The Complete Guide to Microsoft’s
New Command Shell and Scripting Language

Windows
PowerShell
Cookbook

Lee Holmes
O,REILLY® Foreword by Dean Tsaltas

vww allitebooks.conl

http://www.allitebooks.org

Windows PowerShell Cookbook

lvww allitebooks.cond

http://www.allitebooks.org

Other Microsoft .NET resources from 0’Reilly

Related titles

.NET Books
Resource Center

O'REILLY"

ONDotnet.com %k

DIVE DEEP INTO .NET (S8

Conferences

O’REILLY NETWORK
Safari
Bookshelf.

Windows PowerShell Quick Windows Vista

Reference Administration
Windows Server 2008: The Windows Vista: The
Definitive Guide Definitive Guide

dotnet.oreilly.com is a complete catalog of O’Reilly’s books on
.NET and related technologies, including sample chapters and
code examples.

ONDotnet.com provides independent coverage of fundamental,
interoperable, and emerging Microsoft .NET programming and
web services technologies.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

M.al I itebooks.cogl

http://www.allitebooks.org

Windows PowerShell Cookbook

Lee Holmes

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

lvww allitebooks.cond

http://www.allitebooks.org

Windows PowerShell Cookbook™
by Lee Holmes

Copyright © 2008 Lee Holmes. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn Cover Designer: Karen Montgomery
Production Editor: Laurel R.T. Ruma Interior Designer: David Futato
Production Services: Tolman Creek Design lllustrators: Robert Romano and Jessamyn Read
Printing History:
October 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Windows PowerShell Cookbook, the image of a box turtle, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

RepKover,
‘Eﬁphé This book uses RepKover', a durable and flexible lay-flat binding.

ISBN-10: 0-59652-849-3
ISBN-13: 978-0-596-652849-2
[(M]

M.al I itebooks.cogl

http://safari.oreilly.com
mailto:corporate@oreilly.com
http://www.allitebooks.org

Table of Contents

Foreword Xvii

Preface ... XXi

Partl. Tour

A Guided Tour of Windows PowerShell 3
Introduction 3
An Interactive Shell 4
Structured Commands (Cmdlets) 6
Deep Integration of Objects 7
Administrators As First-Class Users 8
Composable Commands 9
Techniques to Protect You from Yourself 9
Common Discovery Commands 10
Ubiquitous Scripting 11
Ad Hoc Development 12
Bridging Technologies 12
Namespace Navigation Through Providers 14
Much, Much More 16

Partll. Fundamentals

1. The Windows PowerShell InteractiveShell 19
1.0 Introduction 19

1.1 Run Programs, Scripts, and Existing Tools 19

1.2 Run a PowerShell Command 21

v

lvww allitebooks.cond

http://www.allitebooks.org

1.3 Customize Your Shell, Profile, and Prompt 22

1.4 Find a Command to Accomplish a Task 25
1.5 Get Help on a Command 26
1.6 Program: Search Help for Text 28
1.7 Invoke a PowerShell Script From Outside PowerShell 29
1.8 Program: Retain Changes to Environment Variables Set by a Batch File30
1.9 Get the System Date and Time 32
1.10 Determine the Status of the Last Command 33
1.11 Measure the Duration of a Command 34
1.12 Customize the Shell to Improve Your Productivity 35
1.13 Program: Learn Aliases for Common Commands 36
1.14 Access and Manage Your Console History 38
1.15 Store the Output of a Command into a File 39
1.16 Add Information to the End of a File 41
1.17 Record a Transcript of Your Shell Session 41
1.18 Display the Properties of an Item As a List 42
1.19 Display the Properties of an Item As a Table 42
1.20 Manage the Error Output of Commands 44
1.21 Configure Debug, Verbose, and Progress Output 45
1.22 Extend Your Shell with Additional Snapins 47
1.23 Use Console Files to Load and Save Sets of Snapins 48
2. Pipelines 49
2.0 Introduction 49
2.1 Filter Items in a List or Command Output 50
2.2 Program: Simplify Most Where-Object Filters 51
2.3 Program: Interactively Filter Lists of Objects 52
2.4 Work with Each Item in a List or Command Output 54
2.5 Automate Data-Intensive Tasks 56
3. VariablesandObjects 61
3.0 Introduction 61
3.1 Store Information in Variables 62
3.2 Access Environment Variables 63
3.3 Control Access and Scope of Variables and Other Items 65
3.4 Work with .NET Objects 67
3.5 Create an Instance of a .NET Object 71
3.6 Program: Create Instances of Generic Objects 73
3.7 Reduce Typing for Long Class Names 74
vi | Tableof Contents

WWW.aI I itebooks.cogl

http://www.allitebooks.org

3.8
3.9
3.10
3.11
3.12

Use a COM Object

Learn About Types and Objects

Get Detailed Documentation About Types and Objects
Add Custom Methods and Properties to Objects

Add Custom Methods and Properties to Types

4. LoopingandFlowControl

4.0
4.1
4.2
4.3
4.4
4.5

Introduction

Make Decisions with Comparison and Logical Operators
Adjust Script Flow Using Conditional Statements
Manage Large Conditional Statements with Switches
Repeat Operations with Loops

Add a Pause or Delay

5. Stringsand Unstructured Text

5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

Introduction

Create a String

Create a Multiline or Formatted String
Place Special Characters in a String

Insert Dynamic Information in a String
Prevent a String from Including Dynamic Information
Place Formatted Information in a String
Search a String for Text or a Pattern
Replace Text in a String

Convert a String to Upper/Lowercase
Trim a String

Format a Date for Output

Program: Convert Text Streams to Objects
Generate Large Reports and Text Streams

6. QalculationsandMath

6.0
6.1
6.2
6.3
6.4
6.5
6.6

Introduction

Perform Simple Arithmetic

Perform Complex Arithmetic

Measure Statistical Properties of a List

Work with Numbers As Binary

Simplify Math with Administrative Constants
Convert Numbers Between Bases

76
77
78
80
82

87
87
89
90
91
93

95
95
97
98
99
100
101
102
105
106
107
108
110
114

117
117
119
121
123
127
128

Table of Contents

vww .allitebooks.cond

| il

http://www.allitebooks.org

Partlll. Common Tasks

7. SimpleFiles 133
7.0 Introduction 133
7.1 Get the Content of a File 133
7.2 Search a File for Text or a Pattern 135
7.3 Parse and Manage Text-Based Logfiles 136
7.4 Parse and Manage Binary Files 139
7.5 Create a Temporary File 141
7.6 Search and Replace Text in a File 143
8. StructuredFiles 147
8.0 Introduction 147
8.1 Access Information in an XML File 147
8.2 Perform an XPath Query Against an XML File 150
8.3 Modify Data in an XML File 151
8.4 Easily Import and Export Your Structured Data 153
8.5 Store the Output of a Command in a CSV File 155
8.6 Import Structured Data from a CSV File 156
8.7 Use Excel to Manage Command Output 157
9. Internet-Enabled Scripts 160
9.0 Introduction 160
9.1 Download a File from the Internet 160
9.2 Download a Web Page from the Internet 161
9.3 Program: Get-PageUrls 163
9.4 Program: Connect-WebService 166
9.5 Export Command Output As a Web Page 170
9.6 Program: Send an Email 170
9.7 Program: Interact with Internet Protocols 172
10. CodeReuse i 176
10.0 Introduction 176
10.1 Write a Script 176
10.2 Write a Function 179
10.3 Write a Script Block 180
10.4 Return Data from a Script, Function, or Script Block 182
10.5 Place Common Functions in a Library 184
10.6 Access Arguments of a Script, Function, or Script Block 185
viii | Table of Contents

vww .allitebooks.cond

http://www.allitebooks.org

10.7
10.8
10.9

Access Pipeline Input
Write Pipeline-Oriented Scripts with Cmdlet Keywords
Write a Pipeline-Oriented Function

11. Lists, Arrays, and Hashtables,

11.0
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13

Introduction

Create an Array or List of Items

Create a Jagged or Multidimensional Array

Access Elements of an Array

Visit Each Element of an Array

Sort an Array or List of Items

Determine Whether an Array Contains an Item
Combine Two Arrays

Find Items in an Array That Match a Value
Remove Elements from an Array

Find Items in an Array Greater or Less Than a Value
Use the ArrayList Class for Advanced Array Tasks
Create a Hashtable or Associative Array

