)
 {
 $this->renderPartial('_quote', array(
 'quote' => $quote,
));
 }
 else

AJAX and jQuery

82

 {
 $this->render('index', array(
 'quote' => $quote,
));
 }
}

Prevent including a bundled jQuery
Sometimes, you need to suppress including a bundled jQuery, for example, if your project
code uses a custom way of including JavaScript. To achieve this, you need to configure a
clientScript application component using protected/config/main.php as follows:

return array(

 // …

 // application components
 'components'=>array(
 // …
 'clientScript' => array(
 'scriptMap' => array(
 'jquery.js'=>false,
 'jquery.min.js'=>false,
),
),
),

 // …
);

If you want to use your own specific version of jQuery instead, you can do so in the following way:

return array(

 // …

 // application components
 'components'=>array(
 // …
 'clientScript' => array(
 'scriptMap' => array(
 'jquery.js'=>'/js/jquery-1.4.2.js',
 'jquery.min.js'=>'/js/jquery-1.4.2.min.js',
),
),
),

 // …
);

Chapter 3

83

Further reading
For further information, refer to the following URLs:

 f http://api.jquery.com/

 f http://docs.jquery.com/Ajax/jQuery.ajax#options

 f http://www.yiiframework.com/doc/api/CHtml#ajax-detail

 f http://www.yiiframework.com/doc/api/CHtml#ajaxButton-detail

 f http://www.yiiframework.com/doc/api/CHtml#ajaxSubmitButton-
detail

 f http://www.yiiframework.com/doc/api/CHtml#ajaxLink-detail

See also
 f The Working with JSON recipe

 f The Passing configuration from PHP to JavaScript recipe

Managing assets
An ability to manage assets is one of the greatest parts of Yii. It is especially useful in the
following cases:

 f When you want to implement an extension that stores its JavaScript, CSS, and images
in its own folder that is not accessible from a browser

 f When you need to pre-process your assets: combine JavaScript, compress it,
and so on

 f When you use assets multiple times per page and want to avoid duplicates

While the first two cases could be considered as bonuses, the third one solves many widget
reusing problems.

Let's create a simple widget using sample API, which will publish and use its own CSS,
JavaScript, and an image.

Getting ready
1. Create a fresh Yii application using yiic webapp as described in the official guide.

2. Check that the assets directory under application's webroot (where index.php is)
has write permissions; assets will be written there.

3. Generate and download a preloader image from http://ajaxload.info/.

AJAX and jQuery

84

How to do it...
Let's do some planning first. In Yii, you can place your widgets virtually inside any directory,
and often, it is protected/components. It is acceptable to have one or two classes inside,
but when the number of classes increases, it can create problems. Therefore, let's place our
widget into protected/extensions/yiicookbook. Create an assets directory inside
the widget folder and put inside the ajax-loader.gif image you have just downloaded.
Also, create yiicookbook.css and yiicookbook.js in the same directory.

1. Now let's start with the widget class itself, protected/extensions/
yiicookbook/EYiiCookbook.php:
<?php
class EYiiCookbook extends CWidget
{
 public $object;

 private $loadingImageUrl;
 protected $url = "http://yiicookbook.org/api/%s?callback=?";

 protected function getUrl()
 {
 return sprintf($this->url, urlencode($this->object));
 }

 public function init()
 {
 $assetsDir = dirname(__FILE__).'/assets';
 $cs = Yii::app()->getClientScript();

 $cs->registerCoreScript("jquery");

 // Publishing and registering JavaScript file
 $cs->registerScriptFile(
 Yii::app()->assetManager->publish(
 $assetsDir.'/yiicookbook.js'
),
 CClientScript::POS_END
);

 // Publishing and registering CSS file
 $cs->registerCssFile(
 Yii::app()->assetManager->publish(
 $assetsDir.'/yiicookbook.css'
)
);

Chapter 3

85

 // Publishing image. publish returns the actual URL
 // asset can be accessed with
 $this->loadingImageUrl = Yii::app()->assetManager->publish(
 $assetsDir.'/ajax-loader.gif'
);
 }

 public function run()
 {
 $this->render("body", array(
 'url' => $this->getUrl(),
 'loadingImageUrl' => $this->loadingImageUrl,
 'object' => $this->object,
));
 }
}

2. Now let's define the body view we are using inside the run method protected/
extensions/yiicookbook/views/body.php:
<div class="results" data-url="<?php echo $url?>">
 <h2><?php echo $keyword?> events</h2>
 <div class="data">
 <?php echo CHtml::image($loadingImageUrl)?>
 </div>
</div>

We will need to put the following into yiicookbook.js:
jQuery(function($){
 $(".results").each(function(){
 var url = $(this).data("url");
 var container = $(".data", this);

 $.getJSON(url,function(json){
 var html = "";
 $.each(json.data,function(){
 html += "";
 html += ''+this.name+'';
 if(this.author) {
 html += '
by '+this.author;
 }
 html += "";

AJAX and jQuery

86

 });
 html += "";
 container.html(html);
 });
 });
});

3. Write the following in yiicookbook.css created previously:
.results {
 padding: 10px;
 width: 400px;
 float: left;
}

.results ul {
 padding: 0;
}

.results li {
 list-style: none;
 border: 1px solid #ccc;
 padding: 10px;
 margin: 2px;
}

4. That is it! Our widget is ready. Let's use it. Open your protected/views/site/
index.php file and add the following code to it:
<?php $this->widget("ext.yiicookbook. EYiiCookbook", array(
 'object' => 'book',
))?>

<?php $this->widget("ext.yiicookbook. EYiiCookbook", array(
 'object' => 'website',
))?>

Chapter 3

87

5. Now, it is time to check our application's home page. There should be two blocks
named book and website, as shown in the following screenshot:

How it works...
When we use $this->widget in the site/index view, two EYiiCookbook methods are
called: init, which publishes assets and connects them to the page, and run which renders
widget HTML. First, we use CAssetManager::publish to copy our file into the assets
directory visible from the Web. It returns a URL that can be used to access the resource. In the
case of JavaScript and CSS, we use the CClientScript methods that add the necessary
<script> and <style> tags and prevent duplication. As for an image, we pass its URL to
the body view that uses it to render a placeholder with CHtml::image. When JavaScript is
loaded, it makes requests to the sample API (described at http://yiicookbook.org/
api/) and replaces placeholder with the actual data received.

There's more...
There is more about working with assets.

AJAX and jQuery

88

What is inside the assets directory
Let's check our assets directory. It should look similar to the following:

assets
 1a6630a0\
 main.css
 2bb97318\
 pager.css
 4ab2ffe\
 jquery.js
 …

Directories such as 1a6630a0 are used to prevent collisions of files with similar names from
different directories. The name of the directory is a hash of complete paths to the published
assets directory. Therefore, assets from the same directory are copied to the same place.
This means that if you publish both the image and the CSS file, you can reference images
from CSS using relative paths.

Publishing an entire directory
Using CAssetManager::publish, you can publish an entire directory recursively. The
difference is that single files are monitored after being published, whereas directories are not.

Further reading
For further information, refer to the following URLs:

 f http://www.yiiframework.com/doc/api/CAssetManager

 f http://www.yiiframework.com/doc/api/CClientScript

 f http://www.yiiframework.com/doc/api/CHtml#asset

See also
 f The Creating a widget recipe in Chapter 8, Extending Yii

Including resources in the page
Yii has a special class named CClientScript that can help include scripts, CSS, and other
resources in the page.

Chapter 3

89

How to do it...
We will start with including a script. There are three types of scripts: external scripts, core
scripts, and inline scripts.

External script is a script located in a file and accessible through its own URL. For example,
to include a script with the URL http://example.com/js/main.js, you can use the
following code:

Yii::app()->clientScript->registerScriptFile
 ("http://example.com/js/main.js");

In order to control the place where a script will be inserted, you can pass one of the following
constants as the second parameter:

Constants Description
CClientScript::POS_HEAD In the head section, right before the

title element
CClientScript::POS_BEGIN At the beginning of the body section
CClientScript::POS_END At the end of the body section

Core scripts are the ones bundled with Yii, such as jQuery. You can include a core script in the
following way:

Yii::app()->clientScript->registerCoreScript('jquery');

All packages are listed in framework/web/js/packages.php, as shown in the following
code snippet:

return array(
 'jquery'=>array(
 'js'=>array(YII_DEBUG ? 'jquery.js' : 'jquery.min.js'),
),
 'yii'=>array(
 'js'=>array('jquery.yii.js'),
 'depends'=>array('jquery'),
),
 'yiitab'=>array(
 'js'=>array('jquery.yiitab.js'),
 'depends'=>array('jquery'),
),
 'yiiactiveform'=>array(
 'js'=>array('jquery.yiiactiveform.js'),
 'depends'=>array('jquery'),
),

AJAX and jQuery

90

 'jquery.ui'=>array(
 'js'=>array('jui/js/jquery-ui.min.js'),
 'depends'=>array('jquery'),
),
…

In this list, keys of the array such as jquery, yii, yiitab, and yiiactiveform, are the
names you can use with registerClientScript, and the corresponding arrays are the
real script filenames relative to framework/web/js/source that are actually loaded.

Inline scripts are the scripts contained in a page body. Typically, these are different at every
request. You can include these type of scripts in the following way:

Yii::app()->clientScript->registerScript('myscript', 'alert("Hello,
world!");', CClientScript::POS_READY);

The first parameter is the unique script ID you have chosen. The second parameter is the
script itself. The third one tells Yii where to include a script. Additionally, there are two more
positions that can be used for registerScriptFile:

CClientScript::POS_LOAD In the window.onload() function
CClientScript::POS_READY In the jQuery's ready function

Now, let's move on to CSS. There are two types of CSS: inline and external (no core type
this time).

In order to include an external CSS, you can use the following code:

Yii::app()->clientScript->registerCssFile
 ('http://example.com/css/main.css');

Additionally, this method takes a second parameter, which allows you to specify the media
type you want to include CSS for, such as screen or print. There is no position parameter,
as the only valid place to include a CSS is inside a head tag.

Inline CSS should be avoided wherever possible, but in case you really need it, you can
include it in the following way:

Yii::app()->clientScript->registerCss('myCSS', 'body {margin: 0;
padding: 0}', 'all');

In the preceding code line, myCSS is the unique ID. Then, we have the actual CSS code and a
media type.

Chapter 3

91

How it works...
The Yii's CClientScript methods that we have reviewed, do not include scripts and CSS
instantly. Instead, resources are stored until the application controller calls the render method.
Then, it finds a proper place in the layout and inserts all the needed script, CSS blocks, and tags.
If we include a resource with the same name or URL twice, then it will be included only once.
This allows us to efficiently use resources in a widget, view partial, or any reusable piece of code.

There's more...
We have reviewed the most common resource types: JavaScript and CSS. However, there
are more.

Using custom script packages
While using Yii, you can leverage package features to manage script dependencies in the
same way as core dependencies are managed. This feature is described well at the following
API page:

http://www.yiiframework.com/doc/api/CClientScript#packages-detail

Registering linked resources
CClientScript offers another method that allows you to register a custom <link tag. For
example, it can be useful to add an RSS link for a specific controller action as follows:

Yii::app()->clientScript->registerLinkTag(
 'alternate',
 'application/rss+xml',
 $this->createUrl('rss/articles')
);

Registering meta tags
In addition, CClientScript allows registering of meta tags such as description or
keywords by using the registerMetaTag method. For example, in order to specify a
document encoding, you can use the following code:

Yii::app()->clientScript->registerMetaTag('text/html;charset=utf-8',
null, 'Content-Type');

Further reading
For further information, refer to the following URLs:

 f http://www.yiiframework.com/doc/api/CClientScript

 f http://www.yiiframework.com/doc/guide/1.1/en/topics.performance

AJAX and jQuery

92

See also
 f The Managing assets recipe

 f The Loading a block through AJAX recipe

Working with JSON
JSON is a very simple, compact, and therefore widely used format for AJAX application's data
exchange. Yii has a few handy ways to work with it. Therefore, let's create a simple application
that will show a news list and update it every two seconds.

Getting ready
1. Create a new application by using the yiic webapp tool.

2. Create and set up a new database.

3. Add a table named news with at least id, created_on, and title fields, as shown
in the following code:
CREATE TABLE `news` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `created_on` int(11) unsigned NOT NULL,
 `title` varchar(255) NOT NULL,
 PRIMARY KEY (`id`)
)

4. Generate a News model using Gii.

How to do it...
1. Create a new controller named protected/controllers/NewsController.php

as follows:
<?php
class NewsController extends Controller
{
 public function filters()
 {
 return array(
 'ajaxOnly + data',
);
 }

 public function actionIndex()
 {

Chapter 3

93

 $this->render('index');
 }

 public function actionData()
 {
 $criteria = new CDbCriteria();
 $criteria->order = 'created_on DESC';
 $criteria->limit = 10;
 $news = News::model()->findAll($criteria);

 echo CJSON::encode($news);
 }

 public function actionAddRandomNews()
 {
 $news = new News();
 $news->title = "Item #".rand(1, 10000);
 $news->created_on = time();
 $news->save();
 echo "OK";
 }
}

2. Moreover, create a view named protected/views/news/index.php as follows:
<div class="news-list">
 Loading…
</div>

<?php Yii::app()->clientScript->registerCoreScript("jquery")?>
<script type="text/javascript">
 jQuery(function($) {
 var newsList = $('.news-list');

 function updateNews(){
 newsList.html("Loading…");
 $.ajax({
 url: "<?php echo $this->createUrl('data')?>",
 dataType: 'json',
 cache: false,
 success: function(data) {
 var out = "";
 $(data).each(function(){
 out+=""+this.title+"";
 });

AJAX and jQuery

94

 out += "";
 newsList.html(out);
 }
 });
 }

 updateNews();

 setInterval(function(){
 updateNews()
 }, 2000);
 });
</script>

3. Now, run the index action of the news controller and try to add a few records into
the news database table by running the addRandomNews action. Do not refresh the
index page. News added will appear on the index page once every two seconds, as
shown in the following screenshot:

How it works...
The index action does nothing special, it simply renders a view that includes a div
container and some JavaScript code. As we are using jQuery, we need to ensure that it is
included properly:

<?php Yii::app()->clientScript->registerCoreScript("jquery")?>

Chapter 3

95

Then, we define a function named updateNews and run it every 2,000 milliseconds using
the core JavaScript setInterval function. In updateNews, we make an AJAX request to
the data action of the same controller to process the JSON response and replace the current
content of the placeholder div with formatted data.

In actionData, we get the latest news and convert them to JSON format by passing the
result to CJSON::encode.

There's more...
For further information, refer to the following URLs:

 f http://api.jquery.com/category/ajax/

 f http://www.yiiframework.com/doc/api/CJSON/

 f http://www.yiiframework.com/doc/api/CClientScript/#registerCore
Script-detail

See also
 f The Loading a block through AJAX recipe

Passing configuration from PHP to
JavaScript

You can store application parameters in your configuration file protected/config/
main.php that we can access using Yii::app()->params['paramName']. When your
application uses the JavaScript code, it is handy to have these parameters available for it.
Let's see how to do it in a simple and effective way.

Getting ready
1. Set up a fresh application using the yiic webapp tool. It should generate an

application parameters array in protected/config/main.php:
'params'=>array(
 // this is used in contact page
 'adminEmail'=>'webmaster@example.com',
),

2. Add additional parameters as follows:
'params'=>array(
 // this is used in contact page
 'adminEmail'=>'webmaster@example.com',

AJAX and jQuery

96

 'alert' => array(
 'enabled' => true,
 'message' => 'Hello there!',
),
),

How to do it...
1. Create a controller named protected/controllers/AlertController.php

as follows:
<?php
class AlertController extends Controller
{
 function actionIndex()
 {
 $config = CJavaScript::encode
 (Yii::app()->params->toArray());
 Yii::app()->clientScript->registerScript
 ('appConfig', "var config = ".$config.";",
 CClientScript::POS_HEAD);

 $this->render('index');
 }
}

2. Moreover, create a view named protected/views/alert/index.php as follows:
<script>
 if(config && config.alert && config.alert.enabled &&
 config.alert.message){
 alert(config.alert.message);
 }
</script>

Chapter 3

97

3. Now, if you run the alert controller of the index action, you should get a standard
JavaScript alert window saying Hello there!, as shown in the following screenshot:

How it works...
We use CJavaScript::encode , which converts PHP data structures into JavaScript ones to
turn Yii application parameters into a JavaScript array. Then, we register a script that assigns
it to a global variable config. Then, in our view's JavaScript code, we just use this global
variable config.

See also
 f The Managing assets recipe

 f The Loading a block through AJAX recipe

 f The Rendering content at the client side recipe

AJAX and jQuery

98

Handling variable number of inputs
Sometimes an application requires a form with variable number of inputs. For example, a task
management application can provide a screen where you can add one or more tasks to your
task list. An example of such an application is shown in the following screenshot:

By default, the page will display one task and two buttons: Add task, which will add another
empty task, and Save, which will reload a form with all the tasks added. Let's check how we
can solve this.

Chapter 3

99

Getting ready
Create a fresh application using yiic webapp.

How to do it...
For our example, we will not save any data into the database. Instead, we will learn how to
get a form with a variable number of fields up and running, and how to collect data submitted
with it.

1. We will start with the Task model (protected/models/Task.php). As we agreed
not to use database, CFormModel will be enough as a base class:
<?php
class Task extends CFormModel
{
 public $title;
 public $text;

 public function rules()
 {
 return array(
 array('title', 'required'),
 array('text', 'safe'),
);
 }
}

2. Now, the controller, protected/controllers/TaskController.php:
<?php
class TaskController extends Controller
{
 public function filters()
 {
 return array(
 'ajaxOnly + field'
);
 }

 public function actionIndex()
 {
 $models = array();

AJAX and jQuery

100

 if(!empty($_POST['Task']))
 {
 foreach($_POST['Task'] as $taskData)
 {
 $model = new Task();
 $model->setAttributes($taskData);
 if($model->validate())
 $models[] = $model;
 }
 }

 if(!empty($models)){
 // We've received some models and validated them.
 // If you want to save the data you can do it here.
 }
 else
 $models[] = new Task();

 $this->render('index', array(
 'models' => $models,
));
 }

 public function actionField($index)
 {
 $model = new Task();
 $this->renderPartial('_task', array(
 'model' => $model,
 'index' => $index,
));
 }
}

3. Now, the protected/views/task/index.php view:
<div class="form">
<?php echo CHtml::beginForm()?>
 <ul class="tasks">
 <?php for($i=0; $i<count($models); $i++):?>
 <?php $this->renderPartial('_task', array(
 'model' => $models[$i],
 'index' => $i,
))?>
 <?php endfor ?>

Chapter 3

101

 <div class="row buttons">
 <?php echo CHtml::button('Add task',
 array('class' => 'tasks-add'))?>
 <?php Yii::app()->clientScript->registerCoreScript
 ("jquery")?>
 <script>
 $(".tasks-add").click(function(){
 $.ajax({
 success: function(html){
 $(".tasks").append(html);
 },
 type: 'get',
 url: '<?php echo $this-
 >createUrl('field')?>',
 data: {
 index: $(".tasks li").size()
 },
 cache: false,
 dataType: 'html'
 });
 });
 </script>
 <?php echo CHtml::submitButton('Save')?>
 </div>
<?php echo CHtml::endForm()?>
</div>

4. Finally, a partial protected/views/task/_task.php:

 <div class="row">
 <?php echo CHtml::activeLabel($model, "[$index]title")?>
 <?php echo CHtml::activeTextField($model, "[$index]title")?>
 </div>
 <div class="row">
 <?php echo CHtml::activeLabel($model, "[$index]text")?>
 <?php echo CHtml::activeTextArea($model, "[$index]text")?>
 </div>

AJAX and jQuery

102

5. That is it! Now run the index action of the task controller and check whether it is in
action, as shown in the following screenshot:

How it works...
Let's review how it works starting from the controller's index action. As we are working with
more than one data item, we need to collect them accordingly. In the same way as with a
single model, a form will pass its data in $_POST['model_name']. The only difference is
that in our case, there will be an array of data items as follows:

if(!empty($_POST['Task']))
{
 foreach($_POST['Task'] as $taskData)
 {
 $model = new Task();

Chapter 3

103

 $model->setAttributes($taskData);
 if($model->validate())
 $models[] = $model;
 }
}

For each data item, we are creating a Task model, setting its attributes with data item, and if
it is valid, storing a model into the $models array as follows:

if(!empty($models)){
 // We've received some models and validated them.
 // If you want to save the data you can do it here.
}
else
 $models[] = new Task();

If the $models array is not empty, then there is data passed from the form and it is valid.
If there is no data in the $models array, then we still need at least one item to show it in
the form.

We are not actually saving data in this example. When we use Active Record models, we can
actually save data using $model->save(). Then, we just render the index view when we
render a form as follows:

<?php for($i=0; $i<count($models); $i++):?>
 <?php $this->renderPartial('_task', array(
 'model' => $models[$i],
 'index' => $i,
))?>
<?php endfor ?>

As there are many models, we need to render fields for each one. This is done in the _task
view partial:

 <div class="row">
 <?php echo CHtml::activeLabel($model, "[$index]title")?>
 <?php echo CHtml::activeTextField($model, "[$index]title")?>
 </div>
 <div class="row">
 <?php echo CHtml::activeLabel($model, "[$index]text")?>
 <?php echo CHtml::activeTextArea($model, "[$index]text")?>
 </div>

AJAX and jQuery

104

Note how we use active labels and active fields. For each one, we specify a model and a name
in format [model_index]field_name. The preceding code will generate the following
HTML code:

<div class="row">
 <label for="Task_0_title">Title</label>
 <input name="Task[0][title]" id="Task_0_title" type="text"
 value="" />
</div>
<div class="row">
 <label for="Task_0_text">Text</label>
 <textarea name="Task[0][text]" id="Task_0_text"></textarea></div>

 <div class="row">
 <label for="Task_1_title">Title</label>
 <input name="Task[1][title]" id="Task_1_title" type="text"
 value="" />
 </div>
 <div class="row">
 <label for="Task_1_text">Text</label>
 <textarea name="Task[1][text]" id="Task_1_text">
</textarea></div>

Fields such as Task[0][title] are the special PHP feature. When submitted, parameters
with such names are automatically parsed into PHP arrays.

Now, let's review how the Add task button works:

<?php echo CHtml::button('Add task', array('class' => 'tasks-add'))?>
<?php Yii::app()->clientScript->registerCoreScript("jquery")?>
<script>
 $(".tasks-add").click(function(){
 $.ajax({
 success: function(html){
 $(".tasks").append(html);
 },
 type: 'get',
 url: '<?php echo $this->createUrl('field')?>',
 data: {
 index: $(".tasks li").size()
 },
 cache: false,
 dataType: 'html'
 });
 });
</script>

Chapter 3

105

We are adding a button with the class tasks-add and a jQuery script that attaches the
onClick handler to it. Clicking on this button sends an AJAX request to the field action of
our controller with the parameter index. The parameter's value equals the number of data
items in the form. The field action responds with part of a HTML form that we append to
what we already have.

There's more…
You can find additional information about handling multiple inputs in the official guide, which
can be found at the following URL:

http://www.yiiframework.com/doc/guide/en/form.table

See also
 f The Loading a block through AJAX recipe

Rendering content at the client side
Sometimes a website needs to be a bit more dynamic than usual and should work like
a desktop application. This is often required for complex user interfaces in cases when
response time is critical or when you want to move some load from your server to clients.

In this recipe we'll implement a simple one page "to do" application. It will not reload the page
after adding, deleting, or completing tasks. To make it more fun, let's communicate with the
server side via REST in pure JSON.

Getting ready
1. First of all, create a fresh Yii application using yiic webapp.

2. Create a database. Adjust the db section of protected/config/main.php
configuration file to use it.

3. Execute the following SQL:
CREATE TABLE task (
 id INT AUTO_INCREMENT PRIMARY KEY,
 title VARCHAR(255) NOT NULL,
 done BOOLEAN DEFAULT 0
);

4. Use Gii to generate a Task model.

AJAX and jQuery

106

5. As a client-side template engine, we'll use an excellent doT library available at
http://olado.github.com/doT/. It has easy to learn syntax and is one of the
fastest ones. Get the doT.min.js file from https://raw.github.com/olado/
doT/master/doT.min.js and put it into your project's protected/assets
directory.

6. Create empty protected/assets/todo.js and protected/assets/todo.
css. There we will put main application JavaScript code and CSS styles.

7. Now define the packages. Add the following to your components section of
protected/config/main.php:

'clientScript' => array(
 'packages' => array(
 'doT' => array(
 'basePath'=>'application.assets',
 'js'=>array('doT.min.js'),
),
 'todo' => array(
 'basePath'=>'application.assets',
 'js'=>array('todo.js'),
 'css'=>array('todo.css'),
 'depends'=>array(
 'jquery',
 'doT',
),
),
),
),

How to do it...
1. Let's start with protected/controllers/TodoController.php:

<?php
class TodoController extends CController
{
 public function actionIndex()
 {
 $task = new Task();
 $this->render('index', array(
 'task' => $task,
));
 }

 public function actionTask()
 {

Chapter 3

107

 $req = Yii::app()->request;
 if($req->isPostRequest) {
 $this->handlePost($req->getPost('id'), $req-
>getPost('Task'));
 }
 elseif($req->isPutRequest) {
 $this->handlePut($req->getPut('Task'));
 }
 elseif($req->isDeleteRequest) {
 $this->handleDelete($req->getDelete('id'));
 }
 else {
 $this->handleGet($req->getParam('id'));
 }
 }

 private function handleGet($id)
 {
 if($id) {
 $task = $this->loadModel($id);
 $this->sendResponse($task->attributes);
 }
 else {
 $data = array();
 $tasks = Task::model()->findAll(array('order' => 'id'));
 foreach($tasks as $task) {
 $data[] = $task->attributes;
 }
 $this->sendResponse($data);
 }
 }

 private function handlePut($data)
 {
 $task = new Task();
 $this->saveTask($task, $data);
 }

 private function handlePost($id, $data)
 {
 $task = $this->loadModel($id);
 $this->saveTask($task, $data);
 }

 private function saveTask($task, $data)
 {
 if(!is_array($data)) {

AJAX and jQuery

108

 $this->sendResponse(array(), 400, array('No data
 provided.'));
 }

 $task->attributes = $data;
 if($task->save()) {
 $this->sendResponse($task->attributes);
 } else {
 $errors = array();
 foreach($task->errors as $fieldErrors) {
 foreach($fieldErrors as $error) {
 $errors[] = $error;
 }
 }
 $this->sendResponse(array(), 400, $errors);
 }
 }

 private function handleDelete($id)
 {
 $task = $this->loadModel($id);
 if($task->delete()) {
 $this->sendResponse('OK');
 }
 else {
 $this->sendResponse(array(), 500, array('Unable to
 delete task.'));
 }
 }

 private function loadModel($id)
 {
 $task = Task::model()->findByPk($id);
 if(!$task) {
 $this->sendResponse(array(), 404, array('Task not
 found.'));
 }

 return $task;
 }

 private function sendResponse($data, $responseCode = 200,
$errors = array())
 {
 $messages = array(
 200 => 'OK',
 400 => 'Bad Request',

Chapter 3

109

 404 => 'Not Found',
 500 => 'Internal Server Error',
);

 if(in_array($responseCode, array_keys($messages))) {
 header("HTTP/1.0 $responseCode ".$messages[$responseCode],
true, $responseCode);
 }

 echo json_encode(array(
 'errors' => $errors,
 'data' => $data,
));
 Yii::app()->end();
 }
}

2. Now that we have a REST backend part done, let's move to protected/views/
todo/index.php:
<?php
Yii::app()->clientScript->registerPackage('todo');
$options = json_encode(array(
 'taskEndpoint' => $this->createUrl('todo/task'),
));
Yii::app()->clientScript->registerScript('todo', "todo.
init($options);", CClientScript::POS_READY);
?>

<div class="todo-index">
 <div class="status"></div>
 <div class="tasks"></div>
 <div class="new-task">
 <?php echo CHtml::beginForm()?>
 <?php echo CHtml::activeTextField($task, 'title')?>
 <?php echo CHtml::submitButton('Add')?>
 <?php echo CHtml::endForm()?>
 </div>
</div>

<script id="template-task" type="text/x-dot-template">
 <div class="task{{? it.done==1}} done{{?}}" data-id="{{!it.
id}}">
 <input type="checkbox"{{? it.done==1}}checked {{?}}/>
 <input type="text" value="{{!it.title}}" />
 Remove
 </div>
</script>

AJAX and jQuery

110

3. Put some JavaScript to protected/assets/todo.js to power up UI interaction:
var todo = {
 taskTemplate: null,
 refs: {},
 options: {},
 reload: function(){
 $.ajax({
 url: todo.options.taskEndpoint,
 type: 'get',
 dataType: 'json',
 success: function(response) {
 $.each(response.data, function(index, value){
 todo.refs.tasks.append(todo.taskTemplate(value));
 });
 },
 error: todo.onFailure
 });
 },
 onFailure: function(xhr){
 var data = $.parseJSON(xhr.responseText);
 todo.refs.status.text('');
 $.each(data.errors, function(index, value){
 todo.refs.status.append('<p>'+value+'</p>');
 });
 },
 onAdd: function(e){
 e.preventDefault();
 var form = this;

 $.ajax({
 url: todo.options.taskEndpoint,
 type: 'put',
 data: $(form).serialize(),
 dataType: 'json',
 success: function(response) {
 todo.refs.tasks.append(
 todo.taskTemplate(response.data));
 form.reset();
 },
 error: todo.onFailure
 });
 },
 onDelete: function(e) {
 e.preventDefault();

Chapter 3

111

 var id = $(this).parents('.task').attr('data-id');

 $.ajax({
 url: todo.options.taskEndpoint,
 type: 'delete',
 data: {
 id: id
 },
 dataType: 'json',
 success: function() {
 $('.task[data-id='+id+']').remove();
 },
 error: todo.onFailure
 });
 },
 onChange: function(e) {
 e.preventDefault();

 var data = {
 id: $(this).parents('.task').attr('data-id'),
 Task: {}
 };

 if(this.type==='checkbox') {
 data.Task.done = + this.checked;
 }
 else if(this.type==='text') {
 data.Task.title = $(this).val();
 }

 $.ajax({
 url: todo.options.taskEndpoint,
 type: 'post',
 data: data,
 dataType: 'json',
 success: function(response) {
 $('.task[data-id='+response.data.id+']')
 .before(todo.taskTemplate(response.data))
 .remove();
 },
 error: todo.onFailure
 });
 },
 initLoader: function() {
 var loadingText = 'Loading...';
 $(document).ajaxSend(function(){
 todo.refs.status.text(loadingText);

AJAX and jQuery

112

 }).ajaxStop(function(){
 if(todo.refs.status.text()===loadingText) {
 todo.refs.status.fadeOut(500, function(){
 todo.refs.status.text('').show();
 });
 }
 });
 },
 bindEvents: function() {
 todo.refs.taskForm.submit(todo.onAdd);
 todo.refs.tasks.on('click', '.delete', todo.onDelete);
 todo.refs.tasks.on('change', 'input', todo.onChange);
 },
 initRefs: function() {
 todo.refs.page = $('.todo-index');
 todo.refs.tasks = todo.refs.page.find('.tasks');
 todo.refs.status = todo.refs.page.find('.status');
 todo.refs.taskForm = todo.refs.page.find('.new-task
 form');
 },
 init: function(options){
 todo.options = options;
 todo.taskTemplate = doT.template($('#template-
 task').html());
 todo.initRefs();
 todo.initLoader();
 todo.bindEvents();
 todo.reload();
 }
};

4. And finally a bit of CSS, to make it look acceptable, goes to protected/assets/
todo.css:
.todo-index .status {
 padding: 10px;
 height: 2em;
}

.todo-index .task {
 padding: 4px;
}

.todo-index .task.done input {
 text-decoration: line-through;
}

.todo-index .task input[type=text] {
 border: 1px solid transparent;

Chapter 3

113

 padding: 4px;
 margin: 0 4px;
 width: 300px;
}

.todo-index .task input:focus, .todo-index .task
 input:focus:hover {
 border-color: #999;
}

.todo-index .task input:hover {
 border-color: #eee;
}

.todo-index .new-task {
 padding: 1em;
}

5. Now open /index.php?r=todo in your browser and play with our simple
"todo" application.

AJAX and jQuery

114

How it works...
Let's review what we have just done. We'll start with backend part.

As mentioned previously, the that backend conforms to REST. The idea here is that it uses the
same URI for all the things you can do: create, update, read, and delete. What should be done is
determined by the HTTP method the URI is requested with: put is create, post is update, get is
read, and delete is delete. That's what the TaskController::actionTask method does.

Another action called actionIndex just renders the initial HTML skeleton and initializes the
JavaScript part.

All the handle* methods are pretty straightforward and similar. There are three utility
methods: loadModel, which loads model in the same fashion as CRUD generated with Gii,
saveTask, which handles task editing or creation, and sendResponse, which sends HTTP
response code via a header and a consistent JSON structure that always includes error and
data properties. According to REST principles, the application should return the HTTP code
200 if everything went fine, 400 if there was a validation error or wrong parameters were
passed, 404 if the resource wasn't found, and 500 in case there was an internal error.

Let's check the JavaScript part now. All of it is contained within a single file, protected/
assets/todo.js, which is initialized from the index view.

When it happens, the init method is called and options are passed as argument. In our
case, the options object contains only one setting called taskEndpoint, which contains
URI pointing to the REST API endpoint.

In the init method, we start by making options available in other methods using todo.
options = options;. After that we initialize a task template described in the index view
with a <script element with an id value of template-task:

todo.taskTemplate = doT.template($('#template-task').html());

The doT.template method returns a function that can be used later to render the task HTML.

Inside todo.initRefs(); we're building references to DOM elements that we are going to
re-use. That's not to be done every time and therefore gaining some performance.

todo.initLoader(); implements a global AJAX request indication. ajaxSend is
called when a request is issued and ajaxStop is called when there's a response. For our
application, we're showing the Loading... string on top of the to-do list and slowly hiding it
after loading is done.

todo.bindEvents(); binds all necessary handlers for the UI elements we have:

todo.refs.taskForm.submit(todo.onAdd);
todo.refs.tasks.on('click', '.delete', todo.onDelete);
todo.refs.tasks.on('change', 'input', todo.onChange);

Chapter 3

115

The first line is for submitting a new task, the second and third are about deleting and
changing tasks. Note that the last two are using jQuery's .on method to delegate event
handling to wrapper div with the class .tasks. This way there's no need to bind all the
events again and again for newly added tasks.

Finally todo.reload();, asynchronously sends the get request to the endpoint to get initial
data, iterates over the data, and then renders it using the function got from doT.template:

$.ajax({
 url: todo.options.taskEndpoint,
 type: 'get',
 dataType: 'json',
 success: function(response) {
 $.each(response.data, function(index, value){
 todo.refs.tasks.append(todo.taskTemplate(value));
 });
 },
 error: todo.onFailure
});

For all the requests we're using the same todo.onFailure error handler. It just shows
errors inside div with the .status class.

onAdd: function(e){
 e.preventDefault();
 var form = this;

 $.ajax({
 url: todo.options.taskEndpoint,
 type: 'put',
 data: $(form).serialize(),
 dataType: 'json',
 success: function(response) {
 todo.refs.tasks.append(todo.taskTemplate(response.data));
 form.reset();
 },
 error: todo.onFailure
 });
},

The onAdd method handles the adding of new task. e.preventDefault(); is to prevent
regular form submission. After it's prevented, we're sending an AJAX request to the REST
endpoint instead.

AJAX and jQuery

116

A request is made using the put HTTP method. The form data is then passed to the API. Upon
success, we render the HTML template of the task using the function got from doT.template
and appending the result to the task list. After that we just reset the entered form values.

The onDelete method needs to know the ID of the task you want to delete. We can get it
from a data-id attribute of div with the .task class.

var id = $(this).parents('.task').attr('data-id');

This is then passed to our backend using the delete HTTP method:

$.ajax({
 url: todo.options.taskEndpoint,
 type: 'delete',
 data: {
 id: id
 },
 dataType: 'json',
 success: function() {
 $('.task[data-id='+id+']').remove();
 },
 error: todo.onFailure
});

In the previous code snippet, in the success handler we remove the DOM element from
the UI.

onChange handles both clicking on the checkbox to complete a task and changing the task
title. We form data based on whichever element was changed then adding it to the task ID
received from the data-id attribute:

var data = {
 id: $(this).parents('.task').attr('data-id'),
 Task: {}
};

if(this.type==='checkbox') {
 data.Task.done = + this.checked;
}
else if(this.type==='text') {
 data.Task.title = $(this).val();
}

Then we send it to the REST API using the HTTP post method. Right after getting a response
we render the updated task HTML and remove the old one:

$('.task[data-id='+response.data.id+']')
 .before(todo.taskTemplate(response.data))
 .remove();

Chapter 3

117

Doing it this way instead of manually updating the changed elements inside the existing HTML
file greatly simplifies our code.

The index view is rendered by the index action and is used to initialize the application
and provide a doT template that is used for rendering on the client side. Let's check what's
interesting there.

Yii::app()->clientScript->registerPackage('todo');

This line registers a package named todo that we've described before in protected/
config/main.php. Since there are dependencies it will result in the following:

<link rel="stylesheet" type="text/css" href="/assets/775a975/todo.css"
/>
<script type="text/javascript" src="/assets/838c4e0/jquery.js"></
script>
<script type="text/javascript" src="/assets/775a975/doT.min.js"></
script>
<script type="text/javascript" src="/assets/775a975/todo.js"></script>

Check the See also section of this recipe to learn more about how to work with packages.

On the client side we want to reuse the Yii URLs if there are complex rules defined or an
application is located in a subdirectory. There's no sense in re-implementing Yii URL manager
in JavaScript, so we're passing the REST endpoint URL from server side to client side. Since
in JavaScript we've wrapped our code into the var todo = { object and it has the init
method that we can call to generate some code that will call it passing all necessary options
as an argument:

$options = json_encode(array(
 'taskEndpoint' => $this->createUrl('todo/task'),
));
Yii::app()->clientScript->registerScript('todo', "todo.
init($options);", CClientScript::POS_READY);

The view also provides a template that is used by the doT template engine to render task
HTML on the client side:

<script id="template-task" type="text/x-dot-template">
 <div class="task{{? it.done==1}} done{{?}}" data-id="{{!it.id}}">
 <input type="checkbox"{{? it.done==1}}checked {{?}}/>
 <input type="text" value="{{!it.title}}" />
 Remove
 </div>
</script>

AJAX and jQuery

118

Here all data is prefixed with it.. {{!it.something}} is for properly outputting escaped
value and is the same as echo CHtml::encode($something). {{? it.done==1}}
done{{?}} is a condition same as the following:

<?php if($done==1):?> done <?php endif?>

As mentioned previously, to use such a template from JavaScript you need first to prepare it:

todo.taskTemplate = doT.template($('#template-task').html());

Then you're actually getting HTML by passing data as an argument to the function prepared:

todo.taskTemplate(response.data);

There's more…
To learn more about the doT template syntax, go to http://olado.github.com/doT/.

If the client-side template engine alone is not enough for your complex UI, consider checking
the following libraries:

 f KnockoutJS – http://knockoutjs.com/

 f Ember.js – http://emberjs.com/

 f Backbone.js – http://backbonejs.org/

 f AngularJS - http://angularjs.org/

Once mastered these libraries reduce the amount of code required to achieve your
goals significantly. Of course these aren't the only libraries for building complex browser
applications, but it's a good decision to start your search with these.

See also
 f The Including resources in the page recipe

 f The Passing configuration from PHP to JavaScript recipe

4
Working with Forms

In this chapter we will cover the following topics:

 f Writing your own validators

 f Uploading files

 f Adding CAPTCHA

 f Customizing CAPTCHA

 f Creating a custom input widget with C Input Widget

Introduction
Yii makes working with forms a breeze and the documentation on it is almost complete.
Still, there are some areas that need clarification and examples. We will describe them in
this chapter.

Writing your own validators
Yii provides a good set of built-in form validators that cover the most typical of developer's
needs and are highly configurable. However, in some cases, the developer may face a need to
create a custom validator.

A good example would be the website ownership validation. For a few of their services, Google
requires you to upload a file with the name and content specified to your website, and then
checks if it is there. We will do the same.

There are two ways to achieve it; you can use a class method as a validator, or the second way
is to create a separate class.

Working with Forms

120

Getting ready
Create a new application using yiic webapp as described in the official guide.

How to do it...
1. We will start with the class method approach. First, we need to implement a form

model. So, create protected/models/SiteConfirmation.php as follows:
<?php
class SiteConfirmation extends CFormModel {
 public $url;

 public function rules()
 {
 return array(
 array('url', 'confirm'),
);
 }

 public function confirm($attribute,$params)
 {
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL, $this->url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 $output = curl_exec($ch);
 curl_close($ch);
 if(trim($output)!='code here')
 $this->addError('url','Please upload file first.');
 }
}

2. Now, we will use our model from our test controller. Create protected/
controllers/TestController.php as follows:
<?php
class TestController extends CController
{
 function actionIndex()
 {
 $confirmation = new SiteConfirmation();
 $confirmation->url = 'http://yiicookbook.org/verify.html';
 if($confirmation->validate())
 echo 'OK';
 else
 echo 'Please upload a file.';
 }
}

Chapter 4

121

3. Now, try to run the test controller. You should get OK because there is a file with the
code here text available from http://yiicookbook.org/verify.html. If you
replace the confirmation URL with another one, then you get Please upload a File as
there is no such file uploaded.

How it works...
In the SiteConfirmation model, we define a $url field and add a rules method that
defines a single validation rule for this field. As there is no built-in validator named confirm,
Yii assumes that we want to describe the validation rule in a method named confirm. In this
method we use PHP's standard CURL to get the verify.html file's contents from a remote
host and compare its content with the code here string. If the file content is different, then
we add an error using the addError method.

Optionally, we can use two validation method arguments: $attribute and $params. For
example, we can specify the validation rule in the following way:

array('url', 'confirm', 'param1' => 'value1', 'param2' => 'value3'),

We then get the $attribute value set to url and the $params value set to the following:

array
(
 'param1' => 'value1'
 'param2' => 'value3'
)

There's more...
As we probably want to reuse this kind of validator, we will move its functionality from a
model method to a separate class. So, create a file named protected/components/
RemoteFileValidator.php as follows:

<?php
class RemoteFileValidator extends CValidator
{
 public $content = '';

 protected function validateAttribute($object,$attribute)
 {
 $value=$object->$attribute;

 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL, $value);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

Working with Forms

122

 $output = curl_exec($ch);
 curl_close($ch);

 if(trim($output)!=$this->content)
 $this->addError($object,$attribute,'Please upload file
 first.');
 }
}

The custom validator class should extend CValidator and implement its abstract
validateAttribute method. Arguments passed on to it are $object, which is an
instance of the validated model, and $attribute, which contains the validated attribute
name. Parameters that are passed are assigned to corresponding public properties of the
validator class.

