
.

•฀฀Responsive฀ Web฀ Design฀ techniques฀ to฀ create฀ mobile-friendly฀ web฀ sites฀

•฀฀The฀most฀common฀HTML5฀APIs,฀CSS3฀properties,฀and฀jQuery฀functions
•฀฀Cutting-edge฀technologies฀for฀robustness,฀accessibility,฀machine-readability,฀

•฀฀How฀to฀write฀structured฀data฀as฀HTML5฀Microdata฀for฀Google฀Rich฀Snippets

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a Glance

About the Author ... xix

About the Technical Reviewer ... xxi

Preface .. xxiii

Part 1: Web Standards ■ .. 1

Chapter 1: Introduction to Web Standards ■ ..3

Chapter 2: Internationalization ■ ..37

Chapter 3: Markup Languages: More Than HTML5 ■ ..53

Chapter 4: Serving and Configuration ■ ...127

Chapter 5: Style Sheets ■ ...147

Chapter 6: Scripting and Applications ■ ...197

Chapter 7: Metadata and the Semantic Web ■ ...233

Chapter 8: Web Syndication ■ ..293

Chapter 9: Optimized Appearance ■ ...317

Chapter 10: Accessibility ■ ...349

Part 2: Developing with Standards ■ ... 385

Chapter 11: Development Tools ■ ...387

Chapter 12: Putting It All Together ■ ..407

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS AT A GLANCE

iv

Chapter 13: Best Practices ■ ..433

Chapter 14: Validation ■ ...445

Chapter 15: Most Common Errors ■ ...471

Index ...483

www.allitebooks.com

http://www.allitebooks.org

PART 1

Web Standards

In this part of the book, you learn the theory and fundamental concepts of web standards, along with the
standardization bodies that develop standards and the most influential web sites that announce, promote,
and distribute them. After understanding the importance of web standards, you can differentiate technical
specifications under development from de facto and de jure web standards.

One of the very first steps in developing sites in languages other than English or creating multilingual
sites is to select and declare the right character encoding. In these chapters you become familiar with the
most powerful character encoding capable of representing all characters of the written languages of the world
as well as widely used notations and historic scripts.

The history of HTML and XHTML markup languages is crucial to understanding document types, the
core document structure, and the allowed elements and attributes for the selected document type. You learn
the syntax, the restrictions, and benefits of XHTML, and the extension of web documents through external
vocabularies as mixed-namespace documents. By enumerating the benefits of HTML5 over HTML 4.x and
XHTML, you will have a solid understanding of cutting-edge markup standards. As you will see, HTML5 can
be written not only in HTML, but also in XML serialization, and web designers can create so-called polyglot
documents that generate the same DOM tree regardless of the parser. You learn the role of hand coding in
Web Quality Assurance, and why machine-generated code cannot compete with web designers. You also
learn how to add machine-readable annotations to the markup and improve the accessibility of web sites.

Without proper web server configuration, the correct appearance, operation, and behavior of web sites
cannot be guaranteed. You learn about the most widely adopted application protocol, the Hypertext Transfer
Protocol, and the structure of the HTTP header. The most common Internet Media Types (MIME types), the
file format identifiers of the Web, are described. You see how to create permanent URIs by minimizing the
information provided in them and removing file extensions on the web server.

You learn why and how to separate content from appearance using Cascading Style Sheets (CSS), and
what the differences are between the major CSS versions. CSS3 offers mechanisms and properties to create
conditional styles depending on the features of the browsing device, create transitions and text effects, and
provide beautiful typography.

The chapters lead you through techniques to build core web site components based on standards. After
reading these chapters, you will have a solid foundation of web standards and will be able to implement the
right standards for your projects.

www.allitebooks.com

http://www.allitebooks.org

3

CHAPTER 1

Introduction to Web Standards

Technical standards are widely used in various fields of life—think of the standards of paper size and the standard
envelopes that fit them, or AC power plugs and their corresponding sockets. Web standards, similar to other
standards, are normative specifications of technologies and methodologies. In other words, they are well-defined
sets of requirements to be satisfied. They are not only ideal from the technical point of view but also represent
user needs. However, web standards are often ignored; the World Wide Web consists of billions of documents that
do not consider proper restrictions or regulations, deproving user experience. This is because the Web is a “free
forum” where everyone can publish pretty much anything without technical skills, content review, or censorship.
Unfortunately, this approach comes at a price: you will often encounter sites that download really slow, collapse in
the browser, or have poor functionality. In spite of the benefits of standard compliance, not only content authors
but also web developers find it challenging to implement web standards, mainly due to the lack of widespread
distribution. Even the most popular web sites can be very confusing, and in contrast to the common misconception,
developers cannot use them as references to learn from. Moreover, web designers often ignore standards because of
the misbelief that developing with standards means an additional workload. Due to their limited knowledge on web
standards, web designers are often not familiar with the benefits of standards compliance and the best practices of
standards-based web design.

In this chapter, you will learn about the significance of web standards and the reliable resources you should
know in order to make the best use of web standards in your web applications. This chapter sets out the major
benefits of web standards. It will also give you a solid understanding of the diversity and status of standards. After
reading the chapter, you will be able to recognize finalized specifications and select the most appropriate ones for
any project.

The Basic Concepts
Web standards are applicable to the World Wide Web (for short, the Web). These formal standards define and describe
various aspects of the Web. According to the Web Standards Project, a major standards promoter, “Web standards are
carefully designed to deliver the greatest benefits to the greatest number of web users while ensuring the long-term
viability of any document published on the Web. Designing and building with these standards simplifies and lowers
the cost of production, while delivering sites that are accessible to more people and more types of Internet devices.
Sites developed along these lines will continue to function correctly as traditional desktop browsers evolve, and as
new Internet devices come to market” [1].

Web standards are often de facto (in practice) standards. Since there is no law that enforces them, web standards are
ignored by a large share of web developers. The Recommendations published by the World Wide Web Consortium (W3C),
the largest web standardization body in the world, are not exceptions either. However, in November 2010, W3C made a
big step forward when it became an ISO/IEC JTC 1 PAS Submitter because any stable core web technologies produced by
W3C are also in the scope of the International Standards Organization (ISO). ISO and the International Electrotechnical
Commission (IEC) can efficiently contribute to the wider, and, if possible, global, adoption of W3C standards by changing
the status of de facto standards to de jure (in principle) [2].

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

4

Web site standardization refers to the development process of standard web sites or the correction of
nonstandard sites to fulfill the requirements to become standard-compliant sites. This phrase has been recently
associated with widely accepted web design technologies, principles, techniques, and best practices, and
unfortunately, various tricks as well as widely adopted CSS and JavaScript hacks. Most web designers are unaware that
such tricks and hacks should not be used at all.

The main goals of standardization are functionality, interoperability, and browser and resolution independence
in order to maximize user experience, access to content, menu usability, mobile-friendliness, and predictable
behavior.

The Role of Standardization
The goals of web design cannot be achieved without a standardized approach. How would it be possible to use
printers on a daily basis without paper-size standards? How could anyone use electric devices without standardized
voltage? Why do web designers assume that standards are not essential to web quality assurance?

The grammar and other rules defined by web standards should be followed in web design. Although browsers
have strong built-in error-handling features capable of eliminating problems on the client side, web developers
should not misuse these features.

Routine design tasks should be based on standards. Overall, designing costs of standard-compliant web
design are lower because fewer design decisions are needed. A further advantage is that developers can reuse their
knowledge during development.

Poor functionality and usability might have a severe impact on web site traffic and business revenue, because
users switch to other web sites within a few seconds if the content is not provided in an appropriate manner or the
user experience is poor.

Since various browsers interpret incorrect markup in different ways, markup errors can lead to inconsistencies,
bad layout, displeasing styling, and unexpected site behavior. The best way to eliminate such problems is to fulfill all
the requirements of structure, syntax, and other rules described by the appropriate Document Type Definition and
W3C Recommendation (see the “W3C” section).

Web designers usually try to implement the latest popular technologies to meet client expectations and compete
with other developers, but not all of these technologies are standardized. Applying up-to-date web standards
can be challenging, but it is vital for providing powerful, modern features while making web sites ready for later
improvements and future standard implementations. Standard compliance is an essential feature of web site
development that guarantees high code quality [3] and improves overall web site usability.

The Cost of Nonstandardized Markup
All Internet users encounter web sites from time to time that break apart and show partly overlapped or incorrectly
positioned elements and/or unreadable content. The cause is, in most cases, the nonstandard or browser-specific
source code, and sometimes the lack of standard support of the web browser used to render the pages.

The majority of web sites are obsolete from the standardization point of view. Even the largest and most
well-known companies publish nonstandard documents constantly.

The major drawbacks of nonstandardized documents are the following:

Inadequate search engine indexing. Crawlers cannot index incorrectly coded documents •฀
efficiently, which can cause visitor loss.1

Longer download time.•฀

Longer rendering.•฀

1There฀are฀hundreds฀of฀other฀factors฀that฀affect฀search฀engine฀indexing.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

5

Incorrect rendering (one of the most significant drawbacks).•฀

Difficult and inefficient development cycle.•฀

Low level of accessibility.•฀

Low level of backward compatibility.•฀

Lost traffic, fewer visitors, and fewer sales. Because of the inconveniences and problems listed •฀
earlier, web sites that are not standard-compliant have a higher risk of losing functionality,
popularity, and productivity.

Additional bandwidth load and hosting cost. Numerous needless characters in the source •฀
code increase both file size and complexity.

More difficult updating and maintenance.•฀

Benefits of Standard-Compliant Markup
Valid, standard-compliant markup has several advantages. Here are the most important ones:

Search engine crawlers can index documents more adequately, and the content is basically •฀
search engine optimized.

Compared to those websites that violate standards, standard-compliant websites can be •฀
downloaded faster.

Well-structured markup provides faster rendering.•฀

Web documents that apply standards properly are rendered accurately in modern browsers.•฀

More users are accommodated, and they probably stay longer because of correct appearance •฀
and layout.2

Lower development costs (only in case of well-qualified developers and carefully selected •฀
software tools).

Standard-compliant markup serves as the basis for website accessibility.•฀

Backward compatibility is ensured as browsers evolve.•฀

Optimal content lengths and file size (no unnecessary characters are listed in the source •฀
code), as well as cost-optimal storage (potential for cheaper hosting).

Standard-compliant markup is easier to maintain and update than the markup that •฀
violates standards.

Standard-compliant source codes become obsolete later, and upgrading is much easier when •฀
new standards are introduced.

Compatibility with current and future browsers is guaranteed (at least from the developers’ •฀
point of view).

Inspire implementation and force web browsers to support standards progressively.•฀

As you can see, the standard-compliant, clean code has many advantages over nonstandard code and that’s why
standard compliance is vital in modern web design.

2Assuming฀that฀the฀web฀site฀has฀a฀decent฀design.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

6

Development and Announcement of Standards
Web standards are technical specifications of web technologies released by standardization bodies. Most web standards
are published by the W3C [4]. The W3C Recommendations are vital in standards-based web design.3 W3C publishes
the most web specifications by far, covering markup languages, style sheets, metadata, XML technologies, semantic
markup, mathematical notation, graphical formats, and other technologies. However, there are also other influential
standards organizations on the web standardization scene (Table 1-1).

Table 1-1. Influential Organizations in Web Standardization

Organization Abbreviation Web Site Major Specifications

and Standards

Dublin Core Metadata Initiative DCMI www.dublincore.org Dublin Core Metadata

ECMA International
(formerly ECMA)

ECMA www.ecma-international.org ECMAScript [5]

International Organization for
Standardization

ISO4 www.iso.org Web site engineering and
other IT standards [6], user
interface standards, PNG
functional specification

Internet Assigned Numbers
Authority

IANA www.iana.org Domain names, IP address
coordination, protocol
assignments [7]

Internet Engineering
Task Force

IETF www.ietf.org Internet standard (STD)
documents [8], Request for
Comments (RFC) documents
[9], for example, proper use of
HTTP, MIME, and URI

Unicode Consortium Unicode www.unicode.org Unicode Standard, Unicode
Technical Reports (UTRs) [10]

Web Hypertext Application
Technology Working Group

WHATWG www.whatwg.org HTML5, Microdata, Web
Applications, Web Forms, Web
Workers [11]

World Wide Web Consortium W3C www.w3.org Most web recommendations,
as for example, (X)HTML,
CSS, DOM, XForms, SVG, RDF,
GRDDL, OWL

3The฀term฀recommendation฀indicates฀the฀lack฀of฀legal฀status,฀which฀is฀one฀of฀the฀reasons฀why฀web฀standards฀are฀not฀฀
implemented฀globally.
4Since฀ the฀name฀of฀ the฀organization฀would฀have฀different฀abbreviations฀ in฀all฀ their฀ three฀official฀ languages,฀English,฀French,฀and฀
Russian,฀the฀organization฀adopted฀ISO฀as฀its฀abbreviated฀name฀(from฀the฀Greek฀word฀isos,฀meaning฀equal).

www.allitebooks.com

www.dublincore.org
http://www.ecma-international.org
www.iso.org
www.iana.org
http://www.ietf.org/
http://www.unicode.org/
http://www.whatwg.org
http://www.whatwg.org/
http://www.w3.org/
http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

7

W3C
Founded and directed by Tim Berners-Lee (sometimes referred to as “the inventor of the Web”), the World Wide Web
Consortium is the largest international organization for developing standards for the World Wide Web. It has several
local offices throughout the world. The members of W3C are mainly universities and research groups that are keen to
participate in the development of web standards. W3C works as an open forum.

Efforts are made to ease contributions to web standards. In fall 2010, W3C released the proposal “Making W3C
the place for new standards” [12]. Openness could be the key to new, easier contributions from the web community,
including independent web developers without W3C membership. It also contributes to the maximization of
knowledge reuse [13]. Important standards such as HTML5, CSS, SVG, MathML, various APIs, RDFa, and Microdata
are summarized in a suite of technical standards called the Open Web Platform, which is open for contributions from
external organizations and the public [14]. W3C is now “an open platform for web standardization” [15].

Many problems web developers face every day have already been solved and published in earlier W3C
Recommendations, often several years ago. News feeds, for example, are not as new as one might think. One of the
first attempts for web syndication was described in 1995 [16], many years before news feeds first appeared on the Web
and became supported by major browsers, operating systems, and office suites. Surprisingly, RSS 0.9 was published as
early as 1999 [17]!

A similar trend holds for markup languages, semantic annotations, vector graphics, equations, and other
specifications.

Mathematical notations are published as GIF image files all over the Internet, although the markup language for
this purpose became a Recommendation in 1999 (with updates soon following).

Vector graphics are seldom used on the Web, although W3C started to develop the SVG standard in 1998, and
it became a Recommendation in 2001.5 High-resolution bitmap graphics are used instead. But why? They should be
replaced by SVG whenever possible, and raster graphics should be applied for publishing photographs only. SVG
is supported by Amaya, the free web editor/browser of W3C, and popular graphic suites like Adobe Illustrator and
CorelDraw. From 2010, SVG has also been indexed by Google [18]. SVG 1.2 supports animation too. Editing SVG
is not more complicated than editing bitmaps, so why not use them? SVG files are generally smaller in size, can be
downloaded faster, and unlike bitmaps, SVG images can be resized and arbitrarily magnified without quality loss.

WHATWG
The Web Hypertext Application Technology Working Group (WHATWG) is a professional yet unofficial community
founded by individuals in 2004. The WHATWG was a response to the relatively slow standards development of the
W3C staff and their decision to abandon HTML in favor of XHTML. The WHATWG has an invitation-only committee,
which controls the editing of specifications. Anyone can contribute to the efforts of WHATWG by joining one of its
open mailing lists [19].

ERCIM
The European Research Consortium for Informatics and Mathematics assembles researchers to work in cooperation
on various fields of ICT and applied mathematics including, but not limited to, information system applications,
information storage and retrieval, information interfaces and presentation, data encryption, and database
management [20]. The scientific approach is ensured by 22 organizations from different countries across Europe.
ERCIM has played a major role in the formulation of standards such as SMIL and SVG [21].