Sort a Hashtable by Key or Value

12, UserInteraction

12.0
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

Introduction

Read a Line of User Input

Read a Key of User Input

Program: Display a Menu to the User

Display Messages and Output to the User

Provide Progress Updates on Long-Running Tasks

Write Culture-Aware Scripts

Program: Invoke a Script Block with Alternate Culture Settings
Access Features of the Host’s User Interface

Program: Add a Graphical User Interface to Your Script

13. Tracing and Error Management

13.0
13.1
13.2
13.3
13.4
13.5
13.6

Introduction

View the Errors Generated by a Command
Handle Warnings, Errors, and Terminating Errors
Output Warnings, Errors, and Terminating Errors
Debug a Script

Collect Detailed Traces of a Script or Command
Program: Analyze a Script’s Performance Profile

188
189
193

195
195
197
198
199
200
200
201
202
203
204
205
206
207

209
209
210
211
213
216
217
220
221
223

226
226
228
230
231
234
234

Table of Contents

vww .allitebooks.cond

| ix

http://www.allitebooks.org

14. Environmental Awareness 240

14.0 Introduction 240
14.1 View and Modify Environment Variables 240
14.2 Access Information About Your Command’s Invocation 242
14.3 Program: Investigate the InvocationInfo Variable 244
14.4 Find Your Script’s Name 246
14.5 Find Your Script’s Location 247
14.6 Find the Location of Common System Paths 248
14.7 Program: Search the Windows Start Menu 250
14.8 Get the Current Location 252
14.9 Safely Build File Paths Out of Their Components 253
14.10 Interact with PowerShell’s Global Environment 254
15. Extend the Reach of Windows PowerShell 255
15.0 Introduction 255
15.1 Access Windows Management Instrumentation Data 255
15.2 Program: Determine Properties Available to WMI Filters 257
15.3 Program: Search for WMI Classes 258
15.4 Use .NET to Perform Advanced WMI Tasks 261
15.5 Convert a VBScript WMI Script to PowerShell 263
15.6 Automate Programs Using COM Scripting Interfaces 266
15.7 Program: Query a SQL Data Source 267
15.8 Access Windows Performance Counters 270
15.9 Program: Invoke Native Windows API Calls 271
15.10 Program: Add Inline C# to Your PowerShell Script 273
15.11 Access a .NET SDK Library 276
15.12 Create Your Own PowerShell Cmdlet 279
15.13 Add PowerShell Scripting to Your Own Program 283
16. Securityand ScriptSigning L 286
16.0 Introduction 286
16.1 Enable Scripting Through an Execution Policy 287
16.2 Sign a PowerShell Script or Formatting File 289
16.3 Program: Create a Self-Signed Certificate 291
16.4 Manage PowerShell Security in an Enterprise 292
16.5 Verify the Digital Signature of a PowerShell Script 295
16.6 Securely Handle Sensitive Information 296
16.7 Securely Request Usernames and Passwords 298
16.8 Program: Start a Process As Another User 300

x | Tableof Contents

16.9 Securely Store Credentials on Disk 301
16.10 Access User and Machine Certificates 303
16.11 Program: Search the Certificate Store 304

Part1V. Administrator Tasks
17. Filesand Directoriesl 309

17.0 Introduction 309

17.1 Find All Files Modified Before a Certain Date 310

17.2 Clear or Remove a File 311

17.3 Manage and Change the Attributes of a File 312

17.4 Get the Files in a Directory 313

17.5 Find Files That Match a Pattern 314

17.6 Manage Files That Include Special Characters 317

17.7 Program: Get Disk Usage Information 318

17.8 Determine the Current Location 320

17.9 Monitor a File for Changes 321
17.10 Program: Get the MD5 or SHA1 Hash of a File 321
17.11 Create a Directory 324
17.12 Remove a File or Directory 324
17.13 Rename a File or Directory 325
17.14 Move a File or Directory 326
17.15 Get the ACL of a File or Directory 327
17.16 Set the ACL of a File or Directory 329
17.17 Program: Add Extended File Properties to Files 330
17.18 Program: Create a Filesystem Hard Link 332
17.19 Program: Create a ZIP Archive 334

18. TheWindowsRegistry L. 336

18.0 Introduction 336

18.1 Navigate the Registry 336

18.2 View a Registry Key 337

18.3 Modify or Remove a Registry Key Value 338

18.4 Create a Registry Key Value 339

18.5 Remove a Registry Key 340

18.6 Add a Site to an Internet Explorer Security Zone 341

18.7 Modify Internet Explorer Settings 343

18.8 Program: Search the Windows Registry 344

Table of Contents

19.

20.

21.

22. System Services

18.9 Get the ACL of a Registry Key
18.10 Set the ACL of a Registry Key
18.11 Work with the Registry of a Remote Computer
18.12 Program: Get Registry Items from Remote Machines
18.13 Program: Get Properties of Remote Registry Keys
18.14 Program: Set Properties of Remote Registry Keys
18.15 Discover Registry Settings for Programs

ComparingData

19.0 Introduction

19.1 Compare the Output of Two Commands
19.2 Determine the Differences Between Two Files
19.3 Verify Integrity of File Sets

Eventlogs

20.0 Introduction

20.1 List All Event Logs

20.2 Get the Newest Entries from an Event Log
20.3 Find Event Log Entries with Specific Text
20.4 Retrieve a Specific Event Log Entry

20.5 Find Event Log Entries by Their Frequency
20.6 Back Up an Event Log

20.7 Create or Remove an Event Log

20.8 Write to an Event Log

20.9 Access Event Logs of a Remote Machine

ProOCeSSeS . ..

21.0 Introduction

21.1 List Currently Running Processes

21.2 Launch a Process

21.3 Stop a Process

21.4 Program: Invoke a PowerShell Expression on a Remote Machine

22.0 Introduction

22.1 List All Running Services

22.2 Manage a Running Service

22.3 Access Services on a Remote Machine

346
347
348
349
351
353
354

358
358
359
360

362
362
363
364
365
367
369
369
370
371

373
373
375
376
377

380
380
382
383

Xii

Table of Contents

23. ActiveDirectory

23.0
23.1
23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.9
23.10
23.11
23.12
23.13
23.14
23.15
23.16
23.17
23.18
23.19
23.20
23.21
23.22

Introduction

Test Active Directory Scripts on a Local Installation
Create an Organizational Unit

Get the Properties of an Organizational Unit
Modify Properties of an Organizational Unit

Get the Children of an Active Directory Container
Create a User Account

Program: Import Users in Bulk to Active Directory
Search for a User Account

Get and List the Properties of a User Account
Modify Properties of a User Account

Create a Security or Distribution Group

Search for a Security or Distribution Group

Get the Properties of a Group

Find the Owner of a Group

Modify Properties of a Security or Distribution Group
Add a User to a Security or Distribution Group
Remove a User from a Security or Distribution Group
List a User’s Group Membership

List the Members of a Group

List the Users in an Organizational Unit

Search for a Computer Account

Get and List the Properties of a Computer Account

24. Enterprise Computer Management

24.0
24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8
24.9
24.10
24.11
24.12

Introduction

Program: List Logon or Logoff Scripts for a User
Program: List Startup or Shutdown Scripts for a Machine
Enable or Disable the Windows Firewall

Open or Close Ports in the Windows Firewall
Program: List All Installed Software

Uninstall an Application

Manage Scheduled Tasks on a Computer
Retrieve Printer Information

Retrieve Printer Queue Statistics

Manage Printers and Print Queues

Determine Whether a Hotfix Is Installed
Program: Summarize System Information

385
385
388
388
389
390
390
391
393
394
395
395
396
397
398
399
399
400
400
401
401
402
403

