
www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Windows PowerShell  
Best Practices

Ed Wilson

www.allitebooks.com

http://www.allitebooks.org


Published with the authorization of Microsoft Corporation by:

O’Reilly Media, Inc. 
1005 Gravenstein Highway North 
Sebastopol, California 95472

Copyright © 2013 by Ed Wilson

All rights reserved. No part of the contents of this book may be reproduced 
or transmitted in any form or by any means without the written permission of 
the publisher.

ISBN: 978-0-7356-6649-8

1 2 3 4 5 6 7 8 9  LSI  8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors 
worldwide. If you need support related to this book, email Microsoft Press 
Book Support at mspinput@microsoft.com. Please tell us what you think of 
this book at http://www.microsoft.com/learning/booksurvey. 

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/
en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the 
Microsoft group of companies.  All other marks are property of their respec-
tive owners.

The example companies, organizations, products, domain names, email ad-
dresses, logos, people, places, and events depicted herein are fictitious. No 
association with any real company, organization, product, domain name, 
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information con-
tained in this book is provided without any express, statutory, or implied 
warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation, 
nor its resellers, or distributors will be held liable for any damages caused or 
alleged to be caused either directly or indirectly by this book.

Acquisitions and Developmental Editor: Michael Bolinger
Production Editor: Christopher Hearse
Editorial Production: nSight, Inc.

Technical Reviewer: Brian Wilhite
Cover Design: Twist Creative ● Seattle
Cover Composition: Ellie Volckhausen
Illustrator: nSight, Inc.

www.allitebooks.com

mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.allitebooks.org


This book is dedicated to Teresa. You make each day feel like it is 
filled with infinite possibilities. 

—Ed Wilson

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Contents at a glance

Foreword xix

Introduction xxi

PART I UNDERSTANDING THE BASICS OF WINDOWS POWERSHELL 

ChaPtEr 1 Survey of Windows PowerShell capabilities 3

ChaPtEr 2 Using the CIM cmdlets 27

PART II PLANNING FOR SCRIPTING   

ChaPtEr 3 Using the active Directory module 45

ChaPtEr 4 Identifying scripting opportunities 73

ChaPtEr 5 Configuring the script environment 111

ChaPtEr 6 avoiding scripting pitfalls 151

ChaPtEr 7 tracking scripting opportunities 195

PART III DESIGNING THE SCRIPT    

ChaPtEr 8 Designing the script 233

ChaPtEr 9 Designing help for scripts 277

ChaPtEr 10 Designing modules 311

ChaPtEr 11 handling input and output 339

ChaPtEr 12 handling errors 397

ChaPtEr 13 testing scripts 433

ChaPtEr 14 Documenting scripts 475

PART IV DEPLOYING THE SCRIPT    

ChaPtEr 15 Managing the execution policy 491

ChaPtEr 16 running scripts 507

ChaPtEr 17 Versioning scripts 521

ChaPtEr 18 Logging results 531

ChaPtEr 19 troubleshooting scripts 559

www.allitebooks.com

http://www.allitebooks.org


ChaPtEr 20 Using the Windows PowerShell ISE 605

ChaPtEr 21 Using Windows PowerShell remoting and jobs 615

ChaPtEr 22 Using Windows PowerShell Workflow 643

ChaPtEr 23 Using the Windows PowerShell DSC 659

Index 675

About the Author 705

www.allitebooks.com

http://www.allitebooks.org


vii

What do you think of this book? We want to hear from you! 
Microsoft is interested in hearing your feedback so we can continually improve our  
books and learning resources for you. to participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

Contents

Foreword xix

Introduction xxi

PART I UNDERSTANDING THE BASICS OF WINDOWS 
POWERSHELL 

Chapter 1 Survey of Windows PowerShell capabilities 3
Understanding Windows PowerShell  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Installing Windows PowerShell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Deploying Windows PowerShell  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Using cmdlets 7

Using command-line utilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Security issues with Windows PowerShell  . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Controlling execution of Windows PowerShell cmdlets 11

Confirming commands 12

Suspending confirmation of cmdlets 12

Working with Windows PowerShell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Accessing Windows PowerShell 14

Configuring Windows PowerShell 15

Supplying options for cmdlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Working with the help options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Updating help information 17

Discovering information in help 21

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

www.allitebooks.com

http://www.allitebooks.org


viii Contents

Chapter 2 Using the CIM cmdlets 27
Using the CIM cmdlets to explore WMI classes . . . . . . . . . . . . . . . . . . . . . . . 27

Using the classname parameter 27

Finding WMI class methods 29

Filtering classes by qualifier 30

Retrieving WMI instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Reduce returned properties and instances 33

Clean up output from the command 34

Working with Association classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

PART II PLANNING FOR SCRIPTING   

Chapter 3 Using the Active Directory module 45
Understanding the Active Directory module . . . . . . . . . . . . . . . . . . . . . . . . . 45

Installing the Active Directory module 47

Getting started with the Active Directory module 47

Using the Active Directory module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Finding the FSMO role holders 50

Documenting Active Directory 56

Renaming Active Directory sites 59

Managing users 60

Creating a user 63

Finding and unlocking AD user accounts 64

Finding disabled users 66

Finding unused user accounts 68

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 4 Identifying scripting opportunities 73
Automating routine tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Automation interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Using RegRead to read the registry 77

Using WMI to read the registry 77

Using .NET to read the registry 78

www.allitebooks.com

http://www.allitebooks.org


ixContents

Using intrinsic Windows PowerShell techniques 79

Structured requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Security requirements 83

Detecting the current user 84

Detecting the user role 96

.NET Framework version requirements 100

Operating system requirements 102

Application requirements 106

Module requirements 108

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Chapter 5 Configuring the script environment 111
Configuring a profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Creating aliases 112

Creating functions 116

Passing multiple parameters 120

Creating variables 126

Creating PSDrives 133

Enabling scripting 139

Creating a profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Choosing the correct profile 141

Creating other profiles 143

Accessing functions in other scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Creating a function library  147

Using an include file 148

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Chapter 6 Avoiding scripting pitfalls 151
Lack of cmdlet support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Complicated constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Version compatibility issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Trapping the operating system version 160

Lack of WMI support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



x Contents

Working with objects and namespaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Listing WMI providers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Working with WMI classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Changing settings 173

Modifying values through the registry 175

Lack of .NET Framework support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Use of static methods and properties 180

Version dependencies 182

Lack of COM support 182

Lack of external application support 189

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Chapter 7 Tracking scripting opportunities 195
Evaluating the need for the script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Reading a text file 196

Export command history 203

Fan-out commands 205

Query Active Directory 208

Just use the command line 214

Calculating the benefit from the script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Repeatability 219

Documentability 223

Adaptability 225

Script collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

PART III DESIGNING THE SCRIPT    

Chapter 8 Designing the script 233
Understanding functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Using functions to provide ease of code reuse . . . . . . . . . . . . . . . . . . . . . . 244

Using two input parameters 248

Using a type constraint 253

Using more than two input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257



xiContents

Using functions to encapsulate business logic  . . . . . . . . . . . . . . . . . . . . . . 259

Using functions to provide ease of modification  . . . . . . . . . . . . . . . . . . . . 261

Understanding filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Chapter 9 Designing help for scripts 277
Adding help documentation to a script with  

single-line comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Working with temporary folders 285

Using multiple-line comment tags in Windows PowerShell 4.0 . . . . . . . . 287

Creating multiple-line comments with comment tags 287

Creating single-line comments with comment tags 288

Using comment-based help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

The 13 rules for writing effective comments  . . . . . . . . . . . . . . . . . . . . . . . 295

Update documentation when a script is updated 295

Add comments during the development process 296

Write for an international audience 297

Consistent header information 298

Document prerequisites 299

Document deficiencies 300

Avoid useless information 302

Document the reason for the code 303

Use of one-line comments 303

Avoid end-of-line comments 304

Document nested structures 305

Use a standard set of keywords 306

Document the strange and bizarre 307

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Chapter 10 Designing modules 311
Understanding modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Locate and load modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Listing available modules 312

Loading modules 316



xii Contents

Install modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Creating a modules folder 319

Working with the $modulePath variable 322

Creating a module drive 324

Checking for module dependencies 326

Using a module from a share 330

Creating a module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Chapter 11 Handling input and output 339
Choosing the best input method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340

Reading from the command line 340

Using the Param statement 348

Working with passwords as input 362

Working with connection strings as input 372

Prompting for input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Choosing the best output method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Output to the screen 376

Output to file 382

Splitting the output to both the screen and the file 383

Output to email 387

Output from functions 388

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Chapter 12 Handling errors 397
Handling missing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Creating a default value for the parameter 398

Making the parameter mandatory 399

Limiting choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400

Using PromptForChoice to Limit Selections 401

Using ping to identify accessible computers 402

Using the −contains Operator to examine the contents 
of an array 404

Using the −contains operator to test for properties 406



xiiiContents

Handling missing rights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408

Attempting and failing 410

Checking for rights and exiting gracefully 412

Using #Requires 413

Handling missing WMI providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Incorrect data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Out of bounds errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Using a boundary checking function 429

Placing limits on the parameter 430

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Chapter 13 Testing scripts 433
Using basic syntax checking techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Looking for errors 438

Running the script 440

Documenting what you did 442

Conducting performance testing of scripts . . . . . . . . . . . . . . . . . . . . . . . . .444

Using the store and forward approach 445

Using the Windows PowerShell pipeline 446

Evaluating the performance of different versions of a script 450

Using standard parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

Using the debug parameter 460

Using the Verbose parameter 462

Using the whatif parameter 464

Using Start-Transcript to produce a log  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

Advanced script testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

Chapter 14 Documenting scripts 475
Getting documentation from help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

Getting documentation from comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

Using the AST parser  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .484

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487



xiv Contents

PART IV DEPLOYING THE SCRIPT    

Chapter 15 Managing the execution policy 491
Selecting the appropriate script execution policy . . . . . . . . . . . . . . . . . . . . 491

The purpose of script execution policies 492

Understanding the different script execution policies 492

Understanding the Internet zone 493

Deploying the script execution policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Modifying the registry 495

Using the Set-ExecutionPolicy cmdlet 496

Using Group Policy to deploy the script execution policy 499

Understanding code signing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

Chapter 16 Running scripts 507
Logon scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

What to include in logon scripts 509

Methods of calling the logon scripts 512

Script folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

Deploy locally 515

Deploy an MSI package locally  515

Stand-alone scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

Diagnostics 516

Reporting and auditing 516

Help desk scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

Avoid editing 517

Provide a good level of help interaction 517

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

Chapter 17 Versioning scripts 521
Why version control? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Avoid introducing errors 522

Enable accurate troubleshooting 523

Track changes 523



xvContents

Maintain a master listing 523

Maintain compatibility with other scripts 523

Internal version number in the comments 525

Version control software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

Chapter 18 Logging results 531
Logging to a text file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

Designing a logging approach 532

Text location 542

Networked log files 548

Logging to the event log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

Using the Application log 554

Creating a custom event log 555

Logging to the registry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

Chapter 19 Troubleshooting scripts 559
Understanding debugging in Windows PowerShell . . . . . . . . . . . . . . . . . . 559

Working with syntax errors 560

Working with runtime errors 560

Working with logic errors 564

Using the Set-PSDebug cmdlet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

Tracing the script 568

Stepping through the script 572

Enabling strict mode 581

Debugging scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

Setting breakpoints 587

Responding to breakpoints 596

Listing breakpoints 597

Enabling and disabling breakpoints 599

Deleting breakpoints 601

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603



xvi Contents

Chapter 20 Using the Windows PowerShell ISE 605
Running the Windows PowerShell ISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

Navigating the Windows PowerShell ISE 606

Working with the script pane 608

Tab expansion and IntelliSense 610

Working with Windows PowerShell ISE snippets  . . . . . . . . . . . . . . . . . . . . 611

Using Windows PowerShell ISE snippets to create code 611

Creating new Windows PowerShell ISE snippets 612

Removing user-defined Windows PowerShell ISE snippets 613

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

Chapter 21 Using Windows PowerShell remoting and jobs 615
Understanding Windows PowerShell remoting  . . . . . . . . . . . . . . . . . . . . . 615

Classic remoting 615

WinRM—Windows Remote Management  626

Using Windows PowerShell jobs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641

Chapter 22 Using Windows PowerShell Workflow 643
Why use Windows PowerShell Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

Workflow requirements 644

A simple workflow 644

Parallel PowerShell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

Workflow activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .648

Windows PowerShell cmdlets as activities 649

Disallowed core cmdlets 650

Non-automatic cmdlet activities 650

Parallel activities 651

Checkpointing a Windows PowerShell workflow  . . . . . . . . . . . . . . . . . . . . 652

Understanding checkpoints 652

Placing checkpoints 652

Adding checkpoints 653

Adding a sequence activity to a workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 656

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658



xviiContents

Chapter 23 Using the Windows PowerShell DSC 659
Understanding Desired State Configuration . . . . . . . . . . . . . . . . . . . . . . . . 659

The DSC process 660

Configuration parameters 663

Setting dependencies 665

Configuration data 666

Controlling configuration drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

Index 675

What do you think of this book? We want to hear from you! 
Microsoft is interested in hearing your feedback so we can continually improve our  
books and learning resources for you. to participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/



www.allitebooks.com

http://www.allitebooks.org


xix

Foreword

In April 2003, Microsoft’s Jeffrey Snover gave me an early peek at PowerShell or, as it was 
known in its beta days, “Monad.” I must admit that, while I fell in love with PoSH at first 

sight, I was just too darned busy with other work to really get my hands dirty with it for an-
other five years, and I soon realized that boy, had I missed a few memos. “Objects in a pipe-
line? Is that anything like snakes on a plane?” “Hash tables? Can I get mine with a fried egg?”

Yup, there was a lot to learn, and I nearly wore out Google looking up PoSH-y things. 
Just about every one of those searches, however, seemed to lead me to the same place: the 
Hey, Scripting Guy! Blog. I quickly noticed that the blog delivered new articles daily, and so 
I was very surprised to see that the vast majority of those articles were penned by one guy: 
Ed  Wilson. Since then, I’ve gotten to know Ed personally, and trust me, he’s even funnier and 
more entertaining in person than he is in print, which brings me to this volume.

If you’re a Windows admin, learning Windows PowerShell is an essential (as in you need 
to do this if you want to remain a Windows admin) task. It’s not always an easy one, though, 
and you will often find yourself wishing for the “answers in the back of the book” so to speak. 
Well, Ed’s written that book, and you’re holding the latest edition. Work your way through 
Windows PowerShell Best Practices, actually take the time to try out the examples, and soon 
you, too, will be automating, scripting, and workflow-ing like mad. Happy PowerShelling!

—Mark Minasi, author of the Mastering Windows Server books

P.S. In case you don’t already know, objects in a pipeline are way cooler than snakes on a 
plane. Really.





xxi

Introduction

Welcome to Windows PowerShell Best Practices, a book that was developed together with 
the Microsoft Windows PowerShell product group to provide in-depth information 

about Windows PowerShell and best practices based on real-life experiences with the product 
in use in different environments. Numerous sidebars are also included that detail experiences 
from skilled industry professionals such as Enterprise Admins and Windows PowerShell Most 
Valuable Professionals (MVPs).

The book is largely based on Windows PowerShell 4.0 as it exists on Windows 8.1 and 
on Windows Server 2012 R2. Because Windows PowerShell introduced Desired State 
 Configuration in Windows PowerShell 4.0, Chapter 23, “Using the Windows PowerShell DSC,” 
must be run on a computer with Windows PowerShell 4.0 installed on it. Nearly all of the 
material in the other chapters will work without modification on Windows PowerShell 3.0 (on 
Windows 8 or on Windows Server 2012). A large part of the book also applies to Windows 
PowerShell 2.0 running on any version of Windows that it installs upon. 

Who is this book for? 

Microsoft Windows PowerShell Best Practices is for anyone tasked with designing, implement-
ing or managing enterprise products. This includes Active Directory Domain Services, System 
Center, Exchange, and SharePoint products. In addition, it is designed for anyone who either 
teaches or trains others on Windows PowerShell or even for the MCSE track of courseware. 
Lastly, power users who want to automate their desktops will also benefit from the explana-
tions, scenarios, and sample scripts.

How is this book organized?

This book is organized into four parts:

■■ Part I: Understanding the basics of Windows PowerShell 

■■ Part II: Planning for scripting

■■ Part III: Designing the script

■■ Part IV: Deploying the script

The first part of this book consists of two chapters that focus on the basics of Windows 
PowerShell capabilities. This portion of the book is a level setting and would be ideal for any-
one just learning Windows PowerShell. 



xxii Introduction

The second part of the book discusses identifying scripting opportunities, the scripting en-
vironment, and avoiding scripting pitfalls. This part is also ideal for people learning Windows 
PowerShell, but it is also a great section for admins experienced with the fundamentals of 
Windows PowerShell but who need to write new scripts. 

The third section of the book talks about how you actually design a script—how you 
plan for inputs and outputs to the script and how you document your scripts. This is a more 
 advanced section, and it is appropriate for advanced students and for people who write 
scripts that others are expected to utilize. 

The last section of the book talks about deploying scripts—how you run them; how you 
handle versioning; and how you use remote, workflow, and DSC capabilities in your script. 
This is appropriate for enterprise admins who are firmly entrenched in DevOps. 

System requirements

This book is designed to be used with the following Exchange 2010 software:

■■ Windows Server 2008 or Windows Server 2008 R2

■■ 1 GB of RAM

■■ x64 architecture-based computer with Intel or AMD processor that supports 64 bit

■■ 1.2 GB of available disk space

■■ Display monitor capable of 800 × 600 resolution

The following list details the minimum system requirements needed to run the content in 
the book’s companion website:

■■ Windows XP with the latest service pack installed and the latest updates from Micro-
soft Update Service

■■ Display monitor capable of 1024 × 768 resolution

■■ CD-ROM drive

■■ Microsoft mouse or compatible pointing device



xxiiiIntroduction

The companion website

This book features a companion website that makes available to you additional information 
such as job aids, quick reference guides, and additional Windows PowerShell resources. These 
elements are included to help you plan and manage your Windows PowerShell organization 
and apply the book’s recommended best practices. The companion website includes the fol-
lowing:

■■ Job Aids Additional documents on most of the chapters that help you to collect and 
structure your work through the book.

■■ Quick Reference Guides These guides provide an overview of all best practice 
recommendations in the book as well as a collection of all Internet links referenced in 
the book.

You can download these files from the companion website, which is located at  
http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40-Best-d9e16039.

Acknowledgements

A book of this scope does not happen without assistance. First I must thank my wife,  
Teresa Wilson, aka the Scripting Wife. She not only coordinated the acquisition of sidebars, 
but she also read the entire book at least three times. My technical reviewer, Microsoft PFE 
Brian Wilhite, was great at catching things that would have made me look silly. He also made 
numerous suggestions for improving not only the clarity of the writing, but in some cases the 
accuracy of the code. Brian absolutely rocks. Luckily, the Windows PowerShell community is 
very enthusiastic and as a result was receptive for my call for sidebars. The high quality of the 
sidebars, and the diversity of content was fun to read, and in the end makes for a much better 
book. If you run across one of the authors of the sidebars, make sure you tell them "hi." Lastly, 
I want to thank Jeffrey Snover, Ken Hansen and the rest of the Windows PowerShell team. 
They made an awesome product that just keeps getting better and better each year. Win-
dows PowerShell for the win!

Support & feedback

The following sections provide information on errata, book support, feedback, and con-
tact information. 

http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40-Best-d9e16039


xxiv Introduction

Errata
We have made every effort to ensure the accuracy of this book. If you do find an error, please 
report it on our Microsoft Press site at oreilly.com:

http://aka.ms/PowershellBestPractices/errata

You will find additional information and services for your book on its catalog page. If 
you need additional support, please e-mail Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the 
 addresses above.

We want to hear from you
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable 
asset. Please tell us what you think of this book at: 

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in 
 advance for your input!

Stay in touch
Let us keep the conversation going! We are on Twitter: http://twitter.com/MicrosoftPress.



PART I

Understanding the 
basics of Windows 
PowerShell 

CHAPTER 1 Survey of Windows PowerShell capabilities 3

CHAPTER 2 Using the CIM cmdlets 27





   3

C H A P T E R  1

Survey of Windows 
PowerShell capabilities

■■ Understanding Windows PowerShell

■■ Installing Windows PowerShell

■■ Deploying Windows PowerShell

■■ Using command-line utilities 

■■ Security issues with Windows PowerShell 

■■ Working with Windows PowerShell

■■ Supplying options for cmdlets

■■ Working with the help options 

■■ Additional resources

Understanding Windows PowerShell 

Perhaps the biggest obstacle for a Windows network administrator in migrating to Windows 
PowerShell 4.0 is understanding what the PowerShell actually is. In some respects, it is like 
a replacement for the venerable CMD (command) shell. In fact, on Windows Server 2012 R2 
running in core mode, it is possible to replace the CMD shell with Windows PowerShell so 
that when the server boots up it uses Windows PowerShell as the interface. As shown in the 
following code example, after Windows PowerShell launches, you can use cd to change the 
working directory and then use dir to produce a directory listing in exactly the same way 
you would perform these tasks from the CMD shell.

Windows PowerShell 
Copyright (C) 2013 Microsoft Corporation. All rights reserved. 
 
PS C:\Users\ed.IAMMRED> cd c:\ 
PS C:\> dir 
 
    Directory: C:\ 
 
Mode                LastWriteTime     Length Name 
----                -------------     ------ ---- 
d----          9/4/2013  12:06 PM            DCS 
d----          9/8/2013   8:32 PM            DemoUser 
d----          9/8/2013   6:52 PM            fso 



 4 CHAPTER 1 Survey of Windows PowerShell capabilities

d----          9/8/2013   9:15 PM            myprocess 
d----         8/22/2013  11:22 AM            PerfLogs 
d-r--         8/22/2013   3:11 PM            Program Files 
d-r--         8/27/2013   8:19 PM            Program Files (x86) 
d----          9/8/2013  10:12 PM            ScriptFolder 
d----          9/8/2013   7:22 PM            server1Config 
d----          9/8/2013  10:46 PM            ServerConfig 
d----          9/8/2013   9:22 PM            StartBits 
d-r--         8/27/2013   8:06 PM            Users 
d----         8/27/2013   7:52 PM            Windows 
 
 
PS C:\>

You can also combine “traditional” CMD interpreter commands with other utilities such as 
fsutil. This is shown here:

PS C:\> md c:\test 
 
 
    Directory: C:\ 
 
 
Mode                LastWriteTime     Length Name 
----                -------------     ------ ---- 
d----          9/9/2013   3:31 PM            test 
 
 
PS C:\> fsutil file createnew c:\test\mynewfile.txt 1000 
File c:\test\mynewfile.txt is created 
PS C:\> cd test 
PS C:\test> dir 
 
 
    Directory: C:\test 
 
 
Mode                LastWriteTime     Length Name 
----                -------------     ------ ---- 
-a---          9/9/2013   3:31 PM       1000 mynewfile.txt 
 
 
PS C:\test>

We have been using Windows PowerShell in an interactive manner. This is one of the 
primary uses of Windows PowerShell; it is accomplished by opening a Windows PowerShell 
prompt and typing commands. The commands can be entered one at a time, or they can be 
grouped together like a batch file. We will look at this later because you need more informa-
tion to understand it.

www.allitebooks.com

http://www.allitebooks.org


 Understanding Windows PowerShell  CHAPTER 1 5

NOTES FROM THE FIELD

Jason helmick, Senior technologist
Concentrated Technology

I t’s amazing to think that, in a few short years, Windows PowerShell has grown 
from a couple hundred cmdlets to thousands—covering a wide variety of 

Microsoft products. this means that there is probably something lurking out in the 
Windows PowerShell universe that you haven’t discovered and which might be very 
helpful to you. Using the discovery capabilities of Get-Help is the important and 
practical way to discover cmdlets—but it’s not the only way. 

the Windows PowerShell community is strong and vibrant, with MVPs, gurus, and 
aficionados all blogging, tweeting, and using forums to discover, discuss, and share 
new revelations when solving real-world problems. Getting involved in the com-
munity is a great way to extend and expand your Windows PowerShell skills—but 
again, it’s not the only way.

I learn the most about Windows PowerShell when I’m working on a project with 
other admins who are also using PowerShell. When working with someone else, I’ve 
noticed that they might do a particular task differently than me—often in a way I 
hadn’t thought of or using a technique or cmdlet I wasn’t familiar with. Let me give 
you an example that happened to me recently.

I was getting my virtual machines ready for a live presentation, discussing how to 
get started learning Windows PowerShell. this was a very special presentation, and 
one that I really didn’t want to screw up. In the process of getting my VMs loaded, 
I needed to check some IP addresses so that my co-host could remotely connect 
to the VMs, an easy enough task to solve using the Windows native command 
IPConfig.exe (which of course runs like a dandy in the Windows PowerShell console). 
I happened to mention this to my co-host for the presentation, saying something 
like “Let me get you the outside IP address; let me just run IPconfig and….” 

My co-host responded before I could start typing with, “Have you used gip?” I was 
a little stunned—I’d never heard of gip. after noticing my confused look, he smiled 
and said: “I learn something new about Windows PowerShell almost every day—try 
it.” So I did. It turns out that gip is an alias for Get-NetIPConfiguration, which 
produces a better-looking and easier-to-read result than the old IPConfig.exe. In 
fact, because it’s a Windows PowerShell cmdlet producing objects, you can use this 
in amazing ways. I had just learned something new, something that’s much better 
than how I was doing it before, because I was working with someone else using 
Windows PowerShell. the moral of the story is simple: Work with other admins who 
are using Windows PowerShell—even side-by-side if possible. You’ll pick up new 
things from each other.



 6 CHAPTER 1 Survey of Windows PowerShell capabilities

Oh, who was my co-host who introduced me to something new? It was the inventor 
of Windows PowerShell, Distinguished Engineer Jeffrey Snover. If he can still learn 
something new about Windows PowerShell, so can I, and so can you. Work with 
your friends and share.

Installing Windows PowerShell

Windows PowerShell 4.0 comes with Windows 8.1 client and Windows Server 2012 R2. 
You can download the Windows Management Framework 4.0 package containing 
updated WinRM, WMI, and Windows PowerShell 4.0 from the Microsoft Download center 
(Microsoft.Com/Downloads). The package allows you to install on Windows 7 and Windows 
Server 2008 R2—both of which must be running at least Service Pack 1 and the Microsoft 
.NET Framework 4.5. You can also install on Windows 8 and Windows Server 2012.

To prevent frustration during the installation, it makes sense to use a script that checks for 
the operating system, service pack level, and .NET Framework 4.5. A sample script that will 
check for the prerequisites is Get-PowerShellRequirements.ps1, which follows.

Get-PowerShellrequirements.ps1

Param([string[]]$computer = @($env:computername, "LocalHost")) 

 foreach ($c in $computer) 

  {  

    $o = Get-WmiObject win32_operatingsystem -cn $c 

    switch ($o.version) 

    { 

        {$o.version -gt 6.2} {"$c is Windows 8 or greater"; break} 

        {$o.version -gt 6.1}  

          { 

           If($o.ServicePackMajorVersion -gt 0){$sp = $true} 

           If(Get-WmiObject Win32_Product -cn $c |  

              where { $_.name -match '.NET Framework 4.5'}) {$net = $true } 

           If($sp -AND $net) { "$c meets the requirements for PowerShell 3" ; break} 

           ElseIF (!$sp) {"$c needs a service pack"; break} 

           ELSEIF (!$net) {"$c needs a .NET Framework upgrade"} ; break} 

        {$o.version -lt 6.1} {"$c does not meet standards for PowerShell 3.0"; break} 

        Default {"Unable to tell if $c meets the standards for PowerShell 3.0"} 

    } 

   

  }



 Deploying Windows PowerShell CHAPTER 1 7

Deploying Windows PowerShell

After Windows PowerShell is downloaded from http://www.Microsoft.com/downloads, you 
can deploy Windows PowerShell to your enterprise by using any of the standard methods 
you currently use. A few of the methods some customers have used to accomplish Windows 
PowerShell deployment include the following:

1. Create a Microsoft Systems Center Configuration Manager package, and advertise it to 
the appropriate Organizational Unit (OU) or collection.

2. Create a Group Policy Object (GPO) in Active Directory Domain Services (AD DS), and 
link it to the appropriate OU.

3. Approve the update in Software Update Services (SUS).

If you are not deploying to an entire enterprise, perhaps the easiest way to install Windows 
PowerShell is to download the package and step through the wizard. 

NOTE To use a command-line utility in Windows PowerShell, launch Windows PowerShell 
by using Start | Run | PowerShell. At the PowerShell prompt, type in the command to run.

Using cmdlets
In addition to using traditional programs and commands from the CMD.exe command inter-
preter, we can also use the cmdlets (pronounced commandlets) that are built into Windows 
PowerShell. Cmdlets can be created by anyone. The Windows PowerShell team creates the 
core cmdlets, but many other teams at Microsoft were involved in creating the hundreds of 
cmdlets shipping with Windows 8. They are like executable programs, but they take advan-
tage of the facilities built into Windows PowerShell, and therefore are easy to write. They are 
not scripts, which are uncompiled code, because they are built using the services of a special 
.NET Framework namespace. Windows PowerShell 4.0 comes with about one thousand cmd-
lets on Windows 8.1. Because additional features and roles are added often, so are additional 
cmdlets. These cmdlets are designed to assist the network administrator or consultant to 
leverage the power of Windows PowerShell without having to learn a scripting language. One 
of the strengths of Windows PowerShell is that cmdlets use a standard naming convention 
that follows a Verb-Noun pattern, such as Get-Help, Get-EventLog, or Get-Process. The cmd-
lets using the get verb display information about the item on the right side of the dash. The 
cmdlets that use the set verb modify or set information about the item on the right side of 
the dash. An example of a cmdlet that uses the set verb is Set-Service, which can be used to 
change the startmode of a service. All cmdlets use one of the standard verbs. To find all of the 
standard verbs you can use the Get-Verb cmdlet. In Windows PowerShell 4.0, there are nearly 
100 approved verbs. 



 8 CHAPTER 1 Survey of Windows PowerShell capabilities

NOTES FROM THE FIELD

David Moravec, Microsoft PowerShell MVP
Mainstream Technologies

One of the nice new features of Windows PowerShell 4.0 is the ability to count 
file hashes natively with the Get-FileHash cmdlet. In the past, if you wanted 

to count hashes, you had to use the System.Security.Cryptography.HashAlgorithm 
class. It was fine if you used it locally, but when you shared your scripts, you also 
had to deliver your function, which created hashes. that is not so anymore.

From my experience, the most frequent method for hash creation is MD5. It’s quick 
and easy, and every tool can create this type of hash. If you run Get-FileHash in its 
default configuration, you receive the following:

PS C:\Users\Makovec> Get-FileHash .\myFile.exe | fl * 

Path : C:\Users\Makovec\myFile.exe 

Type : System.Security.Cryptography.SHA256Managed 

Hash : p/a6HFn9QkCFQWiaQMo8hVILmCHCPMuaNrRn2DKJKVM=

You can see that the method used is SHA256. You can specify MD5 by using an 
Algorithm parameter.

PS C:\Users\Makovec> Get-FileHash .\myFile.exe -Algorithm MD5 | fl * 

Path : C:\Users\Makovec\myFile.exe 

Type : System.Security.Cryptography.MD5CryptoServiceProvider 

Hash : L1uabH1YgDx/WSR4e2SIgw==

Possible values for Algorithm are: SHA1, SHA256, SHA384, SHA512, MACTripleDES, 
MD5, and RIPEMD160. Unfortunately Get-FileHash doesn’t accept pipeline input, 
so you have to use the following method when you have more files to check:

PS C:\Users\Makovec> dir myfile* |% { Get-FileHash -FilePath $_.FullName 

} | ft Path, Hash -auto 

Path                          Hash 

----                          ---- 

C:\Users\Makovec\myFile.exe   p/

a6HFn9QkCFQWiaQMo8hVILmCHCPMuaNrRn2DKJKVM= 

C:\Users\Makovec\myFile1.txt  

hvEVE3TDmfnYS9Hr0weNDTt2YJjXNfPIjKIn0KNYp8g= 

C:\Users\Makovec\myFile10.txt 

MDOlqpQP8CWfY9RFrhJRFXf6tBRUUl8QhUBsEBZzTg0= 

C:\Users\Makovec\myFile2.txt  PrLYwFUSFV6ffc+pOPk5voQWlDOjPeK/

DY3071VFFCQ= 

C:\Users\Makovec\myFile3.txt  VFlQO1uLMVJUWHJCoyQDf6+KCLu9BU5mokUpDhUH5

hY=



 Using command-line utilities CHAPTER 1 9

C:\Users\Makovec\myFile4.txt  9ipYmXXKSmRPa/

pxgGZII5HKt6iz8gmuQnSky8DJXe0= 

C:\Users\Makovec\myFile5.txt  

Pt95mm1rElr0N7zPmkZ8ntffRmmbN6q22bnIlgzJaJk= 

C:\Users\Makovec\myFile6.txt  

dJXh7cLZb2hf87DtJCRrTAjDLhXJolopRBQYNGt7CPc= 

C:\Users\Makovec\myFile7.txt  O0AHHQebMbTxQv1QEKYkd63bF8J8jqHHh0zgA4rFG/

A= 

C:\Users\Makovec\myFile8.txt  EEXKqgV/KXSesD6x8HVmF/

jZTN4DzyjCEWjRuM5R7dI= 

C:\Users\Makovec\myFile9.txt  jdhlfHvSJ5RJSZ62MOc+J5ujM3fMzzWXwDndZ8V0L

4s=

If you want to have MD5 as the default on your computer, you can specify it 
$PSDefaultParameterValues. Be careful—if you modify this in your profile, your 
script will probably have a different result on other PCs. But for a quick-and-dirty 
local check, it’s OK. Honestly, I added the following two lines to my profile:

Set-Alias -Name md5 -Value Get-FileHash 

$PSDefaultParameterValues = @{'Get-FileHash:Algorithm'='MD5'}

and still the following two lines show the same result:

PS C:\Users\Makovec> Get-FileHash .\myFile.exe -Algorithm MD5 

PS C:\Users\Makovec> md5 .\myFile.exe 

 

Path                                    Type                                    

Hash

----                                    ----                                    

---- 

C:\Users\Makovec\myFile.exe             System.Security.Cryptography.

MD5Cryp... L1uabH1YgDx/WSR4e2SIgw==

Using command-line utilities

As mentioned earlier, command-line utilities can be used directly within Windows PowerShell. 
The advantages of using command-line utilities in Windows PowerShell, as opposed to simply 
running them in the CMD interpreter, are the Windows PowerShell pipelining and format-
ting features. Additionally, if you have batch files or CMD files that already utilize existing 
command-line utilities, they can easily be modified to run within the Windows PowerShell 
environment. 



 10 CHAPTER 1 Survey of Windows PowerShell capabilities

Use the following steps to run ipconfig commands:

1. Start Windows PowerShell by searching on PowerShell from the Windows Start page. 
The PowerShell prompt will open by default at the root of your Documents folder.

2. Enter the command ipconfig /all as follows:

PS C:\> ipconfig /all

3. Pipe the result of ipconfig / to a text file. This is illustrated here:

PS C:\> ipconfig /all >ipconfig.txt

4. Use Notepad to view the contents of the text file, as shown here:

PS C:\> notepad ipconfig.txt

Typing a single command into Windows PowerShell is useful, but at times, you might need 
more than one command to provide troubleshooting information or configuration details 
to assist with setup issues or performance problems. This is where Windows PowerShell 
really shines. In the past, one would have to either write a batch file or type the commands 
manually. 

This is seen in the TroubleShoot.bat script that follows.

troubleShoot.bat

ipconfig /all >C:\tshoot.txt  

route print >>C:\tshoot.txt  

hostname >>C:\tshoot.txt  

net statistics workstation >>C:\tshoot.txt

Of course, if you typed the commands manually, you had to wait for each command to 
complete before entering the subsequent command. In that case, it was always possible to 
lose your place in the command sequence or to have to wait for the result of each command. 
Windows PowerShell eliminates this problem. You can now enter multiple commands on a 
single line and then leave the computer or perform other tasks while the computer produces 
the output. No batch file needs to be written to achieve this capability.

TIP Use multiple commands on a single Windows PowerShell line. Type each complete 
command, and then use a semicolon to separate each command.



 Security issues with Windows PowerShell CHAPTER 1 11

Security issues with Windows PowerShell

As with any tool as versatile as Windows PowerShell, there are bound to be some security 
concerns. However, security was one of the design goals in the development of Windows 
PowerShell.

When you launch Windows PowerShell, it opens in your Documents folder; this ensures 
that you are in a directory where you will have permission to perform certain actions and 
activities. This is far safer than opening at the root of the drive or even opening in system 
root.

To change to a directory, you cannot automatically go up to the next level; you must 
explicitly name the destination of the change directory operation (although you can use the 
CD .. command to move up one level).

The running of scripts is disabled by default and can be easily managed through group 
policy. It can also be managed on a per-user and per-session basis. 

Controlling execution of Windows PowerShell cmdlets
Have you ever opened a CMD interpreter prompt, typed in a command, and pressed Enter 
so that you could see what it does? What if that command happened to be Format C:\? Are 
you sure you want to format your C drive? In this section, we will look at some arguments that 
can be supplied to cmdlets that allow you to control the way they execute. Although not all 
cmdlets support these arguments, most of those included with Windows PowerShell do. The 
three arguments we can use to control execution are -whatif, -confirm, and suspend. Suspend 
is not really an argument that is supplied to a cmdlet but rather an action that you can take at 
a confirmation prompt, and it is therefore another method of controlling execution.

NOTE To use -whatif in a Windows PowerShell prompt, enter the cmdlet and type the 
-whatif parameter after the cmdlet. This works only for cmdlets that change system state. 
Therefore, there is no –whatif parameter for cmdlets such as Get-Process, which display 
only information.

Windows PowerShell cmdlets that change system state (such as Set-Service) support a 
prototype mode that can be entered using the -whatif parameter. The implementation of 
-whatif can be decided on by the person developing the cmdlet; however, it is the recom-
mendation of the Windows PowerShell team that developers implement –whatif when a 
cmdlet changes system state. The following command illustrates using –whatif:

PS C:\> Set-Service -Name bits -StartupType 'manual' -WhatIf 
What if: Performing operation "Set-Service" on Target "Background Intelligent Transfer 
Service (bits)".



 12 CHAPTER 1 Survey of Windows PowerShell capabilities

Confirming commands
As we saw in the preceding section, we can use -whatif to prototype a cmdlet in Windows 
PowerShell. This is useful for seeing what a command would do; however, if we want to be 
prompted before the execution of the command, we can use the -Confirm argument. The use 
of the –Confirm parameter is shown here:

PS C:\> Get-Process -Name notepad | Stop-Process -Confirm 
 
Confirm 
Are you sure you want to perform this action? 
Performing operation "Stop-Process" on Target "notepad (4148)". 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y

Suspending confirmation of cmdlets
The ability to prompt for confirmation of the execution of a cmdlet is extremely useful and at 
times can be vital to assisting in maintaining a high level of system uptime. There are times 
when you have typed in a long command and then remember that you need to do some-
thing else first. For such eventualities, you can tell the confirmation you would like to suspend 
execution of the command. The great thing is that while the executing command suspends, 
you have access to the Windows PowerShell shell and can therefore run other commands. 
In the example here, there are several instances of Notepad running. The first uses  – confirm 
when stopping Notepad. The first instance stops, and then the command is suspended. 
This provides a chance to use Get-Process to find out information about the other running 
processes. 

PS C:\> 1..5 | % notepad 
PS C:\> 1..5 | % {notepad} 
PS C:\> Get-Process -Name notepad | Stop-Process -Confirm 
 
Confirm 
Are you sure you want to perform this action? 
Performing operation "Stop-Process" on Target "notepad (3552)". 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
 
Confirm 
Are you sure you want to perform this action? 
Performing operation "Stop-Process" on Target "notepad (5404)". 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):s 
PS C:\>> get-process notepad 
 
Handles  NPM(K)    PM(K)      WS(K) VM(M)   CPU(s)     Id ProcessName 
-------  ------    -----      ----- -----   ------     -- ----------- 
     81       9     1688      11328    98     0.03   5404 notepad 
     81       9     1680      11480    98     0.06   6344 notepad



 Working with Windows PowerShell CHAPTER 1 13

     81       9     1676      11364    98     0.05   6868 notepad 
     81       9     1680      11312    98     0.00   7092 notepad 
 
 
PS C:\>> exit 
 
Confirm 
Are you sure you want to perform this action? 
Performing operation "Stop-Process" on Target "notepad (5404)". 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):a 
PS C:\>

Working with Windows PowerShell

Windows PowerShell can be used as a replacement for the CMD interpreter. Its many built-
in cmdlets allow for large number of activities. These cmdlets can be used in a stand-alone 
fashion, or they can be run together as a group.

NOTES FROM THE FIELD

Bill Mell, MCSE Infrastructure Manager
DAV

I have been using Windows PowerShell for more than five years. I got my start 
thanks to Ed Wilson’s Windows PowerShell book. It has been invaluable in helping 

me understand the program’s capabilities. Windows PowerShell has been a tremen-
dous help with simplifying what would normally be complex, time-consuming tasks. 
For example, we use it to pull detailed information, such as service tag and serial 
number info, about the servers in our environment. We have well over 200 and 
growing. to obtain this information manually would be a several day or week-long 
task. With Windows PowerShell, it can be done in a matter of minutes. another wel-
come addition to the framework are the active Directory cmdlets. Over the years, 
these have allowed me to automate mundane tasks such as creating large numbers 
of users and groups. What used to take hours/days now takes only minutes. In addi-
tion to this, it seems that more and more companies are catching on to the benefits 
of Windows PowerShell. two vendors that immediately come to mind are Dell and 
VMware. the VMware plugin allows me to pull information about rDM volume 
mappings and the guests they are attached to. to obtain this manually would be 
quite a time-consuming task. In short, Windows PowerShell is a huge time saver. It 
allows me to do twice the work in half the time. It has been an incredible addition 
to my Engineers toolbox, and I could not do my job without it.



 14 CHAPTER 1 Survey of Windows PowerShell capabilities

accessing Windows PowerShell
After Windows PowerShell is installed, it becomes available for immediate use. However, 
using the Windows flag key on the keyboard and pressing the letter r to bring up a run com-
mand prompt, or “mousing around” and using Start | Run | Windows PowerShell all the time, 
becomes somewhat less helpful. (It is not quite as big a problem on Windows 8; just type 
PowerShell on the Start screen). On Windows 8.1, I pin both Windows PowerShell and the 
Windows PowerShell ISE to the Start screen and to the taskbar. On Windows Server 2012 R2 
in core mode, I replace the CMD prompt with the Windows PowerShell console. For me, this 
is ideal. In fact, this was so useful that I wrote a script to do this. This script can be called 
through a logon script to automatically deploy the shortcut on the desktop. On Windows 8.1, 
the script adds both the Windows PowerShell ISE and the Windows PowerShell console to the 
Start screen and the taskbar. On Windows 7, it adds both the Windows PowerShell ISE and 
the Windows PowerShell Console to the taskbar and to the Start area of the Start menu. The 
script works only for English. To make it work in other languages, change the value of $pinTo-
Start or $pinToTaskBar to the equivalent values in the target language. 

NOTE Using Windows PowerShell scripts is covered in Chapter 16, “Running scripts.” See 
that chapter for information about how the script works and how to actually run the script. 

The following script is called PinToStartAndTaskBar.ps1.

PintoStartandtaskBar.ps1

$pinToStart = "Pin to Start" 

$pinToTaskBar = "Pin to Taskbar" 

$file = @((Join-Path -Path $PSHOME  -childpath "PowerShell.exe"), 

          (Join-Path -Path $PSHOME  -childpath "powershell_ise.exe") ) 

Foreach($f in $file) 

 {$path = Split-Path $f 

  $shell=New-Object -com "Shell.Application"  

  $folder=$shell.Namespace($path)    

  $item = $folder.parsename((Split-Path $f -leaf)) 

  $verbs = $item.verbs() 

  foreach($v in $verbs) 

    {if($v.Name.Replace("&","") -match $pinToStart){$v.DoIt()}} 

  foreach($v in $verbs) 

    {if($v.Name.Replace("&","") -match $pinToTaskBar){$v.DoIt()}} }

www.allitebooks.com

http://www.allitebooks.org


 Working with Windows PowerShell CHAPTER 1 15

Configuring Windows PowerShell
Many items can be configured for Windows PowerShell. These items can be stored in a 
PSConsole file. To export the Console configuration file, use the Export-Console cmdlet, as 
shown here:

PS C:\> Export-Console myconsole

The PSConsole file is saved in the current directory by default and has an extension of 
psc1. The PSConsole file is saved in an XML format. A generic console file is shown here:

<?xml version="1.0" encoding="utf-8"?> 
<PSConsoleFile ConsoleSchemaVersion="1.0"> 
  <PSVersion>3.0</PSVersion> 
  <PSSnapIns /> 
</PSConsoleFile>

NOTES FROM THE FIELD

Jeff truman, Platform Engineer
Serve by American Express

I was pulled into a meeting with very little warning, because of the scripting evan-
gelism that I had been doing at my company. the request for the ad hoc script 

was an interesting one. We needed to get the latest network device backups and zip 
them up to provide to a partner. Our internal solution for network config manage-
ment is SolarWinds Network Configuration Manager.  The software does a nightly 
backup of the running configs of each network device and stores it in a folder on 
the central server.

that doesn’t seem too tough, so let’s take a look at the requirements. I log in to 
the server. I open up the ISE and start digging through the directories, ending up 
at  Data Drive\ Solarwinds\NCM\Backups. OK, that makes sense. Now what do I see? 
Over 100 folders with names of network devices. Hmm…OK. I open up the first one, 
and I see 25+ folders that are named via a date stamp. I open one of these folders, 
and I see the config I need. Here is the small gotcha to all of this: Not every device 
is backed up each day. I have no way of knowing what the latest time stamp will be 
in each recursive directory. For mere mortals, this would seem to be a showstopper, 
but for us PowerShell Peeps, we scoff and giggle. here’s the code:

$Path = "D:\Program Files (x86)\SolarWinds\Orion\NCM\Config-Archive\" 

$Folders = Get-ChildItem $Path 

$FullFiles 

Foreach($Folder in $Folders)



 16 CHAPTER 1 Survey of Windows PowerShell capabilities

{ 

$FF = Get-ChildItem -Path "$Path$Folder" | Sort | Select-object -First 1 

$File = Get-ChildItem -Path "$Path$Folder\$FF" | Where-object {$_.Name 

-like "*Running*"} 

$FullFiles += $File 

}

the magic of the script is inside the loop. Of course, I could have done most of this 
on a single command line via the pipeline, but I wanted to show the steps to the 
newer scripters in the audience.

$FF = Get-ChildItem -Path "$Path$Folder" | Sort | Select-object -First 1 

– This gets the Child Items of the full path, sorts them and then select 

the newest timestamp.

$File = Get-ChildItem -Path "$Path$Folder\$FF" | Where-object {$_.Name 

-like "*Running*"} – now get the Running config within this folder.

Supplying options for cmdlets

One of the useful features of Windows PowerShell is the standardization of the syntax in 
working with cmdlets. This vastly simplifies the learning of the new shell and language. 
Table 1-1 lists the common parameters. Keep in mind that all cmdlets will not implement 
these parameters. However, if these parameters are used, they will be interpreted in the same 
manner for all cmdlets because it is the Windows PowerShell engine itself that interprets the 
parameter.

TABLE 1-1 Common parameters

Parameter Meaning

-whatif Instructs the cmdlet to not execute but to tell you what would happen if the cmdlet were 
to run.

-confirm Instructs the cmdlet to prompt before executing the command.

-verbose Instructs the cmdlet to provide a higher level of detail than a cmdlet not using the ver-
bose parameter.

-debug Instructs the cmdlet to provide debugging information.

-ErrorAction Instructs the cmdlet to perform a certain action when an error occurs. Allowed actions 
are continue, stop, silentlyContinue, and inquire.

-ErrorVariable Instructs the cmdlet to use a specific variable to hold error information. This is in addition 
to the standard $error variable.

-Outvariable Instructs the cmdlet to use a specific variable to hold the output information.

-OutBuffer Instructs the cmdlet to hold a certain number of objects before calling the next cmdlet in 
the pipeline.



 Working with the help options CHAPTER 1 17

NOTE To get help on any cmdlet, use the Get-Help cmdletname cmdlet. For example, use 
Get-Help Get-Process to obtain help with using the Get-Process cmdlet.

Working with the help options

One of the first commands to run when opening Windows PowerShell for the first time is the 
Update-Help cmdlet. This is because Windows PowerShell does not ship help files with the 
product. This does not mean that no help presents itself—it does mean that help beyond 
simple syntax display requires an additional download. 

A default installation of Windows PowerShell 4.0 contains numerous modules that 
vary from installation to installation, depending on the operating system features and 
roles selected. For example, Windows PowerShell 4.0 installed on a Windows 7 worksta-
tion  contains far fewer modules and cmdlets than are available on a similar Windows 8.1 
 workstation. However, this does not mean all is chaos, because the essential Windows 
PowerShell  cmdlets—the core cmdlets—remain unchanged from installation to installation. 
The  difference between installations is because additional features and roles often install 
additional Windows PowerShell modules and cmdlets. (For more information about which 
roles install which specific modules, consult the role- and feature-specific information at 
technet.microsoft.com.)

Updating help information
The modular nature of Windows PowerShell requires additional consideration when updating 
help. Simply running Update-Help does not update all of the modules loaded on a particular 
system. In fact, some modules might not support updatable help at all—these generate an 
error when you attempt to update help. The easiest way to ensure that you update all pos-
sible help is to use both the module parameter and the force switched parameter. The com-
mand to update help for all installed modules (that support updatable help) is shown here:

Update-Help -Module * -Force

The result of running the Update-Help cmdlet on a typical Windows 8-based client system 
is shown in Figure 1-1.

technet.microsoft.com


 18 CHAPTER 1 Survey of Windows PowerShell capabilities

FIGURE 1-1 Errors appear when attempting to update help files that do not support updatable help.

One way to update help and not receive a screen full of error messages is to run the 
Update-Help cmdlet and suppress the errors all together, as shown here:

Update-Help -Module * -Force -ea 0

The problem with this approach is that you can never be certain that you actually received 
updated help for everything you wanted to update. A better approach is to hide the errors 
during the update process and also to display errors after the update completes. The advan-
tage to this approach is the ability to display cleaner errors. The UpdateHelpTrackErrors.ps1 
script illustrates this technique. The first thing that the UpdateHelpTrackErrors.ps1 script does 
is to empty the error stack by calling the clear method. Next it calls the Update-Help module 
with both the module parameter and the force switched parameter. In addition, it uses the 
ErrorAction parameter (ea is an alias for this parameter) with a value of 0. The value 0 means 
not to display any errors when the command runs. The script concludes by using a For loop 
to walk through the errors and display the error exceptions. The UpdateHelpTrackErrors.ps1 
script appears here.

NOTE For information about writing Windows PowerShell scripts, see Chapter 8, “Design-
ing the script.”



 Working with the help options CHAPTER 1 19

UpdatehelptrackErrors.ps1

#requires -version 4.0 

#Requires -RunAsAdministrator  

Update-Help -Module * -Force -ea 0 

For ($i = 0 ; $i -le $error.Count ; $i ++)  

  { "'nerror $i" ; $error[$i].exception }

When the UpdateHelpTrackErrors script runs, a progress bar displays, indicating the prog-
ress as the updatable help files update. After the script completes, any errors appear in order. 
The script and associated errors are shown in Figure 1-2.

FIGURE 1-2 Cleaner error output from updatable help, generated by the UpdateHelpTrackErrors script.

NOTES FROM THE FIELD

Jan Egil ring, Microsoft PowerShell MVP, Lead architect
Crayon, Norway

A good practice concerning the updatable help system, which was introduced 
with Windows PowerShell 3.0 or 4.0, is keeping the help files up to date.

For one-time updates, simply running Update-Help from an elevated Windows 
PowerShell session is sufficient. The help files are regularly updated, and Microsoft 



 20 CHAPTER 1 Survey of Windows PowerShell capabilities

has created an rSS-feed where you can stay updated with new releases:  
http://sxp.microsoft.com/feeds/msdntn/PowerShellHelpVersions.

as with other tasks in PowerShell, automation is key. For updating your own com-
puter, you could simply leverage the new PSScheduledJob module introduced in 
Windows PowerShell 3.0 to create a job that will invoke Update-Help—for example, 
once a week—without you having to remember it.

the following is an example of how to do this:

Register-ScheduledJob -Name Update-Help -ScriptBlock {Update-Help 

-Module *} -Trigger (New-JobTrigger -DaysOfWeek Monday -Weekly -At 8AM) 

-ScheduledJobOption (New-ScheduledJobOption -RequireNetwork)

I have a list of things that I configure when I reinstall or configure a new computer 
for myself, and this is one of the items on that list.

In a corporate environment, there are more things to consider. For example, there is 
a Group Policy setting called “Set the default source path for Update-Help,” which 
you can read more about here: http://go.microsoft.com/fwlink/?LinkId=251696. this 
setting allows you to download the updated help files from a single computer, while 
the domain-joined computers download the help files from an internal UNC-path 
specified by either the Group Policy setting or by using the – SourcePath parameter 
of Update-Help.

One reason for doing this might be that some of the computers on the network are 
not allowed access to the Internet and thus will need to get the help files from an 
internal network location.

On the computer managing the download of the help files, you can leverage the 
Save-Help cmdlet to save the help files to the internal UNC-path. An enhancement 
made to the Save-Help cmdlet in Windows PowerShell 4.0 makes it possible to 
download help files for Windows PowerShell modules not installed on the computer 
running the cmdlet. This can be accomplished by using the –Module parameter of 
Save-Help. this parameter allows wildcards, so the following example will download 
the help-files for all modules available:

Save-Help -Module * -DestinationPath \\server\share

Some might say that help files do not need to be updated on servers, because 
administrators should administer the servers remotely and use the help files on the 
local computer. Many companies have central management servers used by help 
desk personnel and administrators. these servers, as well as the client comput-
ers for the It department, should be updated regularly. One way of doing this is 
to leverage Group Policy Preferences to create a scheduled task, which will invoke 



 Working with the help options CHAPTER 1 21

 Update-Help on a scheduled basis. the following is an example of the path and 
arguments that can be used for the scheduled task:

Path: C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe 

Arguments: -Command "& {if (($PSVersionTable.PSVersion).Major -ge 3) 

{Update-Help -SourcePath '\\server\share\PowerShell\Help-files'}}"

Discovering information in help
Windows PowerShell has a high level of discoverability; that is, to learn how to use 
PowerShell, you can simply use PowerShell. Online help serves an important role in assist-
ing in this discoverability. The help system in Windows PowerShell can be entered by several 
methods. To learn about using Windows PowerShell, use the Get-Help cmdlet as follows:

Get-Help Get-Help

This command prints out help about the Get-Help cmdlet. The output from this cmdlet is 
illustrated here:

NAME 
    Get-Help 
 
SYNOPSIS 
    Displays information about Windows PowerShell commands and concepts. 
 
 
SYNTAX 
    Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>] [-Full 
    [<SwitchParameter>]] [-Functionality <String>] [-Path <String>] [-Role 
    <String>] [<CommonParameters>] 
 
    Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>] 
    [-Functionality <String>] [-Path <String>] [-Role <String>] -Detailed 
    [<SwitchParameter>] [<CommonParameters>] 
 
    Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>] 
    [-Functionality <String>] [-Path <String>] [-Role <String>] -Examples 
    [<SwitchParameter>] [<CommonParameters>] 
 
    Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>] 
    [-Functionality <String>] [-Path <String>] [-Role <String>] -Online 
    [<SwitchParameter>] [<CommonParameters>] 
 
    Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>] 
    [-Functionality <String>] [-Path <String>] [-Role <String>] -Parameter <String> 
    [<CommonParameters>] 



 22 CHAPTER 1 Survey of Windows PowerShell capabilities

    Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>] 
    [-Functionality <String>] [-Path <String>] [-Role <String>] -ShowWindow 
    [<SwitchParameter>] [<CommonParameters>] 
 
 
DESCRIPTION 
    The Get-Help cmdlet displays information about Windows PowerShell concepts and 
    commands, including cmdlets, providers, functions, aliases and scripts. 
 
    Get-Help gets the help content that it displays from help files on your 
    computer. Without the help files, Get-Help displays only basic information 
    about commands. Some Windows PowerShell modules come with help files. However, 
    beginning in Windows PowerShell 3.0, the modules that come with Windows 
    PowerShell do not include help files. To download or update the help files for 
    a module in Windows PowerShell 3.0, use the Update-Help cmdlet. You can also 
    view the help topics for Windows PowerShell online in the TechNet Library at  
    http://go.microsoft.com/fwlink/?LinkID=107116http://go.microsoft.com/fwlink 
    /?LinkID=107116. 
 
    To get help for a Windows PowerShell command, type "Get-Help" followed by the 
    command name. To get a list of all help topics on your system, type "Get-Help*". 
 
    Conceptual help topics in Windows PowerShell begin with "about_", such as 
    "about_Comparison_Operators". To see all "about_" topics, type "Get-Help 
    about_*". To see a particular topic, type "Get-Help about_<topic-name>", such 
    as "Get-Help about_Comparison_Operators". 
 
    You can display the entire help topic or use the parameters of the Get-Help 
    cmdlet to get selected parts of the topic, such as the syntax, parameters, or 
    examples. You can also use the Online parameter to display an online version of 
    a help topic for a command in your Internet browser. 
 
    If you type "Get-Help" followed by the exact name of a help topic, or by a word 
    unique to a help topic, Get-Help displays the topic contents. If you enter a 
    word or word pattern that appears in several help topic titles, Get-Help 
    displays a list of the matching titles. If you enter a word that does not 
    appear in any help topic titles, Get-Help displays a list of topics that 
    include that word in their contents. 
 
    In addition to "Get-Help", you can also type "help" or "man", which displays 
    one screen of text at a time, or "<cmdlet-name> -?", which is identical to 
    Get-Help but works only for cmdlets. 
 
    For information about the symbols that Get-Help displays in the command syntax 
    diagram, see about_Command_Syntaxhttp://go.microsoft.com/fwlink/?LinkID=113215. 
    For information about parameter attributes, such as Required and Position, see 
    about_Parametershttp://go.microsoft.com/fwlink/?LinkID=113243. 
 
 
RELATED LINKS 
    Online Version: http://go.microsoft.com/fwlink/?LinkID=113316 
    Get-Command 
    Get-Member 
    Get-PSDrive 



 Working with the help options CHAPTER 1 23

    about_Command_Syntax 
    about_Comment_Based_Help 
    about_Parameters 
 
REMARKS 
    To see the examples, type: "Get-Help Get-Help -examples". 
    For more information, type: "Get-Help Get-Help -detailed". 
    For technical information, type: "Get-Help Get-Help -full". 
    For online help, type: "Get-Help Get-Help -online"

NOTES FROM THE FIELD

Sean Kearney, Microsoft PowerShell MVP, Senior Solutions architect
Cistel Technology Inc.

I barely remember my life before using Windows PowerShell, because life with it 
afterwards has become so wonderful.

My first foray into using this technology showed me not only its ease of use but also 
its raw power by deleting files by Date and Time. Because of Windows PowerShell, I 
got to go home early by two hours on a Friday and began singing a song of praise. 
(That was the beginning of the song that I wrote called Highway to PowerShell.)  

the song introduced me to Jeffrey Snover, the architect of Windows PowerShell 
(by way of a blog post that almost scared him). I discovered a community of people 
within and outside of Microsoft who were incredibly passionate about building on 
and improving this technology. this community ran their own podcasts, built their 
own tools, and actively engaged Microsoft to make Windows PowerShell better. 
this group of people, including Microsoft staff on the Windows PowerShell team, 
Microsoft MVPs, and other community experts, were part of the inspiration to grow 
beyond who I was.

It was during this same process, on the PowerScripting Podcast that I first encoun-
tered Mr. Ed “Hey Scripting Guy” Wilson. I think I even wrote a small tune about him 
at the time and gained a friend on that day.

Not soon afterwards, I found myself working for a Fortune 15 Corporation, using 
Windows PowerShell to migrate active Directory and Exchange Users. I found 
that it was the best way to quickly unlock accounts and disable users (as a Single 
Administrator for a growing division). It also became my tool of choice for quarterly 
reporting for SOX and daily consistency in user creation. With a single Windows 
PowerShell script prompting for a user’s name, phone extension, and division, I 
could easily populate six isolated systems and produce a letter for handoff to their 
manager with credentials and an introduction to our It environment.



 24 CHAPTER 1 Survey of Windows PowerShell capabilities

With Windows PowerShell, I gained the power held by VBScript but also the ease of 
use and the ability to interact and play directly with the command prompt. I now 
had a tool that would leverage and interact with older systems—a new technol-
ogy that would help bring console applications and VBScript into newer and more 
powerful tools.

It was a tool that cost nothing to leverage and actually allowed me to get home at a 
decent hour. I was blown away!

I now work for a Microsoft Gold Partner living in the world of automation and 
Systems Center 2012. I am excited each day to go to work. Whenever somebody 
looks as me and asks, “Can you do this?” I immediately start thinking of how it can 
be done with Windows PowerShell, because the answers are usually quick and easy. 
they are simple to repeat.

thank you, Windows PowerShell and all those involved in its existence. I am forever 
grateful. You rock!

The good thing about help with the Windows PowerShell is that it not only displays help 
about commands, which you would expect, but also has three levels of display: normal, 
detailed, and full. Additionally, you can obtain help about concepts in Windows PowerShell. 
This last feature is equivalent to having an online instruction manual. To retrieve a listing of all 
the conceptual help articles, use the Get-Help about* command as follows:

Get-Help about*

Suppose you do not remember the exact name of the cmdlet you want to use, but you 
remember it was a get cmdlet? You can use a wildcard character, such as an asterisk (*), to 
obtain the name of the cmdlet, as shown here:

Get-Help get*

This technique of using a wildcard operator can be extended further. If you remember that 
the cmdlet was a get cmdlet and that it started with the letter p, you can use the following 
syntax to retrieve the desired cmdlet:

Get-Help get-p*

However, suppose that you know the exact name of the cmdlet, but you cannot exactly 
remember the syntax. For this scenario, you can use the -examples argument. For example, 
for the Get-PSDrive cmdlet, you would use Get-Help with the -examples argument, as follows:

Get-Help Get-PSDrive -examples

To see help displayed one page at a time, you can use the help function. The help func-
tion passes your input to the Get-Help cmdlet and pipelines the resulting information to the 

www.allitebooks.com

http://www.allitebooks.org


 Working with the help options CHAPTER 1 25

more.com utility. This causes output to display one page at a time in the Windows PowerShell 
console. This is useful if you want to avoid scrolling up and down to see the help output. 

NOTE Keep in mind that in the Windows PowerShell ISE the pager does not work, and 
therefore you will see no difference in output from Get-Help or from Help. In the ISE, both 
Get-Help and Help behave the same way. However, it is likely that if you are using the 
Windows PowerShell ISE, you will use Show-Command for your help instead of relying on 
Get-Help. 

This formatted output is shown in Figure 1-3.

FIGURE 1-3 Using help to display information one page at a time.

Getting tired of typing Get-Help all the time? After all, it is eight characters long, and 
one of them is a dash. The solution is to create an alias to the Get-Help cmdlet. An alias is a 
shortcut keystroke combination that will launch a program or cmdlet when typed. In creating 
an alias for the Get-Help cmdlet procedure, we will assign the Get-Help cmdlet to the gh key 
combination as shown here:

New-Alias gh Get-Help

NOTE  To create an alias for a cmdlet, confirm there is not already an alias for the cmdlet 
by using Get-Alias. Use New-Alias to assign the cmdlet to a unique keystroke  combination.



 26 CHAPTER 1 Survey of Windows PowerShell capabilities

NOTES FROM THE FIELD

Don Jones, Microsoft PowerShell MVP
Concentrated Technologies

I once had a customer who got very eager about Windows PowerShell Web access 
(PWA), and installed it on every one of the servers. You read that right. Every 

server. they’d contacted me to see whether it was also possible to get PWa running 
on all of their client computers. “It is,” I told them, “but hang on.” PWA requires 
Internet Information Services (IIS), and that’s an awful lot of code to be dropping 
onto every server just to enable a web-based shell console.

What they hadn’t quite realized is that PWa is designed as a gateway system. You 
install it on one server, or maybe a small number of servers. administrators connect 
to PWA via HTTPS (PWA isn’t meant to work across HTTP), and they authenticate 
to that server. that server impersonates their credential and uses it to establish a 
remoting session on whatever computer—client or server—that the administrators 
want to manage. PWa is therefore a kind of pass-through or proxy.

after I got the customer straightened out about how PWa was meant to be used, 
they embarked on a quick campaign to uninstall it from all but a couple of serv-
ers and dedicated those couple to being PWa servers. they actually set up DNS 
round-robin to sort of load-balance between the two PWa servers; having two PWa 
servers also gave them some redundancy.  

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous script examples.

■■ Detailed information about how to deploy help files by using a scheduled task using 
Group Policy can be found on Jan Egil Ring’s blog at http://blog.powershell.no 
/2013/03/09/automatically-update-help-files-for-windows-powershell/.

■■ All scripts from this chapter are in the file available from the Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40 
-Best-d9e16039.

■■ The Microsoft Download center at http://www.microsoft.com/en-us/download/default 
.aspx contains many Windows PowerShell-related downloads.

http://blog.powershell.no /2013/03/09/automatically-update-help-files-for-windows-powershell/
http://blog.powershell.no /2013/03/09/automatically-update-help-files-for-windows-powershell/
http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40-Best-d9e16039
http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40-Best-d9e16039
http://www.microsoft.com/en-us/download/default.aspx
http://www.microsoft.com/en-us/download/default.aspx


   27

C H A P T E R  2

Using the CIM cmdlets
■■ Using the CIM cmdlets to explore Windows Management Instrumentation classes

■■ Retrieving WMI instances

■■ Working with Association classes

■■ Additional resources 

Using the CIM cmdlets to explore WMI classes

The CIM cmdlets support multiple ways of exploring Windows Management 
Instrumentation (WMI). They work well when working in an interactive fashion. For example, 
tab expansion increases the namespace when using the CIM cmdlets, thereby permitting 
you to explore namespaces that might not otherwise be very discoverable. You can even 
drill down into namespaces by using this technique. All CIM classes support tab expansion 
of the namespace parameter, but to explore WMI classes, you want to use the Get-CimClass 
cmdlet. 

NOTE The default WMI namespace on all operating systems after Windows NT 4.0 is 
Root/Cimv2. Therefore, all of the CIM cmdlets default to Root/Cimv2. The only time you 
need to change the default WMI namespace (via the namespace parameter) is when you 
need to use a WMI class from a non-default WMI namespace.

Using the classname parameter
Using the Get-CimClass cmdlet, you can use wildcards for the classname parameter to 
enable you to quickly identify potential WMI classes for perusal. You can also use wildcards 
for the qualifiername parameter. In the example appearing here, the Get-CimClass cmdlet 
looks for WMI classes related to computers. 

PS C:\> Get-CimClass -ClassName *computer* 
 
 
   NameSpace: ROOT/CIMV2 
 



 28 CHAPTER 2 Using the CIM cmdlets

CimClassName                        CimClassMethods      CimClassProperties 
------------                        ---------------      ------------------ 
Win32_ComputerSystemEvent           {}                   {SECURITY_DESCRIPTOR, TIME_
CR... 
Win32_ComputerShutdownEvent         {}                   {SECURITY_DESCRIPTOR, TIME_
CR... 
CIM_ComputerSystem                  {}                   {Caption, Description, 
Instal... 
CIM_UnitaryComputerSystem           {SetPowerState}      {Caption, Description, 
Instal... 
Win32_ComputerSystem                {SetPowerState, R... {Caption, Description, 
Instal... 
CIM_ComputerSystemResource          {}                   {GroupComponent, PartComponent} 
CIM_ComputerSystemMappedIO          {}                   {GroupComponent, PartComponent} 
CIM_ComputerSystemDMA               {}                   {GroupComponent, PartComponent} 
CIM_ComputerSystemIRQ               {}                   {GroupComponent, PartComponent} 
Win32_ComputerSystemProcessor       {}                   {GroupComponent, PartComponent} 
CIM_ComputerSystemPackage           {}                   {Antecedent, Dependent} 
Win32_ComputerSystemProduct         {}                   {Caption, Description, 
Identi... 
Win32_NTLogEventComputer            {}                   {Computer, Record}

NOTE If you try to use a wildcard for the classname parameter of the  Get-CimInstance 
cmdlet, an error returns because the parameter design does not permit wildcard 
 characters. 

NOTES FROM THE FIELD

Brian Wilhite, Premier Field Engineer (PFE)
Microsoft Corporation

W ith Windows PowerShell 3.0, Microsoft upped their game by adding the 
CimCmdlets module.  there are so many rich features with these new 

cmdlets, and one of my favorites is the way WMI/CIM classes have become more 
discoverable within PowerShell. For example, let’s say that I need to determine what 
service pack level my client workstations are on. Before Windows PowerShell 3.0, I 
would browse the MSDN site trying to find a class that had a property that matched 
my criteria. Depending on the level of complexity, this could take several minutes 
and possibly even hours to find. Fast forward to Windows PowerShell 3.0 with the 
CimCmdlets module, and this task becomes quite easy. With the  Get-CimClass 
cmdlet I can “wildcard” search WMI for “ClassNames”, “MethodNames”, 



 Using the CIM cmdlets to explore WMI classes CHAPTER 2 29

“PropertyNames” and “QualifierNames”.  For the example I mentioned here, I would 
easily search for a “PropertyName” of “*ServicePack*” to find out the classes that 
match that criteria:

Get-CimClass -PropertyName *ServicePack*

Normally, this will return two items, the Win32_OperatingSystem and Win32 
_QuickFixEngineering WMI classes. Now that I have the classes, I can do one of two 
things. I can query the class locally to find the property that matches my search 
criteria, which in this case is great because I have only two classes to parse. But what 
happens when the query returns quite a few classes? In this case, I would use the 
following one-liner to parse the data for me:

Get-CimClass -PropertyName *ServicePack* | 

ForEach-Object {$_ | Select-Object -Property CimClassName, ' 

@{L="CimClassProperties";E={$_.CimClassProperties.Name -like 

"*ServicePack*"}}}

this will return the CimClassName that relates to the matched CimClassProperties 
search criteria. this technique has sped up my WMI property searches because I 
don’t have to search MSDN for a specific class, method, property, and/or qualifier 
names.

Finding WMI class methods
If you want to find WMI classes related to processes that contain a method that begins with 
the letters term*, you use a command similar to the following:

PS C:\> Get-CimClass -ClassName *process* -MethodName term* 
 
 
   NameSpace: ROOT/cimv2 
 
CimClassName                        CimClassMethods      CimClassProperties 
------------                        ---------------      ------------------ 
Win32_Process                       {Create, Terminat... {Caption, Description, 
Instal...

To find all WMI classes related to processes that expose any methods, you would use the 
command appearing here.

PS C:\> Get-CimClass -ClassName *process* -MethodName * 
 
 
   NameSpace: ROOT/cimv2 



 30 CHAPTER 2 Using the CIM cmdlets

CimClassName                        CimClassMethods      CimClassProperties 
------------                        ---------------      ------------------ 
Win32_Process                       {Create, Terminat... {Caption, Description, 
Instal... 
CIM_Processor                       {SetPowerState, R... {Caption, Description, 
Instal... 
Win32_Processor                     {SetPowerState, R... {Caption, Description, 
Instal...

To find any WMI class in the root/cimv2 WMI namespace that exposes a method called cre-
ate, use the following command:

PS C:\> Get-CimClass -ClassName * -MethodName create 
 
 
   NameSpace: ROOT/cimv2 
 
CimClassName                        CimClassMethods      CimClassProperties 
------------                        ---------------      ------------------ 
Win32_Process                       {Create, Terminat... {Caption, Description, 
Instal... 
Win32_ScheduledJob                  {Create, Delete}     {Caption, Description, 
Instal... 
Win32_DfsNode                       {Create}             {Caption, Description, 
Instal... 
Win32_BaseService                   {StartService, St... {Caption, Description, 
Instal... 
Win32_SystemDriver                  {StartService, St... {Caption, Description, 
Instal... 
Win32_Service                       {StartService, St... {Caption, Description, 
Instal... 
Win32_TerminalService               {StartService, St... {Caption, Description, 
Instal... 
Win32_Share                         {Create, SetShare... {Caption, Description, 
Instal... 
Win32_ClusterShare                  {Create, SetShare... {Caption, Description, 
Instal... 
Win32_ShadowCopy                    {Create, Revert}     {Caption, Description, 
Instal... 
Win32_ShadowStorage                 {Create}             {AllocatedSpace, DiffVolume, 
...

Filtering classes by qualifier
To find WMI classes that possess a particular qualifier, use the qualifier parameter. For 
example, the following command finds WMI classes that relate to computers and that have 
the supportsupdate WMI qualifier: 

PS C:\> Get-CimClass -ClassName *computer* -QualifierName *update 
 
 
   NameSpace: ROOT/cimv2 



 Using the CIM cmdlets to explore WMI classes CHAPTER 2 31

CimClassName                        CimClassMethods      CimClassProperties 
------------                        ---------------      ------------------ 
Win32_ComputerSystem                {SetPowerState, R... {Caption, Description, 
Instal...

The parameters can be combined to produce powerful searches that without using the 
CIM cmdlets would require rather complicated scripting. For example, the following com-
mand finds all WMI classes in the root/Cimv2 namespace that have the singleton qualifier and 
also expose a method: 

PS C:\> Get-CimClass -ClassName * -QualifierName singleton -MethodName * 
 
 
   NameSpace: ROOT/cimv2 
 
CimClassName                        CimClassMethods      CimClassProperties 
------------                        ---------------      ------------------ 
__SystemSecurity                    {GetSD, GetSecuri... {} 
Win32_OperatingSystem               {Reboot, Shutdown... {Caption, Description, 
Instal... 
Win32_OfflineFilesCache             {Enable, RenameIt... {Active, Enabled, Location}

One qualifier that is important to review is the deprecated qualifier. Deprecated WMI 
classes are not recommended for use because they are being phased out. Using the 
 Get-CimClass cmdlet, it is easy to spot these WMI classes. This technique is shown here:

PS C:\> Get-CimClass * -QualifierName deprecated 
 
 
   NameSpace: ROOT/cimv2 
 
CimClassName                        CimClassMethods      CimClassProperties 
------------                        ---------------      ------------------ 
Win32_PageFile                      {TakeOwnerShip, C... {Caption, Description, 
Instal... 
Win32_DisplayConfiguration          {}                   {Caption, Description, 
Settin... 
Win32_DisplayControllerConfigura... {}                   {Caption, Description, 
Settin... 
Win32_VideoConfiguration            {}                   {Caption, Description, 
Settin... 
Win32_AllocatedResource             {}                   {Antecedent, Dependent}

Using this technique, it is easy to find Association classes. (More information about work-
ing with WMI Association classes appears in the “Working with Associations” section that 
follows.) The code that follows finds all of the WMI classes in the root/cimv2 WMI namespace 
that relate to sessions. In addition, it looks for the association qualifier. Luckily, you can use 
wildcards for the qualifier names, and therefore the following code uses assoc* instead of typ-
ing out association: 

PS C:\> Get-CimClass -ClassName *session* -QualifierName assoc* 
 
 



 32 CHAPTER 2 Using the CIM cmdlets

   NameSpace: ROOT/cimv2 
 
CimClassName                        CimClassMethods      CimClassProperties 
------------                        ---------------      ------------------ 
Win32_SubSession                    {}                   {Antecedent, Dependent} 
Win32_SessionConnection             {}                   {Antecedent, Dependent} 
Win32_LogonSessionMappedDisk        {}                   {Antecedent, Dependent} 
Win32_SessionResource               {}                   {Antecedent, Dependent} 
Win32_SessionProcess                {}                   {Antecedent, Dependent}

One qualifier you should definitely look for is the dynamic qualifier, because it is unsup-
ported to query abstract WMI classes. Therefore, when looking for WMI classes, you will want 
to ensure that at some point you run your list through the dynamic filter. In the code that 
follows, three WMI classes return that are related to time: 

PS C:\> Get-CimClass -ClassName *time 
 
 
   NameSpace: ROOT/cimv2 
 
CimClassName                        CimClassMethods      CimClassProperties 
------------                        ---------------      ------------------ 
Win32_CurrentTime                   {}                   {Day, DayOfWeek, Hour, 
Millis... 
Win32_LocalTime                     {}                   {Day, DayOfWeek, Hour, 
Millis... 
Win32_UTCTime                       {}                   {Day, DayOfWeek, Hour, 
Millis...

By adding the query for the qualifier, the appropriate WMI classes are identified. One class 
is abstract, and the other two are dynamic classes that could prove to be useful. This code 
appears here, where first the dynamic qualifier is used and secondly where the abstract quali-
fier appears.

PS C:\> Get-CimClass -ClassName *time -QualifierName dynamic 
 
 
   NameSpace: ROOT/cimv2 
 
CimClassName                        CimClassMethods      CimClassProperties 
------------                        ---------------      ------------------ 
Win32_LocalTime                     {}                   {Day, DayOfWeek, Hour, 
Millis... 
Win32_UTCTime                       {}                   {Day, DayOfWeek, Hour, 
Millis... 
 
 
PS C:\> Get-CimClass -ClassName *time -QualifierName abstract 
 
 
   NameSpace: ROOT/cimv2 



 Retrieving WMI instances CHAPTER 2 33

CimClassName                        CimClassMethods      CimClassProperties 
------------                        ---------------      ------------------ 
Win32_CurrentTime                   {}                   {Day, DayOfWeek, Hour, 
Millis...

Retrieving WMI instances

To query for WMI data, use the Get-CimInstance cmdlet. The easiest way to use the 
 Get-CimInstance cmdlet is to query for all properties and all instances of a particular WMI 
class on the local machine. This is extremely easy to do. The following command illustrates 
returning BIOS information from the local computer:

PS C:\> Get-CimInstance win32_bios 
 
 
SMBIOSBIOSVersion : 090004 
Manufacturer      : American Megatrends Inc. 
Name              : BIOS Date: 03/19/09 22:51:32  Ver: 09.00.04 
SerialNumber      : 4429-0046-2083-1237-7579-8937-43 
Version           : VRTUAL – 3000919

The Get-CimInstance cmdlet returns the entire WMI object, but it honors the format*.xml 
files that Windows PowerShell uses to determine which properties are displayed by default for 
a particular WMI class. The command appearing here shows the properties available from the 
Win32_Bios WMI class: 

PS C:\> $b = Get-CimInstance win32_bios 
PS C:\> $b.CimClass.CimClassProperties | fw name -Column 3 
 
 
Caption                       Description                   InstallDate 
Name                          Status                        BuildNumber 
CodeSet                       IdentificationCode            LanguageEdition 
Manufacturer                  OtherTargetOS                 SerialNumber 
SoftwareElementID             SoftwareElementState          TargetOperatingSystem 
Version                       PrimaryBIOS                   BiosCharacteristics 
BIOSVersion                   CurrentLanguage               InstallableLanguages 
ListOfLanguages               ReleaseDate                   SMBIOSBIOSVersion 
SMBIOSMajorVersion            SMBIOSMinorVersion            SMBIOSPresent

reduce returned properties and instances
To limit the amount of data returned from a remote connection, reduce the number of 
properties returned as well as the number of instances. To reduce properties, use the property 
parameter. To reduce the number of returned instances, use the filter parameter. The com-
mand here uses gcim, which is an alias for the Get-CimInstance cmdlet. It also abbreviates the 
classname parameter and the filter parameter. As seen here, the command returns only the 



 34 CHAPTER 2 Using the CIM cmdlets

name and the state from the bits service. While the default output shows all of the property 
names as well as the system properties, only the two selected properties contain data.

PS C:\> gcim -clas win32_service -Property name, state -Fil "name = 'bits'" 
 
 
 
Name                    : BITS 
Status                  : 
ExitCode                : 
DesktopInteract         : 
ErrorControl            : 
PathName                : 
ServiceType             : 
StartMode               : 
Caption                 : 
Description             : 
InstallDate             : 
CreationClassName       : 
Started                 : 
SystemCreationClassName : 
SystemName              : 
AcceptPause             : 
AcceptStop              : 
DisplayName             : 
ServiceSpecificExitCode : 
StartName               : 
State                   : Running 
TagId                   : 
CheckPoint              : 
ProcessId               : 
WaitHint                : 
PSComputerName          : 
CimClass                : root/cimv2:Win32_Service 
CimInstanceProperties   : {Caption, Description, InstallDate, Name...} 
CimSystemProperties     : Microsoft.Management.Infrastructure.CimSystemProperties

Clean up output from the command
To produce a cleaner output, send the selected data to the Format-Table cmdlet. This is easy 
to do because ft is an alias for the Format-Table cmdlet. 

PS C:\> gcim -clas win32_service -Property name, state -Fil "name = 'bits'" | ft name, 
state 
 
name                                         state 
----                                         ----- 
BITS                                         Running

Make sure to choose properties that you have already selected in the property parameter 
or else they will not display. In the command appearing here, the status property is selected 
in the Format-Table cmdlet. There is a status property on the Win32_Service WMI class, but it 
was not chosen when the properties were selected. 

www.allitebooks.com

http://www.allitebooks.org


 Working with Association classes CHAPTER 2 35

PS C:\> gcim -clas win32_service -Property name, state -Fil "name = 'bits'" | ft name, 
state, status 
 
name                          state                         status 
----                          -----                         ------ 
BITS                          Running

The Get-CimInstance cmdlet does not accept a wildcard parameter for property names 
(neither does the Get-WmiObject cmdlet). One thing that can simplify some of your coding 
is to put your property selection into a variable. This permits you to use the same property 
names both in the Get-CimInstance cmdlet and in your Format-Table cmdlet (or Format-List 
or Select-Object or whatever you are doing after you get your WMI data) without having to 
type things twice. This technique is shown here:

PS C:\> $property = "name","state","startmode","startname" 
PS C:\> gcim -clas win32_service -Pro $property -fil "name = 'bits'" | ft $property -A 
 
name state   startmode startname 
---- -----   --------- --------- 
BITS Running Manual    LocalSystem

Working with Association classes

In the old-fashioned VBScript days, working with Association classes was extremely compli-
cated. This was unfortunate because WMI Association classes are extremely powerful and 
useful. Earlier versions of Windows PowerShell simplified, working with Association classes, 
primarily because it simplified working with WMI data in general. However, figuring out how 
to utilize the Windows PowerShell advantage was still pretty much an advanced technique. 
Luckily, we have the CIM classes (introduced in Windows PowerShell 3.0) that give us the 
 Get-CimAssociatedInstance cmdlet. 

The first thing to do is to retrieve a CIM instance and store it in a variable. In the exam-
ple shown here, instances of the Win32_LogonSession WMI class are retrieved and stored 
in the $logon variable. Next, the Get-CimAssociatedInstance cmdlet is used to retrieve 
instances associated with this class. To see what type of objects will return from the com-
mand, the results pipe to the Get-Member cmdlet. As seen here, two WMI classes return: the 
Win32_UserAccount class and all processes that are related to that user account in the form of 
instances of the Win32_Process class. 

PS C:\> $logon = Get-CimInstance win32_logonsession 
PS C:\> Get-CimAssociatedInstance $logon | Get-Member 
 
 
   TypeName: Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_
UserAccount 
 
Name                      MemberType  Definition 
----                      ----------  ---------- 
Clone                     Method      System.Object ICloneable.Clone() 



 36 CHAPTER 2 Using the CIM cmdlets

Dispose                   Method      void Dispose(), void IDisposable.Dispose() 
Equals                    Method      bool Equals(System.Object obj) 
GetCimSessionComputerName Method      string GetCimSessionComputerName() 
GetCimSessionInstanceId   Method      guid GetCimSessionInstanceId() 
GetHashCode               Method      int GetHashCode() 
GetObjectData             Method      void GetObjectData(System.Runtime.
Serialization.... 
GetType                   Method      type GetType() 
ToString                  Method      string ToString() 
AccountType               Property    uint32 AccountType {get;} 
Caption                   Property    string Caption {get;} 
Description               Property    string Description {get;} 
Disabled                  Property    bool Disabled {get;set;} 
Domain                    Property    string Domain {get;} 
FullName                  Property    string FullName {get;set;} 
InstallDate               Property    CimInstance#DateTime InstallDate {get;} 
LocalAccount              Property    bool LocalAccount {get;set;} 
Lockout                   Property    bool Lockout {get;set;} 
Name                      Property    string Name {get;} 
PasswordChangeable        Property    bool PasswordChangeable {get;set;} 
PasswordExpires           Property    bool PasswordExpires {get;set;} 
PasswordRequired          Property    bool PasswordRequired {get;set;} 
PSComputerName            Property    string PSComputerName {get;} 
SID                       Property    string SID {get;} 
SIDType                   Property    byte SIDType {get;} 
Status                    Property    string Status {get;} 
PSStatus                  PropertySet PSStatus {Status, Caption, PasswordExpires} 
 
 
   TypeName: Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_Process 
 
Name                       MemberType     Definition 
----                       ----------     ---------- 
Handles                    AliasProperty  Handles = Handlecount 
ProcessName                AliasProperty  ProcessName = Name 
VM                         AliasProperty  VM = VirtualSize 
WS                         AliasProperty  WS = WorkingSetSize 
Clone                      Method         System.Object ICloneable.Clone() 
Dispose                    Method         void Dispose(), void IDisposable.Dispose() 
Equals                     Method         bool Equals(System.Object obj) 
GetCimSessionComputerName  Method         string GetCimSessionComputerName() 
GetCimSessionInstanceId    Method         guid GetCimSessionInstanceId() 
GetHashCode                Method         int GetHashCode() 
GetObjectData              Method         void GetObjectData(System.Runtime.
Serializat... 
GetType                    Method         type GetType() 
ToString                   Method         string ToString() 
Caption                    Property       string Caption {get;} 
CommandLine                Property       string CommandLine {get;} 
CreationClassName          Property       string CreationClassName {get;} 
CreationDate               Property       CimInstance#DateTime CreationDate {get;} 
CSCreationClassName        Property       string CSCreationClassName {get;} 
CSName                     Property       string CSName {get;} 
Description                Property       string Description {get;} 
ExecutablePath             Property       string ExecutablePath {get;} 



 Working with Association classes CHAPTER 2 37

ExecutionState             Property       uint16 ExecutionState {get;} 
Handle                     Property       string Handle {get;} 
HandleCount                Property       uint32 HandleCount {get;} 
InstallDate                Property       CimInstance#DateTime InstallDate {get;} 
KernelModeTime             Property       uint64 KernelModeTime {get;} 
MaximumWorkingSetSize      Property       uint32 MaximumWorkingSetSize {get;} 
MinimumWorkingSetSize      Property       uint32 MinimumWorkingSetSize {get;} 
Name                       Property       string Name {get;} 
OSCreationClassName        Property       string OSCreationClassName {get;} 
OSName                     Property       string OSName {get;} 
OtherOperationCount        Property       uint64 OtherOperationCount {get;} 
OtherTransferCount         Property       uint64 OtherTransferCount {get;} 
PageFaults                 Property       uint32 PageFaults {get;} 
PageFileUsage              Property       uint32 PageFileUsage {get;} 
ParentProcessId            Property       uint32 ParentProcessId {get;} 
PeakPageFileUsage          Property       uint32 PeakPageFileUsage {get;} 
PeakVirtualSize            Property       uint64 PeakVirtualSize {get;} 
PeakWorkingSetSize         Property       uint32 PeakWorkingSetSize {get;} 
Priority                   Property       uint32 Priority {get;} 
PrivatePageCount           Property       uint64 PrivatePageCount {get;} 
ProcessId                  Property       uint32 ProcessId {get;} 
PSComputerName             Property       string PSComputerName {get;} 
QuotaNonPagedPoolUsage     Property       uint32 QuotaNonPagedPoolUsage {get;} 
QuotaPagedPoolUsage        Property       uint32 QuotaPagedPoolUsage {get;} 
QuotaPeakNonPagedPoolUsage Property       uint32 QuotaPeakNonPagedPoolUsage {get;} 
QuotaPeakPagedPoolUsage    Property       uint32 QuotaPeakPagedPoolUsage {get;} 
ReadOperationCount         Property       uint64 ReadOperationCount {get;} 
ReadTransferCount          Property       uint64 ReadTransferCount {get;} 
SessionId                  Property       uint32 SessionId {get;} 
Status                     Property       string Status {get;} 
TerminationDate            Property       CimInstance#DateTime TerminationDate {get;} 
ThreadCount                Property       uint32 ThreadCount {get;} 
UserModeTime               Property       uint64 UserModeTime {get;} 
VirtualSize                Property       uint64 VirtualSize {get;} 
WindowsVersion             Property       string WindowsVersion {get;} 
WorkingSetSize             Property       uint64 WorkingSetSize {get;} 
WriteOperationCount        Property       uint64 WriteOperationCount {get;} 
WriteTransferCount         Property       uint64 WriteTransferCount {get;} 
Path                       ScriptProperty System.Object Path {get=$this.ExecutablePath;}

When the command runs without piping to the Get-Member object, we see that first the 
instance of the Win32_UserAccount WMI class returns. The output shows the user name, 
account type, sid, domain, and the caption of the user account. As seen in the output from 
Get-Member, a lot more information is available, but this is the default display. Following the 
user account information, the default process information displays the process ID, name, and 
a bit of performance information related to the processes associated with the user account.

PS C:\> $logon = Get-CimInstance win32_logonsession 
PS C:\> Get-CimAssociatedInstance $logon 
 
Name             Caption            AccountType       SID               Domain 
----             -------            -----------       ---               ------ 
ed               IAMMRED\ed         512               S-1-5-21-14579... IAMMRED 
 



 38 CHAPTER 2 Using the CIM cmdlets

ProcessId      : 2780 
Name           : taskhostex.exe 
HandleCount    : 215 
WorkingSetSize : 8200192 
VirtualSize    : 242356224 
 
 
ProcessId      : 2804 
Name           : rdpclip.exe 
HandleCount    : 225 
WorkingSetSize : 8175616 
VirtualSize    : 89419776 
 
 
ProcessId      : 2352 
Name           : explorer.exe 
HandleCount    : 1078 
WorkingSetSize : 65847296 
VirtualSize    : 386928640 
 
 
ProcessId      : 984 
Name           : powershell.exe 
HandleCount    : 577 
WorkingSetSize : 94527488 
VirtualSize    : 690466816 
 
 
ProcessId      : 296 
Name           : conhost.exe 
HandleCount    : 54 
WorkingSetSize : 7204864 
VirtualSize    : 62164992

If you do not want to retrieve both classes from the association query, you can spec-
ify the resulting class by name. To do this, use the resultclassname parameter from the 
 Get-CimAssociatedInstance cmdlet. In the code that follows, only the Win32_UserAccount 
WMI class returns from the query: 

PS C:\> $logon = Get-CimInstance win32_logonsession 
PS C:\> Get-CimAssociatedInstance $logon -ResultClassName win32_useraccount 
 
Name             Caption            AccountType       SID               Domain 
----             -------            -----------       ---               ------ 
ed               IAMMRED\ed         512               S-1-5-21-14579... IAMMRED

When working with the Get-CimAssociatedInstance cmdlet, the inputobject you supply 
must be a single instance. If you supply an object that contains more than one instance of the 
class, an error raises. This error appears here, where more than one disk is provided to the 
inputobject parameter: 

PS C:\> $disk = Get-CimInstance win32_logicaldisk 
PS C:\> Get-CimAssociatedInstance $disk 
Get-CimAssociatedInstance : Cannot convert 'System.Object[]' to the type 