That is it. Now, we will use it. In the SiteConfirmation model, we should change the
validation rule to the following:

array('url', 'RemoteFileValidator', 'content' => 'code here'),

Here we have used an external validator name. If there is no method with the same name in
the model and no built-in validator with same name, Yii will try to find an external validator
class with the name or path alias specified.

The rest of the code stays untouched and now you can reuse the validator in other models.

Further reading
For further information, refer to the following URLs:

 f http://www.yiiframework.com/doc/api/CValidator/

 f http://www.yiiframework.com/doc/api/CModel#rules-detail

Uploading files
Handling file uploads is a pretty common task for a web application. Yii has some helpful
classes built in to do this. Let's create a simple form that will allow uploading ZIP archives and
storing them in protected/uploads.

Getting ready
Before starting with this recipe, perform the following:

1. Create a fresh application using yiic webapp.

2. In your protected directory, create an uploads directory.

Chapter 4

123

How to do it...
1. We will start with the model, so create protected/models/Upload.php

as follows:
<?php
class Upload extends CFormModel
{
 public $file;

 public function rules()
 {
 return array(
 array('file', 'file', 'types'=>'zip'),
);
 }
}

2. Now we will move on to the controller, so create protected/controllers/
UploadController.php:
<?php
class UploadController extends Controller
{
 function actionIndex()
 {
 $dir = Yii::getPathOfAlias('application.uploads');
 $uploaded = false;

 $model=new Upload();

 if(isset($_POST['Upload']))
 {
 $model->attributes=$_POST['Upload'];
 $model->file=CUploadedFile::getInstance($model,'file');
 if($model->validate())
 $uploaded=$model->file->saveAs($dir.'/'.$model->file-
>getName());
 }

 $this->render('index', array(
 'model' => $model,
 'uploaded' => $uploaded,
 'dir' => $dir,
));
 }
}

Working with Forms

124

3. Finally, you can view protected/views/upload/index.php:
<?php if($uploaded):?>
<p>File was uploaded. Check <?php echo $dir?>.</p>
<?php endif ?>
<?php echo CHtml::beginForm('','post',array
 ('enctype'=>'multipart/form-data'))?>
 <?php echo CHtml::error($model, 'file')?>
 <?php echo CHtml::activeFileField($model, 'file')?>
 <?php echo CHtml::submitButton('Upload')?>
<?php echo CHtml::endForm()?>

4. That is it. Now, run the upload controller and try uploading both ZIP archives and
other files, as shown in the following screenshot:

How it works...
The model we use is pretty simple. We define only one field, named $file, and a validation rule
that uses file validator CFileValidator, which reads only zip files are allowed.

The controller is a bit more complicated. We will review it line by line:

$dir = Yii::getPathOfAlias('application.uploads');
$uploaded = false;

$model=new Upload();

if(isset($_POST['Upload']))
{
 $model->attributes=$_POST['Upload'];

Chapter 4

125

The $dir directory will hold the uploaded ZIP archives. We then set it to protected/uploads
using an alias. The $uploaded flag determines if we need to display a success message. Then,
we create a model instance and fill it with data from $_POST if the form is submitted.

$model->file=CUploadedFile::getInstance($model,'file');
if($model->validate()){
 $uploaded=$model->file->saveAs($dir.'/'.$file->getName());

We then use CUploadedFile::getInstance, which gives us access to use the
CUploadedFile instance. This class is a wrapper around the $_FILE array that PHP
fills when the file is uploaded.

We make sure that the file is a ZIP archive by calling the model's validate method, then we
save the file using CUploadedFile::saveAs.

The rest includes passing some values to the view:

<?php if($uploaded):?>
<p>File was uploaded. Check <?php echo $dir?>.</p>
<?php endif ?>

If the $uploaded flag is set to true, we display a message.

In order to upload a file, the HTML form must meet the following
two important requirements:

 f Method should be set to POST
 f The enctype attribute should be set to multipart/

form-data

We can generate such HTML using the CHtml helper or CActiveForm with htmlOptions
set. Here, CHtml was used:

<?php echo CHtml::beginForm('','post',array('enctype'=>'multipart/
form-data'))?>

The rest is the standard form. We display an error and a field for model's file attribute and
render a submit button.

There's more...
If you want to upload multiple files, you should modify the protected/controllers/
UploadController.php code in the following way:

if(isset($_POST['Upload']))
{
 $model->attributes=$_POST['Upload'];
 $files=CUploadedFile::getInstances($model,'file');

Working with Forms

126

 if($model->validate())
 {
 foreach($files as $file)
 $file->saveAs($dir.'/'.$file->getName());

In a view you should echo file fields in the following way:

<?php echo CHtml::activeFileField($model, "[0]file")?>
<?php echo CHtml::activeFileField($model, "[1]file")?>
<?php echo CHtml::activeFileField($model, "[2]file")?>

File validation
The file validator we use in a model allows us not only to limit files to a certain type, but also to
set other limits, such as file size or number of files, in case of a multiple file upload.

For example, the following rule will only allow uploading images with a file size less than
one megabyte:

array('file', 'file', 'types'=>'jpg, gif, png', 'maxSize' => 1048576),

Further reading
For further information refer to the following URLs:

 f http://www.yiiframework.com/doc/api/CFileValidator

 f http://www.yiiframework.com/doc/api/CUploadedFile

See also
 f The Handling variable number of inputs recipe in Chapter 3, AJAX and jQuery

Adding CAPTCHA
Nowadays, on the Internet, if you leave a form without a spam protection, you will get a ton
of spam data entered in a short time. Yii includes a CAPTCHA component that makes adding
such a protection a breeze. The only problem is that there is no systematic guide on how
to use it.

In the following example, we will add a CAPTCHA protection to a simple form.

Chapter 4

127

Getting ready
1. Create a fresh application using yiic webapp.

2. Create a form model named protected/models/EmailForm.php as follows:
<?php
class EmailForm extends CFormModel
{
 public $email;

 function rules(){
 return array(
 array('email', 'email'),
);
 }
}

3. Create a controller named protected/controllers/EmailController.php as
follows:
<?php
class EmailController extends Controller
{
 public function actionIndex()
 {
 $success = false;

 $model = new EmailForm();
 if(!empty($_POST['EmailForm']))
 {
 $model->setAttributes($_POST['EmailForm']);
 if($model->validate())
 {
 $success = true;
 // handle form here
 }
 }
 $this->render('index', array(
 'model' => $model,
 'success' => $success,
));
 }
}

Working with Forms

128

4. Create a view named protected/views/email/index.php as follows:
<?php if($success):?>
<p>Success!</p>
<?php endif?>

<?php echo CHtml::beginForm()?>
 <p>
 <?php echo CHtml::activeLabel($model, 'email')?>
 <?php echo CHtml::activeTextField($model, 'email')?>
 <?php echo CHtml::error($model, 'email')?>
 </p>
 <p>
 <?php echo CHtml::submitButton()?>
 </p>
<?php echo CHtml::endForm()?>

5. Now, we have an e-mail submission form, as shown in the following screenshot, which
validates the e-mail field. Let's add CAPTCHA.

Chapter 4

129

How to do it...
1. First, we need to customize the form model. We need to add $verifyCode, which

will hold the verification code entered and add a validation rule for it:
<?php
class EmailForm extends CFormModel
{
 public $verifyCode;
 public $email;

 function rules(){
 return array(
 array('email', 'email'),
 array('verifyCode', 'captcha', 'allowEmpty'=>
 !CCaptcha::checkRequirements()),
);
 }
}

2. We then need to add an external action to the controller. Add the following code to it:
public function actions()
{
 return array(
 'captcha'=>array(
 'class'=>'CCaptchaAction',
),
);
}

3. In a view, we need to show an additional field and the CAPTCHA image. The following
code will do this for us:
<?php if(CCaptcha::checkRequirements()&&
 Yii::app()->user->isGuest):?>
 <p>
 <?php echo CHtml::activeLabelEx($model, 'verifyCode')?>
 <?php $this->widget('CCaptcha')?>
 </p>
 <p>
 <?php echo CHtml::activeTextField($model, 'verifyCode')?>
 <?php echo CHtml::error($model, 'verifyCode')?>
 </p>
<?php endif?>

Working with Forms

130

4. That is it. Now, you can run the e-mail controller and check CAPTCHA in action, as
shown in the following screenshot:

If there are no errors on the screen and no CAPTCHA field in the form,
most probably you don't have the GD PHP extension installed and
configured. GD is required for CAPTCHA because it generates images.
We have added several CCaptcha::checkRequirements()
checks, so the application will not use CAPTCHA if the image cannot
be displayed, but it will still work.

How it works...
In a view, we call the CCaptcha widget that renders the <img tag with a src attribute
pointing to CCaptchaAction we added to the controller. In this action, an image with a
random word is generated. The word generated is a code that the user should enter into the
form. It is stored in a user session and an image is displayed to the user.

When the user enters the e-mail and verification code into the form, we assign these
values to the form model and then validate it. For the verification of the code field, we use
CCaptchaValidator. It gets the code from the user session and compares it to the code
entered. If they don't match, the model data is considered invalid.

Chapter 4

131

There's more...
If you restrict access to controller actions by using the accessRules controller method, don't
forget to grant everyone access to them:

public function accessRules() {
 return array(
 // …
 array('allow',
 'actions'=>array('captcha'),
 'users'=>array('*'),
),
 array('deny',
 'users'=>array('*'),
),
);
}

Further reading:
For further information refer to the following URLs:

 f http://www.yiiframework.com/doc/api/CCaptcha/

 f http://www.yiiframework.com/doc/api/CCaptchaAction/

 f http://www.yiiframework.com/doc/api/CCaptchaValidator/

See also
 f The Using external actions recipe in Chapter 2, Router, Controller, and Views

 f The Customizing CAPTCHA recipe

Customizing CAPTCHA
A standard Yii CAPTCHA is good enough to protect you from spam, but there are situations
where you may want to customize it, such as the following:

 f You face a spam-bot that can read image text and you need to add more challenge

 f You want to make it more interesting or easier to enter the CAPTCHA text

In our example, we will modify Yii's CAPTCHA so it will require the user to solve a really simple
arithmetic puzzle instead of just repeating the text in an image.

Working with Forms

132

Getting ready
As a starting point for this example, we will take the result of the Adding CAPTCHA recipe.
Alternatively you can take any form that uses CAPTCHA, as we are not modifying the existing
code a lot.

How to do it...
We need to customize CCaptchaAction, which generates the code and renders its image
representation. The code should be a random number and the representation should be an
arithmetic expression that gives the same result.

1. Create protected/components/MathCaptchaAction.php as follows:
<?php
class MathCaptchaAction extends CCaptchaAction
{
 protected function generateVerifyCode()
 {
 return mt_rand((int)$this->minLength,
 (int)$this->maxLength);
 }

 public function renderImage($code)
 {
 parent::renderImage($this->getText($code));
 }

 protected function getText($code)
 {
 $code = (int)$code;
 $rand = mt_rand(1, $code-1);
 $op = mt_rand(0, 1);
 if($op)
 return $code-$rand. "+".$""rand;
 else
 return $code+$rand. "- ".$" "rand;
 }
}

2. Now, in our controller's actions method, we need to replace CCaptchaAction with
our own CAPTCHA action as follows:
public function actions()
{
 return array(
 'captcha'=>array(

Chapter 4

133

 'class'=>'MathCaptchaAction',
 'minLength' => 1,
 'maxLength' => 10,
),
);
}

3. Now, run your form and try the new CAPTCHA. It will show arithmetic expressions
with numbers from 1 to 10 and will require entering an answer, as shown in the
following screenshot:

How it works...
We override two CCaptchaAction methods. In generateVerifyCode we generate a random
number instead of text. Then as we need to render an expression instead of just showing text,
we override renderImage. The expression itself is generated in our custom getText method.

There's more...
In order to learn more about CAPTCHA, you can use the following resources:

 f http://www.yiiframework.com/doc/api/CCaptcha/

 f http://www.yiiframework.com/doc/api/CCaptchaAction/

 f http://www.yiiframework.com/doc/api/CCaptchaValidator/

Working with Forms

134

See also
 f The Using external actions recipe in Chapter 2, Router, Controller, and Views

 f The Adding CAPTCHA recipe

Creating a custom input widget with
CInputWidget

Yii has a very good set of form widgets, but as with every framework out there, Yii does
not have them all. In this recipe, we will learn how to create your own input widget. For our
example, we will create a range input widget.

Getting ready
Create a fresh application by using yiic webapp.

How to do it...
We will start with the widget itself:

1. Create a widget class named protected/components/RangeInputField.php
as follows:
<?php
class RangeInputField extends CInputWidget
{
 public $attributeFrom;
 public $attributeTo;

 public $nameFrom;
 public $nameTo;

 public $valueFrom;
 public $valueTo;

 protected function hasModel()
 {
 return $this->model instanceof CModel && $this-
>attributeFrom!==null && $this->attributeTo!==null;
 }

 function run()
 {

Chapter 4

135

 if($this->hasModel())
 {
 echo CHtml::activeTextField
 ($this->model, $this->attributeFrom);
 echo ' → ';
 echo CHtml::activeTextField
 ($this->model, $this->attributeTo);
 }
 else {
 echo CHtml::textField($this->nameFrom, $this->valueFrom);
 echo ' → ';
 echo CHtml::textField($this->nameTo, $this->valueTo);
 }
 }
}

2. Now, we need to test how it works. We will need a form model named protected/
models/RangeForm.php:
<?php
class RangeForm extends CFormModel
{
 public $from;
 public $to;

 function rules()
 {
 return array(
 array('from, to', 'numerical', 'integerOnly' => true),
 array('from', 'compare', 'compareAttribute' => 'to',
 'operator' => '<=', 'skipOnError' => true),
);
 }
}

3. Now create a controller named protected/controllers/RangeController.
php as follows:
<?php
class RangeController extends Controller
{
 function actionIndex()
 {
 $success = false;
 $model = new RangeForm();
 if(!empty($_POST['RangeForm']))
 {

Working with Forms

136

 $model->setAttributes($_POST['RangeForm']);
 if($model->validate())
 $success = true;
 }

 $this->render('index', array(
 'model' => $model,
 'success' => $success,
));
 }
}

4. Create a view named protected/views/range/index.php as follows:
<?php if($success):?>
<p>Success!</p>
<?php endif?>

<?php echo CHtml::errorSummary($model)?>
<?php echo CHtml::beginForm()?>
 <?php $this->widget('RangeInputField', array(
 'model' => $model,
 'attributeFrom' => 'from',
 'attributeTo' => 'to',
))?>
 <?php echo CHtml::submitButton('Submit')?>
<?php echo CHtml::endForm()?>

5. Now, run the range controller to see a widget in action, as shown in the
following screenshot:

Chapter 4

137

How it works...
A typical input widget can be used both with a model as an active field widget and without a
model. An active field widget handles the value and validation automatically.

As there are two fields (From and To) in our widget, we define three pairs of public properties:
attribute, name, and value. The attribute pair is used if there is a model passed to a
widget; this means that the widget is used as an active input. The name and value pairs are
used if you want to generate the input with custom names and values.

In our case, we simply override the run method to render two fields in a customized way.
Actual field handling is delegated to CHtml::activeTextField and CHtml::textField.

In order to render a widget in a view, we use the CController::widget method as follows:

 <?php $this->widget('RangeInputField', array(
 'model' => $model,
 'attributeFrom' => 'from',
 'attributeTo' => 'to',
))?>

All options set in an array are assigned to the corresponding public properties of a widget.

There's more...
In order to learn more about widgets, you can use the following resources:

 f http://www.yiiframework.com/doc/api/CInputWidget/

 f http://www.yiiframework.com/doc/api/CWidget/

See also
 f The Configuring components and Configuring widget defaults recipes in Chapter 1,

Under the Hood

5
Testing Your Application

In this chapter, we will cover:

 f Setting up the testing environment

 f Writing and running unit tests

 f Using fixtures

 f Testing the application with functional tests

 f Generating code coverage reports

Introduction
In a small application, the value of testing can be unnoticeable. In large applications it is
different. When an application grows and you start modifying your code, it becomes difficult
not to break anything else relying on it. Even if you hire a team of professional testers, you are
slowing the development a lot. However, automated testing can partially solve this problem.

Another application of automated testing is Test-driven Development (TDD). The idea is
simple: when you know how a component will work, write down your requirements in the form
of an automated test prior to implementing a component. This way in the end, you will know if
your component works as expected and you will not have to write tests later.

Setting up the testing environment
In this recipe, we will prepare a testing environment that can be used to run automated unit
tests and functional tests. Unit tests in Yii are based on PHPUnit and functional tests are
based on Selenium server. Additionally, you need Xdebug to generate code
coverage reports.

Testing Your Application

140

Getting ready
 f Make sure that you have properly configured PHP to work in a command-line mode

 f Use the yiic webapp tool to generate a fresh application

 f Configure the application to use clean URLs as described in Chapter 2, Router,
Controller, and Views, in the Configuring URL rules recipe

How to do it...
We will start with PHPUnit.

1. To install it, we need to set up PEAR first. In most Linux environments, it is already set
up, so you can skip this part if it already works.

2. To test if PEAR works, open console and type pear. You should get the
following output:

3. If you get the preceding output after running pear, then everything is OK. If not, then
you need to install it by carrying out the following steps:

i. Open http://pear.php.net/go-pear and save the content
as a PHP file; go-pear.php. Then, run it in the console with
php go-pear.php and follow the instructions.

ii. In Windows, it is useful to add the PEAR location to the PATH
environment variable, so it can be used simply as PEAR.

4. Now, it is time to install the PHPUnit. Open the console and type the following:
pear channel-discover pear.phpunit.de

pear channel-discover components.ez.no

pear channel-discover pear.symfony-project.com

pear install phpunit/PHPUnit

Chapter 5

141

5. Now, type phpunit and you should get the following output:

6. Done. Now let's install the Selenium server. There is no PEAR package for it, so
go to http://seleniumhq.org/download/ and download the latest release
of the Selenium server project. You should get an archive named something like
selenium-server-standalone-2.0rc2.jar.

7. In order to run the server, you should have the Java runtime environment installed. Go
to the server directory and type the following:
java -jar selenium-server-standalone-2.0rc2.jar

You should get something similar to the following:

8. That's it! The server is up and running. Now we move onto Xdebug. Go to http://
www.xdebug.org/download.php and download the latest binaries or the source for
your platform. On Linux, the extension should be built from the source. Under Windows,
you just put dll somewhere. Then, in your php.ini file, you need to add the following:
[xdebug]
zend_extension=c:/path/to/your/php_xdebug_version.dll

Testing Your Application

142

If you are running on Linux, then you should provide the absolute path to
php_xdebug_version so that it is compiled according to http://www.xdebug.
org/docs/install.

In order to test if Xdebug is installed, you can use http://www.xdebug.org/
find-binary.php.

Now you should have all of the required tools up and running.

9. Now, we will review the application generated by using yiic webapp. Everything
test-related was put under protected/tests:
fixtures
functional
report
unit
bootstrap.php
WebTestCase.php
phpunit.xml

The folders generated are used to store different tests, fixtures, and code
coverage reports.

10. bootstrap.php is used to initialize Yii's application environment to run tests in it:
// change the following paths if necessary
$yiit=dirname(__FILE__).'/../../../framework/yiit.php';
$config=dirname(__FILE__).'/../config/test.php';

require_once($yiit);
require_once(dirname(__FILE__).'/WebTestCase.php');

Yii::createWebApplication($config);

As we can see, it uses a separate configuration file under protected/config/
test.php, so if you use database or cache, you need to configure it in this file.

11. WebTestCase.php is used as a base class for all functional tests. We need to edit
it and set the TEST_BASE_URL to the URL of your website. Finally, phpunit.xml is
the standard PHPUnit configuration file. We don't need to touch it, unless you want to
add more browsers for functional tests or to configure the global PHPUnit settings.

There's more...
In order to get a more detailed installation guide, you can refer to the following URLs:

 f http://pear.php.net/manual/en/installation.php

 f http://phpunit.de/

 f http://seleniumhq.org/docs/05_selenium_rc.html

Chapter 5

143

See also
 f The Using fixtures recipe

 f The Testing the application with functional tests recipe

 f The Generating code coverage reports recipe

Writing and running unit tests
Unit testing is generally used to test the relatively standalone components of an application,
such as API wrappers of different services or classes by implementing your own custom logic.

In this recipe, we will review the structure of a unit test, the most useful methods of PHPUnit,
and a way to run a test from the yiic console.

As an example, we will follow the TDD approach to create a class that will generate an HTML
markup from a limited amount of BBCode tags. For simplicity, we will support only [b], [i],
and [url].

Getting ready
Make sure that you have a ready-to-use application and testing tools as described in the
Setting up the testing environment recipe in this chapter.

How to do it...
1. First, let's define the syntax and some use cases:

In Out

[b]test[/b] test

[i]test[/i] test

[url]http://yiiframework.
com/[/url]

http://yiiframework.com/

[url=http://yiiframework.
com/]yiiframework.com[/url]

<a href="http://yiiframework.
com/">yiiframework.com

[b]test1[/b] [b]test2[/b] test1
test2

[b][i]test[/i][/b] test

Testing Your Application

144

2. Now, we will call our class EBBCode and its method to convert BBCode to HTML
EBBCode::process, and then write unit tests. Create a test file, protected/
tests/unit/BBCodeTest.php, as follows:
<?php
class BBCodeTest extends CTestCase
{
 private function process($bbCode)
 {
 $bb = new EBBCode();
 return $bb->process($bbCode);
 }

 function testSingleTags()
 {
 $this->assertEquals('test',
 $this->process('[b]test[/b]'));
 $this->assertEquals('test',
 $this->process('[i]test[/i]'));
 $this->assertEquals(
 '
 http://yiiframework.com/',
 $this->process('[url]http://yiiframework.com/[/url]')
);
 $this->assertEquals(
 '
 yiiframework.com',
 $this->process
('[url=http://yiiframework.com/]yiiframework.com[/url]')
);
 }

 function testMultipleTags()
 {
 $this->assertEquals(
 'test1 test2',
 $this->process('[b]test1[/b] [b]test2[/b]')
);
 $this->assertEquals(
 'test',
 $this->process('[b][i]test[/i][/b]')
);
 }
}

Chapter 5

145

3. Here we run the BBCode converter with different input strings and check if the output
matches with what we are expecting. Now we will run a test and make sure it fails.
Open the console and type the following:
cd path/to/protected/tests

phpunit unit/BBCodeTest.php

You should get an output similar to the following screenshot:

4. EE means that there are two tests and two errors, each marked with E and a
summary at the end that doubles it with a readable text. In the middle, there are
errors telling us why tests have failed. In our case, both tests failed because we have
not created any implementation yet.

5. Now, we will fix it. As the error states, we need an EBBCode.php file with an
EBBCode class inside. Create one in protected/components/EBBCode.php as
follows:
<?php
class EBBCode
{
}

Testing Your Application

146

Run the tests again. The tests are still failing, but this time we have a different error,
as seen in the following screenshot:

6. The preceding error tells us to create a method named EBBCode::process. Create
it and run the tests again. The output will be different again because we did what was
instructed by the previous error:

Chapter 5

147

7. So, now there are no fatal errors and PHPUnit tells us that for the input string provided
at line 12 of BBCodeTest.php, we should get output as test,
but instead we get an empty string. So, let's do some implementation to fix it:
<?php
class EBBCode
{
 function process($string)
 {
 $preg = array(
 '~\[b\](.*)\[/b\]~i' => '$1',
 '~\[i\](.*)\[/i\]~i' => '$1',
 '~\[url\](.*)\[/url\]~i' => '$1',
 '~\[url=([^]]+)\](.*)\[/url\]~i' => '$2',
);
 return preg_replace(array_keys($preg),
 array_values($preg), $string);
 }
}

8. Now, the test output should be similar to the one shown in the following screenshot:

Testing Your Application

148

9. .F in the preceding screenshot means that one test passed and one failed. As we
can see in the error message, nested tags were processed wrong. So, we will fix this
by using a non-greedy modifier for regular expressions as follows:
<?php
class EBBCode
{
 function process($string)
 {
 $preg = array(
 '~\[b\](.*?)\[/b\]~i' => '$1',
 '~\[i\](.*?)\[/i\]~i' => '$1',
 '~\[url\](.*?)\[/url\]~i' => '$1',
 '~\[url=([^]]+)\](.*?)\[/url\]~i' => '$2',
);
 return preg_replace(array_keys($preg),
 array_values($preg), $string);
 }
}

10. Now, the following test results are the ones we'd like to see:

11. All the tests passed, which means that we have the BBCode class implemented in the
right way (or at least in the way we have planned).

The preceding process allowed us to create a test that fails to implement the functionality that
passes it. This is called a Test-driven Development (TDD). It allows you to implement exactly
what is planned and be sure that it will not break in the future.

Chapter 5

149

How it works...
The CTestCase class we have used is a wrapper around the PHPUnit PHPUnit_Framework_
TestCase. It does not provide any additional functionality, but it is used to initialize the
PHPUnit class loader. We have defined two methods with names starting with test. This
means that they will be run as test methods. Inside, we are performing the same processing
with a different input and comparing the output with the result expected by using the
PHPUnit_Framework_TestCase::assertEquals method. This method simply checks if
two values are equal. If they are not, an error is generated and the test method is considered
to have failed.

There's more...
If you need to check different assertion types, then you can use additional PHPUnit_
Framework_TestCase methods, such as assertTrueassertFileExists or
assertRegExp.

There are more features in PHPUnit, which are described in the official documentation at the
following URL:

http://www.phpunit.de/manual/current/en/

See also
 f The Setting up the testing environment recipe

Using fixtures
Unit tests perform their job just fine when you test the class logic. However, when it comes
to classes that work with both the environment and data, it becomes a little complicated.
What data should we test against? How do we get the same environment each time a test
is being executed?

In order to be useful, a unit test should be repeatable. That is why we need to reset the data
state on every test run. In PHPUnit, we can do this by using a feature named fixtures. When it
comes to database, Yii has a helpful database fixtures addition.

For our example, we will test a coupon system that handles the coupon code registration. The
coupon will be stored in a database table named coupon consisting of two columns: id and
description. For simplicity, the coupon component simply deletes the already registered
coupon record and echoes its description.

Testing Your Application

150

Getting ready
1. Make sure that you have a ready-to-use application and the required testing tools as

described in the Setting up the testing environment recipe of this chapter.

2. Create an AR model for the coupon protected/models/Coupon.php as follows:
<?php
class Coupon extends CActiveRecord
{
 public static function model($className=__CLASS__)
 {
 return parent::model($className);
 }

 public function tableName() {
 return 'coupon';
 }

 public function rules() {
 return array(
 array('description', 'required'),
);
 }
}

3. Create a coupon manager class, protected/components/CouponManager.php,
as follows:

<?php
class CouponManager
{
 function registerCoupon($code)
 {
 $coupon = Coupon::model()->findByPk($code);
 if(!$coupon)
 return false;

 echo "Coupon registered. $coupon->description";
 return $coupon->delete();
 }
}

Chapter 5

151

How to do it...
1. OK, now we will write tests. Inside protected/tests/unit, create CouponTest.

php. We will need two test cases.

The first case will test the existing coupon code handling and the second case will
test the non-existing coupon code handling. In addition, we need to configure a
database, create tables, and insert data in the tables prior to the execution of the
test. In the end, we will have the following code:

<?php
class CouponTest extends CDbTestCase
{
 public $fixtures = array(
 'coupon' => 'Coupon',
);

 public static function setUpBeforeClass()
 {
 if(!extension_loaded('pdo') ||
 !extension_loaded('pdo_sqlite'))
 markTestSkipped('PDO and SQLite extensions are required.');

 $config=array(
 'basePath'=>dirname(__FILE__),
 'components'=>array(
 'db'=>array(
 'class'=>'system.db.CDbConnection',
 'connectionString'=>'sqlite::memory:',
),
 'fixture'=>array(
 'class'=>'system.test.CDbFixtureManager',
),
),
);
 Yii::app()->configure($config);

 $c = Yii::app()->getDb()->createCommand();
 $c->createTable('coupon', array(
 'id' => 'varchar(255) PRIMARY KEY NOT NULL',
 'description' => 'text',
));
 }

Testing Your Application

152

 public static function tearDownAfterClass()
 {
 if(Yii::app()->getDb())
 Yii::app()->getDb()->active=false;
 }
 protected function setUp()
 {
 parent::setUp();
 $_GET['existing_code'] = 'discount_for_me';
 $_GET['non_existing_code'] = 'non_existing';
 }

 public function testCodeAcceptance()
 {
 $cm = new CouponManager();
 $this->assertTrue($cm->registerCoupon
 ($_GET['existing_code']));
 $this->assertFalse((boolean)Coupon::model()->findByPk
 ($_GET['existing_code']));
 }

 public function testCodeNotFound()
 {
 $countBefore = Coupon::model()->count();

 $cm = new CouponManager();
 $this->assertFalse($cm->registerCoupon
 ($_GET['non_existing_code']));
 $countAfter = Coupon::model()->count();
 $this->assertEquals($countBefore, $countAfter);
 }
}

2. Also, we need to define fixtures in protected/tests/fixtures/coupon.php as
follows:
<?php
return array(
 array(
 'id' => 'free_book',
 'description' => 'Choose one book for free!',
),
 array(
 'id' => 'merry_christmas',
 'description' => '5% Christmas discount!',
),

Chapter 5

153

 array(
 'id' => 'discount_for_me',
 'description' => '5% discount special for you!',
),
);

Here, the id and description keys correspond to table or Active Record model
fields, and values are to be added to these fields when the fixture is applied.

3. Now, try to run the test from the console as follows:

cd path/to/protected/tests

phpunit unit/CouponTest.php

You should now get the following output:

How it works...
We will review the test execution flow. This time, we used a few special PHPUnit fixture
methods named setUpBeforeClass and setUp. The setUpBeforeClass method
executes once after the test class is instantiated and is typically used to initialize things
common for all the test methods of this class. In our case, we will now check if we have PDO
and SQLite required to run this test:

if(!extension_loaded('pdo') || !extension_loaded('pdo_sqlite'))
 markTestSkipped('PDO and SQLite extensions are required.');

We then create a configuration test application and apply the following:

$config=array(
 'basePath'=>dirname(__FILE__),
 'components'=>array(
 'db'=>array(
 'class'=>'system.db.CDbConnection',

Testing Your Application

154

 'connectionString'=>'sqlite::memory:',
),
 'fixture'=>array(
 'class'=>'system.test.CDbFixtureManager',
),
),
);

Yii::app()->configure($config);

We then use an in-memory SQLite database to speed tests up and avoid creating and deleting
database files. In addition, we connect a fixture component, which we use to fill data.

Now, it is time to create the database schema. In our case, it is the coupon table:

$c = Yii::app()->getDb()->createCommand();
$c->createTable('coupon', array(
 'id' => 'varchar(255) PRIMARY KEY NOT NULL',
 'description' => 'text',
));

That's it! The test class is created and PHPUnit starts to execute the test methods one by one.
Before each test method execution, it calls setUp. In our case, it is simple:

parent::setUp();
$_GET['existing_code'] = 'discount_for_me';
$_GET['non_existing_code'] = 'non_existing';

parent::setUp refers to CDbTestCase::setup, which reads data from fixtures and
places it into the tables or models. Both fixtures and models are defined in the $fixtures
property as follows:

public $fixtures = array(
 'coupon' => 'Coupon',
);

This means that fixtures are read from protected/tests/fixtures/coupon.php and
applied to the Coupon model. In order to apply fixtures to the table without using a model, we
can define a $fixtures property in the following way:

public $fixtures = array(
 'coupon' => ':coupon',
);

Then, we set the environment with the $_GET variables. Similarly, you can set cookies, server
variables, class properties, and so on.

After executing testCodeAcceptance and before the testCodeNotFound method
execution, setUp is executed again, restoring the coupon table data from the fixture.

Chapter 5

155

Finally, when all the test methods have been executed, we need to close the connection. We
do this in the tearDownAfterClass method executed just before the class is destroyed.

There's more...
We have used Yii's database fixtures and it allowed the data not to be cleaned up manually on
each execution. If we need to clean up data, then we can use the PHPUnit teardown method
that is executed after each test method execution.

You can refer to the following sources to get more information about fixtures:

 f http://www.phpunit.de/manual/current/en/fixtures.html

 f http://www.yiiframework.com/doc/guide/en/test.fixture

See also
 f The Setting up the testing environment recipe

Testing the application with functional tests
While unit tests are used to test standalone components or component groups, functional
tests allow for the testing of the complete application, like black box testing. We don't know
what is inside and can only provide an input and get/verify the output. In our case, the input
is the actions the user carries out in a browser, such as clicking on buttons or links, loading
pages, and so on, while the output is what happens in the browser.

For our example, we will create a simple "check all" widget with a single button that checks
and unchecks all checkboxes on the current page.

Getting ready
1. Make sure that you have a ready-to-use application and the required testing tools as

described in the Setting up the testing environment recipe of this chapter.

2. Don't forget to run the server.

3. Drop the widget code into protected/components/ECheckAllWidget.php
as follows:
<?php
class ECheckAllWidget extends CWidget
{
 public $checkedTitle = 'Uncheck all';
 public $uncheckedTitle = 'Check all';

Testing Your Application

156

 public function run()
 {
 Yii::app()->clientScript->registerCoreScript('jquery');
 echo CHtml::button($this->uncheckedTitle, array(
 'id' => 'button-'.$this->id,
 'class' => 'check-all-btn',
 'onclick' => '
 switch($(this).val())
 {
 case "'.$this->checkedTitle.'":
 $(this).val("'.$this->uncheckedTitle.'");
 $("input[type=checkbox]").attr("checked",
 false);
 break;
 case "'.$this->uncheckedTitle.'":
 $(this).val("'.$this->checkedTitle.'");
 $("input[type=checkbox]").attr("checked",
 true);
 break;
 }
 '
));
 }
}

4. Now create protected/controllers/CheckController.php as follows:
<?php
class CheckController extends Controller
{
 function actionIndex()
 {
 $this->render('index');
 }
}

5. In addition, create a view, protected/views/check/index.php, as follows:
<?php $this->widget('ECheckAllWidget')?>

<?php echo CHtml::checkBox('test1', true)?>
<?php echo CHtml::checkBox('test2', false)?>
<?php echo CHtml::checkBox('test3', true)?>
<?php echo CHtml::checkBox('test4', false)?>
<?php echo CHtml::checkBox('test5', true)?>
<?php echo CHtml::checkBox('test6', true)?>

Chapter 5

157

How to do it...
Let's imagine how we would test it manually:

1. Load the page.

2. Verify that the button title is Check all.

3. Click on the button once.

4. Verify that all checkboxes are checked and the button title is Uncheck all.

5. Click on the button again.

6. Verify that all checkboxes are unchecked and the button title is Check all.

Now we will implement the functional test, doing exactly the same as described previously:

1. Create protected/tests/functional/CheckAllWidgetTest.php as follows:
<?php
class CheckAllWidgetTest extends WebTestCase
{
 public function testWidget()
 {
 $this->open('check/index');
 $this->assertEquals("Check all",
 $this->getAttribute("class=check-all-btn@value"));

 $this->click("class=check-all-btn");
 $this->assertChecked("css=input[type=checkbox]");
 $this->assertEquals("Uncheck all",
 $this->getAttribute("class=check-all-btn@value"));

 $this->click("class=check-all-btn");
 $this->assertNotChecked("css=input[type=checkbox]");
 $this->assertEquals("Check all",
 $this->getAttribute("class=check-all-btn@value"));
 }
}

2. Now open the console and type the following:
cd path/to/protected/tests

phpunit functional/CheckAllWidgetTest.php

Testing Your Application

158

You should get the following output:

3. Now, try to break a widget and run the test again. For example, you can comment the
onclick handler:

Chapter 5

159

This means that your widget does not work as expected. In this case, the test failed
on line 11.
$this->assertEquals("Uncheck all",
 $this->getAttribute("class=check-all-btn@value"));

The actual value was still Check all but the test expected Uncheck all.

How it works...
PHPUnit starts executing all the methods named like testSomething one by one. As we
have only one method, it executes testWidget:

$this->open('check/index');

It opens a page we created for testing:

$this->assertEquals("Check all", $this->getAttribute
 ("class=check-all-btn@value"));

It gets button text and checks if it equals the string provided. The getAttribute method
searches for a DOM element with a class check-all-btn and returns its value attribute text.

$this->click("class=check-all-btn");

It clicks an element with a class check-all-btn. That is the button.

$this->assertChecked("css=input[type=checkbox]");

The assertChecked and assertNotChecked methods are used to find whether a
checkbox is checked. This time we use a CSS selector, input[type=checkbox], to
get all the checkboxes.

Inside, we call methods such as getAttribute or assertChecked, and pass it to the
Selenium server, which does the actual work and returns the result.

There's more...
In order to learn more about the functional testing, you can refer to the following resources:

 f http://www.yiiframework.com/doc/guide/en/test.functional

 f http://www.phpunit.de/manual/current/en/selenium.html

 f http://seleniumhq.org/docs/05_selenium_rc.html

 f http://seleniumhq.org/docs/04_selenese_commands.html

Testing Your Application

160

See also
 f The Setting up the testing environment recipe

 f The Writing and running unit tests recipe

Generating code coverage reports
It is very important to know how well your application is tested. If you wrote all the tests
by yourself, then you can probably guess it, but if there is a team or you are working on a
relatively old project, guessing will not work. Fortunately, there is a way to generate code
coverage reports using PHPUnit and Xdebug. This report gives information about how well the
application is tested, which lines are being executed while running tests, and which are not.

As an example, we will generate a report for the Yii framework's core base classes.

Getting ready
The Yii framework core tests are not included into release distributions, so we need to get it
from the GitHub.

How to do it...
1. Go to https://github.com/yiisoft/yii and either download code using the

ZIP button or use git to clone it.

2. In console, enter the following:
cd path/to/code/tests/ phpunit --coverage-html report framework/
base

3. After the report is generated, go to the path/to/code/tests/ report and open
index.html in your browser.

How it works...
The code coverage report that was generated can tell us how well the project was tested and
which parts required more testing to be done.

The code coverage report is generated based only on the tests
you have run. It is better to run the complete test pack for the
project to get the actual information, but for simplicity and speed,
we have only executed a few tests of the Yii framework code.

Chapter 5

161

The first report page gives us an overview of which files were tested, and how many lines,
methods, and classes were executed. As we are interested in covering as much code as
we can, the things to look for are displayed in red and yellow. In the following screenshot,
we can see that more tests for CApplication.php and CStatePersister.php need
to be written:

If we click on a class name, for example, on CComponent.php, then we get more details. The
following screenshot shows the class level report:

Testing Your Application

162

Moreover, the actual code shows what is covered in green:

If we click on the dashboard link on the main report page, then we get a handy summary
showing the most risky untested classes and methods, as shown in the following screenshot:

Chapter 5

163

There's more...
In order to learn more about the code coverage, refer to the PHPUnit manual at the
following URLs:

 f http://www.phpunit.de/manual/current/en/code-coverage-analysis.
html

 f http://www.phpunit.de/manual/current/en/selenium.html

See also
 f The Setting up the testing environment recipe

6
Database, Active

Record, and
Model Tricks

In this chapter we will cover the following topics:

 f Getting data from a database

 f Defining and using multiple DB connections

 f Using scopes to get models for different languages

 f Processing model fields with AR event-like methods

 f Applying markdown and HTML

 f Highlighting code with Yii

 f Automating timestamps

 f Setting up an author automatically

 f Implementing single table inheritance

 f Using CDbCriteria

Database, Active Record, and Model Tricks

166

Introduction
There are three main methods to work with databases in Yii: Active Record, query builder,
and direct SQL queries through DAO. All three are different in terms of syntax, features,
and performance.

In this chapter we will learn how to work with the database efficiently, when to use models
and when not to, how to work with multiple databases, how to automatically preprocess Active
Record fields, and how to use powerful database criteria.

In this chapter we will use the Sakila sample database Version 0.8, available at the official
MySQL website: http://dev.mysql.com/doc/index-other.html.

Getting data from a database
Most applications today use databases. Be it a small website or a social network, at least
some parts are powered by databases. Yii introduces three ways that allow you to work
with databases:

 f Active Record

 f Query builder

 f SQL via DAO

We will use all these methods to get data from the film, film_actor, and actor tables
and show it in a list. We will measure the execution time and memory usage to determine
when to use these methods.

Getting ready
1. Create a new application by using yiic webapp as described in the official guide at

the following URL:

http://www.yiiframework.com/doc/guide/en/quickstart.first-app

2. Download the Sakila database from the following URL:

http://dev.mysql.com/doc/index-other.html

3. Execute the downloaded SQLs; first schema then data.

4. Configure the DB connection in protected/config/main.php to use the
Sakila database.

5. Use Gii to create models for the actor and film tables.

Chapter 6

167

How to do it...
1. We will create protected/controllers/DbController.php as follows:

<?php
class DbController extends Controller
{
 protected function afterAction($action)
 {
 $time = sprintf('%0.5f', Yii::getLogger()
 ->getExecutionTime());
 $memory = round(memory_get_peak_usage()/(1024*1024),2)."MB";
 echo "Time: $time, memory: $memory";
 parent::afterAction($action);
 }

 public function actionAr()
 {
 $actors = Actor::model()->findAll(array('with' => 'films',
 'order' => 't.first_name, t.last_name, films.title'));
 echo '';
 foreach($actors as $actor)
 {
 echo '';
 echo $actor->first_name.' '.$actor->last_name;
 echo '';
 foreach($actor->films as $film)
 {
 echo '';
 echo $film->title;
 echo '';
 }
 echo '';
 echo '';
 }
 echo '';
 }
 public function actionQueryBuilder()
 {
 $rows = Yii::app()->db->createCommand()
 ->from('actor')
 ->join('film_actor', 'actor.actor_id=film_actor.actor_id')
 ->leftJoin('film', 'film.film_id=film_actor.film_id')
 ->order('actor.first_name, actor.last_name, film.title')
 ->queryAll();

Database, Active Record, and Model Tricks

168

 $this->renderRows($rows);
 }

 public function actionSql()
 {
 $sql = "SELECT *
 FROM actor a
 JOIN film_actor fa ON fa.actor_id = a.actor_id
 JOIN film f ON fa.film_id = f.film_id
 ORDER BY a.first_name, a.last_name, f.title";

 $rows = Yii::app()->db->createCommand($sql)->queryAll();

 $this->renderRows($rows);
 }

 public function renderRows($rows)
 {
 $lastActorName = null;

 echo '';
 foreach($rows as $row)
 {
 $actorName = $row['first_name'].' '.$row['last_name'];
 if($actorName!=$lastActorName){
 if($lastActorName!==null){
 echo '';
 echo '';
 }
 $lastActorName = $actorName;
 echo '';
 echo $actorName;
 echo '';
 }
 echo '';
 echo $row['title'];
 echo '';
 }
 echo '';
 }
}

Here, we have three actions corresponding to three different methods of getting data
from a database.