405
405
407
408
409
410
411
412
413
414
416
417
419

Table of Contents

| xiii

24.13 Renew a DHCP Lease 420
24.14 Assign a Static IP Address 421
24.15 List All IP Addresses for a Computer 423
24.16 List Network Adapter Properties 424
25. Manage an Exchange 2007 Server 426
25.0 Introduction 426
25.1 Experiment with Exchange Management Shell 427
25.2 Automate Wizard-Guided Tasks 427
25.3 Manage Exchange Users 428
25.4 Manage Mailboxes 430
25.5 Manage Distribution Groups 431
25.6 Manage Transport Rules 431
25.7 Manage Outlook Web Access 432
26. Manage an Operations Manager 2007 Server 434
26.0 Introduction 434
26.1 Experiment with the Command Shell 434
26.2 Manage Operations Manager Agents 435
26.3 Schedule a Maintenance Window 436
26.4 Get, Install, and Uninstall Management Packs 437
26.5 Enable or Disable Rules 438
26.6 List and Start Tasks 439
26.7 Manage Alerts 439

PartV. References
A. PowerShell Language and Environment 443
Commands and Expressions 443
Comments 444
Variables 444
Booleans 446
Strings 446
Numbers 448
Arrays and Lists 449
Hashtables (Associative Arrays) 451
XML 452
Simple Operators 453

xiv | Table of Contents

Comparison Operators 458
Conditional Statements 460
Looping Statements 464
Working with the .NET Framework 467
Writing Scripts, Reusing Functionality 473
Managing Errors 478
Formatting Output 480
Capturing Output 482
Tracing and Debugging 482
Common Customization Points 484

B. RegularExpressionReference 488
C. PowerShell AutomaticVariables 496
D. Standard PowerShellVerbs 499
E. Selected .NET Classesand TheirUses 502
. WMIReference 509
G. Selected COM Objectsand TheirUses 516
H. .NETStringFormatting 519
Standard Numeric Format Strings 519
Custom Numeric Format Strings 520

I. .NETDateTimeFormatting .. 522
Index 529
Table of Contents | xv

Foreword

When Lee asked me to write the foreword to his new book I was pleasantly sur-
prised. I was under the impression that forewords were written by people who were
respected and accomplished in their chosen field. Apparently, that isn’t the case at
all. My closest brush with accomplishment and respect came at a New Year’s cele-
bration long ago and involved hairspray and a butane lighter. I guess it doesn’t mat-
ter too much—I mean, who reads the foreword to a scripting book anyways, right?

Lee wanted one of the Microsoft Scripting Guys to write the foreword. He wrote this
book for the same hard-working admin scripters who frequent the TechNet Script
Center. Lee thought it would make sense to have an original member of that team
provide some perspective on where Windows admin scripting has been and where,
with Windows PowerShell, it is going.

A lot has happened since Lee and I first spoke about this. I've left the Microsoft
Scripting Guys team to work on the WMI SDK, and the Scripting Guys name has
become a bit of a joke given that the current driving force behind the team is a slight,
half-sandwich-eating lady named Jean Ross. For now, Jean is keeping Greg around
to do menial labor like packing up and shipping Dr. Scripto bobblehead dolls, but
we’ll just see what happens when he finally runs out of topics for his “Hey, Scripting
Guy” column. The future of scripting could very well be The Scripting Girl.

Glue, Enablers, and a WSH

Whenever I think “perspective” and “scripting”—which is far too often—I think Bob
Wells. Bob takes his scripting very seriously and has been promoting it inside and
outside of Microsoft for years. When I joined the Scripting Guys team, Bob would
preach to me about “glue” and “enablers.” It took some time before I understood
why he was talking about it so often and why finding just the right term for enablers
was so important to him. I now know that it’s because crisply defining these two
concepts establishes a simple, useful framework in which to think about admin
scripting. The glue part is the scripting language itself—the foreachs, ifs, and vars.

Xvii

It’s what you use to orchestrate, or glue together, the set of subtasks you need to do
to complete a larger task. The enablers (and, no, we never came up with a better
term for them) are the instruments that actually accomplish each of the subtasks.

This table lists the glue and enablers that we, as Windows scripters, have had avail-
able to us over the years.

Glue Enabler

(md.exe batch language Command-line tools (0S, ResKit, Support Tools)

WSH Command-line tools (0S, ResKit, Support Tools)
Automation-enabled COM objects (WMI, ADSI)

Windows PowerShell Command-line tools (0S, ResKit, Support Tools

Automation-enabled COM objects (WMI, ADSI)

.NET Framework Class Library

Notice how each new environment lets you work with the enablers of the previous
environment. This is important because it lets you carry forward your hard-earned
knowledge. Objectively, we can say that WSH scripting is more powerful than batch
scripting because it provides access to more enablers. You can automate more tasks
because you have access to the additional functionality exposed by automatable
COM objects. Less objectively, you could argue that even if you're only going to use
command-line tools as enablers, WSH is a better choice than batch because it pro-
vides some really useful glue functionality; advances in available enablers make more
things possible while advances in glue (sometimes) make things more convenient.

WSH scripting is a pretty capable environment. The WMI and ADSI COM libraries
alone provide admins around the world with countless cycles of pain and elation.
But there’s always that pesky task that you just can’t do with WSH, or that requires
you to download some tool from some strangely named web site at 2 a.m. when you
really shouldn’t be making decisions about what to install on your production serv-
ers. If only VBScript included the infamous Win32 APl among its enablers, then, like
those strange creatures known as developers, you could do anything.

Well, in developer land these days, the .NET Framework Class Library (FCL) is the
new Win32 API. So, what we really need is a scripting environment that includes the
FCL as an enabler. That’s exactly what Windows PowerShell does. In fact, Win-
dows PowerShell runs in the same environment as that library and, as a result, works
seamlessly with it. T read a lot of press about the object-pipelining capabilities of
Windows PowerShell. Those capabilities are very cool and represent an excellent
advance in the glue department—an advance that certainly makes working with the
FCL more natural. But the addition of the FCL as an enabler is the thing that makes
Jeffrey et al.’s creation objectively more powerful than WSH. And even if you don’t
run into anything in the FCL that you need right away, it’s comforting to know that
when you make an investment and develop expertise in this latest environment, you

xviii | Foreword

gain access to all the enablers that your developer counterparts currently have or will
have in the foreseeable future. It should also be comforting to know that if you spend
the time to learn Windows PowerShell, that knowledge should last you as long as the
NET Framework lasts Microsoft.

Windows PowerShell follows in the tradition of WSH by improving on the glue
aspect of its predecessor. One of the real pain points of working with COM objects
in WSH was finding out what properties and methods were available. Unless you
shelled out the bucks for a smart editor, you lost a lot of productivity context switch-
ing from writing a script and consulting documentation. Not so when working with
objects in Windows PowerShell. Type this at a Windows PowerShell prompt:

$objShell = New-Object -com Shell.Application
$objShell | Get-Member

It does a scripter good, does it not?

That Lee Guy

Hopefully my rambling has convinced you that Windows PowerShell is a good thing
and that it’s worth your time to learn it. Now, why do I think you should learn it by
buying and reading this book?

First off, I should tell you that the Windows PowerShell team is a bunch of odd
ducks.” These folks are obsessed. From Jeffrey Snover on down, they are incredible
teachers who love and believe in their technology so much that it’s difficult to stop
them from teaching you! Even among that bunch of quackers, Lee stands out. Have
you ever heard the sound an Exchange server makes when it cringes? Well, ours
cringe when Lee comes to work and starts answering questions on our internal Win-
dows PowerShell mailing list. Lee has amassed unique knowledge about how to
leverage Windows PowerShell to address problems that arise in the real world. And
he and O’Reilly have done us a great service by capturing and sharing some of that
knowledge in this book.

Windows system admin scripters are the coolest people on the planet. It continues to
be a pleasure to work for you and I sincerely hope you enjoy the book.

—Dean Tsaltas
Microsoft Scripting Guy Emeritus

* Canadian ducks (Canuck ducks) in many cases.

Foreword | xix

WWW.aI I itebooks.cogl

http://www.allitebooks.org

Preface

In late 2002, Slashdot posted a story about a “next generation shell” rumored to be
in development at Microsoft. As a longtime fan of the power unlocked by shells and
their scripting languages, the post immediately captured my interest. Could this shell
possibly provide the command-line power and productivity that I'd long loved on
Unix systems?