 Working with Association classes CHAPTER 2 39

'Microsoft.Management.Infrastructure.CimInstance' required by parameter 'InputObject'. 
Specified method is not supported. 
At line:1 char:27 
+ Get-CimAssociatedInstance $disk 
+                           ~~~~~ 
    + CategoryInfo          : InvalidArgument: (:) [Get-CimAssociatedInstance], Paramete 
   rBindingException 
    + FullyQualifiedErrorId : CannotConvertArgument,Microsoft.Management.Infrastructure. 
   CimCmdlets.GetCimAssociatedInstanceCommand

There are two ways to correct this particular error. The first, and the easiest, is to use array 
indexing. This is shown here:

PS C:\> $disk = Get-CimInstance win32_logicaldisk 
PS C:\> Get-CimAssociatedInstance $disk[0] 
 
Name          PrimaryOwner   Domain         TotalPhysical  Model         Manufacturer 
              Name                          Memory 
----          -------------- ------         -------------  -----         ------------ 
W8C504        ed             iammred.net    2147012608     Virtual Ma... Microsoft ... 
 
 
PS C:\> Get-CimAssociatedInstance $disk[1] 
 
Name             Hidden             Archive           Writeable         LastModified 
----             ------             -------           ---------         ------------ 
c:\ 
 
NumberOfBlocks   : 265613312 
BootPartition    : False 
Name             : Disk #0, Partition #1 
PrimaryPartition : True 
Size             : 135994015744 
Index            : 1 
 
 
Domain              : iammred.net 
Manufacturer        : Microsoft Corporation 
Model               : Virtual Machine 
Name                : W8C504 
PrimaryOwnerName    : ed 
TotalPhysicalMemory : 2147012608

Using array indexing is fine when you find yourself in the situation with an inputobject 
parameter that contains an array. However, the results might be a bit inconsistent. A bet-
ter approach is to ensure that you do not have an array in the first place. To do this, use the 
filter parameter to reduce the number of instances of your WMI class that return. In the code 
shown here, the filter returns the number of WMI instances to the C drive: 

PS C:\> $disk = Get-CimInstance win32_logicaldisk -Filter "name = 'c:'" 
PS C:\> Get-CimAssociatedInstance $disk 



 40 CHAPTER 2 Using the CIM cmdlets

Name             Hidden             Archive           Writeable         LastModified 
----             ------             -------           ---------         ------------ 
c:\ 
 
NumberOfBlocks   : 265613312 
BootPartition    : False 
Name             : Disk #0, Partition #1 
PrimaryPartition : True 
Size             : 135994015744 
Index            : 1 
 
 
Domain              : iammred.net 
Manufacturer        : Microsoft Corporation 
Model               : Virtual Machine 
Name                : W8C504 
PrimaryOwnerName    : ed 
TotalPhysicalMemory : 2147012608

An easy way to see the objects returned by the Get-CimAssociatedInstance cmdlet is to 
pipeline the returned objects to the Get-Member cmdlet and then to select the typename 
property. Because more than one instance of the object can return and clutter the output, it 
is important to choose unique type names. This command is shown here:

PS C:\> Get-CimAssociatedInstance $disk | gm | select typename -Unique 
 
TypeName 
-------- 
Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_Directory 
Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_DiskPartition 
Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_ComputerSystem

Armed with this information, it is easy to explore the returned Association classes. This 
technique is shown here: 

PS C:\> Get-CimAssociatedInstance $disk -ResultClassName win32_directory 
 
Name             Hidden             Archive           Writeable         LastModified 
----             ------             -------           ---------         ------------ 
c:\ 
 
 
PS C:\> Get-CimAssociatedInstance $disk -ResultClassName win32_diskpartition 
 
Name             NumberOfBlocks BootPartition PrimaryPartition  Size          Index 
----             -------------- ------------- ----------------  ----          ----- 
Disk #0, Part... 265613312      False         True              135994015744  1 
 
 
PS C:\> Get-CimAssociatedInstance $disk -ResultClassName win32_Computersystem 



 Additional resources CHAPTER 2 41

Name          PrimaryOwner  Domain        TotalPhysical   Model         Manufacturer 
              Name                        Memory  
----          ------------  ------        --------------  -----         ------------ 
W8C504        ed            iammred.net   2147012608      Virtual Ma... Microsoft ...

Keep in mind that the entire WMI class returns and is therefore ripe for further exploration. 
The easy way to do this is to store the results into a variable and then walk through the data. 
When you have what interests you, you might decide to display a nicely organized table, such 
as the following:

PS C:\> $dp = Get-CimAssociatedInstance $disk -ResultClassName win32_diskpartition 
PS C:\> $dp | FT deviceID, BlockSize, NumberOfBLicks, Size, StartingOffSet -AutoSize 
 
 
deviceID              BlockSize NumberOfBLicks         Size StartingOffSet 
--------              --------- --------------         ---- -------------- 
Disk #0, Partition #1       512                135994015744      368050176

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous script examples.

■■ All scripts from this chapter are available via the TechNet Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40 
-Best-d9e16039.





PART II

Planning for scripting   

CHAPTER 3 Using the Active Directory module 45

CHAPTER 4 Identifying scripting opportunities 73

CHAPTER 5 Configuring the script environment 111

CHAPTER 6 Avoiding scripting pitfalls 151

CHAPTER 7 Tracking scripting opportunities 195



www.allitebooks.com

http://www.allitebooks.org


   45

C H A P T E R  3

Using the active Directory 
module

■■ Understanding the Active Directory module

■■ Using the Active Directory module

■■ Additional resources

Understanding the Active Directory module

Microsoft made Active Directory Domain Services (AD DS) Windows PowerShell cmdlets 
available beginning with Windows Server 2008 R2. You can also download and install the 
Active Directory Management Gateway Service (ADMGS) that provides a web service inter-
face to Active Directory domains or Active Directory Lightweight Directory Services that are 
running on the same server as the ADMGS. The ADMGS can run on Windows Server 2003 
with Service Pack 2 or on Windows Server 2008. On Windows Server 2008 R2 and above, 
the ADMGS installs as a role and does not require an additional download. When you have 
one domain controller running Windows Server 2008 R2 (or later) in your domain, you can 
use the new cmdlets to manage your AD DS installation. Installing the ADMGS Windows 
Server 2003 or Windows Server 2008 does not make it possible to load the Active Directory 
module on those machines, but it does permit you to use the Active Directory module from 
another machine to manage those servers. 

INSIDE TRACK

ashley McGlone, Senior Premier Field Engineer
Microsoft Corporation

Some of us have been using active Directory since the release candidates in 
1999. Others have gotten started with it recently. But we all have one thing 

in common. We need to automate tasks across hundreds or thousands of users, 
computers, groups, OUs, and so on.

Over the years, our tools were basically VBScript with aDSI or canned command-
line utilities like CSVDE or DSQUERY. (A few of us even used WMI or ADODB to 



 46 CHAPTER 3 Using the Active Directory module

interface with the directory.) Those legacy scripting techniques faithfully carried us 
through many implementations and change controls.

But in the autumn of 2009, our tools made a giant leap forward. Windows Server 
2008 r2 and the rSat for Windows 7 introduced the active Directory PowerShell 
Module. Wow! What would take 20 lines of VBScript can now be done in a single 
line of Windows PowerShell.

here are some great examples of aD PowerShell one-liners:

Spreadsheet of stale accounts past 30 days: 

Search-ADAccount -AccountInactive -TimeSpan 30 | Export-CSV .\Stale_

Accts.csv

Helpdesk prompt for a user password reset: 

Set-ADAccountPassword (Read-Host 'Username') -Reset

Target list of global catalog domain controllers: 

(Get-ADForest).GlobalCatalogs

In my field experience, I have written some large-scale scripts as well, such as the 
following:

■■ Active Directory SID history cleanup and file server ACL migrations

■■ DNS reorganization and migration to aD-integrated zones

■■ Security delegation reporting across OUs and GPOs

On the domain controller, this magic is made possible by the active Directory 
Web Service (ADWS). The ADWS listens on port 9389 and answers to the Windows 
PowerShell cmdlets. Whether you’re running a quick one-liner or automating across 
thousands of accounts, this service enables you to read and write directory data 
with ease.

With each release of Windows Server, the Active Directory module (and now com-
panion modules) grows to support new features. The latest releases offer additional 
functionality to replace trusty utilities like DCPrOMO and rEPaDMIN. additionally, 
the Group Policy module enables further automation of workstation management 
through active Directory.

the active Directory module for Windows PowerShell is no longer new technol-
ogy. this is a mature product that every administrator needs in their bag of tricks 
to make the work day go faster. Get started today with one simple Windows 
PowerShell command: Import-Module ActiveDirectory.



 Understanding the Active Directory module CHAPTER 3 47

Installing the active Directory module
The Active Directory module is available beginning with Windows 7 on the client side and 
with Windows 2008 R2 on servers. To make the cmdlets available on the desktop operating 
system requires downloading and installing the Remote Server Administration Tools (RSAT). 

To install the Active Directory module on either a Windows Server 2012 or Windows Server 
2012 R2 machine, you can use the Add-WindowsFeature cmdlet because the Active Directory 
module is directly available to the operating system as an optional Windows feature. 
Therefore, installation on a server operating system does not require downloading the RSAT 
tools. To install the RSAT tools for Active Directory, first use the Get-WindowsFeature cmdlet to 
get the rsat-ad-tools, and then pipeline it to the Add-WindowsFeature cmdlet. This technique 
is shown here:

Get-WindowsFeature rsat-ad-tools | Add-WindowsFeature

The output associated with getting and installing the rsat-ad-tools feature is shown in 
Figure 3-1.

FIGURE 3-1 Installing the RSAT tools provides access to the Active Directory module. 

Getting started with the active Directory module
After you have installed the RSAT tools, you will want to verify that the Active Directory is 
present and that it loads properly. To do this, use the Get-Module cmdlet with the ListAvailable 
switch to verify that the ActiveDirectory module is present. Here is the command to do this:

Get-Module -ListAvailable ActiveDirectory



 48 CHAPTER 3 Using the Active Directory module

After the ActiveDirectory module loads, you can obtain a listing of the Active Directory 
cmdlets by using the Get-Command cmdlet and specifying the module parameter. Because 
Windows PowerShell 4.0 automatically loads modules, you do not need to use the Import-
Module cmdlet to import the ActiveDirectory module if you do not want to do so. This com-
mand is shown here:

Get-Command -Module ActiveDirectory

Using the Active Directory module

It is not necessary to always load the Active Directory module (or for that matter any mod-
ule) because Windows PowerShell 3.0 and 4.0 automatically load the module containing a 
referenced cmdlet. The location searched by Windows PowerShell for modules comes from 
the environmental variable PSModulePath. To view the value of this environmental variable, 
preface the variable name with the environmental drive. The following command retrieves the 
default module locations and displays the associated paths:

PS C:\> $env:PSModulePath 
C:\Users\ed.IAMMRED\Documents\WindowsPowerShell\Modules;C:\Program Files\WindowsPowe 
rShell\Modules;C:\Windows\system32\WindowsPowerShell\v1.0\Modules\

If you do not want to install the Active Directory module on your client operating systems, 
all you need to do is to add the rsat-ad-tools feature to at least one server. When installed on 
the server, use Windows PowerShell remoting to connect to the server hosting the rsat-ad-
tools feature from your client workstation. When in the remote session, if the remote server is 
Windows 8, all you need to do is call one of the Active Directory cmdlets. The ActiveDirectory 
module automatically loads, and the information returns. The following commands illustrate 
this technique:

$credential = get-credential 
Enter-PSSession -ComputerName w8Server6 -Credential $credential 
Get-ADDomain

The technique to use Windows PowerShell remoting to connect to a server that contains 
the Active Directory module and to automatically load that module while using a cmdlet from 
that module on Windows PowerShell 4.0 is shown in Figure 3-2. 



 Using the Active Directory module CHAPTER 3 49

FIGURE 3-2 Using Windows PowerShell 4.0 remoting to obtain Active Directory information without first 
loading the module. 

NOTES FROM THE FIELD

Brian Wilhite, Premier Field Engineer (PFE)
Microsoft Corporation

L ike most Windows administrators, you probably work with active Directory 
on a weekly, if not daily, basis. With Windows PowerShell, working with active 

Directory is so much easier than it used to be. In fact, I’ve forgotten how complex 
structuring aDSI code can be. When installing a fresh copy of Windows, usu-
ally after customizing my profile, I will download and install the remote Server 
Administration Tools (RSAT), to ensure that I have the ActiveDirectory Module for 
use within Windows PowerShell. From time to time, my manager has asked me 
to run a query against active Directory to determine what computers have been 
enabled for delegation, for compliance reasons, and to possibly execute a task on 
those systems. So I turn to Windows PowerShell, with the ActiveDirectory module, 
for the answer. 

First, you need to determine what Active Directory attributes to filter for. In my 
case, I’m looking for any computer object that has a value present for the msDS-
AllowedToDelegateTo attribute or the TrustedForDelegation attribute value set to 
true. the active Directory module has a cmdlet that will allow me to query active 
Directory for these attributes and their settings. Consider the following example:



 50 CHAPTER 3 Using the Active Directory module

Get-ADComputer ' 

-Filter {msDS-AllowedToDelegateTo -like "*" -or TrustedForDelegation  

-eq "True"} ' 

-Properties TrustedForDelegation, msDS-AllowedToDelegateTo |  

Select Name, TrustedForDelegation, msDS-AllowedToDelegateTo

this will return any computer object that is trusted for delegation to any service 
or specific services. Finally, let’s assume that you want to take those computers 
and query the Windows Updates that have been applied to them. You can run the 
following one-liner, assuming Windows PowerShell remoting is enabled on the 
targets, to pipe the results into the Invoke-Command cmdlet, launching Get-HotFix 
on the target machine, and storing the results in a variable:

$Results = Get-ADComputer ' 

-Filter {msDS-AllowedToDelegateTo -like "*" -or TrustedForDelegation -eq 

"True"} ' 

-Properties TrustedForDelegation, msDS-AllowedToDelegateTo |  

Select Name, TrustedForDelegation, msDS-AllowedToDelegateTo | 

ForEach-Object {Invoke-Command -Command {Get-HotFix} -ComputerName 

$_.Name}

after this runs, which might take a few minutes, given the number of computers, 
you will have a nice report that you can review. If you wanted to take it a step fur-
ther, you could take the results variable and pipe it to a CSV file:

$Results | Export-Csv -Path C:\Temp\DelegationPatchReport.csv

Windows PowerShell with the ActiveDirectory module will make a Windows admin-
istrator’s life easy when given a task big or small.

Finding the FSMO role holders
To find information about domain controllers and FSMO roles, you do not have to write a 
Windows PowerShell script; you can do it directly from the Windows PowerShell console or 
ISE by using the Active Directory cmdlets. The first thing that needs to done, more than likely, 
is to load the ActiveDirectory module into the current Windows PowerShell session. While it is 
possible to add the import-module command to your Windows PowerShell profile, in general 
it is not a good idea to load a bunch of modules that you might or might not use on a regular 
basis. In fact, you can load all the modules at once by piping the results of the Get-Module –
ListAvailable command to the Import-Module cmdlet. This is shown here:

PS C:\> Get-Module -ListAvailable | Import-Module 
PS C:\> Get-Module 
 



 Using the Active Directory module CHAPTER 3 51

ModuleType Name                      ExportedCommands 
---------- ----                      ---------------- 
Script     BasicFunctions            {Get-ComputerInfo, Get-OptimalSize} 
Script     ConversionModuleV6        {ConvertTo-Feet, ConvertTo-Miles, ConvertTo-... 
Script     PowerShellPack            {New-ByteAnimationUsingKeyFrames, New-TiffBi... 
Script     PSCodeGen                 {New-Enum, New-ScriptCmdlet, New-PInvoke} 
Script     PSImageTools              {Add-CropFilter, Add-RotateFlipFilter, Add-O... 
Script     PSRss                     {Read-Article, New-Feed, Remove-Article, Rem... 
Script     PSSystemTools             {Test-32Bit, Get-USB, Get-OSVersion, Get-Mul... 
Script     PSUserTools               {Start-ProcessAsAdministrator, Get-CurrentUs... 
Script     TaskScheduler             {Remove-Task, Get-ScheduledTask, Stop-Task, ... 
Script     WPK                       {Get-DependencyProperty, New-ModelVisual3D, ... 
Manifest   ActiveDirectory           {Set-ADOrganizationalUnit, Get-ADDomainContr... 
Manifest   AppLocker                 {Get-AppLockerPolicy, Get-AppLockerFileInfor... 
Manifest   BitsTransfer              {Start-BitsTransfer, Remove-BitsTransfer, Re... 
Manifest   FailoverClusters          {Set-ClusterParameter, Get-ClusterParameter,... 
Manifest   GroupPolicy               {Get-GPStarterGPO, Get-GPOReport, Set-GPInhe... 
Manifest   NetworkLoadBalancingCl... {Stop-NlbClusterNode, Remove-NlbClusterVip, ... 
Script     PSDiagnostics             {Enable-PSTrace, Enable-WSManTrace, Start-Tr... 
Manifest   TroubleshootingPack       {Get-TroubleshootingPack, Invoke-Troubleshoo... 
 
 
PS C:\>

After you have loaded the Active Directory module, you will want to use the Get-Command 
cmdlet to see the cmdlets that are exported by the module. This is shown here:

PS C:\> Get-Module -ListAvailable 
 
ModuleType Name                      ExportedCommands 
---------- ----                      ---------------- 
Script     BasicFunctions            {} 
Script     ConversionModuleV6        {} 
Script     DotNet                    {} 
Manifest   FileSystem                {} 
Manifest   IsePack                   {} 
Manifest   PowerShellPack            {} 
Manifest   PSCodeGen                 {} 
Manifest   PSImageTools              {} 
Manifest   PSRSS                     {} 
Manifest   PSSystemTools             {} 
Manifest   PSUserTools               {} 
Manifest   TaskScheduler             {} 
Manifest   WPK                       {} 
Manifest   ActiveDirectory           {} 
Manifest   AppLocker                 {} 
Manifest   BitsTransfer              {} 
Manifest   FailoverClusters          {} 
Manifest   GroupPolicy               {} 
Manifest   NetworkLoadBalancingCl... {} 
Manifest   PSDiagnostics             {} 
Manifest   TroubleshootingPack       {} 
 
 
PS C:\> Import-Module active* 



 52 CHAPTER 3 Using the Active Directory module

PS C:\> Get-Command -Module active* 
 
CommandType     Name                               Definition 
-----------     ----                               ---------- 
Cmdlet          Add-ADComputerServiceAccount       Add-ADComputerServiceAccount [... 
Cmdlet          Add-ADDomainControllerPasswordR... Add-ADDomainControllerPassword... 
Cmdlet          Add-ADFineGrainedPasswordPolicy... Add-ADFineGrainedPasswordPolic... 
Cmdlet          Add-ADGroupMember                  Add-ADGroupMember [-Identity] ... 
Cmdlet          Add-ADPrincipalGroupMembership     Add-ADPrincipalGroupMembership... 
Cmdlet          Clear-ADAccountExpiration          Clear-ADAccountExpiration [-Id... 
Cmdlet          Disable-ADAccount                  Disable-ADAccount [-Identity] ... 
Cmdlet          Disable-ADOptionalFeature          Disable-ADOptionalFeature [-Id... 
Cmdlet          Enable-ADAccount                   Enable-ADAccount [-Identity] <... 
Cmdlet          Enable-ADOptionalFeature           Enable-ADOptionalFeature [-Ide... 
Cmdlet          Get-ADAccountAuthorizationGroup    Get-ADAccountAuthorizationGrou... 
Cmdlet          Get-ADAccountResultantPasswordR... Get-ADAccountResultantPassword... 
Cmdlet          Get-ADComputer                     Get-ADComputer -Filter <String... 
<output truncated>

To find a single domain controller, if you are not sure of one in your site, you can use the 
discover switch on the Get-ADDomainController cmdlet. One thing to keep in mind is that 
the discover parameter could return information from the cache. If you want to ensure that 
a fresh discover command is sent, use the forceDiscover switch in addition to the –discover 
switch. These techniques are shown here:

PS C:\> Get-ADDomainController -Discover 
 
 
Domain      : NWTraders.Com 
Forest      : NWTraders.Com 
HostName    : {HyperV.NWTraders.Com} 
IPv4Address : 192.168.1.100 
IPv6Address : 
Name        : HYPERV 
Site        : NewBerlinSite 
 
 
 
PS C:\> Get-ADDomainController -Discover -ForceDiscover 
 
 
Domain      : NWTraders.Com 
Forest      : NWTraders.Com 
HostName    : {HyperV.NWTraders.Com} 
IPv4Address : 192.168.1.100 
IPv6Address : 
Name        : HYPERV 
Site        : NewBerlinSite 
 
 
 
PS C:\>



 Using the Active Directory module CHAPTER 3 53

When using the Get-ADDomainController cmdlet, a minimal amount of information returns. 
If you want to see additional information from the domain controller you discovered, you 
would need to connect to it by using the identity parameter. The value of the identity prop-
erty can be an IP address, GUID, host name, or even a NetBIOS sort of name. This technique is 
shown here:

PS C:\> Get-ADDomainController -Identity hyperv 
 
 
ComputerObjectDN           : CN=HYPERV,OU=Domain Controllers,DC=NWTraders,DC=Com 
DefaultPartition           : DC=NWTraders,DC=Com 
Domain                     : NWTraders.Com 
Enabled                    : True 
Forest                     : NWTraders.Com 
HostName                   : HyperV.NWTraders.Com 
InvocationId               : 6835f51f-2c77-463f-8775-b3404f2748b2 
IPv4Address                : 192.168.1.100 
IPv6Address                : 
IsGlobalCatalog            : True 
IsReadOnly                 : False 
LdapPort                   : 389 
Name                       : HYPERV 
NTDSSettingsObjectDN       : CN=NTDS Settings,CN=HYPERV,CN=Servers,CN=NewBerlinSite, 
                             CN=Sites,CN=Configuration,DC=NWTraders,DC=Com 
OperatingSystem            : Windows Server 2008 R2 Standard 
OperatingSystemHotfix      : 
OperatingSystemServicePack : 
OperatingSystemVersion     : 6.1 (7600) 
OperationMasterRoles       : {SchemaMaster, DomainNamingMaster} 
Partitions                 : {DC=ForestDnsZones,DC=NWTraders,DC=Com, DC=DomainDnsZon 
                             es,DC=NWTraders,DC=Com, CN=Schema,CN=Configuration,DC=N 
                             WTraders,DC=Com, CN=Configuration,DC=NWTraders,DC=Com...} 
ServerObjectDN             : CN=HYPERV,CN=Servers,CN=NewBerlinSite,CN=Sites,CN=Confi 
                             guration,DC=NWTraders,DC=Com 
ServerObjectGuid           : ab5e2830-a4d6-47f8-b2b4-25757153653c 
Site                       : NewBerlinSite 
SslPort                    : 636 
 
 
 
PS C:\>

As shown in the preceding output, the server named Hyperv is a Global Catalog server. 
It also holds the SchemaMaster and the DomainNamingMaster FSMO roles. It is running 
Windows Server 2008 R2 Standard edition, which shows that the cmdlet works with down-
level versions of the operating system. The Get-ADDomainController cmdlet accepts a filter 
parameter that can be used to perform a search and retrieve operation. It uses a special 
search syntax that is discussed in the online help about files. Unfortunately, it does not accept 
LDAP syntax. 



 54 CHAPTER 3 Using the Active Directory module

Luckily, you do not have to learn the special filter syntax, because the Get-ADObject cmdlet 
will accept a LDAP dialect filter. You can simply pipeline the results of the Get-ADObject cmd-
let to the Get-ADDomainController cmdlet. This technique is shown here:

PS C:\> Get-ADObject -LDAPFilter "(objectclass=computer)" -searchbase "ou=domain  
controllers,dc=nwtraders,dc=com" | Get-ADDomainController 
 
 
ComputerObjectDN           : CN=HYPERV,OU=Domain Controllers,DC=NWTraders,DC=Com 
DefaultPartition           : DC=NWTraders,DC=Com 
Domain                     : NWTraders.Com 
Enabled                    : True 
Forest                     : NWTraders.Com 
HostName                   : HyperV.NWTraders.Com 
InvocationId               : 6835f51f-2c77-463f-8775-b3404f2748b2 
IPv4Address                : 192.168.1.100 
IPv6Address                : 
IsGlobalCatalog            : True 
IsReadOnly                 : False 
LdapPort                   : 389 
Name                       : HYPERV 
NTDSSettingsObjectDN       : CN=NTDS Settings,CN=HYPERV,CN=Servers,CN=NewBerlinSite, 
                             CN=Sites,CN=Configuration,DC=NWTraders,DC=Com 
OperatingSystem            : Windows Server 2008 R2 Standard 
OperatingSystemHotfix      : 
OperatingSystemServicePack : 
OperatingSystemVersion     : 6.1 (7600) 
OperationMasterRoles       : {SchemaMaster, DomainNamingMaster} 
Partitions                 : {DC=ForestDnsZones,DC=NWTraders,DC=Com, DC=DomainDnsZones, 
                             DC=NWTraders,DC=Com, CN=Schema,CN=Configuration,DC 
                             =NWTraders,DC=Com, CN=Configuration,DC=NWTraders,DC=Com...} 
ServerObjectDN             : CN=HYPERV,CN=Servers,CN=NewBerlinSite,CN=Sites,CN=Confi 
                             guration,DC=NWTraders,DC=Com 
ServerObjectGuid           : ab5e2830-a4d6-47f8-b2b4-25757153653c 
Site                       : NewBerlinSite 
SslPort                    : 636 
 
ComputerObjectDN           : CN=DC1,OU=Domain Controllers,DC=NWTraders,DC=Com 
DefaultPartition           : DC=NWTraders,DC=Com 
Domain                     : NWTraders.Com 
Enabled                    : True 
Forest                     : NWTraders.Com 
HostName                   : DC1.NWTraders.Com 
InvocationId               : fb324ced-bd3f-4977-ae69-d6763e7e029a 
IPv4Address                : 192.168.1.101 
IPv6Address                : 
IsGlobalCatalog            : True 
IsReadOnly                 : False 
LdapPort                   : 389 
Name                       : DC1 
NTDSSettingsObjectDN       : CN=NTDS Settings,CN=DC1,CN=Servers,CN=NewBerlinSite,CN= 
                             Sites,CN=Configuration,DC=NWTraders,DC=Com 
OperatingSystem            : Windows Serverr 2008 Standard without Hyper-V 



 Using the Active Directory module CHAPTER 3 55

OperatingSystemHotfix      : 
OperatingSystemServicePack : Service Pack 2 
OperatingSystemVersion     : 6.0 (6002) 
OperationMasterRoles       : {PDCEmulator, RIDMaster, InfrastructureMaster} 
Partitions                 : {DC=ForestDnsZones,DC=NWTraders,DC=Com, DC=DomainDnsZones, 
                             DC=NWTraders,DC=Com, CN=Schema,CN=Configuration,DC 
                             =NWTraders,DC=Com, CN=Configuration,DC=NWTraders,DC=Com...} 
ServerObjectDN             : CN=DC1,CN=Servers,CN=NewBerlinSite,CN=Sites,CN=Configur 
                             ation,DC=NWTraders,DC=Com 
ServerObjectGuid           : 80885b47-5a51-4679-9922-d6f41228f211 
Site                       : NewBerlinSite 
SslPort                    : 636 
 
 
PS C:\>

If it returns too much information, the Active Directory cmdlets work just like any other 
Windows PowerShell cmdlet and therefore permit using the pipeline to choose the infor-
mation you want to display. To obtain only the FSMO information, it comes down to two 
commands—three commands if you want to include importing the Active Directory module 
in your count, or four commands if you need to make a remote connection to a domain 
controller to run the commands. One cool thing about using Windows PowerShell remot-
ing is that you specify the credentials that you need to run the command. If your normal 
account is a standard user, you use an elevated account only when you require performing 
actions with elevated rights. If you have already started the Windows PowerShell console with 
elevated credentials, you can skip typing in credentials when you enter the remote Windows 
PowerShell session (assuming that the elevated account also has rights on the remote server). 
The first two commands seen here create a remote session on a remote domain controller 
and load the ActiveDirectory module: 

Enter-PSSession w8Server6 

When the Active Directory module loads, you type a one-line command to get the Forest 
FSMO roles, and you type another one-line command to get the domain FSMO roles. These 
two commands are shown here:

Get-ADForest iammred.net | Format-Table SchemaMaster,DomainNamingMaster 
Get-ADDomain iammred.net | format-table PDCEmulator,RIDMaster,InfrastructureMaster

That is it—two or three one-line commands, depending on how you want to count. Even 
at worst case, three one-line commands are much easier to type than 33 lines of code that 
would be required if you did not have access to the Active Directory module. In addition, the 
Windows PowerShell code is much easier to read and to understand. The commands and the 
associated output from the Windows PowerShell commands appear in Figure 3-3.



 56 CHAPTER 3 Using the Active Directory module

FIGURE 3-3 Using Windows PowerShell remoting to obtain FSMO information.

Documenting active Directory
Using the Microsoft Active Directory Windows PowerShell cmdlets and remoting, you can 
easily discover information about the forest and the domain. The first thing you need to do is 
to enter a PSSession on the remote computer. To do this you use the Enter-PSSession cmdlet. 
Next, you import the Active Directory module and set the working location to the root of 
the C drive. The reason for setting the working location to the root of the C drive is to regain 
valuable command-line space. These commands are shown here:

PS C:\Users\Administrator.NWTRADERS> Enter-PSSession dc1 
[dc1]: PS C:\Users\Administrator\Documents> Import-Module activedirectory 
[dc1]: PS C:\Users\Administrator\Documents> Set-Location c:\

After you have connected to the remote domain controller, you can use the Get-WmiObject 
cmdlet to verify the operating system on that computer. This command and associated out-
put are shown here:

[dc1]: PS C:\> Get-WmiObject win32_operatingsystem 
SystemDirectory : C:\Windows\system32 
Organization    : 
BuildNumber     : 7601 
RegisteredUser  : Windows User 
SerialNumber    : 55041-507-0212466-84005 
Version         : 6.1.7601

Now you want to get information about the forest. To do this, you use the Get-ADForest 
cmdlet. The output from the Get-ADForest cmdlet includes lots of great information, such as 
the Domain Naming Master, Forest Mode, Schema Master, and Domain Controllers. This com-
mand and associated output appears here:

[dc1]: PS C:\> Get-ADForest 
ApplicationPartitions : {DC=DomainDnsZones,DC=nwtraders,DC=com, DC=ForestDnsZones,DC 
=nwtraders,DC=com} 
CrossForestReferences : {} 



 Using the Active Directory module CHAPTER 3 57

DomainNamingMaster    : DC1.nwtraders.com 
Domains               : {nwtraders.com} 
ForestMode            : Windows2008Forest 
GlobalCatalogs        : {DC1.nwtraders.com} 
Name                  : nwtraders.com 
PartitionsContainer   : CN=Partitions,CN=Configuration,DC=nwtraders,DC=com 
RootDomain            : nwtraders.com 
SchemaMaster          : DC1.nwtraders.com 
Sites                 : {Default-First-Site-Name} 
SPNSuffixes           : {} 
UPNSuffixes           : {}

Now, to obtain information about the domain, use the Get-ADDomain cmdlet. The com-
mand returns important information such as the location of the default domain controller OU, 
the PDC emulator, and the RID master. The command and associated output are shown here:

[dc1]: PS C:\> Get-ADDomain 
AllowedDNSSuffixes                 : {} 
ChildDomains                       : {} 
ComputersContainer                 : CN=Computers,DC=nwtraders,DC=com 
DeletedObjectsContainer            : CN=Deleted Objects,DC=nwtraders,DC=com 
DistinguishedName                  : DC=nwtraders,DC=com 
DNSRoot                            : nwtraders.com 
DomainControllersContainer         : OU=Domain Controllers,DC=nwtraders,DC=com 
DomainMode                         : Windows2008Domain 
DomainSID                          : S-1-5-21-909705514-2746778377-2082649206 
ForeignSecurityPrincipalsContainer : CN=ForeignSecurityPrincipals,DC=nwtraders,DC=com 
Forest                             : nwtraders.com 
InfrastructureMaster               : DC1.nwtraders.com 
LastLogonReplicationInterval       : 
LinkedGroupPolicyObjects           : {CN={31B2F340-016D-11D2-945F-00C04FB984F9},CN 
                                     =Policies,CN=System,DC=nwtraders,DC=com} 
LostAndFoundContainer              : CN=LostAndFound,DC=nwtraders,DC=com 
ManagedBy                          : 
Name                               : nwtraders 
NetBIOSName                        : NWTRADERS 
ObjectClass                        : domainDNS 
ObjectGUID                         : 0026d1fc-2e4d-4c35-96ce-b900e9d67e7c 
ParentDomain                       : 
PDCEmulator                        : DC1.nwtraders.com 
QuotasContainer                    : CN=NTDS Quotas,DC=nwtraders,DC=com 
ReadOnlyReplicaDirectoryServers    : {} 
ReplicaDirectoryServers            : {DC1.nwtraders.com} 
RIDMaster                          : DC1.nwtraders.com 
SubordinateReferences              : {DC=ForestDnsZones,DC=nwtraders,DC=com,  
                                     DC=DomainDnsZones,DC=nwtraders,DC=com,  
                                     CN=Configuration,DC=nwtraders,DC=com} 
SystemsContainer                   : CN=System,DC=nwtraders,DC=com 
UsersContainer                     : CN=Users,DC=nwtraders,DC=com

From a security perspective, you should always check the domain password policy. To do 
this, use the Get-ADDefaultDomainPasswordPolicy cmdlet. Things you want to pay attention 
to are the use of complex passwords, minimum password length, password age, and pass-
word retention. You also need to check the account lockout policy. This policy is especially 



 58 CHAPTER 3 Using the Active Directory module

important to review closely when inheriting a new network. Here is the command and associ-
ated output that does that very thing:

[dc1]: PS C:\> Get-ADDefaultDomainPasswordPolicy 
ComplexityEnabled           : True 
DistinguishedName           : DC=nwtraders,DC=com 
LockoutDuration             : 00:30:00 
LockoutObservationWindow    : 00:30:00 
LockoutThreshold            : 0 
MaxPasswordAge              : 42.00:00:00 
MinPasswordAge              : 1.00:00:00 
MinPasswordLength           : 7 
objectClass                 : {domainDNS} 
objectGuid                  : 0026d1fc-2e4d-4c35-96ce-b900e9d67e7c 
PasswordHistoryCount        : 24 
ReversibleEncryptionEnabled : False

The last things to check are the domain controllers themselves. To do this, use the Get-
ADDomainController cmdlet. This command returns important information, such as whether 
the domain controller is read-only, a global catalog server, operations master roles held, and 
operating system information. Here is the command and associated output:

 [dc1]: PS C:\> Get-ADDomainController -Identity dc1 
ComputerObjectDN           : CN=DC1,OU=Domain Controllers,DC=nwtraders,DC=com 
DefaultPartition           : DC=nwtraders,DC=com 
Domain                     : nwtraders.com 
Enabled                    : True 
Forest                     : nwtraders.com 
HostName                   : DC1.nwtraders.com 
InvocationId               : b51f625f-3f60-44e7-8577-8918f7396c2a 
IPv4Address                : 10.0.0.1 
IPv6Address                : 
IsGlobalCatalog            : True 
IsReadOnly                 : False 
LdapPort                   : 389 
Name                       : DC1 
NTDSSettingsObjectDN       : CN=NTDS Settings,CN=DC1,CN=Servers,CN=Default-First-Site-Na
me,CN=Sites,CN=Configuration,DC=nwtraders,DC=com 
OperatingSystem            : Windows Server 2008 R2 Enterprise 
OperatingSystemHotfix      : 
OperatingSystemServicePack : Service Pack 1 
OperatingSystemVersion     : 6.1 (7601) 
OperationMasterRoles       : {SchemaMaster, DomainNamingMaster, PDCEmulator,  
                             RIDMaster...} 
Partitions                 : {DC=ForestDnsZones,DC=nwtraders,DC=com, DC=DomainDnsZones, 
                             DC=nwtraders,DC=com, CN=Schema,CN=Configuration, 
                             DC=nwtraders,DC=com, CN=Configuration,DC=nwtraders, 
                             DC=com...} 
ServerObjectDN             : CN=DC1,CN=Servers,CN=Default-First-Site-Name,CN=Sites, 
                             CN=Configuration,DC=nwtraders,DC=com 
ServerObjectGuid           : 5ae1fd0e-bc2f-42a7-af62-24377114e03d 
Site                       : Default-First-Site-Name 
SslPort                    : 636



 Using the Active Directory module CHAPTER 3 59

To produce a report is as easy as redirecting the output to a text file. These commands 
gather the information discussed earlier in this section and store the retrieved information in 
a file named AD_Doc.txt. The commands also illustrate that it is possible to redirect the infor-
mation to a file stored in a network share.

Get-ADForest >> \\dc1\shared\AD_Doc.txt 
Get-ADDomain >> \\dc1\shared\AD_Doc.txt 
Get-ADDefaultDomainPasswordPolicy >> \\dc1\shared\AD_Doc.txt 
Get-ADDomainController -Identity dc1 >>\\dc1\shared\AD_Doc.txt

The file as viewed in Notepad appears in Figure 3-4.

FIGURE 3-4 Active Directory documentation displayed in Notepad.

renaming active Directory sites
It is easy to rename a site. All you need to do is to right-click the site and select Rename from 
the action menu. By default, the first site is called Default-First-Site-Name, which is not too 
illuminating. To work with Active Directory sites, it is necessary to understand that they are a 
bit strange. First, they reside in the configuration naming context. Connecting to this context 
by using the Active Directory module is rather simple. Just use the Get-ADRootDSE cmdlet, and 
then select the ConfigurationNamingContext property. First, you have to make a connection 
to the domain controller and import the Active Directory Module (assuming that you do not 
have the RSAT tools installed on your client computer). This is shown here: 

Enter-PSSession -ComputerName dc3 -Credential iammred\administrator 
Import-Module activedirectory

Here is the code that will retrieve all of the sites. It uses the Get-ADObject cmdlet to search 
the configuration naming context for objects that have the object class of site.

Get-ADObject -SearchBase (Get-ADRootDSE).ConfigurationNamingContext -filter "objectclass 
-eq 'site'"



 60 CHAPTER 3 Using the Active Directory module

When you have the site you want to work with, you first change the DisplayName attri-
bute. To do this, you pipeline the site object to the Set-ADOObject cmdlet. The Set-ADOObject 
cmdlet allows me to set a variety of attributes on an object. This command is shown here. 
(This is a single command that is broken into two pieces at the pipeline character.) 

Get-ADObject -SearchBase (Get-ADRootDSE).ConfigurationNamingContext -filter "objectclass 
-eq 'site'" | Set-ADObject -DisplayName CharlotteSite

When you have set the DisplayName attribute, you decide to rename the object itself. 
To do this, you use another cmdlet called Rename-ADObject. Again, to simplify things, you 
pipeline the site object to the cmdlet and you assign a new name for the site. This command 
is shown here. (This is also a one-line command broken at the pipe.)

Get-ADObject -SearchBase (Get-ADRootDSE).ConfigurationNamingContext -filter "objectclass 
-eq 'site'" | Rename-ADObject -NewName CharlotteSite

Managing users
To create a new Organizational Unit, you use the New-ADOrganizationalUnit cmdlet as shown 
here: 

New-ADOrganizationalUnit -Name TestOU -Path "dc=nwtraders,dc=com"

If you want to create a child Organizational Unit (OU), you use the New-
ADOrganizationalUnit cmdlet, but in the path, you list the location that will serve as the par-
ent, as shown here:

New-ADOrganizationalUnit -Name TestOU1 -Path "ou=TestOU,dc=nwtraders,dc=com"

If you want to make several child OUs in the same location, use the up arrow to retrieve 
the previous command and edit the name of the child. You can use the home key to move to 
the beginning of the line, the end key to move to the end of the line, and the left and right 
arrow keys to find your place on the line so that you can edit it. A second child OU is created 
here:

New-ADOrganizationalUnit -Name TestOU2 -Path "ou=TestOU,dc=nwtraders,dc=com"

To create a computer account in one of the newly created child Organizational Units, 
you must type the complete path to the OU that will house the new computer account. The 
New-ADComputer cmdlet is used to create new computer accounts in AD DS. In this example, 
the TestOU1 OU is a child of the TestOU OU, and therefore, both OUs must appear in the 
path parameter. Keep in mind that the path that is supplied to the path parameter must be 
contained inside quotation marks, as shown here: 

New-ADComputer -Name Test -Path "ou=TestOU1,ou=TestOU,dc=nwtraders,dc=com"

To create a user account, you use the New-ADUser cmdlet as shown here: 

New-ADUser -Name TestChild -Path "ou=TestOU1,ou=TestOU,dc=nwtraders,dc=com"



 Using the Active Directory module CHAPTER 3 61

Because there could be a bit of typing involved that tends to become redundant, you 
might want to write a script to create the OUs at the same time that the computer and 
user accounts are created. A sample script that creates OUs, users, and computers is the 
UseADCmdletsToCreateOuComputerAndUser.ps1 script shown here. 

UseaDCmdletstoCreateOuComputerandUser.ps1

Import-Module -Name ActiveDirectory 

$Name = "ScriptTest" 

$DomainName = "dc=nwtraders,dc=com" 

$OUPath = "ou={0},{1}" -f $Name, $DomainName 

 

New-ADOrganizationalUnit -Name $Name -Path $DomainName 

-ProtectedFromAccidentalDeletion $false 

 

For($you = 0; $you -le 5; $you++) 

{ 

 New-ADOrganizationalUnit -Name $Name$you -Path $OUPath 

-ProtectedFromAccidentalDeletion $false 

} 

 

For($you = 0 ; $you -le 5; $you++) 

{ 

 New-ADComputer -Name  "TestComputer$you" -Path $OUPath 

 New-ADUser -Name "TestUser$you" -Path $OUPath 

}

The UseADCmdletsToCreateOuComputerAndUser.ps1 script begins by importing the 
Active Directory module. It then creates the first OU. When testing a script, it is important to 
disable the deletion protection by using the ProtectedFromAccidentalDeletion parameter. This 
will allow you to easily delete the OU and avoid having to go into the advanced view in Active 
Directory Users And Computers and changing the protected status on each OU. 

After the ScriptTest OU is created, the other OUs, users, and computer accounts can be 
created inside the new location. It seems obvious that you cannot create a child OU inside the 
parent OU if the parent has not yet been created, but it is easy to make a logic error like this. 

To create a new global security group, use the New-ADGroup Windows PowerShell AD DS 
cmdlet. The New-ADGroup Windows PowerShell cmdlet requires three parameters: the name of 
the group, a path to the location where the group will be stored, and the groupscope, which 
can be global, universal, or domain local. Before running the command shown here, remem-
ber that you must import the Active Directory module into your current Windows PowerShell 
session. 

New-ADGroup -Name TestGroup -Path "ou=TestOU,dc=nwtraders,dc=com" -groupScope global



 62 CHAPTER 3 Using the Active Directory module

To create a new universal group, you need to change only the groupscope parameter value 
as shown here: 

New-ADGroup -Name TestGroup1 -Path "ou=TestOU,dc=nwtraders,dc=com" -groupScope universal

To add a user to a group, you must supply values for the identity parameter and for the 
members parameter. The value that you use for the identity parameter is the name of the 
group. You do not need to use the LDAP syntax of cn=groupname; you need to supply only 
the name. Use ADSI Edit to examine the requisite LDAP attributes needed for a group in 
ADSI Edit. 

It is a bit unusual that the members parameter is named members and not member 
because most Windows PowerShell cmdlet parameter names are singular and not plural. The 
parameters are singular even when they accept an array of values (such as the computername 
parameter). The command to add a new group named TestGroup1 to the UserGroupTest 
group is shown here: 

Add-ADGroupMember -Identity TestGroup1 -Members UserGroupTest

To remove a user from a group, use the Remove-ADGroupMember cmdlet with the name of 
the user and group. The identity and the members parameters are required, but the command 
will not execute without confirmation, as shown here: 

PS C:\> Remove-ADGroupMember -Identity TestGroup1 -Members UserGroupTest 
 
Confirm 
Are you sure you want to perform this action? 
Performing operation "Set" on Target "CN=TestGroup1,OU=TestOU,DC=NWTraders,DC=Com". 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help (default is "Y"): 
y 
PS C:\>

If you are sure that you want to remove the user from the group and that you want to sup-
press the query, you use the confirm parameter and assign the value $false to it. The problem 
is that you will need to supply a colon between the parameter and $false value. 

NOTE The use of the colon after the confirm parameter is not documented, but the tech-
nique works on several different cmdlets. 

The command is shown here: 

Remove-ADGroupMember -Identity TestGroup1 -Members UserGroupTest -Confirm:$false

You need the ability to suppress the confirmation prompt to be able to use the Remove-
ADGroupMember cmdlet in a script. The first thing the RemoveUserFromGroup.ps1 script does 
is load the Active Directory module. When the module is loaded, the Remove-ADGroupMember 
cmdlet is used to remove the user from the group. To suppress the confirmation prompt, the 
–confirm:$false command is used. The RemoveUserFromGroup.ps1 script is shown here. 



 Using the Active Directory module CHAPTER 3 63

removeUserFromGroup.ps1

import-module activedirectory 

Remove-ADGroupMember -Identity TestGroup1 -Members UserGroupTest -Confirm:$false

Creating a user
Now create a new user in Active Directory. You will name the user “ed.” The command to 
create a new user is simple; it is New-Aduser and the user name. The command to create a 
disabled user account in the users container in the default domain is shown here:

new-aduser -name ed

When the preceding command that creates a new user completes, nothing is returned to 
the Windows PowerShell console. To check to ensure that the user is created, use the Get-
Aduser cmdlet to retrieve the user object. This command is shown here:

Get-aduser ed

When you are certain that your new user is created, you decide to create an organizational 
unit to store the user account. The command to create a new organizational unit off the root 
of the domain is shown here:

new-ADOrganizationalUnit scripting

Just like the previously used New-Aduser cmdlet, nothing returns to the Windows 
PowerShell console. If you use the Get-ADOrganizationalUnit cmdlet, you must use a different 
methodology. A simple Get-AdOrganizationalUnit command returns an error; therefore, you 
use an LDAPFilter parameter to find the OU. The command using the LDAPFilter parameter to 
find my newly created OU is shown here:

Get-ADOrganizationalUnit –LDAPFilter "(name=scripting)"

Now that you have a new user and a new OU, you need to move the user from the users 
container to the newly created scripting OU. To do that, you use the Move-ADObject cmdlet. 
You first get the distinguishedname attribute for the scripting OU and store it in a variable 
called $oupath. Next, you use the Move-ADObject cmdlet to move the ed user to the new OU. 
The trick here is that where the Get-AdUser cmdlet can find a user with the name of ed, the 
Move-ADObject cmdlet must have the distinguishedname of the ed user object to move it. 
The error that occurs when not supplying the distinguishedname appears in the figure that 
follows. You could use the Get-AdUser cmdlet to retrieve the distinguishedname in a similar 
method as you did with the scripting OU. 

The next thing you need to do is to enable the user account. To do this, you need to assign 
a password to the user account. The password must be a secure string. To do this, you can use 
the ConvertTo-SecureString cmdlet. By default, warnings display about converting text to a 



 64 CHAPTER 3 Using the Active Directory module

secure string, but these prompts are suppressible by using the force parameter. Here is the 
command you use to create a secure string for a password:

$pwd = ConvertTo-SecureString -String "P@ssword1" -AsPlainText –Force

Now that you have created a secure string to use for a password for my user account, you 
call the Set-ADAccountPassword cmdlet to set the password. Because this is a new password, 
you need to use the newpassword parameter. In addition, because you do not have a previous 
password, you use the reset parameter. This command is shown here:

Set-ADAccountPassword -Identity ed -NewPassword $pwd –Reset

After the account has a password, you can enable the account. To do this, you use the 
Enable-ADAccount cmdlet and specify the user name to enable. This command is shown here:

Enable-ADAccount -Identity ed

As with the previous commands, none of the cmdlets return any information. To ensure 
that you have actually enabled the ed user account, you use the Get-ADUser cmdlet. In the 
output, you are looking for the value of the enabled property. The enabled property is a 
Boolean, so expect the value to be true. 

Finding and unlocking aD user accounts
When using the Microsoft Active Directory cmdlets, locating locked out users is a snap. In 
fact, the Search-ADAccount cmdlet even has a LockedOut switch. Use the Search-ADAccount 
cmdlet with the LockedOut parameter. This command is shown here:

Search-ADAccount –LockedOut

NOTE Many network administrators who spend the majority of their time working with 
Active Directory import the Active Directory module via their Windows PowerShell profile. 
This way, they never need to worry about the initial performance hit that occurs due to 
autoloading the Active Directory module.

The Search-ADAccount command and the associated output are shown here:

[w8server6]: PS C:\> Search-ADAccount -LockedOut 
 
AccountExpirationDate : 
DistinguishedName     : CN=kimakers,OU=test,DC=iammred,DC=net 
Enabled               : True 
LastLogonDate         : 1/24/2012 8:40:29 AM 
LockedOut             : True 
Name                  : kimakers 
ObjectClass           : user 
ObjectGUID            : d907fa99-cd08-435f-97de-1e99d0eb485d 
PasswordExpired       : False 
PasswordNeverExpires  : False 



 Using the Active Directory module CHAPTER 3 65

SamAccountName        : kimakers 
SID                   : S-1-5-21-1457956834-3844189528-3541350385-1608 
UserPrincipalName     : kimakers@iammred.net 
 
[w8server6]: PS C:\>

You can unlock the locked out user account as well—assuming that you have permission. 
In Figure 3-5, you attempt to unlock the user account with an account that is a normal user, 
and an error arises.

NOTE People are often worried about Windows PowerShell from a security perspective. 
Windows PowerShell is only an application, and therefore a user cannot do anything that 
they do not have the rights or permission to accomplish. This is a case in point.

If your user account does not have admin rights, you need to start Windows PowerShell 
with an account that has the ability to unlock a user account. To do this, you right-click the 
Windows PowerShell icon while holding down the Shift key; this allows you to select Run As 
Different User from the quick action menu. 

When you start Windows PowerShell back up with an account that has rights to unlock 
users, the Active Directory module needs to load once again. You then check to ensure that 
you can still locate the locked out user accounts. After you have proven you can do that, you 
pipeline the results of the Search-ADAccount cmdlet to the Unlock-ADAccount cmdlet. A quick 
check ensures that you have unlocked all the locked out accounts. The series of commands is 
shown here:

Search-ADAccount –LockedOut 
Search-ADAccount -LockedOut | Unlock-ADAccount 
Search-ADAccount –LockedOut

The commands and associated output are shown in Figure 3-5.

FIGURE 3-5 Using the Active Directory module to find and to unlock user accounts.



 66 CHAPTER 3 Using the Active Directory module

NOTE Keep in mind that the command Search-ADAccount -LockedOut | Unlock- 
ADAccount will unlock every account that you have permission to unlock. In most cases, 
you will want to investigate prior to unlocking all locked out accounts. If you do not want 
to unlock all locked out accounts, use the confirm switch to be prompted prior to unlock-
ing an account.

If you do not want to unlock all users, you use the confirm parameter from the Unlock-
ADAccount cmdlet. For example, you first check to see what users are locked out by using the 
Search-ADAccount cmdlet—but you do not want to see everything, only their name. Next, 
you pipeline the locked out users to the Unlock-ADAccount cmdlet with the confirm parameter. 
You are then prompted for each of the three locked out users; choose to unlock the first and 
third users, but not the second user. You then use the Search-ADAccount cmdlet one last time 
to ensure that the second user is still locked out. 

Finding disabled users
Luckily, by using Windows PowerShell and the Microsoft Active Directory cmdlets, it takes a 
single line of code to retrieve the disabled users from your domain. The command is shown 
here. (Keep in mind that running this command automatically imports the Active Directory 
module into the current Windows PowerShell host.)

Get-ADUser -Filter 'enabled -eq $false' -Server dc3

Not only is the command a single line of code, but it is also a single line of readable code. 
You get users from AD DS; you use a filter that looks for the enabled property set to false. 
You also specify that you want to query a server named dc3 (the name of one of the domain 
controllers on my network). The command and the associated output appear in Figure 3-6.

FIGURE 3-6 Finding disabled user accounts.



 Using the Active Directory module CHAPTER 3 67

If you want to work with a specific user, you can use the identity parameter. The iden-
tity parameter accepts several things: distinguishedname, sid, guid, or SamAccountName. 
Probably the easiest one to use is the SamAccountName. This command and associated 
output are shown here:

PS C:\Users\ed.IAMMRED>    Get-ADUser -Server dc3 -Identity teresa 
DistinguishedName : CN=Teresa Wilson,OU=Charlotte,DC=iammred,DC=net 
Enabled           : True 
GivenName         : Teresa 
Name              : Teresa Wilson 
ObjectClass       : user 
ObjectGUID        : 75f12010-b952-4d3-9b22-3ada7d26eed8 
SamAccountName    : Teresa 
SID               : S-1-5-21-1457956834-3844189528-3541350385-1104 
Surname           : Wilson 
UserPrincipalName : Teresa@iammred.net

To use the DistinguishedName value for the identity parameter, you need to supply it 
inside a pair of quotation marks—either single or double. This command and associated 
output are shown here:

PS C:\Users\ed.IAMMRED>    Get-ADUser -Server dc3 -Identity 'CN=Teresa Wilson,OU 
=Charlotte,DC=iammred,DC=net' 
DistinguishedName : CN=Teresa Wilson,OU=Charlotte,DC=iammred,DC=net 
Enabled           : True 
GivenName         : Teresa 
Name              : Teresa Wilson 
ObjectClass       : user 
ObjectGUID        : 75f12010-b952-4d3-9b22-3ada7d26eed8 
SamAccountName    : Teresa 
SID               : S-1-5-21-1457956834-3844189528-3541350385-1104 
Surname           : Wilson 
UserPrincipalName : Teresa@iammred.net

It is not necessary to use quotation marks when using the SID for the value of the identity 
parameter. This command and associated output are shown here:

PS C:\Users\ed.IAMMRED>    Get-ADUser -Server dc3 -Identity S-1-5-21-1457956834- 
3844189528-3541350385-1104 
 
 
DistinguishedName : CN=Teresa Wilson,OU=Charlotte,DC=iammred,DC=net 
Enabled           : True 
GivenName         : Teresa 
Name              : Teresa Wilson 
ObjectClass       : user 
ObjectGUID        : 75f12010-b952-4d3-9b22-3ada7d26eed8 
SamAccountName    : Teresa 
SID               : S-1-5-21-1457956834-3844189528-3541350385-1104 
Surname           : Wilson 
UserPrincipalName : Teresa@iammred.net



 68 CHAPTER 3 Using the Active Directory module

Again, you can also use ObjectGUID for the identity parameter value. It does not require 
quotation marks either. This command and associated output are shown here:

PS C:\Users\ed.IAMMRED>    Get-ADUser -Server dc3 -Identity 75f12010-b952-4d3-9 
b22-3ada7d26eed8 
DistinguishedName : CN=Teresa Wilson,OU=Charlotte,DC=iammred,DC=net 
Enabled           : True 
GivenName         : Teresa 
Name              : Teresa Wilson 
ObjectClass       : user 
ObjectGUID        : 75f12010-b952-4d3-9b22-3ada7d26eed8 
SamAccountName    : Teresa 
SID               : S-1-5-21-1457956834-3844189528-3541350385-1104 
Surname           : Wilson 
UserPrincipalName : Teresa@iammred.net

Finding unused user accounts
To obtain a listing of all the users in Active Directory, supply a wildcard to the filter parameter 
of the Get-ADUser cmdlet. This technique is shown here:

Get-ADUser –Filter * 

If you want to change the base of the search operations, use the searchbase parameter. 
The searchbase parameter accepts an LDAP style of naming. The following command changes 
the search base to the TestOU: 

Get-ADUser -Filter * -SearchBase "ou=TestOU,dc=nwtraders,dc=com"

When using the Get-ADUser cmdlet, only a certain subset of user properties are displayed 
(10 properties to be exact). These properties will be displayed when you pipeline the results 
to Format-List and use a wildcard and the force parameter, as shown here:

PS C:\> Get-ADUser -Identity bob | format-list -Property * -Force 
 
 
DistinguishedName : CN=bob,OU=TestOU,DC=NWTraders,DC=Com 
Enabled           : True 
GivenName         : bob 
Name              : bob 
ObjectClass       : user 
ObjectGUID        : 5cae3acf-f194-4e07-a466-789f9ad5c84a 
SamAccountName    : bob 
SID               : S-1-5-21-3746122405-834892460-3960030898-3601 
Surname           : 
UserPrincipalName : bob@NWTraders.Com 
PropertyNames     : {DistinguishedName, Enabled, GivenName, Name...} 
PropertyCount     : 10 
 
 
 
PS C:\>



 Using the Active Directory module CHAPTER 3 69

Anyone who knows very much about Active Directory Domain Services (AD DS) knows that 
there are certainly more than 10 properties associated with a user object. If you try to display 
a property that is not returned by the Get-ADUser cmdlet, such as the whenCreated property, 
an error is not returned—the value of the property is not returned. This is shown here:

PS C:\> Get-ADUser -Identity bob | Format-List -Property name, whenCreated 
 
 
name        : bob 
whencreated :

The whenCreated property for the user object has a value—it just is not displayed. 
However, suppose you were looking for users who had never logged on to the system? 
Suppose you used a query such as the one seen here, and you were going to base a delete 
operation on the results? The results could be disastrous.

PS C:\> Get-ADUser -Filter * | Format-Table -Property name, LastLogonDate 
 
name                                       LastLogonDate 
----                                       ------------- 
Administrator 
Guest 
krbtgt 
testuser2 
ed 
SystemMailbox{1f05a927-a261-4eb4-8360-8... 
SystemMailbox{e0dc1c29-89c3-4034-b678-e... 
FederatedEmail.4c1f4d8b-8179-4148-93bf-... 
Test 
TestChild 
<results truncated>

To retrieve a property that is not a member of the default 10 properties, you must select 
it by using the property parameter. The reason that Get-ADUser does not automatically return 
all properties and their associated values is because of performance reasons on large net-
works—there is no reason to return a large dataset when a small dataset will perfectly suffice. 
To display the name and the whenCreated date for the user named bob, the following com-
mand can be used:

PS C:\> Get-ADUser -Identity bob -Properties whencreated | Format-List -Property name, 
whencreated 
 
 
name        : bob 
whencreated : 6/11/2010 8:19:52 AM 
 
 
 
PS C:\>



 70 CHAPTER 3 Using the Active Directory module

To retrieve all of the properties associated with a user object, use the wildcard “*” for the 
properties parameter value. You would use a command similar to the one shown here:

Get-ADUser -Identity kimakers -Properties *

Both the command and the results associated with the command to return all user proper-
ties are shown in Figure 3-7.

FIGURE 3-7 Using the Get-ADUser cmdlet to display all user properties.

To produce a listing of all the users and their last logon date, you can use a command 
similar to the one shown here. This is a single command that might wrap the line, depending 
on your screen resolution. 

Get-ADUser -Filter * -Properties "LastLogonDate" |  
sort-object -property lastlogondate -descending |  
Format-Table -property name, lastlogondate -AutoSize

The output produces a nice table. Both the command and the output associated with the 
command to obtain the time a user last logged on are shown in Figure 3-8.

FIGURE 3-8 Using the Get-ADUser cmdlet to identify the last logon times for users.



 Using the Active Directory module CHAPTER 3 71

NOTES FROM THE FIELD

Jeff Wouters
Microsoft PowerShell MVP

“Write tools, not scripts” is one of my favorite phrases from the Windows 
PowerShell community. When I had just started to write some Windows PowerShell 
code, I was (and still am!) crazy about one-liners.

the ease with which the pipeline allows you to connect commands to each other 
and make them work together were unheard of in the VBS world.

But then I got a customer who wanted me to leave some code with them when I 
left. So I did, and only one week later, I got a call from that customer, in panic, say-
ing that my script had deleted half their active Directory!

I asked them to send me the code of the script. after only a few seconds, I noticed 
that this wasn’t my code. there was a whole lot more in there that didn’t come from 
me. So I connected to my home environment and looked in the backup I had made 
of all the scripts and documentation I had left with the customer, and yes, the script 
I had left them had a lot less code in there. So someone had changed my script!

Luckily, this customer had the active Directory recycle Bin enabled, so restoring the 
objects in active Directory wasn’t that hard. But for me, this was a wake-up call. 
Sign your scripts! Or at least make sure that you can verify the integrity of your 
scripts. 

I also found that the person who changed my script, and basically was the cause 
of the problem, was a member of the service desk at that company. this is where 
“write tools, not scripts” comes into play.

So I rewrote my script, added a GUI, and signed it. this way, the help desk would 
have a nice clickable interface, and the script itself would be safe from malicious 
editors causing all kinds of issues. Because there were a whole bunch of scripts, 
I’ve created a module for them called “<CompanyName>Administration.” To fin-
ish things off, I’ve introduced them to the concept of a centralized store for their 
modules.

For me, this was a learning curve, and these days I prefer a six steps approach: 

1. Log everything; what it does and who executes it.

2. Support the common parameters, such as –Whatif and -Confirm.

3. Create an interface for the appropriate user—a command line for people who 
understand PowerShell and a GUI for those who don’t.

4. Sign your script!



 72 CHAPTER 3 Using the Active Directory module

5. Group scripts into modules.

6. Use a centralized module repository, preferably with read-only rights for every-
one who is not responsible for the modules.

these steps will make your life a whole lot easier when people start messing with 
your scripts.

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous script examples.

■■ All scripts from this chapter are available via the TechNet Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40 
-Best-d9e16039.



   73

C H A P T E R  4

Identifying scripting  
opportunities

■■ Automating routine tasks 

■■ Automation interface

■■ Structured requirements 

■■ Additional resources 

Automating routine tasks

One of the most important tasks when developing a scripting program is to track and 
coordinate the development endeavors of the scripting team. However, this process is not 
done in most companies. As a result, much time is wasted developing multiple scripts that 
perform the same tasks and implement similar functionality.

This is an area in which the judicious application of collaboration tools can play a signifi-
cant role. One such collaboration tool that can easily be pressed into service is the Microsoft 
SharePoint Portal product. The discussion forum can be used to track requests for scripts, 
and the library can be used as a central distribution point for released scripts.

When attempting to identify scripting opportunities, you must know which tasks are ripe 
for automation and which are not. In general, when making the decision to script or not to 
script, the most obvious requirement is repeatability. Routine tasks should nearly always be 
investigated for scripting. However, just because a task is repeatable does not automatically 
mean that it is rich for automation via scripting. Many repeatable tasks simply cannot be 
automated via scripting for one reason or another.



 74 CHAPTER 4 Identifying scripting opportunities 

NOTES FROM THE FIELD

Jason hofferle, It Specialist

It can be challenging for an It Professional to keep up with the latest develop-
ments in their own specialty, and even more difficult to stay current on Windows 

PowerShell best practices. By virtue of my enthusiasm for Windows PowerShell, I’ve 
filled an informal “scripting guy” role in my organization where I assist other It staff 
with learning PowerShell and applying the scripting best practices coming from the 
PowerShell community.

there is a lot of information about Windows PowerShell available, and more content 
is being created every day. One useful function of a scripting guy is to help filter 
this content down to what is specifically useful for your organization. Anyone is 
free to subscribe to the internal mailing list that I use to distribute information that 
I think is useful. Maybe there’s a specific problem someone is having, the directory 
administrators are trying to automate a task, or someone is providing some free 
Windows PowerShell training online. a mailing list becomes a great mechanism for 
sending out specific articles or examples that are immediately applicable to what 
your coworkers are doing.

an internal wiki page or SharePoint page is a great way to publicize scripts that are 
specific to your organization. There are a million generic examples of how to auto-
mate certain tasks in Windows PowerShell, but sometimes beginners have a difficult 
time applying these generic examples to a specific problem. The role of an orga-
nization’s scripting guy is to bridge this gap and help others see where scripting 
techniques can save time and effort. after a while, these connections will be seen by 
others, and they’ll start sending you tips!

a major strength of Windows PowerShell is the consistency—consistency in the 
verb-noun naming convention, consistency in parameters, consistency in how 
objects move through the pipeline, and consistency in how to get help. I’m not an 
Exchange administrator, or a SQL Server administrator, or a VMware administrator, 
but I’m able to help our experts because Windows PowerShell best practices are 
applicable everywhere. I don’t have to understand the intricacies of an Exchange 
deployment to understand how to write a good function or get a script to accept 
pipeline input. a scripting guy is always open to providing assistance, because it 
makes the It organization better as a whole.

Windows PowerShell is a core skill for It Professionals, but not everyone needs to 
be an expert. Often, just having one person that can answer a question or provide 
an example is all that’s needed to save hours of frustration. Organizations benefit 
from having a “scripting guy,” and someone reading a book about best practices 
just might be the right person to fill that role.



 Automation interface CHAPTER 4 75

Automation interface

One of the most obvious needs is for some type of automation interface. Automation can 
be implemented in many ways, such as through a Component Object Model (COM) clas-
sic application programming interface (API), Microsoft .NET Framework support, Windows 
Management Instrumentation (WMI) support, ActiveX Data Object (ADO) support in all of 
its various versions, and Active Directory Services Interface (ADSI) support, not to mention 
Windows PowerShell cmdlets or command-line utilities such as NetSH or NetDom. With these 
various avenues for automation support, identifying the proper means of performing the task 
can be both time consuming and overwhelming. For example, take the simple task of reading 
from the registry.

If you want to identify the version of Windows PowerShell that is running on your com-
puter, you can read the PowerShellVersion value from the registry. This registry key is shown 
in Figure 4-1.

FIGURE 4-1 Identify Windows PowerShell via the registry version number.

One method for reading from the registry is to use the registry provider from within 
Windows PowerShell and to read a registry value as you might read a property from a file 
or folder. To do this, you must use the HKLM PowerShell drive (HKLM in this instance) and 
follow it with the path to the registry key, which is \SOFTWARE\Microsoft\PowerShell\1\
PowerShellEngine. You can then select the item property in which you are interested, which is 
RunTimeVersion in this example, as shown in the Get-PsVersionRegistry.ps1 script.

Get-PsVersionregistry.ps1

$path = "HKLM:\SOFTWARE\Microsoft\PowerShell\3\PowerShellEngine" 

$psv = get-itemproperty -path $path 

$psv.PowerShellVersion 



 76 CHAPTER 4 Identifying scripting opportunities 

INSIDE TRACK

Huge paybacks using Windows PowerShell 4.0 automation

Keith Mayer, Senior technical Evangelist
Microsoft Corporation

I ’ve been an It Professional for over 20 years, and throughout this time, I have 
worked with lots of enterprise It organizations. all of the organizations with which 

I’ve worked try very hard to ensure standardization of their various deployments 
to promote reliability and supportability. how do they accomplish this? Why, with 
Standard Operating Procedure (SOP) documents, of course! 

SOP documents can be very detailed, and some SOPs can be hundreds of pages in 
length. While it’s certainly wonderful to have this level of step-by-step instructions 
documented, SOP documents don’t solve one of It’s longest-running challenges: 
human error. Using an SOP document as the basis for deploying an It solution often 
requires extreme diligence in following each of several hundred or, in some cases, 
thousands of steps exactly. During the deployment, if another It issue arises, it’s 
quite easy to lose track of your progress and, as a result, accidentally omit certain 
configuration items or entire steps.

and this is exactly where Windows PowerShell 4.0 and Desired State Configurations 
can be immediately impactful! as you begin learning and exploring Windows 
PowerShell 4.0, take the opportunity to review your existing SOP documents. In 
particular, look for those processes that are tedious to perform and are used over 
and over again. If you can apply your new Windows PowerShell skills by automat-
ing all or a portion of particular processes that are used frequently by your team, 
you’ll likely receive three huge immediate paybacks: (1) You’ll save time for your 
team to focus on other, more strategic tasks—the “fun” stuff in IT; (2) you’ll increase 
reliability and standardization by reducing opportunities for human error; (3) your 
team will see the business value that Windows PowerShell can provide, and they 
will be encouraged to join you in learning PowerShell so that they can help to script 
other processes.

automating frequently used SOP documents can be a great starting point in your 
organization to begin applying new Windows PowerShell 4.0 skills. In the past, I’ve 
seen many organizations spend tons of cycles brainstorming on how best to begin 
leveraging Windows PowerShell. Be sure that you don’t overlook the opportunity to 
jumpstart the use of PowerShell on your team to improve existing time-consuming 
processes that might be right under your nose!



 Automation interface CHAPTER 4 77

Using RegRead to read the registry
Those of you who are familiar with VBScript might want to create the WshShell object and use 
the RegRead method. To do this, you can use the HKLM moniker as a shortcut to refer to the 
HKEY_LOCAL_MACHINE registry key.

NOTE When used with the WshShell object, the HKLM is case sensitive.

You store the path to the Windows PowerShell configuration information in the $path vari-
able. Next, you can use the New-Object cmdlet to create an instance of the WshShell object. 
This COM object has the program ID of Wscript.Shell. You can store the returned object in the 
 $wshShell variable. After you have the WshShell object, you can use the RegRead method to 
read the registry key value, which you can specify by placing the path and value name in an 
expanding string: "$path\RunTimeVersion". This Get-PsVersionRegRead.ps1 script is shown here.

Get-PSVersionregread.ps1

$path = "HKLM\SOFTWARE\Microsoft\PowerShell\3\PowerShellEngine" 

$WshShell = New-Object -ComObject Wscript.Shell 

$WshShell.RegRead("$path\PowerShellVersion") 

Using WMI to read the registry
When you want to use WMI to read the registry, you need to use the stdRegProv WMI class, 
which has always been in the root\default WMI namespace. Beginning with Windows Vista, 
you also have an instance of the stdRegProv WMI class in the root\cimv2 namespace (which, 
incidentally, really is the default namespace). This means that you can use the stdRegProv 
WMI class from either the root\default WMI namespace or the root\cimv2 WMI namespace; it 
does not matter because it is the same WMI class. Because it does not matter which instance 
of the class you use, I recommend as a best practice that you use the class from the root\
default WMI namespace (as in the Get-PsVersionWmi.ps1 script) to ensure compatibility with 
older versions of Windows-based operating systems.

WMI uses coded values to determine the registry tree (also known as a hive). These coded 
values are shown in Table 4-1.

TABLE 4-1 WMI registry tree values

Name Value

HKEY_CLASSES_ROOT 2147483648

HKEY_CURRENT_USER 2147483649

HKEY_LOCAL_MACHINE 2147483650

HKEY_USERS 2147483651

HKEY_CURRENT_CONFIG 2147483653



 78 CHAPTER 4 Identifying scripting opportunities 

You can use the value 2147483650 and assign it to the $hklm variable. This value points 
the WMI query to the HKEY_LOCAL_MACHINE registry tree. You then assign the string 
SOFTWARE\Microsoft\PowerShell\1\PowerShellEngine to the $key variable.

NOTE When using WMI to read the registry, the key is not preceded with a backslash.

You assign the registry property value that you want to read to the $value variable. Now 
you can use the [WMICLASS] type accelerator to obtain an instance of the stdRegProv WMI 
class. You can choose the root\default WMI namespace to specify which version of the 
stdRegProv WMI class you want to use. You can also precede the namespace with the name 
of a computer and read the registry from a remote computer. After you create an instance 
of the stdregProv WMI class, you can use the resulting System.Management.Management 
class to call the GetStringValue method. The GetStringValue method takes three arguments: 
the registry key coded value, the registry subkey string, and the property name. Two objects 
are returned by the method call: the returnvalue, which indicates the success or failure of the 
method call, and the svalue, which is the string value that is stored in the registry property. 
The complete Get-PsVersionWmi.ps1 script is shown here.

Get-PsVersionWmi.ps1

$hklm = 2147483650 

$key = "SOFTWARE\Microsoft\PowerShell\3\PowerShellEngine" 

$value = "PowerShellVersion" 

$wmi = [WMICLASS]"root\default:stdRegProv" 

($wmi.GetStringValue($hklm,$key,$value)).svalue 

Using .NEt to read the registry
You can also use the .NET Framework classes to obtain information from the registry. To 
do this, you can use the Microsoft.Win32.Registry .NET Framework class. You can use the 
GetValue static method, which takes three parameters. The first parameter is the registry root 
and key name; the second parameter is the registry value that you want to read; and the last 
parameter is the default value of the registry key value. In the Get-PsVersionNet.ps1 script, 
you can assign the HKEY_LOCAL_MACHINE string value to the $hklm variable. Next, you can 
assign the string representing the remainder of the registry path to the $key variable. The 
registry key property value you want to retrieve is stored in the $value variable. You can then 
use the Microsoft.Win32.Registry class plus two colons to signify that you want to use a static 
method and then use the GetValue method with the $hklm, $key, and $value variables passed 
to it. The Get-PsVersionNet.ps1 script is shown here.

Get-PsVersionNet.ps1

$hklm = "HKEY_LOCAL_MACHINE" 

$key = "SOFTWARE\Microsoft\PowerShell\3\PowerShellEngine" 



 Automation interface CHAPTER 4 79

$value = "PowerShellVersion" 

[Microsoft.Win32.Registry]::GetValue("$hklm\$key",$value,$null) 

When working with the registry, you can see that there is a Windows PowerShell provider, 
COM object, WMI class, and .NET Framework class. This plethora of methodologies is one of 
the strengths of Windows PowerShell, but it is also a significant source of confusion for those 
who are just learning PowerShell.

So what is the correct way to read the registry? You can never go wrong by using native 
Windows PowerShell providers and commands. The registry provider in Windows PowerShell 
is powerful and easy to use from the command line. In addition, because of the remoting 
features of Windows PowerShell 4.0, the need to remotely access the registry is no longer the 
key decision factor.

WMI gives you the ability to connect remotely to read the registry. The methodology is 
very similar to the way that you connect in VBScript; therefore, if you are migrating a script to 
Windows PowerShell from VBScript, it makes sense to stay with the WMI methodology. The 
WshShell COM object is also a good choice if you are interested in migrating legacy code to 
Windows PowerShell. The VBScript techniques are very similar and can therefore make a fairly 
straightforward translation. The .NET Framework classes offer much more flexibility than any 
of the other techniques explored.

Using intrinsic Windows PowerShell techniques
Deciding on the best way to retrieve information from computers when working with 
Windows PowerShell is one of the most basic decisions one has to make prior to scripting. 
As you have already seen, there are many different ways to read from the registry to obtain 
information. But in the case of Windows PowerShell, the real question is not how to read the 
registry but whether or not to read from the registry. This is because there is an automatic 
variable that displays the version of Windows PowerShell. The variable $PSVersionTable is 
available beginning with Windows PowerShell version 2.0. The variable and output from the 
variable are shown here:

PS C:\> $PSVersionTable 
 
Name                           Value 
----                           ----- 
PSVersion                      4.0 
WSManStackVersion              3.0 
SerializationVersion           1.1.0.1 
CLRVersion                     4.0.30319.33439 
BuildVersion                   6.3.9478.0 
PSCompatibleVersions           {1.0, 2.0, 3.0, 4.0} 
PSRemotingProtocolVersion      2.2

Upon discovering an intrinsic Windows PowerShell method to accomplish a particular 
task, the next problem is how to leverage this method. Because it is unlikely that a network 



 80 CHAPTER 4 Identifying scripting opportunities 

administrator needs to retrieve Windows PowerShell version information from a single 
computer, the task falls to how best to retrieve the information from a group of remote 
computers. Two ways of doing this are using a Windows PowerShell workflow or using 
Windows PowerShell remoting. While this is not exactly a strict dichotomy (because Windows 
PowerShell workflow uses Windows PowerShell remoting technology), the choice falls to how 
many remote computers are in the mix. 

Using a Windows PowerShell workflow to retrieve Windows PowerShell version infor-
mation is simple enough. For more information about Windows PowerShell Workflow, see 
Chapter 22, “Using Windows PowerShell Workflow.” The workflow looks similar to a Windows 
PowerShell function and is called in much the same way. The Get-PSVersionWorkflow.ps1 
script appears here. 

Get-PSVersionWorkflow.ps1 

workflow Get-PSVersion 

{ 

 InlineScript {$PSVersionTable.psversion} 

} 

An example of using the Get-PSVersionWorkflow.ps1 script is shown in Figure 4-2. 

FIGURE 4-2 Windows PowerShell Workflow provides easy remoting capability.

It is also possible to use Windows PowerShell remoting to execute a command on a remote 
computer. For more information about Windows PowerShell remoting, see Chapter 21, “Using 
Windows PowerShell remoting.” The easiest way to do this is to use the Invoke-Command 



 Automation interface CHAPTER 4 81

cmdlet and use the $PSVersionTable automatic variable inside the script block. This technique 
is shown in Get-PSVersionRemoting.ps1.

Get-PSVersionremoting.ps1 

Invoke-Command -ScriptBlock {$PSVersionTable.PSVersion} -ComputerName edlt, client1, 

server1 

An example of calling the Invoke-Command cmdlet from within the Windows PowerShell ISE 
is shown in Figure 4-3.

FIGURE 4-3 Windows PowerShell remoting provides an easy way to obtain information from networked 
computers.

INSIDE TRACK

Working with Windows PowerShell 

Jeffrey Snover, Distinguished Engineer
Microsoft Corporation

Version 4 of Windows PowerShell takes advantage of the rich architecture work 
we did in version 3, which enables us to deliver at least as much innovation in a 

much shorter time period. that is why it is hard for me to pick out my favorite fea-
ture. If you make me choose just one feature, I’d have to pick remoting, but that’s a 



 82 CHAPTER 4 Identifying scripting opportunities 

bit like cheating because there are at least six separate remoting stories, including 
the following:

■■ You can remote to existing systems using Remote Procedure Call (RPC) and the 
Distributed Component Object Model (DCOM) by adding the −computername 
parameter to numerous commands.

■■ You can do awesome, large-scale WMI remoting by employing a new set of cmd-
lets that uses semi-synchronous aPIs and the −ThrottleLimit parameter.

■■ You can remotely manage raw hardware and UNIX boxes by using the new 
WS-Management (WSMan) cmdlets.

■■ You can create remote interactive Windows PowerShell sessions on a Windows-
based machine.

■■ You can do fan-out command execution to a large group of machines and get 
results back immediately, or you can run Windows PowerShell as a background 
job and collect the results at your leisure.

■■ You can host Windows PowerShell as an Internet Information Services (IIS) appli-
cation to support fan-in management scenarios in which service providers offer 
custom scripting interfaces to individual users across the Internet.

Windows PowerShell remoting provides administrators with much more control 
over their environment than they ever had before. I can’t wait to see what people 
do with it. I think that most people will perform the classic procedures with our 
remoting work, such as creating files and folders, making new shares, and working 
with the registry. Only now, they can do this on a remote machine. these types of 
procedures are exposed via the Windows PowerShell cmdlets and providers. I also 
think that a select group of people will look at our remoting capabilities and realize 
that we have delivered a general-purpose, distributed computing platform—and 
they will start doing all sorts of crazy and wonderful things with it.

Personally, when I need to work on a remote computer, I like creating PSSessions 
and then using the Invoke-Command cmdlet because it is very fast and flexible. I 
use this cmdlet whether I need to run a simple command or actually need a remote 
interactive Windows PowerShell session.



 Structured requirements CHAPTER 4 83

Structured requirements

When investigating a scripting opportunity, it is important to first analyze the requirements 
for the script. Several of the items to be examined are listed here:

■■ Security requirements

■■ .NET Framework version requirements

■■ Operating system requirements

■■ Application requirements

■■ Module requirements

Security requirements
Beginning with Windows Vista, the introduction of User Account Control (UAC) has made it 
easier for users to run programs without having Administrator rights on their computer. While 
this is a boon for users and corporate security departments, it is somewhat of a headache 
for network administrators and others who are writing scripts that might require elevated 
permissions.

Windows PowerShell does not bypass security. If a script attempts to perform an action 
that the user is not allowed to perform, the script fails.

In Windows PowerShell 4.0, we have improved the detection of security requirements. As 
shown in Figure 4-4, when a script does not contain the required rights, a failure notification 
is shown.

FIGURE 4-4 When a script does not have permission, it reports an access denied message.

As a best practice, a script should detect the rights it possesses when running and compare 
them with any requirements the script might need to run properly. An easy way to do this is 
to use the #Requires statement to check for admin rights. The #Requires statement is covered 



 84 CHAPTER 4 Identifying scripting opportunities 

in Chapter 12, “Handling errors.” The following example uses #Requires to check for admin 
rights:

#Requires -RunAsAdministrator

To do this, you first need to obtain information about the user, which is covered in the next 
section.

Detecting the current user
To provide information about currently logged-on users, you can use the Security.Principal 
.WindowsIdentity .NET Framework class. This class uses the GetCurrent method, which returns 
an instance of a WindowsIdentity object that represents the current user. In the following 
example, the WindowsIdentity object is stored in the $user variable:

$user = [System.Security.Principal.WindowsIdentity]::GetCurrent()

The WindowsIdentity object contains the properties shown in Table 4-2.

TABLE 4-2 Properties of the WindowsIdentity object

Name Definition

AuthenticationType System.String AuthenticationType {get;}

Groups System.Security.Principal.IdentityReferenceCollection Groups {get;}

ImpersonationLevel System.Security.Principal.TokenImpersonationLevel ImpersonationLevel {get;}

IsAnonymous System.Boolean IsAnonymous {get;}

IsAuthenticated System.Boolean IsAuthenticated {get;}

IsGuest System.Boolean IsGuest {get;}

IsSystem System.Boolean IsSystem {get;}

Name System.String Name {get;}

Owner System.Security.Principal.SecurityIdentifier Owner {get;}

Token System.IntPtr Token {get;}

User System.Security.Principal.SecurityIdentifier User {get;}

After the WindowsIdentity object is stored in a variable, you can display the values of all of 
the properties shown in Table 4-2 by typing the variable at the prompt. You do not need to 
store the variable, and you can display the data directly as shown in Figure 4-5.



 Structured requirements CHAPTER 4 85

FIGURE 4-5 Windows PowerShell displays the value of the WindowsIdentity object.

While the display shown in Figure 4-5 is somewhat impressive and moderately useful in 
that it displays the user name and security identifier (SID) of the user, it does not display any 
information about the user rights to a particular resource or administrator rights in general. 
There are actually two separate requirements: Does the user have access rights to a resource, 
and does the user have administrator rights?

To determine the rights of a user to a resource, you must examine the group information. 
As shown in Table 4-2, the WindowsIdentity class has a Groups property. You can easily display 
the contents of the Groups property by simply printing the value as shown here:

$user = [System.Security.Principal.WindowsIdentity]::GetCurrent() 
 
$user.Groups

The problem with this approach is that the resulting collection of groups is not in the most 
readable format, as shown in Figure 4-6.



 86 CHAPTER 4 Identifying scripting opportunities 

FIGURE 4-6 The Groups property of the WindowsIdentity class is subilluminating.

You need to convert the group information from a SID into something more recognizable. 
When you have an actual group name, it is easier to use any of the string manipulation tools 
provided by Windows PowerShell to determine specific group membership. You can index 
directly into the collection of SecurityIdentifiers that is returned by the Groups property. The 
following code allows you to do this:

$user.Groups[0]

Of course, there is one problem with this approach. How do you know what group[0] is? If 
you add the ToString method, you get a little bit of assistance as shown here, with the result-
ing display as well.

PS C:\Users\bob>  $user.Groups[0].tostring() 
 
S-1-4-21-540299044-341859138-929407116-513

At this point, you have succeeded in directly obtaining the SID of the group. In some cases, 
this can be enough information if you want to match group membership based on SIDs. 
However, most network administrators do not have this information at their fingertips, so it is 
necessary to take the output to an additional level of processing.

To change a SID into a noun name, you can use the Translate method from the System 
.Security.Principal.SecurityIdentifier .NET Framework class. The members of this class are 
shown in Table 4-3.

TABLE 4-3 Members of the SecurityIdentifier class

Name MemberType Definition

CompareTo Method System.Int32 CompareTo(SecurityIdentifier sid)

Equals Method System.Boolean Equals(Object o) System.Boolean 
Equals(SecurityIdentifier sid)

GetBinaryForm Method System.Void GetBinaryForm(Byte[] binaryForm Int32 offset)



 Structured requirements CHAPTER 4 87

Name MemberType Definition

GetHashCode Method System.Int32 GetHashCode()

GetType Method System.Type GetType()

IsAccountSid Method System.Boolean IsAccountSid()

IsEqualDomainSid Method System.Boolean  
IsEqualDomainSid(SecurityIdentifier sid)

IsValidTargetType Method System.Boolean IsValidTargetType(Type targetType)

IsWellKnown Method System.Boolean IsWellKnown(WellKnownSidType type)

ToString Method System.String ToString()

Translate Method System.Security.Principal.IdentityReference Translate(Type 
targetType)

AccountDomainSid Property System.Security.Principal.SecurityIdentifier  
AccountDomainSid {get;}

BinaryLength Property System.Int32 BinaryLength {get;}

Value Property System.String Value {get;}

To translate the SID from a number to a Windows group name, you must specify that you 
want to translate to the type of NTAccount by first creating an instance of an NTAccount type. 
To do this, you use a string that represents the System.Security.Principal.NTAccount class and 
then use the −as operator to specify the string as a [type], as shown here:

$nt = "System.Security.Principal.NTAccount" -as [type]

After you create the NTAccount type, you can use it with the Translate method as shown 
here:

PS C:\>  $user = [System.Security.Principal.WindowsIdentity]::GetCurrent() 
PS C:\> $nt = "System.Security.Principal.NTAccount" -as [type] 
PS C:\>  $user.Groups[0].translate($nt) 
Value 
----- 
NWTRADERS\Domain Users

This might seem like a bit of work to find out that the currently logged-on user is a mem-
ber of the Domain Users group. (You would have known that anyway.) But based on the fact 
that a collection is returned by the Groups property, a looping type of cmdlet can be used to 
provide access to one group at a time. In this example, the ForEach-Object cmdlet is used as 
shown here:

PS C:\>  $user = [System.Security.Principal.WindowsIdentity]::GetCurrent() 
PS C:\> $nt = "System.Security.Principal.NTAccount" -as [type] 
PS C:\> $user.Groups | ForEach-Object { $_.translate($NT) } 
Value 
----- 
NWTRADERS\Domain Users 
Everyone 
BUILTIN\Users 



 88 CHAPTER 4 Identifying scripting opportunities 

NT AUTHORITY\INTERACTIVE 
NT AUTHORITY\Authenticated Users 
NT AUTHORITY\This Organization 
LOCAL 
NWTRADERS\moreBogus 
NWTRADERS\bogus

When you see that you can obtain the actual names of the groups, there are several 
ways to search the strings for a group match, such as using the −contains, −like, or −match 
operators.

Tradeoff −Contains, −Like, or −Match

When searching a string, you can use at least three different operators: 
−contains, −like, and −match. The most confusing of the bunch is the 

–contains operator. This is not due to its complexity of use but rather to an 
attempt at understanding when to use the operator. Perhaps a few examples 
will help. In the following code, an array of numbers is created and stored 
in the $a variable. Next, the −contains operator is used to see whether the 
array that is stored in the $a variable contains the number 1. It does, and true 
is reported. The −contains operator is then used to see whether the $a array 
contains the number 6. It does not, and false is reported, as shown here:

PS C:\> $a = 1,2,3,4,5 

PS C:\> $a -contains 1 

True 

PS C:\> $a -contains 6 

False

In the next example, the number 12345 is stored in the $b variable. The  
−contains method is used to see whether the number stored in $b contains 
the number 4. While the number 4 is indeed present in the number 12345, 
−contains reports back false. The number stored in $b does not contain 4. 
Next, the −contains method is used to see whether $b contains 12345, which 
it does, and true is reported back, as shown here:

PS C:\> $b = 12345 

PS C:\> $b -contains 4 

False 

PS C:\> $b -contains 12345 

True

Suppose the variable $c stores the following string: "This is a string". 
When the −contains method is used to look for the string "is", false is 



 Structured requirements CHAPTER 4 89

returned. If the −contains method is used to look for the string "This is a 
string", it returns true, as shown here: 

PS C:\> $c = "This is a string" 

PS C:\> $c -contains "is" 

False 

PS C:\> $c -contains "This is a string" 

True

 For our last example of the −contains operator, if $d contains an array of 
strings ("This","is","a","string") when the −contains operator is used to 
look for the value of "is", true is returned. When the −contains operator 
looks for "ring", it returns false, as shown here: 

PS C:\> $d = "This","is","a","string" 

PS C:\> $d -contains "is" 

True 

PS C:\> $d -contains "ring" 

False

The −contains operator is used to examine the elements of an array. If the 
array contains a particular value, the operator returns true. If there is not an 
exact match for the value, the −contains operator returns false. This process 
can be an easy way to locate items in an array.

The −like operator is used to perform a wildcard search of a string. If the $a 
variable is used to hold the string "This is a string" and the −like operator 
searches for "*ring*", the −like operator returns true, as shown here: 

PS C:\> $a = "This is a string" 

PS C:\> $a -like "*ring*" 

True

An interesting use of the −like operator is to search the elements of an array. 
If the $b variable is used to hold the array "This","is","a","string" and the 
−like operator searches the array for "*ring*", every match for the wildcard 
pattern is returned—not just a true/false answer, as shown here: 

PS C:\> $b = "This","is","a","string" 

PS C:\> $b -like "*ring*" 

string

The −match operator is used to perform a regular expression pattern match. 
When the match is found, true is returned. If a match is not found, false is 
returned. If the $a variable is assigned the value "This is a string" and the 



 90 CHAPTER 4 Identifying scripting opportunities 

−match operator is used to look for the value of "is", the pattern is a match 
and true is returned, as shown here: 

PS C:\> $a = "This is a string" 

PS C:\> $a -match "is" 

True

More complex match patterns can be used. The \w character is used with 
regular expressions to look for any white space, such as a space before or 
after a letter. When the $a variable is used to hold the string "This is a 
string" and the regular expression pattern [\w a \w] is used, a match will be 
returned if the letter a is found with a space in front and a space behind the 
letter, as shown here: 

PS C:\> $a = "This is a string" 

PS C:\> $a -match "[\w a \w]" 

True

What about matching with an array? If the $c variable is used to hold the 
array  "This","is","a","string" and the regular expression pattern match, 
"is", is used, two matches are found. In this example, the actual string that 
contains the pattern match is returned as shown here. When a match is 
found, an array of strings is returned, as also shown here: 

PS C:\> $c = "This","is","a","string" 

PS C:\> $c -match "is" 

This 

is

The Get-MemberOf function uses the GetCurrent static method from the System.Security 
.Principal.WindowsIdentity class to create a WindowsIdentity object. After creating an 
NTAccount type, it uses the Groups property to obtain a collection of security groups, where-
upon it uses the ForEach-Object cmdlet to translate the group from a SID to an NTAccount as 
the groups come across the pipeline. If the group name matches the group that is used when 
the function is called, it displays a message stating that the user is a member of the group. 
The Get-MemberOf.ps1 script is shown here.

Get-MemberOf.ps1

Function Get-MemberOf 

{ 

 Param ($group) 

 $user = [System.Security.Principal.WindowsIdentity]::GetCurrent() 

 $nt = "System.Security.Principal.NTAccount" -as [type] 

 If( $user.Groups.translate($NT) -match "$group" ) 



 Structured requirements CHAPTER 4 91

  { "$($user.name) is a member of a $group group" } 

 ELSE 

 { "$($user.name) is not a member of a $group group" } 

} 

An example of using the Get-MemberOf function from the Get-MemberOf.ps1 script is 
the UseGetMemberOf.ps1 script. This script checks to determine whether the logged-on user 
has rights to a folder named bogus. The security permission on the bogus folder is shown in 
Figure 4-7. The bogus group has full control, and no one else has permission.

FIGURE 4-7 Only the bogus group has permission to access the bogus folder.

The bogus group has one direct member—MyDomainAdmin. It also has two groups that 
are members: the morebogus group and the useless group. These group memberships are 
shown in Figure 4-8.

The logged-on user is Bob. As shown in Figure 4-8, Bob does not have direct membership 
in the bogus group. Bob is a member of the morebogus group, as shown in Figure 4-9.



 92 CHAPTER 4 Identifying scripting opportunities 

FIGURE 4-8 The bogus group contains other groups.

FIGURE 4-9 Bob is a member of the morebogus group and Domain Users.

In the UseGetMemberOf.ps1 script, first an instance of the GetCurrent static method from 
the System.Security.Principal.WindowsIdentity class is created. You will need to store the 
WindowsIdentity object that is returned in a variable.



 Structured requirements CHAPTER 4 93

You next need to create an instance of an NTAccount type by using the −as operator to 
cast the string "System.Security.Principal.NTAccount" as a [type]. You will use this type later.

The essential portion of the script uses an If statement to evaluate whether the name of 
the user group is found within the collection of groups. The Groups property returns a collec-
tion of groups that is contained within the $users object. Using Windows PowerShell auto-
matic collection expansion, it is possible to evaluate each group from the collection without 
using the ForEach-Object cmdlet. Using the Translate method that accepts the NTAccount 
type created earlier and assigned to the $NT variable, you now have a translated group name 
and can use the –match operator to determine whether the group that is stored in the $group 
variable matches what is in the collection of objects. You can treat this value as if it were a 
Boolean value by using the If statement as shown here:

If( $user.Groups.translate($NT) -match "$group" ) 

When a match with the group is found, you need to determine whether the file actually 
exists by using the Test-Path cmdlet, which receives the path stored in the $bogusFile vari-
able. The Test-Path cmdlet returns a Boolean value. Here is the code to check for the exis-
tence of the file:

If(Test-Path -Path $bogusFile)

If the file exists, the script enters the code block, which adds text to the file. To write to the 
file, you can use the Add-Content cmdlet, which receives the path to the file and the data you 
want to add. At the end of the line, two special characters are used: backtick r and backtick 
n. The `r is a return, and the `n is a new line. Together they form a carriage return and line 
feed that is equivalent to the VBScript vbcrlf keyword. The special characters are shown in 
Table 4-4.

TABLE 4-4 Special characters

Character Definition

`0 (number zero) Null

`a Alert

`b Backspace

`f Form feed

`n New line

`r Carriage return

`t Horizontal tab

`v Vertical tab

`r`n Carriage return line feed

When the additional text is added to the text file, a message is displayed on the screen and 
the file is opened in Notepad as shown here:



 94 CHAPTER 4 Identifying scripting opportunities 

{ 
 Add-Content -Path $bogusFile -Value "Added bogus content'r'n" 
 "Added content to $bogusFile" 
 Notepad $bogusFile 
} #end if Test-Path

If the file does not exist, a message is printed to the screen, as shown here:

ELSE 
       {  
         "Unable to find $bogusFile"  
       } #end else    
  } #end if user

If the user does not belong to a group with rights to the file, the user’s name is displayed 
on the screen with a message regarding the lack of group membership, as shown here:

ELSE 
    { 
     "$($user.name) is not a member of $group" 
    } 
} #end GetMemberOf

The completed UseGetMemberOf.ps1 script is shown here.

UseGetMemberOf.ps1

Function Get-MemberOf 

{ 

 Param ([string]$group, 

        [string]$path) 

 $user = [System.Security.Principal.WindowsIdentity]::GetCurrent() 

 $nt = "System.Security.Principal.NTAccount" -as [type] 

 If( $user.Groups.translate($NT) -match "$group" ) 

   { if(Test-Path -Path $path) 

       { 

         Add-Content -Path $path -Value "Added bogus content'r'n" 

         "Added content to $path" 

         Notepad $path 

       } #end if Test-Path  

    ELSE 

       { "Unable to find $path"} } 

 ELSE 

 { "$($user.name) is not a member of a $group group" } 

} # end function Get-MemberOf 

To call the Get-MemberOf function, first the function loads into memory. This can be as 
simple as running the UseGetMemberOf.ps1 script from within the Windows PowerShell 



 Structured requirements CHAPTER 4 95

ISE. The following illustrates calling the function to test for membership in a group prior to 
attempting access to the file: 

PS C:\> Get-Memberof -group bogus -path 'C:\bogus\bogusfile.txt' 
IAMMRED\ed is not a member of a bogus group 

INSIDE TRACK

Changing the way you write scripts

Jeffrey Snover, Distinguished Engineer
Microsoft Corporation

Version 2 has changed the way I write functions and scripts. Now, I always write 
functions that incorporate the version 2 cmdlet features. Before Windows 

PowerShell 2.0, functions were pale substitutes for cmdlets, but now they are 
full peers. that’s right—you can now write full cmdlets in Windows PowerShell 
itself. that capability is a game changer. the tiny bit of extra syntax provides 
an incredible amount of functionality. this is the basis for what we call meta- 
programming, which is going to change the world. You can mark my words on that. 

We can do meta-programming with the Import-PSSession cmdlets, in which we 
inspect the cmdlets on a remote machine and emit local proxies for those functions 
on the local machine, which makes it appear as if the cmdlets are installed on the 
local machine. You have tab completion, help, formatting—the whole works. Yet, 
what happens behind the scenes is that we emit a function with cmdlet semantics 
that uses the remote machine to do the work. this is very powerful indeed. When 
people begin to use the Import-PSSession cmdlet, it will be like the 2001 Space 
Odyssey movie in which the large black monolith appeared, the apes figured out 
how to use tools, and the evolution toward mankind was initiated.

Even with all of the new command-line features in Windows PowerShell 2.0, I 
still write scripts. In fact, I am writing more scripts now than during my Windows 
PowerShell 1.0 days. Why? First and perhaps foremost—joy. It is simply a joy to 
write a Windows PowerShell script. It’s like driving a BMW. this incredible machine 
goes exactly where you point it and makes you feel powerful and competent. With 
Windows PowerShell 2.0, you can achieve so much so easily that I tend to write a 
script, step back to look it, and say, “Wow! That is cool!” Let me be quick to say that 
I have the same experience when looking at other people’s scripts. Lee holmes, a 
Senior Software Development Engineer at Microsoft, just sent me a 103-line script 
that makes me just dizzy with excitement. I simply can’t believe what he can do by 
using 103 lines of code. at the end of the day, it comes down to being effective at 
your job. Windows PowerShell makes it easy for you to be effective at your job.



 96 CHAPTER 4 Identifying scripting opportunities 

Detecting the user role
It is possible that the Windows PowerShell console that is running does not have 
Administrator rights. If this is the case, even if the user is in the Administrators role for the 
computer, the script will fail due to insufficient rights. One way to handle this situation is 
to launch either the Windows PowerShell console or the Windows PowerShell ISE as an 
administrator. The way to do this is to right-click the shortcut to the Windows PowerShell 
console. This produces a task list that offers options to run as an administrator, as shown in 
Figure 4-10.

FIGURE 4-10 Right-click the Windows PowerShell console shortcut to bring up a task list to run as  an 
administrator.

You could place the Test-IsAdmin function that is contained in the Test-IsAdminFunction 
.ps1 script into your profile or into any script that requires administrative rights. The Test-
IsAdminFunction.ps1 script begins by declaring the Test-IsAdmin function, which accepts a 
single value—a variable named $isAdmin. This variable is passed by reference, which means 
that you will change the value of the $isAdmin variable from within the function itself. You 
can specify that a variable is passed by reference by using the [ref] type constraint on the 
variable. This type constraint is required in the function declaration line of the code, as well 
as when you call the function from the main body of the script. The $isAdmin variable itself is 
null when it is passed to the function because it is set to null when it is declared in the main 
body of the script. The function declaration is shown here:

Function Test-IsAdmin(

The next action in the Test-IsAdmin function is to use the static GetCurrent method from 
the Security.Principal.WindowsIdentity .NET Framework class to retrieve an instance of the 
WindowsIdentity class that represents the current user. The returned WindowsIdentity object is 
stored in the $currentUser variable, as shown here:

$currentUser = [Security.Principal.WindowsIdentity]::getCurrent()

Next, the Test-IsAdmin function creates an instance of a WindowsPrincipal class that repre-
sents the current user by passing the WindowsIdentity object, which is stored in the $identity 
variable as the constructor to the Security.Principal.WindowsPrincipal class. Because a new 



 Structured requirements CHAPTER 4 97

object is required, the function uses the New-Object cmdlet. The resulting WindowsPrincipal 
object is stored in the $principal variable as shown here:

$principal = new-object security.Principal.windowsPrincipal $identity

Now the static property administrator is used from the Security.Principal 
.WindowsBuiltInRole enumeration. The administrator role enumeration is shown here:

[security.principal.WindowsBuiltInRole]::administrator

To use the IsInRole method from the WindowsPrincipal class, you need to give it a 
WindowsBuiltInRole enumeration, which was created in the previous line of code. The result of 
the IsInRole method is a Boolean value, true or false, which returns directly from the function.

The completed Test-IsAdminFunction.ps1 script is shown here.

test-Isadmin.ps1

Function Test-IsAdmin 

{ 

 <# 

    .Synopsis 

        Tests if the user is an administrator 

    .Description 

        Returns true if a user is an administrator, false if the user is not an 

administrator         

    .Example 

        Test-IsAdministrator 

    #> 

 $identity = [Security.Principal.WindowsIdentity]::GetCurrent() 

 $principal = New-Object Security.Principal.WindowsPrincipal $identity 

 $principal.IsInRole([Security.Principal.WindowsBuiltinRole]::Administrator) 

} 

To use the Test-IsAdmin function, I call it in an evaluation after it loads into memory. A 
common way to do this is to use the If statement to evaluate the Boolean value returned from 
the function. This technique is shown here:

PS C:\> if (Test-IsAdmin) {"Console has admin rights"} 
Console has admin rights 

The Security.Principal.WindowsBuiltInRole .NET Framework enumeration has the following 
possible values:

■■ Administrator

■■ User

■■ Guest

■■ PowerUser



 98 CHAPTER 4 Identifying scripting opportunities 

■■ AccountOperator

■■ SystemOperator

■■ PrintOperator

■■ BackupOperator

■■ Replicator

These enumeration values are documented in reference information contained on the 
MSDN website. A link to MSDN is included in the “Additional resources” section later in this 
chapter. However, you do not need to search the documentation if all you want to do is find 
the enumeration values. You can use Windows PowerShell to provide this information by 
using the static GetNames method from the System.Enum .NET Framework class. You place 
the Security.Principal.WindowsBuiltInRole enumeration class name in quotation marks to the 
method and press Enter to retrieve the names of all of the enumerations contained in the 
class, as shown here:

PS C:\> [enum]::getnames("security.principal.WindowsBuiltInRole") 
Administrator 
User 
Guest 
PowerUser 
AccountOperator 
SystemOperator 
PrintOperator 
BackupOperator 
Replicator

The Enum class also has the GetValues static method, which lists the values of the enumer-
ations instead of the names of the enumerations. This would be a bit boring in this particular 
case because both the value and the name of the WindowsBuiltInRole enumerations are the 
same things. To find all of the static methods of the Enum class, you can use the following line 
of code (although the only thing I do with the Enum class 95 percent of the time is to use it to 
obtain the names of a particular .NET Framework enumeration):

[enum] | Get-Member -Static -MemberType method

Because there are no static properties defined in the Enum class, you can get away with 
omitting the −MemberType parameter and use the following line of code:

[enum] | Get-Member –Static

If you do not want to do that much typing, you can use the following from the console:

[enum] | gm -s

The GetAdminFunction.ps1 script can easily be modified to provide information based on 
the other roles available in the Security.Principal.WindowsBuiltInRole class. The main objective 
is to replace the hard-coded administrator role name with a variable, as shown here:

[security.principal.WindowsBuiltInRole]::$roleName



 Structured requirements CHAPTER 4 99

The remaining changes to the script consist of renaming variables and changing the out-
put text slightly. The modified Test-IsInRole.ps1 script is shown here.

test-IsInrole.ps1

Function Test-Isinrole 

{ 

 <# 

    .Synopsis 

        Tests if the user is in a specific role 

    .Description 

        Returns true if a user is the role, false if the user is not in the role         

    .Example 

        Test-Isinrole -role Guest 

    #> 

    Param($roleName) 

 $identity = [Security.Principal.WindowsIdentity]::GetCurrent() 

 $principal = New-Object Security.Principal.WindowsPrincipal $identity 

 $principal.IsInRole([Security.Principal.WindowsBuiltinRole]::$roleName) 

} 

To call the Test-IsinRole function after loading it, add a bit of evaluation code around the 
call and pass one of the permissible enumeration values. This technique is shown here:

PS C:\> if (Test-Isinrole -roleName 'guest') {"Console is in role"} ELSE {"Console is 
not in role"} 
Console is not in role 

NOTES FROM THE FIELD

Jonathan tyler, It Pro

Having originally been a system administrator, I used Windows PowerShell a 
lot for diagnostics. Since I have moved into the development world, I still use 

Windows PowerShell for diagnostics; I just use it in a slightly different way.

Because Windows PowerShell is syntactically very close to C#, I like to use 
PowerShell to test code before I add the code to my C# project. By leveraging 
Windows PowerShell this way, I find that I can step through the code a line or two 
at a time to see how the process reacts without having to continually recompile 
code. this saves me some compiling and testing cycles that I might normally use. 
this method also allows me to reduce the number of try/catch blocks because I can 
generally plan ahead for what types of exceptions to look for. this is not foolproof, 
but it does help the development process.



 100 CHAPTER 4 Identifying scripting opportunities 

there are also several scenarios where I use Windows PowerShell in preparing data 
for my C# projects. the automation that Windows PowerShell provides helps to 
quickly produce input files or other assets that I need for my C# project. One such 
way I could prepare a test data file is to quickly generate a CSV file with several 
hundred entries and create random data for each of the fields.  

.NEt Framework version requirements
When working with Windows PowerShell, it’s easy access to the .NET Framework while pro-
viding flexibility and ease of development also introduces an additional consideration—the 
version of the .NET Framework that is installed on the computer. There are several ways to 
detect the version.

To check the version of the .NET Framework system, you can use the static 
GetSystemVersion method from the System.Runtime.InteropServices.RunTimeEnvironment 
.NET Framework class as shown here:

[runtime.interopServices.RunTimeEnvironment]::GetSystemVersion()

However, when I call this method on my computer, it reports v4.0.30319, which is .NET 
Framework 4.5. The value returned occurs because of the way the Framework is installed—the 
service packs are considered to be extensions to the run time.

One way of finding a specific version of the .NET Framework is to check the registry. 
When the .NET Framework is installed, each version adds a key to the registry. Beginning 
with .NET Framework 4.5, I need to read the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
NET Framework Setup\NDP\v4\Full\Release key value. To do this, I use the Get-ItemProperty 
cmdlet and the Registry provider, as shown here:

PS C:\> (Get-ItemProperty -Path 'HKLM:\SOFTWARE\Microsoft\NET Framework Setup\NDP\ 
v4\Full').Release 
378675 

The release number of .NET Framework 4.5 is 378389. The release number of .NET 
Framework 4.5.1 is 378675. 



 Structured requirements CHAPTER 4 101

NOTES FROM THE FIELD

Determining .NET Framework versions

Luís Canastreiro, Premier Field Engineer
Microsoft Portugal

When I write a script that depends on a feature from a particular version of the 
.NEt Framework, such as version 3.5, I always like to include a test to ensure 

that the required version of the .NEt Framework is installed. One basic test is to test 
the presence of the installation path: %Systemroot%\Microsoft.NEt\Framework\
v3.5. Because this folder does not exist if .NEt Framework 3.5 has not been installed 
on the machine, this check helps me to ensure that the script will run properly.

Since the days of .NEt Framework 2.0, a key has been created in the registry for 
each new version. I like to use this registry key because it can provide additional 
information, such as when the version was actually installed, the path, the version 
number, and whether the version has been service pack installed. Figure 4-11 shows 
the registry key from a machine with .NEt Framework version 3.5. this installation 
has been service pack installed.

FIGURE 4-11 The registry provides an easy way to verify .NET Framework version information.

What is a bit confusing is that there is a difference between the Common Language 
Runtime (CLR) and the .NET Framework. It is quite possible to have a computer with 
the CLr 2.0 SP2 and .NEt Framework 3.5 with SP1. When you install .NEt Framework 
3.5 SP1, you are upgrading the CLr to version 2.0 SP2. You can consider the .NEt 



 102 CHAPTER 4 Identifying scripting opportunities 

Framework as a package that includes the CLr plus a set of richly managed libraries 
for implementing GUIs, using web services, accessing Windows operating system 
functionality, and so forth, as well as the managed language compilers and tools.

Operating system requirements
There is a wide range of operating systems on which Windows PowerShell 4.0 can be 
installed, ranging from Windows 7 on up, and they can all be considered for certain scripts 
that might rely on the presence of a feature that exists only in particular versions of the oper-
ating system.

One way to obtain the operating system version is to use the OSVersion static property 
from the System.Environment .NET Framework class, as shown here:

PS C:\> [System.Environment]::OSVersion | Format-List 
 
 
Platform      : Win32NT 
ServicePack   : 
Version       : 6.3.9478.0 
VersionString : Microsoft Windows NT 6.3.9478.0

As shown in the preceding code, the version of the operating system is composed of a 
four-part number. The four parts are detailed here:

■■ Major Assemblies with the same name but different major versions are not inter-
changeable. For example, this part would be appropriate for a major rewrite of a 
product in which backward compatibility cannot be assumed.

■■ Minor If the name and major number on two assemblies are the same but the minor 
number is different, this indicates significant enhancement with the intention of back-
ward compatibility. For example, this part would be appropriate on a point release of a 
product or a fully backward-compatible new version of a product.

■■ Build A difference in build number represents a recompilation of the same source. 
This part would be appropriate because of processor, platform, or compiler changes.

■■ Revision Assemblies with the same name, major, and minor version numbers but dif-
ferent revisions are intended to be fully interchangeable. This part would be appropri-
ate to fix a security hole in a previously released assembly.

If you store the results of the [environment]::OSVersion static property into a variable, you 
have an instance of a System.Version object returned for the version property, as shown here:

PS C:\> [System.Environment]::OSVersion | Get-Member -MemberType Properties 
 
 
   TypeName: System.OperatingSystem 
 



 Structured requirements CHAPTER 4 103

Name          MemberType Definition 
----          ---------- ---------- 
Platform      Property   System.PlatformID Platform {get;} 
ServicePack   Property   string ServicePack {get;} 
Version       Property   version Version {get;} 
VersionString Property   string VersionString {get;}

The advantage of this approach is that the System.Version class allows easy access to each 
of the different properties of the version number. The System.Version class is the object that 
returns from the OSVersion.Version property, as shown here:

PS C:\> [System.Environment]::OSVersion.Version | Get-Member -MemberType Properties 
 
 
   TypeName: System.Version 
 
Name          MemberType Definition 
----          ---------- ---------- 
Build         Property   int Build {get;} 
Major         Property   int Major {get;} 
MajorRevision Property   int16 MajorRevision {get;} 
Minor         Property   int Minor {get;} 
MinorRevision Property   int16 MinorRevision {get;} 
Revision      Property   int Revision {get;} 

By using this approach, you have the ability to specify that you want the code to run only if 
it is on a particular version of the operating system. The GetOsVersionFunction.ps1 script illus-
trates this procedure. The Get-OsVersionFunction.ps1 script begins with the Get-OsVersion 
function. In the function declaration, the input variable is defined as a reference type, which 
allows the function to return the operating system version information back to the calling 
portion of the script. The function declaration specifies the name of the function and any 
input variables, as shown here:

Function Get-OsVersion([ref]$os)

The code block of the function retrieves the static OSVersion property from the System 
.Environment .NET Framework class and assigns it to the Value property of the $os variable as 
shown here:

$os.value = [environment]::OSVersion

Now, to use the Get-OsVersion function, you call the function by passing a reference 
type variable to it. The code here initializes the $os variable as null and then passes it to the 
function.

$os = $null 
Get-OsVersion([ref]$os)

You can then use an If ... Else type of statement to evaluate the major version of the 
operating system. To assist you in evaluating version numbers, you can refer to Table 4-5. You 
might find it surprising that both Windows Vista and Microsoft Windows Server 2008 have 



 104 CHAPTER 4 Identifying scripting opportunities 

the same version numbers. If you find a match, you can then proceed to the next portion of 
the script; otherwise, you can exit the script as illustrated here:

if($os.version.major -ge 6) 
 { 
  "Windows Vista or greater detected" 
 } 
else 
{ 
 "Windows Vista or greater not detected" 
 exit 
}

TABLE 4-5 Operating system names and versions

Version Number Operating System Name

5.1.2600 Windows XP

5.2.3790 Windows Server 2003

6.0.6001 Windows Vista

6.0.6001 Windows Server 2008

6.1.6801 Windows 7

6.1.6801 Windows Server 2008 R2

6.2.9200 Windows 8

6.2.9200 Windows Server 2012

6.3.9600 Windows 8.1

6.3.9600 Windows Server 2012 R2

The complete Get-OsVersionFunction.ps1 script is shown here.

Get-OsVersion.ps1

Function Get-OsVersion 

{ 

 [System.Environment]::OSVersion.Version 

} 

 

# *** entry point to script *** 

 

$os = Get-OsVersion 

if($os.major -ge 6 -and $os.Minor -ge 2) 

 { "Windows 8 or greater detected" } 

else 

{ "Windows 8 or greater not detected" } 

The System.Environment .NET Framework class does not have any remote features built 
into it. That is, you cannot give it a string and have it connect to a remote computer to 



 Structured requirements CHAPTER 4 105

retrieve information. This is not an issue with Windows PowerShell 2.0. You can use the 
Invoke-Command cmdlet to run the command remotely, as illustrated here:

PS C:\> $computers = "berlin","win7" 
PS C:\> Invoke-Command -ComputerName $computers -ScriptBlock {[environment]::OSVersion } 
 
PSComputerName     : berlin 
RunspaceId         : d23f85ed-3f2b-465b-877a-37dd43125f40 
PSShowComputerName : True 
Platform           : Win32NT 
ServicePack        : Service Pack 1 
Version            : 6.0.6001.65536 
VersionString      : Microsoft Windows NT 6.0.6001 Service Pack 1 
 
PSComputerName     : win7 
RunspaceId         : 04b1ce80-19e9-4dde-9b8d-8725b032dfff 
PSShowComputerName : True 
Platform           : Win32NT 
ServicePack        : 
Version            : 6.1.6801.0 
VersionString      : Microsoft Windows NT 6.1.6801.0

INSIDE TRACK

Why write PowerShell scripts?

Jeffrey Snover, Distinguished Engineer
Microsoft Corporation

I think the scripting community is going to flood the world with script cmdlets 
because they are incredibly easy to write, share, and debug. You can post them 

on a blog and improve the world. Not only will people observe your functions, but 
they will see how you executed the function; some might even give you feedback 
on your script and teach you something in the process. I have certainly benefited 
from reading other people’s scripts, and numerous people have taught me lessons 
in response to the scripts I’ve posted.

I love GUIs, but if you use a GUI all day long, you have sore arms by the end of the 
day. however, if you write a script, you have an artifact that you can use again and 
again to increase your productivity and value to your employer (and thus increase 
your employability and earning potential). You have an artifact that you can share 
with others and, in sharing, create a debt of gratitude. You have an artifact that 
people can review and admire and learn from using. You have an artifact that can 
be analyzed and critiqued and improved. When you script, you participate in a com-
munity of people who are learning with each additional script they use.



 106 CHAPTER 4 Identifying scripting opportunities 

In Windows PowerShell 1.0, it is difficult to write a script because the functions do 
not allow you to generate the correct semantics, you cannot provide help for your 
functions, and it isn’t easy to share scripts. With Windows PowerShell 2.0, we added 
extensions to functions and added modules to solve this scripting problem and 
make participation in the scripting community simple and easy.

 I use both the command-line and the graphical versions of Windows PowerShell, 
but I no longer use Notepad for writing scripts. the Windows PowerShell ISE is 
tremendous for creating and debugging scripts.

What do I do with Windows PowerShell? I explore! What I love about Windows 
PowerShell is its ability to let you explore so many aspects of the system. Windows 
PowerShell makes it easy and safe to check such things as WMI, .NEt, the registry, 
COM, a file—whatever. If I come across something useful, I write a script and often 
share it.

If you are just beginning to use Windows PowerShell, I want to tell you this: learn 
to learn. One of my favorite stories involves a group of novice and expert UNIX 
administrators who were given a written test, and the experts didn’t score much 
higher than the novices. however, when the groups were put in front of a machine 
and given a hands-on examination, the experts won easily. What we learned was 
that even though expert administrators might not necessarily remember more 
than novices, they are certainly experts at figuring out problems. Focus on learn-
ing. Learn how to use the Get-Help and Get-Member cmdlets. Learn how to use the 
object utilities. then, start exploring. You’ll be amazed at what you can accomplish 
by combining the basics, which is the point of a compositional system.

there isn’t a command named Do My Job. Instead, in Windows PowerShell, there is 
a toolkit that allows you to combine a few commands together to do your job. You 
need to learn how to put the pieces together and what the pieces are. Part of the 
process involves leveraging the community of people who are more than willing to 
help you with your problems if they can. 

application requirements
After you ensure that the script has the appropriate security rights and the correct version of 
the .NET Framework installed on the appropriate version of the operating system, you might 
still need to determine whether a particular application is running on your target machine. To 
check for an application, you can use either the Get-Process or Get-Service cmdlet—which-
ever one is appropriate.

The GetRunningService.ps1 script can be used to determine whether a particular service 
has been created on a computer and whether the service is running. To check for a service, 



 Structured requirements CHAPTER 4 107

the script uses an If ... Else construction. Inside the If statement, the Get-Service cmdlet is 
used to obtain a list of all services that are defined on the current computer. The −comput-
ername parameter of the Get-Service cmdlet can be used to cause the cmdlet to retrieve 
information from a remote computer. Results from the Get-Service cmdlet are pipelined to 
the Where-Object cmdlet, which is used to filter the results. Two criteria are used inside the 
Where-Object cmdlet: the status of the service, which must be running, and the actual name 
of the service itself. This section of the code is shown here:

Get-Service |  
Where-Object { $_.status -eq 'running' -AND $_.name -eq $serviceName }

If this condition is satisfied, the script enters the code block associated with the If state-
ment. In this example, the script prints the fact that the service is running. If the service does 
not exist or is not running, the script prints a message that the service is not running. Inside 
these two code blocks is where you place your code that depends on a particular state of a 
given service. The completed GetRunningService.ps1 script is shown here.

GetrunningService.ps1

$serviceName = "ZuneBusEnum" 

if( 

   Get-Service |  

   Where-Object { $_.status -eq 'running' -AND $_.name -eq $serviceName } 

  ) 

 { 

  "$serviceName is running" 

 } #end if 

ELSE 

 { 

  "$serviceName is not running" 

 } #end else

At other times, a particular process and not a service must be running. To verify the exis-
tence of a process, you can use the Get-Process cmdlet. The logic can be simplified because 
a process exists only if it is running; a compound WHERE clause is not required. The simplified 
logic is shown here:

Get-Process | Where-Object ProcessName -eq $processName 

The remainder of the GetRunningProcess.ps1 script shown here is similar to the 
GetRunningService.ps1 script.

GetrunningProcess.ps1

$processName = "iexplore" 

if( 

   Get-Process | Where ProcessName -eq $processName  

  ) 



 108 CHAPTER 4 Identifying scripting opportunities 

 { 

  "$processName is running" 

 } #end if 

ELSE  

 { 

  "$processName is not running" 

 } #end else 

Module requirements
The extensible nature of Windows PowerShell is one of its greatest features. You can down-
load modules from the Internet that come equipped with dozens of free cmdlets. You can 
also purchase commercial software that solves very real mission-critical problems from major 
software companies. Both solutions have one thing in common: The cmdlets are delivered 
housed within modules. There are two requirements: The module must be installed, and 
it must be loaded. Of course, the loading of the module is a non-issue because Windows 
PowerShell automatically loads modules that are contained in the $env:PSModulePath loca-
tion. If a module is stored in a location not within $env:PSModulePath, you must also take 
care of loading the module. 

To ensure that a Windows PowerShell module is available, prior to attempting to use cmd-
lets from the module, use the #Requires directive. The #Requires directive must be the first 
item on a line in a script. It is possible to use multiple #Requires directives to ensure that sev-
eral requirements are met. To do this, each #Requires directive must appear on an individual 
line. RequiresModule.ps1 illustrates this technique.

requiresModule.ps1

#requires -modules activedirectory 

#requires -version 4 

 

Get-aduser -filter * 

NOTES FROM THE FIELD

todd Klindt, Microsoft SharePoint MVP
SharePoint Consultant

I ’m a SharePoint guy by trade. I live and breathe SharePoint. If I had to pick my sec-
ond favorite technology, it just might be Windows PowerShell. I did everything I 

could to avoid Windows PowerShell, but it eventually wormed its way into my heart 
and won me over.



 Additional resources CHAPTER 4 109

I had been a SharePoint admin for a long time before SharePoint 2010 came 
around and forced me to learn Windows PowerShell. I had been administrating a 
large SharePoint 2003 and then a SharePoint 2007 farm and had become pretty 
handy with SharePoint’s command-line utility, stsadm.exe. I didn’t need any fancy 
Windows PowerShell to get my job done. But I saw the writing on the wall, and I 
begrudgingly, reluctantly, started learning Windows PowerShell. We’ve all been hit 
by Windows PowerShell’s steep learning curve, and I was no exception. 

I struggled in the beginning, but then when I wasn’t looking I started figuring it 
out. I didn’t wake up one morning and shout, “I’ve conquered Windows PowerShell; 
next, the world!!” but I did notice that I wasn’t beating my head against my desk 
quite as often. Writing a single working line of Windows PowerShell didn’t take an 
hour anymore. Windows PowerShell was training me to do things its way. I was a 
slower learner, but I was learning.

Now Windows PowerShell and I are BFFs. I always have at least one Windows 
PowerShell console open, and I find myself seeking out things to do in PowerShell. 
I initially used Windows PowerShell in SharePoint only because I had to. Now it’s 
happily my go-to tool in all aspects of Windows and other Microsoft software. and I 
almost never bang my head on my desk anymore. almost never.

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous script examples.

■■ A history of the .NET Framework versions can be found at http://blogs.msdn.com 
/dougste/archive/2007/09/06/version-history-of-the-clr-2-0.aspx.

■■ You can find help at http://msdn.microsoft.com/en-us/library/hh925568.aspx for how 
to determine which version of the .NET Framework is installed. 

■■ The entry point to the MSDN website is found at http://msdn.microsoft.com.

■■ All scripts from this chapter are available via the TechNet Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40 
-Best-d9e16039.

http://msdn.microsoft.com/en-us/library/hh925568.aspx




   111

C H A P T E R  5

Configuring the script  
environment

■■ Configuring a profile 

■■ Creating a profile 

■■ Accessing functions in other scripts 

■■ Additional resources 

Windows PowerShell 4.0 provides many ways in which the scripting environment can 
be customized or tailored to individual needs. This capability unlocks tremendous 

opportunities to change the way in which Windows PowerShell starts, the way it runs, and 
even the syntax of commonly used functions. However, this flexibility comes at a price: it’s 
possible to customize the scripting environment to such an extent that you do not know 
what the commands are, how they are used, or even what you should type to find help. In 
this chapter, you will examine the ways in which leading experts customize their environ-
ment and also explore options to assist both power users and corporate IT personnel in 
obtaining the most functionality from this rich and powerful tool.

Configuring a profile

By default, there are no profiles when you install Windows PowerShell. You use a profile to 
configure the Windows PowerShell scripting environment, but you also use it to make work-
ing from the PowerShell command line more convenient (or to extend the capability of the 
Windows PowerShell ISE). The Windows PowerShell profile is a useful place to create and 
store the following four types of items:

■■ Aliases

■■ Functions

■■ PSDrives

■■ Variables



 112 CHAPTER 5 Configuring the script environment 

Creating aliases
Aliases are helpful from a usability standpoint. Consider a command, such as Measure-Object, 
that counts and provides statistical information, such as the minimum and maximum values 
of an object. Measure-Object can be a bit cumbersome to type from the command line. Given 
the relative frequency of its use, Measure-Object becomes a good candidate for aliasing.

Prior to creating a new alias, it is a best practice to determine whether there is a suit-
able alias already created for the cmdlet in question. By default, Windows PowerShell 
on Windows 8.1 ships with more than 190 predefined aliases for its 271 cmdlets and 
functions. When you consider that several cmdlets have more than one alias defined, 
you can see that there is great opportunity for the creation of additional aliases. The 
GetCmdletsWithMoreThanTwoAliases.ps1 script lists all of the cmdlets with more than one 
alias defined, as shown here

GetCmdletsWithMorethantwoaliases.ps1 

 

Get-Alias |  

Group-Object -Property definition |  

Sort-Object -Property count -Descending |  

Where-Object count -gt 2 

When the GetCmdletsWithMoreThanTwoAliases.ps1script runs, the following appears:

Count Name                      Group                                                            
----- ----                      -----                                                            
    6 Remove-Item               {del, erase, rd, ri...}                                          
    3 Invoke-WebRequest         {curl, iwr, wget}                                                
    3 Move-Item                 {mi, move, mv}                                                   
    3 Get-ChildItem             {dir, gci, ls}                                                   
    3 Get-Content               {cat, gc, type}                                                  
    3 Set-Location              {cd, chdir, sl}                                                  
    3 Copy-Item                 {copy, cp, cpi}                                                  
    3 Get-History               {ghy, h, history} 

To see whether an alias for the Measure-Object cmdlet exists, you can use the Get-Alias 
cmdlet and the −definition parameter as shown here:

PS C:\> Get-Alias -Definition measure-object 
 
CommandType     Name                                               ModuleName                    
-----------     ----                                               ----------                    
Alias           measure -> Measure-Object                                                       

If you like the alias measure, you can simply begin to use that alias. However, you might 
decide that the readability of the alias measure is hampered by the fact that it saves only two 
keystrokes. Due to the implementation of the tab expansion feature, all you need to do is 
type measure-o and press the Tab key. In general, when creating personal aliases, I prefer to 
sacrifice readability for ease of use. My favorite aliases are one- and two-letter aliases. I use 



 Configuring a profile CHAPTER 5 113

one-letter aliases for commands that I frequently use. Remember that one-letter aliases are 
also the most obscure and they do not always make sense unless you happen to remember 
why you created the alias in the first place. I use two-letter aliases for most of my other alias 
needs. The two-letter combination can easily correspond to the verb-noun naming conven-
tion; therefore, mo is a logical alias for the Measure-Object cmdlet. To ensure the availability 
of mo for Measure-Object, use the Get-Alias cmdlet as shown here:

PS C:\> Get-Alias -Name mo

How many two-letter aliases are there?

The two-letter alias namespace is rather large, but how large is it really? 
You must take every letter in the a–z range and pair them with every 

other letter in the a–z range to get the answer. If you are good with math, 
you already know that there are 676 possible letter combinations. However, 
if your math skills are a bit rusty, or just for fun, you can write a Windows 
PowerShell script to figure out the answer. The problem with this approach 
is that you cannot use the range operator (..) to produce a range of letters. 
The range operator works with numbers; 1..10 automatically creates a range 
of numbers with the values 1 through 10 and can save you a great deal of 
typing. However, because you have ASCII numeric representations of the 
letters a–z, you can use the range operator to create a range of the letters. 
The ASCII value 97 is the a character, and ASCII 122 is z. After you determine 
the numeric range, you can use the ForEach-Object cmdlet and convert each 
letter to a character by using the [char] type. You can store the resulting array 
of letters in the $letters variable. After doing two loops through the array, 
you can store the resulting letter combinations in the $lettercombination vari-
able, which is constrained as an array by using the [array] type. The Measure-
Object cmdlet is used to count the number of possible letter combinations. 
GetTwoLetterAliasCombinations.ps1 script is shown here.

GetTwoLetterAliasCombinations.ps1

$letterCombinations = $null 
$asciiNum = 97..122 
$letters = $asciiNum | ForEach-Object { [char]$_ } 
Foreach ($1letter in $letters) 
{ 
 Foreach ($2letter in $letters) 
 {[array]$letterCombinations += "$1letter$2letter"} } 
"There are " + ($letterCombinations | Measure-Object).count +  
" possible combinations" 
"They are listed here: " 
$letterCombinations 



 114 CHAPTER 5 Configuring the script environment 

To create a new alias, you can either use the New-Alias or Set-Alias cmdlet. You can also 
use the New-Item cmdlet and target the alias drive. The problem with the latter technique is 
that it does not support the –description parameter, which allows you to specify additional 
information about the alias. Another problem with using New-Item to create an alias is that 
more typing is involved. So, as a best practice, I always use either the New-Alias or Set-Alias 
cmdlet. In choosing between the two cmdlets, which one should you use when creating a 
new alias? Before answering that question, I will discuss what the cmdlets are intended to be 
used for. The New-Alias cmdlet obviously creates a new alias. The Set-Alias cmdlet is used to 
modify an existing alias; if an alias does not exist, it creates the alias for you. Therefore, many 
people use Set-Alias to both create and modify an alias. The danger in using the Set-Alias 
cmdlet is that you can inadvertently modify a previously existing alias with no notification. 
However, if this is your desired behavior, using the Set-Alias approach is fine.

A better approach is to use the New-Alias cmdlet when creating an alias. New-Alias allows 
you to specify the –description parameter and to receive notification if an alias that you are 
trying to create already exists. To assign a description to an alias when creating it, you can use 
the –description parameter as shown here:

New-Alias -Name mo -Value Measure-Object -Description "MrEd Alias"

In an enterprise-scripting environment, many companies like to define a corporate set of 
aliases, which provides for a consistent environment. A network administrator working on 
one machine can be assured that a particular alias is available. Corporate aliases also help to 
ensure a predictable and consistent environment. By using the same value for the –description 
parameter of the alias, it is easy to list all corporate aliases. To do this, you can filter the list of 
aliases by the –description parameter as shown here.

PS C:\> Get-Alias | where description -eq 'mred alias' 
 
CommandType     Name                                               ModuleName 
-----------     ----                                               ---------- 
Alias           mo -> Measure-Object 

When using the −eq operator in the code block of the Where-Object cmdlet, the filter is 
case insensitive. If you need a case-sensitive operator, you can use −ceq. The “c” is added to 
all of the operators to form a case-sensitive form of the operator—by default, the operators 
are case insensitive. As shown here, when using the case-sensitive operator, the filter does not 
return any aliases.

PS C:\> Get-Alias | Where description -ceq 'MrEd Alias'  
PS C:\>

In addition to specifying the –description parameter, many companies also like to use the −
option parameter to make the alias either read-only or constant. To make the alias read-only, 
you supply the read-only keyword to the −option parameter as shown here:

New-Alias -Name mo -Value Measure-Object -Description "MrEd Alias" –Option 
readonly



 Configuring a profile CHAPTER 5 115

The advantage of making the alias read-only is that this offers protection against acciden-
tal modification or deletion, as shown in Figure 5-1.

FIGURE 5-1 Attempts to modify a read-only alias generate an error message.

An additional advantage to making the alias read-only is that the alias can be modified or 
deleted if needed. If you want to modify the description, you can use the Set-Alias cmdlet to 
specify the name, value the new description, and use the −force parameter as shown here:

Set-Alias -Name mo -value measure-object -Description "my alias" –Force

If you need to delete a read-only cmdlet, you can use the Remove-Item cmdlet and specify 
the −force parameter as shown here:

Remove-Item Alias:\mo -Force

To create a constant alias, you can use the constant keyword with the −option parameter 
as shown here:

New-Alias -Name mo -Value Measure-Object -Description "MrEd Alias" -Option constant

As a best practice, you should not create constant aliases unless you are certain that you 
do not need to either modify it or delete it. A constant alias can neither be modified nor 
deleted—in effect, they really are constant. The error message is a bit misleading in that it 
states that the alias is either read-only or constant, and it suggests attempting to use the −
force parameter. The reason that this is misleading is because the error message is displayed 
even when the command is run with the −force parameter. This error message is shown in 
Figure 5-2.



 116 CHAPTER 5 Configuring the script environment 

FIGURE 5-2 An error message is generated when attempting to delete a constant alias.

Creating functions
Functions provide a nearly endless capability of customization from within Windows 
PowerShell. The profile is a great place to supply some of this customization. For example, 
when using the Get-Help cmdlet, suppose that you prefer to see the full article. However, you 
also know that, in most cases, the article is too long to fit on a single screen. Therefore, you 
like to pipeline the output to the more function, which provides paging control. For example, 
if you are looking for information about the Get-Process cmdlet, the command is shown here:

Get-Help Get-Process -Full | more

There is nothing wrong with typing the preceding command; however, even when paired 
with tab expansion, it is more than 20 keystrokes. It will not take long before you become 
tired of typing such a command. Therefore, this command is a perfect candidate for a func-
tion. When naming functions, it is a best practice to use the verb-noun naming convention 
because this syntax is familiar to users of Windows PowerShell and because you can take 
advantage of tab expansion. As shown here, I named our function Get-MoreHelp.

Get-Morehelp.ps1

Function Get-MoreHelp() 

{ 

 Get-Help $args[0] -Full |  

 more 

} #end Get-MoreHelp

The Get-MoreHelp function begins by using the Function keyword to declare the function. 
After the Function keyword, you specify the name of the function, which in this example is 
Get-MoreHelp. The empty parentheses are not required after the function name; parentheses 
are used to define parameters, and without any parameters, the parentheses are not required. 
I generally include parentheses as an indicator that a parameter could be specified in the 
position, as shown here:

Function Get-MoreHelp()



 Configuring a profile CHAPTER 5 117

Following the Function keyword, the function opens the code block by using an opening 
curly bracket. When typing the function, I always open the code block with one curly bracket 
and, immediately, type the closing curly bracket on the next line. In this way, I never forget to 
close a code block. As a best practice, I always include a comment indicating that the bottom 
curly bracket closes the function. End comments are also a tremendous help when it’s time to 
troubleshoot the script because they promote readability and make it easier to understand 
the delimiters of the function. In addition, if you have a long function that scrolls off of the 
screen, the end comment, with its repetition of the function name, makes it easier to create 
the alias for the function, as shown here:

{ 
 
} #end Get-MoreHelp

The Get-MoreHelp function uses the $args automatic variable to hold the argument that 
is passed to the function when it is called. Because the Get-Help cmdlet does not accept an 
array for the name parameter, you can use [0] to index into the first element of the $args 
array. If, as is required, there is only one item passed to the function, the item is always ele-
ment 0 of the array. The function passes the −full switched parameter to the Get-Help cmdlet. 
The resulting help information is passed along the pipeline via the pipe | symbol, as shown 
here:

Get-Help $args[0] -full |

Overriding existing commands
Because it is possible that the Get-MoreHelp function could return more than a single screen 
of textual information, the function pipelines the help information to the more function. 
Because functions are first-class citizens in Windows PowerShell, they have priority over 
executables and even over native PowerShell cmdlets. Due to this fact, it is easy to modify the 
behavior of an executable or cmdlet by creating a function with the same name as an existing 
executable, which is illustrated by the more function. More.com is an executable that provides 
the ability to return information to the screen one page at a time—it has been available since 
the DOS days. The more function is used to modify the behavior of more.com. The content of 
the more function is shown here:

param([string[]]$paths) 
if($paths) 
{ 
    foreach ($file in $paths) 
    { 
        Get-Content $file | more.com 
    } 
} 
else 
{ 
    $input | more.com 
}



 118 CHAPTER 5 Configuring the script environment 

By looking at the content of the more function, you can see that there has been a use-
ful addition to the functionality of more.com. If you supply a path to the more function, it 
retrieves the content of the file and pipelines the result to the more.com executable, as shown 
in Figure 5-3.

FIGURE 5-3 Passing a path to the more function retrieves the content and pipes the results to more.com.

aliasing the function
When I create utility functions, I generally like to create an alias to enable quick and easy 
access to the function. It is possible to create the function and the alias in the same script, but 
not within the function definition. The problem arises in that, within the function definition, 
the function has not yet been created; therefore, you cannot create an alias for a function that 
does not yet exist. However, there is nothing wrong with creating the alias and the function in 
the same script, as shown here in the Get-MoreHelpWithAlias.ps1 script. Interestingly enough, 
you can create the alias on a line either before or after the function is declared. The position 
does not matter.

Get-MorehelpWithalias.ps1

Function Get-MoreHelp() 

{ 

 Get-Help $args[0] -full |  

 more 

} #End Get-MoreHelp 

New-Alias -name gmh -value Get-MoreHelp -Option allscope



 Configuring a profile CHAPTER 5 119

Looping the array
Because the $args variable returns an array, you can use $args to add the ability to pass two 
or more pieces of information and receive help for each topic. To do this, you can use the for 
statement to loop through the elements of $args. The for statement uses three parameters: 
the beginning, the destination, and the method of travel. In this example, the variable $i is 
used to keep track of the position within the array. The variable $i is set equal to 0, and the 
−le operator, less than or equal to, is used to allow the loop to continue for the number of 
times represented by the number of items in $args. As the loop progresses, the value of $i is 
incremented by 1 during each loop by using the $i++ construction, as shown here:

For($i = 0 ;$i -le $args.count ; $i++)

One small change is required to the line of code that calls the Get-Help cmdlet. Instead of 
using $args[0], which always retrieves the first element in the array, you can change the 0 to 
$i. As the value of $i increases for each loop, the Get-Help cmdlet queries the next item in the 
array. This modified line of code is shown here:

Get-Help $args[$i] -full |

The remainder of the Get-MoreHelp function is the same as that found in the previous ver-
sions discussed earlier. The complete function is shown in the Get-MoreHelp2.ps1 script.

Get-Morehelp2.ps1

Function Get-MoreHelp 

{ 

 # .help Get-MoreHelp Get-Command Get-Process 

 For($i = 0 ;$i -le $args.count ; $i++) 

 { 

  Get-Help $args[$i] -full | 

  more 

 } #end for 

} #end Get-MoreHelp 

New-Alias -name gmh -value Get-MoreHelp -Option allscope

To run the Get-MoreHelp function, you can use the gmh alias and supply it one or more 
cmdlet names to obtain help. This process is shown in Figure 5-4, in which the function code 
was typed directly into the Windows PowerShell console.



 120 CHAPTER 5 Configuring the script environment 

FIGURE 5-4 You can use an alias for a function to facilitate ease of use.

Passing multiple parameters
When using a function, it is quite common to want to accept two or more parameters for 
input, which adds flexibility and usefulness to the function. In Windows PowerShell, there are 
two choices. The first method of passing parameters is to use the $args automatic variable as 
shown in the preceding section. Another way to pass parameters is to use named parameters. 
When named parameters are used with a script, they are preceded by the Param statement. 
To use a named parameter within a function, you do not need to use the Param statement. 
You simply supply variables in each position in which you want a parameter. The name of the 
variable becomes the name of the parameter. There are a few tricks to keep in mind when 
using both methods of passing multiple parameters. To that end, let’s first examine the $args 
variable in a bit more detail.

Multiple parameters with $args
One way to pass two parameters is to use the $args automatic variable. When passing two 
values to the function, you can index into the array to retrieve a specific value. In the Get-
WmiClass function, two values are passed when calling the function. The first value is used to 
hold the WMI namespace to search for WMI class names, and the second value is the type of 



 Configuring a profile CHAPTER 5 121

WMI class for which to search. The Get-WmiClass function is useful for locating WMI classes. 
Use of the Get-WmiClass function is shown in Figure 5-5.

FIGURE 5-5 the $args variable can support positional arguments.

The Get-WmiClass function begins by retrieving two values from the $args variable. The 
$args variable is an automatic variable and is populated with whatever is fed to the function. 
The element from the first position is stored in the $ns variable, and the second element is 
kept in the $class variable, as shown here:

$ns = $args[0] 
$class = $args[1]

The Get-WmiObject cmdlet has a −list switched parameter that produces a listing of all 
WMI classes in the namespace. The namespace used is the one specified in the first position 
of the command that is used to call the function. The resulting listing of all WMI classes in the 
particular namespace is shunted to the pipeline as shown here:

Get-WmiObject -List -Namespace $ns |

To make the list of WMI classes useful, the Where-Object cmdlet is used to filter out the 
unwanted WMI class names. Inside the code block for the Where-Object cmdlet, the auto-
matic $_ variable is used to refer to the current item on the pipeline. The −match operator 
allows you to use a regular expression to filter out the list of WMI class names. This line of 
code is shown here:

Where-Object { $_.name -match $class }



 122 CHAPTER 5 Configuring the script environment 

The complete Get-WmiClass.ps1 script is shown here.

Get-WmiClass.ps1

Function Get-WmiClass() 

{ 

 #.Help Get-WmiClass "root\cimv2" "Processor" 

 $ns = $args[0] 

 $class = $args[1] 

 Get-WmiObject -List -Namespace $ns | 

 Where-Object { $_.name -match $class } 

} #end Get-WmiClass

Multiple named parameters
When you have more than two parameters to supply to a function, it might become confus-
ing to keep track of both the position and the meaning of the parameter. In addition, when 
using named parameters, you can apply type constraints to prevent basic types of errors that 
can occur when supplying values from the command line.

In the Get-WmiClass2.ps1 script, the Get-WmiClass function is rewritten to take advan-
tage of command-line arguments. The primary change involves moving the $ns and $class 
variables inside the parentheses following the name of the function. In addition, because both 
the namespace and the class names should be strings, you can use the [string] type constraint 
to prevent the inadvertent entry of an illegal value, such as an integer. Because the revised 
function is using named parameters, the two lines that parse the $args variable are also 
removed. The Get-WmiClass2.ps1 script file is therefore shorter than the Get-WmiClass.ps1 
script, and it has more capability. The first line of the Get-WmiClass function is shown here:

Function Get-WmiClass([string]$ns, [string]$class)

An example of the value of the type constraints is shown in Figure 5-6.

In the first example, the Get-WmiClass function is called with the value of 5 for the −ns 
parameter, which violates the [string] type constraint for the −ns parameter. The resulting 
error is “Invalid parameter.”

In the second example, shown in Figure 5-6, the Get-WmiClass function is called with the 
value of root/cimv3 for the −ns parameter. Because there is no root/cimv3 namespace in the 
WMI hierarchy (at least not yet), the function actually executes. The resulting error comes 
from WMI, which states the problem as an “invalid namespace.” As a best practice, you should 
always apply type constraints to your function parameters. The rudimentary protection 
afforded by type constraints easily justifies the minimal effort required to type them in.



 Configuring a profile CHAPTER 5 123

FIGURE 5-6 Type constraints placed on function parameters cause detailed error messages to display 
when violated.

To call the Get-WmiClass function, you can use the entire parameter name, a shortened 
unique version of the parameter name, or no parameter at all. Examples demonstrating each 
way to call the function are shown here. When supplying a parameter, you need to type only 
enough of the parameter name to ensure that it is unique. As a best practice, you should take 
this feature into account when naming parameters. If each parameter begins with a unique 
letter, users of the function can supply single-letter parameter names and still maintain a 
rudimentary level of readability. For example, in the Get-WmiClass function, if you call the 
namespace name space and call the class name simply name, you will be required to type the 
entire word name for the –name parameter and to type names for the namespace. –Name 
and −namespace parameters do not shorten very well, as illustrated in the code shown here:

Get-WmiClass -ns "root\cimv2" -class "disk" 
Get-WmiClass -n root\cimv2 -c disk 
Get-WmiClass root\cimv2 disk



 124 CHAPTER 5 Configuring the script environment 

NOTE When using named parameters with functions, you do not need to include a string 
inside quotation marks unless the string contains a comma, semicolon, or other special 
character that can be misinterpreted by the run-time engine. When working from the 
command line, I often take advantage of this technique to reduce typing. However, when 
working in a script, I like to include the quotation marks to improve readability and under-
standability of the code.

The complete Get-WmiClass2.ps1 script is shown here.

Get-WmiClass2.ps1

Function Get-WmiClass 

{ 

  <# 

   .Synopsis 

    This searches for WMI classes  

   .Description 

    This function searches for WMI classes 

   .Example 

    Get-WmiClass -ns "root\cimv2" -class "Processor" 

    Finds WMI classes related to processor  

   .Parameter ns 

    The namespace 

   .Parameter class 

    The class 

   .Notes 

    NAME:  Get-WmiClass 

    AUTHOR: ed wilson, msft 

    LASTEDIT: 08/25/2013 15:45:16 

    KEYWORDS: WMI, Scripting Technique 

    HSG:  

   .Link 

     Http://www.ScriptingGuys.com 

 #Requires -Version 2.0 

 #> 

 Param ([string]$ns, [string]$class) 

 Get-WmiObject -List -Namespace $ns | 

 Where-Object { $_.name -match $class } 

} #end Get-WmiClass 

You can also create an alias for the function when you define the function. Because the 
alias was used for the Get-WmiClass function, you can use the Get-Alias cmdlet to check for 
the existence of the chosen alias letter combination of gwc (selecting the first letter of each 



 Configuring a profile CHAPTER 5 125

main word in the function name). You can use the following command to see whether the 
gwc alias is available:

Get-Alias -Name gwc

This is one occasion when you hope to receive an error because it means that your chosen 
alias can be used. The error is shown in Figure 5-7.

FIGURE 5-7 An error message means that the queried alias is not in use.

The completed Get-WmiClass2WithAlias.ps1 script is shown here.

Get-WmiClass2Withalias.ps1

Function Get-WmiClass 

{ 

  <# 

   .Synopsis 

    This searches for WMI classes  

   .Description 

    This function searches for WMI classes 

   .Example 

    Get-WmiClass -ns "root\cimv2" -class "Processor" 

    Finds WMI classes related to processor  

   .Parameter ns 

    The namespace 

   .Parameter class 

    The class 

   .Notes 

    NAME:  Get-WmiClass 

    AUTHOR: ed wilson, msft 

    LASTEDIT: 08/25/2013 15:45:16 

    KEYWORDS: WMI, Scripting Technique 

    HSG:  

   .Link 

     Http://www.ScriptingGuys.com 



 126 CHAPTER 5 Configuring the script environment 

 #Requires -Version 2.0 

 #> 

 Param ([string]$ns, [string]$class) 

 Get-WmiObject -List -Namespace $ns | 

 Where-Object { $_.name -match $class } 

} #end Get-WmiClass 

 

New-Alias -Name gwc -Value Get-WmiClass -Description "Mred Alias" ' 

-Option readonly,allscope 

Creating variables
As with creating aliases, there are several different ways to create a variable and assign a value 
to it. You can use the New-Item cmdlet on the variable drive, as shown here:

New-Item -Name temp -Value $env:TEMP -Path variable:

You can also use the Set-Item cmdlet to create a variable. The advantage to using Set-Item 
is that it does not generate an error if the variable already exists. The following example uses 
Set-Item to create a variable. Keep in mind that the Set-Item cmdlet does not have a –name 
parameter.

Set-Item -Value $env:TEMP -Path variable:\temp

Neither New-Item nor Set-Item has the ability to specify the −option or –description param-
eter. This is an important distinction with variables because you cannot create a constant or 
a read-only variable without using either Set-Variable or New-Variable. If a variable already 
exists and you use the Set-Variable cmdlet, the value of the variable is overwritten if it has 
not been marked read-only or constant. If the variable is marked read-only, you can still 
modify its value by specifying the −force parameter. If the variable is marked as constant, the 
only way to modify its value is to close the Windows PowerShell console and start over with a 
new value.

You can also create a variable and assign a value to it at the same time. This technique is 
often used when the value to be stored in the variable is the result of a calculation, or con-
catenation. In this example, you decide to create a variable named $wuLog to store the path 
to the Windows Update Log, which is stored in a rather obscure location deep in the user’s 
profile under a folder named AppData. While there is an environmental variable for the local 
application data folder, the path to the Windows Update Log continues to go on a few levels 
deeper prior to terminating with the WindowsUpdate.log file. As a best practice, you should 
use the path cmdlets when building file paths, such as Join-Path, to avoid concatenation 
errors. By using the environmental $localappdata variable and Join-Path with the −resolve 
switched parameter, you also have a formula that stores the path to the Windows Update Log 



 Configuring a profile CHAPTER 5 127

file on any user’s computer, which is exactly the type of variable you want to create and store 
in a user’s Windows PowerShell profile. This command is shown here:

PS C:\> $wuLog = Join-Path -Path $env:LOCALAPPDATA ' 
-ChildPath microsoft\windows\windowsupdate.log -Resolve 
PS C:\> $wuLog 
C:\Users\edwils.NORTHAMERICA\AppData\Local\microsoft\windows\windowsupdate.log

When using a variable to hold a computed value, you are not limited to using a direct 
value assignment. You can use the New-Variable cmdlet to perform exactly the same task.

PS C:\> New-Variable -Name wulog -Value (Join-Path -Path $env:LOCALAPPDATA ' 
-ChildPath microsoft\windows\windowsupdate.log -Resolve)

NOTE When using the New-Variable cmdlet to create a variable that holds a computed 
result, you often need to use parentheses to force the value to be created prior to attempt-
ing to assign it to the -value parameter. You might see an error message about a missing 
or invalid parameter. When the New-Variable cmdlet sees a parameter outside of a set of 
parentheses, it attempts to locate that parameter. An example of such an error is shown in 
Figure 5-8.

FIGURE 5-8 An error message due to missing parentheses when creating a new variable.

You can also use automatic variables when creating variables for your profile. A large 
number of applications place files in the user’s Documents directory. While this location is 
convenient for applications and for users who access documents via a link off the Start menu, 
it is nearly impossible to locate the Documents folder via the command line. 

To facilitate ease of access to the user’s Documents folder, you might decide to create a 
variable that can easily be used to refer to the path. This is another good opportunity to use 
the Join-Path cmdlet to aid in building the location to the Documents folder. An automatic 
variable already points to the user’s Home directory. The Home directory on my Windows 
Vista laptop points to the %username% folder under the Users folder, as shown here.

PS C:\> $home 
C:\Users\edwils.NORTHAMERICA



 128 CHAPTER 5 Configuring the script environment 

Because the Documents folder resides under this Home directory, as shown in Figure 5-9, 
you can add to this location and build the path to the Documents directory.

FIGURE 5-9 The user’s Documents folder is the default location for many applications.

By using the New-Variable cmdlet, you can specify the –value parameter, which is con-
tained in a set of parentheses so as to resolve the value of the Join-Path command prior to 
assigning it to the docs variable. The variable is read-only, which allows you to modify it if 
needed, but it is also protected from accidental deletion or modification. The –description 
parameter provides an easy way to keep track of all of the custom variables, as shown here:

New-Variable -Name docs -Value (Join-Path -Path $home -ChildPath documents) ' 
-Option readonly -Description "MrEd Variable"

IMPORTANT  When I was first learning Windows PowerShell, I was often frustrated when 
attempting to use the New-Variable, Set-Variable, and Remove-Variable cmdlets. This 
occurred because a variable is prefixed with the dollar sign when working at the command 
line, but the –name parameter does not use the dollar sign as part of the name of the 
 variable.

You can obtain the path to the Favorites folder when you use the WshShell object from 
VBScript. Because Windows PowerShell provides easy access to Component Object Model 
(COM) objects, there is no reason to avoid these objects. One way to use this WshShell object 
is to create and use the object in the same line, as shown here:

$f = (New-Object -ComObject Wscript.Shell).specialFolders.item("Favorites")



 Configuring a profile CHAPTER 5 129

From a best practice standpoint, there are at least two problems with the previous syntax. 
The most obvious issue is that the code is not very readable. Even though this usage is rather 
common and most developers employ these types of construction, common sense should 
prevail. It is better to split the command into two lines of code, as shown here:

$wshShell = New-Object -ComObject Wscript.Shell 
$f = $wshShell.SpecialFolders.Item("Favorites")

The additional advantage to the preceding two-line technique is that you now have 
access to the entire WshShell object, which provides access to many useful properties and 
methods. For example, in addition to resolving the path to the Documents special folder, the 
WshSpecialFolders object (returned by querying the SpecialFolders property of the WshShell 
object) can also be used to provide access to the following folders:

■■ AllUsersDesktop

■■ AllUsersStartMenu

■■ AllUsersPrograms

■■ AllUsersStartup

■■ Favorites

■■ Fonts

■■ NetHood

■■ PrintHood

■■ Programs

■■ Recent

■■ SendTo

■■ StartMenu

■■ Startup

■■ Templates

Without creating an intermediate variable, any of the listed special folders can be resolved 
to the path, as shown here. If the $wshShell object is created in the profile, the values from 
the SystemFolders property are always available for use within the scripting environment or 
when working from the command line.

$wshShell.SpecialFolders.Item("StartUp")

In addition to the ability to easily resolve the special folders, the WshShell object also pro-
vides a number of other useful properties and methods. Its members are shown in Table 5-1.

TABLE 5-1 Members of the WshShell object

Name MemberType Definition

AppActivate Method bool AppActivate (Variant, Variant)

CreateShortcut Method IDispatch CreateShortcut (string)



 130 CHAPTER 5 Configuring the script environment 

Name MemberType Definition

Exec Method IWshExec Exec (string)

ExpandEnvironmentStrings Method string ExpandEnvironmentStrings (string)

LogEvent Method bool LogEvent (Variant, string, string)

Popup Method int Popup (string, Variant, Variant, Variant)

RegDelete Method void RegDelete (string)

RegRead Method Variant RegRead (string)

RegWrite Method void RegWrite (string, Variant,  
Variant)

Run Method int Run (string, Variant, Variant)

SendKeys Method void SendKeys (string, Variant)

Environment ParameterizedProperty IWshEnvironment Environment (Variant) 
{get} 

CurrentDirectory Property string CurrentDirectory () {get} {set} 

SpecialFolders Property IWshCollection SpecialFolders () {get}

The popup method is useful as well as easy to use. As shown in Figure 5-10, the popup 
method produces a pop-up dialog box.

FIGURE 5-10 Pop-up message from the WshShell object.

To create a pop-up message box, you need to supply only the first value of the method 
signature. This value is used for the message displayed in the middle of the pop-up box. The 
second value is a number that controls how long the pop-up box is displayed. The third value 
is used to change the title of the pop-up box. The last position of the method call controls the 
button configuration of the pop-up box. If you supply only the first value, you receive a pop-
up box with an OK button that displays the message you supply until the user manually clicks 
either OK or the X to close the box. The signature for the popup method is shown in Table 5-2.

TABLE 5-2 WshShell popup method signature 

Return Object.Method Text SecondsToWait Title Type

$returnValue $wshShell.Popup “message” 5 “title” 0

The title of the box refers to the Windows Script Host, as shown in Figure 5-11.



 Configuring a profile CHAPTER 5 131

FIGURE 5-11 By default, pop-up messages come from the Windows Script Host.

The code that creates the pop-up box in Figure 5-11 is shown here:

(New-Object -ComObject wscript.shell).popup("message")

One useful feature of the WshShell.popup method is its ability to create different button 
configurations, which provides the ability to interact with the user in a graphical manner. 
To create a pop-up box that displays the Abort, Retry, and Ignore buttons, you can use the 
numeric value 2 in the fourth position. Common button configuration values are shown in 
Table 5-3. To display the pop-up message box until the user clicks one of the buttons, you can 
place a 0 in the second position (time argument) as shown here:

$wshShell.Popup("message",0,"title",2)

TABLE 5-3 WshShell pop-up button values and meanings

Value Description  

0 Show OK button.

1 Show OK and Cancel buttons.

2 Show Abort, Retry, and Ignore buttons.

3 Show Yes, No, and Cancel buttons.

4 Show Yes and No buttons.

5 Show Retry and Cancel buttons.

Of course, the entire reason for displaying different button configurations is to provide an 
easy way for the user to interact with the script. To interact with the user, you must capture 
the return code, which is a value assigned to each of the different buttons. The following 
code produces the pop-up box shown in Figure 5-12. To evaluate the return code from the 
method, you must capture the return value. Return values from each of the different buttons 
are shown in Table 5-4. The Retry button is clicked in this example, which stores the value of 4 
in the $return variable.

PS C:\> $rtn = (New-Object -ComObject wscript.shell).popup("message",0,"title",2) 

PS C:\> $rtn



 132 CHAPTER 5 Configuring the script environment 

FIGURE 5-12 Abort, Retry, Ignore dialog box.

TABLE 5-4 WshShell popup method return values

Value Description  

1 OK button

2 Cancel button

3 Abort button

4 Retry button

5 Ignore button

6 Yes button

7 No button

Last, you need to work with the pop-up box icons that can be displayed on any of the 
different box configurations. As shown in Table 5-5, the icon values seem to have little basis 
in reality. Additionally, it is a bit odd that the values are added to the button values shown in 
Table 5-3. To display the Stop Mark icon to an Abort, Retry, Ignore button configuration, you 
need to add a value of 16 for the Stop Mark icon to the value of 2 for the Abort, Retry, Ignore 
button display, as shown in the following line of code: 

$rtn = (New-Object -ComObject wscript.shell).popup("message",0,"title",18)

When the code executes, the dialog box shown in Figure 5-13 appears.

TABLE 5-5 WshShell popup method icon values

Value Description  

16 Show Stop Mark icon.

32 Show Question Mark icon.

48 Show Exclamation Mark icon.

64 Show Information Mark icon.



 Configuring a profile CHAPTER 5 133

FIGURE 5-13 Icon values added to the button configuration display different icon types.

Creating PSDrives
Judicious application in the creation of Windows PowerShell drives can simplify and facilitate 
the navigation and manipulation of data from the command line. While it is possible to use a 
variable to hold the path to a long folder and then change the working location to the path 
of the folder, this action causes you to relinquish much of the command line, as shown in 
Figure 5-14. Although there is nothing wrong with losing a good deal of the command line, 
reading long commands that wrap across multiple lines can cause errors.

FIGURE 5-14 Long paths often use up too much of the command line.

One advantage of using a Windows PowerShell drive is that you can choose any location 
that is supported by the PowerShell provider as the root of the new drive. To create a new 
Windows PowerShell drive, you can use the New-PSDrive cmdlet, give the drive a name, and 
specify the provider and root location. The code to create a Windows PowerShell drive rooted 
in the C:\Data\BookDocs\PowerShellBestPractices folder is shown here:

New-PSDrive -Name bp -PSProvider filesystem -Root '  
C:\data\BookDocs\PS4_BestPractices -Description "MrEd Drive"

After you create the Windows PowerShell drive, you can use the Set-Location cmdlet to 
change your working location to the newly created drive. This process allows you to reclaim 
your command-line real estate, as shown in Figure 5-15.



 134 CHAPTER 5 Configuring the script environment 

FIGURE 5-15 A Windows PowerShell drive is a good way to reclaim command-line real estate.

As a best practice, I also prefer to specify the description attribute when creating a 
Windows PowerShell drive. Setting the same –description parameter for all Windows 
PowerShell drives makes it easy to quickly identify the custom drives contained in the current 
PowerShell environment. Such a command might look like the following:

Get-PSDrive | Where-Object { $_.description -eq 'MrEd Drive' }

By creating Windows PowerShell drives for your most important data locations, you can 
easily change the working location by using the Set-Location cmdlet. If you create only a 
single Windows PowerShell drive that is the heart of all of your data activities, you can even 
use the Set-Location cmdlet to change the working location to your custom PowerShell drive 
as part of the profile.

NOTES FROM THE FIELD

Working with profiles

hal rottenberg, Microsoft PowerShell MVP 
 

I put many different elements in my profile. First, I load the Windows PowerShell 
Community Extensions (PSCX). These cmdlets provide additional functionality and 

make it easier to work with Windows PowerShell. If you are not familiar with PSCX, 
you can find the project at www.codeplex.com/PowerShellCX.

Next, I create a custom prompt function and add numerous snap-ins. I create 
several aliases because I’ve been very happy with the defaults. I have a section that 



 Configuring a profile CHAPTER 5 135

adds paths to $env:path; I never use cmd.exe anymore. Therefore, the profile is 
basically the core location where I maintain the %path%. the path section is also 
used to set some environment variables, such as $MaximumHistoryCount. the 
$MaximumHistoryCount variable determines the size of the command history buf-
fer that defaults to storing 64 of your previously typed commands.

The best part of my profile is that I dot-source numerous functions I have written 
over the past year or so. these functions are small, reusable bits of code that make 
my job easier. I also create a few PSDrives. One PSDrive that I find particularly useful 
is called “scripts.” It points to “$(split-path $profile)\scripts”, which is where I store 
all of my function libraries and stand-alone .ps1 files. This folder is also in my path.

I also added a section to my profile that is used to load a variety of .NET assem-
blies. I do not use this section very often, and in fact, it is currently commented out. 
However, you might find it to be of interest because it loads some .NEt assemblies. 
For example, one .NET assembly that I used had an ID3 tagging utility (for MP3 files) 
and one did Jabber/Extensible Messaging and Presence Protocol (XMPP) instant 
messaging.

The last section of my profile is used to load custom types.

I use Microsoft SkyDrive to ensure that my profile is always available. Sky Drive 
also serves as a backup of my entire WindowsPowerShell folder (and the aforemen-
tioned scripts, too). Other tools, such as Syncplicity (cloud), Foldershare (cloud), or 
Synctoy (local) can also be used for these purposes.

The coolest thing I have done in my profile is to add a ScriptProperty to the 
System.Io.FileInfo object by using Extended Type System (ETS) and .ps1 XML files 
in Windows PowerShell. this new ScriptProperty, named Pages, is a script that is 
invoked whenever the property is accessed. the script uses a little-known feature 
inside of the Shell.Application COM object to grab the number of pages in Microsoft 
Office Word documents. This script gives me the ability to create the following:

 dir | ft name, length, pages

or even the following:

dir | Measure-Object -sum pages

Here is my profile code that loads the type (or types, if I were to add more).

Get-ChildItem –path $profiledir\ps1xml\*.ps1xml |  
ForEach-Object { 
     Update-TypeData $_ 
     write-host "Updating type data:'t$($_.name)" 
}



 136 CHAPTER 5 Configuring the script environment 

Here are the contents of the .ps1 XML file:

<?xml version="1.0" encoding="utf-8" ?> 

<Types> 

     <Type> 

          <Name>System.IO.FileInfo</Name> 

          <Members> 

               <ScriptProperty> 

                    <Name>Pages</Name> 

                    <GetScriptBlock> 

                         $shellApp = new-object -com shell.application 

                         $myFolder = $shellApp.Namespace($this.Directory. 

                         FullName) 

                         $fileobj = $myFolder.Items().Item($this.Name) 

                         "$($myFolder.GetDetailsOf($fileobj,13))" 

                    </GetScriptBlock> 

               </ScriptProperty> 

          </Members> 

     </Type> 

</Types>

I do not use the page number capability very often. the most useful thing I have 
in my profile is the code to dot-source my function libraries. Note the use of the 
“scripts” PSDrive and “lib−” file name convention. This code makes it very easy for 
me to load all of the library files without touching my profile repeatedly, as shown 
in the following code:

Get-ChildItem scripts:\lib-*.ps1 |  

ForEach-Object {  

  . $_ 

  write-host "Loading library file:'t$($_.name)" 

}

 I don’t worry when my profile is not with me because I believe in cloud technolo-
gies. By using SkyDrive, my profile is always available. Because my primary PC is a 
laptop, I am not terribly concerned about profile issues.

Even though I define some aliases in my profile, I never use aliases in scripts—only 
at the prompt. A strong editor with cmdlet, parameter, file name, and even argu-
ment completion goes an incredibly long way toward making it convenient to 
produce very readable scripts.

I generally do some basic, simple error checking in my scripts, such as “If param is 
missing, throw err.” However, the scripts that I publish for others usually receive a 
bit more treatment than that.



 Configuring a profile CHAPTER 5 137

What I recommend to a new scripter is this: Download and install PSCX, and use the 
default profile, which is what I did when I was new to Windows PowerShell. It’s very 
well-constructed and can serve as a great base and inspiration. here is my personal 
profile:

# comments: $profiledir, Add-PathVariable come with PSCX 

 

$ErrorPreference = "silentlycontinue" 

 

# ----------------------------------------------------------------------- 

# Load PSCX 

# ----------------------------------------------------------------------- 

. "$home\My Documents\WindowsPowerShell\PSCX_Profile.PS1" 

 

# ----------------------------------------------------------------------- 

# Load SQL PSX 

# ----------------------------------------------------------------------- 

# . "$home\My Documents\WindowsPowerShell\Scripts\SQLPSX\LibrarySmo.ps1" 

 

# ----------------------------------------------------------------------- 

# Set prompt 

# ----------------------------------------------------------------------- 

 

. $profiledir\prompt.ps1 

 

# ----------------------------------------------------------------------- 

# Add third-party snapins 

# ----------------------------------------------------------------------- 

 

$snapins =  

  # "psmsi", # Windows Installer PowerShell Extensions 

  "PshX-SAPIEN", # AD cmdlets from Sapien 

  #  "GetGPObjectPSSnapIn", # GPO management 

   "Quest.ActiveRoles.ADManagement", # more AD stuff 

  #  "Microsoft.Office.OneNote", 

  "PowerGadgets", 

  "VMware.VimAutomation.Core", 

  #  "PoshXmpp", 

  # "PSMobile", 

  #"PoshHttp", 

  "NetCmdlets", 

  "OpenXml.PowerTools", 

  "IronCowPosh" 

$snapins | ForEach-Object {  



 138 CHAPTER 5 Configuring the script environment 

  if ( Get-PSSnapin -Registered $_ -ErrorAction SilentlyContinue ) { 

    Add-PSSnapin $_ 

  } 

} 

 

# ----------------------------------------------------------------------- 

# Aliases 

# ----------------------------------------------------------------------- 

set-alias grep select-string 

set-alias nsl resolve-host 

Set-Alias rsps Restart-PowerShell 

set-alias which get-command 

Set-Alias cvi Connect-VIServer 

 

# ----------------------------------------------------------------------- 

# V2 modules 

# ----------------------------------------------------------------------- 

# dir $profiledir\modules\*.psm1 | Add-Module 

 

# ----------------------------------------------------------------------- 

# Setup environment 

# ----------------------------------------------------------------------- 

New-PSDrive -Name Scripts -PSProvider FileSystem -Root ' 

 $profiledir\scripts 

Add-PathVariable Path $profiledir\scripts 

Add-PathVariable Path $profiledir 

Add-PathVariable Path "C:\Program Files\OpenSSL\bin" 

Add-PathVariable Path "C:\Program Files\Reflector" 

$MaximumHistoryCount = 4KB 

 

# ----------------------------------------------------------------------- 

# Load function / filter definition library 

# ----------------------------------------------------------------------- 

 

Get-ChildItem scripts:\lib-*.ps1 | % {  

  . $_ 

  write-host "Loading library file:'t$($_.name)" 

} 

write-host 

 

# ----------------------------------------------------------------------- 

# PS Drives 

# ----------------------------------------------------------------------- 

 

New-PSDrive -Name Book -PSProvider FileSystem -Root 'C:\Documents and 

Settings\hrottenberg\My Documents\MVP-TFM' 



 Configuring a profile CHAPTER 5 139

Write-Host 

 

# ----------------------------------------------------------------------- 

# Load .NET assemblies 

# ----------------------------------------------------------------------- 

#Get-ChildItem $profiledir\Assemblies\*.dll | % { 

# [void][reflection.assembly]::LoadFrom( $_.FullName ) 

# write-host "Loading .NET assembly:'t$($_.name)" 

#} 

#Write-Host 

 

# ----------------------------------------------------------------------- 

# Load custom types 

# ----------------------------------------------------------------------- 

Get-ChildItem $profiledir\ps1xml\*.ps1xml | % { 

  Update-TypeData $_ 

  write-host "Updating type data:'t$($_.name)" 

} 

Write-Host 

if ($?) { Write-Host 'There were errors loading your profile.  Check the 

$error object for details.' }

Enabling scripting
When Windows PowerShell is first installed, the script execution policy is set to restricted. 
When the execution policy is restricted, no scripts are permitted to run. Because a profile is a 
.ps1 file, it is therefore a script and by default will not run. Five levels of execution policy can 
be configured in Windows PowerShell by using the Set-ExecutionPolicy cmdlet, and they 
are listed in Table 5-6. The restricted execution policy can be configured via Group Policy 
by using the “Turn On Script Execution” Group Policy setting in Active Directory. It can be 
applied to either the computer object or user object; the computer object setting takes pre-
cedence over other settings.

User preferences for the restricted execution policy can be configured by using the Set-
ExecutionPolicy cmdlet, but the preferences do not override settings configured by Group 
Policy. An example of changing the current execution policy to RemoteSigned is shown here. 
To run the Set-ExecutionPolicy cmdlet, the Windows PowerShell console must be launched 
with admin rights. To do this, right-click the shortcut to Windows PowerShell and select Run 
As Administrator. See Chapter 4, “Identifying scripting opportunities,” for a discussion about 
the different ways to handle security issues. If you attempt to run the Set-ExecutionPolicy 
cmdlet, even when logged on to the computer as the administrator or as a user who is a 
member of the local administrators group, the error message shown in Figure 5-16 appears if 
you are using Windows Vista or above.

Set-ExecutionPolicy -ExecutionPolicy remotesigned



 140 CHAPTER 5 Configuring the script environment 

FIGURE 5-16 Attempts to change the restricted execution policy generate an error message if the Win-
dows PowerShell console is not run as administrator.

The resultant set of restricted execution policy settings can be obtained by using the Get-
ExecutionPolicy cmdlet.

TABLE 5-6 Execution policy level settings

Level Meaning

Restricted Does not run scripts or configuration files.

AllSigned All scripts and configuration files must be signed by a trusted publisher.

RemoteSigned All scripts and configuration files downloaded from the Internet must be signed by a 
trusted publisher.

Unrestricted All scripts and configuration files do run. Scripts downloaded from the Internet prompt 
for permission prior to running.

Bypass Nothing is blocked, and there are no warnings or prompts.

In addition to the five restricted execution policy settings, you can also configure the 
scope of the policy. When you set the scope of the restricted execution policy, it determines 
how the policy is applied by using three valid values: Process, CurrentUser, and LocalMachine. 
These values are detailed in Table 5-7.

TABLE 5-7 Execution policy scope settings

Scope Meaning

Process The execution policy affects only the current Windows PowerShell process.

CurrentUser The execution policy affects only the current user.

LocalMachine The execution policy affects all users of the computer.



 Creating a profile CHAPTER 5 141

Creating a profile

When Windows PowerShell is first installed, no profiles are installed on the computer. In one 
respect, you can consider the profile to be similar to the Autoexec.bat file from several years 
ago. On the one hand, the Autoexec.bat file is simply a batch file in that it executes only batch 
types of commands. On the other hand, because it is located in the root and has the name 
Autoexec.bat, it takes on an importance that is greatly out of proportion to a simple batch 
file because the commands that exist in the file are used to configure all types of activities, 
including configuring the environment and even launching Windows itself. The Windows 
PowerShell profile does not launch PowerShell; it is simply a PowerShell script that happens 
to have a special name and to exist in a special place—or, rather, it happens to have two 
special names and to exist in four special places! That’s right. There are actually four Windows 
PowerShell profiles, as listed in Table 5-8.

TABLE 5-8 Windows PowerShell profiles and locations

Profile Location

AllUsersAllHosts C:\Windows\system32\WindowsPowerShell\v1.0\profile.ps1

AllUsersCurrentHost C:\Windows\system32\WindowsPowerShell\v1.0 
\Microsoft.PowerShell_profile.ps1

CurrentUserAllHosts C:\Users\UserName\Documents\WindowsPowerShell\profile.ps1

CurrentUserCurrentHost C:\Users\UserName\Documents\WindowsPowerShell 
\Microsoft.PowerShell_profile.ps1

Choosing the correct profile
Two of the four profiles are used by all Windows PowerShell users on a computer. Anything 
placed in the All Users profiles is available to any script or any user that runs Windows 
PowerShell. As a result, you should be rather circumspect about what you place in the All 
Users profiles. However, the All Users profiles are great locations to configure aliases that you 
want to make available to all users, variables that you intend to use in a corporate scripting 
environment, or a Windows PowerShell drive or function. In fact, the items that you decide to 
mandate as part of the corporate Windows PowerShell environment are best placed in the All 
Users profiles.

The next question involves which of the two All Users profiles you should use. The 
AllUsersAllHosts profile applies to all of the users on the computer and to every instance 
of Windows PowerShell that can run on the computer, including the PowerShell console, 
the PowerShell Integrated Scripting Environment (ISE), and any other program that can 
host Windows PowerShell, which can include the Exchange Management Environment, the 
SQL console, or any application that can host Windows PowerShell. If you are careful with 
the aliases you create, the variables you assign, the functions you write, and any Windows 
PowerShell drives that you decide to make, you still need to test them to ensure compatibility. 



 142 CHAPTER 5 Configuring the script environment 

The AllUsersCurrentHost profile gives you the same ability to modify the Windows PowerShell 
environment for all users, but it applies only to the console host.

The two Current User profiles are used to modify the Windows PowerShell environment 
for the current user. The profile that is most often modified by a user to configure personal 
Windows PowerShell settings is the CurrentUserCurrentHost profile. This profile is referenced 
by the $profile automatic variable. On my computer, the value of the $profile variable is shown 
here:

PS C:\> $PROFILE 
C:\Users\edwilson\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1

On a Windows Vista computer, you can see that the user’s Personal folder is in the user’s 
Documents folder. The WindowsPowerShell folder does not exist if no profile is created as 
shown here, where the Test-Path cmdlet is used to determine whether the parent folder that 
should contain the Microsoft.Powershell_profile.ps1 file exists. Because no personal profile 
has yet been created on this laptop, the WindowsPowerShell folder has not been created.

PS C:\> Test-path (Split-Path $PROFILE -Parent) 
False 

To create a CurrentUserCurrentHost profile, you can use the New-Item cmdlet as shown 
here. When using the New-Item cmdlet, you need to specify the −force parameter if the folder 
does not exist and to specify the itemtype as file as shown here.

New-Item -Path $PROFILE -ItemType file –Force

After the profile is created, you can open it in Notepad or in the Windows PowerShell ISE 
to edit the file. If you choose to edit it in Notepad, it is as simple as typing notepad and giv-
ing it the $profile automatic variable as shown here:

Notepad $profile

After adding the functions, variables, aliases, and a Windows PowerShell drive, the 
CurrentUserCurrentHost profile is shown here:

CurrentUserCurrenthostProfile.ps1

# *** Functions go here *** 

 

Function Set-Profile() 

{ 

 Notepad $profile 

 #MrEd function 

} 

 

Function Get-MoreHelp() 

{ 

 #.Help Get-MoreHelp Get-Command 

 Get-Help $args[0] -Full |  

 more 



 Creating a profile CHAPTER 5 143

  #MrEd function 

} #end Get-MoreHelp 

 

Function Get-WmiClass([string]$ns, [string]$class) 

{ 

 #.Help Get-WmiClass -ns "root\cimv2" -class "Processor" 

 $ns = $args[0] 

 $class = $args[1] 

 Get-WmiObject -List -Namespace $ns | 

 Where-Object { $_.name -match $class } 

  #MrEd function 

} #end Get-WmiClass 

 

# *** Aliases go here *** 

 

New-Alias -Name mo -Value Measure-Object -Option allscope ' 

  -Description "MrEd Alias" 

New-Alias -name gmh -value Get-MoreHelp -Option allscope ' 

  -Description "MrEd Alias" 

New-Alias -Name gwc -Value Get-WmiClass -Option readonly,allscope ' 

  -Description "Mred Alias" 

 

# *** Variables go here *** 

 

New-Variable -Name wulog -Value (Join-Path -Path $env:LOCALAPPDATA ' 

  -ChildPath microsoft\windows\windowsupdate.log -Resolve) ' 

  -Option readonly -Description "MrEd Alias" 

New-Variable -Name docs -Value (Join-Path -Path $home -ChildPath documents) ' 

  -Option readonly -Description "MrEd Variable" 

New-Variable -name wshShell -value (New-Object -ComObject Wscript.Shell) ' 

  -Option readonly -Description "MrEd Alias" 

 

# *** PSDrives go here *** 

 

New-PSDrive -Name HKCR -PSProvider registry -Root Hkey_Classes_Root ' 

  -Description "MrEd PSdrive" | out-null

Creating other profiles
In addition to referencing the CurrentUserCurrentHost profile via the $profile variable, 
you can also reference all of the other profiles by using a dotted notation. To address the 
AllUsersAllHosts profile, you can use the $profile variable, as shown here:

PS C:\> $PROFILE.AllUsersAllHosts 
C:\Windows\system32\WindowsPowerShell\v1.0\profile.ps1



 144 CHAPTER 5 Configuring the script environment 

You can also easily create the AllUsersAllHosts profile by using the same technique you 
used for the CurrentUserCurrentHost profile:

New-Item -Path $PROFILE.AllUsersAllHosts -ItemType file –Force

One thing to keep in mind is that, on Windows Vista and above, you need to launch the 
Windows PowerShell console by right-clicking the icon and selecting Run As Administrator 
from the menu, because the System32 directory is a protected area of the file system. If you 
do not do this, the error message shown in Figure 5-17 appears.

FIGURE 5-17 Attempts to create the All Users profile fail if Windows PowerShell is not run as an  
administrator.

To create the AllUsersCurrentHost profile, you again need to start the Windows PowerShell 
console with admin rights and then use the New-Item cmdlet to create the profile. This com-
mand is shown here:

New-Item -Path $PROFILE.AllUsersCurrentHost -ItemType file -Force

If you want to create the CurrentUserAllHosts profile, you can do so without using admin 
rights because it is stored in the user’s Documents folder. Therefore, a typical user always has 
the rights to create the CurrentUserAllHosts and CurrentUserCurrentHost profiles. The com-
mand to create the CurrentUserAllHosts profile is shown here:

New-Item -Path $PROFILE.CurrentUserAllHosts -ItemType file –Force

When working with profiles, you should always consider the effect of the application on 
all of the different profiles. It is possible that items you place in a profile could be overwrit-
ten by other profiles, and the effect could very well be cumulative. Therefore, the concept of 
Resultant Set of Profiles (RSOP) comes into play. The four profiles are applied in the following 
order. The first profile is the most likely to be overwritten. The profile that is the closest to the 
user—the CurrentUserCurrentHost profile—is the one with the highest priority:



 Creating a profile CHAPTER 5 145

■■ All Users, All Hosts

■■ All Users, Current Host

■■ Current User, All Hosts

■■ Current User, Current Host

LESSONS LEARNED

Use a standard naming convention to avoid conflict

As a best practice, when creating standard aliases and variables, you should 
mark them as constant to ensure that they are always available. When creat-

ing functions and Windows PowerShell drives, you should use a naming convention 
that is unlikely to result in naming conflicts. A company that I know uses a company 
name prefix for their functions, as illustrated here:

Function CompanyAITWigitFunction() { do something interesting here } 

New-Alias -Name CAWA -Value CompanyAITWigitFunction -Option constant ' 

-Description "CompanyA IT alias"

 INSIDE TRACK

How I use my profile

James Brundage, Owner
Start-Automating

Profiles are an interesting trade-off. The upside of using profiles is that they 
can give you a consistent and personalized environment that sets up Windows 

PowerShell to your specifications. The downside of using profiles is that a personal-
ized Windows PowerShell profile is always a little harder to share than a standard 
PowerShell profile; therefore, the way you write your profile can have a huge impact 
on how easy it is for others to use.

In my opinion, the ideal profile is simply a series of module imports or dot-sourcing 
of scripts. Both modules and script files are easy to copy from one computer to 
another computer, so keeping your profile in this format means that your profile 
remains clean and easy to understand and the scripts on which your profile depends 
are easy to share with the outside world. If your profiles are kept as a series of 
module imports or a dot-sourcing of scripts, you should be able to merely copy a 
module from one box to another, copy your profile, and be done.

You can also use your profile to make life more convenient. The Windows 
PowerShell ISE contains an object model that allows you to add tools to the 



 146 CHAPTER 5 Configuring the script environment 

environment, and PowerShell lets you customize the prompt by writing your own 
prompt function. If I’m adding cool things to the environment, such as a Verb menu, 
I always put them in my profile.

On this note, the coolest thing that I ever had in my profile was the Verb menu. I 
built a script to create a menu hierarchy in the ISE so that I could click commands by 
their verb. (For example, go to the Get menu, and then click “Process” to run Get-
Process.) This type of customization is great to use in a profile because it makes life 
within the scripting environment easier.

I tend to shy away from using aliases in my profile because aliases make my scripts 
more difficult to share with the world outside of Microsoft (due to the chance that 
I might forget to de-alias the script before posting it to a blog). Aliases are a fine 
component to have in a profile if you are not scripting for public consumption, 
but I usually want an alias to which I can write a function with a small amount of 
additional effort. I believe that aliases increase the need to place your profile on 
every computer all of the time. Because I have a blog, I often try to minimize the 
dependencies of my scripts; therefore, I avoid aliases because they are a superfluous 
dependency.

My profile is typically short because I keep almost everything in modules. I have 
several more items in my $loadedModules variable, but the following gives you an 
idea of how my profile looks:

$loadedModules = 'DotNet', 

    'WPF' 

Import-Module $loadedModules –force

The DotNet module is very simple. It is merely a file with the .psm1 extension that 
dot-sources a file with a Get-Type function. It is placed in the $env:UserProfile\
Documents\WindowsPowerShell\Modules\DotNet folder.

MyDotNetmodule

. $psScriptRoot\Get-Type.ps1 
Get-Type.ps1: 
Function Get-Type() { 
    [AppDomain]::CurrentDomain.GetAssemblies() | Foreach-Object { 
    $_.GetTypes() } 
}

the Get-Type function is the most useful addition that I ever put into a profile. 
It outputs all of the types that are currently loaded so that I can search them in 
Windows PowerShell, such as the following:

Get-Type | Where-Object { $_.FullName –like "**File*" }



 Accessing functions in other scripts CHAPTER 5 147

Accessing functions in other scripts

After you write a large number of functions, you might like to reuse them in other scripts. 
Code reuse is a great idea. The easiest way to reuse code is to simply copy and paste the 
function from one script into another script. Suppose that you have a script containing 
code that performs a conversion from Celsius to Fahrenheit, and you want to use the algo-
rithm to create another script with different capabilities. You can simply write your script 
and copy the code from your other script. When finished, your script might look like the 
ConvertToFahrenheit.ps1 script shown here.

ConverttoFahrenheit.ps1

Param($Celsius) 

Function ConvertToFahrenheit($Celsius) 

{ 

 "$Celsius Celsius equals $((1.8 * $Celsius) + 32) Fahrenheit" 

} #end ConvertToFahrenheit 

ConvertToFahrenheit($Celsius)

Nothing is wrong with this script. It does one thing and does it fairly well. To use the script, 
you supply a command-line parameter. You do not need to type the entire parameter name 
when calling the script, as shown here:

PS C:\> C:\BestPracticesBook\ConvertToFahrenheit.ps1 -c 24 
24 celsius equals 75.2 fahrenheit

Creating a function library 
The problem with reusing code occurs when you want to use the function; you need to copy 
and paste it into the new script. If you want to change the way the function works, you need 
to find all instances where the function occurs and make the necessary changes. Otherwise, 
you can end up with many slightly different versions of the function, which can lead to sup-
port problems.

What is the solution? One approach is to place all of your functions into a single script, 
such as the ConversionFunctions.ps1 script shown here.

ConversionFunctions.ps1

Function ConvertToMeters($feet) 

{ 

  "$feet feet equals $($feet*.31) meters" 

} #end ConvertToMeters 

Function ConvertToFeet($meters) 

{ 

 "$meters meters equals $($meters * 3.28) feet" 

} #end ConvertToFeet 



 148 CHAPTER 5 Configuring the script environment 

Function ConvertToFahrenheit($celsius) 

{ 

 "$celsius celsius equals $((1.8 * $celsius) + 32 ) fahrenheit" 

} #end ConvertToFahrenheit 

Function ConvertTocelsius($fahrenheit) 

{ 

 "$fahrenheit fahrenheit equals $( (($fahrenheit - 32)/9)*5 ) celsius" 

} #end ConvertTocelsius 

Function ConvertToMiles($kilometer) 

{ 

  "$kilometer kilometers equals $( ($kilometer *.6211) ) miles" 

} #end convertToMiles 

Function ConvertToKilometers($miles) 

{ 

  "$miles miles equals $( ($miles * 1.61) ) kilometers" 

} #end convertToKilometers

Using an include file
If you need to use one of the conversion functions, you can include it in the script by plac-
ing a period in front of the path to the script. When you include the script containing the 
conversion functions, you now have access to all of the functions and can use them directly as 
if they were in the actual file itself. The ConvertToFahrenheit_Include.ps1 script illustrates this 
technique. You can still use the command-line parameter $celsius to supply the temperature 
that you want to convert. You then use the period followed by the path to the script for the 
include file. Lastly, you can call the function by name and supply it with the value that came 
into the script via the command line. The revised ConvertToFahrenheit_Include.ps1 script is 
shown here.

ConverttoFahrenheit_Include.ps1

Param($Celsius) 

. C:\data\scriptingGuys\ConversionFunctions.ps1 

ConvertToFahrenheit($Celsius)

You can see that the script is much cleaner and less cluttered, and it is easier to read. 
Because it is easier to read, the script is easier to understand and is therefore easier to main-
tain. Of course, there are two downsides to this equation. The first is that the two scripts are 
now married. A change in one script might affect a change in the other script. However, more 
importantly, both scripts now must travel together because both now need to have a single 
working script. This outside dependency can become rather difficult to troubleshoot if you 
are not expecting it or have not planned for it.

One way to make the script easier to troubleshoot is to use the Test-Path cmdlet to 
determine whether the include file is present. If the include file is missing, you can generate 



 Accessing functions in other scripts CHAPTER 5 149

a message to that effect to alert you to the missing file and simplify the troubleshooting sce-
nario. As a best practice, I always recommend using Test-Path whenever you use the include 
file scenario. The revised ConvertToFahrenheit_Include2.ps1 script illustrates this technique 
and is shown here.

ConverttoFahrenheit_Include2.ps1

Param($Celsius) 

$includeFile = "c:\data\scriptingGuys\ConversionFunctions.ps1" 

if(!(test-path -path $includeFile)) 

  { 

   "Unable to find $includeFile" 

   Exit 

  } 

. $includeFile 

ConvertToFahrenheit($Celsius)

As you can see, this process begins to become a bit ridiculous. You now have a nine-
line script to allow you to use a three-line function. You must make the call if you want 
to use the include file. When writing a more substantial script that uses an include file, 
the payoff in terms of simplicity and actual code length becomes more evident. In the 
ConvertUseFunctions.ps1 script, a function named ParseAction evaluates the action and value 
that are supplied from the command line and then calls the appropriate function as shown 
here in the ConvertUseFunctions.ps1 script.

ConvertUseFunctions.ps1

Param($action,$value,[switch]$help) 

Function GetHelp() 

{ 

  if($help) 

  { 

   "choose conversion: M(eters), F(eet) C(elsius),Fa(renheit),Mi(les),K(ilometers) and 

value" 

   " Convert -a M -v 10 converts 10 meters to feet." 

  } #end if help 

} #end getHelp 

Function GetInclude() 

{ 

 $includeFile = "c:\data\scriptingGuys\ConversionFunctions.ps1" 

 if(!(test-path -path $includeFile)) 

   { 

    "Unable to find $includeFile" 

    Exit 

   } 

. $includeFile 

} #end GetInclude 



 150 CHAPTER 5 Configuring the script environment 

Function ParseAction() 

{  

 switch ($action) 

 { 

  "M" { ConvertToFeet($value) } 

  "F"  { ConvertToMeters($value) } 

  "C" { ConvertToFahrenheit($value) } 

  "Fa" { ConvertToCelsius($value) } 

  "Mi" { ConvertToKilometers($value) } 

  "K"  { ConvertToMiles($value) } 

  DEFAULT { "Dude illegal value." ; GetHelp ; exit } 

 } #end action 

} #end ParseAction 

# *** Entry Point *** 

If($help) { GetHelp ; exit } 

if(!$action) { "Missing action" ; GetHelp ; exit } 

GetInclude 

ParseAction

Keep in mind that you need to make a change to the include file. Because you are loading 
the functions from within a function, the functions are scoped by default into that function’s 
namespace. They are not available from a different function—only from child items. To avoid 
the inheritance issue, add a script tag to each function when it is created, as shown here:

Function Script:ConvertToMeters($feet) 
{ 
  "$feet feet equals $($feet*.31) meters" 
} #end ConvertToMeters

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous examples of Windows PowerShell scripts that use include files.

■■ Windows PowerShell profiles are covered at http://msdn.microsoft.com/en-us/library 
/bb613488(VS.85).aspx in MSDN.

■■ The script execution policy is covered at http://msdn.microsoft.com/en-us/library 
/bb648601(VS.85).aspx in MSDN.

■■ All scripts from this chapter are in the file available from the Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell 
-40-Best-d9e16039.



   151

C H A P T E R  6

avoiding scripting pitfalls
■■ Lack of cmdlet support 

■■ Complicated constructors 

■■ Version compatibility issues 

■■ Lack of WMI support 

■■ Working with objects and namespaces 

■■ Listing WMI providers 

■■ Working with WMI classes 

■■ Lack of .NET Framework support 

■■ Additional resources 

Knowing what you should not script is as important as knowing what you should script. 
There are times when creating a Windows PowerShell script is not the best approach 

to a problem due to the lack of support in a particular technology or to project complex-
ity. In this chapter, you will be introduced to some of the red flags that signal danger for a 
potential script project.

Lack of cmdlet support

It is no secret that cmdlet support is what makes working with Windows PowerShell so 
easy. If you need to check the status of the bits service, the easiest method is to use the 
 Get-Service cmdlet as shown here:

Get-Service –name bits

To find information about the explorer process, you can use the Get-Process cmdlet as 
shown here:

Get-Process -Name explorer

If you need to stop a process, you can easily use the Stop-Process cmdlet as shown here:

Stop-Process -Name notepad



 152 CHAPTER 6 Avoiding scripting pitfalls

You can even check the status of services on a remote computer by using the 
 – ComputerName switch from the Get-Service cmdlet as shown here:

Get-Service -Name bits -ComputerName vista

IMPORTANT If you are working in a cross-domain scenario in which authentication is 
required, you will not be able to use Get-Service or Get-Process because those cmdlets 
do not have a −credential parameter. You need to use one of the remoting cmdlets, such as 
Invoke-Command, which allows you to supply an authentication context.

You can check the BIOS information on a local computer and save the information to a 
comma-separated value (CSV) file with just a few lines of code. An example of such a script is 
the ExportBiosToCsv.ps1 script.

ExportBiostoCsv.ps1

$path = "c:\fso\bios.csv" 

Get-CimInstance -ClassName win32_bios | 

Select-Object -property name, version | 

Export-CSV -path $path –noTypeInformation

Without cmdlet support for selecting objects and exporting them to a CSV file format, 
you might be tempted to use filesystemobject from Microsoft VBScript fame. If you take that 
approach, the script will be twice as long and not nearly as readable. An example of a script 
using filesystemobject is the FSOBiosToCsv.ps1 script.

FSOBiostoCsv.ps1

$path = "c:\fso\bios1.csv" 

$bios = Get-CimInstance -ClassName win32_bios 

$csv = "Name,Version'r'n" 

$csv +=$bios.name + "," + $bios.version 

$fso = new-object -comobject scripting.filesystemobject 

$file = $fso.CreateTextFile($path,$true) 

$file.write($csv) 

$file.close()

Clearly, the ability to use built-in cmdlets is a major strength of Windows PowerShell. One 
problem with Windows Server 2012 R2 and Windows PowerShell 4.0 is the number of cmdlets 
that exist, which is similar to the problem experienced by Windows Exchange Server admin-
istrators. Because there are so many cmdlets, it is difficult to know where to begin. A quick 
perusal of the Microsoft Exchange Team’s blog and some of the Exchange forums reveals that 
the problem is not in writing scripts but in finding the one cmdlet of the hundreds of possible 
candidates that performs the specific task at hand. If you factor in community-developed 
cmdlets and third-party software company cmdlet offerings, you have a potential environ-
ment that encompasses thousands of cmdlets.



 Complicated constructors CHAPTER 6 153

Luckily, the Windows PowerShell team has a plan to address this situation—standard 
naming conventions. The Get-Help, Get-Command, and Get-Member cmdlets were discussed 
in Chapter 1, “Survey of PowerShell capabilities,” but they merit mention here. If you are 
unaware of a specific cmdlet feature or even the existence of a cmdlet, you are forced to 
implement a workaround that causes additional work or that might mask hidden mistakes. 
Given the choice between a cmdlet that is part of the operating system and a create-your-
own solution, the pre-existing cmdlet should be used in almost all cases. Therefore, instead of 
assuming that a cmdlet or feature does not exist, you should spend time using Get-Help, Get-
Command, and Get-Member before embarking on a lengthy development effort. In this chapter, 
you will examine some of the potential pitfalls that can develop when you do not use cmdlets.

Complicated constructors

If you do not have support from cmdlets when developing an idea for a script, there might be 
a better way to do something and you should at least consider your alternatives.

In the GetRandomObject.ps1 script, a function named GetRandomObject is created. This 
function takes two input parameters: one named $in that holds an array of objects and the 
other named $count that controls how many items are randomly selected from the input 
object.

The New-Object cmdlet is used to create an instance of the System.Random Microsoft .NET 
Framework class. The new instance of the class is created by using the default constructor (no 
seed value supplied) and is stored in the $rnd variable.

A for…next loop is used to loop through the collection—once for each selection desired. 
The next method of the System.Random class is used to choose a random number that resides 
between the number 1 and the maximum number of items in the input object. The random 
number is used to locate an item in the array by using the index so that the selection of the 
item from the input object can take place. The GetRandomObject.ps1 script is shown here.

GetrandomObject.ps1

Function GetRandomObject($in,$count) 

{ 

 $rnd = New-Object system.random 

 for($i = 1 ; $i -le $count; $i ++) 

 { 

  $in[$rnd.Next(1,$a.length)] 

 } #end for 

} #end GetRandomObject 

 

# *** entry point *** 

$a = 1,2,3,4,5,6,7,8,9 

$count = 3 

GetRandomObject -in $a -count $count



 154 CHAPTER 6 Avoiding scripting pitfalls

While there is nothing inherently wrong with the GetRandomObject.ps1 script, you can use 
the Get-Random cmdlet when working with Windows PowerShell 2.0 (and above) to accom-
plish essentially the same objective as shown here:

$a = 1,2,3,4,5,6,7,8,9 
Get-Random -InputObject $a -Count 3

Clearly, by using the native Get-Random cmdlet, you can save yourself a great deal of time 
and trouble. 

One advantage of using a cmdlet is that you can trust it will be implemented correctly. At 
times, .NET Framework classes have rather complicated constructors that are used to govern 
the way the instance of a class is created. A mistake that is made when passing a value for one 
of these constructors does not always mean that an error is generated. It is entirely possible 
that the code will appear to work correctly, and it can therefore be very difficult to spot the 
problem.

An example of this type of error is shown in the BadGetRandomObject.ps1 script in which 
an integer is passed to the constructor for the System.Random .NET Framework class. The 
problem is that every time the script is run, the same random number is generated. While 
this particular bad implementation is rather trivial, it illustrates that the potential exists for 
logic errors that often require detailed knowledge of the utilized .NET Framework classes to 
troubleshoot.

BadGetrandomObject.ps1

Function GetRandomObject($in,$count,$seed) 

{ 

 $rnd = New-Object system.random($seed) 

 for($i = 1 ; $i -le $count; $i ++) 

 { 

  $in[$rnd.Next(1,$a.length)] 

 } #end for 

} #end GetRandomObject 

 

# *** entry point *** 

$a = 1,2,3,4,5,6,7,8,9 

$count = 3 

GetRandomObject -in $a -count $count -seed 5

The System.Random information is contained in MSDN, but it is easy to overlook some 
small detail because there is so much documentation and some of the classes are very com-
plicated. When the overlooked detail does not cause a run-time error and the script appears 
to work properly, you have a potentially embarrassing situation at best.



 Version compatibility issues CHAPTER 6 155

Version compatibility issues

While the Internet is a great source of information, it can often lead to confusion rather than 
clarity. When you locate a source of information, it might not be updated to include the 
current version of the operating system. This update situation is worsening due to a variety 
of complicating factors such as User Account Control (UAC), Windows Firewall, and other 
security factors that have so many different configuration settings that it can be unclear 
whether an apparent failure is due to a change in the operating system or to an actual error 
in the code. For example, suppose that you decide to use the WIN32_Volume Windows 
Management Instrumentation (WMI) class to determine information about your disk drives. 
First, you need to realize that the WMI class does not exist on any operating system older 
than Microsoft Windows Server 2003; it is a bit surprising that the class does not exist on 
Windows XP. However, when you try the following command on Windows Vista, it generates 
an error:

Get-WmiObject -Class win32_volume -Filter "Name = 'c:\'"

The first suspect when dealing with Windows Vista and later versions is user rights. You 
open the Windows PowerShell console as an administrator and try the code again; it fails. You 
then wonder whether the error is caused by the differences between expanding quotes and 
literal quotes. After contemplation, you decide to write the filter to take advantage of literal 
strings. The problem is that you have to escape the quotes, which involves more work, but it is 
worth the effort if it works. So you come up with the following code that, unfortunately, also 
fails when it is run.

Get-WmiObject -Class win32_volume -Filter 'Name = ''c:\'''

This time, you decide to read the error message. Here is the error that was produced by 
the previous command:

Get-WmiObject : Invalid query 
At line:1 char:14 
+ Get-WmiObject <<<<  -Class win32_volume -Filter "Name = 'c:\' " 
    + CategoryInfo          : InvalidOperation: (:) [Get-WmiObject],  
    ManagementException 
    + FullyQualifiedErrorId : GetWMIManagementException, 
    Microsoft.PowerShell.Commands.GetWmiObjectCommand

You focus on the line that says invalid operation and decide that perhaps the backslash is a 
special character. When this is the problem, you need to escape the backslash; therefore, you 
decide to use the escape character to make one more attempt. Here is the code you create.

Get-WmiObject -Class win32_volume -Filter "Name = 'c:'\' "

Even though this is a good idea, the code still does not work and once again generates an 
error, as shown here:

Get-WmiObject : Invalid query 
At line:1 char:14 



 156 CHAPTER 6 Avoiding scripting pitfalls

+ Get-WmiObject <<<<  -Class win32_volume -Filter "Name = 'c:'\' " 
    + CategoryInfo          : InvalidOperation: (:) [Get-WmiObject],  
    ManagementException 
    + FullyQualifiedErrorId : GetWMIManagementException, 
    Microsoft.PowerShell.Commands.GetWmiObjectCommand

Next, you search to determine whether you have rights to run the query. (I know that you 
are running the console with Administrator rights, but some processes deny access even to 
the Administrator, so it is best to check.) The easiest way to check your rights is to perform the 
WMI query and omit the −filter parameter as shown here:

Get-WmiObject -Class win32_volume

This command runs without generating an error. You might assume that you cannot filter 
the WMI class at all and decide that the class is a bit weird. You might decide to write a differ-
ent filter and see whether it will accept the syntax of a new filter, such as the following line of 
code:

Get-WmiObject -Class win32_volume -Filter "DriveLetter = 'c:'"

The previous command rewards you with an output similar to the one shown here:

PS C:\> Get-WmiObject -Class win32_volume -Filter "DriveLetter = 'c:'" 
 
 
__GENUS                      : 2 
__CLASS                      : Win32_Volume 
__SUPERCLASS                 : CIM_StorageVolume 
__DYNASTY                    : CIM_ManagedSystemElement 
__RELPATH                    : Win32_Volume.DeviceID="\\\\?\\Volume{5a4a2fe5-70 
                               f0-11dd-b4ad-806e6f6e6963}\\" 
__PROPERTY_COUNT             : 44 
__DERIVATION                 : {CIM_StorageVolume, CIM_StorageExtent, CIM_Logic 
                               alDevice, CIM_LogicalElement...} 
__SERVER                     : MRED1 
__NAMESPACE                  : root\cimv2 
__PATH                       : \\MRED1\root\cimv2:Win32_Volume.DeviceID="\\\\?\ 
                               \Volume{5a4a2fe5-70f0-11dd-b4ad-806e6f6e6963}\\" 
Access                       : 
Automount                    : True 
Availability                 : 
BlockSize                    : 4096 
BootVolume                   : True 
Capacity                     : 158391595008 
Caption                      : C:\ 
Compressed                   : False 
ConfigManagerErrorCode       : 
ConfigManagerUserConfig      : 
CreationClassName            : 
Description                  : 
DeviceID                     : \\?\Volume{5a4a2fe5-70f0-11dd-b4ad-806e6f6e6963} 
                               \ 
DirtyBitSet                  : 
DriveLetter                  : C: 



 Version compatibility issues CHAPTER 6 157

DriveType                    : 3 
ErrorCleared                 : 
ErrorDescription             : 
ErrorMethodology             : 
FileSystem                   : NTFS 
FreeSpace                    : 23077511168 
IndexingEnabled              : True 
InstallDate                  : 
Label                        : 
LastErrorCode                : 
MaximumFileNameLength        : 255 
Name                         : C:\ 
NumberOfBlocks               : 
PageFilePresent              : False 
PNPDeviceID                  : 
PowerManagementCapabilities  : 
PowerManagementSupported     : 
Purpose                      : 
QuotasEnabled                : 
QuotasIncomplete             : 
QuotasRebuilding             : 
SerialNumber                 : 1893548344 
Status                       : 
StatusInfo                   : 
SupportsDiskQuotas           : True 
SupportsFileBasedCompression : True 
SystemCreationClassName      : 
SystemName                   : MRED1 
SystemVolume                 : False

INSIDE TRACK

When working with scripting, network administrators and consultants often 
use workarounds because our job is to “make things work.” 

Sometimes, Scripting Guys end up using workarounds as well. after all, my job is to 
write a daily hey Scripting Guy! column, which means that I have a deadline every 
day of the week. Concerning the previous Win32_Volume WMI class example, I 
always use the DriveLetter property when performing the WMI query. Years ago, 
after several hours of experimentation with this example, I determined that perhaps 
the name property was broken and therefore avoided using it when performing 
demonstrations when I was teaching classes. 

Luckily, no student ever asked me why I use DriveLetter instead of the name prop-
erty in any of my queries!

If you return to the error message generated by the earlier queries, the InvalidOperation 
CategoryInfo field might cause you to reconsider the backslash. Your earlier attempts to 



 158 CHAPTER 6 Avoiding scripting pitfalls

escape the backslash were on the right track. The problem revolves around the strange mix-
ture of the WMI Query Language (WQL) syntax and Windows PowerShell syntax. The − filter 
parameter is definitely Windows PowerShell syntax, but you must supply a string that con-
forms to WQL dialect inside this parameter. This is why you use the equal sign for an operator 
instead of the Windows PowerShell –eq operator when you are inside the quotation marks 
of the −filter parameter. To escape the backslash in the WQL syntax, you must use another 
backslash as found in C or C++ syntax. The following code filters out the drive based on the 
name of the drive:

Get-WmiObject -Class win32_volume -Filter "Name = 'c:\\'"

IMPORTANT Use of the backslash to escape another backslash is a frustrating factor 
when using WMI. While our documentation in MSDN is improving, we still have a way to 
go in this arena. Because this WMI class does not behave as you might expect, I have filed 
a documentation bug for the name property of the Win32_Volume class. The result will be 
an additional note added to the description of the property. I have since found a few more 
places where the backslash is used as an escape character, and I will file bugs on them 
as well.

As a best practice, you can write a script to return the WMI information from the 
 WIN32 _ Volume class and hide the escape details from the user. Use the Get-Volume function 
that comes with Windows 8 and above. The function accepts multiple command-line param-
eters, two of which are –driveletter and –cimsession. The drive is supplied as a drive letter 
without a colon. By default, the function returns information from all volumes on the local 
computer. In the Get-Volume function, the –driveletter value is a single letter. It does not need 
to be quoted, nor does it need a colon. The cimsession parameter accepts a computer name 
or an actual CIM session. The GetVolume.ps1 script is shown here.

GetVolume.ps1

Get-Volume -DriveLetter 'c' -CimSession client1 

If you need to work in a cross-domain situation, you need to pass credentials to the 
remote computer. The Get-Volume function does not contain the −credential parameter. But 
because it accepts a CIM session, you can still pass credentials.

To do this, first create a CIM session by using the New-CimSession cmdlet while specifying 
the credentials and the computer name. Use the CIM session when calling the Get-Volume 
function to make the remote connection and return the information. This technique appears 
in the GetVolumeWithCredentials.ps1 script shown here.

GetVolumeWithCredentials.ps1

$cim = New-CimSession -Credential iammred\administrator -ComputerName client1 

Get-Volume -CimSession $cim 



 Version compatibility issues CHAPTER 6 159

INSIDE TRACK

Choosing the right script methodology

Luis Canastreiro, Premier Field Engineer
Microsoft Corporation, Portugal

When I am writing a script, often there are many ways of accomplishing 
the same task. For example, if I am writing a VBScript, I prefer to use a 

Component Object Model (COM) object rather than shelling out and calling an 
external executable, because COM is native to VBScript. the same principle holds 
when I am writing a Windows PowerShell script. I prefer to use the .NEt Framework 
classes if a Windows PowerShell cmdlet is not available because PowerShell is built 
on the .NEt Framework.

Of course, my number-one preference is to use a cmdlet if it is available to me 
because a cmdlet will hide the complexity of dealing directly with the .NEt 
Framework. By this I mean that there are some .NET Framework classes that at first 
glance appear to be simple. however, when you begin to use them, you realize that 
they contain complicated constructors. If you are not an expert with that particular 
class, you can make a mistake that will not be realized until after much testing. If 
a cmdlet offers the required features and if it solves my problem, the cmdlet is my 
first choice.

For example, there are several ways to read and write to the registry. You can 
use the regread and regwrite VBScript methods, the stdRegProv WMI class, the 
.NEt Framework classes, or even various command-line utilities to gain access 
to the registry. My favorite method of working with the registry is to use the 
Windows PowerShell registry provider and the various *-item and *-itemproperty 
 cmdlets. these cmdlets are very easy to use, and I need only to open the Windows 
PowerShell shell to accomplish everything I need to do with these cmdlets. 

When I am writing a new script, I always like to create small generic functions, 
which offer a number of advantages. these functions make it easy for me to test the 
script while I am in the process of writing it. I need to call only the function or func-
tions on which I am working. I can leave the other code unfinished if I need to test it 
later. the functions are easy to reuse or to improve as time goes by. I run the script 
by creating a main function whose primary purpose is to initialize the environment 
and manage the global flow of the script by calling the appropriate functions at the 
proper time. 



 160 CHAPTER 6 Avoiding scripting pitfalls

trapping the operating system version
Given the differences between the various versions of the Windows operating system, it 
is a best practice to check the version of the operating system prior to executing the script 
if you know that there could be version compatibility issues. There are several different 
methods to check version compatibility. In Chapter 4, “Identifying scripting opportuni-
ties,” you used the System.Environment .NET Framework class to check the operating sys-
tem version in the  Get-OsVersion.ps1 script. While it is true that you can use remoting to 
obtain information from this class remotely, you can also achieve similar results by using the 
Win32_OperatingSystem WMI class. The advantage of this approach is that WMI automatically 
remotes.

The Get-Version.ps1 script accepts two command-line parameters, computername and 
credential. The computername parameter accepts an array of strings for the local or for the 
remote connections. The credential parameter must be a type of the PSCredential class. The 
easiest way to obtain a credential object is to use the Get-Credential cmdlet. The Get-Version 
function uses the $PSBoundParameters automatic variable to SPLAT the supplied parameters 
to the New-CimSession cmdlet. In this way, if you call the function and do not pass a Credential 
object, no error arises because an empty credential object does not pass to the cmdlet. If 
you do not pass a credential object, the cmdlet runs and impersonates the logged on user. 
In the same way, if no value supplies to the ComputerName parameter, the function runs 
against the localhost computer. By using the CIM cmdlets to provide the information from 
the Win32_OperatingSystem management object, the function can make a local connection 
using alternate credentials—a limitation of WMI since the earliest implementation. The entire 
Win32_OperatingSystem management object returns from the function. The ProductType 
property can be used to distinguish between a workstation and a server. The possible values 
for the ProductType property are shown in Table 6-1.

TABLE 6-1 Win32_OperatingSystem ProductType values and associated meanings

Value Meaning 

1 Workstation 

2 Domain controller 

3 Server

After the version of the operating system is detected, you have a choice of how much 
information to return. For example, the caption property returns a string that identifies the 



 Version compatibility issues CHAPTER 6 161

operating system, but if a decision is required, you might be better off evaluating the actual 
version number. The complete Get-Version.ps1 script is shown here.

Get-Version.ps1

Function Get-Version 

{ 

 <# 

   .Synopsis 

    This returns OS information from local or remote computers  

   .Description 

    This function returns OS information from local or remote computers 

   .Example 

    Get-Version -computername client1, server1 -credential (Get-Credential iammred\

administrator) 

    Returns OS information from two remote computers using credentials supplied when 

run 

   .Example 

    $cred = Get-Credential iammred\administrator 

    Get-Version -computername client1, server1, edlt -credential $cred | select 

caption, version 

    Returns caption and version from two remote computers using credentials stored in 

variable 

   .Parameter Computername 

    The name of target computer or computers 

   .Parameter Credential 

    The credentials to use to make the connection 

   .Notes 

    NAME:  Get-Version 

    AUTHOR: ed wilson, msft 

    LASTEDIT: 08/26/2013 13:25:38 

    KEYWORDS: CIM, OS 

    HSG:  

   .Link 

     Http://www.ScriptingGuys.com 

 #Requires -Version 2.0 

 #> 

 Param([string[]]$computername, 

 [System.Management.Automation.PSCredential]$credential) 

 $cim = New-CimSession @PSBoundParameters 

 Get-CimInstance -CimSession $cim -ClassName Win32_OperatingSystem 

} 

The Get-Version.ps1 script, when run, loads the Get-Version function into memory. The 
entire Win32_OperatingSystem management object returns from the function. It is therefore 
necessary to parse the returned information in the context of your particular application. 



 162 CHAPTER 6 Avoiding scripting pitfalls

INSIDE TRACK

Georges Maheu, Security Premier Field Engineer
Microsoft Corporation, Canada

When I am working with Windows PowerShell, I mostly invest my time writ-
ing scripts. however, I will use the console to test syntax or to experiment. 

The thing to keep in mind is that Windows PowerShell can go from simple (using 
a cmdlet with no parameters) to complex scripts very quickly. Be careful when 
writing scripts, because what might seem like a simple script can easily peg a 
processor. For example, the following script might bring a single CPU computer to 
100% CPU utilization: 1..2000 | ForEach-Object {Get-WmiObject win32_bios}; 
however, the following script will not: 1..2000 | ForEach-Object {Get-WmiObject 
 win32 _ bios;start-sleep –milli 2}. a poorly written script can bring an old server 
to its knees.

Lack of WMI support

Windows Management Instrumentation has been in existence since the days of Microsoft 
Windows NT 4.0. In the years since its introduction, every new version of Windows has added 
WMI classes and, at times, additional methods to existing WMI classes. One advantage of 
WMI is its relatively consistent approach to working with software and hardware. Another 
advantage of WMI is that it is a well-understood technology, and numerous examples of 
scripts can be found on the Internet. With improved support for WMI in Windows PowerShell 
2.0, the introduction of the CIM cmdlets in Windows PowerShell 3.0, and the expanded sup-
port for CIM functions in Windows 8.1 and on Windows Server 2012 R2, there is very little 
that cannot be accomplished via Windows PowerShell that could be done by using VBScript. 
In fact, with the CIM-based functions, many configuration tasks can be accomplished with 
a single line command. Before you look at some of the issues in working with WMI from 
Windows PowerShell, let’s review some basic WMI concepts.

WMI is sometimes referred to as a hierarchical namespace—so named because the layers 
build on one another like a Lightweight Directory Access Protocol (LDAP) directory used in 
Active Directory or the file system structure on your hard disk drive. Although it is true that 
WMI is a hierarchical namespace, the term doesn’t really convey its richness. The WMI model 
contains three sections: resources, infrastructure, and consumers, which can be described as 
follows:

■■ WMI resources Resources include anything that can be accessed by using WMI: the 
file system, networked components, event logs, files, folders, disks, Active Directory, 
and so on.



 Working with objects and namespaces CHAPTER 6 163

■■ WMI infrastructure The infrastructure is composed of three parts: the WMI service, 
WMI repository, and WMI providers. Of these parts, WMI providers are most impor-
tant because they provide the means for WMI to gather needed information.

■■ WMI consumers A consumer “consumes” the data from WMI. A consumer can be 
a VBScript, an enterprise management software package, or some other tool or utility 
that executes WMI queries.

Working with objects and namespaces

Let’s return to the idea of a namespace introduced in the last section. You can think of a 
namespace as a way to organize or collect data related to similar items. Visualize an old-fash-
ioned filing cabinet. Each drawer can represent a particular namespace. Inside each drawer 
are hanging folders that collect information related to a subset of what the drawer actually 
holds. For example, there is a drawer at home in my filing cabinet that is reserved for informa-
tion related to my woodworking tools. Inside this particular drawer are hanging folders for my 
table saw, my planer, my joiner, my dust collector, and so on. In the folder for the table saw is 
information about the motor, the blades, and the various accessories I purchased for the saw 
(such as an over-arm blade guard).

The WMI namespace is organized in a similar fashion. The namespaces are the file cabi-
nets. The providers are drawers in the file cabinet. The folders in the drawers of the file cabi-
net are the WMI classes. These namespaces are shown in Figure 6-1.

FIGURE 6-1 WMI namespaces on Windows 8.1.



 164 CHAPTER 6 Avoiding scripting pitfalls

Namespaces contain objects, and these objects contain properties that you can manipu-
late. Let’s use a WMI command to illustrate how the WMI namespace is organized. The 
 Get-WmiObject cmdlet is used to make the connection into the WMI. The class argument is 
used to specify the __Namespace class, and the namespace argument is used to specify the 
level in the WMI namespace hierarchy. The Get-WmiObject line of code is shown here:

Get-WmiObject –class __Namespace -namespace root |  
Select-Object –property name

When the preceding code is run, the following result appears on a Windows Vista 
 computer:

name 
---- 
subscription 
DEFAULT 
MicrosoftDfs 
CIMV2 
Cli 
nap 
SECURITY 
SecurityCenter2 
RSOP 
WMI 
directory 
Policy 
ServiceModel 
SecurityCenter 
Microsoft 
aspnet

You can use the RecursiveWMINameSpaceListing.ps1 script to get an idea of the number 
and variety of WMI namespaces that exist on your computer, which is a great way to explore 
and learn about WMI. The entire contents of the RecursiveWMINameSpaceListing.ps1 script is 
shown here.

recursiveWMINameSpaceListing.ps1

Function Get-WmiNameSpace($namespace, $computer) 

{ 

 Get-WmiObject -class __NameSpace -computer $computer ' 

 -namespace $namespace -ErrorAction "SilentlyContinue" | 

 Foreach-Object ' 

 -Process ' 

   {  

     $subns = Join-Path -Path $_.__namespace -ChildPath $_.name 

     $subns 

     $script:i ++ 

     Get-WmiNameSpace -namespace $subNS -computer $computer 

   } 



 Working with objects and namespaces CHAPTER 6 165

} #end Get-WmiNameSpace 

 

# *** Entry Point *** 

 

$script:i = 0 

$namespace = "root" 

$computer = "LocalHost" 

"Obtaining WMI Namespaces from $computer ..." 

Get-WmiNameSpace -namespace $namespace -computer $computer 

"There are $script:i namespaces on $computer"

The output from the RecursiveWMINameSpaceListing.ps1 script is shown here from the 
same Windows Vista computer that produced the earlier namespace listing. You can see that 
there is a rather intricate hierarchy of namespaces that exists on a modern operating system.

Obtaining WMI Namespaces from LocalHost ... 
ROOT\subscription 
ROOT\subscription\ms_409 
ROOT\DEFAULT 
ROOT\DEFAULT\ms_409 
ROOT\MicrosoftDfs 
ROOT\MicrosoftDfs\ms_409 
ROOT\CIMV2 
ROOT\CIMV2\Security 
ROOT\CIMV2\Security\MicrosoftTpm 
ROOT\CIMV2\ms_409 
ROOT\CIMV2\TerminalServices 
ROOT\CIMV2\TerminalServices\ms_409 
ROOT\CIMV2\Applications 
ROOT\CIMV2\Applications\Games 
ROOT\Cli 
ROOT\Cli\MS_409 
ROOT\nap 
ROOT\SECURITY 
ROOT\SecurityCenter2 
ROOT\RSOP 
ROOT\RSOP\User 
ROOT\RSOP\User\S_1_5_21_540299044_341859138_929407116_1133 
ROOT\RSOP\User\S_1_5_21_540299044_341859138_929407116_1129 
ROOT\RSOP\User\S_1_5_21_540299044_341859138_929407116_1118 
ROOT\RSOP\User\S_1_5_21_918056312_2952985149_2686913973_500 
ROOT\RSOP\User\S_1_5_21_135816822_1724403450_2350888535_500 
ROOT\RSOP\User\ms_409 
ROOT\RSOP\User\S_1_5_21_540299044_341859138_929407116_500 
ROOT\RSOP\Computer 
ROOT\RSOP\Computer\ms_409 
ROOT\WMI 
ROOT\WMI\ms_409 
ROOT\directory 
ROOT\directory\LDAP 
ROOT\directory\LDAP\ms_409 



 166 CHAPTER 6 Avoiding scripting pitfalls

ROOT\Policy 
ROOT\Policy\ms_409 
ROOT\ServiceModel 
ROOT\SecurityCenter 
ROOT\Microsoft 
ROOT\Microsoft\HomeNet 
ROOT\aspnet 
There are 42 namespaces on LocalHost

So, what does all of this mean? It means that, on a Windows Vista-based computer, there 
are dozens of different namespaces from which you can pull information about your com-
puter. Understanding that the different namespaces exist is the first step to begin navigat-
ing in WMI to find the information you need. Often, students and people who are new to 
Windows PowerShell work on a WMI script to make the script perform a certain action, which 
is a great way to learn scripting. However, what they often do not know is which namespace 
they need to connect to so that they can accomplish their task. When I tell them which 
namespace to work with, they sometimes reply, “It is fine for you, but how do I know that 
the such and such namespace even exists?” By using the RecursiveWMINameSpaceListing 
.ps1 script, you can easily generate a list of namespaces installed on a particular machine and, 
armed with that information, search MSDN to find information about those namespaces. Or, if 
you like to explore, you can move on to the next section, “Listing WMI providers.”

INSIDE TRACK

Jason Walker, Premier Field Engineer
Microsoft Corporation

Supporting enterprise customers often requires me to come up with solutions to 
handle large amounts of data. When dealing with large data, errors like ‘System 

.OutOfMemoryException’ are commonplace.  how do we write our scripts in a way 
that we don’t encounter these errors? I always tell my customers, “Stay away from 
big objects.” 

the two most common things I see are storing objects so that they can be displayed 
all at once and collecting all the objects to be processed before processing the very 
first one.

here is an example of storing objects so they are displayed at once:

Results = @() 

$Servers = Get-Content ServerList.txt 

 

foreach($Server in $Servers) 

{ 



 Working with objects and namespaces CHAPTER 6 167

    $wmi = Get-WmiObject -ComputerName $Server -Class Win32_

OperatingSystem 

 

    $Results += New-Object -TypeName PSObject -Property @{ 

        ComputerName = $wmi.__Server 

        OperatingSystem = $wmi.caption 

        } 

} 

 

$Results 

In the preceding example $Results is appended to on each iteration of the foreach 
loop. If $Servers contains only 10 computer names, this example will work just fine. 
But if $Servers contains 1,000 server names, the script will consume a lot of memory 
and appear to be very slow because the results will not be displayed until the last 
server is contacted. The fix for this is very simple: Do away with the $Results variable 
altogether:

$Servers = "mail01","mail02","mbx01","mbx02" 

 

foreach($Server in $Servers) 

{ 

    $wmi = Get-WmiObject -ComputerName $Server -Class Win32_

OperatingSystem 

 

    New-Object -TypeName PSObject -Property @{ 

        ComputerName = $wmi.__Server 

        OperatingSystem = $wmi.caption 

        } 

} 

Now the script will return results as they are being processed, which makes the 
script appear faster, and the code will consume very little memory.

Collecting all the objects to be processed before processing the very first one 
has the same effect as my first example. It will consume lots of memory. I had a 
customer whose users were reporting NDrs to external recipients. the customer’s 
Exchange admin wanted a script that could add an SMtP address to an external 
contact to eliminate the NDrs. the script that the admin wrote worked great when 
running it against one contact at a time. however, the admin wanted to be proac-
tive and run it against all 100,000 contacts in the address book, which consumed 
all the server’s RAM and made it unresponsive. The fix is simple: Write the script to 



 168 CHAPTER 6 Avoiding scripting pitfalls

accept input from the pipeline. With input coming in from the pipeline, the input is 
being processed as it comes in and then disposed of, versus storing all the input in 
one huge object array. this can be proven in the following simple examples:

Example 1: ForEach-Object -InputObject (dir c:\ -Recurse) -Process {$_.

Fullname}

Example 2:  dir c:\ -Recurse | select Fullname

In Example 1, all the file paths have to be collected before they are consumed in 
the script block. When they are run, there is pause before any results are returned. 
When Example 2 is run, results are displayed instantly.

to get back to the customer’s issue.

resource intensive:

Set-x500Address –Identity (Get-MailContact –ResultSize Unlimited)

In the preceding example, all 100,000 contacts need to be collected before the first 
one can be processed.

Resource efficient:

Get-MailContact –ResultSize Unlimted | Set-X500Address

When using the pipe, as in the preceding example, the input is being processed as it 
comes in.

When writing scripts, we need to think about what the code is doing because 
Windows PowerShell will use a lot of resources if we let it.

Listing WMI providers

Understanding the namespace assists the network administrator with judiciously applying 
WMI scripting to his or her network duties. However, as mentioned earlier, to access informa-
tion via WMI, you must have access to a WMI provider. After the provider is implemented, 
you can gain access to the information that is made available. 

Providers in WMI are all based on a template class or on a system class named __provider. 
With this information, you can look for instances of the __provider class and obtain a list of all 
providers that reside in your WMI namespace, which is exactly what the Get-WMIProviders 
.ps1 script accomplishes.

The Get-WMIProviders.ps1 script begins by assigning the string "root\cimv2" to the 
$wmiNS variable. This value is used with the Get-WmiObject cmdlet to specify where the WMI 



 Working with WMI classes CHAPTER 6 169

query takes place. It should be noted that the WMI root\cimv2 namespace is the default WMI 
namespace on every Windows operating system since Microsoft Windows 2000.

The Get-WmiObject cmdlet is used to query WMI. The class provider is used to limit the 
WMI query to the __provider class. The namespace argument tells the Get-WmiObject  cmdlet 
to look only in the root\cimv2 WMI namespace. The array of objects returned from the 
 Get-WmiObject cmdlet is pipelined into the Sort-Object cmdlet, where the listing of objects 
is alphabetized based on the name property. When this process is complete, the reorga-
nized objects are then passed to the Format-List cmdlet, where the name of each provider is 
printed. The complete Get-WmiProviders.ps1 script is shown here.

Get-WmiProviders.ps1

Function Get-WmiProviders( 

                           $namespace="root\cimv2", 

                           $computer="localhost" 

                          ) 

{ 

 Get-WmiObject -class __Provider -namespace $namespace ' 

 -computername $computer | 

 Sort-Object -property Name | 

 Select-Object -property Name 

} #end Get-WmiProviders 

 

Get-WmiProviders

Working with WMI classes

In addition to working with namespaces, the inquisitive network administrator will also want 
to explore the concept of classes. In WMI parlance, there are core classes, common classes, 
and dynamic classes. Core classes represent managed objects that apply to all areas of 
management. These classes provide a basic vocabulary for analyzing and describing man-
aged systems. Two examples of core classes are parameters and the System.Security class. 
Common classes are extensions to the core classes and represent managed objects that apply 
to specific management areas. However, common classes are independent of a particular 
implementation or technology. CIM_UnitaryComputerSystem is an example of a common 
class. Core and common classes are not used as often by network administrators because 
they serve as templates from which other classes are derived.

Therefore, many of the classes stored in root\cimv2 are abstract classes and are used as 
templates. However, a few classes in root\cimv2 are dynamic classes that are used to retrieve 
actual information. What is important to remember about dynamic classes is that instances 
of a dynamic class are generated by a provider and are therefore more likely to retrieve “live” 
data from the system.



 170 CHAPTER 6 Avoiding scripting pitfalls

To produce a simple listing of WMI classes, you can use the Get-WmiObject cmdlet and 
specify the list argument as shown here:

Get-WmiObject –list

A partial output from the previous command is shown here:

Win32_TSGeneralSetting                  Win32_TSPermissionsSetting 
Win32_TSClientSetting                   Win32_TSEnvironmentSetting 
Win32_TSNetworkAdapterListSetting       Win32_TSLogonSetting 
Win32_TSSessionSetting                  Win32_DisplayConfiguration 
Win32_COMSetting                        Win32_ClassicCOMClassSetting 
Win32_DCOMApplicationSetting            Win32_MSIResource 
Win32_ServiceControl                    Win32_Property

NOTES FROM THE FIELD

Working with services

Clint Huffman, Senior Premier Field Engineer (PFE)
Microsoft Corporation

I travel a great deal, and, unfortunately, the battery life on my laptop isn’t spectacu-
lar. therefore, I’ve spent a fair amount of time discovering which services on my 

computer are consuming the I/O on my hard drive—most likely the largest con-
sumer of battery power other than my monitor. I identified numerous services that 
I wouldn’t need on a flight, such as antivirus software, Windows Search, the Offline 
Files service, readyBoost, and so on. Because I was stopping and starting these 
services quite often, I decided to script the services.

WMI is a powerful object model that allows scripting languages, such as VBScript 
and Windows PowerShell, to perform tasks that were once available only to hard-
ened C++ developers. Furthermore, far less code is needed to perform these tasks, 
because scripting them makes automation relatively easy.

So, to begin this script, I need to select the correct services. WMI uses a SQL-like 
syntax named WMI Query Language (WQL); it is not named SQL syntax, because 
WQL has some odd quirks that are specific to WMI. I want my WQL query to return 
the Windows services that I identified earlier as users of frequent disk I/O, such as 
the Offline Files service, the ReadyBoost service, my antivirus services that begin 
with “Microsoft ForeFront” (Microsoft Forefront Client Security Antimalware Service 
and Microsoft Forefront Client Security State Assessment Service), and last, my 
personal file indexer, Windows Search.



 Working with WMI classes CHAPTER 6 171

$WQL = "SELECT Name, State, Caption FROM Win32_Service WHERE Caption LIKE 

'Microsoft ForeFront%' OR Name = 'WSearch' OR Caption = 'Offline Files' 

OR Caption = 'ReadyBoost'" 

Get-WmiObject -Query $WQL

In my case, this script returns the following services as follows:

Offline Files 

ReadyBoost 

Microsoft Forefront Client Security Antimalware Service 

Microsoft Forefront Client Security State Assessment Service 

Windows Search

the Caption property is the text you see when you bring up Control Panel, Services, 
and the name property is the short name of the service that you might be more 
familiar with when using the command-line tools “Net Start” and “Net Stop.” Finally, 
the State property tells me whether the service is running. 

the WhErE clause allows me to limit the information that is returned. For example, 
if I don’t use the WhErE clause, I receive all of the services as objects. this is nice if 
you want to know what services are on a computer, but it’s not helpful when you 
simply want to shut down a few of them. For more information about WQL, go to 
“Querying with WQL” at http://msdn.microsoft.com/en-us/library/aa392902.aspx.

Because the Query parameter always returns a collection object, I need to enumer-
ate the Query parameter to work with each item individually. this process is similar 
to receiving a package in the mail in a large cardboard box: before I can use what’s 
inside, I need to open the package. this is the point in the process in which the 
Foreach flow control statement is used. The Foreach statement allows me to work 
with one item at a time (for example, a service), which is similar to taking one item 
out of the cardboard box at a time. In this case, I have the Get-WmiObject cmdlet’s 
return values go into a variable named $CollectionOfServices (my cardboard box). 
Next, I use the Foreach statement to work with each service, whereby the $Service 
variable becomes each service object in turn. the following code is the same as the 
previous code but with the addition of a Foreach loop.

$WQL = "SELECT Name, State, Caption FROM Win32_Service WHERE Caption LIKE 

'Microsoft ForeFront%' OR Name = 'WSearch' OR Caption = 'Offline Files' 

OR Caption = 'ReadyBoost'" 

$CollectionOfServices = Get-WmiObject -Query $WQL 

Foreach ($Service in $CollectionOfServices) 

{ 

    $Service.Caption 

}



 172 CHAPTER 6 Avoiding scripting pitfalls

Now that I can select specific services that I want to shut down, let’s actually shut 
them down. I can do this by using the StopService() method as follows:

 $WQL = "SELECT Name, State, Caption FROM Win32_Service WHERE Caption 

LIKE 'Microsoft ForeFront%' OR Name = 'WSearch' OR Caption = 'Offline 

Files' OR Caption = 'ReadyBoost'" 

$CollectionOfServices = Get-WmiObject -Query $WQL 

Foreach ($Service in $CollectionOfServices) 

{ 

    $Service.Caption 

    $Service.StopService() 

}

If my services don’t actually stop, it is most likely because I don’t have administra-
tor rights to my customer or, if I am on Windows Vista, I need to run the script in 
an elevated Windows PowerShell command prompt. to make an elevated Windows 
PowerShell command prompt, right-click the PowerShell icon, select run as 
administrator, and then try the script again.

Great! My unnecessary services are stopped. however, sometimes the services 
can be a bit tenacious and start up again the first chance they get. How do I 
hold them down? By setting them to disabled. how do I do that? By using the 
ChangeStartMode() method with the argument/parameter of “Disabled," as follows:

$WQL = "SELECT Name, State, Caption FROM Win32_Service WHERE Caption LIKE 

'Microsoft ForeFront%' OR Name = 'WSearch' OR Caption = 'Offline Files' 

OR Caption = 'ReadyBoost'" 

$CollectionOfServices = Get-WmiObject -Query $WQL 

Foreach ($Service in $CollectionOfServices) 

{ 

    $Service.Caption 

    $Service.StopService() 

    $Service.ChangeStartMode("Disabled") 

} 

Now we’re talking! those pesky services are down for the count.

I’ve had my fun, my flight is over, and now I need to connect to my corporate 
network. Corporate policy does not allow me to connect unless my antivirus service 
is running. No problem. Two slight modifications to the script and the services are 
running again as follows:

$WQL = "SELECT Name, State, Caption FROM Win32_Service WHERE Caption LIKE 

'Microsoft ForeFront%' OR Name = 'WSearch' OR Caption = 'Offline Files' 

OR Caption = 'ReadyBoost'"



 Working with WMI classes CHAPTER 6 173

$CollectionOfServices = Get-WmiObject -Query $WQL 

Foreach ($Service in $CollectionOfServices) 

{ 

    $Service.Caption 

    $Service.StartService() 

    $Service.ChangeStartMode("Automatic") 

}

I replaced the StopService() method with StartService() and replaced the argument 
of the ChangeStartMode() method to “Automatic”.

You might be thinking that this procedure is all well and good for your laptop bat-
tery, but what about doing massive restarts of services? Well, a great modification 
that you can make to the script is to run it against remote servers. For example, let’s 
assume that you need to restart the services in a farm of 10 Web servers. You can 
simply modify the script slightly by adding the –ComputerName argument.

$WQL = "SELECT Name, State, Caption FROM Win32_Service WHERE Caption LIKE 

'Microsoft ForeFront%' OR Name = 'WSearch' OR Caption = 'Offline Files' 

OR Caption = 'ReadyBoost'" 

$CollectionOfServices = Get-WmiObject -Query $WQL -ComputerName 

demoserver 

Foreach ($Service in $CollectionOfServices) 

{ 

    $Service.Caption 

    $Service.StartService() 

    $Service.ChangeStartMode("Automatic") 

}

these scripts have served me well, and I hope they help you too.

Changing settings
For all of the benefits of using WMI, there are still many frustrating limitations. While WMI is 
good at retrieving information, it is not always very good at changing that information. The 
following example illustrates this point. The Win32_Desktop WMI class provides information 
about desktop settings as shown here:

PS C:\> Get-WmiObject Win32_Desktop 
 
__GENUS               : 2 
__CLASS               : Win32_Desktop 
__SUPERCLASS          : CIM_Setting 
__DYNASTY             : CIM_Setting 
__RELPATH             : Win32_Desktop.Name="NT AUTHORITY\\SYSTEM" 
__PROPERTY_COUNT      : 21 



 174 CHAPTER 6 Avoiding scripting pitfalls

__DERIVATION          : {CIM_Setting} 
__SERVER              : MRED1 
__NAMESPACE           : root\cimv2 
__PATH                : \\MRED1\root\cimv2:Win32_Desktop.Name="NT AUTHORITY\\ 
                        SYSTEM" 
BorderWidth           : 1 
Caption               : 
CoolSwitch            : 
CursorBlinkRate       : 500 
Description           : 
DragFullWindows       : True 
GridGranularity       : 
IconSpacing           : 
IconTitleFaceName     : Segoe UI 
IconTitleSize         : 9 
IconTitleWrap         : True 
Name                  : NT AUTHORITY\SYSTEM 
Pattern               : (None) 
ScreenSaverActive     : True 
ScreenSaverExecutable : C:\Windows\system32\logon.scr 
ScreenSaverSecure     : True 
ScreenSaverTimeout    : 600 
SettingID             : 
Wallpaper             : 
WallpaperStretched    : False 
WallpaperTiled        :

As you can see from the properties and values that are returned from the Get-WmiObject 
cmdlet, much of the information is valuable. Items such as screen saver time-out values and 
secure screen saver are routine concerns to many network administrators. While it is true 
that these values can and, in most cases, should be set via Group Policy, there are times 
when network administrators want the ability to change these values via script. If you use 
the  Get-Member cmdlet to examine the properties of the Win32_Desktop WMI class, you are 
greeted with the following information:

PS C:\> Get-WmiObject Win32_Desktop | Get-Member 
   TypeName: System.Management.ManagementObject#root\cimv2\Win32_Desktop 
 
Name                  MemberType   Definition 
----                  ----------   ---------- 
BorderWidth           Property     System.UInt32 BorderWidth {get;set;} 
Caption               Property     System.String Caption {get;set;} 
CoolSwitch            Property     System.Boolean CoolSwitch {get;set;} 
CursorBlinkRate       Property     System.UInt32 CursorBlinkRate {get;set;} 
Description           Property     System.String Description {get;set;} 
DragFullWindows       Property     System.Boolean DragFullWindows {get;set;} 
GridGranularity       Property     System.UInt32 GridGranularity {get;set;} 
IconSpacing           Property     System.UInt32 IconSpacing {get;set;} 
IconTitleFaceName     Property     System.String IconTitleFaceName {get;set;} 
IconTitleSize         Property     System.UInt32 IconTitleSize {get;set;} 
IconTitleWrap         Property     System.Boolean IconTitleWrap {get;set;} 
Name                  Property     System.String Name {get;set;} 
Pattern               Property     System.String Pattern {get;set;} 
ScreenSaverActive     Property     System.Boolean ScreenSaverActive {get;set;} 



 Working with WMI classes CHAPTER 6 175

ScreenSaverExecutable Property     System.String ScreenSaverExecutable {get;... 
ScreenSaverSecure     Property     System.Boolean ScreenSaverSecure {get;set;} 
ScreenSaverTimeout    Property     System.UInt32 ScreenSaverTimeout {get;set;} 
SettingID             Property     System.String SettingID {get;set;} 
Wallpaper             Property     System.String Wallpaper {get;set;} 
WallpaperStretched    Property     System.Boolean WallpaperStretched {get;set;} 
WallpaperTiled        Property     System.Boolean WallpaperTiled {get;set;} 
__CLASS               Property     System.String __CLASS {get;set;} 
__DERIVATION          Property     System.String[] __DERIVATION {get;set;} 
__DYNASTY             Property     System.String __DYNASTY {get;set;} 
__GENUS               Property     System.Int32 __GENUS {get;set;} 
__NAMESPACE           Property     System.String __NAMESPACE {get;set;} 
__PATH                Property     System.String __PATH {get;set;} 
__PROPERTY_COUNT      Property     System.Int32 __PROPERTY_COUNT {get;set;} 
__RELPATH             Property     System.String __RELPATH {get;set;} 
__SERVER              Property     System.String __SERVER {get;set;} 
__SUPERCLASS          Property     System.String __SUPERCLASS {get;set;} 
ConvertFromDateTime   ScriptMethod System.Object ConvertFromDateTime(); 
ConvertToDateTime     ScriptMethod System.Object ConvertToDateTime();

When you use the −filter parameter to obtain a specific instance of the Win32_Desktop 
WMI class and store it in a variable, you can then directly access the properties of the class. 
In this example, you need to escape the backslash that is used as a separator between NT 
Authority and System, as shown here:

PS C:\> $desktop = Get-WmiObject Win32_Desktop -Filter ' 
>> "name = 'NT AUTHORITY\\SYSTEM'"

After you have access to a specific instance of the WMI class, you can then assign a 
new value for the ScreenSaverTimeout parameter. As shown here, the value is updated 
immediately.

PS C:\> $Desktop.ScreenSaverTimeout = 300 
PS C:\> $Desktop.ScreenSaverTimeout 
300

However, if you resubmit the WMI query, you see that the ScreenSaverTimeout property 
is not updated. The get:set that is reported by the Get-Member cmdlet is related to the copy 
of the object that is returned by the WMI query and not to the actual instance of the object 
represented by the WMI class, as shown here:

PS C:\> $desktop = Get-WmiObject Win32_Desktop -Filter ' 
>> "name = 'NT AUTHORITY\\SYSTEM'" 
>> 
PS C:\> $Desktop.ScreenSaverTimeout 
600 



 176 CHAPTER 6 Avoiding scripting pitfalls

Modifying values through the registry
The Set-SaverTimeout.ps1 script uses three parameters, but only one of them is commonly 
modified—the timeoutvalue parameter. This parameter configures the screen saver time-out 
value. Because the Set-ScreenSaverTimeout function uses the [cmdletbinding()] attribute, you 
get access to the common parameters such as verbose. Note that nothing further needs to be 
done to gain access to the common parameters. The Write-Verbose cmdlet displays the ver-
bose stream only when calling the function with the –Verbose switch. If the –Verbose switch 
does not appear when calling the function, no verbose stream displays. This means that it is 
possible to use the Set-ScreenSaverTimeOut function and display no output–something that is 
ideal for logon scripts, for example. 

Because the function modifies the registry, it is not a bad idea to use a transaction. Using 
a transaction means that the change successfully completes, or else it can be rolled back. 
Beginning a transaction is easy; use the Start-Transaction cmdlet as appears here:

Start-Transaction 

Then, when initiating the change, use the –UseTransaction switch. This command appears 
here:

Set-ItemProperty -Path $path -name $name -value $timeOutValue -UseTransaction 

This particular function does not actually roll back the transaction, but it would be easy 
enough to do so if required. By using the –Verbose switch, the beginning value displays as 
well as the newly changed value of the ScreenSaver time-out value. To see what the new value 
will be if the transaction is completed, it is necessary to use the –UseTransaction switch when 
using Get-ItemProperty. This command appears here:

Get-ItemProperty -path $path -name $name -UseTransaction 

After everything completes successfully, use the Complete-Transaction cmdlet, as shown 
here:

Complete-Transaction 

Calling the function with the –Verbose parameter is shown here:

Set-ScreenSaverTimeOut -timeOutValue 600 -Verbose 

When the function runs, the output in Figure 6-2 appears.



 Working with WMI classes CHAPTER 6 177

FIGURE 6-2 Detailed information is easily obtained when the script implements a verbose parameter.  

Instead of using Write-Verbose, the function could have used Write-Debug. The 
 Write-Debug cmdlet automatically formats the text with yellow and black colors (this is con-
figurable, however), and it writes text to the console only if you tell it to do so. By default, 
Write-Debug does not print anything to the console, which means that you do not need to 
remove the Write-Debug statements prior to deploying the script. The $DebugPreference 
automatic variable is used to control the behavior of the Write-Debug cmdlet. By default, 
$DebugPreference is set to SilentlyContinue so that when it encounters a Write-Debug cmdlet, 
Windows PowerShell either skips over the cmdlet or silently continues to the next line. You 
can configure the $DebugPreference variable with one of four values defined in the System 
.Management.Automation.ActionPreference enumeration class. To see the possible enumera-
tion values, you can either look for them on MSDN or use the GetNames static method from 
the System.Enum .NET Framework class as shown here:

PS C:\> [enum]::GetNames("System.Management.Automation.ActionPreference") 
SilentlyContinue 
Stop 
Continue 
Inquire

The Write-Debug cmdlet is used to print the value of the name property from the System 
.Management.Automation.ScriptInfo object. The System.Management.Automation.ScriptInfo 



 178 CHAPTER 6 Avoiding scripting pitfalls

object is obtained by querying the MyCommand property of the System.Management 
.Automation.InvocationInfo class. A System.Management.Automation.InvocationInfo object is 
returned when you query the $MyInvocation automatic variable. The properties of System 
.Management.Automation.InvocationInfo are shown in Table 6-2.

TABLE 6-2 Properties of the System.Management.Automation.InvocationInfo class

Property Definition

BoundParameters System.Collections.Generic.Dictionary`2[[System.String, mscorlib, Version=2.0.0.0, 
Culture=neutral,  
PublicKeyToken=b77a5c561934e089],[System.Object, mscorlib,  
Version=2.0.0.0, Culture=neutral,  
PublicKeyToken=b77a5c561934e089]] BoundParameters {get;}

CommandOrigin System.Management.Automation.CommandOrigin  
CommandOrigin {get;}

ExpectingInput System.Boolean ExpectingInput {get;}

InvocationName System.String InvocationName {get;}

Line System.String Line {get;}

MyCommand System.Management.Automation.CommandInfo MyCommand {get;}

OffsetInLine System.Int32 OffsetInLine {get;}

PipelineLength System.Int32 PipelineLength {get;}

PipelinePosition System.Int32 PipelinePosition {get;}

PositionMessage  System.String PositionMessage {get;}

ScriptLineNumber System.Int32 ScriptLineNumber {get;}

ScriptName System.String ScriptName {get;}

UnboundArguments System.Collections.Generic.List`1[[System.Object, mscorlib,  
Version=2.0.0.0, Culture=neutral,  
PublicKeyToken=b77a5c561934e089]] UnboundArguments {get;}

The Write-Debug commands can be modified to include any of the properties you deem 
helpful to aid in troubleshooting. These properties become even more helpful when you are 
working with the System.Management.Automation.ScriptInfo object, whose properties are 
shown in Table 6-3.

TABLE 6-3 Properties of the System.Management.Automation.ScriptInfo object

Property Definition

CommandType System.Management.Automation.CommandTypes CommandType {get;}

Definition System.String Definition {get;}

Module System.Management.Automation.PSModuleInfo Module {get;}

ModuleName    System.String ModuleName {get;}

Name          System.String Name {get;}



 Lack of .NET Framework support CHAPTER 6 179

Property Definition

Parameters    System.Collections.Generic.Dictionary`2[[System.String, mscorlib,Version=2.0.0.0, 
Culture=neutral,  
PublicKeyToken=b77a5c561934e089], 
[System.Management.Automation.ParameterMetadata,  
System.Management.Automation, Version=1.0.0.0,  
Culture=neutral, PublicKeyToken=31bf3856ad364e35]] Parameters {get;}

ParameterSets System.Collections.ObjectModel.ReadOnlyCollection`1 
[[System.Management.Automation.CommandParameterSetInfo,  
System.Management.Automation, Version=1.0.0.0, Culture=neutral,  
PublicKeyToken=31bf3856ad364e35]] ParameterSets {get;}

ScriptBlock   System.Management.Automation.ScriptBlock ScriptBlock {get;}

Visibility    System.Management.Automation.SessionStateEntryVisibility Visibility {get;set;}

The completed Set-SaverTimeOut.ps1 is shown here.

Set-SavertimeOut.ps1

Function Set-ScreenSaverTimeOut 

{ 

 [cmdletbinding()] 

 Param( [int]$timeOutValue = 600, 

        [string]$path = 'HKCU:\Control Panel\Desktop', 

        [string]$name = 'ScreenSaveTimeOut' ) 

 Write-Verbose "$($MyInvocation.MyCommand.name) function called" 

 Write-Verbose "Current value of $name $((Get-ItemProperty -path $path -name 

$name).$name)" 

 Start-Transaction  

 Set-ItemProperty -Path $path -name $name -value $timeOutValue -UseTransaction  

 Write-Verbose "New value of $name $((Get-ItemProperty -path $path -name $name 

-UseTransaction).$name)" 

 Complete-Transaction 

} #end Set-ScreenSaverTimeOut

Lack of .NET Framework support

The ability to work with the .NET Framework from within Windows PowerShell is very excit-
ing. Because Windows PowerShell itself is a .NET Framework application, access to the .NET 
Framework is very direct and natural. At times, the question is not what can be done with 
.NET Framework classes, but rather what cannot be done. The constructors for some of the 
.NET Framework classes can be both confusing and complicated. A constructor is used to 
create an instance of a class; in many cases, you must first create an instance of a class prior 
to using the classes. However, sometimes you do not need a constructor at all, and these 
methods are called static. There are both static methods and static properties.



 180 CHAPTER 6 Avoiding scripting pitfalls

Use of static methods and properties
Static methods and properties are members that are always available. To use a static method, 
you place the class name in square brackets and separate the method name by two colons. 
An example is the tan method from the System.Math class. The tan method is used to find 
the tangent of a number. As shown here, you can use the tan static method from the System 
.Math class to find the tangent of a 45-degree angle:

PS C:\> [system.math]::tan(45) 
1.61977519054386

When referring to System.Math, the word system is used to represent the namespace in 
which the “math class” is found. In most cases, you can drop the word system if you want to 
and the process will work exactly the same. When working at the command line, you might 
want to save some typing and drop the word system, but I consider it to be a best practice to 
always include the word system in a script. If you drop the word system, the command looks 
like the following code:

PS C:\> [math]::tan(45) 
1.61977519054386

You can use the Get-Member cmdlet with the static switched parameter to obtain the 
members of the System.Math .NET Framework class. To do this, the command looks like the 
following example:

[math] | Get-Member –static

The static members of the System.Math class are shown in Table 6-4. These static methods 
are very important because you can perform most of the functionality from the class by using 
them. For example, there is no tan function built into Windows PowerShell. If you want the 
tangent of an angle, you must use either the static methods from System.Math or write your 
own tangent function. This occurs by design. To perform these mathematical computations, 
you need to use the .NET Framework. Rather than being a liability, the .NET Framework is a 
tremendous asset because it is a mature technology and is well-documented.

TABLE 6-4 Members of the System.Math class

Name MemberType Definition 

Abs Method static System.SByte Abs(SByte value) static System.Int16 Abs(Int16 
 value) static System.Int32 Abs(Int32 value) static System.Int64 
Abs(Int64 value) static System.Single Abs(Single value) static System 
.Double Abs(Double value) static System.Decimal Abs(Decimal value) 

Acos Method static System.Double Acos(Double d) 

Asin Method static System.Double Asin(Double d) 

Atan Method static System.Double Atan(Double d) 

Atan2 Method static System.Double Atan2(Double y Double x) 

BigMul Method static System.Int64 BigMul(Int32 a Int32 b) 



 Lack of .NET Framework support CHAPTER 6 181

Name MemberType Definition 

Ceiling Method static System.Decimal Ceiling(Decimal d) static  
System.Double Ceiling(Double a) 

Cos Method static System.Double Cos(Double d) 

Cosh Method static System.Double Cosh(Double value) 

DivRem Method static System.Int32 DivRem(Int32 a Int32 b Int32&  
result) static System.Int64 DivRem(Int64 a Int64 b Int64& result) 

Equals Method static System.Boolean Equals(Object objA Object objB) 

Exp Method static System.Double Exp(Double d) 

Floor Method static System.Decimal Floor(Decimal d) static  
System.Double Floor(Double d) 

IEEERemainder Method static System.Double IEEERemainder(Double x Double y) 

Log Method static System.Double Log(Double d) static  
System.Double Log(Double a Double newBase) 

Log10 Method static System.Double Log10(Double d) 

Max Method static System.SByte Max(SByte val1 SByte val2)  
static System.Byte Max(Byte val1 Byte val2) static  
System.Int16 Max(Int16 val1 Int16 val2) static  
System.UInt16 Max(UInt16 val1 UInt16 val2)  
static System.Int32 Max(Int32 val1 Int32 val2) static  
System.UInt32 Max(UInt32 val1 UInt32 val2) static  
System.Int64 Max(Int64 val1 Int64 val2) static  
System.UInt64 Max(UInt64 val1 UInt64 val2) static  
System.Single Max(Single val1 Single val2) static  
System.Double Max(Double val1 Double val2) static System.Decimal 
Max(Decimal val1 Decimal val2) 

Min Method static System.SByte Min(SByte val1 SByte val2) static System.Byte 
Min(Byte val1 Byte val2) static  
System.Int16 Min(Int16 val1 Int16 val2) static  
System.UInt16 Min(UInt16 val1 UInt16 val2) static  
System.Int32 Min(Int32 val1 Int32 val2) static  
System.UInt32 Min(UInt32 val1 UInt32 val2) static  
System.Int64 Min(Int64 val1 Int64 val2) static  
System.UInt64 Min(UInt64 val1 UInt64 val2) static  
System.Single Min(Single val1 Single val2) static  
System.Double Min(Double val1 Double val2) static System.Decimal 
Min(Decimal val1 Decimal val2) 

Pow Method static System.Double Pow(Double x Double y) 

ReferenceEquals Method static System.Boolean ReferenceEquals(Object objA Object objB) 

Round Method static System.Double Round(Double a) static  
System.Double Round(Double value Int32 digits) static System.Double 
Round(Double value MidpointRounding mode) static System 
.Double Round(Double value Int32 digits MidpointRounding mode) 
static System.Decimal Round(Decimal d) static System.Decimal 
Round(Decimal d Int32 decimals) static System.Decimal Round(Decimal 
d MidpointRounding mode) static System.Decimal Round(Decimal d 
Int32 decimals MidpointRounding mode) 



 182 CHAPTER 6 Avoiding scripting pitfalls

Name MemberType Definition 

Sign Method static System.Int32 Sign(SByte value) static System.Int32 Sign(Int16 value) 
static System.Int32 Sign(Int32 value) static System.Int32 Sign(Int64 value) 
static System.Int32 Sign(Single value) static System.Int32 Sign(Double 
value) static System.Int32 Sign(Decimal value) 

Sin Method static System.Double Sin(Double a) 

Sinh Method static System.Double Sinh(Double value) 

Sqrt Method static System.Double Sqrt(Double d) 

Tan Method static System.Double Tan(Double a) 

Tanh Method static System.Double Tanh(Double value) 

Truncate Method static System.Decimal Truncate(Decimal d) static  
System.Double Truncate(Double d) 

E Property static System.Double E {get;} 

PI Property static System.Double PI {get;}

Version dependencies
One of the more interesting facets of the .NET Framework is that there always seems to be 
a new version available, and, of course, between versions there are service packs. While 
the .NET Framework is included in the operating system, updates to the .NET Framework 
are unfortunately not included in service packs. It therefore becomes the responsibility of 
the network administrators to package and deploy updates to the framework. Until the 
introduction of Windows PowerShell, network administrators were not keen to provide 
updates, simply because they did not have a vested interest in the deployment of the .NET 
Framework. This behavior was not due to a lack of interest; in many cases, it was due to a lack 
of understanding of the .NET Framework. If developers did not request updates to the .NET 
Framework, it did not get updated.

Lack of COM support
Many very useful capabilities are packaged as Component Object Model (COM) components. 
Finding these COM objects is sometimes a matter of luck. Of course, you can always read the 
MSDN documentation; unfortunately, the articles do not always list the program ID that is 
required to create the COM object, and this is even true in articles that refer to the scripting 
interfaces. An example can be found in the Windows Media Player scripting object model. 
You can work your way through the entire Software Development Kit (SDK) documentation 
without discovering that the program ID is wmplayer.ocx and not player, which is used for 
illustrative purposes. The most natural way to work with a COM object in Windows PowerShell 
is to use the New-Object cmdlet, specify the −ComObject parameter, and give the parameter 
the program ID. However, if the program ID is not forthcoming, you have a more difficult 
proposition. You can search the registry and, by doing a bit of detective work, find the pro-
gram ID.



 Lack of .NET Framework support CHAPTER 6 183

An example of a COM object whose program ID is hard to find is the object with the 
makecab.makecab program ID. The makecab.makecab object is used to make cabinet files, 
which are highly compressed files often used by programmers to deploy software applica-
tions. There is no reason why an enterprise network administrator cannot use .cab files to 
compress log files prior to transferring them across the application. The only problem is that, 
while the makecab.makecab object is present in Windows XP and Windows Server 2003, it has 
been removed from the operating system beginning with Windows Vista. When working with 
newer operating systems, a different approach is required.

To make the script easier to use, you must first create some command-line parameters by 
using the Param statement. The Param statement must be the first noncommented line in 
the script. When the script is run from within the Windows PowerShell console or from within 
a script editor, the command-line parameters are used to control the way in which the script 
executes. In this way, the script can be run without needing to edit it each time you want 
to create a .cab file from a different directory. You need only to supply a new value for the 
 − filepath parameter, as shown here:

CreateCab.ps1 –filepath C:\fso1

What is good about command-line parameters is that they use partial parameter comple-
tion, which means that you need to supply only enough of the parameter for it to be unique. 
Therefore, you can use command-line syntax such as the following:

CreateCab.ps1 –f c:\fso1 –p c:\fso2\bcab.cab –d

The previous syntax searches the c:\fso directory and obtains all of the files. It then creates 
a cabinet file named bcab.cab in the fso2 folder of the C:\ drive. The syntax also produces 
debugging information while it is running. Note that the debug parameter is a switched 
parameter because debug affects the script only when it is present. This section of the 
CreateCab.ps1 script is shown here.

Param( 
      $filepath = "C:\fso",  
      $path = "C:\fso\aCab.cab", 
      [switch]$debug 
     )

It is now time to create the New-Cab function, which will accept two input parameters. The 
first is the –path parameter, and the second is the –files parameter.

Function New-Cab($path,$files)

You can assign the makecab.makecab program ID to a variable named $makecab, which 
makes the script a bit easier to read. This is also a good place to put the first Write-Debug 
statement.

{ 
 $makecab = "makecab.makecab" 
 Write-Debug "Creating Cab path is: $path"



 184 CHAPTER 6 Avoiding scripting pitfalls

You now need to create the COM object:

 $cab = New-Object -ComObject $makecab