Chapter 6

169

2. After running the preceding db/ar, db/queryBuilder and db/sql actions, you
should get a tree showing 200 actors and 1,000 films they have acted in, as shown in
the following screenshot:

Database, Active Record, and Model Tricks

170

3. At the bottom there are statistics that give information about the memory usage
and execution time. Absolute numbers can be different if you run this code, but the
difference between the methods used should be about the same:

Method Memory usage (megabytes) Execution time (seconds)
Active Record 19.74 1.14109
Query builder 17.98 0.35732
SQL (DAO) 17.74 0.35038

How it works...
Let's review the preceding code.

The actionAr action method gets model instances by using the Active Record approach.
We start with the Actor model generated with Gii to get all the actors and specify 'with'
=> 'films' to get the corresponding films using a single query or eager loading through
relation, which Gii builds for us from InnoDB table foreign keys. We then simply iterate over all
the actors and for each actor—over each film. Then for each item, we print its name.

The actionQueryBuilder function uses query builder. First, we create a query command
for the current DB connection with Yii::app()->db->createCommand(). We then add
query parts one by one with from, join, and leftJoin. These methods escape values,
tables, and field names automatically. The queryAll function returns an array of raw
database rows. Each row is also an array indexed with result field names. We pass the result
to renderRows, which renders it.

With actionSql, we do the same, except we pass SQL directly instead of adding its parts
one by one. It's worth mentioning that we should escape parameter values manually with
Yii::app()->db->quoteValue before using them in the query string.

The renderRows function renders the query builder. The DAO raw row requires you to add
more checks and generally, it feels unnatural compared to rendering an Active Record result.

Chapter 6

171

As we can see, all these methods give the same result in the end, but they all have different
performance, syntax, and extra features. We will now do a comparison and figure out when to
use each method:

Method Active Record Query Builder SQL (DAO)
Syntax This will do SQL for you.

Gii will generate models and
relations for you.

Works with models,
completely OO-style, and a
very clean API.

Produces an array of
properly nested models as
the result.

Clean API, suitable
for building query on
the fly.

Produces raw data
arrays as the result.

Good for complex SQL.

Manual values and
keyword quoting.

Not very suitable for
building a query on the
fly.

Produces raw data
arrays as results.

Performance Higher memory usage and
execution time compared to
SQL and query builder.

Okay. Okay.

Extra
features

Quotes values and names
automatically.

Behaviors.

Before/after hooks.

Validation.

Quotes values and
names automatically.

None.

Best for Prototyping selects.

Update, delete, and create
actions for single models
(the model gives a huge
benefit when using with
forms).

Working with large
amounts of data,
and building queries
on the fly.

Complex queries you
want to complete with
pure SQL and have
maximum possible
performance.

There's more...
In order to learn more about working with databases in Yii, refer to the following resources:

 f http://www.yiiframework.com/doc/guide/en/database.dao

 f http://www.yiiframework.com/doc/guide/en/database.query-builder

 f http://www.yiiframework.com/doc/guide/en/database.ar

See also
 f The Using CDbCriteria recipe

Database, Active Record, and Model Tricks

172

Defining and using multiple DB connections
Multiple database connections are not used very often for new standalone web applications.
However, when you are building an add-on application for an existing system, you will most
probably need another database connection.

From this recipe you will learn how to define multiple DB connections and use them with DAO,
query builder, and Active Record models.

Getting ready
1. Create a new application by using yiic webapp as described in the official guide at

the following URL:

http://www.yiiframework.com/doc/guide/en/quickstart.first-app

2. Create two MySQL databases named db1 and db2.

3. Create a table named post in db1 as follows:
DROP TABLE IF EXISTS `post`;
CREATE TABLE IF NOT EXISTS `post` (
 `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
 `title` VARCHAR(255) NOT NULL,
 `text` TEXT NOT NULL,
 PRIMARY KEY (`id`)
);

4. Create a table named comment in db2 as follows:

DROP TABLE IF EXISTS `comment`;
CREATE TABLE IF NOT EXISTS `comment` (
 `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
 `text` TEXT NOT NULL,
 `postId` INT(10) UNSIGNED NOT NULL,
 PRIMARY KEY (`id`)
);

How to do it...
1. We will start with configuring the DB connections. Open protected/config/main.

php and define a primary connection as described in the official guide:
'db'=>array(
 'connectionString' => 'mysql:host=localhost;dbname=db1',
 'emulatePrepare' => true,
 'username' => 'root',

Chapter 6

173

 'password' => '',
 'charset' => 'utf8',
),

2. Copy it, rename the db component to db2, and change the connection string
accordingly. Also, you need to add the class name as follows:
'db2'=>array(
 'class'=>'CDbConnection',
 'connectionString' => 'mysql:host=localhost;dbname=db2',
 'emulatePrepare' => true,
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
),

3. That is it. Now you have two database connections and you can use them with DAO
and query builder as follows:
$db1Rows = Yii::app()->db->createCommand($sql)->queryAll();
$db2Rows = Yii::app()->db2->createCommand($sql)->queryAll();

4. Now, if we need to use Active Record models, we first need to create Post and
Comment models with Gii. Starting from Yii version 1.1.11, you can just select an
appropriate connection for each model.

Now you can use the Comment model as usual. Create protected/controllers/
DbtestController.php as follows:

<?php
class DbtestController extends CController
{
 public function actionIndex()
 {
 $post = new Post();
 $post->title = "Post #".rand(1, 1000);
 $post->text = "text";
 $post->save();

 echo '<h1>Posts</h1>';

 $posts = Post::model()->findAll();
 foreach($posts as $post)
 {
 echo $post->title."
";
 }

Database, Active Record, and Model Tricks

174

 $comment = new Comment();
 $comment->postId = $post->id;
 $comment->text = "comment #".rand(1, 1000);
 $comment->save();

 echo '<h1>Comments</h1>';

 $comments = Comment::model()->findAll();
 foreach($comments as $comment)
 {
 echo $comment->text."
";
 }
 }
}

5. Run dbtest/index multiple times and you should see records added to both
databases, as shown in the following screenshot:

How it works...
In Yii you can add and configure your own components through the configuration file. For non-
standard components, such as db2, you have to specify the component class. Similarly, you
can add db3, db4, or any other component, for example, facebookApi. The remaining array
key/value pairs are assigned to the component's public properties respectively.

Chapter 6

175

There's more...
Depending on the RDBMS used, there are additional things we can do to make it easier to use
multiple databases.

Cross-database relations
If you are using MySQL, it is possible to create cross-database relations for your models. In
order to do this, you should prefix the Comment model's table name with the database name
as follows:

class Comment extends CActiveRecord
{
 //…
 public function tableName()
 {
 return 'db2.comment';
 }
 //…
}

Now, if you have a comments relation defined in the Post model relations method, you can
use the following code:

$posts = Post::model()->with('comments')->findAll();

Further reading
For further information, refer to the following URL:

http://www.yiiframework.com/doc/api/CActiveRecord

See also
 f The Getting data from a database recipe

Using scopes to get models for different
languages

Internationalizing your application is not an easy task. You need to translate interfaces,
translate messages, format dates properly, and so on. Yii helps you to do this by giving you
access to the Common Locale Data Repository (CLDR) data of Unicode and providing
translation and formatting tools. When it comes to applications with data in multiple
languages, you have to find your own way.

From this recipe, you will learn a possible way to get a handy model function that will help to
get blog posts for different languages.

Database, Active Record, and Model Tricks

176

Getting ready
1. Create a new application by using yiic webapp as described in the official guide at

the following URL:

http://www.yiiframework.com/doc/guide/en/quickstart.first-app

2. Set up the database connection and create a table named post as follows:
DROP TABLE IF EXISTS `post`;
CREATE TABLE IF NOT EXISTS `post` (
 `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
 `lang` VARCHAR(5) NOT NULL DEFAULT 'en',
 `title` VARCHAR(255) NOT NULL,
 `text` TEXT NOT NULL,
 PRIMARY KEY (`id`)
);

INSERT INTO `post`(`id`,`lang`,`title`,`text`)
VALUES (1,'en_us','Yii news','Text in English'),
(2,'de','Yii Nachrichten','Text in Deutsch');

3. Generate a Post model using Gii.

How to do it...
1. Add the following methods to protected/models/Post.php as follows:

class Post extends CActiveRecord
{
 public function defaultScope()
 {
 return array(
 'condition' => "lang=:lang",
 'params' => array(
 ':lang' => Yii::app()->language,
),
);
 }

 public function lang($lang){
 $this->getDbCriteria()->mergeWith(array(
 'condition' => "lang=:lang",
 'params' => array(
 ':lang' => $lang,
),
));
 return $this;
 }
}

Chapter 6

177

2. That is it. Now, we can use our model. Create protected/controllers/
DbtestController.php as follows:
<?php
class DbtestController extends CController
{
 public function actionIndex()
 {
 // Get posts written in default application language
 $posts = Post::model()->findAll();

 echo '<h1>Default language</h1>';
 foreach($posts as $post)
 {
 echo '<h2>'.$post->title.'</h2>';
 echo $post->text;
 }

 // Get posts written in German
 $posts = Post::model()->lang('de')->findAll();

 echo '<h1>German</h1>';
 foreach($posts as $post)
 {
 echo '<h2>'.$post->title.'</h2>';
 echo $post->text;
 }
 }
}

3. Now, run dbtest/index and you should get an output similar to the one shown in
the following screenshot:

Database, Active Record, and Model Tricks

178

How it works...
We have used Yii's Active Record scopes in the preceding code. The defaultScope function
returns the default condition or criteria that will be applied to all the Post model query
methods. As we need to specify the language explicitly, we create a scope named lang, which
accepts the language name. With $this->getDbCriteria(), we get the model's criteria in
its current state and then merge it with the new condition. As the condition is exactly the same
as in defaultScope, except for the parameter value, it overrides the default scope.

In order to support chained calls, lang returns the model instance by itself.

There's more...
For further information, refer to the following URLs:

 f http://www.yiiframework.com/doc/guide/en/database.ar

 f http://www.yiiframework.com/doc/api/CDbCriteria/

See also
 f The Getting data from a database recipe

 f The Using CDbCriteria recipe

Processing model fields with AR event-like
methods

Active Record implementation in Yii is very powerful and has many features. One of these
features is event-like methods, which you can use to preprocess model fields before putting
them into the database or getting them from a database, as well as deleting data related to
the model, and so on.

In this recipe, we will linkify all URLs in the post text and we will list all existing Active Record
event-like methods.

Getting ready
1. Create a new application by using yiic webapp as described in the official guide at

the following URL:
http://www.yiiframework.com/doc/guide/en/quickstart.first-app

Chapter 6

179

2. Set up a database connection and create a table named post as follows:
DROP TABLE IF EXISTS `post`;
CREATE TABLE IF NOT EXISTS `post` (
 `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
 `title` VARCHAR(255) NOT NULL,
 `text` TEXT NOT NULL,
 PRIMARY KEY (`id`)
);

3. Generate the Post model using Gii

How to do it...
1. Add the following method to protected/models/Post.php as follows:

protected function beforeSave()
{
 $this->text = preg_replace('~((?:https?|ftps?)://.*?)(|$)~iu',
'\1\2', $this->text);
 return parent::beforeSave();
}

2. That is it. Now, try saving a post containing a link. Create protected/
controllers/TestController.php as follows:
<?php
class TestController extends CController
{
 function actionIndex()
 {
 $post=new Post();
 $post->title='links test';
 $post->text='test http://www.yiiframework.com/ test';
 $post->save();
 print_r($post->text);
 }
}

3. Run test/index. You should get the following:

Database, Active Record, and Model Tricks

180

How it works...
The beforeSave method is implemented in the CActiveRecord class and executed just
before saving a model. By using a regular expression, we replace everything that looks like a
URL with a link that uses this URL and call the parent implementation, so that real events are
raised properly. In order to prevent saving, you can return false.

There's more...
There are more event-like methods available as shown in the following table:

Method name Description
afterConstruct This is called after a model instance is created

by the new operator
beforeDelete/afterDelete This is called before/after deleting a record
beforeFind/afterFind This method is invoked before/after each

record is instantiated by a find method
beforeSave/afterSave This method is invoked before/after saving a

record successfully
beforeValidate/afterValidate This method is invoked before/after

validation ends

Further reading
In order to learn more about using event-like methods in Yii, you can refer to the
following URLs:

 f http://www.yiiframework.com/doc/api/CActiveRecord/

 f http://www.yiiframework.com/doc/api/CModel

See also
 f The Using Yii events recipe in Chapter 1, Under the Hood

 f The Highlighting code with Yii recipe

 f The Automating timestamps recipe

 f The Setting up an author automatically recipe

Chapter 6

181

Applying markdown and HTML
When we create web applications, we will certainly have to deal with creating content. Of
course, we can create it with pure text or HTML, but text is often too simple and HTML is too
complex and insecure. That is why special markup languages, such as BBCode, Textile, and
markdown are used.

In this recipe, we will learn how to create a model that will automatically convert markdown to
HTML when it is being saved.

Getting ready
1. Create a new application by using yiic webapp as described in the official guide at

the following URL:

http://www.yiiframework.com/doc/guide/en/quickstart.first-app

2. Set up a database connection and create a table named post as follows:
DROP TABLE IF EXISTS `post`;
CREATE TABLE IF NOT EXISTS `post` (
 `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
 `title` VARCHAR(255) NOT NULL,
 `text` TEXT NOT NULL,
 `html` TEXT NOT NULL,
 PRIMARY KEY (`id`)
);

3. Generate the Post model using Gii.

How to do it...
1. Open the protected/models/Post.php file and add the following method:

protected function beforeValidate()
{
 $parser=new CMarkdownParser();
 $this->html=$parser->transform($this->text);
 return parent::beforeValidate();
}

2. Now the Post model can be used transparently. Create protected/
controllers/TestController.php as follows:
<?php
class TestController extends CController
{

Database, Active Record, and Model Tricks

182

 function actionIndex()
 {
 $post = new Post();
 $post->title = "I promise to share my opinion on Yii
 framework";
 $post->text = "Recently I've started using [Yii
 framework](http://www.yiiframework.com/) and definitely
 will share my opinion as soon as I'll have some more free
 time.";
 $post->save();

 echo "<h1>$post->title</h1>";
 echo $post->html;
 }
}

3. That is it. Now, run test/index. You should get the following:

The text marked up with markdown that you have set for the text value will be automatically
converted to HTML, ready to be displayed, and will be saved in the html database field.
Therefore, html should be used at the display post screen and the markdown text should be
used at the create post or edit post screens.

How it works...
In the preceding code we override CActiveRecord::beforeValidate to preprocess the
data we have obtained from the user input. This method is executed just before the validation
that is called when we use $post->save().

Yii includes a wrapper around the PHP Markdown Extra markdown parser. The
CMarkdownParser function is used mainly in the Yii documentation and we can
surely use it in our applications.

Converting text from one format to another requires more CPU and memory resources, so
should be avoided if possible. That is why we are not applying markdown on the fly, and
instead only doing it one time when saving a post.

When we edit post, we need to get the markdown source somehow. For this reason, we save
both the markdown source and the produced HTML into a database. Alternatively, we can use
a markdown parser on viewing post and cache results until post is altered.

Chapter 6

183

There's more...
In order to learn more about markdown and how it can be used to build the Yii documentation,
you can refer to the following resources:

Markdown syntax
 f http://daringfireball.net/projects/markdown/syntax

 f http://michelf.com/projects/php-markdown/extra/

Yii markdown wrapper and usage
 f http://www.yiiframework.com/doc/api/CMarkdownParser/

 f https://github.com/yiisoft/yii/tree/master/docs/viewer

See also
 f The Processing model fields with AR event-like methods recipe

 f The Automating timestamps recipe

 f The Setting up an author automatically recipe

Highlighting code with Yii
If you are posting code, be it a company's internal wiki or a public developer's blog, it is always
better to have the syntax highlighted, so users who read the code will feel comfortable. Yii
has PEAR's Text_Highlighter code-highlighting class bundled. It is used to highlight Yii
definitive guide examples, and we can use it to do the same for our application.

In this recipe, we will create a simple application that will allow for adding, editing, and viewing
code snippets.

Getting ready
1. Create a new application by using yiic webapp as described in the official guide at

the following URL:

http://www.yiiframework.com/doc/guide/en/quickstart.first-app

2. Set up a database connection and create a table named snippet as follows:
CREATE TABLE `snippet` (
 `id` int(11) unsigned NOT NULL auto_increment,
 `title` varchar(255) NOT NULL,
 `code` text NOT NULL,
 `html` text NOT NULL,

Database, Active Record, and Model Tricks

184

 `language` varchar(20) NOT NULL,
 PRIMARY KEY (`id`)
);

3. Generate a Snippet model by using Gii.

How to do it...
1. First, we will tweak the protected/models/Snippet.php model code. Change

the rules method to the following:
public function rules()
{
 return array(
 array('title, code, language', 'required'),
 array('title', 'length', 'max'=>255),
 array('language', 'length', 'max' => 20),
);
}

2. Add methods to the same Snippet model:
protected function afterValidate()
{
 $highlighter = new CTextHighlighter();
 $highlighter->language = $this->language;
 $this->html = $highlighter->highlight($this->code);

 return parent::afterValidate();
}

public function getSupportedLanguages()
{
 return array(
 'php' => 'PHP',
 'css' => 'CSS',
 'html' => 'HTML',
 'javascript' => 'JavaScript',
);
}

3. The model is ready. Now, we will create a controller. Therefore, create protected/
controllers/SnippetController.php as follows:
<?php
class SnippetController extends CController
{

Chapter 6

185

 public function actionIndex()
 {
 $criteria = new CDbCriteria();
 $criteria->order = 'id DESC';
 $models = Snippet::model()->findAll($criteria);
 $this->render('index', array(
 'models' => $models,
));
 }

 public function actionView($id)
 {
 $model = Snippet::model()->findByPk($id);
 if(!$model)
 throw new CException(404);

 $this->render('view', array(
 'model' => $model,
));
 }

 public function actionAdd()
 {
 $model = new Snippet();
 $data = Yii::app()->request->getPost('Snippet');
 if($data)
 {
 $model->setAttributes($data);
 if($model->save())
 $this->redirect(array('view', 'id' => $model->id));
 }
 $this->render('add', array(
 'model' => $model,
));
 }

 public function actionEdit($id){
 $model = Snippet::model()->findByPk($id);
 if(!$model)
 throw new CHttpException(404);

 $data = Yii::app()->request->getPost('Snippet');
 if($data)
 {
 $model->setAttributes($data);
 if($model->save())

Database, Active Record, and Model Tricks

186

 $this->redirect(array('view', 'id' => $model->id));
 }
 $this->render('edit', array(
 'model' => $model,
));
 }
}

4. Now views; create protected/views/snippet/index.php as follows:
<h2>Snippets</h2>
<?php echo CHtml::link('Add snippet', array('add'))?>

<?php foreach($models as $model):?>

 <?php echo CHtml::link(
 CHtml::encode($model->title),
 array('view', 'id' => $model->id)
)?>

<?php endforeach?>

5. Create protected/views/snippet/view.php as follows:
<h2><?php echo CHtml::link('Snippets', array('index'))?> → <?php
 echo CHtml::encode($model->title)?>
</h2>
<?php echo CHtml::link('Edit', array
 ('edit', 'id' => $model->id))?>
<div>
 <?php echo $model->html?>
</div>

6. Create protected/views/snippet/add.php as follows:
<h2><?php echo CHtml::link('Snippets', array('index'))?> → Add
 snippet
</h2>
<?php $this->renderPartial('_form', array('model' => $model))?>

7. Create protected/views/snippet/edit.php as follows:
<h2><?php echo CHtml::link('Snippets', array('index'))?> → Edit
 snippet
</h2>
<?php $this->renderPartial('_form', array('model' => $model))?>

Chapter 6

187

8. Create protected/views/snippet/_form.php as follows:
<?php echo CHtml::beginForm()?>

 <?php echo CHtml::activeLabel($model, 'title')?>
 <?php echo CHtml::activeTextField($model, 'title')?>

 <?php echo CHtml::activeLabel($model, 'code')?>
 <?php echo CHtml::activeTextArea($model, 'code')?>

 <?php echo CHtml::activeLabel($model, 'language')?>
 <?php echo CHtml::activeDropDownList($model, 'language',
 $model->getSupportedLanguages())?>

 <?php echo CHtml::submitButton('Save')?>

<?php echo CHtml::endForm()?>

9. That is it. Now, run the snippet controller and try creating code snippets, as shown in
the following screenshot:

Database, Active Record, and Model Tricks

188

10. When it is viewed, it will look similar to the following screenshot:

How it works...
The snippet model's function is used to store the code and snippet title. Additionally, we
have added the html and language fields. The first one (html) is used to store HTML
representing the highlighted code, while the language field is used for the snippet language
(PHP, HTML, CSS, JavaScript, and so on). We need to store these, as we need them when we
edit the snippet.

As we remove the safe rule from the Snippet model, we make title, code, and language
as the required fields. There is no rule for html, which means that it cannot be set through
the form directly.

The afterValidate method, as its name states, is executed after the validation gives us
no errors. In this method we transform the code that is stored in the code field to HTML,
representing the highlighted code in the html field by using the Yii's CTextHighlighter
class and passing the language value to it.

Note that you need to define CSS with php-hl-* classes defined
to get highlighting. You can get the default style from framework/
vendors/TextHighlighter/highlight.css.

The getSupportedLanguages function returns languages we want to support in the
value-label array. We use this method in the snippet form.

Chapter 6

189

There's more...
In order to learn more about code highlighting, you can use the following resources:

Yii code highlighter
 f http://www.yiiframework.com/doc/api/CTextHighlighter

 f http://pear.php.net/package/Text_Highlighter/

More code highlighters
If Text_Highlighter bundled with Yii does not fit your needs, there are many code
highlighters available on the Internet. A few good examples are found at the following links:

 f http://qbnz.com/highlighter/

 f http://softwaremaniacs.org/soft/highlight/en/

See also
 f The Processing model fields with AR event-like methods recipe

 f The Applying markdown and HTML recipe

 f The Setting up an author automatically recipe

Automating timestamps
Almost every model representing content should have creation and modification dates to
show the content actuality, revisions, and so on. In Yii there are two good ways to automate
this, which are as follows:

 f Overriding beforeValidate

 f Using the CTimestampBehavior behavior from Zii

We will see how to apply these to blog posts. We will use Unix timestamps to store the date
and time.

Getting ready
1. Create a new application by using yiic webapp as described in the official guide at

the following URL:
http://www.yiiframework.com/doc/guide/en/quickstart.first-app

Database, Active Record, and Model Tricks

190

2. Set up a database connection and create a table named post as follows:
DROP TABLE IF EXISTS `post`;
CREATE TABLE IF NOT EXISTS `post` (
 `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
 `title` VARCHAR(255) NOT NULL,
 `text` TEXT NOT NULL,
 `created_on` INT(10) UNSIGNED NOT NULL,
 `modified_on` INT(10) UNSIGNED NOT NULL,
 PRIMARY KEY (`id`)
);

3. Generate a Post model using Gii.

4. Remove everything about created_on and modified_on from the rules method
of the model.

How to do it...
1. We will start with overriding the beforeValidate method. Open protected/

models/Post.php and add the following method:
protected function beforeValidate()
{
 if($this->getIsNewRecord())
 $this->created_on = time();

 $this->modified_on = time();

 return parent::beforeValidate();;
}

2. Now add the following code to the new controller and run it:
$post = new Post();
$post->title = "test title";
$post->text = "test text";
$post->save();
echo date('r', $post->created_on);

3. You should get a date and time. Since we have simply created a post, it will be the
current date and time. Another method is to use CTimestampBehavior. Delete the
Post model and generate it one more time by using Gii. Remove everything about
created_on and modified_on from the rules method of the model. Add the
following method to the model:
public function behaviors()
{
 return array(
 'timestamps' => array(

Chapter 6

191

 'class' => 'zii.behaviors.CTimestampBehavior',
 'createAttribute' => 'created_on',
 'updateAttribute' => 'modified_on',
 'setUpdateOnCreate' => true,
),
);
}

How it works...
The beforeValidate method executes just before the model validation starts. In this
method, modified_on is always filled and created_on is filled only if the model is new,
which is only when we are creating a post.

When we use the ready behavior from Zii, we specify createAttribute and
updateAttribute to match the field names we have chosen. The setUpdateOnCreate
property triggers filling modified_on when a record is inserted. The rest is done by the
behavior function.

There's more...
In order to learn more about CTimestampBehavior, refer to the following API page:

http://www.yiiframework.com/doc/api/CTimestampBehavior/

See also
 f The Processing model fields with AR event-like methods recipe

 f The Applying markdown and HTML recipe

 f The Highlighting code with Yii recipe

Setting up an author automatically
Almost all applications that involve multiple content authors should have a way to track who
created the content or who is the owner.

From this recipe, you will learn how to automate this by using a model. We assume that the
application uses CUserIdentity to manage authorization and that Yii::app()->user-
>id returns integer user ID. We don't need to change the original post author if someone
else edited it.

Database, Active Record, and Model Tricks

192

Getting ready
1. Create a new application by using yiic webapp as described in the official guide at

the following URL:

http://www.yiiframework.com/doc/guide/en/quickstart.first-app

2. Set up a database connection and create a table named post as follows:
DROP TABLE IF EXISTS `post`;
CREATE TABLE IF NOT EXISTS `post` (
 `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
 `title` VARCHAR(255) NOT NULL,
 `text` TEXT NOT NULL,
 `author_id` INT(10) UNSIGNED NOT NULL,
 PRIMARY KEY (`id`)
);

3. Generate the Post model using Gii.

How to do it...
1. Add the following method to the protected/models/Post.php model as follows:

protected function beforeValidate()
{
 if(empty($this->author_id))
 $this->author_id = Yii::app()->user->id;

 return parent::beforeValidate();
}

2. That is it. Now we will test it. So, create protected/controllers/
TestController.php as follows:
<?php
class TestController extends CController
{
 public function actionIndex()
 {
 $post = Post::model()->find();
 if(!$post)
 $post = new Post();

 $post->title = 'test';
 $post->text = 'test';
 $post->save();
 echo $post->author_id;
 }
}

Chapter 6

193

3. Now, log in and execute test/index. You should get an ID of the currently logged
in user. Log in as another user and execute the code again. This time, you should get
the same ID, which is exactly what we have planned.

How it works...
The beforeValidate method executes just before the model validation starts. In this
method, we set the author_id value to Yii::app()->user->id only if the author ID is
empty. Most likely, this will be post creation, but it can also be when the original author is
deleted (if you have properly set the foreign key with the on delete cascade option).

See also
 f The Processing model fields with AR event-like methods recipe

 f The Applying markdown and HTML recipe

 f The Highlighting code with Yii recipe

 f The Automating timestamps recipe

Implementing single table inheritance
Relational databases do not support inheritance. If we need to store inheritance in the
database, we should somehow support it through code. This code should be efficient, so it
should generate as few JOINs as possible. A common solution to this problem was described
by Martin Fowler and is named as single table inheritance.

When we use this pattern, we store all the class tree data in a single table and use the type
field to determine a model for each row.

As an example, we will implement the single table inheritance for the following class tree:

Car
 |- SportCar
 |- FamilyCar

Getting ready
1. Create a new application by using yiic webapp as described in the official guide.

2. Create and set up a database. Add the following table:

CREATE TABLE `car` (
 `id` int(10) UNSIGNED NOT NULL AUTO_INCREMENT,
 `name` varchar(255) NOT NULL,
 `type` varchar(100) NOT NULL,

Database, Active Record, and Model Tricks

194

 PRIMARY KEY (`id`)
);

INSERT INTO `car` (`name`, `type`)
VALUES ('Ford Focus', 'family'),
('Opel Astra', 'family'),
('Kia Ceed', 'family'),
('Porsche Boxster', 'sport'),
('Ferrari 550', 'sport');

How to do it...
1. First, we will create the car model, protected/models/Car.php, as follows:

<?php
class Car extends CActiveRecord
{
 public static function model($className=__CLASS__)
 {
 return parent::model($className);
 }

 public function tableName()
 {
 return 'car';
 }

 protected function instantiate($attributes)
 {
 switch($attributes['type'])
 {
 case 'sport':
 $class='SportCar';
 break;
 case 'family':
 $class='FamilyCar';
 break;
 default:
 $class=get_class($this);
 }
 $model=new $class(null);
 return $model;
 }
}

Chapter 6

195

2. We implement protected/models/SportCar.php as follows:
<?php
class SportCar extends Car
{
 public static function model($className=__CLASS__)
 {
 return parent::model($className);
 }

 public function defaultScope()
 {
 return array(
 'condition'=>"type='sport'",
);
 }
}

3. Also implement protected/models/FamilyCar.php as follows:
<?php
class FamilyCar extends Car
{
 public static function model($className=__CLASS__)
 {
 return parent::model($className);
 }

 public function defaultScope()
 {
 return array(
 'condition'=>"type='family'",
);
 }
}

4. Now create protected/controllers/TestController.php as follows:
<?php
class TestController extends CController
{
 public function actionIndex()
 {
 echo "<h1>All cars</h1>";
 $cars = Car::model()->findAll();
 foreach($cars as $car)
 {

Database, Active Record, and Model Tricks

196

 // Each car can be of class Car, SportCar or FamilyCar
 echo get_class($car).' '.$car->name."
";
 }

 echo "<h1>Sport cars only</h1>";
 $sportCars = SportCar::model()->findAll();
 foreach($sportCars as $car)
 {
 // Each car should be SportCar
 echo get_class($car).' '.$car->name."
";
 }
 }
}

5. Run test/index and you should get the output as shown in the following screenshot:

How it works...
The base model Car is a typically used Yii AR model except with two added methods. The
tableName method explicitly declares the table name to be used for the model. For the Car
model alone, this does not make sense, but for child models, it will return the same car table,
which is just what we want—a single table for the entire class tree. The instantiate method
is used by AR internally to create a model instance from the raw data when we call methods,
such as Car::model()->findAll(). We use a switch statement to create different
classes based on the type attribute and use the same class if the attribute value is either not
specified or points to the non-existing class.

The SportCar and FamilyCar models simply set the default AR scope, so when we find
models with SportCar::model()-> methods, we will get the SportCar model only.

Chapter 6

197

There's more...
Use the following references to learn more about the single table inheritance pattern and Yii
Active Record implementation:

 f http://martinfowler.com/eaaCatalog/singleTableInheritance.html

 f http://www.yiiframework.com/doc/api/CActiveRecord/

See also
 f The Using scopes to get models for different languages recipe

Using CDbCriteria
When we use Yii's Active Record methods, such as findAll or find, we can pass criteria
as a parameter. It can be an array or an instance of the CDbCriteria class. This class
represents query criteria, such as conditions, ordering by, limit/offset, and so on.

How to do it...
Usually, the criteria class is used as shown in the following example:

$criteria = new CDbCriteria();
$criteria->limit = 10;
$criteria->order= 'id DESC';
$criteria->with = array('comments');
$criteria->compare('approved', 1);
$criteria->addInCondition('id', array(4, 8, 15, 16, 23, 42));
$posts = Post::model()->findAll($criteria);

How it works...
Internally, the criteria class does not build any queries by itself, but it stores data and
allows us to modify it. The actual work is being done inside the AR methods, where criteria are
being used.

The preceding code can be read as follows:

Get 10 posts along with comments from approved posts with ID equals to 4, 8, 15, 16, 23, or
42 ordered by the ID descendant.

Database, Active Record, and Model Tricks

198

Alternatively, it can also be read as:

SELECT *
FROM post p
JOIN comment c ON p.id = c.post_id
WHERE p.approved = 1
AND p.id IN (4, 8, 15, 16, 23, 42)
ORDER BY p.id DESC
LIMIT 10

There's more...
For further information, refer to the following URLs:

 f http://www.yiiframework.com/doc/api/CDbCriteria/

 f http://www.yiiframework.com/doc/api/CPagination/

 f http://www.yiiframework.com/doc/api/CSort/

See also
 f The Getting data from a database recipe

7
Using Zii Components

In this chapter, we will cover:

 f Using data providers

 f Using grids

 f Using lists

 f Creating custom grid columns

Introduction
Yii has a useful library called Zii. It's bundled with the framework and includes some classes
aimed at making the developer's life easier. Its most handy components are grids and lists,
which allow you to build data in both the admin and user parts of a website in a very fast and
efficient way. In this chapter you'll learn how to use and adjust these components to fit your
needs. Also you'll learn about data providers, they are part of the core framework (not Zii) but
since they are used extensively with grids and lists, we'll review them here.

We'll use the Sakila sample database Version 0.8 available at the official MySQL website:

http://dev.mysql.com/doc/index-other.html

Using data providers
Data providers are used to encapsulate common data model operations such as sorting,
pagination, and querying. They are used with grids and lists extensively. Because both widgets
and providers are standardized, you can display the same data using different widgets and
you can get data for a widget from various providers. Switching providers and widgets is
relatively transparent.

Using Zii Components

200

Currently CActiveDataProvider, CArrayDataProvider, and CSqlDataProvider are
implemented to get data from Active Record models, arrays, and SQL queries respectively.
Let's try all these providers to fill a grid with data.

Getting ready
1. Create a new application using yiic webapp as described in the official guide.

2. Download the Sakila database from http://dev.mysql.com/doc/index-
other.html and execute the downloaded SQLs (first schema then data).

3. Configure the database connection in protected/config/main.php.

4. Use Gii to create a model for the film table.

How to do it...
1. Let's start with a view for a grid controller. Create protected/views/grid/

index.php:
<?php $this->widget('zii.widgets.grid.CGridView',
 array('dataProvider' => $dataProvider,
))?>

2. Then create a controller, protected/controllers/GridController.php:
<?php
class GridController extends Controller
{
 public function actionAR()
 {
 $dataProvider = new CActiveDataProvider('Film', array(
 'pagination'=>array(
 'pageSize'=>10,
),
 'sort'=>array(
 'defaultOrder'=> array('title'=> CSort::SORT_ASC),
)
));

 $this->render('index', array(
 'dataProvider' => $dataProvider,
));
 }

 public function actionArray()
 {

Chapter 7

201

 $yiiDevelopers = array(
 array(
 'name'=>'Qiang Xue',
 'id'=>'2',
 'forumName'=>'qiang',
 'memberSince'=>'Jan 2008',
 'location'=>'Washington DC, USA',
 'duty'=>'founder and project lead',
 'active'=>true,
),
 array(
 'name'=>'Wei Zhuo',
 'id'=>'3',
 'forumName'=>'wei',
 'memberSince'=>'Jan 2008',
 'location'=>'Sydney, Australia',
 'duty'=>'project site maintenance and development',
 'active'=>true,
),
 array(
 'name'=>'Sebastián Thierer',
 'id'=>'54',
 'forumName'=>'sebas',
 'memberSince'=>'Sep 2009',
 'location'=>'Argentina',
 'duty'=>'component development',
 'active'=>true,
),
 array(
 'name'=>'Alexander Makarov',
 'id'=>'415',
 'forumName'=>'samdark',
 'memberSince'=>'Mar 2010',
 'location'=>'Russia',
 'duty'=>'core framework development',
 'active'=>true,
),
 array(
 'name'=>'Maurizio Domba',
 'id'=>'2650',
 'forumName'=>'mdomba',
 'memberSince'=>'Aug 2010',
 'location'=>'Croatia',
 'duty'=>'core framework development',

Using Zii Components

202

 'active'=>true,
),
 array(
 'name'=>'Carsten Brandt',
 'id'=>'5951',
 'forumName'=>'CeBe',
 'memberSince'=>'Aug 2012',
 'location'=>'Berlin, Germany',
 'duty'=>'core framework development',
 'active'=>true,
),
 array(
 'name'=>'Y!!',
 'id'=>'1644',
 'forumName'=>'Y!!',
 'memberSince'=>'Aug 2010',
 'location'=>'Germany',
 'duty'=>'core framework development',
 'active'=>false,
),
 array(
 'name'=>'Jeffrey Winesett',
 'id'=>'15',
 'forumName'=>'jefftulsa',
 'memberSince'=>'Sep 2010',
 'location'=>'Austin, TX, USA',
 'duty'=>'documentation and marketing',
 'active'=>true,
),
 array(
 'name'=>'Jonah Turnquist',
 'id'=>'127',
 'forumName'=>'jonah',
 'memberSince'=>'Sep 2009 - Aug 2010',
 'location'=>'California, US',
 'duty'=>'component development',
 'active'=>false,
),
 array(
 'name'=>'István Beregszászi',
 'id'=>'1286',
 'forumName'=>'pestaa',
 'memberSince'=>'Sep 2009 - Mar 2010',
 'location'=>'Hungary',

Chapter 7

203

 'duty'=>'core framework development',
 'active'=>false,
),
);

 $dataProvider = new CArrayDataProvider(
 $yiiDevelopers, array(
 'sort'=>array(
 'attributes'=>array('name', 'id', 'active'),
 'defaultOrder'=>array('active' => CSort::SORT_DESC, 'name'
=> CSort::SORT_ASC),
),
 'pagination'=>array(
 'pageSize'=>10,
),
));

 $this->render('index', array(
 'dataProvider' => $dataProvider,
));
 }

 public function actionSQL()
 {
 $count=Yii::app()->db->createCommand('SELECT COUNT(*)
 FROM film')->queryScalar();
 $sql='SELECT * FROM film';
 $dataProvider=new CSqlDataProvider($sql, array(
 'keyField'=>'film_id',
 'totalItemCount'=>$count,
 'sort'=>array(
 'attributes'=>array('title'),
 'defaultOrder'=>array('title' => CSort::SORT_ASC),
),
 'pagination'=>array(
 'pageSize'=>10,
),
));
 $this->render('index', array(
 'dataProvider' => $dataProvider,
));
 }
}

Using Zii Components

204

3. Now run the grid/aR, grid/array, and grid/sql actions and try using the grids.

How it works...
The view is pretty simple and stays the same for all data providers. We are calling the grid
widget and passing the data provider instance to it.

Let's review the actions one by one starting with actionAR:

$dataProvider = new CActiveDataProvider('Film', array(
 'pagination'=>array(
 'pageSize'=>10,
),
 'sort'=>array(
 'defaultOrder'=>array('title'=>false),
)
));

CActiveDataProvider works with AR models. The model class is passed as a first
argument of the class constructor. The second argument is an array that defines class public
properties. In the previous code, we are setting the pagination to 10 items per page and
default sorting by title.

Note that instead of using a string we are using an array where
keys are column names and values are CSort::SORT_ASC or
CSort::SORT_DESC. Defining the default order this way allows Yii to
render a triangle showing the sorting direction in the column header.

Chapter 7

205

In actionArray we are using CArrayDataProvider that can consume any array.

$dataProvider = new CArrayDataProvider($yiiDevelopers, array(
 'sort'=>array(
 'attributes'=>array('name', 'id', 'active'),
 'defaultOrder'=>array('active' => true, 'name' => false),
),
 'pagination'=>array(
 'pageSize'=>10,
),
));

The first argument accepts an associative array where keys are column names and values are
corresponding values. The second argument accepts an array with the same options as in the
CActiveDataProvider case.

In actionSQL, we are using CSqlDataProvider that consumes the SQL query and
modifies it automatically allowing pagination. The first argument accepts a string with SQL
and the second argument with data provider parameters. This time we need to supply
calculateTotalItemCount with the total count of records manually. For this purpose we
need to execute the extra SQL query manually. Also, we need to define keyField since the
primary key of this table is not id but film_id.

To sum up, all data providers accept the following properties:

pagination The CPagination object or an array of initial values for a new instance
of CPagination.

sort The CSort object or an array of initial values for a new instance of CSort.
totalItemCount We need to set this only if the provider, such as CSqlDataProvider,

does not implement the calculateTotalItemCount method.

There's more...
You can use data providers without any special widgets. Replace the contents of protected/
views/grid/index.php with the following:

<?php foreach($dataProvider->data as $film):?>
 <?php echo $film['title'].'
'?>
<?php endforeach?>

<?php $this->widget('CLinkPager',array(
 'pages'=>$dataProvider->pagination))?>

Using Zii Components

206

Further reading
To learn more about data providers refer to the following API pages:

 f http://www.yiiframework.com/doc/api/CDataProvider

 f http://www.yiiframework.com/doc/api/CActiveDataProvider

 f http://www.yiiframework.com/doc/api/CArrayDataProvider

 f http://www.yiiframework.com/doc/api/CSqlDataProvider

 f http://www.yiiframework.com/doc/api/CSort

 f http://www.yiiframework.com/doc/api/CPagination

See also
 f The Using grids recipe

 f The Using lists recipe

Using grids
Zii grids are very useful to quickly create efficient application admin pages or any pages on
which you need to manage data.

Let's use Gii to generate a grid, see how it works, and how we can customize it.

Getting ready
Carry out the following steps:

1. Create a new application using yiic webapp as described in the official guide.

2. Download the Sakila database from http://dev.mysql.com/doc/index-
other.html. Execute the downloaded SQLs (first schema then data).

3. Configure the database connection in protected/config/main.php.

4. Use Gii to create models for the customer, address, and city tables.

How to do it...
1. Open Gii, select Crud Generator, and enter Customer into the Model Class field.

Press Preview and then Generate.

2. Gii will generate a controller in protected/controllers/
CustomerController.php and a group of views under protected/views/
customer/.

Chapter 7

207

3. Run the customer controller and go to the Manage Customer link. After logging in
you should see the grid generated, as shown in the following screenshot:

How it works...
Let's start with the admin action of our customer controller:

public function actionAdmin()
{
 $model=new Customer('search');
 $model->unsetAttributes(); // clear any default values
 if(isset($_GET['Customer']))
 $model->attributes=$_GET['Customer'];

 $this->render('admin',array(
 'model'=>$model,
));
}

The Customer model is created with the search scenario, all attribute values are cleaned up,
and then filled up with data from $_GET. On the first request, $_GET is empty but when you
are changing the page, or filtering by the first_name attribute using the input field below the
column name, the following GET parameters are passed to the same action via an AJAX request:

Customer[address_id] =
Customer[customer_id] =
Customer[email] =

Using Zii Components

208

Customer[first_name] = alex
Customer[last_name] =
Customer[store_id] =
Customer_page = 2
ajax = customer-grid

Since the scenario is search, the corresponding validation rules from Customer::rules
are applied. For the search scenario, Gii generates a safe rule that allows for mass assigning
of all fields:

array('customer_id, store_id, first_name, last_name, email, address_
id, active, create_date, last_update', 'safe',
'on'=>'search'),

Then the model is passed to a view, protected/views/customer/admin.php. It renders
an advanced search form and then passes the model to the grid widget:

<?php $this->widget('zii.widgets.grid.CGridView', array(
 'id'=>'customer-grid',
 'dataProvider'=>$model->search(),
 'filter'=>$model,
 'columns'=>array(
 'customer_id',
 'store_id',
 'first_name',
 'last_name',
 'email',
 'address_id',
 /*
 'active',
 'create_date',
 'last_update',
 */
 array(
 'class'=>'CButtonColumn',
),
),
)); ?>

Columns used in the grid are passed to columns. When just a name is passed, the
corresponding field from the data provider is used.