5In฀contrast,฀Internet฀Explorer฀supports฀SVG฀natively฀from฀2011฀only.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

8

IETF
The Internet Engineering Task Force (IETF) is a standardization group within the nonprofit organization Internet
Society (ISOC) along with the Internet Architecture Board (IAB). IETF focuses mainly on Internet protocols. IETF
standards are generally on lower levels than web site developers are interested in; however, even the well-known
TCP/IP has been developed by IETF. “The mission of the IETF is make the Internet work better by producing high
quality, relevant technical documents that influence the way people design, use, and manage the Internet [8].”
Technical documents are listed on the Requests for Comments (RFC) web site [22].

Ecma International
Ecma International is a nonprofit standards organization that develops and promotes standards for information
and communication systems [23]. One of its most important standards from a web developer’s point of view is the
standardized scripting language ECMAScript (which JavaScript is based on; see the section “JavaScript” for more).

Unicode Consortium
The Unicode Consortium coordinates the development, maintenance, and promotion of Unicode and other
internationalization standards [24]. The nonprofit organization defines the behavior and relationship between Unicode
characters. The consortium works in close collaboration with W3C and ISO. The most important part of the cooperation
is the maintenance of ISO/IEC 10646, the International Standard synchronized with the Unicode Standard.

DCMI
The Dublin Core Metadata Initiative is a registered company in Singapore [25]. The open organization develops
and maintains interoperable metadata standards. DCMI provides annual conferences and workshops, standards
liaison, and standards promotion. The worldwide community of users and developers is supported by DCMI through
collaborative work in discussion forums, communities, and task groups.

IANA
The Internet Assigned Numbers Authority is the organization that oversees global IP address and top-level domain
allocations, root zone management in the Domain Name System (assignments of ccTLDs and gTLDs), MIME types,
and other Internet Protocol–related symbols and numbers [26]. IANA is operated by the nonprofit corporation called
Internet Corporation for Assigned Names and Numbers (ICANN) [27].

OASIS
The Organization for the Advancement of Structured Information Standards (OASIS) works on open standards for
web services, interoperability, security, and ebusiness. Its slogan is “Advancing open standards for the information
society” [28]. The consortium maintains influential information portals on web services as well as on XML [29, 30].

ISO
Founded in 1947, the International Organization for Standardization (ISO) is an international standardization
body that represents various standards organizations from all over the world [31]. ISO provides both industrial and
commercial standards. ISO has developed more than 19,500 international standards on a variety of subjects, many of
which are also used on the Web (for example, country codes, date/time, and time duration annotations).

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

9

Standards Promotion and Distribution
Most web standards are optional only and not enforced by law (which would be the only way to achieve worldwide
implementation). However, there are new trends that transform the web design industry. For example, there
are accessibility standards enforced by law in some countries (see the section “Defining Web Accessibility”).
Since web standards are not ubiquitous, it can be difficult for web designers to maintain up-to-date knowledge
and learn new technologies. However, they can participate in a variety of events, including workshops and
conferences, and use resources such as textbooks or online specifications to train themselves either as individuals
or professional group members.

Groups and Associations
There are numerous groups among enthusiastic web developers that distribute and expedite standards and harmonize
them with best practices. Membership fees in such groups are generally much lower than those of standardization
bodies. In fact, some of them are open, and anyone can join free of charge. While appealing, many professional
groups and associations focus on the latest technologies rather than standards. The following sections provide a quick
overview of influential groups in web standardization.

The Web Standards Project

The Web Standards Project (WaSP) was founded in 1998 by professional web developers to spread the application of
web standards published mainly by W3C. The Web Standards Project was “a grassroots coalition fighting for standards
which ensure simple, affordable access to Web technologies for all” [1]. The organization focused on standard
support, accessibility, and easier development.

WaSP’s standardization processes were based on task forces. The Project’s aim was to attract the attention of the
most considerable companies and organizations of the world and persuade them to become as standard-compliant
as possible. WaSP task forces included the following:

Accessibility Task Force•฀

Adobe Task Force (formerly Dreamweaver Task Force)•฀

Education Task Force•฀

International Liaison Group•฀

Microsoft Task Force•฀

The Street Team•฀

Among others, the Web Standards Project introduced the famous Acid tests used to compare standard support
of browsers (see the section “Standard Compliance Tests”). In 2013, the Web Standards Project stopped working in its
original form, and contributions can be made through other projects only.

Web Standards Group

As a web developer community, the Web Standards Group (WSG) focuses on web standards and best practices to
achieve standard codes. WSG has thousands of members from all over the world [32].

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

10

International Webmasters Association

The International Webmasters Association is a W3C member that “provides and fosters professional advancement
opportunities among individuals dedicated to or pursuing a Web career, and to work diligently to enhance their
effectiveness, image, and professionalism as they attract and serve their clients and employers” [33].

Web Industry Professionals Association

The Web Industry Professionals Association (WIPA) is a technical association in Australia. WIPA assembles
professional individuals working in the web industry to “exchange ideas, participate in debate, advance education and
promote ethical practice” [34]. WIPA is a major organizer of web courses in Australia.

Open Digital Rights Language Initiative

The Open Digital Rights Language (ODRL) Initiative is an international organization that develops and promotes the
ODRL vocabulary [35], which is an open standard for policy expressions (see the section “DC, IMS, and ODRL”).

Staying Informed: Events and Courses
Beyond online resources such as official news feeds, there are several types of appearances and events that
contribute to the worldwide distribution of web standards. The list includes press releases, scientific and professional
conferences, talks, workshops, meetings, discussion forums, symposiums, and tutorials. The papers or presentations
from these events are often available online. Web standardistas can use these documents to maintain up-to-date
knowledge and keep abreast of the latest specifications.

The primary resource for major web standards events such as workshops and conferences as well as
announcements of recommendations and presentations is the W3C web site at www.w3.org [36]. Events are classified
as “Talks and appearances” and “Events.” Past events are available in the News Archive [37].

The World Wide Web Consortium also offers online training courses on or related to standards such as SVG or
mobile-friendly web design through a dedicated portal [38]. The courses consist of weekly modules with instructions
(lectures), link collection, activities, and a discussion forum. The quality is guaranteed by the instructors who are
either co-authors or editors of the relevant W3C standards or internationally recognized invited experts. Participants
can expect to spend two to three hours per week on these courses.

The Internationalization & Unicode Conference (IUC) has been organized annually since 1977. It covers the latest
industry standards and best practices on software and web application internationalization. Up-to-date information
about this conference is available at www.unicodeconference.org [39].

IETF meetings are held three times a year. Information on upcoming meetings, requests, materials, proceedings,
and sponsoring are published on the IETF web site [40].

The Dublin Core Metadata Initiative has held the International Conference on Dublin Core and Metadata
Applications annually since 2001 [41].

WIPA provides up-to-date information on upcoming events such as Australian training courses and workshops
on the WIPA web site [34].

The Association for Computing Machinery (ACM) maintains an up-to-date calendar on IT conferences and
events, some of which are related to web technologies [42].

World Standards Day has been celebrated since 1970 by ISO, IEC, and ITU each year on 14 October in Geneva,
Switzerland. The message of World Standards Day 2010 clearly indicated a major aim of standardization: “Standards
make the world accessible for all” [43].

Not all prominent events have a long track history, though. Many promising conferences and workshops are good
initiatives such as the popular conference called Future of Web Apps [44].

There are web sites that are collections of events and articles of a given topic. A good example is
www.semanticmetadata.net, which is a comprehensive site for Semantic Web developers [45].

http://www.w3.org/
http://www.unicodeconference.org/
http://www.semanticmetadata.net/

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

11

Resources
One of the easiest ways to keep up-to-date with web standards is to subscribe to the news feeds of standardization
bodies and organizations, and regularly check their web sites. Course materials, conference proceedings, and
presentation slides are also available on many of these sites. An endless variety of further resources are also available.

W3C provides a weekly newsletter [46]. Its latest news is available in both Atom [47] and RSS [48] news feeds. The
vast majority of W3C documents are public and freely available.

General news on Unicode is available through the news feed of the Unicode Consortium [49].
The Dublin Core Metadata Initiative publishes news on the home page of its web site and provides a news feed [50].

The proceedings of the International Conference on Dublin Core and Metadata Applications are available at the DCMI
Publications page [51].

Scientific journal papers with Digital Object Identifier (DOI) can also be found throughout the Web, although many
of these documents are not in the public domain. Still, most of them provide at least a free abstract, and a reference list.

Types, Stages, and Status of Standards
The Web is a highly innovative medium where constant changes and improvements necessitate continuous standard
development. This results in different document maturity levels. W3C Recommendations progress through five such
levels, which is the W3C process flow [52]:

Working Draft (WD)•฀

Last Call Working Draft•฀

Candidate Recommendation (CR)•฀

Proposed Recommendation (PR)•฀

W3C Recommendation (REC)•฀

The last version is considered by developers as the (de facto) standard to be applied. W3C Recommendations
are sometimes updated by separately published erratum. After a considerable amount of changes, new editions are
published that supersede the current version. Since W3C uses permanent addresses that won’t change over time,
the URI of each version of their specifications is unchanged (and usually includes a datestamp), which ensures the
availability of all versions of their specifications. The document status determines which version is the most
up-to-date one and which one should be applied. The list of current W3C publications and the latest revision of
technical reports can be found in the W3C technical reports folder [53].

Other standardization bodies use different status conventions. The Internet Engineering Task Force, for example,
applies document status such as Internet draft, informational, and proposed standard. The latter one is defined as
a “generally stable specification which has resolved known design choices, is believed to be well-understood, has
received significant community review, and appears to enjoy enough community interest to be considered valuable.
However, further experience might result in a change or even retraction of the specification before it advances [54].”
The IETF RFCs are designated as standards, draft standards, proposed standards, best current practices, informational
documents, experimental documents, and historic standards [55].

The Microformat Community uses the status draft specification for those documents that are “somewhat mature
in the development process” and whose stability is not guaranteed [56]. Implementers of such documents are warned
to keep abreast of future developments and changes.

ISO applies the following conventions:

•฀ Preliminary Work Item (PWI)

•฀ New Work Item Proposal (NP or NWIP, NP Amd/TR/TS/IWA)

•฀ Working Draft (AWI, AWI Amd/TR/TS, WD, WD Amd/TR/TS)

•฀ Committee Draft (CD, CD Amd/Cor/TR/TS, PDAmd (PDAM), PDTR, PDTS)

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

12

•฀ Enquiry Draft (DIS, FCD, FPDAmd, DAmd (DAM), FPDISP, DTR, DTS)

•฀ Final Draft International Standard (FDIS, FDAmd (FDAM), PRF, PRF
Amd/TTA/TR/TS/Suppl, FDTR)

•฀ International Standard (ISO TR, TS, IWA, Amd, Cor)

Many web standards are open standards, meaning that the development has been open to individual
contributors; they are publicly available, and certain copyright licenses might apply.

The Variety of Rendering Engines
Web documents and files associated with style sheet files, script files, images, and XML files are processed and
displayed (that is, rendered) or printed by rendering engines (layout engines). They are usually embedded in web
browsers and e-mail clients.

Although the statistics of web browser market share [57, 58, 59, 60, and so on] are usually biased and inaccurate,
one thing is certain: no user agent can be claimed as “the most popular” or the “most widely used” one, because usage
share varies across application areas (mobile browsing, business setting, etc.). Consequently, browser independence
is a fundamental need in web design that ensures interoperability and functionality.

In the early 2010s web browsers reached a really high level of web standards support, and it is now the web
designers’ turn to develop standard-compliant sites that leverage this standard support. To design web sites that
achieve a similar (and not pixel-by-pixel identical) appearance in various browsers has always been a challenge (and
often nightmare) for web designers. While the implementation of core web standards eventually became adequate
in modern browsers, there are specifications under development (such as many CSS3 modules) that are already
implemented partially and/or incorrectly in browsers. Due to this inconsistency and the different functioning and
features, various browsers might render even standard-compliant web sites differently. For years, various tricks and
hacks were used to address the problem which lost their relevance thank to best practices, but such tricks and hacks
are still present in older web sites.

SVG support can serve as a good example for the limited implementation and slow adoption of web standards.
The specification was published in 1999, and no one cared about it until the growing popularity of HTML5, which
natively supports the format. Browsers such as Firefox, Chrome, Opera, or Safari have adopted the standard lately,
although before IE, which is quite disappointing because none of them supported SVG for so many years. In the
early 2000s, one (if not the only one) that did was Amaya. Until recently, many people used the Adobe SVG Viewer
plug-in to display SVG images in their browsers, and most users could not open SVG files at all.

The implementation of elements and attributes does not necessarily mean proper, full support for a markup
language. For example, some browser vendors claimed for years that their product supported MathML; however,
MathML could not be rendered in many cases because of the lack of support for embedding mechanisms and external
files. Even the appropriate MIME type was missing from most implementations.

Standards support, especially of CSS, has been incorrect and/or incomplete in most browsers for years.
Moreover, the latest version of CSS, CSS3, was introduced before the previous one, CSS 2.1, could have gained
complete support in browsers.

There’s always been web designers who preferred one of the browsers over the others, and users who hated one
or more of the major browsers, especially Internet Explorer.6 For years, the third-party competitors of IE have been
implementing the latest technologies right after their release (Figure 1-1). Since 2012, Internet Explorer keeps up with
such changes through periodic updates, but previously it was lagging behind the other browsers due to rare updates
and the slow release of new major versions (three years have passed between version 7 and 8, two years between
version 8 and 9, compared to Firefox’s rapid release at six-week intervals since version 5).

6As฀the฀built-in฀browser฀of฀Windows,฀it฀is฀more฀vulnerable฀than฀third-party฀browsers,฀and฀older฀versions฀of฀Windows฀do฀not฀support฀
the฀latest฀versions฀of฀IE,฀while฀the฀latest฀version฀of฀third-party฀browsers฀can฀be฀installed฀even฀on฀really฀old฀systems.฀Third-party฀
browsers฀have฀other฀limitations฀and฀issues.฀Google฀Chrome,฀for฀example,฀has฀well-known฀privacy฀issues.

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

13

Trident
Used by Internet Explorer (since version 4) and IE shells, Outlook Express, Maxthon, and various media players,
Trident is one of the most widely used rendering engines. Windows Internet Explorer (formerly Microsoft Internet
Explorer) is a series of graphical web browsers developed by Microsoft. IE has been implemented in the Microsoft
Windows operating systems since 1995.

Although Internet Explorer has been continuously improved in each version, even the most important
standards, that is, the ones that describe the markup and style sheets, were implemented in an incomplete fashion
until version 9. The limited standards support, incorrect floating positions, the expanding box problem, and
especially the implementation of the individual box model of Internet Explorer 6, have caused serious problems in
web design for years.

The standard-compliant mode was introduced in version 6; however, it did not solve the problem. Even some
of the well-known HTML 4.01 elements (for example, abbr) were not supported prior to IE8. Several DHTML
objects did not comply with standards. When web pages were rendered in IE8 mode, however, the methods
and attributes updated in IE8 caused problems with web sites that expected the rendering functionality of
earlier IE versions [61].

Figure 1-1. Browser updates provide new features such as advanced support for the latest standards

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

14

For years Trident has supported HTML 4.01, XML 1.0, XSLT 1.0, and DOM Level 1 with minor implementation
gaps. CSS Level 2 and DOM Level 2 have been provided with major implementation gaps and conformance issues.
The CSS support in Windows Internet Explorer has constantly been evolving. Internet Explorer 6 was the first version
with full CSS Level 1 compliance. However, some selectors such as min-height were missing. Internet Explorer 8 is
the first IE version with nearly complete CSS 2.1 and partial CSS3 support. The CSS features introduced in Internet
Explorer 8 worked only if the web pages were rendered in IE8 mode (or higher). This was ensured by adding the meta
tag described in Listing 1-1 to the head section of web pages, which should be avoided.

Listing 1-1. Version Targeting for Internet Explorer 8 (Should Not Be Used)

<meta http-equiv="X-UA-Compatible" content="IE=8" />

Since Trident version 4 (used by IE8), a built-in RSS/Atom news feed reader is also available through a dedicated
button with the RSS logo.

Microsoft recently recognized the importance of standards support and has begun to take it seriously. First,
Microsoft became an active participant in standards development in the CSS3 and SVG Working Groups at W3C.
Second, it is a co-chair of the HTML5 Working Group and a leader in the HTML5 Testing Task Force.