Since I had just joined Microsoft six months earlier, I jumped at the chance to finally
get to the bottom of a Slashdot-sourced Microsoft Mystery. The post talked about
strong integration with the .NET Framework, so I posted a query to an internal C#
mailing list. I got a response that the project was called “Monad,” which I then used
to track down an internal prototype build.

Prototype was a generous term. In its early stages, the build was primarily a proof of
concept. Want to clear the screen? No problem! Just lean on the Enter key until
your previous commands and output scroll out of view! But even at these early
stages, it was immediately clear that Monad marked a revolution in command-line
shells. As with many things of this magnitude, its beauty was self-evident. Monad
passed full-fidelity .NET objects between its commands. For even the most com-
plex commands, Monad abolished the (until now, standard) need for fragile text-
based parsing. Simple and powerful data manipulation tools supported this new
model, creating a shell both powerful, and easy to use.

I joined the Monad development team shortly after that to help do my part to bring
this masterpiece of technology to the rest of the world. Since then, Monad has grown
to become a real, tangible, product—now called Windows PowerShell.

So why write a book about it? And why this book?

Many users have picked up (and will continue to pick up) PowerShell for the sake of
learning PowerShell. Any tangible benefits come by way of side effect. For others,
though, you might prefer to opportunistically learn a new technology as it solves
your needs. How do you use PowerShell to navigate the filesystem? How can you
manage files and folders? Retrieve a web page?

Xxi

This book focuses squarely on helping you learn PowerShell through task-based
solutions to your most pressing problems. Read a recipe, read a chapter, or read the
entire book—either way, you’re bound to learn something.

Who This Book Is For

This book helps you use PowerShell to get things done. It contains hundreds of solu-
tions to specific, real-world problems. For systems management, you’ll find plenty
examples that show how to manage the filesystem, Windows Registry, event logs,
processes, and more. For enterprise administration, you’ll find two entire chapters
devoted to WMI, Active Directory, and other enterprise-focused tasks.

For administrators of Exchange 2007 or Operations Manager 2007 (MOM), you’ll
find a chapter devoted to each that covers the getting started information and top
tasks for those groundbreaking new products.

Along the way, you’ll also learn an enormous amount about PowerShell: its fea-
tures, its commands, and its scripting language—but you’ll most importantly solve
problems.

How This Book Is Organized

This book consists of five main sections: a guided tour of PowerShell, PowerShell
fundamentals, common tasks, administrator tasks, and a detailed reference.

Part 1: Tour

A Guided Tour of Windows PowerShell breezes through PowerShell at a high level. It
introduces PowerShell’s core features:

* An interactive shell
* A new command model
* An object-based pipeline
* A razor-sharp focus on administrators
* A consistent model for learning and discovery
* Ubiquitous scripting
* Integration with critical management technologies
* A consistent model for interacting with data stores
The guided tour lets you orient yourself and become familiar with PowerShell as a

whole. This familiarity helps create a mental framework for you to understand the
details and solutions from the rest of the book.

xxii | Preface

Part 2: Fundamentals

Chapters 1 through 6 cover the PowerShell fundamentals that underpin many of the
solutions used throughout the book. The solutions in this section introduce you to
the PowerShell interactive shell, fundamental pipeline and object concepts, and
many features of the PowerShell scripting language.

Part 3: Common Tasks

Chapters 7 through 16 cover the tasks you will run into most commonly when start-
ing to tackle more complex problems in PowerShell. This includes working with sim-
ple and structured files, Internet-connected scripts, code reuse, user interaction, and
more.

Part 4: Administrator Tasks

Chapters 17 through 26 focus on the most common tasks in systems and enterprise
management. Chapters 17 through 22 focus on individual systems: the filesystem,
registry, event logs, processes, services, and more. Chapters 23 and 24 focus on
Active Directory, as well as the typical tasks most common in managing networked
or domain-joined systems.

Chapters 25 and 26 are devoted to managing Exchange 2007 and Operations Man-
ager 2007 (MOM), respectively.

Part 5: References

Many books belch useless information into their appendix simply to increase page
count. In this book, however, the detailed reference underpins an integral and essen-
tial resource for learning and using PowerShell. It covers:

* The PowerShell language and environment

* Regular expression syntax and PowerShell-focused examples

* PowerShell’s automatic and default variables

* PowerShell’s standard verbs

* Administrator-friendly .NET classes and their uses

* Administrator-friendly WMI classes and their uses

* Administrator-friendly COM objects and their uses

* .NET string formatting syntax and PowerShell-focused examples

* .NET DateTime formatting syntax and PowerShell-focused examples

Preface | xxiii

What You Need to Use This Book

The majority of this book requires only a working installation of Windows Power-
Shell. If you do not yet have PowerShell installed, you may obtain it by following the
download link at http://www.microsoft.com/PowerShell. This link provides download
instructions for PowerShell on Windows XP, Windows Server 2003, and Windows
Vista. For Windows Server 2008, PowerShell comes installed as an optional compo-
nent that you can enable through the Control Panel like other optional components.

The Active Directory scripts given in “Active Directory” are most useful when
applied to an enterprise environment, but Recipe 23.1, “Test Active Directory Scripts
on a Local Installation” shows how to install additional software (Active Directory
Application Mode) that lets you run these scripts against a local installation.

Chapters 26 and 27 require that you have access to an Exchange or Operations Man-
ager 2007 environment. If you do not have access to these environments, Recipe 25.1,
“Experiment with Exchange Management Shell” and Recipe 26.1, “Experiment with
the Command Shell” show you how to use Microsoft Virtual Labs for Exchange and
Operations Manager as a viable alternative.

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl)
Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities
Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands
Constant width bold
Shows commands or other text that should be typed literally by the user
Constant width italic
Shows text that should be replaced with user-supplied values

xxiv | Preface

http://www.microsoft.com/PowerShell

This icon signifies a tip, suggestion, or general note.

*i‘
(152

This icon indicates a warning or caution.

Code Examples

Obtaining Code Examples

To obtain electronic versions of the programs and examples given in this book, visit
the Examples link at:

http://www.oreilly.com/catalog/9780596528492

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Windows PowerShell Cookbook by
Lee Holmes. Copyright 2007 Lee Holmes, 978-0-596-52849-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Preface | xxv

http://www.oreilly.com/catalog/9780596528492
mailto:permissions@oreilly.com
mailto:permissions@oreilly.com

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://'www.oreilly.com/catalog/9780596528492
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments

“I do not like writing, but I do like having written.”

—William Zinsser
On Writing Well

Writing is the task of crafting icebergs. The heft of the book you hold in your hands
is just a hint of the effort it took to get it there—by a cast much larger than me.

The groundwork started decades ago. My parents nurtured my interest in computers
and software, supported an evening-only bulletin board service, put up with
“viruses” that told them to buy a new computer for Christmas, and even listened to
me blather about batch files or how PowerShell compares to Excel. Without their
support, who knows where I'd be.

My family and friends helped keep me sane for the past year. Ariel: you are the light
of my life. Robin: thinking of you reminds me each day that serendipity is still alive
and well in this busy world. Thank you to all of my friends and family for being there
for me. You can have me back now. :)

I would not have written this book without the tremendous influence of Guy Allen,
visionary of University of Toronto’s Professional Writing program. Guy: your men-
toring forever changed me, just as it molds thousands of others from English hackers
into writers.

Of course, members of the PowerShell team (both new and old) are the ones that
made this a book about PowerShell. Building this product with you has been a
unique challenge and experience—but most of all, a distinct pleasure. In addition to
the PowerShell team, the entire PowerShell community defined this book’s focus.
From MVPs, to early adopters, to newsgroup lurkers: your support, questions, and
feedback have been the inspiration behind each page.

Converting thoughts into print always involves a cast of unsung heroes, even though
each author tries their best to convince the world how important these heroes are.

xxvi | Preface

http://www.oreilly.com/catalog/9780596528492
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Thank you to my technical reviewers: Christina Lemaire, Dean Tsaltas, Debbie Tim-
mins, James Manning, Jeffrey Tadlock, June Blender, Markus Lindemann, Michael
Dragone, and Michael Howard. 1 truly appreciate you donating your nights and
weekends to help craft something of which we can all be proud.