Also we can use a custom column represented by a class specified. In this case we are
using CButtonColumn that renders the view, update, and delete buttons that are linked
to the same named actions and pass the row ID to them, so action can be done to a model
representing a specific row from the database.

The filter property accepts a model filled with data. If it's set, a grid will display multiple
text fields at the top that the user can fill to filter the grid.

Chapter 7

209

The dataProvider property takes an instance of data provider. In our case it's returned by
the model's search method:

public function search()
{
 // Warning: Please modify the following code to remove attributes
 that
 // should not be searched.

 $criteria=new CDbCriteria;

 $criteria->compare('customer_id',$this->customer_id);
 $criteria->compare('store_id',$this->store_id);
 $criteria->compare('first_name',$this->first_name,true);
 $criteria->compare('last_name',$this->last_name,true);
 $criteria->compare('email',$this->email,true);
 $criteria->compare('address_id',$this->address_id);
 $criteria->compare('active',$this->active);
 $criteria->compare('create_date',$this->create_date,true);
 $criteria->compare('last_update',$this->last_update,true);

 return new CActiveDataProvider(get_class($this), array(
 'criteria'=>$criteria,
));
}

This method is called after the model was filled with the $_GET data from the filtering fields,
so we can use field values to form the criteria for the data provider. In this case all numeric
values are compared exactly while string values are compared using partial matches.

There's more...
Code generated by Gii can be useful in a lot of simple cases but often we need to customize it.

Using data from related Active Record models
In the code, the generated grid displays the store and address IDs instead of corresponding
values. Let's fix the address and display the city, district, and address instead of just the ID.

1. We have the following relations in the Customer model:
public function relations()
{
 // NOTE: you may need to adjust the relation name and
 the related
 // class name for the relations automatically generated below.

Using Zii Components

210

 return array(
 'address' => array(self::BELONGS_TO, 'Address', 'address_id'),
 'store' => array(self::BELONGS_TO, 'Store', 'store_id'),
 'payments' => array(self::HAS_MANY, 'Payment', 'customer_id'),
 'rentals' => array(self::HAS_MANY, 'Rental', 'customer_id'),
);
}

2. We need to load the address data along with the model. That means we have
to add these to the with part of the criteria passed to the data provider in
Customer::search. Since the address includes the city ID, we need to load the
city data using the city relation of the Address model.
public function search()
{
 // Warning: Please modify the following code to remove
 //attributes that should not be searched.

 $criteria=new CDbCriteria;

 $criteria->with = array('address' => array(
 'with' => 'city'
)); …

Each relation used in the with part of the criteria can
be specified in the way shown previously where the key is
the relation name and the value is an array representing
criteria. These criteria will be applied to the related model.

3. Now let's modify the columns list passed to a grid in protected/views/
customer/admin.php:
'columns'=>array(
 'customer_id',
 'store_id',
 'first_name',
 'last_name',
 'email',
 array(
 'name'=>'address',
 'value'=>'$data->address->address.",
 ".$data->address->city->city.",
 ".$data->address->district',
),

Chapter 7

211

4. In the preceding code, we are using a relation name of name and setting value to a
string consisting of address, city, and district.

Now check the grid. It should now list the address, city, and district in the address
field, as shown in the following screenshot:

Using Zii Components

212

5. The only problems now are that addresses are not sortable and filtering using
address does not work. Let's fix the sorting first. In the Customer::search method
we need to create a CSort instance, configure it, and pass it to the data provider:
$sort = new CSort;
$sort->attributes = array(
 'address' => array(
 'asc' => 'address, city, district',
 'desc' => 'address DESC, city DESC, district DESC',
),
 '*',
);
return new CActiveDataProvider(get_class($this), array(
 'criteria'=>$criteria,
 'sort'=>$sort,
));

CSort::attributes accepts a list of sortable attributes. We want all the
Customer attributes to be sortable so we are adding * to the list. Additionally we are
specifying SQL for both ascending and descending sorting of the address attribute.

That's it! Sorting should work.

6. Now let's fix filtering. First we need to add address to the safe attributes list in the
model's rules method. Then we replace the comparison in Customer::search:
$criteria->compare('address_id',$this->address_id);

This should be replaced with:
$criteria->compare('address',$this->address,true);
$criteria->compare('district',$this->address,true,"OR");
$criteria->compare('city',$this->address,true,"OR");

7. When a user enters california in the address filter field, the three compare
methods mentioned in the previous step will result in SQL, like the following:
WHERE address LIKE '%california%'
OR district LIKE '%california%'
OR city LIKE '%california%'

Chapter 7

213

Further reading
To learn more about grids and their properties, refer to the following resources:

 f http://www.yiiframework.com/doc/api/CGridView

 f http://www.yiiframework.com/doc/api/CDbCriteria

 f http://www.yiiframework.com/doc/api/CSort

Using Zii Components

214

See also
 f The Using data providers recipe

 f The Using lists recipe

 f The Creating custom grid columns recipe

Using lists
Zii lists is a good tool to display data from any data provider to end users while handling
pagination and sorting automatically. CListView is very customizable so it allows the
building of any type of list page.

Let's use Gii to generate a list, see how it works, and how we can customize it.

Getting ready
1. Create a new application using yiic webapp as described in the official guide.

2. Download the Sakila database from http://dev.mysql.com/doc/index-
other.html. Execute the downloaded SQLs (first schema then data).

3. Configure the database connection in protected/config/main.php.

4. Use Gii to create models for customer, store, address, and city tables.

How to do it...
1. Open Gii, select Crud Generator, and enter Customer into the Model Class field.

Press Preview and then Generate.

2. Gii will generate a controller in protected/controllers/CustomerController.
php and a group of views under protected/views/customer/.

3. Run the index action of customer controller to see the customer list in action.

Chapter 7

215

How it works...
Let's start with the index action of the customer controller:

public function actionIndex()
{
 $dataProvider=new CActiveDataProvider('Customer');
 $this->render('index',array(
 'dataProvider'=>$dataProvider,
));
}

It's very simple! A new active data provider for the Customer model is created and passed
into the protected/views/customer/index.php view where it is used in the
CListView widget:

<?php $this->widget('zii.widgets.CListView', array(
 'dataProvider'=>$dataProvider,
 'itemView'=>'_view',
)); ?>

itemView specifies a view partial used to render each data row. In our case it's protected/
views/customer/_view.php that lists all attribute names and values like the following:

<?php echo CHtml::encode($data->getAttributeLabel(
 'first_name')); ?>:
 <?php echo CHtml::encode($data->first_name); ?>

$data in the previous code refers to a model representing a data row that came from the
data provider.

There's more...
If you are using lists in real applications, most likely you'll want to customize them.

Adding sorting
Let's add the ability to sort by last name and e-mail. To implement it, we need to define the
sortableAttributes property:

<?php $this->widget('zii.widgets.CListView', array(
 'dataProvider'=>$dataProvider,
 'itemView'=>'_view',
 'sortableAttributes'=>array(
 'last_name',
 'email',
),
)); ?>

Using Zii Components

216

Customizing templates
Let's add pagination and a sorter at the top and the bottom, and remove the summary. To
implement all these we need to customize just one widget property called template:

<?php $this->widget('zii.widgets.CListView', array(
 'dataProvider'=>$dataProvider,
 'itemView'=>'_view',
 'sortableAttributes'=>array(
 'last_name',
 'email',
),
 'template' => '{sorter} {pager} {items} {sorter} {pager}',
)); ?>

Customizing markup and data displayed
Let's tweak the list markup and templates starting with the widget parameters:

<?php $this->widget('zii.widgets.CListView', array(
 'dataProvider'=>$dataProvider,
 'itemView'=>'_view',
 'itemsTagName' => 'ol',
 'itemsCssClass' => 'customers',
 'sortableAttributes'=>array(
 'last_name',
 'email',
),
 'template' => '{sorter} {pager} {items} {sorter} {pager}',
)); ?>

Chapter 7

217

The following are the important steps of the previous code snippet:

1. itemsTagName defines a tag that will be used as a base tag for a list. In this case
the list is ordered so we are using ol. itemsCssClass sets a class for this ol.

2. We need to modify protected/views/customer/_view.php:

 <h2>
 <?php
 $title = CHtml::encode($data->first_name.' '.$data->last_
name);
 echo CHtml::link($title, array('view', 'id'=>
 $data->customer_id));
 ?>
 </h2>

 <?php echo CHtml::encode($data->
 getAttributeLabel('store_id')); ?>:
 <?php echo CHtml::encode($data->store->
 address->address.', '.$data->store->address->city-
 >city.', '.$data->store->address->district); ?>

 <?php echo CHtml::encode($data->
 getAttributeLabel('email')); ?>:
 <?php echo CHtml::encode($data->email); ?>

 <?php echo CHtml::encode($data->
 getAttributeLabel('address_id')); ?>:
 <?php echo CHtml::encode($data->address->address.',
 '.$data->address->city->city.',
 '.$data->address->district); ?>

 <?php echo CHtml::encode($data->
 getAttributeLabel('active')); ?>:
 <?php echo $data->active ? 'Yes' : 'No'; ?>

Using Zii Components

218

3. Let's apply some CSS. Create protected/assets/customers.css:
ol.customers {
 list-style: none;
 margin: 1em 0;
}

ol.customers>li {
 margin: 1em;
 padding:1em;
 background: #fcfcfc;
 border: 1px solid #9aafe5;
}

4. Then you need to add the following to protected/views/customer/_view.php:
<?php Yii::app()->clientScript->registerCssFile(
 Yii::app()->assetManager->publish(Yii::getPathOfAlias('applicati
on.assets').
 '/customers.css'))?>

After applying the styles, the list will look like this:

Further reading
To learn more about lists, refer to the following API page:

http://www.yiiframework.com/doc/api/CListView/

See also
 f The Using data providers recipe

Chapter 7

219

Creating custom grid columns
Most of the time you don't need to create your own grid column types since the ones included
in Yii are pretty flexible and are suitable for most use cases. Still, there are situations when
you need to create a custom column.

Let's create a custom grid column that will allow a toggling Y/N value that will change the
corresponding model value via AJAX.

Getting ready
1. Create a new application using yiic webapp as described in the official guide.

2. Download the Sakila database from http://dev.mysql.com/doc/index-
other.html. Execute the downloaded SQLs (first schema then data).

3. Configure the database connection in protected/config/main.php.

4. Use Gii to create a model for the customer table.

5. Open Gii, select Crud Generator and enter Customer into the Model Class field.
Press Preview and then Generate.

6. Gii will generate the controller in protected/controllers/
CustomerController.php and a group of views under protected/views/
customer/.

7. Run the customer controller and go to the Manage Customer link. After logging in
you should see the grid generated.

How to do it...
In the table we have an active field that we want to toggle with the flag column. The column
should display Y or N depending on what the value is and should allow the toggling of the
values by clicking on it. The grid should stay on the same page.

1. Let's create protected/components/FlagColumn.php:
<?php
class FlagColumn extends CGridColumn
{
 public $name;
 public $sortable=true;
 public $callbackUrl = array('flag');
 private $_flagClass = "flag_link";
 public function init() {
 parent::init();
 $cs=Yii::app()->getClientScript();
 $gridId = $this->grid->getId();

Using Zii Components

220

 $script = <<<SCRIPT
 jQuery(document).on("click", ".{$this->_flagClass}",
function(e){
 e.preventDefault();
 var link = this;
 $.ajax({
 dataType: "json",
 cache: false,
 url: link.href,
 success: function(data){
 $('#$gridId').yiiGridView.update('$gridId');
 }
 });
 });
 SCRIPT;
 $cs->registerScript(__CLASS__.$gridId.'#flag_link',
 $script);
 }

 protected function renderDataCellContent($row, $data) {
 $value=CHtml::value($data,$this->name);

 $this->callbackUrl['pk'] = $data->primaryKey;
 $this->callbackUrl['name'] = urlencode($this->name);
 $this->callbackUrl['value'] = (int)empty($value);

 $link = CHtml::normalizeUrl($this->callbackUrl);

 echo CHtml::link(!empty($value) ? 'Y' : 'N', $link, array(
 'class' => $this->_flagClass,
));
 }

 protected function renderHeaderCellContent()
 {
 if($this->grid->enableSorting && $this->sortable &&
 $this->name!==null)
 echo $this->grid->dataProvider->getSort()->link(
 $this->name,$this->header);
 else if($this->name!==null && $this->header===null)
 {
 if($this->grid->dataProvider instanceof
 CActiveDataProvider)
 echo CHtml::encode($this->grid->dataProvider->
 model->getAttributeLabel($this->name));
 else
 echo CHtml::encode($this->name);

Chapter 7

221

 }
 else
 parent::renderHeaderCellContent();
 }
}

2. Now, in protected/controllers/CustomerController.php, we need to
implement actionFlag:
public function actionFlag($pk, $name, $value){
 $model = $this->loadModel($pk);
 $model->{$name} = $value;
 $model->save(false);

 if(!Yii::app()->request->isAjaxRequest){
 $this->redirect('admin');
 }
}

3. Finally we need to use it in a grid, protected/views/customer/admin.php:
…
<?php $this->widget('zii.widgets.grid.CGridView', array(
 'id'=>'customer-grid',
 'dataProvider'=>$model->search(),
 'filter'=>$model,
 'columns'=>array(
 'customer_id',
 'store_id',
 'first_name',
 'last_name',
 'email',
 'address_id',
 array(
 'class' => 'FlagColumn',
 'name' => 'active',
),
 /*
 'create_date',
 'last_update',
 */
 array(
 'class'=>'CButtonColumn',
),
),
)); ?>
…

Using Zii Components

222

4. Now check the grid. It should contain an Active column with Y and N as values:

How it works...
When calling a grid widget we can pass an array specifying the columns class and set the
public properties of this class.

 'columns'=>array(
 'customer_id',
 'store_id',
 'first_name',
 'last_name',
 'email',
 'address_id',
 array(
 'class' => 'FlagColumn',
 'name' => 'active',
),

In the previous code we use the FlagColumn class and set its name property to active.

class FlagColumn extends CGridColumn

Chapter 7

223

A grid column should extend CGridColumn and implement at least the
renderDataCellContent method:

 protected function renderDataCellContent($row, $data) {
 $value=CHtml::value($data,$this->name);

 $this->callbackUrl['pk'] = $data->primaryKey;
 $this->callbackUrl['name'] = urlencode($this->name);
 $this->callbackUrl['value'] = (int)empty($value);

 $link = CHtml::normalizeUrl($this->callbackUrl);

 echo CHtml::link(!empty($value) ? 'Y' : 'N', $link, array(
 'class' => $this->_flagClass,
));
 }

Everything echoed in this method will be displayed as the cell content. $row is a row number,
and $data is a model instance representing a row. Using CHtml::value we are getting the
value of the active field and passing its name and value along with the model primary key to
CHtml::normalizeUrl to create a link to the flag action.

Now we need to add some AJAX. We will add it in the init method:

 public function init() {
 parent::init();
 $cs=Yii::app()->getClientScript();
 $gridId = $this->grid->getId();
 $script = <<<SCRIPT
 jQuery(document).on("click", ".{$this->_flagClass}", function(e){
e.preventDefault();
 var link = this;
 $.ajax({
 dataType: "json",
 cache: false,
 url: link.href,
 success: function(data){
 $('#$gridId').yiiGridView.update('$gridId');
 }
 });
 });
 SCRIPT;
 $cs->registerScript(__CLASS__.$gridId.'#flag_link', $script);
 }

Using Zii Components

224

For each link we've created in the renderDataCellContent method, we are adding a click
event handler. Live usage is needed to handle the grid's AJAX pagination properly. On clicking,
we are making an AJAX request to the flag action. When successful, we refresh the grid.

The action itself is very straightforward. We get the model instance, set a field, and save
the model.

To support sorting, FlagColumn implements another method:

 protected function renderHeaderCellContent()
 {
 if($this->grid->enableSorting && $this->sortable &&
 $this->name!==null)
 echo $this->grid->dataProvider->getSort()->link(
 $this->name,$this->header);
 else if($this->name!==null && $this->header===null)
 {
 if($this->grid->dataProvider instanceof CActiveDataProvider)
 echo CHtml::encode($this->grid->dataProvider->
 model->getAttributeLabel($this->name));
 else
 echo CHtml::encode($this->name);
 }
 else
 parent::renderHeaderCellContent();
 }

This is the exact copy of the same named method from CDataProvider. If both grid and
column sorting are enabled, we display a link to sort a grid.

There's more...
For further information, refer to the following URLs:

 f http://www.yiiframework.com/doc/api/CGridColumn

 f http://www.yiiframework.com/doc/api/CButtonColumn

 f http://www.yiiframework.com/doc/api/CCheckBoxColumn

 f http://www.yiiframework.com/doc/api/CDataColumn

 f http://www.yiifraemework.com/doc/api/CLinkColumn

See also
 f The Using grids recipe

8
Extending Yii

In this chapter we will cover the following topics:

 f Creating model behaviors

 f Creating components

 f Creating reusable controller actions

 f Creating reusable controllers

 f Creating a widget

 f Creating CLI commands

 f Creating filters

 f Creating modules

 f Creating a custom view renderer

 f Making extensions distribution-ready

Introduction
In this chapter we will show not only how to implement your own Yii extension, but also how
to make your extension reusable and useful for the community. In addition, we will focus on
many things you should do in order to make your extension as efficient as possible.

Extending Yii

226

Creating model behaviors
There are many similar solutions in today's web applications. Leading products, such as
Google's Gmail, are defining nice UI patterns. One of these is soft delete. Instead of a
permanent deletion with tons of confirmations, Gmail allows the user to immediately mark
messages as deleted and then easily undo it. The same behavior can be applied to any object,
such as blog posts, comments, and so on.

Let's create a behavior that will allow marking models as deleted, restoring models, and
selecting not yet deleted models, deleted models, and all models. In this recipe we'll follow a
test-driven development approach to plan the behavior and test if the implementation is correct.

Getting ready
Carry out the following steps:

1. Create a database and add a post table to your database:
CREATE TABLE `post` (
 `id` int(11) NOT NULL auto_increment,
 `text` text,
 `title` varchar(255) default NULL,
 `is_deleted` tinyint(1) NOT NULL default '0',
 PRIMARY KEY (`id`)
)

2. Configure Yii to use this database in your primary application (protected/config/
main.php).

3. Make sure the test application has the same settings (protected/config/
test.php).

4. Uncomment the fixture component in the test application settings.

5. Use Gii to generate the Post model.

How to do it...
1. Let's prepare a test environment, first starting with defining fixtures for the Post

model in protected/tests/fixtures/post.php:
<?php
return array(
 array(
 'id' => 1,
 'title' => 'post1',
 'text' => 'post1',
 'is_deleted' => 0,

Chapter 8

227

),
 array(
 'id' => 2,
 'title' => 'post2',
 'text' => 'post2',
 'is_deleted' => 1,
),
 array(
 'id' => 3,
 'title' => 'post3',
 'text' => 'post3',
 'is_deleted' => 0,
),
 array(
 'id' => 4,
 'title' => 'post4',
 'text' => 'post4',
 'is_deleted' => 1,
),
 array(
 'id' => 5,
 'title' => 'post5',
 'text' => 'post5',
 'is_deleted' => 0,
),
);

2. We need to create a test case, protected/tests/unit/soft_delete/
SoftDeleteBehaviorTest.php:
<?php
class SoftDeleteBehaviorTest extends CDbTestCase
{
 protected $fixtures = array(
 'post' => 'Post',
);

 function testRemoved()
 {
 $postCount = Post::model()->removed()->count();
 $this->assertEquals(2, $postCount);
 }

 function testNotRemoved()
 {
 $postCount = Post::model()->notRemoved()->count();
 $this->assertEquals(3, $postCount);
 }

Extending Yii

228

 function testRemove()
 {
 $post = Post::model()->findByPk(1);
 $post->remove()->save();

 $this->assertNull(Post::model()->notRemoved()->findByPk(1));
 }

 function testRestore()
 {
 $post = Post::model()->findByPk(2);
 $post->restore()->save();

 $this->assertNotNull(Post::model
 ()->notRemoved()->findByPk(2));
 }

 function testIsDeleted()
 {
 $post = Post::model()->findByPk(1);
 $this->assertFalse($post->isRemoved());

 $post = Post::model()->findByPk(2);
 $this->assertTrue($post->isRemoved());
 }
}

3. Now, we need to implement behavior, attach it to the model, and make sure the test
passes. Create a new directory under protected/extensions named soft_
delete. Under this directory create SoftDeleteBehavior.php. Let's attach the
behavior to the Post model first:
class Post extends CActiveRecord
{
 // …

 public function behaviors()
 {
 return array(
 'softDelete' => array(
 'class' => 'ext.soft_delete.SoftDeleteBehavior'
),
);
 }

 // …

Chapter 8

229

4. Now, let's implement protected/extensions/soft_delete/
SoftDeleteBehavior.php:
<?php
class SoftDeleteBehavior extends CActiveRecordBehavior
{
 public $flagField = 'is_deleted';

 public function remove()
 {
 $this->getOwner()->{$this->flagField} = 1;
 return $this->getOwner();
 }

 public function restore()
 {
 $this->getOwner()->{$this->flagField} = 0;
 return $this->getOwner();
 }

 public function notRemoved()
 {
 $criteria = $this->getOwner()->getDbCriteria();
 $criteria->compare($this->flagField, 0);
 return $this->getOwner();
 }

 public function removed()
 {
 $criteria = $this->getOwner()->getDbCriteria();
 $criteria->compare($this->flagField, 1);
 return $this->getOwner();
 }

 public function isRemoved()
 {
 return (boolean)$this->getOwner()->{$this->flagField};
 }
}

5. Run the test and make sure it passes.

6. That's it. We've created reusable behavior and can use it for all future projects by just
connecting it to a model.

Extending Yii

230

How it works...
Let's start with the test case. Since we want to use a set of models, we are defining fixtures.
Fixture set is put into the DB each time the test method is executed. To use fixtures, the test
class should be inherited from CDbTestCase and have protected $fixtures declared:

protected $fixtures = array(
 'post' => 'Post',
);

In the preceding definition, post is the name of the file with fixture definitions and Post is the
name of the model to which fixtures will be applied.

First, we are testing removed and notRemoved custom named scopes. We should limit the
find result to removed items only, and then to non-removed items. Since we know which data
we will get from fixtures, we can test to get a count of removed and non-removed items such
as the following:

$postCount = Post::model()->removed()->count();
$this->assertEquals(2, $postCount);

Then we test the remove and restore methods. The following is the remove method test:

$post = Post::model()->findByPk(1);
$post->remove()->save();

$this->assertNull(Post::model()->notRemoved()->findByPk(1));

We are getting the item by id, removing it, and then trying to get it again using the
notRemoved named scope. Since it's removed, we should get null as the result.

Finally, we are testing the isRemoved method that just returns the corresponding column
value as Boolean.

Now, let's move to the interesting implementation details. Since we are implementing
the Active Record model behavior, we need to extend from CActiveRecordBehavior.
In behavior we can add our own methods that will be mixed into the model that behavior
is attached to. We are using it to add the remove/restore/isRemoved methods and
removed/notRemoved named scopes:

public function remove()
{
 $this->getOwner()->{$this->flagField} = 1;
 return $this->getOwner();
}
public function removed()
{

Chapter 8

231

 $criteria = $this->getOwner()->getDbCriteria();
 $criteria->compare($this->flagField, 1);
 return $this->getOwner();
}

In both methods we are using the getOwner method to get the object the behavior is
attached to. In our case it's a model, so we can work with its data or change its finder criteria.
We are returning the model instance to allow chained method calls such as the following:

$post->remove()->save();

There's more...
There are a couple of things that should be mentioned in this recipe.

CActiveRecordBehavior and CModelBehavior
Sometimes we need to get some more flexibility in a behavior, such as reacting to model
events. Both CActiveRecordBehavior and CModelBehavior are adding event-like
methods we can override to handle model events. For example, if we need to handle cascade
delete in a behavior, we can do it by overriding the afterDelete method.

More behavior types
Behavior can be attached not only to a model but also to any component. Each behavior
inherits from the CBehavior class so we can use its methods as follows:

 f The getOwner method to get the component that the behavior is attached to

 f The getEnabled and setEnabled methods to check if behavior is enabled and set
its state

 f The attach and detach methods can be correspondingly used to initialize behavior
and clean up temporary data created during behavior usage

Further reading
To learn more about behaviors, refer to the following API pages:

 f http://www.yiiframework.com/doc/api/CActiveRecordBehavior

 f http://www.yiiframework.com/doc/api/CModelBehavior

 f http://www.yiiframework.com/doc/api/CBehavior

See also
 f The Making extensions distribution-ready recipe

Extending Yii

232

Creating components
If you have some code that looks like it can be reused, but you don't know if it's a behavior,
widget, or something else, most probably it's a component. A component should be inherited
from CComponent or CApplicationComponent. Later on, the component can be attached
to the application and configured using the protected/config/main.php configuration
file. That's the main benefit compared to using just a plain PHP class. Additionally, we are
getting behaviors, events, getters, and setters support.

For our example we'll implement a simple EImageManager application component that will
be able to resize images using the GD library, attach it to the application, and use it.

Getting ready
You will need to install the GD PHP extension to see image resizing in action.

How to do it...
1. Create protected/components/EImageManager.php:

<?php
class EImageManager extends CApplicationComponent
{
 protected $image;
 protected $width;
 protected $height;

 protected $newWidth;
 protected $newHeight;

 public function resize($width = false, $height = false){
 if($width!==false) $this->newWidth = $width;
 if($height!==false) $this->newHeight = $height;

 return $this;
 }

 public function load($filePath)
 {
 list($this->width, $this->height, $type) =
 getimagesize($filePath);

 switch ($type)
 {

Chapter 8

233

 case IMAGETYPE_GIF:
 $this->image = imagecreatefromgif($filePath);
 break;
 case IMAGETYPE_JPEG:
 $this->image = imagecreatefromjpeg($filePath);
 break;
 case IMAGETYPE_PNG:
 $this->image = imagecreatefrompng($filePath);
 break;
 default:
 throw new CException('Unsupported image type ' . $type);
 }

 return $this;
 }

 public function save($filePath)
 {

 $ext = pathinfo($filePath, PATHINFO_EXTENSION);
 $newImage = imagecreatetruecolor($this->newWidth,
 $this->newHeight);
 imagecopyresampled($newImage, $this->image, 0, 0, 0, 0,
 $this->newWidth, $this->newHeight, $this->width,
 $this->height);
 switch($ext)
 {
 case 'jpg':
 case 'jpeg':
 imagejpeg($newImage, $filePath);
 break;
 case 'png':
 imagepng($newImage, $filePath);
 break;
 case 'gif':
 imagegif($newImage, $filePath);
 break;
 default:
 throw new CException("Unsupported image type ", $ext);
 }

 imagedestroy($newImage);

Extending Yii

234

 if(!is_file($filePath))
 throw new CException("Failed to write image.");
 }

 function __destruct()
 {
 imagedestroy($this->image);
 }
}

2. Now, we need to attach our component to the application. In protected/config/
main.php we need to add the following:
…
// application components
'components'=>array(
 'image' => array(
 'class' => 'EImageManager',
),
…

3. Now we can use it as follows:
Yii::app()->image
 ->load(Yii::getPathOfAlias('webroot').'/src.png')
 ->resize(100,100)
 ->save(Yii::getPathOfAlias('webroot').'/dst.png');

How it works...
To be able to attach a component to an application, it needs to be extended from
CApplicationComponent. Attaching is as simple as adding a new array to the
components section of configuration. There, a class value specifies the component's class
and all other values are set to a component through the corresponding component's public
properties and setter methods.

Implementation itself is very straightforward. We are wrapping GD calls into comfortable API
with the save, load, and resize methods. To be able to chain API calls, load and resize
are returning the component itself.

We can access our class by its component name using Yii::app(). In our case it will be
Yii::app()->image.

Chapter 8

235

There's more...
Besides creating your own components, you can do more.

Overriding existing application components
Most of the time there will be no need to create your own application components since other
types of extensions such as widgets or behaviors cover almost all types of reusable code.
However, overriding core framework components is a common practice and can be used to
customize the framework's behavior for your specific needs without hacking into the core.

For example, to be able to get the user's role from the database using Yii::app()->user-
>role you can extend the CWebUser component as follows:

<?php
class WebUser extends CWebUser {
 private $_model = null;

 function getRole() {
 if($user = $this->getModel()){
 return $user->role;
 }
 else return 'guest';
 }

 private function getModel(){
 if($this->_model === null){
 if($this->id === null) return null;
 $this->_model = User::model()->findByPk($this->id);
 }
 return $this->_model;
 }
}

To replace the standard user component, main.php configuration should be customized:

…
// application components
'components'=>array(
 'user'=>array(
 'class' => 'WebUser',
 // other properties
),
…

In the preceding code we specified a new class for the user component.

Extending Yii

236

Further reading
In order to learn more about components, refer to the following API pages:

 f http://www.yiiframework.com/doc/api/CComponent/

 f http://www.yiiframework.com/doc/api/CApplicationComponent/

See also
 f The Making extensions distribution-ready recipe

Creating reusable controller actions
Common actions, such as deleting the AR model by the primary key or getting data for
AJAX autocomplete, could be moved into reusable controller actions and later attached to
controllers as needed.

In this recipe we will create a reusable delete action that will delete the specified AR model
by its primary key.

Getting ready
1. Create a fresh Yii application using yiic webapp.

2. Create a new database and configure it.

3. Execute the following SQL:
CREATE TABLE `post` (
 `id` int(11) NOT NULL auto_increment,
 `text` text,
 `title` varchar(255) default NULL,
 PRIMARY KEY (`id`)
);

CREATE TABLE `comment` (
 `id` int(11) NOT NULL auto_increment,
 `text` text,
 PRIMARY KEY (`id`)
);

4. Generate models for post and comment using Gii.

Chapter 8

237

How to do it...
1. Create protected/extensions/actions/EDeleteAction.php:

<?php
class EDeleteAction extends CAction
{
 public $modelName;
 public $redirectTo = array('index');

 /**
 * Runs the action.
 * This method is invoked by the controller owning this action.
 */
 public function run($pk)
 {
 CActiveRecord::model($this->modelName)->deleteByPk($pk);
 if(Yii::app()->getRequest()->getIsAjaxRequest())
 {
 Yii::app()->end(200, true);
 }
 else
 {
 $this->getController()->redirect($this->redirectTo);
 }
 }
}

2. Now, we need to attach it to the controller, protected/controllers/
DeleteController.php:
<?php
class DeleteController extends CController
{
 public function actions()
 {
 return array(
 'deletePost' => array(
 'class' => 'ext.actions.EDeleteAction',
 'modelName' => 'Post',
 'redirectTo' => array('indexPosts'),
),
 'deleteComment' => array(
 'class' => 'ext.actions.EDeleteAction',
 'modelName' => 'Comment',
 'redirectTo' => array('indexComments'),

Extending Yii

238

),
);
 }

 public function actionIndexPosts()
 {
 echo "I'm the index action for Posts.";
 }

 public function actionIndexComments()
 {
 echo "I'm the index action for Comments.";
 }
}

3. That's it. Now, you can delete a post by visiting /delete/deletePost/pk/<pk>
and delete a comment by visiting /delete/deleteComment/pk/<pk>. After the
deletion, you will be redirected to a corresponding index action.

How it works...
To create an external controller action, you need to extend your class from CAction. The
only mandatory method to implement is run. In our case it accepts the parameter named
pk from $_GET using the automatic parameter binding feature of Yii and tries to delete a
corresponding model.

To make it customizable we've created two public properties configurable from the controller.
These are modelName, which holds the name of the model we are working with, and
redirectTo, which specifies a route the user will be redirected to.

Configuration itself is done by implementing the actions method in your controller. There
you can attach the action once or multiple times and configure its public properties.

There's more...
There are two usable methods implemented in CAction. First is getController, which we
can use to get an instance of the controller that the action is attached to. You will need it to
redirect to another action or, for example, generate a URL.

Another method is getId, which returns the action name specified in the controller's
actions method.

Chapter 8

239

Further reading
To learn more about external controller action refer to the following API pages:

 f http://www.yiiframework.com/doc/api/CAction/

 f http://www.yiiframework.com/doc/api/CController/#actions-detail

See also
 f The Creating reusable controllers recipe

 f The Making extensions distribution-ready recipe

Creating reusable controllers
In Yii you can create reusable controllers. If you are creating a lot of applications or controllers
that are of the same type, moving all common code into a reusable controller will save you a
lot of time.

In this recipe we will create a simple reusable api controller that will implement a simple
JSON CRUD API for a model. It will take input data from POST and GET and will respond with
JSON data and a corresponding HTTP response code.

Getting ready
1. Create a fresh Yii application using yiic webapp.

2. Create a database and execute the following SQL:
CREATE TABLE `post` (
 `id` int(11) NOT NULL auto_increment,
 `text` text,
 `title` varchar(255) default NULL,
 PRIMARY KEY (`id`)
);

3. Configure the application to use the database created and generate a model using
Gii. In our example we'll use the Post model, but you can use any model you want.

How to do it...
1. Create protected/extensions/json_api/JsonApiController.php:

<?php
class JsonApiController extends CController
{
 const RESPONSE_OK = 'OK';

Extending Yii

240

 const RESPONSE_NO_DATA = 'No data';
 const RESPONSE_NOT_FOUND = 'Not found';
 const RESPONSE_VALIDATION_ERRORS = 'Validation errors';

 public $modelName;

 public function init()
 {
 parent::init();
 if(empty($this->modelName))
 throw new CException("You should set modelName before
 using JsonApiController.");
 }

 public function actionCreate()
 {
 if(empty($_POST))
 $this->respond(400, self::RESPONSE_NO_DATA);

 $model = new $this->modelName;
 $model->setAttributes($_POST);

 if($model->save())
 $this->respond(200, self::RESPONSE_OK);
 else
 $this->respond(400, self::RESPONSE_VALIDATION_ERRORS,
 $model->getErrors());
 }

 public function actionGet($pk)
 {
 $model = CActiveRecord::model
 ($this->modelName)->findByPk($pk);
 if(!$model)
 $this->respond(404, self::RESPONSE_NOT_FOUND);

 $this->respond(200, self::RESPONSE_OK,
 $model->getAttributes());
 }

 public function actionUpdate($pk)
 {
 if(empty($_POST))
 $this->respond(400, self::RESPONSE_NO_DATA);

Chapter 8

241

 $model = CActiveRecord::model
 ($this->modelName)->findByPk($pk);
 if(!$model)
 $this->respond(404, self::RESPONSE_NOT_FOUND);

 $model->setAttributes($_POST);
 if($model->save())
 $this->respond(200, self::RESPONSE_OK);
 else
 $this->respond(400, self::RESPONSE_VALIDATION_ERRORS,
 $model->getErrors());
 }
 public function actionDelete($pk)
 {
 if(CActiveRecord::model($this->modelName)->deleteByPk($pk))
 {
 $this->respond(200, self::RESPONSE_OK);
 }
 else {
 $this->respond(404, self::RESPONSE_NOT_FOUND);
 }
 }

 protected function respond($httpCode, $status, $data = array())
 {
 $response['status'] = $status;
 $response['data'] = $data;

 echo CJSON::encode($response);

 Yii::app()->end($httpCode, true);
 }
}

2. Now, we need to connect it to our application via protected/config/main.php.
This can be done by adding controller configuration to the controllerMap property
of CWebApplication, so we need to place the following right after the configuration
array opening:
…
'controllerMap' => array(
 'api' => array(
 'class' => 'ext.json_api.JsonApiController',
 'modelName' => 'Post',
),
),
…

Extending Yii

242

3. That's it. We have connected the controller and specified that it should work with the
Post model.

You will need forms to post data, but if you have some data already, you can use get
methods right from a URL such as /api/get/pk/1. Applications should return data
such as the following:

{"status":"OK","data":{"id":"1","text":"post1",
 "title":"post1","is_deleted":"0"}}

How it works...
When you are running an application and passing a route such as api/get prior to executing
ApiController::actionGet Yii, check if controllerMap defined. Since we have an
api controller defined there, Yii executes it instead of going the usual way.

In the controller itself we've defined the modelName property to be able to connect the
controller multiple times and have an API for multiple models. We are setting it when
attaching the controller.

The controller itself isn't that much different from a regular one with only a few tricks:

 f When working with Active Record, we are creating a new class as follows:
$model = new $this->modelName;

 f We get model finder as follows:
$model = CActiveRecord::model($this->modelName);

 f This allows us not to be bound to a specific model but to specify a model name.

 f We're using CJSON to encode arrays and models to JSON.

 f Yii::app()->end() is used to end the application execution with the HTTP
response code specified.

There's more...
In order to learn more about the controllers map, refer to the following API page:

http://www.yiiframework.com/doc/api/CWebApplication#controllerMap-
detail

See also
 f The Creating reusable controller actions recipe

 f The Making extensions distribution-ready recipe

Chapter 8

243

Creating a widget
A widget is a reusable part of a view that not only renders some data but also does it
according to some logic. It can even get data from models and use its own views, so it is
like a reduced reusable version of a module.

Let's create a widget that will draw a pie chart using Google APIs.

Getting ready
Create a fresh Yii application using yiic webapp.

How to do it...
1. Create protected/extensions/chart/EChartWidget.php:

<?php
class EChartWidget extends CWidget
{
 public $title;
 public $data=array();
 public $labels=array();

 public function run()
 {
 echo "<img
 src=\"http://chart.apis.google.com/chart?chtt=".urlencode
 ($this->title)."&cht=pc&chs=300x150&chd=".
 $this->encodeData($this->data)."&chl=".implode
 ('|', $this->labels)."\">";
 }

 protected function encodeData($data)
 {
 $maxValue=max($data);

 $chars='ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwx
 yz0123456789';

 $chartData="s:";
 for($i=0;$i<count($data);$i++)
 {

Extending Yii

244

 $currentValue=$data[$i];
 if($currentValue>-1)
 $chartData.=substr($chars,61*($currentValue/$maxValue),1);
 else
 $chartData.='_';
 }

 return $chartData."&chxt=y&chxl=0:|0|".$maxValue;
 }
}

2. Now, create a controller, protected/controllers/ChartController.php:
<?php
class ChartController extends CController
{
 public function actionIndex()
 {
 $value = rand(10, 90);
 $this->widget('ext.chart.EChartWidget', array(
 'title' => 'Do you like it?',
 'data' => array(
 $value, 100-$value
),
 'labels' => array(
 'No',
 'Yes',
),
));
 }
}

3. Now, try to run the index action of the controller. You should see a pie chart like
the following:

Do you like it?

Yes

No

Chapter 8

245

How it works...
As with every other type of extension, we are creating some public properties we can configure
when calling a widget using CController::widget. In this case we are configuring title,
data set, and data labels.

The main method of a widget is run(). In our widget we are generating a URL pointing to the
Google charting API, and then echoing tag.

There's more...
To learn more about widgets refer to the following API pages:

 f http://www.yiiframework.com/doc/api/CWidget/

 f http://www.yiiframework.com/doc/api/CCaptcha/

See also
 f The Configuring components recipe in Chapter 1, Under the Hood

 f The Configuring widget defaults recipe in Chapter 1, Under the Hood

 f The Creating a custom input widget with C Input Widget recipe in Chapter 4,
Working with Forms

 f The Making extensions distribution-ready recipe

Creating CLI commands
Yii has a good command-line support and allows creating reusable console commands.
Console commands are faster to create than web GUIs. If you need to create some kind
of utility for your application that will be used by developers or administrators, console
commands are the right tool.

To show how to create a console command we'll create a simple command that will clean up
various things such as cache, temp directories, and so on.

Getting ready
Create a fresh Yii application using yiic webapp.

Extending Yii

246

How to do it...
1. Create protected/extensions/clean_command/ECleanCommand.php:

<?php
class ECleanCommand extends CConsoleCommand
{
 public $webRoot;
 public function actionCache()
 {
 $cache=Yii::app()->getComponent('cache');
 if($cache!==null){
 $cache->flush();
 echo "Done.\n";
 }
 else {
 echo "Please configure cache component.\n";
 }
 }

 public function actionAssets()
 {
 if(empty($this->webRoot))
 {
 echo "Please specify a path to webRoot in command
 properties.\n";
 Yii::app()->end();
 }

 $this->cleanDir($this->webRoot.'/assets');

 echo "Done.\n";
 }

 public function actionRuntime()
 {
 $this->cleanDir(Yii::app()->getRuntimePath());
 echo "Done.\n";
 }

 private function cleanDir($dir)
 {
 $di = new DirectoryIterator ($dir);
 foreach($di as $d)
 {

Chapter 8

247

 if(!$d->isDot())
 {
 echo "Removed ".$d->getPathname()."\n";
 $this->removeDirRecursive($d->getPathname());
 }
 }
 }

 private function removeDirRecursive($dir)
 {
 $files = glob($dir.DIRECTORY_SEPARATOR.'{,.}*', GLOB_MARK
| GLOB_BRACE);
 foreach ($files as $file)
 {
 if(basename($file) == '.' ||
basename($file) == '..')
 continue; if (substr($file,
- 1) == DIRECTORY_SEPARATOR)SEPARATOR
 $this-
 >removeDirRecursive($file);
 else
 unlink($file);
 }
 if (is_dir($dir))
 rmdir($dir);
 }
}

2. Now, we need to attach a command to the console application. By default, the
console application uses a separate bootstrap file, yiic.php:
<?php

// change the following paths if necessary
$yiic=dirname(__FILE__).'/../../framework/yiic.php';
$config=dirname(__FILE__).'/config/console.php';

require_once($yiic);

3. Therefore, the configuration is protected/config/console.php. Let's add our
console command to the commandMap property:
// This is the configuration for yiic console application.
// Any writable CConsoleApplication properties can be configured
here.
return array(
 'basePath'=>dirname(__FILE__).DIRECTORY_SEPARATOR.'..',

Extending Yii

248

 'name'=>'My Console Application',

 'commandMap' => array(
 'clean' => array(
 'class' => 'ext.clean_command.ECleanCommand',
 'webRoot' => 'path/to/your/application/webroot',
),
),
);

4. Don't forget to change webRoot to the actual path. That's it. Now, go to protected
directory and try running these commands:
 yiic clean

 yiic clean cache

 yiic clean assets

 yiic clean runtime

How it works...
All console commands should be extended from the CConsoleCommand class. Since all
console commands are run in CConsoleApplication instead of CWebApplication,
we don't have a way to determine the web application server root. For this purpose we are
creating a configurable public property called webRoot.