Trident 5 applied in Internet Explorer 9 introduced support for modern web standards, including HTML5,
CSS3, ECMAScript5, DOM Levels 2 and 3, ICC Color Profiles, and SVG [62]. Trident 5 introduced a new hardware-
accelerated JScript engine called Chakra. In contrast to earlier versions that can render only “HTML-compatible”
XHTML documents served incorrectly with the text/html MIME-type, Trident 5 provides full XHTML support.

Trident 6 (IE 10) had improved HTML5, CSS3, and EcmaScript5 support, and interoperable HTML5 Quirks Mode.
The major HTML5 improvements were support for the async attribute on HTTP/2 elements, Drag and Drop, File API,
Sandbox, Web Sockets, Web Workers, some Web Performance APIs, HTML5 Video Text Captioning, local storage with
IndexedDB and the HTML5 Application Cache. As for CSS, Trident 6 added support for CSS3 multi-column layout,
grid layout, and flexible box layout, positioned floats, CSSOM Floating Point Value, Media Queries, 3D Transforms, text
shadow, transitions, transforms, animations, gradients, and the font-feature-settings property to access advanced
OpenType features. Trident 6 also supported SVG Filter Effects, JavaScript Typed Arrays (WebGL), and Cross-Origin
Resource Sharing (CORS) for XMLHttpRequest.

IE 11 (powered by Trident 7) supports WebGL and Google’s SPDY open networking protocol. HTML5 support has
further improved, including new features such as HTML5 full screen, HTML5 prerender, and HTML5 prefetch. Other
new features include WebGL, CSS3 border image, and HTTP/2 support, and improved JavaScript performance.

Gecko
Firefox, Camino, the Mozilla Application Suite, Netscape, Thunderbird, SeaMonkey, and other software apply the
rendering engine Gecko (originally NGLayout) [63]. Netscape released the first version in 1997. In 1998, the Mozilla
project was launched, and the source code was released under an open source license. Gecko is now developed by the
Mozilla Foundation/Corporation. It is written in C++7 as a cross-platform layout engine under three licenses:
Mozilla Public License (MPL), GNU General Public License (GPL), and GNU Lesser General Public License (LGPL).

Gecko was originally designed with web standards support in mind and the standards implementation is
improved in each version. Gecko supports HTML5, MHTML, Ruby annotations, CSS3, JavaScript,
ECMAScript 3 and 5, DOM Levels 1/2/3, XML 1.0 and 1.1, SMIL, MathML, RDF, RDDL, XSLT 2.0, XSL-FO 1.0,
XInclude, XForms, XFrames, XPath 2.0, GraphML and GML/XGMML, SVG 1.1, and Animated PNG (APNG)
images with alpha transparency.Gecko supports DOCTYPE switching for backward compatibility, making it possible
to render nonstandard web sites designed for older browsers correctly. Older Internet Explorer issues such as the
incorrect implementation of the document.all property or the marquee element are also handled.

7The฀Mozilla฀Firefox฀browser฀has฀parts฀written฀in฀C/C++,฀JavaScript,฀CSS,฀XUL,฀and฀XBL.

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

15

Firefox also provides Google’s Safebrowsing protocol to improve the security of data exchange.
Firefox does not support ActiveX controls by default. Although third-party plug-ins are available, they do not

work safely in all versions and under all platforms.

KHTML
KHTML is the layout engine used by Konqueror. It supports HTML 4.01 and HTML 5. Both screen and paged media
support is provided for CSS 2.1. Beyond the full implementation of CSS 3 selectors (from KDE 3.5.6 [64]), KHTML
supports other CSS3 features, for example, multiple backgrounds, box-sizing, and text-shadow. KHTML supports
DOM 1 and 2 fully and DOM 3 partially. ECMA-262 (JavaScript 1.5) can be used in KHTML, along with the graphic
formats PNG, MNG, JPEG, GIF, and SVG).

WebKit
The forked (adopted) version of KHTML is the open source WebKit layout engine. The most well-known browser
that uses WebKit is Apple Safari. Google Chrome used WebKit until version 27. Further browsers that use(d) WebKit
are Amazon Kindle, Arora, Midori, OmniWeb, Shiira, iCab (4+), Epiphany, SRWare Iron, and Maxthon (3+). WebKit
has been used on several mobile devices such as the Apple iPad, iPhone, and iPod Touch, as well as the browser on
Android, Palm webOS, and Symbian S60. The desktop version of Safari is available for both Apple and
Windows computers.

Being one of the first implementers of the latest standards (which have also been proved by the Acid2 and Acid3
tests), Safari has always been considered as one of the most innovative web browsers. Safari 5, for example, was
amongst the first browsers that supported the newly introduced HTML5 features such as Media Support, full-screen
playback for the video element, canvas, Geolocation, structuring elements, Ajax history, the draggable attribute,
forms validation, the sandbox attribute, and Ruby annotation. Safari 5 handled CSS animations, CSS effects, and Web
Fonts, provided JavaScript support (ECMAScript 262 version 3), and handled JSON, XML 1.0, and SVG 1.1. Advanced
accessibility features have also been introduced in Safari 5 such as VoiceOver Screen Reader, ARIA Support,
enhanced keyboard navigation, full-page zoom, content zoom, closed captions for HTML5 video, custom style sheets,
and minimum font size. It also had a built-in news feed reader [65]. These features have further been improved in
later versions.

The very first version of the other popular browser that used the WebKit rendering engine, Google Chrome, passed
the Acid1 and Acid2 tests, indicating good web standards support. Chrome passes the Acid3 test from version 4.

Presto
Presto was the rendering engine used by the Opera Desktop browser from version 7 to 15, along with the Opera
Devices SDK, and the Opera Mobile and Mini variants. Opera served as the basis for other browsers such as Nintendo
DS and DSi, Nokia 770, and Wii Internet Channel, as well as the browser for Sony Mylo COM-1.

One of the reasons for Presto’s good web standards support was Opera Software’s W3C membership [66]. Opera
was amongst the first browsers with HTML5 support covering the canvas, video, audio, web forms, contentEditable,
the input attribute and the input type, the viewport meta element, and HTML5 APIs like Web Workers, Geolocation,
Selectors, Touch Events, as well as CSS3 selectors, SVG, and SMIL [67].

Blink
The Blink rendering engine, announced in April 2013, is a fork of Webkit and used in Google Chrome 28+, Opera 15+,
Webview (Android 4.4+), RockMelt, and Amazon Silk. Blink has excellent HTML5 and CSS3 support, and it deprecates
vendor prefixes used in non-standard style sheets.

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

16

Amaya
Unlike other browsers that are typically used exclusively to display web documents, Amaya was a free, open source
web browser and a WYSIWYG web developer environment in one. Managed by W3C, Amaya supported HTML 4.01,
XHTML 1.0, XHTML Basic, XHTML 1.1, HTTP 1.1, MathML 2.0, CSS2, and SVG [68]. Distributions were available for
Windows, Linux, and Mac. While still available, the latest version was released in 2012 when Amaya’s development
was discontinued.

Testing the Standard Support of Browsers
Web browsers can be tested from two different aspects: supported standards and user experience through
performance and features. The development of browser tests depends on the approach and aim. From the web
design perspective the first one is more important. The most influential browser tests are platform-independent, and
can compare not only different browsers, but also the same browser running on different platforms. Incomplete or
incorrect standard support is usually tested with comprehensive tests, many of which are public. Most browser tests
require human evaluation to identify bugs with full certainty.

Automatic layout tests are difficult to execute on mobile devices because layout tests generate a screenshot and
compare it to a reference image.

Two different versions of the same web page supposed to result in exactly the same rendering can be compared
using ref-tests [69]. Mozilla also provides an automated testing framework using MochiKit JavaScript libraries [70].
The test applies JavaScript function calls. These browser-specific tests cannot be used for general browser comparisons.

The World Wide Web Consortium provides HTML tests [71], CSS test suites [72], mobile tests [73], a MathML test
suite [74], SVG test suites [75], and internationalization tests [76]. W3C is open to browser test suggestions as well [77].

The web design community develops specialized browser tests such as the HTML5 Test [78] and the CSS3 Test [79].

Standard Compliance Tests
The most well-known browser tests for standard compliance are the Acid tests. The name refers to the acid tests used
for gold assessment. Instead of gold purity, however, these Acid tests provide a fast and easy-to-understand indication
of the standard compliance of rendering engines. In spite of that, the Acid tests have always been criticized for testing
not only the core markup and style sheet compliance, but also a set of rarely used features, along with those without a
finalized specification.

The first version of the Acid test, Acid1, was written in HTML 4.0 Strict in late 1998 to check interoperability issues
between earlier web browsers. Acid1 tests several features with stress on compliance with the CSS1 specification on a
page against a reference image [80]. According to the document title, Acid1 is a “display/box/float/clear test.”

Acid2 is a test page published by the Web Standards Project in 2005. Again, a reference image is provided that
should be compared to the rendered version. Note that the nose should change to blue when the mouse hovers over
the face [81]. Beyond this hovering effect, Acid2 tests the paint order, the object element, data URIs, alpha transparency
of PNG images, and several CSS features (absolute, relative, and fixed positioning, the CSS box model, CSS table
formatting, CSS generated content, and CSS parsing). Safari was the first among the widely used browsers that passed
Acid2 in late 2005. Others followed two to three years later. For example, Firefox passed the test from version 3.0.

Acid3 has been launched in 2008, and updated in September 2011. The 100 subtests grouped in 6 “buckets”
cover various parts of the following standards: data URI scheme, HTTP 1.1 Protocol, HTTP status codes, Unicode 5.0
UTF-8 and UTF-16, the image/png and text/plain content types, the HTML 4.0 Transitional, HTML 4.01 Strict, and
XHTML 1.0 Strict markup languages, DOM Level 2 (Core, HTML, Events, Style, Views, Traversal, Range), the object
element, ECMAScript (including garbage collection), CSS selectors, SVG 1.1 (including fonts), and SMIL 2.1. Not only
those browsers fail the test that cannot achieve the score 100/100, but also the ones that cannot render the animation
smoothly or render it differently than what is presented in the reference (Figure 1-2 [82]).

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

17

The following were the first stable, public browser releases that passed the Acid3 test:

Apple Safari 4.0 (the very first web browser to pass Acid3 [83])•฀

Bolt 1.6 [84]•฀

Epiphany 2.28.0 [85]•฀

Firefox 4 (updated Acid3)•฀

Google Chrome 4.0.249.78 [86]•฀

Internet Explorer 10•฀

iPhone 3.1•฀

Iris 1.1.4•฀

Opera 10.6 [87]•฀

Opera Mobile 9.7 [88]•฀

Figure 1-2. The Acid3 test in a browser that failed to pass

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

18

Comprehensive Tests
There are several other considerations in rendering engines beyond standard compliance, for example, security or
CSS Selectors API [89] support.

Layout tests, Mochi tests, and RefTests can be performed by BrowserTests, a repository of browser test cases and
test suites [90].

A comprehensive comparison and evaluation of overall browser functionality are provided by BrowserScope.
It is a “community-driven project for profiling Web browsers” [91]. The site provides up-to-date information on recent
tests performed on the latest browser versions. Browsers can be compared, and tests can be run on the browser used
for rendering the site.

Standards vs. Quirks Modes, DOCTYPE Switching
Standard-compliance problems of web browsers are not recent. The situation has been constantly improved,
however. After partially supporting the W3C Recommendations, browser users and web site developers faced a
serious problem. Millions of web sites developed earlier for older browsers looked fine in obsolete rendering engines
but had serious issues in the latest ones. In other words, compliance with W3C Recommendations became a problem.

In 1998, Todd Fahrner from the Web Standards Project invented the solution known as DOCTYPE switching [92].
Older, nonstandard documents with a missing DOCTYPE might produce different results in various rendering engines.
Modern browsers check the DOCTYPE, and if the expected behavior follows W3C standards, the document is rendered
in Standards Mode (Strict Mode). If the Document Type Definition is missing, browsers switch to a mode known as
Quirks Mode 8[93] that can deal with the nonstandard, unexpected behavior of older browsers (Figure 1-3).

Figure 1-3. W3C test file in Standards Mode [94] and Quirks Mode [95]

8In฀Internet฀Explorer฀9฀and฀10,฀the฀backward฀compatibility฀mode฀is฀called฀Compatibility฀Mode,฀which฀was฀renamed฀in฀Internet฀
Explorer฀11฀to฀Emulation,฀providing฀a฀mechanism฀that฀can฀also฀be฀triggered฀manually฀to฀render฀version-targeted฀web฀sites฀with฀
older฀versions฀of฀the฀rendering฀engine.

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

19

One of the most famous browser bugs was the Internet Explorer box model bug that made identical pixel-by-pixel
rendering in various browsers impossible. It occurred as Microsoft’s own box model implementation instead of the
W3C CSS box model [96] in earlier versions of Microsoft Internet Explorer. (Some web developers, however, argue
that the box model implemented in IE5 was more logical than that of W3C’s [97]; still, it was not standard.) IE6 and
newer versions eliminate the problem in Standards Mode. For the sake of compatibility, however, the bug is still
present in Quirks Mode. (Internet Explorer for Mac, which was discontinued in 2006, was not affected.) According
to the W3C CSS1 specification, released in 1996 (revised later several times), determining the width and height
attributes of all block-level elements should affect the width and height of visible elements only while the padding,
borders, and margins should be applied later. Internet Explorer 5 wrapped the content, padding, and borders within
a predetermined width/height. As a result, the rendering box was different from what was expected. The box model is
present in newer versions of the Cascading Style Sheets specification too, including CSS 2.1 [98] and CSS3 [99].

Standard-compliant web pages can be opened faster since browsers can use Standards Mode instead of figuring
out nonstandard markup in Quirks Mode.

Internet Explorer 6 rendered all pages in Quirks Mode if anything other than a byte-order mark appeared before
the DOCTYPE declaration.Modern browsers render all pages providing a DOCTYPE in Standards Mode, whether they are
served with or without an XML declaration.

Problem Statement
It is a common misconception that web standardization is a well-regulated process. In reality, there is no clear set of
rules to follow. Although W3C develops web technologies for markup, annotation, styles, and so on, that will sooner
or later obtain an official mandate, the implementation of their “standards” (recommendations) is an expectation
only. Unlike the standards announced by standardization organizations, for example, the ISO, web recommendations
are adopted globally because of the lack of an official status [100]. Individual vendors and web site developers
might follow some of the recommendations, might not. This approach proved to be insuffiecient in the widespread
implementation of web standards. In fact, 99.9 percent of web sites are obsolete in terms of standards compliance
[101], since a large share of web sites are based on invalid code.

A comprehensive validation test series was conducted in 2011 on the 350 most popular web sites in the world
(selected by Alexa index9 [102]). The test found 94 percent of those web sites failed the web standards validation tests
that covered character encoding, markup, and style sheets.

While UTF-8 should be used everywhere, 12 other character encodings were also used, namely, ISO-8859-1,
GB2312, Shift_JIS, GBK, Windows 1251, EUC-JP, Windows 1256, ISO-8859-15, ISO-8859-2, ISO-8859-7, ISO-8859-9,
and Windows 874. As for the markup languages, nine (X)HTML versions and variants were identified which confirms
web designer unawareness and lack of skills or experience. At the time of the test, 14 percent of web sites had applied
HTML5 before the specification had been finalized, 23 percent used the obsolete HTML 4.01 Transitional, 45 percent
the XHTML 1.0 Transitional, 8 percent the XHTML 1.0 Strict, 5 percent the HTML 4.01 Strict, and 5 percent other
languages such as HTML 4.0 Transitional, HTML 4.0 Strict, and XHTML 1.1 (Figure 1-4). Although two versions,
XHTML 1.0 Strict and HTML5, can be considered modern markup languages, they were applied incorrectly: the
markup was full of errors on many sites. This situation was clearly indicated by the average number of markup errors,
which was 6. The number of style sheet errors was even higher, with an incredible high maximum of 738 errors (!) in a
single CSS file. The average number of CSS errors was 45. And these numbers represented the index files only.

9Naturally,฀the฀list฀of฀web฀sites฀changes฀constantly,฀but฀it฀does฀not฀change฀the฀conclusion.