A bit of error checking is in order. To do this, you can use the $? automatic variable.

 if(!$?) { $(Throw "unable to create $makecab object")}

If no errors occur during the attempt to create the makecab.makecab object, you can use 
the object contained in the $cab variable and call the createcab method.

 $cab.CreateCab($path,$false,$false,$false)

After you create the .cab file, you need to add files to it by using the Foreach statement.

 Foreach ($file in $files) 
  { 
   $file = $file.fullname.tostring() 
   $fileName = Split-Path -path $file -leaf

After you turn the full file name into a string and remove the directory information by 
using the Split-Path cmdlet, another Write-Debug statement is needed to let the user of the 
script be informed of progress, as shown here:

   Write-Debug "Adding from $file" 
   Write-Debug "File name is $fileName"

Next, you need to add a file to the cabinet file.

   $cab.AddFile($file,$filename) 
  } 
 Write-Debug "Closing cab $path"

To close the cabinet file, you can use the closecab method.

 $cab.CloseCab() 
} #end New-Cab

It is now time to go to the entry point of the script. First, you must determine whether 
the script is being run in debug mode by looking for the presence of the $debug variable. 
If it is running in debug mode, you must set the value of the $DebugPreference variable to 
continue, which allows the Write-Debug statements to be printed on the screen. By default, 
$DebugPreference is set to SilentlyContinue, which means that no debug statements are 
displayed, and Windows PowerShell skips past the Write-Debug command without taking any 
action, as shown here:

if($debug) {$DebugPreference = "continue"}

Now you need to obtain a collection of files by using the Get-ChildItem cmdlet.

$files = Get-ChildItem -path $filePath | Where-Object { !$_.psiscontainer }



 Lack of .NET Framework support CHAPTER 6 185

After you have a collection of files, you can pass the collection to the New-Cab function as 
shown here:

New-Cab -path $path -files $files

The completed CreateCab.ps1 script is shown here. 

NOTE The CreateCab.ps1 script will not run on Windows Vista and later versions due 
to lack of support for the makecab.makecab COM object. An alternate method of creat-
ing .cab files is explored in the “Lack of external application support” section later in the 
chapter.

CreateCab.ps1

Param( 

      $filepath = "C:\fso",  

      $path = "C:\fso\aCab.cab", 

      [switch]$debug 

     ) 

Function New-Cab($path,$files) 

{ 

 $makecab = "makecab.makecab" 

 Write-Debug "Creating Cab path is: $path" 

 $cab = New-Object -ComObject $makecab 

 if(!$?) { $(Throw "unable to create $makecab object")} 

 $cab.CreateCab($path,$false,$false,$false) 

 Foreach ($file in $files) 

  { 

   $file = $file.fullname.tostring() 

   $fileName = Split-Path -path $file -leaf 

   Write-Debug "Adding from $file" 

   Write-Debug "File name is $fileName" 

   $cab.AddFile($file,$filename) 

  } 

 Write-Debug "Closing cab $path" 

 $cab.CloseCab() 

} #end New-Cab 

 

# *** entry point to script *** 

if($debug) {$DebugPreference = "continue"} 

$files = Get-ChildItem -path $filePath | Where-Object { !$_.psiscontainer } 

New-Cab -path $path -files $files

You cannot use the makecab.makecab object to expand the cabinet file because it does 
not have an expand method. You also cannot use the makecab.expandcab object because it 



 186 CHAPTER 6 Avoiding scripting pitfalls

does not exist. Because the ability to expand a cabinet file is inherent in the Windows shell, 
you can use the shell object to expand the cabinet file. To access the shell, you can use the 
Shell.Application COM object.

You must first create command-line parameters. This section of the script is very similar to 
the parameter section of the previous CreateCab.ps1 script. The command-line parameters 
are shown here:

Param( 
      $cab = "C:\fso\acab.cab", 
      $destination = "C:\fso1", 
      [switch]$debug 
     )

After you create command-line parameters, it is time to create the ConvertFrom-Cab func-
tion, which will accept two command-line parameters. The first parameter contains the .cab 
file, and the second parameter contains the destination to expand the files, as shown here:

Function ConvertFrom-Cab($cab,$destination)

You should now create an instance of the Shell.Application object. The Shell.Application 
object is a very powerful object with a number of useful methods. The members of the Shell 
.Application object are shown in Table 6-5.

TABLE 6-5 Members of the Shell.Application object

Name MemberType Definition

AddToRecent Method void AddToRecent (Variant, string)

BrowseForFolder Method Folder BrowseForFolder (int, string, int, Variant)

CanStartStopService Method Variant CanStartStopService (string)

CascadeWindows Method void CascadeWindows ()

ControlPanelItem  Method void ControlPanelItem (string)

EjectPC Method void EjectPC ()

Explore Method void Explore (Variant)

ExplorerPolicy Method Variant ExplorerPolicy (string)

FileRun Method void FileRun ()

FindComputer Method void FindComputer ()

FindFiles Method void FindFiles ()

FindPrinter Method void FindPrinter (string, string, string)

GetSetting Method bool GetSetting (int)

GetSystemInformation Method Variant GetSystemInformation (string)

Help Method void Help ()

IsRestricted Method int IsRestricted (string, string)



 Lack of .NET Framework support CHAPTER 6 187

Name MemberType Definition

IsServiceRunning Method Variant IsServiceRunning (string)

MinimizeAll Method void MinimizeAll ()

NameSpace Method Folder NameSpace (Variant)

Open Method void Open (Variant)

RefreshMenu Method void RefreshMenu ()

ServiceStart Method Variant ServiceStart (string, Variant)

ServiceStop Method Variant ServiceStop (string, Variant)

SetTime Method void SetTime ()

ShellExecute Method void ShellExecute (string, Variant, Variant, Variant, Variant)

ShowBrowserBar Method Variant ShowBrowserBar (string, Variant)

ShutdownWindows Method void ShutdownWindows ()

Suspend Method void Suspend ()

TileHorizontally Method void TileHorizontally ()

TileVertically Method void TileVertically ()

ToggleDesktop Method void ToggleDesktop ()

TrayProperties Method void TrayProperties ()

UndoMinimizeALL Method void UndoMinimizeALL ()

Windows Method IDispatch Windows ()

WindowsSecurity Method void WindowsSecurity ()

WindowSwitcher Method void WindowSwitcher ()

Application Property IDispatch Application () {get}

Parent Property IDispatch Parent () {get}

Because you want to use the name of the COM object more than once, it is a good prac-
tice to assign the program ID of the COM object to a variable. You can then use the string 
with the New-Object cmdlet and also use it when providing feedback to the user. The line of 
code that assigns the Shell.Application program ID to a string is shown here:

{ 
 $comObject = "Shell.Application"

It is now time to provide some feedback to the user. You can do this by using the 
 Write-Debug cmdlet together with a message stating that you are attempting to create the 
Shell.Application object, as shown here:

  Write-Debug "Creating $comObject"



 188 CHAPTER 6 Avoiding scripting pitfalls

After you provide debug feedback stating that you are going to create the object, you can 
actually create the object, as shown here:

 $shell = New-Object -Comobject $comObject

Now you want to test for errors by using the $? automatic variable. The $? automatic 
variable tells you whether the last command completed successfully. Because $? is a Boolean 
true/false variable, you can use this fact to simplify the coding. You can use the not operator, 
!, in conjunction with an If statement. If the variable is not true, you can use the Throw state-
ment to raise an error and halt execution of the script. This section of the script is shown here:

 if(!$?) { $(Throw "unable to create $comObject object")}

If the script successfully creates the Shell.Application object, it is now time to provide more 
feedback, as shown here:

 Write-Debug "Creating source cab object for $cab"

The next step in the operation is to connect to the .cab file by using the Namespace 
method from the Shell.Application object, as shown here. This is another important step in the 
process, so it makes sense to use another Write-Debug statement as a progress indicator to 
the user.

 $sourceCab = $shell.Namespace($cab).items() 
 Write-Debug "Creating destination folder object for $destination"

It is time to connect to the destination folder by using the Namespace method as shown 
here. You also want to use another Write-Debug statement to let the user know the folder to 
which you actually connected.

 $DestinationFolder = $shell.Namespace($destination) 
 Write-Debug "Expanding $cab to $destination"

With all of that preparation out of the way, the actual command that is used to expand 
the cabinet file is somewhat anticlimactic. You can use the copyhere method from the folder 
object that is stored in the $destinationFolder variable. You give the reference to the .cab file 
that is stored in the $sourceCab variable as the input parameter, as shown here:

 $DestinationFolder.CopyHere($sourceCab) 
}

The starting point to the script accomplishes two things. First, it checks for the pres-
ence of the $debug variable. If found, it then sets $debugPreference to continue to force 
the  Write-Debug cmdlet to print messages to the console window. Second, it calls the 
ConvertFrom-Cab function and passes the path to the .cab file from the −cab command-line 
parameter and the destination for the expanded files from the −destination parameter, as 
shown here:

if($debug) { $debugPreference = "continue" } 
ConvertFrom-Cab -cab $cab -destination $destination



 Lack of .NET Framework support CHAPTER 6 189

The completed ExpandCab.ps1 script is shown here.

ExpandCab.ps1

Param( 

      $cab = "C:\fso\acab.cab", 

      $destination = "C:\fso1", 

      [switch]$debug 

     ) 

Function ConvertFrom-Cab($cab,$destination) 

{ 

 $comObject = "Shell.Application" 

 Write-Debug "Creating $comObject" 

 $shell = New-Object -Comobject $comObject 

 if(!$?) { $(Throw "unable to create $comObject object")} 

 Write-Debug "Creating source cab object for $cab" 

 $sourceCab = $shell.Namespace($cab).items() 

 Write-Debug "Creating destination folder object for $destination" 

 $DestinationFolder = $shell.Namespace($destination) 

 Write-Debug "Expanding $cab to $destination" 

 $DestinationFolder.CopyHere($sourceCab) 

} 

 

# *** entry point *** 

if($debug) { $debugPreference = "continue" } 

ConvertFrom-Cab -cab $cab -destination $destination

Lack of external application support
Many management features still rely on the use of command-line support; a very common 
example is NETSH. Another example is the MakeCab.exe utility. The makecab.makecab COM 
object was removed from Windows Vista and later versions. To create a .cab file in Windows 
Vista and beyond, you need to use the MakeCab.exe utility.

First, you need to create a few command-line parameters as shown here:

Param( 
      $filepath = "C:\fso",  
      $path = "C:\fso1\cabfiles", 
      [switch]$debug 
     )

Then you need to create the New-DDF function, which creates a basic .ddf file that is used 
by the MakeCab.exe program to create the .cab file. The syntax for these types of files is 
documented in the Microsoft Cabinet SDK on MSDN. When you use the Function keyword to 
create the New-DDF function, you can use the Join-Path cmdlet to create the file path to the 
temporary .ddf file that you will use. You can concatenate the drive, the folder, and the file 



 190 CHAPTER 6 Avoiding scripting pitfalls

name together, but this might become a cumbersome and error-prone operation. As a best 
practice, you should always use the Join-Path cmdlet to build your file paths, as shown here:

Function New-DDF($path,$filePath) 
{ 
 $ddfFile = Join-Path -path $filePath -childpath temp.ddf

It is time to provide some feedback to the user if the script is run with the –debug switch, 
by using the Write-Debug cmdlet as shown here:

 Write-Debug "DDF file path is $ddfFile"

You now need to create the first portion of the .ddf file by using an expanding here-string. 
The advantage of a here-string is that it allows you not to worry about escaping special char-
acters. For example, the comment character in a .ddf file is the semicolon, which is a reserved 
character in Windows PowerShell. If you try to create the .ddf text without the advantage of 
using the here-string, you then need to escape each of the semicolons to avoid compile-time 
errors. By using an expanding here-string, you can take advantage of the expansion of vari-
ables. A here-string begins with an at sign and a quotation mark and ends with a quotation 
mark and an at sign, as shown here:

 $ddfHeader =@" 
;*** MakeCAB Directive file 
; 
.OPTION EXPLICIT    
.Set CabinetNameTemplate=Cab.*.cab 
.set DiskDirectory1=C:\fso1\Cabfiles 
.Set MaxDiskSize=CDROM 
.Set Cabinet=on 
.Set Compress=on 
"@

You can choose to add more feedback for the user via the Write-Debug cmdlet, as shown 
here:

 Write-Debug "Writing ddf file header to $ddfFile" 

After providing feedback to the user, you come to the section that might cause some 
problems. The .ddf file must be a pure ASCII file. By default, Windows PowerShell uses 
Unicode. To ensure that you have an ASCII file, you must use the Out-File cmdlet. You can 
usually avoid using Out-File by using the file redirection arrows; however, this is not one of 
those occasions. Here is the syntax.

 $ddfHeader | Out-File -filepath $ddfFile -force -encoding ASCII

You probably want to provide more debug information via the Write-Debug cmdlet before 
you gather your collection of files via the Get-ChildItem cmdlet, as shown here:

 Write-Debug "Generating collection of files from $filePath" 
 Get-ChildItem -path $filePath | 



 Lack of .NET Framework support CHAPTER 6 191

It is important to filter out folders from the collection because the MakeCab.exe utility 
cannot compress folders. To filter folders, use the Where-Object cmdlet with a not operator 
stating that the object is not a container, as shown here:

 Where-Object { !$_.psiscontainer } |

After you filter out folders, you need to work with each individual file as it comes across 
the pipeline by using the ForEach-Object cmdlet. Because ForEach-Object is a cmdlet 
as opposed to a language statement, the curly brackets must be on the same line as the 
ForEach-Object cmdlet name. The problem arises in that the curly brackets often get buried 
within the code. As a best practice, I like to line up the curly brackets unless the command is 
very short, such as in the previous Where-Object command, but this process requires the use 
of the line continuation character (the backtick). I know some developers who avoid using line 
continuation, but I personally think that lining up curly brackets is more important because it 
makes the code easier to read. Here is the beginning of the ForEach-Object cmdlet:

 Foreach-Object '

Because the .ddf file used by MakeCab.exe is ASCII text, you need to convert the FullName 
property of the System.IO.FileInfo object returned by the Get-ChildItem cmdlet to a string. In 
addition, because you can have files with spaces in their names, it makes sense to ensconce 
the file FullName value in a set of quotation marks, as shown here:

  {  
    '"' + $_.fullname.tostring() + '"'  | 

You then pipeline the file names to the Out-File cmdlet, making sure to specify the ASCII 
encoding, and use the −append switch to avoid overwriting everything else in the text file, as 
shown here:

   Out-File -filepath $ddfFile -encoding ASCII -append 
  }

Now you can provide another update to the debug users and call the New-Cab function as 
shown here:

 Write-Debug "ddf file is created. Calling New-Cab function" 
 New-Cab($ddfFile) 
} #end New-DDF

When you enter the New-Cab function, you might want to supply some information to the 
user, as shown here:

Function New-Cab($ddfFile) 
{ 
 Write-Debug "Entering the New-Cab function. The DDF File is $ddfFile"

If the script is run with the −debug switch, you can use the /V parameter of the MakeCab 
.exe executable to provide detailed debugging information. If the script is not run with the 
−debug switch, you do not want to clutter the screen with too much information and can 
therefore rely on the default verbosity of the utility, as shown here:



 192 CHAPTER 6 Avoiding scripting pitfalls

 if($debug) 
    { makecab /f $ddfFile /V3 } 
 Else 
    { makecab /f $ddfFile } 
} #end New-Cab

The entry point to the script checks whether the $debug variable is present. If it is, the 
$debugPreference automatic variable is set to continue, and debugging information is dis-
played via the Write-Debug cmdlet. After that check is performed, the New-DDF cmdlet is called 
with the path and filepath values supplied to the command line, as shown here:

if($debug) {$DebugPreference = "continue"} 
New-DDF -path $path -filepath $filepath

The completed CreateCab2.ps1 script is shown here.

CreateCab2.ps1

Param( 

      $filepath = "C:\fso",  

      $path = "C:\fso1\cabfiles", 

      [switch]$debug 

     ) 

Function New-DDF($path,$filePath) 

{ 

 $ddfFile = Join-Path -path $filePath -childpath temp.ddf 

 Write-Debug "DDF file path is $ddfFile" 

 $ddfHeader =@" 

;*** MakeCAB Directive file 

; 

.OPTION EXPLICIT 

.Set CabinetNameTemplate=Cab.*.cab 

.set DiskDirectory1=C:\fso1\Cabfiles 

.Set MaxDiskSize=CDROM 

.Set Cabinet=on 

.Set Compress=on 

"@ 

 Write-Debug "Writing ddf file header to $ddfFile"  

 $ddfHeader | Out-File -filepath $ddfFile -force -encoding ASCII 

 Write-Debug "Generating collection of files from $filePath" 

 Get-ChildItem -path $filePath |  

 Where-Object { !$_.psiscontainer } | 

 Foreach-Object ' 

  {  

    '"' + $_.fullname.tostring() + '"'  |  

   Out-File -filepath $ddfFile -encoding ASCII -append 

  }



 Additional resources CHAPTER 6 193

 Write-Debug "ddf file is created. Calling New-Cab function" 

 New-Cab($ddfFile) 

} #end New-DDF 

 

Function New-Cab($ddfFile) 

{ 

 Write-Debug "Entering the New-Cab function. The DDF File is $ddfFile" 

 if($debug) 

    { makecab /f $ddfFile /V3 } 

 Else 

    { makecab /f $ddfFile } 

} #end New-Cab 

 

# *** entry point to script *** 

if($debug) {$DebugPreference = "continue"} 

New-DDF -path $path -filepath $filepath

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter has 
numerous examples of Windows PowerShell scripts that use all of the techniques 
explored in this chapter.

■■ Take a look at Windows PowerShell™ Scripting Guide (Microsoft Press, 2008) for exam-
ples of using WMI and various .NET Framework classes in Windows PowerShell.

■■ For a good WMI reference, look at Windows Scripting with WMI Self-Paced Learning 
Edition (Microsoft Press, 2005).

■■ The MSDN reference library has comprehensive product documentation at  
http://msdn.microsoft.com/en-us/library/default.aspx and is the authoritative source 
for all Microsoft products.

■■ A series of blog articles discussing Windows PowerShell performance, written by 
Georges Maheu, Microsoft PFE, is available at http://gallery.technet.microsoft.com 
/scriptcenter/Get-on-thousands-of-ef3175c7.

■■ All scripts from this chapter are available via the TechNet Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell 
-40-Best-d9e16039.





   195

C H A P T E R  7

tracking scripting  
opportunities

■■ Evaluating the need for the script 

■■ Calculating the benefit from the script 

■■ Script collaboration 

■■ Additional resources 

It is important to track scripting opportunities to ensure that the most profitable scripts are 
written first. This backlog of scripting opportunities can be an effective tool for managing 

the scripting efforts of an enterprise. The key is to manage these scripting opportunities 
properly.

Evaluating the need for the script

Not everything in Windows PowerShell 4.0 needs to be scripted, which was also true in 
Windows PowerShell 3.0. When coming from a Microsoft VBScript or Perl background, 
some people often feel that they must write a script. However, a tremendous amount of 
work can be accomplished from the command line without the need for writing a script.

One of the more powerful aspects of Windows PowerShell is its ability to use language 
statements from the command line. The for statement provides the ability to control loop-
ing operations that require the creation of a script in other languages. To facilitate work 
from the command line, Windows PowerShell allows you to create incomplete commands 
on one line and continue them to the next line. When you are finished, you can press the 
Enter key a second time. The command shown here sends a ping command to each IP 
address in the range of 192.168.2.1 through 192.168.2.10:

PS C:\> for($i = 1 ; $i -le 10 ; $i++) 
>> { Test-Connection -Destination 192.168.2.$i -Count 1 -ErrorAction Silentlycontinue 
| 
>> Format-Table –property Address, statusCode, ResponseTime -AutoSize } 
>> 
 
Address     statusCode ResponseTime 
-------     ---------- ------------ 
192.168.2.1          0            1 



 196 CHAPTER 7 Tracking scripting opportunities 

Address     statusCode ResponseTime 
-------     ---------- ------------ 
192.168.2.3          0            2 
Address     statusCode ResponseTime 
-------     ---------- ------------ 
192.168.2.5          0            0 
Address      statusCode ResponseTime 
-------      ---------- ------------ 
192.168.2.10          0           10

The preceding command can become quite a bit shorter by taking advantage of a number 
of economies provided by the Windows PowerShell syntax, such as using aliases, partial 
parameters, and positional arguments. The shortened version of this command appears here:

1..10 | % {Test-Connection 10.1.1.$_ -cou 1 -ea 0 | ft Address, StatusCode, ResponseTime 
-au}

Reading a text file
In its most basic form, a Windows PowerShell script is simply a collection of PowerShell com-
mands stored in a file with a specific extension. If you do not want to write a script, you can 
store a collection of commands as a text file, as shown in Figure 7-1.

FIGURE 7-1 Text file containing a collection of Windows PowerShell commands.

By using Windows PowerShell, you can easily read the commands.txt text file and execute 
the commands by using the Get-Content cmdlet to retrieve the commands in the text file. The 
default parameter for the Get-Content cmdlet is the path parameter; when working from the 
command line, it is not necessary to supply the path parameter. The path can be a local path 
or even a Universal Naming Convention (UNC) path as long as you have rights to read the 
text file. The best way to use this technique is to pipeline the results to the Invoke-Expression 
cmdlet. Each command that streams across the pipeline from the Get-Content cmdlet is 
executed in turn as it arrives to the Invoke-Expression cmdlet, as shown here:

Get-Content -Path C:\fso\Commands.txt | Invoke-Expression

The results are shown in Figure 7-2.



 Evaluating the need for the script CHAPTER 7 197

FIGURE 7-2 Windows PowerShell cmdlets can easily parse a text file and run commands.

When using the Windows PowerShell remoting features against an untrusted domain, it 
is easy to become confused when using cmdlets such as Get-Content. The –path parameter 
that is used refers to a path that is local to the target computer, not the launching com-
puter. In the example that follows, the c:\fso\commands.txt path points to a text file named 
Commands.txt that must reside in the Fso folder on the C:\ drive of a computer named 
Sydney in the Woodbridgebank.com domain. If the commands.txt file is not found in that 
location, the error shown here is emitted.

PS C:\> invoke-command -ComputerName sydney.woodbridgebank.com -Credential admin 
istrator@woodbridgebank.com -ScriptBlock {get-content -Path C:\fso\Commands.txt 
| Invoke-Expression} 
Invoke-Command : Cannot find path 'C:\fso\Commands.txt' because it does not  
exist.At line:1 char:15 
+ invoke-command <<<<  -ComputerName sydney.woodbridgebank.com -Credential  
administrator@woodbridgebank.com -ScriptBlock {get-content -Path  
C:\fso\Commands.txt | Invoke-Expression} 
    + CategoryInfo          : ObjectNotFound: (C:\fso\Commands.txt:String)  
    [Get-Content], ItemNotFoundException 
    + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands. 
GetContentCommand

You might think that you can use a UNC path and point to the Commands.txt file on the 
launching computer. Because the remote domain is untrusted, there is no security context 
that allows the remote command to access the file system of the local computer. When the 
command expressed in the ScriptBlock parameter is evaluated, it is evaluated in the context 
of the target computer, which in this case is the Sydney.Woodbridgebank.com computer. 



 198 CHAPTER 7 Tracking scripting opportunities 

The local computer that is the launching point for the command is Windows 8.NWTraders.
com. Because there is no trust relationship between these two domains, no credentials can be 
supplied to enable the command to run. The results of attempting to run the command are 
shown here:

PS C:\> invoke-command -ComputerName sydney.woodbridgebank.com -Credential  
administrator@woodbridgebank.com -ScriptBlock {get-content -Path  
'\\Windows 8\fso\Commands.txt' | Invoke-Expression} 
Invoke-Command : Cannot find path '\\Windows 8\fso\Commands.txt' because it does  
not exist. 
At line:1 char:15 
+ invoke-command <<<<  -ComputerName sydney.woodbridgebank.com -Credential 
administrator@woodbridgebank.com -ScriptBlock {get-content -Path  
'\\Windows 8\fso\Commands.txt' | Invoke-Expression} 
    + CategoryInfo          : ObjectNotFound: (\\Windows 8\fso\Commands.txt:String) 
    [Get-Content],ItemNotFoundException 
    + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands. 
GetContentCommand

What can be confusing is that the Get-Content command works well when run alone. 
In working on a computer named client1 that has a folder named bin containing a text file 
named Commands.txt, the command completes successfully when it is ensconced within 
single quotes, as shown here:

PS C:\> Get-Content -Path '\\client1\bin\Commands.txt' 
Get-Service -Name bits -ComputerName Windows 8 
Get-Process -Name explorer -ComputerName berlin 
Get-EventLog -LogName application -Newest 1 -ComputerName berlin,Windows 8 
Invoke-Command -ComputerName Berlin { Get-Date } 
Get-Date

However, this result is expected because the logged-on user has rights to the folder and 
can therefore use the Get-Content cmdlet to read a UNC path to the Commands.txt file.

You can map a drive on the remote domain and copy the file from your local computer 
to the appropriate folder on the remote server. You will, of course, be required to open 
additional ports in the Windows Firewall, which might or might not be an acceptable solu-
tion, depending on your network configuration. If you decide to use this route, you can use 
Windows PowerShell to perform the configuration changes as shown here:

PS C:\> Invoke-Command -ComputerName Sydney.WoodBridgeBank.Com -Credential  
Administrator@WoodbridgeBank.com -ScriptBlock { netsh advfirewall firewall set rule 
group="File and Printer Sharing" new enable=Yes } 
 
Updated 28 rule(s). 
Ok.

After you enable the firewall exception, you can map a drive by using the GUI, the Net 
Use command from within Windows PowerShell, or any of the other programmatic methods. 
After you map the drive, you can copy the Commands.txt file to the remote server by using 
the Copy-Item cmdlet as shown here:



 Evaluating the need for the script CHAPTER 7 199

NOTE When using Copy-Item to copy an item to a mapped drive, you need to keep in 
mind the structure of the mapped drive. It is quite common to map a drive to a share on 
a remote computer. The remote share is almost invariably a share of a folder and not an 
 entire drive. Because your remote drive is a map point of a single folder, it changes the des-
tination. The Z drive in the following command is a share of the Fso folder on the remote 
server. The –destination parameter goes to the root of the mapped drive and not to Z:\fso.

Copy-Item -Path C:\fso\Commands.txt -Destination z:

You can now use the Commands.txt file directly in the Windows PowerShell command as 
shown here:

PS C:\> invoke-command -ComputerName Sydney.WoodbridgeBank.com -Credential  
administrator@WoodBridgeBank.com -ScriptBlock { Get-Content -Path  
C:\fso\Commands.txt | Invoke-Expression }

One solution to the dilemma of mapping drives is to use Remote Desktop, which allows 
you to access local resources if you want to make them available in your session. By selecting 
Remote Desktop, clicking the Options button, and then selecting the Local Resources tab, you 
can choose to allow printer connections, Clipboard access, and local drives to be available 
within the Remote Desktop Protocol (RDP) session. You can access Remote Desktop by going 
to Start, All Programs, Accessories, and selecting Remote Desktop Connection. If Remote 
Desktop has not been previously enabled, you are greeted with an access denied message, as 
shown in Figure 7-3.

FIGURE 7-3 Access denied when attempting to connect to Remote Desktop.

To enable Remote Desktop access on Microsoft Windows 2012 and Windows 2012 R2, 
choose Remote Desktop from within Server Manager in the Local Server node. If you are 
using Windows 8.1 or the Microsoft Windows 8 operating system, you select Remote Settings 
from Control Panel, then System And Security, and then System. When the System Properties 
dialog box appears, choose the Remote Settings as shown in Figure 7-4. Remote Desktop 



 200 CHAPTER 7 Tracking scripting opportunities 

options are shown in the lower half of the dialog box and present three different choices. By 
default, Remote Desktop connections are not allowed to the local computer. The safest choice 
is to select Allow Connections Only From Computers Running Remote Desktop With Network 
Level Authentication. You are also allowed to specify which users are allowed to make the 
connection. By default, members of the Domain Administrators group are permitted to make 
connections.

FIGURE 7-4 Remote Desktop must be enabled.

After you enable Remote Desktop, an exception is automatically created to allow RDP traf-
fic through the Windows Firewall. It is a good idea to double-check to ensure that the excep-
tion was permitted. The Windows 8 Firewall exception is shown in Figure 7-5.



 Evaluating the need for the script CHAPTER 7 201

FIGURE 7-5 Remote Desktop must be permitted through the Windows Firewall.

NOTES FROM THE FIELD
Brian Wilhite
Premier Field Engineer (PFE), Microsoft Corporation

In my daily duties as a Systems administrator in a fairly large organization, I’m 
confronted with challenges that require the use of Windows PowerShell. More 

often than not, it will involve Windows Management Instrumentation (WMI), which 
is one of my favorite technologies in the Windows world. PowerShell allows System 
administrators to easily work with WMI in ways that weren’t really possible before. 
One of the coolest things to perform with Windows PowerShell and WMI is to 
launch or “create” processes on remote targets. This can be very useful if you need 
to install, update, or uninstall software on Windows targets in your environment, 
where management software such as System Center Configuration Manager isn’t 
deployed.

recently, a software package was deployed to our servers by mistake. to remove 
it quickly, I elected to use WMI to remotely create an MSIExec.exe process on the 
system with the uninstall string for the MSI.



 202 CHAPTER 7 Tracking scripting opportunities 

The “UninstallString” for a specific software product can be found in the registry, 
commonly observed in the following path, where <SID> is the user’s SID that the 
software was installed with and where <Product GUID> is the product globally 
unique identifier for the software in question: HKLM\SOFTWARE\Microsoft 
\Windows\CurrentVersion\Installer\UserData\<SID>\Products\<Product GUID> 
\InstallProperties.

Next, you’ll see the “UninstallString” for the software that I want to remove from 
our systems. I’ve removed the Product’s GUID to protect the innocent:

MsiExec.exe /X{<Product GUID>} /quiet

In this case, I know, through testing, that the /quiet switch will work for the software 
I want to uninstall; your mileage might vary.

the cmdlet that we will use for this task is Invoke-WmiMethod. also, we will specify 
the Create method of the Win32_Process WMI class to create the process on the 
remote target. Ideally, you’ll have Windows PowerShell remoting enabled in your 
environment, but if not, don’t fret; I’ll cover multiple techniques that you can use to 
perform this task.

The first technique assumes that Windows PowerShell Remoting is enabled on the 
remote targets. the $Computers variable has a collection of “ComputerNames” that 
we’ll use as the target devices:

Invoke-Command -ScriptBlock { 

    Invoke-WmiMethod -Class Win32_Process ' 

                     -Name Create ' 

                     -ArgumentList 'MsiExec.exe /X{<Product GUID>} /

quiet'} ' 

               -ComputerName $Computers

the second technique is used when your remote targets do not have Windows 
PowerShell remoting enabled:

$Computers | ForEach-Object { 

    Invoke-WmiMethod -Class Win32_Process ' 

                     -Name Create ' 

                     -ArgumentList 'MsiExec.exe /X{<Product GUID>} /

quiet' ' 

                     -ComputerName $_}

Based on my personal experience, piping computer names to a ForEach-Object 
seems to be more reliable when performing tasks such as this on hundreds if 
not thousands of targets, in lieu of specifying the entire list of targets to the 



 Evaluating the need for the script CHAPTER 7 203

ComputerName parameter. Either of the above techniques used should return an 
object that contains a “ReturnValue” and “ProcessId”. If the process was created 
successfully, the “ReturnValue” will equal “0”.  The “0” indicates that the process was 
created successfully; however, it does not signify that the “Uninstall” was successful, 
so querying the event logs on each system would be appropriate to check the status 
of the “Uninstall”.

Export command history
Much administrative work with Windows PowerShell consists of typing a series of commands 
at the console. Whether you are editing the registry or stopping various processes and ser-
vices, the configuration work needs to be replicated to several different servers to ensure a 
consistent operating environment. In the past, such duplication of effort required the creation 
of scripts. If the commands to be duplicated are a series of commands typed at the console, 
you can use the command history mechanism to replace the need for a script by using the 
Get-History cmdlet and exporting the commands to an .xml file as shown here:

Get-History | Export-Clixml -Path C:\fso\history.xml

The result is an .xml file that represents all of the commands typed at the console. The 
resulting .xml file is shown in Figure 7-6.

FIGURE 7-6 Command history .xml file.



 204 CHAPTER 7 Tracking scripting opportunities 

After you create a command history .xml file, you can import the commands from the 
.xml file by using the Import-Clixml cmdlet. You pipeline the results of the Import-Clixml 
cmdlet to the Add-History cmdlet to add the commands back to the command history. The 
trick is to use the −passthru switch so that the commands go to both the Add-History and 
 ForEach-Object cmdlets. In the ForEach-Object cmdlet, you can use the Invoke-History 
cmdlet to run each command in the history. The commands are shown here, as are the results 
of running the commands:

PS C:\> Import-Clixml -Path C:\fso\history.xml | Add-History -Passthru | 
>> ForEach-Object { Invoke-History } 
>> 
 if(!(test-path -path c:\fso4)) { new-item c:\fso4 -ItemType directory } 
 
    Directory: C:\ 
 
Mode                LastWriteTime     Length Name 
----                -------------     ------ ---- 
d----          1/9/2009  12:33 AM            fso4 
Get-Command >> C:\fso4\commands.txt 
notepad C:\fso4\commands.txt

This technique works remotely by using the Invoke-Command cmdlet. Keep in mind that the 
path statement is relative to the computer that is the target, not the computer that is execut-
ing the command. If you do not keep this in mind, an error appears, such as the one shown in 
Figure 7-7.

FIGURE 7-7 An error appears due to the use of local file paths.

If you copy the file to the target machine first and adjust your command line, the import 
and execute history technique works well. What is good about Windows PowerShell is that 
you can use a UNC path with the Copy-Item cmdlet. This feature actually makes the technique 
worthwhile because it enables you to easily move a file to a remote computer, as shown here:

PS C:\> Copy-Item C:\fso\history.xml \\berlin\c$\fso 
PS C:\> Import-Clixml -Path C:\fso\history.xml | Add-History -Passthru | ForEach 
-Object { Invoke-History } 
 if(!(test-path -path c:\fso4)) { new-item c:\fso4 -ItemType directory } 
 
    Directory: C:\ 



 Evaluating the need for the script CHAPTER 7 205

Mode                LastWriteTime     Length Name 
----                -------------     ------ ---- 
d----          1/9/2009  12:40 AM            fso4 
Get-Command >> C:\fso4\commands.txt 
notepad C:\fso4\commands.txt

Fan-out commands
Fan-out commands are commands launched from a central computer and run against 
a number of remote computers. One way to perform fan-out commands is to use the 
 Invoke-Command cmdlet, as shown here:

PS C:\> Invoke-Command -Computer berlin,Windows 8 -Script ' 
>> {"$env:computername $(get-date)" } 
>> 
WINDOWS 8 01/09/2009 08:31:42 
BERLIN 01/09/2009 08:31:47

You can use fan-out commands by specifying an array of computer names for the 
 − computername parameter for many of the cmdlets. The problem with this approach is 
that the results are nearly useless. An example illustrates the issue involved. In the following 
command, the Get-Service cmdlet is used to obtain service configuration information from 
two computers. The first is a computer named Windows 8, and the second is a server named 
Berlin. As you can see from the partial output, the results of the command are merged, and 
there is no column that illustrates the computer name to which the result is associated. The 
results are rather interesting in that you can quickly look at the service name between two 
different computers and easily see divergent configurations. The fan-out command and a 
truncated result set are shown here:

PS C:\> Get-Service -ComputerName Windows 8, Berlin 
 
Status   Name               DisplayName 
------   ----               ----------- 
Running  1-vmsrvc           Virtual Machine Additions Services ... 
Running  1-vmsrvc           Virtual Machine Additions Services ... 
Running  AeLookupSvc        Application Experience 
Stopped  AeLookupSvc        Application Experience 
Stopped  ALG                Application Layer Gateway Service 
Stopped  ALG                Application Layer Gateway Service 
Stopped  Appinfo            Application Information 
Stopped  Appinfo            Application Information 
Stopped  AppMgmt            Application Management 
Stopped  AppMgmt            Application Management 
Stopped  AudioEndpointBu... Windows Audio Endpoint Builder 
Stopped  AudioEndpointBu... Windows Audio Endpoint Builder 
Stopped  Audiosrv           Windows Audio 
Stopped  Audiosrv           Windows Audio 
Running  BFE                Base Filtering Engine 
Running  BFE                Base Filtering Engine



 206 CHAPTER 7 Tracking scripting opportunities 

Running  BITS               Background Intelligent Transfer Ser... 
Stopped  BITS               Background Intelligent Transfer Ser... 
Stopped  Browser            Computer Browser 
Running  Browser            Computer Browser 
>>> Results trimmed >>>

You can see from the results of the Get-Service cmdlet that the AeLookupSvc service is 
running on the first computer and is stopped on the second computer. It is a simple matter to 
use the Get-Service cmdlet to connect to each of the computers and check the status of the 
service.

PS C:\> Get-Service -Name AeLookupSvc -computer Windows 8 
 
Status   Name               DisplayName 
------   ----               ----------- 
Stopped  AeLookupSvc        Application Experience 
 
PS C:\> Get-Service -Name AeLookupSvc -computer Berlin 
 
Status   Name               DisplayName 
------   ----               ----------- 
Running  AeLookupSvc        Application Experience

You might think that the first instance of the service name belongs to the computer listed 
first. As you can see, AeLookupSvc service is running on Berlin but is stopped on Windows 
8. This is the same order shown in the original output, but the Windows 8 computer is listed 
first in the fan-out command. Perhaps this means that the second computer results are listed 
first and the first computer results are listed second—a Last In First Out (LIFO) operation. 
However, before assuming this to be the case, you should check another service. In the output 
from the original fan-out command, the BITS service was listed first as running and second as 
stopped. To see the status of the BITS service on Berlin and on Windows 8, you can use the 
following two commands:

PS C:\> Get-Service -Name Bits -computer berlin 
 
Status   Name               DisplayName 
------   ----               ----------- 
Stopped  BITS               Background Intelligent Transfer Ser... 
 
PS C:\> Get-Service -Name Bits -computer Windows 8 
 
Status   Name               DisplayName 
------   ----               ----------- 
Running  BITS               Background Intelligent Transfer Ser...

You can see that the BITS service is stopped on Berlin and is running on Windows 8. The 
results of using Get-Service as a fan-out command by supplying an array of computer names 
to the −computername parameter brings back interesting results, but they are meaningless 
results when you need to check the exact status of a service on a remote computer. As a best 
practice, you should pipeline the results of the fan-out command to a Format-Table cmdlet 
and choose the machineName property. The value of the displayName property is the same 



 Evaluating the need for the script CHAPTER 7 207

value shown in the Services MMC in the Name column. The command and a truncated output 
are shown here:

PS C:\> Get-Service -ComputerName berlin,Windows 8 |  
format-table name, status, machinename, displayName -AutoSize 
 
Name                            Status MachineName     DisplayName 
----                            ------ -----------     ----------- 
1-vmsrvc                       Running Windows 8       Virtual Machine Additions... 
1-vmsrvc                       Running berlin          Virtual Machine Additions... 
AeLookupSvc                    Running berlin          Application Experience 
AeLookupSvc                    Stopped Windows 8       Application Experience 
ALG                            Stopped berlin          Application Layer Gateway... 
ALG                            Stopped Windows 8       Application Layer Gateway... 
Appinfo                        Stopped berlin          Application Information 
Appinfo                        Stopped Windows 8       Application Information 
AppMgmt                        Stopped Windows 8       Application Management 
AppMgmt                        Stopped berlin          Application Management 
AudioEndpointBuilder           Stopped berlin          Windows Audio Endpoint Bu... 
AudioEndpointBuilder           Stopped Windows 8       Windows Audio Endpoint Bu... 
Audiosrv                       Stopped berlin          Windows Audio 
Audiosrv                       Stopped Windows 8       Windows Audio 
BFE                            Running Windows 8       Base Filtering Engine 
BFE                            Running berlin          Base Filtering Engine 
BITS                           Stopped berlin          Background Intelligent Tr... 
BITS                           Running Windows 8       Background Intelligent Tr... 
Browser                        Running Windows 8       Computer Browser 
Browser                        Stopped berlin          Computer Browser

Because the value of the displayName property is often quite long, it does not always 
fit easily within the confines of an 80-column display. If you select displayName early in the 
order of the properties to be selected by the Format-Table cmdlet, you should end up with 
several columns that are not displayed, as shown here:

PS C:\> Get-Service -ComputerName berlin,Windows 8 | format-table name, displayname, 
 status, machinename -AutoSize 
 
WARNING: 2 columns do not fit into the display and were removed. 
 
Name                           DisplayName 
----                           ----------- 
1-vmsrvc                       Virtual Machine Additions Services Application 
1-vmsrvc                       Virtual Machine Additions Services Application 
AeLookupSvc                    Application Experience 
AeLookupSvc                    Application Experience

As you can see, this code defeats the purpose of choosing the machineName property 
in the first place when the machineName property is left off because it does not fit on the 
display. To correct this potential problem, it is a best practice to always choose the property 
with the longest values to be displayed as the last position in the command. In this way, you 
allow Windows PowerShell to truncate the property value rather than filling the screen with 
information that you can easily infer from a truncated display.



 208 CHAPTER 7 Tracking scripting opportunities 

The other solution to the problem of the shrinking display output is not to use the 
 − autosize parameter of the Format-Table cmdlet. You can use the Wrap parameter instead. 
When the –Wrap parameter is used, single-line entries are allowed to wrap and form multiple 
lines. Depending on the information you are looking for, this output can be either helpful or 
annoying. Here is an example of using the –Wrap parameter:

PS C:\> Get-Service -ComputerName berlin,Windows 8 | format-table name, displayname, 
 status, machinename -Wrap 
 
Name                DisplayName                      Status MachineName 
----                -----------                      ------ ----------- 
1-vmsrvc            Virtual Machine Add             Running Windows 8 
                    itions Services App 
                    lication 
1-vmsrvc            Virtual Machine Add             Running berlin 
                    itions Services App 
                    lication 
AeLookupSvc         Application Experie             Running berlin 
                    nce 
AeLookupSvc         Application Experie             Stopped Windows 8 
                    nce

NOTE At this point in the discussion, you might think that you can solve the problem of 
the truncated display output by using both the −autosize and –Wrap parameters. Doing so 
allows the output to maximize the display real estate (the function of −autosize) and also 
to allow for multiline wrapping (the function of −Wrap). This procedure never works, but it 
does not generate an error. Windows PowerShell gives priority to the −autosize parameter 
and ignores the −Wrap parameter; the order in which the two parameters are typed does 
not matter.

Query Active Directory
To query Active Directory with Windows PowerShell 1.0, most network administrators feel 
that they must write a script. To an extent, this belief is a relic of the VBScript days and reflects 
a reliance on using ActiveX Data Object (ADO) technology to invoke a Lightweight Directory 
Access Protocol (LDAP) dialect query against Active Directory. While it is possible to use the 
System.DirectoryServices.DirectorySearcher class from a Windows PowerShell line, it is not 
extremely convenient. While there are third-party cmdlets and providers that make it possible 
to employ command-line queries against Active Directory, many network administrators are 
rightfully skeptical about installing unsupported community software on production servers. 
The other command-line option, using DSQuery.exe, simply does not enter most people’s 
minds. However, with Windows PowerShell 2.0 and later, the command-line situation has 
changed somewhat. By using the techniques detailed in this section, an IT Pro now has a sup-
portable command-line solution to the problem of performing Active Directory queries.



 Evaluating the need for the script CHAPTER 7 209

Using [aDSISearcher]
Several options are available when querying Active Directory from the Windows PowerShell 
prompt. One option is to use the [ADSISearcher] type accelerator, which is a shortcut to the 
System.DirectoryServices.DirectorySearcher class. The [ADSISearcher] type accelerator merely 
saves you a bit of typing; you still need to give [ADSISearcher] the appropriate constructor to 
actually create an instance of the class. If you do not use [ADSISearcher], you need to use the 
New-Object cmdlet to create the object. First, you can put the New-Object command inside 
smooth parentheses to force the creation of the object and then call the FindAll method from 
the DirectorySearcher object. The resulting collection of DirectoryEntry objects is pipelined to 
the Select-Object cmdlet where the path property is returned, as shown here:

PS C:\> (New-Object DirectoryServices.DirectorySearcher "ObjectClass=user").Find 
All() | Select path 
 
Path 
---- 
LDAP://CN=Administrator,CN=Users,DC=nwtraders,DC=com 
LDAP://CN=Guest,CN=Users,DC=nwtraders,DC=com 
LDAP://CN=BERLIN,OU=Domain Controllers,DC=nwtraders,DC=com 
LDAP://CN=krbtgt,CN=Users,DC=nwtraders,DC=com 
LDAP://CN=WINDOWS 8,CN=Computers,DC=nwtraders,DC=com 
LDAP://CN=Windows 8Admin,OU=Students,DC=nwtraders,DC=com 
List Truncated –

To use the [ADSISearcher] type accelerator, you still need to supply it with an appropriate 
constructor, which in many cases is the search filter expressed in LDAP search filter syntax. 
LDAP search filter syntax is defined in RFC 2254 and is represented by Unicode strings. The 
search filters allow you to specify search criteria in an efficient and effective manner. Some 
examples of using the LDAP search filter syntax are shown in Table 7-1.

TABLE 7-1 LDAP search filter examples

Search Filter Description

ObjectClass=Computer All computer objects

ObjectClass=OrganizationalUnit All organizational unit objects

ObjectClass=User All user objects as well as all computer 
objects

ObjectCategory=User All user objects

(&(ObjectCategory=User)(ObjectClass=Person)) All user objects

L=Berlin All objects with the location of Berlin

Name=*Berlin* All objects with a name that contains 
Berlin

(&(L=Berlin)(ObjectCategory=OrganizationalUnit)) All organizational units with the loca-
tion of Berlin



 210 CHAPTER 7 Tracking scripting opportunities 

Search Filter Description

(&(ObjectCategory=OrganizationalUnit)(Name=*Berlin*)) All organizational units with a name 
that contains Berlin

(&(ObjectCategory=OrganizationalUnit)(Name=*Berlin*)(!L=Berlin)) All organizational units with a name 
that contains Berlin but does not have a 
location of Berlin

(&(ObjectCategory=OrganizationalUnit)(Name=*Berlin*)(!L=*)) All organizational units with a name 
that contains Berlin but does not have 
any location specified

(&(ObjectCategory=OrganizationalUnit)(|(L=Berlin)(L=Charlotte))) All organizational units with a location 
of either Berlin or Charlotte

As shown in the examples in Table 7-1, the search filter can be specified in two ways. The 
first method is a straightforward assignment filter. The attribute, the operator, and the value 
constitute the filter, as shown here:

PS C:\> ([ADSISearcher]"Name=Charlotte").FindAll() | Select Path 
 
Path 
---- 
LDAP://OU=Charlotte,DC=nwtraders,DC=com

The second way to use the LDAP search filter is to combine multiple filters. The opera-
tor goes first, followed by filter A and then by filter B. You can combine multiple filters and 
operators as shown in the syntax examples in Table 7-1. An example of a compound filter is 
shown here:

PS C:\> ([ADSISearcher]"(|(Name=Charlotte)(Name=Atlanta))").FindAll() | Select Path 
 
Path 
---- 
LDAP://OU=Atlanta,DC=nwtraders,DC=com 
LDAP://OU=Charlotte,DC=nwtraders,DC=com

The operators that you can use for either straightforward assignment filters or compound 
search filters are listed in Table 7-2.

TABLE 7-2 LDAP search filter logic operators

Operator Description 

= Equal to 

~= Approximately equal to 

<= Lexicographically less than or equal to 

>= Lexicographically greater than or equal to 

& AND 

| OR 

! NOT



 Evaluating the need for the script CHAPTER 7 211

Table 7-3 lists special characters. If any of these special characters must appear in a search 
filter as a literal character, it must be replaced by the escape sequence.

TABLE 7-3 LDAP search filter special characters

ASCII Character Escape Sequence Substitute 

* \2a 

( \28 

) \29 

\ \5c 

NUL \00 

/ \2f 

As shown in Figure 7-8, special characters are allowed in organizational unit names in 
Active Directory.

FIGURE 7-8 Organizational unit names using special characters.

As shown in Figure 7-8, there is an organizational unit named *Atlanta. To retrieve this 
particular organizational unit, you need to use the \2a character as shown here:

PS C:\> ([ADSISearcher]"name=\2aAtlanta").FindAll() | Select Path 
 
Path 
---- 
LDAP://OU=*Atlanta,DC=nwtraders,DC=com

To retrieve the organizational unit named (Berlin), you need to use the \28 and \29 escape 
sequences as documented in Table 7-3 and as shown here:

PS C:\> ([ADSISearcher]"name=\28Berlin\29").FindAll() | Select Path 



 212 CHAPTER 7 Tracking scripting opportunities 

 
Path 
---- 
LDAP://OU=(Berlin),DC=nwtraders,DC=com

As shown in Figure 7-8, there is also an organizational unit named /Charlotte\. The 
escape sequence substitute for the forward slash is \2f and for the backward slash is \5c. To 
retrieve the organizational unit named /Charlotte\ by using the LDAP search filter and the 
[ADSISearcher] type accelerator, you can use a query that looks like the following:

PS C:\> ([ADSISearcher]"name=\2fCharlotte\5c").FindAll() | Select Path 
 
Path 
---- 
LDAP://OU=\/Charlotte\\,DC=nwtraders,DC=com

LESSONS LEARNED

Avoid special characters in organizational unit names

I generally try to avoid using special characters in organizational unit names, user 
names, group names, computer names, and the like. I suspect that not all applica-

tions know how to handle special characters, and I am always afraid that a special 
character might not work. also, even though you can escape the characters in 
searches, the process is never intuitive, and too much time can be wasted trying to 
figure out how to escape the special character. When you add in the fact that the 
problem normally occurs at 2:00 A.M. on Saturday morning (all network problems 
seem to occur at 2:00 A.M. on Saturday morning), when you are likely to forget to 
escape the special character, you have a situation that can quickly become disas-
trous. Just because something is permitted does not mean that it is advisable.

The LDAP search filter special characters and their associated escape sequence substitutes 
are documented in Table 7-3, earlier in this chapter.

By using the Invoke-Command cmdlet, the [ADSISearcher] can easily be used to query the 
Active Directory of an untrusted forest or domain. When doing so, it is often important to 
provide the fully qualified domain name of the computer because it is possible that you might 
not have complete name resolution when using only the NetBIOS name of the server. It is also 
best to submit the credentials in a User Principal Name (UPN) fashion. When the command is 
run, the credential dialog box appears and prompts for the password, which must be typed 
in. The command is shown here:

PS C:\> Invoke-Command -ComputerName Sydney.WoodBridgeBank.Com -Credential ' 
administrator@WoodBridgeBank.com -ScriptBlock {([ADSISearcher]"L=Berlin").Findall()} 
PSComputerName     : sydney.woodbridgebank.com 



 Evaluating the need for the script CHAPTER 7 213

RunspaceId         : 112f974a-00aa-417c-8a13-9033a49354bd 
PSShowComputerName : True 
Path               : LDAP://OU=Berlin Bank,DC=woodbridgebank,DC=com 
Properties         : {ou, dscorepropagationdata, whencreated, name...} 

Using active Directory cmdlets
Active Directory cmdlets are included with Windows Server 2008 R2 and above. They are con-
tained in a module and must first be loaded by using the Import-Module cmdlet. Of course, 
you can simply select the Active Directory Windows PowerShell icon, which starts PowerShell 
with the Active Directory cmdlets already loaded. It is good that the Active Directory cmdlets 
are contained in a module because you can use the Import-Module cmdlet to add them from 
a remote computer into a Windows PowerShell session that does not have the cmdlets. To do 
this, you need to perform the following steps:

1. Establish a remote session to the server running Windows 2008 R2.

2. Import the Active Directory cmdlets by using the Import-Module cmdlet.

3. Perform the Active Directory query.

4. Disconnect from the remote session.

5. Remove the remote session.

NOTE When using the Remove-PSSession cmdlet with the −id parameter, keep in mind 
that you might not always know what the session ID number actually is. The first session ID 
is 1, and the second session ID is 2. Windows PowerShell keeps a running tally of all of the 
sessions. However, you might not be aware of which session ID number you have reached. 
As a best practice, I always use the Get-PSSession cmdlet to obtain a listing of all of the 
PSSessions on the computer. I also make a habit of removing disconnected sessions that 
I do not expect to go back to within the near future. This process frees up the resources 
consumed by the session.

This technique to remove unused sessions is illustrated here:

PS C:\> $ps = New-PSSession -ComputerName Sydney.WoodBridgeBank.Com -Credential 
administrator@WoodBridgeBank.Com 
PS C:\> Enter-PSSession $ps 
[sydney.woodbridgebank.com]: PS C:\> Import-Module ActiveDirectory 
[sydney.woodbridgebank.com]: PS C:\> Get-ADOrganizationalUnit -Filter "L -eq 'Berlin'" 
 
Name              : Berlin Bank 
Country           : DE 
PostalCode        : 
City              : Berlin 
ManagedBy         : 
StreetAddress     : 
State             : Berlin 
ObjectGUID        : dde90f41-128c-4567-9822-00de5a4c96cc 



 214 CHAPTER 7 Tracking scripting opportunities 

ObjectClass       : organizationalUnit 
DistinguishedName : OU=Berlin Bank,DC=woodbridgebank,DC=com 
[sydney.woodbridgebank.com]: PS C:\> Exit-PSSession 
PS C:\> Get-PSSession 
 
       Id Name            ComputerName    State    Configuration 
       -- ----            ------------    -----    ------------- 
        1 Session1        sydney.woodb... Broken   Microsoft.PowerShell 
PS C:\> Remove-PSSession -Id 1

In addition to using the Active Directory filter syntax, which uses Windows PowerShell 
operators and supports rich type conversions, you can also use the LDAP filter syntax dis-
cussed in the previous section. To use the LDAP filter syntax, you can use the −LDAPFilter 
parameter instead of the −filter parameter and supply the LDAP search filter expression inside 
a set of single quotation marks as shown here:

PS C:\> Get-ADOrganizationalUnit -LDAPFilter '(L=Berlin)' 
 
Name              : Berlin Bank 
Country           : DE 
PostalCode        : 
City              : Berlin 
ManagedBy         : 
StreetAddress     : 
State             : Berlin 
ObjectGUID        : dde90f41-128c-4567-9822-00de5a4c96cc 
ObjectClass       : organizationalUnit 
DistinguishedName : OU=Berlin Bank,DC=woodbridgebank,DC=com

Just use the command line
Many powerful commands can be executed directly from the command line by using legacy 
command-line utilities. There is nothing wrong with using these commands, and they are fully 
supported in Windows PowerShell. The fact that you can use the Get-Command cmdlet to eas-
ily search for legacy command-line utilities should be an indicator that Windows PowerShell 
supports using these commands. To use the Get-Command cmdlet to search for executables, 
you can use wildcard characters if you are not familiar with the exact name of the program, as 
shown here:

PS C:\> Get-Command ds* 
 
CommandType     Name                            Definition 
-----------     ----                            ---------- 
Application     ds16gt.dll                      C:\Windows\system32\ds16gt.dll 
Application     ds32gt.dll                      C:\Windows\system32\ds32gt.dll 
Application     dsa.msc                         C:\Windows\system32\dsa.msc 
Application     dsacls.exe                      C:\Windows\system32\dsacls.exe 
Application     dsadd.exe                       C:\Windows\system32\dsadd.exe 
Application     dsadmin.dll                     C:\Windows\system32\dsadmin.dll 
Application     dsauth.dll                      C:\Windows\system32\dsauth.dll 
Application     dsdbutil.exe                    C:\Windows\system32\dsdbutil... 
Application     dsdmo.dll                       C:\Windows\system32\dsdmo.dll 



 Evaluating the need for the script CHAPTER 7 215

Application     dsget.exe                       C:\Windows\system32\dsget.exe 
Application     dskquota.dll                    C:\Windows\system32\dskquota... 
Application     dskquoui.dll                    C:\Windows\system32\dskquoui... 
Application     dsmgmt.exe                      C:\Windows\system32\dsmgmt.exe 
Application     dsmod.exe                       C:\Windows\system32\dsmod.exe 
Application     dsmove.exe                      C:\Windows\system32\dsmove.exe 
Application     dsound.dll                      C:\Windows\system32\dsound.dll 
Application     dsprop.dll                      C:\Windows\system32\dsprop.dll 
Application     dsprov.dll                      C:\Windows\System32\Wbem\dsp... 
Application     dsprov.mof                      C:\Windows\System32\Wbem\dsp... 
Application     dsquery.dll                     C:\Windows\system32\dsquery.dll 
Application     dsquery.exe                     C:\Windows\system32\dsquery.exe 
Application     dsrm.exe                        C:\Windows\system32\dsrm.exe 
Application     dssec.dat                       C:\Windows\system32\dssec.dat 
Application     dssec.dll                       C:\Windows\system32\dssec.dll 
Application     dssenh.dll                      C:\Windows\system32\dssenh.dll 
Application     dssite.msc                      C:\Windows\system32\dssite.msc 
Application     dsuiext.dll                     C:\Windows\system32\dsuiext.dll 
Application     dsuiwiz.dll                     C:\Windows\system32\dsuiwiz.dll 
Application     dswave.dll                      C:\Windows\system32\dswave.dll

The previous command returns any valid Windows PowerShell command including func-
tions, cmdlets, and executable files. If you are specifically searching for command-line utilities, 
you should use the commandtype parameter, as shown here:

PS C:\> Get-Command -Name ds* -CommandType application 
 
CommandType     Name                            Definition 
-----------     ----                            ---------- 
Application     ds16gt.dll                      C:\Windows\system32\ds16gt.dll 
Application     ds32gt.dll                      C:\Windows\system32\ds32gt.dll 
Application     dsa.msc                         C:\Windows\system32\dsa.msc 
Application     dsacls.exe                      C:\Windows\system32\dsacls.exe 
Application     dsadd.exe                       C:\Windows\system32\dsadd.exe 
Application     dsadmin.dll                     C:\Windows\system32\dsadmin.dll 
Application     dsauth.dll                      C:\Windows\system32\dsauth.dll 
Application     dsdbutil.exe                    C:\Windows\system32\dsdbutil... 
Application     dsdmo.dll                       C:\Windows\system32\dsdmo.dll 
Application     dsget.exe                       C:\Windows\system32\dsget.exe 
Application     dskquota.dll                    C:\Windows\system32\dskquota... 
Application     dskquoui.dll                    C:\Windows\system32\dskquoui... 
Application     dsmgmt.exe                      C:\Windows\system32\dsmgmt.exe 
Application     dsmod.exe                       C:\Windows\system32\dsmod.exe 
Application     dsmove.exe                      C:\Windows\system32\dsmove.exe 
Application     dsound.dll                      C:\Windows\system32\dsound.dll 
Application     dsprop.dll                      C:\Windows\system32\dsprop.dll 
Application     dsprov.dll                      C:\Windows\System32\Wbem\dsp... 
Application     dsprov.mof                      C:\Windows\System32\Wbem\dsp... 
Application     dsquery.dll                     C:\Windows\system32\dsquery.dll 
Application     dsquery.exe                     C:\Windows\system32\dsquery.exe 
Application     dsrm.exe                        C:\Windows\system32\dsrm.exe 
Application     dssec.dat                       C:\Windows\system32\dssec.dat 
Application     dssec.dll                       C:\Windows\system32\dssec.dll 
Application     dssenh.dll                      C:\Windows\system32\dssenh.dll 
Application     dssite.msc                      C:\Windows\system32\dssite.msc 



 216 CHAPTER 7 Tracking scripting opportunities 

Application     dsuiext.dll                     C:\Windows\system32\dsuiext.dll 
Application     dsuiwiz.dll                     C:\Windows\system32\dsuiwiz.dll 
Application     dswave.dll                      C:\Windows\system32\dswave.dll

The ease of use and flexibility of Windows PowerShell created resurgence in the interest 
of command-line programs. An example is the use of DSQuery.exe, which allows the user to 
quickly issue a query against Active Directory. With the inclusion of the [ADSISearcher] type 
accelerator and various Active Directory cmdlets in Windows Server 2008 R2, you might won-
der why you should use the DSQuery.exe utility. Here is the syntax to obtain a listing of the 
organizational units in your domain by using DSQuery.exe:

PS C:\> dsquery ou 
"OU=Domain Controllers,DC=nwtraders,DC=com" 
"OU=Students,DC=nwtraders,DC=com" 
"OU=ManagedComputers,DC=nwtraders,DC=com" 
"OU=TestOU,DC=nwtraders,DC=com"

The syntax to retrieve a listing of the organizational units in your domain by using the 
[ADSISearcher] type accelerator is as follows:

PS C:\> ([ADSISearcher]"objectClass=OrganizationalUnit").findall() | select-Object 
-property path 
 
Path 
---- 
LDAP://OU=Domain Controllers,DC=nwtraders,DC=com 
LDAP://OU=Students,DC=nwtraders,DC=com 
LDAP://OU=ManagedComputers,DC=nwtraders,DC=com 
LDAP://OU=TestOU,DC=nwtraders,DC=com

The syntax to obtain a listing of organizational units by using the Get-
ADOrganizationalUnit cmdlet, which is included in the Active Directory module on Windows 
Server 2008 R2, is a bit easier to use. When working from the Active Directory Windows 
PowerShell prompt, you do not always need to specify parameter names. You can also use 
the alias name (Select for Select-Object) if desired. Using an alias name makes the syn-
tax shorter but can lead to problems when it is time to modify the command. Use of the 
 Get-ADOrganizationalUnit cmdlet is shown here:

PS C:\> Get-ADOrganizationalUnit -Filter "name -like '*'" | Select DistinguishedName 
 
DistinguishedName 
----------------- 
OU=Domain Controllers,DC=woodbridgebank,DC=com 
OU=Test1,DC=woodbridgebank,DC=com

If your only consideration is shortness of syntax, DSQuery.exe obviously wins. 
However, other considerations might come into play. DSQuery.exe returns a string, 
while the [ADSISearcher] type accelerator returns a DirectoryEntry object. The 
 Get-ADOrganizationalUnit command returns a Microsoft.ActiveDirectory.Management 
.ADOrganizationalUnit object. Depending on what you are trying to do, one type of object 
might be preferable over another. 



 Calculating the benefit from the script CHAPTER 7 217

Beyond the return type issue, other problems with DSQuery.exe also exist. DSQuery.exe 
sacrifices power for simplicity, which means that there are only a few attributes that you can 
use as your search query. If you want to find all of the organizational units in Active Directory 
that contain the name Berlin in them, you can use the following syntax:

dsquery ou -name *berlin*

Alternatively, if you want to find all of the organizational units in Active Directory that have 
a location attribute specified as actually being in Berlin, you need to use either the Active 
Directory cmdlets or the [ADSISearcher] type accelerator. If you understand what DSQuery 
.exe can do, there is no problem at all with availing yourself of this easy-to-use tool. You can 
even pipeline the results from DSQuery.exe into other utilities, such as DSMove.exe. DSMove 
.exe moves an object to another location in Active Directory, DSMod.exe allows you to 
change attribute values, and DSrm.exe allows you to delete objects from Active Directory.

NOTE As a best practice, I generally prefer to supply full parameter names even when 
working from the command line in Windows PowerShell. While you can often supply 
parameters by position, you must remember which parameter is the default parameter as 
well as remember the order of the parameters of the cmdlet when using more than one 
parameter. I often try a command multiple times before I retrieve exactly the information 
I am looking for. When moving from the default parameter to include several modifying 
parameters, the syntax changes if you do not use parameter names as shown here:

PS C:\> Get-Command ds* application 
Get-Command : The command could not be retrieved because the 
ArgumentList parameter can be specified only when retrieving a single 
cmdlet or script. 
At line:1 char:12 
+ Get-Command <<<< ds* application 
+ CategoryInfo : InvalidArgument: (ds16gt.dLL:ApplicationInfo)  
[Get-Command], PSArgumentException 
+ FullyQualifiedErrorId : CommandArgsOnlyForSingleCmdlet,Microsoft 
.PowerShell.Commands.GetCommandCommand

Calculating the benefit from the script

When you consider the time consumed in writing a script, testing the script, and putting the 
script into change control, a considerable amount of expense can be involved in the develop-
ment process. Therefore, it is important that IT Pros spend a bit of time assessing the benefit 
of writing a script before launching a scripting-writing binge. As noted in this chapter, many 
of the traditional reasons for writing a script are no longer valid with Windows PowerShell. 
This does not mean that you will never need to write a script, but it does mean that a short 
command can usually be written that accomplishes a significant amount of work. When con-
sidering the question of whether to script or not to script, some of the benefits of a script are 
discussed in this section.



 218 CHAPTER 7 Tracking scripting opportunities 

NOTES FROM THE FIELD
Jason a. Yoder, MCt
President, MCTExpert, Inc.

More often than not, I find myself using Windows PowerShell to empower IT 
professionals who are accustomed to being treated as an expense, rather 

than an asset of a business. this no longer needs to be the de facto standard. 
With Windows PowerShell now in its fourth generation, it is hard to imagine any 
It profession who manages a Microsoft server product or domain to justify doing 
repetitive tasks manually. as a matter of fact, leveraging Windows PowerShell gives 
the It professional the ability to quantify their contribution to an organization and 
demonstrate a high return on their Windows PowerShell investment. 

Imagine this: Every time someone in your organization executes a script that you 
have written, you can have this script send some critical information to a CSV file 
on a central server. the information passed is simply what script was executed, by 
whom, the amount of time the script saved the user. Using this information, the It 
professional can demonstrate years of increased productivity from the short invest-
ment in a few scripts. In some cases, it can be demonstrated that the hiring of addi-
tional staff was averted because of the number of hours saved through Windows 
PowerShell.

In one scenario, I helped a client who had to dedicate a staff member to backing 
up and clearing security logs for 3 hours every day across a multitude of remote 
servers. In just 3 hours of development and testing, this client now spends less than 
1 hour per year on this task—1095 hours to 1. It does not take a financial wizard 
to see the potential cost savings. In another case, I had a user who had a weekly 
task requiring two hours per week to complete utilizing active Directory and Excel. 
Leveraging Windows PowerShell, the task is completed automatically, with the 
final product in her inbox when she walks into the office on Monday morning—104 
hours of labor to zero. 

The question to ask yourself is not, “What can I do with Windows PowerShell?” 
the real question is, “What do I want to do with Windows PowerShell?” When you 
answer this question and implement your vision, don’t forget to quantify the results. 
You might just end up looking like an It rock star and the new company asset.



 Calculating the benefit from the script CHAPTER 7 219

repeatability
When a task needs to be repeated many times, it becomes an obvious candidate for a script 
(not in all situations, of course). It is quite common for an IT Pro to look at service status infor-
mation, which is easily obtained by using the Get-Service cmdlet. If you want to check the 
status of a specific process, you need to use the Name parameter, as shown here:

PS C:\> Get-Process -Name powershell 
 
Handles  NPM(K)    PM(K)      WS(K) VM(M)   CPU(s)     Id ProcessName 
-------  ------    -----      ----- -----   ------     -- ----------- 
    661       9    42616      46024   202     3.61    880 powershell

If you are interested in the latest entry written to the application event log, you need to 
use two parameters, as shown here:

PS C:\> Get-WinEvent -LogName application -MaxEvents 1 
 
TimeCreated         ProviderName                         Id Message 
-----------         ------------                         -- ------- 
1/26/2009 10:47:... VSS                                8193 Volume Shadow Co...

There is little reason to write a script for these cases because the command-line syntax is 
clear, easy to use, and easily discoverable if you happen to forget the exact syntax. All you 
need to do is use the Get-Help cmdlet.

If you need to perform a task on a routine basis and it needs to be performed against a 
group of computers, the task is a candidate for a script. Suppose you need to check the status 
of the fragmentation on a number of computers. You can probably determine a way to run 
the command directly from the Windows PowerShell prompt, but the next time you need to 
check the fragmentation on a number of computers, you will spend another 20 or 30 minutes 
working to get the syntax just right. Instead, a script named DefragAnalysisReport.ps1 can 
probably be written in less than one hour. Such a script can use the Win32_Volume WMI class, 
call the DefragAnalysis method for each drive on the computer, and write the results to a 
text file.

In the DefragAnalysisReport.ps1 script, you first need to create an array of computer 
names and assign them to the $arycomputer variable. This procedure can be done either by 
hard-coding the literal values as shown here or by using the Get-Content cmdlet and reading 
the values from a text file. Next, you must assign a value for the output path of the defrag-
mentation analysis report. This path is a folder that already exists on the computer that will be 
running the script; it does not need to exist on the target computer because all of the reports 
will be stored locally. This section of code is shown here:

$arycomputer = "Windows 8","Berlin" 
$FilePath = "C:\fso"



 220 CHAPTER 7 Tracking scripting opportunities 

You now need to walk through the array of computer names that is stored in the 
 $arycomputer variable by using the Foreach statement, as shown here:

Foreach($Computer in $aryComputer) 
{

You can then use the Get-WmiObject cmdlet to query the Win32_Volume WMI class; this 
class exists on Windows Server 2003 and later versions. As a best practice, if you anticipate 
running the script on older versions of the Windows operating system, you should add some 
error handling to detect the operating system version and gracefully move on to the next 
computer. This technique is discussed in Chapter 6, “Avoiding scripting pitfalls.” The WMI 
query is shown here:

 Get-WmiObject -Class win32_volume -Filter "DriveType = 3" ' 
       -ComputerName $computer | 

The results of the WMI query are pipelined to the ForEach-Object cmdlet. The pipelining 
technique normally provides performance improvements over storing the results of the query 
into a variable and then iterating the results through the collection because, as soon as the 
first object is retrieved, it is passed over the pipeline and the processing continues. The first 
task to perform when inside the ForEach-Object cmdlet is to print a message that indicates 
which computer is being tested by using the −Begin parameter, as shown here:

 ForEach-Object ' 
 -Begin { "Testing $computer" } '

You can use the Process block to perform the actual defrag analysis, which occurs once for 
each drive. The DefragAnalysis method is called for the current object that is on the pipeline; 
the $_ variable is an automatic variable that refers to that object. The DefragAnalysis method 
returns both an error report as well as an instance of the Win32_DefragAnalysis WMI class. 
Both are captured in the $rtn variable as shown here:

 -Process {  
   "Testing drive $($_.name) for fragmentation. Please wait ..." 
   $RTN = $_.DefragAnalysis()

To produce the defragmentation report, you can use redirection. A single right-angle 
arrow (>) overwrites any previously existing reports. Because there is a strong possibility that 
the server might have more than one drive, it is better to use the double right-angle arrow 
(>>). The other option when using redirection is to use the Out-File cmdlet, which has the 
advantage of allowing you to specify what encoding to use with the file. Using the Out-File 
cmdlet is also more readable than using redirection arrows, so I generally use the Out-File 
cmdlet when writing a script. The report header section is shown here:

  "Defrag report for $computer" >> "$FilePath\Defrag$computer.txt" 
  "Report for Drive $($_.Name)" >> "$FilePath\Defrag$computer.txt" 
  "Report date: $(Get-Date)" >> "$FilePath\Defrag$computer.txt" 
  "--------------------------------" >> "$FilePath\Defrag$computer.txt"



 Calculating the benefit from the script CHAPTER 7 221

One of the great features of Windows PowerShell is the way in which it automatically 
displays the properties and values of an object. VBScript requires more than a dozen lines 
of code to print the value of each property. As you can see here, the Win32_DefragAnalysis 
management object that is stored in the DefragAnalysis property is pipelined to the 
 Format-List cmdlet to remove the system properties of the WMI class. All system proper-
ties begin with a double underscore (__), which means that a regular expression pattern that 
selects properties beginning with the letters a through z that are followed by one or more 
characters will remove the system properties. The resulting list of properties and their values 
are redirected to the file in the location specified by the $filepath property, as shown here:

   $RTN.DefragAnalysis |  
   Format-List -Property [a-z]* >> "$FilePath\Defrag$computer.txt" 
} '

Last, you can print a message indicating that testing is completed on the computer by 
using the End parameter, as shown here:

 -END { "Completed testing $computer" } 
} #end foreach computer

The completed DefragAnalysisReport.ps1 script is shown here.

 Defraganalysisreport.ps1

$arycomputer = "Windows 8","Berlin" 

$FilePath = "C:\fso" 

Foreach($Computer in $aryComputer) 

{ 

 Get-WmiObject -Class win32_volume -Filter "DriveType = 3" ' 

       -ComputerName $computer |  

 ForEach-Object ' 

 -Begin { "Testing $computer" } ' 

 -Process {  

   "Testing drive $($_.name) for fragmentation. Please wait ..." 

   $RTN = $_.DefragAnalysis() 

  "Defrag report for $computer" >> "$FilePath\Defrag$computer.txt" 

  "Report for Drive $($_.Name)" >> "$FilePath\Defrag$computer.txt" 

  "Report date: $(Get-Date)" >> "$FilePath\Defrag$computer.txt" 

  "--------------------------------" >> "$FilePath\Defrag$computer.txt" 

   $RTN.DefragAnalysis |  

   Format-List -Property [a-z]* >> "$FilePath\Defrag$computer.txt" 

} ' 

 -END { "Completed testing $computer" } 

} #end foreach computer



 222 CHAPTER 7 Tracking scripting opportunities 

INSIDE TRACK
Stefan Stranger, Senior Premier Field Engineer
Microsoft Corporation

System Center Operations Manager has started to receive their Update rollups 
using Windows Update. Because not all my demo/test machines are connected 

to the Internet, I was looking for a way to find the download links that Operations 
Manager uses from Windows Update. 

Windows Update uses the .cab file at http://go.microsoft.com/fwlink/?LinkId=76054, 
and this .cab file contains a Package.xml file that contains the links where 
Operations Manager (and other products) download their Windows Update files. 

I created a script that downloads the .cab file, extracts the needed files, and parses 
the .xml file to find the download links to download the Windows Update files, 
enabling me to update my test/demo environments offline. 

the update agent retrieves its information from the wsusscn2.cab archive, which is 
made available for download by Microsoft at a static UrL (http://go.microsoft.com 
/fwlink/?linkid=76054). The Microsoft Baseline Security Analyzer (MBSA) also loads 
that file to determine whether or not the system is completely patched.

the archive contains a catalog file, called package.xml, in which Microsoft indexes 
all security updates (and their dependencies) for all operating systems. The down-
load UrLs for all updates are also found there, allowing for direct downloading of 
the individual items from the Microsoft servers.

We first need to download the wsusscn2.cab file by using Windows PowerShell:

#Download Windows Update Cab file to search for download links Operations 

Manager Cumulative Updates. 

 

$download = "http://go.microsoft.com/fwlink/?LinkId=76054" 

 

# Download cab file 

Start-BitsTransfer -Source "http://go.microsoft.com/fwlink/?LinkId=76054" 

-Destination "$env:temp\wsussnc2.cab" 

the next step in the process is to extract the package.xml from the just 
downloaded wsusscn2.cab file. I used an Expand-Cab function, using the 
Component Object Model.

Function Expand-Cab ($SourceFile, $TargetFolder, $Item) 

{ 

 

    $ShellObject = new-object -com shell.application 

 

http://go.microsoft.com/fwlink/?LinkId=76054
http://go.microsoft.com/fwlink/?LinkId=76054


 Calculating the benefit from the script CHAPTER 7 223

    # Zip File to unzip from: 

    $zipfolder = $ShellObject.namespace($sourceFile) # where the .zip is 

    $item = $zipfolder.parsename("$Item")      # the item in the zip 

    $targetfolder = $ShellObject.namespace("$targetFolder") 

    $targetfolder.copyhere($item) 

 

} 

We can now use this Expand-Cab function to extract the wsusscn2.cab file to the 
user’s temp folder: 

#Expand Package.cab from WSUSsnc2.cab 

Expand-Cab -SourceFile "$env:temp\wsussnc2.cab" -TargetFolder "$env:temp" 

-Item "Package.cab" 

When we extract the wsusscn2.cab file, we have a new Package.cab file, which we 
also need to extract to find the Package.xml file:

#Expand Package.xml from Package.cab 

Expand-Cab -SourceFile "$env:temp\Package.cab" -TargetFolder "$env:temp" 

-Item "Package.xml" 

The final step in finding the download URLs for the System Center Operations 
Manager Rollup Updates is to use Windows PowerShell to read the Package.xml file:

[xml]$wsusupdate = get-content -path "$env:temp\package.xml" 

$urls = $wsusupdate.OfflineSyncPackage.FileLocations.FileLocation 

And by filtering using the KB article names, we can find the Update Rollup files for 
each KB article:

$KBArticle = "KB2750631" 

$urls | ? {$_.Url -like "*$KBArticle*"} | ft -Property Url -wrap 

and now we use Start-BitsTransfer to download the .cab files for this KB article:

$urls | ? {$_.Url -like "*KB2750631*"} | select @{L="Source";E={$_.Url}}, 

@{L="Destination";E={"$env:temp\"+(($_.Url) -split "/")[($_.Url -split 

"/").count -1]}} | Start-BitsTransfer 

Documentability
A script provides assurance that certain steps have been performed in a consistent manner. 
This process is important when performing a series of complicated configuration tasks or 
even when making simple registry changes. The script documents exactly what took place 

http://support.microsoft.com/kb/2756127


 224 CHAPTER 7 Tracking scripting opportunities 

during the configuration change session. If a configuration change is later discovered to have 
been in error, a Windows PowerShell script provides documentation for the commands that 
were run, and the same script can usually be easily modified to undo the changes that were 
made.

In the following example, a new registry key is created in the HKEY_CURRENT_USER 
hive that is named Scripting; another registry key named Logon is also created. After the 
two registry keys are created, a property named ScriptName with a value of temp is cre-
ated. The resulting registry keys are shown in Figure 7-9, and the following code creates the 
registry keys:

PS C:\> New-Item -Path HKCU:\Scripting\Logon -Force 
 
 
    Hive: HKEY_CURRENT_USER\Scripting 
 
 
Name                           Property 
----                           -------- 
Logon 
 
 
PS C:\> New-ItemProperty -Path HKCU:\Scripting\Logon -Name ScriptName -Value "Temp" 
 
 
ScriptName   : Temp 
PSPath       : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Scripting\Logon 
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Scripting 
PSChildName  : Logon 
PSDrive      : HKCU 
PSProvider   : Microsoft.PowerShell.Core\Registry

FIGURE 7-9 ScriptName property under the Logon registry key.



 Calculating the benefit from the script CHAPTER 7 225

If a problem arises during the creation of the registry keys and the associated property 
values, you must either open the Registry Editor or type an assortment of commands in the 
Windows PowerShell console. A script is generally easier to modify because you can see all 
of the code that executed at the same time. The commands that were earlier typed in the 
Windows PowerShell console are shown in the CreateScriptingRegistryKey.ps1 script.

CreateScriptingregistryKey.ps1

New-Item -Path HKCU:\Scripting\Logon -Value "Temp" -Force 

New-ItemProperty -Path HKCU:\Scripting\Logon -Name ScriptName -Value "Temp"

If a problem arises with the command, it is easy to create a new script based on the first 
script, which rolls back the changes as shown in the DeleteScriptingRegistryKey.ps1 script. 
The second line of the script is commented out, and the first line is changed from New-Item 
to Remove-Item. The −force parameter is changed to Recurse, and the value parameter is 
not required when using Remove-Item. The modified DeleteScriptingRegistryKey.ps1 script is 
shown here:

DeleteScriptingregistryKey.ps1

Remove-Item -Path HKCU:\Scripting -Recurse 

#New-ItemProperty -Path HKCU:\Scripting\Logon -Name ScriptName -Value "Temp"

adaptability
Depending on the script design, the script can be used to perform other tasks. If a script is 
written in a modular fashion and takes advantage of functions and command-line arguments, 
it can be used to perform a variety of tasks. The functions themselves can be imported by 
dot-sourcing the script into another script. The script itself can also be converted into a mod-
ule, which can then be imported into the current session by using the Import-Module cmdlet.

As an example of a modular script design, you can look at the 
SaveWmiInformationAsDocument.ps1 script. The essential functionality of the script is con-
tained as functions that can easily be reused in other scripts.



 226 CHAPTER 7 Tracking scripting opportunities 

Reusing Code

The ability to adapt functions from one script into another script can 
often justify the time and expense involved in writing the script in the 

first place. However, code reuse should not always be the first goal of a script 
writer. Writing a script in a completely modular fashion takes considerably 
longer than writing a script in a linear fashion. In addition, the investment 
of time for an undetermined possible future reuse is not always the wisest 
approach. Writing modular code is a good discipline and generally makes the 
code easier to read and modify. Both of these design goals are worthwhile 
endeavors, but potential code reuse alone is not enough reason to justify the 
extra effort.

The first function in the SaveWmiInformationAsDocument.ps1 script is named the 
CreateWordDoc function, which creates an instance of the Word.Application object and stores 
it in a script-level variable named $word. The function next makes the Microsoft Office Word 
application visible and adds a document to the document collection, as shown here:

Function CreateWordDoc() 
{ 
  $script:word = New-Object -ComObject word.application 
  $word.visible = $true 
  $Script:doc = $word.documents.add() 
} #end CreateWordDoc

The next function is named CreateSelection, and it accepts a string to use in the Office 
Word document for a heading. To create a Word selection, the script needs an instance of 
the Word.Application object. Because the $word variable was created in the script-level scope, 
it is available inside the CreateSelection function. The selection object is created by querying 
the selection property. The heading is typed into the Word document by using the TypeText 
method. A blank paragraph is created, and the function ends as shown here:

Function CreateSelection($Heading) 
{ 
  $script:selection = $word.selection 
  $selection.typeText($Heading) 
  $selection.TypeParagraph() 
} #end CreateSelection

The GetWmiData function is used to query a WMI class, convert the output to a string, and 
write the information into a Word document as a selection, as shown here:

Function GetWmiData($WmiClass) 
{ 
 Get-WmiObject -class $wmiClass | Out-String | 
 ForEach-Object {$selection.typeText($_)} 
} #end GetWmiData



 Calculating the benefit from the script CHAPTER 7 227

When the WMI information is retrieved, it is time to create the file path by using the 
CreateFilePath function so that the Word document can be saved. The function receives 
the WMI class name via the $WmiClass variable. It then uses the substring method from the 
System.String class to remove the first six characters from the WMI class name. The first six 
characters correspond to “Win32_,” which is present in most of the WMI class names. To be 
more accurate, you need to test for other WMI class name patterns and modify the substring 
command according to the class name that is actually found. The function then uses the Join-
Path cmdlet to build the file path that is to be used when saving the WMI documentation. 
This function is shown here:

Function CreateFilePath($wmiClass) 
{ 
 $script:filename = $wmiClass.substring(6) 
 $script:path = Join-Path -Path $folder -childpath $filename 
} #end CreateFilePath

Next, the Word document needs to be saved. First you must create an instance of the 
Microsoft.Office.Interop.Word.WdSaveFormat enumeration by casting the string representa-
tion of the enumeration as a type. This type is also required to be a reference type, so it is 
cast as a [ref]. The saveas method from the Word.Document object requires both the path 
and the saveformat to be reference types. After the document is saved, the Word.Application 
object can be removed from memory via the quit method. The SaveWordData function is 
shown here:

Function SaveWordData($path) 
{ 
 [ref]$SaveFormat = "microsoft.office.interop.word.WdSaveFormat" -as [type] 
 $doc.saveas([ref]$path, [ref]$saveFormat::wdFormatDocument) 
 $word.quit() 
} #end SaveWordData

The entry point into the script creates some variables and calls the appropriate functions, 
as shown here:

$folder = "C:\fso" 
$wmiClass = "Win32_Bios" 
$heading = "$wmiClass information:" 
CreateWordDoc 
CreateSelection($Heading) 
GetWmiData($wmiClass) 
CreateFilePath($wmiClass) 
SaveWordData($path)

The completed SaveWmiInformationAsDocument.ps1 script is shown here:

SaveWmiInformationAsDocument.ps1

Function CreateWordDoc() 



 228 CHAPTER 7 Tracking scripting opportunities 

{ 

  $script:word = New-Object -ComObject word.application 

  $word.visible = $true 

  $Script:doc = $word.documents.add() 

} #end CreateWordDoc 

 

Function CreateSelection($Heading) 

{ 

  $script:selection = $word.selection 

  $selection.typeText($Heading) 

  $selection.TypeParagraph() 

} #end CreateSelection 

 

Function GetWmiData($WmiClass) 

{ 

 Get-WmiObject -class $wmiClass | Out-String | 

 ForEach-Object {$selection.typeText($_)} 

} #end GetWmiData 

 

Function CreateFilePath($wmiClass) 

{ 

 $script:filename = $wmiClass.substring(6) 

 $script:path = Join-Path -Path $folder -childpath $filename 

} #end CreateFilePath 

 

Function SaveWordData($path) 

{ 

 [ref]$SaveFormat = "microsoft.office.interop.word.WdSaveFormat" -as [type] 

 $doc.saveas([ref]$path, [ref]$saveFormat::wdFormatDocument) 

 $word.quit() 

} #end SaveWordData 

 

# *** Entry point *** 

$folder = "C:\fso" 

$wmiClass = "Win32_Bios" 

$heading = "$wmiClass information:" 

CreateWordDoc 

CreateSelection($Heading) 

GetWmiData($wmiClass) 

CreateFilePath($wmiClass) 

SaveWordData($path)



 Script collaboration CHAPTER 7 229

INSIDE TRACK

Tracking scripting opportunities

Chris Bellée, Premier Field Engineer
Microsoft Corporation, Australia

I often receive requests from customers to create script examples. Often their ideas 
are good, and I then create a script and file it away for use at a later time, by using 

Microsoft Notepad, which is quick and easy to use. The plain-text file is compatible 
with all types of programs, and I do not need to worry about whether I have a spe-
cific Microsoft Office application installed. When I am writing a script, I often dis-
cover a new technique or technology that causes me to write a quick sample script 
illustrating the new technique or technology. this is not a very formal technique, 
but it has the advantage of simplicity.

a database of scripts is a great idea, perhaps easily created in Microsoft Office 
access. You can then categorize the scripts by topic as well as by technology and 
can easily create a report that will point out areas that are lacking certain types 
of scripts. You can then review the list and fill in the gaps in your script portfolio. 
You can use this database for storage as well as for lookup and search. One very 
interesting idea is to create a script builder that is based on generic routines that 
are stored in a database. Of course, this does not really allow you to track scripting 
opportunities as much as it allows you to create new scripts based on the storage 
of your existing ideas. this script builder can be an extension of the Portable Script 
Center that is available from the Microsoft Script Center.

When I get ready to write a new script, I generally choose Microsoft.NEt Framework 
classes if they are available instead of using an old VBScript function or even WMI 
classes, because I am more familiar with .NEt programming and because I con-
sider this process to be a best practice. the .NEt Framework is native to Windows 
PowerShell, and it is much easier to call Win32 application Programming Interfaces 
in Windows PowerShell 2.0. I will use these aPIs when a class is not available to 
me from the .NEt library, such as creating network shares and setting permissions 
on them.

Script collaboration

While writing scripts can be fun to do and many network administrators seem to enjoy the 
process, it can also be time consuming. It is therefore important that the process is performed 
in such a way that it benefits the entire organization. You should understand that there is a 



 230 CHAPTER 7 Tracking scripting opportunities 

difference between learning to script and writing scripts. It is true that network administrators 
often learn to script by writing scripts, but the two activities should be separated. Learning to 
script is a training function, and the time invested in learning to script should be tracked as 
part of the training budget. Writing scripts is an operational expense, and the time invested in 
writing production scripts should be tracked as an operational expense. If a network admin-
istrator takes eight hours to write a script that retrieves the amount of free disk space on a 
server, that network administrator does not know how to write scripts. Therefore, the eight 
hours should be tracked as part of the training budget and not as a production expense. It 
simply is not efficient for a company to have twelve different scripts that all detail the amount 
of free disk space on a computer. 

If people in different departments write the same scripts, the problem of wasted time and 
effort becomes compounded, which is where collaboration comes into play. Through the use 
of collaboration tools, scripts can be shared and requested and features can be requested. 
Specific personnel can be detailed to write specific scripts. The tasks of training and produc-
tion can be separated, and duplication of time and effort can be avoided.

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous examples of the LDAP search filter syntax.

■■ Refer to the Knowledge Base article for information about using the NetSh Advanced 
Firewall commands at http://support.microsoft.com/kb/947709.

■■ LDAP search filter syntax is documented on MSDN at http://msdn.microsoft.com/en-us 
/library/aa746385(VS.85).aspx.

■■ All scripts from this chapter are located on the Script Center Script Repository at  
http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40-Best-d9e16039.



PART III

Designing the script    

CHAPTER 8 Designing the script 233

CHAPTER 9 Designing help for scripts 277

CHAPTER 10 Designing modules 311

CHAPTER 11 Handling input and output 339

CHAPTER 12 Handling errors 397

CHAPTER 13 Testing scripts 433

CHAPTER 14 Documenting scripts 475





   233

C H A P T E R  8

Designing the script
■■ Understanding functions

■■ Using functions to provide ease of code reuse

■■ Using more than two input parameters

■■ Using functions to encapsulate business logic

■■ Using functions to provide ease of modification

■■ Understanding filters

■■ Additional resources

Clear-cut guidelines can be used to design scripts and ensure that they are easy to 
understand, maintain, and troubleshoot. In this chapter, you will examine the reasons 

for scripting guidelines and view examples of both good and bad code design.

Understanding functions

In Windows PowerShell 4.0, functions have moved to the forefront as the primary program-
ming element used when writing PowerShell scripts. This is not necessarily due to improve-
ments in functions per se but rather to a combination of factors, including the maturity of 
Windows PowerShell script writers. In earlier versions of Windows PowerShell, functions 
were not well understood, perhaps because of a lack of clear documentation as to their use, 
purpose, and application.

Both subroutines and functions are found in VBScript. According to the classic defini-
tions, a subroutine is used to encapsulate code that can perform such actions as writing to 
a database or creating a Microsoft Office Word document. A function is used to return a 
value. An example of the classic VBScript function is one that converts a temperature from 
Fahrenheit to Celsius. The function receives the value in Fahrenheit and returns the value 
in Celsius. The classic function always returns a value; if it does not, the subroutine should 
be used.



 234 CHAPTER 8 Designing the script

NOTE Needless to say, the concept of functions and subroutines was a bit confusing for 
many VBScript writers. A common question I received when teaching VBScript classes was, 
“When do I use a subroutine and when do I use a function?” After expounding the classic 
definition, I would then show students that you can actually write a subroutine that be-
haves like a function. Next, I would write a function that acts like a subroutine. It was great 
fun, and the class loved it. The Windows PowerShell team has essentially accomplished the 
same end. There is no longer confusion over when to use a subroutine and when to use a 
function because there are no subroutines in Windows PowerShell—only functions.

To create a function, you begin with the Function keyword followed by the name of the 
function. As a best practice, you should use the Windows PowerShell verb-noun combination 
when creating functions. Pick the verb from the standard list of Windows PowerShell verbs 
to make your functions easier to remember. It is a best practice to avoid creating new verbs 
when there is an existing verb that can easily do the job.

NOTE In most cases, you will never need to create a new verb. I have written more than 
3,000 Windows PowerShell scripts in the last five years and never needed to create a new 
verb. The verbs are well named and easily cover most situations that an IT Pro needs to 
script.

To obtain a better idea of the verb coverage, you can use the Get-Command cmdlet and 
pipe the results to the Group-Object cmdlet, as shown here:

Get-Command -CommandType cmdlet | Group-Object -Property Verb |  
Sort-Object -Property count –Descending

When the preceding command is run, the resulting output is displayed in the following list. 
The command is run on Windows 8.1 and includes only the default cmdlets. As shown in the 
listing, the verb Get is used the most often by the default cmdlets, followed distantly by Set, 
New, and Remove.

Count Name                      Group 
----- ----                      ----- 
   91 Get                       {Get-Acl, Get-Alias, Get-AppLockerFileInformation, Get-
AppLockerPolicy...} 
   44 Set                       {Set-Acl, Set-Alias, Set-AppBackgroundTaskResourcePoli
cy, Set-AppLockerPolicy...} 
   36 New                       {New-Alias, New-AppLockerPolicy, New-
CertificateNotificationTask, New-CimInstance...} 
   26 Remove                    {Remove-AppxPackage, Remove-AppxProvisionedPackage, 
Remove-BitsTransfer, Remove-Cert... 
   15 Add                       {Add-AppxPackage, Add-AppxProvisionedPackage, Add-
BitsFile, Add-CertificateEnrollmen... 
   14 Export                    {Export-Alias, Export-BinaryMiLog, Export-Certificate, 
Export-Clixml...} 
   12 Disable                   {Disable-AppBackgroundTaskDiagnosticLog, Disable-
ComputerRestore, Disable-JobTrigger... 



 Understanding functions CHAPTER 8 235

   12 Import                    {Import-Alias, Import-BinaryMiLog, Import-Certificate, 
Import-Clixml...} 
   12 Enable                    {Enable-AppBackgroundTaskDiagnosticLog, Enable-
ComputerRestore, Enable-JobTrigger, E... 
   10 Invoke                    {Invoke-CimMethod, Invoke-Command, Invoke-Expression, 
Invoke-History...} 
    9 Test                      {Test-AppLockerPolicy, Test-Certificate, Test-
ComputerSecureChannel, Test-Connection... 
    9 Clear                     {Clear-Content, Clear-EventLog, Clear-History, Clear-
Item...} 
    9 Start                     {Start-BitsTransfer, Start-DscConfiguration, Start-
DtcDiagnosticResourceManager, Sta... 
    8 Write                     {Write-Debug, Write-Error, Write-EventLog, Write-
Host...} 
    7 Out                       {Out-Default, Out-File, Out-GridView, Out-Host...} 
    6 Register                  {Register-CimIndicationEvent, Register-EngineEvent, 
Register-ObjectEvent, Register-P... 
    6 ConvertTo                 {ConvertTo-Csv, ConvertTo-Html, ConvertTo-Json, 
ConvertTo-SecureString...} 
    6 Stop                      {Stop-Computer, Stop-DtcDiagnosticResourceManager, Stop-
Job, Stop-Process...} 
    5 Format                    {Format-Custom, Format-List, Format-SecureBootUEFI, 
Format-Table...} 
    4 ConvertFrom               {ConvertFrom-Csv, ConvertFrom-Json, ConvertFrom-
SecureString, ConvertFrom-StringData} 
    4 Update                    {Update-FormatData, Update-Help, Update-List, Update-
TypeData} 
    3 Suspend                   {Suspend-BitsTransfer, Suspend-Job, Suspend-Service} 
    3 Complete                  {Complete-BitsTransfer, Complete-
DtcDiagnosticTransaction, Complete-Transaction} 
    3 Show                      {Show-Command, Show-ControlPanelItem, Show-EventLog} 
    3 Select                    {Select-Object, Select-String, Select-Xml} 
    3 Rename                    {Rename-Computer, Rename-Item, Rename-ItemProperty} 
    3 Resume                    {Resume-BitsTransfer, Resume-Job, Resume-Service} 
    3 Receive                   {Receive-DtcDiagnosticTransaction, Receive-Job, Receive-
PSSession} 
    3 Wait                      {Wait-Event, Wait-Job, Wait-Process} 
    3 Unregister                {Unregister-Event, Unregister-PSSessionConfiguration, 
Unregister-ScheduledJob} 
    2 Use                       {Use-Transaction, Use-WindowsUnattend} 
    2 Copy                      {Copy-Item, Copy-ItemProperty} 
    2 Unblock                   {Unblock-File, Unblock-Tpm} 
    2 Save                      {Save-Help, Save-WindowsImage} 
    2 Restart                   {Restart-Computer, Restart-Service} 
    2 Resolve                   {Resolve-DnsName, Resolve-Path} 
    2 Split                     {Split-Path, Split-WindowsImage} 
    2 Undo                      {Undo-DtcDiagnosticTransaction, Undo-Transaction} 
    2 Join                      {Join-DtcDiagnosticResourceManager, Join-Path} 
    2 Move                      {Move-Item, Move-ItemProperty} 
    2 Measure                   {Measure-Command, Measure-Object} 
    2 Disconnect                {Disconnect-PSSession, Disconnect-WSMan} 
    2 Send                      {Send-DtcDiagnosticTransaction, Send-MailMessage} 
    2 Connect                   {Connect-PSSession, Connect-WSMan} 
    1 Where                     {Where-Object} 
    1 Pop                       {Pop-Location} 



 236 CHAPTER 8 Designing the script

    1 Switch                    {Switch-Certificate} 
    1 Trace                     {Trace-Command} 
    1 Tee                       {Tee-Object} 
    1 Sort                      {Sort-Object} 
    1 Compare                   {Compare-Object} 
    1 Checkpoint                {Checkpoint-Computer} 
    1 ForEach                   {ForEach-Object} 
    1 Debug                     {Debug-Process} 
    1 Initialize                {Initialize-Tpm} 
    1 Group                     {Group-Object} 
    1 Enter                     {Enter-PSSession} 
    1 Dismount                  {Dismount-WindowsImage} 
    1 Expand                    {Expand-WindowsImage} 
    1 Exit                      {Exit-PSSession} 
    1 Convert                   {Convert-Path} 
    1 Repair                    {Repair-WindowsImage} 
    1 Confirm                   {Confirm-SecureBootUEFI} 
    1 Restore                   {Restore-Computer} 
    1 Reset                     {Reset-ComputerMachinePassword} 
    1 Mount                     {Mount-WindowsImage} 
    1 Limit                     {Limit-EventLog} 
    1 Read                      {Read-Host} 
    1 Push                      {Push-Location}

NOTES FROM THE FIELD

Juan Carlos ruiz Lopez, Premier Field Engineer
Microsoft Corporation

Many It admins are really scared when the terms development or programming 
arise. They think, “Well, I’m a system administrator, not a developer.” In some 

countries, they use a nasty definition: “A developer is a cheap engine to convert cof-
fee to code”; so it’s usually outside of your plans.

however, sometimes you need to repeat a task. how do you create one thousand 
users, or move 200 Organizational Units, or restore a hacked web server at mid-
night, in a hurry, with your boss putting pressure on you, and in an error-free, 
nerves-free operation?

It is then that you need a script. Windows PowerShell allows you to easily script your 
tasks. Most of the time, the code that you need is already embedded into cmdlets, 
so you only have to put the pieces together in the pipeline (or several pipelines).

You are not writing code, just creating scripts. It is something everyone can do, not 
rocket-science, and it will save you lots of time.

and Windows PowerShell will let you write more and more complicated scripts. In 
the near future, you’ll write into your scripts your own nested loops, calls to .Net 
objects, and so on. Maybe at that time you’ll exchange your Windows PowerShell 



 Understanding functions CHAPTER 8 237

books on your desktop with the .NEt reference, and then you will call that task pro-
gramming instead of writing scripts. Not a bad thing—it simply means that you have 
learnt something new and that you are more prepared for your job.

In both cases, learn Windows PowerShell when you can do it, not when you must do 
it, or it will be too late.

and make sure that you script any task that is going to be repeated more than 0 
times. Scripts tend to be run often when they are already written.

A function is not required to accept any parameters. In fact, many functions do not require 
input to perform their job in the script. Let’s use an example to illustrate this point. A com-
mon task for network administrators is obtaining the operating system version. Script writers 
often need to do this to ensure that their script uses the correct interface or exits gracefully. 
It is also quite common that one set of files can be copied to a desktop running one version 
of the operating system and a different set of files can be copied for another version of the 
operating system.

The first step in creating a function is to choose a name. Because the function is going to 
retrieve information, the best verb to use from the listing of cmdlet verbs shown earlier is Get. 
For the noun portion of the name, it is best to use a term that describes the information that 
will be obtained. In this example, a noun named OperatingSystemVersion makes sense. An 
example of such a function is the one shown in the Get-OperatingSystemVersion.ps1 script. 
The Get-OperatingSystemVersion function uses Windows Management Instrumentation 
(WMI) to obtain the version of the operating system. In this most basic form of the function, 
you have the Function keyword followed by the name of the function as well as a script block 
containing code that is delimited by curly brackets. This pattern is shown here:

Function Function-Name  
{ 
 #insert code here 
} 

In the Get-OperatingSystemVersion.ps1 script, the Get-OperatingSystemVersion func-
tion is at the top of the script. The script uses the Function keyword to define the function 
followed by the name Get-OperatingSystemVersion. The curly brackets are opened, fol-
lowed by the code. The code uses the Get-WmiObject cmdlet to retrieve an instance of the 
Win32_OperatingSystem WMI class. Because this WMI class returns only a single instance, 
the properties of the class are directly accessible. The version is the property in question, and 
parentheses force the evaluation of the code inside them. The returned management object 
is used to emit the version value, and the curly brackets are used to close the function. The 
operating system version is returned to the code that calls the function. In this example, a 
string that writes "This OS is version " is used. A subexpression is used to force evaluation 



 238 CHAPTER 8 Designing the script

of the function. The version of the operating system is returned to the place from where the 
function is called, as shown in Get-OperatingSystemVersion.ps1.

Get-OperatingSystemVersion.ps1

Function Get-OperatingSystemVersion 

{ 

 (Get-WmiObject -Class Win32_OperatingSystem).Version 

} #end Get-OperatingSystemVersion 

 

"This OS is version $(Get-OperatingSystemVersion)"

In the earlier listing of cmdlet verbs, the Read-Host cmdlet uses the Read verb to obtain 
information from the command line. This indicates that the Read verb is not used to describe 
reading a file. There is no verb named Display, and the Write verb is used in cmdlet names 
such as Write-Error and Write-Debug, neither of which really conform to the concept of 
displaying information. If you are writing a function that can read the content of a text file 
and display statistics about that file, you might call the function Get-TextStatistics. This is in 
keeping with cmdlet names such as Get-Process and Get-Service, which include the concept 
of emitting their retrieved content within their essential functionality. The Get-TextStatistics 
function accepts a single parameter named −path. What is interesting about parameters for 
functions is that you use a dash when you pass a value to the parameter. You use a variable 
when you refer to the value inside the function, such as $path. To call the Get-TextStatistics 
function, you have a few options. The first is to use the name of the function and put the 
value in parentheses, as shown here:

Get-TextStatistics("C:\fso\mytext.txt")

This is a typical way to call the function. This method works when there is a single param-
eter but does not work when there are two or more parameters. Another way to pass a value 
to the function is to use the dash and the parameter name as shown here:

Get-TextStatistics –path "C:\fso\mytext.txt"

You will note from the preceding example that no parentheses are required. You can 
also use positional arguments when passing a value by omitting the name of the parameter 
entirely and simply placing the value for the parameter following the call to the function, as 
illustrated here:

Get-TextStatistics "C:\fso\mytext.txt"



 Understanding functions CHAPTER 8 239

TRADEOFF

Using positional arguments

The use of positional arguments works well when you are working from the 
command line and want to speed things along by reducing the typing load. this 

method can be a bit confusing, and I generally tend to avoid it, even when working 
at the command line. I avoid positional arguments because I often copy my work-
ing code from the console directly into a script; as a result, I would need to retype 
the command a second time to get rid of aliases and unnamed arguments. With 
the improvements in tab expansion in Windows PowerShell 4.0, I feel that the time 
saved by using positional or partial arguments does not sufficiently compensate 
for the time involved in retyping commands when they need to be transferred to 
scripts. the other reason that I always use named arguments is that they help me to 
be aware of the exact command syntax.

One additional way to pass a value to a function is to use partial parameter names. All that 
is required is enough of the parameter name to disambiguate it from other parameters. This 
means that if you have two parameters that both begin with the letter p, you need to supply 
enough letters of the parameter name to separate it from the other parameter, as illustrated 
here:

Get-TextStatistics –p "C:\fso\mytext.txt"

The complete text of the Get-TextStatistics function is shown the following Get-
TextStatistics.ps1 script.

Get-textStatistics.ps1

Function Get-TextStatistics($path) 

{ 

 Get-Content -path $path | 

 Measure-Object -line -character -word 

}

Between Windows PowerShell 1.0 and PowerShell 4.0, the number of verbs grew from 40 
to 98, but between Windows PowerShell 3.0 and 4.0, no new verbs were added. The Windows 
PowerShell team holds a strict line when it comes to adding new verbs, and the existing 
approved verbs should be sufficient for all admin tasks.



 240 CHAPTER 8 Designing the script

NOTE Do not overlook the importance of choosing a good verb to describe your function. 
The combination of Verb-Noun is a major strength in helping users to intuitively know the 
cmdlet (function) name that must be used. If you follow approved naming conventions, 
you greatly enhance the ease of use. If you do not follow approved naming, you will likely 
be panned by your users.

Upon choosing the verb for your function, you need to choose a noun to describe what 
the function does. Convention, but no enforced rules, dictate that the noun is singular. In 
most cases, this convention is followed as strictly as the rule to use approved verbs. For 
example, the following command lists functions and cmdlets that end in the letter s: 

Get-Command -CommandType cmdlet, function| where noun -match "s$" | select noun -Unique

As appears in the output here, only seven nouns are plural: 

Noun 
---- 
NetNatExternalAddress 
SmbShareAccess 
AssignedAccess 
NetAdapterQos 
NetAdapterRss 
NetAdapterQos 
NetAdapterRss 
AssignedAccess 
BCStatus 
DAConnectionStatus 
DnsClientServerAddress 
DtcTransactionsStatistics 
LogProperties 
MpComputerStatus 
NetAdapterQos 
NetAdapterRss 
NetAdapterStatistics 
NetIPAddress 
NetNatExternalAddress 
SmbShareAccess 
StartApps 
SupportedClusterSizes 
SupportedFileSystems 
SmbShareAccess 
NetIPAddress 
VpnServerAddress 
NetIPAddress 
NetNatExternalAddress 
SmbShareAccess 
AssignedAccess 
DnsClientServerAddress 
LogProperties 
NetAdapterQos 
NetAdapterRss 
NetIPAddress 



 Understanding functions CHAPTER 8 241

SmbShareAccess 
Process 
Alias 
Alias 
CimClass 
Process 
Alias 
Alias 
Alias 
Process 
Process 
Process 
Progress

After the function is named, you can create any parameters that the function might 
require. The parameters are contained within smooth parentheses. In the Get-TextStatistics 
function, the function accepts a single parameter named −path. When a function accepts a 
single parameter, you can pass the value to the function by placing the value for the param-
eter inside smooth parentheses. This command is shown here:

Get-TextLength("C:\fso\test.txt")

The "C:\fso\test.txt" path is passed to the Get-TextStatistics function via the −path 
parameter. Inside the function, the "C:\fso\text.txt" string is contained in the $path variable. 
The $path variable lives only within the confines of the Get-TextStatistics function and is not 
available outside the scope of the function; however, it is available from within child scopes of 
the Get-TextStatistics function. A child scope of Get-TextStatistics is one that is created from 
within the Get-TextStatistics function. In the Get-TextStatisticsCallChildFunction.ps1 script, the 
Write-Path function is called from within the Get-TextStatistics function, which means that the 
Write-Path function has access to variables created within the Get-TextStatistics function. This 
process involves the concept of variable scope and is an extremely important concept when 
working with functions. As you use functions to separate the creation of objects, you must 
always be aware of where the object is created and where you intend to use that object. In 
the Get-TextStatisticsCallChildFunction.ps1 script, the $path variable does not obtain its value 
until it is passed to the function and therefore lives within the Get-TextStatistics function. 
However, because the Write-Path function is called from within the Get-TextStatistics function, 
the Write-Path function inherits the variables from that scope. When you call a function from 
within another function, variables created within the parent function are available to the child 
function as shown in the Get-TextStatisticsCallChildFunction.ps1 script.

Get-textStatisticsCallChildFunction.ps1

Function Get-TextStatistics($path) 

{ 

 Get-Content -path $path | 

 Measure-Object -line -character -word 

 Write-Path 

} 

 



 242 CHAPTER 8 Designing the script

Function Write-Path() 

{ 

 "Inside Write-Path the '$path variable is equal to $path" 

} 

 

Get-TextStatistics("C:\fso\test.txt") 

"Outside the Get-TextStatistics function '$path is equal to $path"

Inside the Get-TextStatistics function, the $path variable is used to provide the path to the 
Get-Content cmdlet. When the Write-Path function is called, nothing is passed to it, yet inside 
the Write-Path function, the value of $path is maintained. However, outside both of the func-
tions, $path does not have any value. The output from running the script is shown here:

              Lines               Words          Characters Property 
              -----               -----          ---------- -------- 
                  3                  41                 210 
Inside Write-Path the $path variable is equal to C:\fso\test.txt 
Outside the Get-TextStatistics function $path is equal to

You then need to open and close a script block. The curly bracket (brace) is used to delimit 
the script block on a function. As a best practice, I always use the Function keyword when 
writing a function and then type in the name, input parameters, and curly brackets for the 
script block at the same time, as shown here:

Function My-Function 
{

Param() 
 #insert code here 
}  #end My-Function

In this manner, I do not forget to close the curly brackets. Trying to identify a missing 
curly bracket within a long script can be somewhat problematic because the error that is 
presented does not always correspond to the line that is missing the curly bracket. Suppose 
that the closing curly bracket is left off of the Get-TextStatistics function as shown in the Get-
TextStatisticsCallChildFunction-DoesNOTWork-MissingClosingBracket.ps1 script. An error is 
generated as shown here:

Missing closing '}' in statement block. 
At C:\BestPracticesBook\Get-TextStatisticsCallChildFunction-DoesNOTWork-
MissingClosingBracket.ps1:28 char:1

The problem is that the position indicator of the error message points to the first character 
on line 28. Line 28 happens to be the first blank line after the end of the script. This means 
that Windows PowerShell scanned the entire script looking for the closing curly bracket. 
Because the closing curly bracket was not found, Windows PowerShell states that the error 
is at the end of the script. If you place a closing curly bracket on line 28, the error in this 
example does go away, but the script does not work. The Get-TextStatisticsCallChildFunction-
DoesNOTWork-MissingClosingBracket.ps1 script is shown here with a comment that indicates 



 Understanding functions CHAPTER 8 243

where the missing closing curly bracket should be placed. One other technique to guard 
against the missing curly bracket problem is to add a comment to the closing curly bracket of 
each function.

Get-textStatisticsCallChildFunction-DoesNOtWork-MissingClosingBracket.ps1

Function Get-TextStatistics($path) 

{ 

 Get-Content -path $path | 

 Measure-Object -line -character -word 

 Write-Path 

# Here is where the missing bracket goes 

 

Function Write-Path() 

{ 

 "Inside Write-Path the '$path variable is equal to $path" 

} 

Get-TextStatistics("C:\fso\test.txt") 

Outside the Get-TextStatistics function '$path is equal to $path"

NOTES FROM THE FIELD

Douglas Finke
Microsoft PowerShell MVP

I like to type as few characters as I can; it saves time, and I make fewer errors, espe-
cially for tasks I do many times a day. 

One of these tasks is searching files for a string pattern. Let’s say that I want to find 
where I use Test-Path in all my Windows PowerShell files.

I change directory to C:\PowerShell and type the following:

dir . -recurse *.ps1

This will list all the .ps1 files in this directory and all subdirectories. Now, I want to 
find Test-Path.

dir . -recurse *.ps1 | select-string test-path

I will create a function called fps, which recursively finds all the ps1 files.

function fps {dir . -recurse *.ps1}

So now, from any place on disk, I can just type fps and get a list of Windows 
PowerShell files. Couple this with the alias for Select-String:

fps|sls test-path



 244 CHAPTER 8 Designing the script

I saved typing 29 characters. If I search for text via Windows PowerShell 10 times 
a day, I save 290 keystrokes, more than 1,000 keystrokes a week, and over 75,000 
keystrokes a year.

This is not limited to just Windows PowerShell files. I also set this up to search my 
C# and XAML files: 

function fx {dir . -recurse *.xaml}

function fcs {dir . -recurse *.cs} 

Using functions to provide ease of code reuse

When scripts are written using well-designed functions, it is easier to reuse them in other 
scripts and to provide access to these functions from within the Windows PowerShell console. 
To access these functions, you need to dot-source the containing script. An issue that arises 
with dot-sourcing scripts to bring in functions is that the script can often contain global vari-
ables or other items that you do not want to bring into your current environment.

An example of a good function is the ConvertToMeters.ps1 script. No variables are defined 
outside the function, and the function itself does not use the Write-Host cmdlet to break up 
the pipeline. The results of the conversion are returned directly to the calling code. The only 
problem with the ConvertToMeters.ps1 script is that when it is dot-sourced into the Windows 
PowerShell console, it runs and returns the data because all executable code in the script is 
executed. The ConvertToMeters.ps1 script is shown here.

ConverttoMeters.ps1

Function Script:ConvertToMeters($feet) 

{ 

  "$feet feet equals $($feet*.31) meters" 

} #end ConvertToMeters 

$feet = 5 

ConvertToMeters -Feet $feet

With well-written functions, it is trivial to collect the functions into a single script—you just 
copy and paste the functions from the original scripts into a new script. When you are done, 
you have created a Function library.

When pasting your functions into the Function library script, pay attention to the com-
ments at the end of the function. The comments at the closing curly bracket for each function 
not only point to the closing curly bracket but also provide a visual indicator for the end of 
each function that can be helpful when you need to troubleshoot a script. An example of such 
a Function library is the ConversionFunctions.ps1 script, shown here.



 Using functions to provide ease of code reuse CHAPTER 8 245

ConversionFunctions.ps1

Function Script:ConvertToMeters($feet) 

{ 

  "$feet feet equals $($feet*.31) meters" 

} #end ConvertToMeters 

 

Function Script:ConvertToFeet($meters) 

{ 

 "$meters meters equals $($meters * 3.28) feet" 

} #end ConvertToFeet 

 

Function Script:ConvertToFahrenheit($celsius) 

{ 

 "$celsius celsius equals $((1.8 * $celsius) + 32 ) fahrenheit" 

} #end ConvertToFahrenheit 

 

Function Script:ConvertTocelsius($fahrenheit) 

{ 

 "$fahrenheit fahrenheit equals $( (($fahrenheit - 32)/9)*5 ) celsius" 

} #end ConvertTocelsius 

 

Function Script:ConvertToMiles($kilometer) 

{ 

  "$kilometer kilometers equals $( ($kilometer *.6211) ) miles" 

} #end convertToMiles 

 

Function Script:ConvertToKilometers($miles) 

{ 

  "$miles miles equals $( ($miles * 1.61) ) kilometers" 

} #end convertToKilometers

One way to use the functions from the ConversionFunctions.ps1 script is to use the dot-
sourcing operator to run the script so that the functions from the script are part of the calling 
scope. To dot-source the script, you can use the dot-source operator (period or dot symbol) 
followed by the path to the script containing the functions that you want to include in your 
current scope. When done, you can call the function directly, as shown here:

PS C:\> . C:\scripts\ConversionFunctions.ps1 
PS C:\> convertToMiles 6 
6 kilometers equals 3.7266 miles

All of the functions from the dot-sourced script are available to the current session. This 
can be seen by composing a listing of the function drive, as shown here:

PS C:\> dir function: | Where { $_.name -like 'co*'} | Format-Table -Property name, 
definition -AutoSize 
 



 246 CHAPTER 8 Designing the script

Name                Definition 
----                ---------- 
ConvertToMeters     param($feet) "$feet feet equals $($feet*.31) meters"... 
ConvertToFeet       param($meters) "$meters meters equals $($meters * 3.28) feet"... 
ConvertToFahrenheit param($celsius) "$celsius celsius equals $((1.8 * $celsius) + 32 ) 
fahrenheit"... 
ConvertTocelsius    param($fahrenheit) "$fahrenheit fahrenheit equals  
$( (($fahrenheit - 32)/9)*5 ) celsius... 
ConvertToMiles      param($kilometer) "$kilometer kilometers equals $( ($kilometer 
*.6211) ) miles"... 
ConvertToKilometers param($miles) "$miles miles equals $( ($miles * 1.61) ) 
kilometers"...

NOTES FROM THE FIELD

Understanding functions

Brandon Shell, Windows PowerShell MVP

In my mind, functions are, generally speaking, small, single task–based tools (like 
a flathead screwdriver or hammer). They do one thing, and they do that one thing 

reliably well. If you take this approach when writing code, you will find it easier to 
debug and will find yourself writing less code. Why less code? Because you’ll find 
that you are now able to port your functions from one script to another or possibly 
even in your day-to-day life.

I have three basic guidelines as to when to write a function:

1. First guideline: I find that I am repeating the same code block over and over 
again. For example, I have a code block that checks several services on a com-
puter. It might make sense to simply write a function to perform the check and 
then run that function against each server. this process allows me to trouble-
shoot the code more efficiently.

2. Second guideline: I find that I can use this code in other scripts. For example, if 
I write a nice recursive parsing block, I might want to reuse that logic in another 
script. 

3. Third guideline: the code is useful outside of this script. this guideline is 
slightly different from the previous guideline. a good example here is a ping-
server function, which is useful both in other scripts and in my day-to-day life.

When writing code, it is generally a good idea to always consider reusing the code. 
this is paramount when working with functions. the sole purpose of using functions 
in life is for reuse, so this should be a major consideration when designing your 
functions. Consider how and where a function will be used, which helps to establish 
the parameters and defaults (if any) that it should have. 



 Using functions to provide ease of code reuse CHAPTER 8 247

Because we design code for reuse, it is a best practice to be as verbose as pos-
sible. the basic rule of thumb is to hard-code nothing; all data should be passed by 
parameters. Certainly, you can have default values for the parameters, but allow the 
function call to specify other options without modifying the function. this comes 
back to the black box approach. You need to consider the effect of every change in 
the original function and how that change will affect the script as a whole.

In Windows PowerShell version 1.0, I always tried to implement –verbose and 
–whatif parameters with my own switches. In version 2.0 and above, this process is 
handled for you.

When designing functions, think about the looping and processing logic. this logic 
is generally script specific and should be implemented outside of the function. 
Ideally, you want to restrict logic to the party that requires the logic. For example, if 
you have logic to process servers in the script, keep that logic outside of the func-
tions. there is no need to repeatedly implement that logic for each function call. 
however, if you have logic that is expressly the domain of the function, do not go 
crazy trying to rip it out just to put in the calling script.

Great functions are born from need but grow from use. as you grow in your under-
standing, your functions will grow with you. they are like friends who are always 
there when you need them, but, like friends, they need attention and care. Listed 
below are some features that functions should have.

Well-defined parameters
Your function needs to be very clear on what data it expects to generate to produce 
the data you expect. You accomplish this by establishing very specific parameters 
(which often includes the data type as well). If you absolutely must have a specific 
value to process, make sure that the value is received by the function. a great 
way to accomplish this is by assigning the parameter’s default value to (Throw 
'$ThisParam is required').

Consistent and expected output
this feature is absolutely critical. You do not want to guess at what type of data will 
come from the function. You want the data to be what you expect. Design the func-
tion so that it returns one or more of a single data type (such as string, DateTime, 
or Boolean.) Be very cautious not to pollute the data stream with messages written 
using Write-Output.

Self-containment
the function should not rely on any variables from the script. If the function needs 
input from outside, make the outside value a parameter.



 248 CHAPTER 8 Designing the script

Portability
the single most important job of a function is to be portable. If you do not plan to 
reuse the code, you might as well write the code inline. a key factor to portability is 
to make sure that your variable names will not collide with the calling script.

Using two input parameters
To create a function that uses multiple input parameters, you can use the Function keyword, 
specify the name of the function, use variables for each input parameter inside a Param state-
ment, and then define the script block within curly brackets. The pattern is shown here:

Function My-Function 
{

 Param ($input1, $input2) 
 #Insert Code Here 
}

An example of a function that takes multiple parameters is the Get-FreeDiskSpace function 
that is shown in the Get-FreeDiskSpace.ps1 script.

The Get-FreeDiskSpace.ps1 script begins with the Function keyword, the name of the func-
tion, and two input parameters. The input parameters are placed inside smooth parentheses 
as shown here:

Function Get-FreeDiskSpace

{ Param ($drive,$computer)

Inside the curly brackets, the Get-FreeDiskSpace function uses the Get-WmiObject cmdlet 
to query the Win32_LogicalDisk WMI class. The Get-FreeDiskSpace function connects to the 
computer specified in the −computer parameter and filters out only the drive that is specified 
in the −drive parameter. When the function is called, each parameter is specified as −drive 
and −computer. In the function definition, the $drive and $computer variables are used to 
hold the values supplied to the parameters.

After the data from WMI is retrieved, it is stored in the $driveData variable. The data that 
is stored in the $driveData variable is an instance of the Win32_LogicalDisk class. This variable 
contains a complete instance of the class. The members of this class are shown in Table 8-1.



 Using functions to provide ease of code reuse CHAPTER 8 249

TABLE 8-1 Members of the Win32_LogicalDisk class

Name MemberType Definition

Chkdsk Method System.Management.ManagementBase-Object 
Chkdsk(System.Boolean FixErrors, System.Boolean 
VigorousIndexCheck, System.Boolean SkipFolderCycle, 
System.Boolean ForceDismount, System.Boolean 
RecoverBadSectors, System.Boolean OkToRunAtBootUp)

Reset Method System.Management.ManagementBaseObject Reset()

SetPowerState Method System.Management.ManagementBaseObject 
SetPowerState(System.UInt16 PowerState, System.String Time)

Access Property System.UInt16 Access {get;set;}

Availability Property System.UInt16 Availability {get;set;}

BlockSize Property System.UInt64 BlockSize {get;set;}

Caption Property System.String Caption {get;set;}

Compressed Property System.Boolean Compressed {get;set;}

ConfigManagerErrorCode Property System.UInt32 ConfigManagerErrorCode {get;set;}

ConfigManagerUserConfig Property System.Boolean ConfigManagerUserConfig {get;set;}

CreationClassName Property System.String CreationClassName {get;set;}

Description Property System.String Description {get;set;}

DeviceID Property System.String DeviceID {get;set;}

DriveType Property System.UInt32 DriveType {get;set;}

ErrorCleared Property System.Boolean ErrorCleared {get;set;}

ErrorDescription Property System.String ErrorDescription {get;set;}

ErrorMethodology Property System.String ErrorMethodology {get;set;}

FileSystem Property System.String FileSystem {get;set;}

FreeSpace Property System.UInt64 FreeSpace {get;set;}

InstallDate Property System.String InstallDate {get;set;}

LastErrorCode Property System.UInt32 LastErrorCode {get;set;}

MaximumComponentLength Property System.UInt32 MaximumComponentLength {get;set;}

MediaType Property System.UInt32 MediaType {get;set;}

Name Property System.String Name {get;set;}

NumberOfBlocks Property System.UInt64 NumberOfBlocks {get;set;}

PNPDeviceID Property System.String PNPDeviceID {get;set;}

PowerManagementCapabilities Property System.UInt16[] PowerManagementCapabilities {get;set;}

PowerManagementSupported Property System.Boolean PowerManagementSupported {get;set;}

ProviderName Property System.String ProviderName {get;set;}

Purpose Property System.String Purpose {get;set;}



 250 CHAPTER 8 Designing the script

Name MemberType Definition

QuotasDisabled Property System.Boolean QuotasDisabled {get;set;}

QuotasIncomplete Property System.Boolean QuotasIncomplete {get;set;}

QuotasRebuilding Property System.Boolean QuotasRebuilding {get;set;}

Size Property System.UInt64 Size {get;set;}

Status Property System.String Status {get;set;}

StatusInfo Property System.UInt16 StatusInfo {get;set;}

SupportsDiskQuotas Property System.Boolean SupportsDiskQuotas {get;set;}

SupportsFileBasedCompression Property System.Boolean SupportsFileBasedCompression {get;set;}

SystemCreationClassName Property System.String SystemCreationClassName {get;set;}

SystemName Property System.String SystemName {get;set;}

VolumeDirty Property System.Boolean VolumeDirty {get;set;}

VolumeName Property System.String VolumeName {get;set;}

VolumeSerialNumber Property System.String VolumeSerialNumber {get;set;}

__CLASS Property System.String __CLASS {get;set;}

__DERIVATION Property System.String[] __DERIVATION {get;set;}

__DYNASTY Property System.String __DYNASTY {get;set;}

__GENUS Property System.Int32 __GENUS {get;set;}

__NAMESPACE Property System.String __NAMESPACE {get;set;}

__PATH Property System.String __PATH {get;set;}

__PROPERTY_COUNT Property System.Int32 __PROPERTY_COUNT {get;set;}

__RELPATH Property System.String __RELPATH {get;set;}

__SERVER Property System.String __SERVER {get;set;}

__SUPERCLASS Property System.String __SUPERCLASS {get;set;}

PSStatus PropertySet PSStatus {Status, Availability, DeviceID, StatusInfo}

ConvertFromDateTime ScriptMethod System.Object ConvertFromDateTime();

ConvertToDateTime ScriptMethod System.Object ConvertToDateTime();



 Using functions to provide ease of code reuse CHAPTER 8 251

Obtaining specific WMI data

While storing the complete instance of the object in the $driveData vari-
able is a bit inefficient, in reality the class is rather small, and the ease 

of using the Get-WmiObject cmdlet is usually worth the wasteful methodol-
ogy. If performance is a primary consideration, use of the [WMI] type accel-
erator is a better solution. To obtain the free disk space using this method, 
you can use the following syntax:

([wmi]"Win32_logicalDisk.DeviceID='c:'").FreeSpace

To put the preceding command into a usable function, you need to substitute 
the hard-coded drive letter for a variable. In addition, you also want to mod-
ify the class constructor to receive a path to a remote computer. The newly 
created function is contained in the Get-DiskSpace.ps1 script shown here.

Get-DiskSpace.ps1 
Function Get-DiskSpace($drive,$computer) 
{ 
 ([wmi]"\\$computer\root\cimv2:Win32_logicalDisk.
DeviceID='$drive'").FreeSpace 
} 
Get-DiskSpace -drive "C:" -computer "Office"

After you make the preceding changes, the code returns the value of the 
FreeSpace property only from the specific drive. If you send the output to the 
Get-Member cmdlet, you see that you have an integer. This technique is more 
efficient than storing an entire instance of the Win32_LogicalDisk class and 
then selecting a single value.

After you store the data in the $driveData variable, you want to print some information to 
the user of the script. First, you can print the name of the computer and the drive by placing 
the variables inside double quotation marks. Double quotes are expanding strings, and vari-
ables placed inside double quotes emit their value and not their name, as shown here:

"$computer free disk space on drive $drive"

Next, you can format the data that is returned by using the Microsoft .NET Framework 
format strings to specify two decimal places. You need to use a subexpression to prevent 
unraveling of the WMI object inside the double quotation marks of the expanding string. The 
subexpression uses the dollar sign and a pair of smooth parentheses to force the evaluation of 
the expression before returning the data to the string, as shown here:

$("{0:n2}" -f ($driveData.FreeSpace/1MB)) MegaBytes



 252 CHAPTER 8 Designing the script

Get-FreeDiskSpace.ps1

Function Get-FreeDiskSpace($drive,$computer) 

{ 

 $driveData = Get-WmiObject -class win32_LogicalDisk ' 

 -computername $computer -filter "Name = '$drive'"  

" 

 $computer free disk space on drive $drive  

    $("{0:n2}" -f ($driveData.FreeSpace/1MB)) MegaBytes 

"  

} 

 

Get-FreeDiskSpace -drive "C:" -computer "Windows 8"

NOTES FROM THE FIELD

Jason hofferle
IT Specialist

Many of the resources and discussions about Windows PowerShell are geared 
towards enterprise It staff responsible for supporting servers. With entire 

books written about using Windows PowerShell to manage Exchange, vSphere, and 
other enterprise technologies, it’s easy for end-user support personnel to get the 
impression that PowerShell isn’t something they need to know. the reality is that 
desktop support and helpdesk staff have just as many reasons to learn Windows 
PowerShell as a server administrator, and even someone that rarely touches a server 
should make learning PowerShell a priority.

remote desktop and similar technologies are extremely helpful for supporting 
distant users, but there are some simple tasks that can be accomplished more 
efficiently with Windows PowerShell. Copying a new version of a configuration file, 
restarting a service, or unlocking an account can all be done much faster from a 
Windows PowerShell console. While it does initially take more time to learn how to 
perform a task without pointing and clicking, that time investment will be repaid 
tenfold the first time that task needs to be performed on multiple computers.

Many organizations utilize some sort of enterprise solution for deploying software, 
making changes to client systems, and other automated tasks. these tools are great, 
but sometimes desktop support doesn’t have access to utilize them, and even some-
thing simple like creating a desktop shortcut for end users gets put on the back-
burner by enterprise staff. Because most local It admins have administrative access 
to the workstations they’re responsible for, something like creating shortcuts is an 
easy task for Windows PowerShell. Windows PowerShell allows front-line support to 



 Using functions to provide ease of code reuse CHAPTER 8 253

develop automated fixes to save themselves time without relying on an enterprise 
solution.

Not everyone needs to be a Windows PowerShell expert because modules are an 
easy way to distribute more complex scripts written by advanced PowerShell users. 
In my VBScript days, it could be an ordeal to write out documentation about how to 
use a certain script or how to write in-line help for it. With comment-based help and 
script modules, it’s incredibly easy to share automated fixes with others. I maintain 
a module for my organization that packages some complex tasks into easy-to-use 
functions with built-in help. this allows beginners just getting started to become 
immediately effective after understanding some fundamentals like Get-Help. If you 
become proficient enough with Windows PowerShell to build these tools for others, 
you get credit for saving everyone’s time in addition to your own.

Probably the most important reason to develop Windows PowerShell skills are 
the career benefits. It’s a rare company that doesn’t use Microsoft products, and 
Microsoft products are managed with Windows PowerShell. With the consistency 
of Windows PowerShell, it’s very easy to apply the basic concepts and patterns 
to anything. Learn Windows PowerShell now, and when you get a position as a 
Directory administrator or Exchange administrator, those PowerShell skills will be 
immediately useful.

Using a type constraint
When accepting parameters for a function, it can be important to use a type constraint 
to ensure that the function receives the correct type of data. To do this, you can place the 
desired data type alias inside square brackets in front of the input parameter. This action 
constrains the data type and prevents the entry of an incorrect type of data. Allowable type 
shortcuts are shown in Table 8-2.

TABLE 8-2 Data type aliases

Alias Type

[int] 32-bit signed integer

[long] 64-bit signed integer

[string] Fixed-length string of Unicode characters

[char] Unicode 16-bit character 

[bool] True/false value

[byte] 8-bit unsigned integer

[double] Double-precision 64-bit floating point number



 254 CHAPTER 8 Designing the script

Alias Type

[decimal] 128-bit decimal value

[single] Single-precision 32-bit floating point number

[array] Array of values

[xml] Xmldocument object

[hashtable] Hashtable object (similar to a Dictionary object)

In the Resolve-ZipCode function shown in the Resolve-ZipCode.ps1 script, the −zip input 
parameter is constrained to allow only a 32-bit signed integer for input. (Obviously, the [int] 
type constraint eliminates most of the world’s zip codes, but the web service that the script 
uses resolves only U.S.-based zip codes; therefore, it is a good addition to the function.)

In the Resolve-ZipCode function, you can first use a string that points to the Web Services 
Description Language (WSDL) for the web service. Next, the New-WebServiceProxy cmdlet is 
used to create a new web service proxy for the ZipCode service. The WSDL for the ZipCode 
service defines a method named GetInfoByZip, which accepts a standard U.S.-based zip code. 
The results are displayed as a table. The Resolve-ZipCode.ps1 script is shown here.

resolve-ZipCode.ps1

#Requires -Version 4.0 

Function Resolve-ZipCode([int]$zip) 

{ 

 $URI = "http://www.webservicex.net/uszip.asmx?WSDL" 

 $zipProxy = New-WebServiceProxy -uri $URI -namespace WebServiceProxy -class ZipClass 

 $zipProxy.getinfobyzip($zip).table 

} #end Get-ZipCode 

 

Resolve-ZipCode 28273

When using a type constraint on an input parameter, any deviation from the expected 
data type generates an error similar to the one shown here:

Resolve-ZipCode : Cannot process argument transformation on parameter 'zip'. Cannot 
convert value "COW" to type "System 
.Int32". Error: "Input string was not in a correct format." 
At C:\Users\edwils.NORTHAMERICA\AppData\Local\Temp\tmp3351.tmp.ps1:22 char:16 
+ Resolve-ZipCode <<<<  "COW" 
    + CategoryInfo          : InvalidData: (:) [Resolve-ZipCode], ParameterBindin...
mationException 
    + FullyQualifiedErrorId : ParameterArgumentTransformationError,Resolve-ZipCode

Needless to say, such an error can be distracting to users of the function. One way 
to handle the problem of confusing error messages is to use the Trap keyword. In the 
DemoTrapSystemException.ps1 script, the My-Test function uses [int] to constrain the $myin-
put variable to accept only a 32-bit unsigned integer for input. If such an integer is received 



 Using functions to provide ease of code reuse CHAPTER 8 255

by the function when it is called, the function returns the string "It worked". If the function 
receives a string for input, an error is raised similar to the previous one.

Rather than display a raw error message that most users and many IT Pros find confusing, 
it is a best practice to suppress the display of the error message and to perhaps inform the 
user that an error condition occurred, providing more meaningful and direct information that 
the user can then relay to the help desk. Many times, IT departments display such an error 
message, complete with either a local telephone number for the appropriate help desk or 
even a link to an internal webpage that provides detailed troubleshooting and self-help cor-
rective steps for the user to take. You can even provide a webpage that hosts a script that the 
user can run that will fix the problem. This solution is similar to the “Fix it for me” webpages 
introduced by Microsoft.

When an instance of a System.SystemException class is created (when a system exception 
occurs), the Trap statement traps the error rather than allowing the error information to dis-
play on the screen. If you query the $error variable, you see that the error has in fact occurred 
and is actually received by the error record. You also have access to the ErrorRecord class via 
the $_ automatic variable, which means that the error record is passed along the pipeline 
and thus gives you the ability to build a rich error-handling solution. In this example, the 
string "error trapped" is displayed, and the Continue statement is used to continue the script 
execution on the next line of code. In this example, the next line of code that is executed is 
the "After the error" string. When the DemoTrapSystemException.ps1 script is run, the fol-
lowing output is shown:

error trapped 
After the error

The complete DemoTrapSystemException.ps1 script is shown here.

DemotrapSystemException.ps1

Function My-Test([int]$myinput) 

{ 

  

 "It worked" 

} #End my-test function 

# *** Entry Point to Script *** 

 

Trap [SystemException] { "error trapped" ; continue } 

My-Test -myinput "string" 

"After the error"



 256 CHAPTER 8 Designing the script

NOTES FROM THE FIELD

Juan Carlos ruiz Lopez, Premier Field Engineer
Microsoft Corporation

I have the habit of starting all my scripts in the same way, no matter how simple 
they are (because they usually become more complex with time).

First, at the very beginning, I include some comments containing the script name, 
version, dates, and its purpose. to make this clear, I include a comment, such as the 
following: 

# ---------------------------------------------------------------- 

# Script      : Murgifly.ps1                                     - 

# Description : This script is used to murgifly some borogoves…  - 

# Author      : JC@company.com                                   - 

# Date        : 32-Aug-2013                                      -  

# Version     : V 1.0, Now V2 including some feature…            -  

# ---------------------------------------------------------------- 

I also like to add some keywords, as in the following example: 

# ---------------------------------------------------------------- 

# Keywords    : Jabberwocky, borogoves                           -  

# ----------------------------------------------------------------

apart from documenting the script for other people (or yourself in the future), all 
these tags are very useful to find lost scripts. You usually remember some keyword 
or functionality, but not the script path name, so the following line will find it 
for sure:

   Dir –Recurse –Include *.ps1 | Select-String "borog"  

Now I immediately add some code, such as the following:

#requires –Version 4                #  

$Error.Clear ()                     # 

Set-StrictMode –Version Latest      # 

The first line reads like a comment, but it is forcing Windows PowerShell to require 
a minimum version. this way, you guarantee that the script won’t fail in the middle 
of its execution when some new, non-present feature is needed.

the second line will clear the $Error array. Being global, you usually prefer to start 
the script with an empty error collection that does not contain the previous ones.

Finally, the Strict Mode. This should be mandatory in every script (and should be the 
default, in my opinion…but it is not).

mailto:JC@company.com


 Using more than two input parameters CHAPTER 8 257

This approach will find many errors in your script and will save you many work 
hours! It will catch typos, undefined variables, bad calls, non-existing properties, 
and so on. take a look at its documentation.

You should create a template file with all these lines, and copy and paste and edit 
accordingly, every time you need them in a new script. But you can also use the 
ISE Snippets in Windows PowerShell 4.0. Define a new snippet with these lines, and 
you’ll have them handy, just pressing Ctrl-J.  See Get-Help *snippet* …y. 

Using more than two input parameters

When using more than two input parameters, I consider it a best practice to modify the way 
in which the function is structured. This modification is more of a visual change that makes 
the function easier to read. In the basic function pattern shown here, the function accepts 
three input parameters. When considering the default values and type constraints, the 
parameters that begin to string along are fairly long. Moving the parameters to the inside of 
the function body highlights the fact that they are input parameters and makes them easier 
to read, understand, and maintain.

Function Function-Name 
{ 
  Param( 
        [int]$Parameter1, 
        [String]$Parameter2 = "DefaultValue", 
        $Parameter3 
       ) 
#Function code goes here 
} #end Function-Name

An example of a function that uses three input parameters is the Get-DirectoryListing 
function, the complete text of which follows. Due to the type constraints, default values, and 
parameter names, the function signature can be rather cumbersome to include on a single 
line, as shown here:

Function Get-DirectoryListing (String]$Path,[String]$Extension = "txt",[Switch]$Today)

If the number of parameters is increased to four or if a default value for the −path param-
eter is desired, the signature can easily scroll to two lines. Use of the Param statement inside 
the function body also provides the ability to specify input parameters to a function.

Following the Function keyword and function name, the Param keyword is used to identify 
the parameters for the function. Each parameter must be separated by a comma, and all 
parameters must be surrounded with a set of smooth parentheses. If you want to assign a 



 258 CHAPTER 8 Designing the script

default value for a parameter, such as the string .txt value for the Extension parameter in the 
Get-DirectoryListing function, you can do a straight value assignment followed by a comma.

In the Get-DirectoryListing function, the Today parameter is a switched parameter. When it 
is supplied to the function, only files written to since midnight on the day the script is run are 
displayed. If the Today parameter is not supplied, all files matching the extension in the folder 
are displayed. The Get-DirectoryListingToday.ps1 script is shown here.

Get-DirectoryListingtoday.ps1

Function Get-DirectoryListing 

{ 

 Param( 

       [String]$Path, 

       [String]$Extension = "txt", 

       [Switch]$Today 

      ) 

 If($Today) 

   { 

    Get-ChildItem -Path $path\* -include *.$Extension | 

    Where-Object { $_.LastWriteTime -ge (Get-Date).Date } 

   } 

 ELSE  

  { 

   Get-ChildItem -Path $path\* -include *.$Extension 

  } 

} #end Get-DirectoryListing 

 

# *** Entry to script *** 

Get-DirectoryListing -p c:\fso –t

IMPORTANT As a best practice, you should avoid creating functions that have a large 
number of input parameters because this can cause confusion. When you find yourself 
creating a large number of input parameters, ask yourself whether there is a better way to 
achieve your purpose. Using too many input parameters can be an indicator that you do 
not have a single-purpose function. In the Get-DirectoryListing function, I have a switched 
parameter that filters the files returned by the files written to today. If I write the script for 
production use instead of writing it simply to demonstrate multiple-function parameters, 
I create another function named, for example, Get-FilesByDate. In this function, I have a 
Today switch and a Date parameter to allow a selectable date for the filter. This technique 
of using multiple parameters allows you to separate data-gathering from the filtering 
functionality. See the section titled “Using functions to provide ease of modification” later 
in this chapter for more discussion of this technique.



 Using functions to encapsulate business logic CHAPTER 8 259

Using functions to encapsulate business logic

Script writers need to be concerned with two kinds of logic. The first is program logic, and the 
second is business logic. Program logic is the way the script works, the order in which tasks 
need to be done, and the requirements of code used in the script. An example of program 
logic is the requirement to open a connection to a database before querying the database.

Business logic is a set of rules that is a requirement of the business but not necessarily a 
requirement of the program or script. The script can often operate just fine regardless of the 
particulars of the business rule. If the script is designed properly, it should operate well no 
matter what is supplied for the business rules.

In the BusinessLogicDemo.ps1 script, a function named Get-Discount is used to calculate 
the discount to be granted to the total amount. Encapsulating the business rules for the dis-
count into a function works well as long as the contract between the function and the calling 
code does not change. You can drop any type of convoluted discount schedule between the 
curly brackets of the Get-Discount function that the business requests, including database 
calls to determine on-hand inventory, time of day, day of week, and total sales volume for the 
month, as well as the buyer’s loyalty level and the square root of some random number that is 
used to determine the instant discount rate.

So, what is the contract with the function? The contract with the Get-Discount function 
states, “If you give me a rate number as a type of System.Double and a total as an integer, I 
will return to you a number that represents the total discount to be applied to the sale.” As 
long as you adhere to that contract, you never need to modify the code.

The Get-Discount function begins with the Function keyword, the name of the function, 
and the definition for two input parameters. The first input parameter is the −rate parameter, 
which is constrained to be a System.Double class and permits you to supply decimal numbers. 
The second input parameter is the −total parameter, which is constrained to be a System.
Integer and therefore does not allow decimal numbers. In the script block, the value of the −
total parameter is multiplied by the value of the −rate parameter. The result of this calculation 
is returned to the pipeline.

The Get-Discount function is shown here:

Function Get-Discount([double]$rate,[int]$total) 
{ 
  $rate * $total  
} #end Get-Discount

The entry point to the script assigns values to both the $total and $rate variables, as shown 
here:

$rate = .05 
$total = 100

The $discount variable is used to hold the result of the calculation from the Get-Discount 
function. When calling the function, it is a best practice to use full parameter names. This 



 260 CHAPTER 8 Designing the script

practice makes the code easier to read and helps make the code immune to unintended 
problems if the function signature changes.

$discount = Get-Discount -rate $rate -total $total

IMPORTANT The signature of a function is the order and names of the input parameters. 
If you typically supply values to the signature via positional parameters and the order of 
the input parameters changes, the code fails or, worse yet, produces inconsistent results. 
If you typically call functions via partial parameter names and an additional parameter is 
added, the script fails due to difficulty with the disambiguation process. Obviously, you 
should take this into account when first writing the script and the function, but the prob-
lem can arise months or years later when making modifications to the script or calling the 
function via another script.

The remainder of the script produces output for the screen. The results of running the 
script are shown here:

Total: 100 
Discount: 5 
Your Total: 95

The complete text of the BusinessLogicDemo.ps1 script is shown here.

BusinessLogicDemo.ps1

Function Get-Discount 

{

 Param ([double]$rate,[int]$total) 

 $rate * $total  

} #end Get-Discount 

 

 $rate = .05 

$total = 100 

$discount = Get-Discount -rate $rate -total $total 

"Total: $total" 

"Discount: $discount" 

"Your Total: $($total-$discount)"

Business logic does not have to be related to business purposes. Business logic is anything 
arbitrary that does not affect the running of the code. In the FindLargeDocs.ps1 script, there 
are two functions. The first function, named Get-Doc, is used to find document files (files with 
an extension of .doc, .docx, or .dot) in a folder that is passed to the function when it is called. 
When used with the Get-ChildItem cmdlet, the recurse switch causes Get-Doc to look in the 



 Using functions to provide ease of modification CHAPTER 8 261

present folder as well as to look within child folders. This is a stand-alone function and has no 
dependency on other functions.

The LargeFiles piece of code is a filter. A filter is a type of special-purpose function that 
uses the Filter keyword rather than the Function keyword when it is created. The complete 
FindLargeDocs.ps1 script is shown here.

FindLargeDocs.ps1

Function Get-Doc 

{ 

 Param ($path) 

 Get-ChildItem -Path $path -include *.doc,*.docx,*.dot -recurse 

} #end Get-Doc 

 

Filter LargeFiles($size) 

{ 

  $_ | Where-Object length -ge $size  

} #end LargeFiles 

 

Get-Doc("C:\FSO") |  LargeFiles 1000 

Using functions to provide ease of modification

It is a truism that a script is never finished. Something else can always be added to a script: a 
change that will improve it or additional functionality that someone requests. When a script is 
written as one long piece of inline code without recourse to functions, it can be rather tedious 
and error prone during modifications.

An example of an inline script is the InLineGetIPDemo.ps1 script. The first line 
of code uses the Get-WmiObject cmdlet to retrieve the instances of the Win32_
NetworkAdapterConfiguration WMI class that IP enabled. The results of this WMI query are 
stored in the $IP variable. This line of code is shown here:

$IP = Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $true"

After the WMI information is obtained and stored, the remainder of the script prints infor-
mation to the screen. The IPAddress, IPSubNet, and DNSServerSearchOrder properties are all 
stored in an array. This example is interested in only the first IP address and therefore prints 
element 0, which always exists if the network adapter has an IP address. This section of the 
script is shown here:

"IP Address: " + $IP.IPAddress[0] 
"Subnet: " + $IP.IPSubNet[0] 
"GateWay: " + $IP.DefaultIPGateway 
"DNS Server: " + $IP.DNSServerSearchOrder[0] 
"FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain



 262 CHAPTER 8 Designing the script

When the script is run, it produces output similar to the following:

IP Address: 192.168.2.5 
Subnet: 255.255.255.0 
GateWay: 192.168.2.1 
DNS Server: 192.168.2.1 
FQDN: Windows 8.nwtraders.com

The complete InLineGetIPDemo.ps1 script is shown here.

InLineGetIPDemo.ps1

$IP = Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = 

$true" 

"IP Address: " + $IP.IPAddress[0] 

"Subnet: " + $IP.IPSubNet[0] 

"GateWay: " + $IP.DefaultIPGateway 

"DNS Server: " + $IP.DNSServerSearchOrder[0] 

"FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain

With just a few modifications to the script, a great deal of flexibility can be obtained. The 
modifications, of course, involve moving the inline code into functions. As a best practice, 
a function should be narrowly defined and should encapsulate a single purpose. While it is 
possible to move the entire previous script into a function, you do not have as much flexibil-
ity. Two purposes are expressed in the script. The first purpose is obtaining the IP information 
from WMI, and the second purpose is formatting and displaying the IP information. It is best 
to separate the gathering and displaying processes from one another because they are logi-
cally two different activities.

To convert the InLineGetIPDemo.ps1 script into a script that uses a function, you need 
only to add the Function keyword, give it a name, and surround the original code with a pair 
of curly brackets. The transformed script is now named GetIPDemoSingleFunction.ps1 and is 
shown here.

GetIPDemoSingleFunction.ps1

Function Get-IPDemo 

{ 

 $IP = Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = 

$true" 

 "IP Address: " + $IP.IPAddress[0] 

 "Subnet: " + $IP.IPSubNet[0] 

 "GateWay: " + $IP.DefaultIPGateway 

 "DNS Server: " + $IP.DNSServerSearchOrder[0] 

 "FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain 

} #end Get-IPDemo 

 



 Using functions to provide ease of modification CHAPTER 8 263

# *** Entry Point To Script *** 

 

Get-IPDemo

So, if you go to all of the trouble to transform the inline code into a function, what do you 
gain? By making this single change, you gain the following benefits:

■■ Easier to read

■■ Easier to understand

■■ Easier to reuse

■■ Easier to troubleshoot

The script is easier to read because you do not actually need to read each line of code to 
see what it does. You see a function that obtains the IP address, which is called from outside 
the function. That is all the script accomplishes.

The script is easier to understand because what you see is a function that obtains the IP 
address. If you want to know the details of that operation, you read that function. If you are 
not interested in the details, you can skip that portion of the code.

The script is easier to reuse because you can dot-source the script as shown here. When 
the script is dot-sourced, all of the executable code in the script is run. As a result, the follow-
ing output is displayed because each of the scripts prints information:

IP Address: 192.168.2.5 
Subnet: 255.255.255.0 
GateWay: 192.168.2.1 
DNS Server: 192.168.2.1 
FQDN: Windows 8.nwtraders.com 
 
 Windows 8 free disk space on drive C: 
    48,767.16 MegaBytes 
 
This OS is version 6.0.6001

The DotSourceScripts.ps1 script is shown here. As you can see, this script provides you with 
a certain level of flexibility to choose the information required, and it also makes it easy to 
mix and match the required information. If each of the scripts is written in a more standard 
fashion and the output is standardized, the results will be more impressive. As it is, three lines 
of code produce an exceptional amount of useful output that can be acceptable in a variety 
of situations.

DotSourceScripts.ps1

. C:\BestPracticesBook\GetIPDemoSingleFunction.ps1 

. C:\BestPracticesBook\Get-FreeDiskSpace.ps1 

. C:\BestPracticesBook\Get-OperatingSystemVersion.ps1



 264 CHAPTER 8 Designing the script

The GetIPDemoSingleFunction.ps1 script is easier to troubleshoot in part because it is 
easier to read and understand. In addition, when a script contains multiple functions, you can 
test one function at a time, which allows you to isolate a piece of problematic code.

A better way to work with the function is to consider what the function is actually doing. 
There are two functions in the FunctionGetIPDemo.ps1 script. The first connects to WMI, 
which returns a management object. The second function formats the output. These are two 
completely unrelated tasks. The first task gathers data, and the second task presents informa-
tion. The FunctionGetIPDemo.ps1 script is shown here.

Function Get-IPObject 

{ 

 Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $true" 

} #end Get-IPObject 

 

Function Format-IPOutput($IP) 

{ 

 "IP Address: " + $IP.IPAddress[0] 

 "Subnet: " + $IP.IPSubNet[0] 

 "GateWay: " + $IP.DefaultIPGateway 

 "DNS Server: " + $IP.DNSServerSearchOrder[0] 

 "FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain 

} #end Format-IPOutput 

 

# *** Entry Point To Script 

 

$ip = Get-IPObject 

Format-IPOutput($ip)

By separating the data-gathering and presentation activities into different functions, 
additional flexibility is gained. You can easily modify the Get-IPObject function to look for 
network adapters that are not IP enabled. To do this, you must modify the −filter parameter 
of the Get-WmiObject cmdlet. Because you will most likely be interested only in network 
adapters that are IP enabled, it makes sense to set the default value of the input param-
eter to true. By default, the behavior of the revised function works exactly as it did prior to 
modification. The advantage is that you can now use the function and modify the objects 
returned by it. To do this, you supply $false when calling the function, as illustrated in the 
Get-IPObjectDefaultEnabled.ps1 script.

Get-IPObjectDefaultEnabled.ps1

Function Get-IPObject([bool]$IPEnabled = $true) 

{ 

 Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = 

$IPEnabled" 



 Using functions to provide ease of modification CHAPTER 8 265

} #end Get-IPObject 

 

Get-IPObject -IPEnabled $False

By separating the gathering of information from the presentation of information, you gain 
flexibility not only in the type of information that is gathered but also in the way the informa-
tion is displayed. When gathering network adapter configuration information from a network 
adapter that is not enabled for IP, the results are not as impressive as information from an 
adapter that is enabled for IP. Therefore, you might decide to create a different display to 
list only the pertinent information. Because the function that displays information is differ-
ent than the one that gathers information, a change can easily be made that customizes the 
information that is most germane. The Begin section of the function is run once during the 
execution of the function. This is the perfect place to create a header for the output data. The 
Process section executes once for each item on the pipeline; in this example, it executes for 
each of the non−IP-enabled network adapters. The Write-Host cmdlet is used to easily write 
the data out to the Windows PowerShell console. The backtick t (“`t”) character is used to 
produce a tab.

NOTE The backtick t character (`t) is a string character and, as such, works with cmdlets 
that accept string input.

The Get-IPObjectDefaultEnabledFormatNonIPOutput.ps1 script is shown here.

Get-IPObjectDefaultEnabledFormatNonIPOutput.ps1

Function Get-IPObject 

{ 

 Param ([bool]$IPEnabled = $true) 

 Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = 

$IPEnabled" 

} #end Get-IPObject 

 

Function Format-NonIPOutput 

{  

 Param ($IP) 

  Begin { "Index #  Description" } 

 Process { 

  ForEach ($i in $ip) 

  { 

   Write-Host $i.Index 't $i.Description 

  } #end ForEach 

 } #end Process 

} #end Format-NonIPOutPut 

 



 266 CHAPTER 8 Designing the script

$ip = Get-IPObject -IPEnabled $False 

Format-NonIPOutput($ip) 

You can use the Get-IPObject function to retrieve the network adapter configura-
tion. The Format-NonIPOutput and Format-IPOutput functions can then be used to for-
mat the displayed output. If you put the functions into a single script, you create the 
CombinationFormatGetIPDemo.ps1 script shown here.

CombinationFormatGetIPDemo.ps1

Function Get-IPObject 

{ 

 Param ([bool]$IPEnabled = $true) 

  Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = 

$IPEnabled" 

} #end Get-IPObject 

 

Function Format-IPOutput 

{ 

 Param ($IP) 

 "IP Address: " + $IP.IPAddress[0] 

 "Subnet: " + $IP.IPSubNet[0] 

 "GateWay: " + $IP.DefaultIPGateway 

 "DNS Server: " + $IP.DNSServerSearchOrder[0] 

 "FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain 

} #end Format-IPOutput 

 

Function Format-NonIPOutput 

{  

 Param ($IP) 

 Begin { "Index #  Description" } 

 Process { 

  ForEach ($i in $ip) 

  { 

   Write-Host $i.Index 't $i.Description 

  } #end ForEach 

 } #end Process 

} #end Format-NonIPOutPut 

 

# *** Entry Point *** 

$IPEnabled = $false 

$ip = Get-IPObject -IPEnabled $IPEnabled 

If($IPEnabled) { Format-IPOutput($ip) } 

ELSE { Format-NonIPOutput($ip) }  

 

INSIDE TRACK



 Using functions to provide ease of modification CHAPTER 8 267

Surprising behavior of return

James Craig Burley, Senior Software Development Engineer in Test
Microsoft Corporation

Our team is still coming up to speed on Windows PowerShell, and we 
recently “discovered” the surprising behavior that "return expr;" does 

not return the specified expr; to the caller, but merely “appends” expr; to 
the list of other objects that are already “returned.” These other objects are 
returned because they are uncaptured expressions that are evaluated during 
execution of the function body.

At first, this struck me as a design flaw in the language because every other 
language I’ve used has either required return to return a value,1 used a vari-
able name as a surrogate for the return value,2 or defaulted to returning the 
most recently computed expression and optionally allowed a return state-
ment to return the value.3 No other language has built up a list (or array) of 
computed expressions to which an explicitly returned expression is merely 
appended!

On second thought, I realize that this behavior is probably unavoidable in the 
general case, given the intersection of the functions-as-filters feature that 
I like, with the fact that Windows PowerShell is an interpreted language as 
illustrated here:

  function myfunction { 1; 2; 3; invoke-expression $a; }

This problem with return can perhaps be better appreciated by starting with 
the myfunction2 function listed here:

  function myfunction2 { 1; sleep 1; 2; sleep 1; 3; sleep 1; return 

4; } 

  foo2

When the myfunction2 function is run, you can see how the results are avail-
able dynamically: “1” is written to the console; after a second’s delay, “2” is 
written; and so on, until “4” is written and the function exits.

The only way to avoid having the first three (1, 2, 3) elements “returned” is for 
Windows PowerShell to recognize the return keyword when parsing (before 
running) the function and to prevent the first elements from being returned 

1   In C: float average(float a, float b) { float c = a * b; return c / 2.0; }.
2   In FORTRAN 77: FUNCTION AVERAGE(A,B); C = A*B; AVERAGE=C / 2.0; END.
3   In Common Lisp: (defun average (a b) (setf c (* a b)) (/ c 2.0)).



 268 CHAPTER 8 Designing the script

(produced) until the return statement or the end of the procedure is hit. 
Windows PowerShell then either replaces or returns them, respectively.

This scenario potentially leads to problems involving unpredictable control 
flow and expectations. At run time, until the interpreter knows whether a 
return is going to be executed, Windows PowerShell must save (but not pro-
duce) these uncaptured results. When it reaches a point where it is certain to 
either hit or not hit a return statement, it can then discard and stop saving the 
results or produce all saved results and continue producing new, uncaptured 
results. Such behavior is fairly surprising when encountered, but most code 
works as expected.

Yet, what happens when you throw in an Invoke-Expression cmdlet that 
might (or might not) attempt to expand to include execution of a return 
statement? Now the situation becomes more problematic! In the general 
case, Windows PowerShell cannot know what will be invoked until it executes 
that statement. The expression might or might not contain a return state-
ment, which will not be determined until just before the Invoke-Expression 
cmdlet is executed. Therefore, the mere presence of the Invoke-Expression 
cmdlet or its equivalent amounts to an unpredictable control-flow sequence 
that might or might not involve executing a return statement.

Having Windows PowerShell silently save up instead of produce uncaptured 
results (but optimize those cases in which no action is necessary) might seem 
like a temptingly good idea to meet traditional expectations of users of com-
puter languages. But is it really a good idea? Consider what might happen if 
the code that is executed on prompt delivery of uncaptured results affects 
the code path and/or variables leading up to the determination as to whether 
return is executed. For example:

  function bletch { 1; sleep 1; 2; sleep 1; 3; sleep 1; invoke-

expression $a; } 

  $a = "5;" 

  bletch | %{ if ($_ -eq 3) { $a = "return 4;" }; $_; }

Although this example is certainly contrived, the caller of bletch determines, 
only after seeing the third object produced by bletch, that the expression 
bletch is to invoke at the end of the sequence is a return 4; statement instead 
of a 5; statement.

Because bletch cannot reliably predict whether callers (consumers) rely on 
having uncaptured results or objects streamed to them as they are produced, 
bletch cannot simply withhold, or save up, those uncaptured objects so as to



 Using functions to provide ease of modification CHAPTER 8 269

change the state of the system (not just the Windows PowerShell interpreter 
but also files, registry settings, and so on). Bletch must produce/stream the 
uncaptured results to its consumer right away, as expected.

Therefore, there is also no way for Windows PowerShell to provide a state-
ment that means “wipe the slate clean and then return.” Uncaptured results 
are not being saved; they’re being produced (or passed back to the caller, 
who is the next object in the pipeline). Therefore, the preceding values are 
already out of the gate by the time Windows PowerShell realizes that there’s 
a return statement in the mix. Saving uncaptured results until Windows 
PowerShell knows whether they are to be produced or flushed defeats one 
of the primary advantages of using PowerShell—immediacy of results. In 
addition, saving uncaptured results breaks other code that depends on those 
results being streamed to determine the next steps for their producer.

Cool architecture thus leads to sometimes astonishing results. Windows 
PowerShell strikes me as a mix of Lisp-like expressiveness (Lisp-like languages 
tend to have the return value be the last expression evaluated by the func-
tion) and shell-like immediacy (print/produce results as you receive them), 
resulting in an unexpected and counterintuitive behavior for the return 
expression statement.

One workaround is simply to cast every uncaptured value (that is not to be 
returned to the caller) to [void]. That is, the function author must simply 
recognize and constantly be aware of the fact that the function is really a 
producer of objects and not merely the evaluator of some expression that 
ultimately returns a single monolithic value.

What if a function already contains a great deal of code that is simply too dif-
ficult to recapture in this way? Or what if the author of the function wants to 
ensure that only the final value is actually returned in case there are still some 
uncaptured results? The following function illustrates a workable solution.

(Although I’m not convinced that it’s exactly correct or as terse as it should 
be, it seems to work for basic cases.)

  function return-last { begin { $rtn = @{}; } process { $rtn = $_; 

} end { $rtn; } }

You can wrap your function’s code in another ampersand-prefixed pair of 
braces and then pipe that into the Return-Last function, as shown here:

  PS C:\> function foo2-last { &{ 1; sleep 1; 2; sleep 1; 3; sleep 

1; 4; }|  

return-last }



 270 CHAPTER 8 Designing the script

  PS C:\> foo2-last 

  4 

  PS C:\>

This technique discards all but the last object produced by the function’s 
inner statement body; on termination of that body, this technique returns 
(produces) the last (final) object it produced.

Or, as Louis Clausen, another Senior Software Development Engineer in Test, 
pointed out, a simple array-reference wrapper will suffice in lieu of using the 
Return-Last function:

   PS C:\Users\jcburley> function foo2-last-quick { @(&{ 1; sleep 

1; 2; sleep 1; 3; sleep 1; 4; })[-1] } 

  PS C:\Users\jcburley> foo2-last-quick 

  4 

  PS C:\Users\jcburley>

Of course, the caller can wrap the function in a simpler subset environment, 
as shown here:

  PS C:\Users\jcburley> @(foo2)[-1] 

  4 

  PS C:\Users\jcburley>.

Understanding filters

A filter is a special-purpose function that is used to operate on each object in a pipeline and 
is often used to reduce the number of objects that are passed along the pipeline. Typically, 
a filter does not use the –Begin or –End parameters that a function might need to use, so it 
is often thought of as a function that has only a process block. But then, many functions are 
written without using the –Begin or –End parameters, and some filters are written in such a 
way that they use the –Begin or –End parameters. The biggest difference between a function 
and a filter is a bit more subtle. When a function is used inside a pipeline, it actually halts the 
processing of the pipeline until the first element in the pipeline runs to completion. The func-
tion then accepts the input from the first element in the pipeline and begins its processing. 
When the processing in the function is completed, it then passes the results along to the next 
element in the script block. 

A function runs once for the pipelined data; however, a filter runs once for each piece of 
data that is passed over the pipeline. The short definition here is that a filter streams data 
when in a pipeline and a function does not, which can make a big difference in performance. 
To illustrate this point, you will examine a function and a filter that accomplish the same 
objectives.



 Understanding filters CHAPTER 8 271

In the MeasureAddOneFilter.ps1 script, an array of 50,000 elements is created by using the 
1..50000 syntax. (In Windows PowerShell 1.0, 50,000 was the maximum size of an array created 
in this manner. In Windows PowerShell 2.0, this ceiling is raised to the maximum size of an 
[Int32] 2146483647. The use of this size is dependent on memory.) This syntax is shown here:

PS C:\ > 1..[Int32]::MaxValue 
The '..' operator failed: Exception of type 'System.OutOfMemoryException' was thrown.. 
At line:1 char:4 
+ 1.. <<<< 2147483647 
    + CategoryInfo          : InvalidOperation: (:) [], RuntimeException 
    + FullyQualifiedErrorId : OperatorFailed

The array is then pipelined into the AddOne filter. The filter prints the “add one filter” string 
and then adds the number 1 to the current number on the pipeline. The length of time it 
takes to run the command is then displayed. On my computer, it takes about 2.6 seconds to 
run the MeasureAddOneFilter.ps1 script.

MeasureaddOneFilter.ps1

Filter AddOne 

{  

 "add one filter" 

  $_ + 1 

} 

 

Measure-Command { 1..50000 | addOne }

The function version is shown next. In a similar fashion as the MeasureAddOneFilter.ps1 
script, this version creates an array of 50,000 numbers and pipelines the results to the AddOne 
function. The “Add One Function” string is displayed. An automatic variable named $input is 
created when pipelining input to a function. The $input variable is an enumerator and not just 
a plain array. It has a MoveNext method that can be used to move to the next item in the col-
lection. Because $input is not a plain array, you cannot index directly into it—$input[0] will fail. 
To retrieve a specific element, you can use the $input.current property. It takes 4.3 seconds to 
run the following script on my computer, which is almost twice as long as running the filter.

MeasureaddOneFunction.ps1

Function AddOne 

{   

  "Add One Function" 

  While ($input.moveNext()) 

   { 

     $input.current + 1 

   } 

} 

 

Measure-Command { 1..50000 | addOne }



 272 CHAPTER 8 Designing the script

What makes the filter so much faster than the function in this example? The filter runs 
once for each item on the pipeline, as shown here:

add one filter 
2 
add one filter 
3 
add one filter 
4 
add one filter 
5 
add one filter 
6

The DemoAddOneFilter.ps1 script is shown here.

DemoaddOneFilter.ps1

Filter AddOne 

{  

 "add one filter" 

  $_ + 1 

} 

 

1..5 | addOne

The AddOne function runs to completion once for all of the items in the pipeline. This 
approach effectively stops the processing in the middle of the pipeline until all of the ele-
ments of the array are created. All of the data is then passed to the function via the $input 
variable at one time. This type of approach does not take advantage of the streaming nature 
of the pipeline, which in many instances is more memory efficient.

Add One Function 
2 
3 
4 
5 
6

The DemoAddOneFunction.ps1 script is shown here.

DemoaddOneFunction.ps1

Function AddOne 

{   

  "Add One Function" 

  While ($input.moveNext()) 

   { 

     $input.current + 1 

   } 



 Understanding filters CHAPTER 8 273

} 

 

1..5 | addOne

To close this performance issue between functions and filters when used in a pipeline, 
you can write your function in such a manner that it behaves like a filter. To do this, you must 
explicitly call the process block. When you use the process block, you are also able to use the 
$_ automatic variable instead of being restricted to using $input. When you do this, the script 
looks like DemoAddOneR2Function.ps1, the results of which are shown here:

add one function r2 
2 
add one function r2 
3 
add one function r2 
4 
add one function r2 
5 
add one function r2 
6

The complete DemoAddOneR2Function.ps1 script is shown here.

DemoaddOner2Function.ps1

Function AddOneR2 

{  

   Process {  

   "add one function r2" 

   $_ + 1 

  } 

} #end AddOneR2 

 

1..5 | addOneR2

So, what does using an explicit process block do to performance? When run on my com-
puter, it takes about 2.6 seconds, which is virtually the same amount of time that it takes the 
filter. The MeasureAddOneR2Function.ps1 script is shown here.

MeasureaddOner2Function.ps1

Function AddOneR2 

{  

   Process {  

   "add one function r2" 

   $_ + 1 

  } 



 274 CHAPTER 8 Designing the script

} #end AddOneR2 

 

Measure-Command {1..50000 | addOneR2 }

Another reason for using filters is that they visually stand out and therefore improve read-
ability of the script. The typical pattern for a filter is shown here:

Filter FilterName 
{ 
 #insert code here 
}

The HasMessage filter found in the FilterHasMessage.ps1 script begins with the Filter 
keyword and the name of the filter, which is HasMessage. Inside the script block (the curly 
brackets), the $_ automatic variable is used to provide access to the pipeline. The $_ variable is 
sent to the Where-Object cmdlet, which performs the filter. In the calling script, the results of 
the HasMessage filter are sent to the Measure-Object cmdlet, which tells the user how many 
events in the application log have a message attached to them. The FilterHasMessage.ps1 
script is shown here.

FilterhasMessage.ps1

Filter HasMessage 

{ 

 $_ | 

 Where-Object { $_.message } 

} #end HasMessage 

 

Get-WinEvent -LogName Application | HasMessage | Measure-Object

Just because the Filter has an implicit process block does not prevent you from using the 
Begin, Process, and End script block explicitly. In the FilterToday.ps1 script, a filter named 
IsToday is created. To make the filter a stand-alone entity with no external dependencies, such 
as the passing of a date time object to it, the filter needs to obtain the current date. However, 
if the call to the Get-Date cmdlet is done inside the Process block, the filter continues to work, 
but the call to Get-Date is made once for each object found in the Input folder. If there are 
25 items in the folder, the Get-Date cmdlet is called 25 times. When you want a procedure to 
occur only once in the processing of the filter, you can place the procedure in a Begin block, 
which is called only once. The Process block is called once for each item in the pipeline. If you 
want any postprocessing to take place (such as printing a message stating how many files are 
found today), the postprocessing is placed in the End block of the filter. The FilterToday.ps1 
script is shown here.

Filtertoday.ps1

Filter IsToday 

{ 



 Understanding filters CHAPTER 8 275

 Begin {$dte = (Get-Date).Date} 

 Process { $_ |  

           Where-Object { $_.LastWriteTime -ge $dte } 

         } 

} 

 

Get-ChildItem -Path C:\fso | IsToday

NOTES FROM THE FIELD

Mark tabdilio, Ph.D., Data Mining Scientist
Microsoft SQL Server MVP

As a general pattern, I have found it helpful to first apply the Windows 
PowerShell interactive command line and build any possible cases for further 

scripting. as a general practice, I prefer to have fewer rather than more programs: 
simplicity triumphs complexity. this case study illustrates an example of these prin-
ciples by using a three-phase process applied to coding the SaS analytics language.

In this story, I followed three independent groups of SaS analytics consultants 
who had collectively created several thousand SAS program files (saved with a 
.SAS extension in text format). The client shared justifiable concern at the pro-
liferation of this production code, and I offered a plan.  In phase one, I used the 
Windows PowerShell command line (starting with get-childitem) to audit the 
entire complexity and organize the results in Excel tables for management. We used 
these results to organize this code corpus from a high level and define our next 
objectives.

In phase two, I wrote a series of PowerShell command-line commands (such as 
select-string) to help identify similar SAS programs. I could keep output or simply 
read the SAS code. Many of these thousands of files turned out to be versions of 
the same code, a looser version of source control (“looser” because there was no 
organized metadata).  I did not read thousands of files, but I was able to focus my 
energy.

Phase three included organizing large groups of code into archives, while iden-
tifying the few dozen SaS programs whose logic would be needed for ongoing 
production use. In this final phase, I was working mostly in SAS to streamline the 
readability, consolidate similar function, and improve performance.  Only at this 
phase did I justify using more than just single-line Windows PowerShell com-
mands. I applied techniques such as changing file dates and search and replace text 
within files. I even leveraged the SAS language to create some Windows PowerShell 
scripts (output to text files from SAS). Using SAS opens the option of leveraging the 



 276 CHAPTER 8 Designing the script

SaS/Macro language or content from SaS datasets or catalogs to generate Windows 
PowerShell script files. Granted, most of the phase-three work required manual 
editing, but Windows PowerShell helped automate (for example) standardizing SAS 
libname references and updating connection strings to SQL Server.

all three phases resulted in Windows PowerShell code and coding techniques that 
could be used in future projects. Simple Windows PowerShell command line was 
sufficient to harness metadata information on thousands of code files in hundreds 
of directories. More complicated Windows PowerShell scripts were applied selec-
tively to the final group of a few dozen files. This pattern echoes an important 
message for this book:  Use simpler Windows PowerShell in a complex external 
environment, and more complex PowerShell in simpler subset environment.

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous examples of using functions in Windows PowerShell.

■■ The Microsoft Fix It blog at http://blogs.technet.com/fixit4me/default.aspx provides 
numerous examples of self-help webpages.

■■ Brandon Shell’s website at http://bsonposh.com/ has a variety of Windows PowerShell 
tips and tricks as well as a good discussion of some of its pitfalls. 

■■ All scripts from this chapter are available via the TechNet Script Center Repository at 
http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40-Best-d9e16039.



   277

C H A P T E R  9

Designing help for scripts
■■ Adding help documentation to a script with single-line comments 

■■ Using multiple-line comment tags in Windows PowerShell 4.0 

■■ Using comment-based help

■■ The 13 rules for writing effective comments 

■■ Additional resources 

Although well-written code is easy to understand, easy to maintain, and easy to trouble-
shoot, it can still benefit from well-written help documentation. Well-written help 

documentation can list assumptions that were made when the script was written, such as 
the existence of a particular folder or the need to run as an administrator. It also documents 
dependencies, such as relying on a particular version of the Microsoft .NET Framework. 
Good documentation is a sign of a professional at work because it not only informs the user 
about how to get the most from your script, but it also explains how users can modify your 
script or even use your functions in other scripts. 

All production scripts should provide some form of help. But what is the best way to pro-
vide that help? In this chapter, you will look at proven methods for providing custom help in 
Windows PowerShell scripts.

When writing help documentation for a script, three tools are available to you. The first 
tool is the traditional comment that is placed within the script—the single-line comment 
that is available in Windows PowerShell 1.0. The second tool is the multiple-line comment 
that is introduced in Windows PowerShell 2.0. The third tool is the comment-based help, 
which was also introduced in Windows PowerShell 2.0. After describing how to use these 
tools, we will focus on the 13 rules for writing effective comments.

Adding help documentation to a script with  
single-line comments

Single-line comments are a great way to quickly add documentation to a script. They have 
the advantage of being simple to use and easy to understand. It is a best practice to provide 
illuminating information about confusing constructions or to add notes for future work 



 278 CHAPTER 9 Designing help for scripts

items in the script, and they can be used exclusively within your scripting environment. In this 
section, we will look at using single-line comments to add help documentation to a script. 

In the CreateFileNameFromDate.ps1 script, the header section of the script uses the 
comments section to explain how the script works, what it does, and the limitations of the 
approach. The CreateFileNameFromDate.ps1 script is shown here:

CreateFileNameFromDate.ps1

# ------------------------------------------------------------------------ 

# NAME: CreateFileNameFromDate.ps1 

# AUTHOR: ed wilson, Microsoft 

# DATE:12/15/2008 

# 

# KEYWORDS: .NET framework, io.path, get-date 

# file, new-item, Standard Date and Time Format Strings 

# regular expression, ref, pass by reference 

# 

# COMMENTS: This script creates an empty text file 

# based upon the date-time stamp. Uses format string 

# to specify a sortable date. Uses getInvalidFileNameChars 

# method to get all the invalid characters that are not allowed 

# in a file name. It assumes there is a folder named fso off the 

# c:\ drive. If the folder does not exist, the script will fail.  

# 

# ------------------------------------------------------------------------ 

Function GetFileName([ref]$fileName) 

{ 

 $invalidChars = [io.path]::GetInvalidFileNamechars()  

 $date = Get-Date -format s 

 $fileName.value = ($date.ToString() -replace "[$invalidChars]","-") + ".txt" 

} 

 

$fileName = $null 

GetFileName([ref]$fileName) 

new-item -path c:\fso -name $filename -itemtype file

In general, you should always provide information about how to use your functions. Each 
parameter, as well as underlying dependencies, must be explained. In addition to document-
ing the operation and dependencies of the functions, you should also include information 
that will be beneficial to those who must maintain the code. You should always assume that 
the person who maintains your code does not understand what the code actually does, there-
fore ensuring that the documentation explains everything. In the BackUpFiles.ps1 script, com-
ments are added to both the header and to each function to explain the logic and limitations 
of the functions, as shown in the BackUpFiles.ps1 script.



 Adding help documentation to a script with single-line comments  CHAPTER 9 279

BackUpFiles.ps1

# ------------------------------------------------------------------------ 

# NAME: BackUpFiles.ps1 

# AUTHOR: ed wilson, Microsoft 

# DATE: 12/12/2008 

# 

# KEYWORDS: Filesystem, get-childitem, where-object 

# date manipulation, regular expressions 

# 

# COMMENTS: This script backs up a folder. It will 

# back up files that have been modified within the past  

# 24 hours. You can change the interval, the destination,  

# and the source. It creates a backup folder that is named based upon 

# the time the script runs. If the destination folder does not exist, it 

# will be created. The destination folder is based upon the time the  

# script is run and will look like this: C:\bu\12.12.2008.1.22.51.PM. 

# The interval is the age in days of the files to be copied. 

# 

# --------------------------------------------------------------------- 

Function New-BackUpFolder($destinationFolder) 

{ 

 #Receives the path to the destination folder and creates the path to  

 #a child folder based upon the date / time. It then calls the New-Backup 

 #function while passing the source path, destination path, and interval 

 #in days.  

 $dte = get-date 

 #The following regular expression pattern removes white space, colon, 

 #and forward slash from the date and replaces with a period to create the 

 #backup folder name.  

 $dte = $dte.tostring() -replace "[:\s/]", "." 

 $backUpPath = "$destinationFolder" + $dte 

 $null = New-Item -path $backUpPath -itemType directory 

 New-Backup $dataFolder $backUpPath $backUpInterval 

} #end New-BackUpFolder 

 

Function New-Backup($dataFolder,$backUpPath,$backUpInterval) 

{ 

 #Does a recursive copy of all files in the data folder and filters out 

 #all files that have been written to within the number of days specified 

 #by the interval. Writes copied files to the destination and will create  

 #if the destination (including parent path) does not exist. Will overwrite 

 #if destination already exists. This is unlikely, however, unless the  

 #script is run twice during the same minute.  

 "backing up $dataFolder... check $backUppath for your files" 

 Get-Childitem -path $dataFolder -recurse | 



 280 CHAPTER 9 Designing help for scripts

 Where-Object { $_.LastWriteTime -ge (get-date).addDays(-$backUpInterval) } | 

 Foreach-Object { copy-item -path $_.FullName -destination $backUpPath -force } 

} #end New-BackUp 

 

# *** entry point to script *** 

 

$backUpInterval = 1 

$dataFolder = "C:\fso" 

$destinationFolder = "C:\BU\" 

New-BackupFolder $destinationFolder

NOTES FROM THE FIELD

Crafting-inspired cmdlet help

Dean tsaltas
Microsoft Scripting Guy Emeritus

In many ways, writing cmdlet help is no different from writing any other type of 
help documentation. If you want to do a really good job, you must “become your 

user.” This is easier said than done, of course—especially if you are the person who 
designed and implemented the cmdlets for which you are writing the help. Even 
though you just created the cmdlets, you can only guess at the mysterious ways in 
which some of your users will use and abuse your creations. that said, you must give 
it your all. rent the original Karate Kid and watch it for inspiration. Wax on and wax 
off before hitting the keyboard. after crafting just the right sentences to convey 
a concept, remember to ask yourself, “What ambiguity is left in what I just wrote? 
What can my user possibly still question after reading my text?” Picture yourself 
explaining the concept to your users, anticipate their questions, and answer them.

For example, suppose that your cmdlet creates some type of file and takes a name 
or a full path that includes a name as a parameter. anticipate the questions that 
users will have about that parameter: how long can it be, are any characters disal-
lowed, how are quotes within quotes handled, will the resultant file include an 
extension or should I include the appropriate extension in the parameter value? 
Don’t force your users to experiment to answer questions that you can easily antici-
pate and to which you can quickly provide answers. help them.



 Adding help documentation to a script with single-line comments  CHAPTER 9 281

Next, remember that a single example is worth a thousand support calls. You should 
aim high when it comes to examples. It is a best practice to brainstorm the top 
tasks that you think your users will be trying to accomplish. at a minimum, you 
need to include an example for each of those top tasks. after you have established 
that baseline, you should aim to provide an example that exercises each and every 
cmdlet parameter set. Even if you simply mine your test cases for bland examples, 
try to provide your users with a starting point. as you well know, it’s much easier 
to manipulate a working command line and get it to do what you want than it is to 
start from scratch.

It’s important to consider how your users will interact with cmdlet help. they will 
see it at a command prompt one full screen at a time. Because that first screen is 
like the “above-the-fold” section of a newspaper, make sure that you handle any 
really important issues right there in the detailed description. If you need certain 
privileges to use the cmdlet, let your users know that information up front. If there’s 
an associated provider that might be useful to them, tell your users about it early.

Don’t neglect the related Links section of your help. It’s very easy to simply list all 
of the cmdlets with the same noun, especially when you’re in a rush. Yet, are those 
truly the only cmdlets that are related to the one you’re writing about? For example, 
is there another cmdlet that your users must use to generate an object that your 
cmdlet can accept as a parameter value? If so, this other cmdlet also deserves a 
place in the related Links list. again, imagine having a discussion with your users. 
What other help can you suggest that they access?  also include links to this 
additional help and not just to the help that is obviously related based on cmdlet 
naming conventions.

My last bit of advice about writing cmdlet help is to write it as early as you can in 
the development cycle and get it in the hands of some pre-alpha users to start the 
feedback cycle quickly. The only way to develop excellent cmdlet help (or any other 
type of technical documentation) is through iterative improvements in response 
to feedback. Include numerous simple examples in the help as soon as you can. 
having someone use a cmdlet with no accompanying help is unlikely to help you 
understand what information is needed by your users to get the job done. however, 
providing someone with three examples will certainly elicit a user response as to 
what the fourth and fifth examples should be.



 282 CHAPTER 9 Designing help for scripts

LESSONS LEARNED

Pairing a comment with a closing curly bracket

I once spent an entire train ride in Germany that went from regensburg to 
Hamburg (nearly a five-hour trip) troubleshooting a problem with a script that 

occurred as the train left the central train station in regensburg. the script was to 
be used for the Windows 7 Resource Kit (Microsoft Press, 2009), and I had a deadline 
to meet. the problem occurred with an edit that I made to the original script, and 
I forgot to close the curly bracket. the error was particularly misleading because it 
pointed to a line in the very long script that was unrelated to the issue at hand. It 
was on this train ride that I learned the value of adding a comment to closing curly 
brackets, which is now something that I nearly always do.

Here is the closing curly bracket and associated comment. If you always type comments 
in the same pattern (for example, #end with no space), they are then easy to spot if you ever 
decide to write a script to search for them.

} #end Get-ieStartPage

You now need to create a function to assign new values to the Internet Explorer start 
pages. You can call the Set-ieStartPage function as shown here:

Function Set-ieStartPage() 
{

You must assign some values to a large number of variables. The first four variables are the 
same ones used in the previous function. (You could have made them script-level variables 
and saved four lines of code in the overall script, but then the functions would not have been 
stand-alone pieces of code.) The $value variable is used to hold the default home page, and 
the $aryvalues variable holds an array of secondary home page URLs. This section of the code 
is shown here:

  $hkcu = 2147483649 
  $key = "Software\Microsoft\Internet Explorer\Main" 
  $property = "Start Page" 
  $property2 = "Secondary Start Pages" 
  $value = "http://www.microsoft.com/technet/scriptcenter/default.mspx" 
  $aryValues = "http://social.technet.microsoft.com/Forums/en/ITCG/threads/", 
  "http://www.microsoft.com/technet/scriptcenter/resources/qanda/all.mspx"

After assigning values to variables, you can use the [WMICLASS] type accelerator to create 
an instance of the stdRegProv WMI class. This same line of code is used in the Get-ieStartPage 
function and is shown here:

  $wmi = [wmiclass]"\\$computer\root\default:stdRegProv"



 Adding help documentation to a script with single-line comments  CHAPTER 9 283

You can now use the SetStringValue method to set the value of the string. The 
SetStringValue method takes four values. The first is the numeric value representing the 
registry hive to which to connect. The next is the string for the registry key. The third position 
holds the property to modify, and the last is a string representing the new value to assign, as 
shown here:

  $rtn = $wmi.SetStringValue($hkcu,$key,$property,$value)

Next, you can use the SetMultiStringValue method to set the value of a multistring 
registry key. This method takes an array in the fourth position. The signature of the 
SetMultiStringValue method is similar to the SetStringValue signature. The only difference is 
that the fourth position needs an array of strings and not a single value as shown here:

  $rtn2 = $wmi.SetMultiStringValue($hkcu,$key,$property2,$aryValues)

Now, you can print the value of the ReturnValue property. The ReturnValue property con-
tains the error code from the method call. A zero means that the method worked (no runs, no 
errors), and anything else means that there was a problem, as shown here:

  "Setting $property returned $($rtn.returnvalue)" 
  "Setting $property2 returned $($rtn2.returnvalue)" 
} #end Set-ieStartPage

You are now at the entry point to the script. You must first get the starting values and then 
set them to the new values that you want to configure. If you want to re-query the registry to 
ensure that the values took effect, you can simply call the Get-ieStartPage function again, as 
shown here:

if($get) {Get-ieStartpage} 
if($set){Set-ieStartPage}

The complete GetSetieStartPage.ps1 script is shown here.

GetSetieStartPage.ps1

Param([switch]$get,[switch]$set,$computer="localhost") 

$Comment = @" 

NAME: GetSetieStartPage.ps1 

AUTHOR: ed wilson, Microsoft 

DATE: 1/5/2009 

 

KEYWORDS: stdregprov, ie, [wmiclass] type accelerator, 

Hey Scripting Guy 

COMMENTS: This script uses the [wmiclass] type accelerator 

and the stdregprov to get the ie start pages and to set the 

ie start pages. Using ie 7 or better you can have multiple 

start pages. 

 

"@ #end comment 



 284 CHAPTER 9 Designing help for scripts

Function Get-ieStartPage() 

{ 

$Comment = @" 

FUNCTION: Get-ieStartPage  

Is used to retrieve the current settings for Internet Explorer 7 and greater. 

The value of $hkcu is set to a constant value from the SDK that points 

to the Hkey_Current_User. Two methods are used to read 

from the registry because the start page is single valued and 

the second start page's key is multi-valued. 

 

"@ #end comment 

 $hkcu = 2147483649 

 $key = "Software\Microsoft\Internet Explorer\Main" 

 $property = "Start Page" 

 $property2 = "Secondary Start Pages" 

 $wmi = [wmiclass]"\\$computer\root\default:stdRegProv" 

 ($wmi.GetStringValue($hkcu,$key,$property)).sValue 

 ($wmi.GetMultiStringValue($hkcu,$key, $property2)).sValue 

} #end Get-ieStartPage 

 

Function Set-ieStartPage() 

{ 

$Comment = @" 

FUNCTION: Set-ieStartPage  

Allows you to configure one or more home pages for IE 7 and greater.  

The $aryValues and the $Value variables hold the various home pages. 

Specify the complete URL ex: "http://www.ScriptingGuys.Com." Make sure 

to include the quotation marks around each URL.  

 

"@ #end comment 

  $hkcu = 2147483649 

  $key = "Software\Microsoft\Internet Explorer\Main" 

  $property = "Start Page" 

  $property2 = "Secondary Start Pages" 

  $value = "http://www.microsoft.com/technet/scriptcenter/default.mspx" 

  $aryValues = "http://social.technet.microsoft.com/Forums/en/ITCG/threads/", 

  "http://www.microsoft.com/technet/scriptcenter/resources/qanda/all.mspx" 

  $wmi = [wmiclass]"\\$computer\root\default:stdRegProv" 

  $rtn = $wmi.SetStringValue($hkcu,$key,$property,$value) 

  $rtn2 = $wmi.SetMultiStringValue($hkcu,$key,$property2,$aryValues) 

  "Setting $property returned $($rtn.returnvalue)" 

  "Setting $property2 returned $($rtn2.returnvalue)" 

} #end Set-ieStartPage 



 Adding help documentation to a script with single-line comments  CHAPTER 9 285

# *** entry point to script  

if($get) {Get-ieStartpage} 

if($set){Set-ieStartPage}

Working with temporary folders
You can obtain the path to the temporary folder on the local computer in many different 
ways, including using the environmental PS drive. This example uses the static GetTempPath 
method from the System.Io.Path .NET Framework class. The GetTempPath method returns the 
path to the temporary folder, which is where you will store the newly created text file. You 
hold the temporary folder path in the $outputPath variable as shown here:

 $outputPath = [io.path]::GetTempPath()

You decide to name your new text file after the name of the script. To do this, you need 
to separate the script name from the path in which the script is stored. You can use the 
 Split-Path function to perform this surgery. The −leaf parameter instructs the cmdlet to 
return the script name. If you want the directory path that contains the script, you can use the 
 − parent parameter. You put the Split-Path cmdlet inside a pair of parentheses because you 
want that operation to occur first. When the dollar sign is placed in front of the parentheses, 
it creates a subexpression that executes the code and then returns the name of the script. You 
can use .ps1 as the extension for your text file, but that can become a bit confusing because it 
is the extension for a script. Therefore, you can simply add a .txt extension to the returned file 
name and place the entire string within a pair of quotation marks.

You can use the Join-Path cmdlet to create a new path to your output file. The new path 
is composed of the temporary folder that is stored in the $outputPath variable and the file 
name you created using Split-Path. You combine these elements by using the Join-Path 
cmdlet. You can use string manipulation and concatenation to create the new file path, but it 
is much more reliable to use the Join-Path and Split-Path cmdlets to perform these types of 
operations. This section of the code is shown here:

 Join-Path -path $outputPath -child "$(Split-Path $script -leaf).txt" 
} #end Get-FileName

You need to decide how to handle duplicate files. You can prompt the user by saying that 
a duplicate file exists, which looks like the code shown here:

      $Response = Read-Host -Prompt "$outputFile already exists. Do you wish to delete 
it <y / n>?" 
      if($Response -eq "y") 
        { Remove-Item $outputFile | Out-Null } 
     ELSE { "Exiting now." ; exit }



 286 CHAPTER 9 Designing help for scripts

You can implement some type of naming algorithm that makes a backup of the duplicate 
file by renaming it with an .old extension, which looks like the code shown here:

           if(Test-Path -path "$outputFile.old") { Remove-Item -Path "$outputFile.old" } 
           Rename-Item -path $outputFile -newname  "$(Split-Path $outputFile -leaf).old"

You can also simply delete the previously existing file, which is what I generally choose to 
do. The action you want to perform goes into the Remove-OutPutFile function. You begin the 
function by using the Function keyword, specifying the name of the function, and using the 
$outputFile variable for input to the function as shown here:

Function Remove-outputFile($outputFile) 
{

To determine whether the file exists, you can use the Test-Path cmdlet and supply the 
string contained in the $outputFile variable to the −path parameter. The Test-Path  cmdlet 
returns only a true or false value. When a file is not found, it returns a false value, which 
means that you can use the If statement to evaluate the existence of the file. If the file is 
found, you can perform the action in the script block. If the file is not found, the script block is 
not executed.  As shown here, the first command does not find the file, and false is returned. 
In the second command, the script block is not executed because the file cannot be located.

PS C:\> Test-Path c:\missingfile.txt 
False 
PS C:\> if(Test-Path c:\missingfile.txt){"found file"} 
PS C:\>

Inside the Remove-OutPutFile function, you can use the If statement to determine 
whether the file referenced by $outputFile already exists. If it does, it is deleted by using 
the  Remove-Item cmdlet. The information that is normally returned when a file is deleted is 
pipelined to the Out-Null cmdlet providing for a silent operation. This portion of the code is 
shown here:

  if(Test-Path -path $outputFile) { Remove-Item $outputFile | Out-Null } 
 
} #end Remove-outputFile

After you create the name for the output file and delete any previous output files that 
might be around, it is time to retrieve the comments from the script. To do this, you can 
create the Get-Comments function and pass it to both the $script variable and $outputFile 
variable as shown here:

Function Get-Comments($Script,$outputFile) 
{



 Using multiple-line comment tags in Windows PowerShell 4.0 CHAPTER 9 287

LESSONS LEARNED

Don’t mess with the worker section of the script

If I am going to gather data to pass to a function when writing a script, I generally 
like to encase the data in the same variable name that will be used both outside 

and inside the function. One reason for doing this is because it follows one of my 
best practices for script development: “Don’t mess with the worker section of the 
script.” In the Get-OutPutFile function, you are “doing work.” To change the function 
in future scripts requires that you edit the string literal value, whereby you run the 
risk of breaking the code because many methods have complicated constructors. If 
you are also trying to pass values to the method constructors that require escaping 
special characters, the risk of making a mistake becomes even worse. 

Using multiple-line comment tags in Windows 
PowerShell 4.0

Windows PowerShell 4.0 multiple-line comment tags make it easy to comment one or more 
lines in a script. These comment tags work in a similar fashion to here-strings or HTML tags 
in that, when you open a comment tag, you must also close the comment tag. In fact, the 
multiline comment character has been around since Windows PowerShell 2.0, so it is not new 
technology. 

Creating multiple-line comments with comment tags
The opening tag is the left angle bracket pound sign (<#), and the closing comment tag is 
the pound sign right angle bracket (#>). The pattern for the use of the multiline comment is 
shown here:

<# Opening comment tag 
First line comment  
Additional comment lines 
#> Closing comment tag

The use of the multiline comment is seen in the Demo-MultilineComment.ps1 script.

Demo-MultilineComment.ps1

<# 

Get-Command 

Get-Help 

#> 

"The above is a multiline comment"



 288 CHAPTER 9 Designing help for scripts

When the Demo-MultilineComment.ps1 script is run, the two cmdlets shown inside the 
comment tags are not run; the only command that runs is the one outside of the com-
ment block, which prints a string in the console window. The output from the Demo-
MultilineComment.ps1 script is as follows:

The above is a multiline comment

Multiline comment tags do not need to be placed on individual lines. It is perfectly permis-
sible to include the commented text on the line that supplies the comment characters. The 
pattern for the alternate multiline comment tag placement is shown here:

<# Opening comment tag First line comment 
Additional comment lines #> Closing comment tag

The alternate multiline comment tag placement is shown in MultilineDemo2.ps1.

MultilineDemo2.ps1

<# Get-Help  

   Get-Command #>  

"The above is a multiline comment"

NOTE As a best practice, I prefer to place multiline comment tags on their own individual 
lines. This format makes the code much easier to read, and it is easier to see where the 
comment begins and ends.

Creating single-line comments with comment tags
You can use the multiline comment syntax to comment a single line of code, with the advan-
tage being that you do not mix your comment characters. You can use a single comment 
pattern for all of the comments in the script, as shown here:

<# Opening comment tag First line comment #> Closing comment tag

An example of the single comment pattern in a script is shown in the MultilineDemo3.ps1 
script.

MultilineDemo3.ps1

<# This is a single comment #> 

"The above is a single comment"

When using the multiline comment pattern, it is important to keep in mind that anything 
placed after the end of the closing comment tag is parsed by Windows PowerShell. Only 
items placed within the multiline comment characters are commented out. However, multiline 
commenting behavior is completely different from using the pound sign (#) single-line com-
ment character. It is also a foreign concept to users of VBScript who are used to the behavior 



 Using comment-based help CHAPTER 9 289

of the single quote (‘) comment character in which anything after the character is commented 
out. A typical-use scenario that generates an error is illustrated in the following example:

<# ----------------------------- 
This example causes an error 
#> -----------------------------

If you need to highlight your comments in the manner shown in the preceding example, 
you need only to change the position of the last comment tag by moving it to the end of the 
line to remove the error. The modified comment is shown here:

<# --------------------------------- 
This example does not cause an error 
----------------------------------- #>

NOTE No space is required between the pound sign and the following character. I prefer 
to include the space between the pound sign and the following character as a concession 
to  readability.

The single pound sign (#) is still accepted for commenting, and there is nothing to prohibit 
its use. To perform a multiline comment using the single pound sign, you simply place a 
pound sign in front of each line that requires commenting. This pattern has the advantage 
of familiarity and consistency of behavior. The fact that it is also backward compatible with 
Windows PowerShell 1.0 is an added bonus.

# First commented line 
# additional commented line 
# last commented line 

Using comment-based help

Much of the intensive work of producing help information for your functions is removed 
when you use the comment-based help. To use the comment-based help, you place the 
help tags inside the block comment markers when you are writing your script. Writing help 
information for your function by employing the help tags allows for complete integration 
with the Get-Help cmdlet, thus providing a seamless user experience for anyone who uses 
your  functions–or your scripts. In fact, it is entirely possible that a Windows PowerShell script 
would have comment-based help, in addition to the functions contained within the script 
itself. It is a best practice that functions contained within a Windows PowerShell module 
contain comment-based help. In addition, help tags promote the custom user-defined func-
tion to the same status within Windows PowerShell as native cmdlets. The experience of using 
a custom user-defined function is no different than using a cmdlet, and to the user, there is 
indeed no need to distinguish among a custom function that is dot-sourced, loaded via a 



 290 CHAPTER 9 Designing help for scripts

module, or a native cmdlet. The help function tags and their associated meanings are shown 
in Table 9-1.

TABLE 9-1 Function help tags and meanings

Help Tag name Help Tag description

.Synopsis A very brief description of the function. It begins with a verb and informs the user 
about what the function does. It does not include the function name or how the 
function works. The function synopsis tag appears in the SYNOPSIS field of all 
help views.

.Description Two or three full sentences that briefly list everything that the function can do. It 
begins with “The <function name> function….” If the function can receive multiple 
objects or take multiple inputs, use plural nouns in the description. The descrip-
tion tag appears in the DESCRIPTION field of all help views.

.Parameter Brief and thorough. Describes what the function does when the parameter is used 
and what legal values are set for the parameter. The parameter tag appears in the 
PARAMETERS field only in the Detailed and Full help views.

.Example Illustrates use of the function with all of its parameters. The first example is the 
simplest, by showing only the required parameters. The last example is the most 
complex and should incorporate pipelining if appropriate. The example tag 
 appears only in the EXAMPLES field in the Example, Detailed, and Full help views.

.Inputs Lists the .NET Framework classes of objects that the function accepts as input. 
There is no limit to the number of input classes that you can list. The inputs tag 
appears only in the INPUTS field in the Full help view. 

.Outputs Lists the .NET Framework classes of objects that the function emits as output. 
There is no limit to the number of output classes that you can list. The outputs tag 
appears in the OUTPUTS field only in the Full help view.

.Notes Provides a place to list information that does not fit easily into the other sections. 
Notes can be special requirements required by the function, as well as author, 
title, version, and other information. The notes tag appears in the NOTES field only 
in the Full help view.

.Link Provides links to other help topics and Internet sites of interest. Because these 
links appear in a command window, they are not direct links. There is no limit to 
the number of links that you can provide. The link tag appears in the RELATED 
LINKS field in all help views. 

.Component The feature or technology that the function or script uses. Also refers to a related 
technology or feature.

.Role The user role for the help topic.

.Functionality The intended use of the function or script.

.ForwardHelpTargetName Redirects the help topic for a specific command. Provides ability to redirect to any 
help topic, including help topics for a function, script, cmdlet, or provider.

.ForwardHelpCategory Specifies the category of the item in the ForwardHelpTargetName. Valid val-
ues are: Alias, Cmdlet, HelpFile, Function, Provider, General, FAQ, Glossary, 
ScriptCommand, ExternalScript, Filter, or All. This tag helps to avoid conflicts when 
there are multiple commands with the same name.

.RemoteHelpRunSpace Specifies a session that contains the help topic. Accepts a variable containing a 
PSSession object. This tag is used by the Export-PSSession cmdlet.

.ExternalHelp Used when a function or script uses XML help files. 



 Using comment-based help CHAPTER 9 291

You do not need to supply values for all of the help tags. However, as a best practice, you 
should consider supplying the .synopsis and .example tags because they contain the most 
critical information needed when instructing someone about how to use the function.

An example of using help tags is shown in the GetWmiClassesFunction1.ps1 script. The 
help information provided by using the Get-Help cmdlet is exactly the same as the informa-
tion provided by the GetWmiClassesFunction.ps1 script. The difference occurs with the use of 
the help tags. There is no longer a need for the switched −help parameter due to incorpora-
tion of the code with the Get-Help cmdlet. When you no longer need to use a switched −help 
parameter, you also no longer need to test for the existence of the $help variable. By avoiding 
testing for the $help variable, your script can become much simpler.

The benefits of special help tags 

Several bonus features are provided by using the special help tags, includ-
ing the following:

■■ The name of the function is automatically displayed and is displayed in all 
help views.

■■ The syntax of the function is automatically derived from the parameters 
and is displayed in all help views.

■■ Detailed parameter information is automatically generated when the −full 
parameter of the Get-Help cmdlet is used.

■■ Common parameters information is automatically displayed when 
 Get-Help is used with the −detailed and −full parameters.

In the GetWmiClassesFunction1.ps1 script, the Get-WmiClasses function begins the help 
section with multiline comment block. The multiline comment block special characters begin 
with the left angle bracket followed by a pound sign (<#) and end with the pound sign fol-
lowed by the right angle bracket (#>). Everything between the multiline comment characters 
is considered to be commented out. Two special help tags are included: the .synopsis tag and 
the .example tag. The other help tags listed in Table 9-1 are not used for this function.

  <# 
    .SYNOPSIS  
      Displays a list of WMI Classes based upon a search criteria 
    .EXAMPLE 
     Get-WmiClasses -class disk -ns root\cimv2" 
     This command finds wmi classes that contain the word disk. The  
     classes returned are from the root\cimv2 namespace. 
  #>

After the GetWmiClassesFunction1.ps1 script is dot-sourced into the Windows 
PowerShell console, you can use the Get-Help cmdlet to obtain help information from the 



 292 CHAPTER 9 Designing help for scripts

Get-WmiClasses function. When the Get-Help cmdlet is run with the −full parameter, the help 
display shown in Figure 9-1 appears.

FIGURE 9-1 Full help obtained from the Get-WmiClasses function. 

The complete GetWmiClassesFunction1.ps1 script is shown here.

GetWmiClassesFunction1.ps1

Function Get-WmiClasses( 

                        $class=($paramMissing=$true), 

                        $ns="root\cimv2" 

                       ) 

{ 

<# 

    .SYNOPSIS  

      Displays a list of WMI Classes based upon a search criteria 

    .EXAMPLE 

     Get-WmiClasses -class disk -ns root\cimv2" 

     This command finds wmi classes that contain the word disk. The  

     classes returned are from the root\cimv2 namespace. 

#> 

  If($local:paramMissing) 

    { 

      throw "USAGE: Get-WmiClasses -class <class type> -ns <wmi namespace>" 



 Using comment-based help CHAPTER 9 293

    } #$local:paramMissing 

  "`nClasses in $ns namespace ...." 

  Get-WmiObject -namespace $ns -list |  

  where-object { 

                 $_.name -match $class -and ` 

                 $_.name -notlike ‘cim*'  

               } 

  # mred function 

} #end get-wmiclasses

If you intend to use the dot-source method to include functions into your working 
Windows PowerShell environment and modules, it makes sense to add the directory that 
contains your scripts to the path. You can add your function storage directory as a perma-
nent change by using the Windows Graphical User Interface (GUI) tools, or you can simply 
make the addition to your path each time you start Windows PowerShell by making the 
change via your Windows PowerShell profile. If you decide to add your function directory by 
using Windows PowerShell commands, you can use the Windows PowerShell environmen-
tal drive to access the system path variable and make the change. The code seen here first 
examines the path and then appends the C:\fso folder to the end of the path. Each directory 
that is added to the search path is separated by a semicolon. When you append a directory 
to the path, you must include that semicolon as the first item that is added. You can use the 
+= operator to append a directory to the end of the path. The last command checks the path 
once again to ensure that the change took place as intended.

PS C:\> $env:path 
C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32 
\Windows System Resource Manager\bin;C:\Windows\idmu\common;C:\Windows\system32 
\WindowsPowerShell\v1.0\ 
PS C:\> $env:path += ";C:\fso" 
PS C:\> $env:path 
C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32 
\Windows System Resource Manager\bin;C:\Windows\idmu\common;C:\Windows\system32 
\WindowsPowerShell\v1.0\;C:\fso

A change made to the path via the Windows PowerShell environmental drive is a tem-
porary change that lasts only for the length of the current PowerShell console session. The 
change takes effect immediately and therefore is a convenient method to quickly alter your 
current Windows PowerShell environment without making permanent changes to your sys-
tem environmental settings.

NOTE  I personally find the ability to access my scripts from the command line to be 
extremely useful, and I therefore add my script folder to my path environmental vari-
able via my profile. In this manner, I always have direct access to any of my scripts via a 
simple dot-sourcing technique. For more information about modifying your Windows 
PowerShell working environment via the profile, refer to Chapter 5, “Configuring the script 
 environment.”



 294 CHAPTER 9 Designing help for scripts

 A very powerful feature of modifying the path via the Windows PowerShell environmen-
tal drive is that the changes are applied immediately and are at once available to the current 
Windows PowerShell session. This means that you can add a directory to the path, dot-source 
a script that contains functions, and use the Get-Help cmdlet to display help information 
without the requirement of closing and opening Windows PowerShell. When a directory is 
appended to the search path, you can dot-source scripts from that directory without the need 
to type the entire path to that directory. The technique of modifying the path, dot-sourcing a 
directory, and using Get-Help is illustrated here:

PS C:\> $env:Path += ";C:\fso" 
PS C:\> . GetWmiClassesFunction1.ps1 
PS C:\> Get-Help Get-WmiClasses

Figure 9-2 displays the results of using the technique of adding a directory to the path, 
dot-sourcing a script that resides in the newly appended folder, and then calling the Get-Help 
cmdlet to retrieve information from the newly added functions.

FIGURE 9-2 By appending to the path, functions can easily be dot-sourced into the current Windows 
PowerShell environment.



 The 13 rules for writing effective comments  CHAPTER 9 295

The 13 rules for writing effective comments 

When adding documentation to a script, it is important that you do not introduce errors. If 
the comments and code do not match, there is a good chance that both are wrong. Make 
sure that when you modify the script, you also modify your comments. In this way, both the 
comments and the script refer to the same information.

Update documentation when a script is updated
It is easy to forget to update comments that refer to the parameters of a function when 
you add additional parameters to that function. In a similar fashion, it is easy to ignore the 
information contained inside the header of the script that refers to dependencies or assump-
tions within the script. Make sure that you treat both the script and the comments with the 
same level of attention and importance. In the FindDisabledUserAccounts.ps1 script, the 
comments in the header seem to apply to the script, but they also seem to miss the fact that 
the script is using the [ADSISearcher] type accelerator. In fact, the script is a modified script 
that was used to create a specific instance of the DirectoryServices.DirectorySearcher .NET 
Framework class and was recently updated. However, the comments were never updated. 
This oversight might make a user suspicious as to the accuracy of a perfectly useful script. The 
FindDisabledUserAccounts.ps1 script is shown here.

 FindDisabledUseraccounts.ps1

# ------------------------------------------------------------------------ 

# FindDisabledUserAccounts.ps1 

# ed wilson, 3/28/2008 

# 

# Creates an instance of the DirectoryServices DirectorySearcher .NET  

# Framework class to search Active Directory. 

# Creates a filter that is LDAP syntax that gets applied to the searcher 

# object. If we only look for class of user, then we also end up with 

# computer accounts as they are derived from user class. So we do a  

# compound query to also retrieve person. 

# We then use the findall method and retrieve all users. 

# Next we use the properties property and choose item to retrieve the 

# distinguished name of each user, and then we use the distinguished name 

# to perform a query and retrieve the UAC attribute, and then we do a  

# boolean to compare with the value of 2 which is disabled. 

# 

# ------------------------------------------------------------------------ 

#Requires -Version 2.0 

 

$filter = "(&(objectClass=user)(objectCategory=person))" 

$users = ([adsiSearcher]$Filter).findall() 



 296 CHAPTER 9 Designing help for scripts

 foreach($suser in $users) 

  { 

   "Testing $($suser.properties.item(""distinguishedname""))" 

   $user = [adsi]"LDAP://$($suser.properties.item(""distinguishedname""))" 

   

   $uac=$user.psbase.invokeget("useraccountcontrol") 

     if($uac -band 0x2)  

       { write-host -foregroundcolor red "`t account is disabled" }  

     ELSE  

       { write-host -foregroundcolor green "`t account is not disabled" } 

  } #foreach

add comments during the development process
When you are writing a script, make sure that you add the comments at the same time that 
you are doing the initial development. Do not wait until you have completed the script to 
begin writing your comments. When you make comments after writing the script, it is very 
easy to leave out details because you are now overly familiar with the script and those items 
that you looked up in documentation now seem obvious. If you add the comments at the 
same time that you write the script, you can then refer to these comments as you develop the 
script to ensure that you maintain a consistent approach. This procedure will help with the 
consistency of your variable names and writing style. The CheckForPdfAndCreateMarker 
.ps1 script illustrates this consistency problem. In reviewing the code, it seems that the script 
checks for PDF files, which also seems rather obvious from the name of the script. However, 
why is the script prompting to delete the files? What is the marker? The only discernable 
information is that I wrote the script back in December 2008 for a Hey Scripting Guy! article. 
Luckily, Hey Scripting Guy! articles explain scripts, so at least some documentation actually 
exists! The CheckForPdfAndCreateMarker.ps1 script is shown here.

CheckForPdfandCreateMarker.ps1

# ----------------------------------------------------------------------------------- 

# CheckForPdfAndCreateMarker.ps1 

# ed wilson, msft, 12/11/2008 

#  

# Hey Scripting Guy! 12/29/2008 

# ----------------------------------------------------------------------------------- 

$path = "c:\fso" 

$include = "*.pdf" 

$name = "nopdf.txt" 

if(!(Get-ChildItem -path $path -include $include -Recurse))  

  {  



 The 13 rules for writing effective comments  CHAPTER 9 297

    "No pdf was found in $path. Creating $path\$name marker file." 

    New-Item -path $path -name $name -itemtype file -force | 

    out-null 

  } #end if not Get-Childitem 

ELSE 

 { 

  $response = Read-Host -prompt "PDF files were found. Do you wish to delete <y> 

/<n>?" 

  if($response -eq "y") 

    { 

     "PDF files will be deleted." 

     Get-ChildItem -path $path -include $include -recurse | 

      Remove-Item 

    } #end if response 

  ELSE 

   {  

    "PDF files will not be deleted." 

   } #end else reponse 

 } #end else not Get-Childitem

Write for an international audience
When you write comments for your script, you should attempt to write for an international 
audience. You should always assume that users who are not overly familiar with the idioms 
of your native language will be reading your comments. In addition, writing for an interna-
tional audience makes it easier for automated software to localize the script documentation. 
Key points to keep in mind when writing for an international audience are to use a simple 
syntax and to use consistent employee standard terminology. Avoid slang, acronyms, and 
overly familiar language. If possible, have a colleague who is a non-native speaker review 
the documentation. In the SearchForWordImages.ps1 script, the comments explain what the 
script does and also its limitations, such as the fact that it was tested using only Microsoft 
Office Word 2007. The sentences are plainly written and do not use jargon or idioms. The 
SearchForWordImages.ps1 script is shown here.

SearchForWordImages.ps1

# ------------------------------------------------------------------------ 

# NAME: SearchForWordImages.ps1 

# AUTHOR: ed wilson, Microsoft  

# DATE: 11/4/2008 

# 

# KEYWORDS: Word.Application, automation, COM 

# Get-Childitem -include, Foreach-Object  

#



 298 CHAPTER 9 Designing help for scripts

# COMMENTS: This script searches a folder for doc and 

# docx files, opens them with Word and counts the  

# number of images embedded in the file. 

# It then prints out the name of each file and the  

# number of associated images with the file. This script requires 

# Word to be installed. It was tested with Word 2007. The folder must 

# exist or the script will fail.  

# 

# ------------------------------------------------------------------------ 

#The folder must exist and be followed with a trailing \* 

$folder = "c:\fso\*" 

$include = "*.doc","*.docx" 

$word = new-object -comobject word.application 

#Makes the Word application invisible. Set to $true to see the application. 

$word.visible = $false 

Get-ChildItem -path $folder -include $include | 

ForEach-Object ` 

{ 

 $doc = $word.documents.open($_.fullname) 

 $_.name + " has " + $doc.inlineshapes.count + " images in the file" 

} 

#If you forget to quit Word, you will end up with multiple copies running  

#at the same time.  

$word.quit()

Consistent header information
You should include header information at the top of each script. This header information 
should be displayed in a consistent manner and should be part of your company’s scripting 
standards. Typical information to be displayed is the title of the script, author of the script, 
date the script was written, version information, and additional comments. Version informa-
tion does not need to be more extensive than the major and minor versions. This information, 
as well as comments about what was added during the revisions, is useful for maintaining 
a version control for production scripts. An example of adding comments is shown in the 
WriteBiosInfoToWord.ps1 script.

WriteBiosInfotoWord.ps1

#============================================================================ 

#   

# NAME: WriteBiosInfoToWord.ps1 

#  

# AUTHOR: ed wilson , Microsoft  

# DATE  : 10/30/2008



 The 13 rules for writing effective comments  CHAPTER 9 299

# EMAIL: Scripter@Microsoft.com 

# Version: 1.0 

#  

# COMMENT: Uses the word.application object to create a new text document 

# uses the get-wmiobject cmdlet to query wmi 

# uses out-string to remove the "object nature" of the returned information 

# uses foreach-object cmdlet to write the data to the word document. 

#  

# Hey Scripting Guy! 11/11/2008 

#============================================================================ 

 

$class = "Win32_Bios" 

$path = "C:\fso\bios" 

 

#The wdSaveFormat object must be saved as a reference type.  

[ref]$SaveFormat = "microsoft.office.interop.word.WdSaveFormat" -as [type] 

 

$word = New-Object -ComObject word.application 

$word.visible = $true 

$doc = $word.documents.add() 

$selection = $word.selection 

$selection.typeText("This is the bios information") 

$selection.TypeParagraph() 

 

Get-WmiObject -class $class |  

Out-String | 

ForEach-Object { $selection.typeText($_) } 

$doc.saveas([ref] $path, [ref]$saveFormat::wdFormatDocument) 

$word.quit()

Document prerequisites
It is imperative that your comments include information about prerequisites for running the 
script as well as the implementation of nonstandard programs in the script. For example, if 
your script requires the use of an external program that is not part of the operating system, 
you need to include checks within the script to ensure that the program is available when it 
is called by the script itself. In addition to these checks, you should document the fact that 
the program is a requirement for running the script. If your script makes assumptions about 
the existence of certain directories, you should make a note of this fact. Of course, your script 
should use Test-Path to make sure that the directory exists, but you should still document this 
step as an important precondition for the script. 

An additional consideration is whether or not you create the required directory. If the 
script requires an input file, you should add a comment that indicates this requirement as well 



 300 CHAPTER 9 Designing help for scripts

as add a comment to check for the existence of the file prior to actually calling that file. It is 
also a good idea to add a comment indicating the format of the input file, because one of the 
most fragile aspects of a script that reads an input file is the actual formatting of that file. The 
ConvertToFahrenheit_include.ps1 script illustrates adding a note about the requirement of 
accessing the include file.

ConverttoFahrenheit_include.ps1

# ------------------------------------------------------------------------ 

# NAME: ConvertToFahrenheit_include.ps1 

# AUTHOR: ed wilson, Microsoft 

# DATE: 9/24/2008 

# EMAIL: Scripter@Microsoft.com 

# Version 2.0 

#   12/1/2008 added test-path check for include file 

#             modified the way the include file is called 

# KEYWORDS: Converts Celsius to Fahrenheit 

# 

# COMMENTS: This script converts Celsius to Fahrenheit 

# It uses command line parameters and an include file.  

# If the ConversionFunctions.ps1 script is not available, 

# the script will fail. 

# 

# ------------------------------------------------------------------------ 

Param($Celsius) 

#The $includeFile variable points to the ConversionFunctions.ps1  

#script. Make sure you edit the path to this script.  

$includeFile = "c:\data\scriptingGuys\ConversionFunctions.ps1" 

if(!(test-path -path $includeFile)) 

  { 

   "Unable to find $includeFile" 

   Exit 

  } 

. $includeFile 

ConvertToFahrenheit($Celsius)

Document deficiencies
If the script has a deficiency, it is imperative that this is documented. This deficiency can be as 
simple as the fact that the script is still in progress, but this fact should be highlighted in the 
comments section of the header to the script. It is quite common for script writers to begin 
writing a script, become distracted, and then begin writing a new script, all the while forget-
ting about the original script in progress. When the original script is later found, someone 
might begin to use the script and be surprised that it does not work as advertised. For this 
reason, scripts that are in progress should always be marked accordingly. If you use a key-
word, such as in progress, you can write a script that will find all of your work-in-progress 



 The 13 rules for writing effective comments  CHAPTER 9 301

scripts. In addition to scripts in progress, you should also highlight any limitations of the 
script. If a script runs on a local computer but will not run on a remote computer, this fact 
should be added in the comment section of the header. If a script requires an extremely long 
time to complete the requested action, this information should be noted. If the script gener-
ates errors but completes its task successfully, this information should also be noted so that 
the user can have confidence in the outcome of the script. A note that indicates why the error 
is generated also increases the confidence of the user in the original writer. 

The CmdLineArgumentsTime.ps1 script works but generates errors unless it is used in a 
certain set of conditions and is called in a specific manner. The comments call out the special 
conditions, and several in progress tags indicate the future work required by the script. The 
CmdLineArgumentsTime.ps1 script is shown here.

CmdLineargumentstime.ps1

# =========================================================================== 

#  

# NAME: CmdLineArgumentsTime.ps1 

# AUTHOR: Ed Wilson , microsoft 

# DATE  : 2/19/2009 

# EMAIL: Scripter@Microsoft.com 

# Version .0 

# KEYWORDS: Add-PSSnapin, powergadgets, Get-Date 

#  

# COMMENT: The $args[0] is unnamed argument that accepts command line input.  

# C:\cmdLineArgumentsTime.ps1 23 52 

# No commas are used to separate the arguments. Will generate an error if used. 

# Requires powergadgets. 

# INPROGRESS: Add a help function to script.  

# =========================================================================== 

#INPROGRESS: change unnamed arguments to a more user friendly method 

[int]$inthour = $args[0] 

[int]$intMinute = $args[1] 

#INPROGRESS: find a better way to check for existence of powergadgets 

#This causes errors to be ignored and is used when checking for PowerGadgets 

$erroractionpreference = "SilentlyContinue" 

#this clears all errors and is used to see if errors are present. 

$error.clear() 

#This command will generate an error if PowerGadgets are not installed 

Get-PSSnapin *powergadgets | Out-Null 

#INPROGRESS: Prompt before loading powergadgets 

If ($error.count -ne 0) 

{Add-PSSnapin powergadgets}  

 

New-TimeSpan -Start (get-date) -end (get-date -Hour $inthour -Minute $intMinute) |  

Out-Gauge -Value minutes -Floating -refresh 0:0:30  -mainscale_max 60



 302 CHAPTER 9 Designing help for scripts

avoid useless information
Inside the code of the script itself, you should avoid comments that provide useless or 
irrelevant information. Keep in mind that you are writing a script and providing documenta-
tion for the script and that such a task calls for technical writing skills, not creative writing 
skills. While you might be enthralled with your code in general, the user of the script is not 
interested in how difficult it was to write the script. However, it is useful to explain why you 
used certain constructions instead of other forms of code writing. This information, along 
with the explanation, can be useful to people who might modify the script in the future. You 
should therefore add internal comments only if they will help others to understand how the 
script actually works. If a comment does not add value, the comment should be omitted. 
The DemoConsoleBeep.ps1 script contains numerous comments in the body of the script. 
However, several of them are obvious, and others actually duplicate information from the 
comments section of the header. There is nothing wrong with writing too many comments, 
but it can be a bit excessive when a one-line script contains 20 lines of comments, particularly 
when the script is very simple. The DemoConsoleBeep.ps1 script is shown here.

DemoConsoleBeep.ps1

# ------------------------------------------------------------------------ 

# NAME: DemoConsoleBeep.ps1 

# AUTHOR: ed wilson, Microsoft 

# DATE: 4/1/2009 

# 

# KEYWORDS: Beep 

# 

# COMMENTS: This script demonstrates using the console 

# beep. The first parameter is the frequency between 

# 37..32767. above 7500 is barely audible. 37 is the lowest 

# note it will play.  

# The second parameter is the length of time  

# 

# ------------------------------------------------------------------------ 

#this construction creates an array of numbers from 37 to 3200 

#the % sign is an alias for Foreach-Object 

#the $_ is an automatic variable that refers to the current item  

#on the pipeline. 

#the semicolon causes a new logical line 

#the double colon is used to refer to a static method 

#the $_ in the method is the number on the pipeline 

#the second number is the length of time to play the beep 

37..32000 | % { $_ ; [console]::beep($_ , 1) }



 The 13 rules for writing effective comments  CHAPTER 9 303

Document the reason for the code
While it is true that good code is readable and that a good developer can understand what 
a script does, some developers might not understand why a script is written in a certain 
manner or why a script works in a particular fashion. In the DemoConsoleBeep2.ps1 script, 
extraneous comments have been removed. Essential information about the range that the 
console beep will accept is included, but the redundant information is deleted. In addi-
tion, a version history is added because significant modification to the script was made. The 
DemoConsoleBeep2.ps1 script is shown here.

DemoConsoleBeep2.ps1

# ------------------------------------------------------------------------ 

# NAME: DemoConsoleBeep2.ps1 

# AUTHOR: ed wilson, Microsoft 

# DATE: 4/1/2009 

# VERSION 2.0 

# 4/4/2009 cleaned up comments. Removed use of % alias. Reformatted. 

# 

# KEYWORDS: Beep 

# 

# COMMENTS: This script demonstrates using the console 

# beep. The first parameter is the frequency. Allowable range is between 

# 37..32767. A number above 7500 is barely audible. 37 is the lowest 

# note the console beep will play.  

# The second parameter is the length of time. 

# 

# ------------------------------------------------------------------------ 

 

37..32000 |  

Foreach-Object { $_ ; [console]::beep($_ , 1) }

Use of one-line comments
You should use one-line comments that appear prior to the code that is being commented to 
explain the specific purpose of variables or constants. You should also use one-line comments 
to document fixes or workarounds in the code as well as to point to the reference information 
explaining these fixes or workarounds. Of course, you should strive to write code that is clear 
enough to not require internal comments. Do not add comments that simply repeat what the 
code already states. Add comments to illuminate the code but not to elucidate the code. The 
GetServicesInSvchost.ps1 script uses comments to discuss the logic of mapping the handle 
property from the Win32_Process class to the ProcessID property from the Win32_Service 



 304 CHAPTER 9 Designing help for scripts

WMI class to reveal which services are using which instance of the Svchost process. The 
GetServicesInSvchost.ps1 script is shown here.

GetServicesInSvchost.ps1

# ------------------------------------------------------------------------ 

# NAME: GetServicesInSvchost.ps1 

# AUTHOR: ed wilson, Microsoft 

# DATE: 8/21/2008 

# 

# KEYWORDS: Get-WmiObject, Format-Table,  

# Foreach-Object 

# 

# COMMENTS: This script creates an array of WMI process 

# objects and retrieves the handle of each process object. 

# According to MSDN the handle is a process identifier. It 

# is also the key of the Win32_Process class. The script 

# then uses the handle which is the same as the processID 

# property from the Win32_service class to retrieve the 

# matches.  

# 

# HSG 8/28/2008 

# ------------------------------------------------------------------------ 

 

$aryPid = @(Get-WmiObject win32_process -Filter "name='svchost.exe'") |  

  Foreach-Object { $_.Handle }  

 

"There are " + $arypid.length + " instances of svchost.exe running" 

 

foreach ($i in $aryPID)  

{  

 Write-Host "Services running in ProcessID: $i" ;  

 Get-WmiObject win32_service -Filter " processID = $i" |  

 Format-Table name, state, startMode  

}

avoid end-of-line comments
You should avoid using end-of-line comments. The addition of such comments to your code 
has a severely distracting aspect to structured logic blocks and can cause your code to be 
more difficult to read and maintain. Some developers try to improve on this situation by 
aligning all of the comments at a particular point within the script. While this initially looks 
nice, it creates a maintenance nightmare because each time the code is modified, you run 
into the potential for a line to run long and push past the alignment point of the comments. 
When this occurs, it forces you to move everything over to the new position. After you do 



 The 13 rules for writing effective comments  CHAPTER 9 305

this a few times, you will probably realize the futility of this approach to commenting internal 
code. One additional danger of using end-of-line comments when working with Windows 
PowerShell is that, due to the pipelining nature of language, a single command might stretch 
out over several lines. Each line that ends with a pipeline character continues the command 
to the next line. A comment character placed after a pipeline character will break the code, as 
shown here, where the comment is located in the middle of a logical line of code. The follow-
ing code will not work:

Get-Process | #This cmdlet obtains a listing of all processes on the computer 
Select-Object –property name

A similar situation also arises when using the named parameters of the ForEach-Object 
cmdlet as shown in the SearchAllComputersInDomain.ps1 script. The backtick (`) character is 
used for line continuation, which allows placement of the −Begin, −Process, and −End param-
eters on individual lines. This placement makes the script easier to read and understand. If 
an end-of-line comment is placed after any of the backtick characters, the script will fail. The 
SearchAllComputersInDomain.ps1 script is shown here.

SearchallComputersInDomain.ps1

$Filter = "ObjectCategory=computer" 

$Searcher = New-Object System.DirectoryServices.DirectorySearcher($Filter) 

$Searcher.Findall() |  

Foreach-Object ` 

  -Begin { "Results of $Filter query: " } ` 

  -Process { $_.properties ; "`r"} ` 

  -End { [string]$Searcher.FindAll().Count + " $Filter results were found" }

Document nested structures
The previous discussion about end-of-line comments should not be interpreted as dismiss-
ing comments that document the placement of closing curly brackets. In general, you should 
avoid creating deeply nested structures, but sometimes they cannot be avoided. The use of 
end-of-line comments with closing curly brackets can greatly improve the readability and 
maintainability of your script. As shown in the Get-MicrosoftUpdates.ps1 script, the closing 
curly brackets are all tagged.

Get-MicrosoftUpdates.ps1

# ------------------------------------------------------------------------ 

# NAME: Get-MicrosoftUpdates.ps1 

# AUTHOR: ed wilson, Microsoft 

# DATE: 2/25/2009 

# 

# KEYWORDS: Microsoft.Update.Session, com 

#



 306 CHAPTER 9 Designing help for scripts

# COMMENTS: This script lists the Microsoft Updates 

# you can select a certain number, or you can choose  

# all of the updates. 

# 

# HSG 3-9-2009 

# ------------------------------------------------------------------------ 

Function Get-MicrosoftUpdates 

{  

  Param( 

        $NumberOfUpdates, 

        [switch]$all 

       ) 

  $Session = New-Object -ComObject Microsoft.Update.Session 

  $Searcher = $Session.CreateUpdateSearcher() 

  if($all) 

    { 

      $HistoryCount = $Searcher.GetTotalHistoryCount() 

      $Searcher.QueryHistory(1,$HistoryCount) 

    } #end if all 

  Else  

    {  

      $Searcher.QueryHistory(1,$NumberOfUpdates)  

    } #end else 

} #end Get-MicrosoftUpdates 

 

# *** entry point to script *** 

 

# lists the latest update 

# Get-MicrosoftUpdates -NumberofUpdates 1  

 

# lists All updates 

Get-MicrosoftUpdates -all

Use a standard set of keywords
When adding comments that indicate bugs, defects, or work items, you should use a set 
of keywords that is consistent across all scripts. This would be a good item to add to your 
corporate scripting guidelines. In this way, a script can easily be developed that will search 
your code for such work items. If you maintain source control, a comment can be added 
when these work items are fixed. Of course, you would also increment the version of the 
script with a comment relating to the fix. In the CheckEventLog.ps1 script, the script accepts 
two command-line parameters. One parameter is for the event log to query, and the other is 
for the number of events to return. If the user selects the security log and is not running the 
script as an administrator, an error is generated that is noted in the comment block. Because 



 The 13 rules for writing effective comments  CHAPTER 9 307

this scenario could be a problem, the outline of a function to check for admin rights has been 
added to the script as well as code to check for the log name. A number of TODO: tags are 
added to the script to mark the work items. The CheckEventLog.ps1 script is shown here.

CheckEventLog.ps1

# ------------------------------------------------------------------------ 

# NAME: CheckEventLog.ps1 

# AUTHOR: ed wilson, Microsoft 

# DATE: 4/4/2009 

# 

# KEYWORDS: Get-EventLog, Param, Function 

# 

# COMMENTS: This accepts two parameters the logname 

# and the number of events to retrieve. If no number for 

# -max is supplied it retrieves the most recent entry.  

# The script fails if the security log is targeted and it is 

# not run with admin rights. 

# TODO: Add function to check for admin rights if 

# the security log is targeted.  

# ------------------------------------------------------------------------ 

Param($log,$max) 

Function Get-log($log,$max) 

{ 

 Get-EventLog -logname $log -newest $max 

} #end Get-Log 

 

#TODO: finish Get-AdminRights function 

Function Get-AdminRights 

{ 

#TODO: add code to check for administrative  

#TODO: rights. If not running as an admin 

#TODO: if possible add code to obtain those rights 

} #end Get-AdminRights 

 

If(-not $log) { "You must specify a log name" ; exit} 

if(-not $max) { $max = 1 } 

#TODO: turn on the if security log check 

# If($log -eq "Security") { Get-AdminRights ; exit } 

Get-Log -log $log -max $max

Document the strange and bizarre
The last item that should be commented in your documentation is anything that looks 
strange. If you use a new type of construction that you have not used previously in other 
scripts, you should add a comment to the effect. A good comment should also indicate the 



 308 CHAPTER 9 Designing help for scripts

previous coding construction as an explanation. In general, it is not a best practice to use 
code that looks strange simply to show your dexterity or because it is an elegant solution; 
rather, you should strive for readable code. However, when you discover a new construction 
that is cleaner and easier to read, albeit a somewhat novel approach, you should always add 
a comment to highlight this fact. If the new construction is sufficiently useful, it should be 
incorporated into your corporate scripting guidelines as a design pattern. 

In the GetProcessesDisplayTempFile.ps1 script, a few unexpected items crop up. The first 
is the GetTempFileName static method from the Io.Path .NET Framework class. Despite the 
method’s name, GetTempFileName creates both a temporary file name and a temporary 
file. The second technique is much more unusual. When the temporary file is displayed via 
Notepad, the result of the operation is pipelined to the Out-Null cmdlet. This operation 
effectively halts the execution of the script until the Notepad application is closed. This “trick” 
does not conform to expected behavior, but it is a useful design pattern for those wanting 
to remove temporary files after they have been displayed. As a result, both features of the 
GetProcessesDisplayTempFile.ps1 script are documented as shown here.

GetProcessesDisplaytempFile.ps1

# ------------------------------------------------------------------------ 

# NAME: GetProcessesDisplayTempFile.ps1 

# AUTHOR: ed wilson, Microsoft 

# DATE: 4/4/2009 

# VERSION 1.0 

# 

# KEYWORDS: [io.path], GetTempFileName, out-null 

# 

# COMMENTS: This script creates a temporary file,  

# obtains a collection of process information and writes  

# that to the temporary file. It then displays that file via 

# Notepad and then removes the temporary file when  

# done.  

# 

# ------------------------------------------------------------------------ 

#This both creates the file name as well as the file itself 

$tempFile = [io.path]::GetTempFileName() 

Get-Process >> $tempFile 

#Piping the Notepad filename to the Out-Null cmdlet halts 

#the script execution 

Notepad $tempFile | Out-Null 

#Once the file is closed the temporary file is closed and it is 

#removed 

Remove-Item $tempFile 



 The 13 rules for writing effective comments  CHAPTER 9 309

INSIDE TRACK

Teaching your scripts to communicate

Peter Costantini
Microsoft Scripting Guy Emeritus 

If code was read only by computers, we could write only 1s and 0s. Even though 
developers would quickly go blind and insane, a new class of computer science 

majors graduates every year. Of course, the reality is that code must also be read by 
humans, and programming languages have been developed to mediate between 
humans and machines.

If one developer could write, debug, test, maintain, and field support calls for all of 
the code for an application, it wouldn’t be very important whether the program-
ming language was easy for others to understand. a brilliant loner could decide 
to write in an obscure dialect of Lisp and name the variables and procedures in 
Esperanto, and that would be fine as long as the code worked.

however, that programming language might not be so fine five years later. By then, 
the developer’s Lisp and Esperanto are a little rusty. Suddenly a call comes in that 
the now mission-critical application is crashing inexplicably and losing the firm bil-
lions of dollars.

“What’s a few billion dollars these days? Maybe I’ll get a bonus,” I hear you mutter-
ing under your breath. anyway, you’re not a developer: you’re a system engineer 
who’s trying to use scripts to automate some of your routine tasks and to trouble-
shoot. You thought the whole point of scripting was to let you write quick and dirty 
code to get a task done in a hurry.

Yes, that is a big benefit of scripting. When you first write a script to solve a prob-
lem, you’re probably not concerned about producing beautiful-looking, or even 
comprehensible, code. You just want to make sure that it runs as expected and 
makes the pain stop.

however, when you decide that the script is a keeper and that you’re going to run it 
as a scheduled task at three every Monday morning, the equation starts to change. 
at this point, like it or not, you really are a developer. Windows PowerShell is a pro-
gramming language, albeit a dynamic one, and any code that plays an ongoing role 
in the functioning of your organization needs to be treated as something more than 
chewing gum and baling wire.



 310 CHAPTER 9 Designing help for scripts

Furthermore, regardless of your personal relationship with your scripts, you prob-
ably work as part of a team, right? Other people on your team might write scripts, 
too. In any case, these people most likely have to run your scripts and figure out 
what they do. You can see where I’m going with this. But if it produces a blinding 
flash of insight, that’s all the better for your career and your organization.

the goal is to make your scripts transparent. Your code—and the environment in 
which it runs—should communicate to your teammates everything they need to 
know to understand what your script is doing, how to use it successfully, and how 
to troubleshoot it if problems arise. (Murphy’s Law has many scripting corollaries.) 
Clarity and readability are virtues; terseness and ambiguity are not. Consistent, 
descriptive variable names and white space do not make the code run any slower, 
but they can make the script more readable. Begin to look at transparency as an 
insurance policy against receiving a frantic call on your cell phone when you’re lying 
on a beach in Puerto Vallarta, sipping a margarita.

this is not just a technical and social imperative: it’s an economic one as well. It 
departments are pushing hard to become strategic assets rather than cost centers. 
the sprawling skeins of code, scripts, and all that run their operations can earn 
or lose figures followed by many zeros and make the difference between budget 
increases and layoffs. Okay, at least this year, adding good documentation to your 
scripts can make the budget cuts smaller.

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous examples of Windows PowerShell scripts, as well as some sample documen-
tation templates.

■■ Refer to “How Can I Delete and Manage PDF Files?” at http://www.microsoft.com 
/ technet/scriptcenter/resources/qanda/dec08/hey1229.mspx.

■■ Refer to “How Can I Create a Microsoft Word Document from WMI Information?” at 
http://www.microsoft.com/technet/scriptcenter/resources/qanda/nov08/hey1111.mspx.

■■ Refer to Windows Scripting with WMI: Self-Paced Learning Guide (Microsoft Press, 
2006).

■■ All scripts from this chapter are available via the TechNet Script Center Script  
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40 
-Best-d9e16039.



   311

C H A P T E R  1 0

Designing modules
■■ Understanding modules

■■ Locate and load modules 

■■ Install modules

■■ Creating a module

■■ Additional resources 

Windows PowerShell modules provide a convenient way to package reusable code. By 
using modules, it is possible to share them between computers, users, and scripts. 

The use of these modules solves many of the problems that might confront a new scripter. 
In this chapter, we begin by understanding what a module is and why you would want to 
use one, we move to some of the decisions necessitated by modules, and conclude with an 
example of creating a new module.

Understanding modules

Windows PowerShell 2.0 introduced the concept of modules. A module is a package that 
can contain Windows PowerShell cmdlets, aliases, functions, variables, and even provid-
ers. In short, a Windows PowerShell module can contain the kinds of things that you might 
put into your profile, but it can also contain things that Windows PowerShell 1.0 required a 
developer to incorporate into a PowerShell snap-in. There are several advantages of mod-
ules over snap-ins, including the following: 

■■ Anyone who can write a Windows PowerShell script can create a module. 

■■ To install a module you do not need to write a Windows Installer package. 

■■ To install, you do not have to have administrator rights.

These advantages should be of great interest to the IT Pro. 

Locate and load modules

There are three default locations for Windows PowerShell modules. The first location is in 
the users’ home directory, and the second is in the Windows PowerShell home directory. 
The third default location, introduced in Windows PowerShell 4.0, is in the Program Files 



 312 CHAPTER 10 Designing modules

\WindowsPowerShell\Modules directory. The advantage of this new location is that you do 
not need admin rights to install (such as in the System32 location), and it is not user specific 
(such as in the user home directory). 

The modules directory in the Windows PowerShell home directory always exists, as does 
the modules directory in the Program Files\WindowsPowerShell location. However, the mod-
ules directory in the users’ home directory is not present by default. The modules directory 
will exist in the users’ home directory only if it has been created. The creation of the modules 
directory in the users’ home directory does not normally happen until someone has decided 
to create and to store modules there. A nice feature of the modules directory is that when it 
exists, it is the first place Windows PowerShell uses when it searches for a module. If the user’s 
modules directory does not exist, the modules directory within the Windows PowerShell 
home directory is used. 

Listing available modules
Windows PowerShell modules exist in two states: loaded and unloaded. To display a list of all 
loaded modules, use the Get-Module cmdlet without any parameters. This is shown here:

PS C:\> Get-Module 
 
ModuleType   Name                                ExportedCommands                                   
----------   ----                                ----------------                                   
Script       ISE                                 {Get-IseSnippet, Import-IseSnippet,  
                                                 New-IseSnip... 
Manifest     Microsoft.PowerShell.Management     {Add-Computer, Add-Content, Checkpoint-  
                                                 Computer... 
Manifest     Microsoft.PowerShell.Utility        {Add-Member, Add-Type, Clear-Variable, 
                                                 Compare-...

If there are multiple modules loaded when the Get-Module cmdlet runs, each module will 
appear along with its accompanying exported commands on their own individual lines. This is 
seen here: 

PS C:\> Get-Module 
 
ModuleType   Name                      ExportedCommands 
----------   ----                      ---------------- 
Script       GetFreeDiskSpace          Get-FreeDiskSpace 
Script       HelloWorld                {Hello-World, Hello-User} 
Script       TextFunctions             {New-Line, Get-TextStats} 
Manifest     BitsTransfer              {Start-BitsTransfer, Remove-BitsTransfe... 
Script       PSDiagnostics             {Enable-PSTrace, Enable-WSManTrace, Sta... 
 
 
PS C:\>

If no modules are loaded, nothing displays to the Windows PowerShell console. No errors 
appear, nor is there any confirmation that the command actually ran. This situation never 
occurs on Windows 8 because Windows PowerShell core cmdlets reside in two basic modules: 



 Locate and load modules CHAPTER 10 313

the Microsoft.PowerShell.Management and the Microsoft.PowerShell.Utility modules. These 
two modules always load unless Windows PowerShell launches with the –noprofile switch. But 
even then, the Microsoft.PowerShell.Management module loads. 

To obtain a listing of all modules that are available on the system but are not loaded, you 
use the Get-Module cmdlet with the –ListAvailable parameter. The Get-Module cmdlet with 
the –ListAvailable parameter lists all modules that are available whether or not the modules 
are loaded into the Windows PowerShell console. The output appearing here illustrates the 
default installation of a Windows 8 client system.

NOTE Windows PowerShell 4.0 still installs into the %windir%\system32 
\WindowsPowerShell\v1.0 directory (even on Windows 8.1). The reason for adherence to 
this location is for compatibility with applications that expect this location. A common 
question I receive via the Hey Scripting Guy! blog (www.scriptingguys.com/blog) is related 
to this folder name. To determine the version of Windows PowerShell you are running, use 
the $PSVersionTable automatic variable. 

PS C:\> Get-Module -ListAvailable 
 
    Directory: C:\Windows\system32\WindowsPowerShell\v1.0\Modules 
 
 
ModuleType Name                                ExportedCommands 
---------- ----                                ---------------- 
Manifest   AppLocker                           {Get-AppLockerFileInformation, Get... 
Manifest   Appx                                {Add-AppxPackage, Get-AppxPackage,... 
Manifest   BitLocker                           {Unlock-BitLocker, Suspend-BitLock... 
Manifest   BitsTransfer                        {Add-BitsFile, Complete-BitsTransf... 
Manifest   BranchCache                         {Add-BCDataCacheExtension, Clear-B... 
Manifest   CimCmdlets                          {Get-CimAssociatedInstance, Get-Ci... 
Manifest   DirectAccessClientComponents        {Disable-DAManualEntryPointSelecti... 
Script     Dism                                {Add-AppxProvisionedPackage, Add-W... 
Manifest   DnsClient                           {Resolve-DnsName, Clear-DnsClientC... 
Manifest   International                       {Get-WinDefaultInputMethodOverride... 
Manifest   iSCSI                               {Get-IscsiTargetPortal, New-IscsiT... 
Script     ISE                                 {New-IseSnippet, Import-IseSnippet... 
Manifest   Kds                                 {Add-KdsRootKey, Get-KdsRootKey, T... 
Manifest   Microsoft.PowerShell.Diagnostics    {Get-WinEvent, Get-Counter, Import... 
Manifest   Microsoft.PowerShell.Host           {Start-Transcript, Stop-Transcript} 
Manifest   Microsoft.PowerShell.Management     {Add-Content, Clear-Content, Clear... 
Manifest   Microsoft.PowerShell.Security       {Get-Acl, Set-Acl, Get-PfxCertific... 
Manifest   Microsoft.PowerShell.Utility        {Format-List, Format-Custom, Forma... 
Manifest   Microsoft.WSMan.Management          {Disable-WSManCredSSP, Enable-WSMa... 
Manifest   MMAgent                             {Disable-MMAgent, Enable-MMAgent, ... 
Manifest   MsDtc                               {New-DtcDiagnosticTransaction, Com... 
Manifest   NetAdapter                          {Disable-NetAdapter, Disable-NetAd... 
Manifest   NetConnection                       {Get-NetConnectionProfile, Set-Net... 
Manifest   NetLbfo                             {Add-NetLbfoTeamMember, Add-NetLbf... 
Manifest   NetQos                              {Get-NetQosPolicy, Set-NetQosPolic... 
Manifest   NetSecurity                         {Get-DAPolicyChange, New-NetIPsecA... 



 314 CHAPTER 10 Designing modules

Manifest   NetSwitchTeam                       {New-NetSwitchTeam, Remove-NetSwit... 
Manifest   NetTCPIP                            {Get-NetIPAddress, Get-NetIPInterf... 
Manifest   NetworkConnectivityStatus           {Get-DAConnectionStatus, Get-NCSIP... 
Manifest   NetworkTransition                   {Add-NetIPHttpsCertBinding, Disabl... 
Manifest   PKI                                 {Add-CertificateEnrollmentPolicySe... 
Manifest   PrintManagement                     {Add-Printer, Add-PrinterDriver, A... 
Script     PSDiagnostics                       {Disable-PSTrace, Disable-PSWSManC... 
Binary     PSScheduledJob                      {New-JobTrigger, Add-JobTrigger, R... 
Manifest   PSWorkflow                          {New-PSWorkflowExecutionOption, Ne... 
Manifest   PSWorkflowUtility                   {Invoke-AsWorkflow 
Manifest   ScheduledTasks                      {Get-ScheduledTask, Set-ScheduledT... 
Manifest   SecureBoot                          {Confirm-SecureBootUEFI, Set-Secur... 
Manifest   SmbShare                            {Get-SmbShare, Remove-SmbShare, Se... 
Manifest   SmbWitness                          {Get-SmbWitnessClient, Move-SmbWit... 
Manifest   Storage                             {Add-InitiatorIdToMaskingSet, Add-... 
Manifest   TroubleshootingPack                 {Get-TroubleshootingPack, Invoke-T... 
Manifest   TrustedPlatformModule               {Get-Tpm, Initialize-Tpm, Clear-Tp... 
Manifest   VpnClient                           {Add-VpnConnection, Set-VpnConnect... 
Manifest   Wdac                                {Get-OdbcDriver, Set-OdbcDriver, G... 
Manifest   WindowsDeveloperLicense             {Get-WindowsDeveloperLicense, Show... 
Script     WindowsErrorReporting               {Enable-WindowsErrorReporting, Dis....

NOTES FROM THE FIELD

Keith hill
Microsoft Windows PowerShell MVP

One of my favorite features in Windows PowerShell is modules. Modules make 
it easier for people to package and deploy their reusable functionality, and 

they make it easier for end users to install and use that functionality. 

When I set out to write a script, I can usually tell pretty quickly whether it will be 
a simple script or a module. here are a few of the telltale signs for going with a 
module:

■■ The required functionality will expose multiple commands. Modules are 
great in this scenario because you can export some functions and not others—
for example, private helper functions.

■■ You need to create PowerShell commands around a non-Windows PowerShell 
resource. Modules are great in this scenario because you can keep a private 
variable to manage the resource lifetime, which doesn’t pollute the user’s global 
session state. and with module auto-loading, the user can use your new com-
mands with no need to dot-source a script first.

■■ You know that you will reuse the functionality in multiple scripts—that is, 
you know it will be library code. Modules are great for reusable libraries 
because they provide encapsulation of data and behavior, control over what is 



 Locate and load modules CHAPTER 10 315

exported for the public aPI, and easy load and unload capability, which are all 
desirable traits in any form of library code.

I still write simple script (.ps1) script files when the script does a single task. I 
also occasionally find myself converting a simple ps1 script to a module when I 
need to add additional commands. In this regard, my modules tend to reflect a 
cluster of commands (or verbs) around some core noun—for example, Enable-
NetGearSwitchPort, Disable-NetGearSwitchPort, or Get-NetGearSwitchPort.

For a software developer, Windows PowerShell remoting has turned out to be 
handier than I thought it would be at first. We run nightly regression tests on many 
different PCs. I have found it tremendously useful to gather event log warnings and 
errors from all these PCs via a script that uses “fan-out” remoting. It saves me a lot 
of time because I don’t have to manually rDP to each machine and comb through 
its event log. 

as a C# developer who has developed many binary cmdlets for PSCX, it is somewhat 
odd that these days I spend less time writing cmdlets in C# and much more time in 
the Windows PowerShell Integrated Scripting Environment (ISE) writing advanced 
functions. One significant advantage that advanced functions have over binary 
cmdlets is help documentation. With an advanced function, you simply add some 
documentation comments and Windows PowerShell takes care of the rest. In PSCX, 
for our binary cmdlets, we have to deal in MAML (XML) files and, trust me, it isn’t 
much fun. In fact, a good bit of the new functionality in PSCX has been imple-
mented via advanced functions. I drop back to binary cmdlets only when perfor-
mance is an issue or the underlying .NET (or native) API is easier to use from C#. 

I still live in the Windows PowerShell console for day-to-day activities—for example, 
running commands and experimenting with one-liners. however, if I need to create, 
edit, test, or debug a script, I use the Windows PowerShell ISE.  

as a software developer, I use Windows PowerShell as a tool for daily productivity 
needs such as searching source code, managing source code files, and managing 
errant processes. I also use Windows PowerShell to script our product’s build pro-
cess and nightly regression tests. 

If I were talking to a new adopter, I would say stick with it. Windows PowerShell, like 
other “powerful but complex” tools, has a somewhat steep learning curve. However, 
if you can get over the hump, your persistence will pay big dividends on the back 
end. Also, don’t thrash for too long–there are abundant (and passionate) Windows 
PowerShell gurus available to answer your questions. there is a great bunch of 
PowerShell experts on StackOverflow that can help you at http://stackoverflow.com 
/questions/tagged/powershell.  Be sure to first search previously answered ques-
tions; it is likely that your question has already been asked and answered.

http://stackoverflow.com/questions/tagged/powershell
http://stackoverflow.com/questions/tagged/powershell


 316 CHAPTER 10 Designing modules

Loading modules
When you have identified a module that you want to load, you use the Import-Module cmdlet 
to load the module into the current Windows PowerShell session. This appears here: 

PS C:\> Import-Module -Name NetConnection 
PS C:\>

If the module exists, the Import-Module cmdlet completes without displaying any informa-
tion. If the module is already loaded, no error message displays. This behavior appears here 
where you use the up arrow to retrieve the previous command and press enter to execute the 
command. The Import-Module command runs three times, but no errors appear. 

PS C:\> Import-Module -Name NetConnection 
PS C:\> Import-Module -Name NetConnection 
PS C:\> Import-Module -Name NetConnection 
PS C:\>

After you import the module, you might want to use the Get-Module cmdlet to quickly see 
the functions exposed by the module. It is not necessary to type the complete module name. 
You can use wildcards, or you can even use tab expansion to expand the module name. The 
wildcard technique is shown here: 

PS C:\> Get-Module net* 
 
ModuleType Name                                ExportedCommands 
---------- ----                                ---------------- 
Manifest   netconnection                       {Get-NetConnectionProfile, Set-Net...

As seen in the preceding example, the netconnection module exports two commands: 
the Get-NetConnectionProfile function and some other command that is probably Set-
NetConnectionProfile. The one problem with using the Get-Module cmdlet is that it truncates 
the ExportedCommands property. The easy solution to this problem is to pipeline the result-
ing PSModuleInfo object to the Select-Object cmdlet and expand the ExportedCommands 
property. This technique is shown here:

PS C:\> Get-Module net* | select -expand *comm* 
 
Key                                        Value 
---                                        ----- 
Get-NetConnectionProfile                   Get-NetConnectionProfile 
Set-NetConnectionProfile                   Set-NetConnectionProfile  

When loading modules that have long names, you are not limited to typing the entire 
module name. You can use wildcards or tab expansion to complete the module name. When 
using wildcards to load modules, it is a best practice to type a significant portion of the 
module name so that you match only a single module from the list of modules that are avail-
able to you. If you do not match a single module, an error generates. This error occurs here 
because net* matches multiple modules: 

PS C:\> Import-Module net* 
Import-Module : The specified module 'net*' was not loaded because no valid module 



 Locate and load modules CHAPTER 10 317

file was found in any module directory. 
At line:1 char:1 
+ Import-Module net* 
+ ~~~~~~~~~~~~~~~~~~ 
    + CategoryInfo          : ResourceUnavailable: (net*:String) [Import-Module],  
   FileNotFoundException 
    + FullyQualifiedErrorId : Modules_ModuleNotFound,Microsoft.PowerShell.Commands 
   .ImportModuleCommand