The console command structure itself is like a typical controller. We are defining several
actions we can run via yiic <console command> <command action>.

As you can see, there are no views used, so we can focus on programming tasks instead of
design, markup, and so on. Still, you need to provide some useful output so users will know
what is going on. This is done through simple PHP echo statements.

There's more...
If your command is relatively complex, such as message or migrate bundled with Yii, it's a
good decision to provide some extra description of the available options and actions. This can
be done by overriding the getHelp method:

public function getHelp()
{
 $out = "Clean command allows you to clean up various
 temporary data Yii and an application are generating.\n\n";
 return $out.parent::getHelp();
}

Chapter 8

249

Running just yiic will output:

Further reading
To learn more about creating console applications and commands, refer to the following:

 f http://www.yiiframework.com/doc/guide/topics.console

 f http://www.yiiframework.com/doc/api/CConsoleCommand/

 f http://www.yiiframework.com/doc/api/CConsoleApplication/

See also
 f The Making extensions distribution-ready recipe

Creating filters
A filter is a class that can run before/after an action is executed. It can be used to modify
execution context or decorate output. In our example we'll implement a simple output filter
that will compress HTML output, removing all optional formatting.

Don't use this filter in production. GZIP will do a better job
in reducing bandwidth. Moreover, it is not safe to remove
formatting for pre text area, among others.

Getting ready
Create a fresh Yii application using yiic webapp.

Extending Yii

250

How to do it...
1. Create protected/extensions/compress_html/ECompressHtmlFilter.

php:
<?php
class ECompressHtmlFilter extends CFilter
{
 protected function preFilter($filterChain)
 {
 ob_start();
 return parent::preFilter($filterChain);
 }

 protected function postFilter($filterChain)
 {
 $out = ob_get_clean();
 echo preg_replace("~>(\s+|\t+|\n+)<~", "><", $out);
 parent::postFilter($filterChain);
 }
}

2. That's it. Now, we need to connect it to the application. Since we already have
SiteController, let's add filter to it by overriding the filters method:
public function filters()
{
 return array(
 array(
 'ext.compress_html.ECompressHtmlFilter'
),
);
}

3. Now, run the application and check the HTML source code. It should be a single line
of text as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//
EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
dtd"><html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
lang="en"><head><meta http-equiv="Content-Type" content="text/
html; charset=utf-8" /><meta name="language" content="en" /><!--
blueprint CSS framework -->
…

Chapter 8

251

How it works...
A filter should at minimum implement the IFilter interface, but since we want to do post
and prefiltering, we can directly extend CFilter. The plan is to somehow get all of the
content generated by an action and do some processing prior to sending it to a browser. PHP's
output buffering fits this task well, so we override preFilter to start buffering by calling
ob_start there and postFilter to get the buffer content with ob_get_clean, and do
processing with a regular expression and echo result.

Note that we are calling parent methods when overriding preFilter and postFilter. It
allows the developer to build a chain of filters when configuring a controller.

There's more...
In order to learn more about filters, refer to the following API pages:

 f http://www.yiiframework.com/doc/api/CFilter

 f http://www.yiiframework.com/doc/api/IFilter

See also
 f The Making extensions distribution-ready recipe

Creating modules
If you have created a complex application part and want to use it with some degree of
customization in your next project, most probably you need to create a module.

In this recipe we will see how to create a wiki module. For simplicity, we will not focus on the
user and permissions management but will let everyone edit everything.

Getting ready
1. Create a fresh Yii application using yiic webapp.

2. Configure MySQL database and execute the following SQL:
CREATE TABLE `wiki` (
 `id` varchar(255) NOT NULL,
 `text` text NOT NULL,
 PRIMARY KEY (`id`)
)

3. Generate the Wiki model using Gii.

4. Move protected/models/Wiki.php to protected/modules/wiki/models/.

Extending Yii

252

5. Add wiki to the modules section of protected/config/main.php:
'modules'=>array(
 // uncomment the following to enable the Gii tool
 'gii'=>array(

 'class'=>'system.gii.GiiModule',
 'password'=>false,
),
 'wiki'
),

How to do it...
Let's do some planning first:

 f A wiki is a set of pages where one page can link to another using its name

 f Typically, wiki uses simpler human-readable markup instead of HTML

 f If a user goes to a page that doesn't yet exist, he's prompted to create one

 f To delete a page a user needs to save it with an empty body

Based on this planning we'll use markdown as the markup language. We will add a way to link
to another page by name. Let's say it will be [[page name]] or [[Custom title|page name]] if
you need a custom titled link.

1. First, let's add wiki links to CMarkdownParser. Create protected/modules/
wiki/components/WikiMarkdownParser.php:
<?php
class WikiMarkdownParser extends CMarkdownParser
{
 public function transform($text)
 {
 $text = preg_replace_callback('~\[\[(.*?)(?:\|(.*?))?\]\]~',
 array($this, 'processWikiLinks'), $text);
 return parent::transform($text);
 }

 protected function processWikiLinks($matches)
 {
 $page = $matches[1];
 $title = isset($matches[2]) ? $matches[2] : $matches[1];
 return CHtml::link(CHtml::encode($title), array(
 'view', 'id' => $page,
));
 }
}

Chapter 8

253

2. Now, let's use it by adding the getHtml method to the protected/modules/
wiki/models/Wiki.php model:
public function getHtml()
{
 $parser = new WikiMarkdownParser();
 return $parser->transform($this->text);
}

We're moving to customizing the protected/modules/wiki/controller/
DefaultController.php controller. We'll need just two actions there: the view
action and the edit action. Additionally, we'll create an index action that will just
call view with id = index. Since we don't need a view for the index action, it can
be deleted safely.

3. Now, edit protected/modules/wiki/controller/DefaultController.php:
class DefaultController extends Controller
{
 public function actionIndex()
 {
 $this->actionView('index');
 }

 public function actionView($id)
 {
 $model = Wiki::model()->findByPk($id);
 if(!$model)
 {
 $this->actionEdit($id);
 Yii::app()->end();
 }

 $this->render('view', array(
 'model' => $model,
));
 }

 public function actionEdit($id)
 {
 $model = Wiki::model()->findByPk($id);
 if(!$model)
 {
 $model = new Wiki();
 $model->id = $id;
 }

Extending Yii

254

 if(!empty($_POST['Wiki']))
 {
 if(!empty($_POST['Wiki']['text']))
 {
 $model->text = $_POST['Wiki']['text'];
 if($model->save())
 $this->redirect(array('view', 'id' => $id));
 }
 else
 {
 Wiki::model()->deleteByPk($id);
 }
 }

 $this->render('edit', array(
 'model' => $model
));
 }
}

4. In addition, we will need two views. Create protected/modules/wiki/views/
default/view.php:
<h2>
 <?php echo CHtml::encode($model->id)?>
 [<?php echo CHtml::link('edit', array('edit', 'id' =>
 $model->id))?>]
</h2>
<?php echo $model->html ?>

5. Create another one, protected/modules/wiki/views/default/edit.php:
<h2>Editing <?php echo CHtml::encode($model->id)?></h2>

<?php echo CHtml::beginForm()?>
 <?php echo CHtml::activeTextArea($model, 'text',
 array('cols' => 100, 'rows' => 20))?>

 <?php echo CHtml::submitButton('Done')?>
<?php echo CHtml::endForm()?>

Chapter 8

255

6. That's it. Now, run the wiki module and check it out by entering some text. Don't
forget to add internal links such as [[rules]]:

7. The preceding page will look like the following screenshot when being edited:

Extending Yii

256

8. Since we moved the Wiki model from application to module, the module doesn't
have any dependencies on the application itself. So we can move it to an extension
package such as protected/extensions/wiki/, changing the module
configuration of protected/config/main.php to the following:

'modules'=>array(
 // uncomment the following to enable the Gii tool
 'gii'=>array(
 'class'=>'system.gii.GiiModule',
 'password'=>false,
),
 'wiki'=>array(
 'class' => 'ext.wiki.WikiModule'
),
),

How it works...
Each module created contains a main module class such as WikiModule, where we can
define configurable properties, define imports, change paths, attach controllers, and so on.
By default, a module generated with Gii runs the index action of the default controller:

public function actionIndex()
{
 $this->actionView('index');
}

In our wiki module index we are just calling the view action by passing id = index to it:

$model = Wiki::model()->findByPk($id);
if(!$model)
{
 $this->actionEdit($id);
 Yii::app()->end();
}

$this->render('view', array(
 'model' => $model,
));

If there is a model with such an ID, we are displaying it using a view.

Chapter 8

257

If there is no page with such an ID, we are, again, delegating processing to another action.
This time it's edit:

$model = Wiki::model()->findByPk($id);
if(!$model)
{
 $model = new Wiki();
 $model->id = $id;
}

if(!empty($_POST['Wiki']))
{
 if(!empty($_POST['Wiki']['text']))
 {
 $model->text = $_POST['Wiki']['text'];
 if($model->save())
 $this->redirect(array('view', 'id' => $id));
 }
 else
 {
 Wiki::model()->deleteByPk($id);
 }
}

$this->render('edit', array(
 'model' => $model
));

If there is no model with an ID passed, we're creating a new one; if there is a model, we are
editing it. Edit form data comes from POST and, if a text is empty, we are deleting a model. If
there is a text, we are saving a model.

There's more...
There is a very flexible and configurable wiki module for Yii called Yeeki. It is still in development
and is very good for learning about how to make a module really configurable and reusable:

https://github.com/samdark/Yeeki

To learn more about modules, refer to the following URLs:

 f http://www.yiiframework.com/doc/guide/basics.module

 f http://www.yiiframework.com/doc/api/CWebModule/

 f http://www.yiiframework.com/doc/api/CModule/

 f http://www.yiiframework.com/doc/api/GiiModule/

Extending Yii

258

See also
 f The Making extensions distribution-ready recipe

Creating a custom view renderer
There are many PHP template engines out there. Yii offers only two template types out of
the box: native PHP and Prado-like templates. If you want to use one of the existing
template engines or create your own, you have to implement it if it's not yet implemented
by the Yii community.

In this recipe we'll implement Smarty templates support.

Getting ready
1. Create a fresh Yii application using yiic webapp.

2. Get the latest Smarty 3 release from http://www.smarty.net/.

3. Extract contents of the libs directory to protected/vendors/smarty/.

How to do it...
1. Create protected/extensions/smarty/ESmartyViewRenderer.php:

<?php
class ESmartyViewRenderer extends CApplicationComponent
 implements IViewRenderer
{
 public $fileExtension='.tpl';
 public $filePermission=0755;

 private $smarty;

 function init()
 {
 Yii::import('application.vendors.smarty.*');

 spl_autoload_unregister(array('YiiBase','autoload'));
 require_once('Smarty.class.php');
 spl_autoload_register(array('YiiBase','autoload'));

 $this->smarty = new Smarty();

Chapter 8

259

 $this->smarty->template_dir = '';
 $compileDir = Yii::app()->getRuntimePath
 ().'/smarty/compiled/';

 if(!file_exists($compileDir)){
 mkdir($compileDir, $this->filePermission, true);
 }

 $this->smarty->compile_dir = $compileDir;
 $this->smarty->assign('Yii', Yii::app());
 }

 /**
 * Renders a view file.
 * This method is required by {@link IViewRenderer}.
 * @param CBaseController the controller or widget who is
 rendering the view file.
 * @param string the view file path
 * @param mixed the data to be passed to the view
 * @param boolean whether the rendering result should be
 returned
 * @return mixed the rendering result, or null if the rendering
 result is not needed.
 */
 public function renderFile($context,$sourceFile,$data,$return) {
 // current controller properties will be accessible as
{this.property}
 $data['this'] = $context;

 if(!is_file($sourceFile) || ($file=realpath($sourceFile))=
 ==false)
 throw new CException(Yii::t('ext','View file
"$sourceFile" does not exist.', array('{file}'=>$sourceFile)));

 $this->smarty->assign($data);

 if($return)
 return $this->smarty->fetch($sourceFile);
 else
 $this->smarty->display($sourceFile);
 }
}

Extending Yii

260

2. Now, we need to connect the view renderer to the application. In protected/
config/main.php we need to override the viewRenderer component:
…
// application components
'components'=>array(
 …
 'viewRenderer'=>array(
 'class'=>'ext.smarty.ESmartyViewRenderer',
),
),
…

3. Now, let's test it. Create protected/controllers/SmartyController.php:
<?php
class SmartyController extends Controller
{
 function actionNative()
 {
 $this->render('native', array(
 'username' => 'Alexander',
));
 }

 function actionSmarty()
 {
 $this->render('smarty', array(
 'username' => 'Alexander',
));
 }
}

4. Now, we need views. Create protected/views/smarty/native.php:
Hello, <?php echo $username?>!
protected/views/smarty/smarty.tpl:
Hello, {$username}!

5. Now try running the controller actions. In both cases you should get
Hello, Alexander!.

Chapter 8

261

How it works...
A view renderer is a child of CApplicationComponent that implements the
IViewRenderer interface with only one method, called renderFile:

/**
 * Renders a view file.
 * @param CBaseController $context the controller or widget who is
 rendering the view file.
 * @param string $file the view file path
 * @param mixed $data the data to be passed to the view
 * @param boolean $return whether the rendering result should be
returned
 * @return mixed the rendering result, or null if the rendering result
is
 not needed.
 */
public function renderFile($context,$file,$data,$return);

Therefore, we are getting the context, template path, data, and return flag that determines
if we need to echo the processing result immediately or return it. In our case processing
itself is done by the Smarty template engine so we need to properly initialize it and call its
processing methods.

Importing and initializing Smarty is a bit tricky:

Yii::import('application.vendors.smarty.*');

spl_autoload_unregister(array('YiiBase','autoload'));
require__once('Smarty.class.php');
spl_autoload_register(array('YiiBase','autoload'));

$this->smarty = new Smarty();

$this->smarty->template_dir = '';
$compileDir = Yii::app()->getRuntimePath().'/smarty/compiled/';

if(!file_exists($compileDir)){
 mkdir($compileDir, $this->filePermission, true);
}

$this->smarty->compile_dir = $compileDir;
$this->smarty->assign('Yii', Yii::app());

Extending Yii

262

First, we are using Yii::import to tell Yii we want to use classes from protected/
vendors/smarty/. Since Yii autoloader conflicts with the one included in Smarty and we
can't control how Smarty does it, we need to unregister Yii's autoloader, require Smarty, and
then register Yii autoloader back. Since the Yii template directory can vary, we are resetting
the Smarty default option to an empty string. It is a good practice to store Yii temporary files
in the application runtime directory. That is why we are setting the compile directory,
where Smarty stores its templates compiled into PHP, to runtime/smarty/compiled.
Not to disturb developers too much, we are creating this directory automatically if it does
not exist. Also, we are creating a special Smarty template variable named Yii that points to
Yii::app() and allows us to get application properties inside of a template.

Rendering itself is a bit simpler:

// current controller properties will be accessible as {this.property}
$data['this'] = $context;

if(!is_file($sourceFile) || ($file=realpath($sourceFile))===false)
 throw new CException(Yii::t('ext','View file "$sourceFile" does not
exist.', array('{file}'=>$sourceFile)));

$this->smarty->assign($data);

if($return)
 return $this->smarty->fetch($sourceFile);
else
 $this->smarty->display($sourceFile);

We are assigning another Smarty variable called this that will allow getting controller
properties such as the page title.

To ease debugging, the template is checked for existence and, if it doesn't exist, an error
message with the template name is displayed.

All data set via $this->render is passed to the Smarty template as is. Then we are either
rendering the template or returning it, depending on the $return argument.

There's more...
You can get ready to use Smarty view renderer with plugins and configuration support at
http://www.yiiframework.com/extension/smarty-view-renderer.

It's okay to use a custom template engine in your application.
However, if you are creating a reusable extension, try to avoid
using template engines other than the native PHP.

Chapter 8

263

Further reading
To learn more about Smarty and view renderers in general refer to the following URLs:

 f http://www.smarty.net/

 f http://www.yiiframework.com/doc/api/IViewRenderer/

 f http://www.yiiframework.com/doc/api/CViewRenderer/

 f http://www.yiiframework.com/doc/api/CPradoViewRenderer/

See also
 f The Making extensions distribution-ready recipe

Making extensions distribution-ready
In this chapter you have learned how to create various types of Yii extensions. Now, we'll talk
about how to share your results with people and why it's important.

Getting ready
Let's form a checklist for a good extension first. A good programming product should follow
these points:

 f Consistent and easy to read and use API
 f Good documentation
 f People should be able to find it
 f Extension should apply to the most common use cases
 f Should be maintained
 f Well-tested code; ideally with unit tests
 f You need to provide support for it

Of course, having all these requires a lot of work, but these are necessary to create a
good product.

How to do it...
1. Let's review our list in more detail, starting with API. API should be consistent and

easy to read and use. Consistent means that overall style should not change,
so no different variable naming, such as camelCasedVariableNames and
underscored_variable_names, no inconsistent names, such as isFlag1() and
isNotFlag2(), and so on. Everything should obey the rules you've defined for your
code. This allows less checking of documentation and more focusing on coding.

Extending Yii

264

2. Code without any documentation is almost useless. An exception is relatively simple
code, but even if it's only a few lines, it doesn't feel right if there is not a single word
about how to install and use it. What makes good documentation? The purpose of
the code and its pros should be as visible as possible and should be written loud and
clear. For example, if an extension is sending an e-mail, the description should be
something as follows:

EMailer allows you to send an e-mail in an easy and convenient way. It handles non-
English text and title properly. Moreover, you can use Yii views as e-mail templates.

Code is useless if developers don't know where to put it and what should be in
application configuration. Don't expect that people know how to do framework-
specific things. Installation guides should be verbose. Step-by-step form is preferred
by a majority of developers. If code needs SQL schema to work, provide it.

Even if your API methods and properties are named properly, you still need to
document them with phpDoc comments specifying argument types and return types,
providing a brief description for each method. Don't forget protected and private
methods and properties since sometimes it's necessary to read these to understand
the details of how code works. Also, consider listing public methods and properties in
documentation so it can be used as a reference.

Provide use case examples with well-commented code. Try to cover the most common
ways of using extensions. In an example don't try to solve multiple problems at a time
since it can be confusing.

3. An extension should have a version number and a change log. It will allow the
community to check if they have the latest version and check what is changed
before upgrading.

It's important to make your code flexible, so it will apply to many
use cases. But since it's not possible to create code for every
possible use case, try to cover the most common ones.

4. It's important to make people feel comfortable. Providing good documentation is a
first step. The second is providing a proof that your code works as expected and will
work with further updates. The best way to do this is a set of unit tests.

5. An extension should be maintained, at least until it's stable and there are no more
feature requests and bug reports. So expect questions and reports, and reserve
some time to work on the code further. If you can't devote more time to maintain an
extension, but it's very innovative and no one did it before, it's still worth sharing it. If
the community likes it, someone will definitely offer his or her help.

Chapter 8

265

6. Finally, you need to make extensions available. A common place for Yii extensions is
http://www.yiiframework.com/extensions/. You need to be a registered
forum member with a few posts before you will be allowed to upload your code. Try to
find a good descriptive name, write a descriptive summary, and specify the relevant
category and tags. Don't use archives other than ZIP or GZIP since these are the most
common archive formats and you can be sure anyone can unpack them.

7. Even if your extension is relatively simple and documentation is good, there could be
questions and, for the first time, the only man who can answer them is you. Typically,
questions are asked at official forums, so it is better to create a topic where people
can discuss your code and provide a link to the extension page.

How it works...
If you want to share an extension with the community and be sure it will be useful and
popular, you need to do more than just write code. Making extensions distribution-ready is
much more work. It can be even more than creating an extension itself. So why is it good to
share extensions with the community in the first place? Compared to a code you use in your
own projects, open source has its pros. You are getting a lot more people than you can get
to test your closed source project. People who are using your extension are testing it, giving
valuable feedback, and reporting bugs. If your code is popular, there will be passionate
developers who will try to improve your code, to make it more extensive, more stable, and
reusable. Moreover, it just feels good because you are doing a good thing.

There's more...
We have covered the most important things. Still there are more to check out. Try existing
extensions before writing your own. If an extension almost fits, try contacting the extension
author and contribute ideas you have. Reviewing existing code helps to find useful tricks, dos,
and don'ts. Also check wiki articles and the official forum from time to time; there is a lot of
useful information about creating extensions and developing using Yii in general.

9
Error Handling,

Debugging, and Logging

In this chapter, we will cover:

 f Using different log routes

 f Analyzing the Yii error stack trace

 f Logging and using the context information

 f Implementing your own smart 404 handler

Introduction
It is not possible to create a bug-free application if it is relatively complex, so developers have
to detect errors and deal with them as fast as possible. Yii has a good set of utility features to
handle logging and handling errors. Moreover, in the debug mode, Yii gives you a stack trace if
there is an error. Using it, you can fix errors faster.

In this chapter, we will review logging, analyzing the exception stack trace, and implementing
our own error handler.

Using different log routes
Logging is the key to understanding what your application actually does when you have no
chance to debug it. Believe or not, but even if you are 100 percent sure that the application
will behave as expected, in production it can do many things you were not aware of. This is
OK, as no one can be aware of everything. Therefore, if we are expecting an unusual behavior,
we need to know about it as soon as possible and have enough details to reproduce it. This is
where logging comes in handy.

Error Handling, Debugging, and Logging

268

Yii allows a developer not only to log messages but also to handle them differently depending
on the message level and category. You can, for example, write a message to a database,
send an e-mail, or just show it in the browser.

In this recipe, we will handle log messages in a wise manner: The most important message
will be sent through an e-mail, less important messages will be saved in files A and B, and
the profiling will be routed to Firebug. Additionally, in a development mode, all messages and
profiling information will be displayed on the screen.

Getting ready
Set up a fresh Yii application by using yiic webapp as described in the official guide.

How to do it...
Carry out the following steps:

1. Configure logging using protected/config/main.php:
array(
 …
 'preload'=>array('log'),
 'components'=>array(
 …
 'log'=>array(
 'class'=>'CLogRouter',
 'routes'=>array(
 array(
 'class' => 'CEmailLogRoute',
 'categories' => 'example',
 'levels' => CLogger::LEVEL_ERROR,
 'emails' => array('admin@example.com'),
 // change to your email
 'sentFrom' => 'log@example.com',
 'subject' => 'Error at example.com',
),
 array(
 'class' => 'CFileLogRoute',
 'levels' => CLogger::LEVEL_WARNING,
 'logFile' => 'warning.log',
),
 array(
 'class' => 'CFileLogRoute',
 'levels' => CLogger::LEVEL_INFO,

Chapter 9

269

 'logFile' => 'info.log',
),
 array(
 'class' => 'CWebLogRoute',
 'categories' => 'example',
 'levels' => CLogger::LEVEL_PROFILE,
 'showInFireBug' => true,
 'ignoreAjaxInFireBug' => true,
),
 array(
 'class' => 'CWebLogRoute',
 'categories' => 'example',
),
),
),
),
),

2. Now, we will produce a few log messages in protected/controllers/
LogController.php as follows:
<?php
class LogController extends CController
{
 public function actionIndex()
 {
 Yii::trace('example trace message', 'example');

 Yii::log('info', CLogger::LEVEL_INFO, 'example');
 Yii::log('error', CLogger::LEVEL_ERROR, 'example');
 Yii::log('trace', CLogger::LEVEL_TRACE, 'example');
 Yii::log('warning', CLogger::LEVEL_WARNING,
 'example');

 Yii::beginProfile('preg_replace', 'example');
 for($i=0;$i<10000;$i++){
 preg_replace('~^[a-z]+~', '', 'test it');
 }
 Yii::endProfile('preg_replace', 'example');

 echo 'done';
 }
}

Error Handling, Debugging, and Logging

270

3. Now run the preceding action multiple times. On the screen, you should see a web
log similar to the one shown in the following screenshot:

A web log contains all the messages we have logged along with stack traces,
timestamps, levels, and categories.

4. Now open Firefox's Firebug console. You should see profiler messages as shown in
the following screenshot:

Chapter 9

271

Yii uses Firebug-compatible API, so you can view these messages in Chrome as follows:

Alternatively, in Opera:

5. As we just changed the log filenames and not paths, you should look in protected/
runtime/ to find log files named warning.log and info.log. Inside, you will find
messages as follows:

2011/04/17 00:58:53 [warning] [example] warning
in W:\home\yiicmf\www\protected\controllers\LogController.php (11)
in W:\home\yiicmf\www\index.php (12)
2011/04/17 00:59:00 [warning] [example] warning
in W:\home\yiicmf\www\protected\controllers\LogController.php (11)
in W:\home\yiicmf\www\index.php (12)
2011/04/17 00:59:56 [warning] [example] warning
in W:\home\yiicmf\www\protected\controllers\LogController.php (11)
in W:\home\yiicmf\www\index.php (12)
2011/04/17 01:02:07 [warning] [example] warning
in W:\home\yiicmf\www\protected\controllers\LogController.php (11)
in W:\home\yiicmf\www\index.php (12)
2011/04/17 01:02:12 [warning] [example] warning
in W:\home\yiicmf\www\protected\controllers\LogController.php (11)
in W:\home\yiicmf\www\index.php (12)
2011/04/17 01:03:00 [warning] [example] warning
in W:\home\yiicmf\www\protected\controllers\LogController.php (11)
in W:\home\yiicmf\www\index.php (12)

Error Handling, Debugging, and Logging

272

How it works...
When one logs a message using Yii::log or Yii::trace, Yii passes it to the log router.
Depending on how it is configured, it passes messages along one or many routes. For example,
e-mailing errors, writing debug information in file A, writing warning information in file B, and
passing profiling results to the Firebug console. This is depicted in the following diagram:

CLogRouter

Yii::log Yii::trace

warning info error profile

warning.log info.log Email FireBug

CLogRouter is typically attached to an application component named log. Therefore, in
order to configure it, we should set its properties in the protected/config/main.php file's
components section. The only configurable property is routes. It contains an array of log route
handlers and their configurations is routes.

We have defined five log routes. Let's review them as follows:

array(
 'class' => 'CEmailLogRoute',
 'categories' => 'example',
 'levels' => CLogger::LEVEL_ERROR,
 'emails' => array('admin@example.com'),
 'sentFrom' => 'log@example.com',
 'subject' => 'Error at example.com',
),

CEmailLogRoute sends log messages through e-mail. We limit category to example and
level to error. An e-mail will be sent from log@example.com to admin@example.com and
its subject value will be Error at example.com.

array(
 'class' => 'CFileLogRoute',
 'levels' => CLogger::LEVEL_WARNING,
 'logFile' => 'warning.log',
),

Chapter 9

273

CFileLogRoute appends error messages to a file specified. We limit the message level to
warning and use a file named warning.log. We do the same for info level messages by
using a file named info.log.

CWebLogRoute passes log messages to the browser as follows:

array(
 'class' => 'CWebLogRoute',
 'categories' => 'example',
),

The same log route can be used to pass log messages to Firebug or another console
compatible with it.

array(
 'class' => 'CWebLogRoute',
 'categories' => 'example',
 'levels' => CLogger::LEVEL_PROFILE,
 'showInFireBug' => true,
 'ignoreAjaxInFireBug' => true,
),

In the preceding code, we limit the category to example and the log level to profile, and turn
on the logging to Firebug. Additionally, we turn the logging off for AJAX-requests, as the JSON
response can be spoiled by logging.

There's more...
There are more interesting things about Yii logging, which are covered in the
following subsections:

Yii::trace versus Yii::log
Yii::trace is a simple wrapper around Yii::log.

if(YII_DEBUG)
 self::log($msg,CLogger::LEVEL_TRACE,$category);

Therefore, Yii::trace logs a message with a trace level, if Yii is in the debug mode.

Yii::beginProfile and Yii::endProfile
These methods are used to measure the execution time of some part of the application's code.
In our LogController, we measured 10,000 executions of preg_replace as follows:

Yii::beginProfile('preg_replace', 'regex_test');
for($i=0;$i<10000;$i++){
 preg_replace('~^[a-z]+~', '', 'test it');
}
Yii::endProfile('preg_replace', 'regex_test');

Error Handling, Debugging, and Logging

274

Log messages immediately
By default, Yii keeps all log messages in memory until the application is properly terminated
using Yii::app()->end(). That's done for performance reasons and generally works fine.
However, if there is a PHP fatal error or die()/exit() in the code, some log messages will
not be written at all. To make sure your messages will be logged you can flush them explicitly
using Yii::app()->log->flush(true).

Further reading
In order to learn more about logging, refer to the following URLs:

 f http://www.yiiframework.com/doc/guide/en/topics.logging

 f http://www.yiiframework.com/doc/api/CLogRouter

 f http://www.yiiframework.com/doc/api/CLogRoute

 f http://www.yiiframework.com/doc/api/CDbLogRoute

 f http://www.yiiframework.com/doc/api/CEmailLogRoute

 f http://www.yiiframework.com/doc/api/CFileLogRoute

 f http://www.yiiframework.com/doc/api/CWebLogRoute

 f http://www.yiiframework.com/doc/api/CLogger

See also
 f The Logging and using the context information recipe

Analyzing the Yii error stack trace
When an error occurs, Yii can display the error stack trace along with the error. A stack trace is
especially helpful when we need to know what really caused an error rather than just the fact
that an error occurred.

Getting ready
1. Set up a fresh Yii application by using yiic webapp as described in the official guide.

2. Configure a database and import the following SQL:
CREATE TABLE `article` (
 `alias` varchar(255) NOT NULL,
 `title` varchar(255) NOT NULL,
 `text` text NOT NULL,
 PRIMARY KEY (`alias`)
);

3. Generate an Article model using Gii.

Chapter 9

275

How to do it...
Carry out the following steps:

1. Now we will need to create some code to work with. Create protected/
controllers/ErrorController.php as follows:
<?php
class ErrorController extends CController
{
 public function actionIndex()
 {
 $articles = $this->getModels('php');
 foreach($articles as $article)
 {
 echo $article->title;
 echo "
";
 }
 }

 private function getModels($alias)
 {
 $criteria = new CDbCriteria();
 $criteria->addSearchCondition('allas', $alias);
 return Article::model()->findAll($criteria);
 }
}

2. We will run the preceding action and we should get the following error:
CDbCommand failed to execute the SQL statement: SQLSTATE[42S22]:
Column not found: 1054 Unknown column 'allas' in 'where clause'.
The SQL statement executed was: SELECT * FROM `article` `t` WHERE
allas LIKE :ycp0

Error Handling, Debugging, and Logging

276

3. Moreover, the stack trace shows the following error:

How it works...
From the error message, we know that we have no allas column in the database, but used it
somewhere in the code. In our case, it is very simple to find it just by searching all the project
files, but in a large project, a column can be stored in a variable. Moreover, we have everything
to fix an error without leaving the screen where the stack trace is displayed. We just need to
read it carefully.

Chapter 9

277

The stack trace displays a chain of calls in reverse order starting with the one that caused
an error. In our case, it is queryInternal. Generally, we don't need to read the whole trace
to get what is going on. The framework code itself is tested well, so the probability of error is
less. That is why Yii displays the application trace entries expanded and the framework trace
entries collapsed.

Therefore, we take the first expanded section and look for allas. After finding it, we can
immediately tell it is used in ErrorController.php at line 17.

There's more...
In order to learn more about error handling, refer to the following URL:

http://www.yiiframework.com/doc/guide/en/topics.error

See also
 f The Logging and using the context information recipe

Logging and using the context information
Sometimes a log message is not enough to fix an error. For example, when you are following
best practices by developing and testing an application with all possible errors reported, you
can get an error message. However, without the execution context, it is only telling you that
there was an error and it is not clear what actually caused it.

For our example, we will use a very simple and poorly coded action that just echoes Hello,
<username>! where the username is taken directly from $_GET.

Getting ready
1. Configure PHP to use the most strict error reporting. In php.ini, replace the

error_reporting value with -1. This change requires restarting the server.

2. Set up a fresh Yii application by using yiic webapp as described in the
official guide.

Error Handling, Debugging, and Logging

278

How to do it...
Carry out the following steps:

1. First, we will need a controller to work with. Therefore, create protected/
controllers/LogController.php as follows:
<?php
class LogController extends CController
{
 public function actionIndex()
 {
 echo "Hello, ".$_GET['username'];
 }
}

2. Now, if we run the index action, we will get the error message "Undefined
index: username". Let's configure the logger to write these kinds of errors to a
file. Edit your protected/config/main.php config:
array(
 …
 'preload'=>array('log'),
 'components'=>array(
 …
 'log'=>array(
 'class'=>'CLogRouter',
 'routes'=>array(
 array(
 'class'=>'CFileLogRoute',
 'levels'=>'error',
 'logFile' => 'errors',
),
 …other log routes…
),
),
),
)

3. Run the index action again and check protected/runtime/errors. There
should be log information like the following:
2011/04/17 03:53:19 [error] [php] Undefined index: username (W:\
home\yiicmf\www\protected\controllers\LogController.php:30)
Stack trace:
#0 W:\home\yiicmf\framework\web\CController.php(280):
LogController->runAction()
#1 W:\home\yiicmf\framework\web\CController.php(258):
LogController->runActionWithFilters()

Chapter 9

279

#2 W:\home\yiicmf\framework\web\CWebApplication.php(329):
LogController->run()
#3 W:\home\yiicmf\framework\web\CWebApplication.php(122):
CWebApplication->runController()
#4 W:\home\yiicmf\framework\base\CApplication.php(155):
CWebApplication->processRequest()
#5 W:\home\yiicmf\www\index.php(12): CWebApplication->run()
REQUEST_URI=/log/environment
in W:\home\yiicmf\www\protected\controllers\LogController.php (30)
in W:\home\yiicmf\www\index.php (12)

4. Now we can give our application to a testing team and check the errors log from
time to time. We will know there are errors, but we will need to reproduce them
somehow. In order to do this, we need to reconstruct the environment. Let's add
it to the log as follows:
array(
 'class' => 'CFileLogRoute',
 'levels' => CLogger::LEVEL_ERROR,
 'logFile' => 'errors',
 'filter'=>'CLogFilter',
),

5. Now run the action again. This time, you should get enough to reproduce the
environment in detail:
2011/04/17 04:01:16 [info] [application] $_SERVER=array (
 'REDIRECT_STATUS' => '200',
 'HTTP_USER_AGENT' => 'Opera/9.80 (Windows NT 6.1; U; ru)
 Presto/2.8.131 Version/11.10',
 'HTTP_HOST' => 'yiicmf',
 'HTTP_ACCEPT' => 'text/html, application/xml;q=0.9, application/
 xhtml+xml, image/png, image/webp, image/jpeg, image/gif,
 image/x-xbitmap, */*;q=0.1',
 'HTTP_ACCEPT_LANGUAGE' => 'ru-RU,ru;q=0.9,en;q=0.8',
 'HTTP_ACCEPT_ENCODING' => 'gzip, deflate',
 'HTTP_PRAGMA' => 'no-cache',
 'HTTP_CACHE_CONTROL' => 'no-cache',
 'HTTP_CONNECTION' => 'Keep-Alive',

…

 'SERVER_NAME' => 'yiicmf',
 'SERVER_ADDR' => '127.0.0.1',
 'SERVER_PORT' => '80',
 'REMOTE_ADDR' => '127.0.0.1',
 'DOCUMENT_ROOT' => 'W:/home/yiicmf/www',
 'SERVER_ADMIN' => 'admin@localhost',
 'SCRIPT_FILENAME' => 'W:/home/yiicmf/www/index.php',

Error Handling, Debugging, and Logging

280

 'REMOTE_PORT' => '55190',
 'REDIRECT_URL' => '/log/environment',
 'GATEWAY_INTERFACE' => 'CGI/1.1',
 'SERVER_PROTOCOL' => 'HTTP/1.1',
 'REQUEST_METHOD' => 'GET',
 'QUERY_STRING' => '',
 'REQUEST_URI' => '/log/environment',
 'SCRIPT_NAME' => '/index.php',
 'PHP_SELF' => '/index.php',
 'REQUEST_TIME' => 1302998476,
 'argv' =>
 array (
),
 'argc' => 0,
)
2011/04/17 04:01:16 [error] [php] Undefined index: username (W:\
home\yiicmf\www\protected\controllers\LogController.php:30)
Stack trace:
#0 W:\home\yiicmf\framework\web\CController.php(280):
LogController->runAction()
#1 W:\home\yiicmf\framework\web\CController.php(258):
LogController->runActionWithFilters()
#2 W:\home\yiicmf\framework\web\CWebApplication.php(329):
LogController->run()
#3 W:\home\yiicmf\framework\web\CWebApplication.php(122):
CWebApplication->runController()
#4 W:\home\yiicmf\framework\base\CApplication.php(155):
CWebApplication->processRequest()
#5 W:\home\yiicmf\www\index.php(12): CWebApplication->run()
REQUEST_URI=/log/environment
in W:\home\yiicmf\www\protected\controllers\LogController.php (30)
in W:\home\yiicmf\www\index.php (12)
2011/04/17 04:01:16 [info] [application] User: Guest (ID:)

How it works...
In order to get more from the error logging, we use the CLogFilter class that preprocesses the
logged messages before they are handled by a log route. It is the only log filter that is included
in the Yii core and can be used to add more information about the execution context and
environment. If we are logging a message manually, then we probably know what information we
need, so we can set some CLogFilter options to write only what we really need:

array(
 'class' => 'CFileLogRoute',
 'levels' => CLogger::LEVEL_ERROR,
 'logFile' => 'errors',
 'filter'=> array(

Chapter 9

281

 'class' => 'CLogFilter',
 'logUser' => false,
 'logVars' => array('_GET'),
),
),

The preceding code will log errors to a file named errors. In addition to a message itself, it
will log contents of $_GET if it is not empty.

There's more...
In order to learn more about log filters and context information, refer to the following URLs:

 f http://www.yiiframework.com/doc/api/CLogFilter

 f http://www.yiiframework.com/doc/guide/en/topics.
logging#logging-context-informations

See also
 f The Using different log routes recipe

Implementing your own smart 404 handler
In Yii, the error handling is very flexible, so you can create your own error handler for errors of
specific types. In this recipe, we will handle a 404 not found error in a smart way: We will show a
custom 404 page that will suggest the content based on what was entered in the address bar.

Getting ready
1. Set up a fresh Yii application by using yiic webapp as described in the

official guide.

2. Configure a database and import the following SQL:
CREATE TABLE `article` (
 `alias` varchar(255) NOT NULL,
 `title` varchar(255) NOT NULL,
 `text` text NOT NULL,
 PRIMARY KEY (`alias`)
);

3. Generate an Article model using Gii.

4. Generate an Article crud using Gii.

Error Handling, Debugging, and Logging

282

5. Create the following articles:

Title Alias Text
Yii framework yii-framework Yii framework is good.
Why Yii why-yii Why should I use Yii?
PHP is a good tool php-is-a-good-tool PHP is nice!
Yii as a tool for apps yii-as-a-tool-for-apps Yii is a good tool for apps.

How to do it...
Carry out the following steps:

1. Try to run http://your.application/yii. You should get a standard 404
error page. Now we need to somehow change this page, but leave it as it is for other
error types. In order to achieve this, we will use the application's onException
event. Let's configure it to be handled by the handle static method of the
NotFoundHandler class. We will do it by using protected/config/main.php
as follows:
// events
'onException' => array('NotFoundHandler', 'handle'),

2. Now we need to implement the error handling itself. Create protected/
components/NotFoundHandler.php as follows:
<?php
class NotFoundHandler
{
 public static function handle(CExceptionEvent $event)
 {
 $exception = $event->exception;

 if(get_class($exception)=="CHttpException" &&
 $exception->statusCode===404)
 {
 $pathParts = explode('/', Yii::app()->
 getRequest()->getRequestUri());
 $pathPart = array_pop($pathParts);

 $criteria = new CDbCriteria();
 $criteria->addSearchCondition('alias', $pathPart);
 $criteria->limit = 5;

 $models = Article::model()->findAll($criteria);

Chapter 9

283

 $controller = new CController(null);
 $controller->renderPartial('//error/404', array(
 'models' => $models,
));
 $event->handled = true;
 }
 }
}

3. Also, we will need a view named protected/views/error/404.php:
<!doctype html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>404</title>
 </head>
 <body>
 <h1>404</h1>

 <?php if(!empty($models)):?>
 <p>Probably you've searched for:</p>

 <?php foreach($models as $model):?>
 <a href="<?php echo $this->createUrl('article/view',
 array('id' => $model->alias))?>"><?php echo
 $model->title?>
 <?php endforeach?>

 <?php endif?>
 </body>
</html>

4. That's it. Now try the following URLs:

 � http://your.application/yii

 � http://your.application/tool

Each time, you will get several links to related articles.

Error Handling, Debugging, and Logging

284

How it works...
By using the configuration file, we attach an event handler to the onException event
as follows:

'onException' => array('NotFoundHandler', 'handle'),

This means that we will use NotFoundHandler::handle(). Every event handler method
accepts a single parameter named $event with event data inside. The exception handler
parameter accepts the CExceptionEvent instance. As it contains the original exception, we
can check for its type and error code as follows:

if(get_class($exception)=="CHttpException" &&
 $exception->statusCode===404)

If the exception doesn't match, the Yii works as before and if it does match, Yii executes our
custom code:

$pathParts = explode('/', Yii::app()->getRequest()->getRequestUri());
$pathPart = array_pop($pathParts);

We get the last URL segment as it will most probably contain the article alias if the URL is in
path format. Then, form a database criteria and get models as follows:

$criteria = new CDbCriteria();
$criteria->addSearchCondition('alias', $pathPart);
$criteria->limit = 5;
$models = Article::model()->findAll($criteria);

Then, we render a view in the following way:

$controller = new CController(null);
$controller->renderPartial('//error/404', array(
 'models' => $models,
));

Note that we are creating a new CController instance because 404 can be reached before
the application will initialize a controller.

$event->handled = true;

Finally, we instruct Yii that the event is handled and there is no need to handle it further.

Chapter 9

285

There's more...
The preceding method is not the only method for handling errors in a customized way. Other
options are as follows:

 f Extend the CErrorHandler application component

 f Use a controller action to handle errors by setting CErrorHandler::
errorAction

Further reading
In order to learn more about handling errors in Yii, refer to the following API pages:

 f http://www.yiiframework.com/doc/api/CErrorHandler/

 f http://www.yiiframework.com/doc/api/CApplication#onException-
detail

 f http://www.yiiframework.com/doc/api/CApplication#onError-detail

See also
 f The Using Yii events recipe in Chapter 1, Under the Hood

10
Security

In this chapter, we will cover:

 f Using controller filters

 f Using CHtml and CHtmlPurifier to prevent XSS

 f Preventing SQL injections

 f Preventing CSRF

 f Using RBAC

Introduction
In this chapter, you will learn how to keep your application secure according to the general
web application security principle "filter input, escape output." We will cover topics such as
creating your own controller filters, preventing XSS, CSRF, and SQL injections, escaping output,
and using role-based access control.