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

20

In 2014, another test series indicated a much higher share of HTML5 with UTF-8 encoding (approx. 95%), while
standard compliance was still an issue with not only the markup, but incorrect implementation such as that of vendor-
specific CSS3 properties in the style sheets. The large number of markup errors (max. 875) and CSS errors (max. 750)
is a clear indication that the implementation of web standards did not improve over the years and that many web
content authors and web designers do not know what they are doing.

Many people publishing on the Web are content authors rather than web designers, and only very few web
designers are experts in web standards. The majority of web content authors do not even know the underlying
technologies and standards, not to mention the best practices to implement those standards. Expectations
do not force people to apply web technologies and standards correctly, and the lack of consensus makes the
Web chaotic. Compared to programming languages such as C, the Web is an error-tolerant environment. This
featuresimplifies web publishing to the extent that everyone can create web pages without solid web design
skills (through content management and templates), but without web quality assurance, often resulting in bad
quality code [103].

Companies desire a professional appearance to sell their products and often focus on design and marketing
exclusively. In most cases, designers know little if anything about web standardization. Without knowing the potential
inherent in web standards, people won’t make the effort to create standard-compliant web sites.

Incorrect or incomplete standard implementations of web browsers are responsible for further problems in
web standardization. Even standardized web sites might break apart in browsers that do not support web standards
fully and correctly. Optimal rendering can be expected only if standards are implemented correctly by both browser
vendors and web designers.

Web publishing is often oversimplified, and only a very limited number of web designers are hand coders, which
is a major key to standardized web development. Since content authors need content management via graphical
interfaces and dynamic content, proper standards implementations in authoring tools and templates could contribute
to web standardization significantly. For example, if a standard-compliant WordPress template is deployed, the code
quality of the empty site is inherently standard-compliant, but someone without proper skills can break this standard
compliance with a single character. While the markup quality of web site templates have improved in recent years, the
cutting edge CSS3 implementations are usually still not standard-compliant.

Beyond a certain point, markup and style sheet errors cannot be tolerated. Web documents full of errors
often contain improperly nested elements, malformed tags, and other markup errors referred to as tag soup. Tables
should be used only for organizing data, not for layout or design. Missing tags should not be tolerated. Bad markup
extends download time and rendering time since processing the errors is more complicated than rendering
error-free, standard-compliant (valid) code. Efficiency can be boosted by optimizing the code. Accessibility can also
be increased, along with cross-browser compatibility and forward compatibility.

UTF-8

60%

ISO-8859-1

21%

GB2312

8%

Shift_JIS

3%

Other

8%

XHTML 1.0

Transitional

45%

HTML 4.01

Transitional

23%

XHTML 1.0

Strict

8%

HTML5

14%

HTML 4.01

Strict

5%

Other

5%

Figure 1-4. Many involved in web design do not know web standards at all

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

21

Limited Standards Support in Machine-Generated Code
Server-side technologies, such as PHP, ASP, or Ruby on Rails, are popular because of their powerful assistance
in creating dynamic web sites and web applications. While powerful, server-side technologies and Content
Management Systems often produce markup without proper structuring and semantics that would make web sites
work better [104].

Nonprofessional authors using WYSIWYG software, such as Adobe Dreamweaver, produce a large share of web
sites. Until recently, many of them provided nonstandard output. Modern versions of web development authoring
tools support W3C standards. The same is true for open source environments providing dynamic content such as
social networking sites, blog portals, and so on.

Still, these software tools are responsible for billions of web sites published on the Web without considering
standard compliance. Users often try to modify or extend the template code creating nonstandard code even if the
template was originally standards-compliant (which is not always the case).

While most software tools do not reach full standard compliance, web standards implementations are constantly
improved. Some content management systems support not only core standards but, like Drupal, not fundamental
standards such as RDFa10 [105].

The standard compliance of markup and styles provided by WYSIWYG authoring tools is extremely important
because of the large number of authors applying them. However, even standard-compliant markup and style sheets can
be easily messed up with incorrect code by those content authors who do not understand the principles and coding.

Major Concerns
Similar to documents, books, or movies, web sites that meet all criteria and user requirements cannot be
created—what’s suitable for one audience might not be for another, and even if you try to adhere to every relevant
standard published, you will find that certain standards cannot be used in combination with others. Web
designers should still strive to comply with the core web standards, which contributes to code quality . Fulfilling
the fundamental requirements for standard compliance leads to best practices. Standardized web sites provide
satisfactory and predictable functionality and behavior, usability, stability, and optimal performance.

Bad Practices
While best practices are widely applied in programming, web developers and unskilled content authors do not take web
design best practices seriously. “It works this way—why bother with standard compliance?” This is the approach serious
web developers would be best to forget. Bad markup including, but not limited to, browser-specific code fragments,
heavily nested table layouts, structure mixed with layout, locally applied style attributes, attribute minimization, missing
attribute values, and other anomalies significantly increase code length, complexity, download, and rendering time.

Lack of Support
Web standards support is unsatisfactory. There are no ultimate practical guidelines on web standards for the less
experienced. While most web standards are freely available, most people find them too difficult to understand and
implement in real-life applications.

Where standard compliance is an official requirement, such as on government portals or EU project web sites,
the best solution is to hire web standardistas to develop suitable web sites. Web designers often focus on appearance
rather than code quality while managers and directors concentrate mainly on the content. Most people cannot realize
that standard compliance could be the only solution for many of their problems, such as browser-dependent web
pages, incorrect rendering, or poor functionality.

10From฀version฀7.

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

22

Unconcern
One of the major problems with web standards is that free access to them is not sufficient to convince people to use
them. Standard implementations of authoring tools are limited, and the web sites produced by them seldom follow
standards. While constantly evolving, the standards support of web browsers is often incomplete.

With the growing popularity of web publishing, the need to make the process easier arose. As a result, easy-to-use
Content Management Systems appeared on the market, and nearly everyone became capable of publishing on the
Web without advanced web design skills. To maintain web site functionality on the millions of badly coded web sites,
browser vendors made their products foolproof and error-tolerant. People began to think that what was beneath the
surface did not matter.

Many people still generate poor quality code web sites through easy-to-use Content Management Systems
without a full understanding of web design principles and best practices. For some it is just a hobby; for others it is
an income source. The importance of web standards should be highlighted by influential companies throughout
the world to make these people understand the associated problems. Web design trends are forced by business and
marketing to achieve popularity or fulfill business requirements. For example, because of the lack of support for
Flash on the Apple iPhone, early HTML5 implementations appeared that applied unfinished specifications but at the
same time expedited standards evolution and application. Everyone interested in web design, whether a professional
or not, should become familiar with web standards, because they are vital in web development and worth learning
(instead of copying bad practices from others).

Without several years experience, no one can understand the options. Which markup language is the most
modern one? It is not possible to answer the question without knowing HTML, XHTML, XML, the Semantic Web, the
maturity levels of web standards, and cutting edge web technologies.

Thanks to HTML5 and CSS3, web standards got more attention since the early 2010s; however, worldwide
adoption is still far away. Manual coding is rare, so Content Management Systems have the potential to help content
authors and web designers comply with web standards based on standard-compliant templates and code blocks.
Some stages of web standardization, such asaccessibility evaluation or error checking, cannot be fully automated (see
Chapter 11). Only web standardistas can manipulate the content and the entire markup and style sheets character by
character, along with all the files of a web site, but not all web designers are such experts in web standards.

Influential Sites
Developers often have the logical idea to follow the practices of the most popular and widely used web sites in the
world. However, these web sites cannot serve as references in standardization simply because they often have serious
problems with standard compliance.

It is shocking that the personal web sites of the top web designers in the world also suffer from markup and style
sheet errors. Most of them try to avoid criticism by omitting the W3C conformance icons linking to W3C validators
that would reveal their bad code with a single click.

A good starting point is to find web sites with modern features and standard-compliant code. However, this
can be very difficualt and misleading. Certainly, it is impossible to fulfill all user requirements, but web sites that
focus on standards compliance and are labeled with the logo “Valid XHTML” or “Valid CSS” often come with a lack
of design and exhibit limited use of technologies. Good examples are the web sites of web standardization bodies
or web accessibility designers. Even if the source code is valid and free of errors, the code often has other issues.
Expected components such as news feeds or favorites icons (favicons) are missing, semantic markup is not used, and
so on. These features do not affect the validity of such web documents, which cannot be used exclusively as starting
points for developing modern, standard-compliant web sites. Not only personal web sites and blogs but also precise
technical documents can be presented beautifully. Remember, web standardization is not a sacrifice! Some of the
largest and most popular web sites in the world apply standards successfully while proving the highest level of user
experience.

But not all. Take a closer look at a code fragment from one of the largest web sites in the world (Listing 1-2).

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

23

Listing 1-2. High-Traffic Web Sites Do Not Necessarily Apply Standard Code

<body class="ego_page home hasLeftCol fbx ie8 win Locale_en_US">
<input type="hidden" id="post_form_id" name="post_form_id"
value="b053066a05f482d5739d31c033b5fd90" autocomplete="off" /><div
id="pagelet_presence"></div><div id=" HiddenContainer" style="position:absolute; top:-10000px;
width:0px; height:0px;" ></div><div id="blueBar" class=""></div><div id="globalContainer"><div
id="dialogContainer"></div><div id="c4d06220d5f2c97d20912236"><div class="ptm clearfix"
id="pageHead"><h1 id="pageLogo">

Such software-generated markup codes are almost impossible to understand even if you are an experienced
hand-coder. There are problems with virtually every element and attribute. The class attribute has an empty value.
Identifiers are unreasonably long and not descriptive at all, such as c4d06220d5f2c97d20912236. There is inline style
in the source, which should be in an external style sheet.The layer positioning with -10,000 pixels is obviously a trick
that could be eliminated by proper implementation of standards. Attributes should not be empty, especially if they are
intended to be used for identification (a class without a name cannot be used to identify an element class). Even for
these few lines, the error list is long.

Visual Appeal Over Functionality
Design is one of the major concerns in web site development. Adobe Flash is an ideal technology to provide a
stunning appearance, catch attention, and stream videos. Full Flash sites, however, have several disadvantages. Unless
the web document is a single-page, brochure-style home page that provides contact data, it is far better to develop
(X)HTML content, because textual markup has several benefits over binary files. It is especially true with the
exploitation of the new, interactive HTML5 elements and CSS3 properties, which are good alternatives to Flash content.

Graphic designers are not necessarily web developers. As a consequence, Flash movies are often embedded
incorrectly. Although Flash files can theoretically work in any browser with an appropriate plug-in, markup codes
controlling them can be browser-dependent, which should be eliminated.

There is nothing wrong with Flash, but it is better used for headers and inline animations only. The combination
of XHTML and CSS can provide a similar, even more advanced, user experience, but without the need to download
large files in full before showing the content of the index page. While it is not a problem for fast connections, there are
millions of users around the world who have to wait for half a minute to download such contents. Even if the Flash
files are streamed in certain browsers, the menus and content are unusable until downloading is completed. Web
sites based on markup can be indexed and searched more effectively, are smaller in size, and have full control over the
browser window by default. Text content is much more robust to render than any other format. Even if some images
fail to download or there are some styling problems, the content is still there (if not absolutely positioned outside the
window or written in the color identical to the background). Unlike that of Flash contents, (X)HTML text sharpness,
font size, and other features can be changed upon user request directly from the browser.11

Some software companies recognized the advantages of markup languages over Flash and released tools to
convert Flash files to HTML (for example, FlashKeeper [106]). Even Adobe has an FLA-HTML converter called
Wallaby [107]. However, similar to other automated markup generators, extended care must be taken with them
because the result is often invalid and, therefore, not optimal.

Well-Formedness
A basic requirement for XML documents and a desired one for all web documents is well-formedness, which is vital
in standardization, because it guarantees that the list of syntax rules defined in the corresponding specifications are
satisfied.

11Although฀there฀are฀advanced฀font฀manipulation฀possibilities฀in฀Flash฀Player฀from฀version฀10,฀too.

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

24

To achieve well-formedness in SGML languages such as HTML, elements should be opened and closed properly.
Empty elements must also be terminated. Elements should be nested properly so that overlapping does not occur.
The root element of the document should contain all other elements.

Since SGML parsers are extremely error-tolerant, these rules are rarely followed completely by HTML developers,
which results in markup errors. Thus, the lack of well-formedness leads directly to incorrect, nonstandard markup.

In XML languages such as XHTML, well-formedness has additional requirements. The element tags are case
sensitive; that is, start and end tags must match exactly. Well-formed XML documents should contain properly
encoded and legal Unicode characters only. These characters, however, can also be used directly in element names
and attributes, not just in character data (document text). Characters with special meaning in XML can be used for
markup instructions only, for example, <, >, or &. If they are intended to be represented as text, their entity codes
should be applied (see the section “Entity references”).

Characters that go against well-formedness rules can cause certain XML parsers to be unable to process XML
files (XHTML documents, RDF metadata, RSS feed channels, and so on). Such special characters might also result
in error messages. A single (not well-formed) character can make the whole file impossible to process. For example,
the XML file of a valid RSS feed opened locally in a modern browser is presented as a tree structure. The same file
retrieved from a server is represented as a news feed. If the file, however, contains just one illegal character, the
browser gives an error message instead of displaying the page content (Figure 1-5).

Figure 1-5. An XML parsing error in a browser

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

25

Interoperability
There is an endless variety of computing platforms, operating systems, and browsers available on the market.
Every manufacturer and developer tries to provide additional features; thus, products are constantly competing
with each other. This diversity results in different operations and functionalities. The functionality and behavior
of web sites across the different systems are not guaranteed by default but can be achieved by implementing
widestream standardized solutions. Naturally, users want to use various systems together that allow truly efficient
communication. Data access would be restricted without standards, and platform-dependent solutions would rule
the market.

Web interoperability ensures that standard-compliant web pages can be viewed in any browser under any
operating system, from Windows to Mac OS and Linux, and not only on desktop computers but also on mobile
devices, including tablets and smartphones.

Several technologies support interoperability and should be used in web development, including, but not limited
to, UTF-8 character encoding, XML documents, structural and semantic markup with XHTML or HTML5 [108],
DOM scripting, ECMAScript, CSS-based layout, separated structure, presentation and behavior, equations described
in MathML, and semantic metadata.

Browser Independence

“One page, many views” has always been a nightmare for web developers. Although it is a natural user expectation for
all web sites to look and behave the same way in various browsers, it is far from straightforward to fulfill.

Anyone who slaps a “this page is best viewed with Browser X” label on a Web page appears to
be yearning for the bad old days, before the Web, when you had very little chance of reading a
document written on another computer, another word processor, or another network.

—Tim Berners-Lee [109]

While there is a variety of web browsers on the market, the majority uses only a few browsers, namely,
Internet Explorer, Mozilla Firefox, Google Chrome,Safari, and for a lesser extent, Opera. Focusing on these flagships
is usually sufficient, especially when the major rendering engines behind these browsers—Trident, Gecko, WebKit,
and Blink—are the ones that power the most popular mobile browsers too (Trident is used on Windows Phone
smartphones, Firefox for mobile (Fennec) running on Android phones use Gecko, while iPhones and iPads use
Webkit). Statistics show that only very few visitors use browsers powered by other rendering engines.

No one wants to drive potential customers away, so it is very important to avoid browser-specific coding. The
best approach is to create sites that are best viewed with any browser which can be indicated clearly by the logo of the
“Viewable with any browser” campaign [110].

To create very similar (more or less identical) appearance in all major browsers, various tricks have been applied
for years to ensure functionality. However, browser-targeted code blocks do not work satisfactorily under all browsers,
so more and more different hacks were added to support different browsers (and older browser versions), resulting
in a mass of incorrect code. The right approach is to create standard-based web sites. Even if some standards are
not fully supported in some browsers (which is actually a headache for web designers), standard-compliant codes
are at least ready for the future [111], and can serve as excellent starting points for best practices and web standards
evolution.

A very bad practice associated with the problem of the different rendering behavior of browsers is code forking.
Code forking is the development of multiple versions of the same content for various browsers. Code forking should
not be applied because the resulting code cannot be used in the long term.

Web standardistas agree that web sites cannot be expected to look exactly the same way in every browser, but
the information published on web pages should be legible and the functionalities should be available in all major
browsers [112, 113].