To the awesome staff at O’Reilly—]John Osborn, Laurel Ruma, Kyley Caldwell, and
the production team—your patience and persistence helped craft a book that holds
true to its original vision. It also ensured that the book didn’t just knock around in
my head, but actually got out the door.

This book would not be possible without the support from each and every one of you.

Preface | xvii

PART |

Tour

A Guided Tour of Windows PowerShell

vww .allitebooks.cond

http://www.allitebooks.org

TOUR
A Guided Tour of Windows PowerShell

Introduction

Windows PowerShell promises to revolutionize the world of system management
and command-line shells. From its object-based pipelines, to its administrator focus,
to its enormous reach into other Microsoft management technologies, PowerShell
drastically improves the productivity of administrators and power-users alike.

When learning a new technology, it is natural to feel bewildered at first by all the
unfamiliar features and functionality. This perhaps rings especially true for users new
to Windows PowerShell, because it may be their first experience with a fully fea-
tured command-line shell. Or worse, they've heard stories of PowerShell’s fantastic
integrated scripting capabilities and fear being forced into a world of programming
that they’ve actively avoided until now.

Fortunately, these fears are entirely misguided: PowerShell is a shell that both grows
with you and grows on you. Let’s take a tour to see what it is capable of:

* PowerShell works with standard Windows commands and applications. You
don’t have to throw away what you already know and use.

* PowerShell introduces a powerful new type of command. PowerShell com-
mands (called cmdlets) share a common Verb-Noun syntax and offer many usabil-
ity improvements over standard commands.

* PowerShell understands objects. Working directly with richly structured objects
makes working with (and combining) PowerShell commands immensely easier
than working in the plain-text world of traditional shells.

* PowerShell caters to administrators. Even with all its advances, PowerShell
focuses strongly on its use as an interactive shell: the experience of entering com-
mands in a running PowerShell application.

* PowerShell supports discovery. Using three simple commands, you can learn
and discover almost anything PowerShell has to offer.

* PowerShell enables ubiquitous scripting. With a fully fledged scripting language
that works directly from the command line, PowerShell lets you automate tasks
with ease.

* PowerShell bridges many technologies. By letting you work with .NET, COM,
WMI, XML, and Active Directory, PowerShell makes working with these previ-
ously isolated technologies easier than ever before.

* PowerShell simplifies management of data stores. Through its provider model,
PowerShell lets you manage data stores using the same techniques you already
use to manage files and folders.

We'll explore each of these pillars in this introductory tour of PowerShell.

An Interactive Shell

At its core, PowerShell is first and foremost an interactive shell. While it supports
scripting and other powerful features, its focus as a shell underpins everything.

Getting started in PowerShell is a simple matter of launching PowerShell.exe rather
than c¢md.exe—the shells begin to diverge as you explore the intermediate and
advanced functionality, but you can be productive in PowerShell immediately.

To launch Windows PowerShell

Click Start —» All Programs — Windows PowerShell 1.0 - Windows PowerShell
or alternatively,

Click Start - Run, and then type “PowerShell”.

A PowerShell prompt window opens that’s nearly identical to the traditional com-
mand prompt window of Windows XP, Windows Server 2003, and their many
ancestors. The PS C:\Documents and Settings\Lee> prompt indicates that Power-
Shell is ready for input, as shown in Figure T-1.

Once you’ve launched your PowerShell prompt, you can enter DOS-style and Unix-
style commands for navigating around the filesystem just as you would with any
Windows or Unix command prompt—as in the interactive session shown in
Example T-1.

4 | AGuided Tour of Windows PowerShell

\system32\WindowsPowerShell\v1.0\powershell.exe

06 Microsoft Corporation. All rights reserved.

P5 C:“Documents and Settings'lLeex

Figure T-1. Windows PowerShell, ready for input

Example T-1. Entering many standard DOS and UNIX-style file manipulation commands produces
the same results you get when you use them with any other Windows shell

PS C:\Documents and Settings\lLee> function Prompt { "PS >" }

PS >pushd .

PS >cd \
PS >dir

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

d---- 11/2/2006 4:36 AM $WINDOWS.~BT
d---- 5/8/2007 8:37 PM Blurpark

d---- 11/29/2006 2:47 PM Boot

d---- 11/28/2006 2:10 PM DECCHECK

d---- 10/7/2006 4:30 PM Documents and Settings
d---- 5/21/2007 6:02 PM F&SC-demo

d---- 4/2/2007 7:21 PM Inetpub

d---- 5/20/2007 4:59 PM Program Files
d---- 5/21/2007 7:26 PM temp

d---- 5/21/2007 8:55 PM Windows

-a--- 1/7/2006 10:37 PM 0 autoexec.bat
-ar-s 11/29/2006 1:39 PM 8192 BOOTSECT.BAK
-a--- 1/7/2006 10:37 PM 0 config.sys

-a--- 5/1/2007 8:43 PM 33057 RUU.log

-a--- 4/2/2007 7:46 PM 2487 secedit.INTEG.RAW
PS >popd

AnInteractiveShell | 5

Example T-1. Entering many standard DOS and UNIX-style file manipulation commands produces
the same results you get when you use them with any other Windows shell (continued)

PS >pwd

Path

C:\Documents and Settings\Lee

As shown in Example T-1, you can use the pushd, cd, dir, pwd, and popd commands
to store the current location, navigate around the filesystem, list items in the current
directory, and then return to your original location. Try it!

R
s

8 The pushd command is an alternative name (alias) to the much more
:.,“ descriptively named PowerShell command, Push-Location. Likewise,
* 9k the cd, dir, popd, and pwd commands all have more memorable coun-

* terparts.

Although navigating around the filesystem is helpful, so is running the tools you
know and love, such as ipconfig and notepad. Type the command name and you’ll
see results like those shown in Example T-2.

Example T-2. Windows tools and applications such as ipconfig run in PowerShell just as they do in
the cmd.exe

PS >ipconfig

Windows IP Configuration

Ethernet adapter Wireless Network Connection 4:

Connection-specific DNS Suffix . : hsdil.wa.comcast.net.
IP Address. :192.168.1.100
Subnet Mask : 255.255.255.0
Default Gateway : 192.168.1.1

PS >notepad
(notepad launches)

Entering ipconfig displays the IP addresses of your current network connections.
Entering notepad runs—as you’d expect—the Notepad editor that ships with Win-
dows. Try them both on your own machine.

Structured Commands (Cmdlets)

In addition to supporting traditional Windows executables, PowerShell introduces a
powerful new type of command called a cmdlet (pronounced command-let). All
cmdlets are named in a Verb-Noun pattern, such as Get-Process, Get-Content, and
Stop-Process.

6 | AGuided Tour of Windows PowerShell

PS >Get-Process -Name lsass

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

668 13 6228 1660 46 932 lsass

In this example, you provide a value to the ProcessName parameter to get a specific
process by name.

N
< Once you know the handful of common verbs in PowerShell, learning
ﬁ,\ how to work with new nouns becomes much easier. While you may
. &
112 never have worked with a certain object before (such as a Service), the

standard CGet, Set, Start, and Stop actions still apply. For a list of these
common verbs, see Table D-1.