Using controller filters
In many cases, we need to filter the incoming data or perform some actions based on this
data. For example, with custom filters, we can filter visitors by IP, force users to use HTTPS,
or redirect the user to an installation page prior to using the application. Yii has two built-
in usable filters. First is CInlineFilter, which allows using the controller method as a
filter, and the second (the one we will focus on) is CAccessControlFilter, which allows
controlling access to various controller actions.

Security

288

In this recipe, we will implement the following:

 f Limiting access to the controller action to authorized users only

 f Limiting access to the controller action to specified IPs

 f Limiting access to specific users

 f Limiting access for users of a browser specified; in this case, we will also show the
custom message

Getting ready
1. Create a fresh application by using yiic webapp.

2. Create protected/controllers/AccessController.php as follows:
<?php
class AccessController extends CController
{

 public function actionAuthOnly()
 {
 echo "Looks like you are authorized to run me.";
 }

 public function actionIp()
 {
 echo "Your IP is in our list. Lucky you!";
 }

 public function actionUser()
 {
 echo "You're the right man. Welcome!";
 }
}

How to do it...
Carry out the following steps:

1. Applying an access filter consists of two steps. First, we need to include a filter in the
controller's filters method. We do this as follows:
public function filters()
{
 return array(
 'accessControl',
);
}

Chapter 10

289

2. Then, we can describe filtering rules in the accessRules method that is used by the
access control filter as follows:
public function accessRules()
{
 return array(
 array(
 'deny',
 'expression' => 'strpos($_SERVER[\'HTTP_USER_AGENT\'],
 \'MSIE\') !== FALSE',
 'message' => "You're using the wrong browser, sorry.",
),
 array(
 'allow',
 'actions' => array('authOnly'),
 'users' => array('@'),
),
 array(
 'allow',
 'actions' => array('ip'),
 'ips' => array('127.0.0.1'),
),
 array(
 'allow',
 'actions' => array('user'),
 'users' => array('admin'),
),
 array('deny'),
);
}

3. Now try to run controller actions using Internet Explorer and other browsers, using
both the admin and demo usernames.

Security

290

How it works...
We will start with limiting access to the controller action to authorized users only. See the
following code in the accessRules method:

array(
 'allow',
 'actions' => array('authOnly'),
 'users' => array('@'),
),
array('deny'),

Each array here is an access rule. You can either use the allow rule or the deny rule. For
each rule, there are several parameters.

By default, Yii does not deny everything, so consider adding
array('deny') to the end of your rules list if you need
maximum security.

In our rule, we use two parameters. The first is the actions parameter, which takes an array
of actions to which the rule will be applied. The second is the users parameter, which takes
an array of user IDs (ones returned by Yii::app()->user->id) to determine the users
this rule applies to. In our case, we used one of the following special characters: @ means all
authenticated users, while * and ? stand for all users and guest users, respectively.

Rules are executed one by one starting from the top
until one matches. If nothing matches, then the action
is treated as allowed.

The next task is to limit access to specific IPs. In this case, the following two access rules
are involved:

array(
 'allow',
 'actions' => array('ip'),
 'ips' => array('127.0.0.1'),
),
array('deny'),

The first rule allows access to the ip action from a list of IPs specified. In our case, we are
using a loopback address, which always points to our own computer. Try changing it to, for
example, 127.0.0.2 to see how it works when the address does not match. The second rule
denies everything including all other IPs.

Chapter 10

291

Next, we limit access to one specific user as follows:

array(
 'allow',
 'actions' => array('user'),
 'users' => array('admin'),
),
array('deny'),

The preceding rule allows a user with an ID equal to admin to run the user action. Therefore,
if you log in as admin, it will let you in, but if you log in as demo, it will not. This is the same
type of rule that we used to limit access to authorized users. The only difference is that we are
using an ID instead of a wildcard. Again, the second rule involved denies everything including
all other users.

Finally, we need to deny access to a specific browser. For this recipe, we are denying all
versions of Internet Explorer and, in fact, some other browsers with the same user agent
strings. The rule itself is put on top, so it executes first as follows:

array(
 'deny',
 'expression' => 'strpos($_SERVER[\'HTTP_USER_AGENT\'], \'MSIE\')
 !== FALSE',
 'message' => "You're using the wrong browser, sorry.",
),
array('deny'),

The detection technique that we are using is not very reliable, as
MSIE is contained in many other user agent strings. For a list of
possible user agent strings, you can refer to the following URL:

http://www.useragentstring.com/

In the preceding code, we use another filter rule property named expression. It takes a PHP
expression as a string, as an anonymous function (in PHP 5.3), or as a valid callback. In our
case, we use a string.

Using PHP 5.3, the anonymous function will look like the following:

array(
 'deny',
 'expression' => function(){
 return strpos($_SERVER['HTTP_USER_AGENT'], 'MSIE') !== FALSE;
 },
 'message' => "You're using the wrong browser, sorry.",
),

Security

292

The preceding expression checks if the user agent string contains MSIE. Depending on your
requirements, you can specify any PHP code. The second parameter named message is used
to change a message shown to the user when the access is denied.

There's more...
In order to learn more about the access control and filters, refer to the following URLs:

 f http://www.yiiframework.com/doc/guide/en/topics.auth#access-
control-filter

 f http://www.yiiframework.com/doc/guide/en/basics.
controller#filter

 f http://www.yiiframework.com/doc/api/CAccessControlFilter

See also
 f The Using RBAC recipe

Using CHtml and CHtmlPurifier to
prevent XSS

XSS stands for cross-site scripting and is a type of vulnerability that allows one to inject
a client-side script (typically, JavaScript) in the page viewed by other users. Considering
the power of the client-side scripting this can lead to very serious consequences such as
bypassing security checks, getting other user credentials, or data leaks.

In this recipe, we will see how to prevent XSS by escaping the output with both CHtml and
CHtmlPurifier.

Getting ready
Generate a fresh web application by using yiic webapp. Create protected/
controllers/XssController.php as follows:

<?php
class XssController extends CController
{
 public function actionSimple()
 {
 echo 'Hello, '.$_GET['username'].'!';
 }
}

Chapter 10

293

Normally, it will be used as /xss/simple?username=Alexander. However, as the main
security principle "filter input, escape output" was not taken into account, malicious users will
be able to use it in the following way:

/xss/simple?username=<script>alert('XSS');</script>

The preceding will result in a script execution, shown in the following screenshot:

Note that instead of just alerting XSS, it is possible, for example, to steal page contents or
perform some website-specific things such as deleting all users' data.

How to do it...
Carry out the following steps:

1. In order to prevent the XSS alert shown in the preceding screenshot, we need to
escape the data before passing it to the browser. We do this as follows:
class XssController extends CController
{
 public function actionSimple()
 {
 echo 'Hello, '.CHtml::encode($_GET['username']).'!';
 }
}

Security

294

2. Now instead of an alert, we will get properly escaped HTML as shown in the
following screenshot:

3. Therefore, the basic rule is to always escape all dynamic data. For example,
we should do the same for a link name:
echo CHtml::link(CHtml::encode($_GET['username']), array());

4. That's it. You have a page that is free from XSS. Now what if we want to allow some
HTML to pass? We cannot use CHtml::encode anymore because it will render
HTML as just a code and we need the actual representation. Fortunately, there is a
tool bundled with Yii that allows filtering out the malicious HTML. It is named HTML
Purifier and can be used in the following way:
public function actionHtml()
{
 $this->beginWidget('CHtmlPurifier');
 echo $_GET['html'];
 $this->endWidget();
}

Alternatively, you can use it in the following way:

public function actionHtml()
{
 $purifier=new CHtmlPurifier();
 echo $purifier->purify($_GET['html']);
}

5. Now if we access the html action using a URL such as /xss/html?html=Hello,<
strong>username!<script>alert('XSS')</script>, the HTML
Purifier will remove the malicious part and we will get the following result:

Chapter 10

295

How it works...
Internally, CHtml::encode looks like the following:

public static function encode($text)
{
 return htmlspecialchars($text,ENT_QUOTES,Yii::app()->charset);
}

So basically, we use the PHP's internal htmlspecialchars function, which is pretty secure if
one does not forget to pass the correct charset in the third argument.

CHtmlPurifier uses the HTML Purifier library, which is the most advanced solution out
there to prevent XSS inside of HTML. We have used its default configuration, which is OK for
most of the user-entered content.

There's more...
There are more things to know about XSS and HTML Purifier; they are discussed in the
following section.

XSS types
There are two main types of XSS injections, which are as follows:

 f Non-persistent

 f Persistent

The first type is exactly the one that we have used in the recipe and is the most common XSS
type that can be found in most insecure web applications. Data passed by the user or through
a URL is not stored anywhere, so the injected script will be executed only once and only for the
user who entered it. Still, it is not as secure as it looks. Malicious users can include XSS in a
link to another website and their core will be executed when another user will follow the link.

The second type is much more serious, as the data entered by a malicious user is stored in the
database and is shown to many, if not all, website users. Using this type of XSS, one can literally
destroy your website by commanding all users to delete all data to which they have access.

Configuring the HTML Purifier
The HTML Purifier can be configured as follows:

$p = new CHtmlPurifier();
$p->options = array('URI.AllowedSchemes'=>array(
 'http' => true,
 'https' => true,
));
$text = $p->purify($text);

Security

296

For a list of all possible keys, which you can use in the options array, refer to the following URL:

http://htmlpurifier.org/live/configdoc/plain.html

HTML Purifier performance
As the HTML Purifier performs a lot of processing and analysis, its performance is not so good.
Therefore, it is a good idea not to process text every time you are outputting it. Instead, it can
be saved in a separate database field as discussed in Chapter 6, Database, Active Record,
and Model Tricks, in the Applying markdown and HTML recipe or cached.

Further reading
In order to learn more about XSS and how to deal with it, refer to the following resources:

 f http://htmlpurifier.org/docs

 f http://ha.ckers.org/xss.html

 f http://shiflett.org/blog/2007/may/character-encoding-and-xss

See also
 f The Applying markdown and HTML recipe in Chapter 6, Database, Active Record, and

Model Tricks

Preventing SQL injections
SQL injection is a type of code injection that uses vulnerability at the database level and
allows executing arbitrary SQL, allowing malicious users to carry out such actions as deleting
data or raising their privileges.

In this recipe, we will see examples of vulnerable code and fix them.

Getting ready
1. Create a fresh application by using yiic webapp.

2. Create and configure a new database.

3. Execute the following SQL:
CREATE TABLE `user` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `username` varchar(100) NOT NULL,
 `password` varchar(32) NOT NULL,
 PRIMARY KEY (`id`)
);

Chapter 10

297

INSERT INTO `user`(`id`,`username`,`password`) VALUES ('1','Alex'
,'202cb962ac59075b964b07152d234b70');
INSERT INTO `user`(`id`,`username`,`password`) VALUES ('2','Qiang
','202cb962ac59075b964b07152d234b70');

4. Generate a User model using Gii.

How to do it...
1. First, we will implement a simple action that checks if the username and

password that came from a URL are correct. Create protected/controllers/
SqlController.php:
<?php
class SqlController extends CController
{
 public function actionSimple()
 {
 $userName = $_GET['username'];
 $password = md5($_GET['password']);
 $sql = "SELECT * FROM user WHERE username = '$userName'
 AND password = '$password' LIMIT 1;";
 $user = Yii::app()->db->createCommand($sql)-
 >queryRow();
 if($user)
 {
 echo "Success";
 }
 else
 {
 echo "Failure";
 }
 }
}

2. Let's try to access it using the /sql/simple?username=test&password=test
URL. As we are aware of neither the username nor password, it will—as expected—
print Failure.

3. Now try another URL: /sql/simple?username=%27+or+%271%27%3D%271%2
7%3B+--&password=whatever. This time, it lets us in though we still don't know
anything about actual credentials. The decoded part of the username value looks
like the following:
' or '1'='1'; --

Security

298

Close the quote, so that the syntax will stay correct.

Add OR '1'='1' that makes the condition always true.

Use ; -- to end the query and comment the rest.

4. As no escaping was done, the whole query executed was:
SELECT * FROM user WHERE username = '' or
'1'='1'; --' AND password = '008c5926ca861023c1d2a36653fd88e2'
LIMIT 1;

The best way to fix it is to use a prepared statement as follows:
public function actionPrepared()
{
 $userName = $_GET['username'];
 $password = md5($_GET['password']);
 $sql = "SELECT * FROM user WHERE username = :username
 AND password = :password LIMIT 1;";
 $command = Yii::app()->db->createCommand($sql);
 $command->bindValue('username', $userName);
 $command->bindValue('password', $password);
 $user = $command->queryRow();
 if($user)
 {
 echo "Success";
 }
 else
 {
 echo "Failure";
 }
}

5. Now check /sql/prepared with the same malicious parameters. This time
everything went fine and we have the Failure message. The same principle applies
to Active Record. The only difference is that AR uses other syntax:
public function actionAr()
{
 $userName = $_GET['username'];
 $password = md5($_GET['password']);

 $result = User::model()->exists("username = :username
 AND password = :password", array(
 'username' => $userName,
 'password' => $password,
));
 if($result)
 {

Chapter 10

299

 echo "Success";
 }
 else
 {
 echo "Failure";
 }
}

6. In the preceding code, we used the :username and :password parameters and
passed parameter values as a second argument. If we had written the preceding
code by just using the first argument, it would be vulnerable:
public function actionWrongAr()
{
 $userName = $_GET['username'];
 $password = md5($_GET['password']);

 $result = User::model()->exists("username = $userName
 AND password = $password");
 if($result)
 {
 echo "Success";
 }
 else
 {
 echo "Failure";
 }
}

7. If used properly, prepared statements can save you from all types of SQL injections.
Still, there are some common problems:

 � You can bind only one value to a single parameter, so if you want to query
WHERE IN(1, 2, 3, 4), you will have to create and bind four parameters

 � Prepared statement cannot be used for table names, column names, and
other keywords

8. When using Active Record, the first problem can be solved by using the criteria
addInCondition method as follows:
public function actionIn()
{
 $criteria = new CDbCriteria();
 $criteria->addInCondition('username', array('Qiang', 'Alex'));
 $users = User::model()->findAll($criteria);
 foreach($users as $user)
 {
 echo $user->username."
";
 }
}

Security

300

9. The second problem can be solved in multiple ways. First is to rely on Active Record
and PDO quoting:
public function actionColumn()
{
 $attr = $_GET['attr'];
 $value = $_GET['value'];

 $users = User::model()->findAllByAttributes(array
 ($attr => $value));
 foreach($users as $user)
 {
 echo $user->username."
";
 }
}

10. The most secure way is using the whitelist approach as follows:
public function actionWhitelist()
{
 $attr = $_GET['attr'];
 $value = $_GET['value'];

 $allowedAttr = array('username', 'id');

 if(!in_array($attr, $allowedAttr))
 throw new CException("Attribute specified is not
 allowed.");

 $users = User::model()->findAllByAttributes(array
 ($attr => $value));
 foreach($users as $user)
 {
 echo $user->username."
";
 }
}

How it works...
The main goal when preventing the SQL injection is to properly filter the input. In all cases
except table names, we have used prepared statements—a feature supported by most
relational database servers. It allows you to build statements once and then use them
multiple times and provides a safe way to bind parameter values.

Chapter 10

301

In Yii, you can use prepared statements for both Active Record and DAO. When using DAO,
it can be achieved by using either bindValue or bindParam. The latter is useful when we
want to execute multiple queries of the same type while varying parameter values:

$command = Yii::app()->db->createCommand($sql);
$username, $password;
$command->bindParam('username', $username);
foreach($records as $record)
{
 $username = $record['username'];
 $command->execute();
}

Most Active Record methods accept either criteria or parameters. To be safe, you should use
these instead of just passing the raw data in.

As for quoting table names, columns, and other keywords, you can either rely on Active Record
or use the whitelist approach.

There's more...
In order to learn more about SQL injections and working with databases through Yii, refer to
the following URLs:

 f http://www.slideshare.net/billkarwin/sql-injection-myths-and-
fallacies

 f http://www.yiiframework.com/doc/api/CDbConnection

 f http://www.yiiframework.com/doc/api/CDbCommand

See also
 f The Getting data from a database recipe in Chapter 6, Database, Active Record, and

Model Tricks
 f The Using CDbCriteria recipe in Chapter 6, Database, Active Record, and Model Tricks

Preventing CSRF
CSRF or XSRF stands for cross-site request forgery, where a malicious user tricks the user's
browser into silently performing an HTTP request to the website when the user is logged in.
An example of such an attack is inserting an invisible image tag with src pointing to
http://example.com/site/logout. Even if the image tag is inserted in another website,
you will be immediately logged out from example.com. Consequences of CSRF could be very
serious: destroying website data, preventing all website users from logging in, exposing private
data, and so on.

Security

302

Some facts about CSRF:

 f As CSRF should be performed by the victim user's browser, the attacker cannot
normally change HTTP headers sent. However, there were both browser and Flash
plugin vulnerabilities found that were allowing users to spoof headers, so we should
not rely on these.

 f The attacker should pass the same parameters and values as the user would
normally do.

Considering these, a good method of dealing with CSRF is passing and checking a unique
token during form submissions and additionally using GET according to the HTTP specification.

Yii includes a built-in token generation and token checking. Additionally, it can automate
inserting a token in HTML forms.

In this recipe, we will see how to make sure our application is CSRF-resistant.

Getting ready
Create a fresh application by using yiic webapp.

How to do it...
1. In order to turn the anti-CSRF protection on, we should add the following to

protected/config/main.php as follows:
'components'=>array(
 …
 'request'=>array(
 'enableCsrfValidation'=>true,
),
…
),

2. After configuring the application, you should use CHtml::beginForm and
CHtml::endForm instead of HTML form tags:
public function actionCreate()
{
 echo CHtml::beginForm();
 echo CHtml::submitButton();
 echo CHtml::endForm();
}

Chapter 10

303

3. Yii will automatically add a hidden token field as follows:
<form action="/csrf/create" method="post">
<div style="display:none"><input type="hidden" value="e4d1021e79ac
269e8d6289043a7a8bc154d7115a" name="YII_CSRF_TOKEN" />

4. If you save this form as HTML and try submitting it, you will get a message like the
one shown in the following screenshot instead of the regular data processing:

How it works...
Internally, a part of CHtml::beginForm() looks like this:

if($request->enableCsrfValidation && !strcasecmp($method,'post'))
 $hiddens[]=self::hiddenField($request->csrfTokenName,
 $request->getCsrfToken(),array('id'=>false));
if($hiddens!==array())
 $form.="\n".self::tag('div',array('style'=>'display:none'),
 implode("\n",$hiddens));

In the preceding code, getCsrfToken() generates a unique token value and writes it to a
cookie. Then, on subsequent requests, both the cookie and POST values are compared. If they
don't match, an error message is shown instead of the usual data processing.

If you need to perform a POST request but not build a form using CHtml, then you can pass a
parameter with a name from Yii::app()->request->csrfTokenName and a value from
Yii::app()->request->getCsrfToken().

Security

304

There's more...
There are more ways to improve your application security, which are discussed in the
following subsections.

Extra measures
If your application requires a very high security level, such as a bank account management
system, extra measures could be taken.

First, you can turn off the "remember me" feature using protected/config/main.php
as follows:

'components' => array(
 ...
'user'=>array(
 // enable cookie-based authentication
 'allowAutoLogin'=>false,
),
 ...
),

Then, you can lower the session timeout as follows:

'components' => array(
 ...
 'session' => array(
 'timeout' => 200,
),
 ...
),

Of course, these measures will make the user experience worse, but they will add an
additional level of security.

Using GET and POST properly
HTTP insists on not using GET for operations that change data or state. Sticking to this rule
is a good practice. It will not prevent all types of CSRF, but at least will make some injections,
such as <img src=, pointless.

Further reading
In order to learn more about the security in Yii, refer to the following URL:

http://www.yiiframework.com/doc/guide/en/topics.security

Chapter 10

305

See also
 f The Using CHtml and CHtmlPurifier to prevent XSS recipe

Using RBAC
RBAC is the most powerful access control method available in Yii. It is described in the guide,
but since it is rather complex and powerful, it is not so easy to understand how it actually
works without getting under the hood a little.

In this recipe, we will take the roles hierarchy from the definitive guide, import it, and explain
what is happening internally.

Getting ready
1. Create a fresh web application by using yiic webapp.

2. Create a MySQL database and configure it.

3. Import SQL from framework/web/auth/schema-mysql.sql.

4. Configure the authManager component in your protected/config/main.php as
follows:
return array(
 'components'=>array(
 …
 'authManager'=>array(
 'class'=>'CDbAuthManager',
 'connectionID'=>'db',
),
),
…
);

5. Add additional roles to protected/components/UserIdentity.php. The users
array should look like the following:

$users=array(
 // username => password
 'demo'=>'demo',
 'admin'=>'admin',
 'readerA'=>'123',
 'authorB'=>'123',
 'editorC'=>'123',
 'adminD'=>'123',
);

Security

306

How to do it...
Carry out the following steps:

1. Create protected/controllers/RbacController.php as follows:
<?php
class RbacController extends CController
{
 public function filters()
 {
 return array(
 'accessControl',
);
 }

 public function accessRules()
 {
 return array(
 array(
 'allow',
 'actions' => array('deletePost'),
 'roles' => array('deletePost'),
),
 array(
 'allow',
 'actions' => array('init', 'test'),
),
 array('deny'),
);
 }

 public function actionInit()
 {
 $auth=Yii::app()->authManager;

 $auth->createOperation('createPost','create a post');
 $auth->createOperation('readPost','read a post');
 $auth->createOperation('updatePost','update a post');
 $auth->createOperation('deletePost','delete a post');

 $bizRule='return Yii::app()->user->id==$params
 ["post"]->authID;';
 $task=$auth->createTask('updateOwnPost','update a
 post by author himself',$bizRule);
 $task->addChild('updatePost');

 $role=$auth->createRole('reader');
 $role->addChild('readPost');

Chapter 10

307

 $role=$auth->createRole('author');
 $role->addChild('reader');
 $role->addChild('createPost');
 $role->addChild('updateOwnPost');

 $role=$auth->createRole('editor');
 $role->addChild('reader');
 $role->addChild('updatePost');

 $role=$auth->createRole('admin');
 $role->addChild('editor');
 $role->addChild('author');
 $role->addChild('deletePost');

 $auth->assign('reader','readerA');
 $auth->assign('author','authorB');
 $auth->assign('editor','editorC');
 $auth->assign('admin','adminD');

 echo "Done.";
 }

 public function actionDeletePost()
 {
 echo "Post deleted.";
 }

 public function actionTest()
 {
 $post = new stdClass();
 $post->authID = 'authorB';

 echo "Current permissions:
";
 echo "";
 echo "Create post: ".Yii::app()->user-
 >checkAccess('createPost')."";
 echo "Read post: ".Yii::app()->user-
 >checkAccess('readPost')."";
 echo "Update post: ".Yii::app()->user-
 >checkAccess('updatePost', array('post' =>
 $post))."";
 echo "Delete post: ".Yii::app()->user-
 >checkAccess('deletePost')."";
 echo "";
 }
}

Security

308

2. Now run init once to create the RBAC hierarchy. Then, try to log in as
readerA, authorB, editorC, and adminD (password is "123") and visit test
and deletePost.

How it works...
The RBAC hierarchy is a directed acyclic graph, that is, a set of nodes (authorization items)
and their directed connections or edges. There are three types of nodes available: roles,
tasks, and operations.

Task 2Task 1

Operation 2 Operation 3Operation 1 Task 3

Operation 4

Role

A role is the authorization item attached to the user (that is, a moderator or an admin).
Operation determines if an action can be performed (that is, deleting post, editing post,
and so on). A task is a group of operations (that is, manage task, and so on).

There are two ways to assign a role to a user, which are as follows:

 f By using Yii::app()->authManager->assign()

 f By configuring defaultRoles in the application configuration for the
authManager component

Default roles are typically used when we need to assign a role to a huge part of the users
based on some PHP expression such as Yii::app()->user->isGuest.

Chapter 10

309

According to rules described in the definitive guide, it is forbidden to connect higher-level
nodes to lower-level nodes, for example, connecting a role to a task. The opposite is permitted,
so we can connect a task to a role.

When checking access, we typically pass the name of an operation and, optionally, some
parameters. Internally, Yii tries to find a way from an operation specified to the current user's
role using reversed breadth-first search (http://en.wikipedia.org/wiki/Breadth-
first_search). Therefore, when we want to find out if a user assigned to a Role has access
to perform Operation 4, Yii will go the following way:

Operation4 – Task3 – Task1 – Role

Each node can contain a business rule or bizRule. This business rule is a string containing
some PHP code that returns either true or false. The returned value determines if we can go
through the node or not.

In the end, we have either reached a role that means access is granted, or tried every possible
path and failed, which means access is denied.

There are two ways we can check if a user can perform an operation specified:

 f Using controller's accessRules specifying an operation, a task, or a role in the
roles parameter of an access rule

 f Using Yii::app()->user->checkAccess()

By using the second way, we can pass some data, which makes its way through the
authorization hierarchy and passes to every bizRule encountered.

Now, we will get back to our example. The code of the init action uses the authManager
component to create the following hierarchy:

reader

author
admin

editor

updatePost

deletePostcreatePostreadPost

updateOwnPost

Security

310

For testing permissions, we have created two actions: test, which lists CRUD permissions,
and deletePost, which is limited through the access filter. The rule for the access filter
contains the following code:

array(
 'allow',
 'actions' => array('deletePost'),
 'roles' => array('deletePost'),
),

This means that we are allowing all users who have the deletePost permission to run the
deletePost action. Yii starts checking with the deletePost operation and the only way it
can go is admin. This means only users with the admin role will be able to delete a post.

Besides the fact that the access rule element is named roles, you
can specify an RBAC hierarchy node, be it a role, task, or an operation.

When we check for the readPost permission for a user logged in as authorB, Yii checks
readPost, reader, and then editor. Checking for updatePost is complex:

Yii::app()->user->checkAccess('updatePost', array('post' => $post))

We use a second parameter to pass a post (in our case, we have simulated it with stdClass).
If a user is logged in as authorB, then to get access we need to go from updatePost to
author. In the lucky case, we have to go through only updatePost, updateOwnPost, and
author. As updateOwnPost has a bizRule defined, it will be run with a parameter passed
to checkAccess. If the result is true, then access will be granted. As Yii does not know what
the shortest way is, it tries to check all possibilities until either there is success or no possible
ways left.

There's more...
There are some useful tricks that will help you to use RBAC efficiently, which are discussed in
the following subsections.

Naming RBAC nodes
A complex hierarchy becomes difficult to understand without using some kind of a naming
convention. One possible convention that helps not to get us confused is as follows:

[group_][own_]entity_action

own is used when the rule determines an ability to modify an element only if the current user
is the owner of the element and group is just a namespace. entity is the name of the entity
we are working with and action is the action that we are performing.

Chapter 10

311

For example, if we need to create a rule that determines if the user can delete a blog post, we
will name it blog_post_delete. If the rule determines if a user can edit his or her own blog
comment, the name will be blog_own_comment_edit.

A way to keep the hierarchy simple and efficient
Follow these recommendations when possible to maximize the performance and reduce
hierarchy complexity:

 f Avoid attaching multiple roles to a single user.

 f Don't connect nodes of the same type. So, for example, avoid connecting one task to
another one.

Avoiding RBAC
In order to keep the hierarchy even simpler, we can avoid creating and using additional nodes
in some cases by replacing them with additional conditions. A good example is the editing of
Post. We can create a blog_own_post_edit node with bizRule as follows:

return Yii::app()->user->id==$params["post"]->author_id;

Alternatively, we can add the same logic to the post selection routine as follows:

$post = Post::model()->findByAttributes(array(
 'id' => $id,
 'author_id' => Yii::app()->user->id,
));
If(!$post)
 throw new CHttpException(404);

By using the second way, we will avoid getting an RBAC hierarchy node from storage and
traversing it.

Further reading
In order to learn more about role-based access control, refer to the following resources:

 f http://www.yiiframework.com/doc/guide/en/topics.auth#role-
based-access-control

 f http://en.wikipedia.org/wiki/Role-based_access_control

 f http://en.wikipedia.org/wiki/Directed_acyclic_graph

See also
 f The Using controller filters recipe

11
Performance Tuning

In this chapter, we will cover:

 f Following best practices

 f Speeding up session handling

 f Using cache dependencies and chains

 f Profiling an application with Yii

 f Leveraging HTTP caching

Introduction
Yii is one of the fastest frameworks out there. Still, when developing and deploying an
application, it is good to have some extra performance for free, as well as following best
practices for the application itself. In this chapter, we will see how to configure Yii to gain extra
performance. In addition, we will learn some best practices for developing an application that
will run smoothly until we have very high loads.

Following best practices
In this recipe, we will see how to configure Yii for best performances and will see some
additional principles of building responsive applications. These principles are both general
and Yii-related. Therefore, we will be able to apply some of these even without using Yii.

Getting ready
1. Install APC (http://www.php.net/manual/en/apc.installation.php).

2. Generate a fresh Yii application using yiic webapp.

Performance Tuning

314

How to do it...
Carry out the following steps:

1. First, we need to turn off the debug mode. This can be done by editing index.php
as follows:
defined('YII_DEBUG') or define('YII_DEBUG',false);

2. The next step is to use yiilite.php. Again, we need to edit index.php and
change the following code line:
$yii=dirname(__FILE__).'/../framework/yii.php';

To the following code line:

$yii=dirname(__FILE__).'/../framework/yiilite.php';

3. Now we will move on to protected/config/main.php and make some changes:
return array(
 // ...

 // application components
 'components'=>array(
 // ...

 'db'=>array(
 'connectionString' => 'mysql:host=localhost;dbname=test',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
 'schemaCachingDuration' => 180,
),

 'session' => array(
 'class' => 'CCacheHttpSession',
),
 'cache' => array(
 'class' => 'CApcCache',
),
),

 // ...
);

4. That's it! Now we don't have to worry about the overhead of Yii itself and can focus on
our application.

Chapter 11

315

How it works...
When YII_DEBUG is set to false, Yii turns off all the trace level logging, uses less error
handling code, stops checking the code (for example, Yii checks for invalid regular expressions
in router rules), and uses minified JavaScript libraries.

yiilite.php contains the most commonly executed Yii parts. By using it, we can avoid
including the extra script and use less memory for APC cache.

Note that the benefit of using yiilite.php varies
according to the server setup and sometimes it is
slower when using it. It is a good idea to measure the
performance and choose what works faster for you.

Now we will review the additional component configuration that we performed:

'db'=>array(
 'connectionString' => 'mysql:host=localhost;dbname=test',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',

 'schemaCachingDuration' => 180,
),

Setting schemaCachingDuration to a number of seconds allows caching the database
schema used by Yii's Active Record. This is highly recommended for production servers and
it significantly improves the Active Record performance. In order for it to work, you need to
properly configure the cache component as follows:

'cache' => array(
 'class' => 'CApcCache',
),

The APC cache is one of the fastest cache solutions if you are using a single server.
Enabling cache also has a positive effect on other Yii components. For example, Yii router or
urlManager starts to cache routes in this case.

Finally, we configure the session component as follows:

'session' => array(
 'class' => 'CCacheHttpSession',
),

The preceding code enables storing sessions in APC, which is significantly faster than the
default file-based session handling.

Performance Tuning

316

There's more...
Of course, you can get into a situation where the preceding settings will not help to achieve
sufficient performance level. In most cases, it means either that the application itself is a
bottleneck or you need more hardware.

Server-side performance is just a part of the big picture
Server-side performance is only one of the things that affects the overall performance. By
optimizing the client side (such as serving CSS, images, and JavaScript files), proper caching
and minimizing the amount of HTTP requests can give a good visual performance gain even
without optimizing the PHP code.

Things to be done without using Yii
Some things are better done without Yii. For example, image resizing on the fly is better done
in a separate PHP script in order to avoid the extra overhead.

Active Record versus query builder and SQL
Use query builder or SQL in performance critical application parts. Generally, AR is most
useful when adding and editing records, as it adds a convenient validation layer, and is less
useful when selecting records.

Always check for slow queries first
A database can become a bottleneck in a second if a developer accidentally forgets to add an
index to a table that is being read often or vice versa, or adds too many indexes to a table we
are writing to very often. The same goes for selecting unnecessary data and unneeded JOINs.

Cache or save results of heavy processes
If you can avoid running a heavy process in every page load, it is better to do so. For example,
it is good practice to save or cache results of parsing the markdown text, purifying it (this is a
very resource intensive process) once, and then using the ready-to-display HTML.

Handling too much processing
Sometimes there is too much processing to handle immediately. It can be building complex
reports or just simply sending e-mails (if your project is heavily loaded). In this case, it is better
to put it into a queue and process it later by using cron or other specialized tools.

Further reading
For further information, refer to the following URL:

http://www.yiiframework.com/doc/guide/en/topics.performance

Chapter 11

317

See also
 f The Speeding up session handling recipe

 f The Using cache dependencies and chains recipe

 f The Profiling an application with Yii recipe

Speeding up session handling
Native session handling in PHP is fine in most cases. There are at least two possible reasons
why you will want to change the way sessions are handled:

 f When using multiple servers, you need to have a common session storage for
both servers.

 f Default PHP sessions use files, so the maximum performance possible is limited by
disk I/O.

 f By default PHP sessions are locking files. That results in blocking concurrent requests.

In this recipe, we will see how to use an efficient storage for Yii sessions.

Getting ready
1. Generate a fresh Yii application using yiic webapp.

2. You should have the php_apc and php_memcache extensions installed, as well as
memcached itself to follow this recipe.

How to do it...
1. We will stress test the website by using the Apache ab tool. It is being distributed with

Apache binaries, so if you are using Apache, you will find it inside the bin directory.
Run the following command, replacing your.website with the actual hostname you
are using:
ab -n 1000 -c 5 http://your.website/index.php?r=site/contact

This will send 1,000 requests, 5 at a time, and will output stats as follows:
Z:\web\usr\local\apache\bin>ab -n 1000 -c 5 http://perf/index.
php?r=site/contact
This is ApacheBench, Version 2.0.40-dev <$Revision: 1.146 $>
apache-2.0
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.
zeustech.net/
Copyright 2006 The Apache Software Foundation, http://www.apache.
org/

Performance Tuning

318

Benchmarking perf (be patient)

Server Software: Apache/2.2.4
Server Hostname: perf
Server Port: 80

Document Path: /index.php?r=site/contact
Document Length: 6671 bytes

Concurrency Level: 5
Time taken for tests: 11.889185 seconds
Complete requests: 1000
Failed requests: 0
Write errors: 0
Total transferred: 7103000 bytes
HTML transferred: 6671000 bytes
Requests per second: 84.11 [#/sec] (mean)
Time per request: 59.446 [ms] (mean)
Time per request: 11.889 [ms] (mean, across all concurrent
requests)
Transfer rate: 583.39 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 0 1.5 0 15
Processing: 28 58 58.6 47 830
Waiting: 27 57 58.5 47 827
Total: 30 58 58.7 47 830

Percentage of the requests served within a certain time (ms)
 50% 47
 66% 52
 75% 57
 80% 60
 90% 70
 95% 100
 98% 205
 99% 457
 100% 830 (longest request)

We are interested in the requests-per-second metric. The number means that the
website can process 84.11 requests per second if there are 5 requests at a time.

Note that debug is not turned off since we are interested in
changes to session handling speed.

Chapter 11

319

2. Now add the following to the components section of protected/config/main.
php:
'session' => array(
 'class' =>'CCacheHttpSession',
 'cacheID' => 'sessionCache',
),
'sessionCache' => array('class' => 'CApcCache',
),

3. Run ab again with the same settings. This time, you should get better results. In my
case, it was 131.33 requests per second. This means APC, as a session handler,
performed 56 percent better than the default file-based session handler.

4. Now let's try another cache backend—memcached. Change CApcCache in config
to CMemCache and make sure that memcached is started. Then, run ab again. In my
case, memcached performed a bit better than the file cache, serving 92.04 requests
per second.

Don't rely on exact results provided here. It all depends on
software versions, settings, and hardware used. Always try
to run all tests yourself in the environment where you are
going to deploy your application.

5. You can get a significant performance gain by choosing a right session handling
backend. Yii supports more caching backends out of the box, including eAccelerator,
WinCache, XCache, and Zend data cache that comes with the Zend Server. Moreover,
you can implement your own cache backend to use fast noSQL storages, such as Redis.

How it works...
By default, Yii uses native PHP sessions. This means, in most cases, that the filesystem is
used. A filesystem cannot deal with high concurrency efficiently. For example, when changing
the concurrency setting for the ab test to 10—while using the default session settings—ab is
unable to finish tests with only 326 requests of 1,000 succeeded. Both APC and memcached
perform fine in this situation:

'session' => array(
 'class' =>'CCacheHttpSession',
 'cacheID' =>'sessionCache',
),
'sessionCache' => array('class' => 'CApcCache',
),

Performance Tuning

320

In the preceding config section, we instruct Yii to use CCacheHttpSession as a session
handler. With this component, we can delegate session handling to the cache component
specified in cacheID. This time we are using CApcCache.

When using APC or memcached backend, you should
take into account the fact that the application user
can possibly lose the session if the maximum cache
capacity is reached.

Note that when using a cache backend for a session, you cannot rely on a session as
temporary data storage, since then there will be no memory to store more data in either
APC or memcached. In such a case, these will just purge all data or delete some of it.

In the preceding tests, APC was the fastest backend, but if you are using multiple servers you
cannot use it as there will be no way to share the session data between servers. In the case of
memcached, it is easy because it can be easily accessed from as many servers as you want.

Various cache backends provide different levels of stability.
For example, it is a known fact that APC becomes unstable
when it is filled up or when you try writing to a single key
from multiple processes.

There's more...
It's a good idea to close sessions as soon as possible. If you're not going to store anything
in session during the current request you can even close it at the very beginning of your
controller action. This way even when using files as storage your application should be fine.
This can be done with:

Yii::app()->session->close();

In order to learn more about caching and sessions, refer to the following resources:

 f http://www.yiiframework.com/doc/api/CCache

 f http://www.yiiframework.com/doc/api/CHttpSession/

 f http://php.net/manual/en/book.apc.php

 f http://memcached.org/

 f http://stackoverflow.com/questions/930877/apc-vs-eaccelerator-
vs-xcache

See also
 f The Following best practices recipe

Chapter 11

321

Using cache dependencies and chains
Yii supports many cache backends, but what really makes Yii cache flexible is the dependency
chaining support. There are situations when you cannot just simply cache data for an hour
because the information cached can be changed at any time.

In this recipe, we will see how to cache a whole page and still always get fresh data when it is
updated. The page will be dashboard type and will show the five latest articles added and a
total calculated for an account. Note that an operation cannot be edited as it was added, but
an article can.

Getting ready
1. Install APC (http://www.php.net/manual/en/apc.installation.php).

2. Generate a fresh Yii application by using yiic webapp.

3. Set up a cache in the components section of protected/config/main.php as
follows:
'cache' => array(
 'class' => 'CApcCache',
),

4. Set up and configure a fresh database.

5. Execute the following SQL:
CREATE TABLE `account` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `amount` decimal(10,2) NOT NULL,
 PRIMARY KEY (`id`)
);
CREATE TABLE `article` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `title` varchar(255) NOT NULL,
 `text` text NOT NULL,
 PRIMARY KEY (`id`)
);

6. Generate models for the account and article tables using Gii.

7. Configure the db and log application components through protected/config/
main.php, so we can see actual database queries. In the end, the config for these
components should look like the following:
'db'=>array(
 'connectionString' => 'mysql:host=localhost;dbname=test',
 'username' => 'root',
 'password' => '',

Performance Tuning

322

 'charset' => 'utf8',

 'schemaCachingDuration' => 180,

 'enableProfiling'=>true,
 'enableParamLogging' => true,
),
'log'=>array(
 'class'=>'CLogRouter',
 'routes'=>array(
 array(
 'class'=>'CProfileLogRoute',
),
),
),

8. Create protected/controllers/DashboardController.php as follows:
<?php
class DashboardController extends CController
{
 public function actionIndex()
 {
 $db = Account::model()->getDbConnection();
 $total = $db->createCommand("SELECT SUM(amount)
 FROM account")->queryScalar();

 $criteria = new CDbCriteria();
 $criteria->order = "id DESC";
 $criteria->limit = 5;
 $articles = Article::model()->findAll($criteria);

 $this->render('index', array(
 'total' => $total,
 'articles' => $articles,
));
 }

 public function actionRandomOperation()
 {
 $rec = new Account();
 $rec->amount = rand(-1000, 1000);
 $rec->save();

 echo "OK";
 }

Chapter 11

323

 public function actionRandomArticle()
 {
 $n = rand(0, 1000);

 $article = new Article();
 $article->title = "Title #".$n;
 $article->text = "Text #".$n;
 $article->save();

 echo "OK";
 }
}

9. Create protected/views/dashboard/index.php as follows:
<h2>Total: <?php echo $total?></h2>
<h2>5 latest articles:</h2>
<?php foreach($articles as $article):?>
 <h3><?php echo $article->title?></h3>
 <div><?php echo $article->text?></div>
<?php endforeach ?>

10. Run dashboard/randomOperation and dashboard/randomArticle several
times. Then, run dashboard/index and you should see a screen similar to the one
shown in the following screenshot:

Performance Tuning

324

How to do it...
Carry out the following steps:

1. We need to modify the controller code as follows:
class DashboardController extends CController
{
 public function filters()
 {
 return array(
 array(
 'COutputCache +index',
 // will expire in a year
 'duration'=>24*3600*365,
 'dependency'=>array(
 'class'=>'CChainedCacheDependency',
 'dependencies'=>array(
 new CGlobalStateCacheDependency('article'),
 new CDbCacheDependency('SELECT id FROM account
 ORDER BY id DESC LIMIT 1'),
),
),
),
);
 }

 public function actionIndex()
 {
 $db = Account::model()->getDbConnection();
 $total = $db->createCommand("SELECT SUM(amount) FROM
 account")->queryScalar();

 $criteria = new CDbCriteria();
 $criteria->order = "id DESC";
 $criteria->limit = 5;
 $articles = Article::model()->findAll($criteria);

 $this->render('index', array(
 'total' => $total,
 'articles' => $articles,
));
 }
 public function actionRandomOperation()
 {
 $rec = new Account();
 $rec->amount = rand(-1000, 1000);
 $rec->save();

Chapter 11

325

 echo "OK";
 }

 public function actionRandomArticle()
 {
 $n = rand(0, 1000);

 $article = new Article();
 $article->title = "Title #".$n;
 $article->text = "Text #".$n;
 $article->save();

 Yii::app()->setGlobalState('article', $article->id);

 echo "OK";
 }
}

2. That's it! Now, after loading dashboard/index several times, you will get only one
simple query, as shown in the following screenshot:

Also, try to run either dashboard/randomOperation or dashboard/randomArticle and
refresh dashboard/index after that. The data should change.