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

26

Eliminated Version Targeting
Since rendering engines are constantly evolving, even the various versions of the same browser support standards
differently. To avoid losing users and potential customers who use older browser versions, web developers often
apply various browser- and version-specific solutions in the markup or style sheets. In other words, version targeting
means a considerable amount of additional work for developers, and the result works only in a certain version of a
certain browser.

Due to the advanced standard support of current browser versions, these codes are real threats to functionality or
code optimality, or both. Thus, version targeting should be eliminated, which, on the other hand, can cause problems
with backward compatibility [114]. Although there are some techniques that can be used together with standard
compliance to maximize version independence (for example, resetting the style sheets of the browser), creating web
pages that work properly under all browsers and browser versions is unfeasible.

Browsers to be used for rendering version targeted web documents can be easily defined by a simple meta
declaration in the document head (Listing 1-3).

Listing 1-3. Version Targeting Example (Should Not Be Used)

<meta http-equiv="X-UA-Compatible" content="IE=8;FF=3;OtherUA=4" />

The most up-to-date Internet Explorer version can be targeted by adding the IE=edge attribute value to the
content attribute of the meta element [115] (Listing 1-4).

Listing 1-4. Version Targeting for the Latest IE Version (Should Not Be Used)

<meta http-equiv="X-UA-Compatible" content="IE=edge" />

Although targeted browsers might decide more quickly between old, backward-compatible and new,
standard-compliant rendering modes when such data are provided, version targeting should be totally eliminated.
Creating multiple versions of nonstandard markup for the same web page is not only costly but also
unsustainable. Moreover, version targeting and browser detection scripts are not reliable and cannot target the
correct browsers in many cases, because browsers often identify themselves as other browsers or other versions
of the same browser.

Backward Compatibility
Standard-compliant web sites that work well under the currently used browser versions are also ready for the future
but might be rendered incorrectly in older browsers because of the incorrect standards implementations of their
rendering engines. Consequently, even with proper implementation, web standards do not work under all browsers.
The support for old rendering engines, backward compatibility, should be within reasonable limits. Why bother with
browsers that are no longer in use or the “very old” versions of major browsers? Netscape, for example, is “not widely
used anymore” just like Internet Explorer 5 or Mozilla Firefox 3.6. The major problem with this question is how to
define browser obsoletion. Can IE6 be labeled as “very old” and IE8 as “old”? The choice of supported browsers has a
large impact on the traffic and popularity of a web site, and the lack of support for older—even obsolete—browsers
can lead to loss of visitors. Satisfied users cannot be pushed to upgrade their browsers every time a new version
is released, and there are users who have to use a version-targeted corporate software. Because of this, there is no
ultimate decision regarding backward compatibility.

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

27

In the late 2000s and early 2010s, one of the biggest agonies regarding backward compatibility was the support
for IE6. Its market share decreased slowly up to 2007 when it lost its popularity considerably, mainly because of the
new versions of Windows and their new Explorer versions,12 as well as the growing popularity of competitors such as
Mozilla Firefox, Apple Safari, and Google Chrome. There was a really good reasoning against the obsolete browser.
First, serious security holes have been pointed out during the years that have been partially covered by later patches.
However, thanks to growing needs, new functions have been introduced in other browsers and in the newer versions
of Internet Explorer. All modern browsers support XML technologies, RSS feeds, and tabbed browsing, for example.
IE8, IE9, and especially IE10 were big steps toward standard compliance and modern functions. Even Microsoft
recommended IE6 users to upgrade [116, 117]. Software giants like Google stopped supporting older browsers, which
is another reason for the upgrade [118]. In 2014, the support for Windows XP has ended, and with the more and more
affordable and powerful modern computers and mobile devices, there is no reason not to use a modern browser with
satisfactory HTML5 and CSS3 support. It is also a great relief for web designers that don’t have to deal with obsolete
browsers anymore.

The major drawback of backward compatibility is that it hinders the widespread use of new technologies at
some point. Still, backward compatibility should be maximized whenever possible. Because of the incomplete or
unsatisfactory standard support of older browsers, providing backward compatibility often results in browser-targeted
hacks and code fragments, as well as nonstandard and even deprecated markup that should be eliminated.

A useful tool to achieve or maximize backward compatibility is the JavaScript library “Modernizr,” which detects
browser support for the latest web standards, including HTML5 and CSS3 modules [119]. This software determines
whether a currently used browser has implemented a given feature, so web designers can apply new technologies in
the browsers that support them and create a fallback mechanism for those browsers that do not.

Forward Compatibility
While a new browser release can be a problem for developers of nonstandard and especially browser-specific web
sites, those web designers who write standard-compliant code do not have to worry, because standard compliance
ensures forward compatibility. Standardized web documents can be easily upgraded to newer standards.

Functionality
Beyond content, functionality is one of the most important web site features, without which all other efforts would
be useless, including a fancy design. While functionality can be ensured by developing with web standards, this often
seems like some kind of sacrifice. For example, the latest standards are not necessarily supported by some rendering
engines, so web designers have to make a decision: either write standard-compliant code and not support some
browsers or provide nonstandard, browser-independent code. The better the standards support in web browsers, the
less frequent this dilemma.

Device Independence
Internet access is no longer restricted to desktop computers. Mobile devices such as tablets, smartphones, and some
e-book readers also have Internet-browsing capabilities. However, some devices—especially the handheld ones—
have limited screen size and scrollability. Mobile-readiness is more important than ever, which also contributes to
web accessibility and usability.

12Internet฀Explorer฀6฀was฀shipped฀with฀Windows฀XP.฀Versions฀7฀and฀8฀can฀be฀used฀on฀XP,฀too,฀while฀IE9฀requires฀Windows฀Vista฀or฀
Windows฀7.฀IE10฀runs฀under฀Windows฀7฀and฀above.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

28

There is a wide choice of computer monitors and displays, all of which come with a different size, aspect ratio,
resolution, pixel density, contrast ratio, and color fidelity. To support the wide variety of screens, web sites should be
resolution-independent. Functionality should be satisfactory and similar on a variety of devices regardless of different
hardware controls and features. Device independence provides support for different access mechanisms and different
modes of use (for example, visual and auditory use). The aim of device independence is to “match Web content to
the needs, capabilities, and limitations of the delivery environment” [120]. The popularity of mobile browsing makes
device independence a major concern in modern web design.

Markup languages are good examples for device independence standards. CSS also provides web design
techniques to achieve device independence through device-specific style sheets for mobile phones, projectors, and
printers,13as well as conditional styles depending on viewport size and device features. Java applets can be executed
on a variety of devices under different platforms, because Java is a cross-platform programming language. Image file
formats such as JPEG, TIFF, or GIF are also device-independent files. In document publishing and sharing, PDF is a
classic example for device independence.

Separating Content from Presentation
In the early days of the Web, the major concern in web publishing was the web presence itself. At that time,
web documents were limited mainly to the combination of lightly formatted text content and images. When the
possibilities widened, the Web soon became a full multimedia platform, and inline styles flooded the markup of web
documents. To update the color or the font size of an element throughout a site, the style attributes had to be updated
one by one on each page.

To solve this problem, the W3C introduced a new Golden Rule in web design: formatting should be separated
from structure, which centralizes styling, making it possible to change the styles of an entire web site from a single
location. A further benefit is that the markup becomes shorter, less redundant and complex, clearer, and easier to
interpret and render.

Usability
Usability can be defined as “setting clear and concise goals for a web site, determining a correct and exhaustive set
of user requirements, ensuring that the web site meets user’s expectations, setting usability goals, and providing
useful content” [121]. It is a measure of how easily a system can be used. Usability can be achieved by optimizing user
experience via browser independence, accessibility, expected behavior, logical site structure, and reliable layout.
Confusing content and disturbing effects should be avoided. Usability should not be confused with accessibility,
which means access to all, regardless of user disabilities or device limitations.

Web sites should provide useful content that is relevant and appropriate to the audience. There are numerous
requirements for the appearance of texts, links, lists, controls, graphics, and multimedia objects. Beyond content,
the navigation and site structure should be organized in a way that meets user expectations. This can be achieved by
assessing the site with test users. User experience and user interface design should precede web design and coding.

Reliable Layout
Reliable positioning of web site elements has always been a major concern in web site development. Because of the
enormous number of factors to consider, some elements should be positioned absolutely while others relatively.
There are elements that are meant to be fixed, even if the content exceeds the browser window and the content
is scrolled (see the section “Reliable Positioning”). Layout is in strong correlation with device, resolution, and
browser independence. On mobile-ready web sites, the objects should rescale according to the viewport size and be
proportional to each other, while the text should reflow dynamically on smaller screens.

13The฀same฀web฀site฀rendered฀without฀the฀background฀image฀on฀mobile฀phones฀is฀a฀good฀example.

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

29

CSS provides both absolute and relative measurement units for defining element dimensions, lengths, and
distances. The appropriate units should be chosen according to the overall design and layout of a web site (see the
section “Sizes and Proportions”). Unreliable or browser-dependent positioning and improperly combined units can
result in unreadable content or limited functionality. The overlapping order of layers might also be a problem if it
makes the content unreadable.

Code Optimality
Web standards provide a way to develop reliable, fully functional, interoperable, device-independent, future-ready
web sites. However, they cannot guarantee optimal code length by default. Even if each character in the source code
has its meaning, that is, none of them is unnecessary, code length might still be far from optimal. Incorrect structuring
in the markup and especially the ignored inheritance in CSS (see the section “Ignored Inheritance”) can increase
complexity and length, resulting in larger file size, slower download and longer rendering time (see the section
“Nonoptimal Code Length”).

Summary
In this chapter, you learned about the importance of web standards, the benefits of standards-based web design,
and the resources where open standards can be accessed and standardization stages followed. Proper standards
implementation is independent from site popularity and the latest web design trends. Software tools with incorrect
or incomplete standards implementations and unskilled content authors produce the most nonstandard markup and
style sheets. The only way to maximize interoperability and secure your web sites for the future is to implement web
standards correctly.

In the next chapter, I will discuss language and character settings on servers and in markup to ensure proper
character representation and provide advanced hints for software agents that search and process web documents.
The internationalization settings of web documents typically precede coding and can be considered as one of the first
steps in standards-based web design.

References
 1. Featherstone D, Gustafson A, et al (2013) http://www.webstandards.org. The Web

Standards Project. Accessed 24 October 2014

 2. Dardailler D (2010) W3C PAS FAQ. World Wide Web Consortium.
http://www.w3.org/2010/04/pasfaq. Accessed 24 November 2014

 3. Hazaël-Massieux D (2003) Buy standards compliant Web sites. World Wide Web
Consortium. http://www.w3.org/QA/2002/07/WebAgency-Requirements. Accessed 24
October 2014

 4. W3C (2014) Standards. World Wide Web Consortium. http://www.w3.org/standards/.
Accessed 24 October 2014

 5. ECMA International (2014) Formal publications. http://www.ecma-international.org/
publications/. Accessed 24 October 2014

 6. ISO (2014) World Wide Web standards at the ISO website. http://www.iso.org/iso/
search.htm?qt=world+wide+web&published=on&active_tab=standards. International
Organization for Standardization. Accessed 24 October 2014

 7. IANA (2014) Website of IANA. http://www.iana.org. Internet Assigned Numbers
Authority. Accessed 24 October 2014

http://www.webstandards.org/
http://www.w3.org/2010/04/pasfaq
http://www.w3.org/QA/2002/07/WebAgency-Requirements
http://www.w3.org/standards/
http://www.ecma-international.org/publications/
http://www.ecma-international.org/publications/
http://www.iso.org/iso/search.htm?qt=world%2bwide%2bweb%26published=on%26active_tab=standards
http://www.iso.org/iso/search.htm?qt=world%2bwide%2bweb%26published=on%26active_tab=standards
http://www.iana.org/

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

30

 8. IETF (2014) IETF website. http://www.ietf.org. The Internet Engineering Task Force.
Accessed 24 October 2014

 9. IETF (2014) RFC pages. http://www.ietf.org/rfc.html. The Internet Engineering Task
Force. Accessed 24 October 2014

 10. Unicode Consortium (2010) Technical Reports. http://www.unicode.org/reports/.
Unicode, Inc. Accessed 24 October 2014

 11. WHATWG (2011) Web Hypertext Application Technology Working Group.
 http://www.whatwg.org. Accessed 24 October 2014

 12. Jacobs I (2010) Making W3C the place for new standards.
 http://www.w3.org/2010/07/community. Accessed 24 October 2014

 13. Dardailler D (2010) Open Standards Policies. In: W3C: An Open Platform for Web
Standardisation. Future Internet Conference - Standardization Workshop. World Wide
Web Consortium. http://www.w3.org/2010/12/dd-w3c.html#(3). Accessed 24
October 2014

 14. Dardailler D (2010) W3C Exec Summary. In: W3C: An Open Platform for Web Standardisation.
World Wide Web Consortium. http://www.w3.org/2010/06/dd-diplo.html#(7). Accessed 24
October 2014

 15. Dardailler D (2010) W3C: An Open Platform for Web Standardisation. World Wide Web
Consortium. http://www.w3.org/2010/12/dd-w3c.html. Accessed 24 October 2014

 16. Guha RV, Bray T (1997) Meta Content Framework using XML. World Wide Web
Consortium. http://www.w3.org/TR/NOTE-MCF-XML/. Accessed 24 October 2014

 17. Netscape Communications (1999) My Netscape Network: Quick Start. Netscape.
http://web.archive.org/web/20001208063100/http://my.netscape.com/publish/
help/quickstart.html. (archived version accessed 24 October 2014, original version is no
longer available)

 18. Stanescu B, Sarapata J (2010) Google now indexes SVG. Google Inc.
http://googlewebmastercentral.blogspot.com/2010/08/google-now-indexes-svg.html.
Accessed 24 October 2014

 19. WHATWG (2014) WHATWG Mailing List. Web Hypertext Application Technology Working
Group. http://www.whatwg.org/mailing-list. Accessed 24 October 2014

 20. ERCIM (2014) ERCIM website. http://www.ercim.org. The European Research
Consortium for Informatics and Mathematics. Accessed 24 October 2014

 21. Jeffery K (2009) Twenty Years of ERCIM: History and Outlook. European Research
Consortium for Informatics and Mathematics. http://ercim-news.ercim.eu/en77/
joint-ercim-actions/twenty-years-of-ercim-history-and-outlook. Accessed 24
October 2014

 22. IETF (2014) RFC-Editor Webpage. http://www.rfc-editor.org. The Internet Engineering
Task Force. Accessed 24 October 2014

 23. ECMA International (2014) ECMA Website. http://www.ecma-international.org.
Accessed 24 October 2014

 24. Unicode (2014) The Unicode Consortium. Unicode Inc. http://www.unicode.org.
Accessed 24 October 2014

http://www.ietf.org/
http://www.ietf.org/rfc.html
http://www.unicode.org/reports/
http://www.whatwg.org
http://www.w3.org/2010/07/community
https://www.w3.org/2010/12/dd-w3c.html#(3)
https://www.w3.org/2010/06/dd-diplo.html#(7)
http://www.w3.org/2010/12/dd-w3c.html
http://www.w3.org/TR/NOTE-MCF-XML/
http://web.archive.org/web/20001208063100/http://my.netscape.com/publish/help/quickstart.html
http://web.archive.org/web/20001208063100/http://my.netscape.com/publish/help/quickstart.html
http://googlewebmastercentral.blogspot.com/2010/08/google-now-indexes-svg.html
http://www.whatwg.org/mailing-list
http://www.ercim.org/
http://ercim-news.ercim.eu/en77/joint-ercim-actions/twenty-years-of-ercim-history-and-outlook
http://ercim-news.ercim.eu/en77/joint-ercim-actions/twenty-years-of-ercim-history-and-outlook
http://www.rfc-editor.org/
http://www.ecma-international.org/
http://www.unicode.org/

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

31

 25. DCMI (2014) The Dublin Core Metadata Initiative. Dublin Core Metadata Initiative
Limited. http://dublincore.org. Accessed 24 October 2014

 26. IANA (2014) Internet Assigned Numbers Authority. http://www.iana.org. Accessed
24 October 2014

 27. ICANN (2014) Internet Corporation for Assigned Names and Numbers. http://www.icann.org.
Accessed 24 October 2014

 28. OASIS (2014) OASIS: Advancing open standards for the global information society.
http://www.oasis-open.org. OASIS. Accessed 24 October 2014