IMPORTANT In Windows PowerShell 2.0, if a wildcard pattern matches more than one 
module name, the first matched module loads with the remaining matches ignored. 
This leads to inconsistent and unpredictable results. Therefore, Windows PowerShell 3.0 
changes this behavior to generate an error when a wildcard pattern matches more than 
one module name. 

If you want to load all of the modules that are available on your system, you can use the 
Get-Module cmdlet with the –ListAvailable parameter and pipeline the resulting PSModuleInfo 
objects to the Import-Module cmdlet. This is shown here: 

PS C:\> Get-Module -ListAvailable | Import-Module 
PS C:\>

If you have a module that uses a verb that is not on the allowed verb list, a warning mes-
sage displays when you import the module. The functions in the module still work, and the 
module will work, but the warning displays to remind you to check the authorized verb list. 
This behavior is shown here: 

PS C:\> Import-Module HelloUser 
WARNING: The names of some imported commands from the module 'HelloUser' include 
unapproved verbs that might make them less discoverable. To find the commands with 
unapproved verbs, run the Import-Module command again with the Verbose parameter. 
For a list of approved verbs, type Get-Verb. 
PS C:\> hello-user 
hello administrator

To obtain more information about which unapproved verbs are being used, you use the  
–Verbose parameter of the Import-Module. This command is shown here: 

PS C:\> Import-Module HelloUser -Verbose

The results of the Import-Module –Verbose command are seen in Figure 10-1. 



 318 CHAPTER 10 Designing modules

FIGURE 10-1 The –Verbose parameter of Import-Module displays information about each function as 
well as illegal verb names. The hello verb used in Hello-User is not an approved verb. 

In this section, the concept of locating and loading modules was discussed. Modules are 
listed by using the ListAvailable switched parameter with the Get-Module cmdlet. Modules are 
loaded via the Import-Module cmdlet. 

NOTES FROM THE FIELD

Jim Christopher, Microsoft PowerShell MVP
Independent Software Developer, Code Owls LLC

“You just replaced three years worth of software tooling in an afternoon.”

a client said these exact words to me just a few months ago, and it is perhaps the 
best compliment I can provide for building tools with PowerShell. Software devel-
opers have a predisposition to create solutions around well-defined usage patterns. 
they create and explore use cases to capture these patterns and drive their applica-
tion designs. these are good things, and they should be done because they produce 
a higher-quality experience for the end-user. 

The tooling around the application–the bits that leverage the instrumentation data, 
the pieces used by support engineers to deal with issues–needs to meet the needs 
of an entirely different class of user, one I like to think of as the mastermind. While 
rigid paths work well for the end-user, the mastermind needs a lot of flexibility to 
get their work done. End-users follow paths; masterminds need the ability to blaze 
their own.

In the case of my client, all of their existing tools worked off the assumption that 
masterminds should use a management website. this caused a slow tooling cycle: 
Every support path required the attention of a web developer; the addition of a 
GUI layer resulted in more opportunities for bugs; and the infrastructure necessary 
to deploy and maintain a working management website required its own layer of 
tools. this unresponsiveness translated into customers whose needs couldn’t be 
met, and unhappy customers take their money elsewhere.



 Install modules CHAPTER 10 319

So one afternoon I created a PowerShell module around their management needs. 
Instead of clicking on a User tab in a website, engineers can now use a Get-User 
cmdlet. Instead of finding and updating one resource at a time, engineers could 
now do this in bulk. While the client’s quote is correct–this module effectively 
replaced all of their previous tooling–there were far more interesting results from 
this project. First, morale increased significantly in the support and development 
teams. Support could be proactive with their solutions now; they could leverage 
their knowledge of the system to solve problems; in short, they now had the ability 
to do what they were hired to do. With this success, development was happy to 
focus on product features instead of on the immediate needs of support. Second, 
the average incident resolution time decreased from days to minutes. Not only did 
the engineers now have the proper tools to respond in a timely manner, but they 
also had a newfound ability to save and share their solutions to recurring problems 
in the form of scripts. 

I consider that a pretty amazing return for a few hours of effort.

that’s why Windows PowerShell is just a great choice for tooling up: it puts the 
power and decision-making in the hands of those masterminds who need it to do 
their job, and it does so with minimal fuss and effort.

Install modules

One of the features of modules is that they can be installed without elevated rights. Because 
each user has a modules folder in their %userprofile% directory that they have rights to use, 
the installation of a module does not require Administrator rights. An additional feature of 
modules is that they do not require a specialized installer. The files associated with a module 
can be copied by using the XCopy utility, or they can be copied by using Windows PowerShell 
cmdlets. 

Creating a modules folder
The users’ modules folder does not exist by default. To avoid confusion, you might decide to 
create the modules directory in the users’ profile prior to deploying modules, or you might 
simply create a module installer script that checks for the existence of the users’ modules 
folder, creates the folder if it does not exist, and then copies the modules. One thing to 
remember when directly accessing the users’ module directory is that the modules folder is in 
a different location depending on the version of the operating system. On Windows XP and 
Windows Server 2003, the users’ module folder is in the My Documents folder; on Windows 
Vista and later, the users’ module folder is in the Documents folder. 



 320 CHAPTER 10 Designing modules

NOTE Windows PowerShell 4.0 does not install on Windows Vista or earlier. Therefore, in 
a pure Windows PowerShell 4.0 environment, you can skip the operating system check and 
simply create the folder in the Documents folder.

In the Copy-Modules.ps1 script that follows, you solve the problem of different module 
folder locations by using a function, Get-OperatingSystemVersion, which retrieves the major 
version number of the operating system. The Get-OperatingSystemVersion function is shown 
here:

Function Get-OperatingSystemVersion 
{ 
 (Get-WmiObject -Class Win32_OperatingSystem).Version 
} #end Get-OperatingSystemVersion

The Test-ModulePath function uses the major version number of the operating system. If 
the major version number of the operating system is greater than 6, the operating system 
is at least Windows Vista and will therefore use the Documents folder in the path to the 
modules. If the major version number of the operating system is not greater than 6, the script 
will use the My Documents folder for the module location. When the version of the operating 
system is determined and the path to the module location is ascertained, it is time to deter-
mine whether or not the module folders exist. The best tool for the job of checking for the 
existence of folders is the Test-Path cmdlet. The Test-Path cmdlet returns a Boolean value. As 
you are interested only in the absence of the folder, you can use the –not operator as shown 
here in the completed Test-ModulePath function:

Function Test-ModulePath 
{ 
 $VistaPath = "$env:userProfile\documents\WindowsPowerShell\Modules" 
 $XPPath =  "$env:Userprofile\my documents\WindowsPowerShell\Modules"  
 if ([int](Get-OperatingSystemVersion).substring(0,1) -ge 6)  
   {  
     if(-not(Test-Path -path $VistaPath)) 
       { 
         New-Item -Path $VistaPath -itemtype directory | Out-Null 
       } #end if 
   } #end if 
 Else  
   {   
     if(-not(Test-Path -path $XPPath)) 
       { 
         New-Item -path $XPPath -itemtype directory | Out-Null 
       } #end if 
   } #end else 
} #end Test-ModulePath

Upon creating the users’ modules folder, it is time to create a child folder to hold the new 
module. A module installs into a folder that has the same name as the module itself. The 



 Install modules CHAPTER 10 321

name of the module is the file name that contains the module, minus the .psm1 extension. 
This location is shown in Figure 10-2. 

FIGURE 10-2 Modules are placed in the users’ modules directory.

In the Copy-Module function from the Copy-Modules.ps1 script, the first action retrieves 
the value of the PSModulePath environmental variable. Because there are two locations 
where modules can be stored, the PSModulePath environmental variable contains the path 
to both locations. The PSModulePath variable is not stored as an array; it is stored as a string. 
The value contained in PSModulePath appears here: 

 PS C:\> $env:PSModulePath 
C:\Users\administrator\Documents\WindowsPowerShell\Modules;C:\Windows\system32\
WindowsPowerShell\ 
v1.0\Modules\

If you attempt to index into the data stored in the PSModulePath environmental variable, 
you will retrieve one letter at a time. This is shown here:

PS C:\> $env:psmodulePath[0] 
C 
PS C:\> $env:psmodulePath[1] 
: 
PS C:\> $env:psmodulePath[2] 
\ 
PS C:\> $env:psmodulePath[3] 
U

Attempting to retrieve the path to the users’ module location one letter at a time would 
be problematic at best and error prone at worst. Because the data is a string, you can use 
string methods to manipulate the two paths. To break a string into a usable array, you use 
the split method from the System.String class. You need to pass only a single value to the split 



 322 CHAPTER 10 Designing modules

method—the character upon which to split. Because the value stored in the PSModulePath 
variable is a string, you can access the split method directly. This technique is shown here: 

PS C:\> $env:PSModulePath.Split(";") 
C:\Users\administrator\Documents\WindowsPowerShell\Modules 
C:\Windows\system32\WindowsPowerShell\v1.0\Modules\

You can see from the preceding output that the first string displayed is the path to the 
users’ modules folder, and the second path is the path to the system modules folder. Because 
the split method turns a string into an array, it means that you can now index into the array 
and retrieve the path to the users’ modules folder by using the [0] syntax. You do not need to 
use an intermediate variable to store the returned array of paths if you do not want to do so. 
You can index into the returned array directly. If you were to use the intermediate variable to 
hold the returned array and then index into the array, the code would resemble the following:

PS C:\> $aryPaths = $env:PSModulePath.Split(";") 
PS C:\> $aryPaths[0] 
C:\Users\administrator\Documents\WindowsPowerShell\Modules

Because the array is immediately available after the split method has been called, you 
directly retrieve the users’ modules path. This is shown here: 

PS C:\> $env:PSModulePath.Split(";")[0]

C:\Users\administrator\Documents\WindowsPowerShell\Modules 

Working with the $modulePath variable
The path that will be used to store the module is stored in the $modulePath variable. This 
path includes the path to the users’ modules folder plus a child folder that is the same name 
as the module itself. To create the new path, it is a best practice to use the Join-Path cmdlet 
instead of doing string concatenation and attempting to build manually the path to the new 
folder. The Join-Path cmdlet will put together a parent path and a child path to create a new 
path. This is shown here: 

$ModulePath = Join-Path -path $userPath ' 
               -childpath (Get-Item -path $name).basename

Windows PowerShell adds a script property called basename to the System.Io.FileInfo class. 
This makes it easy to retrieve the name of a file without the file extension. Prior to Windows 
PowerShell 2.0, it was common to use the split method or some other string manipulation 
technique to remote the extension from the file name. Use of the basename property is 
shown here:  

PS C:\> (Get-Item -Path C:\fso\HelloWorld.psm1).basename 
HelloWorld

The last step is to create the subdirectory that will hold the module and to copy the mod-
ule files into the directory. To avoid cluttering the display with the returned information from 



 Install modules CHAPTER 10 323

the New-Item and the Copy-Item cmdlets, the results are pipelined to the Out-Null cmdlet. This 
is shown here: 

New-Item -path $modulePath -itemtype directory | Out-Null 
Copy-Item -path $name -destination $ModulePath | Out-Null

The entry point to the Copy-Modules.ps1 script calls the Test-ModulePath function to 
determine whether the users’ modules folder exists. It then uses the Get-ChildItem cmdlet to 
retrieve a listing of all the module files in a particular folder. The –Recurse parameter is used 
to retrieve all the module files in the path. The resulting FileInfo objects are pipelined to the 
ForEach-Object cmdlet. The fullname property of each FileInfo object is passed to the Copy-
Module function. This is shown here: 

Test-ModulePath 
Get-ChildItem -Path C:\fso -Include *.psm1,*.psd1 -Recurse | 
ForEach-Object { Copy-Module -name $_.fullName }

The complete Copy-Modules.ps1 script is shown here. 

Copy-Modules.ps1

Function Get-OperatingSystemVersion 

{ 

 (Get-WmiObject -Class Win32_OperatingSystem).Version 

} #end Get-OperatingSystemVersion 

 

Function Test-ModulePath 

{ 

 $VistaPath = "$env:userProfile\documents\WindowsPowerShell\Modules" 

 $XPPath =  "$env:Userprofile\my documents\WindowsPowerShell\Modules"  

 if ([int](Get-OperatingSystemVersion).substring(0,1) -ge 6)  

   {  

     if(-not(Test-Path -path $VistaPath)) 

       { 

         New-Item -Path $VistaPath -itemtype directory | Out-Null 

       } #end if 

   } #end if 

 Else  

   {   

     if(-not(Test-Path -path $XPPath)) 

       { 

         New-Item -path $XPPath -itemtype directory | Out-Null 

       } #end if 

   } #end else 

} #end Test-ModulePath 

 

Function Copy-Module([string]$name) 

{ 



 324 CHAPTER 10 Designing modules

 $UserPath = $env:PSModulePath.split(";")[0] 

 $ModulePath = Join-Path -path $userPath ' 

               -childpath (Get-Item -path $name).basename 

 New-Item -path $modulePath -itemtype directory | Out-Null 

 Copy-Item -path $name -destination $ModulePath | Out-Null 

} 

 

# *** Entry Point to Script ***  

Test-ModulePath 

Get-ChildItem -Path C:\fso -Include *.psm1,*.psd1 -Recurse | 

ForEach-Object { Copy-Module -name $_.fullName }

NOTE You must enable script support to use user-created script modules. Script support 
does not need to be enabled in Windows PowerShell to use the system modules. However, 
to run the Copy-Modules.ps1 to install modules to the users, profile, you would need script 
support. To enable scripting support in Windows PowerShell, you use the Set-Execution-
Policy cmdlet.  

Creating a module drive
An easy way to work with modules is to create a couple of Windows PowerShell drives by 
using the filesystem provider. Because the modules live in a location that is not easily navi-
gated to from the command line, and because $PSModulePath returns a string that contains 
the path to both the users’ and the system modules folders, it makes sense to provide an 
easier way to work with the modules location. 

To create a Windows PowerShell drive for the user module location, you use the New-
PSDrive cmdlet, specify a name such as mymods, use the filesystem provider, and obtain the 
root location from the $PSModulePath environmental variable by using the split method from 
the .NET Framework string class. For the users’ modules folder, you use the first element from 
the returned array. This is shown here: 

PS C:\> New-PSDrive -Name mymods -PSProvider filesystem -Root ($env:PSModulePath 
.Split(";")[0]) 
 
Name           Used (GB)     Free (GB) Provider      Root 
----           ---------     --------- --------      ---- 
mymods                          116.50 FileSystem    C:\Users\administrator\Docum... 

The command to create a Windows PowerShell drive for the system module location is the 
same as the one used to create a Windows PowerShell drive for the user module location. The 
exception is specifying a different name, such as sysmods, and choosing the second element 



 Install modules CHAPTER 10 325

from the array obtained via the split method from the $PSModulePath variable. This com-
mand is shown here: 

PS C:\> New-PSDrive -Name sysmods -PSProvider filesystem -Root ($env:PSModulePath 
.Split(";")[1]) 
 
Name           Used (GB)     Free (GB) Provider      Root 
----           ---------     --------- --------      ---- 
sysmods                         116.50 FileSystem    C:\Windows\system32\WindowsP...

You can also write a script that creates Windows PowerShell drives for each of the two 
module locations. To do this, you first create an array of names for the Windows PowerShell 
drives. You then use a for statement to walk through the array of Windows PowerShell drive 
names, and then you call the New-PSDrive cmdlet. Because you are running the commands 
inside a script, the new PowerShell drives, by default, would live within the script scope. When 
the script ends, the script scope goes away. This means that the Windows PowerShell drives 
would not be available when the script ended—which would defeat your purposes in creat-
ing them in the first place. To combat this scoping issue, you need to create the Windows 
PowerShell drives within the Global scope, which means that they will be available in the 
Windows PowerShell console when the script has finished running. To avoid displaying con-
firmation messages when creating the Windows PowerShell drives, you pipe the results to the 
Out-Null cmdlet. 

In the New-ModulesDrive.ps1 script, we create another function. This function dis-
plays global filesystem Windows PowerShell drives. When the script runs, call the New-
ModuleDrives function. Follow by calling the Get-FileSystemDrives function. The complete 
New-ModulesDrive function is shown here. 

New-ModulesDrive.ps1

Function New-ModuleDrives 

{ 

<# 

    .SYNOPSIS 

    Creates two PSDrives: myMods and sysMods 

    .EXAMPLE 

    New-ModuleDrives 

    Creates two PSDrives: myMods and sysMods. These correspond  

    to the users' modules folder and the system modules folder respectively.  

#> 

 $driveNames = "myMods","sysMods" 

 

 For($i = 0 ; $i -le 1 ; $i++) 

 { 

  New-PSDrive -name $driveNames[$i] -PSProvider filesystem ' 

  -Root ($env:PSModulePath.split(";")[$i]) -scope Global | 

  Out-Null 



 326 CHAPTER 10 Designing modules

 } #end For 

} #end New-ModuleDrives 

 

Function Get-FileSystemDrives 

{ 

<# 

    .SYNOPSIS 

    Displays global PS Drives that use the Filesystem provider 

    .EXAMPLE 

    Get-FileSystemDrives 

    Displays global PS Drives that use the Filesystem provider 

#> 

 Get-PSDrive -PSProvider FileSystem -scope Global 

} #end Get-FileSystemDrives 

 

# *** EntryPoint to Script *** 

New-ModuleDrives 

Get-FileSystemDrives

This section covered the concept of installing modules. Before installing modules, create 
a special modules folder in the user’s profile. A script was developed that will perform this 
action. The use of a $modulePath variable was examined. The section concluded with a script 
that creates a Windows PowerShell drive to provide easy access to installed modules. 

Checking for module dependencies
One problem with using modules is that you now have a dependency on external code, and 
this means that a script that uses the module must have the module installed or else the script 
will fail. If you control the environment, taking an external dependency is not a bad thing; if 
you do not control the environment, an external dependency can be a disaster. 

Because of the potential for problems, Windows PowerShell 3.0 adds additional capability 
to the #requires statement. The #requires statement now checks for Windows PowerShell ver-
sion, modules, snap-ins, and even module and snap-in version numbers. Unfortunately, use 
of #requires works only in a script, not in a function, cmdlet, or snap-in. Figure 10-3 illustrates 
using the #requires statement to ensure the presence of a specific module prior to script 
execution. The script requires a module named bogus that does not exist. Because the bogus 
module does not exist, an error occurs. 



 Install modules CHAPTER 10 327

FIGURE 10-3 Use the #requires statement to prevent execution of a script when a required module does 
not exist.

Because you cannot use the #requires statement inside a function, you might want to use 
the Get-MyModule function to determine whether a module exists or is already loaded. The 
complete Get-MyModule function is shown here: 

Get-MyModule.ps1

Function Get-MyModule 

{ 

 Param([string]$name) 

 if(-not(Get-Module -name $name))  

   {  

    if(Get-Module -ListAvailable |  

        Where-Object { $_.name -eq $name }) 

       {  

        Import-Module -Name $name  

        $true 

       } #end if module available then import 

    else { $false } #module not available 

    } #end if not module 

  else { $true } #module already loaded 

         

} #end function get-MyModule 

 

get-mymodule -name "bitsTransfer"



 328 CHAPTER 10 Designing modules

The Get-MyModule function accepts a single string–the name of the module to check. 
The if statement is used to see whether the module is currently loaded. If it is not loaded, the 
Get-Module cmdlet is used to see whether the module exists on the system. If it does exist, the 
module is loaded. 

If the module is already loaded into the current Windows PowerShell session, the Get-
MyModule function returns $true to the calling code. Let’s examine the function in a bit more 
detail to see how it works. 

The first thing you do is use the if statement to see whether the module is not loaded 
into the current session. To do this, use the –not operator to see whether the module is not 
loaded. Use the Get-Module cmdlet to search for the required module by name. This section 
of the script is shown here:

Function Get-MyModule 
{ 
 Param([string]$name) 
 if(-not(Get-Module -name $name))  
   { 

To obtain a list of modules that are installed on a system, use the Get-Module cmdlet with 
the –ListAvailable switch. Unfortunately, there is no way to filter the results, and this neces-
sitates pipelining the results to the Where-Object cmdlet to see whether the required cmdlet 
is installed on the system. If the module exists on the system, the function uses the Import-
Module cmdlet to import the module, and it returns $true to the calling code. This section of 
the script is shown here: 

if(Get-Module -ListAvailable |  
        Where-Object { $_.name -eq $name }) 
       {  
        Import-Module -Name $name  
        $true 
       } #end if module available then import

The last two things to do in the function is to handle two other cases. If the module is not 
available, the Where-Object cmdlet will not find anything. This triggers the first else clause, 
where $false is returned to the calling code. If the module is already loaded, the second else 
clause returns $true to the script. This section of the script is shown here: 

    else { $false } #module not available 
    } #end if not module 
  else { $true } #module already loaded 
         
} #end function get-MyModule

A simple use of the Get-MyModule function is to call the function and pass the name of a 
module to it. This example is actually seen in the last line of the Get-MyModule.ps1 script: 

get-mymodule -name "bitsTransfer"

When called in this manner, the Get-MyModule function will load the bitstransfer module 
if it exists on your system and if it is not already loaded. If the module is already loaded or if it 



 Install modules CHAPTER 10 329

is loaded by the function, $true is returned to the script. If the module does not exist, $false is 
returned. The use of the Get-MyModule function appears in Figure 10-4.

FIGURE 10-4 Use the Get-MyModule function to ensure that a module exists prior to attempting to 
load it.

A better use of the Get-MyModule function is to use it as a prerequisite check for a func-
tion that uses a particular module. Your syntax might look something like this:

If(Get-MyModule –name "bitsTransfer") { call your bits code here }  
ELSE { "Bits module is not installed on this system." ; exit }

NOTES FROM THE FIELD

Marc Carter, It Specialist
President, Corpus Christi PowerShell Users Group

Most of my Windows PowerShell efforts end up as scripts. Frequently, these 
scripts start off as exploratory one-liners and end up as a combination of 

specific queries, statements, and comments that I store away for whenever I’m 
called upon to solve world hunger, which more often than not happens on a weekly 
basis. that being said, the Integrated Scripting Environment (ISE) is my best friend. 
It allows me to compile and test portions of my script as I go, run my one-liners, 
and quickly copy output from results. as for writing modules, well, we all should 
have something to aspire to, and advanced functions and modules are mine. 
When we have lulls in our workload, I shift to taking my scripts to the next level 



 330 CHAPTER 10 Designing modules

by transforming the most useful ones so that I can share them with my coworkers. 
Inevitably, this is where I learn invaluable techniques that help me to become a bet-
ter and more efficient scripter. Incorporating key concepts like error handling and 
error trapping isn’t likely something that I focus on while tasked with solving world 
hunger, but as I find time to mature my scripts, the time I spend evolving scripts 
into advanced functions and modules helps me understand and become more 
familiar with these and other concepts. Ultimately, they become more characteristic 
of my scripting style. 

Using a module from a share
Utilizing a module from a central file share is no different than using a module from 
one of the two default locations. When a module is placed in the %windir%\System32\
WindowsPowerShell\v1.0\Modules folder, it is available to all users. If a module is placed in 
the %UserProfile%\My Documents\WindowsPowerShell\Modules folder, it is available only 
to the specific user. The advantage of placing modules in the %UserProfile% location is that 
the user automatically has permission to perform the installation, whereas system location 
requires Administrator rights on Windows 7 and later. 

Speaking of installation of Windows PowerShell modules, in many cases the installation of 
a Windows PowerShell module is no more complicated than placing the *.psm1 file in a folder 
in default user location–the key point is that the folder that is created under the \Modules 
folder must have the same name as the module itself. When you install a module on a local 
computer, use the Copy-Modules.ps1 script to simplify the process of creating and naming 
the folders. 

When copying a Windows PowerShell module to a network shared location, follow the 
same rules; make sure that the folder that contains the module is the same name as the mod-
ule name. 

You need to keep in mind a couple of things. The first thing is that a Windows PowerShell 
module is basically a script (in our particular application) and that the Script Execution 
policy must be set so that script execution is permitted. If the script execution policy is set 
to the default level of restricted, an error will be generated (even if the logged on user is an 
Administrator). Fortunately, the error that is returned informs one of that fact. Even if the 
execution policy is set to restricted on a particular machine, you can always run a Windows 
PowerShell script (or module) if you start Windows PowerShell with the bypass option. The 
command to do this is shown here:

powershell -executionpolicy bypass

One of the really cool uses of a shared module is to permit centralization of Windows 
PowerShell Profiles for networked users. To do this, the profile on the local computer would 



 Creating a module CHAPTER 10 331

simply import the shared module. In this way, you need to modify only one module in one 
location to permit updates for all the users on the network. 

Creating a module

The first thing you will probably want to do is to create a module. You can create a module in 
the Windows PowerShell ISE. The easiest way to create a module is to use functions that you 
have previously written. One of the first things to do is to locate the functions that you want 
to store in the module. You can copy them directly into the Windows PowerShell ISE. This 
technique appears in Figure 10-5.

FIGURE 10-5 Using the Windows PowerShell ISE makes creating a new module as easy as copying and 
pasting existing functions into a new file.

After you have copied your functions into the new module, save it with the .psm1 exten-
sion. A BasicFunctions.psm1 module is shown here. 

BasicFunctions.psm1

Function Get-OptimalSize 

{ 

 <# 

  .Synopsis 

    Converts Bytes into the appropriate unit of measure.  

   .Description 



 332 CHAPTER 10 Designing modules

    The Get-OptimalSize function converts bytes into the appropriate unit of  

    measure. It returns a string representation of the number. 

   .Example 

    Get-OptimalSize 1025 

    Converts 1025 bytes to 1.00 KiloBytes 

    .Example 

    Get-OptimalSize -sizeInBytes 10099999  

    Converts 10099999 bytes to 9.63 MegaBytes 

   .Parameter SizeInBytes 

    The size in bytes to be converted 

   .Inputs 

    [int64] 

   .OutPuts 

    [string] 

   .Notes 

    NAME:  Get-OptimalSize 

    AUTHOR: Ed Wilson 

    LASTEDIT: 6/30/2012 

    KEYWORDS: Scripting Techniques, Modules 

   .Link 

     Http://www.ScriptingGuys.com 

 #Requires -Version 2.0 

 #> 

[CmdletBinding()] 

param( 

      [Parameter(Mandatory = $true,Position = 0,valueFromPipeline=$true)] 

      [int64] 

      $sizeInBytes 

) #end param 

 Switch ($sizeInBytes)  

  { 

   {$sizeInBytes -ge 1TB} {"{0:n2}" -f  ($sizeInBytes/1TB) + " TeraBytes";break} 

   {$sizeInBytes -ge 1GB} {"{0:n2}" -f  ($sizeInBytes/1GB) + " GigaBytes";break} 

   {$sizeInBytes -ge 1MB} {"{0:n2}" -f  ($sizeInBytes/1MB) + " MegaBytes";break} 

   {$sizeInBytes -ge 1KB} {"{0:n2}" -f  ($sizeInBytes/1KB) + " KiloBytes";break} 

   Default { "{0:n2}" -f $sizeInBytes + " Bytes" } 

  } #end switch 

  $sizeInBytes = $null 

} #end Function Get-OptimalSize  

 

Function Get-ComputerInfo 

{ 

 <# 

  .Synopsis 

    Retrieves basic information about a computer.  



 Creating a module CHAPTER 10 333

   .Description 

    The Get-ComputerInfo cmdlet retrieves basic information such as 

    computer name, domain name, and currently logged on user from 

    a local or remote computer. 

   .Example 

    Get-ComputerInfo  

    Returns computer name, domain name and currently logged on user 

    from local computer. 

    .Example 

    Get-ComputerInfo -computer berlin 

    Returns computer name, domain name and currently logged on user 

    from remote computer named berlin. 

   .Parameter Computer 

    Name of remote computer to retrieve information from 

   .Inputs 

    [string] 

   .OutPuts 

    [object] 

   .Notes 

    NAME:  Get-ComputerInfo 

    AUTHOR: Ed Wilson 

    LASTEDIT: 6/30/2012 

    KEYWORDS: Desktop mgmt, basic information 

   .Link 

     Http://www.ScriptingGuys.com 

 #Requires -Version 2.0 

 #> 

 Param([string]$computer=$env:COMPUTERNAME) 

 $wmi = Get-WmiObject -Class win32_computersystem -ComputerName $computer 

 $pcinfo = New-Object psobject -Property @{"host" = $wmi.DNSHostname 

           "domain" = $wmi.Domain  

           "user" = $wmi.Username} 

 $pcInfo 

} #end function Get-ComputerInfo

You can control what is exported from the module by creating a manifest. If you place 
related functions that you will more than likely want to use together, you can avoid creating 
a manifest. In the BasicFunctions.psm1 module, there are two functions: one that converts 
numbers from bytes to a more easily understood numeric unit, and another function that 
returns basic computer information.

The Get-ComputerInfo function returns a custom object that contains information about 
the user, computer name, and computer domain. After you have created and saved the mod-
ule, you will need to install the module. You can do this manually by navigating to the module 



 334 CHAPTER 10 Designing modules

directory, creating a folder for the module, and placing a copy of the module in the folder. I 
prefer to use the Copy-Modules.ps1 script discussed earlier in this chapter. 

When the module has been copied to its own directory (installed), you can use the Import-
Module cmdlet to import it into the current Windows PowerShell session. If you are not sure of 
the name of the module, you can use the Get-Module cmdlet with the –ListAvailable switch, as 
shown here: 

PS C:\> Get-Module -ListAvailable 
 
    Directory: C:\Users\administrator\Documents\WindowsPowerShell\Modules 
 
ModuleType Name                                ExportedCommands 
---------- ----                                ---------------- 
Script     BasicFunctions                      {Get-OptimalSize, Get-ComputerInfo} 
Script     ConversionModuleV6                  {ConvertTo-MetersPerSecond, Conver... 
Script     HelloUser                           hello-user 
 
 
    Directory: C:\Windows\system32\WindowsPowerShell\v1.0\Modules 
 
 
ModuleType Name                                ExportedCommands 
---------- ----                                ---------------- 
Manifest   AppLocker                           {Get-AppLockerFileInformation, Get... 
Manifest   Appx                                {Add-AppxPackage, Get-AppxPackage,... 
Manifest   BitLocker                           {Unlock-BitLocker, Suspend-BitLock... 
Manifest   BitsTransfer                        {Add-BitsFile, Complete-BitsTransf... 
Manifest   BranchCache                         {Add-BCDataCacheExtension, Clear-B... 
Manifest   CimCmdlets                          {Get-CimAssociatedInstance, Get-Ci... 
Manifest   DirectAccessClientComponents        {Disable-DAManualEntryPointSelecti... 
Script     Dism                                {Add-AppxProvisionedPackage, Add-W... 
Manifest   DnsClient                           {Resolve-DnsName, Clear-DnsClientC... 
Manifest   International                       {Get-WinDefaultInputMethodOverride... 
Manifest   iSCSI                               {Get-IscsiTargetPortal, New-IscsiT... 
Script     ISE                                 {New-IseSnippet, Import-IseSnippet... 
Manifest   Kds                                 {Add-KdsRootKey, Get-KdsRootKey, T... 
Manifest   Microsoft.PowerShell.Diagnostics    {Get-WinEvent, Get-Counter, Import... 
Manifest   Microsoft.PowerShell.Host           {Start-Transcript, Stop-Transcript} 
Manifest   Microsoft.PowerShell.Management     {Add-Content, Clear-Content, Clear... 
Manifest   Microsoft.PowerShell.Security       {Get-Acl, Set-Acl, Get-PfxCertific... 
Manifest   Microsoft.PowerShell.Utility        {Format-List, Format-Custom, Forma... 
Manifest   Microsoft.WSMan.Management          {Disable-WSManCredSSP, Enable-WSMa... 
Manifest   MMAgent                             {Disable-MMAgent, Enable-MMAgent, ... 
Manifest   MsDtc                               {New-DtcDiagnosticTransaction, Com... 
Manifest   NetAdapter                          {Disable-NetAdapter, Disable-NetAd... 
Manifest   NetConnection                       {Get-NetConnectionProfile, Set-Net... 
Manifest   NetLbfo                             {Add-NetLbfoTeamMember, Add-NetLbf... 
Manifest   NetQos                              {Get-NetQosPolicy, Set-NetQosPolic... 
Manifest   NetSecurity                         {Get-DAPolicyChange, New-NetIPsecA... 
Manifest   NetSwitchTeam                       {New-NetSwitchTeam, Remove-NetSwit... 
Manifest   NetTCPIP                            {Get-NetIPAddress, Get-NetIPInterf... 
Manifest   NetworkConnectivityStatus           {Get-DAConnectionStatus, Get-NCSIP... 
Manifest   NetworkTransition                   {Add-NetIPHttpsCertBinding, Disabl... 
Manifest   PKI                                 {Add-CertificateEnrollmentPolicySe... 



 Creating a module CHAPTER 10 335

Manifest   PrintManagement                     {Add-Printer, Add-PrinterDriver, A... 
Script     PSDiagnostics                       {Disable-PSTrace, Disable-PSWSManC... 
Binary     PSScheduledJob                      {New-JobTrigger, Add-JobTrigger, R... 
Manifest   PSWorkflow                          {New-PSWorkflowExecutionOption, Ne... 
Manifest   PSWorkflowUtility                   {Invoke-AsWorkflow 
Manifest   ScheduledTasks                      {Get-ScheduledTask, Set-ScheduledT... 
Manifest   SecureBoot                          {Confirm-SecureBootUEFI, Set-Secur... 
Manifest   SmbShare                            {Get-SmbShare, Remove-SmbShare, Se... 
Manifest   SmbWitness                          {Get-SmbWitnessClient, Move-SmbWit... 
Manifest   Storage                             {Add-InitiatorIdToMaskingSet, Add-... 
Manifest   TroubleshootingPack                 {Get-TroubleshootingPack, Invoke-T... 
Manifest   TrustedPlatformModule               {Get-Tpm, Initialize-Tpm, Clear-Tp... 
Manifest   VpnClient                           {Add-VpnConnection, Set-VpnConnect... 
Manifest   Wdac                                {Get-OdbcDriver, Set-OdbcDriver, G... 
Manifest   WindowsDeveloperLicense             {Get-WindowsDeveloperLicense, Show... 
Script     WindowsErrorReporting               {Enable-WindowsErrorReporting, Dis...

When you have imported the module, you can use the Get-Command cmdlet with the  
–module parameter to see what commands are exported by the module, as shown here: 

PS C:\> Import-Module basicfunctions 
PS C:\> Get-Command -Module basic* 
 
CommandType     Name                                               ModuleName 
-----------     ----                                               ---------- 
Function        Get-ComputerInfo                                   basicfunctions 
Function        Get-OptimalSize                                    basicfunctions

After you have added the functions from the module, you can use them directly from the 
Windows PowerShell prompt. Using the Get-ComputerInfo function is illustrated here:

PS C:\> Get-ComputerInfo 
 
host                                    domain                                  user 
----                                    ------                                  ---- 
mred1                                   NWTraders.Com                           
NWTRADERS\ed 
 
 
PS C:\> (Get-ComputerInfo).user 
NWTRADERS\ed 
PS C:\> (Get-ComputerInfo).host 
mred1 
PS C:\> Get-ComputerInfo -computer win8-pc | Format-Table -AutoSize 
 
host    domain        user 
----    ------        ---- 
win8-PC NWTraders.Com NWTRADERS\Administrator 
 
 
PS C:\>

Because the help tags were used when creating the functions, you can use the Get-Help 
cmdlet to obtain information about using the function. In this manner, the function that 



 336 CHAPTER 10 Designing modules

was created in the module behaves exactly like a regular Windows PowerShell cmdlet. This 
includes tab expansion. 

PS C:\> Get-Help Get-ComputerInfo 
 
NAME 
    Get-ComputerInfo 
 
SYNOPSIS 
    Retrieves basic information about a computer. 
 
 
SYNTAX 
    Get-ComputerInfo [[-computer] <String>] [<CommonParameters>] 
 
 
DESCRIPTION 
    The Get-ComputerInfo cmdlet retrieves basic information such as 
    computer name, domain name, and currently logged on user from 
    a local or remote computer. 
 
 
RELATED LINKS 
    Http://www.ScriptingGuys.com 
    #Requires -Version 2.0 
 
REMARKS 
    To see the examples, type: "Get-Help Get-ComputerInfo -examples". 
    For more information, type: "Get-Help Get-ComputerInfo -detailed". 
    For technical information, type: "Get-Help Get-ComputerInfo -full". 
 
 
 
PS C:\> Get-Help Get-ComputerInfo -Examples 
 
NAME 
    Get-ComputerInfo 
 
SYNOPSIS 
    Retrieves basic information about a computer. 
 
    -------------------------- EXAMPLE 1 -------------------------- 
 
    C:\PS>Get-ComputerInfo 
 
 
    Returns computer name, domain name and currently logged on user 
    from local computer. 
 
 
 
 



 Creating a module CHAPTER 10 337

    -------------------------- EXAMPLE 2 -------------------------- 
 
    C:\PS>Get-ComputerInfo -computer berlin 
 
 
    Returns computer name, domain name and currently logged on user 
    from remote computer named berlin. 
 
 
 
PS C:\>

The Get-OptimalSize function can even receive input from the pipeline, as shown here: 

PS C:\> (Get-WmiObject win32_volume -Filter "driveletter = 'c:'").freespace 
26513960960 
PS C:\> (Get-WmiObject win32_volume -Filter "driveletter = 'c:'").freespace | Get-
OptimalSize 
24.69 GigaBytes 
PS C:\>

NOTES FROM THE FIELD

Windows PowerShell MVP 
Boe Prox
Senior Windows Administrator

In most organizations, routine maintenance of a server to install various patches is 
at the mercy of a specific time range in which to accomplish this task. Depending 

on the size of an environment, this could potentially take several hours and require 
many people to assist with the patching of the servers. Usually this requires those 
people logging in to each system and manually installing a patch.

Enter Windows PowerShell. Windows PowerShell is not just about cmdlets and 
one-liners. You can leverage the .Net library and throw in inline code to create tools 
(command-line or GUI) that others can use with little to no effort.

My goal with writing PoshPAIG (PowerShell Patch Audit/Install GUI), available at 
https://PoshPAIG.codeplex.com, was to create a utility that would decrease the time 
an administrator would take to patch their environment given the limited time 
allotted to do so. Because the command-line aspect would potentially scare off 
some people, I went with a GUI approach that would make it easy for anyone to 
pick up and use. the scope of writing the code was large, and the goals were simple 
at the time but continue to evolve to meet the requirements of the community.

The code behind it is a mix of XAML (for the UI), .Net (building runspaces to handle 
multithreading), VBScript (legacy systems where Windows PowerShell might not be 
installed), COM objects (used for patch auditing), third-party executables (installing 



 338 CHAPTER 10 Designing modules

patches remotely), and, of course, Windows PowerShell itself to glue everything 
together as well as to provide existing cmdlets to handle various tasks.

Working on this project did prove to be a challenge in a number of ways, such as 
how to handle asynchronous operations so that multiple systems can be patched 
at the same time, and even some user interface-related features that are generally 
taken for granted such as sorting columns. this seemingly simple operation had to 
be coded into the user interface to allow a click on the column header to sort the 
rows.

Using sites such as MSDN allowed me to dig deeper into various aspects of .NEt 
classes and XaML to better leverage the code and to improve usability.

the end result is over 3000 lines of code and multiple scripts that handle various 
operations of the utility to include some of the following:

■■ auditing patches on systems

■■ Installing patches on systems

■■ rebooting servers

■■ Generating reports of patches (audited and/or installed)

the end result is a GUI that utilizes a mix of techniques, languages, and user inter-
face elements that anyone can use to manage their updates on multiple systems 
to gather patch information, install patches, and ensure that all of the servers in an 
environment have been not only updated but also can accomplish this task much 
quicker, especially in large environments! 

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous script examples.

■■ All scripts from this chapter are in the file available from the Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40 
-Best-d9e16039.



   339

C H A P T E R  1 1

handling input and output
■■ Choosing the best input method

■■ Prompting for input

■■ Choosing the best output method

■■ Additional resources

There are few scripts that neither receive input nor produce output. These are primarily 
scripts that run a series of commands in a preconfigured, batch-oriented manner. Most 

scripts written by IT professionals require either input or output, and most scripts need 
both. Clearly, for maximum flexibility, scripts must receive input. To maximize utility, most 
scripts have to produce output.

The form of input and the manner of output are part of the design process and therefore 
are the purview of the scriptwriter. Traditional input takes the following forms:

■■ Read from the command line

■■ Read from a text file

■■ Read from a database

■■ Read from a spreadsheet

■■ Read from the registry

■■ Read from Active Directory Domain Services

It is common for output to follow the mode of input, but it is not a requirement. The 
scriptwriter should not be limited by only one model of design. Consider the following 
scenarios:

■■ A script receives input from a text file and displays data to the screen.

■■ A script receives input from a database and writes data back to the database but also 
provides confirmation of the transaction to the screen.

■■ A script receives input from the command line and writes data to the registry.

■■ A script receives input from a spreadsheet, writes to a database, records diagnostic 
information to a text file, and creates an event in the event log that records the exit 
code from the script.

■■ A script receives input from the command line and writes data to a text file but also 
displays the same data to the screen.



 340 CHAPTER 11 Handling input and output

For input and output, the possibilities are varied and the potential combinations are many. 
Choosing the best input method and output destination is not always an exact science, and 
often the best solution might be dependent on external factors such as limitations of network 
infrastructure, ease of use, or speed of development. As a best practice, you should choose 
the input method that facilitates the intended use of the script. We will look at the strengths 
and potential uses of the various input and output methods in the following section.

Choosing the best input method

The selection of the best input method is the one that works for you. When it comes to best 
practices for input methods, it’s possible to feel like the final answer is always a compromise. 
It might seem that using a Microsoft Office Excel spreadsheet is always the best answer 
because it is readily available and easy to use, but this ease of use comes with added com-
plexity to your script. You might feel that a text file is the easiest choice because the Get-
Content cmdlet makes it easy to read from a text file. Yet using and maintaining a text file 
comes with a maintenance cost that you might prefer to avoid. For ease of maintenance, you 
might be inclined to attempt to read data from Active Directory because you know the values 
you receive will always be up to date, but this approach adds additional complexity to the 
script and will not work if Active Directory is not available. In the end, your final selection will 
always be a compromise between usability, understandability, maintainability, and manage-
ability. Let’s begin the discussion by examining the easiest approach to receiving input—read-
ing from the command line.

reading from the command line
Reading from the command line is a traditional way to provide input to a script. It has the 
advantage of simplicity, which means it is easy to implement and reduces development time. 
If you want the ability to alter the script behavior at run time and you plan to run the script 
in an interactive fashion, accepting input from the command line might be the best solution 
for you.

Accepting input from the command line can be simple to implement. The biggest limita-
tion of command-line input is the requirement for user intervention. You can circumvent the 
requirement of user interaction by assigning default values to the command-line parameters 
and by selecting default actions for script behavior.

Using the $args automatic variable
There are several ways to receive command-line input in a script. The simplest method is 
to use command-line arguments. When a Windows PowerShell script is run, an automatic 
variable, $args, is created. The $args variable will hold values supplied to the script when it is 
started. 



 Choosing the best input method CHAPTER 11 341

Get-Bios.ps1

Get-WmiObject -Class Win32_Bios -computername $args 

The Get-Bios.ps1 script starts when you call the script and supply the name of the target 
computer. Because $args automatically accepts a string for the input, you do not need to 
place the name of the target computer in quotation marks.

PS bp:\> .\Get-Bios.ps1 localhost

While the script is running, the value you supplied from the command is present on the 
Windows PowerShell variable drive. You can determine the value that was supplied to the 
script by querying the Windows PowerShell variable drive for the $args variable as shown 
here:

Get-Item -path variable:args

The result of running the previous preceding query is shown here:

PSPath        : Microsoft.PowerShell.Core\Variable::args 
PSDrive       : Variable 
PSProvider    : Microsoft.PowerShell.Core\Variable 
PSIsContainer : False 
Name          : args 
Description   : 
Value         : {localhost} 
Visibility    : Public 
Module        : 
ModuleName    : 
Options       : None 
Attributes    : {}

Even though accessing the value of $args via the Windows PowerShell variable drive pro-
vides a significant amount of information, it is easier to use the Get-Variable cmdlet:

Get-Variable args

LESSONS LEARNED

The dollar sign is not part of the variable name

When using the Get-Variable cmdlet, you do not supply a dollar sign in front 
of the variable name. this is extremely confusing and frustrating to begin-

ners who assume that all variables begin with a dollar sign. While it is true that 
variables begin with a dollar sign, the dollar sign is not technically part of the vari-
able name. the dollar sign is used to indicate that a particular string is to be used as 
a variable, but the name of the variable does not include the dollar sign. therefore, 



 342 CHAPTER 11 Handling input and output

Get-Variable will always fail when the variable is supplied with a dollar sign preced-
ing the variable name. an error message is shown here:

PS bp:\> Get-Variable $args 

Get-Variable : Cannot find a variable with name ‘localhost’. 

At C:\Users\edwils.NORTHAMERICA\AppData\Local\Temp\tmp994A.tmp.ps1:17 

char:13 

+ Get-Variable <<<<  $args 

    + CategoryInfo          : ObjectNotFound: (localhost:String)  

[Get-Variable], ItemNotFoundException 

    + FullyQualifiedErrorId : VariableNotFound,Microsoft.PowerShell 

.Commands.GetVariableCommand

If you examine the error message, it states that it cannot find a variable with the 
name localhost. this provides a clue as to what is happening under the covers. 
the Get-Variable cmdlet is translating the $args variable into the value contained 
within the $args variable and is then looking for a variable that possesses that 
name. this process of substituting the value of $args instead of looking for the 
$args variable itself can lead to unpredictable results and cause hours of frustrating 
troubleshooting. Suppose that you have the following code.

$localhost = “my computer” 

Get-WmiObject -Class Win32_Bios -computername $args 

Get-Variable $args

When the script is started as shown here, you do not receive an error. Instead, you 
receive the following output on your display:

PS bp:\> .\Get-Bios.ps1 localhost 

SMBIOSBIOSVersion : 7LETB7WW (2.17 ) 

Manufacturer      : LENOVO 

Name              : Ver 1.00PARTTBLx 

SerialNumber      : L3L4518 

Version           : LENOVO - 2170 

Name        : localhost 

Description : 

Value       : my computer 

Visibility  : Public 

Module      : 

ModuleName  : 

Options     : None 

Attributes  : {}

Of course, most of the time you are querying the variable drive only for diag-
nostic purposes—exactly the situation when the cloud of confusion is at its most 
devastating.



 Choosing the best input method CHAPTER 11 343

Supplying multiple values to $args
If you need to supply multiple values via the command line and attempt to do so by using the 
$args automatic variable, you will be greeted with the following error message that warns of 
a type mismatch. The error does not use the term type mismatch, but this is what is meant by 
the error. It states that you are attempting to supply an object array to a string and that the 
−computername parameter requires a string for its input.

Get-WmiObject : Cannot convert ‘System.Object[]’ to the type ‘System.String’ required by 
parameter ‘ComputerName’. Specified method is not supported. 
At C:\Users\edwils.NORTHAMERICA\AppData\Local\Temp\tmp774.tmp.ps1:18 char:47 
+  Get-WmiObject -Class win32_bios -computername <<<<  $args 
    + CategoryInfo          : InvalidArgument: (:) [Get-WmiObject], 
ParameterBindingException 
    + FullyQualifiedErrorId : CannotConvertArgument,Microsoft.PowerShell.Commands 
.GetWmiObjectCommand

The error is not caused by the array. The error is caused because the $args automatic 
variable arrives as a System.Object array. The Get-WmiObject cmdlet will accept an array of 
computer names to the −computername parameter. This is shown in the following script in 
which an array of computer names is supplied directly to the −computername parameter and 
BIOS information is retrieved via the Win32_Bios Windows Management Instrumentation 
(WMI) class:

PS C:\> Get-WmiObject -Class Win32_Bios -computername localhost,loopback 
SMBIOSBIOSVersion : 7LETB7WW (2.17 ) 
Manufacturer      : LENOVO 
Name              : Ver 1.00PARTTBLx 
SerialNumber      : L3L4518 
Version           : LENOVO - 2170 
 
SMBIOSBIOSVersion : 7LETB7WW (2.17 ) 
Manufacturer      : LENOVO 
Name              : Ver 1.00PARTTBLx 
SerialNumber      : L3L4518 
Version           : LENOVO - 2170

There are a few ways to solve this issue. The first is to index into the array and force the 
retrieval of the computer names as shown in Get-BiosArray1.ps1.

Get-Biosarray1.ps1

Get-WmiObject -Class Win32_Bios -computername $args[0]

The technique of indexing directly into the $args automatic variable works well. Although 
it looks like it will retrieve only the first item in the array, $args in fact retrieves both items. 
Because Windows PowerShell automatically handles the transition between a single item 
and multiple items in an array, the technique of indexing into element 0 of the array works 
whether one or more items are supplied. The issue of the way in which the Windows 
PowerShell $args automatic variable handles an array of information is shown in the 
StringArgs.ps1 script.



 344 CHAPTER 11 Handling input and output

Stringargs.ps1

‘The value of arg0 ‘ + $args[0] + ‘ the value of arg1 ‘ + $args[1]

When the StringArgs1.ps1 script is run with the array “string1”,”String2” supplied from the 
command line, the entire array is displayed in $args[0] and nothing is displayed for $args[1].

PS C:\> StingArgs.ps1 “string1”,”String2” 
The value of arg0 string1 String2 the value of arg1 
PS C:\>

A better way to handle an array that is supplied to the $args automatic variable is to use 
the Foreach-Object cmdlet and pipeline the array to the Get-WmiObject cmdlet as shown in 
Get-BiosArray2.ps1.

Get-Biosarray2.ps1

$args | Foreach-Object { 

Get-WmiObject -Class Win32_Bios -computername $_ 

}  

When the Get-BiosArray2.ps1 script is started with an array of computer names from the 
Windows PowerShell prompt, the following output is displayed:

PS C:\> Get-BiosArray2.ps1 localhost,loopback 
SMBIOSBIOSVersion : 7LETB7WW (2.17 ) 
Manufacturer      : LENOVO 
Name              : Ver 1.00PARTTBLx 
SerialNumber      : L3L4518 
Version           : LENOVO - 2170 
 
SMBIOSBIOSVersion : 7LETB7WW (2.17 ) 
Manufacturer      : LENOVO 
Name              : Ver 1.00PARTTBLx 
SerialNumber      : L3L4518 
Version           : LENOVO – 2170

There are two advantages to using the Foreach-Object cmdlet. The first is readability of 
the code, because spelling out Foreach-Object meets the principle of least shock. When peo-
ple read the code and see that the script accepts an array for input via the $args variable, they 
are not surprised to see the script using the Foreach-Object cmdlet to walk through the array. 
Another advantage is that the script will work when a single value is supplied for the input.