Performance Tuning

326

How it works...
In order to achieve maximum performance while doing minimal code modification, we use a
full-page cache by using a filter as follows:

public function filters()
{
 return array(
 array(
 'COutputCache +index',
 // will expire in a year
 'duration'=>24*3600*365,
 'dependency'=>array(
 'class'=>'CChainedCacheDependency',
 'dependencies'=>array(
 new CGlobalStateCacheDependency('article'),
 new CDbCacheDependency('SELECT id FROM account ORDER
 BY id DESC LIMIT 1'),
),
),
),
);
}

The preceding code means that we apply full-page cache to the index action. The page
will be cached for a year and the cache will refresh if any of the dependency data changes.
Therefore, in general, the dependency works as follows:

 f First time it gets the fresh condition data as described in the dependency. For
example, by querying a database. This data is saved for future reference along
with what's cached.

 f On subsequent requests it gets the fresh condition data according to dependency
configuration and then compares it with the saved one.

 f If they are equal, uses what is cached.

 f If not, updates the cache with the fresh data, and saves the fresh dependency
condition data for future reference.

In our case, two dependency types are used: global state and DB. Global state dependency
uses data from Yii::app()->getGlobalState() to decide if we need to invalidate the
cache while DB dependency uses the SQL query result for the same purpose.

The question that you have now is probably, "Why have we used DB for one case and global
state for another?" That is a good question!

Chapter 11

327

The goal of using the DB dependency is to replace heavy calculations and select a light query
that gets as little data as possible. The best thing about this type of dependency is that we
don't need to embed any additional logic in the existing code. In our case, we can use this
type of dependency for account operations, but cannot use it for articles as the article content
can be changed. Therefore, for articles, we set a global state named article to the current
time, which basically means that we are scheduling cache invalidation:

Yii::app()->setGlobalState('article', time());

Note that if we edit the article 100 times in a row and view it only
after that, the cache will be invalidated and updated only once.

There's more...
In order to learn more about caching and using cache dependencies, refer to the
following URLs:

 f http://www.yiiframework.com/doc/guide/en/caching.data#cache-
dependency

 f http://www.yiiframework.com/doc/guide/en/caching.page

See also
 f The Creating filters recipe in Chapter 8, Extending Yii

 f The Using controller filters recipe in Chapter 10, Security

Profiling an application with Yii
If all of the best practices for deploying a Yii application are applied and you still do not
have the performance you want, then most probably there are some bottlenecks with the
application itself. The main principle while dealing with these bottlenecks is that you should
never assume anything and always test and profile the code before trying to optimize it.

In this recipe, we will try to find bottlenecks in the Yii blog demo application.

Getting ready
1. Download the latest Yii 1.1.x version from the following URL:

http://www.yiiframework.com/download/

Performance Tuning

328

2. Unpack demos/blog in your webroot and framework directories one level above it:
framework
www
 …
 index.php
 …

3. In index.php, correct the path to yii.php. It should be as follows:
$yii=dirname(__FILE__).'/../framework/yii.php';

4. In protected/yiic.php, correct the path to yiic.php. It should be:
$yiic=dirname(__FILE__).'/../../framework/yiic.php';

5. Change protected/config/console.php to the following:
return array(
 'basePath'=>dirname(__FILE__).DIRECTORY_SEPARATOR.'..',
 'name'=>'My Console Application',

 'import'=>array(
 'application.models.*',
 'application.components.*',
),

 'components'=>array(
 'db'=>array(
 'connectionString' => 'mysql:host=localhost;dbname=blog',
 'emulatePrepare' => true,
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
 'tablePrefix' => 'tbl_',
),
),
);

6. In protected/config/main.php, comment the SQLite db settings and use
MySQL:
/*'db'=>array(
 'connectionString' => 'sqlite:protected/data/blog.db',
 'tablePrefix' => 'tbl_',
),*/
// uncomment the following to use a MySQL database
'db'=>array(
 'connectionString' => 'mysql:host=localhost;dbname=blog',

Chapter 11

329

 'emulatePrepare' => true,
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
 'tablePrefix' => 'tbl_',
),

7. Create a new database in MySQL and import protected/data/schema.mysql.
sql.

8. As there is not that much data, we need to generate more. Create protected/
commands/DataCommand.php as follows:
<?php
class DataCommand extends CConsoleCommand
{
 public function actionIndex()
 {
 $db = Yii::app()->db;

 echo "Creating tags.\n";
 for($t=1; $t<=50; $t++)
 {
 $db->createCommand()->insert('tbl_tag', array(
 'name' => "tag $t",
 'frequency' => rand(1, 20),
));
 }
 echo "Done.\n";

 for($i=1; $i<=1000; $i++)
 {
 $tags = array();
 for($rt=1; $rt<=10; $rt++)
 {
 $tags[] = "tag ".rand(1, 100);
 }

 $db->createCommand()->insert('tbl_post', array(
 'title' => "Post #$i",
 'content' => "Hello! This is
 the content #$i",
 'tags' => implode(", ", $tags),
 'status' => Post::STATUS_PUBLISHED,
 'create_time' => time(),
 'update_time' => time(),
 'author_id' => 1,
));

Performance Tuning

330

 $postId = $db->getLastInsertID();
 for($j=1; $j<=10; $j++)
 {
 $db->createCommand()->insert('tbl_comment', array(
 'content' => "Comment text $j.",
 'status' => Comment::STATUS_APPROVED,
 'create_time' => time(),
 'author' => "Commenter $j",
 'email' => "commenter$j@example.com",
 'url' => "http://example.com/",
 'post_id' => $postId,
));
 }

 if($i%50==0)
 echo "\nAdded $i posts.\n";
 }

 echo "All done.\n";
 }
}

9. Run it by entering yiic data in the console and have a cup of coffee.

How to do it...
We have a blog with lots of posts and comments and it works somehow but not fast enough.
We want to check it page-by-page and get the bottlenecks for each one.

1. We will start by using proper configuration for caching and turn on the SQL profiler.
Your protected/config/main.php file should look as follows:
…
return array(
…
 'components'=>array(
 …
 'db'=>array(
 'connectionString' => 'mysql:host=localhost;dbname=blog',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
 'tablePrefix' => 'tbl_',

 'schemaCachingDuration' => 180,

Chapter 11

331

 'enableProfiling'=>true,
 'enableParamLogging' => true,
),
 …
 'log'=>array(
 'class'=>'CLogRouter',
 'routes'=>array(
 array(
 'class' => 'CProfileLogRoute',
),
),
),

 'session' => array(
 'class' => 'CCacheHttpSession',
),
 'cache' => array(
 'class' => 'CApcCache',
),
),
 …
);

2. Now run the front page of the blog several times and check what the profiler screen
shows us:

Performance Tuning

332

3. The slowest query is the following:
SELECT `t`.`id` AS `t0_c0`, `t`.`content` AS `t0_c1`, `t`.`status`
AS `t0_c2`, `t`.`create_time` AS `t0_c3`, `t`.`author` AS `t0_
c4`, `t`.`email` AS `t0_c5`, `t`.`url` AS `t0_c6`, `t`.`post_
id` AS `t0_c7`, `post`.`id` AS `t1_c0`, `post`.`title` AS `t1_
c1`, `post`.`content` AS `t1_c2`, `post`.`tags` AS `t1_c3`,
`post`.`status` AS `t1_c4`, `post`.`create_time` AS `t1_c5`,
`post`.`update_time` AS `t1_c6`, `post`.`author_id` AS `t1_c7`
FROM `tbl_comment` `t`
LEFT OUTER JOIN `tbl_post` `post` ON (`t`.`post_id`=`post`.`id`)
WHERE (t.status=2)
ORDER BY t.create_time DESC
LIMIT 10

4. Now we can add EXPLAIN in front of it and run it through the SQL console or any
other SQL management tool. It will show us that there are no indexes used when
filtering and sorting records. Therefore, if we add indexes for tbl_comment.status
and tbl_comment.create_time, it will improve SELECT performance, as shown
in the following screenshot:

5. Next, we have 10 queries used to get the author of each post. Most probably, there
is a way to combine these into a single one. As we are running post/index, we will
check the actionIndex method of PostController:
$criteria=new CDbCriteria(array(
 'condition'=>'status='.Post::STATUS_PUBLISHED,
 'order'=>'update_time DESC',
 'with'=>'commentCount',
));
if(isset($_GET['tag']))
 $criteria->addSearchCondition('tags',$_GET['tag']);

Chapter 11

333

$dataProvider=new CActiveDataProvider('Post', array(
 'pagination'=>array(
 'pageSize'=>Yii::app()->params['postsPerPage'],
),
 'criteria'=>$criteria,
));

$this->render('index',array(
 'dataProvider'=>$dataProvider,
));

6. When the data provider is getting posts, it uses criteria defined earlier. As we can see,
a criterion allows us to get the count of comments by using the most efficient query
possible. commentCount is a relation defined in the Post model and if we check its
relations method, we will find that there is an author relation as well. By changing the
with part of the criterion to the following:
'with'=> array('commentCount', 'author'),

We got rid of 10 additional queries. Instead, we have a single query that is performing
very well:

7. Now the SQL part works better. We can improve it further, but you get the idea and
can do it as homework. Overall, it is still not perfect. We will add profiling markers to
the controller code as follows:
Yii::beginProfile('preparing_data');
$criteria=new CDbCriteria(array(
 'condition'=>'status='.Post::STATUS_PUBLISHED,
 'order'=>'update_time DESC',
 'with'=> array('commentCount', 'author'),
));
if(isset($_GET['tag']))

Performance Tuning

334

 $criteria->addSearchCondition('tags',$_GET['tag']);

$dataProvider=new CActiveDataProvider('Post', array(
 'pagination'=>array(
 'pageSize'=>Yii::app()->params['postsPerPage'],
),
 'criteria'=>$criteria,
));
Yii::endProfile('preparing_data');

Yii::beginProfile('rendering_data');
$this->render('index',array(
 'dataProvider'=>$dataProvider,
));
Yii::endProfile('rendering_data');

8. Now run the front page again and check the profiler:

9. It looks like the rendering data part took most of the time. As rendering takes part in
a view, let's check protected/views/post/index.php:
<?php if(!empty($_GET['tag'])): ?>
<h1>Posts Tagged with <i><?php echo CHtml::encode($_GET['tag']);
?></i></h1>
<?php endif; ?>

<?php $this->widget('zii.widgets.CListView', array(
 'dataProvider'=>$dataProvider,
 'itemView'=>'_view',
 'template'=>"{items}\n{pager}",
)); ?>

Chapter 11

335

10. CListView uses _view to render each record. Let's add two more profiling markers
to it as follows:
<?php Yii::beginProfile('_view')?>
<div class="post">
 …
</div>
<?php Yii::endProfile('_view')?>

11. Now run the application again and check the profiler:

12. Something is obviously wrong with this _view file. In order to determine what exactly,
we are moving <?php Yii::beginProfile('_view')?> down while <?php
Yii::endProfile('_view')?> goes up. Finally, we should stop around:
<?php
 $this->beginWidget('CMarkdown', array('purifyOutput'=>true));
 echo $data->content;
 $this->endWidget();
?>

If you are the only author of the blog and don't care about someone entering
malicious code, then you can just leave echo $data->content.

Other options will be caching the purified output or
pre-processing it when you are saving a post.

13. Let's assume this is the case. Remove the widget code and run the profiler one
more time:

Performance Tuning

336

14. A lot better! Finally, we have gotten down from 0.184 seconds to 0.078 seconds. That
is about 42 percent less than the initial processing time.

We can achieve more by performing more profiling and fixing. Probably you will say these
values were acceptable from the beginning. That is true, until you get more readers and
the server will not be able to generate pages for all these people in parallel. What this
performance gain really means is that if you have, for example, 10,000 readers in the
beginning and performance is starting to drop, after optimizing the code, you can handle an
additional 4,200 readers without buying new hardware.

How it works...
First, we configured the application cache and cached the DB schema to exclude these
possible bottlenecks from profiling results. In a production environment, these will be cached
for sure. Then, we turn on the profiling DB queries and run the application multiple times; in
the first run, Yii will cache the schema and routes, and the second run will be clean.

As the typical web application bottleneck is a database, we start to look at the SQL query
anomalies—the most time-consuming queries and same-type queries repeating multiple times.

Long running queries are typically a bad database design (wrong index placement or no
indexes, too much normalization, and so on). Therefore, we can feed a query to MySQL adding
EXPLAIN in front of the query and it will give back a query profile that tells us what to do.

When a same-type query is executed multiple times, most probably it is something we are
getting for each entity we are displaying. In our case, it was the author for each blog post.
In most cases, we can get these in a single query or even in the same query, which selects
entities themselves.

As for the non-SQL part, we divided the controller 50-50, then took the slowest part, and
divided it again. We repeated that until a bottleneck was identified. Of course, we used some
assumptions to do the routine job of adding profiler marks fewer times, but sometimes it is
better not to assume anything since a bottleneck can be hidden in a very innocent looking code.

There's more...
In order to learn more about profiling, refer to the following resources:

 f http://www.yiiframework.com/doc/guide/en/
topics.logging#performance-profiling

 f http://www.yiiframework.com/doc/guide/en/
topics.logging#profiling-sql-executions

 f http://www.xdebug.org/docs/profiler

 f http://pecl.php.net/package/xhprof

Chapter 11

337

See also
 f The Using different log routes recipe in Chapter 9, Error Handling, Debugging,

and Logging

 f The Following best practices recipe

 f The Speeding up session handling recipe

Leveraging HTTP caching
Yii has good support for various server-side caching techniques and, since Version 1.1.11, it
includes HTTP caching support that greatly affects website performance.

The idea is to tell clients that content wasn't changed using HTTP headers before actually
sending it. This can save some time required to actually transfer the content. Another pro is
that typically search engine robots are respecting HTTP headers and therefore will index your
new pages faster since there is no need to process ones that weren't changed.

In this recipe, we will implement HTTP caching for the Gii-generated CRUD application aimed
to store books.

Getting ready
1. First of all, create a fresh Yii application using yiic webapp.

2. Create a database and adjust the db section of the protected/config/main.php
configuration file to use it.

3. Execute the following SQL:
CREATE TABLE book (
 id INT AUTO_INCREMENT PRIMARY KEY,
 title VARCHAR(255) NOT NULL,
 text TEXT NOT NULL,
 created_at INT(11) NOT NULL,
 updated_at INT(11) NOT NULL
);

This will create a table to store our tasks.

4. Use Gii to generate the Book model and CRUD for it.

5. Add the following method to protected/models/Book.php to automate setting
timestamps:
public function behaviors()
{
 return array(
 'timestamps' => array(

Performance Tuning

338

 'class' => 'zii.behaviors.CTimestampBehavior',
 'createAttribute' => 'created_at',
 'updateAttribute' => 'modified_at',
 'setUpdateOnCreate' => true,
),
);
}

6. Add some books, filling the text field with lots of text. You can copy-paste it from the
Internet or execute data.sql from the book's code.

How to do it...
1. First, let's plan what exactly we are going to cache. In our generated CRUD (create,

read, update, and delete), we have the following pages:

 � A list of books with pagination, book/index.

 � Individual book page, book/view&id=1.

 � Manage, create, and update pages.

We aren't interested in managing, creating, and updating pages because these are
used by admins only.

Individual book page is definitely to be cached. A good way to know when to update
the page is to look at the updated_at field.

On the books' list we definitely want to hide full the text of the book. As for caching,
the simple way is to look for when books were modified last time, that is,
MAX(updated_at).

2. Let's start with the books' list. First of all, let's get rid of fields we don't need. Open
protected/views/book/_view.php and remove the code for the text field.

3. Now we need to apply HTTP caching to the book/index action. Open protected/
controllers/BookController.php and modify the filters method to match
the following:
public function filters()
{
 return array(
 'accessControl', // perform access control for CRUD
 // operations
 'postOnly + delete', // we only allow deletion via POST
 // request
 array(
 'CHttpCacheFilter + index',
 'lastModified'=>Yii::app()->db->createCommand("SELECT
MAX(`updated_at`) FROM book")->queryScalar(),

Chapter 11

339

),
);
}

4. That's it! Now we're going to do the same for individual book pages. Since the update
time is different for each book, we need to take the id parameter into account:
public function filters()
{
 $bookId=Yii::app()->request->getParam('id');
 return array(
 ...
 array(
 'CHttpCacheFilter + view',
 'lastModified'=>Yii::app()->db->createCommand("SELECT
`updated_at` FROM book WHERE id=:id")-
>queryScalar(array(':id'=>$bookId)),
),
);
}

5. That's it! To verify that everything is OK, open any HTTP profiler (Chrome, Opera, or
Firefox's Firebug) and check that 304 Not Modified is returned when you refresh
the page multiple times:

It worth checking how it worked before:

As you can see, with the filter only 267 bytes were actually transferred instead of 30.83
KB. Additionally our application spent less time and resources for page generation.

Performance Tuning

340

How it works...
If a browser supports HTTP caching it sends special HTTP headers with each request. These
are If-Modified-Since and If-None-Match.

If-Modified-Since is equal to asking "I have a copy of the page done at time X. Has it
been modified since then?"

If-None-Match is "I have a copy of the page, whose unique ID or content hash is Y. Does it
still equal Y on the server?"

In Yii, application filters are applied before actually processing a controller action. In our case,
CHttpCacheFilter is getting HTTP headers mentioned and answers the question. If the
page was modified, the filter responds with modification time or the new ETag hash and then
everything works the same as without the filter. If the page is still the same as the one that
was cached by the browser then the filter responds with 304 Not Modified and ends the
application execution.

We're using the last modification timestamp in our case and it's relatively straightforward. We
need to get the timestamp corresponding to when page data was last modified. Sometimes the
application isn't tracking it. In this case you can pass the data itself as ETag. Filter class will take
care of hashing the data and converting the hash to the format the browser will understand.

There's more...
This section will help you optimize your filters method.

Optimizing filters
Since the filters method is always executed there will be two extra queries for any action
even if we're not going to cache it. In order to get rid of extra queries let's rewrite the filters
method a bit:

public function filters()
{
 return array(
 'accessControl', // perform access control for CRUD operations
 'postOnly + delete', // we only allow deletion via POST request
 array(
 'CHttpCacheFilter + index',
 'lastModifiedExpression'=>function(){
 return Yii::app()->db->createCommand("SELECT MAX(`updated_at`)
FROM book")->queryScalar();
 },
),
 array(
 'CHttpCacheFilter + view',

Chapter 11

341

 'lastModifiedExpression'=>function(){
 $bookId=Yii::app()->request->getParam('id');
 return Yii::app()->db->createCommand("SELECT `updated_at` FROM
book WHERE id=:id")->queryScalar(array(':id'=>$bookId));
 },
),
);
}

In the previous code, we're assuming PHP 5.3+. We're now using lastModifiedExpression
instead of lastModified and have replaced values with anonymous functions that will be
executed when actually needed. This way the database will be queried only once for view and
list pages and these queries will not be executed for any other pages.

Further reading
To learn more about how HTTP works I recommend you check protocol RFC at
http://tools.ietf.org/html/rfc2616. A good alternative is HTTP Developer's
Handbook, Chris Shiflett.

See also
 f The Using cache dependencies and chains recipe

 f The Automating timestamps recipe in Chapter 6, Database, Active Record, and
Model Tricks

 f The Creating filters recipe in Chapter 8, Extending Yii

12
Using External Code

In this chapter, we will cover:

 f Using Zend Framework from Yii

 f Customizing the Yii autoloader

 f Using Kohana inside Yii

 f Using PEAR inside Yii

 f Using Composer with Yii

Introduction
Typically, an application requires more than any framework can give. Sometimes, you need a
full-featured library to send an e-mail and sometimes it is just about implementation of the
specific API. No framework can cover every possible task that a developer has. That is why Yii
covers the most common ones and leaves the rest to the developer and external libraries.

In this chapter, we will try to use a non-Yii code with Yii, including Zend Framework, Kohana,
and PEAR.

Using Zend Framework from Yii
Yii provides many excellent solutions with which you can build an application. Still, you
probably will need more. One of the best places to look is Zend Framework classes. These are
of high quality and solve many tasks, such as using Google APIs or working with e-mails.

In this recipe, we will see how to use the Zend_Mail package to send e-mails from the Yii
application. We will use both a simple approach of using the whole framework and will also
implement a custom autoloader that will allow us to use only Zend_Mail and its dependencies.

Using External Code

344

Getting ready
Before we begin this recipe, we need to have a few things in place.

1. Create a fresh application by using yiic webapp.

2. Download the Zend Framework 1 code (the minimal version is enough) from the
following URL:

http://framework.zend.com/downloads/latest

In this recipe, we have used Version 1.11.6.

3. Extract library/Zend from the downloaded archive to protected/vendors/
Zend.

How to do it...
Carry out the following steps:

1. We will create a simple controller that will send an e-mail. Create protected/
controllers/MailtestController.php as follows:
<?php
class MailtestController extends CController
{
 public function actionIndex()
 {
 $mail = new Zend_Mail('utf-8');
 $mail->setHeaderEncoding(Zend_Mime::ENCODING_QUOTEDPRINTABLE);
 $mail->addTo("alexander@example.com", "Alexander Makarov");
 $mail->setFrom("robot@example.com", "Robot");
 $mail->setSubject("Test email");
 $mail->setBodyText("Hello, world!");
 $mail->setBodyHtml("Hello, world!");
 $mail->send();

 echo "OK";
 }
}

Chapter 12

345

2. Now try to run mailtest/index and verify that it doesn't work:

3. This means that the Yii autoloader failed to include the Zend_Mail class. This is
expected because it knows nothing about the Zend Framework's naming convention.
So logically, we have the following two solutions to this:

 � Include classes explicitly

 � Create our own autoloader

Using External Code

346

4. We will now start with including classes. All Zend Framework classes do have the
require_once statements for all dependencies. These statements rely on adding
an additional PHP include path and look like the following:
require_once 'Zend/Mail/Transport/Abstract.php';

5. When using Yii::import to import a directory, it works the same way as adding a
directory into the PHP include path, so we can solve our problem as follows:
class MailtestController extends CController
{
 public function actionIndex()
 {
 Yii::import('application.vendors.*');
 require "Zend/Mail.php";

 $mail = new Zend_Mail('utf-8');
 $mail->setHeaderEncoding(Zend_Mime::ENCODING_QUOTEDPRINTABLE);
 // change to your email
 $mail->addTo("alexander@example.com", "Alexander Makarov");
 $mail->setFrom("robot@example.com", "Robot");
 $mail->setSubject("Test email");
 $mail->setBodyText("Hello, world!");
 $mail->setBodyHtml("Hello, world!");
 $mail->send();

 echo "OK";
 }
}

6. Now it will send an e-mail properly without any error. This method will work if you don't
have too many Zend Framework classes used. If you are using it heavily, then you
will have to include a lot that will add unnecessary complexity. Now, let's use Zend_
Loader_Autoloader to achieve this.

7. The best place to add another autoloader is in the index.php bootstrap. This way,
you will be able to autoload classes during the whole execution flow:
// change the following paths if necessary
$yii=dirname(__FILE__).'/../framework/yii.php';
$config=dirname(__FILE__).'/protected/config/main.php';

// remove the following lines when in production mode
defined('YII_DEBUG') or define('YII_DEBUG',true);
// specify how many levels of call stack should be shown
// in each log message
defined('YII_TRACE_LEVEL') or define('YII_TRACE_LEVEL',3);

Chapter 12

347

require_once($yii);
$app = Yii::createWebApplication($config);

// adding Zend Framework autoloader
Yii::import('application.vendors.*');
require "Zend/Loader/Autoloader.php";
Yii::registerAutoloader(array('Zend_Loader_Autoloader',
 'autoload'), true);

$app->run();

8. Now we can remove the following lines from MailtestController:
Yii::import('application.vendors.*');
require "Zend/Mail.php";

And it will still work fine without any errors, meaning that Zend Framework
autoloading now works.

How it works...
Let's review what is going on behind the scenes and how it works, starting with the first way.
We have used Yii::import, which, when used like Yii::import('path.alias.*'),
behaves like adding another PHP include path. As there was no autoloader in Zend
Framework originally, it has all the necessary require_once calls. So, if you use a single
component, such as Zend_Mail, you don't need more than one require_once.

The second method doesn't force you to use a single require statement. As Yii allows using
multiple autoloaders and in the latest versions Zend Framework has its own autoloader, we
can use it in our application. The best time to do this is right after the application bootstrap
was loaded, but the application was not run. To achieve this, we break Yii::createWebAp
plication($config)->run() into two separate statements in index.php and insert an
autoloader initialization between these:

Yii::import('application.vendors.*');
require "Zend/Loader/Autoloader.php";
Yii::registerAutoloader(array('Zend_Loader_Autoloader', 'autoload'),
true);

We still need Yii::import('application.vendors.*') because Zend Framework
classes will continue to use require_once. Then, we require an autoloader class and add
it to the end of the PHP autoloading stack by using Yii::registerAutoloader with the
second argument set to true.

Using External Code

348

There's more...
In order to learn more about the Yii import, autoloading, and Zend Framework usage, refer to
the following URLs:

 f http://www.yiiframework.com/doc/api/YiiBase/#import-detail

 f http://www.yiiframework.com/doc/api/
YiiBase/#registerAutoloader-detail

 f http://framework.zend.com/

 f http://www.yiiframework.com/doc/guide/en/extension.integration

 f http://framework.zend.com/manual/en/zend.loader.autoloader.html

See also
 f The Customizing the Yii autoloader recipe

Customizing the Yii autoloader
Yii uses a naming convention and an autoloader to load only classes that are really needed
and to avoid including files explicitly. As other frameworks and libraries could use a different
naming convention, Yii provides an ability to customize rules of autoloading classes. In the
Using Zend Framework from Yii recipe in this chapter, we used Zend_Loader_Autoloader
to be able to use Zend Framework classes without including them explicitly. If we are using
only Zend Framework's core classes, then its complex autoloader is a bit too much. Moreover,
there are still require_once calls in each Zend Framework class, so it still loads tons of
unused files. In this recipe, we will create a very simple and fast autoloader that will allow us
to do the same, but faster.

Getting ready
Let's prepare our environment and create some initial code to test our autoloader.

1. Create a fresh application by using yiic webapp.

2. Download Zend Framework 1 code (the minimal version is enough) from the
following URL:

http://framework.zend.com/downloads/latest

In this recipe, we have used Version 1.11.6.

3. Extract library/Zend from the downloaded archive to protected/vendors/
Zend.

Chapter 12

349

4. Create protected/controllers/MailtestController.php as follows:

<?php
class MailtestController extends CController
{
 public function actionIndex()
 {
 $mail = new Zend_Mail('utf-8');
 $mail->setHeaderEncoding(Zend_Mime::ENCODING_QUOTEDPRINTABLE);
 // change to your email
 $mail->addTo("alexander@example.com", "Alexander
 Makarov");
 $mail->setFrom("robot@example.com", "Robot");
 $mail->setSubject("Test email");
 $mail->setBodyText("Hello, world!");
 $mail->setBodyHtml("Hello, world!");
 $mail->send();

 echo "OK";
 }
}

How to do it...
Carry out the following steps:

1. Create protected/components/EZendAutoloader.php as follows:
<?php
class EZendAutoloader
{
 /**
 * @var array class prefixes
 */
 static $prefixes = array(
 'Zend'
);

 /**
 * @var string path to where Zend classes root is located
 */
 static $basePath = null;

 /**
 * Class autoload loader.

Using External Code

350

 *
 * @static
 * @param string $className
 * @return boolean
 */
 static function loadClass($className)
 {
 foreach(self::$prefixes as $prefix)
 {
 if(strpos($className, $prefix.'_')!==false)
 {
 if(!self::$basePath) self::$basePath =
 Yii::getPathOfAlias("application.vendors").'/';
 include self::$basePath.str_replace
 ('_','/',$className).'.php';
 return class_exists($className, false) ||
 interface_exists($className, false);
 }
 }
 return false;
 }
}

2. Now modify index.php. Replace Yii::createWebApplication($config)-
>run();

With
$app = Yii::createWebApplication($config);
// adding custom Zend Framework autoloader
Yii::import("application.vendors.*");
Yii::import("application.components.EZendAutoloader", true);
Yii::registerAutoloader(array('EZendAutoloader','loadClass'),
true);

$app->run();

3. Try running mailtest/index. It should send an e-mail and output OK, which means
autoloading works correctly. Still, we are importing the vendors directory to satisfy
the Zend Framework's require_once calls by loading all possible classes explicitly.
The only way to fix it is to remove all occurrences of require_once from Zend
Framework. If you're using Linux you can use:
% cd path/to/ZendFramework/library

% find . -name '*.php' -not -wholename '*/Loader/Autoloader.php' \

 -not -wholename '*/Application.php' -print0 | \

 xargs -0 sed --regexp-extended --in-place 's/(require_once)/\/\/
\1/g'

Chapter 12

351

On MacOSX:
% cd path/to/ZendFramework/library

% find . -name '*.php' | grep -v './Loader/Autoloader.php' | \

xargs sed -E -i~ 's/(require_once)/\/\/ \1/g'

% find . -name '*.php~' | xargs rm –f

Or you can simply use IDE or other tools to replace require_once with //
require_once.

4. After doing it you can remove Yii::import("application.vendors.*")
from index.php and try loading mailtest/index again. It should send another
e-mail and output OK. That means Zend Framework classes are now working without
require_once.

How it works...
Frameworks and libraries that use autoloading rely on PHP SPL autoload. It is
triggered when you use a class that is not included yet and PHP is going to fail. Using
spl_autoload_register, you can register multiple autoload callbacks. Therefore, if the
first one fails, then another one will take the initiative and will try to load a class. Yii is not an
exception. By default, it uses its own autoloader implementation, YiiBase:: autoload.
We have used Yii::registerAutoloader in index.php to add an additional autoloader.
The method implementation is as follows:

public static function registerAutoloader($callback, $append=false)
{
 if($append)
 {
 self::$enableIncludePath=false;
 spl_autoload_register($callback);
 }
 else
 {
 spl_autoload_unregister(array('YiiBase','autoload'));
 spl_autoload_register($callback);
 spl_autoload_register(array('YiiBase','autoload'));
 }
}

So internally, this is the same SPL autoloader, and the registerAutoloader method just
adds another callback and by default makes sure it is registered before Yii's own autoloader. If
we pass true as the second parameter value then the custom autoloader is registered after
the Yii internal one. It does not allow triggering of the custom autoloader for Yii classes.

Using External Code

352

Now, we will move on to our custom autoloader. All SPL autoload callbacks accept a single
argument containing the name of the class that needs to be loaded. Given this name, it
should try to include a file containing a class with the specified name. In order to get more
flexibility, we defined the following two properties:

 f The prefixes property defines a list of prefixes a class should begin with to be
autoloaded with our custom autoloader. By default, it is Zend.

 f The basePath property defines a path to a directory where the Zend directory is. By
default, it is protected/vendors.

For each prefix, we check if the class we are trying to load begins with it and if we need to use
an autoloader. If it matches, then we replace the _ symbol with the / backslash in the class
name and use it as a complete path to the file we are including.

In the final step, we get rid of require_once, which prevents us from loading only classes
that are absolutely required.

There's more...
As class loading happens all the time, we use an external library; it should perform as fast as
it can. This means that the autoloading method should be simple and efficient. Other things to
note are as follows:

 f require_once is slower than just require

 f Using file_exists or is_file will slow down the loading

 f You should use absolute paths instead of relative ones to ensure that APC performs
efficiently when apc.stat = 0 (it allows us not to check if the file was changed and
gain more performance on the production server)

Further reading
In order to learn more about Yii autoloading and APC, refer to the following URLs:

 f http://www.yiiframework.com/doc/api/YiiBase/#import-detail

 f http://www.yiiframework.com/doc/api/
YiiBase/#registerAutoloader-detail

 f http://php.net/manual/en/function.spl-autoload.php

 f http://www.php.net/manual/en/apc.configuration.php#ini.apc.stat

See also
 f The Using Zend Framework from Yii recipe

Chapter 12

353

Using Kohana inside Yii
Sometimes to write a custom autoloader, you need to dig into another framework's source
code. An example of this is the Kohana framework. In this recipe, we will handle image
resizing by using one of the Kohana classes.

Getting ready
1. Create a fresh application using yiic webapp.

2. Download the Kohana framework 3.1.5 archive from the following URL:

http://dev.kohanaframework.org/projects/kohana3/files

In this recipe, we have used Version 3.1.5.

3. Extract the system and modules directories to protected/vendors/Kohana.

How to do it...
Carry out the following steps:

1. First, we will need the actual code that performs the image resizing and displays an
image. Create protected/controllers/ImageController.php as follows:
<?php
class ImageController extends CController
{
 public function actionIndex()
 {
 $image = new Image_GD(Yii::getPathOfAlias
 ("system")."/yii-powered.png");
 $image->resize(800, 150);
 Yii::app()->request->sendFile("image.png", $image->render());
 }
}

Using External Code

354

2. Try to run image/index and you will get the following error:

3. This means that Yii cannot find Kohana classes. In order to help it, we will need a
custom autoloader. So, create protected/components/EKohanaAutoloader.
php as follows:
<?php
class EKohanaAutoloader
{
 /**
 * @var list of paths to search for classes.
 * Add full paths to modules here.
 */

Chapter 12

355

 static $paths = array();

 /**
 * Class autoload loader.
 *
 * @static
 * @param string $className
 * @return boolean
 */
 static function loadClass($className)
 {
 if(!defined("SYSPATH"))
 define("SYSPATH", Yii::getPathOfAlias
 ("application.vendors.Kohana.system"));

 if(empty(self::$paths))
 self::$paths = array(Yii::getPathOfAlias
 ("application.vendors.Kohana.system"));

 $path = 'classes/'.str_replace
 ('_', '/', strtolower($className)).'.php';

 foreach (self::$paths as $dir)
 {
 if (is_file($dir."/".$path))
 require $dir."/".$path;
 }
 return false;
 }
}

4. In order to use it, we need to modify index.php. Replace the following line:
Yii::createWebApplication($config)->run();

with the following:
$app = Yii::createWebApplication($config);

// adding custom Kohana autoloader
Yii::import("application.components.EKohanaAutoloader", true);
EKohanaAutoloader::$paths = array(Yii::getPathOfAlias
 ("application.vendors.Kohana.modules.image"));
Yii::registerAutoloader(array
 ('EKohanaAutoloader','loadClass'), true);

$app->run();

Using External Code

356

5. Now run image/index again and you should see a screen similar to the one shown
in the following screenshot instead of an error:

That means Kohana classes were loaded successfully.

Note that the Kohana class loader provided was not
optimized in terms of performance and is not intended
for intensive production use.

How it works...
Kohana 3 relies on autoloading and has a very special naming convention. As a result, calling
its classes directly is too much work and creating an autoloader is the only reasonable way to
implement it if we are not modifying Kohana classes.

We will take a look at the Kohana autoloader, which is present at the following location:

protected/vendors/Kohana/system/classes/kohana/core.php

The method name is auto_load.

public static function auto_load($class)
{
 try
 {
 // Transform the class name into a path
 $file = str_replace('_', '/', strtolower($class));

 if ($path = Kohana::find_file('classes', $file))
 {
 // Load the class file
 require $path;

Chapter 12

357

 // Class has been found
 return TRUE;
 }

 // Class is not in the filesystem
 return FALSE;
 }
 catch (Exception $e)
 {
 Kohana_Exception::handler($e);
 die;
 }
}

From this part, we can say that it uses a class to form a relative path, which is then used to
find a file inside of the classes directory:

$file = str_replace('_', '/', strtolower($class));

Now let's go deeper inside find_file:

public static function find_file
 ($dir, $file, $ext = NULL, $array = FALSE)
{
 if ($ext === NULL)
 {
 // Use the default extension
 $ext = EXT;
 }
 elseif ($ext)
 {
 // Prefix the extension with a period
 $ext = ".{$ext}";
 }
 else
 {
 // Use no extension
 $ext = '';
 }

 // Create a partial path of the filename
 $path = $dir.DIRECTORY_SEPARATOR.$file.$ext;

 if (Kohana::$caching === TRUE AND isset
 (Kohana::$_files[$path.($array ? '_array' : '_path')]))
 {

Using External Code

358

 // This path has been cached
 return Kohana::$_files[$path.($array ? '_array' : '_path')];
 }

 if (Kohana::$profiling === TRUE AND class_exists
 ('Profiler', FALSE))
 {
 // Start a new benchmark
 $benchmark = Profiler::start('Kohana', __FUNCTION__);
 }

 if ($array OR $dir === 'config' OR $dir === 'i18n'
 OR $dir === 'messages')
 {
 // Include paths must be searched in reverse
 $paths = array_reverse(Kohana::$_paths);

 // Array of files that have been found
 $found = array();
 foreach ($paths as $dir)
 {
 if (is_file($dir.$path))
 {
 // This path has a file, add it to the list
 $found[] = $dir.$path;
 }
 }
 }
 else
 {
 // The file has not been found yet
 $found = FALSE;

 foreach (Kohana::$_paths as $dir)
 {
 if (is_file($dir.$path))
 {
 // A path has been found
 $found = $dir.$path;

 // Stop searching
 break;
 }
 }
 }

Chapter 12

359

 if (Kohana::$caching === TRUE)
 {
 // Add the path to the cache
 Kohana::$_files[$path.($array ? '_array' : '_path')] = $found;

 // Files have been changed
 Kohana::$_files_changed = TRUE;
 }

 if (isset($benchmark))
 {
 // Stop the benchmark
 Profiler::stop($benchmark);
 }

 return $found;
}

As we know that our file extension is always .php and the directory is always classes, and
as we don't care about the caching or profiling right now, the useful part is as follows:

$path = $dir.DIRECTORY_SEPARATOR.$file.$ext;
foreach (Kohana::$_paths as $dir)
{
 if (is_file($dir.$path))
 {
 // A path has been found
 $found = $dir.$path;

 // Stop searching
 break;
 }
}

We are pretty close! The only thing left is Kohana::$_paths:

/**
 * @var array Include paths that are used to find files
 */
protected static $_paths = array(APPPATH, SYSPATH);

We don't care about the application, so we can omit the APPPATH part. Moreover, SYSPATH
is a path to the system directory. As most of the Kohana classes are there, it is reasonable to
make this a default.

Using External Code

360

When the autoloader class is ready, we use Yii::registerAutoloader in index.php
to register it. It is important to register the autoloader after the default one built in Yii, so we
pass true as the second parameter value of Yii::registerAutoloader. Our image
class is not in the core and is located in the image module, so we set paths to the image
module path in the following way:

EKohanaAutoloader::$paths = array(Yii::getPathOfAlias
 ("application.vendors.Kohana.modules.image"));

There's more...
As image resizing is a common task, it is better from both reusability and performance
perspectives to separate this task from the rest of the application and create a separate PHP
script that will handle the image resizing. For example, it will allow using the following code:

This means, take avatar.png as the source image and resize it to 100 x 100 pixels. Possible
steps the image.php script will take are as follows:

 f If an already processed image exists, serve it

 f If there is no image yet, read the source image, resize it, and write it as the
processed one

In order to achieve better performance, you can configure the web server to serve existing
images directly, avoid serving with a PHP script, and redirecting the non-existing ones to the
processing script.

Further reading
In order to learn more about Yii autoloading and Kohana, refer to the following URLs:

 f http://www.yiiframework.com/doc/api/
YiiBase/#registerAutoloader-detail

 f http://kohanaframework.org/

See also
 f The Customizing the Yii autoloader recipe

Chapter 12

361

Using PEAR inside Yii
Another traditional place to look for PHP libraries is PEAR. There is a very special naming
convention, so in order to use the PEAR code, we can either implement another autoloader or
include files directly. In this recipe, we will use the PEAR Text_Password class to generate a
random password.

Getting ready
Let's prepare for the recipe.

1. Create a fresh application by using yiic webapp.

2. Make sure that PEAR is installed and configured properly (http://pear.php.net/
manual/en/installation.php).

How to do it...
The page of the PEAR package that we want to use is http://pear.php.net/package/
Text_Password. Easy Install and Documentation are the important things on that page.

1. We will install the package first. Open the console and type what is suggested in the
Easy Install section:
 pear install Text_Password

2. It should respond with the following:
 downloading Text_Password-1.1.1.tgz ...

 Starting to download Text_Password-1.1.1.tgz (4,357 bytes)

..... done: 4,357 bytes

 install ok: channel://pear.php.net/Text_Password-1.1.1

3. Now we can try using it. We will generate 10 random passwords, the length of
which will be 8. Create protected/controllers/PasswordController.php
as follows:
class PasswordController extends CController
{
 public function actionIndex()
 {
 require "Text/Password.php";
 $textPassword = new Text_Password();
 $passwords = $textPassword->createMultiple(10, 8);
 echo "";
 foreach($passwords as $password)
 {

Using External Code

362

 echo "".$password."";
 }
 echo "";
 }
}

How it works...
Using PEAR packages in Yii is easy. You don't need to configure Yii or write any additional code
to the one provided in the PEAR package's guide.

There's more...
In order to learn more about PEAR, refer to the following URLs:

 f http://pear.php.net/manual/en/installation.php

 f http://pear.php.net/package/Text_Password

 f http://pear.php.net/

See also
 f The Using Zend Framework from Yii recipe

Chapter 12

363

Using Composer with Yii
Composer is a dependency manager for PHP that recently became quite popular. It allows you
to configure all the dependencies for your project and then handles all the downloading and
configuring. Since it's easy to install it's a good choice if:

 f You're working in a team and want new team members to configure projects in just
a minute

 f You're distributing a product and don't want to blat it with libraries and framework

 f You need to control which library version requires which other library version

Composer is well documented but there are some specific things about using it with Yii. In the
next example we'll configure our application to download Yii and some additional packages
using Composer.

Getting ready
We need to prepare first.

1. Install Composer from http://getcomposer.org/download/.

2. Point your webserver root to an empty directory. Let's call it webroot.

How to do it...
1. In order to configure the project we need only a JSON file with dependencies

description. Create webroot/protected/composer.json and put the
following code inside:
{
 "repositories": [

 {
 "type": "package",
 {
 "type":"package",
 "package":{
 "name":"yiiext/iconized-menu-widget",
 "version":"1.2.1",
 "source":{
 "type":"git",
 "url":"https://github.com/yiiext/iconized-menu-
 widget", "reference":"v1.2.1"
 }
 }
 }
],

Using External Code

364

 "require": {
 "php":">=5.3.0",
 "yiisoft/yii": "dev-master",
 "yiiext/iconized-menu-widget": "1.2.*"
 }
}

2. Open the console and execute the following commands:
cd webroot/protected

composer update

vendor/yiisoft/yii/framework/yiic webapp webroot

3. Answer Y then paste the following into your webroot/protected/views/site/
index.php file:
<?php $this->widget('application.vendor.yiiext.iconized-menu-
widget.EIconizedMenu', array(
 'items'=>array(
 array('label'=>'Yii Framework', 'url'=> 'http://yiiframework.
com/'),
 array('label'=>'Yii Application Development Cookbook', 'url'=>
'http://yiicookbook.org/'),
 array('label'=>'@sam_dark', 'url'=> 'https://twitter.com/sam_
dark'),
),
))?>

4. Now open your browser and check the application that's pointing to webroot. You
should get the following:

Chapter 12

365

How it works...
Every project is a package in Composer terms. So our project should be described as a
package as well. Composer has lots of different configuration options. Here we're using only a
small part of it. Let's review our configuration.