 29. OASIS (2014) The Cover Pages. http://xml.coverpages.org. OASIS.
Accessed 24 October 2014

 30. OASIS (2014) XML.org. http://www.xml.org. Accessed 24 October 2014

 31. ISO (2014) International Organization for Standardization. http://www.iso.org.
Accessed 24 October 2014

 32. WSG (2014) WSG website. http://webstandardsgroup.org. Web Standards Group.
Accessed 24 October 2014

 33. IWA (2014) The International Webmasters Association website. International Webmasters
Association. http://www.iwanet.org. Accessed 24 October 2014

 34. WIPA (2014) The Web Industry Professionals Association website. Web Industry
Professionals Association Incorporated. http://www.wipa.org.au.
Accessed 24 October 2014

 35. ODRL Initiative (2014) ODRL website. Open Digital Rights Language Initiative.
http://odrl.net. Accessed 24 October 2014

 36. W3C (2014) World Wide Web Consortium. http://www.w3.org. Accessed 24 October 2014

 37. W3C (2014) News Archive. World Wide Web Consortium. http://www.w3.org/News/.
Accessed 24 October 2014

 38. W3C (2014) W3DevCampus. World Wide Web Consortium. http://www.w3devcampus.com.
Accessed 24 October 2014

 39. OMG (2014) Internationalization & Unicode Conference. Object Management Group.
http://www.unicodeconference.org. Accessed 24 October 2014

 40. IETF (2014) IETF Meetings. The Internet Engineering Task Force.
http://www.ietf.org/meeting/. Accessed 24 October 2014

 41. DCMI (2014) International Conference on Dublin Core and Metadata Initiatives. Dublin
Core Metadata Initiative. http://dcevents.dublincore.org/. Accessed 24 October 2014

 42. ACM (2014) Calendar. Association for Computing Machinery.
http://www.acm.org/calendar-of-events. Accessed 24 October 2014

 43. Régis J, Morrison A, Touré H (2010) Standards make the world accessible for all – 41st
World Standards Day. International Organization for Standardization.
http://www.iso.org/iso/wsd_message_2010.pdf. Accessed 24 October 2014

 44. Carsonified (2014) The Future of Web Apps Conference. Carsonified.
http://futureofwebapps.com. Accessed 24 October 2014

http://dublincore.org/
http://www.iana.org/
http://www.icann.org/
http://www.oasis-open.org/
http://xml.coverpages.org/
http://www.xml.org/
http://www.iso.org/
http://webstandardsgroup.org/
http://www.iwanet.org/
http://www.wipa.org.au/
http://odrl.net/
http://www.w3.org/
http://www.w3.org/News/
http://www.w3devcampus.com/
http://www.unicodeconference.org/
http://www.ietf.org/meeting/
http://dcevents.dublincore.org/
http://www.acm.org/calendar-of-events
http://www.iso.org/iso/wsd_message_2010.pdf
http://futureofwebapps.com/

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

32

 45. Lux M (2014) SemanticMetadata.net. Mathias Lux. http://www.semanticmetadata.net.
Accessed 24 October 2014

 46. W3C (2014) Weekly newsletter. World Wide Web Consortium.
http://www.w3.org/News/Public/. Accessed 24 October 2014

 47. W3C (2014) W3C News (Atom new feed). World Wide Web Consortium.
http://www.w3.org/News/atom.xml. Accessed 24 October 2014

 48. W3C (2014) W3C News (RSS new feed). World Wide Web Consortium.
http://www.w3.org/News/news.rss. Accessed 24 October 2014

 49. Unicode (2014) The Unicode Blog (news feed). Unicode Consortium.
http://unicode-inc.blogspot.com/feeds/posts/default?alt=rss.
Accessed 24 October 2014

 50. DCMI (2014) News feed of the Dublin Core Metadata Initiative. Dublin Core Metadata
Initiative. http://dublincore.org/news.rss. Accessed 24 October 2014

 51. DCMI (2014) DCMI Publications. Dublin Core Metadata Initiative.
http://dcpapers.dublincore.org/. Accessed 24 October 2014

 52. Dardailler D (2010) W3C Process Flow. In: W3C: An Open Platform for Web
Standardisation. Future Internet Conference - Standardization Workshop.
World Wide Web Consortium. http://www.w3.org/2010/12/dd-w3c.html#(7).
Accessed 24 October 2014

 53. W3C (2014) All Standards and Drafts. World Wide Web Consortium.
http://www.w3.org/TR/. Accessed 24 October 2014

 54. Bradner S (1996) The Internet Standards Process – Revision 3. The Internet Engineering
Task Force. http://tools.ietf.org/html/rfc2026. Accessed 24 October 2014

 55. IETF (2008) RFC overview. The Internet Engineering Task Force.
http://www.rfc-editor.org/overview.html. Accessed 3 May 2011

 56. TMC (2013) Drafts. In: The microformats wiki. The Microformats Community.
http://microformats.org/wiki/Main_Page. Accessed 24 October 2014

 57. Net Apps (2013) Browser Market Share. Net Applications.
http://www.netmarketshare.com/browser-market-share.aspx?qprid=0.
Accessed 21 October 2014

 58. STAT OWL (2014) Web Browser Market Share. STAT OWL.
http://statowl.com/web_browser_market_share.php. Accessed 21 October 2014

 59. StatCounter (2014) StatCounter Global Stats. StatCounter. http://gs.statcounter.com/.
Accessed 21 October 2014

 60. W3Counter (2014) Global Web Stats. Awio Web Services LLC.
http://www.w3counter.com/globalstats.php. Accessed 21 October 2014

 61. Microsoft Developer Network (2010) Standards Compliance Updates in Internet Explorer 8.
Microsoft Corporation. http://msdn.microsoft.com/library/dd433047(VS.85).aspx.
Accessed 24 October 2014

 62. Microsoft (2010) http://www.beautyoftheweb.com/#/highlights/html5. Microsoft
Corporation. Accessed 31 December 2010

http://www.semanticmetadata.net/
http://www.w3.org/News/Public/
http://www.w3.org/News/atom.xml
http://www.w3.org/News/news.rss
http://unicode-inc.blogspot.com/feeds/posts/default?alt=rss
http://dublincore.org/news.rss
http://dcpapers.dublincore.org/
https://www.w3.org/2010/12/dd-w3c.html#(7)
http://www.w3.org/TR/
http://tools.ietf.org/html/rfc2026
http://microformats.org/wiki/Main_Page
http://www.netmarketshare.com/browser-market-share.aspx?qprid=0
http://statowl.com/web_browser_market_share.php
http://gs.statcounter.com/
http://www.w3counter.com/globalstats.php
http://msdn.microsoft.com/library/dd433047(VS.85).aspx

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

33

 63. Scholz F et al (2014) Gecko. Mozilla Developer Network.
https://developer.mozilla.org/en/Gecko. Accessed 24 October 2014

 64. KDE Webmasters (2014) KDE 3.5.6 Changelog. KDE e.V.
http://www.kde.org/announcements/changelogs/changelog3_5_5to3_5_6.php.
Accessed 24 October 2014

 65. Apple (2014) Safari features. Apple Inc. http://www.apple.com/safari/.
Accessed 24 October 2014

 66. W3C (2014) Current members. World Wide Web Consortium.
http://www.w3.org/Consortium/Member/List. Accessed 24 October 2014

 67. Opera Software (2012) Web specifications support in Opera products. Opera Software ASA.
http://www.opera.com/docs/specs/productspecs/. Accessed 24 October 2014

 68. Quint V (ed) (2012) Amaya. W3C’s editor/browser. World Wide Web Consortium.
http://www.w3.org/Amaya/. Accessed 24 October 2014

 69. Baron LD (2006) Layout Engine Visual Tests (reftest). Mozilla Corporation.
http://mxr.mozilla.org/mozilla-central/source/layout/tools/reftest/README.txt.
Accessed 24 October 2014

 70. Shepherd E (ed) (2014) Mochitest. Mozilla Developer Network.
https://developer.mozilla.org/en/Mochitest. Accessed 24 October 2014

 71. W3C (2014) Testing area. World Wide Web Consortium. http://w3c-test.org/html/.
Accessed 2 October 2014

 72. Bos B (ed) (2010) Official W3C Test Suites. World Wide Web Consortium.
http://www.w3.org/Style/CSS/Test/. Accessed 24 October 2014

 73. Andersen W, Hazael-Massieux D (eds) (2010) Mobile Tests. World Wide Web Consortium.
http://www.w3.org/2005/MWI/Tests/. Accessed 10 February 2011

 74. Flon PD (ed) (2010) MathML Test Suite. World Wide Web Consortium.
http://www.w3.org/Math/testsuite/. Accessed 24 October 2014

 75. W3C (2010) SVG test suites. World Wide Web Consortium.
http://www.w3.org/Graphics/SVG/WG/wiki/Test_Suite_Overview. Accessed 24 October 2014

 76. Ishida R (ed) (2010) Internationalization tests. World Wide Web Consortium.
http://www.w3.org/International/tests/. Accessed 24 October 2014

 77. Le Hégaret P (2010) How do we test a Web browser? World Wide Web Consortium.
http://www.w3.org/QA/2010/09/how_do_we_test_a_web_browser_o.html.
Accessed 24 October 2014

 78. Leenheer N (2013) HTML5 Test. How well does your browser support HTML5?
http://html5test.com/. Accessed 22 October 2014

 79. Verou L (2014) The CSS3 Test. http://css3test.com. Accessed 22 October 2014

 80. Fahrner T (1998) The Acid1 test. World Wide Web Consortium, the National Insititute of
Standards and Technology, Case Western Reserve University.
http://www.w3.org/Style/CSS/Test/CSS1/current/test5526c.htm. Accessed 24
October 2014

 81. Hickson I (2005) The Acid2 test. Web Standards Project. http://acid2.acidtests.org.
Accessed 24 October 2014

https://developer.mozilla.org/en/Gecko
http://www.kde.org/announcements/changelogs/changelog3_5_5to3_5_6.php
http://www.apple.com/safari/
http://www.w3.org/Consortium/Member/List
http://www.opera.com/docs/specs/productspecs/
http://www.w3.org/Amaya/
http://mxr.mozilla.org/mozilla-central/source/layout/tools/reftest/README.txt
https://developer.mozilla.org/en/Mochitest
http://w3c-test.org/html/
http://www.w3.org/Style/CSS/Test/
http://www.w3.org/2005/MWI/Tests/
http://www.w3.org/Math/testsuite/
http://www.w3.org/Graphics/SVG/WG/wiki/Test_Suite_Overview
http://www.w3.org/International/tests/
http://www.w3.org/QA/2010/09/how_do_we_test_a_web_browser_o.html
http://html5test.com/
http://css3test.com/
http://www.w3.org/Style/CSS/Test/CSS1/current/test5526c.htm
http://acid2.acidtests.org/

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

34

 82. Hickson I (2008) The Acid 3 test. Web Standards Project. http://acid3.acidtests.org.
Accessed 24 October 2014

 83. Apple (2010) Safari – Learn about the features available in Safari. Apple Inc.
http://www.apple.com/safari/features.html. Accessed 23 September 2010

 84. Scott (2009) Bolt Browser gets Updated to Version 1.6 – Brings New Features! Smartphone
Blogs Network. http://blackberrysync.com/2009/12/bolt-browser-gets-updated-to-
version-1-6-brings-new-features/. Accessed 24 October 2014

 85. Ryan P (2009) Linux garden gets a new GNOME with version 2.28. Ars Technica.
http://arstechnica.com/open-source/news/2009/09/linux-garden-gets-a-new-
gnome-with-version-228.ars. Accessed 24 October 2014

 86. Laforge A (2010) Google Chrome Releases: Stable Channel Update. Google Inc.
http://googlechromereleases.blogspot.com/2010/01/stable-channel-update_25.html.
Accessed 24 October 2014

 87. Opera Software (2009) Turbocharge your Web experience with Opera 10. Opera Software ASA.
http://www.opera.com/press/releases/2009/09/01/. Accessed 23 September 2010

 88. Engebø HL (2009) Opera Mobile 9.7 with Opera Turbo. Opera Software ASA.
http://my.opera.com/operamobile/blog/2009/03/26/opera-mobile-9-7-beta-for-
windows-mobile. Accessed 23 September 2010

 89. Van Kesteren A, Hunt L (eds) (2013) Selectors API Level 1. W3C Recommendation. World
Wide Web Consortium. http://www.w3.org/TR/selectors-api/. Accessed 24 October 2014

 90. Pasche S (2010) BrowserTests. Cross-browser automated tests. Google Inc.
http://code.google.com/p/browsertests/wiki/StartPage. Accessed 24 October 2014

 91. Simon L et al (2014) Browserscope. http://www.browserscope.org.
Accessed 24 October 2014

 92. Fahrner T (2002) Geocrawler.com - mozilla-layout - NG layout and 5.0 Navigator. An
e-mail of Todd Fahrner archived by archive.com. Open Source Development Network.
http://web.archive.org/web/20030212115103/http://www.geocrawler.com/
archives/list-name.mbox/123/1998/7/0/1037920/. Accessed 24 October 2014

 93. Ishida R (2010) Serving HTML & XHTML. ‘Standards’ vs ‘Quirks’ modes. World Wide
Web Consortium. http://www.w3.org/International/articles/serving-xhtml/.
Accessed 24 October 2014

 94. Ishida R (2010) XHTML test document for Standards Mode. In: Serving
HTML & XHTML. ‘Standards’ vs ‘Quirks’ modes. World Wide Web Consortium.
http://www.w3.org/International/articles/serving-xhtml/standards.html.
Accessed 24 October 2014

 95. Ishida R (2010) XHTML test document for Quirks Mode. In: Serving
HTML & XHTML. ‘Standards’ vs ‘Quirks’ modes. World Wide Web Consortium.
http://www.w3.org/International/articles/serving-xhtml/quirks.html.
Accessed 24 October 2014

 96. Lie HW, Bos B (2008) Formatting model. In: Cascading Style Sheets, level 1. W3C
Recommendation. http://www.w3.org/TR/REC-CSS1/#formatting-model. World Wide
Web Consortium. Accessed 24 October 2014

http://acid3.acidtests.org/
http://blackberrysync.com/2009/12/bolt-browser-gets-updated-to-version-1-6-brings-new-features/
http://blackberrysync.com/2009/12/bolt-browser-gets-updated-to-version-1-6-brings-new-features/
http://arstechnica.com/open-source/news/2009/09/linux-garden-gets-a-new-gnome-with-version-228.ars
http://arstechnica.com/open-source/news/2009/09/linux-garden-gets-a-new-gnome-with-version-228.ars
http://googlechromereleases.blogspot.com/2010/01/stable-channel-update_25.html
http://www.opera.com/press/releases/2009/09/01/
http://my.opera.com/operamobile/blog/2009/03/26/opera-mobile-9-7-beta-for-windows-mobile
http://my.opera.com/operamobile/blog/2009/03/26/opera-mobile-9-7-beta-for-windows-mobile
http://www.w3.org/TR/selectors-api/
http://code.google.com/p/browsertests/wiki/StartPage
http://www.browserscope.org/
http://web.archive.org/web/20030212115103/http://www.geocrawler.com/archives/list-name.mbox/123/1998/7/0/1037920/
http://web.archive.org/web/20030212115103/http://www.geocrawler.com/archives/list-name.mbox/123/1998/7/0/1037920/
http://www.w3.org/International/articles/serving-xhtml/
http://www.w3.org/International/articles/serving-xhtml/standards.html
http://www.w3.org/TR/REC-CSS1/#formatting-model

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

35

 97. Bowman D (2005) Douglas Bowman declares his love to CSS … Vorsprung durch
Webstandards. http://www.vorsprungdurchwebstandards.de/interviews/
fallinginlovewithcss/douglas-bowman/. Accessed 24 October 2014

 98. Bos B, Çelik T, Hickson I, Lie HW (2009) CSS 2.1 Box model. In: Cascading Style Sheets
Level 2 Revision 1 (CSS 2.1) Specification, W3C Candidate Recommendation. World Wide
Web Consortium. http://www.w3.org/TR/CSS2/box.html. Accessed 24 October 2014

 99. Bos B (2007) CSS basic box model. World Wide Web Consortium.
http://www.w3.org/TR/css3-box/. Accessed 24 October 2014