Unfortunately, if the same approach is tried with the StringArgsArray.ps1 script, the value 
of the $args array is repeated twice. The StringArgsArray1.ps1 script is shown here.

Stringargsarray1.ps1

$args | Foreach-Object { 

‘The value of arg0 ‘ + $_ + ‘ the value of arg1 ‘ + $_  

}



 Choosing the best input method CHAPTER 11 345

When the StringArgsArray1.ps1 script is started, the results shown here are displayed:

PS C:\> StingArgsArray1.ps1 “string1”,”String2” 
The value of arg0 string1 String2 the value of arg1 string1 String2 
PS C:\>

If you examine the output from the StringArgsArray1.ps1 script, you see that both ele-
ments of the $args array are displayed. If you modify the StringArgsArray1.ps1 script so that 
you index into the array that is contained in the $_ automatic variable (which represents the 
current item on the pipeline), you can retrieve both items from the array. The revised script is 
named StringArgsArray2.ps1.

Stringargsarray2.ps1

$args | Foreach-Object { 

‘The value of arg0 ‘ + $_[0] + ‘ the value of arg1 ‘ + $_[1] 

}

When the script is run, the correct information is displayed.

PS C:\> StingArgsArray1.ps1 “string1”,”String2 
The value of arg0 string1 the value of arg1 String2 
PS C:\>

A more common problem when using the $args automatic variable is not the need to 
handle multiple items from the command line but the need to handle the situation when the 
person running the script does not supply any values from the command line. If you run the 
Get-Bios.ps1 script and do not supply a value from the command line, an error is generated 
by the Get-WmiObject cmdlet.

Get-WmiObject : Cannot validate argument on parameter ‘ComputerName’. The argument is 
null, empty, or an element of the argument collection contains a null value. Supply a 
collection that does not contain any null values and then try the command again. 
At C:\Users\edwils.NORTHAMERICA\AppData\Local\Temp\tmpF8E3.tmp.ps1:16 char:46 
+ Get-WmiObject -Class Win32_Bios -computername <<<<  $args 
    + CategoryInfo          : InvalidData: (:) [Get-WmiObject], 
ParameterBindingValidationException 
    + FullyQualifiedErrorId : ParameterArgumentValidationError,Microsoft.PowerShell 
.Commands.GetWmiObjectCommand

There are two ways to handle the missing data exception, and both methods involve 
inspecting the count property from $args. In the first example, if the count property value is 
equal to 0, you display a message and exit the script as shown here:

Get-BiosargsCheck1.ps1

If($args.count -eq 0)  

  { 

   Write-Host -foregroundcolor Cyan “Please supply computer name” 

   Exit 

  } #end if 

Get-WmiObject -Class Win32_Bios -computername $args



 346 CHAPTER 11 Handling input and output

You can simplify the amount of typing involved in creating a custom error message by 
using the Throw statement to raise an error, which automatically displays the output in red. 
This allows you to skip using the Write-Host cmdlet to display text in a color other than white. 
In the Get-BiosArgsCheck2.ps1 script, the Throw statement is used to raise an error. The string 
following the Throw statement is the message that is displayed on the screen. The script is 
further optimized by using the not (!) operator to determine whether the $args automatic 
variable has a count, which treats the $args.count as if it were a Boolean value. If the count is 
0, the (!$args.count) expression is evaluated to false and the Throw statement is entered. The 
use of the Throw statement is shown in the Get-BiosArgsCheck2.ps1 script.

Get-BiosargsCheck2.ps1

If(!$args.count)  

  { 

   Throw “Please supply computer name” 

  } #end if 

Get-WmiObject -Class Win32_Bios -computername $args

You should keep in mind that when you use the Throw statement, it generates an error. 
This error is populated on the $error object and is a RuntimeException class in this particular 
example. As a best practice, you should avoid using the Throw statement unless an action 
actually causes an error. A user omitting a parameter does not really produce an error. You 
have already trapped the error that would have been created as a result of not checking the 
count property of the $args variable.

PS C:\Program Files\MrEdSoftware\MrEdScriptEditor> $error 
Please supply computer name 
At C:\Users\edwils.NORTHAMERICA\AppData\Local\Temp\tmp72FE.tmp.ps1:17 char:9 
+    Throw <<<<  “Please supply computer name” 
    + CategoryInfo          : OperationStopped: (Please supply computer name:String) [], 
RuntimeException 
    + FullyQualifiedErrorId : Please supply computer name

You can use the Trap statement to catch a parameter binding error. If a user starts the 
script without supplying a computer name for the command-line argument, an error is 
raised. The particular error that is raised is an instance of the Microsoft .NET Framework 
ParameterBindingException class, which is located in the System.Management.Automation 
namespace. This specific error is raised when there is a problem binding the parameters that 
are supplied to the script. Other errors involving WMI, such as an invalid WMI class name, 
do not involve parameter binding and therefore do not raise the ParameterBindingException 
exception.

The advantage of using the Trap statement to look for a very specific error is that you can 
then tailor your messages to the exact problem the user encountered. Instead of glibly reply-
ing that there is a problem with the script, you can provide a specific suggestion tailored to 
the exact error condition that is encountered. You can have multiple Traps in your script if you 
need to do so. Your script traps the error, displays a message, and exits the script gracefully. 



 Choosing the best input method CHAPTER 11 347

An error is still generated on the $error object but is not displayed to the user. An example of 
using the Trap statement to display an error message when the script is run without supplying 
a value for $args is shown in the Get-BiosArgsTrap1.ps1 script.

Get-Biosargstrap1.ps1

Trap [System.Management.Automation.ParameterBindingException]  

  {  

    Write-Host -foregroundcolor cyan “Supply a computer name” 

    Exit 

  } 

 

Get-WmiObject -Class Win32_Bios -computername $args

If a ParameterBindingException error is encountered when the Get-BiosArgsTrap1.ps1 script 
is started, the script will trap the error. The output displayed from the Get-BiosArgsTrap1.ps1 
script is shown here:

PS C:\> Get-BiosArgsTrap1.ps1 
Supply a computer name 
PS C:\>

If any other error occurs when the script runs, the error associated with that particular 
error condition is displayed.

You can also use Try/Catch/Finally to attempt an action in the try portion of the construc-
tion. The error you will trap goes into the catch portion, and the action you will perform when 
all is completed goes into the finally section.

An example of using Try/Catch/Finally is shown in the GetBiosTryCatchFinally.ps1 script. 
In the try section of the construction, you use the Get-WmiObject cmdlet to retrieve BIOS 
information from the Win32_Bios WMI class. The target computer is supplied from the 
command line via the $args automatic variable, and this is the command that is attempted. 
If a System.Management.Automation.ParameterBindingException error is raised, it will be 
caught via the catch portion of the Try/Catch/Finally construction. When the parameter 
exception is raised, the code that runs is the Write-Host cmdlet. The string “Please enter 
computer name” displays on the screen in the cyan color. The code that is in the finally por-
tion of Try/Catch/Finally always runs, and therefore the ‘Cleaning up the $error object’ 
string will be displayed to the screen in white text even if no error is raised. The error object 
will also be cleared, even if there are no errors to be cleared. The complete text of the 
GetBiosTryCatchFinally.ps1 script is shown here.

GetBiostryCatchFinally.ps1

Try  

   { Get-WmiObject -class Win32_Bios -computer $args } 

Catch [System.Management.Automation.ParameterBindingException]   

   { Write-Host -foregroundcolor cyan “Please enter computer name” } 



 348 CHAPTER 11 Handling input and output

Finally  

   { ‘Cleaning up the $error object’ ; $error.clear() }

Using the Param statement
Using the $args automatic variable is a quick and easy method to receive input to your script 
from the command line. As shown in the “Using the $args automatic variable” section, this 
simplicity is not without cost. The cost is flexibility. While the $args automatic variable works 
great for retrieving single values, it does not work as well when multiple parameters must 
be supplied. In addition, there is no way to make switched parameters when using the $args 
automatic variable.

The Param statement lets you create named arguments and switched arguments. To use 
the Param statement to create a named argument, you use the Param keyword, open a set of 
parentheses, and specify your parameter name as follows:

Param($computer)

To specify a default value for the parameter, you use the Param keyword, specify the 
parameter name inside a set of parentheses, and use the equality operator to assign a value.

Param($computer = “localhost”)

The Param statement must be the first noncommented line in the script. If you try to use 
the Param statement in another position, you will receive an error. In the example shown 
here, you actually receive the error but the script still runs.

BadParam.ps1

Write-Host “Param not in first position” 

Param($computer = “localhost”) 

Get-WmiObject -Class Win32_Bios -computername $computer

The error states that Param is not recognized as a cmdlet, function, script file, or operable 
program. This error is shown in Figure 11-1.

The Get-BiosParam.ps1 script illustrates using the Param keyword to create a named argu-
ment and to assign a default value for the $computer variable. The Get-WmiObject cmdlet uses 
the Win32_Bios WMI class to return BIOS information to the display from the computer that is 
specified in the $computer variable, which is either a computer name that was typed when the 
Get-BiosParam.ps1 script was run or the localhost computer.



 Choosing the best input method CHAPTER 11 349

FIGURE 11-1 When the Param statement does not appear in the first noncommented line, an error is 
raised.

There are three different ways in which the −computer parameter can be supplied from the 
command line, as follows:

■■ Type the entire parameter name.

■■ Type a partial parameter name. You must type enough of the parameter name to 
uniquely identify the parameter.

■■ Omit the parameter name and rely on position.

These three different methods of using command-line parameters are illustrated here with 
the Get-BiosParam.ps1 script:

PS C:\> Get-BiosParam.ps1 –computer loopback 
 
SMBIOSBIOSVersion : 7LETB7WW (2.17 ) 
Manufacturer      : LENOVO 
Name              : Ver 1.00PARTTBLx 
SerialNumber      : L3L4518 
Version           : LENOVO – 2170 
 
PS C:\> Get-BiosParam.ps1 –c loopback 
 
SMBIOSBIOSVersion : 7LETB7WW (2.17 ) 
Manufacturer      : LENOVO 
Name              : Ver 1.00PARTTBLx 
SerialNumber      : L3L4518 
Version           : LENOVO – 2170 
 



 350 CHAPTER 11 Handling input and output

PS C:\> Get-BiosParam.ps1 loopback 
 
SMBIOSBIOSVersion : 7LETB7WW (2.17 ) 
Manufacturer      : LENOVO 
Name              : Ver 1.00PARTTBLx 
SerialNumber      : L3L4518 
Version           : LENOVO – 2170

The complete Get-BiosParam.ps1 script is shown here.

Get-BiosParam.ps1

Param($computer = “localhost”) 

Get-WmiObject -Class Win32_Bios -computername $computer

Creating a mandatory parameter
You can make a parameter mandatory by using a parameter binding tag and setting the 
value of the mandatory attribute to $true. When the mandatory attribute is used to modify 
the command-line parameter, a prompt is displayed whenever the script is run without sup-
plying the required value. This behavior, shown in Figure 11-2, allows the user a chance to run 
the script without encountering an error.

FIGURE 11-2 Windows PowerShell prompts for missing values when the mandatory attribute is used with 
a command-line parameter.



 Choosing the best input method CHAPTER 11 351

Parameter statement tags are a powerful feature of Windows PowerShell, and 
their use prevents interoperability with earlier versions of PowerShell. In the Get-
BiosMandatoryParameter.ps1 script, the #requires –version 4.0 statement prevents the 
script from attempting to start in an earlier Windows PowerShell environment. The Param 
statement is used to create the command-line parameters. The [Parameter(Mandatory 
= $true)] statement makes the −computername parameter a mandatory parameter. The 
[string[]] statement converts the −computername parameter into an array. When the Get-
BiosMandatoryParameter.ps1 script runs without any parameters supplied, it will prompt for 
multiple values for the −computername parameter until the Enter key is pressed twice. If you 
want to accept only a single value for the −computername parameter, you should leave out 
the [], as shown here:

Param( 
    [Parameter(Mandatory = $true)] 
    [string] 
    $computername)

When a value is supplied for the −computername parameter from the command line, it is 
converted into a string if possible because of the [string[]] type constraint that is placed in the 
parameter definition. This is, of course, the same as the −computername parameter from the 
Get-WmiObject cmdlet, which also accepts an array of strings. For example, if you attempt to 
constrain the input as an integer, an invalid parameter error is generated.

PS bp:\> .\Get-BiosMandatoryParameter.ps1 [int]12 
Get-WmiObject : Invalid parameter 
At C:\data\BookDocs\PowerShellBestPractices\Scripts\chapter12\Get-BiosMandatory 
Parameter.ps1:20 char:14 
+ Get-WmiObject <<<<  -class Win32_Bios -computername $computername 
    + CategoryInfo: InvalidOperation: (:) [Get-WmiObject], ManagementException 
    + FullyQualifiedErrorId : GetWMIManagementException,Microsoft.PowerShell 
.Commands.GetWmiObjectCommand 

The complete Get-BiosMandatoryParameter.ps1 script is shown here.

Get-BiosMandatoryParameter.ps1

#requires -version 4.0 

Param( 

    [Parameter(Mandatory = $true)] 

    [string[]] 

    $computername) 

 

Get-WmiObject -class Win32_Bios -computername $computername



 352 CHAPTER 11 Handling input and output

INSIDE TRACK

Gary Siepser, Premier Field Engineer
Microsoft Corporation

A few years ago, when I set out to start writing more reusable code and more 
advanced functions, I wanted to mimic the behavior of cmdlets I love, such as 

Stop-Process. What I love about that cmdlet is that you can pipe process objects 
to, as well as take advantage of, the -InputObject parameter directly. I love the flex-
ibility the cmdlet provides through quality parameter design. 

When I set out to write my own Export-Excel function (I know there are several 
out there already; this was some time ago), I had to really dig into how to code this 
parameter behavior. Using the Begin-Process-End structure of functions was clearly 
the way to go, but I was left with some design choices.

In the Process block, you can leverage $_ to access the current pipeline object, but 
by leveraging the [Parameter] attribute, you can also map pipeline input directly 
into parameters. I definitely wanted to use parameter mapping to allow richer and 
multiple parameter creation using pipeline input.

The next design choice for my –InputObject parameter was what object type to use 
when strong-typing. this was to be the main parameter to receive the objects to be 
exported into the body of the Excel file. After some testing, I realized that I wanted 
to allow any type of object to be pipelined and that I would simply export whatever 
properties were present on the objects. I decided to use [Object] to allow for any type 
of object. to handle multiple instances of the passed objects and to work with param-
eter pipeline input, the type I finally settled on for the parameter was [Object[]].

the last challenge that I faced was the difference in behavior between pipelining 
and passing the objects as a named parameter. the Process block runs like a Foreach 
loop when the objects are pipelined; it runs once for each object instance in the 
pipe. Unfortunately, when passing the same objects as a parameter argument, the 
Process block runs only once. This is reflective of Windows PowerShell behavior 
when passing an array through the pipe: the array is unrolled, and the multiple 
objects are received by the parameter and cause the Process block to run accord-
ingly. When passing the array as an argument, the parameter receives only the 
single array object instead of multiple objects.

the solution to this last problem was to simply wrap the contents of the Process 
block into a Foreach loop. If the objects are pipelined, the Foreach loop enumer-
ates only the single object and everything still runs fine. If the objects are passed as 
an argument, thus a single array object, the Foreach loop unwraps and repeats the 
code block much as the Process block does for the pipeline. While at first it seemed 
a bit counter-intuitive to have to add in a loop within the looping nature of the 
Process block, it all worked out in the end.



 Choosing the best input method CHAPTER 11 353

Using parameter attributes
The Get-BiosMandatoryParameter.ps1 script uses the mandatory parameter attribute argu-
ment to ensure that the −computername parameter has a value supplied for it. There are 
several other parameter attribute arguments that can be used to modify the default behavior 
of the parameter attribute of the Param keyword. The available parameter attribute argu-
ments are shown in Table 11-1.

TABLE 11-1 Parameter attribute arguments

Argument Name Description

Mandatory The Mandatory argument indicates that the parameter is required when 
the function is run. If this argument is not specified, the parameter is an 
optional parameter.
Example:
[parameter(Mandatory=$true)]

Position The Position argument specifies the position of the parameter. If this ar-
gument is not specified, the parameter name or its alias must be explic-
itly specified when the parameter is set. Also, if none of the parameters 
of a function have positions, the Windows PowerShell run time assigns 
positions to each parameter based on the order in which the parameters 
are received.
Example:
[parameter(Position=0)]

ParameterSetName The ParameterSetName argument specifies the parameter set to which a 
parameter belongs. If no parameter set is specified, the parameter be-
longs to all of the parameter sets defined by the function. This behavior 
means that each parameter set must have one unique parameter that is 
not a member of any other parameter set.
Example:
[parameter(Mandatory=$true,
  ParameterSetName = “CN”)]

ValueFromPipeline The ValueFromPipeline argument specifies that the parameter accepts 
input from a pipeline object. Specify this argument if the cmdlet ac-
cesses the complete object and not just a property of the object.
Example:
[parameter(Mandatory=$true,
  ValueFromPipeline=$true)]

ValueFromPipelineByPropertyName The ValueFromPipelineByPropertyName argument specifies that the 
parameter accepts input from a property of a pipeline object.
Example:
[parameter(Mandatory=$true,
 ValueFromPipelineByPropertyName=$true)]

ValueFromRemainingArguments The ValueFromRemainingArguments argument specifies that the param-
eter accepts all of the remaining arguments that are not bound to the 
parameters of the function.
Example:
[parameter(Mandatory=$true,
  ValueFromRemainingArguments=$true)]



 354 CHAPTER 11 Handling input and output

Argument Name Description

HelpMessage The HelpMessage argument specifies a message that contains a short 
description of the parameter.
Example:
[parameter(Mandatory=$true, HelpMessage=”An array of computer 
names.”)]

Alias The Alias argument establishes an alternate name for the parameter. 
This is useful when parameter names are excessively long. 
Example:
[parameter(Mandatory=$true)]
[alias(“CN”,”MachineName”)]
[String[]]
$ComputerName

Creating a parameter alias
The alias attribute of the Param statement can be used to make working from the command 
line easier. The alias attribute typically follows the parameter attribute to create an alterna-
tive to typing a long parameter name from the command line. Although partial parameter 
completion can be used, enough of the parameter must be typed to disambiguate it from 
other parameters that are defined. Consider the following Param statement that is used to 
create two parameters:

Param($computername, $computerIPaddress)

In this example, you need to type computern and computeri before the parameters are 
unique. In a case such as this, a parameter alias is useful. You can see how a parameter alias is 
used by referring to the Get-BiosMandatoryParameterWithAlias.ps1 script.

Get-BiosMandatoryParameterWithalias.ps1

#requires -version 4.0 

Param( 

    [Parameter(Mandatory = $true)] 

    [alias(“CN”)] 

    [string[]] 

    $computername) 

 

Get-WmiObject -class Win32_Bios -computername $computername



 Choosing the best input method CHAPTER 11 355

NOTES FROM THE FIELD

Jaap Brasser
Technical Consultant

For me, the great thing about Windows PowerShell is the incremental upgrades 
that are included with every new release. My personal favorite in Windows 

PowerShell 4.0 is the addition of the common parameter PipelineVariable. In previ-
ous Windows PowerShell versions, only the default variable $_ (or in PowerShell 
3.0, $PSItem), was available when piping objects through the pipeline. By using the 
PipelineVariable parameter, a specific variable can be assigned, and this is one of the 
nice improvements in Windows PowerShell 4.0.

the utility of PipelineVariable is that it provides an easy and reproducible method 
of improving readability in my scripts. First, the parameter itself can be used with 
any cmdlet and can either be used by using its full notation, –PipelineVariable, or its 
alias, –pv.

an easy example of how this can be utilized in a script is as follows. In this example, 
I will enumerate the folders that are in the C:\Users path and assign the UserFolder 
variable to each folder:

Get-ChildItem -Directory -Path C:\Users -PipelineVariable UserFolder

The first thing to note is that the dollar sign is not included in the variable name, 
similar to creating a variable using the New-Variable cmdlet. When executing this 
cmdlet, the output is identical to the cmdlet executed without the PipelineVariable 
parameter. The added benefit becomes apparent when this code expands to contain 
another two ForEach statements. take a look at the following code:

Get-ChildItem -Directory -Path C:\Users -PipelineVariable UserFolder |

ForEach-Object -PipelineVariable Access -Process {

    $UserFolder.GetAccessControl().Access

} |

ForEach-Object -Process {

    [pscustomobject]@{

        Folder = $UserFolder.FullName

        User = $Access.IdentityReference



 356 CHAPTER 11 Handling input and output

        AccessRights = $Access.FileSystemRights, 

$Access.AccessControlType

    }

}

In this example, the results from the initial Get-ChildItem cmdlet are piped into 
a ForEach-Object loop, and for each folder, the access rights are retrieved and 
stored in the $Access variable. the result of this is then piped to another ForEach 
loop, which in turn creates custom objects that contain the values we would like 
to retrieve. We can access the desired properties by using the variables defined by 
using–PipelineVariable.

another thing to note is that these variables are available only within the scope of 
this pipeline. after the pipeline completes, no variables remain. We can verify this 
by running Test-Path to verify the existence of a variable:

Test-Path -Path Variable:UserFolder

When I am using Windows PowerShell, I always feel as though I am collecting bits 
and pieces to put in my toolkit. PipelineVariable is my recent favorite because it 
allows for an easy and reproducible method of assigning variables in a pipeline. By 
utilizing this, it becomes easier to see what a variable contains and allows for easier 
nesting of multiple ForEach-Object statements. 

Validating parameter input
It is more efficient to catch problems with your script by inspecting the parameters than it is 
to wait until the script is launched and then do parameter checking. In Windows PowerShell 
4.0, there are a number of validation attributes that can be specified. Validation attributes 
inspect command-line parameters to ensure that they conform to certain rules. If you need 
to ensure that the value of a command-line parameter is within a specified range in previous 
versions of Windows PowerShell, it is common to write a function and to call that function 
upon entering the script, as illustrated in the CheckNumberRange.ps1 script.

The Check-Number function in the CheckNumberRange.ps1 script ensures that the value 
of the number parameter is greater than 1 and less than or equal to 5. If number is within 
the 1 to 5 range, the Check-Number function returns the true value to the script; otherwise, 
it returns false. The Set-Number function multiplies the value of the number parameter by 2. 
The entry point of the script uses the If statement to call the Check-Number function. If the 
Check-Number function returns true, it calls the Set-Number function; otherwise, it displays 
a message stating that the value of the $number variable is out of bounds. The complete 
CheckNumberRange.ps1 script is shown here.



 Choosing the best input method CHAPTER 11 357

CheckNumberrange.ps1

Param($number) 

 

Function Check-Number($number) 

{ 

 if($number -ge 1 -And $number -le 5) 

  {  $true } 

 Else 

  { $false } 

} #end check-number 

 

Function Set-Number($number) 

{ 

 $number * 2 

} #end Set-Number 

 

# *** Start of script *** 

If(Check-Number($number)) 

  { Set-Number($number) } 

Else 

  { ‘$number is out of bounds’ }

You might prefer to continue to write your own custom boundary-checking functions. 
A custom function might also be required if there are complicated rules that you need 
to enforce.

Basic boundary checking, such as that performed by the Check-Number function in 
the CheckNumberRange.ps1 script, can be accomplished in Windows PowerShell 4.0 by 
using one of the parameter validation attributes listed in Table 11-2, later in this chapter. 
The parameter validation attribute that checks the range value of a parameter is named 
ValidateRange, and its use is shown in the ValidateRange.ps1 script. In the Param statement, 
the [ValidateRange(1,5)] parameter attribute is used to ensure that the value supplied for 
the number parameter falls within the range of 1 to 5. If it does, the ValidateRange.ps1 script 
starts at the entry point to the script, which calls the Set-Number function. The ValidateRange 
.ps1 script and the CheckNumberRange.ps1 script both accomplish the same thing—they 
multiply an input number by 2 if that number is within the range of 1 to 5. The ValidateRange 
.ps1 script is shown here.

Validaterange.ps1

#requires -version 4.0 

Param(  

      [ValidateRange(1,5)] 

      $number 

     ) 

 



 358 CHAPTER 11 Handling input and output

Function Set-Number($number) 

{ 

 $number * 2 

} #end Set-Number 

 

# *** Entry point to script *** 

Set-Number($number)

As a best practice, you should use parameter validation attributes to inspect parameter 
values rather than writing your own functions to accomplish the same thing. Some of the 
main reasons for using parameter validation attributes are as follows:

■■ Reduces the complexity of your code

■■ Ensures that your script behaves like the core Windows PowerShell cmdlets

■■ Helps users of your script know how to run your script

■■ Promotes syntax discoverability via the Get-Help cmdlet

The most powerful parameter validation attribute is the ValidatePattern attribute. By 
using the ValidatePattern parameter validation attribute, you can check input to see whether 
it conforms to a regular expression pattern. A regular expression pattern can range from 
a basic pattern match that looks for a specific combination of letters within a computer 
name to more complex regular expression patterns. A basic pattern match is shown in the 
PingComputers.ps1 script.

In the PingVComputers.ps1 script, the ValidatePattern parameter validation attribute is 
used to ensure that the string supplied for the −computername parameter contains the letters 
DC somewhere in the name of the computer. Valid values would include DC, DCcomputer, 
and even myDCcomputer. The requirement for a match is that the letters DC must appear in 
the string and must appear in exact order. The Param statement is used to allow the use of 
command-line parameters. The ValidatePattern parameter validation attribute sets the regu-
lar expression pattern that is used to validate command-line input. The alias attribute is used 
to configure an alternate name for the −computername parameter. The Param statement is 
shown here:

Param( 
     [ValidatePattern(“DC”)] 
     [alias(“CN”)] 
     $computername 
 )

The New-TestConnection function uses the Test-Connection cmdlet to send a specially 
configured ping packet to the destination computer listed in the −computername param-
eter. The buffer size of the ping packet is reduced from the default of 32 bytes to 16 bytes, 
and the number of packets is reduced from the default of 4 to 2. The result is that the 
New-TestConnection function will return the status of the destination more quickly, use less 



 Choosing the best input method CHAPTER 11 359

network bandwidth, and complete more quickly than the standard Test-Connection cmdlet. 
The complete PingComputers.ps1 script is shown here.

PingComputers.ps1

#requires -version 4.0 

Param( 

     [ValidatePattern(“DC”)] 

     [alias(“CN”)] 

     $computername 

 ) 

 

Function New-TestConnection($computername) 

{ 

 Test-connection -computername $computername -buffersize 16 -count 2  

} #end new-testconnection 

 

# *** Entry Point to script 

New-TestConnection($computername)

More complicated regular expression patterns can also be used with the ValidatePattern 
parameter validation attribute. In the PingIpAddress.ps1 script, a regular expression is used 
to ensure that a string representing an IP address is entered. The pattern used limits input 
by requiring 1 to 3 numbers followed by a period, then 1 to 3 numbers followed by a period, 
then 1 to 3 numbers followed by a period, and then an additional 1 to 3 numbers. This pat-
tern accepts a string such as 127.0.0.1 (a valid IP address), but it also accepts 999.999.999.999 
(which is not a valid IP address). The regular expression pattern is shown here:

“\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}”

In the PingIpAddress.ps1 script, the Param statement creates the command-line parame-
ters. The parameter attribute is used to make the parameter mandatory and to specify a help 
message, which is available in case the script is run without typing the parameter value. The 
ValidatePattern attribute holds the regular expression pattern that is used to validate the data 
supplied to the script via the −computername parameter. An alias, IP, is created to allow the 
script to run without the need to type the −computername parameter name. The complete 
PingIpAddress.ps1 script is shown here.

PingIpaddress.ps1

#requires -version 2.0 

Param( 

     [Parameter(Mandatory=$true,  

                HelpMessage=”Enter a valid IP address”)] 

     [ValidatePattern(“\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}”)] 

     [alias(“IP”)] 

     $computername 

 ) 



 360 CHAPTER 11 Handling input and output

 

Function New-TestConnection($computername) 

{ 

 Test-connection -computername $computername -buffersize 16 -count 2  

} #end new-testconnection 

 

# *** Entry Point to script 

New-TestConnection($computername)

The parameter validation attributes are shown in Table 11-2.

TABLE 11-2 Parameter validation attributes

Attribute name Description

AllowNull The AllowNull attribute allows the argument of a mandatory cmdlet parameter to 
be set to null.
Example:
[AllowNull()]

AllowEmptyString The AllowEmptyString attribute allows an empty string as the argument of a man-
datory cmdlet parameter.
Example:
[AllowEmptyString()]

AllowEmptyCollection The AllowEmptyCollection attribute allows an empty collection as the argument of 
a mandatory parameter.
Example:
[AllowEmptyCollection()]

ValidateCount The ValidateCount attribute specifies the minimum and maximum number of argu-
ments that the parameter can accept.
Example:
[ValidateCount(1,5)]

ValidateLength The ValidateLength attribute specifies the minimum and maximum length of the 
parameter argument.
Example:
[ValidateLength(1,10)]

ValidatePattern The ValidatePattern attribute specifies a regular expression that validates the pat-
tern of the parameter argument.
Example:
[ValidatePattern(“[0-9][0-9][0-9]”)]

ValidateRange The ValidateRange attribute specifies the minimum and maximum values of the 
parameter argument.
Example:
[ValidateRange(0,10)]

ValidateScript The ValidateScript attribute specifies a script that is used to validate the parameter 
argument. The Windows PowerShell run time generates an error if the script result 
is false or if the script throws an exception.
Example:
[ValidateScript({$_ -lt 4})]



 Choosing the best input method CHAPTER 11 361

Attribute name Description

ValidateSet The ValidateSet attribute specifies a set of valid values for the argument of the 
parameter. The Windows PowerShell run time generates an error if the parameter 
argument does not match a value in the set.
Example:
[ValidateSet(“Steve”, “Mary”, “Carl”)]

ValidateNotNull The ValidateNotNull attribute specifies that the argument of the parameter cannot 
be set to null.
Example:
[ValidateNotNull()]

ValidateNotNullOrEmpty The ValidateNotNullOrEmpty attribute specifies that the argument of the param-
eter cannot be set to null or cannot be empty.
Example:
[ValidateNotNullOrEmpty()]

Using multiple parameter arguments
To use multiple parameter arguments, the alias attribute, and parameter validation attributes 
at the same time with the Param statement, you must keep the following rules in mind:

■■ Parameter arguments go inside parentheses and modify the parameter attribute of the 
Param statement.

■■ Each parameter argument is separated by a comma.

■■ The parameter attribute goes inside square brackets ( just like all other parameter 
attributes).

■■ Each parameter attribute should be on its own line.

■■ Parameter attributes are not separated by commas.

■■ The command-line parameter begins with a dollar sign and is followed by a comma, 
unless it is the last command-line parameter defined, in which case it is followed by the 
closing parenthesis from the Param statement.

■■ You are allowed to have an unlimited number of parameter attributes and parameter 
validation attributes.

The MultiplyNumbersCheckParameters.ps1 script illustrates the use of multiple parameter 
attributes. It begins with the #requires –version 4.0 tag that is used to ensure that the script 
does not attempt to start on a computer running Windows PowerShell 1.0. The Param state-
ment creates the command-line parameters for the script. The parameter attribute is used 
to make the FirstNumber parameter mandatory, assign it to the first position, and set a help 
message for the parameter. The alias attribute is used to create an alias for the FirstNumber 
parameter. The ValidateRange parameter validation attribute is used to ensure that the 
command-line FirstNumber parameter has a value that falls within the range of 1 to 10.

The FirstNumber parameter is followed by a comma, and the parameter attribute is used to 
make the lastnumber parameter mandatory, occupy position 1, and assign a help message for 
the lastnumber parameter. The alias attribute creates an alias of ln for the lastnumber param-
eter. The type constraint [int16] is used to ensure that the value of the lastnumber parameter 



 362 CHAPTER 11 Handling input and output

is a 16-bit integer, which limits its value to 32767. The ValidateNotNullOrEmpty validation 
attribute is used to ensure that the lastnumber parameter is neither null nor empty. The 
param section ends by creating the lastnumber parameter and closing out the parentheses.

NOTE An easy way to determine the capacity of certain system types is to use the static 
Maxvalue property. To obtain the maximum value of an int32, you can access it by using a 
double colon, as in [int32]::Maxvalue.

After all of the work to create the parameters, the code itself is somewhat anti-
climactic: It multiplies the two command-line parameters together. The completed 
MultiplyNumbersCheckParameters.ps1 script is shown here.

MultiplyNumbersCheckParameters.ps1

#requires -version 4.0 

Param( 

             [Parameter(mandatory=$true, 

                                 Position=0, 

                                 HelpMessage=”A number between 1 and 10”)] 

             [alias(“fn”)] 

             [ValidateRange(1,10)] 

             $FirstNumber, 

             [Parameter(mandatory=$true, 

                                 Position=1, 

                                 HelpMessage=”Not null or empty”)] 

             [alias(“ln”)] 

             [int16] 

             [ValidateNotNullOrEmpty()] 

             $LastNumber 

) 

 

$FirstNumber*$LastNumber

Working with passwords as input
In an ideal world, you would never need to supply passwords or make passwords available to 
a script. Scripts would run by using impersonation and would detect whether you had rights 
to access data. If you had the rights, you gained access; if you did not have the rights, you 
would not be able to connect. To some extent, this is exactly what happens when working 
with a script. Issues surrounding the use of passwords come up in the following scenarios:

■■ Accessing information from an untrusted domain

■■ Accessing information from legacy databases that do not use integrated security



 Choosing the best input method CHAPTER 11 363

■■ Accessing information from stand-alone workstations or servers that are not joined to 
a domain

■■ Allowing a user who has no rights to run a script with alternative credentials that per-
form actions that the user would not otherwise have permission to accomplish

There are several approaches to handling the password issue, including the following:

■■ Store the password in the script.

■■ Store the password in a text file.

■■ Store the password in the registry.

■■ Store the password in Active Directory.

■■ Prompt for the password.

Store the password in the script
The simplest approach to handling the password problem is to store the password in the 
script. However, obvious concerns arise with storing the password in the script—the first of 
which is that the password is shown in the script in plain text, and anyone who has access to 
the script has access to the password.

Two things can be done to limit exposure to the password. One is to use NTFS File System 
(NTFS) permissions to protect the file from people who do not need to know the password. 
The other is to use Encrypting File System (EFS) to encrypt the script. Because Windows 
PowerShell is a .NET Framework application, it has the ability to use the security classes to use 
your EFS certificate to automatically decrypt the script and to run the encrypted script, which 
VBScript cannot do. Encrypted VBScripts will not run. In the QueryComputersUseCredentials 
.ps1 script, the ADO class is used to query a resource domain named nwtraders.com. The user 
that performs the query is named LondonAdmin, and the password is Password1. These val-
ues are stored in variables and are passed to the ADO connection object via the password and 
user id properties. The script then retrieves all of the computer objects from the  nwtraders 
.com domain. The QueryComputersUseCredentials.ps1 script is shown here.

QueryComputersUseCredentials.ps1

$strBase = “<LDAP://dc=nwtraders,dc=msft>” 

$strFilter = “(objectCategory=computer)” 

$strAttributes = “name” 

$strScope = “subtree” 

$strQuery = “$strBase;$strFilter;$strAttributes;$strScope” 

$strUser = “nwtraders\LondonAdmin” 

$strPwd = “Password1” 

 

$objConnection = New-Object -comObject “ADODB.Connection” 

$objConnection.provider = “ADsDSOObject” 

$objConnection.properties.item(“user ID”) = $strUser 

$objConnection.properties.item(“Password”) = $strPwd 



 364 CHAPTER 11 Handling input and output

$objConnection.open(“modifiedConnection”) 

$objCommand = New-Object -comObject “ADODB.Command” 

 

$objCommand.ActiveConnection = $objConnection 

$objCommand.CommandText = $strQuery 

$objRecordSet = $objCommand.Execute() 

 

Do 

{ 

    $objRecordSet.Fields.item(“name”) |Select-Object Name,Value  

    $objRecordSet.MoveNext() 

} 

Until ($objRecordSet.eof)  

 

$objConnection.Close()

Store the password in a text file
Perhaps one step above storing the password in the script is to store the password in a text 
file, which has the advantage of not being directly accessible from within the script. By plac-
ing the password in a different file, you can configure different security on the password file 
than the security configured on the script file itself. This might be a good solution for those 
who need the ability to read the script but not the ability to run the script. Another advan-
tage of this approach is that it allows you to use the same script to work in different security 
contexts. One example is when a script is written by network administrators from one domain 
and then shared with network administrators in a different domain context. This is a common 
practice when a company is composed of multiple business units, each of which has its own 
separate infrastructure.

QueryComputersUseCredentialsFromText.ps1

$strBase = “<LDAP://dc=nwtraders,dc=msft>” 

$strFilter = “(objectCategory=computer)” 

$strAttributes = “name” 

$strScope = “subtree” 

$strQuery = “$strBase;$strFilter;$strAttributes;$strScope” 

$strUser = “nwtraders\LondonAdmin” 

$strPwd = Get-Content –path “C:\fso\password.txt” 

 

$objConnection = New-Object -comObject “ADODB.Connection” 

$objConnection.provider = “ADsDSOObject” 

$objConnection.properties.item(“user ID”) = $strUser 

$objConnection.properties.item(“Password”) = $strPwd 

$objConnection.open(“modifiedConnection”) 



 Choosing the best input method CHAPTER 11 365

$objCommand = New-Object -comObject “ADODB.Command” 

 

$objCommand.ActiveConnection = $objConnection 

$objCommand.CommandText = $strQuery 

$objRecordSet = $objCommand.Execute() 

 

Do 

{ 

    $objRecordSet.Fields.item(“name”) |Select-Object Name,Value  

    $objRecordSet.MoveNext() 

} 

Until ($objRecordSet.eof)  

 

$objConnection.Close()

Store the password in the registry
With the ease of registry access inherent in Windows PowerShell, storing a password in the 
registry might make sense in some cases. Because you can set security on a registry key, you 
might want to store a password in the registry. The registry key can be created in a separate 
process. When the script is run, it accesses the registry for the password that is required for 
remote access.

QueryComputersUseCredentialsFromRegistry.ps1

$strBase = “<LDAP://dc=nwtraders,dc=msft>” 

$strFilter = “(objectCategory=computer)” 

$strAttributes = “name” 

$strScope = “subtree” 

$strQuery = “$strBase;$strFilter;$strAttributes;$strScope” 

$strUser = “nwtraders\administrator” 

$strPwd = (Get-ItemProperty HKCU:\Software\ForScripting\CompatPassword).password 

 

$objConnection = New-Object -comObject “ADODB.Connection” 

$objConnection.provider = “ADsDSOObject” 

$objConnection.properties.item(“user ID”) = $strUser 

$objConnection.properties.item(“Password”) = $strPwd 

$objConnection.open(“modifiedConnection”) 

$objCommand = New-Object -comObject “ADODB.Command” 

 

$objCommand.ActiveConnection = $objConnection 

$objCommand.CommandText = $strQuery 

$objRecordSet = $objCommand.Execute() 

 



 366 CHAPTER 11 Handling input and output

Do 

{ 

    $objRecordSet.Fields.item(“name”) |Select-Object Name,Value  

    $objRecordSet.MoveNext() 

} 

Until ($objRecordSet.eof)  

 

$objConnection.Close()

Store the password in active Directory Domain Services
It is relatively easy to extend the schema to create an attribute within which you can store a 
password that is used for certain scripts. This option provides a central location that is acces-
sible from anywhere within the domain.

NOTE If you are uncomfortable with adding an attribute to the Active Directory schema, 
you can use one of the configurable attributes instead of creating your own attributes. In 
any case, you should ensure that you use a valid object identifier (OID) number and test 
your changes in a test environment before deploying the changes to your live production 
network.

QueryComputersUseCredentialsFromADDS.ps1

$strBase = “<LDAP://dc=nwtraders,dc=msft>” 

$strFilter = “(objectCategory=computer)” 

$strAttributes = “name” 

$strScope = “subtree” 

$strQuery = “$strBase;$strFilter;$strAttributes;$strScope” 

$strUser = “nwtraders\testUser” 

$strPwd = ([adsi]”LDAP://cn=testUser,ou=myusers,dc=nwtraders,dc=com”).compatPassword 

 

$objConnection = New-Object -comObject “ADODB.Connection” 

$objConnection.provider = “ADsDSOObject” 

$objConnection.properties.item(“user ID”) = $strUser 

$objConnection.properties.item(“Password”) = $strPwd 

$objConnection.open(“modifiedConnection”) 

$objCommand = New-Object -comObject “ADODB.Command” 

 

$objCommand.ActiveConnection = $objConnection 

$objCommand.CommandText = $strQuery 

$objRecordSet = $objCommand.Execute() 

 



 Choosing the best input method CHAPTER 11 367

Do 

{ 

    $objRecordSet.Fields.item(“name”) |Select-Object Name,Value  

    $objRecordSet.MoveNext() 

} 

Until ($objRecordSet.eof)  

 

$objConnection.Close()

Prompt for the password
The best approach is to have the script prompt you when it needs a password. There are a 
number of advantages to this method. The biggest advantage is that it removes your con-
cern about storage of the password because it is not stored in the script, a file, the registry, 
or another location. The next advantage of having the script prompt for the password is that 
it reduces maintenance requirements. If a password changes on a regular basis and is stored 
in a text file, the file contents must be updated each time the password changes. Using a 
prompt makes troubleshooting the script easier. When a script must access a password from 
a remote location, connectivity issues and remote permissions must be considered if a script 
fails to execute properly. Of course, if the script contains robust error checking, the script is 
easier to troubleshoot; however, this introduces an additional level of complexity that can 
potentially increase the maintenance cost of the script. The easiest way to prompt for a pass-
word is to use the Read-Host cmdlet.

QueryComputersPromptForPassword.ps1

$strBase = “<LDAP://dc=nwtraders,dc=com>” 

$strFilter = “(objectCategory=computer)” 

$strAttributes = “name” 

$strScope = “subtree” 

$strQuery = “$strBase;$strFilter;$strAttributes;$strScope” 

$strUser = “nwtraders\administrator” 

$strPwd = Read-Host -prompt “Enter password to Connect to AD” 

 

$objConnection = New-Object -comObject “ADODB.Connection” 

$objConnection.provider = “ADsDSOObject” 

$objConnection.properties.item(“user ID”) = $strUser 

$objConnection.properties.item(“Password”) = $strPwd 

$objConnection.open(“modifiedConnection”) 

$objCommand = New-Object -comObject “ADODB.Command” 

 

$objCommand.ActiveConnection = $objConnection 

$objCommand.CommandText = $strQuery 

$objRecordSet = $objCommand.Execute() 



 368 CHAPTER 11 Handling input and output

 

Do 

{ 

    $objRecordSet.Fields.item(“name”) |Select-Object Name,Value  

    $objRecordSet.MoveNext() 

} 

Until ($objRecordSet.eof)  

 

$objConnection.Close()

If the cmdlet supports a PSCredential object, you can use the AsSecureString parameter 
from the Read-Host cmdlet. A secure string is used for text that should be kept confidential. 
The text is encrypted for privacy when it is used and is deleted from computer memory when 
it is no longer needed. The password is never revealed as plain text. The System.Security 
.SecureString .NET Framework class is invisible to the Component Object Model (COM) and 
therefore cannot be used with classic COM interfaces.

ReadHostSecureStringQueryWmi.ps1

$user = “Nwtraders\administrator” 

$password = Read-Host -prompt “Enter your password” -asSecureString 

$credential = new-object system.management.automation.PSCredential $user,$password 

Get-WmiObject -class Win32_Bios -computername berlin -credential $credential

When working with a secure string, it is also possible to store the hash of the password in 
a text file. The advantage of this technique is that it allows you to use the password with the 
PSCredential object, but it gives you the flexibility of not having to manually enter the pass-
word each time the script is run. In addition, it allows you to give the script to another user 
who does not know the password for the account.

To do this, you use the Read-Host cmdlet and specify the AsSecureString parameter. In the 
following example, the encrypted password is stored in a $pwd variable:

PS C:\> $pwd = Read-Host -Prompt “Enter your password” -AsSecureString 
Enter your password: *********

If you use the ToString method from the SecureString object, the only thing that is relayed 
back to the Windows PowerShell console is an instance of a System.Security.SecureString class 
as shown here. If you attempt to store the output from the ToString method in a text file, the 
only words that the text file will contain are “System.Security.SecureString.”

PS C:\> $PWD.ToString() 
System.Security.SecureString

To be able to store the secure string in a text file, you need to use the ConvertFrom-
SecureString cmdlet. As illustrated here, ConvertFrom-SecureString reveals the hash of the 
password:



 Choosing the best input method CHAPTER 11 369

PS C:\> $PWD | ConvertFrom-SecureString 
01000000d08c9ddf0115d1118c7a00c04fc297eb01000000151046ea8f869541a129ff10c91b850 
e0000000002000000000003660000a800000010000000aa2caba61452ffd5f973901a5dbd0e8100 
00000004800000a0000000100000003172c749434dfac3262616d15dea4d1018000000916d60d59 
0d381bff1225663c6b4dcab536fca5920077cb414000000e92d30f80b9fbf337c1a8e5d99f50f11 
8fae2d3b

You can write this password hash to a text file by using a pair of redirection arrows.

PS C:\> $PWD | ConvertFrom-SecureString >> C:\fso\passwordHash.txt

The passwordHash.txt file now contains the exact information that was previously dis-
played on the screen. This is no longer a System.Security.SecureString class but is instead a 
string that represents the hash of a SecureString class. To convert the hash back to a secure 
string, you need to use the ConvertTo-SecureString cmdlet.

PS C:\> ConvertTo-SecureString (Get-Content C:\fso\passwordHash.txt) 
System.Security.SecureString

NOTE Keep in mind that you want to convert the contents of the passwordHash.
txt file to a secure string and not the path to the passwordHash.txt file. The first time I 
 attempted this operation, I used the following command: ConvertTo-SecureString C:\fso 
\ passwordHash.txt, which does not work. I then realized that I was trying to encrypt the 
path to the file and not the contents of the file.

A more efficient way to create the password hash text file is to use pipelining and thus 
avoid the intermediate variable as shown here. When the command is run, it prompts for the 
password.

PS C:\> Read-Host -Prompt “Enter your password” -AsSecureString | 
>> ConvertFrom-SecureString >> C:\fso\passwordHash.txt

To use this password hash text file in a script, you can use a script like the one shown here.

UsePasswordhashFile.ps1

$user = “Nwtraders\administrator” 

$password = ConvertTo-SecureString -String (Get-content C:\fso\passwordHash.txt) 

$credential = new-object system.management.automation.PSCredential $user,$password 

Get-WmiObject -class Win32_Bios -computername berlin -credential $credential



 370 CHAPTER 11 Handling input and output

INSIDE TRACK

Importing and exporting credentials

Lee holmes, Senior Software Developer Engineer and author of Windows 
PowerShell Cookbook
Microsoft Corporation

One question that comes up fairly often when dealing with Windows PowerShell 
scripts is how to properly handle user names and passwords. the solution is 

to use the Get-Credential cmdlet to create a PSCredential object. a PSCredential 
object ensures that your password stays protected in memory, unlike cmdlets that 
accept a straight user name/password combination.

If a parameter accepts a PSCredential object, Windows PowerShell supports several 
types of input, such as the following:

■■ Empty If you supply no input to a mandatory –credential parameter, Windows 
PowerShell prompts you for the user name and password.

■■ String If you supply a string to the –credential parameter, Windows PowerShell 
treats it as a user name and prompts you for the password.

■■ Credential If you supply a credential object to the –credential parameter, 
Windows PowerShell accepts it as is.

this is great for interactive use, but what if you want to write an automated script 
for a cmdlet that accepts a –credential parameter? the solution lies in passing a 
preconstructed PSCredential object. this solution is covered by recipe 18.12 in the 
Windows PowerShell Cookbook, which is excerpted here.

The first step for storing a password on disk is usually a manual one. Given a cre-
dential that you have stored in the $credential variable, you can safely export its 
password to password.txt using the following commands.

■■ In Windows PowerShell version 4, use the Export-CliXml and Import-CliXml 
cmdlets to import and export credentials. 

■■ In Windows PowerShell version 2, use the ConvertFrom-SecureString and 
ConvertTo-SecureString cmdlets.

The first step for storing a password on disk is usually a manual one. There is noth-
ing mandatory about the file name, but we’ll use a convention to name the file 
CurrentScript.ps1.credential. Given a credential that you’ve stored in the $credential 
variable, you can safely use the Export-CliXml cmdlet to save the credential to disk. 
replace CurrentScript with the name of the script that will be loading it:

PS > $credPath = Join-Path (Split-Path $profile) CurrentScript.ps1 

.credential



 Choosing the best input method CHAPTER 11 371

PS > $credential | Export-CliXml $credPath

In Windows PowerShell version 2, you must use the ConvertFrom-SecureString 
cmdlet:

PS > $credPath = Join-Path (Split-Path $profile) CurrentScript.ps1 

.credential

PS > $credential.Password | ConvertFrom-SecureString | Set-Content 

$credPath

In the script that you want to run automatically, add the following commands for 
Windows PowerShell version 4:

$credPath = Join-Path (Split-Path $profile) CurrentScript.ps1.credential

$credential = Import-CliXml $credPath

In Windows PowerShell version 2, you must manually create a PSCredential object, 
using the password imported by the ConvertTo-SecureString cmdlet. Whereas the 
Export-CliXml cmdlet keeps track of the credential user name automatically, this 
alternate approach needs to keep track of it by hand:

$credPath = Join-Path (Split-Path $profile) CurrentScript.ps1.credential

$password = Get-Content $credPath | ConvertTo-SecureString

$credential = New-Object System.Management.Automation.PsCredential `

    “CachedUser”,$password

These commands create a new credential object (for the CachedUser user) and store 
that object in the $credential variable.

When reading the Solution, you might at first be wary of storing a password on 
disk. While it is natural (and prudent) to be cautious of littering your hard drive with 
sensitive information, the Export-CliXml cmdlet encrypts credential objects by 
using the Windows standard Data Protection aPI. this ensures that only your user 
account can properly decrypt its contents. Similarly, the ConvertFrom-SecureString 
cmdlet also encrypts the password that you provide.

While keeping a password secure is an important security feature, you might some-
times want to store a password (or other sensitive information) on disk so that other 
accounts have access to it. this is often the case with scripts run by service accounts 
or scripts designed to be transferred between computers. the ConvertFrom-
SecureString and ConvertTo-SecureString cmdlets support this by letting you 
specify an encryption key.



 372 CHAPTER 11 Handling input and output

When used with a hard-coded encryption key, this technique no longer acts as a 
security measure. If a user can access the content of your automated script, that 
user has access to the encryption key. If the user has access to the encryption key, 
the user has access to the data you were trying to protect.

although the Solution stores the password in the directory that contains your pro-
file, you could also load it from the same location as your script. 

Working with connection strings as input
When working with different types of data sources, such as a Microsoft Office Access data-
base or a password-protected Microsoft Office Word document or Office Excel spreadsheet, 
you are often required to supply a means to pass the credentials to the resource because 
these types of data sources cannot use impersonation. The methods for passing the pass-
word have already been explored and can easily be adapted to these types of data sources. 
Because access to these data sources are COM-based, you cannot use the .NET Framework 
System.Security.SecureString class to pass credentials. This also means that you cannot use the 
Get-Credential cmdlet due to its reliance on the SecureString class to encrypt the password.

As a best practice when working with connection strings to data sources, you should use 
variables to hold each portion of the connection string. This makes it easier to update the 
various components of the connection string, as well as adding additional flexibility to change 
the input methodology without a major rewrite of the script. An example is shown here.

OpenPasswordProtectedExcel.ps1

$filename = “C:\fso\TestNumbersProtected.xls” 

$updatelinks = 3 

$readonly = $false 

$format = 5 

$password = “password” 

$excel = New-Object -comobject Excel.Application 

$excel.visible = $true 

$excel.workbooks.open($fileName,$updatelinks,$readonly,$format,$password) | 

Out-Null

When the password parameter is available via a parameter, it is trivial to revise the script 
to accept the input via the command line. In the OpenPasswordProtectedWord.ps1 script, 
both the file name and the password are moved to command-line parameters. The logic used 
to open the password-protected Office Word document is moved into a function, and both 
command-line values are marked as mandatory. The use of the Parameter tag is a feature that 
requires at least Windows PowerShell 2.0, and the #requires –version 2.0 statement is used.



 Prompting for input CHAPTER 11 373

OpenPasswordProtectedWord.ps1

#requires -version 2.0 

Param( 

  [Parameter(Mandatory=$true)] 

  [string]$fileName, 

  [Parameter(Mandatory=$true)] 

  [string]$password 

)  

Function Open-PasswordProtectedDocument($filename,$password) 

{ 

 $Conversion= $false 

 $readOnly = $false 

 $addRecentFiles = $false 

 $doc = New-Object -Comobject Word.Application 

 $doc.visible = $true 

 $doc.documents.open($filename,$Conversion,$readOnly,$addRecentFiles,$password) |   

 out-null 

} #end function Open-PasswordProtectedDocument 

 

# *** Entry Point to Script *** 

 

Open-PasswordProtectedDocument -filename $filename -password $password

Prompting for input

From the preceding discussion, you might surmise that if you can use the Read-Host cmdlet to 
prompt for a password, you can also use the Read-Host cmdlet prior to performing a specific 
action—and you would be correct. Two primary cases require input from the user. The first 
case requires the user to supply information to allow the script to complete. This technique 
is often used when the script can perform multiple actions. The input received from the user 
determines the way the script will run.

The second case that requires input from the user is more basic. It is a prompt for approval 
to continue. You might want to use this technique prior to deleting a file or performing an 
action that might tie up the resources of the computer for a significant period of time. Both of 
these scenarios are discussed here.

Scripts often require information from the user to customize the information that is 
returned to the user. In the ReadHostQueryDrive.ps1 script, the Read-Host cmdlet is used 
to prompt the user to enter the drive letter that will be used to request volume information 
from WMI. The Switch statement is used to evaluate the value that is typed in response to the 
prompt. The ReadHostQueryDrive.ps1 script is shown here.



 374 CHAPTER 11 Handling input and output

ReadHostQueryDrive.ps1

$response = Read-Host “Type drive letter to query <c: / d:>” 

 

Switch -regex($response) { 

  “C” { Get-WmiObject -class Win32_Volume -filter “driveletter = ‘c:’” } 

  “D” { Get-WmiObject -class Win32_Volume -filter “driveletter = ‘d:’” } 

} #end switch

A more elegant approach to requesting information from the user is to use the $host 
.ui.PromptForChoice class to handle the prompting. The PromptForChoice class uses the 
choices created by the System.Management.Automation.Host.ChoiceDescription class. When 
creating the choice descriptions, each choice is preceded by the ampersand and stored in an 
array. Because it is an array, each value has a numeric value that begins counting with 0, as 
shown in the PromptForChoice.ps1 script.

PromptForChoice.ps1

$caption = “No Disk” 

$message = “There is no disk in the drive. Please insert a disk into drive D:” 

$choices = [System.Management.Automation.Host.ChoiceDescription[]] ` 

@(“&Cancel”, “&Try Again”, “&Ignore”) 

[int]$defaultChoice = 2 

$choiceRTN = $host.ui.PromptForChoice($caption,$message, $choices,$defaultChoice) 

 

switch($choiceRTN) 

{ 

 0    { “cancelling ...” } 

 1    { “Try Again ...” } 

 2    { “ignoring ...” } 

}

Choosing the best output method

There are at least as many output methods available to the scriptwriter in Windows 
PowerShell 4.0 as there are input methods. If all of the output methods were added up, the 
list would probably be much greater than the number of input methods. In this section, you 
will look at outputting to the screen, to a file, and to email.



 Choosing the best output method CHAPTER 11 375

NOTES FROM THE FIELD

Shane hoey
Microsoft PowerShell MVP

It’s been a few years since I first started to learn Windows PowerShell, and for me, 
the benefit of using PowerShell is that I get a deeper understanding of the prod-

uct I’m working with. 

today I specialize in Microsoft Lync, and the Windows PowerShell skills I learned in 
the early days still have as much value now as they did back then. the only differ-
ence is that many of these skills have now become habits.  

One of my all-time favorite tricks with Windows PowerShell is also one of the easiest 
things to do. as an Integrator, I can be at different customer sites every few weeks, 
and remembering how I have configured their Lync dial plans, for example, can be 
a challenge after a few months. By using Export-Clixml, I can run a few Windows 
PowerShell commands and quickly export the entire configuration of a Lync server 
to an XML file.

Let’s look at this a bit closer. Except for these examples, rather than use Lync, we are 
going to use the Get-Service cmdlet instead. First, we pipe the output object of the 
Get-Service cmdlet to the Export-Clixml cmdlet, which will store the object(s) in 
an XML file.

Get-Service | Export-Clixml -Path c:\scripts\services.xml 

after I’ve exported all the objects to XML, I can then use Import-Clixml at a later 
date. this is really handy for comparisons and documentation purposes. however, 
the problem is that customers are not as excited as I am to have XML files. So I 
decided to create a few Windows PowerShell scripts to help me with the documen-
tation process.

I’ve been writing and improving a script that saves the current state of a Lync 
environment and then creates a Word document for me. the cool thing about the 
script is that because I export the object(s) using Export-Clixml, I can update the 
documentation at any time, and I can compare changes in the configuration over 
time by comparing the xml files. 

Now the fun bit—first we create a new Word document. We need to do this only 
once, because we will reuse it every time we run the script. here are the steps:

1. Create a new Word document.

2. Create a heading called “My Services.” 

3. Create a paragraph with some descriptive text.



 376 CHAPTER 11 Handling input and output

4. Create a “Rich Text Content Control,” and after you create the control, 
make sure that you edit the properties and make the title of the control 
“RichTextContent1.” If you cannot find rich text Content Controls, you will 
need to make sure that the Developer toolbar is visible in Word.

5. Save the document as c:\Scripts\PoshDoc.docx.

Now it’s time to create a PDF document, so let’s use the XML file we exported ear-
lier to generate the content in the document: 

$service = import-clixml -path .\services.xml 

$word = new-object -ComObject Word.Application

$worddoc = $Word.Documents.Add(“C:\Scripts\PoshDoc.docx”)

$word.Visible = $true

($worddoc.Content.ContentControls | where title –eq “RichTextContent1”).

range.text =  foreach ($item in ($service | where {$_.status -match 

“running”})){$item.DisplayName + “`r”}

$wdFormatPDF = [Ref]17

$worddoc.SaveAs([ref]”C:\Scripts\PoshDoc.pdf”,$wdFormatPDF)

Now we have created a PDF document; it’s as simple as that. Sure, it needs more 
formatting and a few more content controls, but those lines of script will hopefully 
give you a few ideas for using Windows PowerShell and Word to write some future 
documentation.

Output to the screen
When a cmdlet is used, it automatically outputs to the screen. This is one of the features that 
makes Windows PowerShell easy to work with from the PowerShell prompt. When you use 
the Get-Process cmdlet, it automatically displays output to the screen.

In many cases, you do not have to do anything more complicated than run the cmdlet. 
When you do, you are automatically rewarded with a nicely formatted output that is dis-
played to the screen as shown in Figure 11-3.



 Choosing the best output method CHAPTER 11 377

FIGURE 11-3 Output from the Get-Process cmdlet is automatically displayed to the Windows Power-
Shell console.

The reason the output is nicely formatted is that the Windows PowerShell team created 
several format.ps1xml files that are used to control the way in which different objects are 
formatted when they are displayed. These XML files are located in the Windows PowerShell 
install directory. Luckily, there is an automatic variable, $pshome, that can be used to refer to 
the Windows PowerShell install directory. To obtain a listing of all of the format.ps1xml files 
that are installed on your computer, you use the Get-ChildItem cmdlet and specify a path that 
will retrieve any file with the name format in it. Pipeline the resulting FileInfo objects to the 
Select-Object cmdlet, and choose the name property.

PS C:\> Get-ChildItem -Path $pshome/*format* | Select-Object -Property name 
 
Name 
---- 
certificate.format.ps1xml 
dotnettypes.format.ps1xml 
filesystem.format.ps1xml 
help.format.ps1xml 
powershellcore.format.ps1xml 
powershelltrace.format.ps1xml 
registry.format.ps1xml

These format.ps1xml files are used by the Windows PowerShell Extended Type System to 
determine how to display objects. This system is required because most objects do not know 
how to display themselves. Because the format files are XML files, it is possible to edit them to 



 378 CHAPTER 11 Handling input and output

change the default display behavior. This process should not be undertaken lightly because 
the files are rather complicated. If you want to edit the files, make sure that you have a good 
backup copy of the files before you start making changes. Direct manipulation of the format 
.ps1xml files can result in unexpected behavior. It is also possible to write your own format 
.ps1xml file, but such a project can be very complicated.

The dotnettypes.format.ps1xml file is used to control the output that is displayed by a 
number of the cmdlets (for example, Get-Process, Get-Service, Get-EventLog) that return 
.NET Framework objects. A portion of the dotnettypes.format.ps1xml file is shown in 
Figure 11-4. This is the section of the file that controls the output from the Get-Process 
cmdlet. Under the <TableHeaders> section, each column heading is specified by the 
<TableColumnHeader> tag. Under the <TableColumnHeader>, there are additional nodes.

FIGURE 11-4 The dotnettypes.format.ps1xml file controls the display of cmdlet data.

To display information to the console, you do not need to worry about formatting XML 
files. You can rely on the defaults and allow Windows PowerShell to make the decision for 
you. To display a string, you place the string in quotation marks to display it to the console, as 
shown here:

PS C:\> “this string is displayed to the console” 
this string is displayed to the console 
PS C:\>

The important thing to keep in mind is that when the string is emitted to the console it 
retains its type—that is, it is still a string.



 Choosing the best output method CHAPTER 11 379

PS C:\> “this string is displayed to the console” | Get-Member 
   TypeName: System.String 
 
Name             MemberType            Definition 
----             ----------            ---------- 
Clone            Method                System.Object Clone() 
CompareTo        Method                int CompareTo(System.Object value), i... 
Contains         Method                bool Contains(string value) 
CopyTo           Method                System.Void CopyTo(int sourceIndex, c... 
EndsWith         Method                bool EndsWith(string value), bool End... 
Equals           Method                bool Equals(System.Object obj), bool ... 
GetEnumerator    Method                System.CharEnumerator GetEnumerator() 
GetHashCode      Method                int GetHashCode() 
GetType          Method                type GetType() 
GetTypeCode      Method                System.TypeCode GetTypeCode() 
IndexOf          Method                int IndexOf(char value), int IndexOf(... 
IndexOfAny       Method                int IndexOfAny(char[] anyOf), int Ind... 
Insert           Method                string Insert(int startIndex, string ... 
IsNormalized     Method                bool IsNormalized(), bool IsNormalize... 
LastIndexOf      Method                int LastIndexOf(char value), int Last... 
LastIndexOfAny   Method                int LastIndexOfAny(char[] anyOf), int... 
Normalize        Method                string Normalize(), string Normalize(... 
PadLeft          Method                string PadLeft(int totalWidth), strin... 
PadRight         Method                string PadRight(int totalWidth), stri... 
Remove           Method                string Remove(int startIndex, int cou... 
Replace          Method                string Replace(char oldChar, char new... 
Split            Method                string[] Split(Params char[] separato... 
StartsWith       Method                bool StartsWith(string value), bool S... 
Substring        Method                string Substring(int startIndex), str... 
ToCharArray      Method                char[] ToCharArray(), char[] ToCharAr... 
ToLower          Method                string ToLower(), string ToLower(Syst... 
ToLowerInvariant Method                string ToLowerInvariant() 
ToString         Method                string ToString(), string ToString(Sy... 
ToUpper          Method                string ToUpper(), string ToUpper(Syst... 
ToUpperInvariant Method                string ToUpperInvariant() 
Trim             Method                string Trim(Params char[] trimChars),... 
TrimEnd          Method                string TrimEnd(Params char[] trimChars) 
TrimStart        Method                string TrimStart(Params char[] trimCh... 
Chars            ParameterizedProperty char Chars(int index) {get;} 
Length           Property              System.Int32 Length {get;}

If you use one of the out-* cmdlets, such as Out-Host or Out-Default, you destroy the 
object-oriented nature of the string. That is, the output is no longer an instance of a System 
.String .NET Framework class.

PS C:\> “this string is displayed to the console” | Out-Host | Get-Member 
this string is displayed to the console 
Get-Member : No object has been specified to the get-member cmdlet. 
At line:1 char:66 
+ “this string is displayed to the console” | Out-Host | Get-Member <<<< 
    + CategoryInfo          : CloseError: (:) [Get-Member], InvalidOperationException 
    + FullyQualifiedErrorId : NoObjectInGetMember,Microsoft.PowerShell.Commands 
    .GetMemberCommand 
 
PS C:\>



 380 CHAPTER 11 Handling input and output

As a best practice, you should avoid using the Out-Host or Out-Default cmdlet unless there 
is a reason to use it, because you lose your object after you send the output to the Out-* 
cmdlet. The only reason for using Out-Host is to use the –paging parameter.

PS C:\> Get-WmiObject -Class Win32_process | Out-Host –Paging 
 
__GENUS                    : 2 
__CLASS                    : Win32_Process 
__SUPERCLASS               : CIM_Process 
__DYNASTY                  : CIM_ManagedSystemElement 
__RELPATH                  : Win32_Process.Handle=”0” 
__PROPERTY_COUNT           : 45 
__DERIVATION               : {CIM_Process, CIM_LogicalElement, CIM_ManagedSystemElement} 
__SERVER                   : VISTA 
__NAMESPACE                : root\cimv2 
__PATH                     : \\VISTA\root\cimv2:Win32_Process.Handle=”0” 
Caption                    : System Idle Process 
CommandLine                : 
CreationClassName          : Win32_Process 
CreationDate               : 
CSCreationClassName        : Win32_ComputerSystem 
CSName                     : VISTA 
Description                : System Idle Process 
ExecutablePath             : 
ExecutionState             : 
Handle                     : 0 
HandleCount                : 0 
InstallDate                : 
KernelModeTime             : 151488730096 
MaximumWorkingSetSize      : 
MinimumWorkingSetSize      : 
Name                       : System Idle Process 
OSCreationClassName        : Win32_OperatingSystem 
OSName                     : Microsoftr Windows VistaT Business |C:\Windows|\Device 
                           \Harddisk0\Partition1 
OtherOperationCount        : 0 
OtherTransferCount         : 0 
PageFaults                 : 0 
PageFileUsage              : 0 
ParentProcessId            : 0 
PeakPageFileUsage          : 0 
PeakVirtualSize            : 0 
PeakWorkingSetSize         : 0 
Priority                   : 0 
PrivatePageCount           : 0 
<SPACE> next page; <CR> next line; Q quit

If you are not using the –paging parameter, there is no advantage to using the Out-Host 
cmdlet. From a display perspective, the following commands are identical:

Get-Process 
Get-Process | Out-Host 
Get-Process | Out-Default



 Choosing the best output method CHAPTER 11 381

In fact, Out-Default and Out-Host do the same thing on most systems because, by default, 
the Out-Host cmdlet is the default outputter. The only reason to use the Out-Default cmdlet 
is if you anticipate changing the default outputter and do not want to rewrite the script. By 
using Out-Default, the output from the script will always go to the default outputter, which 
might or might not be the host.

NOTES FROM THE FIELD

Mark Minasi
Microsoft Directory Services MVP

Twenty-one years ago, Microsoft released its first TCP/IP stack. Code-named 
“Wolverine,” it was a beta implementation that ran on Windows for Workgroups 

3.11. after it was installed, I found that it included an amazingly useful, concise 
command-line tool named “ipconfig,” and nary a week goes by that I don’t make 
use of that now-old acquaintance.

Hmmm…perhaps that last sentence overstates the warmth of our relationship in the 
past half-decade or so. Like some of my old friends, ipconfig has changed over the 
years and, sadly, not always for the better. It’s gotten a bit thicker around the waist 
and, to be honest, just a mite dotty. Its youthful conciseness has been diluted a bit, 
because I do not know and do not care what a DhCP DUID or a DhCP IaID is. and 
all of those tunnel adapters? Don’t get me started. I still remember the first time I 
typed “ipconfig /all” on a beta Windows Vista-based machine in 2006. As I watched 
in horror, my old friend ipconfig produced so much output that it—please, make 
sure that there are no young children in the room before reading this sentence—
scrolled off the screen. In that moment, there was a great disturbance in the Force, 
as if millions of It pros simultaneously cried out in pain.

For years, I’ve jokingly suggested that Microsoft provide a “/noEXTRAS” parameter 
on ipconfig, but my entreaties have apparently fallen on deaf ears. For the last few 
years, I’ve kept telling myself that sometime soon I’ll dust off my C++ skills, crack 
the books on Win32’s network-related APIs, and create a new ipconfig, but I never 
seemed to find the time.

then came Windows 8 and its thousand-plus new Windows PowerShell cmdlets, a 
few dozen of which relate to IP networking status and configuration. So, on a crisp 
autumn Saturday in 2012, I set out exploring the new net-related cmdlets and the 
wealth of information that they provided. Like Scrooge McDuck capering in a vault 
filled with his cash, I cackled as one cmdlet after another yielded more and more 
information.

however, my giddy intoxication from this embarrassment of networking riches was 
soon tempered, as my troubled old friend ipconfig came to mind. In that moment, 



 382 CHAPTER 11 Handling input and output

I heard a voice behind me say, “We have the technology. We can rebuild him… 
better.” Of course, it just was my housemate watching a rerun of the Six Million 
Dollar Man, but it inspired me to spend a few hours first figuring out which cmdlets 
provided the various bits and pieces of useful network data that ipconfig delivers, 
and then I looked up how to build a cmdlet. the result was Get-Ipinfo. (You can 
find it at http://www.minasi.com/newsletters/nws1210.htm.) While it might not be 
the most beautiful, well-written cmdlet in the world, hey, it works, and it took me 
hours, not months, to build. 

as robert Kennedy might have said if he were a Windows PowerShell techie, “there 
are those who look at the limitations of some Windows administration tools and 
ask, ‘why?’ I dream of better tools built quickly and easily and ask, ‘why not?’”

and so should you. Learn Windows PowerShell, and reap the harvest!

Output to file
If you want to display information to the screen, you run the command. By default, the com-
mand will emit the information to the console, as shown here:

PS C:\> Get-WmiObject -Class Win32_Bios 
 
SMBIOSBIOSVersion : A01 
Manufacturer      : Dell Computer Corporation 
Name              : Default System BIOS 
SerialNumber      : 9HQ1S21 
Version           : DELL   - 6 
 
PS C:\>

If you want to store the information in a text file, you can use the redirection arrow.

PS C:\> Get-WmiObject -Class Win32_Bios >c:\fso\bios.txt 
PS C:\>

The problem is that there is no confirmation message stating that the command com-
pleted successfully, nor is there any idea of what is contained in the text file. Although you 
can use the Out-File cmdlet, as shown here, there is no feedback from the command:

PS C:\> Get-WmiObject -Class Win32_Bios | Out-File -FilePath C:\fso\bios.txt 
PS C:\>

You can use the Get-Content cmdlet to inspect the contents of the file to ensure that it has 
the information you require. The thing to keep in mind is that you are not piping the informa-
tion from the Out-File cmdlet to the Get-Content cmdlet. The semicolon is used to indicate 
that you are beginning a new command. The semicolon is the equivalent of typing the com-
mand on a new line in a script.

http://www.minasi.com/newsletters/nws1210.htm


 Choosing the best output method CHAPTER 11 383

PS C:\> Get-WmiObject -Class Win32_Bios | Out-File -FilePath C:\fso\bios.txt ;  
Get-Content -Path C:\fso\bios.txt 
 
SMBIOSBIOSVersion : A01 
Manufacturer      : Dell Computer Corporation 
Name              : Default System BIOS 
SerialNumber      : 9HQ1S21 
Version           : DELL   - 6

Because you have already seen that using the redirection arrow is the same as using the 
Out-File cmdlet, for your purposes here, you can revise the command to use the redirection 
arrows. You can also shorten the command a bit by using the alias cat instead of the lengthier 
Get-Content cmdlet name.

PS C:\> Get-WmiObject -Class Win32_Bios > C:\fso\bios.txt ; cat C:\fso\bios.txt 
 
SMBIOSBIOSVersion : A01 
Manufacturer      : Dell Computer Corporation 
Name              : Default System BIOS 
SerialNumber      : 9HQ1S21 
Version           : DELL   - 6

By using an alias for the Get-WmiObject cmdlet and omitting the –class parameter name, 
you can shorten the command quite a bit.

PS C:\> gwmi Win32_Bios > C:\fso\bios.txt ; cat C:\fso\bios.txt 
 
SMBIOSBIOSVersion : A01 
Manufacturer      : Dell Computer Corporation 
Name              : Default System BIOS 
SerialNumber      : 9HQ1S21 
Version           : DELL   - 6

Splitting the output to both the screen and the file
Now you have a shorter command that you can use to feed the content from the command 
to a text file for storage and then display the information on the console. While this is a work-
able solution, it is easier to use a cmdlet if it can essentially do the same thing. As it turns out, 
there is a cmdlet that will split the output from a cmdlet and direct it to both the screen and 
to a file, and this cmdlet is named Tee-Object. Most of the time, you will split the output from 
your command line to a file and to the console. To do this, you can use the –filepath param-
eter and specify the full path to the file. As shown here, the Tee-Object cmdlet supports a 
number of additional switches and parameters, and three different parameter sets:

Tee-Object [-FilePath] <string> [-InputObject <psobject>] [-Append] [<CommonParameters>] 
 
Tee-Object -LiteralPath <string> [-InputObject <psobject>] [<CommonParameters>] 
 
Tee-Object -Variable <string> [-InputObject <psobject>] [<CommonParameters>]



 384 CHAPTER 11 Handling input and output

To return to the example, you can replace the redirection arrow (or the Out-File cmdlet) 
and the Get-Content cmdlet (cat alias) with the Tee-Object cmdlet. The revised code is shown 
here:

Get-WmiObject -Class Win32_Bios | Tee-Object -FilePath c:\fso\bios.txt

When you run the command, you receive the output shown in Figure 11-5.

FIGURE 11-5 The Tee-Object cmdlet splits output between the text file and the Windows PowerShell 
console.

One thing to keep in mind when using the Tee-Object cmdlet is that it always overwrites 
the previous text file if the file already exists. However, if the file does not exist, the Tee-
Object cmdlet creates the file but does not create the folder. If you attempt to use the Tee-
Object cmdlet to write to a folder that does not exist, an error will be received that warns of a 
missing path.

PS C:\> Get-WmiObject -class Win32_Bios | Tee-Object -FilePath C:\fso5\bios.txt 
out-file : Could not find a part of the path ‘C:\fso5\bios.txt’. 
PS C:\>

You can also use the Tee-Object cmdlet to hold the output of a command in a variable. 
This offers a convenient way to save the information for use later in the script. The following 
code shows you how to save the results of a command in a variable and then display them 
later without using the Tee-Object cmdlet:

PS C:\> $bios = Get-WmiObject -class Win32_Bios 
PS C:\> $bios 
 
SMBIOSBIOSVersion : A01 
Manufacturer      : Dell Computer Corporation 
Name              : Default System BIOS 
SerialNumber      : 9HQ1S21 
Version           : DELL   - 6 
 
PS C:\>

The syntax for the Tee-Object cmdlet when it is used to store the results of a pipeline in a 
variable is shown here:

Tee-Object [-InputObject <PSObject>] -Variable <String> [-Verbose] [-Debug]  
[-ErrorAction <ActionPreference>] [-ErrorVariable <String>] [-OutVariable <String>] 
[-OutBuffer <Int32>]



 Choosing the best output method CHAPTER 11 385

To store the results of your Get-WmiObject –Class Win32_Bios command in a variable 
named $bios, you can use the following command:

PS C:\> Get-WmiObject -class Win32_Bios | Tee-Object -Variable bios 
 
SMBIOSBIOSVersion : A01 
Manufacturer      : Dell Computer Corporation 
Name              : Default System BIOS 
SerialNumber      : 9HQ1S21 
Version           : DELL   - 6

One thing to keep in mind when using the variable parameter with the Tee-Object cmdlet 
is that you do not need to use a dollar sign in front of the variable name. This makes the 
behavior of the cmdlet the same as the behavior when using the New-Variable cmdlet.

To see the contents of the $bios variable, you type $bios on the command line in the 
Windows PowerShell console as shown here:

PS C:\> $bios 
 
SMBIOSBIOSVersion : A01 
Manufacturer      : Dell Computer Corporation 
Name              : Default System BIOS 
SerialNumber      : 9HQ1S21 
Version           : DELL   - 6 
 
PS C:\>

One of the best features of the Tee-Object cmdlet is that it also passes the object through 
the pipeline. This means that you are not stuck with the default display of information that is 
returned by the preceding command, such as the Get-WmiObject cmdlet. You can store the 
object in the $bios variable and then choose to display only the name property.

PS C:\> Get-WmiObject -class Win32_Bios | Tee-Object -Variable bios |  
select name 
 
name 
---- 
Default System BIOS

To retrieve the object from the variable, you once again type the variable $bios on the 
command line or use it elsewhere in your script.

PS C:\> $bios 
 
SMBIOSBIOSVersion : A01 
Manufacturer      : Dell Computer Corporation 
Name              : Default System BIOS 
SerialNumber      : 9HQ1S21 
Version           : DELL   - 6

You are not limited to using the Tee-Object cmdlet with Windows PowerShell cmdlets. You 
can use Tee-Object with ordinary command-line utilities as shown here, where the results of 
the ping command are displayed to the console and stored in the $ping variable.



 386 CHAPTER 11 Handling input and output

PS C:\> ping berlin | Tee-Object -Variable ping 
Pinging Berlin.nwtraders.com [192.168.2.1] with 32 bytes of data: 
Reply from 192.168.2.1: bytes=32 time=11ms TTL=128 
Reply from 192.168.2.1: bytes=32 time=1ms TTL=128 
Reply from 192.168.2.1: bytes=32 time=1ms TTL=128 
Reply from 192.168.2.1: bytes=32 time=1ms TTL=128 
Ping statistics for 192.168.2.1: 
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
    Minimum = 1ms, Maximum = 11ms, Average = 3ms 
PS C:\>

The advantage of this technique is that you can now use the Select-String cmdlet to 
search the contents of the variable and quickly find the information that you need. If you are 
most interested in only the number of packets that were sent and received, you can pipe the 
data that is stored in the $ping variable to the Select-String cmdlet.

PS C:\> $ping | Select-String packet 
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), 
PS C:\>

NOTES FROM THE FIELD

Working with output

Dave Schwinn, Senior Consultant
Full Service Networking

In Windows PowerShell 4.0, there are many options when dealing with output from 
a script or even when working from the Windows PowerShell command shell. For 

example, I can easily output to a text file, a database, the screen, to HTML, XML, or 
a comma-separated variable (CSV) file. The choice depends on what I intend to do 
with the data after I obtain it.

One of the things I really enjoy doing is exporting XML from a command. I will run 
a command, export it to XML in a file, and then display the contents of that XML on 
the screen. although this can be a hassle, the XML formatting makes it easy for me 
to see relationships between different data elements.

On an average day, it seems that I usually format data to the screen as a table. this 
view is extremely useful for allowing me to quickly work my way through a long list 
of related items. You can consider the table view in terms of the Get-Process or the 
Get-Service cmdlets, which produce a table list by default. For example, consider 
the WMI Win32_LogicalDisk class. I can quickly use the following command to pro-
vide exactly the information I need:

PS C:\> Get-WmiObject Win32_LogicalDisk |  

Format-Table name, size, freespace -AutoSize 



 Choosing the best output method CHAPTER 11 387

name         size   freespace 

----         ----   --------- 

C:   158391595008 15872155648 

E: 

S:     1647308800  1554030592

If I send information to a printer, I like to use the ConvertTo-Html cmdlet because it 
allows me to specify details that make for a professional-looking report. however, I 
will often output to another cmdlet and continue using the command line.

I can also use Microsoft Visual Studio to host Windows PowerShell commands. I 
often write commands in a Visual Studio project that calls Windows PowerShell to 
retrieve the data for me and then return it to my application. It is easier for me to 
use Windows PowerShell to retrieve the WMI objects and for me to consume the 
data returned by PowerShell in my application than it is for me to call the WMI 
classes directly from the .NEt Framework. I then output the data as a dataset and 
parse the columns of data for my application.

I use the Export-CSV cmdlet quite frequently because I can easily open the file in 
Excel, which allows me to do advanced data manipulation as well as create charts 
and reports for various presentations. Because I work for a Microsoft solutions 
provider, our company has a large number of customers who use a licensing 
model from Microsoft whereby they basically lease the software from Microsoft. 
therefore, these customers always have the right to upgrade to the latest soft-
ware whenever they want to do so, and they can easily budget for their software 
expenses. the problem is that they must let Microsoft know how many seats of the 
software they are using each month. I use Windows PowerShell to query a cus-
tomer’s Microsoft Exchange Server by using the Get-Mailbox cmdlet, which gives 
me a listing of all of the mailboxes used on the server. I then export the list to a CSV 
file and pipeline it to the Send-MailMessage cmdlet. the report goes directly to the 
purchasing representative so that he can open it in Excel and determine how many 
seats the client must pay for that month. this type of easy automation simply was 
not available before Windows PowerShell, and it is the ease of formatting output 
that makes it all possible.

Output to email
It is a common request to be able to send information from a script to an email recipient. 
In the past, this generally meant writing a complicated function and hoping that all of the 
details were put together correctly to enable this functionality to work properly. It was easier 
to do before spammers caused security concerns about sending email from scripts. Email 



 388 CHAPTER 11 Handling input and output

viruses have added additional layers of authentication and made the process much more 
confusing.

Beginning with Windows PowerShell 2.0, the Send-MailMessage cmdlet can be used to 
simplify the task of sending email from a script. In some cases, this cmdlet works without any 
additional configuration on your network. At other times, you need to grant the user account 
that is being used to run the script permission to send email from the script.

Output from functions
When a function is called, it returns data to the calling code. This behavior is often not under-
stood well by people who come to Windows PowerShell from other scripting languages. 
When you run the AddOne.ps1 script, the number 6 is displayed to the console. What is 
confusing is that data is returned from the line of code that calls the function and not from 
within the function itself, which is different behavior than might be expected. Most of the 
time, when two numbers are added together, the data is returned from the line that performs 
the work.

PS C:\> $int = 5 
PS C:\> $int + 1 
6 
PS C:\>

It is therefore reasonable to expect that the number 6 is coming from inside the AddOne 
function and not from outside the function. The AddOne.ps1 script including the AddOne 
function is shown here.

addOne.ps1

Function AddOne($int) 

{ 

 $int + 1 

} 

 

AddOne(5)

To illustrate where the data comes from, you can modify the script to store the result of 
calling the function to a variable. You can then use the Get-Member cmdlet to display the 
information that is returned, as shown in AddOne1.ps1.

addOne1.ps1

Function AddOne($int) 

{ 

 $int + 1  

} 

 

$number = AddOne(5) 



 Choosing the best output method CHAPTER 11 389

$number | get-member 

‘Display the value of $number: ‘ + $number

When the AddOne1.ps1 script is run, you can see that the information is returned to the 
code that calls the function. In the first line after the function call, the object stored in the 
$number variable is shown to be a System.Int32 object. Following the Get-Member command, 
the value stored in the $number variable is shown to be equal to 6. The value 5 is not dis-
played from within the AddOne function.

   TypeName: System.Int32 
 
Name         MemberType Definition 
----         ---------- ---------- 
CompareTo    Method     System.Int32 CompareTo(Object value), System.Int32 Co... 
Equals       Method     System.Boolean Equals(Object obj), System.Boolean Equ... 
GetHashCode  Method     System.Int32 GetHashCode() 
GetType      Method     System.Type GetType() 
GetTypeCode  Method     System.TypeCode GetTypeCode() 
ToString     Method     System.String ToString(), System.String ToString(Stri... 
Display the value of $number: 6

When you use a cmdlet such as Write-Host from inside the function, you then circumvent 
the return process that is inherent in the design of the function. The use of Write-Host from 
within a function is illustrated in AddOne2.ps1.

addOne2.ps1

Function AddOne($int) 

{ 

 Write-Host $int + 1  

} 

 

$number = AddOne(5) 

$number | get-member 

‘Display the value of $number: ‘ + $number

When the script is run, you will notice that nothing is returned from inside the function. 
The $number variable no longer contains an object.

5 + 1 
Get-Member : No object has been specified to get-member. 
At C:\Documents and Settings\ed\Local Settings\Temp\tmp6.tmp.ps1:9 char:21 
+ $number | get-member <<<< 
Display the value of $number:



 390 CHAPTER 11 Handling input and output

avoid populating the global variable
In addition to using cmdlets, such as Write-Host, from within a function to circumvent the 
output from a function, it is also possible to store the results of a function to a variable. The 
problem with storing results from the function to a variable within the function is that when 
a variable is created within a function, it is not available outside of the function as shown in 
AddOne3.ps1.

addOne3.ps1

Function AddOne($int) 

{ 

 $number =  $int + 1  

} 

 

$number = AddOne(5) 

$number | get-member 

‘Display the value of $number: ‘ + $number

When the AddOne3.ps1 script is run, there is no object in the $number variable because 
the variable is not available outside of the AddOne function.

Get-Member : No object has been specified to get-member. 
At C:\Documents and Settings\ed\Local Settings\Temp\tmp9.tmp.ps1:9 char:21 
+ $number | get-member <<<< 
Display the value of $number:

One technique that is sometimes used to provide the value of the variable from within the 
function to the calling script is to add a scope to the variable, as shown in the AddOne4.ps1 
script.

addOne4.ps1

Function AddOne($int) 

{ 

 $global:number =  $int + 1  

} 

 

AddOne(5) 

$global:number | get-member 

‘Display the value of $global:number: ‘ + $global:number

A potential problem exists when adding a variable to the global scope—the variable 
continues to exist after the script has exited. As long as the Windows PowerShell console is 
open and until you explicitly remove the global variable, it continues to be available. This 
means that the variable will be available in other scripts and will always be available within 
the console. This might not be a problem, but it can cause scripts that use the same variable 



 Choosing the best output method CHAPTER 11 391

names to operate in an erratic fashion. One way to determine whether the variable persists is 
to check the variable drive.

   TypeName: System.Int32 
 
Name        MemberType Definition 
----        ---------- ---------- 
CompareTo   Method     System.Int32 CompareTo(Object value), System.Int32 Co... 
Equals      Method     System.Boolean Equals(Object obj), System.Boolean Equ... 
GetHashCode Method     System.Int32 GetHashCode() 
GetType     Method     System.Type GetType() 
GetTypeCode Method     System.TypeCode GetTypeCode() 
ToString    Method     System.String ToString(), System.String ToString(Stri... 
Display the value of $global:number: 6 
 
PS C:\data\PowerShellBestPractices\Scripts\Chapter12> Get-Item Variable:\number 
 
Name                           Value 
----                           ----- 
number                         6

It is possible to remove the global variable in the last line of the script by using the 
Remove-Variable cmdlet, but a better approach is to use the Script-level scope instead of the 
Global-level scope. The Script-level variable is available inside and outside the function while 
the script is running. When the script has completed, the variable is removed. The use of the 
Script-level scope is shown in the AddOne5.ps1 script.

addOne5.ps1

Function AddOne($int) 

{ 

 $script:number =  $int + 1  

} 

 

AddOne(5) 

$script:number | get-member 

‘Display the value of $script:number: ‘ + $script:number

When the AddOne5.ps1 script runs, the value of the $number variable is available outside 
of the function. When the script has completed its run, an error is returned when the Get-Item 
cmdlet is used to attempt to retrieve the value of the variable.

   TypeName: System.Int32 
 
Name        MemberType Definition 
----        ---------- ---------- 
CompareTo   Method     System.Int32 CompareTo(Object value), System.Int32 Co... 
Equals      Method     System.Boolean Equals(Object obj), System.Boolean Equ... 
GetHashCode Method     System.Int32 GetHashCode() 
GetType     Method     System.Type GetType() 
GetTypeCode Method     System.TypeCode GetTypeCode() 



 392 CHAPTER 11 Handling input and output

ToString    Method     System.String ToString(), System.String ToString(Stri... 
Display the value of $script:number: 6 
 
PS C:\data\PowerShellBestPractices\Scripts\Chapter12> Get-Item variable:number 
Get-Item : Cannot find path ‘number’ because it does not exist. 
At line:1 char:9 
+ Get-Item  <<<< variable:number

Using a namespace in the global variable
One way to protect your Windows PowerShell console from inadvertent pollution from 
global variables that are created within scripts is to add a namespace tag to the variable. This 
process still allows you to use a global variable if required, but it also reduces variable naming 
conflicts. To create a global variable in a separate namespace, you can use a dollar sign, a pair 
of curly brackets, and the global scope tag. The separate namespace follows the colon. Finally, 
the variable itself is separated by a period from the namespace.

${Global:AddOne6.number} =  $int + 1

To reference the value that is stored in a global variable within a separate namespace, you 
can use the dollar sign, curly brackets, and the dotted notation for the namespace/variable 
name. You do not need to add the global tag.

${AddOne6.number}

An example of using a global variable in a separate namespace is shown in the AddOne6 
.ps1 script.

addOne6.ps1

Function AddOne($int) 

{ 

 ${Global:AddOne6.number} =  $int + 1  

} 

 

AddOne(5) 

${AddOne6.number} | get-member 

‘Display the value of ${AddOne6.number}: ‘ + ${AddOne6.number}

When the AddOne6.ps1 script runs, the variable can be accessed after the script runs by 
including the namespace and the variable name in a dotted notation.

   TypeName: System.Int32 
 
Name        MemberType Definition 
----        ---------- ---------- 
CompareTo   Method     System.Int32 CompareTo(Object value), System.Int32 Co... 
Equals      Method     System.Boolean Equals(Object obj), System.Boolean Equ... 
GetHashCode Method     System.Int32 GetHashCode() 
GetType     Method     System.Type GetType() 
GetTypeCode Method     System.TypeCode GetTypeCode() 



 Choosing the best output method CHAPTER 11 393

ToString    Method     System.String ToString(), System.String ToString(Stri... 
Display the value of ${AddOne6.number}: 6 
 
PS C:\data\PowerShellBestPractices\Scripts\Chapter12> Get-Item Variable:\AddOne6.number 
 
Name                           Value 
----                           ----- 
AddOne6.number                 6

NOTES FROM THE FIELD

Windows PowerShell requires a new way of thinking

richard Norman, Senior Premier Field Engineer
Microsoft Corporation

As a premier field engineer for Microsoft, I spend a lot of time talking to cus-
tomers about working with Windows PowerShell. I tell them that the number 

one rule when working with Windows PowerShell is: You must change some of 
your thinking. this is especially true for people who are migrating to Windows 
PowerShell from VBScript.

With Windows PowerShell, you obtain all new possibilities along with the old 
capabilities. the underlying premise of Windows PowerShell is the fact that you 
are working with objects. these objects have properties and methods that can be 
exploited in ways that VBScript cannot. Previously, you dealt with results only as 
text. to accomplish anything more, you needed to use other tools to parse and 
manipulate the results. With Windows PowerShell, you receive more than just a text 
representation because you are working with objects that you can manipulate in 
new ways. You can continue to use text parsing if that is what you are accustomed 
to doing, but this reduces your possibilities. the next step in your thinking is to start 
taking advantage of the properties of the objects. For example, you can obtain a list 
of files that were modified within the last week by using the object properties, as 
shown here:

dir | where-object {$_.lastwritetime –ge (get-date).adddays(-7)})

You should also stop thinking that the pipeline is operating on a list (called an array) 
of objects on the command line. You are sending these objects in a series through 
to the next command, and the next, and the next, and so on. this list of objects is 
key to understanding how Windows PowerShell works. Using the objects in your 
scripts reveals much of the power behind all of the cmdlets. Due to the way in which 
Windows PowerShell operates on objects, it can process items lazily. this means 
that while one command is processing, Windows PowerShell can begin processing 
results before the first command is finished. This procedure typically happens so 



 394 CHAPTER 11 Handling input and output

fast that you aren’t aware of it, but it is a process that can come in handy for larger 
files and lists.

Finally, remember that you can use the Windows PowerShell interpreted string 
to your advantage. When you use quote marks or double quotes (“…”), Windows 
PowerShell can interpret any variable within the quotes. (Variables begin with a dol-
lar sign.) This process allows you to go beyond the old ideas of using string concate-
nation and to instead use your variables directly within any string and script output.

 the assumption that Windows PowerShell is just like other scripting languages 
will get you in trouble. While you can write a Windows PowerShell script code in a 
similar fashion to VBScript, there are differences in how you should write the script. 
For example, if you want to filter based on the date or some other factor, VBScript is 
limited and requires quite a few lines of script. In Windows PowerShell, the filtering 
can be accomplished in one line, as shown here:

dir | where-object {$_.lastwritetime –ge (get-date).adddays(-14)}

another example involves something as simple as converting a time stamp in 
Domain Name System (DNS) into a usable date and time. Using VBScript can lead to 
several calculations and functions. Because of the concept of Windows PowerShell 
objects, you can break the conversion of the date down to a single line of code, as 
shown here:

get-date “1/1/1601 12:00 am GMT”).addhours($timestamp)

Because Windows PowerShell is strongly object-based, you end up simplifying some 
things at the expense of complicating a few others. Some functions from VBScript 
have direct equivalents, while others become slightly more complex in the Windows 
PowerShell world, such as the CMD.exe DIR /a:d command. this command returns 
a list of folders in the current directory. In Windows PowerShell, a similar command 
looks like the following: DIR | Where-Object {$_.PSISContainer}. the command is 
a little longer, but the power you receive in other areas more than compensates for 
some of these shortcomings in verboseness.

also, procedures that you commonly perform, such as using the CLS command 
in CMD.exe, are now an entirely new function named Clear-Host in Windows 
PowerShell. I will leave this function to the reader to investigate. however, the 
implementation of this function is clearly more complex than the older CLS 
command.

I often hear that Windows PowerShell is bringing the power that developers have 
with the .NEt Framework to the command line for administrators. Sometimes 
that power can take some getting used to. For example, it is very easy to do DNS 
lookups using the .NET Framework ([system.net.dns]::Resolve($address)). What is 



 Additional resources CHAPTER 11 395

special about this scenario is that the result is not simply text to parse but an object 
that can be manipulated.

You can use simple strings to show a vast number of methods that are available to 
parse and manipulate the strings, such as “a string” | Get-Member. the technique 
of using the underlying .NEt Framework classes and methods also works with many 
other objects, such as dates, IP addresses, and Uniform Resource Identifiers (URIs). 
You can now use and manipulate all of these items through Windows PowerShell 
that were previously available only in the .NEt Framework. Even user interface and 
web-based .NEt libraries are available to you.

 When working with XML, I can now take the string and transform it into an XML 
document instead of doing other parsing. For example, the following code creates 
an XML document from a string that can be written to a file or that can be parsed or 
searched by using an XPath or XQuery statement.

$dom=[xml]”<doc><item1>value1</item1><item1>value2</item1><item1>value3 

<item2>subvalue1</item2></item1></doc>” 

$dom.doc 

$dom | get-member

I can take a regular expression and, in two lines of Windows PowerShell script, 
determine whether a string matches that expression. By using one more line, I can 
list all of the matches. the ability of Windows PowerShell to use and create regular 
expressions is very powerful.

$regex=[regex]”^((6\.((1\.((98\.(10|[0-9]))|((9[0-7]|[1-8]? 

[0-9])\..*)))|(0\..*)))|([0-5]\..*))$” 

$regex.ismatch(“6.0.84.18”)

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous examples of handling input from Windows PowerShell scripts.

■■ All scripts from this chapter are available via the TechNet Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell 
-40-Best-d9e16039.





   397

C H A P T E R  1 2

handling errors
■■ Handling missing parameters

■■ Limiting choices

■■ Handling missing rights

■■ Handling missing WMI providers

■■ Incorrect data types

■■ Out of bounds errors

■■ Additional resources

When it comes to handling errors in your script, you need to understand how the script 
will be used. The way that a script will be used is sometimes called the use case sce-

nario, and it describes how the user will interact with the script. 

If the use case scenario is simple, the user might not need to do anything more than type 
the name of the script inside the Windows PowerShell console. A script such as Get-Bios.ps1 
can get by without much need for any error handling because there are no inputs to the 
script. The script is called, it runs, and it displays information that should always be readily 
available because the Win32_Bios Windows Management Instrumentation (WMI) class is 
present in all versions of Windows since Microsoft Windows 2000.

Get-Bios.ps1

Get-WmiObject -class Win32_Bios

However, if the use case scenario is complicated, the requirements for handling potential 
errors increase. Most scripts used in enterprise environments allow the user of the script to 
enter parameters from the command line. Very few scripts actually require the user to open 
the script in a script editor and manually change variable assignments. Instead, the user 
types in values from the command line, which opens up all types of potential sources for 
error. The most common error occurs when the user of the script does not supply a value 
for something basic, such as the target computer name. What happens when the user types 
in the name of a computer that is turned off or that does not exist in the network? Suppose 
you have a script that does performance monitoring on a remote computer and you allow 
the user of the script to select the monitor interval. What happens if the user chooses to 
read the performance counters every .1 second? This can have an adverse impact on the 
performance of the computer that is being tested. What about a script that attempts to 



 398 CHAPTER 12 Handling errors

read from a WMI class that does not exist on the remote computer? How does the script 
handle that error condition? There are some tried and true methods for dealing with each of 
these potential error conditions, and in this chapter, we will examine each of these scenarios.

Handling missing parameters

When you examine the Get-Bios.ps1 script, you can see that it does not receive any input 
from the command line. Although this is a good way to avoid user errors in your script, it is 
not always practical. When your script accepts command-line input, you are opening the door 
for all types of potential problems. Depending on the way in which you accept command-line 
input, you might need to test the input data to ensure that it corresponds to the type of input 
that the script is expecting. Because the Get-Bios.ps1 script does not accept command-line 
input, you therefore avoid most potential sources of errors.

Creating a default value for the parameter
There are two ways to assign default values for a command-line parameter. You can assign 
the default value in the Param declaration statement, or you can assign the value in the script 
itself. Given a choice between the two, I generally feel it is a best practice to assign the default 
value in the Param statement because it makes the script easier to read.

Detecting the missing value and assigning it in the script
In the Get-BiosInformation.ps1 script, the −computername command-line parameter is created 
to allow the script to target both local and remote computers. If the script is run without a 
value for the −computername parameter, the Get-WmiObject cmdlet fails because it requires a 
value for the −computername parameter. To solve the problem of the missing parameter, the 
Get-BiosInformation.ps1 script checks for the presence of the $computerName variable. If this 
variable is missing, it was not created via the command-line parameter, and the script there-
fore assigns a value to the $computerName variable. Here is the line of code that populates 
the value of the $computerName variable:

If(-not($computerName)) { $computerName = $env:computerName }

The complete Get-BiosInformation.ps1 script is shown here.

Get-BiosInformation.ps1

Param( 

  [string]$computerName 

) #end param 

 

Function Get-BiosInformation($computerName) 



 Handling missing parameters CHAPTER 12 399

{ 

 Get-WmiObject -class Win32_Bios -computername $computername 

} #end function Get-BiosInformation 

# *** Entry Point To Script *** 

If(-not($computerName)) { $computerName = $env:computerName } 

Get-BiosInformation -computername $computername

assigning the value in the Param statement
To assign a default value in the Param statement, use the equality operator following the 
parameter name and assign the value to the parameter, as shown here:

Param( 
  [string]$computerName = $env:computername 
) #end param

The advantage of assigning the default value for the parameter in the Param state-
ment is that the script is easier to read. Because the parameter declaration and the default 
parameter are in the same place, you can immediately see which parameters have default 
values and which do not. The second advantage that arises from assigning a default 
value in the Param statement is that the script is easier to write. Notice that no If state-
ment is used to check for the existence of the $computerName variable. The complete 
 Get-BiosInformationDefaultParam.ps1 script is shown here.

Get-BiosInformationDefaultParam.ps1

Param( 

  [string]$computerName = $env:computername 

) #end param 

 

Function Get-BiosInformation($computerName) 

{ 

 Get-WmiObject -class Win32_Bios -computername $computername 

} #end function Get-BiosInformation 

# *** Entry Point To Script *** 

 

Get-BiosInformation -computername $computername

Making the parameter mandatory
The best way to handle an error is to ensure that the error does not occur in the first place. 
In Windows PowerShell 2.0 and higher versions, you can mark a parameter as mandatory. The 
advantage of marking a parameter as mandatory is that it requires the user of the script to 
supply a value for the parameter. If you do not want the user of the script to be able to run 



 400 CHAPTER 12 Handling errors

the script without making a particular selection, you want to make the parameter mandatory. 
To make a parameter mandatory, use the mandatory parameter attribute, as follows:

Param( 
   [Parameter(Mandatory=$true)] 
   [string]$drive, 
   [string]$computerName = $env:computerName 
) #end param

The complete MandatoryParameter.ps1 script is shown here.

MandatoryParameter.ps1

#Requires –version 4.0 

Param( 

   [Parameter(Mandatory=$true)] 

   [string]$drive, 

   [string]$computerName = $env:computerName 

) #end param 

 

Function Get-DiskInformation($computerName,$drive) 

{ 

 Get-WmiObject -class Win32_volume -computername $computername ' 

-filter "DriveLetter = '$drive'" 

} #end function Get-DiskInformation 

# *** Entry Point To Script *** 

 

 Get-DiskInformation -computername $computerName -drive $drive

When a script with a mandatory parameter is run without supplying a value for the 
parameter, an error is not generated. Instead, Windows PowerShell prompts for the required 
parameter value:

PS C:\bp> .\MandatoryParameter.ps1 
 
cmdlet MandatoryParameter.ps1 at command pipeline position 1 
Supply values for the following parameters: 
drive:

Limiting choices

Depending on the design of the script, there are several things that you can do to decrease 
the amount of error checking required. If you have a limited number of choices that you 
want to display to the user, you can use the PromptForChoice method. If you want to limit 
the selection to computers that are currently running, you can ping the computer prior to 
attempting to connect. If you want to limit the choice to a subset of computers or properties, 



 Limiting choices CHAPTER 12 401

you can parse a text file and use the −contains operator. In this section, you will examine each 
of these techniques for limiting the permissible input values from the command line. 

Using PromptForChoice to Limit Selections
If you use the PromptForChoice method of soliciting input from the user, the user has a lim-
ited number of options from which to choose. You completely eliminate the problem of bad 
input. The user prompt from the PromptForChoice method is shown in Figure 12-1.

FIGURE 12-1 The PromptForChoice method presents a selectable menu to the user.

The use of the PromptForChoice method is illustrated in the Get-ChoiceFunction.ps1 script. 
In the Get-Choice function, the $caption variable and the $message variable hold the caption 
and the message that is used by PromptForChoice. The choices that are offered are instances of 
the Microsoft .NET Framework ChoiceDescription class. When you create the ChoiceDescription 
class, you also supply an array with the choices that will appear, as shown here:

$choices = [System.Management.Automation.Host.ChoiceDescription[]] ' 
 @("&loopback", "local&host", "&127.0.0.1")

Next, you need to select a number that will be used to represent the default choice. When 
you begin counting, keep in mind that the ChoiceDescription class is an array, and the first 
option is numbered 0. Next, you call the PromptForChoice method and display the options:

[int]$defaultChoice = 0 
$choiceRTN = $host.ui.PromptForChoice($caption,$message,$choices,$defaultChoice)

Because the PromptForChoice method returns an integer, you can use the If statement to 
evaluate the value of the $choiceRTN variable. The syntax of the Switch statement is more 
compact and is actually a better choice for this application. The Switch statement from the 
Get-Choice function is shown here:

switch($choiceRTN) 
 { 
  0    { "loopback"  } 
  1    { "localhost"  } 
  2    { "127.0.0.1"  } 
 }

When you call the Get-Choice function, it returns the computer that was identified by the 
PromptForChoice method. You place the method call in a set of parentheses to force it to be 
evaluated before the rest of the command.

Get-WmiObject -class win32_bios -computername (Get-Choice)



 402 CHAPTER 12 Handling errors

This solution to the problem of bad input works well when your help desk personnel are 
working with a limited number of computers. The other caveat to this approach is that you 
do not want to change the choices on a regular basis. You want a stable list of computers to 
avoid creating a maintenance nightmare for yourself. The complete Get-ChoiceFunction.ps1 
script is shown here.

Get-ChoiceFunction.ps1

Function Get-Choice 

{ 

 $caption = "Please select the computer to query"  

 $message = "Select computer to query" 

 $choices = [System.Management.Automation.Host.ChoiceDescription[]] ' 

 @("&loopback", "local&host", "&127.0.0.1") 

 [int]$defaultChoice = 0 

 $choiceRTN = $host.ui.PromptForChoice($caption,$message, $choices,$defaultChoice) 

 

 switch($choiceRTN) 

 { 

  0    { "loopback"  } 

  1    { "localhost"  } 

  2    { "127.0.0.1"  } 

 } 

} #end Get-Choice function 

 

Get-WmiObject -class win32_bios -computername (Get-Choice)

Using ping to identify accessible computers
If you have more than a few computers that need to be accessible or if you do not have a 
stable list of computers that you will be working with, one solution to the problem of trying 
to connect to nonexistent computers is to ping the computer prior to attempting to make the 
WMI connection.

You can use the Win32_PingStatus WMI class to send a ping to a computer. The best way 
to use the Win32_PingStatus WMI class is to create a function that pings the target computer. 
Because you are interested in a quick reply, the Test-ComputerPath function sends one ping 
only. The Test-ComputerPath function accepts a single input, which is the name or IP address 
of the target computer. To help control the information that is passed to the function, the 
$computer parameter uses a string type constraint to ensure that the input to the function is a 
string. The Test-ComputerPath function is shown here:

Function Test-ComputerPath([string]$computer) 
{ 
 Get-WmiObject -class win32_pingstatus -filter "address = '$computer'" 
} #end Test-ComputerPath



 Limiting choices CHAPTER 12 403

A subset of the Win32_PingStatus object is returned to the calling code and is shown here:

Source        Destination     IPV4Address      IPV6Address 
------        -----------     -----------      ----------- 
EDLT          dc1             192.168.0.101

In the Test-ComputerPath.ps1 script, the statusCode property from the Win32_PingStatus 
object is evaluated. If the value is 0, the ping was successful. If the statusCode property is null 
or is equal to some other number, the ping was not successful. Because the Win32_PingStatus 
object is returned to the calling script, you can retrieve the statusCode property directly and 
use the equality operator to see whether it is equal to 0.

if( (Test-ComputerPath -computer $computer).statusCode -eq 0 )

If the statusCode property is equal to 0, the Test-ComputerPath.ps1 script uses the 
 Get-WmiObject cmdlet to retrieve the BIOS information from the Win32_Bios WMI class.

Get-WmiObject -class Win32_Bios -computer $computer

If the target computer is unable to be reached, the Test-ComputerPath.ps1 script displays a 
message to the Windows PowerShell console stating that the target computer is unreachable.

Else 
 { 
  "Unable to reach $computer computer" 
 }

The complete Test-ComputerPath.ps1 script is shown here.

test-ComputerPath.ps1

Param([string]$computer = "localhost") 

 

Function Test-ComputerPath([string]$computer) 

{ 

 Get-WmiObject -class win32_pingstatus -filter "address = '$computer'" 

} #end Test-ComputerPath 

 

# *** Entry Point to Script *** 

 

if( (Test-ComputerPath -computer $computer).statusCode -eq 0 )  

 { 

  Get-WmiObject -class Win32_Bios -computer $computer 

 } 

Else 

 { 

  "Unable to reach $computer computer" 

 }



 404 CHAPTER 12 Handling errors

Using the −contains Operator to examine the contents of 
an array
To verify input that is received from the command line, you can use the −contains operator to 
examine the contents of an array of possible values. This technique is illustrated here with an 
array of three values that is created and stored in the $noun variable. The −contains opera-
tor is then used to see whether the array contains “hairy-nosed wombat.” Because the $noun 
variable does not have an array element that is equal to the string “hairy-nosed wombat,” the 
−contains operator returns False.

PS C:\> $noun = "cat","dog","rabbit" 
PS C:\> $noun -contains "hairy-nosed wombat" 
False 
PS C:\>

If an array contains a match, the −contains operator returns True.

PS C:\> $noun = "cat","dog","rabbit" 
PS C:\> $noun -contains "rabbit" 
True 
PS C:\>

The −contains operator returns True only when there is an exact match. Partial matches 
return False.

PS C:\> $noun = "cat","dog","rabbit" 
PS C:\> $noun -contains "bit" 
False 
PS C:\>

The −contains operator is case-insensitive. Therefore, it returns True when matched 
regardless of case.

PS C:\> $noun = "cat","dog","rabbit" 
PS C:\> $noun -contains "Rabbit" 
True 
PS C:\>

If you need to perform a case-sensitive match, you can use the case-sensitive version of 
the −contains operator, −ccontains. It returns True only if the case of the string matches the 
value contained in the array, as shown here:

PS C:\> $noun = "cat","dog","rabbit" 
PS C:\> $noun -ccontains "Rabbit" 
False 
PS C:\> $noun -ccontains "rabbit" 
True 
PS C:\>

In the Get-AllowedComputer.ps1 script, a single command-line parameter is created that 
is used to hold the name of the target computer for the WMI query. The −computer param-
eter is a string, and it receives the default value from the environmental drive. This is a good 



 Limiting choices CHAPTER 12 405

technique because it ensures that the script has the name of the local computer, which can 
then be used in producing a report of the results. If you set the value of the −computer 
parameter to LocalHost, you never know which computer the results belong to.

Param([string]$computer = $env:computername)

The Get-AllowedComputer function is used to create an array of permitted computer 
names and to check the value of the $computer variable to see whether it is present. If the 
value of the $computer variable is present in the array, the Get-AllowedComputer function 
returns True. If the value is missing from the array, the Get-AllowedComputer function returns 
False. The array of computer names is created by using the Get-Content cmdlet to read a text 
file that contains a listing of computer names. The text file, servers.txt, is a plain ASCII text file 
that has a list of computer names on individual lines, as shown in Figure 12-2.

FIGURE 12-2 A text file with computer names and addresses is an easy way to work with allowed 
 computers. 

A text file of computer names is easier to maintain than a hard-coded array that is embed-
ded into the script. In addition, the text file can be placed on a central share and used by 
many different scripts. The Get-AllowedComputer function is shown here:

Function Get-AllowedComputer([string]$computer) 
{ 
 $servers = Get-Content -path c:\fso\servers.txt  
 $servers -contains $computer 
} #end Get-AllowedComputer function

Because the Get-AllowedComputer function returns a Boolean value (true/false), it can 
be used directly in an If statement to determine whether the value that is supplied for the 
 $computer variable is on the permitted list. If the Get-AllowedComputer function returns True, 
the Get-WmiObject cmdlet is used to query for BIOS information from the target computer.

if(Get-AllowedComputer -computer $computer) 
 { 
   Get-WmiObject -class Win32_Bios -Computer $computer 
 }



 406 CHAPTER 12 Handling errors

However, if the value of the $computer variable is not found in the $servers array, a string 
stating that the computer is not an allowed computer is displayed.

Else 
 { 
  "$computer is not an allowed computer" 
 }

The complete Get-AllowedComputer.ps1 script is shown here.

Get-allowedComputer.ps1

Param([string]$computer = $env:computername) 

 

Function Get-AllowedComputer([string]$computer) 

{ 

 $servers = Get-Content -path c:\fso\servers.txt  

 $servers -contains $computer 

} #end Get-AllowedComputer function 

 

# *** Entry point to Script *** 

 

if(Get-AllowedComputer -computer $computer) 

 { 

   Get-WmiObject -class Win32_Bios -computer $computer 

 } 

Else 

 { 

  "$computer is not an allowed computer" 

 }

Using the −contains operator to test for properties
You are not limited to testing only for specified computer names in the Get-AllowedComputer 
function. To test for other properties, all you need to do is add additional information to the 
text file, as shown in Figure 12-3.

Only a few modifications are required to turn the Get-AllowedComputer.ps1 script into the 
Get-AllowedComputerAndProperty.ps1 script. The first modification is to add an additional 
command-line parameter to allow the user to choose which property to display.

Param([string]$computer = $env:computername,[string]$property="name")



 Limiting choices CHAPTER 12 407

FIGURE 12-3 A text file with server names and properties adds flexibility to the script.

Next, the signature to the Get-AllowedComputer function is changed to permit passing 
of the property name. Instead of directly returning the results of the −contains operator, the 
returned values are stored in variables. The Get-AllowedComputer function first checks to see 
whether the $servers array contains the computer name. It then checks to see whether the 
$servers array contains the property name. Each of the resulting values is stored in variables. 
The two variables are then added together, and the result is returned to the calling code. 
When two Boolean values are added together, only the true and true case is equal to True.

PS C:\> $true -and $false 
False 
PS C:\> $true -and $true 
True 
PS C:\> $false -and $false 
False 
PS C:\>

The revised Get-AllowedComputer function is shown here:

Function Get-AllowedComputer([string]$computer, [string]$property) 
{ 
 $servers = Get-Content -path c:\fso\serversAndProperties.txt  
 $s = $servers -contains $computer 
 $p = $servers -contains $property 
 Return $s -and $p 
} #end Get-AllowedComputer function

The If statement is used to determine whether both the computer value and the property 
value are contained in the allowed list of servers and properties. If the Get-AllowedComputer 
function returns true, the Get-WmiObject cmdlet is used to display the chosen property value 
from the selected computer.

if(Get-AllowedComputer -computer $computer -property $property) 
 { 
   Get-WmiObject -class Win32_Bios -Computer $computer |  
   Select-Object -property $property 
 }



 408 CHAPTER 12 Handling errors

If the computer value and the property value are not on the permitted list, the 
 Get-AllowedComputerAndProperty.ps1 script displays a message stating that there is a non-
permitted value.

Else 
 { 
  "Either $computer is not an allowed computer, 'r'nor $property is not an allowed 
property" 
 }

The complete Get-AllowedComputerAndProperty.ps1 script is shown here.

Get-allowedComputerandProperty.ps1

Param([string]$computer = $env:computername,[string]$property="name") 

 

Function Get-AllowedComputer([string]$computer, [string]$property) 

{ 

 $servers = Get-Content -path c:\fso\serversAndProperties.txt  

 $s = $servers -contains $computer 

 $p = $servers -contains $property 

 Return $s -and $p 

} #end Get-AllowedComputer function 

 

# *** Entry point to Script *** 

 

if(Get-AllowedComputer -computer $computer -property $property) 

 { 

   Get-WmiObject -class Win32_Bios -computer $computer |  

   Select-Object -property $property 

 } 

Else 

 { 

  "Either $computer is not an allowed computer, 'r'nor $property is not an allowed 

property" 

 }

Handling missing rights

Another source of potential errors is a script that requires elevated permissions to work cor-
rectly. Beginning with Windows Vista, the operating system makes it much easier to run and 
to allow the user to work without requiring constant access to administrative rights. As a 
result, more users and network administrators are no longer running their computers with a 
user account that is a member of the local Administrators group. The User Account Control 
(UAC) feature makes it easy to provide elevated rights for interactive programs, but Windows 
PowerShell and other scripting languages are not UAC aware and therefore do not prompt 



 Handling missing rights CHAPTER 12 409

when elevated rights are required to perform a specific activity. Thus, it is incumbent on the 
scriptwriter to take rights into account when writing scripts. However, the Get-Bios.ps1 script 
does not use a WMI class that requires elevated rights. As the script is currently written, any-
one who is a member of the local Users group—and that includes everyone who is logged on 
interactively—has permission to run the Get-Bios.ps1 script. Therefore, testing for rights and 
permissions prior to making an attempt to obtain information from the Win32_Bios WMI class 
is not required.

INSIDE TRACK

Gary Siepser, Senior Premier Field Engineer / PowerShell technology Lead
Microsoft Corporation

A fun project that a colleague and I have been working on is integrating the 
Kinect for Windows and Windows PowerShell. the project has really taught 

me a lot about using an aPI, coding more like a developer, and translating C# 
source code in Windows PowerShell script (not as fun as it sounds).

One topic I have had to learn more about is resource management—specifically, 
freeing up resources when you don’t need them anymore.  When using the Kinect 
aPI, after the Kinect sensor is started and the various data streams are enabled, 
I found that a constant 20% of my CPU was being used because of the software 
calculations being performed on the PC to interpret and prepare the Kinect camera 
data for use through the aPI. the USB bus that the Kinect was plugged into was also 
very busy with data, and when the Kinect was started, it was locked up and unavail-
able to other Kinect-enabled applications (like Windows PowerShell scripts in other 
windows). Often, in Windows PowerShell, I open a window for a long period of a 
time, occasionally running scripts, functions, and so on. I realized pretty quickly 
that I needed to ensure at all costs that the moment my script or function was done 
evaluating Kinect data, I needed to stop the Kinect sensor to free up and unlock 
those resources.

Stopping the Kinect and freeing up the resources was quite easy with the aPI, 
through a simple method call. At first I simply included the method call at the end 
of the code. the real problem arose during the development cycle. I was regularly 
encountering errors or terminating my scripts before completion (using either 
Ctrl+C or the Stop button in the ISE). Therefore, the clean-up code that stopped the 
Kinect would execute because I terminated the script early. this was a real problem, 
leaving resources locked and CPU time being burned for no reason.

I soon learned about an aspect of the Try/Catch/Finally error handling structure 
in Windows PowerShell that was the perfect solution for this situation. Windows 
PowerShell respects the Finally block and will ensure that it gets run even if the 
code is terminated while still in the Try or Catch block. Incorporating the Kinect 



 410 CHAPTER 12 Handling errors

Stop method into a Finally block turned out to be one of the best additions to my 
code. When the code was completed, and during real use, it would come in handy, 
but during development it was especially handy for repeated terminations and 
subsequent runs of the code.

While Try/Catch/Finally is a nice structure for handling terminating errors and is 
very commonly used by developers, I personally think that the nearly guaranteed 
execution of the Finally block is invaluable. after I converted my code over to using 
this structure, I saw that no matter how my code terminated, on its own or because 
of a manual break (like Ctrl+C), I saw the Kinect Stop method being executed, and 
my resources were successfully cleaned up every time.

attempting and failing
One way to handle missing rights is to attempt the action and then fail. This action gener-
ates an error. Windows PowerShell has two types of errors: terminating and non-terminating.  
Terminating errors, as the name implies, will stop a script dead in its tracks. Non-terminating 
errors will output to the screen and the script will continue. Terminating errors are generally 
more serious than non-terminating errors. Normally, you receive a terminating error when 
you try to use .NET class or a Component Object Model (COM) object from within Windows 
PowerShell, you try to use a command that doesn’t exist, or you do not provide all of the 
required parameters to a command. A good script handles the errors that it expects and 
reports unexpected errors to the user. Because any good scripting language must provide 
decent error handling, Windows PowerShell has several ways to approach the problem. 
The old way is the Trap statement, which can sometimes be problematic. The new way (for 
Windows PowerShell) is to use Try/Catch/Finally.

INSIDE TRACK

Trapping errors

James Brundage, CEO 
Start Automating

In Windows PowerShell 1.0, there was one and only one way to handle terminat-
ing errors: through the Trap statement. the Trap statement comes at the end of 

your script and lets you swallow all of the errors in the script (or all of the errors of a 



 Handling missing rights CHAPTER 12 411

specific type). Most Windows PowerShell 1.0 scripts that handle errors end up look-
ing something like the following code:

  Do-Something 

  ….   Do-SomethingElse 

  trap { 

   "Something Bad Happened" 

  }

Unfortunately, the Trap statement is a little strange. First and foremost, it is a 
concept that is unfamiliar to most scripters or developers. Second, Trap statements 
don’t actually allow you to easily trap errors within a few lines of code. therefore, 
if you write a Trap statement because you expect errors in your script and you call 
some other script that also hits errors, the Trap statement can end up swallowing 
both sets of errors and leave you mystified as to why your script doesn’t work.

People who are familiar with C# or JavaScript will probably be familiar with 
 Try / Catch/Finally. In Windows PowerShell 2.0, we introduced Try/Catch/Finally to 
address some of the pain points surrounding error handling in PowerShell 1.0.

A try block identifies a section of code that can handle errors. A try block will 
attempt to execute the script within it; if any terminating errors are encountered, 
the nearest catch block catches the errors. try and catch must be paired together 
(you can have one and only one catch for each try, and Windows PowerShell does 
not allow a try without a catch), but you can also add a finally block for good mea-
sure. A finally block will run whether you have errors or not, so it’s a great place to 
put any cleanup code.

the following is a complete example:

try { 

    throw "Houston, We Have a Problem" 

} 

catch { 

    Write-Error $_ 

    try { 

        Test-System 

    } 

    catch [Management.Automation.CommandNotFoundException] { 

        "Where's the $($_.TargetObject) command?" 

    } 

     

} 

finally { 

    "byebye" 

}



 412 CHAPTER 12 Handling errors

In this example, the first error (“Houston, We Have a Problem") is swallowed by the 
catch block and is written out with the Write-Error cmdlet. this turns my termi-
nating error into a non-terminating error so that my script can continue. Inside 
of that catch block is another try/catch block that runs a diagnostic command 
( Test-System). If Test-System writes out any errors, I want to see them. however, 
I want to ask the user where the command is located if and only if it’s not found, 
so I create a catch block that catches only CommandNotFoundExceptions (the type 
of exception I see when the command is missing). The finally block is run whether 
there is an error or not, so I always see a polite byebye whenever I run the script.

Quietly reinterpreting errors is one of the handiest things you can do with try/catch 
blocks. I personally like to be able to see all of the errors that I hit while running a 
script, but I also do not like users of my scripts to see red errors. (It’s bad for their 
ulcers.) Therefore, I often place something like the following in my script:

try { 

} 

catch { 

    Write-Debug ($_|Out-String) 

}

this try/catch block puts my error in the Debug stream (which is hidden by default 
but which I can turn on with $DebugPreference = “Continue”). the result is that my 
scripts almost never show an error to my user, but I obtain a view that shows me all 
of the errors in my script.

Checking for rights and exiting gracefully
The best way to handle insufficient rights is to check for the rights and then exit gracefully. 
What are some of the things that can go wrong with a simple script, such as the Get-Bios 
.ps1 script that was examined earlier in the chapter? Well, the Get-Bios.ps1 script can fail if 
the Windows PowerShell script execution policy is set to Restricted. When the script execu-
tion policy is set to Restricted, Windows PowerShell scripts will not run. The problem with 
a restricted execution policy is that, because Windows PowerShell scripts do not run, you 
cannot write code to detect the restricted script execution policy. Because the script execu-
tion policy is stored in the registry, you can write a VBScript script that will query and set the 
policy prior to launching the Windows PowerShell script, but that is not the best way to man-
age the problem. The best way to manage the script execution policy is to use Group Policy 
to set the policy to the appropriate level for your network. On a stand-alone computer, you 
can set the execution policy by opening Windows PowerShell as an administrator and using 



 Handling missing rights CHAPTER 12 413

the Set-ExecutionPolicy cmdlet. In most cases, the RemoteSigned setting is appropriate. You 
then see the following command:

PS C:\> Set-ExecutionPolicy remotesigned 
PS C:\>

The script execution policy is generally dealt with once, and then no more problems are 
associated with it. In addition, the error message that is associated with the script execution 
policy is relatively clear in that it tells you that script execution is disabled on the system. It 
also refers you to a help article that explains the various settings.

File C:\Documents and Settings\ed\Local Settings\Temp\tmp2A7.tmp.ps1 cannot be 
loaded because the execution of scripts is disabled on this system. Please see 
"get-help about_signing" for more details. 
At line:1 char:66 
+ C:\Documents' and' Settings\ed\Local' Settings\Temp\tmp2A7.tmp.ps1 <<<<

Using #Requires
In Windows PowerShell 4.0, the #Requires statement is expanded to permit additional pre-run 
checks. Keep in mind that a #Requires statement is not for use in functions, cmdlets, or snap-
ins, but can appear in any script. The rules for its use are as follows:

■■ The #Requires statement must be the first item on a line in a script.

■■ The #Requires statement can appear on any line number in the script.

■■ A script can contain more than one #Requires statement.

■■ If a script contains more than one #Requires statement, each statement must appear 
on its own line.

Table 12-1 enumerates the available parameters for the #Requires statement.

TABLE 12-1 Parameter values used by #Requires

Parameter Meaning and Example

Version The minimal version of Windows PowerShell
Example:
#Requires –Version 4.0

PSSnapin The name of a required snap-in.
Example:
#Requires –PSSnapin mysnapin

Modules Modules required by the script. 
Example:
#Requires –Modules ActiveDirectory

ShellID Name of a specifically required shell. 
Example:
#Requires –ShellID Microsoft.PowerShell

RunAsAdministrator Script can run only with admin rights.
Example:
#Requires -RunAsAdministrator



 414 CHAPTER 12 Handling errors

require administrator rights
In previous versions of Windows PowerShell, requiring Administrator rights for 
a script involved writing a special function, such as the Test-IsAdmin function in 
 Test-IsAdminFunction.ps1.

test-IsadminFunction.ps1 

Function Test-IsAdmin 

{ 

 <# 

    .Synopsis 

        Tests if the user is an administrator 

    .Description 

        Returns true if a user is an administrator, false if the user is not an 

administrator         

    .Example 

        Test-IsAdmin 

    #> 

 $identity = [Security.Principal.WindowsIdentity]::GetCurrent() 

 $principal = New-Object Security.Principal.WindowsPrincipal $identity 

 $principal.IsInRole([Security.Principal.WindowsBuiltinRole]::Administrator) 

} 

Use of the Test-IsAdmin function generally takes the form of loading the function into 
memory (via the script) and then using an if statement. Such an if statement appears here:

if(-not (Test-IsAdmin)) {"you must have admin rights to run the script"}

Windows PowerShell 4.0 simplifies this task greatly by providing the #Requires 
 – RunAsAdministrator statement and parameter. A good case for using this technique occurs 
when using a cmdlet from the Hyper-V module (use of which requires Administrator rights). 
When run without Administrator rights, the cmdlets do not return an error–they return noth-
ing. This leads to confusion and can even cause an inexperienced administrator to ruin a per-
fectly good script in a vain attempt to debug it. An example of using this technique appears 
in get-VM.ps1.

get-VM.ps1 

#Requires -Version 4.0 

#Requires -RunAsAdministrator 

#Requires -Modules Hyper-V 

 

Import-Module Hyper-V 

Get-VM 

When a script containing #Requires –RunAsAdministrator runs without Administrator 
rights, a detailed error appears. 



 Handling missing WMI providers CHAPTER 12 415

Requiring specific modules
Windows PowerShell 4.0 makes it easy to require specific modules prior to execution. In 
fact, specific versions of the modules can be specified. To require a specific module ver-
sion, use a hashtable with the ModuleName and the ModuleVersion as key elements. The 
RequireModuleVersion.ps1 script illustrates this technique.

requireModuleVersion.ps1 

#Requires -version 4.0 

#Requires -RunAsAdministrator 

#Requires -modules ScheduledTasks, @{ModuleName='StartScreen';ModuleVersion='1.0.0.0'} 

Import-Module StartScreen 

Get-StartApps 

Get-ScheduledTask 

Handling missing WMI providers

About the only thing that can actually go wrong with the Get-Bios.ps1 script is if the WMI 
provider that supplies the Win32_Bios WMI class information is corrupted or missing. To 
check for the existence of the appropriate WMI provider, you need to know the name of the 
provider for the WMI class. To check for the name, you can use the Windows Management 
Instrumentation Tester (WbemTest) that is included as part of the WMI installation. If WMI 
is installed on a computer, it has Wbemtest.exe. Because WbemTest resides in the system 
folders, you can launch it directly from within the Windows PowerShell console by typing the 
name of the executable.

PS C:\> wbemtest 
PS C:\>

When WbemTest appears, the first thing you need to do is connect to the appropriate 
WMI namespace by pressing the Connect button. In most cases, the appropriate namespace 
is the root\cimv2 namespace. Beginning in Windows Vista, root\cimv2 is the default WMI 
namespace for WbemTest. On earlier versions of Windows, the default WbemTest namespace 
is root\default. Change or accept the namespace as appropriate, and click the Connect button. 
The display changes to a series of buttons, many of which appear to have cryptic names and 
functionality. To obtain information about the provider for a WMI class, you need to open the 
class. Click the Open Class button, and type the name of the WMI class in the Get Class Name 
dialog box. You are looking for the provider name for the Win32_Bios WMI class so that is the 
name that is entered in the text box of the Get Class Name dialog box. When you click OK, the 
Object Editor For Win32_Bios WMI class appears, as shown in Figure 12-4. The first section of 
the Object Editor For Win32_Bios lists the qualifiers. Provider is one of the qualifiers. WbemTest 
tells you that the provider for Win32_Bios is CIMWin32.



 416 CHAPTER 12 Handling errors

FIGURE 12-4 The Windows Management Instrumentation Tester displays WMI class provider information.

Armed with the name of the WMI provider, you can use the Get-WmiObject cmdlet to 
determine whether the provider is installed on the computer. To do this, you can query for 
instances of the __provider WMI class. All WMI classes that begin with a double underscore 
are system classes. The __provider WMI class is the class from which all WMI providers are 
derived. By limiting the query to providers with the name of CIMWin32, you can determine 
whether the provider is installed on the system.

PS C:\> Get-WmiObject -Class __provider -filter "name = 'cimwin32'" 
__GENUS                       : 2 
__CLASS                       : __Win32Provider 
__SUPERCLASS                  : __Provider 
__DYNASTY                     : __SystemClass 
__RELPATH                     : __Win32Provider.Name="CIMWin32" 
__PROPERTY_COUNT              : 24 
__DERIVATION                  : {__Provider, __SystemClass} 
__SERVER                      : OFFICE 
__NAMESPACE                   : ROOT\cimv2 
__PATH                        : \\OFFICE\ROOT\cimv2:__Win32Provider.Name="CIMWin32" 
ClientLoadableCLSID           : 
CLSID                         : {d63a5850-8f16-11cf-9f47-00aa00bf345c} 
Concurrency                   : 
DefaultMachineName            : 
Enabled                       : 
HostingModel                  : NetworkServiceHost 
ImpersonationLevel            : 1 
InitializationReentrancy      : 0 
InitializationTimeoutInterval : 
InitializeAsAdminFirst        : 
Name                          : CIMWin32 
OperationTimeoutInterval      : 



 Handling missing WMI providers CHAPTER 12 417

PerLocaleInitialization       : False 
PerUserInitialization         : False 
Pure                          : True 
SecurityDescriptor            : 
SupportsExplicitShutdown      : 
SupportsExtendedStatus        : 
SupportsQuotas                : 
SupportsSendStatus            : 
SupportsShutdown              : 
SupportsThrottling            : 
UnloadTimeout                 : 
Version                       : 
 
PS C:\>

For the purposes of determining whether the provider exists, you do not need all of 
the information to be returned to the script. It is easier to treat the query as if it returned a 
Boolean value by using the If statement. If the provider exists, you can perform the query.

If(Get-WmiObject -Class __provider -filter "name = 'cimwin32'") 
 { 
  Get-WmiObject -class Win32_bios 
 }

If the CIMWin32 WMI provider does not exist, you display a message stating that the pro-
vider is missing.

Else 
 { 
  "Unable to query Win32_Bios because the provider is missing" 
 }

The completed CheckProviderThenQuery.ps1 script is shown here.

CheckProviderThenQuery.ps1

If(Get-WmiObject -Class __provider -filter "name = 'cimwin32'") 

 { 

  Get-WmiObject -class Win32_bios 

 } 

Else 

 { 

  "Unable to query Win32_Bios because the provider is missing" 

 } 

A better approach to find out whether a WMI class is available is to check for the exis-
tence of the provider. In the case of the Win32_Product WMI class, the class is supplied by the 
MSIProv WMI provider. In this section, we create the Get-WmiProvider function that can be 
used to detect the presence of any WMI provider that is installed on the system.

The Get-WmiProvider function contains one parameter, the name of the provider. Because 
the function uses the [cmdletbinding()] attribute when the Get-WmiProvider function is called 



 418 CHAPTER 12 Handling errors

with the −verbose switched parameter, detailed status information is displayed to the console. 
The −verbose information provides the user of the script with information that can be useful 
from a troubleshooting perspective.

After the function is declared, the first thing that you need to do is look for the WMI pro-
vider. To do this, the Get-WmiObject cmdlet is used to query for all instances of the __provider 
WMI system class. In most cases, they are not of much interest to IT pros, yet familiarity with 
them can often provide powerful tools to the scripter who takes the time to examine them. 
All WMI providers are derived from the __provider WMI class. This is similar to the way in 
which all WMI namespaces are derived from the __Namespace WMI class. The properties of 
the __provider class are shown in Table 12-2.

TABLE 12-2 Properties of the __provider WMI class

Property Name Property Type

ClientLoadableCLSID System.String 

CLSID    System.String 

Concurrency                   System.Int32 

DefaultMachineName            System.String

Enabled                       System.Boolean

HostingModel                  System.String 

ImpersonationLevel            System.Int32 

InitializationReentrancy      System.Int32

InitializationTimeoutInterval System.String 

InitializeAsAdminFirst        System.Boolean

Name                          System.String 

OperationTimeoutInterval      System.String 

PerLocaleInitialization       System.Boolean

PerUserInitialization         System.Boolean

Pure                          System.Boolean

SecurityDescriptor            System.String 

SupportsExplicitShutdown      System.Boolean

SupportsExtendedStatus        System.Boolean

SupportsQuotas                System.Boolean

SupportsSendStatus            System.Boolean

SupportsShutdown              System.Boolean



 Handling missing WMI providers CHAPTER 12 419

Property Name Property Type

SupportsThrottling            System.Boolean

UnloadTimeout                 System.String 

Version                       System.UInt32 

__CLASS                       System.String 

__DERIVATION                  System.String[]

__DYNASTY                     System.String

__GENUS                       System.Int32 

__NAMESPACE                   System.String

__PATH                        System.String

__PROPERTY_COUNT              System.Int32 

__RELPATH                     System.String

__SERVER                      System.String 

__SUPERCLASS                  System.String

The −filter parameter of the Get-WmiObject cmdlet is used to return the provider that is 
specified in the $providerName variable. If you do not know the name of the appropriate 
WMI provider, you need to search for it by using WbemTest. You can start this program by 
typing the name of the executable inside your Windows PowerShell console.

When the WbemTest appears, the first thing you need to do is connect to the appropriate 
WMI namespace by clicking the Connect button. In most cases, the appropriate namespace 
is the root\cimv2 namespace. Change or accept the namespace as appropriate, and click the 
Connect button. Click the Open Class button, and type the name of the WMI class in the 
Enter Target Class Name text box of the Get Class Name dialog box. You are looking for the 
provider name for the Win32_Product WMI class, and that is the name that is entered in the 
text box. When you click OK, the Object Editor For Win32_Product WMI class appears. The 
first section of the Object Editor For Win32_Product lists the qualifiers. Provider is one of the 
qualifiers. WbemTest tells you that the provider for Win32_Product is MSIProv.

You assign the name of the WMI provider to the $providerName variable.

$providerName = "MSIProv"

The resulting object is stored in the $provider variable.

 $provider =  Get-WmiObject -Class __provider -filter "name = '$providerName'"

If the provider is not found, there is no value in the $provider variable. Therefore, you can 
determine whether the $provider variable is null. If the $provider variable is not equal to null, 
the CLSID property of the provider is retrieved. The class ID of the WMI provider is stored in 
the CLSID property.



 420 CHAPTER 12 Handling errors

 If($provider -ne $null) 
   { 
    $clsID = $provider.CLSID

If the function is run with the −verbose parameter, the $verbosePreference variable is set 
to Continue. When the value of $verbosePreference is equal to Continue, the Write-Verbose 
cmdlet displays information to the console. However, if the value of the $verbosePreference 
variable is equal to SilentlyContinue, the Write-Verbose cmdlet does not emit anything. The 
[cmdletbinding()] attribute does this automatically and therefore makes it easy to implement 
tracing features in a function without creating extensive test conditions. When the function is 
called with the −verbose parameter, the class ID of the provider is displayed.

    Write-Verbose "$providerName WMI provider found. CLSID is $($CLSID)" 
   }

If the WMI provider is not found, the function returns false to the calling code.

 Else  
   { 
     Return $false 
   }

Next, the function checks the registry to ensure that the WMI provider is properly regis-
tered with the Distributed Component Object Model (DCOM). Once again, the Write-Verbose 
cmdlet is used to provide feedback on the status of the provider check.

   Write-Verbose "Checking for proper registry registration ..."

To search the registry for the WMI provider registration, the Windows PowerShell registry 
provider is used. By default, there is no Windows PowerShell drive for the HKEY_Classes_Root 
registry hive. However, you cannot take it for granted that someone has not created such a 
drive in their Windows PowerShell profile. To avoid a potential error that might arise when 
creating a Windows PowerShell drive for the HKEY_Classes_Root hive, the Test-Path cmdlet 
is used to check whether an HKCR drive exists. If the HKCR drive does exist, it will be used, 
and the Write-Verbose cmdlet is used to print a status message stating that the HKCR drive is 
found and that the search is commencing for the class ID of the WMI provider.

   If(Test-Path -path HKCR:) 
      { 
        Write-Verbose "HKCR: drive found. Testing for $clsID"

To detect whether the WMI provider is registered with DCOM, check whether the class ID 
of the WMI provider is present in the CLSID section of HKEY_Classes_Root. The best way to 
check for the presence of the registry key is to use the Test-Path cmdlet.

        Test-path -path (Join-Path -path HKCR:\CLSID -childpath $clsID)   
      }



 Handling missing WMI providers CHAPTER 12 421

However, if there is no HKCR drive on the computer, you can create one. You can search 
for the existence of a drive that is rooted in HKEY_Classes_Root and, if you find it, use the 
Windows PowerShell drive in your query. To discover whether there are any Windows 
PowerShell drives rooted in HKEY_Classes_Root, use the Get-PSDrive cmdlet.

Get-PSDrive | Where-Object { $_.root -match "classes" } |  
Select-Object name

To be honest, Get-PSDrive is more trouble than it is worth. There is nothing wrong with 
having multiple Windows PowerShell drives mapped to the same resource. Therefore, if there 
is no HKCR drive, the Write-Verbose cmdlet is used to print a message stating that the drive 
does not exist and will be created.

   Else 
     { 
      Write-Verbose "HKCR: drive not found. Creating same." 

To create a new Windows PowerShell drive, use the New-PSDrive cmdlet to specify the 
name and root location of the Windows PowerShell drive. Because this drive is going to be a 
registry drive, you can use the registry provider. When a Windows PowerShell drive is created, 
it displays feedback to the Windows PowerShell console.

PS C:\AutoDoc> New-PSDrive -Name HKCR -PSProvider registry -Root HKEYClasses_Root 
 
Name       Provider      Root                                   CurrentLocation 
----       --------      ----                                   --------------- 
HKCR       Registry      Hkey_Classes_Root

The feedback from creating the registry drive can be distracting. To remove the feedback, 
you can pipeline the results to the Out-Null cmdlet.

      New-PSDrive -Name HKCR -PSProvider registry -Root HKEY_Classes_Root | Out-Null

After the Windows PowerShell registry drive is created, it is time to look for the existence 
of the WMI provider class ID. But first, you can use the Write-Verbose cmdlet to provide feed-
back about this step of the operation.

      Write-Verbose "Testing for $clsID" 

The Test-Path cmdlet is used to check for the existence of the WMI provider class ID. To 
build the path to the registry key, the Join-Path cmdlet is used. The parent path is the HKCR 
registry drive CLSID hive, and the child path is the WMI provider class ID that is stored in the 
$clsID variable.

      Test-path -path (Join-Path -path HKCR:\CLSID -childpath $clsID)  

After the Test-Path cmdlet is used to check for the existence of the WMI provider class ID, 
the Write-Verbose cmdlet is used to display a message stating that the test is complete.

      Write-Verbose "Test complete."



 422 CHAPTER 12 Handling errors

It is a best practice to not make permanent modifications to the Windows PowerShell 
environment in a script. Therefore, you want to remove the Windows PowerShell drive if it 
was created in the script. The Write-Verbose cmdlet is employed to provide a status update, 
and the Remove-PSDrive cmdlet is used to remove the HKCR registry drive. To avoid cluttering 
the Windows PowerShell console, the result of removing the HKCR registry drive is pipelined 
to the Out-Null cmdlet.

      Write-Verbose "Removing HKCR: drive."  
      Remove-PSDrive -Name HKCR | Out-Null 
     }

The entry point to the script assigns a value to the $providerName variable.

$providerName = "MSIProv"

The Get-WmiProvider function is called, and it passes both the WMI provider name that is 
stored in the $providerName variable and the −verbose switched parameter. The If statement 
is used because the Get-WmiProvider function returns a Boolean value: true or false.

 if(Get-WmiProvider -providerName $providerName  -verbose ) 

If the return from the Get-WmiProvider function is true, the WMI class supported by the 
WMI provider is queried by using the Get-WMiObject cmdlet.

  {  
    Get-WmiObject -class win32_product 
  } 

If the WMI provider is not found, a message stating that the WMI provider is not found is 
displayed to the console.

else 
  { 
   "$providerName provider not found"  
  }

The complete Get-WmiProviderFunction.ps1 script is shown here.

Get-WmiProviderFunction.ps1

Function Get-WmiProvider 

{ 

 [cmdletbinding()] 

 Param ([string]$providerName) 

 $provider =  Get-WmiObject -Class __provider -filter "name = '$providerName'" 

 If($provider -ne $null) 

   { 

    $clsID = $provider.clsID 

    Write-Verbose "$providerName WMI provider found. CLSID is $($CLSID)" 

   } 

 Else  

   { 



 Incorrect data types CHAPTER 12 423

     Return $false 

   } 

   Write-Verbose "Checking for proper registry registration ..." 

   If(Test-Path -path HKCR:) 

      { 

        Write-Verbose "HKCR: drive found. Testing for $clsID" 

        Test-path -path (Join-Path -path HKCR:\CLSID -childpath $CLSID)   

      } 

   Else 

     { 

      Write-Verbose "HKCR: drive not found. Creating same."  

      New-PSDrive -Name HKCR -PSProvider registry -Root HKEY_Classes_Root | Out-Null 

      Write-Verbose "Testing for $clsID"  

      Test-path -path (Join-Path -path HKCR:\CLSID -childpath $CLSID)   

      Write-Verbose "Test complete." 

      Write-Verbose "Removing HKCR: drive."  

      Remove-PSDrive -Name HKCR | Out-Null 

     } 

} #end Get-WmiProvider function 

 

# *** Entry Point to Script *** 

$providerName = "msiprov" 

 

 if(Get-WmiProvider -providerName $providerName  -verbose )  

  {  

    Get-WmiObject -class win32_product  

  }  

else  

  {  

   "$providerName provider not found"  

  } 

Incorrect data types

There are two approaches to ensure that your users enter only allowed values for the 
script parameters. The first approach is to offer only a limited number of values. The 
 second approach allows the user to enter any value for the parameter. It is then deter-
mined whether that value is valid before it is passed along to the remainder of the script. 
In the Get-ValidWmiClassFunction.ps1 script, a function named Get-ValidWmiClass is 
used to determine whether the value that is supplied to the script is a legitimate WMI 
class name. In particular, the Get-ValidWmiClass function is used to determine whether 
the string that is passed via the −class parameter can be cast to a valid instance of the 
 System . Management . ManagementClass .NET Framework class. The purpose of using  



 424 CHAPTER 12 Handling errors

the [WMICLASS] type accelerator is to convert a string into an instance of the System 
.Management.ManagementClass class. As shown here, when you assign a string value to a 
variable, the variable becomes an instance of the System.String class. The GetType method is 
used to display information about the type of object that is contained in a variable.

PS C:\> $class = "win32_bio" 
PS C:\> $class.GetType() 
 
IsPublic IsSerial Name                                     BaseType 
-------- -------- ----                                     -------- 
True     True     String                                   System.Object

To convert the string to a WMI class, you can use the [WMICLASS] type accelerator. The 
string value must contain the name of a legitimate WMI class. If the WMI class you are trying 
to create on the computer does not exist, an error is generated.

PS C:\> $class = "win32_bio" 
PS C:\> [wmiclass]$class 
Cannot convert value "win32_bio" to type "System.Management.ManagementClass".  
Error: "Not found " 
At line:1 char:16 
+ [wmiclass]$class <<<<

The Get-ValidWmiClassFunction.ps1 script begins by creating two command-line param-
eters. The first is the −computer parameter that is used to allow the script to run on a local or 
remote computer. The second parameter is the −class parameter that is used to provide the 
name of the WMI class that will be queried by the script. The third parameter is used to allow 
the script to inspect other WMI namespaces. All three parameters are strings.

Param ( 
   [string]$computer = $env:computername,  
   [string]$class,  
   [string]$namespace = "root\cimv2" 
) #end param

The Get-ValidWmiClass function is used to determine whether the value supplied for the 
−class parameter is a valid WMI class on the particular computer. This is important because 
certain versions of the operating system contain unique WMI classes. For example, Windows 
XP contains a WMI class named NetDiagnostics that does not exist on any other version of 
Windows. Windows XP does not contain the Win32_Volume WMI class, but Windows Server 
2003 and newer versions do have this class. Therefore, checking for the existence of a WMI 
class on a remote computer is a good practice to ensure that the script will run in an expedi-
tious manner.

First, the Get-ValidWmiClass function retrieves the current value for the 
 $errorActionPreference variable. There are four possible values for this variable. The possible 
enumeration values are SilentlyContinue, Stop, Continue, and Inquire. The error-handling 
behavior of Windows PowerShell is governed by these enumeration values. If the value of 
$errorActionPreference is set to SilentlyContinue, any error that occurs will be skipped and 
the script will attempt to execute the next line of code in the script. The behavior is similar to 



 Incorrect data types CHAPTER 12 425

using the VBScript setting On Error Resume Next. Normally, you do not want to use this set-
ting because it can make troubleshooting scripts very difficult. It can also make the behavior 
of a script unpredictable and even lead to devastating consequences.

Consider the case in which you write a script that first creates a new directory on a remote 
server. Next, the script copies all of the files from a directory on your local computer to the 
remote server. Last, it deletes the directory and all of the files from the local computer. Now, 
you enable $errorActionPreference = SilentlyContinue and you run the script. The first com-
mand fails because the remote server is not available. The second command fails because 
it cannot copy the files, but the third command completes successfully—and you have 
just deleted all of the files you wanted to back up instead of actually backing up the files. 
Hopefully, you have a recent backup of your critical data. If you set $errorActionPreference to 
SilentlyContinue, you must handle errors that arise during the course of running the script.

In the Get-ValidWmiClass function, the old $errorActionPreference setting is retrieved and 
stored in the $oldErrorActionPreference variable. Next, the $errorActionPreference variable is 
set to SilentlyContinue because it is entirely possible that errors will be generated while in the 
process of checking for a valid WMI class name. Then the error stack is cleared of errors. The 
following three lines of code illustrate this process:

$oldErrorActionPreference = $errorActionPreference 
$errorActionPreference = "SilentlyContinue" 
$Error.Clear()

The value stored in the $class variable is used with the [WMICLASS] type accelerator to 
attempt to create a System.Management.ManagementClass object from the string. Because 
you need to run this script on a remote computer as well as on a local computer, the value 
in the $computer variable is used to provide a complete path to the potential management 
object. When concatenating the variables to make the path to the WMI class, a trailing colon 
causes problems with the $namespace variable. To work around this problem, a subexpression 
is used to force evaluation of the variable before attempting to concatenate the remainder of 
the string. The subexpression consists of a leading dollar sign and a pair of parentheses.

[WMICLASS]"\\$computer\$($namespace):$class" | out-null

To determine whether the conversion from string to ManagementClass is successful, the 
error record is checked. Because the error record was cleared earlier, any error that appears 
indicates that the command failed. If an error exists, the Get-ValidWmiClass function returns 
false to the calling code. If no error exists, the Get-ValidWmiClass function returns true.

If($error.count) { Return $false } Else { Return $true }

The last thing to do in the Get-ValidWmiClass function is to clean up the error environment. 
First, the error record is cleared, and then the value of the $errorActionPreference variable is 
set back to the original value.

$Error.Clear() 
$errorActionPreference =  $oldErrorActionPreference



 426 CHAPTER 12 Handling errors

The next function in the Get-ValidWmiClassFunction.ps1 script is the Get-WmiInformation 
function. This function accepts the values from the $computer, $class, and $namespace 
variables and passes them to the Get-WmiObject cmdlet. The resulting ManagementObject is 
pipelined to the Format-List cmdlet, and all properties that begin with the letters a through z 
are displayed.

Function Get-WmiInformation ([string]$computer, [string]$class, [string]$namespace) 
{ 
  Get-WmiObject -class $class -computername $computer -namespace $namespace| 
  Format-List -property [a-z]* 
} # end Get-WmiInformation function

The entry point to the script calls the Get-ValidWmiClass function; if it returns true, the 
script next calls the Get-WmiInformation function. However, if the Get-ValidWmiClass function 
returns false, a message is displayed that details the class name, namespace, and computer 
name. This information can be used for troubleshooting any difficulty in obtaining the WMI 
information.

If(Get-ValidWmiClass -computer $computer -class $class -namespace $namespace)  
  { 
    Get-WmiInformation -computer $computer -class $class -namespace $namespace 
  } 
Else 
 { 
   "$class is not a valid wmi class in the $namespace namespace on $computer"  
 }

The complete Get-ValidWmiClassFunction.ps1 script is shown here.

Get-ValidWmiClassFunction.ps1

Param ( 

   [string]$computer = $env:computername,  

   [string]$class,  

   [string]$namespace = "root\cimv2" 

) #end param 

 

Function Get-ValidWmiClass([string]$computer, [string]$class, [string]$namespace) 

{ 

 $oldErrorActionPreference = $errorActionPreference 

 $errorActionPreference = "SilentlyContinue" 

 $Error.Clear() 

 [wmiclass]"\\$computer\$($namespace):$class" | out-null 

 If($error.count) { Return $false } Else { Return $true } 

 $Error.Clear() 

 $errorActionPreference =  $oldErrorActionPreference 

} # end Get-ValidWmiClass function 

 

Function Get-WmiInformation ([string]$computer, [string]$class, [string]$namespace) 

{ 



 Incorrect data types CHAPTER 12 427

  Get-WmiObject -class $class -computername $computer -namespace $namespace| 

  Format-List -property [a-z]* 

} # end Get-WmiInformation function 

 

# *** Entry point to script *** 

 

If(Get-ValidWmiClass -computer $computer -class $class -namespace $namespace)  

  { 

    Get-WmiInformation -computer $computer -class $class -namespace $namespace 

  } 

Else 

 { 

   "$class is not a valid wmi class in the $namespace namespace on $computer"  

 }

NOTES FROM THE FIELD

Learning to use the Windows PowerShell error-handling 
 mechanisms

Bill Stewart, Network administrator
Moderator for Official Scripting Guys Forum

I have written many Windows Script Host (WSH) scripts using VBScript over the 
years, and error handling is one of the weakest features of VBScript. For example, 

if a line of VBScript code throws an error, it always terminates the script unless 
you use the On Error Resume Next statement to disable the default error handler. 
however, the On Error Resume Next statement can have unforeseen consequences 
because it causes the VBScript interpreter to skip all subsequent lines containing 
errors. I cannot count the number of times I have seen questions about VBScript 
problems in online forums because the script’s author put the On Error Resume 
Next statement at the top of the script without understanding how the VBScript 
error handler works.

In contrast, the Windows PowerShell error-handling mechanisms are much more 
flexible and powerful than those of VBScript. Because Windows PowerShell dis-
tinguishes between terminating and non-terminating errors, handling errors in 
Windows PowerShell code can be more complex than in VBScript. however, after I 
understood the difference between terminating and non-terminating errors, it was 
easier to write error-handling code in Windows PowerShell scripts.



 428 CHAPTER 12 Handling errors

First, I usually handle non-terminating errors by setting the $errorActionPreference 
variable (or the –ErrorAction parameter of a cmdlet) to SilentlyContinue and then 
test the $? variable.

get-item "C:\FileDoesNotExist.txt" -erroraction SilentlyContinue 

if (-not $?) { 

  write-host ("Exception: " + $Error[0].Exception.GetType().FullName) 

  write-host $Error[0].Exception.Message 

}

Second, I handle terminating errors using the Windows PowerShell Try and Catch 
statements.

try { 

  $searcher = [WMISearcher] "select * from Win32_NonExistentClass" 

  $searcher.Get() 

} 

catch [System.Management.Automation.RuntimeException] { 

  write-host ("Exception: " + $_.Exception.GetType().FullName) 

  write-host $_.Exception.Message 

}

Windows PowerShell 1.0 provided only the Trap statement to catch terminating 
errors, but the Try and Catch statements are clearer and easier to use.

One thing that initially confused me is that catch blocks handle only terminating 
errors. that is, you cannot use a catch block to handle non-terminating errors unless 
the $errorActionPreference variable (or the –ErrorAction parameter of a cmdlet) is 
set to Stop.

try { 

  get-item "C:\FileDoesNotExist.txt" -ErrorAction Stop 

} 

catch { 

  write-host ("Exception: " + $_.Exception.GetType().FullName) 

  write-host $_.Exception.Message 

}

If you omit the –ErrorAction parameter from this example, the Get-Item cmdlet 
throws a non-terminating error and the catch block is ignored.



 Out of bounds errors CHAPTER 12 429

however, there is one caveat to handling non-terminating errors using Try/Catch. 
If you set $errorActionPreference to Stop and handle the error in a catch block, the 
exception object’s message contains the following introductory text: “Command 
execution stopped because the preference variable “errorActionPreference” or com-
mon parameter is set to Stop.” If you don’t mind this introductory text in the excep-
tion message (for example, if you’re not writing the exception message anywhere), 
this method works fine. Yet because I usually output the exception message, I prefer 
to set $errorActionPreference to SilentlyContinue and test the $? variable instead.

Out of bounds errors

When receiving input from a user, an allowed value is limited to a specified range of values. 
If the allowable range is small, it might be best to present the user with a prompt that allows 
selection from a few choices, as shown in the “Limiting choices” section earlier in this chapter. 
However, when the allowable range of values is large, limiting the choices through a menu-
type system is not practical. This is where bounds checking comes into play.

Using a boundary checking function
One technique used to perform boundary checking is to use a function that determines 
whether the supplied value is permissible. One way to create a boundary checking function 
is to have the script create a hash table of permissible values. You can then use the –contains 
method to determine whether the value supplied from the command line is permissible. If 
the value is present in the hash table, the –contains method returns true. If the value is not 
present, it returns false. The Check-AllowedValue function is used to gather a hash table of 
volumes that reside on the target computer. This hash table is then used to verify that the vol-
ume requested from the –drive command-line parameter is actually present on the computer. 
The Check-AllowedValue function returns a Boolean true/false value to the calling code in the 
main body of the script. The complete Check-AllowedValue function is shown here:

Function Check-AllowedValue($drive, $computerName) 
{ 
 Get-WmiObject -class Win32_Volume -computername $computerName|  
 ForEach-Object { $drives += @{ $_.DriveLetter = $_.DriveLetter } } 
 $drives.contains($drive) 
} #end function Check-AllowedValue

Because the Check-AllowedValue function returns a Boolean value, an If statement is used 
to determine whether the value supplied to the –drive parameter is permissible. If the drive 
letter is found in the $drives hash table that is created in the Check-AllowedValue function, 



 430 CHAPTER 12 Handling errors

the Get-DiskInformation function is called. If the –drive parameter value is not found in the 
hash table, a warning message is displayed to the Windows PowerShell console, and the script 
exits. The complete GetDrivesCheckAllowedValue.ps1 script is shown here.

GetDrivesCheckallowedValue.ps1

Param( 

   [Parameter(Mandatory=$true)] 

   [string]$drive, 

   [string]$computerName = $env:computerName 

) #end param 

 

Function Check-AllowedValue($drive, $computerName) 

{ 

 Get-WmiObject -class Win32_Volume -computername $computerName|  

 ForEach-Object { $drives += $_.DriveLetter } 

 $drives.contains($drive) 

} #end function Check-AllowedValue 

 

Function Get-DiskInformation($computerName,$drive) 

{ 

 Get-WmiObject -class Win32_volume -computername $computername -filter "DriveLetter = 

'$drive'" 

} #end function Get-DiskInformation 

# *** Entry Point To Script *** 

 

if(Check-AllowedValue -drive $drive -computername $computerName) 

  { 

   Get-DiskInformation -computername $computerName -drive $drive 

  } 

else 

 { 

  Write-Host -foregroundcolor yellow "$drive is not an allowed value:" 

 }

Placing limits on the parameter
In Windows PowerShell 2.0 and newer versions, you can place limits directly on the parameter 
in the Param section of the script. This technique works well when you are working with a lim-
ited set of allowable values. The ValidateRange parameter attribute creates a numeric range 
of allowable values, but it can also create a range of letters. Using this technique, you can 
greatly simplify the GetDrivesCheckAllowedValue.ps1 script by creating an allowable range of 
drive letters. The Param statement is shown here:



 Additional resources CHAPTER 12 431

Param( 
   [Parameter(Mandatory=$true)] 
   [ValidateRange("c","f")] 
   [string]$drive, 
   [string]$computerName = $env:computerName 
) #end param

Because you can control the permissible drive letters from the command line, you 
increase the simplicity and readability of the script by not having the requirement to create 
a separate function to validate the allowed values. One additional change is required in the 
GetDrivesValidRange.ps1 script, and that is to concatenate a colon at the end of the drive let-
ter. In the GetDrivesCheckAllowedValue.ps1 script, you could include the drive letter and the 
colon from the command line; however, this technique does not work with the ValidateRange 
attribute. The trick to concatenating the colon to the drive letter is that it needs to be 
escaped.

-filter "DriveLetter = '$drive':'"

The complete GetDrivesValidRange.ps1 script is shown here.

GetDrivesValidrange.ps1

Param( 

   [Parameter(Mandatory=$true)] 

   [ValidateRange("c","f")] 

   [string]$drive, 

   [string]$computerName = $env:computerName 

) #end param 

 

Function Get-DiskInformation($computerName,$drive) 

{ 

 Get-WmiObject -class Win32_volume -computername $computername ' 

 -filter "DriveLetter = '$drive':'" 

} #end function Get-DiskInformation 

# *** Entry Point To Script *** 

 

Get-DiskInformation -computername $computerName -drive $drive

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous examples of Windows PowerShell scripts that perform error handling. 

■■ All scripts from this chapter are available via the TechNet Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40 
-Best-d9e16039.





   433

C H A P T E R  1 3

testing scripts
■■ Using basic syntax checking techniques

■■ Conducting performance testing of scripts

■■ Using standard parameters 

■■ Using Start-Transcript to produce a log

■■ Advanced script testing

■■ Additional resources

If you take the time to write a script, you should take a few additional minutes to test the 
script. How do you know what to test in the script? For many IT professionals, testing a 

script is nothing more than running the script and looking for errors. If the script runs with-
out errors, the script is considered to be a good script. As you will learn in this chapter, there 
is more to testing a script than determining whether it runs without errors. When testing 
your scripts, it is a best practice to check the basic syntax of the script. You should also mea-
sure the performance of the script to ensure that the script will meet the demands of your 
specific environment. If a script accepts command-line parameters, you should also test the 
script to see how it handles various types of input.

Using basic syntax checking techniques

Basic syntax checking can be done by running the script and looking for errors. If you have 
several scripts to check, it makes sense to write a script that will perform basic syntax check-
ing for you. Test-ScriptHarness.ps1 searches a folder for all .ps1 scripts, executes each script 
while checking for errors, and records the length of time it takes for each script to run. The 
Test-ScriptHarness.ps1 script writes the results to a text file and then displays the report.

First, the Test-ScriptHarness.ps1 script determines whether the script is running inside a 
virtual machine. A script that is going to execute a large number of Windows PowerShell 
scripts can potentially cause a significant amount of damage to your workstation, depend-
ing on the actions that the scripts are performing. For example, if one of the scripts kicks off 
an automated installation of Windows 8, you can potentially wipe out all of your data and 
end up with a fresh installation of Windows 8. If you run the script inside a virtual machine 
on Hyper-V with undo disks enabled, you are minimizing the potential disruption that the 
scripts can cause.



 434 CHAPTER 13 Testing scripts

Because the Win32_ComputerSystem Windows Management Instrumentation (WMI) class 
returns a single instance, you can directly access the properties of the class. This means that 
you do not need to work through a collection of instances of the class to retrieve the model 
property value. On Hyper-V, the model is reported as “virtual machine.” If the model is not 
reported as “virtual machine,” the script displays a prompt asking whether you want to run 
the script. This prompt is created by using the Read-Host cmdlet. If you type n in reply to the 
prompt, the script will exit. Any other response to the Read-Host prompt permits the script 
to run.

if((Get-WmiObject Win32_ComputerSystem).model -ne "virtual machine") 
  { 
    $response = Read-Host -prompt "This script is best run in a VM.  
    Do you wish to continue? <y / n>" 
    if ($response -eq "n") { exit } 
  }

The path to search for Windows PowerShell scripts is stored in the $path variable. 
Depending on how you plan to run the Test-ScriptHarness.ps1 script, you might want to 
change the variable to a command-line parameter.