You don’t always have to type these full cmdlet names, however. PowerShell lets you
use the Tab key to auto-complete cmdlet names and parameter names:

PS >Get-Pr<TAB> -N<TAB> lsass

For quick interactive use, even that may be too much typing. To help improve your
efficiency, PowerShell defines aliases for all common commands and lets you define
your own. In addition to alias names, PowerShell only requires that you type enough
of the parameter name to disambiguate it from the rest of the parameters in that
cmdlet. PowerShell is also case-insensitive. Using the built-in gps alias (that repre-
sents the Get-Process cmdlet) along with parameter shortening, you can instead
type:
PS >gps -n lsass

Going even further, PowerShell supports positional parameters on cmdlets. Posi-
tional parameters let you provide parameter values in a certain position on the com-
mand line, rather than having to specify them by name. The Get-Process cmdlet
takes a process name as its first positional parameter. This parameter even supports
wildcards:

PS >gps 1*s

Deep Integration of Objects

PowerShell begins to flex more of its muscle as you explore the way it handles struc-
tured data and richly functional objects. For example, the following command gener-
ates a simple text string. Since nothing captures that output, PowerShell displays it to
you:

PS >"Hello World"

Hello World
The string you just generated is, in fact, a fully functional object from the .NET
Framework. For example, you can access its Length property, which tells you how

Deep Integration of Objects | 7

many characters are in the string. To access a property, you place a dot between the
object and its property name:

PS >"Hello World".Length

11
All PowerShell commands that produce output generate that output as objects, as
well. For example, the Get-Process cmdlet generates a System.Diagnostics.Process
object, which you can store in a variable. In PowerShell, variable names start with a $
character. If you have an instance of Notepad running, the following command stores
a reference to it:

$process = Get-Process notepad

Since this is a fully functional Process object from the .NET Framework, you can call
methods on that object to perform actions on it. This command calls the Kill()
method, which stops a process. To access a method, you place a dot between the
object and its method name:

$process.Kill()

PowerShell supports this functionality more directly through the Stop-Process
cmdlet, but this example demonstrates an important point about your ability to
interact with these rich objects.

Administrators As First-Class Users

While PowerShell’s support for objects from the .NET Framework quickens the
pulse of most users, PowerShell continues to focus strongly on administrative tasks.
For example, PowerShell supports MB (for megabyte) and GB (for gigabyte) as some of
the standard administrative constants. For example, how many disks will it take to
back up a 40GB hard drive to CD-ROM?

PS >40GB / 650MB

63.0153846153846
Just because PowerShell is an administrator-focused shell doesn’t mean you can’t
still use the .NET Framework for administrative tasks though! In fact, PowerShell
makes a great calendar. For example, is 2008 a leap year? PowerShell can tell you:

PS >[DateTime]::IsLeapYear(2008)

True
Going further, how might you determine how much time remains until summer? The
following command converts "06/21/2008" (the start of summer) to a date, and then
subtracts the current date from that. It stores the result in the $result variable, and
then accesses the TotalDays property.

PS >$result = [DateTime] "06/21/2008" - [DateTime]::Now

PS >$result.TotalDays
283.0549285662616

8 | AGuided Tour of Windows PowerShell

Composable Commands

Whenever a command generates output, you can use a pipeline character (|) to pass
that output directly to another command as input. If the second command under-
stands the objects produced by the first command, it can operate on the results. You
can chain together many commands this way, creating powerful compositions out of
a few simple operations. For example, the following command gets all items in the
Path1 directory and moves them to the Path2 directory:

Get-Item Pathi* | Move-Item -Destination Path2

You can create even more complex commands by adding additional cmdlets to the
pipeline. In Example T-3, the first command gets all processes running on the sys-
tem. It passes those to the Where-Object cmdlet, which runs a comparison against
each incoming item. In this case, the comparison is $.Handles -ge 500, which
checks whether the Handles property of the current object (represented by the $_
variable) is greater than or equal to 500. For each object in which this comparison
holds true, you pass the results to the Sort-Object cmdlet, asking it to sort items by
their Handles property. Finally, you pass the objects to the Format-Table cmdlet to
generate a table that contains the Handles, Name, and Description of the process.

Example T-3. You can build more complex PowerShell commands by using pipelines to link cmdlets,
as shown in this example with Get-Process, Where-Object, Sort-Object, and Format-Table

PS >Get-Process
>> Where-Object { $_.Handles -ge 500 }
> Sort-Object Handles |

>> Format-Table Handles,Name,Description -Auto
>>
Handles Name Description

588 winlogon

592 svchost

667 lsass

725 csrss

742 System

964 WINWORD Microsoft Office Word
1112 OUTLOOK Microsoft Office Outlook
2063 svchost

Techniques to Protect You from Yourself

While aliases, wildcards, and composable pipelines are powerful, their use in com-
mands that modify system information can easily be nerve-wracking. After all, what
does this command do? Think about it, but don't try it just yet:

PS >gps [b-t]*[c-r] | Stop-Process

Techniques to Protect You from Yourself | 9

It appears to stop all processes that begin with the letters b through t and end with
the letters ¢ through r. How can you be sure? Let PowerShell tell you. For com-
mands that modify data, PowerShell supports -wWhatIf and -Confirm parameters that
let you see what a command would do:

PS >gps [b-t]*[c-r] | Stop-Process -whatif

What if: Performing operation "Stop-Process" on Target "ctfmon (812)".

What if: Performing operation "Stop-Process" on Target "Ditto (1916)".

What if: Performing operation "Stop-Process" on Target "dsamain (316)".

What if: Performing operation "Stop-Process" on Target "ehrecvr (1832)".

What if: Performing operation "Stop-Process" on Target "ehSched (1852)".

What if: Performing operation "Stop-Process" on Target "EXCEL (2092)".

What if: Performing operation "Stop-Process" on Target "explorer (1900)".

(...)

In this interaction, using the -whatif parameter with the Stop-Process pipelined
command lets you preview which processes on your system will be stopped before
you actually carry out the operation.

Note that this example is not a dare! In the words of one reviewer:

Not only did it stop everything, but on Vista, it forced a shutdown with only one
minute warning!

It was very funny though... At least I had enough time to save everything first!

Common Discovery Commands

While reading through a guided tour is helpful, I find that most learning happens in
an ad hoc fashion. To find all commands that match a given wildcard, use the Get-
Command cmdlet. For example, by entering the following, you can find out which Pow-
erShell commands (and Windows applications) contain the word process.

PS >Get-Command *process*

CommandType Name Definition

Cmdlet Get-Process Get-Process [[-Name] <Str...
Application gprocess.exe c:\windows\system32\gproc...
Cmdlet Stop-Process Stop-Process [-Id] <Int32...

To see what a command such as Get-Process does, use the Get-Help cmdlet, like this:
PS >Get-Help Get-Process

Since PowerShell lets you work with objects from the .NET Framework, it provides
the Get-Member cmdlet to retrieve information about the properties and methods that
an object, such as a .NET System.String, supports. Piping a string to the Get-Member
command displays its type name and its members:

10 | AGuided Tour of Windows PowerShell

PS >"Hello World" | Get-Member

TypeName: System.String

Name MemberType Definition

(..)

PadLeft Method System.String PadLeft(Int32 tota...
PadRight Method System.String PadRight(Int32 tot...
Remove Method System.String Remove(Int32 start...
Replace Method System.String Replace(Char oldCh...
Split Method System.String[] Split(Params Cha...
StartsWith Method System.Boolean StartsWith(String...
Substring Method System.String Substring(Int32 st...
ToCharArray Method System.Char[] ToCharArray(), Sys...
TolLower Method System.String ToLower(), System....
TolLowerInvariant Method System.String TolLowerInvariant()
ToString Method System.String ToString(), System...
ToUpper Method System.String ToUpper(), System....
ToUpperInvariant Method System.String ToUpperInvariant()
Trim Method System.String Trim(Params Char[]...
TrimEnd Method System.String Trimend(Params Cha...
TrimStart Method System.String TrimStart(Params C...
Chars ParameterizedProperty System.Char Chars(Int32 index) {...
Length Property System.Int32 Length {get;}

Ubiquitous Scripting

PowerShell makes no distinction between the commands typed at the command line
and the commands written in a script. Your favorite cmdlets work in scripts and your
favorite scripting techniques (e.g., the foreach statement) work directly on the com-
mand line. For example, to add up the handle count for all running processes:

PS >$handleCount = 0

PS >foreach($process in Get-Process) { $handleCount += $process.Handles }

PS >$handleCount

19403
While PowerShell provides a command (Measure-Object) to measure statistics about
collections, this short example shows how PowerShell lets you apply techniques that
normally require a separate scripting or programming language.

In addition to using PowerShell scripting keywords, you can also create and work
directly with objects from the .NET Framework. PowerShell becomes almost like the
C# immediate mode in Visual Studio. Example T-4 shows how PowerShell lets you
easily interact with the .NET Framework.