 100. Gertner M (2008) Is Web Standardization Obsolete? Just Browsing.
http://browsing.justdiscourse.com/2008/01/22/is-web-standardization-obsolete/.
Accessed 9 September 2010

 101. Zeldman J, Marcotte E (2009) 99.9% of websites are obsolete. In: Designing with Web
standards, 3rd edn. New Riders, Berkeley

 102. Alexa (2011) Alexa Top 500 Global Sites. Alexa Internet, Inc.
http://www.alexa.com/topsites. Accessed 14 March 2011

 103. Anderson E, DeBolt V, Featherstone D, Gunther L, Jacobs DR, Jensen-Inman L, Mills C,
Schmitt C, Sims G, Walter A (2010) InterACT With Web Standards – A Holistic Approach to
Web Design. New Riders, Berkeley

 104. Zeldman J, Marcotte E (2009) Core forking can be hazardous to your site’s long-term
health. In: Designing with Web standards, 3rd edn. New Riders

 105. Herman I, Corlosquet S, Clark L (2010) Combine the Web of Data and the Web of
Documents (RDFa and Drupal 7). Proceedings of the International Semantic Web
Conference 2010, 8 November 2010, Shanghai.
http://www.w3.org/2010/Talks/RDFa-Drupal-Tutorial/. Accessed 24 October 2014

 106. Sparkle Media (2010) Publishing Flash Animations to HTML format. Sparkle Media
Systems. http://www.flashkeeper.com/publishhtml.htm. Accessed 12 January 2011

 107. Adobe Labs (2011) Convert Adobe Flash FLA files into HTML and reach more devices.
Adobe Systems Incorporated. http://labs.adobe.com/technologies/wallaby/.
Accessed 22 June 2011

 108. Çelik T (2010) HTML5 Now: A Step-by-Step Video Tutorial for Getting Started Today.
New Riders Publishing, Berkeley

 109. Berners-Lee T (1996) Technology Review, July 1996.
http://en.wikiquote.org/wiki/Tim_Berners-Lee. Accessed 24 October 2014

 110. Burstein CD (2011) Viewable with Any Browser: Campaign. Cari D. Burstein.
http://www.anybrowser.org/campaign/. Accessed 24 October 2014

 111. Kyrnin J (2006) Browser Specific Web Designs – Why Should You Care. The New York
Times Company. http://webdesign.about.com/od/browsers/a/aa111797.htm. Accessed
24 October 2014

 112. Allsopp J (2009) It doesn’t have to look the same in every browser. In: Developing with
Web standards. New Riders, Berkeley

 113. Zeldman J (2010) Gentle persuasion. In: Designing with Web standards.
New Riders, Berkeley

http://www.vorsprungdurchwebstandards.de/interviews/fallinginlovewithcss/douglas-bowman/
http://www.vorsprungdurchwebstandards.de/interviews/fallinginlovewithcss/douglas-bowman/
http://www.w3.org/TR/CSS2/box.html
http://www.w3.org/TR/css3-box/
http://www.alexa.com/topsites
http://www.w3.org/2010/Talks/RDFa-Drupal-Tutorial/
http://labs.adobe.com/technologies/wallaby/
https://en.wikiquote.org/wiki/Tim_Berners-Lee
http://www.anybrowser.org/campaign/
http://webdesign.about.com/od/browsers/a/aa111797.htm

CHAPTER 1 ■ INTRODUCTION TO WEB STANDARDS

36

 114. Gustafson A (2008) Beyond DOCTYPE: Web Standards, Forward Compatibility, and IE8.
A List Apart Magazine. http://www.alistapart.com/articles/beyonddoctype.
Accessed 24 October 2014

 115. Microsoft Developer Network (2010) Standards by Default: What Does It Mean? Microsoft
Corporation. http://msdn.microsoft.com/en-us/library/cc817575.aspx.
Accessed 24 October 2014

 116. Shankland S (2009) Microsoft actively urges IE 6 users to upgrade. CNET News.
http://news.cnet.com/8301-30685_3-10406468-264.html. Accessed 24 October 2014

 117. Microsoft (2014) The Internet Explorer 6 Countdown. Microsoft Corporation.
http://ie6countdown.com. Accessed 24 October 2014

 118. Protalinski E (2010) Google to send Internet Explorer 6 users packing come March.
Ars Technica. http://arstechnica.com/microsoft/news/2010/01/google-to-send-
internet-explorer-6-users-packing-come-march.ars. Accessed 24 October 2014

 119. Ateş F, Irish P, Sexton A (2014) Modernizr: the feature detection library for
HTML5/CSS3. Faruk Ateş, Paul Irish, and Alex Sexton. http://www.modernizr.com.
Accessed 24 October 2014

 120. Gimson R, Finkelstein SR, Maes S, Suryanarayana L (eds) (2003) Device Independence
Principles. World Wide Web Consortium. http://www.w3.org/TR/di-princ/. Accessed
24 October 2014

 121. Leavitt MO, Shneiderman B, Bailey RW, Barnum C, Bosley J, Chaparro B, Dumas J, Ivory
MY, John B, Miller-Jacobs H, Koyani SJ, Lewis JR, Page S, Ramey J, Redish J, Scholtz J,
Wigginton S, Wolfson CA, Wood LE, Zimmerman D (eds) (2006) Research-based Web
Design & Usability Guidelines. Department of Health & Human Services (HHS),
U.S. Government. http://guidelines.usability.gov/. Accessed 24 October 2014

http://www.alistapart.com/articles/beyonddoctype
http://msdn.microsoft.com/en-us/library/cc817575.aspx
http://news.cnet.com/8301-30685_3-10406468-264.html
http://ie6countdown.com/
http://arstechnica.com/microsoft/news/2010/01/google-to-send-internet-explorer-6-users-packing-come-march.ars
http://arstechnica.com/microsoft/news/2010/01/google-to-send-internet-explorer-6-users-packing-come-march.ars
http://www.modernizr.com/
http://www.w3.org/TR/di-princ/
http://guidelines.usability.gov/

37

CHAPTER 2

Internationalization

Web documents are published in all languages of the world, using a variety of character repertoires and features such
as text direction. Several technologies support multilingual websites. To display characters correctly on websites, a
character encoding that supports the required characters should be used to encode the markup files. The character
encoding should be properly declared in the document header, and the documents served with proper server settings.
Capable of representing any characters and ideographs of all natural languages, both ancient and modern, Unicode
can be considered as the ultimate character encoding. To use Unicode, you need to understand the byte-order
marks which provide information about the ordering of individually addressable subcomponents of this multibyte
character encoding. Special characters and symbols can be written in various ways from entity sets and escape codes
to hexadecimal notation.

In this chapter, you will learn how to ensure correct character rendering on web sites, and use the same markup
structures for different language versions of multilingual sites. While the many characters are supported by more than
one character encoding system, Unicode should always be used unless you have a very good reason not to do so. Most
characters can be typed in directly into the markup, but there are some exceptions too. You will also learn the proper
application of character entities and whitespace characters to add special characters to web sites, such as invisible,
unprintable control characters.

The Importance of Character Encoding
Until the mid-1990s, computers mainly supported the characters of the English alphabet only (partly because of the
American dominance on the computer market), and the need for international characters has been satisfied through
hardware code pages, such as CP852 or CP1252, supported by the then-used operating systems (for example, DOS,
Windows 3.1, and Windows 95). The proper display of Central-European characters, for example, depended on the
hardware configuration, the operating system, and the settings of the operating system. A few years later, with the
introduction of the Web, such limitations were no longer acceptable. In 1997, HTML 4.0 added advanced support for
international characters.

The American Standard Code for Information Interchange (ASCII) has been the most widely supported character
encoding scheme, which stores 128 characters on 7 bits. Additional characters have been provided by 8-bit character sets,
such as the ISO/IEC 8859 series of ASCII-based standard character encodings (informally referred to as Latin-1). They were
first published in 1987 and supported most Western European languages and partly supported some other languages.

Most modern character encoding systems are based on ASCII; however, they support many more characters.
If anything other than the most basic Latin characters is needed, many characters on your web site will be

incorrect unless an appropriate character encoding is specified. These standards define not only the identification of
each character and the associated numeric value (codepoint1), but also the way this value is represented in the bits of
the file to be encoded.

1Codepoints฀are฀code฀positions฀that฀can฀be฀any฀of฀the฀numerical฀values฀that฀form฀the฀codespace฀of฀a฀character฀encoding.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ INTERNATIONALIZATION

38

If the character encoding is declared properly, browsers can use the appropriate encoding to render web
documents correctly, including all special characters. Browsers usually have an automatic character encoding
recognition feature as well, which is activated if the character encoding declaration is missing. Based on the setting
and features of the file, the browser might identify the character encoding being used. Users can also select an
encoding scheme manually in most browsers which is not needed if all server and document settings are correct.

As an example, let us assume that we want to publish Christmas greetings in several languages on a web page,
as in Table 2-1.

Table 2-1. Christmas Greetings in Different Languages

Language Greetings

Albanian Gëzuar Krishtlindjet e Vitin e Ri

Arabic ةديدجلا ةنسلا لولح و داليملا ةبسانمب يناهتلا لمجا
(Ajmel altehani bemonasebt almīlad wa helol alseneh aljedīdah)

Bulgarian Честита Коледа! (Čestita Koleda!)

Dutch Prettige kerstdagen en een Gelukkig Nieuwjaar!

English Merry Christmas and a Happy New Year!

Finnish Hyvää joulua ja onnellista uutta vuotta

French Joyeux Noël et bonne année

German Frohes Fest und guten Rutsch [ins neue Jahr]

Hindi नय ेसाल की हार्दिक शुभकामनायें (Naye sāl kī hārdik śubhkāmnaye ṅ)

Hungarian Kellemes karácsonyi ünnepeket és boldog új évet!

Italian Buon Natale e felice anno nuovo

Persian کرابم ناهج مدرم یمامت رب یدالیم ون لاس
(Sale noe miladi bar tamami marodme jahan mobarak!)

Russian С Рождеством Христовым и С наступающим Новым Годом

Urdu Sale No Mobarak

Not all character encoding systems can represent such a character variety. Without choosing the right character
encoding system, undesirable characters such as squares (□) or question marks (�) would appear instead of the
correct form of special characters.2 Inappropriate character encoding (or incorrect encoding declaration) can cause
additional problems too; for example, users might not be able to search in the text. In web documents that contain
characters beyond the English alphabet and not encoded correctly, there might be legible characters (sharing the
same codepoint in the advanced and the basic character encoding), and meaningless characters throughout the
document. Due to wrong encoding, databases might become inaccessible too.

Not only incorrect or missing encoding information can spoil text readability, but also missing fonts or fonts that
do not support all characters of the language(s) of the site.

2Special฀characters฀in฀English,฀but฀basic฀characters฀in฀another฀language.

CHAPTER 2 ■ INTERNATIONALIZATION

39

The set of supported characters depends on the character encoding, which is usually one of the following:

•฀ UTF: UTF-8/UTF-16/UTF-32 (Unicode, worldwide)

•฀ ISO standards: ISO-8859-1 (Western Europe), ISO-8859-2 (Central Europe), ISO-8859-3
(Southern Europe), ISO-8859-4 (Northern Europe), ISO-8859-5 (Cyrillic), ISO-8859-6-i
(Arabic), ISO-8859-7 (Greek), ISO-8859-8 (Hebrew, visual), ISO-8859-8-i (Hebrew, logical),
ISO-8859-9 (Turkish), ISO-8859-10 (Latin 6), ISO-8859-11 (Latin/Thai), ISO-8859-13 (Latin 7,
Baltic Rim), ISO-8859-14 (Latin 8, Celtic), ISO-8859-15 (Latin 9), ISO-8859-16 (Latin 10), ISO-
2022-jp (Japanese, e-mails), ISO-ir-111 (Cyrillic KOI-8)

•฀ US-ASCII (basic English)

•฀ Windows: Windows-1250 (Central Europe), Windows-1251 (Cyrillic), Windows-1252 (Western
Europe), Windows-1253 (Greek), Windows-1254 (Turkish), Windows-1255 (Hebrew),
Windows-1256 (Arabic), Windows-1257 (Baltic Rim)

•฀ Encodings for eastern languages: EUC-JP (Japanese, Unix), Shift_JIS (Japanese, Win/Mac),
EUC-kr (Korean), gb2312 (Chinese, simplified), gb18030 (Chinese, simplified), big5 (Chinese,
traditional), Big5-HKSCS (Chinese, Hong Kong), tis-620 (Thai)

•฀ Other: koi8-r (Russian), koi8-u (Ukrainian), Macintosh (MacRoman), and so on.

In spite of this wide variety, only the variants of a single character encoding—Unicode—should be used unless
there is a very good reason not to do so.

Unicode
Unicode is a standard for universal character encoding, which is capable of representing all characters of the written
languages of the world [1]. Beyond the characters of natural languages and widely used notations, all historic scripts
of the world are also covered. Unicode provides codes for approximately 137,000 characters covering 122 scripts (even
historic ones such as Egyptian hieroglyphs), including alphabets, ideograph sets, and symbols. Moreover, the Unicode
codespace supports more than a million codepoints. The Unicode Character Code Charts provide quick access to any
characters and their codepoints [2]. These classifications also give an insight into the wonderful richness of languages
and fields supported by Unicode:

Scripts•฀

•฀ European scripts: Armenian (including ligatures), Coptic (including Coptic in Greek
block), Cypriot syllabary, Cyrillic, Georgian, Glagolitic, Gothic, Greek, Latin (extended,
including ligatures and fullwidth Latin letters), Linear B (with syllabary and ideograms),
Ogham, Old Italic, Phaistos Disc, Runic, and Shavian

•฀ Phonetic symbols: IPA extensions, phonetic extensions, modifier tone letters, spacing
modifier letters, superscripts and subscripts

•฀ Combining diacritics: Combining diacritical marks and combining half marks

•฀ African scripts: Bamum, Egyptian hieroglyphs, Ethiopic, N’Ko, Osmanya, Tifinagh, and Vai

•฀ Middle Eastern scripts: Arabic, Imperial Aramaic, Avestan, Carian, Cuneiform (including
numbers and punctuation, Old Persian, and Ugaritic), Hebrew, Lycian, Lydian, Mandaic,
Old South Arabian, inscriptional Pahlavi, inscriptional Parthian, Phoenician, Samaritan,
and Syriac

CHAPTER 2 ■ INTERNATIONALIZATION

40

•฀ Central Asian scripts: Mongolian, Old Turkic, Phags-Pa, and Tibetan

•฀ South Asian scripts: Bengali, Brahmi, Devanagari, Gujarati, Gurmukhi, Kaithi, Kannada,
Kharoshthi, Lepcha, Limbu, Malayalam, Meetei Mayek, Ol Chiki, Oriya, Saurashtra,
Sinhala, Syloti Nagri, Tamil, Telugu, Thaana, and Vedic extensions

•฀ Southeast Asian scripts: Batak, Balinese, Buginese, Cham, Javanese, Kayah Li, Khmer (with
symbols), Lao, Myanmar (extended), New Tai Lue, Rejang, Sundanese, Tai Le, Tai Tham,
Tai Viet, and Thai

•฀ Philippine scripts: Buhid, Hanunoo, Tagalog, and Tagbanwa

•฀ East Asian scripts: Bopomofo (extended), CJK unified ideographs (Han, extended),
CJK compatibility ideographs (with supplement), CJK / KangXi radicals, Hangul
Jamo (extended) and syllables, Hiragana, Katakana (with phonetic extensions, Kana
supplement, and half-width Katakana), Kanbun, Lisu, and Yi (with syllables and radicals)

•฀ American scripts: Cherokee, Deseret, and Unified Canadian Aboriginal Syllabics

•฀ Other scripts: Alphabetic presentation forms, half-width and full-width forms, and ASCII
characters

Symbols and punctuation•฀

•฀ Punctuation: General punctuation (ASCII punctuation, Latin-1 punctuation, small form
variants), supplemental punctuation (CJK symbols and punctuation, CJK compatibility
forms, full-width ASCII punctuation, and vertical forms)

•฀ Alphanumeric symbols: Letterlike symbols (including Roman symbols), mathematical
alphanumeric symbols, enclosed alphanumerics, enclosed CJK letters and months, CJK
compatibility symbols (including additional squared symbols)

•฀ Numbers and digits: Aegean numbers, Ancient Greek numbers, ASCII digits (including
fullwidth ASCII digits), common Indic number forms, counting Rod numerals, Cuneiform
numbers and punctuation, number forms, Rumi numeral symbols, superscripts, and
subscripts

•฀ Mathematical symbols: Arrows, mathematical alphanumeric symbols, mathematical
operators, and geometric shapes

•฀ Other symbols: Alchemical symbols, ancient symbols, Braille patterns, and currency
symbols, dingbats, emoticons, game symbols, miscellaneous symbols, musical symbols
(including Ancient Greek musical notation and Byzantine musical symbols), transport
and map symbols, and Yijing symbols

•฀ Special characters: Layout controls, invisible operators, tags, and variation selectors

The standard supports three encoding forms (UTF-8, UTF-16, UTF-32) that use a common repertoire of
characters. They support the same data transmission but in 8, 16, or 32 bits per code unit format, respectively (byte,
word, or double word). They can even be transformed into one another. All three encoding forms need a maximum of
4 bytes (32 bits) of data for each character. Depending on the encoding form chosen (UTF-8, UTF-16, or UTF-32), each
character is represented as a sequence of either one to four 8-bit bytes, one or two 16-bit code units, or a single 32-bit
code unit. Since UTF-8 and UTF-16 are variable-width encodings, UTF-8 results in smaller file size for English texts.
However, UTF-8 requires 3 bytes for an Asian character for which UTF-16 requires only 2 bytes. UTF-32 codepoint
calculations can be performed quickly, but all codepoints require 4 bytes (fixed-width encoding).