$path = "C:\bp"

The GetTempFileName static method from the System.Io.Path Microsoft .NET Framework 
class is used to create a temporary file name in the Users temporary directory. The path to 
this temporary file name is stored in the $report directory. An example of a temporary file 
name is shown here:

C:\Users\administrator.NWTRADERS.000\AppData\Local\Temp\tmpC484.tmp

Because the file name is randomly generated each time the GetTempFileName method is 
called, it is stored in the $report variable for use later in the script.

$report = [io.path]::GetTempFileName()

The Get-ChildItem cmdlet shown here is used to produce a listing of all .ps1 files in the 
folder referenced by the $path variable. The –recurse parameter is required to permit the 
Get-ChildItem cmdlet to retrieve all .ps1 files in the folder. The results from the Get-ChildItem 
cmdlet are pipelined to the ForEach-Object cmdlet.

Get-ChildItem -Path $path -Include *.ps1 -Recurse |

The ForEach-Object cmdlet uses the −Begin parameter to perform an action once for 
all items that enter the pipeline. In this example, the starting time of the script processing 
is stored in the $stime variable. (The $stime variable is used instead of $startTime because 
$startTime will be used later.) The value of the $errorActionPreference automatic variable is 
set to SilentlyContinue, indicating that errors are not to be displayed and the script should 
continue processing when an error is encountered. A status message is written to the $report 
file that indicates the beginning of script testing and the time it commenced.

ForEach-Object -Begin ' 
  {  



 Using basic syntax checking techniques CHAPTER 13 435

   $stime = Get-Date 
   $ErrorActionPreference = "SilentlyContinue"  
   "Testing ps1 scripts in $path $stime" |  
     Out-File -append -FilePath $report

The −Process parameter occurs once for each object that comes through the pipeline. The 
first thing that is done inside the Process block is to clear all errors from the error stack to 
ensure that any errors that do occur are specific to the particular script that is being tested. 
A new time is written to the $startTime variable, and this time stamp will be used to calculate 
how long it takes the specific script to run. An entry is written to the report that indicates the 
name of the script and the starting time from the $startTime variable. The name of the script 
is obtained from the $_ automatic variable, which refers to the current object on the pipeline. 
All of the output from this section is then pipelined to the Out-File cmdlet with the −append 
parameter, to tell the script to add to the $report file instead of overwriting the file.

  } -Process ' 
  { 
   $error.Clear()  
   $startTime = Get-Date 
   "  Begin Testing $_ at $startTime" |  
     Out-File -append -FilePath $report

It is now time to run the script that is on the pipeline. To execute the script, you use 
the Invoke-Expression cmdlet with the −command parameter and provide it with the 
$_  automatic variable.

   Invoke-Expression -Command $_ 

When the script completes running, you should retrieve the time that the script com-
pleted. The end time of the script is then pipelined to the Out-File cmdlet with the −append 
parameter.

   $endTime = Get-Date 
   "  End testing $_ at $endTime." |  
     Out-File -append -FilePath $report

To continue with the report, the number of errors on the error stack is obtained and writ-
ten to the $report file. Because the $error automatic variable contains an object, a subexpres-
sion is used (a dollar sign and a set of parentheses surround the $error variable) to force the 
evaluation of the count property from the $error object. This value is then sent down the 
pipeline to the Out-File cmdlet.

   "    Script generated $($error.Count) errors" |  
     Out-File -append -FilePath $report

The DateTime object that is stored in the $startTime variable is subtracted from the 
DateTime object that is stored in the $endTime variable. Once again, a subexpression is used 
to force the evaluation of this operation. If you do not use a subexpression inside the expand-
ing string double quotation marks, you need to use concatenation to combine the string 
and the DateTime objects. The time that is created by subtracting the starting time from the 



 436 CHAPTER 13 Testing scripts

ending time is pipelined to the Out-File cmdlet for inclusion in the report. When this is done, 
the process block of the ForEach-Object cmdlet is completed.

   "    Elasped time: $($endTime - $startTime)" | 
     Out-File -append -FilePath $report 
  } -end '

After the last script has run, the ending time is stored in the $etime variable. The value of 
the $errorActionPreference variable is set back to the default value of Continue, and the end-
ing time is written to the report.

  {  
   $etime = Get-Date 
   $ErrorActionPreference = "Continue" 
   "Completed testing all scripts in $path $etime" |  
     Out-File -append -FilePath $report

Last, you must record the total running time for all script testing. To do this, the start time 
recorded in the $stime variable is subtracted from the time stored in the $etime variable. A 
subexpression is used to force the evaluation of the total elapsed time. The total time is pipe-
lined to the Out-File cmdlet and the entire report is displayed in Notepad.

   "Testing took $($etime - $stime)" |  
     Out-File -append -FilePath $report 
  } 
  Notepad $report

The complete Test-ScriptHarness.ps1 script is shown here.

test-Scriptharness.ps1

if((Get-WmiObject win32_computersystem).model -ne "virtual machine") 

  { 

    $response = Read-Host -prompt "This script is best run in a VM.  

    Do you wish to continue? <y / n>" 

    if ($response -eq "n") { exit } 

  } 

$path = "C:\ScriptFolder" 

$report = [io.path]::GetTempFileName() 

Get-ChildItem -Path $path -Include *.ps1 -Recurse | 

ForEach-Object -Begin ' 

  {  

   $stime = Get-Date 

   $ErrorActionPreference = "SilentlyContinue"  

   "Testing ps1 scripts in $path $stime" |  

     Out-File -append -FilePath $report 

  } -Process ' 

  { 

   $error.Clear()  

   $startTime = Get-Date 



 Using basic syntax checking techniques CHAPTER 13 437

   "  Begin Testing $_ at $startTime" |  

     Out-File -append -FilePath $report 

   Invoke-Expression -Command $_  

   $endTime = Get-Date 

   "  End testing $_ at $endTime." |  

     Out-File -append -FilePath $report 

   "    Script generated $($error.Count) errors" |  

     Out-File -append -FilePath $report 

   "    Elasped time: $($endTime - $startTime)" | 

     Out-File -append -FilePath $report 

  } -end ' 

  {  

   $etime = Get-Date 

   $ErrorActionPreference = "Continue" 

   "Completed testing all scripts in $path $etime" |  

     Out-File -append -FilePath $report 

   "Testing took $($etime - $stime)" |  

     Out-File -append -FilePath $report 

  } 

   

  Notepad $report

Figure 13-1 shows the report that is produced.

FIGURE 13-1 Log produced by the Test-ScriptHarness.ps1 script.



 438 CHAPTER 13 Testing scripts

Looking for errors
A systematic script-testing methodology is probably not going to directly save time, and it 
more than likely will add time during the prerelease phase of your script. However, because 
you will experience fewer unexplained errors as a result of poorly written scripts, you will 
likely save time over the lifetime of the script.

One of the simplest ways to test a script is to run the script. However, before you run the 
script, you should examine it for obvious errors and clues to its functionality. Pay attention to 
each section of the script. Individual sections are listed here, with details about the types of 
items you should examine. You should make these checks prior to running the script.

In the Param section, focus on the following things:

■■ The command-line parameters begin with the param keyword.

■■ Each command-line parameter is separated by a comma.

■■ The last parameter is not followed by a comma.

■■ The parentheses should open and close.

■■ Make sure that the Param statement is the first noncommented line in the script.

■■ Look for mandatory parameters and default values of parameters.

A correctly formed Param statement is shown here:

Param( 
   [string]$computer=$env:computerName, 
   [switch]$disk, 
   [switch]$processor, 
   [switch]$memory, 
   [switch]$network, 
   [switch]$video, 
   [switch]$all 
) #end param

In the Function section, there are many different items on which to focus, including the 
following:

■■ The function begins by using the function keyword followed by the name of the 
function.

■■ The function name should follow the Verb-Noun pattern, which follows the same nam-
ing format of Windows PowerShell cmdlets.

■■ Input parameters to the function are placed inside a set of parentheses.

■■ Each function parameter is separated by a comma. The last parameter is not followed 
by a comma.

■■ Each opening curly bracket must have a corresponding closing curly bracket.

■■ How are the functions called from within the script? If a function is not used in the 
script, it should not be stored in the script.



 Using basic syntax checking techniques CHAPTER 13 439

■■ Pay particular attention to the function parameters. What types of parameters do the 
functions require?

A correctly formed function section is shown here:

Function Get-Disk($computer) 
{ 
 Get-WmiObject -class Win32_LogicalDisk -computername $computer 
} #end Get-Disk

You are now at the entry point to the script. The entry point of the script is the first code 
that is executed when the script runs (following the Param statement). This code is extremely 
important because it governs what the script will actually do. Consider the following 
questions:

■■ What does the entry point code actually do?

■■ What variables are initialized? Are the variables released at the end of the script?

■■ What constants are declared? In what scope are the constants created?

■■ What objects are created? What methods and properties are exposed by the new 
objects?

■■ What are the default actions? What happens when the script is run without using any 
command-line parameters?

■■ Does the script expose any help?

■■ Does the help provide any examples of using the script?

■■ What type of output does the script produce? Does it output to the screen, a text file, a 
database, email, or some other location?

■■ Is the output location from the script accessible to the workstation that runs the script?

INSIDE TRACK

Testing with Windows PowerShell

James Brundage and Ibrahim abdul rahim, Software Development Engineers
Microsoft Corporation

The key point to remember about testing software in Windows PowerShell is that 
it is the same general task as automating the operating system with Windows 

PowerShell. to test software, you must get the operating system into a good work-
ing state. (For example, you might launch programs or change registry keys.) You 
can then automate an action instead of doing it manually, and you can verify the 
result by looking at what the action does to the operating system.

Because automated software testing and systems automation use so many of the 
same tools, the first thing to keep in mind as a tester is to leverage the examples 



 440 CHAPTER 13 Testing scripts

that you find from scripters or C# developers. Windows PowerShell can easily work 
with all of the objects from C# (using the New-Object cmdlet) and VBScript (using 
the New-Object −ComObject parameter).

another point to keep in mind when considering testing with Windows PowerShell 
is the need for a framework. Usually, software tests are automated within a test-
ing framework. the testing framework runs a chunk of code with some parameters 
and writes the results to one or more logs. When you write a Windows PowerShell 
function, you also have a chunk of code with parameters and, within that code, a 
function that you can write to several logs (Output, Error, Verbose, Debug, Warning, 
and Progress Logs or the Event Log). Because Windows PowerShell already con-
tains everything you need for a good framework, including an Integrated Scripting 
Environment (ISE), I tend to use PowerShell as my framework rather than another 
testing framework.

The final point to keep in mind when testing in Windows PowerShell is the impor-
tance of interactivity. the key to testing in Windows PowerShell is to interact with 
Application Programming Interfaces (APIs), webpages, and user interfaces by trying 
them in short scripts and then turning those short scripts into common librar-
ies and automated tests. I recommend using the command pane of the Windows 
PowerShell ISE to adjust your interaction and then copy working commands into the 
scripting pane to create tests.

running the script
After you examine the script in sufficient detail, it is time to run the script. Before running the 
script for the first time, consider the possible impact of running the script on  your computer. 
(The best place to test new scripts is in a virtual machine with undo disks enabled.) Consider 
the following questions:

■■ Do you have any unsaved work?

■■ Have you closed all unnecessary programs?

■■ Is the script that you are working on saved?

■■ Is the script that you are working on backed up to an external drive? (If the script com-
pletely wipes out your computer, you will have a record of what the script actually did 
to your computer.)

■■ Do you have a previously working version of the script? (If the changes to the script are 
radical, you might have trouble backing out the changes in case of a disaster.)

■■ Do you have a recent backup of your workstation?

When you run the Get-ComputerWmiInformation.ps1 script, you will notice that there is 
no output and no feedback from the script: no errors, no output, no feedback, and no help. 



 Using basic syntax checking techniques CHAPTER 13 441

You will need to determine how the script runs by examining the command-line parameters 
and the entry point to the script. Nearly all of the command-line parameters are switched 
parameters and have names such as −disk, −processor, −memory, and one named −all. From 
this bit of information, you might surmise that the script retrieves information about com-
puter hardware. From the name of the script, Get-ComputerWmiInformation.ps1, you might 
determine that the script uses WMI to obtain information.

The entry point to the script calls the Get-CommandLineOptions function. An examination 
of the Get-CommandLineOptions function reveals that it tests for each of the command-line 
parameters and calls the appropriate function. Because there is no default behavior, the 
script ends without notice when it is run without any command-line parameters. The Get-
CommandLineOptions function is shown here:

Function Get-CommandLineOptions 
{ 
   
if($all)  
  { 
    Get-Disk($computer) 
    Get-Processor($computer) 
    Get-Memory($computer) 
    Get-Network($computer) 
    Get-Video($computer) 
     exit 
  } #end all 
 
if($disk)  
  { 
    Get-Disk($computer) 
  } #end disk 
 
if($processor)  
  { 
    Get-Processor($computer) 
  } #end processor 
 
if($memory)  
  { 
    Get-Memory($computer) 
  } #end memory 
 
if($network)  
  { 
    Get-Network($computer) 
  } #end network 
 
if($video)  
  { 
    Get-Video($computer) 
  } #end video 
} #end function Get-CommandLineOptions



 442 CHAPTER 13 Testing scripts

Multiple test paths

To properly test the Get-ComputerWmiInformation.ps1 script, the 
command-line parameters should be tested individually and together. 

In addition, the script should be run remotely and locally against a variety 
of operating systems. You might also consider testing it on both Windows 
PowerShell 4.0 and Windows PowerShell 3.0. If you find that a script runs only 
on Windows PowerShell 3.0, it is a best practice to include the #requires –ver-
sion 3.0 tag in your script. This is the only command that is permitted to go 
above the Param statement. However, because it begins with the pound (#) 
sign, it conforms to the “first noncommented line” rule that was stated earlier. 

Documenting what you did
Make sure that you document how the script was tested. The version of the operating system, 
service pack level, and installed hotfixes all impact the way a script will run. Document all 
software that is installed on the computer, including management clients (such as Microsoft 
System Center Operations Manager Management Packs). If you run the script from within a 
script editor or directly from the command line of the Windows PowerShell console, it should 
be noted. If you are running on a 64-bit version of the operating system, you should test the 
script in both 32-bit and 64-bit Windows PowerShell. The script should be run elevated with 
Administrator rights and with normal user rights.

The Get-ComputerWmiInformation.ps1 script is shown here.

Get-ComputerWmiInformation.ps1

Param( 

   [string]$computer=$env:computerName, 

   [switch]$disk, 

   [switch]$processor, 

   [switch]$memory, 

   [switch]$network, 

   [switch]$video, 

   [switch]$all 

) #end param 

 

Function Get-Disk($computer) 

{ 

 Get-WmiObject -class Win32_LogicalDisk -computername $computer 

} #end Get-Disk 

 

Function Get-Processor($computer) 



 Using basic syntax checking techniques CHAPTER 13 443

{ 

 Get-WmiObject -class Win32_Processor -computername $computer 

} #end Get-Processor 

 

Function Get-Memory($computer) 

{ 

 Get-WmiObject -class Win32_PhysicalMemory -computername $computer 

} #end Get-Processor 

 

Function Get-Network($computer) 

{ 

 Get-WmiObject -class Win32_NetworkAdapter -computername $computer 

} #end Get-Processor 

 

Function Get-Video($computer) 

{ 

 Get-WmiObject -class Win32_VideoController -computername $computer 

} #end Get-Processor 

 

Function Get-CommandLineOptions 

{ 

   

if($all)  

  { 

    Get-Disk($computer) 

    Get-Processor($computer) 

    Get-Memory($computer) 

    Get-Network($computer) 

    Get-Video($computer) 

     exit 

  } #end all 

 

if($disk)  

  { 

    Get-Disk($computer) 

  } #end disk 

 

if($processor)  

  { 

    Get-Processor($computer) 

  } #end processor 

 

if($memory)  

  { 

    Get-Memory($computer) 



 444 CHAPTER 13 Testing scripts

  } #end memory 

 

if($network)  

  { 

    Get-Network($computer) 

  } #end network 

 

if($video)  

  { 

    Get-Video($computer) 

  } #end video 

} #end function Get-CommandLineOptions 

 

# *** Entry Point to Script *** 

 

Get-CommandLineOptions

Conducting performance testing of scripts

A common mistake that some people make is to use Windows PowerShell as if it were 
another scripting language. When you use certain constructions, such as the ones that read 
the contents of a file and store the results in a variable, and then iterate through the contents 
of the file by using a Foreach statement, the performance will generally be substandard. This 
type of store and forward construction is shown here:

$a = Get-Content –Path c:\fso\myfile.txt 
Foreach ($i in $a) 
{ 
 Write-Host $i 
}

The previous construction can easily be written in Microsoft Visual Basic, VBScript, or a 
dozen other languages because the design pattern is exactly the same. However, for optimal 
performance and ease of development, it is best to take advantage of the native features of 
Windows PowerShell. For example, the previous code can be written as shown here:

Get-Content –Path c:\fso\myfile.txt

One of the more powerful features of Windows PowerShell is the pipeline, and when you 
do not take advantage of the pipeline, you are setting yourself up for disappointing results. 
The Windows PowerShell pipeline does not need to read the entire contents of the file before 
processing it. Additionally, when working with large files, you reduce the amount of memory 
that is required because you do not need to store the contents of the file in a variable. Due to 
the asynchronous nature of the pipeline and the reduced memory footprint of the operation, 



 Conducting performance testing of scripts CHAPTER 13 445

it is a Windows PowerShell best practice to engage the pipeline whenever it makes sense in 
your code.

Because you know that the Windows PowerShell pipeline is more efficient, it seems logical 
to always use it in your script. However, this is simply not the case. For certain types of opera-
tions, such as those that process small files and do not require large amounts of memory, 
the store and forward approach previously shown can actually be more efficient. The key to 
determining the best approach to writing a script is to test two different versions of the script 
and see which one is the fastest. In this section, we will look at different versions of a script to 
determine which one is the fastest.

Using the store and forward approach
The Get-ModifiedFiles.ps1 script is used to count the number of files that were modified in a 
folder within a specified period of time. The param keyword is used to create two command-
line parameters. The first parameter is the −path parameter that specifies the folder to search. 
The second parameter is the -days parameter that is used to create the starting date for 
counting modified files.

Param( 
    $path = "C:\data", 
    $days = 30 
) #end param

The starting date needs to be a DateTime object. The Get-Date cmdlet creates an instance 
of a DateTime object, which exposes the AddDays method. By using a negative number for 
the number of days to be added to the current DateTime object, a point in time from the past 
is created. By default, the script creates a DateModified object 30 days in the past.

$dteModified = (Get-Date).AddDays(-$days)

The Get-ChildItem cmdlet is used to obtain a collection of all files and folders in the path 
that are specified by the $path variable. The −recurse switched parameter is used to tell the 
Get-ChildItem cmdlet to burrow down into all of the subfolders. This collection of files and 
folders is stored in the $files variable.

$files = Get-ChildItem -path $path –recurse

To walk through the collection of files and folders, the Foreach statement is used. The vari-
able $file is used as the enumerator that keeps track of the current position in the collection. 
The collection of files and folders is stored in the $files variable. Inside the foreach loop, the 
If statement is used to evaluate the DateTime object that is retrieved from the LastWriteTime 
property of the file object. If the value stored in the LastWriteTime property is greater than or 
equal to the DateTime value stored in the $dteModified variable, the value of the $changed-
Files variable is incremented by one.



 446 CHAPTER 13 Testing scripts

Foreach($file in $files) 
{ 
  if($file.LastWriteTime -ge $dteModified) 
    { $changedFiles ++ } 
}

The last step initiated by the Get-ModifiedFiles.ps1 script is to display a message to the 
user stating how many modified files are found. The following command is used to display 
the confirmation message to the user.

"The $path has $changedFiles modified files since $dteModified"

The complete Get-ModifiedFiles.ps1 script is shown here.

Get-ModifiedFiles.ps1

Param( 

    $path = "D:", 

    $days = 30 

) #end param 

$dteModified= (Get-Date).AddDays(-$days) 

$files = Get-ChildItem -path $path -recurse  

 

Foreach($file in $files) 

{ 

  if($file.LastWriteTime -ge $dteModified) 

    { $changedFiles ++ } 

} 

 

"The $path has $changedFiles modified files since $dteModified"

When the Get-ModifiedFiles.ps1 script is run, it takes a bit of time to return on my com-
puter. This is understandable because the D drive on my computer consumes approximately 
60 GB of disk space and contains nearly 30,000 files and 4,000 folders. It therefore does not 
seem to be a horrible performance considering what the script is actually doing.

Using the Windows PowerShell pipeline
The Get-ModifiedFiles.ps1 script can be changed to take advantage of the Windows 
PowerShell pipeline. The Param statement and the creation of the DateTime object contained 
in the $dteModified variable are exactly the same. The first change comes when the results of 
the Get-ChildItem cmdlet are pipelined to the next command instead of being stored in the 
$files variable. This results in two performance improvements. The first improvement is that 
subsequent sections of the script can begin work almost immediately. When the results of the 
Get-ChildItem cmdlet are stored in a variable, all 30,000 files and 4,000 folders in the previ-
ous example must be enumerated before any additional processing can begin. In addition, 
because the variable is stored in memory, it is conceivable that the computer might run out 



 Conducting performance testing of scripts CHAPTER 13 447

of memory before it finishes enumerating all of the files and folders from an extremely large 
drive. The change to the pipeline is shown here:

Get-ChildItem -path $path -recurse |

Instead of using the Foreach statement, the Get-ModifiedFilesUsePipeline.ps1 script uses 
the ForEach-Object cmdlet. The ForEach-Object cmdlet is designed to accept pipelined 
input and is more flexible than the Foreach language statement. The default parameter 
for the ForEach-Object cmdlet is the −Process parameter. As each object comes through 
the pipeline, the $_ automatic variable is used to reference it. Here the $_ automatic vari-
able is acting in a similar fashion to the $file variable from the Get-ModifiedFiles.ps1 script. 
The If statement is exactly the same in the Get-ModifiedFilesUsePipeline.ps1 script, with the 
exception of the change to using $_ instead of $file. The ForEach-Object section of the Get-
ModifiedFilesUsePipeline.ps1 script is shown here:

ForEach-Object { 
  if($_.LastWriteTime -ge $dteModified) 
    { $changedFiles ++ } 
}

The user message is the same as that shown in the Get-ModifiedFiles.ps1 script. The com-
pleted Get-ModifiedFilesUsePipeline.ps1 script is shown here.

Get-ModifiedFilesUsePipeline.ps1

Param( 

    $path = "D:", 

    $days = 30 

) #end param 

 

$dteModified= (Get-Date).AddDays(-$days) 

Get-ChildItem -path $path -recurse | 

ForEach-Object { 

  if($_.LastWriteTime -ge $dteModified) 

    { $changedFiles ++ } 

} 

 

"The $path has $changedFiles modified files since $dteModified"

Comparing the speed of two scripts
When the Get-ModifiedFilesUsePipeline.ps1 script is run, it seems a little faster, but it might 
be hard to tell. Was the modification to the script worth the trouble? To determine whether 
a change to a script makes an improvement in the performance of the script, you can use 
the Measure-Command cmdlet. You will want to first measure the performance of the original 
script and then measure the performance of the revised script. To measure the performance 



 448 CHAPTER 13 Testing scripts

of the original script, you supply the path to the Get-ModifiedFiles.ps1 script to the Expression 
parameter of the Measure-Command cmdlet. 

In the command line that follows, the error stream is redirected by using the 2> redirec-
tion operator. Because I know that doing a recursive directory listing of the C drive generates 
errors, I am not concerned with seeing them. Therefore, I redirect the errors to the $null vari-
able, and am treated to a clean output. 

Measure-Command {C:\ScriptFolder\Get-ModifiedFiles.ps1 -path c:} 2>$null

The Measure-Command cmdlet returns a System.TimeSpan .NET Framework class, which is 
used to measure the difference between two System.DateTime classes. It has a number of 
properties that report days, hours, minutes, seconds, and milliseconds, and these proper-
ties report the time span in units of these divisions. In Figure 13-2, you see that the Get-
ModifiedFiles.ps1 script ran for 8 seconds and 828 milliseconds. The System.TimeSpan object 
also reports the time span in total units. The same time span is reported as five different units. 
For example, the Get-ModifiedFiles.ps1 script run time of 8 seconds and 828 milliseconds 
translates into 8.8280876 total seconds or 0.147134793333333 total minutes. When expressed 
in milliseconds, this value is 8828.0876.

FIGURE 13-2 The Measure-Command cmdlet returns a TimeSpan object.

The double display of time breakdown into days, hours, minutes, seconds, and milliseconds 
can be confusing to people who are not used to working with the System.TimeSpan .NET 
Framework class. In general, you can probably examine only the TotalSeconds property when 
testing your scripts.

It is now time to see whether the use of the pipeline makes any difference in the perfor-
mance of the script. To measure the performance of the Get-ModifiedFilesUsePipeline.ps1 
script, the path to the Get-ModifiedFilesUsePipeline.ps1 script is passed to the Expression 
parameter of the Measure-Command cmdlet, which results in the command line shown here:

PS C:\> Measure-Command {C:\ScriptFolder\Get-ModifiedFilesUsePipeline.ps1 -path c:} 2 
>$null



 Conducting performance testing of scripts CHAPTER 13 449

After the command has run, the TimeSpan object shown in Figure 13-3 is displayed.

FIGURE 13-3 TimeSpan object displaying improvement in script speed when using the pipeline.

As shown in Figure 13-3, the Get-ModifiedFilesUsePipeline.ps1 script completed in 
13.3821176 total seconds. When compared to the original 8.8280876 total seconds, we see 
the speed of the script declined. This points out the importance of performance testing 
because, at times, the results are actually counter-intuitive, and you can invest time in trying 
to improve a script’s performance and actually go in the opposite direction. 

reducing code complexity
Further changes can be made to the Get-ModifiedFilesUsePipeline.ps1 script. This is a more 
radical modification to the script because it requires removing the ForEach-Object cmdlet 
and the If statement. The following section of code is ripped out:

ForEach-Object { 
  if($_.LastWriteTime -ge $dteModified) 
    { $changedFiles ++ } 
}

By removing the ForEach-Object cmdlet and the If statement, you can get rid of the 
$changedFiles ++ statement and take advantage of the fact that Windows PowerShell auto-
matically returns objects from the cmdlets. The use of the single Where-Object cmdlet should 
be faster than the more convoluted ForEach-Object cmdlet when combined with the If state-
ment. However, you will determine whether the modification is effective when you test the 
script with the Measure-Object cmdlet. By using a single Where-Object cmdlet, you arrive at 
the following filter:

where-object { $_.LastWriteTime -ge $dteModified }

The result of the pipeline operation is stored in the $changedFiles variable, which has a 
count property associated with it. Directly reading the count property should be faster than 
incrementing the $changedFiles variable as was done in the Get-ModifiedFilesUsePipeline.ps1 
script. The entire Get-ModifiedFilesUsePipeline2.ps1 script is shown here.



 450 CHAPTER 13 Testing scripts

Get-ModifiedFilesUsePipeline2.ps1

Param( 

    $path = "D:\", 

    $days = 30 

) #end param 

 

 

$changedFiles = $null 

$dteModified= (Get-Date).AddDays(-$days) 

$changedFiles = Get-ChildItem -path $path -recurse | 

where-object { $_.LastWriteTime -ge $dteModified } 

 

"The $path has $($changedFiles.count) modified files since $dteModified"

When the Get-ModifiedFilesUsePipeline2.ps1 script is run, the script completes in 
12.3324077seconds, which is another decrease in the performance of the script. The TimeSpan 
object that is created by running the Get-ModifiedFilesUsePipeline2.ps1 script is shown in 
Figure 13-4.

FIGURE 13-4 TimeSpan object indicating that changes were not an improvement to the script.

Evaluating the performance of different versions of a script
It is relatively simple to use the Measure-Command cmdlet to check the performance of a script 
and monitor for moderate changes. For more extensive changes to a script, you will want to 
create different versions of the script. To simplify the testing scenario, it makes sense to create 
a script that will test the performance of two different scripts. To take into account the dif-
ference in performance between run times of the scripts that can be attributed to computer 
loading, resource contention, and the like, you might want the ability to run the tests multiple 
times and create a report on the average run time of the scripts.



 Conducting performance testing of scripts CHAPTER 13 451

The Test-TwoScripts.ps1 script allows you to run the performance test of the script multiple 
times. It also produces a report that details the time that was taken for each run and produces 
a summary evaluation of the two scripts.

Command-line parameters
The Test-TwoScripts.ps1 script creates the following command-line parameters:

■■ The first parameter, baseLineScript, is the path to the script that will be the baseline for 
comparison. Typically, this is the script that you used before you modified it.

■■ The second parameter is modifiedScript, and it is used to reference the script whose 
changes you want to evaluate. These two scripts do not need to be related to one 
another.

■■ The third parameter is the numberOfTests parameter. This number controls how many 
times the scripts will be run. By running the scripts several times and averaging the 
results, a more accurate picture of the performance of the scripts can be gained.

When testing, a script might run faster or slower on any given run. This might be due 
to file caching or to other performance enhancements offered by the operating sys-
tem, but it might also be due to resource contention or other anomalies.

■■ The last parameter is the −log switched parameter. When the −log parameter is pres-
ent, it causes the script to write the performance information to a temporary text file 
that is displayed at the end of the completion of the script.

The Param section of the script is shown here:

Param( 
  [string]$baseLineScript, 
  [string]$modifiedScript, 
  [int]$numberOfTests = 20, 
  [switch]$log 
) #end param

Functions
The Test-Scripts function is used to call the Measure-Command cmdlet for each of the two 
scripts to be tested. The Param section of the function receives two inputs: the baseLineScript 
parameter and the modifiedScript parameter. These parameters are cut and pasted from the 
Param section to the script because it is easier than typing everything a second time. Cutting 
and pasting the parameters also ensures that you avoid typing errors, as shown here:

Function Test-Scripts 
{ 
  Param( 
  [string]$baseLineScript, 
  [string]$modifiedScript 
) #end param



 452 CHAPTER 13 Testing scripts

After the parameters for the Test-Scripts function are created, it is time to call the Measure-
Command cmdlet, which is called twice. During the first call, the baseline script is passed to 
the Expression parameter of the Measure-Command cmdlet. The string that is passed to the 
$baseLineScript parameter includes the full path to the script as well as all parameters that 
the script requires to successfully execute. The second Measure-Command cmdlet is called to 
evaluate the performance of the modified script. The path to the modified script as well as the 
parameters required to set up the command are passed to the Expression parameter of the 
Measure-Command cmdlet.

 Measure-Command -Expression { $baseLineScript } 
 Measure-Command -Expression { $modifiedScript } 
} #end Test-Scripts function

The Get-Change function is used to calculate the percentage increase or decrease in 
total running time between the baseline script and the modified script. The baseline param-
eter contains the total number of seconds that the baseline script requires to execute. The 
modified parameter contains the total number of seconds that the modified script requires 
to execute. If the Test-Scripts function is called several times (due to the script performing 
multiple tests), the $baseLine variable and the $modified variable will contain the cumulative 
number of seconds of running time from the entire series of tests. To calculate the percent-
age increase or decrease in total running time, the total number of seconds contained in the 
$modified variable is subtracted from the total number of seconds contained in the $baseLine 
variable, and this number is then divided by the total number of seconds contained in the 
$baseLine variable. The result of this computation is then multiplied by 100. The Get-Change 
function is shown here:

Function Get-Change($baseLine, $modified) 
{ 
  (($baseLine - $modified)/$baseLine)*100 
} #end Get-Change function

After the Get-Change function is created, the Get-TempFile function is created. The Get-
TempFile function calls the static GetTempFileName method from the IO.Path .NET Framework 
class. The Get-TempFile function is shown here:

Function Get-TempFile 
{ 
 [io.path]::GetTempFileName() 
} #end Get-TempFile function

After all of the functions are created, you arrive at the entry point to the script. You must 
first determine whether the Test-TwoScripts.ps1 script was run with the −log switched param-
eter. If it was launched with the –log switched parameter, the $log variable will exist. If the 
$log variable exists, the Get-TempFile function is called and the resulting temporary file name 
is stored in the $logFile variable.

if($log) { $logFile = Get-TempFile }



 Conducting performance testing of scripts CHAPTER 13 453

A for loop is used to count the number of tests to perform on the scripts. The number of 
tests is stored in the $numberOfTests variable. A status message is displayed to the Windows 
PowerShell console that indicates the test loop number. This section of the code is shown 
here:

For($i = 0 ; $i -le $numberOfTests ; $i++) 
{ 
 "Test $i of $numberOfTests" ; start-sleep -m 50 ; cls

After the loop progress message is displayed, the Test-Scripts function is called. The 
Test-Scripts function returns two System.TimeSpan objects, which are stored in the $results 
variable.

 $results= Test-Scripts -baseLineScript $baseLineScript -modifiedScript $modifiedScript

Because the $results variable contains an array of two TimeSpan objects, you can index 
directly into the array and retrieve the value of the $TotalSeconds variable. Use [0] to retrieve 
the first TimeSpan object and [1] to retrieve the second TimeSpan object. The total seconds 
from the current test run is added to the total seconds that are stored in the $baseLine and 
$modified variables.

 $baseLine += $results[0].TotalSeconds 
 $modified += $results[1].TotalSeconds

If the script is run with the –log switched parameter, the name of the script, the test num-
ber, and the results are written to the log file. The code that performs this action is shown 
here:

 If($log) 
  { 
     "$baseLineScript run $i of $numberOfTests $(get-date)" >> $logFile 
     $results[0] >> $logFile 
     "$modifiedScript run $i of $numberOfTests $(get-date)" >> $logFile 
     $results[1] >> $logFile 
  } #if $log 
} #for $i 

The complete Test-TwoScripts.ps1 script is shown here.

test-twoScripts.ps1

Param( 

  [string]$baseLineScript, 

  [string]$modifiedScript, 

  [int]$numberOfTests = 20, 

  [switch]$log 

) #end param 

 

Function Test-Scripts 

{ 

  Param( 



 454 CHAPTER 13 Testing scripts

  [string]$baseLineScript, 

  [string]$modifiedScript, 

  [int]$numberOfTests, 

  [switch]$log 

) #end param 

 Measure-Command -Expression { $baseLineScript } 

 Measure-Command -Expression { $modifiedScript } 

} #end Test-Scripts function 

 

Function Get-Change($baseLine, $modified) 

{ 

  (($baseLine - $modified)/$baseLine)*100 

} #end Get-Change function 

 

Function Get-TempFile 

{ 

 [io.path]::GetTempFileName() 

} #end Get-TempFile function 

 

# *** Entry Point To Script 

if($log) { $logFile = Get-TempFile } 

For($i = 0 ; $i -le $numberOfTests ; $i++) 

{ 

 "Test $i of $numberOfTests" ; start-sleep -m 50 ; cls 

 $results= Test-Scripts -baseLineScript $baseLineScript -modifiedScript $modifedScript 

 $baseLine += $results[0].TotalSeconds 

 $modified += $results[1].TotalSeconds 

 If($log) 

  { 

     "$baseLineScript run $i of $numberOfTests $(get-date)" >> $logFile 

     $results[0] >> $logFile 

     "$modifiedScript run $i of $numberOfTests $(get-date)" >> $logFile 

     $results[1] >> $logFile 

  } #if $log 

} #for $i  

 

"Average change over $numberOfTests tests" 

"BaseLine: $baseLineScript average Total Seconds: $($baseLine/$numberOfTests)" 

"Modified: $modifiedScript average Total Seconds: $($modified/$numberOfTests)" 

"Percent Change: " + "{0:N2}" -f (Get-Change -baseLine $baseLine -modified $modified) 

if($log) 

{ 

 "Average change over $numberOfTests tests" >> $logFile 

 "BaseLine: $baseLineScript average Total Seconds: $($baseLine/$numberOfTests)" >> 

$logFile 



 Conducting performance testing of scripts CHAPTER 13 455

 "Modified: $modifiedScript average Total Seconds: $($modified/$numberOfTests)" >> 

$logFile 

 "Percent Change: " + "{0:N2}" -f (Get-Change -baseLine $baseLine -modified $modified) 

>> $logFile 

} #if $log 

if($log) { Notepad $logFile }

INSIDE TRACK

Testing APIs, web services, SOAP, and REST with Windows 
 PowerShell

James Brundage and Ibrahim abdul rahim, Software Development Engineers 
Microsoft Corporation

It’s probably easier to test aPIs in Windows PowerShell than in any other lan-
guage because you can use the aPIs interactively. When testing aPIs, the task 

normally involves checking both the results from an aPI and the things that the 
aPI should have done within the system. You can easily create objects, run their 
methods, and get their results in Windows PowerShell. to create an existing .NEt 
class, use the New-Object cmdlet. to load a type from disk, you can use [Reflection.
Assembly]::LoadFrom($FullPath) to load an assembly. to run a static method or get a 
static property, use [Type]::PropertyOrMethod.

Beginning with Windows PowerShell 2.0, it is easier than ever to test web services. 
Web service testing is similar to aPI testing in that you are usually simply run-
ning some method and checking the results. however, web tests might pay more 
attention to timing. to add timing to your tests, use the Measure-Command cmdlet 
to execute the core of the test and use the Throw statement or the Write-Error 
cmdlet to fail the test if the command takes too long to complete.

Windows PowerShell 2.0 and newer versions make testing Simple Object access 
Protocol (SOAP) a snap because you can use SOAP’s autodiscovery to create a 
type to use the web service in PowerShell with the New-WebServiceProxy cmd-
let. Because SOaP web services use many different types, I recommend using New-
WebServiceProxy in a command that is similar to the one shown here:

$webService =New-WebServiceProxy Url –Namespace WebServiceName

after you create a proxy of the web service, test it interactively just like any other 
aPI by trying different actions and validating the results and side effects.

Because Representational State Transfer (REST) web services are not discoverable, 
they also are not as easy to test as SOaP web services. however, because rESt web 



 456 CHAPTER 13 Testing scripts

services are straightforward to query, you can generally simply query the web 
service and check the XML that it returns. Most rESt web services use a long GEt 
query (like the one you can see in your address bar when you search via a search 
engine) to provide the parameters to the web service.

To test REST in Windows PowerShell, you should first write a function to wrap 
the rESt web service. For example, this means that if the service takes a topic 
string, a count of articles to retrieve, and an offset, then you should write a 
function with a signature that matches the web service (that is, function Get-
RestService([string]$Topic, [int]$count = 20, [int]$offset =0) {} ).

the function used to wrap rESt is simple. typically, all you need to do is use New-
Object to create a webclient, use the DownloadString method to get the results, and 
then turn the results into an XML object by casting.

($client  = New-Object NET.Webclient; $client.DownloadString($url) –as 

[xml])

When done, you will be able to use the Select-Xml cmdlet to query the data 
returned from the web service to determine whether you should have received 
this data.

Displaying the results and creating the log file
After writing to the log file, it is time to display information to the Windows PowerShell con-
sole. The number of tests and the average time for each test run is displayed to the console 
for both the baseline and the modified scripts. The portion of the script that performs this 
action is shown here:

"Average change over $numberOfTests tests" 
"BaseLine: $baseLineScript average Total Seconds: $($baseLine/$numberOfTests)" 
"Modified: $modifiedScript average Total Seconds: $($modified/$numberOfTests)"

The percentage of change between the two scripts is calculated by using the Get-Change 
function. A .NET format specifier is used to display the percentage of change to two decimal 
places. The {0:N2} format specifier indicates two decimal places.

"Percent Change: " + "{0:N2}" -f (Get-Change -baseLine $baseLine 
-modified $modified)

The same information that was just displayed to the console is written to the log file if the 
script is launched with the –log switched parameter.



 Conducting performance testing of scripts CHAPTER 13 457

if($log) 
{ 
 "Average change over $numberOfTests tests" >> $logFile 
 "BaseLine: $baseLineScript average Total Seconds:  
$($baseLine/$numberOfTests)" >> $logFile 
 "Modified: $modifiedScript average Total Seconds:  
$($modified/$numberOfTests)" >> $logFile 
 "Percent Change: " + "{0:N2}" -f (Get-Change -baseLine $baseLine  
-modified $modified) >> $logFile 
} #if $log

After the log file is updated, it is displayed by using Notepad. The code that displays the 
log file in Notepad is shown here:

if($log) { Notepad $logFile }

The log that is produced by running the Test-TwoScripts.ps1 script is shown in Figure 13-5.

FIGURE 13-5 Log reporting performance changes over 20 tests by using the Test-TwoScripts.ps1 script.



 458 CHAPTER 13 Testing scripts

INSIDE TRACK

Testing graphical applications with Windows PowerShell

James Brundage and Ibrahim abdul rahim, Software Development Engineers 
Microsoft Corporation

The easiest way to test websites in Windows PowerShell is to try scripting 
Windows Internet Explorer. the incredible amount of data that you can view 

about a Website can help you determine whether the content is correct. to auto-
mate the web, the main object with which you should interact is the Component 
Object Model (COM) Shell.Application object ($Shell = New-Object –ComObject 
Shell.Application). You can use the ShellExecute method of Shell.Application to 
create brand-new windows, and you can use the Shell.Windows() method to get 
(and change) all of the running windows. The Internet Explorer Developer tools 
(press F12 when viewing any site) will be very helpful in determining where the 
content that you need to automate can be found on the webpage.

Webpage testing has two additional areas of special concern, one of which I can 
be of some help in explaining. Webpages often take one period of time to load the 
page and another period of time to render individual controls, which can result in 
the need for multiple waiting periods. In the following example, I wait once to load 
Bing.com and wait again to make sure that the search dialog box is ready for input. 
the other area of special concern that the web can throw at you involves deal-
ing with Adobe Flash or Microsoft Silverlight pages. At this point, it is significantly 
easier to treat the webpage as any other user interface that you want to test.

here is a quick web test written in Windows PowerShell to search for a term on 
Bing.com:

$shell.ShellExecute("http://www.bing.com") 

$timeout = New-TimeSpan -Seconds 15 

$startTime = Get-Date 

do { 

    $window = $shell.Windows() | ? { $_.LocationUrl -eq "http://www.bing 

.com/" } 

} while (-not $window -and 

    ($startTime + $timeout) -gt (Get-Date)) 

if (-not $window) { 

    throw "Timed out waiting for Window to load" 

} 

$timeout = New-TimeSpan -Seconds 5 

$startTime = Get-Date 

do { 

    $searchQuery = $window.Document.getElementById("sb_form_q")  



 Conducting performance testing of scripts CHAPTER 13 459

} while (-not $searchQuery -and 

    ($startTime + $timeout) -gt (Get-Date)) 

if (-not $searchQuery) { 

    throw "Timed out waiting for search query box to be available" 

} 

$searchQuery.InnerText = "foobar" 

$window.Document.getElementById("sb_form_go").Click()

Windows PowerShell has easy access to console applications and aPIs. however, 
when dealing with GUI applications, Windows PowerShell needs to go through 
several layers before it can access information about the GUI (such as Text Box text 
or whether a check box is checked) and execute GUI commands, such as send keys 
and click buttons.

as in testing webpages, the trick is locating the item with which you want to 
interact and then interacting with it.  Because user interface technologies can use 
different underlying implementations, the tricks that work for some user inter-
face types will not work for others. the aPIs that you can use to access the pages 
include Microsoft Active Accessibility (MSAA), User Interface Automation (UIA), and 
C Windows APIs. C Windows APIs require Interop (Add-Type and P/Invoke), while 
MSaa and UIa have .NEt and COM aPIs. the Windows automation Snap-in for 
Windows PowerShell (http://www.codeplex.com/WASP) can help you get started 
with user interface testing and is based on C Windows aPI windows.

the trick to automating the majority of tests in user interfaces is to consider most 
interactions in terms of the keyboard when possible. By using the keyboard, you 
can use the SendKeys API (it’s on New-Object –ComObject WScript.Shell) to send 
the sequence of actions as keys that you can type. You can then validate the user 
interface changes by pulling out screen positions and text in the Web application 
Services Platform (WASP).

If you choose not to actually automate testing, another common approach to 
testing websites is to keep a store of manual test cases. In this scenario, Windows 
PowerShell still possesses all that is required to be your testing framework. 
Windows PowerShell contains two common cmdlets that make this process easy: 
Read-Host and Write-Host. Read-Host returns what the user provided, and Write-
Host writes out prompts for the user. By writing out the steps of a test case using 
Write-Host and checking for a fixed result from Read-Host, you can effectively 
write manual test cases for someone else to run in Windows PowerShell.



 460 CHAPTER 13 Testing scripts

Using standard parameters

Windows PowerShell defines two standard parameters that are useful when testing scripts: 
debug and –whatif. When the debug parameter is implemented in a script, detailed debug-
ging information is displayed to the Windows PowerShell console via the Write-Debug cmdlet. 
When you implement the –whatif parameter in a script, the parameters that are supplied to a 
function are displayed to the console. Both of these features provide you with useful informa-
tion when testing the functionality of a script.

Using the debug parameter
In Windows PowerShell 4.0, the debug parameter is automatically available to you because 
it is a standard parameter. To use the debug parameter, you need to use only [cmdletbind-
ing()] in your function. There is no need to hard-wire checks and the like. 

When $DebugPreference is set to Continue, it means that using the Write-Debug cmdlet will 
cause the string to be displayed on the Windows PowerShell console. If $DebugPreference is 
set to SilentlyContinue, which is the default value, the Write-Debug cmdlet is ignored unless 
cmdlet binding is used, and the function is called with the –Debug parameter. This variety 
provides a flexible way of displaying detailed information about the progress of the script 
without the need to create a debug build and a release build. As a best practice, you should 
use a Write-Debug statement before each method that you call, during value assignment, and 
before you call a function.

New-LocalUserFunction.ps1

Function New-LocalUser 

{ 

  <# 

   .Synopsis 

    This function creates a local user  

   .Description 

    This function creates a local user 

   .Example 

    New-LocalUser -userName "ed" -description "cool Scripting Guy" ' 

        -password "password" 

    Creates a new local user named ed with a description of cool scripting guy 

    and a password of password.  

   .Parameter ComputerName 

    The name of the computer upon which to create the user 

   .Parameter UserName 

    The name of the user to create 

   .Parameter password 

    The password for the newly created user 

   .Parameter description 

    The description for the newly created user 



 Using standard parameters CHAPTER 13 461

   .Notes 

    NAME:  New-LocalUser 

    AUTHOR: ed wilson, msft 

    LASTEDIT: 09/6/2013 10:07:42 

    KEYWORDS: Local Account Management, Users 

    HSG: Based upon HSG-06-30-11 

    Requires Admin rights 

   .Link 

     Http://www.ScriptingGuys.com/blog 

 #> 

 [CmdletBinding()] 

 Param( 

  [Parameter(Position=0, 

      Mandatory=$True, 

      ValueFromPipeline=$True)] 

  [string]$userName, 

  [Parameter(Position=1, 

      Mandatory=$True, 

      ValueFromPipeline=$True)] 

  [string]$password, 

  [string]$computerName = $env:ComputerName, 

  [string]$description = "Created by PowerShell" 

 ) 

 Write-Debug "Connecting to ADSI on $computerName" 

 $computer = [ADSI]"WinNT://$computerName" 

 Write-Debug "Calling Create method to create user: $userName" 

 $user = $computer.Create("User", $userName) 

 $user.setpassword($password) 

 $user.put("description",$description)  

 Write-Debug "Calling SetInfo" 

 $user.SetInfo() 

} #end function New-LocalUser

When testing the New-LocalUser function, you call the function with the debug parameter. 
In addition to displaying the debug information, you are prompted to confirm the action, 
which enables you to skip problematic sections of the code, or to continue with the operation 
as shown in Figure 13-6.



 462 CHAPTER 13 Testing scripts

FIGURE 13-6 Debug information displayed when the script is run with the debug switched parameter.

Using the Verbose parameter
When you want to see what a function (or script) is doing in detail, you want verbose output. 
The difference between verbose and debug output is the purpose of the output. Whereas 
debug output is specifically designed for debugging purposes, verbose output is designed 
to inform the user in greater detail about all the steps that are being accomplished. In reality, 
there is some overlap in the two output streams, but the biggest difference is that running 
a function with the debug parameter provides you with the opportunity to run or to skip 
a command. This means that for each Write-Debug command you will be prompted for an 
action. If all you want is more detailed output from the function, you want to use Write-
Verbose and you want to call the function with the verbose parameter. 

The complete Set-LocalGroupFunction.ps1 script appears here.

Set-LocalGroupFunction.ps1

Function Set-LocalGroup 

{ 

  <# 

   .Synopsis 

    This function adds or removes a local user to a local group  

   .Description 

    This function adds or removes a local user to a local group 

   .Example 

    Set-LocalGroup -username "ed" -groupname "administrators" -add 

    Assigns the local user ed to the local administrators group 

   .Example 

    Set-LocalGroup -username "ed" -groupname "administrators" -remove 

    Removes the local user ed to the local administrators group 

   .Parameter username 

    The name of the local user 

   .Parameter groupname 



 Using standard parameters CHAPTER 13 463

    The name of the local group 

   .Parameter ComputerName 

    The name of the computer 

   .Parameter add 

    causes function to add the user 

   .Parameter remove 

    causes the function to remove the user 

   .Notes 

    NAME:  Set-LocalGroup 

    AUTHOR: ed wilson, msft 

    LASTEDIT: 09/6/2013 10:23:53 

    REQUIRES: admin rights 

    KEYWORDS: Local Account Management, Users, Groups 

    HSG: HSG-06-30-11 

   .Link 

     Http://www.ScriptingGuys.com/blog 

 #Requires -Version 2.0 

 #> 

 [CmdletBinding()] 

 Param( 

  [Parameter(Position=0, 

      Mandatory=$True, 

      ValueFromPipeline=$True)] 

  [string]$userName, 

  [Parameter(Position=1, 

      Mandatory=$True, 

      ValueFromPipeline=$True)] 

  [string]$GroupName, 

  [string]$computerName = $env:ComputerName, 

  [Parameter(ParameterSetName='addUser')] 

  [switch]$add, 

  [Parameter(ParameterSetName='removeuser')] 

  [switch]$remove 

 ) 

 Write-Verbose "Connecting to $GroupName on $computerName" 

 $group = [ADSI]"WinNT://$ComputerName/$GroupName,group" 

 if($add) 

  { 

  Write-Debug "Preparing to add $userName to $groupName" 

  Write-Verbose "Preparing to add $userName to $GroupName" 

   $group.add("WinNT://$ComputerName/$UserName") 

  } 

  if($remove) 

   { 

    Write-Debug "Preparing to remove $userName to $groupName" 



 464 CHAPTER 13 Testing scripts

    Write-Verbose "Preparing to remove $userName to $GroupName" 

   $group.remove("WinNT://$ComputerName/$UserName") 

   } 

} #end function Set-LocalGroup 

When the Set-LocalGroup function is called with the –Verbose parameter, each of the 
Write-Verbose statements is called during execution and the output appears. This is shown in 
Figure 13-7.

FIGURE 13-7 Verbose output created when the function implements Write-Verbose.

Using the whatif parameter
The –whatif parameter is not automatically created. If you want to implement the –whatif 
parameter in your script, you need to create a switched parameter named −whatif as well as 
a function that you can use to display the parameters that are passed to the function. As a 
best practice, you should implement the –whatif parameter whenever the script executes any 
process that changes system state. Examples of changing system state are deleting files or 
folders, creating folders or files, and writing values to the registry. If you display information, 
such as listing the properties of your mouse, this information does not change system state 
and therefore you should not use the –whatif parameter.



 Using standard parameters CHAPTER 13 465

The first step in implementing the –whatif parameter is to create the switched parameter 
named whatif.

[CmdletBinding()] 
 Param( 
  [Parameter(Position=0, 
      Mandatory=$True, 
      ValueFromPipeline=$True)] 
  [string]$GroupName, 
  [string]$computerName = $env:ComputerName, 
  [string]$description = "Created by PowerShell", 
  [switch]$whatif) 

You also need to create a statement that accepts all of the parameters that are passed to 
the function. The easiest way to do this in a simple function is to just use the If statement. 
In the string output, make sure to pick up all the appropriate parameters. You can use the 
exit statement in your If statement, but if you do, the Windows PowerShell console or the 
Windows PowerShell ISE will close, and you will not be able to actually read the contents of 
the What If statement. Therefore, it is easiest to just use the Return statement instead. This 
appears here:

If($whatif)  
  { 
   "WHATIF: Creating new local group $groupName with description $description on 
$computername" 
   Return 
  } #end Whatif 

The complete New-LocalGroupFunction.ps1 script is shown here.

New-LocalGroupFunction.ps1 

Function New-LocalGroup 

{  

 

<# 

   .Synopsis 

    This function creates a local group  

   .Description 

    This function creates a local group 

   .Example 

    New-LocalGroup -GroupName "mygroup" -description "cool local users" 

    Creates a new local group named mygroup with a description of cool local users.  

   .Parameter ComputerName 

    The name of the computer upon which to create the group 

   .Parameter GroupName 

    The name of the Group to create 

   .Parameter description 

    The description for the newly created group 

   .Notes 



 466 CHAPTER 13 Testing scripts

    NAME:  New-LocalGroup 

    AUTHOR: ed wilson, msft 

    LASTEDIT: 09/6/2013 10:07:42 

    REQUIRES: Admin rights 

    KEYWORDS: Local Account Management, Groups 

    HSG: Based upon HSG-06-30-11 

   .Link 

     Http://www.ScriptingGuys.com/blog 

 #> 

 [CmdletBinding()] 

 Param( 

  [Parameter(Position=0, 

      Mandatory=$True, 

      ValueFromPipeline=$True)] 

  [string]$GroupName, 

  [string]$computerName = $env:ComputerName, 

  [string]$description = "Created by PowerShell", 

  [switch]$whatif 

 ) 

  If($whatif)  

  { 

   "WHATIF: Creating new local group $groupName with description $description on 

$computername" 

   Return 

  } #end Whatif 

  $adsi = [ADSI]"WinNT://$computerName" 

  $objgroup = $adsi.Create("Group", $groupName) 

  $objgroup.SetInfo() 

  $objgroup.description = $description 

  $objgroup.SetInfo() 

  

} #end function New-LocalGroup

When the script is run with the –whatif parameter, the output shown in Figure 13-8 is 
displayed.



 Using standard parameters CHAPTER 13 467

FIGURE 13-8 The –whatif parameter displays a script action but does not execute.

NOTES FROM THE FIELD

Testing scripts

Enrique Cedeno, MCSE
Senior Network Administrator

As a senior network administrator for a large service provider, I spend a great 
deal of time writing scripts that are used in our server build processes. The first 

thing I do when testing a script is to break down the script into functions and test 
each function individually.

For example, if a script will be connecting to a database, I have set up a test data-
base that has known data inside it. Each function is treated as if it were an individual 
script. In this way, it is easy to isolate the problem and pinpoint any issues that 
might arise.

a cohort on our team once wrote a script that connected to a database, but a prob-
lem emerged in one of the SQL statements. Although there was no error handling 
in the script, the script appeared to run okay. however, when I ran the script against 
the test database, I immediately noticed that the script was returning bogus data. 
the script was a masterpiece of spaghetti code, and it took the team three days to 



 468 CHAPTER 13 Testing scripts

debug the script. this points to the value of having a database that contains known 
data. When you run a query and know the type of data that the query should 
return, you will know immediately whether your script is working properly.

In our production scripts, we trap the output of the script and write it to a log file. 
We use the Write-Debug cmdlet to provide our detailed logging for troubleshoot-
ing purposes. When we need to troubleshoot a script, we use a switch that changes 
the value of the $DebugPreference variable to turn on the Write-Debug cmdlet.

If we are confronted with a logic error in a script, we run the script in a known test 
environment and watch the data that is returned very carefully to make sure that 
the information makes sense. Because we know the test environment, we can tell 
whether the script is accurate or bogus. If multiple functions are involved and we 
are doing unit testing, we use the Write-Debug cmdlet to display a message that 
states when the function is being entered and when it is being exited.

One of our golden rules when writing scripts is to write a ton of comments. We do 
this because we might not touch the script for more than six months after writing it. 
the comments should explain anything that is unusual, or they can even explain the 
logic behind the purpose of a piece of code. You should not explain the things that 
anyone who works with Windows PowerShell will already know how to do. Never 
include a comment that explains what a cmdlet does. however, always include a 
comment in a script that explains a particular bug that you discovered and the 
workaround that you put in place.

For logging errors from the script, we place code in the script that writes all errors 
to a log file. We use this script during development because you cannot always rely 
on being able to read error messages from the screen. an added bonus of writing 
errors to a log file is that this process makes it easy to do automated testing. When 
we shift the script into production, we turn off the detailed error logging but keep 
the code in place so that we can enable the detailed error logging via a switch.

Using Start-Transcript to produce a log

An easy way to document the results of a script is to call the Start-Transcript function. 
Although this action will produce limited information, it is an easy way to test your scripts 
and provide documentation. To use this technique, use the Start-Transcript cmdlet to create 
the transcript log file. By default, the Start-Transcript cmdlet overwrites any log files that 
have the same name as the one specified by the −path parameter. To prevent the overwriting 



 Using Start-Transcript to produce a log CHAPTER 13 469

behavior, you can use the Noclobber parameter when calling the Start-Transcript cmdlet. In 
the TranscriptBios.ps1 script, the line that calls the Start-Transcript cmdlet is shown here:

Start-Transcript -path $path

Because the transcript log file will not contain the script name, the $myInvocation 
.InvocationName variable is used to obtain the script name. The Start-Transcript cmdlet 
copies everything that appears on the Windows PowerShell console to the log file. An easy 
way to get the script name in the log file is to display it to the Windows PowerShell console. 
Because the time when the script starts might be important, the Get-Date cmdlet is used to 
display a time stamp that will be written to the transcript log. A subexpression is used with 
both the $myInvocation.InvocationName variable and the Get-Date cmdlet to force the evalu-
ation of the command and return the value to the string.

"Starting $($myInvocation.InvocationName) at $(Get-Date)"

Next, the Get-Bios function is called, which is a standard WMI command using the Get-
WmiObject cmdlet. However, the $myInvocation.InvocationName variable is used to display the 
name of the function. The technique of obtaining the called function name provides useful 
information about the results of the script.

Function Get-Bios($computer) 
{ 
 "Calling function $($myInvocation.InvocationName)" 
 Get-WmiObject -class win32_bios -computer $computer 
}#end function Get-Bios

Last, you must stop the transcript by using the Stop-Transcript cmdlet. No additional 
parameters are needed to stop the transcript.

Stop-Transcript

The complete TranscriptBios.ps1 script is shown here.

transcriptBios.ps1

Param( 

 [Parameter(Mandatory=$true)] 

 [string]$path, 

 [string]$computer = $env:computername 

)#end param 

 

# *** Functions *** 

 

Function Get-Bios($computer) 

{ 

 "Calling function $($myInvocation.InvocationName)" 

 Get-WmiObject -class win32_bios -computer $computer 

}#end function Get-Bios 

 



 470 CHAPTER 13 Testing scripts

# *** Entry point to script *** 

 

Start-Transcript -path $path 

"Starting $($myInvocation.InvocationName) at $(Get-Date)" 

  

Get-Bios -computer $computer 

Stop-Transcript

When the TranscriptBios.ps1 script is run, it creates a log in the path that is supplied when 
the script is run. The transcript log is shown in Figure 13-9.

FIGURE 13-9 Transcript log file documenting results of running the TranscriptBios.ps1 script.

Advanced script testing

Although running a script and looking for errors will spot syntax problems, missing curly 
brackets, and even rights and permissions issues, it does not ensure that the script will per-
form the task it is intended to complete when the script is moved to production. To ensure 
that the script will work as expected in the production environment, you must test the script 
in a similar lab environment. The best lab environment is a complete duplication of the 
production network—down to the same physical infrastructure, including server models with 
the same BIOS revisions. Some companies maintain a duplicate infrastructure for disas-
ter recovery purposes. If this is the case, the duplicate infrastructure can often be used for 
application testing.



 Advanced script testing CHAPTER 13 471

If you do not have the luxury of working at a company that maintains a duplicate network 
infrastructure, you can often duplicate the existing hierarchy in virtual machines.

In most cases, it is not a requirement to duplicate the entire network—certainly not all of 
the client machines. Depending on what the script actually accomplishes, it is often sufficient 
to re-create the domain controller and a few servers.

LESSONS LEARNED

Testing scripts against known data

Enrique Cedeno, MCSE
Senior Network Administrator

Our team once wrote a script to determine whether a person was a member 
of a particular group. If the person was a member of this group, they had 

to change their password every 30 days. When we were writing the script, it was 
returning bogus names of people. When we investigated the situation, we realized 
that we needed to address the way in which we were changing the date and instead 
subtract the date first. If we had not already known who was supposed to be in this 
particular group, we would not have caught the date manipulation error, which 
could have created a big problem and made us look ridiculous. 

It is possible to write a script to create the users, groups, and organizational units that 
make up a typical Active Directory implementation, but it is not a requirement to do so. Every 
enterprise network creates backups of their domain controllers on a regular basis. It is pos-
sible to restore the domain into the test machine. As long as the test machines are isolated 
from the production environment, there will be no problem with the restoration. Of course, 
depending on how the backup tapes are made and how the files are restored, you might run 
into issues with hardware incompatibility; however, these issues can generally be resolved. 
The advantage of using the restore-from-tape method is that passwords, security identifiers 
(SIDs), relative identifiers (RIDs)—everything—will be exactly the same as the production 
environment. The disadvantages are the hardware requirements and the amount of time it 
takes to perform the backup and restore.

A faster solution is to use built-in tools to export only the portion of the Active Directory 
in which you are interested in working. Two tools can export portions of the Active Directory: 
the first is CSVDE, and the second is LDIFDE. (For additional information, refer to the 
Knowledge Base article at http://support.microsoft.com/kb/237677.) Of the two, I prefer to 
use CSVDE because it exports a comma-separated value file that is easy to clean up by using 
Microsoft Office Excel.

The cleanup process becomes an issue when using either of the two export tools because 
the data is not exported in the format that will be required for a later import. Therefore, 



 472 CHAPTER 13 Testing scripts

cleanup operations become a necessity, and the tool that makes it the easiest to do the 
cleanup is the tool that will be the most useful.

Using the CSVDE utility, you can specify the organizational unit that you want to export.

PS C:\fso> csvde -f testou.csv -d "ou=testou,dc=nwtraders,dc=com" 
Connecting to "(null)" 
Logging in as current user using SSPI 
Exporting directory to file testou.csv 
Searching for entries... 
Writing out entries 
... 
Export Completed. Post-processing in progress... 
3 entries exported 
 
The command has completed successfully

After the data is exported, it must be cleaned up prior to being imported into another 
server because a number of the properties that are exported are read-only properties that 
are controlled by the system. 

When the CSV file is cleaned up, you can import it into your test environment. To perform 
the import, you use the i parameter. (Export is the default behavior of CSVDE, and there is no 
export parameter.)

PS C:\fso> csvde -f testou.csv –i 
Connecting to "(null)" 
Logging in as current user using SSPI 
Importing directory from file "testou.csv" 
Loading entries.... 
3 entries modified successfully. 
 
The command has completed successfully

LESSONS LEARNED

Handling passwords inside a virtual machine

Neither CSVDE nor LDIFDE has the ability to export passwords from active 
Directory. If your script tests passwords or authentication mechanisms, you 

need to use the backup and restore technique discussed earlier. If your test scenario 
involves noting what happens to specific users and groups, the CSVDE technique 
will work for that particular application. Because the users are exported with no 
passwords, you have two choices. The first choice is to import all of the users in a 
disabled state and then use another script to enable the users and set them with the 
same password. however, this process seems to be a lot of work for very little value. 
a better approach is to change the password policy inside the virtual machine to 
allow empty passwords, which then allows the CSVDE scripts to work fine.



 Additional resources CHAPTER 13 473

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
many examples of Windows PowerShell scripts.

■■ For more information about CSVDE and LDIFDE, see the Knowledge Base article at 
http://support.microsoft.com/kb/237677.

■■ All scripts from this chapter are available via the TechNet Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40 
-Best-d9e16039.





   475

C H A P T E R  1 4

Documenting scripts
■■ Gathering documentation from help

■■ Getting documentation from comments

■■ Using the AST parser

■■ Additional resources 

One of the great things about Windows PowerShell is the way that it provides the ability 
to document scripts. In this chapter, we look at different ways of obtaining documen-

tation. We begin with examining documentation from help, and then we move to different 
ways of getting documentation from the scripts themselves. 

Getting documentation from help

There are many reasons for documenting scripts. It might be due to compliance require-
ments, for ease of use, or for change control. The easiest way to provide script docu-
mentation is to obtain it from the script itself. While there are several different ways of 
 incorporating help into a script, the most robust is to use comment-based help. If your 
scripts implement comment-based help and if they use a standard set of tags, you might be 
able to easily meet your documentation needs via standardized help content. Of course, this 
works only if your scripting guidelines incorporate comment-based help in the checklist of 
requirements for all production scripts. 

The Get-ScriptHelp.ps1 script parses a directory containing scripts, calls Get-Help on 
each script, and writes the results out to a log file. The complete Get-ScriptHelp.ps1 script 
appears here.

Get-Scripthelp.ps1

function New-Underline 

{ 

<# 

.Synopsis 

 Creates an underline the length of the input string 

.Example 

 New-Underline -strIN "Hello world" 



 476 CHAPTER 14 Documenting scripts

.Example 

 New-Underline -strIn "Morgen welt" -char "-" -sColor "blue" -uColor "yellow" 

.Example 

 "this is a string" | New-Underline 

.Notes 

 NAME: New-Underline 

 AUTHOR: Ed Wilson 

 LASTEDIT: 9/9/2013 

 KEYWORDS: Utility 

.Link 

 Http://www.ScriptingGuys.com 

#> 

[CmdletBinding()] 

param( 

      [Parameter(Mandatory = $true,Position = 0,valueFromPipeline=$true)] 

      [string] 

      $strIN, 

      [string] 

      $char = "-", 

      [string] 

      $sColor = "Green", 

      [string] 

      $uColor = "darkGreen", 

      [switch] 

      $pipe 

 ) #end param 

 $strLine= $char * $strIn.length 

 if(-not $pipe) 

  { 

   Write-Host -ForegroundColor $sColor $strIN 

   Write-Host -ForegroundColor $uColor $strLine 

  } 

  Else 

  { 

  $strIn 

  $strLine 

  } 

} #end New-Underline function 

 

Function Get-ScriptHelp  

{ 

 [cmdletbinding()] 

 Param ($scriptPath,$filePath)  

 Get-ChildItem -Path $scriptPath -filter *.ps1 -Recurse | 

 ForEach-Object { 



 Getting documentation from help CHAPTER 14 477

  If(-not($_.psIsContainer)) 

   {  

     New-Underline "$_" -pipe | Out-File -FilePath $filepath -Append 

     Write-Verbose "Getting help for $_.fullName" 

     Get-Help $_.fullname -detailed | Out-File -FilePath $filepath -Append 

   } #end if 

 } #end foreach-object 

} #end function get-Scripthelp 

 

 

# *** Entry Point to Script *** 

$ErrorActionPreference = "continue" 

$filepath = "C:\fso\BestPracticeScripts.txt" 

$Scriptpath = "C:\ScriptFolder" 

if(Test-Path $filepath) {Remove-Item $filepath} 

Get-ScriptHelp -filepath $filepath -scriptpath $scriptpath -Verbose 

Notepad $filepath

When the Get-ScriptHelp.ps1 script runs, it parses a folder containing scripts. A filter limits 
the search to files that have a ps1 file extension. By default, if an error occurs during the 
run, the error is ignored and the script continues to process scripts. In a situation where the 
documentation is critical, you might want to change the value of $ErrorActionPreference to 
stop instead of continue. To make the script easier to use, any existing log file is automatically 
deleted, and therefore it is possible to run the script multiple times without worrying about 
appending results. 

This approach relies on comment-based help being one of the first elements in the ps1 
script file. If a comment block, which the majority of the scripts from this book contain, pre-
cedes the comment-based help, the approach does not work. If using comment-based help is 
the documentation approach you want to use, you might want to change all of your tradi-
tional comment block style of header information into comment-based help. The traditional 
comment block type of header appears here:

# ------------------------------------------------------------------- 
# Script: Untitled1.ps1 
# Author: ed wilson, msft 
# Date: 09/08/2013 13:47:33 
# Keywords: documentation 
# comments: Get-Help 
# Windows PowerShell 4.0 Best Practices, Microsoft Press, 2013 
# Chapter 14 
# ---------------------------------------------------------------------

Making the change to using comment-based help to produce your script headers means a 
simple change of technique–instead of using numerous pound signs, use the <# and the #> 



 478 CHAPTER 14 Documenting scripts

hash signs. If you use a few of the standard tags, you can get the documentation easily via 
Get-Help. The following illustrates a comment-based header block:

<# 
   .Synopsis 
    This is a comment-based block  
   .Description 
    This illustrates comment-based help used as 
    script header 
   .Notes 
    NAME:  Comment-BasedHeader.ps1 
    AUTHOR: ed wilson, msft 
    LASTEDIT: 09/08/2013 13:49:40 
    KEYWORDS: Documentation, help 
    Book: Windows PowerShell 4.0 Best Practices, Microsoft Press, 2013 
    Chapter: 14  
   .Link 
     Http://www.ScriptingGuys.com 
 #Requires -Version 4.0 
 #>

When the Get-ScriptHelp.ps1 script runs, a report similar to the one shown in Figure 14-1 
appears. 

FIGURE 14-1 By using comment-based header blocks on your scripts, documentation is produced easily.

Documenting scripts is about more than compliance. It is also a good way to examine a 
script prior to actually running it. This becomes a vital safety check, especially when down-
loading scripts from places like the Scripting Guys Script Repository. For more information 
about script safety in this regard, see the sidebar written by Windows PowerShell MVP 
Jeffery Hicks.



 Getting documentation from help CHAPTER 14 479

NOTES FROM THE FIELD
Jeffery hicks, Windows PowerShell MVP 
Author of PowerShell in Depth: An administrator’s guide

There is no question that the Windows PowerShell community continues to 
grow by leaps and bounds, including an ever-expanding collection of scripts 

from sites such as PoshCode.org, techNet, and a number of Windows PowerShell-
related blogs. however, not all scripts are written to the same level of quality you 
would prefer. how can you tell what the script is going to do? Is it safe to run? Or 
perhaps you have developed your own script that someone else will be using. Can 
you trust that it will be executed correctly? For example, you might have the follow-
ing concerns:

■■ how does the script handle missing parameters?

■■ how does the script handle different operating systems?

■■ how does the script handle a wide range of values for the inputs?

■■ how does the script handle the different combinations of parameters?

Frankly, some of these issues can be handled during script development. at 
the beginning of your script or at the start of your function, add the following 
command:

Set-StrictMode –version latest

This will ensure that your command doesn’t “break the rules.” For example, 
Windows PowerShell will complain if you attempt to use an undefined variable. This 
is terrific for catching typos. In addition, I always recommend providing default 
values for script or function parameters as well as casting the parameter to the 
necessary type. that way, if the user passes the wrong type of object as a parameter, 
Windows PowerShell will complain. You should also take advantage of the valida-
tion attributes to further ensure that users are entering correct parameters. here’s 
an example that will work in Windows PowerShell 3 or newer versions:

Param ( 

[Parameter(Position=0,ValueFromPipeline, 

 HelpMessage="What is the name of the computer to backup?")] 

[ValidateScript({ Test-Connection $_ -quiet –count 1})] 

[ValidatePattern("^CHI-\w{2}\d{2}$")] 

[string]$Computername=$env:computername, 

)

With this parameter, if an admin enters a computer name, it must start with ChI 
followed by a dash, 2 characters, and then 2 numbers—for example, ChI-DC02. In 
addition, the computer must respond to a single ping. If either of these conditions is 



 480 CHAPTER 14 Documenting scripts

not met, Windows PowerShell will throw an exception and the command will fail to 
run, which is better than completing halfway and then failing. 

and of course you need to test everything in a non-production environment. Your 
script should follow the same code development process that an internally devel-
oped application would follow. I always try to think of the most ridiculous way 
someone might run the script, plan for it, and test accordingly. I want robustness, 
and I bet you do too.

Now, what about a script that you’ve downloaded? how can you tell if it is safe to 
run? You could blindly run it in a test environment, such as in a virtual machine. 
But you should look at it first. I realize that you might still be learning Windows 
PowerShell and perhaps don’t fully understand everything you might see. So I have 
something to help. 

In the previous version of this book, I had a Windows PowerShell script that would 
“profile” a script. That is, it gave you an idea of what commands it would run and 
identified any potentially dangerous commands. Frankly, the previous version was 
not very well written. Fortunately, Windows PowerShell 3.0 introduced a new way of 
parsing script files using an Abstract Syntax Tree (AST). Don’t worry too much about 
what it means. On the companion media or through a download, you should be 
able to find my script called Get-ASTScriptProfile.ps1. 

The script takes the name of a script to profile. You can specify a .ps1 or .psm1 file 
name. Using the aSt, the script will prepare a text report showing you any script 
requirements, script parameters, commands, and type names. You will see all com-
mands used, including those that can’t be resolved and those that I thought might 
be considered potentially dangerous, such as cmdlets that use the verbs Remove or 
Stop. Because some people might invoke methods from .NEt classes directly, I’ve 
also captured all type names. Most of them will probably be related to parameters, 
but at least you’ll know what to look for. the entire report is turned into a “help 
about” topic stored in your Documents folder and displayed with Get-Help and the 
awesome –ShowWindow parameter.

the report won’t detail parameters from nested functions, but you’ll still see what 
commands they will use. the script uses Get-Command to identify commands that 
might entail loading a module. Most of the time, this shouldn’t be an issue, but you 
still might want to profile the script in a virtualized or test environment. Any unre-
solved command that you see is either from a module that couldn’t be loaded or 
perhaps an internally defined command. When you know what to look for, you can 
open the script in your favorite editor and search for the mystery commands.

Practicing safe Windows PowerShell is a habit that you have to cultivate, not 
only in the scripts and tools that you write but also when using code written by 
someone else.



 Getting documentation from comments CHAPTER 14 481

Getting documentation from comments

If scripts do not provide for comment-based help, it might still be possible to obtain 
documentation from the script based on how well commented the scripts are. The 
GetCommentsFromScript.ps1 script accepts a path to a script and returns all comments that 
begin lines from within the script. It does not pick up inline comments but only comments 
that begin the line. This would include the traditional comment block discussed in the preced-
ing section, as well as any sectional comments. The complete GetCommentsFromScript.ps1 
script appears here.

GetCommentsFromScript.ps1

Function Get-FileName 

{ 

 Param ($Script) 

 $OutPutPath = [io.path]::GetTempPath() 

 Join-Path -path $OutPutPath -child "$(Split-Path $script -leaf).txt" 

} #end Get-FileName 

 

Function Remove-OutPutFile($OutPutFile) 

{ 

  if(Test-Path -path $OutPutFile)  

    { 

       $Response = Read-Host -Prompt "$OutPutFile already exists. Do you wish to 

delete it <y / n>?" 

       if($Response -eq "y") 

         { Remove-Item $OutPutFile | Out-Null } 

       ELSE  

         { 

           if(Test-Path -path "$OutPutFile.old") { Remove-Item -Path "$OutPutFile.old" 

} 

           Rename-Item -path $OutPutFile -newname  "$(Split-Path $OutPutFile -leaf).

old" -Force 

          } 

    } 

} #end Remove-OutPutFile 

 

Function Get-Comments 

{ 

 Param ($Script, $OutPutFile) 

 Get-Content -path $Script | 

 Foreach-Object {  

    If($_ -match '^\#') 

     { $_  |  

      Out-File -FilePath $OutPutFile -append } 



 482 CHAPTER 14 Documenting scripts

  } #end Foreach 

} #end Get-Comments 

 

Function Get-OutPutFile($OutPutFile) 

{ 

 Notepad $OutPutFile 

} #end Get-OutPutFile 

 

# *** Entry point to script *** 

 

$script = 'C:\scriptfolder\Get-ModifiedFilesUsePipeline.ps1' 

$OutPutFile = Get-FileName($script) 

Remove-OutPutFile($OutPutFile) 

Get-Comments -script $script -outputfile $OutPutFile 

Get-OutPutFile($OutPutFile)

One of the things that the script does is create a documentation file for the script, and it 
uses the file name and appends a txt extension to the file name. In addition, the file is created 
in the temporary working directory of the user who runs the script. This path always exists on 
the system. This is accomplished by using the Get-FileName function shown here:

Function Get-FileName 
{ 
 Param ($Script) 
 $OutPutPath = [io.path]::GetTempPath() 
 Join-Path -path $OutPutPath -child "$(Split-Path $script -leaf).txt" 
} #end Get-FileName

The Get-Comments function reads the script and uses a simple regular expression pattern 
to retrieve each line from the script. This function is shown here:

Function Get-Comments 
{ 
 Param ($Script, $OutPutFile) 
 Get-Content -path $Script | 
 Foreach-Object {  
    If($_ -match '^\#') 
     { $_  |  
      Out-File -FilePath $OutPutFile -append }  
  } #end Foreach 
} #end Get-Comments

After the script runs, a file similar to the one shown in Figure 14-2 appears.



 Getting documentation from comments CHAPTER 14 483

FIGURE 14-2 Comments parsed from a script by using the GetCommentsFromScript.ps1 script.

INSIDE TRACK
Chris Bellee, Premier Field Engineer
Microsoft Corporation, Australia

W indows PowerShell cmdlets are the main administrative commands 
in PowerShell. Cmdlets are compiled programs that encapsulate .NEt 

Framework classes. as progressive versions of Windows PowerShell have been 
released, many new cmdlets have been added to expand its functionality. For exam-
ple, Windows PowerShell 1 shipped with 126 default cmdlets, whereas Windows 
PowerShell 4 (running on Windows 8) has 510 cmdlets available out of the box. 

Even with such a large increase in the number of cmdlets, only a small frac-
tion of the .NEt framework has been exposed through cmdlets. this is where 
the  New-Object cmdlet comes in very handy, because it allows you to create 
new instances of .NET classes (known as objects), which can then be used within 
Windows PowerShell.

For example, let’s say that I need to test whether a remote machine is listening 
on port 80. What cmdlet would allow me to do this? The answer (as of Windows 
PowerShell 4) is that there isn’t one, but we can tap directly into the .NET frame-
work and create an object designed just for this purpose. to do this, we use the 
New-Object cmdlet, specifying the fully qualified class path as the argument to the 
–TypeName parameter. the syntax is very straightforward; in fact, the trickiest part 
is actually discovering the correct class name in the first place!

$tcpClient = New-Object –TypeName System.Net.Sockets.TcpClient



 484 CHAPTER 14 Documenting scripts

after creating the object, we can interrogate the object using our old friend, 
Get-Member.

$tcpClient | Get-Member

You’ll see that there are a number of members (properties and methods) that we 
could use. the Connect() method looks like the one that will allow a connection 
to a remote machine, but how do we use it? a nice trick is to specify the method 
name, without its usual parentheses. this forces Windows PowerShell to display the 
method’s different overloads—its number and type of input arguments.

$tcpClient.Connect 

OverloadDefinitions 

------------------- 

void Connect(string hostname, int port) 

void Connect(ipaddress address, int port) 

void Connect(System.Net.IPEndPoint remoteEP) 

void Connect(ipaddress[] ipAddresses, int port)

there are actually four different sets of input arguments for the Connect() method. 
For this example, we will use the first overload, which accepts a string for the 
remote machine name and an integer, which represents the remote port number on 
which to connect.

$tcpClient.Connect("Server-01",80)

We can now check whether the connection succeeded by querying the object’s 
Connected property, which returns a Boolean (true or false) data type.

$tcpClient.Connected

Put the preceding code into a function or a loop, and you have a simple way to 
verify remote port availability and to troubleshoot connectivity.

Using the AST parser

A more powerful means of documenting a script is by using the PSParser class from the 
System.Management.Automation .NET Framework namespace. The tokenizer becomes avail-
able when using the static Tokenize method from the PSParser class. The tokenizer is used to 
break a Windows PowerShell script into pieces of code called tokens. Using the tokenizer, you 
can find commands or variables in a Windows PowerShell script. The powerful aspect of using 
the tokenizer is that it does not matter where within the text that the command appears. In 
addition, it is easier to use than complex regular expressions.  



 Using the AST parser CHAPTER 14 485

The ParseScriptCommands.ps1 illustrates parsing a script. 

ParseScriptCommands.ps1

$errors = $null 

$logpath = "C:\fso\commandlog.txt" 

$path = 'C:\ScriptFolder' 

Get-ChildItem -Path $path -Include *.ps1 -Recurse | 

ForEach-Object {  

  $script = $_.fullname 

  $scriptText = get-content -Path $script 

  [system.management.automation.psparser]::Tokenize($scriptText, [ref]$errors) | 

  Foreach-object -Begin {  

    "Processing $script" | Out-File -FilePath $logPath -Append } ' 

  -process { if($_.type -eq "command")  

    { "'t $($_.content)" | Out-File -FilePath $logpath -Append } } 

} 

notepad $logpath 

The first thing that the ParseScriptCommands.ps1 script does is initialize three variables. 
The first one is used to collect any errors generated by the tokenizer. The second variable 
is used for the log file, and the last one specifies the directory that contains the Windows 
PowerShell scripts that need to be parsed. These commands are shown here: 

$errors = $null 
$logpath = "C:\logs\commandlog.txt" 
$path = "C:\data\PSExtras"

The next four commands are standard Windows PowerShell cmdlets. The Get-ChildItem 
cmdlet retrieves only Windows PowerShell scripts (that have the .ps1 extension) from the 
script directory specified earlier. The –recurse parameter is required when retrieving the files 
from the folder. The resulting fileinfo objects are pipelined to the ForEach-Object cmdlet, 
where the full path to each script is stored in the $script variable. Next, the Get-Content cmd-
let reads each Windows PowerShell script and stores the content of the file in the $scriptText 
variable. This section of the script is shown here: 

Get-ChildItem -Path $path -Include *.ps1 -Recurse | 
ForEach-Object {  
  $script = $_.fullname 
  $scriptText = get-content -Path $script

The psparser .NET Framework class in the System.Management.Automation namespace 
has the Tokenize static method. The first parameter is a variable containing the contents of 
a Windows PowerShell script, and the second parameter is a reference variable to hold the 
errors. The second parameter must be supplied when calling the Tokenize method. The tokens 
are then pipelined to the next section of the script. This command is shown here: 

[system.management.automation.psparser]::Tokenize($scriptText, [ref]$errors) 



 486 CHAPTER 14 Documenting scripts

Use the Foreach-Object cmdlet to process each token. The first thing to do is to write 
the full path to the script to the log file. Next, check to see whether the type property of the 
token object is a command—if it is, write the command to the log file as well. When finished 
processing all of the scripts in the folder, display the contents of the log file. This section of 
the script is seen here: 

  Foreach-object -Begin {  
    "Processing $script" | Out-File -FilePath $logPath -Append } ' 
  -process { if($_.type -eq "command")  
    { "'t $($_.content)" | Out-File -FilePath $logpath -Append } } 
} 
notepad $logpath

When the script runs, a text file similar to the one seen in Figure 14-3 appears. 

FIGURE 14-3 Output log created by the ParseScriptCommands.ps1 script.

When you know how to use the Windows PowerShell tokenizer to parse script syntax, it is 
possible to create a tool that will analyze the script and report on various aspects of the script. 



 Additional resources CHAPTER 14 487

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous script examples.

■■ All scripts from this chapter are available via the TechNet Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell 
-40-Best-d9e16039.

■■ The PSParser class is documented on MSDN at http://msdn.microsoft.com/en-us 
/library/windows/desktop/system.management.automation.psparser(v=vs.85).aspx.

■■ The CommandAST class is documented on MSDN at http://msdn.microsoft.com 
/en-us/library/windows/desktop/system.management.automation.language 
.commandast(v=vs.85).aspx. 

■■ You can read more about validation attributes in Windows PowerShell help, or grab a 
help module written by Jeffery Hicks at http://jdhitsolutions.com/blog/2012/05 
/introducing-the-scriptinghelp-powershell-module/.

http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40-Best-d9e16039
http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40-Best-d9e16039




PART IV

Deploying the script    

CHAPTER 15 Managing the execution policy 491

CHAPTER 16 Running scripts 507

CHAPTER 17 Versioning scripts 521

CHAPTER 18 Logging results 531

CHAPTER 19 Troubleshooting scripts 559

CHAPTER 20 Using the Windows PowerShell ISE 605

CHAPTER 21 Using Windows PowerShell remoting and jobs 615

CHAPTER 22 Using Windows PowerShell Workflow 643

CHAPTER 23 Using Windows PowerShell DSC  659





   491

C H A P T E R  1 5

Managing the execution 
policy

■■ Selecting the appropriate script execution policy 

■■ Deploying the script execution policy

■■ Understanding code signing 

■■ Additional resources 

Before you can run a Windows PowerShell script, you must choose the appropriate script 
execution policy. After you choose the script execution policy, you need to decide how 

to deploy it to the computers on your network. Because script signing can become an 
issue with several of the execution policies, in this chapter we will examine the techniques 
involved with signing scripts. We will then move on to specialized types of scripts and differ-
ent techniques for maintaining version control.

Selecting the appropriate script execution policy

Choosing the right level of script support for your environment is an essential first step 
when it comes to deploying and using Windows PowerShell scripts. The first decision to 
be made involves whether to allow the use of Windows PowerShell scripts on a particular 
desktop or server. By default, when Windows PowerShell is installed, scripting is turned 
off. This action provides an additional level of protection not only from malware but also 
from careless users and untrained network administrators who are unfamiliar with Windows 
PowerShell. To allow for the running of scripts, you must make a decision to enable script 
support. When you enable support for Windows PowerShell scripting, you gain several 
advantages, including the following:

■■ The ability to run Windows PowerShell scripts as logon scripts (Windows Server 2008 
R2 domain controller (or above) required).

■■ The ability to remotely administer desktops and servers through both fan-out and 
fan-in scenarios.

■■ The ability to quickly apply consistent configuration changes to desktops and servers.

■■ The ability to save a series of commands for reuse at a later point in time.



 492 CHAPTER 15 Managing the execution policy

■■ The ability to fine-tune a series of commands and optimize the performance of those 
commands.

■■ The ability to use a Windows PowerShell profile.

■■ The ability to use modules.

the purpose of script execution policies
Windows PowerShell script execution policies are not a security feature—they are a conve-
nience feature. Script execution policies are designed to raise awareness surrounding the 
process of running Windows PowerShell scripts. Even if you sign all of your scripts, you cannot 
guarantee that the script will not wreak havoc on your network. All that you can guarantee is 
that the script has not been tampered with since you signed it. Anyone can obtain a code-
signing certificate—even people who write malware. Therefore, a certificate is not a secu-
rity panacea. You still need to ensure that both the IT staff and the users are trained to pay 
attention to their computing environment. Even if you have the script execution policy set to 
restrict the execution of Windows PowerShell scripts, it is still possible to bypass the execution 
policy by using the bypass switch.

NOTE On Windows Server 2012 R2, the script execution policy is automatically set to 
Remote Signed. On Windows 8.1, however, the default script execution policy is set to 
restricted. 

Understanding the different script execution policies
Several levels of scripting support are defined in Windows PowerShell. Each of these levels 
can potentially alter the ability to run scripts on a local or remote computer. In addition, some 
of the levels might alter the way in which scripts are written and tested. The five different 
execution policies and their associated policy settings are shown in Table 15-1.

TABLE 15-1 Script execution policy settings

Policy Setting Changes

Restricted ■■ Default script execution policy setting
■■ Runs commands interactively from the Windows PowerShell console 
■■ Pipeline commands permitted
■■ Creating functions in the Windows PowerShell console permitted
■■ Use of script blocks in commands allowed
■■ All files with the extension of (.ps1) are blocked from executing, including all six of the 

various Windows PowerShell profiles
■■ Modules are blocked (.psm1 file extension)
■■ Windows PowerShell configuration files are blocked (.ps1 xml)



 Selecting the appropriate script execution policy CHAPTER 15 493

Policy Setting Changes

AllSigned ■■ Scripts, profiles, modules, and configuration files run when signed by a trusted 
publisher

■■ Requires all scripts to be signed, including scripts written on local computer
■■ Prompts before running scripts signed by publishers that are not trusted
■■ Prompts before running scripts from trusted publishers the first time the script is run

RemoteSigned ■■ Local scripts, profiles, modules, and configuration files run when not signed
■■ Scripts received from the Internet zone must be signed by a trusted publisher prior to 

running
■■ Prompts before running scripts downloaded from the Internet zone from trusted 

publishers

Unrestricted ■■ All unsigned scripts, profiles, modules, and configuration files run when not signed
■■ Prompts before running scripts received from the Internet zone

Bypass ■■ Nothing is blocked and no warning prompts

Understanding the Internet zone
Windows PowerShell script execution policies rely on the Internet zone settings from 
Windows Internet Explorer. Certain applications, such as Microsoft Office Outlook, also use 
and honor the Internet Explorer Internet zone settings. The Internet Explorer security zones 
are shown in Figure 15-1.

FIGURE 15-1 Windows PowerShell uses the Internet Explorer security zone settings to determine whether 
a script came from a local or remote location.



 494 CHAPTER 15 Managing the execution policy

Internet Explorer adds a tag to the alternate file stream of the script file. When a script is 
received via Office Outlook (assuming that the antivirus software does not remove the file), 
a tag is also added to the alternate data stream of the script file. Any application can choose 
to honor the Internet Explorer definition of Internet zone settings and either add the tag or 
read the tag that is placed on the file. To view the alternate data stream of the file, you can 
use the Streams.exe Windows SysInternals utility, which has the ability to both read and delete 
the Internet zone tag. To search for files with alternate data streams, you can use the –s switch 
and specify the path to a folder. All files in the specified folder that contain alternate data 
streams will be returned.

PS C:\data\streams> .\streams.exe -s c:\fso 
 
Streams v1.5 - Enumerate alternate NTFS data streams 
Copyright (C) 1999-2003 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
c:\fso\InternetScript.ps1: 
   :Zone.Identifier:$DATA       26 

The Zone.Identifier tag is used to indicate that the file was downloaded from the Internet. 
Attempts to run the InternetScript.ps1 script will be blocked. However, by using the –d switch 
from the Streams.exe utility, the Internet zone tag is removed. When using the Streams.exe 
utility to remove the alternate data stream from the file, you must supply the path to the 
script by name.

PS C:\data\streams> .\streams.exe -d C:\fso\InternetScript.ps1 
 
Streams v1.5 - Enumerate alternate NTFS data streams 
Copyright (C) 1999-2003 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
C:\fso\InternetScript.ps1: 
   :Zone.Identifier:$DATA       26 
PS C:\data\streams> .\streams.exe -s c:\fso 
 
Streams v1.5 - Enumerate alternate NTFS data streams 
Copyright (C) 1999-2003 Mark Russinovich 
Sysinternals - www.sysinternals.com

When the alternate data stream is removed from the file, the file is considered to have 
originated from the local computer and will no longer be blocked. This technique can be used 
to remove the Internet location from compiled help files (CHM) as well as from scripts and 
other files that are routinely blocked when they are downloaded from the Internet zone.

If a script is copied from a webpage and saved into a .ps1 file (by using the Windows 
PowerShell Integrated Scripting Environment [ISE] or Notepad), the file is considered to be 
in the local Trusted zone because the file was created locally. The only time that a script is 
tagged as remote is if it is actually downloaded from the Internet—not when the content is 
cut and pasted from the Internet. This can affect files other than Windows PowerShell files. 
When Windows PowerShell scripts (that are compressed by certain file compression utilities) 



 Deploying the script execution policy CHAPTER 15 495

are downloaded from the Internet zone as a compressed file, the script is tagged as remote 
when it is expanded. This is a function of the compression software honoring the Internet 
Explorer zone settings and therefore does not occur with all compressed files. If the Windows 
PowerShell script files are packaged by using an executable software installer, the scripts will 
not pick up the remote location setting because the scripts are considered local after they are 
installed.

When changing the Windows PowerShell script execution policy to RemoteSigned, scripts 
that are determined to have come from the Internet zone must be signed prior to execut-
ing. Internet Explorer is very aggressive in determining the boundaries for the Internet zone. 
By default, Universal Naming Convention (UNC) shares are determined to be in the Internet 
zone, which means that scripts downloaded from an internal share will not execute unless 
they are signed. Because many companies store their script repositories on an internal file 
share, a major problem is created. The solution is to add the script share to the Trusted Sites 
zone in Internet Explorer. To do this, you can directly add the site by using Internet Explorer, 
adding the location to the registry, or using Group Policy to make the change. In a corporate 
enterprise, using Group Policy is obviously the best approach.

Deploying the script execution policy

When deploying the script execution policy, you have several choices. While it is possible to 
edit the registry to modify the script execution policy, this is generally not the best approach 
due to the potential for making mistakes and corrupting the registry. Additionally, in most 
cases it is simply too much unnecessary work. If you want to modify the script execution 
policy on a local computer, it is a best practice to use the Set-ExecutionPolicy cmdlet to 
make the change because it is easy to use and you can be assured that it will make the 
change correctly.

If you have more than a few computers, it is a best practice to use Group Policy to modify 
the Windows PowerShell script execution policy. Using Group Policy has the advantage of 
being easily reversible as well as centrally controlled. If you do not use Group Policy, you can 
use a logon script to make the changes.

Modifying the registry
It is possible to modify the registry to enable or disable the script execution policy. You 
might want to take this approach if you are working in an environment that does not have 
Group Policy deployed. If the Windows PowerShell script execution policy is not modified 
to enable the use of PowerShell scripts, you might think you are limited to using VBScript 
or a batch (.bat) file to deploy the registry modification. Because Windows PowerShell 
includes the bypass switch, you will be able to run a Windows PowerShell script in bypass 



 496 CHAPTER 15 Managing the execution policy

mode and make the requisite changes to the registry. The registry key, HKEY_LocalMachine\
Software\Microsoft\PowerShell\1\ShellIDs\Microsoft.PowerShell\ExecutionPolicy, is shown in 
Figure 15-2.

FIGURE 15-2 Windows PowerShell script execution policy is shown in the registry.

If you are creating a Microsoft Installer (MSI) package to deploy a standardized profile to 
your computers, you might also want to modify the registry via the MSI package. Such a sce-
nario is more likely to be the exception rather than the rule, and you should generally avoid 
directly editing the registry.

Using the Set-ExecutionPolicy cmdlet
The Set-ExecutionPolicy cmdlet can be used to set the Windows PowerShell script execution 
policy. This cmdlet must be executed from an elevated Windows PowerShell prompt because 
it modifies the registry. Modifying the registry or using the Set-ExecutionPolicy cmdlet both 
perform the same task: they change the value of the registry key. When Windows is first 
installed, the registry keys that control the Windows PowerShell script execution policy do not 
exist. The default value of the script execution policy is Restricted, but this value is not shown 
in the registry unless it has been changed. To properly modify the registry entails checking 
for the existence of the registry key, creating it if it does not exist, or modifying the value if 
it does exist. The checking and modifying process is a bit tedious and in most cases presents 
unnecessary work. It is far better to use the Set-ExecutionPolicy cmdlet and avoid the manual 
registry work.

Using the Set-ExecutionPolicy cmdlet on a local computer
To modify the Windows PowerShell script execution policy on a local computer, you must run 
the PowerShell console as an administrator if your operating system is Windows Vista or a 
later version. (See Figure 15-3.)



 Deploying the script execution policy CHAPTER 15 497

FIGURE 15-3 To run the Set-ExecutionPolicy cmdlet, Windows PowerShell must be launched with admin 
rights.

If the user does not have admin rights, the command will generate an error.

PS C:\Users\edwils> Set-ExecutionPolicy -ExecutionPolicy remotesigned 
 
Execution Policy Change 
The execution policy helps protect you from scripts that you do not trust. Changing the  
execution policy might expose you to the security risks described in the about_
Execution_ 
Policies help topic. Do you want to change the execution policy? 
[Y] Yes  [N] No  [S] Suspend  [?] Help (default is “Y”): y 
Set-ExecutionPolicy : Access to the registry key ‘HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft 
\PowerShell\1\ShellIds\Microsoft.PowerShell’  
is denied. At line:1 char:20 
+ Set-ExecutionPolicy <<<<  -ExecutionPolicy remotesigned 
    + CategoryInfo          : NotSpecified: (:) [Set-ExecutionPolicy],  
  UnauthorizedAccessException 
    + FullyQualifiedErrorId : System.UnauthorizedAccessException,Microsoft.PowerShell 
.Commands.SetExecutionPolicyCommand

When the command completes successfully, nothing is displayed.

PS C:\> Set-ExecutionPolicy -ExecutionPolicy unrestricted 
PS C:\>

The changes take effect immediately. You can therefore test the script execution policy by 
attempting to run a script or by using the Get-ExecutionPolicy cmdlet. The Test-Script.ps1 
script combines both approaches.

test-Script.ps1

“This test script displays the script execution policy.” 

Get-ScriptExecutionPolicy

Using the Set-ExecutionPolicy cmdlet via a logon script
If your network does not use Group Policy and you do not relish the idea of editing the regis-
try, you can still set the Windows PowerShell script execution policy. The easiest way to do this 
is to add a command to your logon script. Because the logon script is being run anyway, you 
already have the necessary infrastructure in place to configure the script execution policy. To 



 498 CHAPTER 15 Managing the execution policy

set the script execution policy to RemoteSigned from within a logon script, use the following 
command:

powershell -command &{Set-ExecutionPolicy remotesigned}

If the logon script is a batch file, the preceding command works directly. However, if 
the logon script is a VBScript file, you need to do a bit more work. You can use the run 
method from the WshShell object to use the Set-ExecutionPolicy cmdlet to set the Windows 
PowerShell script execution policy on all of the workstations. The SetScriptExecutionPolicy 
.vbs script sets the script execution policy to RemoteSigned, but it can easily be modified to 
set any other policy that is required. Keep in mind that this script must run with admin rights 
because the Set-ExecutionPolicy cmdlet modifies the registry.

SetScriptExecutionPolicy.vbs

Set WshShell = CreateObject(“WScript.Shell”) 

WshShell.Run(“powershell -Noninteractive -command &{Set-ExecutionPolicy 

remotesigned}”)

NOTES FROM THE FIELD

Working with Windows PowerShell security

richard Siddaway, Microsoft PowerShell MVP
UK PowerShell User Group Chairman

“Windows PowerShell doesn’t work. I can’t run scripts.”

I can’t remember the number of times I have seen this sentiment on the forums. It’s 
a question that comes up so often that I always cover it when speaking publicly. the 
answer is “Yes, it does work” and “You need to change the execution policy.”

Scripting has had bad press in certain quarters since the “I Love You” virus of 2000. 
this virus enticed the user to open an attachment, which sent a copy of the virus 
using VBScript to all members of the user’s address list as well as doing other dam-
age. Strictly speaking, this is a social engineering issue rather than a scripting issue, 
but Windows PowerShell is designed to counter these threats.

When Windows PowerShell is first installed, it can be used interactively, but it won’t 
run scripts because the execution policy is set to the default of restricted. We can 
view the execution policy with the Get-ExecutionPolicy cmdlet. accounts with 
administrator privileges can modify the policy with the following code.

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned



 Deploying the script execution policy CHAPTER 15 499

this is a good compromise because it allows local scripts to run, but it blocks scripts 
from the Internet or UNC mapped drives unless they are signed with a code-signing 
certificate that the system can accept. Other options include AllSigned (all scripts 
must be signed) and Unrestricted (any script can run, but a warning is generated if 
scripts are running from the Internet). AllSigned should be used if you have a code-
signing infrastructure. Unrestricted is not recommended. Windows PowerShell 2.0 
introduced Bypass, which does not block any scripts and does not issue warnings. 
You can use Bypass when Windows PowerShell is built into an application or when 
there is another security model in place for the programs.

another cause for complaint is that Windows PowerShell scripts cannot be run by 
double-clicking. If this operation is attempted, the scripts are opened in the default 
editor. again, this process occurs by design to help prevent rogue scripts from dam-
aging your systems.

The final “speed bump” to running scripts is that the current folder is not on the 
path. If you type a script name, Windows PowerShell will not search in the current 
folder. You need to force access to the local folder using the following command:

./myscript.ps1

So, do these settings make Windows PowerShell totally secure? Of course not. It 
is always possible for the Windows PowerShell settings to be changed by human 
intervention. On the forums, numerous people have asked how to make Windows 
PowerShell run by double-clicking a script. Just because you can do it doesn’t mean 
that you should! My advice is to set the script execution policy to the setting that 
best fits your organization—AllSigned ideally, but RemoteSigned is the next best 
choice. Don’t change the other settings.

there are a lot of people out there who want to compromise your system. Don’t 
help them. Leave the settings as they are. a great deal of thought went into the 
Windows PowerShell configuration, and these settings exist for a reason, as we have 
seen. Enjoy Windows PowerShell, but keep it secure.

Using Group Policy to deploy the script execution policy
The best way to define the Windows PowerShell script execution policy is to use Group Policy. 
In Windows Server 2008 R2, a Group Policy object (GPO) for Windows PowerShell contains a 
setting named Turn On Script Execution. This GPO can be applied to the computer or to the 
user. As shown in Figure 15-4, there is only one option—the execution policy. Three values 
can be selected in the Turn On Script Execution GPO, and these three values correspond to 



 500 CHAPTER 15 Managing the execution policy

the Set-ExecutionPolicy settings of Signed, RemoteSigned, and Unrestricted. You are not 
allowed to set the Bypass policy from within Group Policy.

FIGURE 15-4 Group Policy settings to control Windows PowerShell script execution allow you to choose 
the execution policy.

When a Group Policy setting is in effect, you are not allowed to override the setting. This 
is true even if you want to configure a stricter policy or if you launch the Windows PowerShell 
console with admin rights. If you attempt to modify the execution policy and the script 
execution policy GPO is currently in effect, an error is displayed to the Windows PowerShell 
console. This error is somewhat misleading because it begins by stating that the command 
completed successfully. (See Figure 15-5.)



 Deploying the script execution policy CHAPTER 15 501

FIGURE 15-5 Attempts to change the script execution policy when it is managed via a GPO generate 
an error.

INSIDE TRACK

Working with script execution

Daniele Muscetta, Program Manager
Microsoft Corporation

Scripting is a powerful tool that allows you to do amazing things, such as 
integrate and automate, in new ways. Yet, with great power comes great 

responsibilities.

We have seen abuse of scripting power before—VBScript viruses. Someone sends 
an email message, the user clicks on it, and it is already too late. Microsoft did not 
want to make the same mistakes. That’s why, for example, .ps1 files are not executed 
by default, unlike .vbs files.

also by default, Windows PowerShell scripts are not executed even if you intention-
ally call them from within the shell. this behavior is determined by a feature called 
the execution policy. the execution policy should not be considered to be a security 
feature that will prevent all evils. In fact, the administrator or a user can decide 
to disable it. the script execution policy is more like a convenience, such as the 
seatbelts in your car—it is better to keep them fastened at all times, but you always 
have the option to take them off.

The Windows PowerShell installer configures the execution policy to restricted 
as a safe default because most users will never run a PowerShell script in their life. 
restricted means that absolutely no script is allowed to run. It is therefore a safe 
default but not a very useful default if you actually want to run scripts on your 
machines (and you do, or you would not be reading this).



 502 CHAPTER 15 Managing the execution policy

therefore, you can use the other commonly used options:

■■  RemoteSigned means that all scripts and configuration files that are down-
loaded from the Internet must be signed by a trusted publisher.

■■ Unrestricted means that the shell is allowed to load all configuration files and 
run all scripts. If you run an unsigned script that was downloaded from the 
Internet, you are prompted for permission before it runs.

Scripters and system administrators are usually very careful when running scripts 
that they did not personally write, and they either deeply trust the author or have 
reviewed the script itself. therefore, they usually relax the execution policy for their 
machine to either remoteSigned or Unrestricted. this action might be okay on their 
development or testing machines, where the script can be checked to determine 
that it is not harmful. But what do you do about using scripts in a production envi-
ronment—that is, on your servers and clients?

If you administered Windows XP, Windows PowerShell might not have been on the 
system if you did not install it, so the possibilities for management were limited. 
With Windows Server 2008, Windows PowerShell 1.0 is available in the operating 
system. With Windows 8.1 and Windows Server 2012 r2, you even get Windows 
PowerShell 4.0 by default. Windows PowerShell allows for a great deal of flexibility 
in using the shell for your automations and administrative tasks, but it also means 
that you need to consider a safe way to prevent users from running untrusted 
scripts.

the allSigned execution policy is the setting that most people consider to be the 
safe option. AllSigned requires that all scripts and configuration files are signed by 
a trusted publisher, including scripts that you write on the local computer. If you 
are a system administrator, you might want to set the execution policy to allSigned 
for your nontechnical users so that they are allowed to run a subset of safe scripts. 
Nontechnical users who are administered by you will then be allowed to execute 
only the scripts that you have signed for them (just like keeping them buckled in 
their seatbelt). However, you will be able to operate with a more relaxed execution 
policy while writing and testing your own scripts before actually releasing them to 
production.

at the end of the day, an administrator can use any of the execution policy options 
to configure her own computer by using the Set-ExecutionPolicy cmdlet, which 
ultimately stores the execution policy setting in a registry value under hKEY_
LOCaL_MaChINE\SOFtWarE\Microsoft\PowerShell\1\ShellIds\Microsoft 
.PowerShell\Executionpolicy. Now that the execution policy has a registry setting, 
the setting can also be applied to client workstations centrally by using some handy 
Group Policy templates (ADM files) that set the registry value for you en masse. 



 Deploying the script execution policy CHAPTER 15 503

These ADM files have already been written for you by the Windows team and are 
available on the Microsoft Download Center.

You have even more execution policy options with Windows PowerShell 3.0 and 
above compared to the options just described for PowerShell 1.0. First, Windows 
PowerShell 2.0 introduces the concept of scopes, in which you can set an execu-
tion policy that is effective only in a particular scope. the valid scopes are Process, 
CurrentUser, and LocalMachine. 

LocalMachine is the default when setting an execution policy. however, an admin-
istrator can change her execution policy just for the purpose of testing a script with-
out changing the entire policy on the machine for all users. She can simply change 
the policy for her scope for the current process (the current session in the current 
Windows PowerShell process). This setting can be volatile and will stop its effect 
when the session in which the policy is set is finally closed. Alternatively, she can set 
a policy that affects only her own user profile by using CurrentUser and having the 
policy setting stored under her hKEY_CUrrENt_USEr registry hive. You can even 
execute different policies for different users on the same computer by using scopes.

Second, Windows PowerShell 2.0 and above has a few brand-new execution policy 
settings:

■■ Undefined is used when an execution policy is not defined at all in one or more 
scopes. If that is the case, the execution policy that you apply depends on the 
policies set in other scopes. (For example, if no execution policy is defined for 
CurrentUser but a policy is defined for LocalMachine, the execution policy for 
LocalMachine takes precedence.) Of course, if there are no policies set for any 
scopes, the execution policy always defaults to restricted.

■■ Bypass is an even more relaxed policy than Unrestricted in that nothing is 
blocked, and no warnings or prompts are presented to the user when trying 
to run a script. This execution policy is designed for configurations in which a 
Windows PowerShell script is built into a larger application or for configurations 
in which Windows PowerShell is the foundation for a program that has its own 
security model.

With all of these available options, an administrator can truly choose what is safest/
best for his clients/users while still being allowed the flexibility to test and debug 
his own scripts with ease.



 504 CHAPTER 15 Managing the execution policy

Understanding code signing

Working with signed scripts in Windows PowerShell is relatively easy and pain free because 
there are two cmdlets that allow you to sign scripts and verify the script signature. The two 
cmdlets are Get-AuthenticodeSignature and Set-AuthenticodeSignature. To use the Set-
AuthenticodeSignature cmdlet, you must have a code-signing certificate. You can use the 
Certificate Manager utility, shown in Figure 15-6, to ensure that you have the proper code-
signing certificate.

FIGURE 15-6 The Certificate Manager utility provides a view into the user’s certificate stores.

To request a code-signing certificate from the enterprise certification authority (CA), you 
can use the Certificate Manager utility to submit the request. The Certificate Enrollment 
Wizard from the Certificate Manager utility is shown in Figure 15-7.



 Additional resources CHAPTER 15 505

FIGURE 15-7 The Certificate Manager utility can be used to request certificates if automatic enrollment is 
not enabled for the domain.

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous script examples.

■■ A history of the .NET Framework versions can be found at http://blogs.msdn.com 
/dougste/archive/2007/09/06/version-history-of-the-clr-2-0.aspx.

■■ You can find help about how to determine which version of the .NET Framework is 
installed at http://msdn.microsoft.com/en-us/library/hh925568.aspx.

■■ The entry point to the MSDN website is found at http://msdn.microsoft.com.





   507

C H A P T E R  1 6

running scripts
■■ Logon scripts

■■ Script folder

■■ Stand-alone scripts

■■ Help desk scripts

■■ Additional resources

When it comes to running scripts in Windows PowerShell, all scripts are not equal. You 
are likely to have many different types of scripts within your environment. Some 

scripts—written quickly for a one-time use—are little more than a collection of com-
mands that might be typed at the Windows PowerShell console. Other scripts more closely 
resemble applications and should be treated as such. These are the scripts that are used to 
perform mission-critical configuration tasks and automated deployment and that are used 
by the help desk to aid in troubleshooting problems.

Logon scripts

In Windows PowerShell 4.0, you can use a PowerShell script as a logon script as long as 
the domain controller is at least running Windows Server 2008 R2. You can use a Windows 
PowerShell script as a logon script, a logoff script, a startup script, or a shutdown script. 
Legacy logon scripts are specified via the user object in Active Directory Users and 
Computers; to specify a Windows PowerShell logon script requires using Group Policy. 

To specify either a logon or a logoff script, configure a Group Policy Object setting 
on the User Configuration/ Policies/ Windows Settings/ Scripts (Logon/Logoff) node. 
Startup and shutdown scripts are specified in the Computer Configuration node under 
Policies / Windows Settings / Scripts (Startup / Shutdown). You can configure multiple GPOs 
containing different scripts and settings and, for performance, disable processing of the 
configuration settings not specified. You can link the GPOs to the domain or organizational 
unit, and you can even filter based on group memberships. All of these script options can 
be configured using Group Policy from within an Active Directory domain, as shown in 
Figure 16-1, but they can also be configured by using the local Group Policy editor.



 508 CHAPTER 16 Running scripts

FIGURE 16-1 Group Policy provides the ability to manage startup, shutdown, logon, and logoff scripts.

By default, logon scripts reside in the NetLogon\Sysvol\Domain\Policies folder. The script 
editor automatically populates scripts from this location, as shown in Figure 16-2.

FIGURE 16-2 Scripts run in the order in which they populate the script property box. 



 Logon scripts CHAPTER 16 509

What to include in logon scripts
Because many of the configuration items that were traditionally performed in logon scripts 
have migrated to Group Policy preferences, many network administrators run their networks 
without logon scripts. If you can use Group Policy and avoid the hassle of creating and main-
taining logon scripts, you remove one source of potential errors. Most networks are sufficiently 
complex and have enough legacy applications that they cannot avoid the use of logon scripts. 
In the past, it was common to use logon scripts for the following purposes:

■■ Map user drives

■■ Set default printers

With the ability to use Windows PowerShell for logon scripts, many new and exciting 
opportunities present themselves within this area of scripting. Simple auditing can be done as 
well as logging to facilitate the ability to track potential errors. An example is shown in Logon 
.ps1, in which a new registry key is created to record the user name and the time that the user 
logs on to the computer. The newly created registry key is shown in Figure 16-3.

FIGURE 16-3 Windows PowerShell logon scripts can write auditing information to the registry.

Another useful item accomplished by the Logon.ps1 script is creating a new event log 
named Logonscripts. The script then writes the full path to the logon script and the time it 
was executed, which is vital information when troubleshooting logon scripts. One of the key 
problems is trying to identify which logon script is executing. The Logonscripts event log 
is shown in Figure 16-4. The full UNC logon script path is stored as a hyperlink. By clicking 
the hyperlink in the event log details pane, the actual logon script is opened, providing you 
with the ability to make changes to the logon script if modifications are required. The ability 
to view the text of the logon script from within the event log makes it easy to troubleshoot 
logon scripts.



 510 CHAPTER 16 Running scripts

FIGURE 16-4 Windows PowerShell logon scripts can write logging information to a custom event log.

One of the big advantages to writing to a custom event log from the logon script is that it 
makes it really easy to query, either locally or remotely. By using the Invoke-Command cmdlet, 
and running the Get-EventLog query via a script block, the information is easily obtainable. 
The following command and output illustrates connecting to a remote computer named 
client1:

PS C:\> invoke-command -ComputerName client1 -ScriptBlock {Get-EventLog -LogName 
logonscript} | format-table timewritten, message -wrap 
 
TimeWritten                                Message 
-----------                                ------- 
9/7/2013 12:06:29 PM                       logon script  ran at 09/07/2013 12:06:29 
9/7/2013 12:06:11 PM                       logon script \\tsclient\C\data\BookDOcs\P 
                                           S4_BestPractices\Scripts\scripts_ch16\Log 
                                           on.ps1 ran at 09/07/2013 12:06:11 
9/7/2013 12:05:30 PM                       logon script \\tsclient\C\data\BookDOcs\P 
                                           S4_BestPractices\Scripts\scripts_ch16\Log 
                                           on.ps1 ran at 09/07/2013 12:05:30 

The complete Logon.ps1 logon script is shown here.

Logon.ps1

$ErrorActionPreference = "SilentlyContinue" 

if(-not(Test-path -path HKCU:\Software\logonScripts)) 

 { 

  new-Item -path HKCU:\Software\logonScripts 

  new-Itemproperty -path HKCU:\Software\logonScripts -name logon ` 

   -Value $(get-date).tostring() -Force



 Logon scripts CHAPTER 16 511

  new-Itemproperty -path HKCU:\Software\logonScripts -name user ` 

   -Value $env:USERNAME -Force 

 } 

else 

 { 

  set-Itemproperty -path HKCU:\Software\logonScripts -name logon ` 

   -Value $(get-date).tostring() -Force 

  set-Itemproperty -path HKCU:\Software\logonScripts -name user ` 

   -Value $env:USERNAME -Force 

 } 

 

try 

{ 

 New-EventLog -source logonscript -logname logonscript 

} 

Catch{ [System.Exception] } 

Finally 

{  

 Write-EventLog -LogName logonscript -Source logonScript ` 

  -EntryType information ` 

 -EventId 1 ` 

 -Message "logon script $($myinvocation.invocationName) ran at $(get-date)" 

} 

$ErrorActionPreference = "Continue"

NOTES FROM THE FIELD

Wes Stahler
President, Central Ohio PowerShell Users Group

A request came in to provide metrics on one of our larger shared drives. the 
specific request was to display the size for all the directories one level below 

the supplied root. Simple enough, but this particular drive is huge, and running 
Get-ChildItem against it could potentially take hours. 

We have a few options:

■■ Writing a script that runs Get-ChildItem against the root path

■■ Potentially utilizing PowerShell Workflow

■■ Using background jobs



 512 CHAPTER 16 Running scripts

the plan here is to create a new background job for each subfolder.   
additionally, we will ensure that we don’t consume all the memory by running only 
a maximum set of jobs at a time. the following code walks through the process:

# Root folder 
$Path = '\\dfs-p01\dfs\Shared\COM\' 
 
# Grab the folders one level down from the "root" folder 
$Folders = Get-ChildItem -Path $path -Directory | Sort-Object Name 
 
# Our scriptblock used in the loop that gets the size of each 
subfolder 
$sb = { 
    param([string]$path) 
    $sum = (Get-ChildItem -Path $path -Recurse -Force -ErrorAction 
SilentlyContinue| Measure-Object -Property Length -Sum).Sum 
    $dt = Get-Date -Format yyyyMMdd 
    "{0},{1},{2:##.##}" -f $dt,$path,([long]$sum/1GB)  
} 
 
<# Iterate through the subfolders,  
   Creating a job for each one until we hit a threshold. 
   If we hit a threshold, we wait 10 seconds and try again #> 
 
Foreach ($Folder in $Folders) { 
    While ($(Get-Job -state running).count -ge 5){ 
        "{0}: wait 10 seconds..." -f $folder 
        Start-Sleep -Seconds 10 
    } 
 
    $name = $Folder.FullName 
    Start-Job -ScriptBlock $sb -ArgumentList $name 
} 
 
# Save the results to a variable for further analysis 
$jobs = Get-Job | Wait-Job | Receive-Job 

running this as a set of throttled background jobs resulted in a substantial reduc-
tion in runtime as compared to iterating over all the folders sequentially via 
Get-ChildItem.

Methods of calling the logon scripts
Logon scripts are commonly called during the logon process. In the past, logon scripts 
were assigned to the user via Active Directory Users And Computers; however, logon scripts 
assigned via Active Directory Users And Computers do not understand how to run Windows 
PowerShell scripts.



 Logon scripts CHAPTER 16 513

You should assign scripts from within Group Policy. You can assign logon, logoff, startup, 
and shutdown scripts. The great thing about using either a logoff or a shutdown script is 
that it can be used to unmap drives and printers, which can significantly improve the per-
formance of a computer when it starts up and is unable to find the default printer or some 
remote share.

NOTES FROM THE FIELD

Niklas Goude, Windows PowerShell MVP
Product Owner, ZervicePoint, Enfo Zipper

“Wow, you can do pretty much anything in Windows PowerShell with simple one-
line commands, is this really safe?”

this is one of the most common questions that I get from customers. I try to explain 
that users are restricted by permissions and point out that if a user has a lot of 
permissions on a system, the user can perform administrative tasks, with or without 
Windows PowerShell. I also explain that a good practice is to limit a user’s privileges 
on systems. 

Of course, there are cases when users, to perform their daily work, need more privi-
leges, such as a company’s helpdesk staff. One way of allowing the helpdesk staff to 
perform their daily tasks without granting them administrative rights on a system is 
by setting up a restricted endpoint.

a restricted endpoint allows you to control which cmdlets, functions, or scripts a 
user is permitted to run when using the endpoint. It’s also possible to configure 
the endpoint so that it runs with the permissions of a different account, such as a 
service account.

Let’s say we want our helpdesk staff to manage active Directory users, computers, 
and groups by using Windows PowerShell.

First let’s take a look at the restricted endpoint configuration. Windows PowerShell 
includes the New-PSSessionConfigurationFile cmdlet. the cmdlet generates a 
file containing settings that define a session configuration. Because we want to 
restrict our helpdesk staff to managing only users, groups, and computers in active 
Directory, we could run the following command to generate a configuration file:

New-PSSessionConfigurationFile -Path C:\HelpDesk.pssc -SessionType 

RestrictedRemoteServer -ModulesToImport ActiveDirectory -VisibleCmdlets 

Get-ADUser,Set-ADUser,Get-ADComputer,Set-ADComputer,Get-ADGroup, 

Set-ADGroup



 514 CHAPTER 16 Running scripts

In the preceding example, we create a new configuration file that restricts 
the user to the following cmdlets: Get-ADUser, Set-ADUser, Get-ADComputer, 
 Set-ADComputer, Get-ADGroup, and Set-ADGroup. We also use the ModulesToImport 
parameter and set it to ActiveDirectory.

Because the helpdesk staff doesn’t have permissions to manage users, computers, 
and groups in Active Directory, we need to configure the endpoint so that it runs 
with the permissions of an account that has the appropriate permissions.

We can use the Get-Credential cmdlet to store the account credentials in a 
PSCredential object, as follows:

$runAsCred = Get-Credential domain\serviceaccount

With the configuration file and the credentials in place, we can use the 
 Register-PSSessionConfiguration cmdlet to create a new session configuration. 
this technique appears here.

Register-PSSessionConfiguration -Name HelpDesk -Path C:\HelpDesk.pssc 

-Force -RunAsCredential $runAsCred

In the preceding example, we use the PSCredential object as input to the 
RunAsCredential parameter. We also add the path to the configuration file gener-
ated earlier.

In a standard session configuration, you have to be a member of either the builtin 
\administrators group or the builtin\remote management users group to use it. 
Because we don’t want to add our helpdesk staff to any of these groups, we’ll use 
the Set-PSSessionConfiguration cmdlet to allow additional groups access to the 
session configuration, as shown here:

Set-PSSessionConfiguration -Name HelpDesk –ShowSecurityDescriptorUI

In the preceding example, we grant an additional group permissions to use the ses-
sion configuration.

Now, any user who is a member of the group added in the preceding step can use 
the restricted endpoint and run the cmdlets exposed by the endpoint.

Enter-PSSession -ComputerName SRV01 -ConfigurationName HelpDesk

the preceding example demonstrates how a helpdesk staff member connects to the 
restricted endpoint.



 Stand-alone scripts CHAPTER 16 515

Script folder

Windows PowerShell scripts can be stored in any folder. They can be stored locally or on a 
remote file share. If they are stored on a remote file share, the file share should be added to 
the Trusted Internet zone to enable you to run the scripts without interruption to the scripting 
environment. If you do not add your remote file share to the Trusted Internet zone, you will 
be prompted to do so the first time you open the script. If you choose to trust the script, you 
will then be permitted to work with the script. You can also choose to set the script execution 
policy to Bypass, which suppresses Internet zone warning messages.

Deploy locally
One way to avoid the issue of network trusted zones is to store the scripts in a local folder on 
local workstations. This is also an important consideration if you want to use logon and logoff 
scripts that might not be available if the scripts are stored remotely. One additional consider-
ation for storing the scripts locally is to improve performance by avoiding the network copy 
operation that occurs when you attempt to launch the script across the network. The problem 
with maintaining a local store of scripts is ensuring that the collection of scripts is kept up to 
date. You can keep the scripts up to date by maintaining version identification for the script 
collection. You can store the version of the script collection in the registry and check the col-
lection version during the logon process. If the version has been superseded, new scripts can 
then be copied to the local workstation.

Deploy an MSI package locally 
If scripts are copied from a network share and the share is not added to the Trusted Internet 
zone, the scripts will not be able to run unless the Windows PowerShell script execution policy 
is set to Bypass or Unrestricted. If the scripts are installed on the local computer, the scripts 
will be placed into the local Internet zone. An easy way to deploy the scripts is to create an 
MSI package that creates the script folder and copies the scripts to the folder. You can then 
use Group Policy to deploy the MSI package.

Stand-alone scripts

Stand-alone scripts do not have any external dependencies. They will always run because 
they do not rely on modules that might or might not be loaded or deployed. They do not use 
include files because the included file might not always be available. Stand-alone scripts tend 
to be longer than other types of scripts because they must include all functions, constants, 
variables, and aliases that the script requires to run without errors.

In an enterprise environment where you have total control over the desktop, you have 
the ability to ensure that requisite modules, constants, variables, and aliases will be present 
for the script. You can check for the presence of the module, and if it is missing, you have 



 516 CHAPTER 16 Running scripts

the option of copying it from a network share and installing or writing an error to a log file. 
Additionally, you can send an email to the help desk and report the missing dependencies.

Diagnostics
Diagnostic scripts are written for the purpose of troubleshooting a particular error condi-
tion. Often, diagnostic scripts make use of the Windows Management Instrumentation (WMI) 
performance counter classes and the appropriate Windows PowerShell cmdlets. These types 
of scripts are typically run only on demand and can be run either remotely or locally, as the 
situation dictates.

reporting and auditing
Reporting scripts gather information from the target computer. These scripts are often 
launched in a fan-out type of configuration, and they write to a centralized database. These 
scripts can be called from within logon scripts or from logoff scripts as the need arises, but 
they can also be launched directly from the Windows PowerShell console and use the  fan-out 
type technology.

NOTES FROM THE FIELD

Don Jones
President, PowerShell.Org

Just because Workflow is an exciting and (still somewhat) new feature, don’t jump 
to the conclusion that it’s the right tool for every job. Workflow is an external 

technology, and your Windows PowerShell code gets translated over to it. that 
means that you have to code in a somewhat different style, and things like debug-
ging can be a lot harder. That is, Workflow has some expensive mental overhead. 
It has advantages, true, but make sure you’re actually getting good use of those 
advantages before you pay that higher cost. For example, a workflow can target 
remote computers—but so can the much-simpler Windows PowerShell remoting 
feature. A workflow can run tasks in parallel—but, in some situations, you might be 
able to achieve that same parallelization by using jobs. 

If you do decide to go with a workflow, you’ll run into fewer snags if you start by 
building a normal, non-workflow function. Pay attention to best practices like 
spelling out command and parameter names, because in workflow those practices 
become mandatory (especially in Windows PowerShell 3.0). Get your function work-
ing against the local computer, where you have access to all of the shell’s debug-
ging and error handling features. then start converting it into a function. If you 
run into a snag, rerun your script as a normal function so that you can figure out 
whether the problem is in your code or whether it’s something connected to the 
workflow environment.



 Help desk scripts CHAPTER 16 517

Help desk scripts

Help desk scripts are a special class of stand-alone scripts because they often need to be 
able to perform multiple tasks from a single script. At a minimum, help desk scripts must be 
able to target different computers when they are run. While many scripts write to databases, 
text files, comma-separated variable (CSV) files, or webpages, most help desk scripts display 
information to the Windows PowerShell console because the information that is generated 
must be used during the resolution of the help desk call. As such, the data is not persisted to 
other formats.

avoid editing
A well-designed help desk script should expose all essential functionality through command-
line parameters. It is a best practice to avoid editing help desk scripts due to the potential 
for introducing errors or changing the designed functionality of the script. Help desk scripts 
should be seen as utilities that provide custom diagnostic information and remediation to 
localized problems. One way to ensure that the scripts remain unaltered is to sign help desk 
scripts. When a script is signed, any alteration to the script invalidates the signature of the 
script. The script will need to be re-signed after it is modified.

To provide the functionality to troubleshoot remote computers, help desk scripts should 
expose a –computer parameter as well as other parameters that improve the functionality of 
the script.

Provide a good level of help interaction
Because the help desk script might expose multiple command-line parameters, it is imperative 
that the help desk script provides help that explains each parameter, the allowed range of 
values, and a sample of the required syntax. The DisplayProcessor.ps1 script uses help tags 
to display the synopsis, description, examples, and other information about the script and its 
use. The DisplayProcessor.ps1 script is fully integrated with the Get-Help cmdlet and supports 
the standard parameters shown here:

Get-Help DisplayProcessor.ps1 
Get-Help DisplayProcessor.ps1 –full 
Get-Help DisplayProcessor.ps1 –detailed 
Get-Help DisplayProcessor.ps1 –examples

The complete DisplayProcessor.ps1 script is shown here.

DisplayProcessor.ps1

<# 

   .Synopsis 

    Displays Processor information for the computer processor. 

   .Description 

    This script displays processor information for the local or  



 518 CHAPTER 16 Running scripts

    remote computer. This includes Processor utilization, processor  

    speed, L2 cache size, number of cores, and architecture. 

   .Example 

    DisplayProcessor.ps1 

    Displays processor information for the local computer.  

   .Example 

    DisplayProcessor.ps1 -computer berlin 

    Displays Processor information for a remote computer named berlin. 

   .Inputs 

    [string] 

   .OutPuts 

    [string] 

   .Notes 

    NAME:  Windows PowerShell Best Practices 

    AUTHOR: Ed Wilson 

    LASTEDIT: 9/7/2013 

    VERSION: 1.0.1 

    KEYWORDS: 

   .Link 

     Http://www.ScriptingGuys.com 

#Requires -Version 2.0 

#> 

param( 

  [Parameter(position=0)] 

  [string] 

  [alias("CN")] 

  $computer=$env:computername 

) #end param 

 

# Begin Functions 

function New-Underline 

{ 

<# 

.Synopsis 

 Creates an underline the length of the input string 

.Example 

 New-Underline -strIN "Hello world" 

.Example 

 New-Underline -strIn "Morgen welt" -char "-" -sColor "blue" -uColor "yellow" 

.Example 

 "this is a string" | New-Underline 

.Notes 

 NAME: 

 AUTHOR: Ed Wilson 

 LASTEDIT: 5/20/2009 



 Help desk scripts CHAPTER 16 519

 VERSION: 1.0.0 

 KEYWORDS: 

.Link 

 Http://www.ScriptingGuys.com 

#> 

[CmdletBinding()] 

param( 

      [Parameter(Mandatory = $true,Position = 0,valueFromPipeline=$true)] 

      [string] 

      $strIN, 

      [string] 

      $char = "=", 

      [string] 

      $sColor = "Green", 

      [string] 

      $uColor = "darkGreen", 

      [switch] 

      $pipe 

 ) #end param 

 $strLine= $char * $strIn.length 

 if(-not $pipe) 

  { 

   Write-Host -ForegroundColor $sColor $strIN 

   Write-Host -ForegroundColor $uColor $strLine 

  } 

  Else 

  { 

  $strIn 

  $strLine 

  } 

} #end New-Underline function 

 

Function Get-Processor  

{ 

 Param ([string]$computer) 

 get-wmiobject -class win32_processor -computername $computer | 

 foreach-object ` 

  { 

   New-Underline("Processor details for $computer") 

   $_.psobject.properties | 

   foreach-object ` 

    { 

     If($_.value) 

      { 

       if ($_.name -match "__"){} 



 520 CHAPTER 16 Running scripts

       ELSE 

        { 

         $Processor +=@{ $($_.name) = $($_.value) } 

        } #end else 

      } #end if 

    } #end foreach property 

    $Processor  ; $Processor.clear() 

  } #end foreach Processor 

 Return 

} #end Get-Processor 

# Entry Point 

 

Get-Processor -computer $computer 

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous examples of logon scripts and help desk scripts.

■■ All scripts from this chapter are available via the TechNet Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40 
-Best-d9e16039.



   521

C H A P T E R  1 7

Versioning scripts
■■ Why version control?

■■ Version control software

■■ Additional resources

When it comes to versioning scripts in Windows PowerShell, there is likely to be a wide 
divergence of opinion. At every TechEd conference in North America for the last four 

consecutive years, Windows PowerShell script versioning has come up in the “Birds of a 
Feather” session. 

Why version control?

Version control involves tracking changes made to production scripts. There are several 
reasons for maintaining version control of production scripts, including the following:

■■ Avoids introducing errors into existing production scripts

■■ Enables accurate troubleshooting of production scripts

■■ Tracks changes in production scripts

■■ Maintains a master listing of production scripts

■■ Maintains compatibility with other scripts

NOTES FROM THE FIELD

Control your source

Don Jones, Microsoft PowerShell MVP
ConcentratedTech.com

Unfortunately, some people don’t take their scripts seriously. For me, a script 
is the result of long work at the command line and becomes something that 

I want to save forever. I don’t want the script ruined because a coworker mangled 
the code or because I lost the only copy of the script that I had. Software develop-
ers discovered a solution years ago and named it source control. If you take your 



 522 CHAPTER 17 Versioning scripts

scripts seriously, you should avail yourself of source control; if you don’t take your 
scripts seriously enough to protect them in this fashion, why are you scripting at all?

Source control repositories keep every past version of your script so that you can 
revert to a previous version at any time. Most source control repositories require 
that you check out scripts if you want to change them, although some simply keep 
every version you save, thereby eliminating messy “check-in” and “check-out” steps. 
Ideally, you have already found yourself a quality script editor—and a quality script 
editor includes source control connectivity, which means that it will interact with 
popular source control systems.

If your company already has a source control repository, that’s great. It’s probably 
based on Microsoft Visual SourceSafe, Microsoft team Server, or CSV/Subversion, 
which are open-source solutions. Use your company’s source control repository—
simply set yourself up with a Windows PowerShell project and check all of your 
scripts into it. If your company does not have a source control solution, consider 
something a little simpler to set up and use than those big-iron, developer-oriented 
solutions. For example, SaPIEN technologies offers ChangeVue, and a web search 
for “easy source control” will turn up several source control solutions, including 
some with fun names, such as Filehamster, Git, and history Explorer. there are also 
online source control hosting services, such as Beanstalkapp.com and Unfuddle 
.com as well as hundreds of others, that require only a Subversion client (and that 
functionality might be included in higher-end script development environments).

If your data is important enough to save in a .ps1 file, that .ps1 file is important 
enough to save in a source control repository. Scripting in Windows PowerShell 
without version control is like driving without a seatbelt. You can do it—and plenty 
of people don’t regret it—but when you do regret it, you regret it a lot.

avoid introducing errors
It is unlikely that a person can make a change to a script without introducing an error. The 
process of writing scripts is often reduced to making changes to the code and looking for 
errors. Whether making minor or major changes to an existing script, the potential for break-
ing a working production script is great. If the change is substantial and the error is major, 
it is possible that the script will never work again. By maintaining version control, you work 
on a copy of the existing script. When the script modifications are completed and tested, the 
new version of the script becomes the production model of the script. If subsequent use of 
the script reveals an unexpected problem, you can revert to the previous version of the script. 
At no time is the production version of the script altered. All changes are tracked, and the 
changes are made on copies of the script.



 Why version control? CHAPTER 17 523

Enable accurate troubleshooting
If you track your scripts by file name only, it quickly becomes impossible to tell one version 
of a script from another version. If a problem is discovered with a particular script and there 
is no version control, you must carefully read and compare one version of the script with 
another version. You cannot be certain which version is the most recent or which script to 
actually deploy. By maintaining file versions, you can quickly discern that you want to deploy 
one particular version of the script instead of another version.

If a user of the script files reports a problem with the script and you are maintaining ver-
sion control, you need only to ask the user which version of the script is being used to detect 
whether the user has an out-of-date copy of the script or whether the user discovered a new 
bug in the production version of the code.

track changes
Unfortunately, not all changes that are made to production scripts improve the reliability, 
performance, security, and ease of use of the script. It is a sad fact of the scripting life that 
some changes introduce errors, diminish performance, and complicate previously easy-to-use 
scripts. If a particular modification to a script is serious, the changes must be backed out and 
removed from the production code.

If version control is being maintained, the solution to backing out suboptimal script 
changes is to revert to the most recent working version of the script. If version control is not 
being maintained, the solution is to edit the production script and attempt to remove all of 
the changed lines in the script. If the modifications were not properly commented, your only 
choice is to try to find a previous version of the script in the backup software or the previous 
version’s utility.

Maintain a master listing
If you maintain proper version control of your production scripts, you will be able to produce 
a report that details which scripts are released to production and which scripts are still in 
progress. If you find a script that is not on the released-to-production list, you will know that 
the script is not yet authorized for release.

Maintain compatibility with other scripts
As your script library grows, it is likely that you will begin to develop dependencies on other 
scripts. This can occur because functions contained in the script are used by other scripts 
or because the script produces output that is used by another script. In either case, if a 
script is used either directly or indirectly by other scripts, changes must be tracked care-
fully and testing must be thorough to ensure that breaking changes are not introduced into 
multiple scripts.



 524 CHAPTER 17 Versioning scripts

INSIDE TRACK

Ian Farr, Premier Field Engineer
Microsoft Corporation

As you write more and more scripts, the maintenance and storage of them can 
be a problem. Being able to easily find code that you wrote a couple of years 

ago will save you time and frustration! I recommend giving some thought to the 
location and structure of your script repository.  

In the enterprise, if you don’t want to use an application as a script repository, you 
should store your scripts on a network share. Data recovery, data security, and data 
integrity are important. Let’s consider each option: 

■■ For recovery, if you place your repository on a network file share, it is likely that 
data stored will be replicated and automatically backed up. 

■■ For security, because, in the wrong hands, some scripts can make significant 
changes to your environment, a network share can secure the data via NtFS 
permissions and access Based Enumeration.  

■■ For integrity, you might have access to an Enterprise Certificate Authority or 
a Commercial Certificate Authority that can issue certificates for signing your 
scripts. this prevents Windows PowerShell from running a script that has been 
changed and not resigned.  

For a personal script repository, the data could be stored on your computer, on an 
external drive, or in the cloud by using a technology such as SkyDrive. Whatever 
option you choose, you still need to think about data recovery, data security, and 
data integrity: 

■■ For recovery, there’s Windows Backup. What about writing a script to back 
up your scripts? Using cloud storage will provide resilience, but wherever the 
repository is located, it makes sense to have that data backed-up to a couple of 
locations.  

■■ For security, you might not care about what happens to your scripts, but 
I’m guessing you do, so consider physical security, complex passwords, and 
BitLocker. 

■■ For integrity, you can create your own self-signed certificate for use on your 
computer. It could be argued that this isn’t a necessary for a personal repository, 
but the option is there for you. 

Whether for the enterprise or for private use, the best repositories have a logical 
structure, such as the following: 

■■ Script Type (for example, PS1, VBS)

■■ Technology (for example, AD, DHCP)



 Why version control? CHAPTER 17 525

■■ Topic (for example, Replication, Scope Management)

■■ Script Function (for example, Check Replication, Add Scope Option)  

For my own repository, the names of my scripts reflect the script function. I also 
include keywords/tags in the here-string that contain the script description. It’s 
then easy to find scripts from within the repository by using Search. You might even 
go a step further—a former colleague put in extra effort and wrote a script to parse 
his repository, because he liked his data presented in a very specific way.  

there are a number of points to consider when creating and maintaining a script 
repository. Ultimately, you’ll know what works best for you or your organization.

Internal version number in the comments
One simple way to maintain version control is to add a version number of the script into the 
comments. In this way, you can examine the comments of the script to reveal the version of 
the script. This technique relies on the person who modifies the internal version number of 
the script when changes are made.

Two challenges are present with this approach to version control. Maintaining an internal 
version number is a manual approach to versioning and relies on the editor of the script to 
make a version number change for each modification to the script. There is a real temptation 
to not tamper with modifying the version number when making minor changes to the script, 
such as updating comments.

The second challenge with manual version control is that the previous version of the script 
needs to be renamed so that the current version of the script can be stored. This challenge 
can be overcome by keeping each version of the script in its own folder. The most recent 
version of the script is the one in the most recent folder. The Get-ScriptVersion.ps1 script 
retrieves the version of the script and the last date that the script was edited. It relies on 
both the version and the last-edit information being stored in the header of the script as 
shown here:

   .Notes 
    NAME:  Windows PowerShell Best Practices 
    AUTHOR: Ed Wilson 
    LASTEDIT: 5/20/2009 
    VERSION: 1.0.0 
    KEYWORDS: 
   .Link 
    Http://www.ScriptingGuys.com



 526 CHAPTER 17 Versioning scripts

The complete Get-ScriptVersion.ps1 script is shown here.

Get-ScriptVersion.ps1

function get-ScriptVersion ([string]$path) 

{ 

 $scripts = Get-ChildItem -Path $path -recurse 

 ForEach($script in $scripts) 

 {  

  $info = New-Object psobject 

  $scriptText = Get-Content $script.fullname  

  $info |  

  Add-Member -Name "name" -Value $script.name -MemberType noteproperty 

  $lastedit = $scriptText |  

  Select-String -Pattern "\s\d{1,1}/\d{1,2}/\d{1,4}" 

   

  if($lastedit.count -gt 1) 

   { 

     $info |  

     Add-Member -Name "LastEdit" -Value $lastedit[0].matches[0].value ' 

     -membertype noteproperty 

   } 

  if($lastedit.matches.count -gt 0) 

   {  

    $info |  

    Add-Member -Name "LastEdit" -Value $lastedit.matches[0].value ' 

    -membertype noteproperty -Force 

   } 

  $version =  $scriptText |  

  Select-String -Pattern "\s\d\.\d\.\d" 

   

  if($version.count -gt 1) 

   { 

    $info |  

    Add-Member -Name version -Value $version[0].matches[0].value ' 

    -membertype noteproperty -Force 

   } 

  if($version.matches.count -gt 0) 

   { 

    $info |  

    Add-Member -Name version -Value $version.matches[0].value ' 

    -membertype noteproperty -Force 

   } 

  $info  

  $version = $lastedit = $scriptText = $null 

 } #end foreach 



 Why version control? CHAPTER 17 527

} #end function get-ScriptVersion 

 

# *** Entry Point *** 

 

Get-ScriptVersion -path C:\data\BookDOcs\PS4_BestPractices\Scripts |  

Format-Table -Property * -AutoSize

Incrementing version numbers
When adding version identification numbers to scripts, it is not typically necessary to go 
beyond three decimal places. The first number usually represents the major version of the 
script. A 1.0.0 version number denotes the first release of the script, with no minor versions 
and no revisions. A major version change is one that involves a number of substantial changes 
to the script. Typically, these changes create new functionality that requires a major rewrite 
of the script. A minor version change, such as version 1.1.0, involves less drastic changes and 
improvements to the script, such as a change that involves performance tuning of the script 
or that improves the flow of the script. If you are correcting misspelled words, fixing bugs, or 
improving error handling to the script, you might change the version to 1.1.1.

LESSONS LEARNED

Deleting the wrong version of the script

Keep in mind that every change you make to the script should involve a version 
change. I constantly come across multiple versions of the same script with no 

easy way to differentiate between the two copies. You should keep the working 
copy of the script, and rename the previous versions of the script in a manner that 
is readily identifiable. Inside the script, you should maintain a version table and list 
what has changed between version numbers. In this manner, you can avoid acciden-
tally deleting the wrong edition of the script.

tracking changes 
When making version changes to your script, you should include a comment indicating the 
changes that were made to the script. This comment can be included in the Notes section of 
the header portion of the script. As shown in the Get-WindowsEdition.ps1 script, each version 
of the script is listed, the date that it was current, and the change that was made that caused 
the version to be modified. The version table of the script is shown here:

.Notes 
    NAME:  Get-WindowsEdition.ps1 
    AUTHOR: Ed Wilson  



 528 CHAPTER 17 Versioning scripts

    LASTEDIT: 5/20/2009 
    VERSION: 1.2.0 Added Help tags 
             1.1.1 4/2/1009 Added link to http://www.ScriptingGuys.com 
             1.1.0 4/1/2009 Modified to use regex pattern 
    KEYWORDS: Windows PowerShell Best Practices

The complete Get-WindowsEdition.ps1 script is shown here.

Get-WindowsEdition.ps1

<# 

   .Synopsis 

    Gets the version of Windows that is installed on the local computer 

   .Description 

    Gets the version of Windows that is installed on the local computer. This  

    is information such as Windows 7 Enterprise. 

   .Example 

    Get-WindowsEdition.ps1 

    Displays version of windows on local computer.  

   .Inputs 

    none 

   .OutPuts 

    [string] 

   .Notes 

    NAME:  Get-WindowsEdition.ps1 

    AUTHOR: Ed Wilson  

    LASTEDIT: 9/20/2013 

    VERSION: 1.2.0 Added Help tags 

             1.1.1 4/2/2009 Added link to http://www.ScriptingGuys.com 

             1.1.0 4/1/2009 Modified to use regex pattern 

    KEYWORDS: Windows PowerShell Best Practices 

   .Link 

     Http://www.ScriptingGuys.com 

#Requires -Version 4.0 

#> 

 

 

$strPattern = "version" 

$text = net config workstation 

 

switch -regex ($text)  

{ 

  $strPattern { Write-Host $switch.current } 

}



 Version control software CHAPTER 17 529

Version control software

The easiest way to perform Windows PowerShell version control is to use a version control 
software package. Previous versions of Microsoft Visual Studio contained a source control 
software package named Visual SourceSafe (VSS). However, for many scripters, VSS was too 
complicated for a scripting environment. At any rate, VSS is no longer supplied with Visual 
Studio and is no longer an option.

Third-party version control software packages are available, but most target commercial 
software developers and are not a good fit for enterprise scripters. The Microsoft SharePoint 
Server can be used to maintain a master repository for scripts, and it does have checkout 
and versioning features that will work; however, it needs to be modified to allow Windows 
PowerShell and VBScripts to be natively stored on the SharePoint site. A better solution is one 
that integrates directly with the script editor and provides automatic versioning.

NOTES FROM THE FIELD

Using version control software

alexander riedel, Vice President
SAPIEN Technologies

Ever since Microsoft introduced the Script Encoder for the Windows Script host 
and SaPIEN technologies added the ability to package scripts into executable 

files within PrimalScript, one question has become quite commonplace on our sup-
port forums: “Can you please help me retrieve my script?”

While some of the causes for this usually panic-stricken request have been the lack 
of backup combined with a failed hard drive, an exploding laptop battery, or a 
teenager causing a virus infection on Dad’s work computer, much more common 
are the following comments:

■■ a previous employee here wrote the script, and I don’t know where the 
original is.

■■ It used to work but now it doesn’t. the only thing that still works is the script in 
the .exe file.

■■ Somebody changed it, and I don’t know what they did to it.

Quite obviously, a simple backup won’t help with these types of problems. You need 
to find out what actually changed. For a software developer, none of these reasons 
are usually a very big deal. Over the past several decades, the software develop-
ment industry has created tools and adopted best practices that prevent these 
things from becoming a disaster. however, because script developers very often 



 530 CHAPTER 17 Versioning scripts

don’t see themselves as “developers,” they sometimes miss out on observing best 
practices.

From experience, we also know that even the best intentions don’t always help; for 
example, just consider this question: When did your last backup happen? 

that is why SaPIEN has created a new product called Versionrecall. this product 
was specifically created for administrators working alone with a need for backup 
and version control.

Without all the setup and configuration required by traditional version controls 
systems, it can be installed and ready for use in minutes. 

A very important aspect of VersionRecall is that it works without a specific API that 
would tie it to specific editors or IDEs. Because administrators very often change 
tools during the course of the day, jumping from the Windows PowerShell ISE to 
PowerShell Studio, Notepad, and other editing tools, a tool-agnostic approach was 
a major design requirement.

You can manually submit changes from the software’s main application or its 
command-line tool. But most commonly, you will leave this job to Versionrecall’s 
automatic service, which will automatically detect changed files in designated fold-
ers and submit those changes, no matter what software you used to modify a file.

You notice that the operative word here was automatically. Set up your environment 
to automatically back up and track changes to your vital files, and you won’t have to 
call anyone with panic in your voice.

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous examples of logon scripts and help desk scripts.

■■  All scripts from this chapter are available via the TechNet Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell 
-40-Best-d9e16039.



   531

C H A P T E R  1 8

Logging results
■■ Logging to a text file

■■ Logging to the event log

■■ Logging to the registry

■■ Additional resources

After your scripts are written, deployed, and executed on a system, you need to know 
whether the scripts ran successfully. The best way to make this determination is to log 

the results of the scripts. There are many options for logging script results, and we’ll look at 
them in this chapter.

Logging results from scripts is a basic technique. Quite often, you will want to store the 
results of a script. While there are many options for data storage that range in complexity 
from writing to a database to creating webpages, three techniques are used so often that 
they should be part and parcel of the IT professional’s scripting toolkit. These techniques are 
so critical that Windows PowerShell 4.0 has designed cmdlets to simplify the task of logging 
from the script. The three main logging tools at your disposal are the text file, the event 
log, and the registry. In this chapter, we will cover best practices that govern choosing one 
technique over another.

Logging to a text file

Despite the advances in XML documents, HTML documents, Microsoft Office documents, 
and other storage mechanisms, the plain text file remains an often-used format for log-
ging purposes. The text file is simple to use, compact, portable, and causes no compatibility 
issues. The easiest way to write logging information to a text file is to use the redirection 
operators, of which there are two—the single and the double. The single redirection opera-
tor writes to a text file. If the file does not exist, it will be created and the data will be written 
to it. If the file already exists, the file will be overwritten.

PS C:\> Get-Process > C:\data\FSO\process.txt

The double redirection operator will create a file if it does not exist. If the file does exist, 
it will append to the file.

PS C:\> Get-Process >> C:\data\FSO\process.txt



 532 CHAPTER 18 Logging results

Designing a logging approach
One of the design decisions that you will make when implementing logging to a text file 
is whether you will append to the log file or whether you will overwrite the file. There are 
several decision points that govern the use of overwriting or appending to the log file, as 
covered in Table 18-1.

TABLE 18-1 Logging to text file decision guide

Mode Need Example

Append Maintain history Log multiple changes made by script

Append Maintain audit A logon script that documents when a user logged on

Append Maintain tracing A script that writes error information to a file for each 
operation it performs

Overwrite Capture return code A script that writes the success or error returns code 
from the script to a file

Overwrite Display information that is too wide to 
fit in the Windows PowerShell console

A script that displays the members of an object

Overwrite Display information that the user might 
need to scroll or search

A script that displays a detailed log file in which a 
user might want to use Notepad or some other tool 
to search for keywords or to scroll through the file 
contents

Overwriting the log
You might decide to overwrite the log file on each occasion if your logging goal is to know 
whether a particular operation succeeded or failed. This one-time logging approach is useful 
from a troubleshooting perspective in which historical data is not important and the mainte-
nance of a change log is not desired.

A typical use for a one-time log is the logon script. After the user successfully logs on to 
the system, there is little need for the log file. However, if the user has problems with his sys-
tem and is unable to print to his network printer or to access files from his network share, the 
log becomes an important troubleshooting device.

An example of a logon script with built-in logging is the LogonScriptWithLogging.ps1 
script. First, the LogonScriptWithLogging.ps1 script uses the $errorActionPreference variable 
to configure Windows PowerShell to not display any errors to the console while the script is 
running. Hiding errors from the user during the logon process is generally a best practice 
because it avoids confusing the user and reduces help desk calls. Next, the script clears the 
error object; as a result, the only errors that will be present on the error object are errors gen-
erated from the logon script. Several variables are initialized to null to avoid possible pollution 
from the scripting environment.

$errorActionPreference = "SilentlyContinue" 
$error.Clear() 
$startTime ,$endTime , $Message, $logResults = $null



 Logging to a text file CHAPTER 18 533

The Test-Path cmdlet is used to ensure that the logging directory is present on the com-
puter. If the logging directory is not present, it is created by using the New-Item cmdlet. The 
Join-Path cmdlet is used to build the complete path to the log file.

$logDir = "c:\fso" 
if(-not(Test-Path -path $logdir))  
  { New-Item -Path $logdir -ItemType directory | Out-Null } 
$logonLog = Join-Path -Path $logDir -ChildPath "logonlog.txt"

An important item in any log file is a time stamp that informs you of the time that the 
operation ran. In general, it is a best practice to log the start time of the script as well as 
the end time to give you an indication of how long it takes the script to run. If a script that 
normally completes in 3 seconds suddenly takes 35 seconds, it can indicate a problem. The 
LogonScriptWithLogging.ps1 script uses the WshNetwork object to map network drives and 
set the default printer. After each operation in the script completes, the operation and any 
resulting errors are written to the $message variable.

$startTime = (Get-Date).tostring() 
$WshNetwork = New-Object -ComObject wscript.network 
$WshNetwork.MapNetworkDrive("f:","\\berlin\studentShare") 
$message += "'r'nMapping drive f to \\berlin\student share 'r'n$($error[0])" 
$WshNetwork.SetDefaultPrinter("berlinPrinter") 
$message += "'r'nSetting default printer to berlinPrinter 'r'n$($error[0])"

When all actions defined in the script are performed, the script end time is obtained from 
the Get-Date cmdlet and the output message is formatted. Because all of the errors, opera-
tions, and time stamps are collected into variables, a single output message can easily be cre-
ated. The collecting of messages during script operation is a best practice because a single I/O 
(input/output) operation can be undertaken to create the log file, which is much more efficient 
than writing to the log file multiple times during the script’s progress. A here-string is used to 
create the log results message, and the single redirection operator writes to the log file.

$endTime = (Get-Date).tostring() 
$logResults = @" 
**Starting script: $($MyInvocation.InvocationName) $startTime. 
 $message 
**Ending logon script $endTime.  
**Total script time was $((New-TimeSpan -Start $startTime ' 
  -End $endTime).totalSeconds) seconds. 
"@ 
$logResults > $logonLog

The complete LogonScriptWithLogging.ps1 script is shown here.

LogonScriptWithLogging.ps1

$errorActionPreference = "SilentlyContinue" 

$error.Clear() 

$startTime = $endTime = $Message = $logResults = $null 



 534 CHAPTER 18 Logging results

$logDir = "c:\fso" 

if(-not(Test-Path -path $logdir))  

  { New-Item -Path $logdir -ItemType directory | Out-Null } 

$logonLog = Join-Path -Path $logDir -ChildPath "logonlog.txt" 

 

$startTime = (Get-Date).tostring() 

$WshNetwork = New-Object -ComObject wscript.network 

$WshNetwork.MapNetworkDrive("f:","\\berlin\studentShare") 

$message += "'r'nMapping drive f to \\berlin\student share 'r'n$($error[0])" 

$WshNetwork.SetDefaultPrinter("berlinPrinter") 

$message += "'r'nSetting default printer to berlinPrinter 'r'n$($error[0])" 

 

$endTime = (Get-Date).tostring() 

$logResults = @" 

**Starting script: $($MyInvocation.InvocationName) $startTime. 

 $message 

**Ending logon script $endTime.  

**Total script time was $((New-TimeSpan -Start $startTime ' 

  -End $endTime).totalSeconds) seconds. 

"@ 

$logResults > $logonLog

When the LogonScriptWithLogging.ps1 script is run, the log shown in Figure 18-1 is cre-
ated in the C:\fso directory.

FIGURE 18-1 Script log showing logon time and status of operation.



 Logging to a text file CHAPTER 18 535

NOTES FROM THE FIELD

Leveraging CSV files

Mike Pfeiffer, Premier Field Engineer
Microsoft Corporation

One of the greatest strengths of Windows PowerShell is the ease it gives admin-
istrators in building detailed reports. I’ve always been a big fan of the Export-

Csv and ConvertTo-Html cmdlets, and to this day, I’ll still use them all the time. 
When you’re just getting started, the object-based nature of Windows PowerShell 
makes it pretty straightforward to export structured data to external files using 
these cmdlets. however, you’ll quickly realize that sometimes you need to tweak 
things to get the data that you’re really interested in.

Let me show you how to solve a common problem when it comes to generating 
your own reports. Suppose you want to export a list of services to a CSV file. You’re 
interested only in services that have dependencies. You begin with a command such 
as the following:

Get-Service |  

    Where-Object DependentServices |  

        Select-Object DisplayName,DependentServices

this looks good in the Windows PowerShell console. You see two columns for each 
service, as expected. Naturally, you tack on another pipe and export your report to 
a CSV file.

Get-Service |  

    Where-Object DependentServices |  

        Select-Object DisplayName,DependentServices |  

            Export-Csv c:\myservices.csv -NoTypeInformation

Now you open your CSV file in Excel, and you’re ready to save your report as an 
Excel spreadsheet, after adding some borders and cell formatting, of course. 
Your boss and coworkers will be so proud. But don’t get too excited just yet. Your 
DependentServices column isn’t happy.

DisplayName DependentServices

Windows Audio Endpoint Builder System.ServiceProcess.ServiceController[]

Base Filtering Engine System.ServiceProcess.ServiceController[]

Cryptographic Services System.ServiceProcess.ServiceController[]



 536 CHAPTER 18 Logging results

Notice that the DependentServices column is showing the .NEt framework type 
name for each property instead of the actual property values. this is because the 
value for DependentServices is made up of a collection of services that have depen-
dencies on the parent service.

the Export-CSV cmdlet is expecting “flat” property values. Think of it like the 
Windows Path variable. the Path variable is a single item, but all of the paths within 
it are separated by a semicolon. this is essentially what you need to do with your 
report. Your DependentServices column values should each be a single string com-
posed of semicolon delimited values. an easy way to accomplish this is by using a 
custom property. This will give you the ability to fix up the property value with your 
own expression. Here’s how you can fix it:

Get-Service |  

    Where-Object DependentServices |  

        Select-Object DisplayName,@{n='DependentServices';e={$_.

DependentServices -join ';'}} |  

            Export-Csv c:\myservices.csv -NoTypeInformation

the only difference here is that we’ve customized the DependentServices property. 
Notice that inside the expression we’ve used the -Join operator. the job of the -Join 
operator is to take multiple strings and combine them into one. Within the expres-
sion, we’re saying that all of the service objects within the DependentServices prop-
erty should be joined together. Fortunately, the .ToString() method will be called on 
each dependent service for you automatically, and the entire list will be joined to a 
semicolon-delimited string, giving you readable output in the file.

this is a classic issue that most people run into. In fact, I’ve been asked about it 
twice this week, which provided the inspiration for this tip. remember this tech-
nique because you’re bound to run into this when you start generating your own 
reports.

appending to the log
If your logging scenario needs to maintain historical data from either a security perspective or 
from a long-term troubleshooting stance, you will append to your log. You might also decide 
to append to the log if the script completes a number of discrete operations and you want to 
maintain a log of each operation’s results. Appending might be an important technique if it is 
possible for the operation to fail midway through the script.



 Logging to a text file CHAPTER 18 537

Using logging for troubleshooting

When I was writing the 200 scripts for the Windows 7 Resource Kit, I 
needed to produce documentation that described each script and its 

parameters and that illustrated samples of command syntax. Because I had 
written help for each script, I wrote a documentation script that gathered a 
list of all of the Windows 7 Resource Kit scripts from their folders and called 
the Get-Help cmdlet on each of the scripts. I then used the double redirection 
arrows to append to the Windows7_Script_Documentation.txt file. As I looked 
over the documentation file, I noticed that the last documented script was 
not from the last chapter in the book. I became curious as to why the scripts 
were being documented out of order. I also noticed that the documentation 
for several scripts was missing. I looked at the last script on the list and found 
no problems with that script. However, when I examined the next script in the 
folder, I noticed that it was not in the documentation text file. When I used 
the Get-Help cmdlet on the script, an error was produced. After I solved the 
error and reran the create documentation script, the problem was solved. By 
appending the results of multiple operations to a single text file, I created not 
only documentation but also a good troubleshooting tool.

When working with a more complex script, you might want to instrument the script to pro-
vide detailed logging information. The LogChartProcessWorkingSet.ps1 script is an example 
of instrumenting a script. The script uses the Param keyword to create a switched command-
line parameter named trace. When the script is run with the trace switch, statements are 
written to a Tracelog.txt file in the C:\fso directory. The $errorActionPreference variable is 
set to SilentlyContinue, and any errors are cleared from the error object. The $startTime and 
$endTime variables are set to null. The initialization section of the script is shown here:

Param([switch]$trace) 
$trace=$true 
$errorActionPreference = "SilentlyContinue" 
$error.Clear() 
$startTime = $endTime = $null

The presence of the log directory is checked; if it is not present, it is created. The path to 
the Tracelog.txt file is created, and the start time of the script is recorded as a string in the 
$startTime variable.

$logDir = "c:\fso" 
if(-not(Test-Path -path $logdir))  
  { New-Item -Path $logdir -ItemType directory | Out-Null } 
$traceLog = Join-Path -Path $logDir -ChildPath "Tracelog.txt" 
$startTime = (Get-Date).tostring()



 538 CHAPTER 18 Logging results

The script looks for the presence of the $trace variable. If the $trace variable is found, 
logging information is written to the Tracelog.txt file. If the $trace variable is not found, no 
logging is done.

If($trace)  
  {"**Starting script: $($MyInvocation.InvocationName) $startTime" >> $traceLog}

When the script completes the creation of the chart, the number of errors that are gener-
ated is written to the log file. The Foreach statement is used to walk through the collection of 
errors, and each error is written to the log file.

"*** LISTING $($error.count) Errors ***" >> $traceLog 
 Foreach ($e in $error) { $e >> $tracelog }

NOTE Keep in mind that the MSGraph.Application COM object does not exist on a work-
station by default. It installs with Microsoft Office.

The completed LogChartProcessWorkingSet.ps1 script is shown here.

LogChartProcessWorkingSet.ps1

Param([switch]$trace) 

$errorActionPreference = "SilentlyContinue" 

$error.Clear() 

$startTime = $endTime = $null 

 

$logDir = "c:\fso" 

if(-not(Test-Path -path $logdir))  

  { New-Item -Path $logdir -ItemType directory | Out-Null } 

$traceLog = Join-Path -Path $logDir -ChildPath "Tracelog.txt" 

$startTime = (Get-Date).tostring() 

 

If($trace)  

  {"**Starting script: $($MyInvocation.InvocationName) $startTime" >> $traceLog}  

If($trace)  

  {"Creating msgraph.application object" >> $traceLog}  

$chart = New-Object -ComObject msgraph.application 

$chart.visible = $true 

If($trace)  

  {"Adding chart column labels" >> $traceLog}  

$chart.datasheet.cells.item(1,1) = "Process Name" 

$chart.datasheet.cells.item(1,2) = "Working Set" 

If($trace)  

  {"Adding Data to chart" >> $traceLog} 

$r = 2 

If($trace)  

  {"Obtaining process information" >> $traceLog}  

  



 Logging to a text file CHAPTER 18 539

Get-Process |  

ForEach-Object { 

  $chart.datasheet.cells.item($r,1) = $_.name 

  $chart.datasheet.cells.item($r,2) = $_.workingSet 

  $r++ 

} # end foreach process 

 

$endTime = (Get-Date).tostring() 

If($trace)  

  {"**ending script $endTime. " >> $traceLog} 

If($trace)  

  {"**Total script time was $((New-TimeSpan -Start $startTime ' 

  -End $endTime).totalSeconds) seconds'r'n" >> $traceLog} 

"*** LISTING $($error.count) Errors ***" >> $traceLog 

 Foreach ($e in $error) { $e >> $tracelog }

When the script is run, the log shown in Figure 18-2 is produced.

FIGURE 18-2 Trace log created when running a script with the trace switch.

Using the Out-File cmdlet
In addition to using the redirection operators, you can also use the Out-File cmdlet to create 
a text file. Both methods create text files, and both methods work in a similar fashion because, 
inside Windows PowerShell, the redirection operators actually map to Out-File. The differ-
ence between the two is that the Out-File cmdlet is configurable and the redirection opera-
tors are not. The default values for the redirection operators are as follows:

■■ The redirection operators use Unicode.

■■ The redirection operators use the Windows PowerShell console dimensions when 
 writing to files.