Example T-4. Using objects from the NET Framework to retrieve a web page and process its content

PS >$webClient = New-Object System.Net.WebClient
PS >$content = $webClient.DownloadString("http://blogs.msdn.com/PowerShell/rss.aspx")
PS >$content.Substring(0,1000)

Ubiquitous Scripting | 11

vww .allitebooks.cond

http://www.allitebooks.org

Example T-4. Using objects from the .NET Framework to retrieve a web page and process its content

<?xml version="1.0" encoding="UTF-8" ?>

<?xml-stylesheet type="text/xsl" href="http://blogs.msdn.com/utility/FeedS
tylesheets/rss.xsl" media="screen"?><rss version="2.0" xmlns:dc="http://pu
rl.org/dc/elements/1.1/" xmlns:slash="http://purl.org/rss/1.0/modules/slas
h/" xmlns:wfw="http://wellformedweb.org/CommentAPI/"><channel><title>Windo
(..)

Ad Hoc Development

By blurring the lines between interactive administration and writing scripts, the his-
tory buffer of PowerShell sessions quickly become the basis for ad-hoc script devel-
opment. In this example, you call the Get-History cmdlet to retrieve the history of
your session. For each of those items, you get its CommandLine property (the thing you
typed) and send the output to a new script file.

PS >Get-History | Foreach-Object { $_.CommandLine } > c:\temp\script.psi

PS >notepad c:\temp\script.ps1

(save the content you want to keep)
PS >c:\temp\script.ps1i

A
- If this is the first time you've run a script in PowerShell, you will need
.“.\ to configure your Execution Policy. For more information about
' =
o3 selecting an execution policy, see Recipe 16.1, Enable Scripting

* Through an Execution Policy” in Chapter 16.

Bridging Technologies

We've seen how PowerShell lets you to fully leverage the .NET Framework in your
tasks, but its support for common technologies stretches even further. As
Example T-5 shows, PowerShell supports XML:

Example T-5. Working with XML content in PowerShell

PS >$xmlContent = [xml] $content
PS >$xmlContent

xml xml-stylesheet 1ss

1ss
PS >$xmlContent.rss

version : 2.0

dc . http://purl.org/dc/elements/1.1/
slash : http://purl.org/rss/1.0/modules/slash/
wfw : http://wellformedweb.org/CommentAPI/

12 | AGuided Tour of Windows PowerShell

Example T-5. Working with XML content in PowerShell (continued)

channel : channel

PS >$xmlContent.rss.channel.item | select Title

CMD.exe compatibility

Time Stamping Log Files

Microsoft Compute Cluster now has a PowerShell Provider and Cmdlets
The Virtuous Cycle: .NET Developers using PowerShell

(...)
Powershell also lets you work with Windows Management Instrumentation (WMI):

PS >Get-WmiObject Win32 Bios

SMBIOSBIOSVersion : ASUS A7N8X Deluxe ACPI BIOS Rev 1009

Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - AwardBIOS v6.00PG
SerialNumber T OXXXXXXXXXXX

Version ¢ Nvidia - 42302e31

or, as Example T-6 shows, Active Directory Service Interfaces (ADSI):

Example T-6. Working with Active Directory in PowerShell
PS >[ADSI] "WinNT://./Administrator" | Format-List *

UserFlags : {66113}

MaxStorage : {-1}

PasswordAge : {19550795}

PasswordExpired : {0}

LoginHours : {255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255}

FullName : {}

Description : {Built-in account for administering the compu
ter/domain}

BadPasswordAttempts : {0}

LastlLogin : {5/21/2007 3:00:00 AM}

HomeDirectory : {}

LoginScript : {}

Profile : {}

HomeDirDrive : {}

Parameters : {}

PrimaryGroupID : {513}

Name : {Administrator}

MinPasswordLength : {0}

MaxPasswordAge : {3710851}

MinPasswordAge : {0}

Bridging Technologies | 13

Example T-6. Working with Active Directory in PowerShell (continued)

PasswordHistorylLength : {0}

AutoUnlockInterval : {1800}

LockoutObservationInterval : {1800}

MaxBadPasswordsAllowed : {0}

RasPermissions : {1}

objectSid :{1500000521000 121 227 252 83 122

130 50 34 67 23 10 50 244 1 0 0}

or, as Example T-7 shows, even scripting traditional COM objects:

Example T-7. Working with COM objects in PowerShell

PS >$firewall = New-Object -com HNetCfg.FwMgr
PS >$firewall.LocalPolicy.CurrentProfile

Type t 1

FirewallEnabled : True

ExceptionsNotAllowed : False

NotificationsDisabled : False
UnicastResponsesToMulticastBroadcastDisabled : False

RemoteAdminSettings : System._ ComObject
IcmpSettings : System. ComObject
GloballyOpenPorts : {Media Center Extender Serv

ice, Remote Media Center Ex
perience, Adam Test Instanc
e, QWAVE...}

Services : {File and Printer Sharing,
UPnP Framework, Remote Desk

top}
AuthorizedApplications : {Remote Assistance, Windows

Messenger, Media Center, T
rillian...}

Namespace Navigation Through Providers

Another avenue PowerShell provides for working with the system is providers. Pow-
erShell providers let you navigate and manage data stores using the same techniques
you already use to work with the filesystem, as illustrated in Example T-8.

Example T-8. Navigating the filesystem

PS >Set-Location c:\
PS >Get-ChildItem

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

14 | AGuided Tour of Windows PowerShell

Example T-8. Navigating the filesystem (continued)

Mode LastWriteTime Length Name

d---- 11/2/2006 4:36 AM $WINDOWS.~BT
d---- 5/8/2007 8:37 PM Blurpark

d---- 11/29/2006 2:47 PM Boot

d---- 11/28/2006 2:10 PM DECCHECK

d---- 10/7/2006 4:30 PM Documents and Settings
d---- 5/21/2007 6:02 PM F&SC-demo

d---- 4/2/2007 7:21 PM Inetpub

d---- 5/20/2007 4:59 PM Program Files
d---- 5/21/2007 11:47 PM temp

d---- 5/21/2007 8:55 PM Windows

-a--- 1/7/2006 10:37 PM 0 autoexec.bat
-ar-s 11/29/2006 1:39 PM 8192 BOOTSECT.BAK
-a--- 1/7/2006 10:37 PM 0 config.sys

-a--- 5/1/2007 8:43 PM 33057 RUU.log

-a--- 4/2/2007 7:46 PM 2487 secedit.INTEG.RAW

This also works on the registry, as shown in Example T-9:

Example T-9. Navigating the registry

PS >Set-Location HKCU:\Software\Microsoft\Windows\
PS >Get-ChildItem

Hive: Microsoft.PowerShell.Core\Registry: :HKEY CURRENT USER\Software\Mi
crosoft\Windows

SKC VC Name Property

30 1 CurrentVersion
3 1 Shell
4 2 ShellNoRoam

{Isc}
{BagMRU Size}
{(default), BagMRU Size}

PS >Set-Location CurrentVersion\Run
PS >Get-ItemProperty .

(...)

FolderShare : "C:\Program Files\FolderShare\FolderShare.exe" /ba
ckground

TaskSwitchXpP : d:\lee\tools\TaskSwitchXP.exe

ctfmon.exe ¢ C:\WINDOWS\system32\ctfmon.exe

Ditto : C:\Program Files\Ditto\Ditto.exe

(...)

Namespace Navigation Through Providers

Or even the machine’s certificate store, as Example T-10 illustrates.

Example T-10. Navigating the certificate store

PS >Set-Location cert:\CurrentUser\Root
PS >Get-ChildItem

Directory: Microsoft.PowerShell.Security\Certificate::CurrentUser\Root

Thumbprint Subject

CDD4EEAE6000AC7F40C3802C171E30148030C072 CN=Microsoft Root Certificate...
BE36A4562FB2EEO5DBB3D32323ADF445084ED656 CN=Thawte Timestamping CA, OU...
A43489159A520F0D93D032CCAF37E7FE20A8B419 CN=Microsoft Root Authority, ...
9FE47B4D05D46E8066BAB1D1BFCOE48F1DBE6B26 CN=PowerShell Local Certifica...
7F88CD7223F3C813818C994614A89C99FA3B5247 C(N=Microsoft Authenticode(tm)...
245C97DF7514E7CF2DF8BE72AE957B9E04741E85 OU=Copyright (c) 1997 Microso...