The repositories part is about configuring where to look for packages. By default,
Composer checks its main package repository at https://packagist.org/ and since Yii
is officially supporting Composer, we can use it without defining a package.

Since the yiiext extensions aren't aware of Composer yet, we should define package
ourselves. The extension needed is at GitHub so it's a good idea to take code directly
from the repository:

{
 "type": "package",
 "package": {
 "name": "yiiext/iconized-menu-widget",
 "version": "1.2.01",
 "source": {
 "type":"git",
 "url":"https://github.com/yiiext/iconized-menu-widget",
 "reference":"v1.2.1"
 }
 }
}

type can be specified as:

 f package: We're defining package definition ourselves. That's what we're using.

 f composer: That means the actual packages.json definition is hosted elsewhere
and should be downloaded via HTTP, FTP, or SSH and then parsed.

 f vcs: Same but packages.json is in the version control repository.

 f pear: Useful to seamlessly get packages from http://pear.php.net/.

Let's move on to package definition. name is a unique package name. By convention packages
are usually named as vendor/product. By extension, yiiext/iconized-menu-widget.
version indicates the current package version. To tell Composer where to get actual code we
can specify source and/or destination. Which one will be used is determined based on
which options the user supplied while executing composer update. In our case we're taking
source code from the git tag named v1.2.1 using HTTPS. There are lots of other options
such as downloading and unpacking a ZIP file, downloading a single file, or using version
control systems other than git.

Using External Code

366

So now we have packages defined and we're ready to define the main package that is our
actual application. For an application it's not required to specify name or version. The only
mandatory section is require:

"require": {
 "php":">=5.3.0",
 "yiisoft/yii": "dev-master",
 "yiiext/iconized-menu-widget": "1.2.*"
}

In our case we're checking if the PHP version is equal to or higher than 5.3.0. Composer
supports more environmental packages so you can check, for example, for the existence
of a PHP extension. Then we're requiring yiisoft/yii, latest development version, and
yiiext/iconized-menu-widget, any 1.2.x version. When executing composer
update it will look for these packages starting from the package definition.

Note that when we've tried a widget from a package it was referenced as application.
vendor.yiiext.iconized-menu-widget.EIconizedMenu. Here application is a
root alias that points to your protected directory, vendor is a standard name for a directory
containing downloaded Composer packages, and yiiext.iconized-menu-widget is a
combination of vendor and product as defined in composer.json.

There's more...
Composer provides much more functionality than was described in this recipe. To learn
more about it check documentation at http://getcomposer.org/. Also it's useful to
check answers at Stack Overflow (http://stackoverflow.com/questions/tagged/
composer-php).

See also
 f The Using import and autoloading autoloader recipe in Chapter 1, Under the Hood

13
Deployment

In this chapter, we will cover:

 f Changing the Yii directory layout

 f Moving an application out of webroot

 f Sharing the framework directory

 f Moving configuration parts into separate files

 f Using multiple configurations to simplify the deployment

 f Implementing and executing cron jobs

 f Maintenance mode

Introduction
In this chapter, we will cover various tips, which are especially useful on application
deployment and when developing an application in a team, or when you just want to make
your development environment more comfortable.

Changing the Yii directory layout
Yii has a pre-defined convention for directory layout. It allows us to significantly lower the
learning curve, but sometimes the custom directory structure fits the project better.

In this recipe, we will rename a few directories and share common libraries around
separate projects.

Deployment

368

The plan is to:

 f Rename protected to app

 f Create a shared directory where we can store components shared across
multiple applications

 f Move runtime out of app

Getting ready
Let's prepare the environment.

1. Get a copy of the framework directory from the Yii website.

2. Set up the following directory structure:

/var/www/example/framework/www/

3. Unpack the framework directory contents to /var/www/example/framework/.

How to do it...
Carry out the following steps:

1. Go to the framework directory.

2. Run yiic webapp /var/www/example/www/.

3. Go to /var/www/example/www and rename protected to app.

4. Replace all occurrences of protected with app in index.php and index-test.
php. Check that the path to Yii is correct in both cases. Now, we have a custom
directory named app.

5. Create /var/www/shared.

6. In your main.php config add:
// uncomment the following to define a path alias
Yii::setPathOfAlias('shared','/var/www/shared');
…
// This is the main Web application configuration. Any
// writable CWebApplication properties can be configured
// here.
return array(
 …

 // autoloading model and component classes
 'import'=>array(
 …
 'shared.*',
),

Chapter 13

369

7. That's it! Now you can place your own components under /var/www/shared and
the application will be aware of them. In addition, if you add the same settings to
another application config, another application will be able to use these components
as well.

8. Move runtime from the /var/www/example/www/app directory to /var/www/
example/runtime.

9. Modify your main.php config as follows:
return array(
 …
 'runtimePath' => Yii::getPathOfAlias('system').'/../runtime/',

10. That's it! Now the runtime directory is outside of the application directory.

How it works...
The application directory name and path are determined only at two places: index.php
and index-test.php, so it is relatively easy to change these. We just need to update two
bootstrap files after renaming the application directory.

When creating a shared directory, we define a custom path alias. It is a very convenient way
of using additional directories if you are referring to them often:

Yii::setPathOfAlias('shared','/var/www/shared');

setPathOfAlias accepts two arguments. First is the name that we will use when setting
options to accept paths, Yii::getPathOfAlias and Yii::import. Second is the actual
path to the directory. As we want to use components transparently, we are adding shared.*
to the list of application imports. This allows classes from the /var/www/shared directory to
be loaded automatically.

The last path we change is a path to the runtime directory. For this case, Yii defines an
application property named runtimePath. We can set it to change the path used as follows:

'runtimePath' => Yii::getPathOfAlias('system').'/../runtime/',

As we want to place runtime in the same file structure level where the framework directory
is, we get the framework directory path by using getPathOfAlias and then appending the
relative path to our runtime directory.

An application defines some other properties allowing you to change the extensions
path, translations path, and modules path. Other paths such as views path or cache
files path could be configured by changing another component's properties. For a
view, it is CController::viewPath and for cache (in case of using file cache), it is
CFileCache::cachePath.

Deployment

370

There's more...
In order to learn more about Yii directory paths, refer to the following URLs:

 f http://www.yiiframework.com/doc/api/YiiBase#getPathOfAlias-
detail

 f http://www.yiiframework.com/doc/api/YiiBase#import-detail

 f http://www.yiiframework.com/doc/api/
CApplication#setExtensionPath-detail

 f http://www.yiiframework.com/doc/api/
CApplication#setRuntimePath-detail

 f http://www.yiiframework.com/doc/api/
CApplication#setLocaleDataPath-detail

 f http://www.yiiframework.com/doc/api/CModule#setModulePath-
detail

 f http://www.yiiframework.com/doc/api/CController#viewPath-detail

See also
 f The Moving an application out of webroot recipe

Moving an application out of webroot
By default, when generating web applications by using the yiic webapp command, Yii puts
both the index.php and protected directory in a single place that is typically the server's
webroot. It allows running Yii in very restricted environments, but for security purposes and
ease of development it is better to keep your code out of webroot if it can be kept out of it.

In this recipe, we will see how to move a Yii application out of the server's webroot located at
/var/www/website/www/.

Getting ready
1. Copy the framework directory to /var/www/website/.

2. Go to /var/www/website/framework/ and run yiic webapp /var/www/
website/www/.

3. You should get the default web application files under /var/www/website/www/.

Chapter 13

371

How to do it...
Carry out the following steps:

1. First, we need to move /var/www/website/www/protected/ to /var/www/
website/protected/. As the path was changed, the application will fail to run
now. Both index.php and index-test.php need some fixing. The index.php file
has the following content:
// change the following paths if necessary
$yii=dirname(__FILE__).'/../framework/yii.php';
$config=dirname(__FILE__).'/protected/config/main.php';

// remove the following lines when in production mode
defined('YII_DEBUG') or define('YII_DEBUG',true);
// specify how many levels of call stack should be shown
// in each log message
defined('YII_TRACE_LEVEL') or define('YII_TRACE_LEVEL',3);

require_once($yii);
Yii::createWebApplication($config)->run();

2. There are two paths defined, path to the framework directory that was not changed
and path to config that was changed. Let's update the latter as follows:
$config=dirname(__FILE__).'/../protected/config/main.php';

3. We need to do the same in index-test.php:
$config=dirname(__FILE__).'/../protected/config/test.php';

4. That's it! Now try to run the application and it should show a standard welcome
screen, as in the following screenshot:

Deployment

372

5. Now, we need to fix one more path in protected/yiic.php. We do this as follows:

// change the following paths if necessary
$yiic=dirname(__FILE__).'/../framework/yiic.php';
$config=dirname(__FILE__).'/config/console.php';

require_once($yiic);

How it works...
A Yii application can be moved to any place in a filesystem where we want it to be. The only
thing you should correct is paths in index.php and index-test.php. This simple move
gives you slightly better security as no application code will be executed directly, and there will
be no leaks in the source code through version control meta files, and so on. Therefore, if your
production environment allows moving the application code out of webroot, you certainly
should consider doing it.

There's more...
The following article will give you an idea why it is better to have as little code as possible
under webroot:

http://www.smashingmagazine.com/2009/09/25/svn-strikes-back-a-
serious-vulnerability-found/

See also
 f The Sharing the framework directory recipe

Sharing the framework directory
If you run multiple Yii projects on a single web server, then you can consider sharing the code
in the framework directory between the projects. This will save some disk space and will
require less work when you upgrade your applications to a new framework version.

Getting ready
Copy the framework directory contents to /var/www/common/yii/latest.

Chapter 13

373

How to do it...
Carry out the following steps:

1. Go to /var/www/common/yii/latest and run yiic webapp /var/www/
website1/www/.

2. Go to /var/www/common/yii/latest and run yiic webapp /var/www/
website2/www/.

3. You should get the default web application files under /var/www/website1/www/
and /var/www/website2/www/.

4. That's it! Try to run applications to make sure that everything works.

How it works...
Using yiic webapp from the single framework copy will create applications referencing
this framework instance. We have two applications using the same framework copy, so when
upgrading framework, we should only replace a single directory's contents.

If you have existing applications, then you can do the same by editing their index.php and
index-test.php files, so the $yii values will be as follows:

$yii='/var/www/common/yii/latest/yii.php';

There's more...
As the new Yii version can possibly introduce some backward incompatible changes
(typically, there are no such changes in minor releases), it is good to have a way to quickly
roll everything back. For this purpose, you have to keep several framework versions under /
var/www/common/yii/ (for example, 1.1.8 and 1.1.7). When upgrading an application to
1.1.8, you are changing the path to yii.php in index.php and index-test.php for a
single application and testing for regressions. If there are any, you can either fix them or roll
everything back by quickly changing a path back to 1.1.7. If everything is fine, then you can
safely move on to test the next application.

See also
 f The Moving an application out of webroot recipe

Deployment

374

Moving configuration parts into
separate files

By default, a Yii application stores the entire web application configuration in a single file
named protected/config/main.php. The same goes for the console application. It is
good for both learning and small web applications where keeping everything inside of a single
config file gives a developer the ability to quickly overview the whole application's settings.
When we develop something bigger, we may face some inconvenience, such as the following:

 f The configuration file becomes too bloated if there are many things to configure.
Moreover, in a big application, there are typically many components used.

 f If we need to adjust some settings, then we most probably end up repeating changes
in both the web application config and console application config.

Getting ready
Create a fresh application by using yiic webapp.

How to do it...
Carry out the following steps:

1. We will review the default config first to identify parts we will reuse, as well as parts
that will most probably be too large to have in a single file:

return array(
 …

 // autoloading model and component classes
 'import'=>array(
 'application.models.*',
 'application.components.*',
),

 // application components
 'components'=>array(
 …

 // uncomment the following to enable URLs in path-format
 /*
 'urlManager'=>array(
 'urlFormat'=>'path',
 'rules'=>array(

Chapter 13

375

 '<controller:\w+>/<id:\d+>'=>'<controller>/view',
 '<controller:\w+>/<action:\w+>/<id:\d+>'=>'
 <controller>/<action>',
 '<controller:\w+>/<action:\w+>'=>'
 <controller>/<action>',
),
),
 */
 'db'=>array(
 'connectionString' =>
 'sqlite:'.dirname(__FILE__).'/../data/testdrive.db',
),
 // uncomment the following to use a MySQL database
 /*
 'db'=>array(
 'connectionString' =>
 'mysql:host=localhost;dbname=testdrive',
 'emulatePrepare' => true,
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
),
 */
),

 // application-level parameters that can be accessed
 // using Yii::app()->params['paramName']
 'params'=>array(
 // this is used in contact page
 'adminEmail'=>'webmaster@example.com',
),
);

The imports list and module configuration are typically not too large. The same
goes for the most components configuration. What can grow with the application
complexity are the urlManager component routes and application-level parameters.
As for reusing, we will probably need the same imports, database connection, and
application-level parameters for both the web application and console application.

2. Now, we will create the following config files under protected/config:

 � routes.php

 � params.php

 � import.php

 � db.php

Deployment

376

3. Now we need to move the corresponding sections of the main.php file into separate
files. We do this as follows:
return array(
 …
 // autoloading model and component classes
 'import'=>require(dirname(__FILE__).'/import.php'),

 // application components
 'components'=>array(
 …
 // uncomment the following to enable URLs in path-
 // format
 'urlManager'=>array(
 'urlFormat'=>'path',
 'rules'=>require(dirname(__FILE__).'/routes.php'),
),
 'db'=>require(dirname(__FILE__).'/db.php'),

),

 // application-level parameters that can be accessed
 // using Yii::app()->params['paramName']
 'params'=>require(dirname(__FILE__).'/params.php'),
);

4. Each new config will contain the same values that were there in the main config. For
example, protected/config/params.php will contain the following:
<?php
return array(
 // this is used in contact page
 'adminEmail'=>'webmaster@example.com',
);

5. Now we need to change the console application protected/config/console.
php. We do this as follows:
return array(
 …

 // autoloading model and component classes
 'import'=>require(dirname(__FILE__).'/import.php'),

 // application components
 'components'=>array(

Chapter 13

377

 'db'=>require(dirname(__FILE__).'/db.php'),
),

 // application-level parameters that can be accessed
 // using Yii::app()->params['paramName']
 'params'=>require(dirname(__FILE__).'/params.php'),
);

6. That's it! Now we have separate configuration files for imports, database
configuration, application routes, and application parameters.

How it works...
The preceding technique relies on the fact that Yii configuration files are native PHP files
with arrays:

<?php
return array(…);

When we use the require construct:

'db'=>require(dirname(__FILE__).'/db.php')

It reads the file specified, and, if there is a return statement inside this file, it returns a
value. Therefore, moving a part out of the main configuration file into a separate file requires
creating a separate file, moving the configuration part into it right after the return statement,
and using require in the main configuration file.

If separate applications (in our example, these are web applications and console applications)
require some common configuration parts, then we can use require to move these into a
separate file.

There's more...
In order to learn more about the PHP require and include statements, refer to the
following URLs:

 f http://php.net/manual/en/function.require.php

 f http://php.net/manual/en/function.include.php

See also
 f The Using multiple configurations to simplify the deployment recipe

Deployment

378

Using multiple configurations to simplify
the deployment

In some cases, it is handy to use different configuration files for different cases. For example,
we can use different configuration files for the development environment and production
environment.

In this recipe, we will see how to choose a configuration file automatically and how to
implement the configuration inheritance.

Getting ready
Create a fresh application by using yiic webapp.

How to do it...
Carry out the following steps:

1. We will assume that we are using http://example.com/ as a production URL and
http://example.local/ as a development URL. Given this fact, we can choose
the appropriate config from index.php as follows:
// change the following paths if necessary
$yii=dirname(__FILE__).'/../framework/yii.php';

if($_SERVER['HTTP_HOST']=='example.com')
{
 $config = dirname(__FILE__).'/../protected/config/production.
php';
}
else
{
 // remove the following lines when in production mode
 defined('YII_DEBUG') or define('YII_DEBUG',true);
 // specify how many levels of call stack should be
 shown in each log message
 defined('YII_TRACE_LEVEL') or define('YII_TRACE_LEVEL',3);
 $config = dirname(__FILE__).'/../protected/config/development.
php';
}

require_once($yii);
Yii::createWebApplication($config)->run();

Chapter 13

379

2. The plan ahead is to leave all common configurations in main.php and override
the environment-specific settings in development.php and production.php.
Therefore, main.php stays the same. We put the following in protected/config/
development.php as follows:
<?php
return CMap::mergeArray(
 require(dirname(__FILE__).'/main.php'),
 array(
 'modules'=>array(
 'gii'=>array(
 'class'=>'system.gii.GiiModule',
 'password'=>false,
),
),
 'components'=>array(
 'db'=>array(
 'class'=>'system.db.CDbConnection',
 'connectionString'=>'mysql:host=localhost;
 dbname=example',
 'username'=>'root',
 'password'=>'',

 'charset'=>'utf8',
 'enableProfiling'=>true,
 'enableParamLogging'=>true,
),
 'log'=>array(
 'class'=>'CLogRouter',
 'routes'=>array(
 array(
 'class'=>'CProfileLogRoute',
),
),
),
),
)
);

3. In addition, put the following in protected/config/production.php as follows:
<?php
return CMap::mergeArray(
 require(dirname(__FILE__).'/main.php'),
 array(
 'components'=>array(

Deployment

380

 'db'=>array(
 'class'=>'system.db.CDbConnection',

 'connectionString'=>'mysql:host=localhost;dbname=example',
 'username'=>'example',
 'password'=>'2WXyVNb4dBSEK3HW',

 'charset'=>'utf8',

 'schemaCachingDuration'=>60*60,
),
 'cache'=>array(
 'class'=>'CFileCache',
),
),
)
);

4. That's it. Now we can just upload files to the production server that runs
http://example.com/ and the application will use the production.php config
that inherits all settings from main.php, overrides some of them, and adds some
more settings.

How it works...
When we create a web application instance inside of index.php, it is possible to pass
a single argument to Yii::createWebApplication. This argument is a path to the
application configuration file. Given this fact, we can vary the path to this file based on some
kind of criteria. In our case, it is the name of the host where the application is running:

if($_SERVER['HTTP_HOST']=='example.com')
{
 $config = dirname(__FILE__).'/../protected/config/production.php';
}
else
{
 // remove the following lines when in production mode
 defined('YII_DEBUG') or define('YII_DEBUG',true);
 // specify how many levels of call stack should be shown
 // in each log message
 defined('YII_TRACE_LEVEL') or define('YII_TRACE_LEVEL',3);
 $config = dirname(__FILE__).'/../protected/config/development.php';
}

Chapter 13

381

If the host is example.com, then we use the production.php config. Otherwise, we use
the development.php config and, additionally, turn on the debugging.

You can use virtually anything to choose the config file. For example,
you can run the application in a debug mode at the production
server if there is a cookie with a specific name and value.

As most of the development and production settings, such as application parameters and
routes, will stay the same, we leave these in main.php. Moreover, as Yii configuration files
are PHP arrays, we can use CMap::mergeArray to implement the configuration inheritance
as follows:

return CMap::mergeArray(
 require(dirname(__FILE__).'/main.php'),
 array(…)
);

There's more...
In order to learn more about how exactly config files are merged, refer to the following URL:

http://www.yiiframework.com/doc/api/CMap#mergeArray

See also
 f The Moving configuration parts into separate files recipe

Implementing and executing cron jobs
Sometimes, an application requires some background tasks such as re-generating a sitemap
or refreshing statistics. A common way to implement this is by using cron jobs. When using Yii,
there are two ways to do this, which are as follows:

 f Emulate the browser to call the web application controller action

 f Use the command-line command to run as a job

In this recipe, we will see how to implement both. For our recipe, we will implement writing the
current timestamp into a timestamp.txt file under the protected directory.

Getting ready
Create a fresh application by using yiic webapp.

Deployment

382

How to do it...
Carry out the following steps:

1. Create protected/controllers/CronController.php as follows:
<?php
class CronController extends CController
{
 public function actionIndex()
 {
 $filename = Yii::getPathOfAlias
 ("application")."/timestamp.txt";
 file_put_contents($filename, time());
 }
}

2. Now we need a way to call it. As it is a web application controller, we need to
somehow emulate a browser. In Linux, you can use one of the following commands
in your crontab file:
GET http://example.com/index.php?r=cron

wget -O - http://example.com/index.php?r=cron

lynx --dump http://example.com/index.php?r=cron >/dev/null

When we use a controller in this way, we need to make sure
that it is used only as a cron job. For example, we can check
for a value of a specific $_GET variable.

3. Create protected/commands/CronCommand.php as follows:
<?php
class CronCommand extends CConsoleCommand
{
 public function run($args)
 {
 $filename = Yii::getPathOfAlias
 ("application")."/timestamp.txt";
 file_put_contents($filename, time());
 }
}

4. We can use the following in the crontab file to execute it:
/path/to/./yiic cron

Note that the full path is required to be specified in cron.

Chapter 13

383

How it works...
GET, wget, and lynx fetch a page through HTTP, so we can use these to trigger the normal
web application execution. This method has its pros and cons. The main pro is that we are
executing a web application, so the environment is the same as in all other application parts.
The main con is that it is not completely secure. Even if we use the $_GET variable as a
password, there is no guarantee that it will remain undisclosed forever.

The second method is much more secure because the console command can be executed
only if one has SSH access to the server. The con is that the environment is different from the
web application.

There's more...
Another way to solve a problem is to use a message queue. Most implementations will deal
with concurrency issues for you and will allow you to do the processing almost immediately if
there are not too many requests. Implementations to check are:

 f http://www.rabbitmq.com/

 f http://kr.github.com/beanstalkd/

 f http://activemq.apache.org/

 f http://gearman.org/

 f https://github.com/s0enke/dropr/

 f http://www.zeromq.org/

Further reading
In order to learn more about Yii console applications, refer to the following URL:

http://www.yiiframework.com/doc/guide/en/topics.console

See also
 f The Creating CLI commands recipe in Chapter 8, Extending Yii

Maintenance mode
Sometimes, there is a need to fine tune some application settings or restore a database
from a backup. When working on tasks such as these, it is not desirable to allow everyone to
use the application because it can lead to losing the recent user messages or showing the
application implementation details.

In this recipe, we will see how to show everyone except the developer a maintenance message.

Deployment

384

Getting ready
Create a fresh application by using yiic webapp.

How to do it...
Carry out the following steps:

1. First, we need to create protected/controllers/MaintenanceController.
php. We do this as follows:
<?php
class MaintenanceController extends CController
{
 public function actionIndex()
 {
 $this->renderPartial("index");
 }
}

2. Then, we create a view named protected/views/maintenance/index.php
as follows:
<!doctype html>
<head>
 <meta charset="utf-8" />
 <title><?php echo CHtml::encode(Yii::app()->name)?>
 is under maintenance</title>
</head>
<body>
 <h1><?php echo CHtml::encode(Yii::app()->name)?>
 is under maintenance</h1>
 <p>We'll be back soon. If we aren't back for too long,
 please drop a message to <?php echo Yii::app()->params
 ['adminEmail']?>.</p>
 <p>Meanwhile, it's a good time to get a cup of coffee,
 to read a book or to check email.</p>
</body>

Chapter 13

385

3. Now we need to add a single line of code to protected/config/main.php
as follows:
return array(
 'catchAllRequest'=>file_exists(dirname(__FILE__).'/.
 maintenance')
 && !(isset($_COOKIE['secret']) &&
 $_COOKIE['secret']=="password") ?
 array('maintenance/index') : null,
…

4. That's it! Now in order to go into maintenance mode, you need to create a file named
.maintenance in protected/config/. After doing it you should see the following:

In order to get the application back to normal, you just need to delete it. To view the
website in the maintenance mode, you can create a cookie named secret with
value equal to password.

How it works...
A Yii web application offers a way to intercept all possible requests and route these to a single
controller action. You can do this by setting CWebApplication::catchAllRequests to an
array containing an application route as follows:

'catchAllRequest'=>array('maintenance/index'),

The maintenance controller itself is nothing special; it just renders a view with a text.

We need an easy way to turn the maintenance mode on and off. As the application config is a
regular PHP file, we can achieve this with a simple check for the file existence as follows:

file_exists(dirname(__FILE__).'/.maintenance')

In addition, we check for the cookie value to be able to override the maintenance mode. We
do this as follows:

!(isset($_COOKIE['secret']) && $_COOKIE['secret']=="password")

Deployment

386

There's more...
In order to learn more about how to catch all requests in a Yii application and check the
production-ready solution for maintenance, refer to the following URLs:

 f http://www.yiiframework.com/doc/api/
CWebApplication/#catchAllRequest-detail

 f https://github.com/karagodin/MaintenanceMode

See also
 f The Moving configuration parts into separate files recipe

 f The Using multiple configurations to simplify the deployment recipe

Index
A
access control and filters

reference links 292
accessRules controller method 131
actionPage method 40
Active Record 301
Active Record model behavior

implementing 230
addError method 121
addInCondition method 299
afterValidate function 16, 188
AJAX-requests 273
application

profiling 327
AR event-like methods

afterConstruct 180
beforeDelete/afterDelete 180
beforeFind/afterFind 180
beforeSave/afterSave 180
beforeValidate/afterValidate 180
used, for processing model field 178

assertRegExp method 149
assertTrueassertFileExists method 149
assetManager component 26
assets

managing 83-87
assets directory

checking 88
publishing 88

authManager component 26
author

setting up automatically 191, 193
autoloading

about 17
using 17-20

B
Backbone.js

URL 118
base controller

using 55, 56
BBCode converter 145
beforeSave method 180
beforeValidate method 190, 191
best practices

AR, versus query builder or SQL 316
following 313-315
heavy process , avoiding 316
server-side performance 316
slow queries, checking 316
too much processing, handling 316

block
loading, through AJAX 77-81

bootstrap.php 142
bundled jQuery inclusion

preventing 82

C
cache component 26
cache dependencies

using 321-326
caching

reference links 327
CActiveDataProvider 204
CActiveRecordBehavior 231
CActiveRecord class 180
calculateTotalItemCount method 205
CApplicationComponent 234
CAPTCHA

adding 126-130
customizing 131-133

388

working 130
CArrayDataProvider

using 205
CAttributeCollection 31
CBehavior class

attach method 231
detach method 231
getEnabled method 231
getOwner method 231
setEnabled method 231

CCaptchaValidator 130
CClientScript 91
CComponent::attachEventHandler

method 11
CController::renderPartial 68
CCookieCollection class 34
CDbCriteria

about 197
using 197

CEmailLogRoute 272
CFileLogRoute 273
CHtml and CHtmlPurifier

used, for preventing XSS 292
CHtmlPurifier 295
CHttpRequest class 32
CLI commands

creating 245-248
working 248

clientScript component 26
clips

about 68
using 68

CList 29
CLogFilter class 280
CLogRouter 272
CMap 29
CMarkdownParser function 182
CMessageSource::onMissingTranslation event

13
CModel::afterValidate method 16
CModelBehavior 231
code

highlighting 183-188
code coverage reports

generating 160, 161
reference links 163

commentCount 333
Common Locale Data Repository (CLDR) 175
component

about 232
configuring 24, 25
creating 232, 234
existing application components,

overriding 235
reference links 236

Composer
about 363
features 366
installing 363
package repository 365
using, with Yii 363, 364
working 365, 366

configuration inheritance
implementing 378, 379

configuration parts
moving, into seperate files 374, 375

content
rendering, at client side 105-117

context information
using 277

controller action access
denying, to specific browser 291
limiting, to authorized users 290
limiting, to specific IPs 290
limiting, to specific user 291

controller context
using, in view 64, 65

controller filters
using 287-292

coreMessages component 25
CPagination object 205
CQueue 31
createAttribute method 191
cron jobs

executing 382
implementing 381, 382

cross-database relations 175
cross-site request forgery. See CSRF
cross-site scripting. See XSS
CSort object 205
CSqlDataProvider

using 205

389

CSRF
about 301
concepts 302
extra measures 304
GET and POST, using 304
preventing 302, 303

CStack 31
CTestCase class 149
CTextHighlighter class 188
CTypedList 29
custom grid column

creating 219-224
custom input widget

creating, CInputWidget used 134-137
custom script packages

using 91
custom smart 404 handler

implementing 281-283
working 284

custom URL rules
providing, at runtime 51-55

custom validators
about 121, 122
writing 119-121

custom view renderer
creating 258, 260
working 261, 262

CValidator 122
CViewAction

used, for displaying static pages 61, 62
CViewAction parameters

basePath 62
defaultView 62
layout 62
renderAsText 62
viewParam 62

CWebApplication::createUrl method 44
CWebLogRoute 273

D
DAO 301
data

paginating 73, 75
sorting 74, 75

dataProvider property 209

data providers, Zii
about 199
using 199-205
working 204

db component 25
decorators

using 70

E
EBBCode class 145
EE 145
Ember.js

URL 118
errorHandler component 25
error handling

about 281
reference links 285

error logging
context information, using 277-280

event handling 16
event-like methods 178
exceptions

about 20
using 20, 21, 22
working 23

external actions
using 57-61

F
file uploads

handling 122-125
file validator 126
filter property 208
filters

about 249
creating 249
reference links 251
working 251

fixtures
about 149
using 149-154

FlagColumn class 224
flash messages

using 63, 64
format component 26

390

framework directory
sharing 372

full-page cache
using 321-327

G
generateVerifyCode 133
getCookies method 34
getCsrfToken() 303
getIsAjaxRequest method 32
getIsPostRequest method 32
getOwner method 231
getPreferredLanguage 33
getRequestType method 32
getSupportedLanguages function 188
getters and setters

using 7-10
getText method 133
Gii

using 206, 214
grids, Zii. See Zii grids

H
hierarchy, RBAC

operation node 308
role node 308
task node 308

HTTP caching
filters, optimizing 340
implementing 337-339
reference link 341
working 340

I
image resizing

about 360
Kohana used 353

isRemoved method 230
IViewRenderer interface 261

J
JavaScript

configuration, passing from PHP 95

jQuery
reference link, for documentation 77

JSON
about 92
working with 92-94

JSON response 273

K
KnockoutJS

URL 118
Kohana 3

working 356-360
Kohana framework

using, in Yii 353-356

L
linked resources

registering 91
logging 267
log messages

flushing 274
handling 268-272

M
maintenance mode 383, 385
markdown

converting, to HTML 181, 182
markdown and HTML

applying 181-183
markdown syntax

URLs 183
messages component 25
meta tags

registering 91
model behaviors

CActiveRecordBehavior 231
CModelBehavior 231
creating 226-231

model fields
processing, with AR event-like

methods 178-180
modules

creating 251-255
reference links 257
working 256, 257

391

ModuleUrlManager::collectRules
method 53

multiple DB connections
defining 172
using 172-174
working 174

multiple layouts
defining 71-73

N
native PHP template 258
Notifier class 15

O
ob_gzhandler function 12
onBeginRequest event 54
operation, RBAC hierarchy 308

P
PEAR

reference links 362
using, in Yii 361
working 362

PHP
configuration, passing to JavaScript 95-97

PHPUnit
features 149
installing 140

PHPUnit teardown method 155
profiling

application, with Yii 327
reference links 336

Q
queryInternal 277

R
RBAC

avoiding 311
hierarchy 308
using 305

RBAC hierarchy
permissions, testing 310
recommendations 311

RBAC nodes
naming 310

registerAutoloader method 351
regular expressions

using, in URL rules 45-48
renderDataCellContent method 224
renderFile method 261
renderPartial 68
request

working with 32-35
request component 26
resources

including, in page 88-91
reusable controller actions

creating 236-238
reference links 239

reusable controllers
creating 239, 241
reference links 242
working 242

role, RBAC hierarchy
about 308
assigning 308

router rules 38

S
Sakila sample database Version 0.8

URL 199
scopes

using, for getting blog posts for different
languages 175-178

security
about 287
controller filters, using 287
CSRF, preventing 301
RBAC, using 305
SQL injections, preventing 296
XSS, preventing with CHtml and

CHtmlPurifier 292
securityManager component 26
Selenium server

installing 141
sendFile 34
session component 26

392

session handling
about 317
changing 317, 319
reference links 320
working 319

setPathOfAlias 369
setUpBeforeClass method 153
setUpdateOnCreate property 191
single table inheritance

about 193
implementing 193-196

Smarty view renderer
reference link 262, 263

soft delete 226
SPL ArrayAccess

implementing 28
SQL injections

preventing 296-301
reference links 301

Stack Overflow
URL 366

statePersister component 26
static pages

displaying, with CViewAction 61, 62
URL rules, creating 48-50

T
tableName method 196
task, RBAC hierarchy

about 308
connecting, to role 309

Test Driven Development (TDD) 139
testing environment

PEAR, setting up 140
PHPUnit, installing 140
Selenium server, installing 141
setting up 139
Xdebug, installing 141

Text_Highlighter 189
themeManager component 26
timestamps

automating 189, 190
todo.bindEvents() 114
todo.initLoader() 114
todo.initRefs() 114
todo.reload() 115

U
unit testing 143
unit tests

running 145-148
writing 143

updateAttribute method 191
urlManager component 26
URL rules

configuring 38-40
creating, for static pages 48-50
regular expressions, using 45-48

URLs
generating by path 41-44

user component 26

V
validateAttribute method 122
variable inputs

handling 98-105
views. See Yii views

W
web application components

assetManager 26
authManager 26
cache 26
clientScript 26
coreMessages 25
db 25
errorHandler 25
format 26
messages 25
request 26
securityManager 26
session 26
statePersister 26
themeManager 26
urlManager 26
user 26
widgetFactory 26

WebTestCase.php 142
widget

about 243
creating 243, 244

393

reference links 245
working 245

widget defaults
configuring 27

widgetFactory component 26

X
Xdebug

installing 141
XSRF. See CSRF
XSS

about 292
HTML Purifier, configuring 295
HTML Purifier performance 296
preventing, CHtml and CHtmlPurifier

used 292-295
XSS types

about 295
non-persistent 295
persistent 295

Y
Yii

application, profiling 327
autoloading 17
base controller, using 55-57
best performances 313
cache dependencies, using 321
CAPTCHA, adding 126
CAPTCHA, customizing 131
clips, using 68
code coverage reports, generating 160, 162
components, configuring 24, 25
custom input widget, creating with

CInputWidget 134-136
custom smart 404 handler,

implementing 281-284
custom validators, writing 119-121
decorators, using 70
error handling 281
exceptions 20
extending 225
external actions, using 57-60
features 7
files, uploading 122

flash messages, using 63, 64
full-page cache, using 321
getters and setters, using 7-10
HTTP caching, leveraging 337
import feature 18
Kohana, using 353-355
multiple layouts, defining 71-73
native PHP template 258
PEAR, using 361
Prado-like template 258
request, working with 32
security 287
session handling, speeding up 317
Smarty templates 258
testing environment, setting up 139-142
URL, official guide 7
URLs, generating by path 41-44
widget defaults, configuring 27
Zend framework, using 343-346

Yii Active Record scopes
using 178

Yii::app()->db component 24
Yii application

configuration inheritance, implementing 378
configuration parts, moving into seperate

files 374-377
framework directory, sharing 372
maintenance mode 383, 385
moving out of webroot 370-372
testing, functional tests used 155-159

Yii autoloader
customizing 348-351
working 351

Yii autoloading
reference links 352

Yii::beginProfile
and, Yii::endProfile 273

Yii blog demo application
bottlenecks, finding 327-336

Yii code highlighter
URLs 189

Yii core collections
CAttributeCollection 31
CList 28
CMap 29
CQueue 31

394

CStack 31
CTypedList 29
using 28-31

Yii database
about 166
data, getting from 166-170

Yii database fixtures. See fixtures
Yii directories layout

changing 367-369
Yii directory paths

reference links 370
Yii error stack trace

analyzing 274, 276
Yii events

about 10
declaring 11
event handler, attaching 11
event handlers, adding 12
event handlers, deleting 12
event handlers, managing 12
using 10-15

Yii extension
CLI commands, creating 245-248
components, creating 232, 234
custom view renderer, creating 258-261
filters, creating 249, 251
model behaviors, creating 226-229
modules, creating 251-257
reusable controller actions, creating 236-238
reusable controllers, creating 239-242
sharing 263-265
widget, creating 243, 244

Yii::import
using 18-20

Yii logging. See logging
Yii markdown wrapper and usage

URLs 183

Yii::trace
versus, Yii::log 273

Yii URL router 38
Yii views

about 64
controller context, using 64, 65
resuing, with partials 66-68
working 65

Z
Zend framework

reference links 348
working 347

Zend Framework
using, from Yii 343-347

Zend_Loader_Autoloader 348
Zii

about 199
data providers 199
features 199

Zii grids
about 206
data, using from AR models 209-212
generating, Gii used 206, 207
online resources 213
working 207, 208

Zii lists
about 214
generating, Gii used 214
markup and templates,

customizing 216-218
sorting, adding 215
templates, customizing 216
working 215

Thank you for buying

Yii Application Development
Cookbook Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information, please
visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to continue
its focus on specialization. This book is part of the Packt Open Source brand, home to books published
on software built around Open Source licences, and offering information to anybody from advanced
developers to budding web designers. The Open Source brand also runs Packt's Open Source Royalty
Scheme, by which Packt gives a royalty to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it first
before writing a formal book proposal, contact us; one of our commissioning editors will get in touch
with you.

We're not just looking for published authors; if you have strong technical skills but no writing experience,
our experienced editors can help you develop a writing career, or simply get some additional reward for
your expertise.

Yii 1.1 Application
Development Cookbook
ISBN: 978-1-84951-548-1 Paperback: 392 pages

Over 80 recipes to help you master using the Yii
PHP framework

1. Learn to use Yii more efficiently through plentiful
Yii recipes on diverse topics

2. Make the most efficient use of your controller and
views and reuse them

3. Automate error tracking and understand the Yii log
and stack trace

4. Full of practically useful solutions and concepts
that you can use in your application, with clearly
explained code and all the necessary screenshots

Web Application Development
with Yii and PHP
ISBN: 978-1-84951-872-7 Paperback: 332 pages

Learn the Yii application development framework by
taking a step-by-step approach to building a Web-based
project task tracking system from conception through
production deployment

1. A step-by-step guide to creating a modern Web
application using PHP, MySQL, and Yii

2. Build a real-world, user-based, database-driven
project task management application using the Yii
development framework

3. Start with a general idea, and finish with
deploying to production, learning everything
about Yii inbetween, from "A"ctive record to "Z"ii
component library

Please check www.PacktPub.com for information on our titles

Agile Web Application
Development with Yii1.1
and PHP5
ISBN: 978-1-84719-958-4 Paperback: 368 pages

Fast-track your web application development by
harnessing the power of the Yii PHP Framework

1. A step-by-step guide to creating a modern,
sophisticated web application using an
incremental and iterative approach to
software development

2. Build a real-world, user-based, database-driven
project task management application using the
Yii development framework

3. Take a test-driven design (TDD) approach
to software development utilizing the Yii
testing framework

Yii Rapid Application
Development Hotshot
ISBN: 978-1-84951-750-8 Paperback: 340 pages

Become a RAD hotshot with Yii, the world's most popular
PHP framework

1. A series of projects to help you learn Yii and Rapid
Application Development

2. Learn how to build and incorporate key web
technologies

3. Use as a cookbook to look up key concepts, or
work on the projects from start to finish for a
complete web application

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Under the Hood
	Introduction
	Using getters and setters
	Using Yii events
	Using import and autoloading
	Using exceptions
	Configuring components
	Configuring widget defaults
	Using Yii core collections
	Working with requests

	Chapter 2: Router, Controller,
and Views
	Introduction
	Configuring URL rules
	Generating URLs by path
	Using regular expressions in URL rules
	Creating URL rules for static pages
	Providing your own URL rules at runtime
	Using a base controller
	Using external actions
	Displaying static pages with CViewAction
	Using flash messages
	Using controller context in a view
	Reusing views with partials
	Using clips
	Using decorators
	Defining multiple layouts
	Paginating and sorting data

	Chapter 3: AJAX and jQuery
	Introduction
	Loading a block through AJAX
	Managing assets
	Including resources in the page
	Working with JSON
	Passing configuration from PHP to JavaScript
	Handling variable number of inputs
	Rendering content at the client side

	Chapter 4: Working with Forms
	Introduction
	Writing your own validators
	Uploading files
	Adding CAPTCHA
	Customizing CAPTCHA
	Creating a custom input widget with CInputWidget

	Chapter 5: Testing your Application
	Introduction
	Setting up the testing environment
	Writing and running unit tests
	Using fixtures
	Testing the application with functional tests
	Generating code coverage reports

	Chapter 6: Database, Active Record, and
Model Tricks
	Introduction
	Getting data from a database
	Defining and using multiple DB connections
	Using scopes to get models for different languages
	Processing model fields with AR event-like methods
	Applying markdown and HTML
	Highlighting code with Yii
	Automating timestamps
	Setting up an author automatically
	Implementing single table inheritance
	Using CDbCriteria

	Chapter 7: Using Zii Components
	Introduction
	Using data providers
	Using grids
	Using lists
	Creating custom grid columns

	Chapter 8: Extending Yii
	Introduction
	Creating model behaviors
	Creating components
	Creating reusable controller actions
	Creating reusable controllers
	Creating a widget
	Creating CLI commands
	Creating filters
	Creating modules
	Creating a custom view renderer
	Making extensions distribution-ready

	Chapter 9: Error Handling, Debugging, and Logging
	Introduction
	Using different log routes
	Analyzing the Yii error stack trace
	Logging and using the context information
	Implementing your own smart 404 handler

	Chapter 10: Security
	Introduction
	Using controller filters
	Using CHtml and CHtmlPurifier to
prevent XSS
	Preventing SQL injections
	Preventing CSRF
	Using RBAC

	Chapter 11: Performance Tuning
	Introduction
	Following best practices
	Speeding up session handling
	Using cache dependencies and chains
	Profiling an application with Yii
	Leveraging HTTP caching

	Chapter 12: Using External Code
	Introduction
	Using Zend Framework from Yii
	Customizing the Yii autoloader
	Using Kohana inside Yii
	Using PEAR inside Yii
	Using Composer with Yii

	Chapter 13: Deployment
	Introduction
	Changing the Yii directories layout
	Moving an application out of webroot
	Sharing the framework directory
	Moving configuration parts into
separate files
	Using multiple configurations to simplify
the deployment
	Implementing and executing cron jobs
	Maintenance mode

	Index