 540 CHAPTER 18 Logging results

Both the redirection operators and the Out-File cmdlet send output through the Windows 
PowerShell formatter prior to writing to a file. In some cases, the Windows PowerShell for-
matter can add or change the output in such a way as to cause corruption in certain binary 
data types.

To change the output encoding of a file, you can use the Encoding parameter when creat-
ing the file.

PS C:\> (Get-Acl -Path C:\fso\access.txt).AccessToString |  
Out-File -FilePath C:\fso\outFile.Txt -Encoding ASCII

If your output is truncated in the Windows PowerShell console, such as the output shown 
in Figure 18-3, you can save the output in a text file and use the width parameter to capture 
all of the information.

FIGURE 18-3 Truncated output in the Windows PowerShell console is indicated by three dots.

An example of changing the width in the file by using the width parameter is shown here:

PS C:\> Get-Acl -Path C:\fso\access.txt |  
Out-File -FilePath C:\fso\outFile.Txt -Encoding ASCII –Width 1500

If you use a semicolon to separate commands when working at the Windows PowerShell 
console or in a Windows PowerShell script, you can call Notepad at the same time that you 
create the file. You can then use the Notepad utility to display all of the information and scroll 
as required to see the information that is truncated.

By pipelining the results of the process information to the Get-Member cmdlet, the members 
of the objects are displayed. The content is too wide for the Windows PowerShell console and 
is truncated. By specifying a width of 200 for the Out-File cmdlet, the member definition will 
fit on the lines of the file.



 Logging to a text file CHAPTER 18 541

PS C:\> Get-Process |  
Get-Member |  
Out-File -FilePath C:\fso\processMembers.txt -Width 200 ;  
notepad C:\fso\processMembers.txt

The resulting text file is shown in Figure 18-4.

FIGURE 18-4 Notepad allows viewing of wide text files.

INSIDE TRACK

Building maintainable scripts by using logging 

Ian Farr, Premier Field Engineer
Microsoft Corporation, United Kingdom

Why consider script logging? You’ll have to troubleshoot issues with your 
scripts—I’ve written scripts for enterprise environments for a number of 

years and have rarely seen a script that works perfectly with the first draft of code. 
You’ll have to troubleshoot during development, when the script is released into 
production, and, maybe, others will reuse your hard work. to troubleshoot effec-
tively, you need to understand what it was your script did, and that’s where script 
logging comes in—it’s easier to investigate an issue if you can look at logs created 
by your scripts. Even if you’re not troubleshooting, script logging can show you 
what successful changes were made and can create a valuable audit trail. 

What should your script logging capture? that will depend on what the script does. 
to start, I suggest the following: user name, computer name, script start time, script 
finish time, tasks completed, and any errors that occur. What file format should be 
used? that’s another one of the many great things about Windows PowerShell—it’s 
very easy to write to a text file, a CSV file, an HTML file, or an XML file. Those aren’t 



 542 CHAPTER 18 Logging results

your only options though—a colleague of mine created a centralized database 
for script logging, allowing administrators to analyze logs from many—use your 
imagination! 

how can Windows PowerShell help you out? as you’d expect, there are many fea-
tures that can assist with script logging, including the following: 

■■ Useful cmdlets for working with logs include Add-Content, Set-Content, 
 Out-File, Tee-Object, Export-CSV, ConvertTo-HTML and Export-CliXML.  

■■ You can use redirection operators (>, >>) to send logging information, from 
the Success, Error, Warning, Debug, or Verbose streams, to a file. You can even 
write custom messages for these streams by using cmdlets such as Write-Error, 
Write-Warning, and Write-Debug, and then redirect that information to a log. 

■■ Invaluable automatic variables for checking the success of operations are 
$LastExitCode, $Error, and $?. Let’s look at $Error—it stores your recent errors as 
an array of objects, and by selecting properties of the most recent error object, 
you can refine the information written to your logs. 

■■ a quick and simple form of logging to use in development or troubleshooting is 
to clear the $Error variable at the start of a script and then export the contents of 
$Error to a file at the end of the script. You can change the $Error buffer from its 
default value of 256, by resetting the $MaximumErrorCount automatic variable, 
to capture a large number of errors.

You’ll have to troubleshoot issues with your scripts, so invest time in writing a script 
logging function—you’ll use it again and again!

text location
One of the decisions that must be made when working with text files is the location to store 
the output. This decision is easy if you have a directory in which to store the output, and this 
is the approach taken in the LogChartProcessWorkingSet.ps1 script. The C:\fso folder is cre-
ated and used to hold log files. If the user does not have rights to create a folder or to write 
to the log folder, the logging operation will fail. Another issue encountered when creating a 
designated log file folder is that the user might not always be available. Because the target 
folder might not always be available, you must always check for the existence of the folder 
and create it if it does not exist. An additional problem with using a specific folder is that, in 
some instances, the system drive is not always C:\. To be safe, you should always check for the 
system drive and use that location in the script.

All of the potential problems of creating a special log folder can be avoided if you use a 
folder that always exists on the user’s computer. If you use a folder to which the user always 
has rights to write to, it is even better. Many folders are automatically created on a user’s 



 Logging to a text file CHAPTER 18 543

system that can be used to store log files that are created from within a script. The path to 
special folders is automatically resolved by the system and therefore will always be accurate 
regardless of the current user name or the drive letter of the system drive. The path to special 
folders is cumbersome to manually derive; therefore, it is a best practice to use the Microsoft 
.NET Framework environment class to resolve the path.

In the Get-CountryByIP.ps1 script, the Tee-Object cmdlet is used to display out-
put to the Windows PowerShell console and to also write information to a text file. The 
 Get-CountryByIP.ps1 script uses a web service and the Get-WebServiceProxy cmdlet to resolve 
an IP address to the country of origin. Besides being fun to play with, the script can be used 
to automatically detect and configure localization settings.

The Get-CountryByIP.ps1 script begins by using help tags to provide command-line help. 
In the help section, the synopsis, description, example, inputs, outputs, and notes tags are 
used to provide detailed help for the script. The help section of the script is shown here:

<# 
   .Synopsis 
    Gets country location by IP address 
   .Description 
    This script gets country location based upon an IP address. It uses 
    a Web service, and therefore must be connected to Internet. 
   .Example 
    Get-CountryByIP.ps1 -ip 10.1.1.1, 192.168.1.1 -log iplog.txt 
    Writes country information to %mydocuments%\iplog.txt and to screen 
   .Inputs 
    [string] 
   .OutPuts 
    [PSObject] 
   .Notes 
    NAME: Get-CountryByIP.ps1 
    AUTHOR: Ed Wilson  
    VERSION: 1.0.0 
    LASTEDIT: 8/20/2009 
    KEYWORDS: New-WebServiceProxy, IP, New-Object, PSObject 
   .Link 
     Http://www.ScriptingGuys.com 
#requires -version 2.0 
#>

The script uses cmdlet binding and creates some command-line parameters. The ip 
parameter is configured as an array of strings and is used to specify the IP address that will be 
resolved to a country. The −log parameter supplies the name of the script. The folder param-
eter designates the special folder to use. The parameter section of the script is shown here:

[CmdletBinding()] 
Param( 
   [Parameter(Mandatory = $true,Position = 0,ValueFromPipeline = $true)] 
   [string[]]$ip,  
   [string]$log = "ipLogFile.txt", 
   [string]$folder = "Personal" 
)#end param



 544 CHAPTER 18 Logging results

The main portion of the code is contained in the Get-CountryByIP function. The function 
begins by specifying the Uniform Resource Identifier (URI) that is used to point to the Web 
Service Definition Language (WSDL) for the web service. The New-WebServiceProxy cmdlet is 
used to create the proxy to the web service. After the web service proxy is created, the object 
is stored in the variable $proxy. The GetGeoIP method is called from the object, and the 
returned data is stored in the $rtn variable.

Function Get-CountryByIP($IP) 
{ 
 $URI = "http://www.webservicex.net/geoipservice.asmx?wsdl" 
 $proxy = New-WebServiceProxy -uri $URI -namespace WebServiceProxy -class IP 
 $RTN = $proxy.GetGeoIP($IP)

To make it easier to work with the returned data, a new instance of PSObject is created by 
using the New-Object cmdlet. The newly returned object is stored in the $ipReturn variable. 
After the PSObject instance is created, the Add-Member cmdlet is used to add the IP address, 
country name, and country code to the PSObject instance that is stored in the $ipReturn vari-
able. When the object is created, it is returned to the calling code.

 $ipReturn = New-Object PSObject 
 $ipReturn | Add-Member -MemberType noteproperty -Name ip -Value $rtn.ip 
 $ipReturn | Add-Member -MemberType noteproperty -Name countryName -Value $rtn 
.CountryName 
 $ipReturn | Add-Member -MemberType noteproperty -Name countryCode -Value $rtn 
.CountryCode 
 $ipReturn 
} #end Get-CountryByIP

The output folder that will be used to store the newly created text file is determined by 
using the GetFolderPath static method from the Environment .NET Framework class. The 
GetFolderPath static method must receive an Environment.SpecialFolder enumeration value. 
The Get-Folder function is used to return the path to the specified special folder.

Function Get-Folder($folderName) 
{ 
 [Environment]::GetFolderPath([environment+SpecialFolder]::$folderName) 
} #end function Get-Folder

The entry point to the script passes the IP address that is stored in the $IP variable and 
pipelines it to the Foreach-Object cmdlet, where the Get-CountryByIP function passes the 
current item on the pipeline to the function via the ip parameter. The returned custom 
PSObject instance is then pipelined to the Tee-Object cmdlet, and the resulting object is 
displayed to the Windows PowerShell console and stored in the $results variable. The $results 
variable is then pipelined to the Out-File cmdlet, and the file path is created by using the 
Join-Path cmdlet that receives the string returned from the Get-Folder function. The path to 
the special folder and the file name are put together to create the path for the output file.

$ip |  
Foreach-Object { Get-CountryByIP -ip $_ } | 
Tee-Object -Variable results 
 



 Logging to a text file CHAPTER 18 545

$results |  
Out-File -FilePath ' 
  (Join-Path -Path (Get-Folder -folderName $folder) -childPath $log)

The complete Get-CountryByIP.ps1 script is shown here.

Get-CountryByIP.ps1

<# 

   .Synopsis 

    Gets country location by IP address 

   .Description 

    This script gets country location based up an IP address. It uses 

    a web service, and therefore must be connected to Internet. 

   .Example 

    Get-CountryByIP.ps1 -ip 10.1.1.1, 192.168.1.1 -log iplog.txt 

    Writes country information to %mydocuments%\iplog.txt and to screen 

   .Inputs 

    [string] 

   .OutPuts 

    [PSObject] 

   .Notes 

    NAME: Get-CountryByIP.ps1 

    AUTHOR: Ed Wilson  

    VERSION: 1.0.0 

    LASTEDIT: 8/20/2009 

    KEYWORDS: New-WebServiceProxy, IP, New-Object, PSObject 

   .Link 

     Http://www.ScriptingGuys.com 

#requires -version 2.0 

#> 

[CmdletBinding()] 

Param( 

   [Parameter(Mandatory = $true,Position = 0,ValueFromPipeline = $true)] 

   [string[]]$ip,  

   [string]$log = "ipLogFile.txt", 

   [string]$folder = "Personal" 

)#end param 

 

# *** Function below *** 

Function Get-CountryByIP($IP) 

{ 

 $URI = "http://www.webservicex.net/geoipservice.asmx?wsdl" 

 $Proxy = New-WebServiceProxy -uri $URI -namespace WebServiceProxy -class IP 

 $RTN = $proxy.GetGeoIP($IP) 



 546 CHAPTER 18 Logging results

 $ipReturn = New-Object PSObject -Property @{ 

    'ip' = $rtn.ip; 

    'CountryName' = $rtn.countryname;  

    'CountryCode'=$rtn.countrycode} 

  

 $ipReturn 

} #end Get-CountryByIP 

 

Function Get-Folder($folderName) 

{ 

 [Environment]::GetFolderPath([environment+SpecialFolder]::$folderName) 

} #end function Get-Folder 

 

# *** Entry Point to Script *** 

 

$ip |  

ForEach-Object { Get-CountryByIP -ip $_ } | 

Tee-Object -Variable results 

 

$results |  

Out-File -FilePath ' 

  (Join-Path -Path (Get-Folder -folderName $folder) -childPath $log)

INSIDE TRACK

Storing scripts—script repository

Ian Farr, Premier Field Engineer
Microsoft Corporation, United Kingdom

As you write more and more scripts, the maintenance and storage of them can 
be a problem. Being able to easily find code you wrote a couple of years ago 

will save you time and frustration! I recommend giving some thought to the loca-
tion and structure of your script repository. 

In the enterprise, if you don’t want to use an application as a script repository, you 
should store your scripts on a network share. Data recovery, data security, and data 
integrity are important. Let’s consider each option:

■■ For recovery, if you place your repository on a network file share, it is likely that 
data stored will be replicated and automatically backed up. 



 Logging to a text file CHAPTER 18 547

■■ For security, because some scripts, in the wrong hands, can make significant 
changes to your environment, a network share can secure the data via NtFS 
permissions and access Based Enumeration. 

■■ For integrity, you might have access to an Enterprise Certificate Authority or 
a Commercial Certificate Authority that can issue certificates for signing your 
scripts. this prevents Windows PowerShell from running a script that has been 
changed and not re-signed. 

For a personal script repository, the data could be stored on your computer, on 
an external drive, or in the cloud, using a technology such as SkyDrive. Whatever 
option you choose, you still need to think about data recovery, data security, and 
data integrity:

■■ For recovery, there’s Windows Backup. What about writing a script to back 
up your scripts? Using cloud storage will provide resilience, but wherever the 
repository is located, it makes sense to have that data backed up to a couple of 
locations.  

■■ For security, you might not care about what happens to your scripts, but I’m 
guessing that you do, so consider physical security, complex passwords, and 
BitLocker. 

■■ For integrity, you can create your own self-signed certificate for use on your 
computer. It could be argued that this isn’t necessary for a personal repository, 
but the option is there for you. 

Whether for the enterprise or for private use, the best repositories have a logical 
structure. For example:

Script type (for example, PS1, VBS)

    Technology (for example, AD, DHCP)

        Topic (for example, Replication, Scope Management)

            Script function (for example, Check Replication, Add Scope  
            Option)  

For my own repository, the names of my scripts reflect the script function. I also 
include keywords/tags in the here-string that contain the script description. It’s 
then easy to find scripts from within the repository by using Search. You might even 
go a step further—a former colleague put in extra effort and wrote a script to parse 
his repository, because he liked his data presented in a very specific way.  

there are a number of points to consider when creating and maintaining a script 
repository. Ultimately, you’ll know what works best for you or your organization.



 548 CHAPTER 18 Logging results

Networked log files
At times, it might be more convenient to store the logs in a central shared folder instead of 
storing them on a local computer. This approach can solve many of the problems identified 
earlier in this chapter that are associated with creating and maintaining a folder on each com-
puter. There are two methods of handling networked log files. The first method is to write 
directly to the file, and the second is to write to a temporary file on the local host machine 
and copy the file to the network location. As a best practice, any file that is very large or that 
might potentially involve large amounts of data should be created locally first and then cop-
ied to the network location. In this section, you will examine both approaches.

Writing directly to the file
The simplest approach to working with networked log files is to write directly to the file. The 
Out-File cmdlet is able to use a Universal Naming Convention (UNC) path or a mapped net-
work drive path. The UNC path is the most convenient approach because it does not require 
the creation and maintenance of mapped network drives.

Get-Process | Out-File –FilePath \\berlin\netshare\processes.txt

For small amounts of data on a well-connected network, the writing directly approach 
works fine. For larger amounts of data or when working on a network that might have unreli-
able or limited connectivity, a different approach is required.

Writing to the local file and copying to the network
Because the creation and the writing to files on a network share is not an optimized opera-
tion, you can experience performance problems when writing directly to a networked file 
share. Writing to local files is an optimized scenario, and copying files to a network share is 
also a performance operation. Because of the different caveats involved in working with local 
files and folders, it is a best practice to write to a temporary file in the temporary directory 
and then copy the temporary file to the networked share. This is not a difficult process, and it 
will greatly improve the performance of networked logging.

The easiest way to write to a temporary file is to use the getTempFileName method from 
the Io.Path .NET Framework class. The getTempFileName method creates a temporary file 
name in the user’s temporary directory in a location that looks similar to the one shown here:

C:\Users\edwilson\AppData\Local\Temp\tmpE7C6.tmp

 The New-TempFile.ps1 script illustrates using a local temporary file for output and 
displaying the results of the operation in Notepad. The New-TempFile.ps1 script creates a 
function named New-TempFile that uses CmdletBinding and creates a single input param-
eter that accepts an array of PSObjects in the $inputObject variable. The script then calls the 



 Logging to a text file CHAPTER 18 549

 getTempFileName static method from the Io.Path .NET Framework class. The temporary file 
name is stored in the $tmpFile variable. The data contained in the $inputObject variable is 
pipelined to the Out-File cmdlet and then to the temporary file specified in the $tmpFile vari-
able. The file path to the temporary file is then returned to the calling code.

Function New-TempFile 
{ 
 [CmdletBinding()] 
 Param( 
  [Parameter(Position=0,ValueFromPipeline=$true)] 
  [PSObject[]]$inputObject 
 )#end param 
  $tmpFile = [Io.Path]::getTempFileName() 
  $inputObject | Out-File -filepath $tmpFile 
  $tmpFile 
} #end function New-TempFile

The entry point to the script illustrates how you might interact with this function. It calls 
the New-TempFile function and passes the results of the Get-Service cmdlet to the function 
via the inputObject parameter. The returned file path is stored in the $rtn variable. After the 
temporary file is created, inside the New-TempFile function, the file is moved to a file share on 
a remote server and renamed by using the Move-Item cmdlet.

$destination = "\\berlin\fileshare\services.txt" 
$rtn = New-TempFile  -inputObject (Get-Service) 
Move-Item -path $rtn -destination $destination

The complete New-TempFile.ps1 script is shown here.

New-tempFile.ps1

Function New-TempFile 

{ 

 [CmdletBinding()] 

 Param( 

  [Parameter(Position=0,ValueFromPipeline=$true)] 

  [PSObject[]]$inputObject 

 )#end param 

  $tmpFile = [Io.Path]::getTempFileName() 

  $inputObject | Out-File -filepath $tmpFile 

  $tmpFile 

} #end function New-TempFile 

 

# *** Entry Point to Script *** 

 $destination = "\\berlin\fileshare\services.txt" 

 $rtn = New-TempFile  -inputObject (Get-Service) 

 Move-Item -path $rtn -destination $destination



 550 CHAPTER 18 Logging results

NOTES FROM THE FIELD

Logging in Windows PowerShell

andrew Willett, Systems architect
Unitrans Logistics, Steinhoff Group

You have written a Windows PowerShell script, tested it on your PC, and 
deployed it to run on your network—except that something is wrong. 

But what?

Logging—or as our developer friends call it, instrumentation—is both an invaluable 
tool for testing and debugging your scripts as well as a key part of their life cycle. 
Logging can tell you when a script succeeds or fails to run as expected, what causes 
an exception to occur, or it can tell you more detailed information, such as how long 
it takes a script to execute and why.

Implementing a basic form of logging is simple and is similar to what you might do 
at the command line. Similar to using > to send the console output to a text file, 
you can use the Tee-Object cmdlet to store the output in a variable as well as in a 
text file.

Get-Service | Tee-Object –filepath c:\services.txt

Using the Tee-Object cmdlet might be easy for individual commands, but it does 
not work very well for entire scripts. the next logical step is to use Tee-Object 
where necessary and append the output to the file. Unfortunately, while Tee-Object 
is able to only overwrite a file, Windows PowerShell encapsulates this functionality 
and a whole lot more in the Start-Transcript cmdlet. Using the transcript func-
tionality requires two lines of code—one at the start and one at the end—that turn 
logging on and off, respectively.

Start-Transcript –path c:\scriptoutput.txt 

     (…) 

Stop-Transcript

a few useful parameters for Start-Transcript are −append, which appends the log 
to the existing file, and Noclobber, which prevents the default behavior of overwrit-
ing an existing file. (UNIX admins might recognize this behavior.) The call to the 
Stop-Transcript cmdlet is implicit, so if you forget to use the command or your 
code exits through a different path or exception, the script will still close correctly.

Both of these logging cmdlets can be very useful when diagnosing the root cause 
of a problem with your script in the field or for debugging your script while you are 
developing and testing it. however, digging through a verbose log of your script is 



 Logging to a text file CHAPTER 18 551

not very helpful when you want to know at a glance whether the script succeeded 
or whether a failure was simply due to a time-out.

While developing your script, you will be aware of a subset of reasons that it might 
fail, such as connectivity or a lack of system resources or permissions, as well as how 
to determine whether it succeeded in its desired function. In addition, your script 
might look up or determine certain parameters at run time rather than being hard-
coded, such as the available network bandwidth, whether the user is running with 
administrator privileges, or whether the computer is on battery power. Diagnosing 
a problem after the event can be difficult if you can only assume what parameters 
the script was running at the time. Calling out some of this key information, perhaps 
appended by the full verbose log, will save you a great deal of time—something I 
know that many people desire when digging through Windowsupdate.log!

Viewing instrumentation as an entire collection of technology means thinking 
about the storage and delivery of this information—a text file sitting on the hard 
disk collecting dust is not very helpful! When you know which pieces are salient 
pieces of output information, you should decide what to do with this information 
based on the effects that a failure might cause, whether action needs to be taken 
and by whom, and how time-critical the issue might be. If the log output is to be 
used for archive purposes, you should consider where to store the data—such as in 
the file system, the event log, or on the network—based on the write permissions of 
the user and your need for a retention period.

The following are some tricks of the trade that you might find useful, along with 
some examples with which to get started:

■■ Sending logging information via email back to the administrator can proactively 
tell you when a problem has occurred and why—you can even email logging 
information to your help desk software and have the software set up an incident.
$to = "helpdesk@contoso.com" 
$from = "scripts@contoso.com" 
$subject = "Permissions Error in Script" 
$body = "The script could not run as user " + (Get-Content 
env:username) +  
" was not a member of the required security group." 
$server = "smtp.contoso.com" 
$smtp = New-Object Net.Mail.SmtpClient($server) 
$smtp.Send($from, $to, $subject, $body)

■■ Outputting the text file to a network file share is a useful way to collate diag-
nostic information in a central store, especially when you want to view a list of 
computers and determine when the script was last executed. When a file name is 
composed of the computer name and date/time in seconds, you can be assured 



 552 CHAPTER 18 Logging results

that the file name will always be unique and that a file name−based sort in File 
Explorer, albeit crude, will sort the files chronologically.
$path = "\\fileserver\logs\script1\" + (Get-Content env:computername) 
+  
" " + (Get-Date –f "yyyy-MM-dd HHmmss") + ".txt" 
Start-Transcript -path $path

■■ Calling out specific errors in the event log is a great way to bubble instrumen-
tation data to the surface, for this is often the first place that technicians will 
look when diagnosing a problem. the event log can also be monitored by tools 
commonplace in larger It shops, such as Microsoft System Center Operations 
Manager or the Event Collector service.

You can set the log level to Information, Warning, or Error, depending on the sever-
ity (or lack of severity) attached to the data, and you can even assign granular error 
codes based on the root cause of the issue. the only caveat is that administrator 
privileges are required to set up your own event log source. If you need to use an 
event log in these scenarios, you must either ensure that the event log is created in 
advance or commandeer one of the pre-existing Windows sources for your needs.

$source = "MyScript" 

$log = "Application" 

$message = "The script could not run as user " + (Get-Content 

env:username) + 

 " was not a member of the required security group." 

$type = "Error" 

$id = 1 

 

if (![System.Diagnostics.EventLog]::SourceExists($source)) { [System 

.Diagnostics.EventLog]::CreateEventSource($source, $log) } 

 

$eventLog = New-Object System.Diagnostics.EventLog 

$eventLog.Log = $log 

$eventLog.Source = $source 

$eventLog.WriteEntry($message, $type, $id)

Logging to the event log

Windows event logs provide a convenient place to store short status and diagnostic informa-
tion. You can use the .NET Framework classes directly to create event sources, event logs, and 
event log entries, or you can use cmdlets. The New-EventLog cmdlet can be used to create 



 Logging to the event log CHAPTER 18 553

a new event log and event log source. To write to an event log, you must supply both a log 
name and a log source.

To create a new event log and event source requires administrative rights. The error shown 
here will be generated if administrative rights are not present:

PS C:\> New-EventLog -LogName scripting -Source processAudit 
New-EventLog : Access is denied. Please try with an elevated user permission. 
At line:1 char:13 
+ New-EventLog <<<<  -LogName scripting -Source processAudit 
    + CategoryInfo          : InvalidOperation: (:) [New-EventLog], Exception 
    + FullyQualifiedErrorId : AccessIsDenied,Microsoft.PowerShell.Commands 
.NewEventLogCommand

To start either the Windows PowerShell console or the Windows PowerShell Integrated 
Scripting Environment (ISE), you right-click the icon and choose Run As Administrator from 
the action menu. In a script, you want to use a function, such as Test-IsAdministrator, to deter-
mine rights prior to attempting to create a new event log. The TestAdminCreateEventLog.ps1 
script contains the Test-IsAdministrator function. This function begins by creating a minimal 
amount of help: the synopsis, description, and an example of using the function.

function Test-IsAdministrator 
{ 
    <# 
    .Synopsis 
        Tests if the user is an administrator 
    .Description 
        Returns true if a user is an administrator,  
        false if the user is not an administrator         
    .Example 
        Test-IsAdministrator 
    #>

The function uses the GetCurrent static method from the Security.Principal.WindowsIdentity 
.NET Framework class. This method returns a WindowsIdentity object that represents the cur-
rent user. The WindowsIdentity object is passed to the System.Principal.WindowsPrincipal .NET 
Framework class where it is used to generate an instance of a WindowsPrincipal class. The 
IsInRole method receives a WindowsBuiltinRole enumeration value that is used to determine 
whether the user is in the Administrator role.

    $currentUser = [Security.Principal.WindowsIdentity]::GetCurrent() 
    (New-Object Security.Principal.WindowsPrincipal $currentUser).IsInRole ' 
    ([Security.Principal.WindowsBuiltinRole]::Administrator) 
} #end function Test-IsAdministrator

The Test-IsAdministrator function returns a Boolean value. If the function is true, the user is 
in the Administrator role; if it is false, the user is not elevated and the script will exit. If the user 
is in the Administrator role, the script creates a new event log and source.

If(-not (Test-IsAdministrator)) { "Admin rights are required for this script" ; exit } 
New-EventLog -LogName scripting -Source processAudit



 554 CHAPTER 18 Logging results

The complete TestAdminCreateEventLog.ps1 script is shown here.

testadminCreateEventLog.ps1

function Test-IsAdministrator 

{ 

    <# 

    .Synopsis 

        Tests if the user is an administrator 

    .Description 

        Returns true if a user is an administrator,  

        false if the user is not an administrator         

    .Example 

        Test-IsAdministrator 

    #>    

    param()  

    $currentUser = [Security.Principal.WindowsIdentity]::GetCurrent() 

    (New-Object Security.Principal.WindowsPrincipal $currentUser).IsInRole([Security 

.Principal.WindowsBuiltinRole]::Administrator) 

} #end function Test-IsAdministrator 

 

# *** Entry Point to Script *** 

If(-not (Test-IsAdministrator)) { "Admin rights are required for this script" ; exit } 

New-EventLog -LogName scripting -Source processAudit

Using the application log
The easiest log to use is the Application log because it is always present on the system and 
because administrative rights are not required. A source must exist in the event log. If you 
choose a source that exists but an event ID that does not exist, no error will be generated, but 
the event details will contain a message about a missing source description.

PS C:\> Write-EventLog -LogName application -Source certenroll -EntryType information ' 
-EventId 0 -Message "test" 
PS C:\> Get-WinEvent -LogName application -MaxEvents 1 | format-list * 
 
EventID            : 0 
MachineName        : EDWILSON.microsoft.com 
Data               : {} 
Index              : 6130 
Category           : (1) 
CategoryNumber     : 1 
EntryType          : Information 
Message            : The description for Event ID '0' in Source 'certenroll' cannot be 
found. The local computer may not have the necessary registry information or message 
DLL files to display the message or you may not have permission to access them. The 
following information is part of the event:'test' 
Source             : certenroll 
ReplacementStrings : {test} 



 Logging to the event log CHAPTER 18 555

InstanceId         : 0 
TimeGenerated      : 8/17/2009 12:03:52 PM 
TimeWritten        : 8/17/2009 12:03:52 PM 
UserName           : 
Site               : 
Container          :

Creating a custom event log
The best way to use event log logging is to create your own custom event log with its own 
custom sources. Because the Application log is heavily used by numerous sources, retriev-
ing events involves sorting through thousands of entries. With a custom event log, you are 
in complete control of how many events are written, the number of sources that are defined, 
and the level of logging that is done. This means that it is generally easier to retrieve event 
log entries from a custom event log than from System or Application logs. To create a new 
event log, use the New-EventLog cmdlet to specify the log name and the source for the events.

NOTE If you are following along in the book, running the commands as you read along, 
the following command will fail because the scripting event source was created in an ear-
lier scenario.

New-EventLog -LogName ForScripting -Source scripting

The error is due to the scripting source being previously registered on the computer. You 
need to back up a step and remove the event source. To do this use the following code:

Remove-EventLog –Source scripting 
PS C:\> New-EventLog -LogName ForScripting -Source scripting

To write to the event log, use the Write-EventLog cmdlet. You need to specify the log 
name, the source, the type of entry, and the event ID and message, which can all be accom-
plished on a single line.

PS C:\> Write-EventLog -LogName ForScripting -Source scripting -EntryType information ' 
-EventId 0 -Message test

To retrieve event log entries, you can use the Get-EventLog cmdlet and specify the event 
log name.

PS C:\> Get-WinEvent-LogName ForScripting 
 
   Index Time          EntryType   Source                 InstanceID Message 
   ----- ----          ---------   ------                 ---------- ------- 
       1 Aug 17 12:42  Information scripting                       0 test



 556 CHAPTER 18 Logging results

Logging to the registry

The registry is an ideal location to store small pieces of information, such as exit codes and 
time stamps. Due to the nature of the registry, you do not want to store large amounts of 
data here. In addition, you will need to remove the object-oriented nature of the objects 
when you write to the registry by pipelining the object to the Out-String cmdlet or by calling 
one of the ToString methods.

The best place to write to the registry is in the Hkey_Current_User hive because the current 
user has rights to write to the Current_User registry hive, and you therefore avoid rights and 
permissions issues. This process is illustrated in the CreateRegistryKey.ps1 script, which is used 
to create a registry key named ForScripting in the Hkey_Current_User hive. A property named 
forscripting is created with the value of test assigned to it.

The CreateRegistryKey.ps1 script contains a function named Add-RegistryValue that 
accepts two parameters—the $key and the $value variables. The function can be further 
expanded to include the registry root as well. The value of the $scriptRoot variable is used to 
determine where the registry key value will be created. If the path to the $scriptRoot registry 
key does not exist, it will be created, and the registry property value will be added as well. 
The Test-Path cmdlet is used to ensure that the path to the $scriptRoot registry key exists. The 
New-Item cmdlet is used to create the registry key, and the New-ItemProperty cmdlet is used 
to create the new registry property and assign its value. The Out-Null cmdlet is used to keep 
the results of creating the registry key and value from cluttering the Windows PowerShell 
console.

Function Add-RegistryValue($key,$value) 
{ 
 $scriptRoot = "HKCU:\software\ForScripting" 
 if(-not (Test-Path -path $scriptRoot)) 
   {  
    New-Item -Path HKCU:\Software\ForScripting | Out-Null  
    New-ItemProperty -Path $scriptRoot -Name $key -Value $value ' 
    -PropertyType String | Out-Null 
    }

If the registry key does exist, the Set-ItemProperty cmdlet is used to either create the reg-
istry property value or change its value. Once again, the results of the cmdlet are pipelined to 
the Out-Null cmdlet.

Else 
  { 
   Set-ItemProperty -Path $scriptRoot -Name $key -Value $value | ' 
   Out-Null 
  }

The entry point to the script calls the Add-RegistryValue function and passes the registry 
key name and the value to modify.

Add-RegistryValue -key forscripting -value test



 Logging to the registry CHAPTER 18 557

The complete CreateRegistryKey.ps1 script is shown here.

CreateregistryKey.ps1

Function Add-RegistryValue 

{ 

 Param ($key,$value) 

 $scriptRoot = "HKCU:\software\ForScripting" 

 if(-not (Test-Path -path $scriptRoot)) 

   {  

    New-Item -Path HKCU:\Software\ForScripting | Out-Null  

    New-ItemProperty -Path $scriptRoot -Name $key -Value $value ' 

    -PropertyType String | Out-Null 

    } 

  Else 

  { 

   Set-ItemProperty -Path $scriptRoot -Name $key -Value $value | ' 

   Out-Null 

  } 

   

} #end function Add-RegistryValue 

 

# *** Entry Point to Script *** 

Add-RegistryValue -key forscripting -value test

When the CreateRegistryKey.ps1 script is run, nothing is displayed on the screen. The 
ForScripting registry key is created with the forscripting registry property, which is set to a 
value of test, as shown in Figure 18-5.

FIGURE 18-5 The Current_User registry hive is a great place to store small amounts of data.



 558 CHAPTER 18 Logging results

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous examples of writing to files, the event log, and the registry.

■■ Take a look at Chapter 3 in Windows PowerShell™ Scripting Guide (Microsoft Press, 
2008) for more information about how to log script results.

■■  All scripts from this chapter are available via the TechNet Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40 
-Best-d9e16039.



   559

C H A P T E R  1 9

troubleshooting scripts
■■ Understanding debugging in Windows PowerShell

■■ Using the Set-PSDebug cmdlet

■■ Debugging scripts

■■ Additional resources

A well-designed, well-written script rarely needs troubleshooting. This is not to say 
that all scripts are perfect or that all scripts run without errors the first time they are 

executed—or even the second time. Yet, a good script should be organized in a manner 
that makes it easy to read and easy to understand. By default, the two best practices of 
readability and understandability reduce the amount of troubleshooting necessary to fix 
errors in a script because they make errors easier to spot. However, when problems do crop 
up, you will want to know how to debug your script. In this chapter, we will look at the com-
mands to produce a trace of your script, to step through the commands of the script, and 
to debug the script, and we will examine the best practices involved in choosing tracing, 
stepping, or debugging commands for identifying errors in scripts. Windows PowerShell 4.0 
contains extremely powerful and flexible tools to facilitate troubleshooting when or if it ever 
becomes a necessity. 

Understanding debugging in Windows PowerShell

If you can read and understand your Windows PowerShell code, chances are, you will need 
to do very little debugging. But what if you do need to do some debugging? Well, just 
as excellent golfers spend many hours practicing chipping out of the sand trap in hopes 
that they will never need to use the skill, so too must a competent Windows PowerShell 
scripter practice debugging skills in hopes that they will never need to apply the knowledge. 
Understanding the color coding of the Windows PowerShell ISE, detecting when closing 
quotation marks are missing, and knowing which pair of braces correspond to which com-
mand can greatly reduce the debugging that might be needed later. 

Debugging is a skill used to track down, and to eliminate errors from a Windows 
PowerShell script. There are three different types of errors that coders make. These errors 
are syntax errors, run-time errors, and logic errors. 



 560 CHAPTER 19 Troubleshooting scripts

Working with syntax errors
Syntax errors are the easiest to spot, and you usually correct them at design —that is, while 
you have the Windows PowerShell ISE open and you are writing your script. The reason that 
syntax errors generally get corrected at design time is because the language parser runs in 
the background of the Windows PowerShell ISE, and when it detects a syntax error, it marks it 
with a squiggly line (thus indicating that the command requires additional parameters, deco-
ration, or other attention). This process of correcting syntax errors becomes second nature to 
seasoned scripters who do not usually view the process as correcting syntax errors but as sim-
ply completing commands so that the script runs properly. The most seasoned scripters learn 
to pay attention to the syntax parser, and they fix errors indicated by the red squiggly lines 
prior to actually running the code. When not corrected, the error message generated often 
provides good guidance towards correcting the offending command. Figure 19-1 illustrates a 
syntax error. 

FIGURE 19-1 The Windows PowerShell ISE highlights potential errors with a red squiggly line. The error 
message states the offending command and often provides clarification for required changes.

Working with runtime errors
The syntax parser often does not detect runtime errors. Rather, runtime errors are problems 
that manifest themselves only when the script runs. Examples of these types of errors include 
a resource not available (such as a drive or a file), permissions problems (such as a non-
elevated user not having the rights to perform an operation), misspelled words, and code 
dependencies that are not met (such as access to a required module). The good thing is that 
many of these runtime errors are detectable from within the Windows PowerShell ISE due to 
the more robust tab expansion mechanism in Windows PowerShell 4.0. For example, it is pos-
sible, virtually, to eliminate the resource not available runtime error if you use tab expansion. 



 Understanding debugging in Windows PowerShell CHAPTER 19 561

This is possible because tab expansion works even across UNC shares. Figure 19-2 illustrates 
this feature when attempting to use the Get-Content cmdlet to read the contents of the 
 AD _  Doc.txt file from the Data share on a server named hyperv1. 

FIGURE 19-2 Improved tab expansion makes it possible to avoid certain runtime errors.

Unfortunately, tab expansion does not help when it comes to dealing with permissions 
issues. However, paying attention to the returned error message will help identify that you 
are dealing with a permission issue. Generally, you receive an Access Is Denied error message. 
Such an error message appears here when bogususer attempts to access the DC1 server to 
perform a Windows Management Instrumentation query.

PS C:\> Get-WmiObject win32_bios -cn dc1 -Credential iammred\bogususer 
Get-WmiObject : Access is denied. (Exception from HRESULT: 0x80070005  
(E_ACCESSDENIED)) 
At line:1 char:1 
+ Get-WmiObject win32_bios -cn dc1 -Credential iammred\bogususer 
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    + CategoryInfo          : NotSpecified: (:) [Get-WmiObject], UnauthorizedA  
   ccessException 
    + FullyQualifiedErrorId : System.UnauthorizedAccessException,Microsoft.  
   PowerShell.Commands.GetWmiObjectCommand 

One way to detect runtime errors is to use the Write-Debug cmdlet to display the con-
tents of variables that are most likely to contain erroneous data. By moving from a one-line 
command to a simple script containing variables and a variety of Write-Debug commands, 
the most common troubleshooting techniques automatically occur. For example, in the 
RemoteWMISessionNoDebug.ps1 script shown here, there are two main sources of run-
time errors: the availability of the target computer, and the credentials used to perform the 
connection. 



 562 CHAPTER 19 Troubleshooting scripts

remoteWMISessionNoDebug.ps1

$credential = Get-Credential 

$cn = Read-Host -Prompt "enter a computer name" 

Get-WmiObject win32_bios -cn $cn -Credential $credential

By using the immediate window in the Windows PowerShell ISE, it is possible to inter-
rogate the values of the $cn variable and the $credential variable. It is also possible to use 
the Test-Connection cmdlet to check on the status of the $cn computer. By anticipating 
these typical debugging steps in advance, the script displays the pertinent information 
and therefore shortcuts any debugging required to make the script properly work. The 
DebugRemoteWMISession.ps1 script, shown here, illustrates using the Write-Debug cmdlet to 
provide debugging information.

the DebugremoteWMISession.ps1

$oldDebugPreference = $DebugPreference 

$DebugPreference = "continue" 

$credential = Get-Credential 

$cn = Read-Host -Prompt "enter a computer name" 

Write-Debug "user name: $($credential.UserName)" 

Write-Debug "password: $($credential.GetNetworkCredential().Password)" 

Write-Debug "$cn is up:  

  $(Test-Connection -Computername $cn -Count 1 -BufferSize 16 -quiet)" 

Get-WmiObject win32_bios -cn $cn -Credential $credential 

$DebugPreference = $oldDebugPreference

Figure 19-3 illustrates running the DebugRemoteWMISession.ps1 script inside the 
Windows PowerShell ISE to determine why the script fails. According to the output, the 
remote server, DC1, is available, but the user Bogus User with the password of BogusPassword 
is receiving access denied. It might be that the user, Bogus User, does not have an account, 
does not have access rights, or that the password really is not BogusPassword. The detailed 
debugging information should help to clarify the situation.

A better way to use the Write-Debug cmdlet is to combine it with the [CmdletBinding()] 
attribute at the beginning of the script (or function). For the [CmdletBinding()] attribute 
to work requires a couple of things. First, the script or function must use at least one 
parameter. This means that the param keyword will be present in the script. Second, the 
[CmdletBinding()] attribute must appear prior to the param keyword. When implemented, this 
change permits use of the common debug parameter. When calling the script or the function, 
use of the debug switched parameter causes the debug stream from the Write-Debug cmdlets 
in the code to appear in the output. This simple change also means that your code no longer 
needs to change the value of the $DebugPreference variable. It also means that you do not 



 Understanding debugging in Windows PowerShell CHAPTER 19 563

need to create your own switched debug parameter and include code such as the following at 
the beginning of your script:

Param([switch]$debug) 
If($debug) {$DebugPreference = "continue"}

FIGURE 19-3 Detailed debugging makes solving runtime errors more manageable.

The revised and simplified DebugRemoteWMISession.ps1 script appears here as Switch_
DebugRemoteWMISession.ps1. The changes to the script include adding the [CmdletBinding()] 
attribute, creating a parameter named cn, and setting the default value to the name of the 
local computer. The other changes involve removing the toggling of the $DebugPreference 
variable. The complete script appears here.

Switch_DebugremoteWMISession.ps1

[CmdletBinding()] 

Param($cn = $env:computername) 

$credential = Get-Credential 

Write-Debug "user name: $($credential.UserName)" 

Write-Debug "password: $($credential.GetNetworkCredential().Password)" 

Write-Debug "$cn is up:  

  $(Test-Connection -Computername $cn -Count 1 -BufferSize 16 -quiet)" 

Get-WmiObject win32_bios -cn $cn -Credential $credential 

When the Switch_DebugRemoteWMISession.ps1 script runs with the debug switch from 
the Windows PowerShell console, in addition to displaying the debug stream, it also prompts 
to continue the script. This permits halting execution upon reaching an unexpected value. 
Figure 19-4 illustrates this technique, when a user named Bogus User, who wants to connect 



 564 CHAPTER 19 Troubleshooting scripts

to a remote server named DC1, unexpectedly discovers that he is connecting to a workstation 
named W8Client6. 

FIGURE 19-4 Using the debug switched parameter to step through potential problems in a script.

Working with logic errors
Logic errors can be very difficult to detect, because the script appears to work correctly. In 
fact, in some cases, the script might work perfectly fine. But when things go wrong, they 
can be difficult to fix. Most of the time, just examining the values of variables does not solve 
the problem because the code itself works fine. The problem often lies in what is called the 
 business rules of the script. These are decisions the code makes that have nothing to do with 
the correct operation of, for example, a switch statement. At times, it might appear that the 
switch statement is not working correctly because the wrong value displays at the end of the 
code, but quite often, it is the business rules themselves causing the problem. 

For a simple example of a logic error, consider the function called My-Function in the 
My-Function.ps1 script shown here.

My-Function.ps1

Function my-function 

{ 

 Param( 

  [int]$a, 

  [int]$b) 

  "$a plus $b equals four" 

} 

The My-Function function accepts two command-line parameters: a and b. It then com-
bines the two values and outputs a string stating that the value is four. The tester performs 



 Understanding debugging in Windows PowerShell CHAPTER 19 565

four different tests, and each time the function performs as expected. These tests and the 
associated output are shown here:

PS C:\> S:\psh_sbs_4\chapter19\scripts\my-function.ps1 
 
PS C:\> my-function -a 2 -b 2 
2 plus 2 equals four 
 
PS C:\> my-function -a 1 -b 3 
1 plus 3 equals four 
 
PS C:\> my-function -a 0 -b 4 
0 plus 4 equals four 
 
PS C:\> my-function -a 3 -b 1 
3 plus 1 equals four 

However, when the function goes into production, users begin to complain. Most of the 
time, the function displays incorrect output. However, the users also report that no errors 
generate when the function runs. What is the best way to solve the logic problem? Simply 
adding a couple of Write-Debug commands to display the values of the variables a and b will 
more than likely not lead to the correct solution. A better way is to step through the code 
one line at a time and examine the associated output. The easy way to do this is to use the 
 Set-PSDebug cmdlet—the topic of the next section in this chapter.

NOTES FROM THE FIELD

Luc Dekens, Systems Engineer, Windows PowerShell MVP
Eurocontrol

Sometimes beauty is in the small things. and the [ordered] tag that was intro-
duced in Windows PowerShell version 3 is no different.

Before the introduction of this new tag, the order in which properties of a hash 
table would be displayed could not be controlled. The issue was easy to fix by 
adding a Select-Object cmdlet.  But for me, that didn’t support the theory that 
Windows PowerShell had to be intuitive.

Let me show you with an example.

One of my kids needed to produce for school a table that would demonstrate the 
Pythagorean theorem. Easy, because he knew a bit of Windows PowerShell and he 
was aware he could call the .Net functions from PowerShell.

$table = @() 

for($i = 0; $i -le 90; $i += 10){ 

    $rad = $i*[Math]::PI/180 

    $cos = [math]::Cos($rad)



 566 CHAPTER 19 Troubleshooting scripts

    $sin = [math]::Sin($rad) 

    $row = @{ 

        Angle = $i 

        Cosine = "{0:n2}" -f $cos 

        Sine = "{0:n2}" -f $sin 

        Pythagoras = [math]::Pow($cos,2) + [math]::Pow($sin,2) 

    } 

    $table += New-Object PSObject -Property $row 

} 

$table | Export-Csv pyth.csv -NoTypeInformation -UseCulture 

I leave the details of the script as an exercise for the reader.  

My son opened the produced CSV file, and needless to say he was somewhat 
disappointed.

the script worked; the values were there to prove the theorem. But the columns in 
the CSV file didn’t appear in the order he expected. It just didn’t look right to him.

With the arrival of Windows PowerShell V3, I could provide him a solution, without 
an additional Select-Object line before creating the CSV file.

the new version of his script needed only a small change: the addition of the 
[ordered] tag on the line where the hash table is created.

$table = @() 

for($i = 0; $i -le 90; $i += 10){ 

    $rad = $i*[Math]::PI/180 

    $cos = [math]::Cos($rad) 

    $sin = [math]::Sin($rad) 

    $row = [ordered]@{ 

        Angle = $i 

        Cosine = "{0:n2}" -f $cos 

        Sine = "{0:n2}" -f $sin 

        Pythagoras = [math]::Pow($cos,2) + [math]::Pow($sin,2) 

    } 

    $table += New-Object PSObject -Property $row 

} 

$table | Export-Csv pyth-v3.csv -NoTypeInformation -UseCulture 

the [ordered] tag doesn’t actually introduce anything new to Windows PowerShell; 
the ordered hash table was already there. 

$object1 = New-Object System.Collections.Specialized.OrderedDictionary 

But the V3 way makes it a lot easier to write and read.

$object2 = [ordered]@{} 



 Using the Set-PSDebug cmdlet  CHAPTER 19 567

With the [ordered] tag came another great new feature in Windows PowerShell 
V3: [PSCustomObject], a new class specifically designed to create custom objects 
from a hash table. two of the advantages of this new class are that it preserves the 
order and it is blazingly fast compared to some of the other methods used to create 
custom objects.

Function Get-Pythagoras { 

    param($angle) 

 

    $rad = $angle*[Math]::PI/180 

    $cos = [math]::Cos($rad) 

    $sin = [math]::Sin($rad) 

 

    [PSCustomObject]@{ 

        Angle = $angle 

        Cosine = "{0:n2}" -f $cos 

        Sine = "{0:n2}" -f $sin 

        Pythagoras = [math]::Pow($cos,2) + [math]::Pow($sin,2) 

    } 

} 

 

for($i = 0; $i -le 90; $i += 10){ 

    Get-Pythagoras -Angle $i 

} 

Using the Set-PSDebug cmdlet 

The Set-PSDebug cmdlet was available in Windows PowerShell 1.0, and it remains the same in 
Windows PowerShell 4.0. This does not mean it is a neglected feature, but rather it does what 
it needs to do. To perform basic debugging in a quick and easy fashion, you cannot beat the 
combination of features that are available. There are three things that you can do with the 
Set-PSDebug cmdlet. You can trace script execution in an automated fashion, step through 
the script in an interactive fashion, and you can enable strict mode. Each of these features will 
be examined in this section. The Set-PSDebug cmdlet is not designed to do heavy debugging; 
it is a light weight tool that is useful when you want to produce a quick trace or rapidly step 
through the script. 



 568 CHAPTER 19 Troubleshooting scripts

tracing the script
One of the simplest ways to debug a script is to turn on script-level tracing. When you turn on 
script-level tracing, each command that is executed is displayed to the Windows PowerShell 
console. By watching the commands as they are displayed to the Windows PowerShell con-
sole, you can determine whether a line of code in your script executes or whether it is being 
skipped. To enable script tracing, you use the Set-PSDebug cmdlet and specify one of three 
levels for the trace parameter. The three levels of tracing are described in Table 19-1.

TABLE 19-1 Tracing levels

Trace level Meaning

0 Turns script tracing off.

1 Traces each line of the script as it is executed. Lines in the script that are not executed are not 
traced. Does not display variable assignments, function calls, or external scripts.

2 Traces each line of the script as it is executed. Displays variable assignments, function calls, and 
external scripts. Lines in the script that are not executed are not traced. 

To illustrate the process of tracing a script and the differences between the different trace 
levels, look at the CreateRegistryKey.ps1 script. The CreateRegistryKey.ps1 script contains 
a single function called the Add-RegistryValue function. In the Add-RegistryValue function, 
the Test-Path cmdlet is used to determine whether the registry key exists. If the registry key 
exists, a property value is set. If the registry key does not exist, the registry key is created and 
a property value is set. The Add-RegistryValue function is called when the script executes. The 
complete CreateRegistryKey.ps1 script is shown here.

CreateregistryKey.ps1

Function Add-RegistryValue($key,$value) 

{ 

 $scriptRoot = "HKCU:\software\ForScripting" 

 if(-not (Test-Path -path $scriptRoot)) 

   {  

    New-Item -Path HKCU:\Software\ForScripting | Out-null  

    New-ItemProperty -Path $scriptRoot -Name $key -Value $value ' 

    -PropertyType String | Out-Null 

    } 

  Else 

  {



 Using the Set-PSDebug cmdlet  CHAPTER 19 569

   Set-ItemProperty -Path $scriptRoot -Name $key -Value $value | ' 

   Out-Null 

  } 

   

} #end function Add-RegistryValue 

 

# *** Entry Point to Script *** 

Add-RegistryValue -key forscripting -value test

Working with trace level 1
When the trace level is set to 1, each line in the script that executes is displayed to the 
Windows PowerShell console. To set the trace level to 1, you use the Set-PSDebug cmdlet, 
using the trace parameter with the value of 1 assigned to it. When you press Enter, you are 
immediately presented with a new line, as shown here:

Windows PowerShell 
Copyright (C) 2013 Microsoft Corporation. All rights reserved. 
 
PS C:\Users\ed.IAMMRED> Set-PSDebug -Trace 1 
PS C:\Users\ed.IAMMRED>

After the trace level has been set, it applies to everything that is typed in the Windows 
PowerShell console. If you run an interactive command, run a cmdlet, or execute a script, 
it will be traced. When the CreateRegistryKey.ps1 script is run and there is no registry key 
present, the first command debug line displays the path to the script that is being executed. 
Because Windows PowerShell parses from the top down, the next line that is executed is the 
line that creates the Add-RegistryValue function. This command is on line 10 of the script, 
because the actual script that executed contains 9 lines that are commented out. When you 
add the status bar to Notepad (View/Status Bar), the status bar at the lower right corner of 
Notepad will display the line number. This is shown in Figure 19-5.



 570 CHAPTER 19 Troubleshooting scripts

FIGURE 19-5 The Notepad status bar, at the lower-right corner of Notepad, displays line numbers.

After creating the function, the next line of the script that executes is line 25. Line 25 of the 
CreateRegistryKey.ps1 script follows the comment that points to the entry point to the script 
(this last line is seen in Figure 19-5) and calls the Add-RegistryValue function by passing two 
values for the key and value parameters, as shown here: 

PS C:\> E:\Data\BookDOcs\PS4_BestPractices\Scripts\scripts_ch19\CreateRegistryKey.ps1 
DEBUG:    1+  >>>> 
E:\Data\BookDOcs\PS4_BestPractices\Scripts\scripts_ch19\CreateRegistryKey.ps1 
DEBUG:   28+  >>>> Add-RegistryValue -key forscripting -value test 
DEBUG:   11+  >>>> { 
DEBUG:   12+   >>>> $scriptRoot = "HKCU:\software\ForScripting" 
DEBUG:   13+  if( >>>> -not (Test-Path -path $scriptRoot)) 
DEBUG:   15+      >>>> New-Item -Path HKCU:\Software\ForScripting | Out-null 
DEBUG:   16+      >>>> New-ItemProperty -Path $scriptRoot -Name $key -Value $value 
' 
DEBUG:   25+  >>>> } #end function Add-RegistryValue

When inside the Add-RegistryValue function, the HKCU:\software\ForScripting string is 
assigned to the $scriptRoot variable, as shown here: 

DEBUG:   12+   >>>> $scriptRoot = "HKCU:\software\ForScripting"

The if statement is now evaluated. If the Test-Path cmdlet cannot find the $scriptRoot loca-
tion in the registry, the if statement is entered and the commands inside the associated script 



 Using the Set-PSDebug cmdlet  CHAPTER 19 571

block will be executed. In this example, $scriptRoot is not located, and the commands inside 
the script block are executed, as shown here: 

DEBUG:   13+  if( >>>> -not (Test-Path -path $scriptRoot))

The New-Item and the New-ItemProperty cmdlets are called on line 15 and 16 of the 
CreateRegistryKey.ps1 script. 

DEBUG:   15+      >>>> New-Item -Path HKCU:\Software\ForScripting | Out-null`DEBUG:   
16+      >>>> New-ItemProperty -Path $scriptRoot -Name $key -Value $value

When the script ends, the Windows PowerShell console parser returns to the default 
prompt.

By setting the debug trace level to 1, a basic outline of the execution plan of the script is 
produced. This technique is good for quickly determining the outcome of branching state-
ments (such as the if statement) to see whether a script block is being entered. This is illus-
trated in Figure 19-6.

FIGURE 19-6 Script level 1 tracing displays each executing line of the script.

Working with trace level 2
When the trace level is set to 2, each line in the script that executes is displayed to the 
Windows PowerShell console. In addition, each variable assignment, function call, and outside 
script call is displayed. These additional tracing details are all prefixed with an exclamation 
mark to make them easier to spot. When the Set-PSDebug trace parameter is set to 2, an extra 
line is displayed indicating a variable assignment, as shown here: 

PS C:\> Set-PSDebug -Trace 2 
DEBUG:    1+  <<<< Set-PSDebug -Trace 2 
DEBUG:    2+         $foundSuggestion = <<<<  $false 
DEBUG:     ! SET $foundSuggestion = 'False'. 
DEBUG:    4+         if <<<< ($lastError -and 
DEBUG:   15+         $foundSuggestion <<<<

When the CreateRegistryKey.ps1 script is run, the function trace points first to the script, 
stating it is calling a function called CreateRegistryKey.ps1. Calls to functions are prefixed with 
! CALL, making them easy to spot. Windows PowerShell treats scripts as functions. The next 



 572 CHAPTER 19 Troubleshooting scripts

function that is called is the Add-RegistryValue function. The trace also states where the func-
tion is defined by indicating the path to the file, as shown here: 

PS C:\> y:\CreateRegistryKey.ps1 
DEBUG:    1+  <<<< y:\CreateRegistryKey.ps1 
DEBUG:     ! CALL function 'CreateRegistryKey.ps1'  (defined in file 
'y:\CreateRegistryKey.ps1') 
DEBUG:    7+ Function Add-RegistryValue <<<< ($key,$value) 
DEBUG:   25+  <<<< Add-RegistryValue -key forscripting -value test 
DEBUG:     ! CALL function 'Add-RegistryValue'  (defined in file 
'y:\CreateRegistryKey.ps1')

The ! SET keyword is used to preface variable assignments. The first variable that is 
assigned is the $scriptRoot variable. 

DEBUG:    9+  $scriptRoot = <<<<  "HKCU:\software\ForScripting" 
DEBUG:     ! SET $scriptRoot = 'HKCU:\software\ForScripting'. 
DEBUG:   10+  if <<<< (-not (Test-Path -path $scriptRoot)) 
DEBUG:   18+     <<<< Set-ItemProperty -Path $scriptRoot -Name $key -Value 
$value | ' 
DEBUG:    2+         $foundSuggestion = <<<<  $false 
DEBUG:     ! SET $foundSuggestion = 'False'. 
DEBUG:    4+         if <<<< ($lastError -and 
DEBUG:   15+         $foundSuggestion <<<< 
PS C:\>

When the CreateRegistryKey.ps1 script is run with tracing level 2, the detailed tracing seen 
in Figure 19-7 is displayed.

FIGURE 19-7 Script level 2 tracing adds variable assignments, function calls, and external script calls. 

Stepping through the script
Watching the script trace the execution of the lines of code in the script can often provide 
useful insight that can lead to a solution to a misbehaving script. If a script is more com-
plicated and is composed of a script with several functions, a simple trace might not be a 



 Using the Set-PSDebug cmdlet  CHAPTER 19 573

workable solution. For the occasions when your script is more complex and comprises mul-
tiple functions, you will want the ability to step through the script. When you step through a 
script, debug prompts you before each line of the script runs. A script you might want to step 
through is the BadScript.ps1 script shown here. 

BadScript.ps1

Function AddOne([int]$num) 

{ 

 $num+1 

} #end function AddOne 

 

Function AddTwo([int]$num) 

{ 

 $num+2 

} #end function AddTwo 

 

Function SubOne([int]$num) 

{ 

 $num-1 

} #end function SubOne 

 

Function TimesOne([int]$num) 

{ 

  $num*2 

} #end function TimesOne 

 

Function TimesTwo([int]$num) 

{ 

 $num*2 

} #end function TimesTwo 

 

Function DivideNum([int]$num) 

{  

 12/$num 

} #end function DivideNum 

 

# *** Entry Point to Script *** 

 

$num = 0 

SubOne($num) | DivideNum($num) 

AddOne($num) | AddTwo($num)

The BadScript.ps1 script contains a number of functions that are used to add numbers, 
subtract numbers, multiply numbers, and divide numbers. There are some problems with the 
way the script runs because it contains several errors. It would be possible for you to set the 



 574 CHAPTER 19 Troubleshooting scripts

trace level to 2 and examine the trace of the script, but with the large number of functions 
and the types of errors that are contained in the script, it might be difficult to spot the prob-
lems with the script. By default, the trace level is set to level 1 when stepping is enabled, and 
in nearly all cases, it is the best solution for the trace level. 

You might prefer to be able to step through the script as each line executes. There are 
two benefits to using the step parameter from the Set-PSDebug cmdlet. The first benefit is 
that you can watch what happens when each line of the script executes. This allows you to 
very carefully walk through the script. With the trace feature of Set-PSDebug, it is possible to 
miss important clues to help solve troubleshooting problems because everything is displayed 
on the Windows PowerShell console. With the prompt feature, you are asked to choose a 
response before each line in the script executes. The default choice is Y, for “Yes, continue the 
operation,” but you have other choices. When you respond Y, the debug line is displayed to 
the Windows PowerShell console. This is the same debug statement you saw in the trace out-
put, and it is governed by your debug trace level settings. The step prompting is shown here:

PS C:\> Set-PSDebug -Step 
PS C:\> E:\Data\BookDOcs\PS4_BestPractices\Scripts\scripts_ch19\BadScript.ps1 
 
Continue with this operation? 
   1+  >>>> E:\Data\BookDOcs\PS4_BestPractices\Scripts\scripts_ch19\BadScript.ps1 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:    1+  >>>> 
E:\Data\BookDOcs\PS4_BestPractices\Scripts\scripts_ch19\BadScript.ps1 
 
Continue with this operation? 
  42+  >>>> $num = 0 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   42+  >>>> $num = 0 
 
Continue with this operation? 
  43+  >>>> SubOne($num) | DivideNum($num) 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   43+  >>>> SubOne($num) | DivideNum($num) 
 
Continue with this operation? 
  21+  >>>> { 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   21+  >>>> { 
 
Continue with this operation? 
  22+   >>>> $num-1 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   22+   >>>> $num-1 
 
Continue with this operation? 
  23+  >>>> } #end function SubOne 



 Using the Set-PSDebug cmdlet  CHAPTER 19 575

[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   23+  >>>> } #end function SubOne 
 
Continue with this operation? 
  36+  >>>> { 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   36+  >>>> { 
 
Continue with this operation? 
  37+   >>>> 12/$num 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   37+   >>>> 12/$num 
 
Continue with this operation? 
  19+                                         if ( &  >>>> { Set-StrictMode -Version 
 1; $_.PSMessageDetails } ) { 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   19+                                         if ( &  >>>> { Set-StrictMode 
-Version 1; $_.PSMessageDetails } ) { 
 
Continue with this operation? 
  19+                                         if ( & {  >>>> Set-StrictMode -Version 
 1; $_.PSMessageDetails } ) { 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   19+                                         if ( & {  >>>> Set-StrictMode 
-Version 1; $_.PSMessageDetails } ) { 
 
Continue with this operation? 
  19+                                         if ( & { Set-StrictMode -Version 1; 
>>>> $_.PSMessageDetails } ) { 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   19+                                         if ( & { Set-StrictMode 
-Version 1;  >>>> $_.PSMessageDetails } ) { 
 
Continue with this operation? 
   1+ &  >>>> { Set-StrictMode -Version 1; 
$this.Exception.InnerException.PSMessageDetails } 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:    1+ &  >>>> { Set-StrictMode -Version 1; 
$this.Exception.InnerException.PSMessageDetails } 
 
Continue with this operation? 
   1+ & {  >>>> Set-StrictMode -Version 1; 
$this.Exception.InnerException.PSMessageDetails } 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y



 576 CHAPTER 19 Troubleshooting scripts

DEBUG:    1+ & {  >>>> Set-StrictMode -Version 1; 
$this.Exception.InnerException.PSMessageDetails } 
 
Continue with this operation? 
   1+ & { Set-StrictMode -Version 1;  >>>> 
$this.Exception.InnerException.PSMessageDetails } 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:    1+ & { Set-StrictMode -Version 1;  >>>> 
$this.Exception.InnerException.PSMessageDetails } 
 
Continue with this operation? 
   1+ & { Set-StrictMode -Version 1; $this.Exception.InnerException.PSMessageDetails 
  >>>> } 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:    1+ & { Set-StrictMode -Version 1; 
$this.Exception.InnerException.PSMessageDetails  >>>> } 
 
Continue with this operation? 
  19+                                         if ( & { Set-StrictMode -Version 1; 
$_.PSMessageDetails  >>>> } ) { 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   19+                                         if ( & { Set-StrictMode 
-Version 1; $_.PSMessageDetails  >>>> } ) { 
 
Continue with this operation? 
  26+                                         $errorCategoryMsg = &  >>>> { 
Set-StrictMode -Version 1; $_.ErrorCategory_Message } 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   26+                                         $errorCategoryMsg = &  >>>> { 
Set-StrictMode -Version 1; $_.ErrorCategory_Message } 
 
Continue with this operation? 
  26+                                         $errorCategoryMsg = & {  >>>> 
Set-StrictMode -Version 1; $_.ErrorCategory_Message } 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   26+                                         $errorCategoryMsg = & {  >>>> 
Set-StrictMode -Version 1; $_.ErrorCategory_Message } 
 
Continue with this operation? 
  26+                                         $errorCategoryMsg = & { Set-StrictMode 
 -Version 1;  >>>> $_.ErrorCategory_Message } 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   26+                                         $errorCategoryMsg = & { 
Set-StrictMode -Version 1;  >>>> $_.ErrorCategory_Message } 
 
Continue with this operation? 
  26+                                         $errorCategoryMsg = & { Set-StrictMode 
 -Version 1; $_.ErrorCategory_Message  >>>> } 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 



 Using the Set-PSDebug cmdlet  CHAPTER 19 577

(default is "Y"):y 
DEBUG:   26+                                         $errorCategoryMsg = & { 
Set-StrictMode -Version 1; $_.ErrorCategory_Message  >>>> } 
 
Continue with this operation? 
  42+                                         $originInfo = &  >>>> { Set-StrictMode 
 -Version 1; $_.OriginInfo } 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   42+                                         $originInfo = &  >>>> { 
Set-StrictMode -Version 1; $_.OriginInfo } 
 
Continue with this operation? 
  42+                                         $originInfo = & {  >>>> Set-StrictMode 
 -Version 1; $_.OriginInfo } 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   42+                                         $originInfo = & {  >>>> 
Set-StrictMode -Version 1; $_.OriginInfo } 
 
Continue with this operation? 
  42+                                         $originInfo = & { Set-StrictMode 
-Version 1;  >>>> $_.OriginInfo } 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   42+                                         $originInfo = & { 
Set-StrictMode -Version 1;  >>>> $_.OriginInfo } 
 
Continue with this operation? 
  42+                                         $originInfo = & { Set-StrictMode 
-Version 1; $_.OriginInfo  >>>> } 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   42+                                         $originInfo = & { 
Set-StrictMode -Version 1; $_.OriginInfo  >>>> } 
Attempted to divide by zero. 
At E:\Data\BookDOcs\PS4_BestPractices\Scripts\scripts_ch19\BadScript.ps1:37 char:2 
+  12/$num 
+  ~~~~~~~ 
    + CategoryInfo          : NotSpecified: (:) [], RuntimeException 
    + FullyQualifiedErrorId : RuntimeException 
 
Continue with this operation? 
  38+  >>>> } #end function DivideNum 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   38+  >>>> } #end function DivideNum 
 
Continue with this operation? 
  44+  >>>> AddOne($num) | AddTwo($num) 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   44+  >>>> AddOne($num) | AddTwo($num) 



 578 CHAPTER 19 Troubleshooting scripts

Continue with this operation? 
  11+  >>>> { 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   11+  >>>> { 
 
Continue with this operation? 
  12+   >>>> $num+1 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   12+   >>>> $num+1 
 
Continue with this operation? 
  13+  >>>> } #end function AddOne 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   13+  >>>> } #end function AddOne 
 
Continue with this operation? 
  16+  >>>> { 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   16+  >>>> { 
 
Continue with this operation? 
  17+   >>>> $num+2 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   17+   >>>> $num+2 
2 
 
Continue with this operation? 
  18+  >>>> } #end function AddTwo 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   18+  >>>> } #end function AddTwo 
PS C:\>

The second benefit to using the step parameter with the Set-PSDebug cmdlet is the ability 
to suspend script execution, run additional Windows PowerShell commands, and then return 
to the script execution. The ability to return the value of a variable from within the Windows 
PowerShell console can offer important clues to the problem of what the script is doing. 
You choose S (for suspend) at the prompt, and you are dropped into a nested Windows 
PowerShell prompt. From there, you retrieve the variable value the same way you do when 
working at a regular Windows PowerShell console, by typing the name of the variable—tab 
expansion even works. When you are finished retrieving the value of the variable, you type 
exit to return to the stepping trace. 

Continue with this operation? 
   1+  >>>> E:\Data\BookDOcs\PS4_BestPractices\Scripts\scripts_ch19\BadScript.ps1 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y



 Using the Set-PSDebug cmdlet  CHAPTER 19 579

DEBUG:    1+  >>>> 
E:\Data\BookDOcs\PS4_BestPractices\Scripts\scripts_ch19\BadScript.ps1 
 
Continue with this operation? 
  42+  >>>> $num = 0 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   42+  >>>> $num = 0 
 
Continue with this operation? 
  43+  >>>> SubOne($num) | DivideNum($num) 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):s 
PS C:\>> $num 
0 
PS C:\>> exit

If you decide that you would like to see what happens if you run continuously from the 
point that you just inspected, you can choose A (for yes to all) and the script will run to 
completion without further prompting. If this is the case, you have found the problem. It is 
also possible, that you will see an error, such as the one that is shown here, when the script 
attempts to divide by zero. 

Continue with this operation? 
  50+  >>>> AddOne($num) | AddTwo($num) 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):A 
DEBUG:   50+  >>>> AddOne($num) | AddTwo($num) 
2 
PS C:\>

After you have found a specific error, you might want to change the value of a vari-
able from within the suspended Windows PowerShell console to see whether it corrects the 
remaining logic. To do this, you run the script again, and choose S (for suspend) at the line 
that caused the error. This is where some careful reading of the error messages comes into 
play. When you chose A (yes to all) in the preceding example, the script ran until it came to 
line 37. The line number indicator follows a colon after the script name. The plus (+) sign indi-
cates the command, which is 12/ $num. The four left arrows indicate that it is the value of the 
$num variable that is causing the problem, as shown here:

Attempted to divide by zero.

At E:\Data\BookDOcs\PS4_BestPractices\Scripts\scripts_ch19\BadScript.ps1:37 char:2 
+  12/$num 
+  ~~~~~~~ 
    + CategoryInfo          : NotSpecified: (:) [], RuntimeException 
    + FullyQualifiedErrorId : RuntimeException

You will need to step through the code, until you come to the prompt for line 37. This will 
be seen as 43+ 12/ <<<< $num, which means that you are at line 37 and that the operation (+) 
will be to divide 12 by the value of the number contained in the $num variable. At this point, 



 580 CHAPTER 19 Troubleshooting scripts

you will want to press S (for suspend) to drop into a nested Windows PowerShell prompt. 
Inside there, you can query the value contained in the $num variable and change it to a num-
ber such as 2. You exit the nested Windows PowerShell prompt and are returned to the step-
ping. At this point, you should continue to step through the code to see whether any other 
problems arise. If they do not, you know that you have located the source of the problem. 

Continue with this operation? 
  37+   >>>> 12/$num 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):s 
PS C:\>> $num 
0 
PS C:\>> $num = 2 
PS C:\>> exit 
 
Continue with this operation? 
  37+   >>>> 12/$num 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:   37+   >>>> 12/$num 
6

Of course, locating the source of the problem is not the same as solving the problem, but 
the previous example points to a problem with the value of $num. Your next step would be to 
look at how $num is being assigned its values. 

There are a couple of annoyances when working with the Set-PSDebug tracing features. 
The first problem is stepping through the extra lines of output created by the debugging 
features. The prompts and output will use half of the Windows PowerShell console window. 
If you use Clear-Host to attempt to clear the host window, you will spend several minutes 
attempting to step through all the commands used by Clear-Host. This is also true if you 
attempt to change the debug tracing level in midstream. By default, the trace level is set to 1 
by the Set-PSDebug step parameter. The second problem with the Set-PSDebug step parameter 
occurs when you attempt to bypass a command in the script. You are not allowed to step 
over a command. Instead, the stepping session ends with an error displayed to the Windows 
PowerShell console. This is shown in Figure 19-8. 



 Using the Set-PSDebug cmdlet  CHAPTER 19 581

FIGURE 19-8 Set-PSDebug –step does not allow you to step over functions or commands. 

To turn off stepping you use the off parameter. You will be prompted to step through this 
command as well. 

PS C:\> Set-PSDebug -Off 
Continue with this operation? 
   1+ Set-PSDebug -Off 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
DEBUG:    1+ Set-PSDebug -Off 
PS C:\>

Enabling strict mode
One easily correctable problem that can cause debugging nightmares in a script is variables. 
Variables are often used incorrectly, are non-existent, or initialized improperly. An easy 
mistake to make is a simple typing error. Simple typing errors can also cause problems when 
contained in a large complex script. 

Using Set-PSDebug -strict
An example of a simple typing error in a script is seen in the SimpleTypingError.ps1 script.

SimpletypingError.ps1

$a = 2 

$b = 5 

$d = $a + $b 

'The value of $c is: ' + $c



 582 CHAPTER 19 Troubleshooting scripts

When the SimpleTypingError.ps1 script is run, the following output is seen:

PS C:\> y:\SimpleTypingError.ps1 
The value of $c is: 
PS C:\>

As you can see, the value of the $c variable is not displayed. If you use the strict parameter 
from the Set-PSDebug cmdlet, an error is generated. The error tells you that the value of $c 
has not been set.

PS C:\> Set-PSDebug -Strict 
PS C:\> y:\SimpleTypingError.ps1 
The variable $c cannot be retrieved because it has not been set yet. 
At y:\SimpleTypingError.ps1:4 char:27 
+ 'The value of $c is: ' + $c <<<< 
PS C:\>

When you go back to the SimpleTypingError.ps1 script and examine it, you will see that the 
sum of $a and $b was assigned to $d and not assigned to $c. The way to correct the problem 
is to assign the sum of $a and $b to $c and not to $d (which was probably the original inten-
tion). It is possible to include the Set-PSDebug –strict command in your scripts to provide a 
quick check for uninitialized variables while you are actually writing the script, and you can 
therefore avoid the error completely. 

If you routinely use an expanding string to display the value of your variables, 
you need to be aware that an uninitialized variable is not reported as an error. The 
SimpleTypingErrorNotReported.ps1 script uses an expanding string to display the value of 
the $c variable. The first instance of the $c variable is escaped by using the backtick char-
acter. This causes the variable name to be displayed and does not expand its value. The 
second occurrence of the $c variable is expanded. The actual line of code that does this is 
shown here: 

"The value of '$c is: $c"

When the SimpleTypingErrorNotReported.ps1 script is run, the following is displayed:

PS C:\> Set-PSDebug -Strict 
PS C:\> y:\SimpleTypingErrorNotReported.ps1 
The value of $c is: 
PS C:\>

The complete SimpleTypingErrorNotReported.ps1 script is shown here. 

SimpletypingErrorNotreported.ps1

$a = 2 

$b = 5 

$d = $a + $b 

"The value of '$c is: $c"

To disable strict mode, you use the Set-PSDebug –off command. 



 Using the Set-PSDebug cmdlet  CHAPTER 19 583

Using the Set-StrictMode cmdlet
The Set-StrictMode cmdlet can also be used to enable strict mode. It has the advantage of 
being scope aware. Where the Set-PSDebug cmdlet applies globally, if the Set-StrictMode 
cmdlet is used inside a function, it enables strict mode for only the function. There are two 
modes of operation that can be defined when using the Set-StrictMode cmdlet. The first is 
version 1, which behaves the same as the Set-PSDebug –strict command (except that scope 
awareness is enforced). This is shown here: 

PS C:\> Set-StrictMode -Version 1 
PS C:\> y:\SimpleTypingError.ps1 
The variable '$c' cannot be retrieved because it has not been set. 
At y:\SimpleTypingError.ps1:4 char:28 
+ 'The value of $c is: ' + $c <<<< 
    + CategoryInfo          : InvalidOperation: (c:Token) [], RuntimeException 
    + FullyQualifiedErrorId : VariableIsUndefined 
PS C:\>

The Set-StrictMode cmdlet cannot detect the uninitialized variable contained in the 
expanding string that is seen in the SimpleTypingErrorNotDetected.ps1 script. 

When version 2 mode is enacted, the technique of calling a function like a method is 
enforced. The AddTwoError.ps1 script passes two values to the add-two function by using 
method notation. Because method notation is allowed when calling functions, no error is 
normally generated. But method notation of passing parameters for functions works only 
when there is a single value to pass to the function. To pass multiple parameters, the function 
notation must be used as shown here:

add-two 1 2

Another way to call the add-two function correctly is to use the parameter names when 
passing the values, as shown here:

add-two –a 1 –b 2

Either of the two syntaxes would produce the correct result. The method notation of call-
ing the function displays incorrect information but does not generate an error. An incorrect 
value being returned from a function with no error being generated can take a significant 
amount of time to debug. The method notation of calling the add-two function is used in the 
AddTwoError.ps1 script and is shown here:

add-two(1,2)

When the script is run and the Set-StrictMode –version 2 command has not been 
enabled, no error is generated. The output seems to be confusing, because the results of add-
ing the two variables $a and $b is not displayed. This is shown here: 

PS C:\> y:\AddTwoError.ps1 
1 
2 
PS C:\>



 584 CHAPTER 19 Troubleshooting scripts

After the Set-StrictMode –version 2 command has been entered and the AddTwoError 
.ps1 script is run, an error is generated. The error that is generated states that the function 
was called as if it were a method. The error points to the exact line where the error occurred, 
as well as showing the function call that caused the error. The function call is preceded with 
a + sign followed by the name of the function and then four arrows that indicate what was 
passed to the function. The error message is shown here:

PS C:\> Set-StrictMode -Version 2 
PS C:\> y:\AddTwoError.ps1 
The function or command was called as if it were a method. Parameters should be 
separated by spaces. For information about parameters, see the about_Parameters Help 
topic. 
At Y:\AddTwoError.ps1:7 char:8 
+ add-two <<<< (1,2) 
    + CategoryInfo          : InvalidOperation: (:) [], RuntimeException 
    + FullyQualifiedErrorId : StrictModeFunctionCallWithParens 
PS C:\> 

The complete AddTwoError.ps1 script is shown here. 

AddTwoError.ps1

Function add-two ($a,$b) 

{ 

 $a + $b 

} 

 

add-two(1,2)

When you specify Set-StrictMode for version 2.0, it checks the following items:

1. References to uninitialized variables, both directly and from within strings

2. References to non-existent properties of an object

3. Calling a function like a method

4. Variables without a name

If you set strict mode for version 1.0, it checks only for references to uninitialized variables. 

If you are not sure whether you want to use strict mode version 2, 3, or 4 (there are 
no changes), an easy way to solve the problem is to use the value latest. This technique is 
shown here:

Set-StrictMode –version latest

One issue that can arise with using latest is that you do not know what the latest changes 
might do to your script. Therefore, it is generally safer to use version 1, 2, 3, or 4 when look-
ing for specific types of protection.



 Debugging scripts CHAPTER 19 585

NOTES FROM THE FIELD

Microsoft Windows PowerShell MVP

Don Jones, Microsoft Windows PowerShell MVP
CEO, Concentrated Technologies

In class, I see students struggle with debugging all the time. there are really two 
simple tricks that make it easier. First, I like to assume from the outset that I’m 

going to make a mistake, and I build debugging in right from the get-go. For me, 
that means adding Write-Debug calls anytime my script is making a decision (so 
that I can see what decision it made), anytime I’m changing a variable’s contents, 
and anytime I’m relying on the contents of a property. You might use Write-Verbose 
instead, and I’ve even seen some folks add a function to their script that automati-
cally adds PSBreakpoints. Whatever you choose, that debug output is designed to 
do one thing and one thing only: validate your assumptions. You see, logic errors—
bugs—almost always happen because you’ve assumed that a variable or property 
contains something, when in fact it contains something different. Provided that 
you can state what you think they contain, debug output can let you validate that 
assumption—or correct it. For example, if you’re querying Win32_LogicalDisk from 
WMI and you assume that the DriveType property contains something like “Fixed” 
or “Removable,” debug output would let you realize that it actually contains some-
thing like 2 or 3. When I start debugging a script, especially if it’s one someone else 
wrote, I’ll often print it out and start walking through it with a pencil. I’ll write down 
what I expect variables and properties to contain and then add some Write-Debug 
statements to see whether my expectations were accurate. Usually, my bug can be 
found wherever my expectations were wrong.

Debugging scripts

The debugging features of Windows PowerShell 4.0 make the use of the Set-PSDebug cmdlet 
seem rudimentary, or even cumbersome. After you are more familiar with the debugging 
features of Windows PowerShell 4.0, you might decide to look no longer at the Set-PSDebug 
cmdlet. Several cmdlets enable debugging from both the Windows PowerShell console and 
from the Windows PowerShell ISE. 

The debugging cmdlets are listed in Table 19-2.



 586 CHAPTER 19 Troubleshooting scripts

TABLE 19-2 Windows PowerShell debugging cmdlets

Cmdlet Name Cmdlet Function

Set-PSBreakpoint Sets breakpoints on lines, variables, and commands.

Get-PSBreakpoint Gets breakpoints in the current session.

Disable-PSBreakpoint Turns off breakpoints in the current session.

Enable-PSBreakpoint Re-enables breakpoints in the current session.

Remove-PSBreakpoint Deletes breakpoints from the current session.

Get-PSCallStack Displays the current call stack.

NOTES FROM THE FIELD

Debugging in Windows PowerShell

andy Schneider, Systems Engineer
Author of Get-PowerShell blog

I have always found the origin of words to be fascinating. apparently, the terms bug 
and debugging in regard to computers are attributed to admiral Grace hopper in 

the 1940s.

While she was working on a Mark II Computer at Harvard University, her associ-
ates discovered a moth stuck in a relay and thereby impeding operation, where-
upon she remarked that they were “debugging” the system. –Wikipedia

When I first started scripting and writing a little code, the concept of debugging 
something seemed to be a very daunting task. however, I have found that by using 
a few simple steps and thinking through the code, I can debug most of my scripts 
fairly quickly.

Ninety-nine percent of the time, debugging scripts requires the ability to watch a 
variable at some point in a script or a function. have you ever written a function and 
thought, “If only I knew what x was before y started messing with it?” A former boss 
of mine used to tell me to “be the bit” when I was troubleshooting network issues. 
You have to know exactly where you came from and exactly what your next hop is. 
Debugging code is similar, but you have to “be the variable.”

Windows PowerShell 4.0 offers some great tools for watching variables: the break-
points. Breakpoints allow you to pause running code in the middle of execution and 
poke around to see what’s happening. the Windows PowerShell ISE makes using 
breakpoints even easier. You can set a breakpoint on any line in the ISE by using the 
Debug menu and choosing toggle Breakpoint or by using the F9 shortcut key.



 Debugging scripts CHAPTER 19 587

One thing to be aware of that wasn’t immediately intuitive to me is that, when you 
set a breakpoint in the ISE, it highlights the line on which you set the breakpoint. 
however, the script will run up to the beginning of that line, but the line itself will 
not be executed. remember that you must add the breakpoint after the last line 
you want to execute. From that point, you can use the Step Into function in the ISE 
and walk through the rest of your code.

another feature that I have used is setting a breakpoint based on a variable. rather 
than specifying a breakpoint on line 45 column 1, you can create a breakpoint that 
is triggered any time that a particular variable is accessed. You can do this by using 
the Set-PSBreakpoint cmdlet and the variable parameter. Be sure that when you 
specify the variable, such as $var, that you use only the name of the variable (var) 
and not the dollar sign ($var).

One last bit of information that I didn’t notice right away was how to navigate 
within the nested prompt after I hit a breakpoint. If you type ? or h, you will see 
some usage information that explains how to navigate within this “mini shell.” It is 
interesting that the “nested>” prompt displays this usage information when you 
press ?. Under typical circumstances, ? is an alias for the Where-Object cmdlet, as 
shown when you type ? at a normal prompt. Within the nested prompt, there are 
shortcuts to all of the items in the ISE Debug menu.

the bottom line is that you should not be intimidated by debugging code. With a 
methodical approach and the tools offered by Windows PowerShell 4.0, the line of 
code that is causing you grief will bubble up to the top fairly quickly.

Setting breakpoints
The debugging features in Windows PowerShell use breakpoints. A breakpoint is something 
that is very familiar to developers who have used products such as Microsoft Visual Studio 
in the past. But for many IT Pros without a programming background, the concept of a 
breakpoint is somewhat foreign. A breakpoint is a spot in the script where you would like the 
execution of the script to pause. Because the script pauses, it is like the stepping functional-
ity that was seen earlier. But because you control where the breakpoint will occur, instead of 
halting on each line of the script, the stepping experience is much faster. In addition, because 
you have many different methods to use to set the breakpoint (instead of merely stepping 
through the script line by line) the breakpoint can be tailored to reveal precisely the informa-
tion you are looking for. 



 588 CHAPTER 19 Troubleshooting scripts

Setting a breakpoint on a line number
To set a breakpoint, you use the Set-PSBreakpoint cmdlet. The easiest way to set a break-
point is to set it on line 1 of the script. To set a breakpoint on the first line of the script, you 
use the line parameter and –script parameter. When you set a breakpoint, an instance of the 
System.Management.Automation.LineBreak Microsoft .NET Framework class is returned and 
lists the ID, Script, and Line properties that were assigned when the breakpoint was created.

PS C:\> Set-PSBreakpoint -line 1 -script Y:\BadScript.ps1 
  ID Script            Line Command           Variable         Action 
  -- ------            ---- -------           --------         ------ 
   0 BadScript.ps1        1

This breakpoint causes the script to break immediately. You can then step through the 
function in the same way as when using the Set-PSDebug cmdlet with the step parameter. 
When you run the script, it hits the breakpoint that is set on the first line of the script, and 
Windows PowerShell enters the script debugger. Windows PowerShell enters the debugger 
every time that the BadScript.ps1 script is run from the Y drive. When Windows PowerShell 
enters the debugger, the Windows PowerShell prompt changes to [DBG]: PS C:\>>> to visually 
alert you that you are inside the Windows PowerShell debugger. To step to the next line in 
the script, you type s. To quit the debugging session, you type q. The debugging commands 
are not case sensitive.

PS C:\> Y:\BadScript.ps1 
Hit Line breakpoint on 'Y:\BadScript.ps1:1' 
 
BadScript.ps1:1   # 
------------------------------------------------------------------------ 
[DBG]: PS C:\>>> s 
BadScript.ps1:16  Function AddOne([int]$num) 
[DBG]: PS C:\>>> s 
BadScript.ps1:21  Function AddTwo([int]$num) 
[DBG]: PS C:\>>> s 
BadScript.ps1:26  Function SubOne([int]$num) 
[DBG]: PS C:\>>> s 
BadScript.ps1:31  Function TimesOne([int]$num) 
[DBG]: PS C:\>>> s 
BadScript.ps1:36  Function TimesTwo([int]$num) 
[DBG]: PS C:\>>> s 
BadScript.ps1:41  Function DivideNum([int]$num) 
[DBG]: PS C:\>>> s 
BadScript.ps1:48  $num = 0 
[DBG]: PS C:\>>> s 
BadScript.ps1:49  SubOne($num) | DivideNum($num) 
[DBG]: PS C:\>>> s 
BadScript.ps1:28   $num-1 
[DBG]: PS C:\>>> s 
BadScript.ps1:43   12/$num 
[DBG]: PS C:\>>> s 
                                    if ($_.FullyQualifiedErrorId -ne 
"NativeCommandErrorMessage" -and $ErrorView -ne "CategoryView")  
{[DBG]: PS C:\>>> q 
PS C:\>



 Debugging scripts CHAPTER 19 589

LESSONS LEARNED

When you specify a breakpoint on a script, keep in mind that breakpoints are 
dependent on the location of the specific script. When you create a break-

point for a script, you specify the location of the script for which you want to set a 
breakpoint. I often have several copies of a script that I keep in different locations 
(for version control). I sometimes become confused when in a long debugging ses-
sion and open up the wrong version of the script to debug it. this doesn’t work. If 
the script is identical in all respects except for the path to the script, the script will 
not break. If you want to use a single breakpoint that applies to a specific script that 
is stored in multiple locations, you can set the breakpoint for the condition inside 
the Windows PowerShell console, and you do not use the –script parameter.

Setting a breakpoint on a variable
Setting a breakpoint on line 1 of the script is useful for easily entering a debug session, but 
setting a breakpoint on a variable can often make a problem with a script easy to detect. Of 
course, this is especially true when you have already determined that the problem pertains to 
a variable that is either being assigned a value or is being ignored. Three modes can be con-
figured when the breakpoint is specified for a variable, and the modes are specified by using 
the mode parameter. The three modes of operation are listed in Table 19-3.

TABLE 19-3 Variable breakpoint access modes

Access Mode Meaning

Write Stops execution immediately before a new value is written to the variable.

Read Stops execution when the variable is read—that is, when its value is accessed to be 
 assigned, displayed, or used. In read mode, execution does not stop when the value of the 
variable changes.

Readwrite Stops execution when the variable is read or written.

To determine when the BadScript.ps1 script writes to the $num variable, you can use 
the write mode. When you specify the value for the variable parameter, do not include the 
dollar sign in front of the variable name. To set a breakpoint on a variable, you need only 
to supply the path to the script, the name of the variable, and the access mode. When a 
variable breakpoint is set, the System.Management.Automation.LineBreak .NET Framework 
class object that is returned does not include the access mode value. This is true even if 
you use the  Get-PSBreakpoint cmdlet to directly access the breakpoint. If you pipeline the 
System.Management.Automation.LineBreak .NET Framework class object to the Format-List 
cmdlet, you will be able to see that the access mode property is available. In this example, we 
set a breakpoint when the $num variable is written to in the Y:\BadScript.ps1 script.



 590 CHAPTER 19 Troubleshooting scripts

PS C:\> Set-PSBreakpoint -Variable num -Mode write -Script Y:\BadScript.ps1 
  ID Script            Line Command           Variable         Action 
  -- ------            ---- -------           --------         ------ 
   3 BadScript.ps1                            num 
 
PS C:\> Get-PSBreakpoint 
  ID Script            Line Command           Variable         Action 
  -- ------            ---- -------           --------         ------ 
   3 BadScript.ps1                            num 
 
PS C:\> Get-PSBreakpoint  | Format-List * -Force 
AccessMode : Write 
Variable   : num 
Action     : 
Enabled    : True 
HitCount   : 0 
Id         : 3 
Script     : Y:\BadScript.ps1

When you run the script after setting the breakpoint (if the other breakpoints have been 
removed or deactivated, which will be discussed later), the script will enter the Windows 
PowerShell debugger when the breakpoint is hit—that is, when the value of the $num vari-
able is written to. If you step through the script by using the s command, you will be able to 
follow the sequence of operations. Only one breakpoint is hit when the script is run, which is 
on line 48 when the value is set to 0.

PS C:\> Y:\BadScript.ps1 
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (Write access) 
 
BadScript.ps1:48  $num = 0 
[DBG]: PS C:\>>> $num 
[DBG]: PS C:\>>> Write-Host $num 
 
[DBG]: PS C:\>>> s 
BadScript.ps1:49  SubOne($num) | DivideNum($num) 
[DBG]: PS C:\>>> $num 
0

To set a breakpoint on a read operation for the variable, specify the variable parameter 
and the name of the variable, specify the –script parameter with the path to the script, and set 
read as the value for the mode parameter.

PS C:\> Set-PSBreakpoint -Variable num -Script Y:\BadScript.ps1 -Mode read 
 
  ID Script            Line Command           Variable         Action 
  -- ------            ---- -------           --------         ------ 
   4 BadScript.ps1                            num

When you run the script, a breakpoint is displayed each time you hit a read operation on 
the variable. Each breakpoint is displayed in the Windows PowerShell console as Hit Variable 
breakpoint followed by the path to the script and the access mode of the variable. In the 



 Debugging scripts CHAPTER 19 591

BadScript.ps1 script, the value of the $num variable is read several times. The truncated out-
put is shown here:

PS C:\> Y:\BadScript.ps1 
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (Read access) 
 
BadScript.ps1:49  SubOne($num) | DivideNum($num) 
[DBG]: PS C:\>>> s 
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (Read access) 
 
BadScript.ps1:49  SubOne($num) | DivideNum($num) 
[DBG]: PS C:\>>> s 
BadScript.ps1:28   $num-1 
[DBG]: PS C:\>>> s 
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (Read access) 
 
BadScript.ps1:28   $num-1 
[DBG]: PS C:\>>> s

If you set readwrite as the access mode for the mode parameter for the variable $num for 
the BadScript.ps1 script, you receive the feedback shown here:

PS C:\> Set-PSBreakpoint -Variable num -Mode readwrite -Script Y:\BadScript.ps1 
 
  ID Script            Line Command           Variable         Action 
  -- ------            ---- -------           --------         ------ 
   6 BadScript.ps1                            num

When you run the script (assuming that you have disabled the other breakpoints), you will 
hit a breakpoint each time that the $num variable is read to or written to. If you get tired of 
typing s and pressing Enter while you are in the debugging session, you can press Enter to 
repeat your previous s command as you continue to step through the breakpoints. When the 
script has stepped through the code and hit the error in the BadScript.ps1 script, q is typed to 
exit the debugger.

PS C:\> Y:\BadScript.ps1 
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (ReadWrite access) 
 
BadScript.ps1:48  $num = 0 
[DBG]: PS C:\>>> s 
BadScript.ps1:49  SubOne($num) | DivideNum($num) 
[DBG]: PS C:\>>> 
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (ReadWrite access) 
 
BadScript.ps1:49  SubOne($num) | DivideNum($num) 
[DBG]: PS C:\>>> 
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (ReadWrite access) 
 
BadScript.ps1:49  SubOne($num) | DivideNum($num) 
[DBG]: PS C:\>>> 
BadScript.ps1:28   $num-1 
[DBG]: PS C:\>>> 
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (ReadWrite access) 
 



 592 CHAPTER 19 Troubleshooting scripts

BadScript.ps1:28   $num-1 
[DBG]: PS C:\>>> 
BadScript.ps1:43   12/$num 
[DBG]: PS C:\>>> 
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (ReadWrite access) 
 
BadScript.ps1:43   12/$num 
[DBG]: PS C:\>>> 
                                    if ($_.FullyQualifiedErrorId -ne 
"NativeCommandErrorMessage" -and $ErrorView -ne "CategoryView") { 
[DBG]: PS C:\>>> q 
PS C:\>

When using the readwrite access mode of the mode parameter for breaking on variables, 
the breakpoint does not tell you whether the operation is a read operation or a write opera-
tion. You must look at the code that is being executed to determine whether the value of the 
variable is being written or read.

By specifying a value for the −action parameter, you can include regular Windows 
PowerShell code that executes when the breakpoint is hit. For example, if you are trying 
to follow the value of a variable within the script and you want to display the value of the 
variable each time the breakpoint is hit, you might want to specify an −action parameter 
that uses the Write-Host cmdlet to display the value of the variable. By using the Write-Host 
 cmdlet, you can also include a string that indicates the value of the variable being displayed. 
This process is crucial for detecting variables that never initialize because it is easier to notice 
the displayed value than it is to spot a blank line. The technique of using the Write-Host 
 cmdlet in an −action parameter is shown here.

PS C:\> Set-PSBreakpoint -Variable num -Action { write-host "num = $num" ;  
Break } -Mode readwrite -script Y:\BadScript.ps1 
 
  ID Script            Line Command           Variable         Action 
  -- ------            ---- -------           --------         ------ 
   5 BadScript.ps1                            num               write-host "...

When you run Y:\BadScript.ps1 with the breakpoint set, you receive the following output 
inside the Windows PowerShell debugger:

PS C:\> Y:\BadScript.ps1 
num = 
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (ReadWrite access) 
 
BadScript.ps1:48  $num = 0 
[DBG]: PS C:\>>> s 
BadScript.ps1:49  SubOne($num) | DivideNum($num) 
[DBG]: PS C:\>>> s 
Set-PSBreakpoint -Variable num -Action { write-host "num = $num" ; break } 
-Mode readwrite -script Y:\BadScript.ps1 
[DBG]: PS C:\>>> s 
num = 0



 Debugging scripts CHAPTER 19 593

Set-PSBreakpoint -Variable num -Action { write-host "num = $num" ; break } 
-Mode readwrite -script Y:\BadScript.ps1 
[DBG]: PS C:\>>> c 
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (ReadWrite access) 
 
BadScript.ps1:49  SubOne($num) | DivideNum($num) 
[DBG]: PS C:\>>>

Setting a breakpoint on a command
To set the breakpoint on a command, you use the −command parameter. You can break on 
a call to a Windows PowerShell cmdlet, function, or external script. You can use aliases when 
setting breakpoints. When you create a breakpoint for a cmdlet on an alias, the debugger 
will hit on the use of the alias only and not the actual command name. In addition, you do 
not have to specify a script for the debugger to break. If you do not type a path to a script, 
the debugger will be active for any scripts within the Windows PowerShell console ses-
sion. Every occurrence of the Foreach command will cause the debugger to break. Because 
Foreach is a language statement as well as an alias for the Foreach-Object cmdlet, you might 
wonder whether the Windows PowerShell debugger will break on both the language state-
ment and the use of the alias for the cmdlet—the answer is no. You can set breakpoints 
on language statements, but the debugger will not break on a language statement. As 
shown here, the debugger breaks on the use of the Foreach alias but not on the use of the 
Foreach-Object cmdlet:

PS C:\> Set-PSBreakpoint -Command foreach 
 
  ID Script            Line Command           Variable         Action 
  -- ------            ---- -------           --------         ------ 
  10                        foreach 
 
PS C:\> 1..3 | Foreach-Object { $_} 
1 
2 
3 
PS C:\> 1..3 | foreach { $_ } 
Hit Command breakpoint on 'foreach' 
 
1..3 | foreach { $_ } 
[DBG]: PS C:\>>> c 
1 
Hit Command breakpoint on 'foreach' 
 
1..3 | foreach { $_ } 
[DBG]: PS C:\>>> c 
2 
Hit Command breakpoint on 'foreach' 
 
1..3 | foreach { $_ } 
[DBG]: PS C:\>>> c 
3



 594 CHAPTER 19 Troubleshooting scripts

NOTE You can use the shortcut technique of creating the breakpoint for the Windows 
PowerShellsessionandnotspecificallycreatingthebreakpointforthescript.Byomitting
the  −scriptparameterwhencreatingabreakpoint,youcausethedebuggertobreakinto
anyrunningscriptthatusesthenamedfunction.Thistechniqueallowsyoutousethesame
breakpointswhendebuggingscriptsthatusethesamefunction.

When creating a breakpoint for the DivideNum function used by the Y:\BadScript.ps1 
script, you can omit the path to the script because it is the only script that uses the DivideNum 
function. Although doing this makes the command easier to type, it might become confusing 
when looking through a collection of breakpoints. If you are debugging multiple scripts in a 
single Windows PowerShell console session, it might become confusing if you do not specify 
the script to which the breakpoint applies—unless, of course, you are specifically debugging 
the function because it is used in multiple scripts. Creating a command breakpoint for the 
DivideNum function is shown here:

PS C:\> Set-PSBreakpoint -Command DivideNum 
 
  ID Script            Line Command           Variable         Action 
  -- ------            ---- -------           --------         ------ 
   7                        DivideNum

When you run the script, it hits a breakpoint when the DivideNum function is called. When 
BadScript.ps1 hits the DivideNum function, the value of $num is 0. As you step through the 
DivideNum function, you assign the value of 2 to the $num variable; the result of 6 is dis-
played, and then the 12/$num operation is carried out. Next, the AddOne function is called, 
and the value of $num is once again 0. When the AddTwo function is called, the value of 
$num is also 0.

PS C:\> Y:\BadScript.ps1 
Hit Command breakpoint on 'DivideNum' 
 
BadScript.ps1:49  SubOne($num) | DivideNum($num) 
[DBG]: PS C:\>>> s 
BadScript.ps1:43   12/$num 
[DBG]: PS C:\>>> $num 
0 
[DBG]: PS C:\>>> $num =2 
[DBG]: PS C:\>>> s 
6 
BadScript.ps1:50  AddOne($num) | AddTwo($num) 
[DBG]: PS C:\>>> s 
BadScript.ps1:18   $num+1 
[DBG]: PS C:\>>> $num 
0 
[DBG]: PS C:\>>> s 



 Debugging scripts CHAPTER 19 595

BadScript.ps1:23   $num+2 
[DBG]: PS C:\>>> $num 
0 
[DBG]: PS C:\>>> s 
2 
PS C:\>

INSIDE TRACK

The best debugging

Juan Carlos ruiz Lopez, Senior Premier Field Engineer
Microsoft Corporation Spain

Fortunately (or unfortunately, depending on your perspective), my experience 
with the Windows PowerShell debugger is a bit limited. Because the Windows 

PowerShell scripting language is really powerful, most of the loops required by 
other scripting languages are not needed. In many cases, each cmdlet silently per-
forms the needed looping. these automatic looping features result in less-compli-
cated scripts that often translate into less debugging.

In previous scripting languages, a condition such as an out-of-range loop often 
necessitated extensive debugging to track down. With Windows PowerShell, you 
are not immediately faced with these looping problems when running scripts. the 
best debugging occurs when you don’t need debugging. Of course, there are still 
some classical situations when debugging is a necessity, such as when you call 
SomeFunction(Param1,param2) with the wrong syntax. For most of these situations, 
adding a Write-Debug statement and showing the received variables or parameters 
will generally suffice. Even better, you can create your own MyDebug function so 
that you can control the colors and formatting that are displayed when you print 
the information.

I still recommend that you spend some time playing with breakpoints because they 
really are easy to use and should be learned. You might not need to use them often, 
but the minimal effort put forth to learn debugging skills is worth it. Even if you 
never use the Windows PowerShell debugger, you will gain more insight into how 
Windows PowerShell works.

My favorite Windows PowerShell debugging command is the k command, which 
calls the Get-PSCallStack cmdlet. I like to use the k command because it is very nice 
to see who is calling the commands, which is especially important when you have 
a constantly changing script library and the function you just called seems to be in 
the wrong module.



 596 CHAPTER 19 Troubleshooting scripts

responding to breakpoints
When the script reaches a breakpoint, control of the Windows PowerShell console is turned 
over to you. Inside the debugger, you can type any legal Windows PowerShell command and 
even run cmdlets, such as Get-Process or Get-Service. In addition, several new debugging 
commands can be typed into the Windows PowerShell console when a breakpoint is reached. 
The available debug commands are listed in Table 19-4.

TABLE 19-4 Windows PowerShell debugger commands

Keyboard  
Shortcut Command Name Command Meaning

s Step-into Executes the next statement and then stops.

v Step-over Executes the next statement but skips functions and invocations. The 
skipped statements are executed but not stepped through.

o Step-out Steps out of the current function and up one level if nested. If the 
command occurs in the main body, it continues to the end of the 
script or the next breakpoint. The skipped statements are executed 
but not stepped through.

c Continue Continues to run until the script is complete or until the next break-
point is reached. The skipped statements are executed but not 
stepped through.

l List Displays the part of the script that is executing. By default, it displays 
the current line, five previous lines, and 10 subsequent lines. To con-
tinue listing the script, press Enter.

l <m> List Displays 16 lines of the script beginning with the line number speci-
fied by <m>.

l <m> <n> List Displays <n> lines of the script beginning with the line number 
specified by <m>.

q Stop Stops executing the script and exits the debugger.

k Get-PSCallStack Displays the current call stack.

<Enter> Repeat Repeats the last command if it was Step-into (s), Step-over (v), or List 
(l). Otherwise, it represents a submit action.

h or ? Help Displays the debugger command Help.

Using the DivideNum function as a breakpoint, when the BadScript.ps1 script is run, the 
script breaks on line 49 when the DivideNum function is called. The s debugging command 
is used to step into the next statement and to stop prior to actually executing the command. 
The l debugging command is used to list the five previous lines of code from the BadScript.ps1 
script and the 10 lines of code that follow the current line in the script.

PS C:\> Y:\BadScript.ps1 
Hit Command breakpoint on 'Y:\BadScript.ps1:dividenum' 
 
BadScript.ps1:49  SubOne($num) | DivideNum($num) 
[DBG]: PS C:\>>> s 
BadScript.ps1:43   12/$num 
[DBG]: PS C:\>>> l 
 



 Debugging scripts CHAPTER 19 597

   38:   $num*2 
   39:  } #end function TimesTwo 
   40: 
   41:  Function DivideNum([int]$num) 
   42:  { 
   43:*  12/$num 
   44:  } #end function DivideNum 
   45: 
   46:  # *** Entry Point to Script *** 
   47: 
   48:  $num = 0 
   49:  SubOne($num) | DivideNum($num) 
   50:  AddOne($num) | AddTwo($num) 
   51:

After reviewing the code, the o debugging command is used to step out of the DivideNum 
function. The remaining code in the DivideNum function is still executed, and therefore the 
divide-by-zero error is displayed. There are no more prompts until the next line of executing 
code is met. The v debugging statement is used to step over the remaining functions in the 
script, which are still executed. The results are displayed at the Windows PowerShell console.

[DBG]: PS C:\>>> o 
Attempted to divide by zero. 
At Y:\BadScript.ps1:43 char:5 
+  12/ <<<< $num 
    + CategoryInfo          : NotSpecified: (:) [], RuntimeException 
    + FullyQualifiedErrorId : RuntimeException 
 
BadScript.ps1:50  AddOne($num) | AddTwo($num) 
[DBG]: PS C:\>>> v 
2 
PS C:\>

Listing breakpoints
After you set several breakpoints, you might want to know where they are created. One thing 
to keep in mind is that breakpoints are stored in the Windows PowerShell environment and 
not in the individual script. Using the debugging features does not involve editing the script 
or modifying your source code, and the debugging features enable you to debug any script 
without worrying about corrupting the code. However, because you might have set several 
breakpoints in the Windows PowerShell environment during a typical debugging session, you 
might want to know what breakpoints have already been defined. To find out this informa-
tion, you can use the Get-PSBreakpoint cmdlet.

PS C:\> Get-PSBreakpoint 
  ID Script            Line Command           Variable         Action 
  -- ------            ---- -------           --------         ------ 
  11 BadScript.ps1          dividenum 
  13 BadScript.ps1          if 
   3 BadScript.ps1                            num 
   5 BadScript.ps1                            num 



 598 CHAPTER 19 Troubleshooting scripts

   6 BadScript.ps1                            num 
   7                        DivideNum 
   8                        foreach 
   9                        gps 
  10                        foreach 
PS C:\>

If you are interested in which breakpoints are currently enabled, you need to use the 
Where-Object cmdlet and pipeline the results of the Get-PSBreakpoint cmdlet.

PS C:\> Get-PSBreakpoint | where { $_.enabled } 
 
  ID Script            Line Command           Variable         Action 
  -- ------            ---- -------           --------         ------ 
  11 BadScript.ps1          dividenum 
 
PS C:\>

You can also pipeline the results of Get-PSBreakpoint to a Format-Table cmdlet.

PS C:\> Get-PSBreakpoint |  
Format-Table -Property id, script, command, variable, enabled -AutoSize 
 
Id Script           Command   variable Enabled 
-- ------           -------   -------- ------- 
11 Y:\BadScript.ps1 dividenum             True 
13 Y:\BadScript.ps1 if                   False 
 3 Y:\BadScript.ps1           num        False 
 5 Y:\BadScript.ps1           num        False 
 6 Y:\BadScript.ps1           num        False 
 7                  DivideNum            False 
 8                  foreach              False 
 9                  gps                  False 
10                  foreach              False

Because the creation of the custom-formatted breakpoint table requires a bit of typing 
and because the display is extremely helpful, you might consider placing the code into a 
function that can be included in your profile or in a custom debugging module. Such a func-
tion is shown here, stored in the Get-EnabledBreakpointsFunction.ps1 script.

Get-EnabledBreakpointsFunction.ps1

Function Get-EnabledBreakpoints 

{ 

  Get-PSBreakpoint |  

  Format-Table -Property id, script, command, variable, enabled -AutoSize 

} 

 

# *** Entry Point to Script *** 

 

Get-EnabledBreakpoints



 Debugging scripts CHAPTER 19 599

Enabling and disabling breakpoints
While you are debugging a script, you might need to disable a particular breakpoint to see 
how the script runs. To do this, you can use the Disable-PSBreakpoint cmdlet.

Disable-PSBreakpoint –id 0

However, you might also need to enable a breakpoint. To do this, you can use the Enable-
PSBreakpoint cmdlet.

Enable-PSBreakpoint –id 1

As a best practice while in a debugging session, you can selectively enable and disable 
breakpoints to see how the script is running in an attempt to troubleshoot the script. To keep 
track of the status of breakpoints, you can use the Get-PSBreakpoint cmdlet as illustrated in 
the preceding section.

NOTES FROM THE FIELD

Debugging scripts

Vasily Gusev, Systems administrator, MCSE: Security/Messaging, MCItP: 
Enterprise/Server administrator, Microsoft MVP: Windows PowerShell
Microsoft Corporation

In Windows PowerShell 4.0, you have access to really useful debugging features. 
First, take a look at the Set-PSBreakpoint cmdlet, which you can use to assign 

breakpoints to selected lines of scripts and execute cmdlets, functions, or variables.

For example, when I do Windows PowerShell debugging, instead of modifying the 
body of my script commands to include a number of Write-Debug commands that 
will output a value of $var to the console, I simply assign a breakpoint to the event 
of its value change. this is a much simpler process and does not require additional 
cleanup of the script afterward to remove all of the additional commands.

Set-PSBreakpoint -Variable var -Mode write

after I set the breakpoint inside the Windows PowerShell console and before each 
change in the value of the $var variable, PowerShell stops the execution of com-
mands and enters into debug mode. I can distinguish when I am in debug mode 
because the prompt changes to include [DBG] at the beginning of each line. In this 
mode, I can execute all of the usual Windows PowerShell commands as well as view 
and change variable values.



 600 CHAPTER 19 Troubleshooting scripts

however, the main advantage of debug mode is that special debugging com-
mands are available, such as Step-into, Step-over, and Step-out, that allow me to 
move through the executing code without ever leaving debug mode. the Continue 
command exits from debug mode and executes all of the remaining code. the Quit 
command exits the debugger and halts the execution of the script.

Also in the arsenal of Windows PowerShell debugging commands is one that I find 
very useful while doing command-line debugging—the List command. the List 
command displays the current position of the debugger and, by default, also dis-
plays the five lines of code before the active line and 10 lines of code after it.

The Enter key feature simplifies working from the command line when debugging 
because it repeats the last command entered into the debugger. I can execute a 
Step-into command, and the Step-into command will execute again each time I 
press Enter.

I can obtain a list of all debugger commands and their descriptions by typing the 
letter h or using the question mark ? symbol. this list is useful when I need to 
quickly refresh myself on the available commands.

The same breakpoints can be set to the event of calling specific commands and 
functions by using the –command switch when creating the breakpoint via the 
 Set-PSBreakpoint cmdlet. You might have guessed that parameters such as line 
and column are used for setting breakpoints in the body of a script. Of course, they 
will work only if you also specify a script to debug by using the −script parameter.

Instead of pausing a script and entering the debugger, I can associate almost any 
action with a breakpoint. For example, if I need to debug a long-running script and 
cannot sit near the console at all times waiting for errors to occur, I can order the 
debugger to dump all variables into an XML file and continue running the script.

Set-PSBreakpoint -Variable var -Mode write -Action {Get-Variable |  

Export-Clixml C:\dump.clixml}

Later, I can load this XML to perform variable analysis, as shown here:

$Variables = Import-Clixml c:\dump.clixml

I can also specify a conditional expression when creating a breakpoint that will take 
an action if a certain condition is true. For example, the following command will set 
up a breakpoint that works only if the value of the $DebugIsOn variable is set to 
$true:

Set-PSBreakpoint -Variable var -Mode write -Action ' 

{if ($DebugIsOn){break}}



 Debugging scripts CHAPTER 19 601

It is possible to manage breakpoints after they are created by using other cmdlets 
that contain the PSBreakpoint noun. the names of these cmdlets are very intui-
tive. For example, the following command removes all breakpoints from the current 
session:

Get-PSBreakpoint | Remove-PSBreakpoint

You can also disable and enable breakpoints without removing the breakpoints by 
using the Disable-PSBreakpoint and Enable-PSBreakpoint cmdlets, respectively.

Deleting breakpoints
When you are finished debugging the script, you will want to remove all of the breakpoints 
that were created during the Windows PowerShell session. There are two ways to do this. 
The first is to close the Windows PowerShell console. Although this is a good way to clean up 
the environment, you might not want to do this because you might have remote Windows 
PowerShell sessions defined or variables that are populated with the results of certain queries. 
To delete all of the breakpoints, you can use the Remove-PSBreakpoint cmdlet. Unfortunately, 
there is no all switch for the Remove-PSBreakpoint cmdlet. When deleting a breakpoint, the 
Remove-PSBreakpoint cmdlet requires the breakpoint ID number. To remove a single break-
point, specify the ID number for the −id parameter.

Remove-PSBreakpoint –id 3

If you want to remove all of the breakpoints, pipeline the results from Get-PSBreakpoint to 
Remove-PSBreakpoint.

Get-PSBreakpoint | Remove-PSBreakpoint

If you want to remove only the breakpoints from a specific script, you can pipeline the 
results through the Where-Object cmdlet.

(Get-PSBreakpoint | Where-Object Script – eq "C:\Scripts\Test.ps1"))  | 
Remove-PSBreakpoint



 602 CHAPTER 19 Troubleshooting scripts

INSIDE TRACK

Debugging scripts with the Windows PowerShell ISE

Osama Sajid, Program Manager: Windows Manageability
Microsoft Corporation

The Windows PowerShell ISE is a complete script editor and debugger. If you 
have a script file (.ps1) loaded in an ISE, you can set a breakpoint on a line by 

using F9. When the script is run, the execution will stop at that line, and the ISE will 
allow you to perform one of the following common debugging tasks:

■■ Execute the line—Step Over (F10)

■■ Go inside a function—Step Into (F11)

■■ Execute the rest of the function and come out (Shift-F11)

Pressing F5 continues the execution of the script until the next breakpoint or until 
the end. these debug commands are also available through the Debug menu.

When the debugger is stopped at a breakpoint, you can view the value assigned to 
a variable by hovering the cursor on the variable. there is also a debugger prompt 
(>>>) in the command pane that allows you to execute commands. For example, you 
can get/set the value of a variable or execute a cmdlet.

Setting a breakpoint on a line is the simplest and most common way of debugging; 
however, complex situations can arise when you want to stop executing a script 
if the value of a variable changes or a particular command is executed. although 
there is no direct way to halt the execution from the Windows PowerShell ISE user 
interface, the following cmdlet allows you to perform this action:

 Set-PSBreakpoint  -variable val -Mode ReadWrite

the preceding command sets a breakpoint on the variable named val and uses the 
mode parameter with a value of ReadWrite to stop execution when the value of the 
variable is read and just before the value changes.

the following command sets a breakpoint on the execution of the Get-Process 
cmdlet. Whenever Windows PowerShell executes the cmdlet, it will give control to 
the debugger.

Set-PSBreakpoint -command Get-Process

another interesting thing about the Windows PowerShell debugger is its capability 
to execute a script block when a breakpoint is hit.

 Set-PSBreakpoint -Variable val -Mode Read -Action ' 

{Write-Host "Alert: Value of X = $x"; if($val-eq 5){break}}



 Additional resources CHAPTER 19 603

Use of the Windows PowerShell ISE makes debugging very easy. however, all 
Windows PowerShell debugging can be done from the command line without ISE 
menus and shortcuts. For example, you can obtain a list of all breakpoints by run-
ning Get-PSBreakpoint or by disabling a breakpoint using Disable-PSBreakpoint. 
When the script execution stops on a breakpoint, you can use the following debug-
ger commands in Windows PowerShell:

■■ s, Step-into

■■ v, Step-over

■■ o, Step-out

■■ c, Continue

■■ q, Stop

For more information about debugger commands, you can read “about_debuggers” 
in Windows PowerShell help.

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous examples of debugging Windows PowerShell scripts.

■■ All scripts from this chapter are available via the TechNet Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40 
-Best-d9e16039.





   605

C H A P T E R  2 0

Using the Windows 
PowerShell ISE

■■ Running the Windows PowerShell ISE 

■■ Working with Windows PowerShell ISE snippets 

■■ Additional resources 

The Windows PowerShell ISE is an integrated scripting environment. It offers superb tab 
completion, automatic member expansion, and the ability to incorporate script snippets 

to facilitate the creation of scripts. In this chapter, we will examine these features to see how 
they are best utilized.

Running the Windows PowerShell ISE

On Windows 8.1, the Windows PowerShell ISE appears to be a bit hidden. In fact, on 
Windows Server 2012 R2, it also is a bit hidden. On Windows Server 2012 R2, a Windows 
PowerShell shortcut automatically appears on the desktop taskbar. Pinning Windows 
PowerShell to the Windows 8 desktop taskbar is also a Windows PowerShell best practice. 

To start the Windows PowerShell ISE, you have a couple of choices. On the Start page of 
Windows Server 2012 R2, you can type PowerShell and both Windows PowerShell and the 
Windows PowerShell ISE appear as search results. However, on Windows 8, this is not the 
case. You must type PowerShell_ISE to find the Windows PowerShell ISE. Additional ways 
to launch the Windows PowerShell ISE are to right-click the Windows PowerShell icon and 
choose either Windows PowerShell ISE or Run ISE As Administrator from the task menu. This 
task menu appears in Figure 20-1.

Inside the Windows PowerShell console, you need only to type ise and it will launch the 
Windows PowerShell ISE. This shortcut permits quick access to the Windows PowerShell ISE 
when you need to type more than a few interactive commands.



 606 CHAPTER 20 Using the Windows PowerShell ISE

FIGURE 20-1 Right-clicking the Windows PowerShell icon on the desktop taskbar brings up a task menu 
permitting you to select the Windows PowerShell ISE.

Navigating the Windows PowerShell ISE
After the Windows PowerShell ISE launches, two panes appear. On the left side of the screen 
is an interactive Windows PowerShell console. On the right side of the screen is the command 
add-on. The command is really a Windows PowerShell command explorer window. When 
using the Windows PowerShell ISE in an interactive fashion, the command add-on enables 
you to build a command by using the mouse. After you have built the command, clicking the 
run button copies the command to the console window and executes the command. This 
view of the Windows PowerShell ISE is shown in Figure 20-2.

FIGURE 20-2 The Windows PowerShell ISE presents a Windows PowerShell console on the left and a com-
mand add-on on the right side of the screen.



 Running the Windows PowerShell ISE CHAPTER 20 607

Typing into the Name input box causes the command add-on to search through all 
Windows PowerShell modules to retrieve a matching command. This is a great way to find 
and to locate commands. By default, the command add-on uses a wildcard search pattern. 
Therefore, typing wmi returns five cmdlets that include that letter pattern. This is shown in 
Figure 20-3.

FIGURE 20-3 The Command add-on uses a wildcard search pattern to find matching cmdlets.

When you find the cmdlet that interests you, select it from the filter list of cmdlet names. 
Upon selection, the Commands pane changes to the parameters for the selected cmdlet. 
Each parameter set appears on a different tab. Screen resolution really affects the usability of 
this feature. The greater the screen resolution, the more usable this feature becomes. With a 
small resolution, you have to scroll back and forth to see the parameter sets, and you have to 
scroll up and down to see the available parameters for a particular parameter set. In this view, 
it is easy to miss important parameters. In Figure 20-4, the Get-WmiObject cmdlet queries 
the Win32_Bios Windows Management Instrumentation class. Upon entering the Windows 
Management Instrumentation class name in the class box, the run button executes the com-
mand. The console pane displays first the command and then displays the output from run-
ning the command. 

NOTE Using the Insert button inserts the command to the console but does not execute 
the command. This is great for occasions when you want to look over the command prior 
to actually executing it. It also provides you with the chance to edit the command prior to 
execution.



 608 CHAPTER 20 Using the Windows PowerShell ISE

FIGURE 20-4 Select the command to run from the Command add-on, fill out the required parameters, 
and click Run to execute Windows PowerShell cmdlets inside the Windows PowerShell ISE.

Working with the script pane
Clicking the down arrow beside the word Script in the upper-right corner of the console pane 
reveals a fresh script pane. You can also obtain a fresh script pane by selecting New from 
the File menu or clicking the small white piece of paper icon in the upper-left corner of the 
Windows PowerShell ISE. You can also use the keyboard shortcut Ctrl-N. 

Just because it is called the script pane does not mean that you have to enable script sup-
port to use it. As long as the file is not saved, you can enter commands as complex as you like 
into the script pane with script support restricted. However, after the file is saved, it becomes 
a script and you will need to deal with the script execution policy at that point. 

You can still use the Command add-on with the script pane, but it requires an extra 
step. Use the Command add-on as described in the preceding section, but instead of using 
the Run or the Insert button, use the Copy button. Navigate to the appropriate section in 
the script pane, and then use the paste command (from the right-click menu, or use the 
Paste command from the Edit menu by clicking the Paste icon on the tool bar or by simply 
pressing Ctrl-V). 



 Running the Windows PowerShell ISE CHAPTER 20 609

NOTE If you click the Insert button while the script pane is maximized, the command is 
inserted into the hidden console pane. Clicking Insert a second time inserts the command 
a second time on the same command line in the hidden console pane. No notification that 
this occurs is presented.

To run commands present in the script pane, click the green triangle in the middle of the 
tool bar, press F-5, or choose Run from the File menu. The commands from the script pane 
transfer to the console pane and then execute. Any output associated with the commands 
appears under the transferred commands. When saved as a script, the commands no longer 
transfer to the command pane. Rather, the path to the script appears in the console pane 
along with any associated output.

You can continue to use the Command add-on to build your commands as you pipeline 
the output from one cmdlet to another. In Figure 20-5, the output from the  Get-WmiObject 
cmdlet pipes to the Format-Table cmdlet. The properties chosen in the Format-Table cmdlet as 
well as the implementation of the wrap switch are configured via the Command add-on. 

FIGURE 20-5 Use of the Command add-on permits easy building of commands.



 610 CHAPTER 20 Using the Windows PowerShell ISE

tab expansion and IntelliSense
Most advanced scripters will not use the Command add-on because it consumes valuable 
screen real estate and it requires the use of the mouse to find and to create commands. For 
advanced scripters, tab expansion and IntelliSense are the keys to productivity. To turn off 
the Command add-on, either click the x in the upper-right corner of the Command add-on 
or deselect Show Command Add-on from the View menu. When deselected, the Windows 
PowerShell ISE remembers your preference and will not display the Command add-on again 
until you re-select it. 

IntelliSense provides pop-up help and options permitting rapid command development 
without requiring complete syntax knowledge. When you type a cmdlet name, IntelliSense 
supplies possible matches to the cmdlet names. After you select the cmdlet, IntelliSense dis-
plays the complete syntax of the cmdlet. This is shown in Figure 20-6. 

FIGURE 20-6 After you select a particular cmdlet from the list, IntelliSense displays the complete syntax.

Upon selecting a particular cmdlet, as you come to parameters, IntelliSense displays the 
applicable parameters in a list. After IntelliSense appears, use the Up or Down arrows to navi-
gate within the list. Press Enter to insert the highlighted option. You can then fill in required 
values for parameters and go to the next parameter. Once again, as you approach a parame-
ter position, IntelliSense displays the appropriate options in a list. This process continues until 



 Working with Windows PowerShell ISE snippets CHAPTER 20 611

you complete the command. Figure 20-7 illustrates selecting the property parameter from 
the IntelliSense list of optional parameters. 

FIGURE 20-7 IntelliSense displays parameters in a drop-down list. When you select a particular param-
eter, the data type of the property appears.

Working with Windows PowerShell ISE snippets

Even experienced scripters love to use the Windows PowerShell ISE snippets because they are 
a great time saver. It takes just a little bit of familiarity with the snippets themselves, along 
with a bit of experience with the Windows PowerShell syntax. After you have the require-
ments under your belt, you will be able to use the Windows PowerShell ISE snippets and cre-
ate code faster than you previously believed was possible. 

Using Windows PowerShell ISE snippets to create code
To start the Windows PowerShell ISE snippets, use the Ctrl-J keystroke combination. (You can 
also use the mouse to choose Start Snippets from the Edit menu.) When the snippets appear, 
type the first letter of the snippet name to quickly jump to the appropriate portion of the 
snippets. (You can also use the mouse to navigate up and down the snippet list.) When you 



 612 CHAPTER 20 Using the Windows PowerShell ISE

have identified the snippet you want to use, press Enter to place the snippet at the current 
insertion point in your Windows PowerShell script pane. 

Creating new Windows PowerShell ISE snippets
After you spend a bit of time using Windows PowerShell ISE snippets, you will wonder how 
you ever did without them. In that same instant, you will also begin to think in terms of new 
snippets. Luckily, it is very easy to create a new Windows PowerShell ISE snippet. In fact, there 
is even a cmdlet to do this: the New-IseSnippet cmdlet.

NOTE  To create or to use a user-defined Windows PowerShell ISE snippet, you must 
change the script execution policy to permit the execution of scripts. This is because 
user-defined snippets load from XML files and reading and loading files requires the 
script  execution policy to permit running scripts. To verify your script execution pol-
icy, use the Get-ExecutionPolicy cmdlet. To set the script execution policy, use the 
 Set- ExecutionPolicy cmdlet. 

Use the New-IseSnippet cmdlet to create a new Windows PowerShell ISE snippet. After 
you create the snippet, it becomes immediately available in the Windows PowerShell ISE 
when you start the Windows PowerShell ISE snippets. The command syntax is simple, but the 
command takes a large amount of space to complete. Only three parameters are required: 
Description, Text, and Title. The name of the snippet is the Title parameter. The snippet itself is 
typed into the Text parameter. When you want your code to appear on multiple lines, use the 
`r special character. Of course, to do this means that your Text parameter must appear inside 
double quotation marks and not single quotes. The following code creates a new Windows 
PowerShell ISE snippet that is a simplified switch syntax. It is a single logical line of code. 

New-IseSnippet -Title SimpleSwitch -Description "A simple switch statemet" -Author "ed 
wilson" -Text "Switch () `r{'param1' {  }`r}" -CaretOffset 9

When you execute the New-IseSnippet command, it creates a new snippets.xml file in 
the snippets directory within your WindowsPowerShell folder in your documents folder. The 
simple switch snippet XML file is shown in Figure 20-8.

User defined snippets are permanent—that is, they survive closing and re-opening the 
Windows PowerShell ISE. They also survive reboots because they reside as XML files in your 
Windows PowerShell folder. 



 Working with Windows PowerShell ISE snippets CHAPTER 20 613

FIGURE 20-8 Windows PowerShell snippets stored in a snippets.xml file in your Windows PowerShell 
folder.

Removing user-defined Windows PowerShell ISE snippets
While there is a New-IseSnippet cmdlet and a Get-IseSnippet cmdlet, there is no 
 Remove-IseSnippet cmdlet. There is no need really, because you have Remove-Item. To 
delete all of your custom Windows PowerShell ISE snippets, use the Get-IseSnippet cmdlet 
to retrieve the snippets, and use the Remove-Item cmdlet to delete them. The command is 
shown here:

Get-IseSnippet | Remove-Item

If you do not want to delete all of your custom Windows PowerShell ISE snippets, use the 
Where-Object cmdlet to filter only the ones you do want to delete. The following example 
uses the Get-IseSnippet cmdlet to list all the user-defined Windows PowerShell ISE snippets 
on the system: 

PS C:\Windows\system32> Get-IseSnippet 
 
 
    Directory: C:\Users\administrator.IAMMRED\Documents\WindowsPowerShell\Snippets 
 
 
Mode                LastWriteTime     Length Name                                                  
----                -------------     ------ ----                                                  
-a---          7/1/2012   1:03 AM        653 bogus.snippets.ps1xml                                 
-a---          7/1/2012   1:02 AM        653 mysnip.snippets.ps1xml                                
-a---          7/1/2012   1:02 AM        671 simpleswitch.snippets.ps1xml 



 614 CHAPTER 20 Using the Windows PowerShell ISE

Next, use the Where-Object cmdlet (? Is an alias for Where-Object) to return all of the 
user-defined Windows PowerShell ISE snippets except the ones that contain the word switch 
within the name. The snippets that make it through the filter are pipelined to the Remove-Item 
cmdlet. In the following code, the whatif switch shows which snippets would be removed by 
the command: 

PS C:\Windows\system32> Get-IseSnippet | ? name -NotMatch 'switch' | Remove-Item -WhatIf 
What if: Performing operation "Remove file" on Target "C:\Users\administrator.IAMMRED\
Documents\WindowsPowerShell\Snippets\bogus.snippets.ps1xml". 
What if: Performing operation "Remove file" on Target "C:\Users\administrator.IAMMRED\
Documents\WindowsPowerShell\Snippets\mysnip.snippets.ps1xml".

After you have confirmed that only the snippets that you do not want keep will be deleted, 
remove the whatif switch from the Remove-Item cmdlet and run the command a second time. 
To confirm which snippets remain, use the Get-IseSnippet cmdlet to see which Windows 
PowerShell ISE snippets are left on the system. 

PS C:\Windows\system32> Get-IseSnippet | ? name -NotMatch 'switch' | Remove-Item 
 
PS C:\Windows\system32> Get-IseSnippet 
 
 
    Directory: C:\Users\administrator.IAMMRED\Documents\WindowsPowerShell\Snippets 
 
 
Mode                LastWriteTime     Length Name                                                  
----                -------------     ------ ----                                                  
-a---          7/1/2012   1:02 AM        671 simpleswitch.snippets.ps1xml 

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous script examples.

■■ A history of the .NET Framework versions can be found at http://msdn.microsoft.com 
/en-us/library/bb822049.aspx.

■■ You can find help about how to determine which version of the .NET Framework is 
installed, at http://msdn.microsoft.com/en-us/library/hh925568.aspx.

■■ The entry point to the MSDN website is found at http://msdn.microsoft.com.



   615

C H A P T E R  2 1

Using Windows PowerShell 
remoting and jobs

■■ Understanding Windows PowerShell remoting  

■■ Using Windows PowerShell jobs

■■ Additional resources 

Windows PowerShell remoting is the key that transforms Windows PowerShell from an 
interesting experiment running a few commands to a full-fledged enterprise man-

agement solution. In this chapter, we look at how Windows PowerShell remoting works 
and how it differs from classic remoting. We also explore several scenarios involving the 
use of remoting for management purposes, and we conclude with a discussion of Windows 
PowerShell jobs. 

Understanding Windows PowerShell remoting

One of the great improvements in Windows PowerShell 4.0 is the change surrounding 
remoting. The configuration is easier than it was in Windows PowerShell 2.0, and in many 
cases, Windows PowerShell remoting “just works.” When talking about Windows PowerShell 
remoting, a bit of confusion can arise because there are several different ways of running 
commands against remote servers. Depending on your particular network configuration 
and security needs, one or more methods of remoting might not be appropriate. 

Classic remoting
Classic remoting relies on protocols such as DCOM and RPC to make connections to remote 
machines. Traditionally, these techniques require opening many ports in the firewall and 
starting various services that the different cmdlets use. To find the Windows PowerShell 
cmdlets that natively support remoting, use the Get-Help cmdlet. Specify a value of com-
putername for the parameter of the Get-Help cmdlet. This command produces a nice list of 
all cmdlets that have native support for remoting. The command and associated output are 
shown here:

PS C:\> get-help * -Parameter computername | sort name | ft name, synopsis -auto -wrap



 616 CHAPTER 21 Using Windows PowerShell remoting and jobs

Name                              Synopsis 
----                              -------- 
Add-Computer                      Add the local computer to a domain or workgroup. 
Add-Printer                       Adds a printer to the specified computer. 
Add-PrinterDriver                 Installs a printer driver on the specified 
                                  computer. 
Add-PrinterPort                   Installs a printer port on the specified computer. 
Clear-EventLog                    Deletes all entries from specified event logs on 
                                  the local or remote computers. 
Connect-PSSession                 Reconnects to disconnected sessions. 
Connect-WSMan                     Connects to the WinRM service on a remote 
                                  computer. 
Disconnect-PSSession              Disconnects from a session. 
Disconnect-WSMan                  Disconnects the client from the WinRM service on 
                                  a remote computer. 
Enter-PSSession                   Starts an interactive session with a remote 
                                  computer. 
Get-CimAssociatedInstance 
                                  Get-CimAssociatedInstance [-InputObject] 
                                  <ciminstance> [[-Association] <string>] 
                                  [-ResultClassName <string>] [-Namespace <string>] 
                                  [-OperationTimeoutSec <uint32>] [-ResourceUri 
                                  <uri>] [-ComputerName <string[]>] [-KeyOnly] 
                                  [<CommonParameters>] 
 
                                  Get-CimAssociatedInstance [-InputObject] 
                                  <ciminstance> [[-Association] <string>] 
                                  -CimSession <CimSession[]> [-ResultClassName 
                                  <string>] [-Namespace <string>] 
                                  [-OperationTimeoutSec <uint32>] [-ResourceUri 
                                  <uri>] [-KeyOnly] [<CommonParameters>] 
 
Get-CimClass 
                                  Get-CimClass [[-ClassName] <string>] 
                                  [[-Namespace] <string>] [-OperationTimeoutSec 
                                  <uint32>] [-ComputerName <string[]>] [-MethodName 
                                  <string>] [-PropertyName <string>] 
                                  [-QualifierName <string>] [<CommonParameters>] 
 
                                  Get-CimClass [[-ClassName] <string>] 
                                  [[-Namespace] <string>] -CimSession 
                                  <CimSession[]> [-OperationTimeoutSec <uint32>] 
                                  [-MethodName <string>] [-PropertyName <string>] 
                                  [-QualifierName <string>] [<CommonParameters>] 
 
Get-CimInstance 
                                  Get-CimInstance [-ClassName] <string> 
                                  [-ComputerName <string[]>] [-KeyOnly] [-Namespace 
                                  <string>] [-OperationTimeoutSec <uint32>] 
                                  [-QueryDialect <string>] [-Shallow] [-Filter 
                                  <string>] [-Property <string[]>] 
                                  [<CommonParameters>] 
 
                                  Get-CimInstance [-InputObject] <ciminstance> 
                                  -CimSession <CimSession[]> [-ResourceUri <uri>] 



 Understanding Windows PowerShell remoting CHAPTER 21 617

                                  [-OperationTimeoutSec <uint32>] 
                                  [<CommonParameters>] 
 
                                  Get-CimInstance -CimSession <CimSession[]> 
                                  -ResourceUri <uri> [-KeyOnly] [-Namespace 
                                  <string>] [-OperationTimeoutSec <uint32>] 
                                  [-Shallow] [-Filter <string>] [-Property 
                                  <string[]>] [<CommonParameters>] 
 
                                  Get-CimInstance -CimSession <CimSession[]> -Query 
                                  <string> [-ResourceUri <uri>] [-Namespace 
                                  <string>] [-OperationTimeoutSec <uint32>] 
                                  [-QueryDialect <string>] [-Shallow] 
                                  [<CommonParameters>] 
 
                                  Get-CimInstance [-ClassName] <string> -CimSession 
                                  <CimSession[]> [-KeyOnly] [-Namespace <string>] 
                                  [-OperationTimeoutSec <uint32>] [-QueryDialect 
                                  <string>] [-Shallow] [-Filter <string>] 
                                  [-Property <string[]>] [<CommonParameters>] 
 
                                  Get-CimInstance -ResourceUri <uri> [-ComputerName 
                                  <string[]>] [-KeyOnly] [-Namespace <string>] 
                                  [-OperationTimeoutSec <uint32>] [-Shallow] 
                                  [-Filter <string>] [-Property <string[]>] 
                                  [<CommonParameters>] 
 
                                  Get-CimInstance [-InputObject] <ciminstance> 
                                  [-ResourceUri <uri>] [-ComputerName <string[]>] 
                                  [-OperationTimeoutSec <uint32>] 
                                  [<CommonParameters>] 
 
                                  Get-CimInstance -Query <string> [-ResourceUri 
                                  <uri>] [-ComputerName <string[]>] [-Namespace 
                                  <string>] [-OperationTimeoutSec <uint32>] 
                                  [-QueryDialect <string>] [-Shallow] 
                                  [<CommonParameters>] 
 
Get-CimSession 
                                  Get-CimSession [[-ComputerName] <string[]>] 
                                  [<CommonParameters>] 
 
                                  Get-CimSession [-Id] <uint32[]> 
                                  [<CommonParameters>] 
 
                                  Get-CimSession -InstanceId <guid[]> 
                                  [<CommonParameters>] 
 
                                  Get-CimSession -Name <string[]> 
                                  [<CommonParameters>] 
 
Get-Counter                       Gets performance counter data from local and 
                                  remote computers. 
Get-EventLog                      Gets the events in an event log, or a list of the 
                                  event logs, on the local or remote computers. 



 618 CHAPTER 21 Using Windows PowerShell remoting and jobs

Get-HotFix                        Gets the hotfixes that have been applied to the 
                                  local and remote computers. 
Get-PrintConfiguration            Gets the configuration information of a printer. 
Get-Printer                       Retrieves a list of printers installed on a 
                                  computer. 
Get-PrinterDriver                 Retrieves the list of printer drivers installed 
                                  on the specified computer. 
Get-PrinterPort                   Retrieves a list of printer ports installed on 
                                  the specified computer. 
Get-PrinterProperty               Retrieves printer properties for the specified 
                                  printer. 
Get-PrintJob                      Retrieves a list of print jobs in the specified 
                                  printer. 
Get-Process                       Gets the processes that are running on the local 
                                  computer or a remote computer. 
Get-PSSession                     Gets the Windows PowerShell sessions on local and 
                                  remote computers. 
Get-Service                       Gets the services on a local or remote computer. 
Get-WinEvent                      Gets events from event logs and event tracing log 
                                  files on local and remote computers. 
Get-WmiObject                     Gets instances of Windows Management 
                                  Instrumentation (WMI) classes or information 
                                  about the available classes. 
Get-WSManInstance                 Displays management information for a resource 
                                  instance specified by a Resource URI. 
Invoke-CimMethod 
                                  Invoke-CimMethod [-ClassName] <string> 
                                  [[-Arguments] <IDictionary>] [-MethodName] 
                                  <string> [-ComputerName <string[]>] [-Namespace 
                                  <string>] [-OperationTimeoutSec <uint32>] 
                                  [-WhatIf] [-Confirm] [<CommonParameters>] 
 
                                  Invoke-CimMethod [-ClassName] <string> 
                                  [[-Arguments] <IDictionary>] [-MethodName] 
                                  <string> -CimSession <CimSession[]> [-Namespace 
                                  <string>] [-OperationTimeoutSec <uint32>] 
                                  [-WhatIf] [-Confirm] [<CommonParameters>] 
 
                                  Invoke-CimMethod [[-Arguments] <IDictionary>] 
                                  [-MethodName] <string> -ResourceUri <uri> 
                                  -CimSession <CimSession[]> [-Namespace <string>] 
                                  [-OperationTimeoutSec <uint32>] [-WhatIf] 
                                  [-Confirm] [<CommonParameters>] 
 
                                  Invoke-CimMethod [[-Arguments] <IDictionary>] 
                                  [-MethodName] <string> -ResourceUri <uri> 
                                  [-ComputerName <string[]>] [-Namespace <string>] 
                                  [-OperationTimeoutSec <uint32>] [-WhatIf] 
                                  [-Confirm] [<CommonParameters>] 
 
                                  Invoke-CimMethod [-InputObject] <ciminstance> 
                                  [[-Arguments] <IDictionary>] [-MethodName] 
                                  <string> [-ResourceUri <uri>] [-ComputerName 
                                  <string[]>] [-OperationTimeoutSec <uint32>] 
                                  [-WhatIf] [-Confirm] [<CommonParameters>]



 Understanding Windows PowerShell remoting CHAPTER 21 619

                                  Invoke-CimMethod [-InputObject] <ciminstance> 
                                  [[-Arguments] <IDictionary>] [-MethodName] 
                                  <string> -CimSession <CimSession[]> [-ResourceUri 
                                  <uri>] [-OperationTimeoutSec <uint32>] [-WhatIf] 
                                  [-Confirm] [<CommonParameters>] 
 
                                  Invoke-CimMethod [-CimClass] <CimClass> 
                                  [[-Arguments] <IDictionary>] [-MethodName] 
                                  <string> -CimSession <CimSession[]> 
                                  [-OperationTimeoutSec <uint32>] [-WhatIf] 
                                  [-Confirm] [<CommonParameters>] 
 
                                  Invoke-CimMethod [-CimClass] <CimClass> 
                                  [[-Arguments] <IDictionary>] [-MethodName] 
                                  <string> [-ComputerName <string[]>] 
                                  [-OperationTimeoutSec <uint32>] [-WhatIf] 
                                  [-Confirm] [<CommonParameters>] 
 
                                  Invoke-CimMethod [[-Arguments] <IDictionary>] 
                                  [-MethodName] <string> -Query <string> 
                                  -CimSession <CimSession[]> [-QueryDialect 
                                  <string>] [-Namespace <string>] 
                                  [-OperationTimeoutSec <uint32>] [-WhatIf] 
                                  [-Confirm] [<CommonParameters>] 
 
                                  Invoke-CimMethod [[-Arguments] <IDictionary>] 
                                  [-MethodName] <string> -Query <string> 
                                  [-QueryDialect <string>] [-ComputerName 
                                  <string[]>] [-Namespace <string>] 
                                  [-OperationTimeoutSec <uint32>] [-WhatIf] 
                                  [-Confirm] [<CommonParameters>] 
 
Invoke-Command                    Runs commands on local and remote computers. 
Invoke-WmiMethod                  Calls Windows Management Instrumentation (WMI) 
                                  methods. 
Invoke-WSManAction                Invokes an action on the object that is specified 
                                  by the Resource URI and by the selectors. 
Join-DtcDiagnosticResourceManager 
                                  Join-DtcDiagnosticResourceManager [-Transaction] 
                                  <DtcDiagnosticTransaction> [[-ComputerName] 
                                  <string>] [[-Port] <int>] [-Volatile] 
                                  [<CommonParameters>] 
 
Limit-EventLog                    Sets the event log properties that limit the size 
                                  of the event log and the age of its entries. 
New-CimInstance 
                                  New-CimInstance [-ClassName] <string> 
                                  [[-Property] <IDictionary>] [-Key <string[]>] 
                                  [-Namespace <string>] [-OperationTimeoutSec 
                                  <uint32>] [-ComputerName <string[]>] 
                                  [-ClientOnly] [-WhatIf] [-Confirm] 
                                  [<CommonParameters>] 
 
                                  New-CimInstance [-ClassName] <string> 
                                  [[-Property] <IDictionary>] -CimSession 



 620 CHAPTER 21 Using Windows PowerShell remoting and jobs

                                  <CimSession[]> [-Key <string[]>] [-Namespace 
                                  <string>] [-OperationTimeoutSec <uint32>] 
                                  [-ClientOnly] [-WhatIf] [-Confirm] 
                                  [<CommonParameters>] 
 
                                  New-CimInstance [[-Property] <IDictionary>] 
                                  -ResourceUri <uri> -CimSession <CimSession[]> 
                                  [-Key <string[]>] [-Namespace <string>] 
                                  [-OperationTimeoutSec <uint32>] [-WhatIf] 
                                  [-Confirm] [<CommonParameters>] 
 
                                  New-CimInstance [[-Property] <IDictionary>] 
                                  -ResourceUri <uri> [-Key <string[]>] [-Namespace 
                                  <string>] [-OperationTimeoutSec <uint32>] 
                                  [-ComputerName <string[]>] [-WhatIf] [-Confirm] 
                                  [<CommonParameters>] 
 
                                  New-CimInstance [-CimClass] <CimClass> 
                                  [[-Property] <IDictionary>] [-OperationTimeoutSec 
                                  <uint32>] [-ComputerName <string[]>] 
                                  [-ClientOnly] [-WhatIf] [-Confirm] 
                                  [<CommonParameters>] 
 
                                  New-CimInstance [-CimClass] <CimClass> 
                                  [[-Property] <IDictionary>] -CimSession 
                                  <CimSession[]> [-OperationTimeoutSec <uint32>] 
                                  [-ClientOnly] [-WhatIf] [-Confirm] 
                                  [<CommonParameters>] 
 
New-CimSession 
                                  New-CimSession [[-ComputerName] <string[]>] 
                                  [[-Credential] <pscredential>] [-Authentication 
                                  <PasswordAuthenticationMechanism>] [-Name 
                                  <string>] [-OperationTimeoutSec <uint32>] 
                                  [-SkipTestConnection] [-Port <uint32>] 
                                  [-SessionOption <CimSessionOptions>] 
                                  [<CommonParameters>] 
 
                                  New-CimSession [[-ComputerName] <string[]>] 
                                  [-CertificateThumbprint <string>] [-Name 
                                  <string>] [-OperationTimeoutSec <uint32>] 
                                  [-SkipTestConnection] [-Port <uint32>] 
                                  [-SessionOption <CimSessionOptions>] 
                                  [<CommonParameters>] 
 
New-EventLog                      Creates a new event log and a new event source on 
                                  a local or remote computer. 
New-PSSession                     Creates a persistent connection to a local or 
                                  remote computer. 
New-PSWorkflowSession             Creates a workflow session. 
New-WSManInstance                 Creates a new instance of a management resource. 
Receive-DtcDiagnosticTransaction 
                                  Receive-DtcDiagnosticTransaction [[-ComputerName] 
                                  <string>] [[-Port] <int>] [[-PropagationMethod] 
                                  <DtcTransactionPropagation>] [<CommonParameters>]



 Understanding Windows PowerShell remoting CHAPTER 21 621

Receive-Job                       Gets the results of the Windows PowerShell 
                                  background jobs in the current session. 
Receive-PSSession                 Gets results of commands in disconnected sessions. 
Register-CimIndicationEvent 
                                  Register-CimIndicationEvent [-ClassName] <string> 
                                  [[-SourceIdentifier] <string>] [[-Action] 
                                  <scriptblock>] [-Namespace <string>] 
                                  [-OperationTimeoutSec <uint32>] [-ComputerName 
                                  <string>] [-MessageData <psobject>] 
                                  [-SupportEvent] [-Forward] [-MaxTriggerCount 
                                  <int>] [<CommonParameters>] 
 
                                  Register-CimIndicationEvent [-ClassName] <string> 
                                  [[-SourceIdentifier] <string>] [[-Action] 
                                  <scriptblock>] -CimSession <CimSession> 
                                  [-Namespace <string>] [-OperationTimeoutSec 
                                  <uint32>] [-MessageData <psobject>] 
                                  [-SupportEvent] [-Forward] [-MaxTriggerCount 
                                  <int>] [<CommonParameters>] 
 
                                  Register-CimIndicationEvent [-Query] <string> 
                                  [[-SourceIdentifier] <string>] [[-Action] 
                                  <scriptblock>] [-Namespace <string>] 
                                  [-QueryDialect <string>] [-OperationTimeoutSec 
                                  <uint32>] [-ComputerName <string>] [-MessageData 
                                  <psobject>] [-SupportEvent] [-Forward] 
                                  [-MaxTriggerCount <int>] [<CommonParameters>] 
 
                                  Register-CimIndicationEvent [-Query] <string> 
                                  [[-SourceIdentifier] <string>] [[-Action] 
                                  <scriptblock>] -CimSession <CimSession> 
                                  [-Namespace <string>] [-QueryDialect <string>] 
                                  [-OperationTimeoutSec <uint32>] [-MessageData 
                                  <psobject>] [-SupportEvent] [-Forward] 
                                  [-MaxTriggerCount <int>] [<CommonParameters>] 
 
Register-WmiEvent                 Subscribes to a Windows Management 
                                  Instrumentation (WMI) event. 
Remove-CimInstance 
                                  Remove-CimInstance [-InputObject] <ciminstance> 
                                  [-ResourceUri <uri>] [-ComputerName <string[]>] 
                                  [-OperationTimeoutSec <uint32>] [-WhatIf] 
                                  [-Confirm] [<CommonParameters>] 
 
                                  Remove-CimInstance [-InputObject] <ciminstance> 
                                  -CimSession <CimSession[]> [-ResourceUri <uri>] 
                                  [-OperationTimeoutSec <uint32>] [-WhatIf] 
                                  [-Confirm] [<CommonParameters>] 
 
                                  Remove-CimInstance [-Query] <string> 
                                  [[-Namespace] <string>] -CimSession 
                                  <CimSession[]> [-OperationTimeoutSec <uint32>] 
                                  [-QueryDialect <string>] [-WhatIf] [-Confirm] 
                                  [<CommonParameters>] 
 



 622 CHAPTER 21 Using Windows PowerShell remoting and jobs

                                  Remove-CimInstance [-Query] <string> 
                                  [[-Namespace] <string>] [-ComputerName 
                                  <string[]>] [-OperationTimeoutSec <uint32>] 
                                  [-QueryDialect <string>] [-WhatIf] [-Confirm] 
                                  [<CommonParameters>] 
 
Remove-CimSession 
                                  Remove-CimSession [-CimSession] <CimSession[]> 
                                  [-WhatIf] [-Confirm] [<CommonParameters>] 
 
                                  Remove-CimSession [-ComputerName] <string[]> 
                                  [-WhatIf] [-Confirm] [<CommonParameters>] 
 
                                  Remove-CimSession [-Id] <uint32[]> [-WhatIf] 
                                  [-Confirm] [<CommonParameters>] 
 
                                  Remove-CimSession -InstanceId <guid[]> [-WhatIf] 
                                  [-Confirm] [<CommonParameters>] 
 
                                  Remove-CimSession -Name <string[]> [-WhatIf] 
                                  [-Confirm] [<CommonParameters>] 
 
Remove-Computer                   Removes the local computer from its domain. 
Remove-EventLog                   Deletes an event log or unregisters an event 
                                  source. 
Remove-Printer                    Removes a printer from the specified computer. 
Remove-PrinterDriver              Deletes printer driver from the specified 
                                  computer. 
Remove-PrinterPort                Removes the specified printer port from the 
                                  specified computer. 
Remove-PrintJob                   Removes a print job on the specified printer. 
Remove-PSSession                  Closes one or more Windows PowerShell sessions 
                                  (PSSessions). 
Remove-WmiObject                  Deletes an instance of an existing Windows 
                                  Management Instrumentation (WMI) class. 
Remove-WSManInstance              Deletes a management resource instance. 
Rename-Computer                   Renames a computer. 
Restart-Computer                  Restarts ("reboots") the operating system on 
                                  local and remote computers. 
Restart-PrintJob                  Restarts a print job on the specified printer. 
Resume-PrintJob                   Resumes a suspended print job. 
Send-DtcDiagnosticTransaction 
                                  Send-DtcDiagnosticTransaction [-Transaction] 
                                  <DtcDiagnosticTransaction> [[-ComputerName] 
                                  <string>] [[-Port] <int>] [[-PropagationMethod] 
                                  <DtcTransactionPropagation>] [<CommonParameters>] 
 
Set-CimInstance 
                                  Set-CimInstance [-InputObject] <ciminstance> 
                                  [-ComputerName <string[]>] [-ResourceUri <uri>] 
                                  [-OperationTimeoutSec <uint32>] [-Property 
                                  <IDictionary>] [-PassThru] [-WhatIf] [-Confirm] 
                                  [<CommonParameters>] 



 Understanding Windows PowerShell remoting CHAPTER 21 623

                                  Set-CimInstance [-InputObject] <ciminstance> 
                                  -CimSession <CimSession[]> [-ResourceUri <uri>] 
                                  [-OperationTimeoutSec <uint32>] [-Property 
                                  <IDictionary>] [-PassThru] [-WhatIf] [-Confirm] 
                                  [<CommonParameters>] 
 
                                  Set-CimInstance [-Query] <string> -CimSession 
                                  <CimSession[]> -Property <IDictionary> 
                                  [-Namespace <string>] [-OperationTimeoutSec 
                                  <uint32>] [-QueryDialect <string>] [-PassThru] 
                                  [-WhatIf] [-Confirm] [<CommonParameters>] 
 
                                  Set-CimInstance [-Query] <string> -Property 
                                  <IDictionary> [-ComputerName <string[]>] 
                                  [-Namespace <string>] [-OperationTimeoutSec 
                                  <uint32>] [-QueryDialect <string>] [-PassThru] 
                                  [-WhatIf] [-Confirm] [<CommonParameters>] 
 
Set-PrintConfiguration            Sets the configuration information for the 
                                  specified printer. 
Set-Printer                       Updates the configuration of an existing printer. 
Set-PrinterProperty               Modifies the printer properties for the specified 
                                  printer. 
Set-Service                       Starts, stops, and suspends a service, and 
                                  changes its properties. 
Set-WmiInstance                   Creates or updates an instance of an existing 
                                  Windows Management Instrumentation (WMI) class. 
Set-WSManInstance                 Modifies the management information that is 
                                  related to a resource. 
Show-EventLog                     Displays the event logs of the local or a remote 
                                  computer in Event Viewer. 
Stop-Computer                     Stops (shuts down) local and remote computers. 
Suspend-PrintJob                  Suspends a print job on the specified printer. 
Test-Connection                   Sends ICMP echo request packets ("pings") to one 
                                  or more computers. 
Test-WSMan                        Tests whether the WinRM service is running on a 
                                  local or remote computer. 
Write-EventLog                    Writes an event to an event log.

As you can see, many of the Windows PowerShell cmdlets that have the computername 
parameter relate to WSMAN, CIM, or sessions. To remove these cmdlets from the list, modify 
the command a bit to include a Where-Object cmdlet. (? is an alias for Where-Object.) The 
revised command and associated output are shown here:

PS C:\> Get-Help * -Parameter computername -Category cmdlet | ? modulename -match  
'PowerShell.Management' | sort name | ft name, synopsis -AutoSize -Wrap 
 
Name              Synopsis 
----              -------- 
Add-Computer      Add the local computer to a domain or workgroup. 
Clear-EventLog    Deletes all entries from specified event logs on the local or 
                  remote computers. 
Get-EventLog      Gets the events in an event log, or a list of the event logs, on 
                  the local or remote computers.



 624 CHAPTER 21 Using Windows PowerShell remoting and jobs

Get-HotFix        Gets the hotfixes that have been applied to the local and remote 
                  computers. 
Get-Process       Gets the processes that are running on the local computer or a 
                  remote computer. 
Get-Service       Gets the services on a local or remote computer. 
Get-WmiObject     Gets instances of Windows Management Instrumentation (WMI) 
                  classes or information about the available classes. 
Invoke-WmiMethod  Calls Windows Management Instrumentation (WMI) methods. 
Limit-EventLog    Sets the event log properties that limit the size of the event 
                  log and the age of its entries. 
New-EventLog      Creates a new event log and a new event source on a local or 
                  remote computer. 
Register-WmiEvent Subscribes to a Windows Management Instrumentation (WMI) event. 
Remove-Computer   Removes the local computer from its domain. 
Remove-EventLog   Deletes an event log or unregisters an event source. 
Remove-WmiObject  Deletes an instance of an existing Windows Management 
                  Instrumentation (WMI) class. 
Rename-Computer   Renames a computer. 
Restart-Computer  Restarts ("reboots") the operating system on local and remote 
                  computers. 
Set-Service       Starts, stops, and suspends a service, and changes its properties. 
Set-WmiInstance   Creates or updates an instance of an existing Windows Management 
                  Instrumentation (WMI) class. 
Show-EventLog     Displays the event logs of the local or a remote computer in 
                  Event Viewer. 
Stop-Computer     Stops (shuts down) local and remote computers. 
Test-Connection   Sends ICMP echo request packets ("pings") to one or more 
                  computers. 
Write-EventLog    Writes an event to an event log.

Some of the cmdlets provide the ability to specify credentials. This allows you to use a dif-
ferent user account to make the connection and to retrieve the data. Figure 21-1 displays the 
credential dialog box that appears when the cmdlet runs. 

FIGURE 21-1 Cmdlets that support the credential parameter prompt for credentials when supplied with a 
user name.



 Understanding Windows PowerShell remoting CHAPTER 21 625

This technique of using the computername and the credential parameters in a cmdlet is 
shown here:

PS C:\> Get-WinEvent -LogName application -MaxEvents 1 -ComputerName ex1 -Credential 
nwtraders\administrator 
 
TimeCreated           ProviderName                           Id Message 
-----------           ------------                           -- ------- 
7/1/2012 11:54:14 AM MSExchange ADAccess                  2080 Process MAD.EXE (...

However, as mentioned earlier, use of these cmdlets often requires opening holes in the 
firewall or starting specific services. By default, these types of cmdlets fail when run against 
remote machines that have not relaxed access rules. An example of this type of error is 
shown here:

PS C:\> Get-WinEvent -LogName application -MaxEvents 1 -ComputerName dc1 -Credential 
nwtraders\administrator 
Get-WinEvent : The RPC server is unavailable 
At line:1 char:1 
+ Get-WinEvent -LogName application -MaxEvents 1 -ComputerName dc1 -Credential iam... 
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    + CategoryInfo          : NotSpecified: (:) [Get-WinEvent], EventLogException 
    + FullyQualifiedErrorId : System.Diagnostics.Eventing.Reader.EventLogException, 
   Microsoft.PowerShell.Commands.GetWinEventCommand

Other cmdlets, such as Get-Service or Get-Process do not have a credential parameter, 
and therefore the command impersonates the logged on user. This command is shown here:

PS C:\> Get-Service -ComputerName hyperv -Name bits 
 
Status   Name               DisplayName 
------   ----               ----------- 
Running  bits               Background Intelligent Transfer Ser... 
 
 
PS C:\>

Just because the cmdlet does not support alternate credentials does not mean that the 
cmdlet must impersonate the logged on user. Holding down the Shift key and right-clicking 
the Windows PowerShell icon brings up an action menu, shown in Figure 21-2, which allows 
you to run the program as a different user. 



 626 CHAPTER 21 Using Windows PowerShell remoting and jobs

FIGURE 21-2 The action menu from the Windows PowerShell console permits running with different 
security credentials.

The credential dialog box is shown in Figure 21-3.

FIGURE 21-3 The credential dialog box permits entering a different user context.

By using the Run As Different User dialog box, alternative credentials are available for 
Windows PowerShell cmdlets that do not support the credential parameter.

WinrM—Windows remote Management 
Windows Server 2012 R2 installs with WinRm configured and running to support remote 
Windows PowerShell commands. WinRm is Microsoft’s implementation of the industry 
standard WS-Management Protocol. As such, WinRM provides a firewall-friendly method of 
accessing remote systems in an interoperable manner. It is the remoting mechanism used by 
the new CIM cmdlets. As soon as the Windows Server 2012 R2 is up and running, you can 
make a remote connection and run commands, or you can open an interactive Windows 



 Understanding Windows PowerShell remoting CHAPTER 21 627

PowerShell console. However, Windows 8.1 client ships with WinRm locked down. Therefore, 
the first step is to use the Enable-PSRemoting function to configure. When running the 
Enable-PSRemoting function, the following steps occur:

1. Starts or restarts the WinRM service.

2. Sets the WinRM service startup type to Automatic.

3. Creates a listener to accept requests from any Internet Protocol address.

4. Enables inbound firewall exceptions for WS-Man traffic.

5. Sets a target listener named Microsoft.powershell.

6. Sets a target listener named Microsoft.powershell.workflow.

7. Sets a target listener named Microsoft.powershell32.

During each step of this process, the function prompts you to agree (or not) to performing 
the specified action. If you are familiar with the steps that the function performs and you do 
not make any changes from the defaults, you can run the command with the force switched 
parameter and it will not prompt prior to making the changes. The syntax of this command is 
shown here:

Enable-PSRemoting -Force

The use of the Enable-PSRemoting function in interactive mode is shown here, along with 
all associated output from the command:

PS C:\> Enable-PSRemoting 
 
WinRM Quick Configuration 
Running command "Set-WSManQuickConfig" to enable remote management of this computer 
by using the Windows Remote Management (WinRM) service. 
 This includes: 
    1. Starting or restarting (if already started) the WinRM service 
    2. Setting the WinRM service startup type to Automatic 
    3. Creating a listener to accept requests on any IP address 
    4. Enabling Windows Firewall inbound rule exceptions for WS-Management traffic 
(for http only). 
 
Do you want to continue? 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
WinRM has been updated to receive requests. 
WinRM service type changed successfully. 
WinRM service started. 
 
WinRM has been updated for remote management. 
Created a WinRM listener on HTTP://* to accept WS-Man requests to any IP on this 
machine. 
WinRM firewall exception enabled. 



 628 CHAPTER 21 Using Windows PowerShell remoting and jobs

Confirm 
Are you sure you want to perform this action? 
Performing operation "Set-PSSessionConfiguration" on Target "Name: 
microsoft.powershell SDDL: 
O:NSG:BAD:P(A;;GA;;;BA)(A;;GA;;;RM)S:P(AU;FA;GA;;;WD)(AU;SA;GXGW;;;WD). This will 
allow selected users to remotely run Windows PowerShell commands on this computer". 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
 
Confirm 
Are you sure you want to perform this action? 
Performing operation "Set-PSSessionConfiguration" on Target "Name: 
microsoft.powershell.workflow SDDL: 
O:NSG:BAD:P(A;;GA;;;BA)(A;;GA;;;RM)S:P(AU;FA;GA;;;WD)(AU;SA;GXGW;;;WD). This will 
allow selected users to remotely run Windows PowerShell commands on this computer". 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
 
Confirm 
Are you sure you want to perform this action? 
Performing operation "Set-PSSessionConfiguration" on Target "Name: 
microsoft.powershell32 SDDL: 
O:NSG:BAD:P(A;;GA;;;BA)(A;;GA;;;RM)S:P(AU;FA;GA;;;WD)(AU;SA;GXGW;;;WD). This will 
allow selected users to remotely run Windows PowerShell commands on this computer". 
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):y 
PS C:\>

When configured, use the Test-WSMan cmdlet to ensure that the WinRM remoting is 
properly configured and is accepting requests. A properly configured system replies with the 
following information:  

PS C:\> Test-WSMan -ComputerName w8c504 
 
 
wsmid           : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd 
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd 
ProductVendor   : Microsoft Corporation 
ProductVersion  : OS: 0.0.0 SP: 0.0 Stack: 3.0

This cmdlet works with Windows PowerShell 2.0 remoting as well. The following output is 
from a domain controller running Windows 2008 with Windows PowerShell 2.0 installed and 
WinRM configured for remote access:

PS C:\> Test-WSMan -ComputerName dc1 
wsmid           : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd 
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd 
ProductVendor   : Microsoft Corporation 
ProductVersion  : OS: 0.0.0 SP: 0.0 Stack: 2.0

If WinRM is not configured, an error returns from the system. Such an error from a 
Windows 8.1 client is shown here:

PS C:\> Test-WSMan -ComputerName w8c10 
Test-WSMan : <f:WSManFault 



 Understanding Windows PowerShell remoting CHAPTER 21 629

xmlns:f="http://schemas.microsoft.com/wbem/wsman/1/wsmanfault" Code="2150859046" 
Machine="w8c504.iammred.net"><f:Message>WinRM cannot complete the operation. Verify 
that the specified computer name is valid, that the computer is accessible over the 
network, and that a firewall exception for the WinRM service is enabled and allows 
access from this computer. By default, the WinRM firewall exception for public 
profiles limits access to remote computers within the same local subnet. 
</f:Message></f:WSManFault> 
At line:1 char:1 
+ Test-WSMan -ComputerName w8c10 
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    + CategoryInfo          : InvalidOperation: (w8c10:String) [Test-WSMan], Invalid 
   OperationException 
    + FullyQualifiedErrorId : WsManError,Microsoft.WSMan.Management.TestWSManCommand

Keep in mind that configuring WinRM via the Enable-PSRemoting function does not enable 
the Remote Management firewall exception, and therefore PING commands will not work by 
default when pinging to a Windows 8-based client system.