(...)

Much, Much More

As exciting as this guided tour was, it barely scratches the surface of how you can use
PowerShell to improve your productivity and systems management skills. For more
information about getting started in PowerShell, see Chapter 1, The Windows Power-
Shell Interactive Shell.

16 | AGuided Tour of Windows PowerShell

PART Il

Fundamentals

Chapter 1, The Windows PowerShell Interactive Shell
Chapter 2, Pipelines

Chapter 3, Variables and Objects

Chapter 4, Looping and Flow Control

Chapter 5, Strings and Unstructured Text

Chapter 6, Calculations and Math

CHAPTER 1

The Windows PowerShell
Interactive Shell

1.0 Introduction

Above all else, the design of Windows PowerShell places priority on its use as an effi-
cient and powerful interactive shell. Even its scripting language plays a critical role in
this effort, as it too heavily favors interactive use.

What surprises most people when they first launch PowerShell is its similarity to the
command prompt that has long existed as part of Windows. Familiar tools continue
to run. Familiar commands continue to run. Even familiar hotkeys are the same.
Supporting this familiar user interface, though, is a powerful engine that lets you
accomplish once cumbersome administrative and scripting tasks with ease.

This chapter introduces PowerShell from the perspective of its interactive shell.

1.1 Run Programs, Scripts, and Existing Tools

Problem

You rely on a lot of effort invested in your current tools. You have traditional execut-
ables, Perl scripts, VBScript, and of course, a legacy build system that has organically
grown into a tangled mess of batch files. You want to use PowerShell, but don’t want
to give up everything you already have.

Solution

To run a program, script, batch file, or other executable command in the system’s
path, enter its filename. For these executable types, the extension is optional:
Program.exe arguments

ScriptName.ps1 arguments
BatchFile.cmd arguments

To run a command that contains a space in its name, enclose its filename in single-
quotes (') and precede the command with an ampersand (&), known in PowerShell
as the Invoke operator:

& 'C:\Program Files\Program\Program.exe' arguments
To run a command in the current directory, place .\ in front of its filename:
.\Program.exe arguments

To run a command with spaces in its name from the current directory, precede it
with both an ampersand and . \:

& '.\Program With Spaces.exe' arguments

Discussion

In this case, the solution is mainly to use your current tools as you always have. The
only difference is that you run them in the PowerShell interactive shell, rather than
cmd.exe.

The final three tips in the solution merit special attention. They are the features of
PowerShell that many new users stumble on when it comes to running programs.
The first is running commands that contain spaces. In cmd.exe, the way to run a
command that contains spaces is to surround it with quotes:

"C:\Program Files\Program\Program.exe"

In PowerShell, though, placing text inside quotes is part of a feature that lets you
evaluate complex expressions at the prompt, as shown in Example 1-1.

Example 1-1. Evaluating expressions at the PowerShell prompt

PS>1 + 1

2

PS >26 * 1.15

29.9

PS >"Hello" + " World"

Hello World

PS >"Hello World"

Hello World

PS >"C:\Program Files\Program\Program.exe"
C:\Program Files\Program\Program.exe
PS >

So, a program name in quotes is no different from any other string in quotes. It’s just
an expression. As shown previously, the way to run a command in a string is to pre-
cede that string with the invoke (8) operator. If the command you want to run is a
batch file that modifies its environment, see Recipe 1.8, “Program: Retain Changes
to Environment Variables Set by a Batch File.”

20 | Chapter1: The Windows PowerShell Interactive Shell

By default, PowerShell’s security policies prevent scripts from run-
ning. Once you begin writing or using scripts, though, you should
tit configure this policy to something less restrictive. For information on
" how to configure your execution policy, see Recipe 16.1, “Enable
Scripting Through an Execution Policy.”

The second command that new users (and seasoned veterans before coffee!) some-
times stumble on is running commands from the current directory. In c¢md.exe, the
current directory is considered part of the path—the list of directories that Windows
searches to find the program name you typed. If you are in the C:\Programs direc-
tory, cmd.exe looks in C:\Programs (among other places) for applications to run.

PowerShell, like most Unix shells, requires that you explicitly state your desire to run
a program from the current directory. To do that, you use the .\Program.exe syntax,
as shown previously. This prevents malicious users on your system from littering
your hard drive with evil programs that have names similar to (or the same as) com-
mands you might run while visiting that directory.

To save themselves from having to type the location of commonly used scripts and
programs, many users put these utilities along with their PowerShell scripts in a
“tools” directory, which they add to their system’s path. If PowerShell can find a script
or utility in your system’s path, you do not need to explicitly specify its location.

A %
iy Scripts and examples from this book are available at http://www.
.'a“ oreilly.com/catalog/9780596528492.

To learn how to write a PowerShell script, see Recipe 10.1, “Write a Script.

See Also

* Recipe 1.8, “Program: Retain Changes to Environment Variables Set by a Batch
File”

* Recipe 10.1, “Write a Script

* Recipe 16.1, “Enable Scripting Through an Execution Policy”

1.2 Run a PowerShell Command

Problem

You want to run a PowerShell command.

1.2 RunaPowerShell Command | 21

vww .allitebooks.cond

http://www.allitebooks.org

Solution

To run a PowerShell command, type its name at the command prompt. For example:

PS >Get-Process

Handles NPM(K) PM(K) WS(K) vM(M) CPU(s) Id ProcessName
133 5 11760 7668 46 1112 audiodg
184 5 33248 508 93 1692 avgamsvr
143 7 31852 984 97 1788 avgemc
Discussion

The Get-Process command is an example of a native PowerShell command, called a
cmdlet. As compared to traditional commands, cmdlets provide significant benefits
to both administrators and developers:

* They share a common and regular command-line syntax.

* They support rich pipeline scenarios (using the output of one command as the
input of another).

* They produce easily manageable object-based output, rather than error-prone
plain text output.

Because the Get-Process cmdlet generates rich object-based output, you can use its
output for many process-related tasks.

The Get-Process cmdlet is just one of the many that PowerShell supports. See Recipe
1.4, “Find a Command to Accomplish a Task” to learn techniques for finding addi-
tional commands that PowerShell supports.

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.”

See Also

* Recipe 1.4, “Find a Command to Accomplish a Task”
* Recipe 3.4, “Work with .NET Objects”

1.3 Customize Your Shell, Profile, and Prompt

Problem

You want to customize PowerShell’s interactive experience with a personalized
prompt, aliases, and more.

22 | Chapter1: The Windows PowerShell Interactive Shell

Solution

When you want to customize aspects of PowerShell, place those customizations in
your personal profile script. PowerShell provides easy access to this profile script by
storing its location in the $profile variable.

R
s

By default, PowerShell’s security policies prevent scripts (including
your profile) from running. Once you begin writing scripts, though,
%k you should configure this policy to something less restrictive. For
" information on how to configure your execution policy, see Recipe
16.1, “Enable Scripting Through an Execution Policy.”

To create a new profile (and overwrite one if it already exists):
New-Item -type file -force $profile

To edit your profile:
notepad $profile

To see your profile file:
Get-ChildItem $profile

Once you create a profile script, you can add a function called Prompt that returns a
string. PowerShell displays the output of this function as your command-line
prompt.

function Prompt

{

}
This example prompt displays your computer name, and look like: PS [LEE-DESK]>

"PS [$env:COMPUTERNAME] >"

You may also find it helpful to add aliases to your profile. Aliases let you to refer to
common commands by a name that you choose. Personal profile scripts let you auto-
matically define aliases, functions, variables, or any other customizations that you
might set interactively from the PowerShell prompt. Aliases are among the most
common customizations, as they let you refer to PowerShell commands (and your
own scripts) by a name that is easier to type.

If you want to define an alias for a command but also need to modify
the parameters to that command, then define a function instead.
&

For example:

Set-Alias new New-Object
Set-Alias iexplore 'C:\Program Files\Internet Explorer\iexplore.exe'

1.3 Customize Your Shell, Profile, and Prompt | 23

Your changes will become effective once you save your profile and restart Power-
Shell. To reload your profile immediately, run the command:

. $profile

Functions are also very common cus