PS C:\> ping w8c504 
 
Pinging w8c504.iammred.net [192.168.0.56] with 32 bytes of data: 
Request timed out. 
Request timed out. 
Request timed out. 
Request timed out. 
 
Ping statistics for 192.168.0.56: 
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss).

However, as shown here, pings to a Windows 2012 R2 Server do work:

PS C:\> ping Server1 
 
Pinging Server1.iammred.net [192.168.0.57] with 32 bytes of data: 
Reply from 192.168.0.57: bytes=32 time<1ms TTL=128 
Reply from 192.168.0.57: bytes=32 time<1ms TTL=128 
Reply from 192.168.0.57: bytes=32 time<1ms TTL=128 
Reply from 192.168.0.57: bytes=32 time<1ms TTL=128 
 
Ping statistics for 192.168.0.57: 
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
    Minimum = 0ms, Maximum = 0ms, Average = 0ms

Create a remote Windows PowerShell session
For simple configuration on a single remote machine, entering a remote Windows PowerShell 
session is the answer. To enter a remote Windows PowerShell session, use the Enter-
PSSession cmdlet to create an interactive remote Windows PowerShell session on a target 
machine. If you do not supply credentials, the remote session impersonates your current 
logon. The following output illustrates connecting to a remote computer named dc1. When 
established, the Windows PowerShell prompt changes to include the name of the remote 
system. The Set-Location cmdlet (sl is an alias) changes the working directory on the remote 



 630 CHAPTER 21 Using Windows PowerShell remoting and jobs

system to c:\. Next, the Get-WmiObject cmdlet retrieves the BIOS information on the remote 
system. The exit command exits the remote session, and the Windows PowerShell prompt 
returns to the default.

PS C:\> Enter-PSSession -ComputerName dc1 
[dc1]: PS C:\Users\Administrator\Documents> sl c:\ 
[dc1]: PS C:\> gwmi win32_bios 
 
 
SMBIOSBIOSVersion : A01 
Manufacturer      : Dell Computer Corporation 
Name              : Default System BIOS 
SerialNumber      : 9HQ1S21 
Version           : DELL   - 6 
 
 
 
[dc1]: PS C:\> exit 
PS C:\>

The good thing is that when using the Windows PowerShell transcript tool via 
 Start-Transcript, the transcript tool captures output from the remote Windows PowerShell 
session as well as output from the local session. Indeed, all commands typed appear in the 
transcript. The following commands illustrate beginning a transcript, entering a remote 
Windows PowerShell session, typing a command, exiting the session, and stopping the 
transcript:

PS C:\> Start-Transcript 
Transcript started, output file is C:\Users\administrator.IAMMRED\Documents\PowerShell 
_transcript.20120701124414.txt 
PS C:\> Enter-PSSession -ComputerName dc1 
[dc1]: PS C:\Users\Administrator\Documents> gwmi win32_bios 
 
 
SMBIOSBIOSVersion : A01 
Manufacturer      : Dell Computer Corporation 
Name              : Default System BIOS 
SerialNumber      : 9HQ1S21 
Version           : DELL   - 6 
 
 
[dc1]: PS C:\Users\Administrator\Documents> exit 
PS C:\> Stop-Transcript 
Transcript stopped, output file is C:\Users\administrator.IAMMRED\Documents\PowerShell 
_transcript.20120701124414.txt 
PS C:\>

Figure 21-4 displays a copy of the transcript from the previous session. 



 Understanding Windows PowerShell remoting CHAPTER 21 631

FIGURE 21-4 The Windows PowerShell transcript tool records commands and output received from a 
remote Windows PowerShell session.

If you anticipate making multiple connections to a remote system, use the New-PSSession 
cmdlet to create a remote Windows PowerShell session. The New-PSSession cmdlet permits 
you to store the remote session in a variable and provides you with the ability to enter and to 
leave the remote session as often as required—without the additional overhead of creating 
and destroying remote sessions. In the commands that follow, a new Windows PowerShell 
session is created via the New-PSSession cmdlet. The newly created session is stored in the 
$dc1 variable. Next, the Enter-PSSession cmdlet is used to enter the remote session by using 
the stored session. A command retrieves the remote host name, and the remote session is 
exited via the exit command. Next, the session is reentered, and the last process retrieved. 
The session is exited once again. Finally, the Get-PSSession cmdlet retrieves Windows 
PowerShell sessions on the system, and all sessions are removed via the Remove-PSSession 
cmdlet.

PS C:\> $dc1 = New-PSSession -ComputerName dc1 -Credential iammred\administrator 
PS C:\> Enter-PSSession $dc1 
[dc1]: PS C:\Users\Administrator\Documents> hostname 
dc1 
[dc1]: PS C:\Users\Administrator\Documents> exit 
PS C:\> Enter-PSSession $dc1 
[dc1]: PS C:\Users\Administrator\Documents> gps | select -Last 1 



 632 CHAPTER 21 Using Windows PowerShell remoting and jobs

Handles  NPM(K)    PM(K)      WS(K) VM(M)   CPU(s)     Id ProcessName 
-------  ------    -----      ----- -----   ------     -- ----------- 
    292       9    39536      50412   158     1.97   2332 wsmprovhost 
 
 
[dc1]: PS C:\Users\Administrator\Documents> exit 
PS C:\> Get-PSSession 
 
 Id Name            ComputerName    State         ConfigurationName     Availability 
 -- ----            ------------    -----         -----------------     ------------ 
  8 Session8        dc1             Opened        Microsoft.PowerShell     Available 
 
 
PS C:\> Get-PSSession | Remove-PSSession 
PS C:\>

run a single Windows PowerShell command
When you have a single command to run, it does not make sense to go through all the 
trouble of building and entering an interactive remote Windows PowerShell session. Instead 
of creating a remote Windows PowerShell console session, you can run a single command 
by using the Invoke-Command cmdlet. If you have a single command to run, use the cmdlet 
directly and specify the computer name as well as any credentials required for the connec-
tion. This technique is shown here, where the last process running on the Ex1 remote server 
appears:

PS C:\> Invoke-Command -ComputerName ex1 -ScriptBlock {gps | select -Last 1} 
 
Handles  NPM(K)    PM(K)      WS(K) VM(M)   CPU(s)     Id ProcessName   PSComputerName 
-------  ------    -----      ----- -----   ------     -- -----------   ------------ 
    224      34    47164      51080   532     0.58  10164 wsmprovhost   ex1

If you have several commands or if you anticipate making multiple connections, 
the Invoke-Command cmdlet accepts a session parameter in the same manner as the 
 Enter-PSSession cmdlet does. In the following output, a new PSSession object is created to a 
remote computer named dc1. The remote session is used to retrieve two different pieces of 
information. When completed, the session stored in the $dc1 variable is explicitly remoted. 

PS C:\> $dc1 = New-PSSession -ComputerName dc1 -Credential iammred\administrator 
PS C:\> Invoke-Command -Session $dc1 -ScriptBlock {hostname} 
dc1 
PS C:\> Invoke-Command -Session $dc1 -ScriptBlock {Get-EventLog application -Newest 1} 
 
   Index Time          EntryType   Source                 InstanceID Message PSCompu 
                                                                             terName 
   ----- ----          ---------   ------                 ---------- ------- ------- 
   17702 Jul 01 12:59  Information ESENT                         701 DFSR... dc1 
 
 
PS C:\> Remove-PSSession $dc1



 Understanding Windows PowerShell remoting CHAPTER 21 633

Use of the Invoke-Command cmdlet exposes one of the more powerful aspects of Windows 
PowerShell remoting: running the same command against a large number of remote systems. 
The secret behind this power is that the computername parameter from the Invoke-Command 
cmdlet accepts an array of computer names. In the following output, an array of computer 
names is stored in the variable $cn. Next, the $cred variable holds the credential object for 
the remote connections. Finally, the Invoke-Command cmdlet is used to make connections to 
all of the remote machines and to return the BIOS information from the systems. The nice 
thing about this technique is that an additional parameter, PSComputerName, is added to the 
returning object, permitting easy identification of which BIOS is associated with which com-
puter system. The commands and associated output are shown here:

PS C:\> $cn = "dc1","dc3","ex1","sql1","wsus1","wds1","hyperv1","hyperv2","hyperv3" 
PS C:\> $cred = get-credential iammred\administrator 
PS C:\> Invoke-Command -cn $cn -cred $cred -ScriptBlock {gwmi win32_bios} 
 
 
SMBIOSBIOSVersion : BAP6710H.86A.0072.2011.0927.1425 
Manufacturer      : Intel Corp. 
Name              : BIOS Date: 09/27/11 14:25:42 Ver: 04.06.04 
SerialNumber      : 
Version           : INTEL  - 1072009 
PSComputerName    : hyperv3 
 
SMBIOSBIOSVersion : A11 
Manufacturer      : Dell Inc. 
Name              : Phoenix ROM BIOS PLUS Version 1.10 A11 
SerialNumber      : BDY91L1 
Version           : DELL   - 15 
PSComputerName    : hyperv2 
 
SMBIOSBIOSVersion : A01 
Manufacturer      : Dell Computer Corporation 
Name              : Default System BIOS 
SerialNumber      : 9HQ1S21 
Version           : DELL   - 6 
PSComputerName    : dc1 
 
SMBIOSBIOSVersion : 090004 
Manufacturer      : American Megatrends Inc. 
Name              : BIOS Date: 03/19/09 22:51:32  Ver: 09.00.04 
SerialNumber      : 3692-0963-10421-7503-9631-2546-83 
Version           : VRTUAL - 3000919 
PSComputerName    : wsus1 
 
SMBIOSBIOSVersion : V1.6 
Manufacturer      : American Megatrends Inc. 
Name              : Default System BIOS 
SerialNumber      : To Be Filled By O.E.M. 
Version           : 7583MS - 20091228 
PSComputerName    : hyperv1 



 634 CHAPTER 21 Using Windows PowerShell remoting and jobs

SMBIOSBIOSVersion : 080015 
Manufacturer      : American Megatrends Inc. 
Name              : Default System BIOS 
SerialNumber      : None 
Version           : 091709 - 20090917 
PSComputerName    : sql1 
 
SMBIOSBIOSVersion : 080015 
Manufacturer      : American Megatrends Inc. 
Name              : Default System BIOS 
SerialNumber      : None 
Version           : 091709 - 20090917 
PSComputerName    : wds1 
 
SMBIOSBIOSVersion : 090004 
Manufacturer      : American Megatrends Inc. 
Name              : BIOS Date: 03/19/09 22:51:32  Ver: 09.00.04 
SerialNumber      : 89921-9999-0865-2542-2186-80421-69 
Version           : VRTUAL - 3000919 
PSComputerName    : dc3 
 
SMBIOSBIOSVersion : 090004 
Manufacturer      : American Megatrends Inc. 
Name              : BIOS Date: 03/19/09 22:51:32  Ver: 09.00.04 
SerialNumber      : 2301-9053-4386-9162-8072-56621-16 
Version           : VRTUAL - 3000919 
PSComputerName    : ex1 
 
 
 
PS C:\>

Using Windows PowerShell jobs

You can begin a new Windows PowerShell job by using the Start-Job cmdlet. The command 
to run as a job is placed in a script block, and the jobs are sequentially named Job1, Job2, and 
so on. This sequencing is shown here with the new Job10:

PS C:\> Start-Job -ScriptBlock {get-process} 
 
Id     Name            PSJobTypeName   State         HasMoreData     Location 
--     ----            -------------   -----         -----------     -------- 
10     Job10           BackgroundJob   Running       True            localhost 
 
 
PS C:\>



 Using Windows PowerShell jobs CHAPTER 21 635

The jobs receive job IDs that are also sequentially numbered. The first job created in a 
Windows PowerShell console is always job ID 1. You can use either the job ID or the job name 
to obtain information about the job, as shown here:

PS C:\> Get-Job -Name job10 
 
Id     Name            PSJobTypeName   State         HasMoreData     Location 
--     ----            -------------   -----         -----------     -------- 
10     Job10           BackgroundJob   Completed     True            localhost 
 
PS C:\> Get-Job -Id 10 
 
Id     Name            PSJobTypeName   State         HasMoreData     Location 
--     ----            -------------   -----         -----------     -------- 
10     Job10           BackgroundJob   Completed     True            localhost 
 
 
PS C:\>

When you see that the job has completed, you can receive the job. The Receive-Job cmd-
let returns the same information that returns if a job is not used. The Job1 output is shown 
here (truncated to save space): 

PS C:\> Receive-Job -Name job10 
 
Handles  NPM(K)    PM(K)      WS(K) VM(M)   CPU(s)     Id ProcessName 
-------  ------    -----      ----- -----   ------     -- ----------- 
     62       9     1672       6032    80     0.00   1408 apdproxy 
    132       9     2316       5632    62            1364 atieclxx 
    122       7     1716       4232    32             948 atiesrxx 
    114       9    14664      15372    48            1492 audiodg 
    556      62    53928       5368   616     3.17   3408 CCC 
     58       8     2960       7068    70     0.19    928 conhost 
     32       5     1468       3468    52     0.00   5068 conhost 
    784      14     3284       5092    56             416 csrss 
    529      27     2928      17260   145             496 csrss 
    182      13     8184      11152    96     0.50   2956 DCPSysMgr 
    135      11     2880       7552    56            2056 DCPSysMgrSvc 
 ... (truncated output)

After a job has been received, that is it—the data is gone, unless you save it to a variable. 
The following code illustrates this concept:

PS C:\> Receive-Job -Name job10 
PS C:\>

What can be confusing about this is that the job still exists, and the Get-Job cmdlet contin-
ues to retrieve information about the job, as shown here: 

PS C:\> Get-Job -Id 10 
 
Id     Name            PSJobTypeName   State         HasMoreData     Location 
--     ----            -------------   -----         -----------     -------- 
10     Job10           BackgroundJob   Completed     False           localhost



 636 CHAPTER 21 Using Windows PowerShell remoting and jobs

As a best practice, use the Remove-Job cmdlet to delete remnants of completed jobs when 
you are finished using the job object. This will avoid confusion regarding active jobs, com-
pleted jobs, and jobs waiting to be processed. After a job has been removed, the Get-Job 
cmdlet returns an error if you attempt to retrieve information about the job—because it no 
longer exists. This is illustrated here:

PS C:\> Remove-Job -Name job10 
PS C:\> Get-Job -Id 10 
Get-Job : The command cannot find a job with the job ID 10. Verify the value of the 
Id parameter and then try the command again. 
At line:1 char:1 
+ Get-Job -Id 10 
+ ~~~~~~~~~~~~~~ 
    + CategoryInfo          : ObjectNotFound: (10:Int32) [Get-Job], PSArgumentException 
    + FullyQualifiedErrorId : JobWithSpecifiedSessionNotFound,Microsoft.PowerShell 
   .Commands.GetJobCommand

When working with the job cmdlets, I like to give the jobs their own name. A job that 
returns process objects via the Get-Process cmdlet might be called getProc. A contextual 
naming scheme works better than trying to keep track of names such as Job1 or Job2. Do 
not worry about making your job names too long, because you can use wildcard characters 
to simplify the typing requirement. When you receive the job, make sure that you store the 
returned objects in a variable, as shown here: 

PS C:\> Start-Job -Name getProc -ScriptBlock {get-process} 
 
Id     Name            PSJobTypeName   State         HasMoreData     Location 
--     ----            -------------   -----         -----------     -------- 
12     getProc         BackgroundJob   Running       True            localhost 
 
 
PS C:\> Get-Job -Name get* 
 
Id     Name            PSJobTypeName   State         HasMoreData     Location 
--     ----            -------------   -----         -----------     -------- 
12     getProc         BackgroundJob   Completed     True            localhost 
 
 
PS C:\> $procObj = Receive-Job -Name get* 
PS C:\>

After you have the returned object in a variable, you can use the object with other 
Windows PowerShell cmdlets. One thing to keep in mind is that the object is deserialized. This 
is shown here, where I use gm as an alias for the Get-Member cmdlet:

PS C:\> $procObj | gm 
 
 
   TypeName: Deserialized.System.Diagnostics.Process



 Using Windows PowerShell jobs CHAPTER 21 637

This means that not all the normal members from the System.Diagnostics.Process .NET 
Framework object are available. The normal methods are shown here. (gps is an alias for 
the Get-Process cmdlet, gm an alias for Get-Member, and –m is enough of the –membertype 
parameter to distinguish it on the Windows PowerShell console line.)

PS C:\> gps | gm -m method 
 
 
   TypeName: System.Diagnostics.Process 
 
Name                      MemberType Definition 
----                      ---------- ---------- 
BeginErrorReadLine        Method     System.Void BeginErrorReadLine() 
BeginOutputReadLine       Method     System.Void BeginOutputReadLine() 
CancelErrorRead           Method     System.Void CancelErrorRead() 
CancelOutputRead          Method     System.Void CancelOutputRead() 
Close                     Method     System.Void Close() 
CloseMainWindow           Method     bool CloseMainWindow() 
CreateObjRef              Method     System.Runtime.Remoting.ObjRef CreateObjRef(type  
                                     requestedType) 
Dispose                   Method     System.Void Dispose() 
Equals                    Method     bool Equals(System.Object obj) 
GetHashCode               Method     int GetHashCode() 
GetLifetimeService        Method     System.Object GetLifetimeService() 
GetType                   Method     type GetType() 
InitializeLifetimeService Method     System.Object InitializeLifetimeService() 
Kill                      Method     System.Void Kill() 
Refresh                   Method     System.Void Refresh() 
Start                     Method     bool Start() 
ToString                  Method     string ToString() 
WaitForExit               Method     bool WaitForExit(int milliseconds), System.Void 
WaitForExit() 
WaitForInputIdle          Method     bool WaitForInputIdle(int milliseconds), bool 
WaitForInputIdle()

Methods from the deserialized object are shown here, where I use the same command I 
used previously:

PS C:\> $procObj | gm -m method 
 
 
   TypeName: Deserialized.System.Diagnostics.Process 
 
Name     MemberType Definition 
----     ---------- ---------- 
ToString Method     string ToString(), string ToString(string format, System 
.IFormatProvider formatProvider) 
 
 
PS C:\>



 638 CHAPTER 21 Using Windows PowerShell remoting and jobs

A listing of the cmdlets that use the noun job is shown here:

PS C:\> Get-Command -Noun job | select name 
 
Name 
---- 
Get-Job 
Receive-Job 
Remove-Job 
Resume-Job 
Start-Job 
Stop-Job 
Suspend-Job 
Wait-Job

When starting a Windows PowerShell job via the Start-Job cmdlet, you can assign a name 
to hold the returned job object. You can also assign the returned job object in a variable by 
using a straightforward value assignment. If you do both, you end up with two copies of the 
returned job object, as shown here: 

PS C:\> $rtn = Start-Job -Name net -ScriptBlock {Get-Net6to4Configuration} 
PS C:\> Get-Job -Name net 
 
Id     Name            PSJobTypeName   State         HasMoreData     Location 
--     ----            -------------   -----         -----------     -------- 
18     net             BackgroundJob   Completed     True            localhost 
 
PS C:\> $rtn 
 
Id     Name            PSJobTypeName   State         HasMoreData     Location 
--     ----            -------------   -----         -----------     -------- 
18     net             BackgroundJob   Completed     True            localhost

Retrieving the job, via the Receive-Job cmdlet, consumes the data. You cannot come back 
and retrieve the returned data again. This code shown here illustrates this concept:

PS C:\> Receive-Job $rtn 
 
Description               : 6to4 Configuration 
State                     : Default 
AutoSharing               : Default 
RelayName                 : 6to4.ipv6.microsoft.com. 
RelayState                : Default 
ResolutionIntervalSeconds : 1440 
 
 
PS C:\> Receive-Job $rtn

The preceding example also shows what happens when a script block returns an error. 
When you use the Receive-Job cmdlet, the error message displays. To find additional infor-
mation about the code that triggered the error, use the Job object stored in either the $rtn 



 Using Windows PowerShell jobs CHAPTER 21 639

variable or the net named job. You might prefer using the job object stored in the $rtn vari-
able, as shown here:

PS C:\> $rtn.Command 
Get-Net6to4Configuration

To clean up first, remove the leftover job objects by getting the jobs and removing the 
jobs, as shown here:

PS C:\> Get-Job | Remove-Job 
PS C:\> Get-Job 
PS C:\>

When you create a new Windows PowerShell job, it runs in the background. There is no 
indication of whether the job ended in an error or whether it was successful. Indeed, you do 
not have any idea when the job even completes, other than to use the Get-Job cmdlet several 
times to see when the job state changes from running to completed. For many jobs, this 
might be perfectly acceptable. In fact, it might even be preferable when you want to regain 
control of the Windows PowerShell console as soon as the job begins executing. On other 
occasions, you might want to be notified when the Windows PowerShell job completes. To do 
this, you can use the Wait-Job cmdlet. You need to give the Wait-Job cmdlet either a job name 
or a job ID. After you have done this, the Windows PowerShell console will pause until the job 
completes. The job, with its completed status, displays on the console. You can then use the 
Retrieve-Job cmdlet to receive the deserialized objects and store them in a variable. 

PS C:\> $rtn = Start-Job -ScriptBlock {gwmi win32_product -cn hyperv1} 
PS C:\> $rtn 
 
Id     Name            PSJobTypeName   State         HasMoreData     Location 
--     ----            -------------   -----         -----------     -------- 
22     Job22           BackgroundJob   Running       True            localhost 
 
PS C:\> Wait-Job -id 22 
 
Id     Name            PSJobTypeName   State         HasMoreData     Location 
--     ----            -------------   -----         -----------     -------- 
22     Job22           BackgroundJob   Completed     True            localhost 
 
PS C:\> $prod = Receive-Job -id 22 
PS C:\> $prod.Count 
2

In a newly opened Windows PowerShell console, the Start-Job cmdlet is used to start a 
new job. The returned job object is stored in the $rtn variable. You can pipeline the job object 
contained in the $rtn variable to the Stop-Job cmdlet to stop the execution of the job. If you 
try to use the job object in the $rtn variable directly, to get job information, an error will be 
generated, as shown here: 

PS C:\> $rtn = Start-Job -ScriptBlock {gwmi win32_product -cn hyperv1} 
PS C:\> $rtn | Stop-Job 
PS C:\> Get-Job $rtn 



 640 CHAPTER 21 Using Windows PowerShell remoting and jobs

Get-Job : The command cannot find the job because the job name 
System.Management.Automation.PSRemotingJob was not found. Verify the value of the 
Name parameter, and then try the command again. 
At line:1 char:1 
+ Get-Job $rtn 
+ ~~~~~~~~~~~~ 
    + CategoryInfo          : ObjectNotFound: (System.Manageme...n.PSRemotingJob: 
   String) [Get-Job], PSArgumentException 
    + FullyQualifiedErrorId : JobWithSpecifiedNameNotFound,Microsoft.PowerShell 
   .Commands.GetJobCommand

You can pipeline the job object to the Get-Job cmdlet and see that the job is in a stopped 
state. Use the Receive-Job cmdlet to receive the job information, and use the count property 
to see how many software products are included in the variable, as shown here: 

PS C:\> $rtn | Get-Job 
 
Id     Name            PSJobTypeName   State         HasMoreData     Location 
--     ----            -------------   -----         -----------     -------- 
2      Job2            BackgroundJob   Stopped       False           localhost 
 
 
PS C:\> $products = Receive-Job -Id 2 
PS C:\> $products.count 
0

In the preceding list, you can see that no software packages were enumerated. This is 
because the Get-WmiObject command to retrieve information from the Win32_Product class 
did not have time to finish. 

If you want to keep the data from your job so that you can use it again later, and you do 
not want to bother storing it in an intermediate variable, use the keep parameter. In the fol-
lowing command, the Get-NetAdapter cmdlet is used to return network adapter information: 

PS C:\> Start-Job -ScriptBlock {Get-NetAdapter} 
 
Id     Name            PSJobTypeName   State         HasMoreData     Location 
--     ----            -------------   -----         -----------     -------- 
4      Job4            BackgroundJob   Running       True            localhost

When checking on the status of a background job and you are monitoring a job that you 
just created, used the newest parameter instead of typing a job number, because it is easier to 
remember. This technique is shown here:

PS C:\> Get-Job -Newest 1 
 
Id     Name            PSJobTypeName   State         HasMoreData     Location 
--     ----            -------------   -----         -----------     -------- 
4      Job4            BackgroundJob   Completed     True            localhost



 Additional resources CHAPTER 21 641

Now, to retrieve the information from the job and to keep the information available, use 
the keep switched parameter as shown here:

PS C:\> Receive-Job -Id 4 -Keep 
 
 
ifAlias                                          : Ethernet 
InterfaceAlias                                   : Ethernet 
ifIndex                                          : 12 
ifDesc                                           : Microsoft Hyper-V Network Adapter 
ifName                                           : Ethernet_7 
DriverVersion                                    : 6.2.8504.0 
LinkLayerAddress                                 : 00-15-5D-00-2D-07 
MacAddress                                       : 00-15-5D-00-2D-07 
LinkSpeed                                        : 10 Gbps 
MediaType                                        : 802.3 
PhysicalMediaType                                : Unspecified 
AdminStatus                                      : Up 
MediaConnectionState                             : Connected 
DriverInformation                                : Driver Date 2006-06-21 Version 
                                                   6.2.8504.0 NDIS 6.30 
DriverFileName                                   : netvsc63.sys 
NdisVersion                                      : 6.30 
ifOperStatus                                     : Up 
RunspaceId                                       : 9ce8f8e6-1a09-4103-a508-c60398527 
<output truncated>

You can continue to work directly with the output in a normal Windows PowerShell fash-
ion, as shown here:

PS C:\> Receive-Job -Id 4 -Keep | select name 
 
name 
---- 
Ethernet 
 
 
PS C:\> Receive-Job -Id 4 -Keep | select transmitlinksp* 
 
                                                                   TransmitLinkSpeed 
                                                                   ----------------- 
                                                                         10000000000

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous script examples.

■■ A history of the .NET Framework versions can be found at http://msdn.microsoft.com 
/en-us/library/bb822049.aspx.



 642 CHAPTER 21 Using Windows PowerShell remoting and jobs

■■ You can find help about how to determine which version of the .NET Framework is 
installed, at http://msdn.microsoft.com/en-us/library/hh925568.aspx.

■■ The entry point to the MSDN website is found at http://msdn.microsoft.com.



   643

C H A P T E R  2 2

Using Windows PowerShell 
Workflow

■■ Why use Windows PowerShell Workflow 

■■ Parallel PowerShell

■■ Workflow activities

■■ Checkpointing a Windows PowerShell workflow 

■■ Adding a sequence activity to a workflow

■■ Additional resources 

W indows PowerShell Workflow enables IT Pros to solve many common scripting 
problems. For example, a system requires a reboot to complete configuration before 

kicking off a second script. Another common scenario is executing a series of commands 
in either parallel or in series. This chapter begins by looking at the reasons for using a 
workflow, moves to understanding workflow activities, and then looks at checkpoint and 
sequencing of workflows. 

Why use Windows PowerShell Workflow

Windows PowerShell workflows are cool because the commands consist of a sequence of 
related activities. You can use a workflow to run commands that take an extended period 
of time. A workflow command can survive reboots, disconnected sessions, and even be 
suspended and resumed without losing the data. This is because the workflow automatically 
saves state and data at the beginning and at the end of the workflow. In addition, it can use 
specific points that you specify. These persistence points are like checkpoints or snapshots 
of the activity. If a failure occurs that is unrecoverable, you can use the persisted data points 
and resume from the last data point instead of having to begin the entire process anew. 

NOTE  Windows PowerShell Workflow is Windows Workflow Foundation. Instead of 
having to write the workflow in XAML, I can write the workflow using Windows Power-
Shell syntax. I can also package the workflow in a Windows PowerShell module if I prefer. 



 644 CHAPTER 22 Using Windows PowerShell Workflow

The two main reasons for using Windows PowerShell Workflow are reliability and perfor-
mance when performing large-scale or long-running commands. These two reasons break 
down into the following key points: 

1. Parallel task execution

2. Workflow throttling

3. Connection throttling

4. Connection pooling

5. Integration with disconnection sessions

Workflow requirements
You can run a workflow that uses Windows PowerShell cmdlets if the target (the managed 
node) runs at least Windows PowerShell 2.0. You do not need Windows PowerShell 2.0 if the 
workflow does not run Windows PowerShell cmdlets. You can use WMI or CIM commands 
on computers that do not have Windows PowerShell installed–which means that you can use 
Windows PowerShell Workflow in a heterogeneous environment.

The computer that runs the workflow is the host (client) computer. It must be running at 
least Windows PowerShell 3.0 and have Windows PowerShell remoting enabled. In addi-
tion, the target (managed node) computer must have at least Windows PowerShell 2.0 
with Windows PowerShell remoting enabled if the workflow includes Windows PowerShell 
cmdlets. 

A simple workflow
Although much of the focus around Windows PowerShell Workflow is on large network man-
agement, you can use it on your own local computer. You might want to do this if the task at 
hand might take a long time to run. Therefore, from a learning standpoint, it makes sense to 
begin with a workflow that simply works on your local computer. To write a workflow, begin 
with the workflow keyword. Provide a name for the workflow, and inside the curly braces 
(script block), specify the code that you want to use. The syntax is very much like a Windows 
PowerShell function. HelloUserworkflow.ps1 demonstrates a basic workflow.

helloUserworkflow.ps1 

Workflow HelloUser  

{ "Hello $env:USERNAME" } 

Just like a Windows PowerShell function, you need to run the code and load the workflow 
prior to using it. In the Windows PowerShell ISE, run the script containing the workflow, and 
in the immediate window you can use the workflow. This is shown in Figure 22-1.



 Parallel PowerShell CHAPTER 22 645

FIGURE 22-1 Run the workflow from the script pane, and execute the workflow in the script pane of the 
Windows PowerShell ISE.

You can use normal Windows PowerShell commands and add logic to the workflow if 
you want. The following workflow uses the Get-Date cmdlet to retrieve the time hour in 
a 24-hour format. If the hour is less than 12, it displays “good morning.” If the hour 
is between 12 and 18, it displays “good afternoon.” Otherwise, it displays “good evening.” 
HelloUserTimeworkflow.ps1 demonstrates the workflow.

helloUsertimeworkflow.ps1 

Workflow HelloUserTime 

{ 

 $dateHour = Get-date -UFormat '%H' 

 if($dateHour -lt 12) {"good morning"} 

 ELSeIF ($dateHour -ge 12 -AND $dateHour -le 18) {"good afternoon"} 

 ELSE {"good evening"} 

} 

Parallel PowerShell

One of the reasons for using a Windows PowerShell workflow is to be able to easily execute 
commands in parallel. This can result in some significant time savings.



 646 CHAPTER 22 Using Windows PowerShell Workflow

NOTE For an example of the time savings possible by using Windows PowerShell 
Workflowandexecutingcommandsinparallel,seetheexcellentarticlewrittenby
 Windows PowerShell MVP NiklasGoude,“UsePowerShellWorkflowtoPingComputersin
Parallel,” at http://blogs.technet.com/b/heyscriptingguy/archive/2012/11/20/use-powershell 
-workflow-to-ping-computers-in-parallel.aspx.

To perform a parallel activity by using a Windows PowerShell workflow, use the Foreach 
keyword with the –Parallel parameter. This is followed by the operation and the associated 
script block. The following example illustrates this technique:

Foreach -Parallel ($cn in $computers) 
 { Get-CimInstance -PSComputerName $cn -ClassName win32_computersystem } 

One of the things to keep in mind, here–as in a major source of frustration early on–is 
that when you call the Get-CimInstance cmdlet from within the script block of my paral-
lel Foreach, you have to use the automatically added PSComputerName parameter and not 
the ComputerName parameter you would normally use with the cmdlet. This is the way that 
Windows PowerShell Workflow handles computer names. If you look at the command-line 
syntax for Get-CimInstance, you do not see the PSComputerName parameter at all. The syn-
tax for Get-CimInstance is shown in Figure 22-2.

FIGURE 22-2 The Get-CimInstance cmdlet does not have a PSComputerName parameter. 



 Parallel PowerShell CHAPTER 22 647

The nice thing is that if you forget to include –PSComputerName and try to run a Windows 
PowerShell workflow, an error arises. The error is detailed enough that it actually tells you 
the problem, and it tells you what you need to do to solve the problem. This is shown in 
Figure 22-3.

FIGURE 22-3 Omitting the PSComputerName parameter results in an informative error message.

After you rename the parameter in Get-CimInstance, you can run the workflow and it does 
not generate any errors. 

The complete GetComputerInfoWorkFlow.ps1 script appears here.

GetComputerInfoWorkFlow.ps1 

Workflow GetComputerInfo 

{ 

 $computers = "server1","client1" 

 Foreach -Parallel ($cn in $computers) 

 { Get-CimInstance -PSComputerName $cn -ClassName win32_computersystem } } 

You call the workflow, and you are greeted with computer information from each of the 
servers whose name is stored in the $computers variable. The script and the output from the 
script are shown in Figure 22-4.



 648 CHAPTER 22 Using Windows PowerShell Workflow

FIGURE 22-4 Running the workflow produces detailed computer information.

Workflow activities

A Windows PowerShell workflow is made up of a series of activities. In fact, the basic unit of 
work in a Windows PowerShell workflow is called an activity. There are five different types of 
Windows PowerShell Workflow activities that are available for use. Table 22-1 describes the 
different types of activities.

TABLE 22-1 Workflow activities and associated descriptions

Activity Description

CheckPoint-Workflow (alias = PSPersist) Takes a checkpoint. Saves the state and data of a workflow in prog-
ress. If the workflow is interrupted or rerun, it can restart from any 
checkpoint. 
Use the Checkpoint-Workflow activity along with the PSPersist 
workflow common parameter and the PSPersistPreference variable 
to make your workflow robust and recoverable.

ForEach -Parallel Runs the statements in the script block once for each item in a col-
lection. The items are processed in parallel. The statements in the 
script block run sequentially.

Parallel All statements in the script block can run at the same time. The 
 order of execution is undefined.



 Workflow activities CHAPTER 22 649

Sequence Creates a block of sequential statements within a parallel script 
block. The Sequence script block runs in parallel with other activities 
in the Parallel script block. However, the statements in the Sequence 
script block run in the order in which they appear. This activity is 
valid only within a Parallel script block.

Suspend-Workflow Stops a workflow temporarily. To resume the workflow, use the 
Resume-Job cmdlet.

Windows PowerShell cmdlets as activities
Windows PowerShell cmdlets from the core modules are automatically implemented as 
activities for use in a Windows PowerShell workflow. These core modules all begin with the 
name Microsoft.PowerShell. To find these cmdlets, you can use the Get-Command cmdlet as 
shown here:

Get-Command -Module microsoft.powershell*

The command and the associated output from the Get-Command cmdlet appear in 
Figure 22-5.

FIGURE 22-5 Core Windows PowerShell cmdlets.



 650 CHAPTER 22 Using Windows PowerShell Workflow

Disallowed core cmdlets
Not all of the cmdlets from the Windows PowerShell core modules are permitted as auto-
matic activities for Windows PowerShell workflows. The reason for this is that some of the 
core cmdlets do not work well in workflows. A quick look at the disallowed list makes this 
abundantly clear. Table 22-2 lists the disallowed core cmdlets.

TABLE 22-2 Disallowed core Windows PowerShell cmdlets

Disallowed cmdlet Disallowed cmdlet

Add-History Invoke-History

Add-PSSnapin New-Alias

Clear-History New-Variable

Clear-Variable Out-GridView

Complete-Transaction Remove-PSBreakpoint

Debug-Process Remove-PSSnapin

Disable-PSBreakpoint Remove-Variable

Enable-PSBreakpoint Set-Alias

Enter-PSSession Set-PSBreakpoint

Exit-PSSession Set-PSDebug

Export-Alias Set-StrictMode

Export-Console Set-TraceMode

Get-Alias Set-Variable

Get-History Start-Transaction

Get-PSBreakpoint Start-Transcript

Get-PSCallStack Stop-Transcript

Get-PSSnapin Trace-Command

Get-Transaction Undo-Transaction

Get-Variable Use-Transaction

Import-Alias Write-Host

Non-automatic cmdlet activities
If a cmdlet is not in the Windows PowerShell core modules, it does not mean that it 
is excluded–in fact, it probably is not excluded. Therefore, when a non-core Windows 
PowerShell cmdlet is used in a Windows PowerShell workflow, Windows PowerShell will auto-
matically run the cmdlet as an InlineScript activity. An InlineScript activity permits you to run 
commands in a Windows PowerShell workflow and to share data that would not be otherwise 
permitted. In the InlineScript script block, you can call all Windows PowerShell commands 



 Workflow activities CHAPTER 22 651

and expressions and share state and data within the session. This includes imported modules 
and variable values. For example, the cmdlets from Table 22-2 that are not permitted in a 
Windows PowerShell workflow could be included in an InlineScript activity. 

Parallel activities
To create a Windows PowerShell workflow that uses a parallel workflow activity, you use the 
Parallel keyword and supply a script block. The workflow in Get-EventLogData.ps1 illustrates 
this technique.

Get-EventLogData.ps1 

WorkFlow Get-EventLogData 

{ 

 Parallel 

 {  

   Get-EventLog -LogName application -Newest 1 

   Get-EventLog -LogName system -Newest 1 

   Get-EventLog -LogName 'Windows PowerShell' -Newest 1 } } 

After you run the script containing the Get-EventLogData workflow, you go to the execu-
tion pane of the Windows PowerShell ISE and execute the workflow. What happens is that the 
three Get-EventLog cmdlet commands execute in parallel. This results in a powerful and quick 
way to grab event log data. If you call the workflow with no parameters, it executes on your 
local computer, as shown in Figure 22-6.

FIGURE 22-6 Running the workflow with no parameters returns event information.



 652 CHAPTER 22 Using Windows PowerShell Workflow

With a Windows PowerShell workflow, the cool thing is that you automatically gain access 
to several automatic parameters. One of the automatic parameters is PSComputerName. 
Therefore, with no additional work (this workflow does not exist on Server1 or Server2; it 
exists only here on my workstation), I can use the automatic PSComputerName workflow 
parameter and run the workflow on two remote servers. 

Checkpointing a Windows PowerShell workflow

If you have a Windows PowerShell workflow and you need to save workflow state or data to 
disk while the workflow runs, you can configure a checkpoint. In this way, if something inter-
rupts the workflow, it does not need to restart completely. Instead, the workflow resumes 
from the point of the last checkpoint. Checkpointing of a Windows PowerShell workflow 
is also sometimes referred to as persistence or persisting a workflow. Because Windows 
PowerShell workflows run on large distributed networks or control the execution of long-
running tasks, it is vital that the workflow can handle interruptions. 

Understanding checkpoints
A checkpoint is a snapshot of the workflow current state. This includes the current values 
of variables and generated output. Checkpointing persists this data to disk. It is possible to 
configure multiple checkpoints in a workflow. Windows PowerShell Workflow provides mul-
tiple methods for implementing checkpointing. Whatever method you use to generate the 
checkpoint, Windows PowerShell will use the data in the newest checkpoint for the workflow 
to recover and to resume the workflow if interrupted. If a workflow runs as a job (such as by 
using the AsJob workflow common parameter), Windows PowerShell retains the workflow 
checkpoint until job deletion (for example, by using the Remove-Job cmdlet).

Placing checkpoints
You can place checkpoints anywhere in a Windows PowerShell workflow. This includes before 
and after each command or activity. The counterbalance to this sort of approach is that each 
checkpoint uses resources, and therefore it interrupts processing of the workflow–often with 
perceptible results. In addition, every time the workflow runs on a target computer, it check-
points the workflow.



 Checkpointing a Windows PowerShell workflow CHAPTER 22 653

NOTE So where are the best places to place a checkpoint? Well, I like to place a check-
point after a portion of the workflow that is significant–such as something that takes a 
long time to run. Or it might be a section of the workflow that uses a great amount of 
resources, or even something that relies on a resource that is not always available. 

adding checkpoints
There are several levels of checkpoint that you can add to a Windows PowerShell workflow. 
For example, you can add a workflow at the workflow level or at the activity level. If you add 
a checkpoint to the workflow level, it will cause a checkpoint to occur at the beginning and at 
the end of the workflow. 

Workflow checkpoints are free
The absolutely, positively easiest way to add a checkpoint to a Windows PowerShell workflow 
is to use the –pspersist common parameter when calling the workflow. 

The workflow in Get-CompInfoWorkflowCheckPointWorkflow.ps1 obtains network 
adapter, disk, and volume information. 

Get-CompInfoWorkflowCheckPointWorkflow.ps1 

workflow Get-CompInfo 

{ 

  Get-NetAdapter 

  Get-Disk 

  Get-Volume 

} 

To cause the workflow to checkpoint, call the workflow with the –PSPersist parameter and 
set it to $true. The command line appears here:

Get-CompInfo -PSComputerName server1, server2 -PSPersist $true 

When you run the workflow, a progress bar appears. It takes a few seconds due to the 
checkpoints. This progress bar is shown in Figure 22-7.

After the checkpoints, the workflow completes quickly and displays the gathered informa-
tion. Figure 22-8 shows the output, as well as the command line used to call the workflow.



 654 CHAPTER 22 Using Windows PowerShell Workflow

FIGURE 22-7 Checkpoints cause a workflow to take more time to run.

FIGURE 22-8 After running the script to load the workflow, the command line calls the workflow against 
two computers and checkpoints the workflow.



 Checkpointing a Windows PowerShell workflow CHAPTER 22 655

Checkpoint activity
If you use a core Windows PowerShell cmdlet, it picks up an automatic PSPersist parameter. 
You can then checkpoint the workflow at the activity level. Use the PSPersist parameter the 
same way that you do if you use it at the workflow level. To cause a checkpoint, set the value 
to $True. To disable a checkpoint, set it to $False. 

In the workflow shown in Get-CompInfoWorkflowPersist.ps1, set a checkpoint to occur 
after the completion of the first and third activity. 

Get-CompInfoWorkflowPersist.ps1 

workflow Get-CompInfo 

{ 

  Get-process -PSPersist $true 

  Get-Disk  

  Get-service -PSPersist $true 

} 

In the preceding script, the workflow obtains process information and then the workflow 
takes a checkpoint. Next, disk information and service information appear, and then the final 
checkpoint occurs. 

Using the CheckPoint-Workflow activity
The CheckPoint-WorkFlow activity causes a workflow to checkpoint immediately. You can 
place it in any location in the workflow. The big advantage of the Checkpoint-Workflow 
activity is that you can use it to checkpoint a workflow that does not use the core Windows 
PowerShell cmdlets as activities. This means, that, for example, you can use a workflow that 
includes Get-NetAdapter, Get-Disk, and Get-Volume and still be able to checkpoint the activity. 
You need to use Checkpoint-Workflow because no –PSPersist parameter adds automatically 
to the non-core Windows PowerShell cmdlets. Get-CompInfoWorkflowCheckPointWorkflow 
.ps1 contains the revised workflow.

Get-CompInfoWorkflowCheckPointWorkflow.ps1 

workflow Get-CompInfo 

{ 

  Get-NetAdapter 

  Get-Disk 

  Get-Volume 

  Checkpoint-Workflow 

} 



 656 CHAPTER 22 Using Windows PowerShell Workflow

Adding a sequence activity to a workflow

To add a sequence activity to a Windows PowerShell workflow, all you need to do is use the 
Sequence keyword and specify a script block. When you do this, it causes the commands in 
the sequence script block to execute sequentially and in the specified order. The key con-
cept here is that a Sequence activity occurs within a Parallel activity. The Sequence activity is 
required when you want commands to execute in a particular order. This is because com-
mands running inside a Parallel activity execute in an undetermined order. The commands in 
the Sequence script block run in parallel with all of the commands in the Parallel activity. But 
the commands within the Sequence script block run in the order in which they appear in the 
script block. The Get-WinFeatureServersWorkflow.ps1 script contains the workflow illustrating 
this technique.

Get-WinFeatureServersWorkflow.ps1 

workflow get-winfeatures 

{ 

 Parallel { 

    InlineScript {Get-WindowsFeature -Name PowerShell*} 

    InlineScript {$env:COMPUTERNAME}  

    Sequence { 

        Get-date  

        $PSVersionTable.PSVersion } } 

} 

In the preceding workflow, the order in which Get-WindowsFeature, the inline script, or 
the Sequence activity executes is not determined. The only thing you know for sure is that the 
Get-Date command runs before you obtain the PSVersion value—because this is the order 
specified in the Sequence activity script block. 

NOTE In Windows PowerShell 3.0, it was possible to call a Windows PowerShell cmdlet 
from a system that did not contain the cmdlet directly within the workflow. In Windows 
PowerShell 4.0, this type of activity must be inside an InlineScript activity.

To run the workflow, first run the PS1 script that contains the workflow. Next, call the 
workflow and pass two computer names to it via the PSComputerName automatic parameter. 
Here is a sample command line:

get-winfeatures -PSComputerName server1, server2 

Figure 22-9 shows the Windows PowerShell ISE when calling the workflow. It also illus-
trates the order in which the commands executed at the time. Note that the commands in 
the Sequence script block executed in the specified order—that is, Get-Date executed before 



 Adding a sequence activity to a workflow CHAPTER 22 657

$PsVersionTable.PSVersion executed—but that they were in the same Parallel stream of 
execution.

FIGURE 22-9 The order in which the activities execute is not guaranteed, except for activities identified in 
the Sequence.

Some workflow coolness

One of the cool things about this workflow is that I executed it from 
my Windows 8.1-based laptop. What is so cool about that? Well the 

Get-WindowsFeature cmdlet does not work on desktop operating systems. 
Therefore, I ran a command from my laptop that does not exist on my lap-
top—but it does exist on the target Server1 and Server2 computers. All I have 
to do is place the cmdlet within an InlineScript activity.

Another cool workflow feature is the InlineScript activity. I can access an 
environmental variable from the remote servers. The InlineScript activity 
allows me to do things that otherwise would not be permitted in a Windows 
PowerShell workflow. It adds a lot of flexibility.



 658 CHAPTER 22 Using Windows PowerShell Workflow

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous script examples.

■■ Detailed Windows Workflow Foundation documentation appears on MSDN at  
http://msdn.microsoft.com/en-us/vstudio/jj684582.

■■ Workflow automatic parameters are detailed at http://technet.microsoft.com/library 
/jj129719.aspx. 

■■ Workflow specific parameters are detailed at http://technet.microsoft.com/en-us 
/library/jj574194.aspx.

■■ All scripts from this chapter are in the file available from the Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell 
-40-Best-d9e16039.



   659

C H A P T E R  2 3

Using the Windows 
PowerShell DSC

■■ Understanding Desired State Configuration 

■■ Controlling configuration drift 

■■ Additional resources 

The killer feature of Windows PowerShell 4.0 is Desired State Configuration (DSC). Every 
presentation at TechEd 2013 in both North America and in Europe that discussed DSC 

received high marks and numerous comments from audience participants. Clearly, this fea-
ture resonates soundly with IT Pros. Therefore, what is Desired State Configuration, how is 
it used, what are the requirements for implementing it, and how does it help the enterprise 
administrator? 

Understanding Desired State Configuration

DSC is a set of extensions to Windows PowerShell that permit the management of systems 
for both the software and the environment on which software services run. Because DSC is 
part of the Windows Management Framework 4.0 (which includes Windows PowerShell 4.0), 
it means that it is operating system independent and runs on any computer that can run 
Windows PowerShell 4.0. DSC ships with the following resource providers:

■■ Archive

■■ Environment

■■ File

■■ Group

■■ Log

■■ Package

■■ Registry

■■ Script

■■ Service



 660 CHAPTER 23 Using the Windows PowerShell DSC

■■ User

■■ WindowsFeature

■■ WindowsProcess

The twelve default resource providers each support a standard set of configuration prop-
erties. The providers and supported properties are listed in Table 23-1.

TABLE 23-1 DSC resource providers and properties

Provider Properties

Archive        Destination, Path, Checksum, DependsOn, Ensure, Force, Validate

Environment    Name, DependsOn, Ensure, Path, Value

File           DestinationPath, Attributes, Checksum, Contents, Credential, DependsOn, Ensure, 
Force, MatchSource, Recurse, SourcePath, Type

Group          GroupName, Credential, DependsOn, Description, Ensure, Members, 
MembersToExclude, MembersToInclude

Log            Message, DependsOn

Package        Name, Path, ProductId, Arguments, Credential, DependsOn, Ensure, LogPath, 
ReturnCode

Registry       Key, ValueName, DependsOn, Ensure, Force, Hex, ValueData, ValueType

Script         GetScript, SetScript, TestScript, Credential, DependsOn

Service        Name, BuiltInAccount, Credential, DependsOn, StartupType, State

User           UserName, DependsOn, Description, Disabled, Ensure, FullName, Password, 
PasswordChangeNotAllowed, PasswordChangeRequired, PasswordNeverExpires

WindowsFeature Name, Credential, DependsOn, Ensure, IncludeAllSubFeature, LogPath, Source

WindowsProcess Arguments, Path, Credential, DependsOn, Ensure, StandardErrorPath, 
StandardInputPath, StandardOutputPath, WorkingDirectory

Because it is possible to extend support for additional resources by creating other provid-
ers, you are not limited to configuring only the preceding 12 types of resources. 

the DSC process
To create a configuration by using DSC, you first need a Managed Object Format (MOF) file. 
MOF is the syntax used by Windows Management Instrumentation (WMI), and therefore it 
is a standard text type of format. A sample MOF file for a server named Server1 is shown in 
Figure 23-1.



 Understanding Desired State Configuration CHAPTER 23 661

FIGURE 23-1 A DSC MOF file is a stylized text file in a format the same as used by WMI.

You can easily create your own MOF by creating a DSC configuration script and calling 
one of the 12 built-in DSC providers or by using a custom provider. To create a configuration 
script, begin by using the Configuration keyword, and provide a name for the configuration. 
Next open a script block followed by a node and a resource provider. The node identifies the 
target of the configuration. In the ScriptFolderConfig.ps1 script, the configuration creates a 
directory on a target server named Server1. It uses the File resource provider. The source files 
are copied from a share on the network. DestinationPath defines the folder to be created on 
Server1. Type identifies that a directory will be created. Recurse specifies that all folders in the 
source path are copied. The complete ScriptFolderConfig.ps1 script is shown here.

ScriptFolderConfig.ps1 

#Requires -version 4.0 

 

Configuration ScriptFolder 

{ 

    node 'Server1' 

    { 

      File ScriptFiles



 662 CHAPTER 23 Using the Windows PowerShell DSC

      { 

        SourcePath = "\\dc1\Share\" 

        DestinationPath = "C:\scripts" 

        Ensure = "Present" 

        Type = "Directory" 

        Recurse = $true 

      } 

    } 

 

} 

After the ScriptFolderConfig.ps1 script runs inside the Windows PowerShell ISE, the 
ScriptFolder configuration loads into memory. The configuration is then called in the same 
way that a function would be called. When the configuration is called, it creates a MOF file for 
each node that is identified in the configuration. The path to the configuration is used when 
calling the Start-DscConfiguration cmdlet. There are therefore three distinct phases to this 
process, as follows:

1. Run the script containing the configuration to load the configuration into memory. 

2. Call the configuration, and supply any required parameters to create the MOF file for 
each identified node.

3. Call the Start-DscConfiguration cmdlet, and supply the path containing the MOF’s 
files created in step 2. 

This process appears in Figure 23-2. The configuration appears in the upper script pane, 
while the command pane shows running the script, calling the configuration, and starting the 
configuration via the MOF files. 



 Understanding Desired State Configuration CHAPTER 23 663

FIGURE 23-2 To run a configuration against a remote server, use the Start-DscConfiguration cmdlet 
and supply the path to a folder containing the appropriate MOF files.

Configuration parameters
To create parameters for a configuration, use the param keyword in the same manner as 
you would with functions. The param statement goes just after opening the script block for 
the configuration. As seen in the ScriptFolderVersion.ps1 script, you can even assign default 
values for the parameters. When a configuration is created, it automatically receives the 
following three default parameters: instancename, outputpath and configurationdata. The 
 instancename parameter holds the instance name of the configuration. The  instancename 
value of a configuration is used to uniquely identify the resource ID used to identify each 
resource specified in the configuration—normally, the default value for this is good. The 
 outputpath parameter holds the destination for storing the configuration MOF file. This 
permits redirecting the MOF file that is created to a different folder than the one holding the 
script that is run. The default is to create the MOF files in the same folder that holds the script 
that creates the configuration. Storing the MOF files in a different location makes it easier to 
reuse them and to update them. The configurationdata parameter accepts a hashtable hold-
ing configuration data. In addition, any parameters specified in the param statement in the 
configuration are also available when calling the configuration. 



 664 CHAPTER 23 Using the Windows PowerShell DSC

By calling the configuration directly from the script that creates the configuration, you can 
simplify the process of creating the MOF. The ScriptFolderVersion.ps1 script adds a second 
resource provider to the configuration. The Registry provider is used to add a registry key, 
forscripting, to the HKLM\Software registry key. The registry value name is ScriptsVersion, and 
the data is set to 1.0. The use of the registry provider is shown here:

      Registry AddScriptVersion 
      { 
        Key = "HKEY_Local_Machine\Software\ForScripting" 
        ValueName = "ScriptsVersion" 
        ValueData = "1.0" 
        Ensure = "Present" 
      }

The additional resource provider call is placed right under the closing brace used to close 
off the previous call to the File resource provider. 

 The complete ScriptFolderVersion.ps1 script is shown here.

ScriptFolderVersion.ps1

#Requires -Version 4.0 

 

Configuration ScriptFolderVersion 

{ 

 Param ($server = 'server1')  

    node $server 

    { 

      File ScriptFiles 

      { 

        SourcePath = "\\dc1\Share\" 

        DestinationPath = "C:\scripts" 

        Ensure = "present" 

        Type = "Directory" 

        Recurse = $true 

      } 

      Registry AddScriptVersion 

      { 

        Key = "HKEY_Local_Machine\Software\ForScripting" 

        ValueName = "ScriptsVersion" 

        ValueData = "1.0" 

        Ensure = "Present" 

      } 

       

    } 

} 

 

ScriptFolderVersion 



 Understanding Desired State Configuration CHAPTER 23 665

Setting dependencies
Everything does not happen at the same time when calling a DSC configuration. Therefore, to 
ensure that activities occur at the right time, you use the DependsOn keyword in the configu-
ration. For example, in the ScriptFolderVersionUnzip.ps1 script, the Archive resource provider 
is used to unzip a compressed file that is copied down from the shared folder. The script files 
are copied from the share with the ScriptFiles activity supported by the File resource provider. 
Because these files must be downloaded from the network share before the zipped folder 
can be uncompressed, the DependsOn keyword is used. Because the File ScriptFiles resource 
activity creates the folder structure containing the compressed folder, the path used by the 
Archive resource provider can be hard-coded. The path is local to the server that actually runs 
the configuration. The Archive activity is shown here:

      Archive ZippedModule 
      { 
        DependsOn = "[File]ScriptFiles" 
        Path = "C:\scripts\PoshModules\PoshModules.zip" 
        Destination = $modulePath 
        Ensure = "Present" 
      }

The ScriptFolderVersionUnzip.ps1 script parses the $env:PSModulePath environmental 
variable to obtain the path to the Windows PowerShell Modules location in the Program 
Files directory. Following the configuration, it also calls the configuration and redirects the 
MOF file to the C:\Server1Config folder. It then calls the Start-DscConfiguration cmdlet and 
provides a specific job name for the job. It then uses the –verbose parameter to provide more 
detailed information about the progress. The complete script is shown here.

ScriptFolderVersionUnzip.ps1

#Requires -version 4.0 

 

Configuration ScriptFolderVersionUnzip 

{ 

 Param ($modulePath = ($env:PSModulePath -split ';' |  

    ?  {$_ -match 'Program Files'}), 

    $Server = 'Server1') 

    node $Server 

    { 

      File ScriptFiles 

      { 

        SourcePath = "\\dc1\Share\" 

        DestinationPath = "C:\scripts" 

        Ensure = "present" 

        Type = "Directory" 

        Recurse = $true 

      }



 666 CHAPTER 23 Using the Windows PowerShell DSC

      Registry AddScriptVersion 

      { 

        Key = "HKEY_Local_Machine\Software\ForScripting" 

        ValueName = "ScriptsVersion" 

        ValueData = "1.0" 

        Ensure = "Present" 

      } 

      Archive ZippedModule 

      { 

        DependsOn = "[File]ScriptFiles" 

        Path = "C:\scripts\PoshModules\PoshModules.zip" 

        Destination = $modulePath 

        Ensure = "Present" 

      } 

    } 

} 

 

ScriptFolderVersionUnZip -output C:\server1Config 

Start-DscConfiguration -Path C:\server1Config -JobName Server1Config –Verbose

Configuration data
To modify the way a configuration runs, it is necessary to specify configuration data. This 
can take the place of a separate file, or it can be added directly via an array of hashtables. To 
create a local user, it is necessary to specify PSDscAllowPlainTextPassword = $true in the 
configuration data—this is a requirement, even if not directly supplying the password as plain 
text. In the DemoUserConfig.ps1 configuration script, the user credentials are supplied to the 
configuration via the Get-Credential cmdlet. This produces a secure string. But the error that 
generates from running the configuration states that storing an encrypted password as plain 
text is supported only if the configuration permits it. This error is shown in Figure 23-3.



 Understanding Desired State Configuration CHAPTER 23 667

FIGURE 23-3 An error arises if the configuration does not permit storing plain text passwords.

The complete DemoUserConfig.ps1 configuration script is shown here.

DemoUserConfig.ps1 

#Requires -version 4.0 

Configuration DemoUser 

{ 

 $Password = Get-Credential 

    node Server1 

    { 

      User EdUser 

      { 

        UserName = "ed" 

        Password = $cred 

        Description = "local ed account" 

        Ensure = "Present" 

        Disabled = $false 

        PasswordNeverExpires = $true 

        PasswordChangeRequired = $false 

      }  

     } 

    } 

 

DemoUser 



 668 CHAPTER 23 Using the Windows PowerShell DSC

The problem is not the way that the password is supplied to the configuration, but rather 
what happens after the configuration runs—it decrypts the password and stores it in plain 
text in the MOF file. This is shown in Figure 23-4.

FIGURE 23-4 After being permitted by the configuration, the password stores in plain text in the 
MOF file.

Because this stores the password in plain text in the MOF file, the Windows PowerShell 
team wanted to ensure that you are aware of exactly what you are doing. (By the way, the 
alternative to storing the password in plain text is to encrypt the password with a certificate.)

After you create the configuration data, you call the configuration and specify the newly 
created configuration data. This is shown here:

$configData = @{ 
                AllNodes = @( 
                              @{ 
                                 NodeName = "Server1"; 
                                 PSDscAllowPlainTextPassword = $true 
                                    } 
                    ) 
               } 
 
ScriptFolder -ConfigurationData $configData



 Understanding Desired State Configuration CHAPTER 23 669

Creating users with the user provider
To create a local user, call the user provider, and specify the user name. The password 
is passed to the password property as a PSCredential object. This is different than just a 
SecureString object, which might be expected. This is because the PSCredential object con-
tains both the user name as well as the password (as a SecureString object). Next comes the 
Description property and whether or not to enable the user account. It is possible to cre-
ate disabled user accounts by setting the Disabled property to $True. The last two things to 
configure are the PasswordNeverExpires property and the PasswordChangeRequired property. 
The following portion of the configuration script illustrates this technique:

User EdUser 
      { 
        UserName = "ed" 
        Password = $cred 
        Description = "local ed account" 
        Ensure = "Present" 
        Disabled = $false 
        PasswordNeverExpires = $true 
        PasswordChangeRequired = $false 
      }

Creating groups with the group provider
To create a local group with the local group provider, you need to specify the group name to 
the GroupName property. You also should specify the description for the group. The mem-
bers themselves are added via an array of user names. Because the users should exist prior to 
attempting to add them to the group, the DependsOn property is used to specify the depen-
dency upon the users. This is illustrated in the following code block:

Group Scripters 
      { 
        GroupName = "Scripters" 
        Credential = $cred 
        Description = "Scripting Dudes" 
        Members = @("ed") 
        DependsOn = "[user]Eduser" 
      }

The complete ScriptFolderVersionUnzipCreateUsersAndProfile.ps1 script is shown here.

ScriptFolderVersionUnzipCreateUsersandProfile.ps1 

#Requires -Version 4.0 

Configuration ScriptFolder 

{ 

 Param ($modulePath = ($env:PSModulePath -split ';' |  

    ?  {$_ -match 'Program Files'})) 

    node Server1



 670 CHAPTER 23 Using the Windows PowerShell DSC

    { 

      User EdUser 

      { 

        UserName = "ed" 

        Password = $cred 

        Description = "local ed account" 

        Ensure = "Present" 

        Disabled = $false 

        PasswordNeverExpires = $true 

        PasswordChangeRequired = $false 

      } 

      Group Scripters 

      { 

        GroupName = "Scripters" 

        Credential = $cred 

        Description = "Scripting Dudes" 

        Members = @("ed") 

        DependsOn = "[user]Eduser" 

      } 

      File ScriptFiles 

      { 

        SourcePath = "\\dc1\Share\" 

        DestinationPath = "C:\scripts" 

        Ensure = "present" 

        Type = "Directory" 

        Recurse = $true 

      } 

      Registry AddScriptVersion 

      { 

        Key = "HKEY_Local_Machine\Software\ForScripting" 

        ValueName = "ScriptsVersion" 

        ValueData = "1.0" 

        Ensure = "Present" 

      } 

      Archive ZippedModule 

      { 

        DependsOn = "[File]ScriptFiles" 

        Path = "C:\scripts\PoshModules\PoshModules.zip" 

        Destination = $modulePath 

        Ensure = "Present" 

      } 

      File PoshProfile 

      { 

        DependsOn = "[File]ScriptFiles"



 Controlling configuration drift CHAPTER 23 671

        SourcePath = "C:\scripts\PoshProfiles\Microsoft.PowerShell_profile.ps1" 

        DestinationPath = "$env:USERPROFILE\WindowsPowerShell\Microsoft.PowerShell_

profile.ps1" 

        Ensure = "Present" 

        Type = "File" 

        Recurse = $true 

      } 

       

    } 

} 

 

$cred = get-credential 

$configData = @{ 

                AllNodes = @( 

                              @{ 

                                 NodeName = "Server1"; 

                                 PSDscAllowPlainTextPassword = $true 

                                    } 

                    ) 

               } 

 

ScriptFolder -ConfigurationData $configData 

Start-DscConfiguration Scriptfolder

Controlling configuration drift

Because Windows PowerShell DSC is idempotent, you can run the same configuration script 
multiple times without fear of creating multiple resources or generating errors. Therefore, if 
the same configuration runs multiple times, if the configuration has not drifted, no changes 
are made. If the configuration has drifted, you can easily bring the server back into the 
desired state. You do not need to worry about modifying the configuration script to correct 
only detected errors. In fact, you do not even need to worry about configuration drift—you 
just run the same configuration, and you can be ensured that the server is brought back into 
state. In the situation where a server must match the DSM state, you can use the task sched-
uler to run Start-DscConfiguration on a regular interval that matches the specific urgency of 
the required checks.

Another way to check for configuration drift is to use the Test-DscConfiguration func-
tion. The way to do this is to create a CIM session to the remote servers whose configuration 
requires checking. Do this from the same server that was used to create the DSC in the first 



 672 CHAPTER 23 Using the Windows PowerShell DSC

place so that access to the MOF files is assured. After the CIM session is created, pass it to the 
Test-DscConfiguration function. This technique is shown here:

PS C:\> $session = New-CimSession -ComputerName server1, server2 -Credential  
iammred\administrator 
 
PS C:\> Test-DscConfiguration -CimSession $session 
True 
True

The SetServicesConfig.ps1 script, shown here, creates two configuration MOF files—one 
for each server specified in the node array.  

SetServicesConfig.ps1

Configuration SetServices 

{ 

 node @('Server1', 'Server2') 

 { 

  Service Bits 

  { 

   Name = "Bits" 

   StartUpType = "Automatic" 

   State = "Running" 

   BuiltinAccount = 'LocalSystem'  

  } 

  Service Browser 

  { 

   Name = "Browser" 

   StartUpType = "Disabled" 

   State = "Stopped" 

   BuiltinAccount = 'LocalSystem'  

  } 

  Service DHCP 

  { 

   Name = "DHCP" 

   StartUpType = "Automatic" 

   State = "Running" 

   BuiltinAccount = 'LocalService'  

  } 

 } 

} 

 

SetServices -OutputPath C:\ServerConfig 

Start-DscConfiguration -Path C:\ServerConfig

Figure 23-5 illustrates running the configuration and using CIM to verify that the configu-
ration is still intact. 



 Additional resources CHAPTER 23 673

FIGURE 23-5 CIM is used to test the configuration of a DSC configured target node.

Additional resources

■■ The TechNet Script Center at http://www.microsoft.com/technet/scriptcenter contains 
numerous script examples.

■■ All scripts from this chapter are in the file available from the Script Center Script 
Repository at http://gallery.technet.microsoft.com/scriptcenter/PowerShell-40 
-Best-d9e16039.





675

exporting portions for script testing, 471
query, 208–217

[ADSISearcher] for, 209
cmdlets for, 213–214
command line for, 214–217

renaming sites, 59–60
Active Directory Domain Services, password storage 

in, 366–367
Active Directory Management Gateway Service (AD-

MGS), 45
Active Directory module

basics, 45–48
Get-Command for listing cmdlets exported 

by, 51–52
installing, 47
user management, 60–63
using, 48–72
verifying presence, 47

Active Directory Users And Computers, 512
activities in workflow, 648–652

cmdlets as, 649
adaptability of scripts, 225–229
Add-Computer cmdlet, 616, 623
Add-Content cmdlet, 93
AddDays method, 445
Add-History cmdlet, 204, 650
Add-Member cmdlet, 544
AddOne.ps1 script, 388–389
AddOne2.ps1 script, 389
AddOne3.ps1 script, 390
AddOne5.ps1 script, 391
AddOne6.ps1 script, 392
AddOne function, 271
Add-Printer cmdlet, 616
Add-PrinterDriver cmdlet, 616
Add-PrinterPort cmdlet, 616
Add-PSSnapin cmdlet, 650

Index

Symbols
* (asterisk), as wildcard character, 24
` (backtick) character, for line continuation, 305
: (colon), confirm parameter for $false value, 62
{ } (curly brackets)

for ForEach-Object cmdlet, 191
for function code block, 117
for opening and closing script block, 242
pairing comment with closing, 282, 305

$_ automatic variable, 255, 435
$? automatic variable, for testing errors, 188
$ (dollar sign), variable name and, 341–342
$_ variable, for current object, 220
! (not) operator, 188, 346
( ) (parentheses), in functions, 116
; (semicolon), to separate commands on single line, 10
<# and #> for comment tag, 287–289
! SET keyword, to preface variable assignments, 572

A
Abort, Retry, Ignore dialog box, 132
Abs method of System.Math class, 180
Abstract Syntax Tree (AST), 480
abstract WMI classes, 32
access denied message, 83
Access Is Denied error message, 561
Access property of Win32_LogicalDisk class, 249
AccountDomainSid method of SecurityIdentifier 

class, 87
account lockout policy, 57
Acos method of System.Math class, 180
Active Directory

cmdlets, 13
documenting, 56–59



676

Add-RegistryValue function

looping, 119
pipelining to Get-WmiObject cmdlet, 344

$arycomputer variable, 219–220
ASCII file. See also text files

.ddf file as, 190
Asin method of System.Math class, 180
−as operator, 87, 93
Association classes, 35–41

exploring returned, 40
finding, 31

asterisk (*), as wildcard character, 24
AST parser, 484–486
Atan2 method of System.Math class, 180
Atan method of System.Math class, 180
authentication, 152
AuthenticationType property of WindowsIdentity 

object, 84
authorized verb list, warning to check, 317
Autoexec.bat file, 141
automation interface, 75–82
automation of routine tasks, 73–74
Availability property of Win32_LogicalDisk class, 249

B
background job

checking status, 640
Windows PowerShell as, 82

backslash, escaping, 158
backspace (`b), 93
backtick (`) character, for line continuation, 305
backtick n, 93
backtick r, 93
backtick t (`t), 265
BackUpFiles.ps1 script, 278–280
backup of scripts, 547
backups of domain controllers, for script testing, 471
BadGetRandomObject.ps1 script, 154
BadParam.ps1 script, 348
BadScript.ps1 script, 573–581
basename property of System.Io.FileInfo class, 322
BasicFunctions.psm1 module, 331–333
batch file, 4
Begin block in filter, 274
–Begin parameter, 270
Bellée, Chris, 229, 483–484
BigMul method of System.Math class, 180

Add-RegistryValue function, 556, 568–570, 572
AddToRecent method of Shell.Application object, 186
AddTwoError.ps1 script, 583–584
Add-WindowsFeature cmdlet, 47
administrative rights, 408

for creating profile, 144
for module install, 319
requiring, 414
for unlocking user account, 65

administrator, launching Windows PowerShell as, 96
[ADSISearcher] type accelerator, 209, 216
Alert (`a), 93
aliases, 136

avoiding in profile, 146
creating, 112–116

for Get-Help cmdlet, 25
for data types, 253–254
for functions, 118
making read-only, 114–115
naming convention for, 145
for parameters, 354
predefined, 112
in profile, 134

Alias parameter attribute argument, 354
AllowEmptyCollection parameter attribute, 360
AllowEmptyString parameter attribute, 360
AllowNull parameter attribute, 360
AllSigned script execution policy, 140, 493, 499, 502
AllUsersAllHosts profile, 141, 143
AllUsersCurrentHost profile, 141-142

creating, 144
APIs, testing, 455
AppActivate method of WshShell object, 129
appending to log file, 532, 536–539
Application log, 554–555
Application property of Shell.Application object, 187
applications

lack of external support, 189–193
scripting requirements, 106–108

Archive resource provider, 660, 665
$args automatic variable, 340–342

indexing directly to, 343
passing multiple parameters with, 120–122

arguments. See also parameters
positional, 239

arrays
– contains operator to examine contents, 404
indexing, 39



677

cmdlets

case-sensitivity of –contains operator, 404
catalog file, 222
−ccontains operator, 404
cd command, 3
Cedeno, Enrique, 467–468, 471
Ceiling method of System.Math class, 181
central file share, using module from, 330–331
centralized module repository, 72
-ceq (case-sensitive operator), 114
Certificate Enrollment Wizard, 504–505
Certificate Manager utility, 504
certificates for script signature, 524
ChangeVue, 522
Check-AllowedValue function, 429
CheckEventLog.ps1 script, 306, 307
CheckForPdfAndCreateMarker.ps1 script, 296
Check-Number function, 356–357
CheckNumberRange.ps1 script, 356
checkpoints in workflow, 652–655

adding, 653–655
disabling, 655–656
placement in workflow, 652–653

CheckPoint-Workflow activity, 648, 655–656
CheckProviderThenQuery.ps1 script, 417
child functions, variables from parent available to, 241
child Organizational Unit (OU)

creating, 60
Chkdsk method of Win32_LogicalDisk class, 249
Christopher, Jim, 318–319
CIM cmdlets, WMI classes for exploring, 27–33
classes in WMI, 169–179
classname parameter, for Get-CimClass cmdlet, 27–29
__CLASS property of Win32_Logical Disk class, 250
$class variable, 425
Clear-EventLog cmdlet, 616, 623
Clear-History cmdlet, 650
Clear-Host function, 394
clearing

$Error array, 256
error stack, 435

clear method, 18
Clear-Variable cmdlet, 650
client workstations, determining service pack level, 28
closecab method, 184
cloud technologies, 136
CMD (command) shell, 3
cmdlets, 7, 483–484

Active Directory, 13

BinaryLength method of SecurityIdentifier class, 87
BIOS information

retrieving from remote system, 630
returning from local computer, 33
saving to CSV file, 152

black box approach, 247
BlockSize property of Win32_LogicalDisk class, 249
boundary-checking functions, 357, 429–430
BoundParameters property of System.Management.

Automation.InvocationInfo class, 178
Brasser, Jaap, 355
breakpoints, 586–587

deleting, 601
enabling and disabling, 599
listing, 597–598
responding to, 596–597
setting, 587–595

on command, 593–595
on line number, 588–589
on variable, 589–593

BrowseForFolder method of Shell.Application ob-
ject, 186

Brundage, James, 145–146, 410–412, 439, 455–456, 458
build number for operating system version, 102
Burley, James Craig, 267–270
business logic, 564

functions for encapsulating, 259–261
BusinessLogicDemo.ps1 script, 259, 260
buttons, values and meanings for pop-up dialog 

box, 131
Bypass script execution policy, 140, 493, 503

C
cabinet files, 183

adding files to, 184
closing, 184
expanding, 186

calling functions, 238
Canastreiro, Luís, 101–102, 159
CanStartStopService method of Shell.Application 

object, 186
Caption property of Win32_LogicalDisk class, 249
Carter, Marc, 329
CascadeWindows method of Shell.Application ob-

ject, 186
case-sensitive operator (-ceq), 114



678

CmdLineArgumentsTime.ps1 script

entering multiple, 10
exporting history, 203–205
locating, 607
overriding existing, 117–118
running in script pane, 609
setting breakpoint on, 593–595
in text file, 196

CommandType property of System.Management.Auto-
mation.ScriptInfo object, 178

comment-based help, 289–294, 477
comments, 256, 468

documentation from, 481–483
documenting nested structures with, 305–306
in functions, 117
internal version number in, 525–528
multiple-line, 277, 287–288
one-line, 277–287, 303–304

creating, 288–289
pairing with curly bracket, 282
rules for writing, 295–310

adding during development process, 296–297
avoiding useless information, 302
consistency in header information, 298–299
international audience and, 297–298
on document deficiencies, 300–301
prerequisite information, 299–300
reason for code, 303
updating for updated script, 295–296

on script changes, 527
standard set of keywords for, 306–307
on strange items in code, 307–308

Commercial Certificate Authority, 524
common classes, 169
Common Language Runtime (CLR), vs. .NET Frame-

work, 101
−ComObject parameter, 182
CompareTo method of SecurityIdentifier class, 86
compatibility of scripts, version control and, 523
Complete-Transaction cmdlet, 650
complicated constructors, 153–154
Component help tag, 290
compressed file, unzipping, 665
Compressed property of Win32_LogicalDisk class, 249
computers

account creation, 60
ping to identify accessible, 402–403

ConfigManagerErrorCode property of 
 Win32_LogicalDisk class, 249

for Active Directory query, 213–214
controlling execution of, 11
disallowed in workflow from core modules, 650
help for, 280–281
as InlineScript activity, 650–651
lack of support, 151–153
options for, 16–17
problem from number of, 152
redirecting output to text file, 59
setting breakpoint on, 593–595
suspending confirmation of, 12–13
as workflow activities, 649

CmdLineArgumentsTime.ps1 script, 301
code

reducing complexity, 449–450
reusing, 147, 226, 244–246

verbose style for, 247
signing, 504–505
snippets to create, 611–612

code block for function, 117
collaboration in scripting, 229–230

tools for, 73
colon (:), confirm parameter for $false value, 62
CombinationFormatGetIPDemo.ps1 script, 266
COM (Component Object Model) components

lack of support, 182–189
object creation, 184

Command add-on, 607
script pane and, 608
turning off, 609
in Windows PowerShell ISE, 606

CommandAST class, 487
command-line

Active Directory query from, 214–217
input from, 340–348

$args automatic variable for, 340–342
moving through, 60
path length on, 133
script writing vs., 195

command-line parameters, 349–350
creating, 183, 186
default values for, 398–399
validating, 356

command-line utilities, 7, 9–10
CommandOrigin property of System.Management.

Automation.InvocationInfo class, 178
commands

confirming, 12



679

database

Costantini, Peter, 309
CreateCab.ps1 script, 185
CreateCab2.ps1 script, 192
CreateFileNameFromDate.ps1 script, 278
CreateFilePath function, 227
CreateRegistryKey.ps1 script, 556–557, 568–569, 571
CreateScriptingRegistryKey.ps1 script, 225
CreateSelection function, 226
CreateShortcut method of WshShell object, 129
CreateWordDoc function, 226
CreationClassName property of Win32_LogicalDisk 

class, 249
credential object, obtaining, 160
credentials

cmdlets to specify, 624–625
for remote PowerShell session, 55
importing and exporting, 370–372
passing, 158
running cmdlets with different, 626

$credential variable, 370
CSVDE, 471–472, 473
CSV files, 535–536

piping command variables to, 50
saving BIOS information to, 152

curly brackets ({ })
for ForEach-Object cmdlet, 191
for function code block, 117
for opening and closing script block, 242
pairing comment with closing, 282, 305

CurrentDirectory method of WshShell object, 130
current state, checkpoint as snapshot, 652
CurrentUserAllHosts profile, 141, 144
CurrentUserCurrentHost profile, 141, 144

creating, 142–143
current user, detecting, 84–95
Current User profiles, 142
custom event log, 555

D
data

handling large amounts, 166–168
presentation functions separated from gather-

ing, 264–265
testing scripts against known, 471

database
for script logging, 542

ConfigManagerUserConfig property of Win32_Logi-
calDisk class, 249

Configuration keyword, 661–662
ConfigurationNamingContext property, 59
confirmation prompt, suppressing, 62
–confirm parameter, 11-12, 16

colon (:) for $false value, 62
for Unlock-ADAccount cmdlet, 66

connection strings, 372–373
Connect-PSSession cmdlet, 616
Connect-WSMan cmdlet, 616
consistency

in comment header information, 298–299
in Windows PowerShell, 74

Console configuration file, exporting, 15
constant alias, creating, 115
constants, 126
constructors

complicated, 153–154
and error, 154
for .NET Framework classes, 179

consumers in WMI, 163
–contains operator, 88–89

testing properties with, 406–408
to examine array contents, 404

Continue command (c), 596, 600
ControlPanelItem method of Shell.Application ob-

ject, 186
ConversionFunctions.ps1 script, 147–148, 244–245
ConvertFrom-Cab function, 186, 188
ConvertFromDateTime script method, 250
ConvertFrom-SecureString cmdlet, 368–371
converting System.IO.FileInfo object FullName property 

to string, 191
ConvertToDateTime script method, 250
ConvertToFahrenheit_Include.ps1 script, 148, 300
ConvertToFahrenheit.ps1 script, 147
ConvertTo-Html cmdlet, 387, 535
ConvertToMeters.ps1 script, 244
ConvertTo-SecureString cmdlet, 63, 370–371
ConvertUseFunctions.ps1 script, 149–150
Copy-Item cmdlet, 198–199, 323
Copy-Module function, 321
Copy-Modules.ps1 script, 320–324, 330
core classes, 169
core cmdlets, 7
Cosh method of System.Math class, 181
Cos method of System.Math class, 181



680

data types

Demo-MultilineComment.ps1 script, 287–288
DemoTrapSystemException.ps1 script, 254, 255
DemoUserConfig.ps1 configuration script, 666-667
dependencies

checking modules for, 326–329
in DSC, 665
between scripts, 523

deploying
help files, 26
script execution policies, 495–500
Windows PowerShell, 7

deprecated qualifier, 31
__DERIVATION property of Win32_Logical Disk 

class, 250
Description help tag, 290
–description parameter, 128

of New-Alias cmdlet, 114
for PowerShell drives, 134

Description property of Win32_LogicalDisk class, 249
deserialized object

methods, 637
storing in variable, 639

Desired State Configuration (DSC), 76, 659–671
configuration, 663–664, 666–671
controlling configuration drift, 671–673
dependencies, 665
group provider for group creation, 669–671
process, 660–662
resource providers and properties, 660
user provider for user creation, 669

desktop settings, Win32_Desktop WMI class for, 173
development, 236

adding comments furing, 296–297
DeviceID property of Win32_LogicalDisk class, 249
diagnostic scripts, 516
dialog box, 130–132
dir command, 3
directories. See folders
DirectoryEntry object, 216
disabled user accounts, 63

finding, 66–68
Disable-PSBreakpoint cmdlet, 586, 599, 601, 650
Disconnect-PSSession cmdlet, 616
Disconnect-WSMan cmdlet, 616
DisplayName attribute, changing, 60
DisplayProcessor.ps1 script, 517–520
DistinguishedName value, for identity parameter, 67
divide-by-zero error, 597

of scripts, 229
testing script connecting to, 467–468

data types
aliases for, 253–254
incorrect, 423–429

DateTime object, 435, 445
.ddf file

as ASCII file, 190
creating, 189

debugging. See also errors
basics, 559–567
breakpoints for, 586–587

setting, 587–595
PowerShell cmdlets for, 585–603
quitting session, 588
recommendations for, 585
script-level tracing for, 568–572
Set-PSDebug cmdlet for, 567–585
stepping through script, 572–581
syntax errors, 560

debug mode, exiting, 600
debug parameter, 16, 183, 460–462, 562–564
$DebugPreference variable, 177, 184, 562
Debug-Process cmdlet, 650
DebugRemoteWMISession.ps1 script, 562–563
$debug variable, 188

checking presence, 192
default script execution policy, 492
default value for parameter, 247, 398–399
default WMI namespace, 27
Definition property System.Management.Automation.

ScriptInfo object, 178
DefragAnalysis method, 219, 220
DefragAnalysisReport.ps1 script, 219, 221
defragmentation report, redirection to produce, 220
Dekens, Luc, 565–567
DeleteScriptingRegistryKey.ps1 script, 225
deleting

breakpoints, 601
read-only cmdlet, 115
remnants of completed jobs, 636
risk of deleting wrong script version, 527
snippets, 613

DemoAddOneFilter.ps1 script, 272
DemoAddOneFunction.ps1 script, 272–273
DemoAddOneR2Function.ps1 script, 273
DemoConsoleBeep.ps1 script, 302
DemoConsoleBeep2.ps1 script, 303



681

ErrorRecord class

Enter-PSSession cmdlet, 56, 616, 629, 631, 650
Enum class, GetValues static method, 98
Environment method of WshShell object, 130
Environment .NET Framework class, GetFolderPath 

static method, 544
Environment resource provider, 660
environment variables, in profile, 135
E property of System.Math class, 182
−eq operator, 114
Equals method

of SecurityIdentifier class, 86
of System.Math class, 181

-ErrorAction parameter, 16, 18
$errorActionPreference variable, 424–425, 428, 434, 

436, 532, 537
$Error array, clearing, 256
$error automatic variable, 435
ErrorCleared property of Win32_LogicalDisk class, 249
ErrorDescription property of Win32_LogicalDisk 

class, 249
error handling

basics, 397
– contains operator to examine array contents, 404
for detecting operating system version, 220
incorrect data types, 423–429
learning, 427–429
limiting choices, 400–408

PromptForChoice for, 401–402
missing parameters, 398–400
missing rights, 408–415
missing WMI providers, 415–423
out of bounds, 429–431
Try/Catch/Finally structure, 409–410

error message
for constant alias, 115–116
from dollar sign in variable, 342
from failed efforts to create profile, 144
from missing parentheses, 127
ParameterBindingException, 343
suppressing display, 255
type mismatch, 343
from updating help, 18
VariableNotFound, 342

ErrorMethodology property of Win32_LogicalDisk 
class, 249

$error object, 347
ErrorRecord class, 255

DivRem method of System.Math class, 181
documentability of scripts, 223–225
documentation

Active Directory, 56–59
comments for, 256, 481–483

listing deficiencies, 300–301
from help, 475–480
PSParser class Tokenize method for, 484–486
script testing process, 442–444

document files
finding, 260
Standard Operating Procedure (SOP), 76

Documents folder, Join-Path cmdlet for location 
to, 127–128

dollar sign ($), variable name and, 341–342
domain controllers, 58

backup for script testing, 471
domain FSMO roles, command for obtaining, 55
domain password policy, 57
dotnettypes.format.ps1xml file, 378
DotSourceScripts.ps1 script, 263
dot-sourcing scripts, 244–245
double-clicking, to run script, 499
download, managing for help files, 20
$driveData variable, 248, 251
DriveType property of Win32_LogicalDisk class, 249
DSQuery.exe, 216–217
dynamic classes, 169
dynamic qualifier, 32
__DYNASTY property of Win32_Logical Disk class, 250

E
EjectPC method of Shell.Application object, 186
elevated permissions, 83
email

output to, 387–388
sending logging information by, 551

Enable-ADAccount cmdlet, 64
enabled property, for user account, 64
Enable-PSBreakpoint cmdlet, 586, 599, 601, 650
Enable-PSRemoting function, 627–628
Encoding parameter, 540
Encrypting File System (EFS), 363
End block in block, 274
End parameter, 221, 270
Enterprise Certificate Authority, 524



682

errors

Exp method of System.Math class, 181
Export-Alias cmdlet, 650
ExportBiosToCsv.ps1 script, 152
Export-CliXml cmdlet, 370, 375
Export-Console cmdlet, 15, 650
Export-CSV cmdlet, 387, 535-536
Export-Excel function, 352
exporting

command history, 203–205
credentials, 370–372
to XML, 386

Extended Type System (ETS), 135
external dependency, 326
ExternalHelp help tag, 290

F
fan-out commands, 205–208
Farr, Ian, 524–525, 541, 546–547
Favorites folder, path to, 128
feedback, on help documentation, 281
file hashes, counting, 8
$filepath property, 221
File resource provider, 660
FileRun method of Shell.Application object, 186
files

output to, 382–383
searching for string pattern, 243–244
splitting output to screen and, 383–387

filesystemobject, 152
FileSystem property of Win32_LogicalDisk class, 249
FilterHasMessage.ps1 script, 274
filter parameter of Get-CimInstance cmdlet, 33, 39
filters, 270–275

to remove folders from cabinet file collection, 191
for WMI classes by qualifier, 30–33

FilterToday.ps1 script, 274
FindAll method of DirectorySearcher object, 209
FindComputer method of Shell.Application object, 186
FindDisabledUserAccounts.ps1 script, 295–296
FindFiles method of Shell.Application object, 186
finding

Association classes, 31
document files, 260
FSMO role holders, 50–56
unused user accounts, 68–72
user accounts, 64–66

errors
constructors and, 154
divide-by-zero, 597
from handling large amounts of data, 166–168
Invalid parameter, 122
from Invoke-Command, 197
from job script block, 638
logic, 564–565
looking for, 438–439
from missing closing bracket, 282
from multiple instances for inputobject param-

eter, 38–39
from not supplying distinguishedname, 63
from null value as argument, 345–346
from PowerShell workflow, 647
runtime, 560–564
syntax, 560
testing, $? automatic variable for, 188
from Throw statement, 346
from type constraint deviation, 254–255
from version incompatibility, 155
WinRM and, 628–629
writing to log file, 468
from wrong placement of Param, 348

error stack, clearing, 435
-ErrorVariable parameter, 16
escaping backslash, 158
$etime variable, 436
evaluating scripts, 479–480
event log, 509–510

custom, 555
logging to, 552–555
monitoring, 552

Example help tag, 290
-examples argument, 24
examples, in cmdlet documentation, 281
Exec method of WshShell object, 130
exiting debug mode, 600
Exit-PSSession cmdlet, 650
Expand-Cab function, 223
ExpandCab.ps1 script, 189
ExpandEnvironmentStrings method of WshShell ob-

ject, 130
expanding cabinet file, 186
ExpectingInput property of System.Management.Auto-

mation.InvocationInfo class, 178
Explore method of Shell.Application object, 186
ExplorerPolicy method of Shell.Application object, 186



683

Get-BiosArray1.ps1 script

benefits of changing code to, 263
business logic encapsulation, 259–261
calling, 238
comments for, 117
creating, 116–120, 234
for code reuse, 244–246
for ease of modification, 261–270
guidelines for writing, 246
include file and, 148–150
looping array, 119
moving inline code into, 262
naming convention, 145

verb-noun, 116
output from, 388–392
overriding existing commands, 117–118
passing multiple parameters, 120–126, 248–253, 

257–258
named, 122–126
with $args, 120–122

positional arguments, 239
priority of, 117
signature of, 260
type constraints for parameters, 253–255

G
__GENUS property of Win32_Logical Disk class, 250
Get-ADDefaultDomainPasswordPolicy cmdlet, 57
Get-ADDomain cmdlet, 57
Get-ADDomainController cmdlet, 52–53, 58
Get-ADForest cmdlet, 56
GetAdminFunction.ps1 script, 98
Get-ADObject cmdlet, 59
Get-ADOrganizationalUnit cmdlet, 63, 216
Get-ADRootDSE cmdlet, 59
Get-ADUser cmdlet, 63-64, 66

wildcard for filter parameter, 68
Get-Alias cmdlet, 25, 112-113, 124–125, 650
Get-AllowedComputerAndProperty.ps1 script, 408
Get-AllowedComputer function, 407–408
Get-AllowedComputer.ps1 script, 404–406
Get-ASTScriptProfile.ps1 script, 480
Get-AuthenticodeSignature cmdlet, 504
GetBinaryForm method of SecurityIdentifier class, 86
Get-BiosArgsCheck2.ps1 script, 346
Get-BiosArgsTrap1.ps1 script, 347
Get-BiosArray1.ps1 script, 343

FindLargeDocs.ps1 script, 260–261
FindPrinter method of Shell.Application object, 186
Finke, Douglas, 243
Floor method of System.Math class, 181
folders

changing, 11
displaying listing, 3
for scripts, 515
for modules, 311–312, 319–322
temporary, 285–286
for text file log, 542

Foldershare, 135
forceDiscover switch, for Get-ADDomainController 

cmdlet, 52
force parameter, 17

for Format-List cmdlet, 68
to suppress prompts, 64

ForEach-Object cmdlet, 87, 113, 344, 447, 449
ForEach -Parallel workflow activity, 646, 648
Forest FSMO roles, command for obtaining, 55
Format-IPOutput function, 266
Format-List cmdlet, force parameter, 68
Format-NonIPOutput function, 266
format.ps1xml files, 377–378
Format-Table cmdlet

-autosize parameter, 208
for Get-PSBreakpoint results, 598
piplining fan-out command results to, 206–207

Format-Table cmdlet (ft alias), 34
Form feed (`f), 93
for statement, 119, 195
ForwardHelpCategory help tag, 290
ForwardHelpTargetName help tag, 290
FreeSpace property of Win32_LogicalDisk class, 249
FSMO role holders

finding, 50–56
FSOBiosToCsv.ps1 script, 152
fsutil, 4
FullName property of System.IO.FileInfo object

converting to string, 191
Functionality help tag, 290
FunctionGetIPDemo.ps1 script, 264
Function keyword, 116, 189, 234, 237, 248
function library, 244

creating, 147–148
functions, 95, 233–244

accessing in other scripts, 147–150
alias for, 118



684

Get-BiosArray2.ps1 script

for log time stamp, 469
Get-DirectoryListing function, 257, 258
Get-DirectoryListingToday.ps1 script, 258
Get-Discount function, 259
Get-DiskInformation function, 430
Get-DiskSpace.ps1 script, 251–252
Get-Doc function, 260
GetDrivesCheckAllowedValue.ps1 script, 430–431
GetDrivesValidRange.ps1 script, 431
Get-EnabledBreakpointsFunction.ps1 script, 598
Get-EventLog cmdlet, 555, 617, 623
Get-EventLogData.ps1 script, 651–658
Get-ExecutionPolicy cmdlet, 140, 612
Get-FileHash cmdlet, 8
Get-FileName function, 482
GetFolderPath static method from Environment .NET 

Framework class, 544
Get-FreeDiskSpace function, 248
Get-FreeDiskSpace.ps1 script, 248
GetGeoIP method, 544
GetHashCode method of SecurityIdentifier class, 87
Get-Help cmdlet, 17, 116, 292, 335–336, 615

cmdlet discovery with, 5
help for, 21–23

Get-History cmdlet, 203, 650
Get-HotFix cmdlet, 618, 624
GetInfoByZip method, 254
GetIPDemoSingleFunction.ps1 script, 262–263
Get-Ipinfo cmdlet, 382
Get-IPObjectDefaultEnabledFormatNonIPOutput.ps1 

script, 265
Get-IPObjectDefaultEnabled.ps1 script, 264–265
Get-IPObject function, 266
Get-IseSnippet cmdlet, 613
Get-ItemProperty cmdlet, 100
Get-Job cmdlet, 635, 636, 639

–Newest, 640
Get-Mailbox cmdlet, 387
Get-Member cmdlet, 35, 40, 180, 388

for properties of Win32_Desktop WMI class, 174–
175

Get-MemberOf.ps1 script, 90–91
Get-MicrosoftUpdates.ps1 script, 305
Get-ModifiedFiles.ps1 script, 445
Get-ModifiedFilesUsePipeline2.ps1 script, 449–450
Get-Module cmdlet, 47, 50, 312, 316, 328

–ListAvailable parameter, 313, 317, 334
Get-MoreHelp2.ps1 script, 119

Get-BiosArray2.ps1 script, 344
Get-Bios function, 469
Get-BiosInformationDefaultParam.ps1 script, 399
Get-BiosInformation.ps1 script, 398
Get-BiosMandatoryParameter.ps1 script, 351
Get-BiosMandatoryParameterWithAlias.ps1 script, 354
Get-BiosParam.ps1 script, 348–350
Get-Bios.ps1 script, 341, 397, 409, 412
GetBiosTryCatchFinally.ps1 script, 347–348
Get-Change function, 452
Get-ChildItem cmdlet, 184, 260, 377, 434, 445
Get-Choice function, 401
Get-ChoiceFunction.ps1 script, 401–402
Get-CimAssociatedInstance cmdlet, 35, 616

inputobject, 38
resultclassname parameter, 38
viewing objects returned, 40

Get-CimClass cmdlet, 27, 616
classname parameter of, 27–29

Get-CimInstance cmdlet (gcim), 33, 616, 646
filter parameter, 39
property parameter, 33

Get-CimSession cmdlet, 617
GetCmdletsWithMoreThanTwoAliases.ps1 script, 112
Get-Command cmdlet, 214, 234, 649

cmdlets exported by Active Directory module, 51–
52

module parameter, 48, 335
Get-CommandLineOptions function, 441
GetCommentsFromScript.ps1 script, 481–483
Get-Comments function, 482
Get-CompInfo cmdlet, –PSPersist parameter, 653
Get-CompInfoWorkflowCheckPointWorkflow.ps1 

script, 653, 655–656
Get-CompInfoWorkflowPersist.ps1 cmdlet, 655–656
Get-ComputerInfo function, 333, 335
GetComputerInfoWorkFlow.ps1 script, 647–648
Get-ComputerWmiInformation.ps1 script, 440, 

442–444
Get-Content cmdlet, 196, 198, 219, 382
Get-Counter cmdlet, 617
Get-CountryByIP function, 544
Get-CountryByIP.ps1 script, 543–546
Get-Credential cmdlet, 160, 370, 514
GetCurrent method, 84
GetCurrent method of Security.Principal.WindowsIden-

tity class, 90, 92, 96, 553
Get-Date cmdlet, 274, 445, 645



685

Get-WmiObject cmdlet

GetSystemVersion method of System.Runtime.Interop-
Services.RunTimeEnvironment .NET Frame-
work class, 100

Get-TempFile function, 452
GetTempFileName method, 308, 434, 548–549
GetTempPath method, 285
Get-TextStatisticsCallChildFunction-DoesNOTWork-

MissingClosingBracket.ps1 script, 242–243
Get-TextStatisticsCallChildFunction.ps1 script, 241–242
Get-TextStatistics function, 238, 241

$path variable in, 242
Get-TextStatistics.ps1 script, 239
Get-Transaction cmdlet, 650
Get-Type function, 146
GetType method, 87, 424
Get-ValidWmiClass function, 423-426
Get-ValidWmiClassFunction.ps1 script, 423–426
GetValue method (.NET), 78
GetValues method of Enum class, 98
Get-Variable cmdlet, 341, 650
get-verb pattern for cmdlets, 7
Get-Version.ps1 script, 160–161
get-VM.ps1 script, 414
Get-Volume function, 158
GetVolume.ps1 script, 158
GetVolumeWithCredentials.ps1 script, 158
Get-WebServiceProxy cmdlet, 543
Get-WindowsEdition.ps1 script, 527–528
Get-WindowsFeature cmdlet, 47, 656
Get-WinEvent cmdlet, 618
Get-WinFeatureServersWorkflow.ps1 script, 656
Get-WmiClass2.ps1 script, 122, 124
Get-WmiClass2WithAlias.ps1 script, 125–126
GetWmiClassesFunction1.ps1 script, 291–293
Get-WmiClass function, 121, 123

alias for, 124
Get-WmiClass.ps1 script, 122
GetWmiData function, 226
Get-WmiInformation function, 426
Get-WmiObject cmdlet, 168–169, 251, 469, 618, 624

for BIOS information, 348
from remote system, 630

for connection into WMI, 164
pipelining array to, 344
to query for __provider WMI class instances, 416, 

418
to query Win32_LogicalDisk WMI class, 248
to query Win32_Volume WMI class, 220

Get-MoreHelp function, 116
Get-MoreHelpWithAlias.ps1 script, 118
Get-MyModule function, 327–329
GetNames method of System.Enum .NET Framework 

class, 98
Get-NetAdapter cmdlet, 640
Get-NetIPConfiguration cmdlet, 5
Get-OperatingSystemVersion function, 237, 320
Get-OperatingSystemVersion.ps1 script, 237–238
Get-OptimalSize function, 337
GetOsVersionFunction.ps1 script, 103–105
Get-OsVersion.ps1 script, 160
Get-PowerShellRequirements.ps1 script, 6
Get-PrintConfiguration cmdlet, 618
Get-Printer cmdlet, 618
Get-PrinterDriver cmdlet, 618
Get-PrinterPort cmdlet, 618
Get-PrinterProperty cmdlet, 618
Get-PrintJob cmdlet, 618
Get-Process cmdlet, 106, 151-152, 376–377, 618, 624, 

637
GetProcessesDisplayTempFile.ps1 script, 308
Get-PSBreakpoint cmdlet, 586, 597–598, 650
Get-PSCallStack cmdlet (k), 586, 595-596, 650
Get-PSDrive cmdlet, 421
Get-PSSession cmdlet, 618, 631
Get-PSSnapin cmdlet, 650
Get-PsVersionNet.ps1 script, 78, 78–79
Get-PsVersionRegistry.ps1 script, 75
Get-PsVersionRegRead.ps1 script, 77
Get-PSVersionRemoting.ps1 script, 81
Get-PsVersionWmi.ps1 script, 78
Get-PSVersionWorkflow.ps1 script, 80
Get-Random cmdlet, 154
GetRandomObject.ps1 script, 153–154
GetRunningProcess.ps1 script, 107–108
GetRunningService.ps1 script, 106–107
Get-ScriptHelp.ps1 script, 475–477, 478
Get-ScriptVersion.ps1 script, 525–527
Get-Service cmdlet, 106-107, 151-152, 205–206, 618, 

624
GetServicesInSvchost.ps1 script, 303–304
GetSetieStartPage.ps1 script, 283–285
GetSetting method of Shell.Application object, 186
GetStringValue method, 78
GetSystemInformation method of Shell.Application 

object, 186



686

Get-WmiProvider function

help. See also comments
for cmdlets, 17, 280–281
comment-based, 289–294
deploying with scheduled task, 26
discovering information in, 21–25
documentation from, 475–480
keeping up-to-date, 19–20
options for, 17
updating, 17–19

Help command (debugger), 596
Help desk scripts, 517–520
helpdesk staff, permissions and, 513–514
help function, 24
HelpMessage parameter attribute argument, 354
Help method of Shell.Application object, 186
$help variable, 291
here-string, 190
Hicks, Jeffery, 479–480
hierarchical namespace, 162
Hill, Keith, 314
hive, 77
HKEY_CURRENT_USER hive, 556

new registry key in, 224–225
HKEY_LOCAL_MACHINE registry key, 77
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft

\NET Framework Setup\NDP\v4\Full\Release key 
value, 100

\PowerShell\1\ShellIDs\Microsoft.PowerShell\Execu-
tionPolicy, 495

HKLM moniker, 77
HKLM PowerShell drive, 75
$hklm variable, 78
Hoey, Shane, 375
Hofferle, Jason, 73–74, 252–253
Holmes, Lee, 95, 370
Home directory, variable pointing to, 127
Horizontal tab (`t), 93
$host.ui.PromptForChoice class, 374
Huffman, Clint, 170
Hyper-V, 434

I
identity parameter, 67–68

for Get-ADDomainController cmdlet, 53
IEEERemainder method of System.Math class, 181

to retrieve Win32_NetworkAdapterConfiguration 
WMI class instances, 261

to retrieve Win32_OperatingSystem WMI class 
instance, 237

to verify operating system, 56
for WMI class listing, 121, 170

Get-WmiProvider function, 417–418, 422
Get-WmiProviderFunction.ps1 script, 422–423
Get-WMIProviders.ps1 script, 168–169
Get-WSManInstance cmdlet, 618
gip, 5
global security group, creating, 61
global variable, 390–392

namespace in, 392–393
Goude, Niklas, 513–514, 646
graphical applications, testing, 458–459
Group-Object cmdlet, 234–236
Group Policy

assigning scripts from within, 513
script execution policy deployment with, 499–500
script execution policy modified with, 495
script execution policy setting with, 412–413
Set the default source path for Update-Help, 20

Group Policy Object (GPO)
for logon/logoff script, 507–508
for PowerShell deployment, 7

Group Policy Preferences, scheduled task for Update-
Help, 20–21

Group Policy templates (ADM files), 502
Group resource provider, 660, 669–671
groups

adding user, 62
determining match, 93
removing user from, 62

Groups property of WindowsIdentity object, 84, 85–86
GUIs, 105, 337
Gusev, Vasily, 599–601

H
hash of password, storing in text file, 368–369
hash table of permissible values, 429
HasMessage filter, 274
header for script, 278, 477–478
HelloUserTimeworkflow.ps1 script, 645
HelloUserworkflow.ps1 script, 644
Helmick, Jason, 5–6



687

Klindt, Todd

InvocationName property of System.Management.
Automation.InvocationInfo class, 178

Invoke-CimMethod cmdlet, 618
Invoke-Command cmdlet, 80, 82, 105, 152, 205, 510, 

619, 632–633
[ADSISearcher] and, 212

Invoke-Expression cmdlet, 196, 268, 435
Invoke-History cmdlet, 204, 650
Invoke-WmiMethod cmdlet, 202, 619, 624
Invoke-WSManAction cmdlet, 619
Io.Path .NET Framework class, 548
IPConfig.exe, 5, 381

running commands, 10
IsAccountSid method of SecurityIdentifier class, 87
IsAnonymous property of WindowsIdentity object, 84
IsAuthenticated property of WindowsIdentity ob-

ject, 84
ISE. See Windows PowerShell ISE
IsEqualDomainSid method of SecurityIdentifier class, 87
ISE Snippets, 257
IsGuest property of WindowsIdentity object, 84
IsInRole method of WindowsPrincipal class, 97
IsRestricted method of Shell.Application object, 186
IsServiceRunning method of Shell.Application ob-

ject, 187
IsSystem property of WindowsIdentity object, 84
IsValidTargetType method of SecurityIdentifier class, 87
IsWellKnown method of SecurityIdentifier class, 87

J
jobs in PowerShell, 634–641

creating, 20
Join-DtcDiagnosticResourceManager cmdlet, 619
Join-Path cmdlet, 127-128, 189–190, 285, 322, 533, 544
Jones, Don, 26, 516, 521, 585

K
k command (debugging), 595
Kearney, Sean, 23
$key variable, 78
keywords, standard set for comments, 306–307
Kinect for Windows, 409
Klindt, Todd, 108–109

ImpersonationLevel property of WindowsIdentity 
object, 84

Import-Alias cmdlet, 650
Import-CliXml cmdlet, 204, 370
importing credentials, 370–372
Import-Module cmdlet, 50, 213, 316, 328

–Verbose parameter, 317
Import-PSSession cmdlet, 95
include file, functions and, 148–150
incrementing version control numbers, 527
indexing, array, 39
infrastructure of WMI, 163
InLineGetIPDemo.ps1 script, 261
InlineScript activity, 650–651, 656, 657
in-progress scripts, documenting, 300–301
input, 339. See also passwords

out of bounds errors from, 429
prompt for, 373–374

$input.current property, 271
input methods, 340–373. See also Param statement

best practices, 340
connection strings, 372–373
reading from command line, 340–348

$args automatic variable for, 340–342
multiple values for $args, 343–347

inputobject, for Get-CimAssociatedInstance cmdlet, 38
Inputs help tag, 290
$input variable, 271
InstallDate property of Win32_LogicalDisk class, 249
installed modules, list of, 328
installing

Active Directory module, 47–48
modules, 319–331, 330
Remote Server Administration Tools (RSAT), 47
Windows PowerShell, 6

instancename parameter, for DSC configuration, 663
Integrated Scripting Environment (ISE), 329
Intellisense, 610–611
interactive use of Windows PowerShell, 4
international audience, comments and, 297–298
Internet Explorer Developer Tools, 458
Internet Information Services (IIS)

as PWA requirement, 26
Windows PowerShell as application, 82

Internet zone, 493–495
InvalidOperation CategoryInfo field, 157
Invalid parameter error, 122



688

lab environment

Out-File cmdlet for, 539–541
to registry, 556–557
to text files, 531–552

directory for storing, 542–546
for troubleshooting, 537

logic errors, 564–565, 585
logic operators, in LDAP search filter, 210
Log method of System.Math class, 181
logoff script, 507
logon date, listing all users with last, 70
Logon.ps1 logon script, 510–511
logon scripts, 507–514

items included, 509–510
methods of calling, 512–513
for Set-ExecutionPolicy cmdlet, 497–498

LogonScriptWithLogging.ps1 script, 532–534
Log resource provider, 660
looping, 247, 595
looping array, 119
Lopez, Juan Carlos Ruiz, 236–237, 256, 595

M
Maheu, Georges, 162, 193
mailing list, 74
Major part of operating system version, 102
major version of script, 527
MakeCab.exe utility, 189
makecab.expandcab object, 185
makecab.makecab object, 183, 185
Managed Object Format (MOF) file, 660–661
MandatoryParameter.ps1 script, 400
mandatory parameters, 350–351, 353, 399–400
manifest for module, 333
–match operator, 89–90, 93
MaximumComponentLength property of Win32_Logi-

calDisk class, 249
$MaximumHistoryCount variable, 135
Max method of System.Math class, 181
Maxvalue property, 362
Mayer, Keith, 76
McGlone, Ashley, 45–46
MD5, hash creation with, 8
MeasureAddOneFilter.ps1 script, 271
MeasureAddOneR2Function.ps1 script, 273
Measure-Command cmdlet, 448–449, 451–455
Measure-Object cmdlet, 113

L
lab environment, 470
language statement, breakpoint and, 593
LastErrorCode property of Win32_LogicalDisk class, 249
LDAP attributes, 62
LDAPFilter parameter, 63
LDAP search filter syntax, 209–210

resources, 230
LDIFDE, 471–473
learning, 106

to script, 230
Windows PowerShell, 109

legacy code, migrating to PowerShell, 79
−like operator, 89
Limit-EventLog cmdlet, 619, 624
line continuation character, 191, 305
line number, setting breakpoint on, 588–589
Line property of System.Management.Automation.

InvocationInfo class, 178
Link help tag, 290
List command, 596, 600
loaded modules, listing, 312
loading modules, 108
$localappdata environment variable, 126
local computer

BIOS information from, 33
storing scripts in, 515
workflow on, 644–645

LocalMachine, as default for execution policy set-
ting, 503

locked-out users, locating, 64–66
Log10 method of System.Math class, 181
LogChartProcessWorkingSet.ps1 script, 537, 538–539, 

542
LogEvent method of WshShell object, 130
log files

appending to, 532, 536–539
Application log, 554–555
networked, 548–549
from script testing, 456–457
from Start-Transcript function, 468–470
writing errors to, 468

logging
benefits, 550–552
designing approach for, 532–542
to event log, 552–555
for building maintainable scripts, 541–542



689

namespaces

listing available, 312–314
list of installed, 328
loading, 316–318
for profiles, 146
requiring specific, 415
structured requirements, 108–109
uses for, 314–315
using from share, 330–331

Module System.Management.Automation.ScriptInfo 
object, 178

MOF files, 663–664
Moravec, David, 8–9
More.com executable, 117
more function, 116
Move-ADObject cmdlet, 63
MSDN reference library, 193
MSDN website, 109
MSI packages, local deployment, 515
multiple-line comments, 277, 287–288
MultiplyNumbersCheckParameters.ps1 script, 361–362
Muscetta, Daniele, 501–503
MyCommand property of System.Management.Auto-

mation.InvocationInfo class, 178
My-Function.ps1 script, 564–565
My-Test function, 254

N
named parameters

multiple, 122–126
vs. positional, 239

–name parameter, dollar sign ($) and, 128
Name property

of Win32_LogicalDisk class, 249
of WindowsIdentity object, 84

names
for functions, 237

verb-noun convention for, 116
for jobs, 636
for parameters, 62
for returned job object, 638

NameSpace method of Shell.Application object, 187, 
188

__NAMESPACE property of Win32_Logical Disk 
class, 250

namespaces, 27, 163–166
generating list for machine, 164–166

MediaType property of Win32_LogicalDisk class, 249
Mell, Bill, 13
memory, requirements for script, 167
menu hierarchy, script to create, 146
message box from WshShell object, 130–132
messages, printing, 221
methods

overload display, 484
static, 179, 180–182

metrics for shared drives, 511–512
Microsoft.ActiveDirectory.Management 

.ADOrganizationalUnit object, 216
Microsoft Baseline Security Analyzer (MBSA), 222
Microsoft Download center, 26
Microsoft Fix It blog, 276
Microsoft.Office.Interop.Word.WdSaveFormat enumera-

tion, 227
Microsoft.PowerShell.Management module, 313
Microsoft.PowerShell.Utility module, 313
Microsoft SharePoint Portal product, 73
Microsoft SkyDrive, for profile, 135
Microsoft Systems Center Configuration Manager pack-

age, 7
Microsoft Visual Studio, 387
Microsoft.Win32.Registry .NET Framework class, 78
migrating legacy code to PowerShell, 79
Minasi, Mark, 381
MinimizeAll method of Shell.Application object, 187
Min method of System.Math class, 181
Minor part of operating system version, 102
minor version of script, 527
missing data exception, 345
missing parameters, 398–400
modular code, 226
module drive, creating, 324–326
ModuleName System.Management.Automation.Script-

Info object, 178
module parameter, 17

for Get-Command cmdlet, 48
$modulePath variable, 322–324
module repository, centralized, 72
modules

basics, 311
checking for dependencies, 326–329
creating, 331–337
folder for, 311–312, 319–322
for packaging workflow, 643
installing, 319–331, 330



690

Name System.Management.Automation.ScriptInfo object

New-LocalUserFunction.ps1 script, 460–461
New-ModulesDrive.ps1 script, 325–326
New-Object cmdlet, 182, 209, 455, 483

WshShell object instance created with, 77
New-PSDrive cmdlet, 133, 324, 421
New-PSSession cmdlet, 620, 631
New-PSSessionConfigurationFile cmdlet, 513
New-PSWorkflowSession cmdlet, 620
New-TempFile.ps1 script, 548–549
New-TestConnection function, 358–359
New-Variable cmdlet, 127-128, 650
New-WebServiceProxy cmdlet, 254, 544
New-WSManInstance cmdlet, 620
non-terminating errors, 410, 428
–noprofile switch, 313
Norman, Richard, 393
Notepad, 106, 229, 457, 540–541, 569–570

editing profile in, 142
temporary file display in, 308

Notes help tag, 290
not (!) operator, 188, 346
–not operator, 328
noun in function name, 240
noun name, changing SID into, 86
NTFS File System (NTFS) permissions, 363
null (`0), 93
$null variable, 448
NumberOfBlocks property of Win32_LogicalDisk 

class, 249

O
ObjectGUID for the identity parameter, 68
objects, 163–166

storing, 166–167
OffsetInLine property of System.Management.Automa-

tion.InvocationInfo class, 178
one-line comments, 303–304
On Error Resume Next statement (VBScript), 427
Open method of Shell.Application object, 187
OpenPasswordProtectedExcel.ps1 script, 372
OpenPasswordProtectedWord.ps1 script, 372–373
operating system

scripting requirements, 102–106
verifying for remote domain controller, 56
versions, 102, 104

compatibility issues, 155–158

in global variable, 392–393
hierarchical, 162

Name System.Management.Automation.ScriptInfo 
object, 178

naming conventions, 153
for cmdlets, 7
standard, 145

nesting, comments for documenting, 305–306
.NET assemblies, 135
.NET Framework, 229

classes, 159, 395
cmdlets and, 483
lack of support, 179–193
namespace, 7
for reading registry, 78–79

.NET Framework System.Security.SecureString class, 372

.NET Framework versions
dependencies, 182
determining, 101–102
history, 109, 505
in registry, 100
requirements, 100–102

NETSH, 189
NetSh Advanced Firewall commands, 230
network drives, mapping with WshNetwork object, 533
networked log files, 548–549
network file share

for script repository, 546–547
outputting log text file to, 551

New-ADComputer cmdlet, 60
New-ADGroup cmdlet, 61
New-ADOrganizationalUnit cmdlet, 60
New-ADUser cmdlet, 60, 63
New-Alias cmdlet, 25, 114, 650

–description parameter, 114
New-Cab function, 183, 191
New-CimInstance cmdlet, 619
New-CimSession cmdlet, 158, 620
New-DDF cmdlet, 192
New-DDF function, 189
New-EventLog cmdlet, 552–553, 555, 620, 624
New-IseSnippet cmdlet, 612
New-Item cmdlet, 114, 142, 323, 533, 556, 571

for profile, 144
for variables, 126

New-ItemProperty cmdlet, 556, 571
new line (`n), 93
New-LocalGroupFunction.ps1 script, 465–466



691

passwords

parameter binding error, Trap statement to catch, 346–
347

ParameterBindingException, 343, 346–347
Parameter help tag, 290
parameters, 237

aliases for, 354
attributes, 353–354
creating, 241
documenting, 278
Intellisense and, 610
limiting number, 258
listing in ISE, 607
mandatory, 350–351, 399–400
missing, 398–400
multiple named, 122–126
names, 62

supplying full, 217
passing multiple, 120–126, 248–253, 257–258

with $args, 120–122
placing limits on, 430–431
standard for testing scripts, 460–466
type constraints for, 122–123, 253–255
validating input, 356–361
vs. hard-coding, 247
well-defined, 247

ParameterSetName parameter attribute argument, 353
ParameterSets System.Management.Automation.Script-

Info object, 179
Parameters System.Management.Automation.ScriptInfo 

object, 179
Param statement, 183, 248, 257, 348–362

default value assignment in, 399
for DSC configuration, 663–673
location in script, 348
multiple arguments in, 361–362

parentheses
error message from missing, 127
in functions, 116

Parent property of Shell.Application object, 187
ParseScriptCommands.ps1 script, 485–486
parsing script files, 480
partial parameter completion, 183
passwords, 362–372

domain policy for, 57
in virtual machine, 472
in MOF file, 668
prompt for, 367–369
as PSCredential object, 669

error handling for detecting, 220
trapping, 160–161

WMI classes and, 424
Operations Manager, links for Windows Updates down-

loads, 222
options for cmdlets, 16–17
[ordered] tag, 565
organizational units (OU)

creating, 60, 63
names using special characters, 211
retrieving listing of, 216

OSVersion property of System.Environment .NET 
Framework class, 102, 103

$oupath variable, 63
-OutBuffer parameter, 17
Out-Default cmdlet, 379–381
Out-File cmdlet, 190, 220, 382, 548

–append parameter, 435
for logging, 539–541

Out-GridView cmdlet, 650
Out-Host cmdlet, 379–381
Out-Null cmdlet, 308, 323, 556
out of bounds errors, 429–431
out-of-range loop, 595
output, 339, 374–395

consistency of, 247
to email, 387–388
to file, 382–383
from functions, 388–392
to screen, 376–382
splitting to screen and file, 383–387

outputpath parameter, for DSC configuration, 663
Outputs help tag, 290
-Outvariable parameter, 17
overriding existing commands, 117–118
overwriting log file, 532–534
Owner property of WindowsIdentity object, 84

P
Package resource provider, 660
package.xml file, 222
paging

more function for, 116
Windows PowerShell ISE and, 25

–paging parameter, 380
parallel activities in workflow, 645–648, 651–652



692

pasting functions into Function library script

PNPDeviceID property of Win32_LogicalDisk class, 249
Popup method of WshShell object, 130

icon values, 132
portability of functions, 248
Portable Script Center, 229
PoshPAIG (PowerShell Audit/Install GUI), 337
positional arguments, 239
PositionMessage property of System.Management.

Automation.InvocationInfo class, 178
Position parameter attribute argument, 353
PowerManagementCapabilities property of Win32_Log-

icalDisk class, 249
PowerManagementSupported property of Win32_Logi-

calDisk class, 249
PowerShell drives, 133–134
PowerShell ISE. See Windows PowerShell ISE
Pow method of System.Math class, 181
prerequisites, listing in comments, 299–300
presentation, data-gathering functions separated 

from, 264–265
printer, sending information to, 387
printing

information to script user, 251
messages, 221

production code, 275. See also code
profile configuration, 111–140

alias creation, 112–116
function creation, 116–120
PSDrives, 133–134
variables creation, 126–133

profiles
choosing correct, 141–143
creating, 141–145
modules for, 146
as script, 139
uses, 145–146
working with, 134–139

$profile variable, 142
program ID, from COM object, 182
program logic, 259
programming, 236. See also code
programming language, 309
progress indicator

for workflow, 653–654
Write-Debug statement for, 188

prompt
for input, 373
for password, 367–369

storing
Active Directory Domain Services for, 366–367
registry for, 365–366
in script, 363–364
text file for, 364–365

for user accounts, 63
pasting functions into Function library script, 244
path, 499

adding script directory to, 293–294
to Favorites folder, 128
length on command line, 133
in profile, 134–135
to Windows Update Log, 126–127

path parameter, for Get-Content cmdlet, 196
__PATH property of Win32_Logical Disk class, 250
$path variable, 77, 434
pause in script execution. See breakpoints
PDF document, creating, 376
performance, process block and, 273–274
permissions, 513

errors from, 561
listing required in documentation, 281
NTFS File System (NTFS), 363
to unlock user account, 65

persistence points in workflow, 643
persisting a workflow, 652–658
Pfeiffer, Mike, 535–536
ping command, 195, 402–403, 629
PingComputers.ps1 script, 358–359
PingIpAddress.ps1 script, 359–360
pinning Windows PowerShell

to desktop taskbar, 605
to Start screen and taskbar, 14

$pinToStart, 14
PinToStartAndTaskBar.ps1 script, 14
$pinToTaskBar, 14
pipeline, 71, 352, 393, 435, 444–445, 446–450

function in, vs. filter, 270–272
for job object, 640
performance improvements from technique, 220
scope of, 356

PipelineLength property of System.Management.Auto-
mation.InvocationInfo class, 178

PipelinePosition property of System.Management.Auto-
mation.InvocationInfo class, 178

PipelineVariable parameter, 355
piping ipconfig / results to text files, 10
PI property of System.Math class, 182



693

RefreshMenu method of Shell.Application object

[ADSISearcher] for, 209
cmdlets for, 213–214
command line for, 214–217

QueryComputersPromptForPassword.ps1 script, 367–
368

QueryComputersUseCredentialsFromADDS.ps1 
script, 366–367

QueryComputersUseCredentialsFromRegistry.ps1 
script, 365–366

QueryComputersUseCredentialsFromText.ps1 
script, 364–365

QueryComputersUseCredentials.ps1 script, 363–364
Query parameter, 171
Quit command, 600
quitting debugging session, 588
QuotasDisabled property of Win32_LogicalDisk 

class, 250
QuotasIncomplete property of Win32_Logical Disk 

class, 250
QuotasRebuilding property of Win32_Logical Disk 

class, 250
quotation marks for strings, 124

R
Rahim, Ibrahim Abdul, 439, 455, 458
range operator (..), 113
readability of scripts, 309–310
Read-Host cmdlet, 238, 367, 373

AsSecureString parameter, 368
ReadHostQueryDrive.ps1 script, 373–374
ReadHostSecureStringQueryWmi.ps1 script, 368
reading text file, 196–203
read mode, 590–592
read-only aliases, making, 114–115
read-only cmdlet, deleting, 115
read-only variables, 126
readwrite mode, 591–592
Receive-DtcDiagnosticTransaction cmdlet, 620
Receive-Job cmdlet, 621, 635, 638

–Keep, 641
Receive-PSSession cmdlet, 621
RecursiveWMINameSpaceListing.ps1 script, 164–166
Recycle Bin, for Active Directory, 71
redirection operators, 531
ReferenceEquals method of System.Math class, 181
RefreshMenu method of Shell.Application object, 187

PromptForChoice method, 401–402
prompt function, in profile, 134
properties

–contains operator for testing, 406–408
retrieving all associated with user object, 70
static, 180–182
variables to store, 35
Windows PowerShell display of, 221

__PROPERTY_COUNT property of Win32_Logical Disk 
class, 250

property parameter of Get-CimInstance cmdlet, 33
ProtectedFromAccidentalDeletion parameter, 61
ProviderName property of Win32_LogicalDisk 

class, 249
providers in WMI, 168–169
__provider WMI class, 416–417

properties, 418–419
Prox, Boe, 337
$PSBoundParameters automatic variable, 160
PSBreakpoints, 585
psc1 file extension, 15
–PSComputerName parameter, for PowerShell work-

flow, 647
PSConsole file, 15
PSCredential object, 368, 370

password as, 669
PSCX (PowerShell Community Extensions), 315
PS drives, 133–134

creating, 421
naming convention for, 145

PSDscAllowPlainTextPassword setting, 666
$pshome automatic variable, 377
.psm1 extension, 331
$PSModulePath, 324
PSModulePath environment variable, 48, 321
PSParser class, 487

Tokenize method, 484–486
PSScheduledJob module, 20
PSSession, on remote computer, 56
PSStatus propertyset of Win32_Logical Disk class, 250
$PSVersionTable variable, 79, 81, 313
Purpose property of Win32_LogicalDisk class, 249

Q
qualifier, dynamic, 32
query, Active Directory, 208–217



694

RegDelete method of WshShell object

RemoteWMISessionNoDebug.ps1 script, 561–562
remoting, 81–82, 315

classic, 615–626
server connection for Active Directory module ac-

cess, 48–49
Windows PowerShell Workflow for, 80

Remove-ADGroupMember cmdlet, 62
Remove-CimInstance cmdlet, 621–622
Remove-CimSession cmdlet, 622
Remove-Computer cmdlet, 622, 624
Remove-EventLog cmdlet, 622, 624
Remove-Item cmdlet, 115
Remove-Item snippet, 613
Remove-Job cmdlet, 636
Remove-OutPutFile function, 286
Remove-Printer cmdlet, 622
Remove-PrinterDriver cmdlet, 622
Remove-PrinterPort cmdlet, 622
Remove-PrintJob cmdlet, 622
Remove-PSBreakpoint cmdlet, 586, 601, 650
Remove-PSSession cmdlet, 213, 622, 631–632
Remove-PSSnapin cmdlet, 650
Remove-Variable cmdlet, 128, 391, 650
Remove-WmiObject cmdlet, 622, 624
Remove-WSManInstance cmdlet, 622
Rename-ADObject cmdlet, 60
Rename-Computer cmdlet, 622, 624
renaming sites in Active Directory, 59–60
repeatability

and decision to script, 73
of scripts, 219–223

Repeat command, 596
reporting scripts, 516
$report variable, 434
repository for scripts, 524, 546–547
Representational State Transfer (REST) web servic-

es, 455
RequireModuleVersion.ps1 script, 415
#Requires directive, 108
RequiresModule.ps1 script, 108
#requires statement, 83–84, 326–327, 413–415
Reset method of Win32_LogicalDisk class, 249
Resolve-ZipCode function, 254
Resolve-ZipCode.ps1 script, 254
resource management, 409
resources in WMI, 162
Restart-Computer cmdlet, 622, 624
restarting services, on remote servers, 173

RegDelete method of WshShell object, 130
Register-CimIndicationEvent cmdlet, 621
Register-PSSessionConfiguration cmdlet, 514
Register-WmiEvent cmdlet, 621, 624
registry

logging to, 556–557
logon scripts writing to, 509
modifying to enable or disable script execution 

policy, 495–496
modifying values through, 175–179
.NET Framework version in, 100
for password storage, 365–366
PowerShellVersion value, 75
reading, 75

.NET for, 78–79
RegRead for, 77
WMI for, 77–78

reading and writing to, 159
searching for WMI provider registration, 420–421

registry resource provider, 660, 664
RegRead method of WshShell object, 130
regular expression

for IP address, 359
pattern, 358

RegWrite method of WshShell object, 130
__RELPATH property of Win32_Logical Disk class, 250
remote computer

checking status of services, 152
for cross-domain situation, 158
fan-out commands for, 205–208
help desk scripts for troubleshooting, 517
limiting data returned from, 33–34
PSSession on, 56
retrieving information from, 107
running single PowerShell command, 632–634

Remote Desktop, 199–200
Windows Firewall and, 201

remote domain controller, verifying operating system 
for, 56

RemoteHelpRunSpace help tag, 290
remote PowerShell session, credentials for, 55
Remote Procedure Call (RPC), 82
Remote Server Administration Tools (RSAT), 49

installing, 47
remote servers, restarting services on, 173
RemoteSigned script execution policy, 140, 493, 495, 

502
remote Windows PowerShell session, creating, 629–632



695

scripting pitfalls

SaveWmiInformationAsDocument.ps1 script, 225–229, 
227

SaveWordData function, 227
saving BIOS information to CSV file, 152
scheduled task, deploying help with, 26
Schwinn, Dave, 386
scope

for execution policy, 503
for pipeline, 356
for PowerShell drive, 325
for script execution policy, 140
for variable, 390

screen
output to, 376–382
splitting output to file and, 383–387

script block, curly bracket for opening and closing, 242
ScriptBlock System.Management.Automation.ScriptInfo 

object, 179
Script Center Script Repository, 26
Script Encoder for the Windows Script Host, 529
script execution policies, 139, 150, 330, 412, 491–495

default value, 496
deploying, 495–500
Group Policy for, 499–500
purpose of, 492
settings options, 492–493
and snippets, 612

ScriptFolderConfig.ps1 script, 661–662
ScriptFolderVersion.ps1 script, 664
ScriptFolderVersionUnzipCreateUsersAndProfile.ps1 

script, 669–671
ScriptFolderVersionUnzip.ps1 script, 665–666
scripting

collaboration in, 229–230
enabling, 139–140
methodology, 159
structured requirements

applications, 106–108
modules, 108–109
operating system, 102–106
security, 83

tracking opportunities, 229
“scripting guy” role, 73–74
Scripting Guys Script Repository, 478
scripting pitfalls

cmdlet support absence, 151–153
complicated constructors, 153–154
listing WMI providers, 168–169

Restart-PrintJob cmdlet, 622
restricted endpoint, 513
Restricted script execution policy, 140, 412, 492, 501
Resultant Set of Profiles (RSOP), 144
resultclassname parameter for Get-CimAssociatedIn-

stance cmdlet, 38
$Results variable, eliminating from script, 167
Resume-PrintJob cmdlet, 622
Retrieve-Job cmdlet, 639
return

behavior of, 267–270
code capture from dialog box interaction, 131–132

return (r`), 93
Return statement, 465
ReturnValue property, 283
reusing code, 147, 226

functions for, 244–246
verbose style for, 247

revision of operating system, 102
Rich Text Content Controls, 376
Riedel, Alexander, 529
rights

checking for, 412–413
error handling for missing, 408–415
for module install, 319
to run query, 156

Ring, Jan Egil, 19, 26
Role help tag, 290
Rottenberg, Hal, 134–139
Round method of System.Math class, 181
RSAT (Remote Server Administration Tools), 49

installing, 47
RSS-feed, on new help releases, 20
Run As Different User, 65
Run As Different User dialog box, 626
Run method of WshShell object, 130
runtime errors, 560–564
RuntimeException class, 346

S
Sajid, Osama, 602
SamAccountName for Get-ADUser cmdlet, 67
SAPIEN Technologies, 529
saveas method of Word.Document object, 227
Save-Help cmdlet, 20



696

Script-level scope

searching files for string pattern, 243–244
secure string, 368
security, 498–499, 524, 547

issues, 11–13
Security.Principal.WindowsBuiltInRole .NET Framework 

enumeration, 97–98
Security.Principal.WindowsIdentity .NET Framework 

class, 84
GetCurrent method, 96, 553

selection object, 226
Select-Object cmdlet, 316
self-containment of function, 247
semicolon (;), to separate commands on single line, 10
Send-DtcDiagnosticTransaction cmdlet, 622
SendKeys method of WshShell object, 130
Send-MailMessage cmdlet, 387, 388
Sequence workflow activity, 649, 656–658
__SERVER property of Win32_Logical Disk class, 250
service pack level, determining for client worksta-

tions, 28
Service resource provider, 660
services, 170–173

restarting on remote servers, 173
script for stopping and starting, 170

ServiceStart method of Shell.Application object, 187
ServiceStop method of Shell.Application object, 187
sessions, removing unused, 213
Set-ADAccountPassword cmdlet, 64
Set-ADOObject cmdlet, 60
Set-Alias cmdlet, 114, 650
Set-AuthenticodeSignature cmdlet, 504
Set-CimInstance cmdlet, 622
Set-ExecutionPolicy cmdlet, 139, 324, 413, 495, 

496–498, 502
logon script for, 497–498

Set-ieStartPage function, 282
Set-Item cmdlet, 126
! SET keyword,  to preface variable assignments, 572
Set-LocalGroupFunction.ps1 script, 462–464
Set-Location cmdlet, 133, 629
SetMultiStringValue method, 283
Set-Number function, 356, 357
SetPowerState property of Win32_LogicalDisk 

class, 249
Set-PrintConfiguration cmdlet, 623
Set-Printer cmdlet, 623
Set-PrinterProperty cmdlet, 623
Set-PSBreakpoint cmdlet, 586, 588–591, 600, 602, 650

.NET Framework support absence, 179–193
objects and namespaces, 163–166
version compatibility issues, 155–158
WMI classes, 169–179
WMI support absence, 162–163

Script-level scope, 391
script-level tracing, 568–572
ScriptLineNumber property of System.Management.

Automation.InvocationInfo class, 178
ScriptName property of System.Management.Automa-

tion.InvocationInfo class, 178
Script resource provider, 660
$scriptRoot variable, 556
scripts

accessing functions in other, 147–150
benefits, 217–229

adaptability, 225–229
documentability, 223–225
repeatability, 219–223

database of, 229
evaluating, 479–480
evaluating need for, 195–217
folder for, 515
header section, 278
for organization unit creation, 61
parsing, 480
readability of, 309–310
reasons for failure, 551
reasons for writing, 105–106
risk of damage from, 433
risk of deleting wrong version, 527
running, disabled by default, 11
signing, 71
suspending execution, 578
testing, 61
tracking and coordinating development, 73
verifying integrity, 71
writing process, 95

script types
diagnostic, 516
Help desk scripts, 517–520
logon scripts, 507–514
reporting scripts, 516
stand-alone scripts, 515–516

Search-ADAccount cmdlet, 64–65
SearchAllComputersInDomain.ps1 script, 305
searchbase parameter, for Get-ADUser cmdlet, 68
SearchForWordImages.ps1 script, 297



697

stepping through script

Sin method of System.Math class, 182
sites, renaming in Active Directory, 59–60
Size property of Win32_LogicalDisk class, 250
SkyDrive, 136
snippets, 611–614

creating, 612–613
user-defined, removing, 613–614

Snover, Jeffrey, 6, 23, 81–82, 95, 105–106
software

removing from servers, 201–202
version control, 529–530

Software Update Services (SUS), for PowerShell deploy-
ment, 7

SolarWinds Network Configuration Manager, 15
source control, 521–522
source control repository, 522
special characters

avoiding in organizational unit names, 212
LDAP search filter, 211

SpecialFolders method of WshShell object, 130
SpecialFolders property of WshShell object, 129
split method of System.String class, 321–322
Split-Path cmdlet, 184
Split-Path function, 285
Sqrt method of System.Math class, 182
StackOverflow, 315
Stahler, Wes, 511–512
stand-alone scripts, 515–516
Standard Operating Procedure (SOP) documents, 76
Start-DscConfiguration cmdlet, 663–665, 671
starting services, script for, 170
Start-Job cmdlet, 634, 638-639
startmode of service, 7
Start | Run | PowerShell, 7
Start screen, pinning Windows PowerShell to, 14
Start-Transaction cmdlet, 176, 650
Start-Transcript cmdlet, 550, 630–631, 650
Start-Transcript function, log file from, 468–470
static methods, 179, 180–182
static properties, 180–182
StatusInfo property of Win32_Logical Disk class, 250
Status property of Win32_Logical Disk class, 250
stdRegProv WMI class, 77, 78
Step-into command (s), 596, 600
Step-out command (o), 596
Step-over command (v), 596
stepping through script, 572–581

turning off, 581

–Action parameter, 592
–Command parameter, 593

Set-PSDebug cmdlet, 565, 567–585, 568-569, 650
step parameter, 574, 578
-strict mode, 581–582
tracing problems in, 580–581

Set-PSSessionConfiguration cmdlet, 514
Set-SaverTimeout.ps1 script, 175, 179
Set-ScreenSaverTimeout function, 175
SetScriptExecutionPolicy.vbs script, 498
Set-Service cmdlet, 623, 624
SetServicesConfig.ps1 script, 672
Set-StrictMode cmdlet, 479, 583–584, 650
SetStringValue method, 283
SetTime method of Shell.Application object, 187
settings, 173–175
Set-TraceMode cmdlet, 650
Set-Variable cmdlet, 126, 128, 650
set-verb pattern for cmdlets, 7
Set-WmiInstance cmdlet, 623, 624
Set-WSManInstance cmdlet, 623
SharePoint page, 74
sharing automated fixes, 253
Shell.Application object, 186–187-188, 458
Shell, Brandon, 246, 276
ShellExecute method of Shell.Application object, 187
shortcut keystroke. See aliases
ShowBrowserBar method of Shell.Application ob-

ject, 187
Show-Command cmdlet, 25
Show-EventLog cmdlet, 623-624
shutdown scripts, 513
ShutdownWindows method of Shell.Application ob-

ject, 187
Siddaway, Richard, 498–499
SID value

of group, obtaining, 86
for identity parameter, 67

Siepser, Gary, 352, 409
signature of function, 260
signing scripts, 71, 504–505, 524
Sign method of System.Math class, 182
Simple Object Access Protocol (SOAP), 455
SimpleTypingErrorNotReported.ps1 script, 582
SimpleTypingError.ps1 script, 581–582
single-line comments, 277–287

creating, 288–289
Sinh method of System.Math class, 182



698

Stewart, Bill

basename property, 322
FullName property, converting to string, 191

System.Io.Path .NET Framework class, 285, 434
System.Management.Automation.InvocationInfo class

properties, 178
System.Management.Automation.LineBreak .NET 

Framework class, 588, 589
System.Management.Automation.ScriptInfo ob-

ject, 177–178
properties, 178–179

System.Management.ManagementClass .NET Frame-
work class, 423

object creation, 425
System.Math class

obtaining members of, 180
static members, 180–182

SystemName property of Win32_Logical Disk class, 250
System Properties dialog box (Windows 8), 199
System.Runtime.InteropServices.RunTimeEnvironment 

.NET Framework class, GetSystemVersion 
method of, 100

System.Security.Cryptography.HashAlgorithm class, 8
System.Security.Principal.NTAccount class, 87
System.Security.Principal.WindowsIdentity class

GetCurrent static method, 90, 92
System.Security.SecureString .NET Framework class, 368
system state, cmdlets to change, 11
System.String class, split method, 321–322
System.SystemException class, 255
System.TimeSpan .NET Framework class, 448
System.Version class, 103

T
tab character, 265
Tabdilio, Mark, 275–276
tab expansion, 561, 610–611

for module name completion, 316–317
Tanh method of System.Math class, 182
Tan method of System.Math class, 182
taskbar, pinning Windows PowerShell to, 14
tasks, automation of routine, 73–74
TechNet Script Center, 26, 41, 109
Tee-Object cmdlet, 383–385, 543–546, 550

variable parameter for, 385
temporary file

for log file, 548

Stewart, Bill, 427–429
$stime variable, 434
Stop command (q), 596
Stop-Computer cmdlet, 623, 624
stopping services, script for, 170
Stop-Process cmdlet, 151, 352
Stop-Transcript cmdlet, 469, 550, 650
storing objects, 166–167
Stranger, Stefan, 222–223
Streams.exe Windows SysInternals utility, 494
strict mode, 256, 581–584

disabling, 582
string

converting to WMI class, 424
displaying on screen, 378–379
wildcard search of, 89

StringArgsArray1.ps1 script, 344–345
StringArgs.ps1 script, 343–344
string pattern, searching files for, 243–244
subroutines, vs. functions, 233–234
__SUPERCLASS property of Win32_Logical Disk 

class, 250
SupportsDiskQuotas property of Win32_Logical Disk 

class, 250
SupportsFileBasedCompression property of Win32_

Logical Disk class, 250
suppressing error message display, 255
suspending script execution, 578
Suspend method of Shell.Application object, 187
suspend parameter, 11
Suspend-PrintJob cmdlet, 623
Suspend-Workflow workflow activity, 649
Switch_DebugRemoteWMISession.ps1 script, 563–564
switch statement, 401, 564
Syncplicity, 135
Synctoy, 135
Synopsis help tag, 290
syntax errors, debugging, 560
SystemCreationClassName property of Win32_Logical 

Disk class, 250
System.Diagnostics.Process .NET Framework ob-

ject, 637
System.DirectoryServices.DirectorySearcher class, 208
System.Enum .NET Framework class, GetNames method 

of, 98
System.Environment .NET Framework class, 104

OSVersion property, 102-103
System.IO.FileInfo object, 135



699

TypeText method

reading, 196–203
redirecting cmdlet output to, 59
width parameter for output, 540

Throw statement, 188, 346
TileHorizontally method of Shell.Application ob-

ject, 187
TileVertically method of Shell.Application object, 187
TimeSpan object, 450
time stamp

converting, 394
in log file, 469, 533

TODO: tags, 307
ToggleDesktop method of Shell.Application object, 187
Tokenize method of PSParser class, 484–486
Token property of WindowsIdentity object, 84
ToString method, 86, 87
Trace-Command cmdlet, 650
$trace variable, 538
tracing, script-level, 568–572
tracking

changes with version control, 523
script changes, 527–528

transactions, registry modification with, 176
TranscriptBios.ps1 script, 469–470
transcript tool in PowerShell, 630–631
Translate method, 86-87, 93
trapping operating system version, 160–161
Trap statement, 254-255, 346–347, 410
TrayProperties method of Shell.Application object, 187
TroubleShoot.bat script, 10
troubleshooting. See also debugging; errors; testing 

scripts
logging for, 537, 541
missed closing bracket, 242
version control and, 523

Truman, Jeff, 15–16
Truncate method of System.Math class, 182
Trusted Internet zone, 515
Trusted Sites zone, adding script share to, 495
Try/Catch/Finally construction, 347, 410–412
Tsaltas, Dean, 280
Turn On Script Execution Group Policy setting, 139
two-letter aliases, 113
Tyler, Jonathan, 99–100
type constraints for parameters, 122–123, 253–255
type mismatch error message, 343
TypeText method, 226

Notepad for displaying, 308
temporary folders, 285–286
terminating errors, 410, 428
TestAdminCreateEventLog.ps1 script, 553–554
Test-ComputerPath.ps1 script, 403
Test-Connection cmdlet, 358, 562, 623, 624
Test-DscConfiguration function, 671
testing

code, 99
errors, $? automatic variable for, 188
for .NET Framework version, 101
software in PowerShell, 439–440

testing scripts, 61
advanced, 470–472
basic syntax checking, 433–444
comparing speed of two, 447–449
displaying results, 456
documenting process, 442–444
evaluating performance of different versions, 450–

457
against known data, 471
log from Start-Transcript function, 468–470
looking for errors, 438–439
performance of, 444–459
reducing code complexity, 449–450
running script, 440–441
standard parameters for, 460–466
store and forward approach, 445–446
Test-Path cmdlet for, 149
total running time for, 436

Test-IsAdminFunction.ps1 script, 96–97
Test-IsAdministrator function, 553
Test-IsInRole.ps1 script, 99
Test-ModulePath function, 320
Test-Path cmdlet, 93, 149, 286, 320, 420, 421, 533
Test-ScriptHarness.ps1 script, 433, 436–437
Test-Script.ps1 script, 497
Test-Scripts function, 451
Test-TwoScripts.ps1 script, 451–455

log from, 457
Test-WSMan cmdlet, 623, 628
text files, 340

hash of password stored in, 368–369
logging to, 531–552

directory for storing, 542–546
output to, 382
for password storage, 364–365
piping ipconfig / results to, 10



700

unapproved verbs

user rights, 155
users

adding to group, 62
detecting current, 84–95
detecting roles, 96–100
interaction with cmdlet help, 281
listing all with last logon date, 70
removing from group, 62

Use-Transaction cmdlet, 650
–UseTransaction switch, 176

V
ValidateCount parameter attribute, 360
ValidateLength parameter attribute, 360
ValidateNotNullOrEmpty parameter attribute, 361-362
ValidateNotNull parameter attribute, 361
ValidatePattern attribute, 358–359, 360
ValidateRange parameter, 360, 430
ValidateRange.ps1 script, 357
ValidateScript parameter attribute, 360
ValidateSet parameter attribute, 361
validating parameter input, 356–361
ValueFromPipelineByPropertyName parameter attri-

bute argument, 353
ValueFromPipeline parameter attribute argument, 353
ValueFromRemainingArguments parameter attribute 

argument, 353
Value method of SecurityIdentifier class, 87
values, passing to function, 238
$value variable, 78
VariableNotFound error message, 342
variables

assigning returned job object to, 638–639
assigning value to, 126
changing value in suspended script, 579
CIM instance in, 35
creating, 126–133
global, 390–392
names, 145

dollar sign and, 341–342
property selection in, 35
! SET keyword to preface assignments, 572
setting breakpoint on, 589–593
uninitialized, 582

VBScript, 159, 394
classic function example, 233

U
unapproved verbs, 317–318
UnboundArguments property of System.Management.

Automation.InvocationInfo class, 178
Undefined execution policy, 503
UndoMinimizeALL method of Shell.Application ob-

ject, 187
Undo-Transaction cmdlet, 650
uninitialized variable, 582
universal group, creating, 62
Universal Naming Convention (UNC) path, 548
Universal Naming Convention (UNC) shares, Internet 

zone and, 495
Unlock-ADAccount cmdlet, 65

confirm parameter, 66
unlocking user accounts, 64–66
Unrestricted script execution policy, 140, 493, 499, 502
unused sessions, removing, 213
unused user accounts, finding, 68–72
unzipping compressed file, 665
Update-Help cmdlet, 17
UpdateHelpTrackErrors.ps1 script, 18–19
updating help, 17–19
UseADCmdletsToCreateOuComputerAndUser.ps1 

script, 61
use case scenario, 397
UseGetMemberOf.ps1 script, 91, 92–95
User Account Control (UAC), 83, 408
user accounts

creating, 60
disabled, 63

finding, 66–68
enabling, 63–64
finding and unlocking, 64–66
finding unused, 68–72

user-defined snippets, 612
removing, 613–614

user interfaces, automating tests in, 459
user management in Active Directory module, 60–63
user objects

properties for, 69
retrieving all properties associated with, 70
whenCreated property, 69

user preferences for restricted execution policy, 139
%UserProfile% location, 330
User property of WindowsIdentity object, 84
User resource provider, 660, 669



701

Windows Management Instrumentation (WMI)

Where-Object cmdlet (?), 107, 121, 191, 449, 598, 614
width parameter, for text file output, 540
wiki page, 74
wildcards, 607

* (asterisk), 24
for filter parameter of Get-ADUser cmdlet, 68
Get-CimInstance cmdlet and, 35
for Get-Command cmdlet search, 214
for module name completion, 316–317
for string search, 89

Wilhite, Brian, 28, 49–50, 201
Willett, Andrew, 550–552
Wilson, Ed, 23
Win32_Bios WMI class, 343

properties available, 33
Win32_ComputerSystem Windows Management Instru-

mentation (WMI) class, 434
Win32_DefragAnalysis management object, 221
Win32_Desktop WMI class

for desktop settings, 173
properties, 174–175

Win32_LogicalDisk class, 248–249
Win32_NetworkAdapterConfiguration WMI class

retrieving instances, 261
Win32_OperatingSystem management object, 160
Win32_PingStatus WMI class, 402–403
Win32_Process class, 35
Win32_Product WMI class, 417
Win32_UserAccount WMI class, 35, 37
WIN32_Volume Windows Management Instrumentation 

(WMI) class, 155
Windows 7, 6
Windows 8, 14, 381

Remote Settings, 199
Windows 8.1 client, 6
Windows Automation Snap-in, 459
WindowsFeature resource provider, 660
Windows Firewall, Remote Desktop and, 201
WindowsIdentity object, 553

creating, 90
Groups property, 85–86
properties, 84
returning instance of, 84

Windows Internet Explorer, 493–495
Windows Management Instrumentation (WMI), 201

coded values for registry tree, 77–78
connecting to namespace, 415
for reading registry, 77–78

error handling, 427
Verb menu, 146
Verb-Noun pattern, 7, 116
–Verbose parameter, 16, 176, 462–464
$verbosePreference variable, 420
verbose style, code reuse, 247
verbs

for cmdlets, 7
for functions, 234

choosing, 240
unapproved, 317–318

verifying script integrity, 71
version control

avoiding new errors, 522
incrementing numbers, 527
internal number in comments, 525–528
reasons for, 521–528

version control software, 529–530
versions of operating system

compatibility issues, 155–158
trapping, 160–161

versions of script, evaluating performance of differ-
ent, 450–457

Vertical tab (`v), 93
virtual machine, 5, 434

passwords in, 472
for script testing, 471

Visibility System.Management.Automation.ScriptInfo 
object, 179

Visual SourceSafe (VSS), 529
VMware plugin, 13
VolumeDirty property of Win32_Logical Disk class, 250
VolumeName property of Win32_Logical Disk class, 250
VolumeSerialNumber property of Win32_Logical Disk 

class, 250

W
Wait-Job cmdlet, 639
Walker, Jason, 166–168
Wbemtest.exe, 415
Web Application Services Platform (WASP), 459
Web Services Description Language (WSDL), 254, 544
web services, testing, 455
websites, testing, 458
–whatif parameter, 11, 16, 247, 460, 464–467
whenCreated property, for user object, 69



702

Windows Management Instrumentation (WMI) classes

running, 605–611
script pane, 608–609
snippets, 611–614
syntax error detection, 560
tab expansion and Intellisense, 610–611
for testing, 440

Windows PowerShell remoting. See remoting
Windows PowerShell Web Access (PWA), 26
Windows PowerShell workflow, 643. See also workflow
WindowsPrincipal class, IsInRole method of, 97
WindowsProcess resource provider, 660
Windows Remote Management (WinRM), 626–634
WindowsSecurity method of Shell.Application ob-

ject, 187
Windows Server 2012, installing Active Directory mod-

ule on, 47
Windows Server 2012 R2, 6

running in core mode, 3
Windows Update, 222
Windows Update Log, storing path to, 126–127
Windows Vista

user Personal folder on, 142
user rights, 155

WindowSwitcher method of Shell.Application ob-
ject, 187

Windows Workflow Foundation, 643
WinRM (Windows Remote Management), 626–634
WMI providers

missing, 415–423
searching registry for registration, 420–421

WMI Query Language (WQL), 170
Windows PowerShell syntax and, 158

Word.Application object, 226
Word.Document object, saveas method, 227
workarounds, 157
workflow, 516

activities in, 648–652
checkpoint in, 652–655
cmdlets

as activities, 649
disallowed from core modules, 650
as InlineScript activities, 650–651

cool features, 657
for parallel PowerShell, 645–648
on local computer, 644–645
parallel activities, 651–652
persistence points in, 643
reasons to use, 643–645

lack of support, 162–163
listing providers, 168–169
obtaining specific data, 251
remoting, 82

Windows Management Instrumentation (WMI) 
classes, 169–179

CIM cmdlets exporation with, 27–33
deprecated, 31
filtering classes by qualifier, 30–33
filtering out unwanted names, 121
output clean-up, 34
retrieving instances, 33

Windows Management Instrumentation Tester (Wbem-
Test), 415–423

Windows Media Player scripting object model, 182
Windows method of Shell.Application object, 187
Windows, names and versions, 104
Windows PowerShell

accessing, 14
basics, 3–4
benefits of using, 13, 23–24, 318–319
configuring, 15–16
deploying, 7
identifying version, 75
installing, 6
intrinsic techniques, 79–82
jobs, 634–641
learning, 5, 109
location for module search, 48
payback from automation, 76
script for checking prerequisites, 6
syntax and WMI Query Language (WQL) syntax, 158
vs. other scripting languages, 394

Windows PowerShell Community Extensions 
(PSCX), 134, 315

Windows PowerShell console, 606
Windows PowerShell debugger, 590. See also debug-

ging
commands for, 596

Windows PowerShell drives. See PS drives
Windows PowerShell formatter, 540
Windows PowerShell ISE

debugging with, 602–603
loading workflow in, 644–645
module creation in, 331
navigating, 606–608
pager and, 25
profile and, 141



703

Zone.Identifier tag

X
XML file, 395

for console file, 15
debugger to dump variables into, 600
exporting commands to, 203
exporting Lync server configuration to, 375
exporting to, 386
formatted for screen output, 377–378
for snippet, 612

XPath, 395
XQuery statement, 395

Z
Zone.Identifier tag, 494

requirements, 644
sequence activity in, 656–658

workflow keyword, 644
working directory, changing, 3
Wouters, Jeff, 71
–Wrap parameter, 208
WriteBiosInfoToWord.ps1 script, 298–299
Write-Debug cmdlet, 177, 190, 460, 561-562, 565

for progress indicator, 188
Write-EventLog cmdlet, 555, 623-624
Write-Host cmdlet, 265, 347, 389, 592, 650
write mode for breakpoint, 589–590
Write-Output cmdlet, 247
Write-Path function, 241
Write verb, 238
Write-Verbose cmdlet, 176, 420, 421–422, 464, 585
WshNetwork object, mapping network drives with, 533
WshShell object, 79, 128–130

New-Object cmdlet for creating, 77
SpecialFolders property, 129

$wshShell variable, 77
WshSpecialFolders object, 129
WS-Management Protocol, 626
WS-Management (WSMan) cmdlets

remoting with, 82 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



about the author

ED WILSON is the Microsoft Scripting Guy and a well-known scripting expert. 
He writes the daily Hey Scripting Guy! blog. He has also spoken at TechEd and 
at the Microsoft internal TechReady conferences. He is a Microsoft- certified 
trainer who has delivered a popular Windows PowerShell workshop to 
 Microsoft Premier Customers worldwide. He has written 10 books, including 
seven on Windows scripting that were published by Microsoft Press. He has 

also contributed to nearly a dozen other books. His most recent books by Microsoft Press 
 include Windows PowerShell 3.0 Step by Step and Windows PowerShell 3.0 First Steps. Ed holds 
more than 20 industry certifications, including Microsoft Certified Systems Engineer (MCSE) 
and Certified Information Systems Security Professional (CISSP). Prior to coming to work for 
Microsoft, he was a senior consultant for a Microsoft Gold Certified Partner, where he special-
ized in Active Directory design and Exchange implementation. In his spare time, he enjoys 
woodworking, underwater photography, and scuba diving. 



  
  

  

 

SurvPage_8x10_02.indd   1 5/19/2011   4:17:36 PM

What do 
you think of
this book? 
We want to hear from you! 
To participate in a brief online survey, please visit: 

microsoft.com/learning/booksurvey 

Tell us how well this book meets your needs—what works effectively, and what we can 
do better. Your feedback will help us continually improve our books and learning  
resources for you.   

Thank you in advance for your input! 




	Contents at a glance
	Contents
	Foreword
	Introduction
	Part I: Understanding the basics of Windows PowerShell 
	Chapter 1: Survey of Windows PowerShell capabilities
	Understanding Windows PowerShell 
	Installing Windows PowerShell
	Deploying Windows PowerShell
	Using cmdlets

	Using command-line utilities
	Security issues with Windows PowerShell
	Controlling execution of Windows PowerShell cmdlets
	Confirming commands
	Suspending confirmation of cmdlets

	Working with Windows PowerShell
	Accessing Windows PowerShell
	Configuring Windows PowerShell

	Supplying options for cmdlets
	Working with the help options
	Updating help information
	Discovering information in help

	Additional resources

	Chapter 2: Using the CIM cmdlets
	Using the CIM cmdlets to explore WMI classes
	Using the classname parameter
	Finding WMI class methods
	Filtering classes by qualifier

	Retrieving WMI instances
	Reduce returned properties and instances
	Clean up output from the command

	Working with Association classes
	Additional resources


	Part II: Planning for scripting   
	Chapter 3: Using the Active Directory module
	Understanding the Active Directory module
	Installing the Active Directory module
	Getting started with the Active Directory module

	Using the Active Directory module
	Finding the FSMO role holders
	Documenting Active Directory
	Renaming Active Directory sites
	Managing users
	Creating a user
	Finding and unlocking AD user accounts
	Finding disabled users
	Finding unused user accounts

	Additional resources

	Chapter 4: Identifying scripting  opportunities
	Automating routine tasks
	Automation interface
	Using RegRead to read the registry
	Using WMI to read the registry
	Using .NET to read the registry
	Using intrinsic Windows PowerShell techniques

	Structured requirements
	Security requirements
	Detecting the current user
	Detecting the user role
	.NET Framework version requirements
	Operating system requirements
	Application requirements
	Module requirements

	Additional resources

	Chapter 5: Configuring the script  environment
	Configuring a profile
	Creating aliases
	Creating functions
	Passing multiple parameters
	Creating variables
	Creating PSDrives
	Enabling scripting

	Creating a profile
	Choosing the correct profile
	Creating other profiles

	Accessing functions in other scripts
	Creating a function library 
	Using an include file

	Additional resources

	Chapter 6: Avoiding scripting pitfalls
	Lack of cmdlet support
	Complicated constructors
	Version compatibility issues
	Trapping the operating system version

	Lack of WMI support
	Working with objects and namespaces
	Listing WMI providers
	Working with WMI classes
	Changing settings
	Modifying values through the registry

	Lack of .NET Framework support
	Use of static methods and properties
	Version dependencies
	Lack of COM support
	Lack of external application support

	Additional resources

	Chapter 7: Tracking scripting  opportunities
	Evaluating the need for the script
	Reading a text file
	Export command history
	Fan-out commands
	Query Active Directory
	Just use the command line

	Calculating the benefit from the script
	Repeatability
	Documentability
	Adaptability

	Script collaboration
	Additional resources


	Part III: Designing the script    
	Chapter 8: Designing the script
	Understanding functions
	Using functions to provide ease of code reuse
	Using two input parameters
	Using a type constraint

	Using more than two input parameters
	Using functions to encapsulate business logic
	Using functions to provide ease of modification
	Understanding filters
	Additional resources

	Chapter 9: Designing help for scripts
	Adding help documentation to a script with 
single-line comments
	Working with temporary folders

	Using multiple-line comment tags in Windows PowerShell 4.0
	Creating multiple-line comments with comment tags
	Creating single-line comments with comment tags

	Using comment-based help
	The 13 rules for writing effective comments 
	Update documentation when a script is updated
	Add comments during the development process
	Write for an international audience
	Consistent header information
	Document prerequisites
	Document deficiencies
	Avoid useless information
	Document the reason for the code
	Use of one-line comments
	Avoid end-of-line comments
	Document nested structures
	Use a standard set of keywords
	Document the strange and bizarre

	Additional resources

	Chapter 10: Designing modules
	Understanding modules
	Locate and load modules
	Listing available modules
	Loading modules

	Install modules
	Creating a modules folder
	Working with the $modulePath variable
	Creating a module drive
	Checking for module dependencies
	Using a module from a share

	Creating a module
	Additional resources

	Chapter 11: Handling input and output
	Choosing the best input method
	Reading from the command line
	Using the Param statement
	Working with passwords as input
	Working with connection strings as input

	Prompting for input
	Choosing the best output method
	Output to the screen
	Output to file
	Splitting the output to both the screen and the file
	Output to email
	Output from functions

	Additional resources

	Chapter 12: Handling errors
	Handling missing parameters
	Creating a default value for the parameter
	Making the parameter mandatory

	Limiting Choices
	Using PromptForChoice to Limit Selections
	Using ping to identify accessible computers
	Using the −contains Operator to examine the contents of an array
	Using the −contains operator to test for properties

	Handling missing rights
	Attempting and failing
	Checking for rights and exiting gracefully
	Using #Requires

	Handling missing WMI providers
	Incorrect data types
	Out of bounds errors
	Using a boundary checking function
	Placing limits on the parameter

	Additional resources

	Chapter 13: Testing scripts
	Using basic syntax checking techniques
	Looking for errors
	Running the script
	Documenting what you did

	Conducting performance testing of scripts
	Using the store and forward approach
	Using the Windows PowerShell pipeline
	Evaluating the performance of different versions of a script

	Using standard parameters
	Using the debug parameter
	Using the Verbose parameter
	Using the whatif parameter

	Using Start-Transcript to produce a log
	Advanced script testing
	Additional resources

	Chapter 14: Documenting scripts
	Getting documentation from help
	Getting documentation from comments
	Using the AST parser
	Additional resources


	Part IV: Deploying the script    
	Chapter 15: Managing the execution policy
	Selecting the appropriate script execution policy
	The purpose of script execution policies
	Understanding the different script execution policies
	Understanding the Internet zone

	Deploying the script execution policy
	Modifying the registry
	Using the Set-ExecutionPolicy cmdlet
	Using Group Policy to deploy the script execution policy

	Understanding code signing
	Additional resources

	Chapter 16: Running scripts
	Logon scripts
	What to include in logon scripts
	Methods of calling the logon scripts

	Script folder
	Deploy locally
	Deploy an MSI package locally 

	Stand-alone scripts
	Diagnostics
	Reporting and auditing

	Help desk scripts
	Avoid editing
	Provide a good level of help interaction

	Additional resources

	Chapter 17: Versioning scripts
	Why version control?
	Avoid introducing errors
	Enable accurate troubleshooting
	Track changes
	Maintain a master listing
	Maintain compatibility with other scripts
	Internal version number in the comments

	Version control software
	Additional resources

	Chapter 18: Logging results
	Logging to a text file
	Designing a logging approach
	Text location
	Networked log files

	Logging to the event log
	Using the Application log
	Creating a custom event log

	Logging to the registry
	Additional resources

	Chapter 19: Troubleshooting scripts
	Understanding debugging in Windows PowerShell
	Working with syntax errors
	Working with runtime errors
	Working with logic errors

	Using the Set-PSDebug cmdlet 
	Tracing the script
	Stepping through the script
	Enabling strict mode

	Debugging scripts
	Setting breakpoints
	Responding to breakpoints
	Listing breakpoints
	Enabling and disabling breakpoints
	Deleting breakpoints

	Additional resources

	Chapter 20: Using the Windows PowerShell ISE
	Running the Windows PowerShell ISE
	Navigating the Windows PowerShell ISE
	Working with the script pane
	Tab expansion and IntelliSense

	Working with Windows PowerShell ISE snippets
	Using Windows PowerShell ISE snippets to create code
	Creating new Windows PowerShell ISE snippets
	Removing user-defined Windows PowerShell ISE snippets

	Additional resources

	Chapter 21: Using Windows PowerShell remoting and jobs
	Understanding Windows PowerShell remoting
	Classic remoting
	WinRM—Windows Remote Management 

	Using Windows PowerShell jobs
	Additional resources

	Chapter 22: Using Windows PowerShell Workflow
	Why use Windows PowerShell Workflow
	Workflow requirements
	A simple workflow

	Parallel PowerShell
	Workflow activities
	Windows PowerShell cmdlets as activities
	Disallowed core cmdlets
	Non-automatic cmdlet activities
	Parallel activities

	Checkpointing a Windows PowerShell workflow
	Understanding checkpoints
	Placing checkpoints
	Adding checkpoints

	Adding a sequence activity to a workflow
	Additional resources

	Chapter 23: Using the Windows PowerShell DSC
	Understanding Desired State Configuration
	The DSC process
	Configuration parameters
	Setting dependencies
	Configuration data

	Controlling configuration drift
	Additional resources


	Index