CHAPTER 2 ■ INTERNATIONALIZATION

41

For web publishing, UTF-8 is recommended, which provides interoperability and backward compatibility with
US-ASCII3 and has further advantageous characteristics [3]. UTF-8 supports internationalized resource identifiers
(IRIs, multilingual web addresses) [4, 5]. UTF-8 uses at least one byte for encoding while UTF-16 uses two, so a UTF-8
encoded file tends to be smaller than a UTF-16 encoded file. UTF-8 is byte oriented, while UTF-16 and UTF-32 are
not; in other words, the byte order should be declared for UTF-16 and UTF-32 files by the byte-order mark (see the
section “The Byte-Order Mark (BOM)”). UTF-8 is better in recovering from errors than the other Unicode flavors.

There are further variants of UTF-16 and UTF-32, depending on the endianness, which is the order of individually
addressable subcomponents within the character set. If the most significant byte is the first byte (lowest address) and
the least significant byte is the last byte (highest address), the file is called big-endian (UTF-16BE, UTF-32BE). If these
bytes are reversed, the file is referred to as little-endian (UTF-16LE, UTF-32LE). Table 2-2 summarizes the differences
between UTF-8 and the variants of UTF-16 and UTF-32.

3All฀US-ASCII฀characters฀use฀exactly฀the฀same฀bytes฀in฀UTF-8฀as฀in฀US-ASCII;฀i.e.,฀a฀UTF-8฀file฀that฀contains฀only฀ASCII฀
characters฀is฀identical฀to฀an฀ASCII฀file.
4A฀character฀represented฀by฀a฀particular฀value฀in฀the฀text฀depends฀on฀values฀provided฀earlier฀in฀the฀text฀stream,฀e.g.,฀escape฀
sequences฀or฀bidirectional฀embedding฀controls.

Table 2-2. Comparison of Unicode Encoding Schemes

Encoding UTF-8 UTF-16 UTF-16BE UTF-16LE UTF-32 UTF-32BE UTF-32LE

Smallest code point 0000 0000 0000 0000 0000 0000 0000

Largest code point 10FFFF 10FFFF 10FFFF 10FFFF 10FFFF 10FFFF 10FFFF

Code unit size 8 bits 16 bits 16 bits 16 bits 32 bits 32 bits 32 bits

Byte order Not provided BOM Big-endian Little-endian BOM Big-endian Little-endian

Fewest bytes per
character

1 2 2 2 4 4 4

Most bytes per
character

4 4 4 4 4 4 4

According to the HTML5 specification, “authors are encouraged to use UTF-8. Conformance checkers may
advise authors against using legacy encodings [6]. Authoring tools should default to using UTF-8 for newly created
documents [7].”

Characters That Should Be Avoided In the Markup
Some Unicode characters should not be applied in HTML markup and XML documents (see Table 2-3) because of
one or more of the following reasons:

They are deprecated in the Unicode standard.•฀

They cannot be supported without additional data.•฀

They are difficult to handle because they are stateful.•฀ 4

They can be handled more efficiently with markup.•฀

They should be avoided because of the potential conflict they could cause with •฀
equivalent markup.

CHAPTER 2 ■ INTERNATIONALIZATION

42

Formatting Characters Suitable Also for Markup
There are special formatting characters in Unicode that can also be used in markup languages (see Table 2-4).
They affect text and can be applied for markup simultaneously. These formatting characters are interpreted by
rendering engines.

Table 2-3. Unicode Characters Not Suitable for Markup [8]

Codepoint(s) Description Comment

U+0340..U+0341 Clones of grave and accent Deprecated in Unicode.

U+17A3, U+17D3 Obsolete characters for Khmer Deprecated in Unicode.

U+2028..U+2029 Line and paragraph separator <xhtml:br />, <xhtml:p></xhtml:p>, or
equivalent should be used instead.

U+202A..U+202E BIDI (bidirectional) embedding controls

(LRE, RLE, LRO, RLO, PDF)

Strongly discouraged in HTML 4.01.

U+206A..U+206B Activate/Inhibit Symmetric swapping Deprecated in Unicode.

U+206C..U+206D Activate/Inhibit Arabic form shaping Deprecated in Unicode.

U+206E..U+206F Activate/Inhibit National digit shapes Deprecated in Unicode.

U+FFF9..U+FFFB Interlinear annotation characters Ruby markup should be used instead.

U+FEFF As ZWNBSP U+2060 word joiner should be used instead.

As Byte Order Mark Use only at the start of a file, not as part of markup.

U+FFFC Object replacement character Markup should be used instead, e.g., <object>, .

U+1D173..U+1D17A Scoping for Musical Notation An appropriate markup language should be
used instead.

U+E0000..U+E007F Language Tag code points xhtml:lang or xml:lang should be used instead.

CHAPTER 2 ■ INTERNATIONALIZATION

43

Special Characters
Certain Unicode characters deserve extended attention because they should be used with caution.

The Byte-Order Mark (BOM)

Unicode files can contain special bytes at the very beginning known as the byte-order mark (BOM). This codepoint is
the U+FEFF (Zero-width non-breaking space, ZWNBSP). As mentioned earlier, the byte order of UTF-16 and UTF-32
encoded files should be declared, and the BOM provides this information.

In UTF-16, the 2 or 4 bytes of characters can be ordered in two ways (little-endian or big-endian—defining the
direction the bytes should be read in). To choose from the two, documents encoded in UTF-16 should always start
with the BOM. In UTF-8, the BOM is optional since there are no alternate byte sequences, but if it is still provided, it
is called the UTF-8 signature. According to the I18N Activity Group at W3C, the byte-order mark should be omitted in
UTF-8 [10], mainly because it could cause display problems in some browsers. Typically it produces an extra line or
unwanted characters at the top of the page [11]. An advanced text editor or Richard Ishida’s UTF-8 BOM tester [12] can
be used to check the presence of UTF-8 signatures.

Whitespace Characters

Some Unicode characters are (invisible) whitespace characters that have different line-breaking properties,
different ligating properties, and different widths. These characters are used to separate different parts of the
document with line breaks, tabulators, and spaces. They represent horizontal or vertical spaces on web pages and
contribute to the appearance and layout of content blocks or the entire page. Whitespace characters are typically

Table 2-4. The Most Important Formatting Characters That Can Also Be Used for Markup [9]

Codepoint(s) Name or Function Comment

U+00A0 Nonbreakable space Line break control.

U+00AD Soft hyphen Line break control.

U+200B Zero-width space Line break control.

U+200C..U+200D Zero-width join controls (ZWJ and ZWNJ) Required for Persian and many Indic scripts.

U+200E..U+200F Implicit directional marks (LRM and RLM) LRM and RLM are allowed.

U+2011 Nonbreaking hyphen Line break control.

U+2044 Fraction slash Alternatively, MathML markup can be used.

U+2060 Word joiner This should be used for word joiner instead of
U+FEFF (ZWNBSP).

U+2061..U+2064 Invisible mathematical operators Mathematical use.

U+2FF0..U+2FFB Ideographic character description Graphic characters (not controls).

U+303E Ideographic variation indicator Graphic character (not a control).

FE00..FE0F Variation selectors Modify graphic characters.

E0100..E01DF Variation selectors Modify graphic characters.

CHAPTER 2 ■ INTERNATIONALIZATION

44

not visible but reserve some space when rendered. The list of whitespace characters varies from context to context.
For example, the form feed control character is considered as whitespace in HTML but not in XML. Each markup
language defines those few whitespace characters that can be applied as part of the markup syntax. The XML
specification defines whitespace as a combination of one or more of the following characters: space (U+0020),
carriage return (U+000D), line feed (U+000A), or tab (U+0009). HTML 4.01 also supports the form feed character
(U+000C) which cannot be used in XHTML.

Not all whitespace characters can be typed in from the keyboard, although the most common ones, such as a
blank space (the basic word divider in Western languages) or a single tabulator, can be typed using the spacebar and
the Tab key, respectively. Advanced text editors usually provide inserting options for whitespaces (see the later section
“Development Tools”).

A very bad practice from the 1990s is to provide whitespaces for typography or layout by embedding blank
images, such as 1×1 pixel spacer.gif files, instead of whitespace characters, margins, or paddings. The biggest
disadvantage of this technique is the lack of structure or semantic meaning in the markup. Such images also have
a negative effect on searchability and accessibility (text browsers and screen readers would read aloud “spacer.gif”
repeatedly). Another huge problem with spaceholder images is that even the slightest changes in the markup can
completely destroy the site layout.

NFC Normalization Is Recommended
In Unicode the same text can be provided with different character sequences. The accentuated a (in other words, á),
for example, can be represented either as the pre-composed U+00E1 (Latin small letter a with acute) or as the decomposed
sequence of U+0061 (Latin small letter a) and U+0301 (Combining acute accent).

The Unicode standard supports four normalization forms: NFC, NFD, NFKC, and NFKD where C stands for
composed (precomposed), D for decomposed, and K represents compatibility.

The normalization form is especially important when accents or other diacritics are used in (X)HTML identifiers
or CSS selectors and class names. If such a word is used in precomposed form in the HTML (for example,
<div id="hangsúlyos">), but in decomposed form in the CSS (for example, #hangsúlyos { color: red; }), then
the selector won’t match the class name. This problem can be avoided by completely eliminating accented characters
in markup attributes and CSS properties, and use standard English characters only, which is the best practice.

W3C recommends NFC normalization—which is supported by advanced text editors by default—on the Web to
improve interoperability [13].

Unicode Should Be Preferred
Web pages should use one character encoding at a time. Different parts of the same document should not be encoded
with different encoding schemes.

UTF-8 character encoding can simplify multilingual sites. Unicode allows more languages to be used on a
single page than any other encoding system, which makes it ideal for content, forms, scripts, and databases. Due
to its powerful features, Unicode should be used wherever possible [14]. Thanks to the increasing popularity
of HTML5 templates and best practices, web designers tend to use UTF-8 for all their projects. The global
distribution of UTF-8 eliminates incorrect automatic encoding detection in browsers rendering documents with
special characters.

Using Unicode does not guarantee that texts will be displayed correctly in browsers. Several scripting languages
such as Arabic require additional techniques to ensure the appropriate character sequence of glyphs.

CHAPTER 2 ■ INTERNATIONALIZATION

45

Declaring Character Encoding for the Markup
Character encoding of web documents can be determined in many ways:

Using the HTTP header•฀

Using in-document declarations•฀

Using the •฀ pragma directive (HTML 4, XHTML, (X)HTML5)

Using the •฀ meta charset attribute (HTML5)

Using the •฀ XML declaration5 (XHTML)

The last three options are used in the markup, but not the first one, which is applied by the web server. Not all
in-document declarations can be used in all markup languages, but the pragma directive can be used in most. Since
browsers retrieve the character encoding declaration to use the right encoding scheme and display the content
correctly, these declarations must correspond to the actual character encoding of the file.

If the different encoding declarations are inconsistent or contradictory, the following precedence rules determine
the encoding to apply:

 1. HTTP Content-Type header

 2. Byte-order mark6

 3. XML declaration

 4. The meta element

 5. The link charset attribute

Encoding Declaration in the HTTP Header
The highest precedence declaration sets the character encoding in the HTTP header. Listing 2-1 shows an example.

Listing 2-1. Setting the Character Encoding in the HTTP Header

HTTP/1.1 200 OK
Date: Tue, 02 Aug 2011 14:18:05 GMT
Server: Apache/2.2.3 (Oracle)
...
Content-Type: text/html; charset=UTF-8
Content-Language: en

These declarations should be consistent with the in-document declarations.
Documents using UTF-16 should be declared as UTF-16 rather than UTF-16BE or UTF-16LE and provide a byte-order

mark in the file.
HTTP headers are used for other purposes too. For more information on the HTTP header, see Chapter 4.

5The฀character฀encoding฀declaration,฀if฀provided฀exclusively฀using฀the฀XML฀declaration,฀is฀ignored฀by฀some฀rendering฀engines.
6The฀BOM฀was฀added฀to฀the฀hierarchy฀in฀the฀HTML5฀specification,฀but฀this฀is฀not฀implemented฀in฀all฀browsers฀yet.

CHAPTER 2 ■ INTERNATIONALIZATION

46

In-Document Declarations
In HTML 4, the pragma directive should be used at the top of the head element in the form shown in Listing 2-2.

Listing 2-2. Declaring the Character Encoding with the Pragma Directive

<meta http-equiv="Content-type" content="text/html;charset=UTF-8">

The previous declaration can be used in HTML5 as well, but HTML5 introduced another option, namely the meta
charset attribute (see Listing 2-3). Either of them can be used, but only one at a time. The whole declaration must fit
within the first 512 bytes of the page.

Listing 2-3. HTML5 meta charset

<meta charset="UTF-8">

The encoding declaration of XHTML documents depends on which MIME type they are served with. If they are
served as text/html, the pragma directive in Listing 2-2 can be used at the top of the head element.

XHTML documents served as XML can use the encoding information of the XML declaration (see Listing 2-4)
in the first line of the document (see Chapter 3).

Listing 2-4. Setting the Character Encoding in XML Documents

<?xml version="1.0" encoding="utf-8"?>

The XML declaration is required for all XML documents that use character encoding other than UTF-8 or UTF-16
or when the encoding is missing from the HTTP header (see later in Chapter 3).

Declaring Character Encoding for CSS
Character encoding declarations can usually be omitted in style sheets. The encoding of external CSS files needs to be
declared if and only if there are non-ASCII characters in the file. The best practice is to use characters from the English
alphabet only, or write non-Latin characters in descriptive selector names or other CSS content without accents.

HTTP Header Declarations
CSS encoding can also be declared in the HTTP Content-Type header. For example, if the character encoding is
UTF-8, the HTTP declaration looks like Listing 2-5.

Listing 2-5. Declaring the Character Encoding for CSS (Rarely Used)

Content-Type: text/css; charset=UTF-8

Using an in-document declaration on top of the HTTP declaration can guarantee that the encoding of the
external CSS file can be determined even if the file is moved or used locally (see the next section).

The character encoding declared in the HTTP header should coincide with the one declared in the CSS file, and
the first one has higher precedence.

CHAPTER 2 ■ INTERNATIONALIZATION

47

In-Document Declarations
Character encoding can be set by the @charset at-rule with the syntax shown in Listing 2-6.

Listing 2-6. Syntax of the @charset At-Rule

@charset "<charset-name>";

Only one @charset rule can be used per CSS file. It should be declared at the very beginning of the file. No
characters should precede the declaration (only BOM if the CSS file is Unicode encoded7).

The charset-name can be one of the character sets defined by IANA [15]. Some encodings have multiple names
in the IANA registry (the one marked as preferred should be used). Listing 2-7 shows a typical example for character
encoding declaration of external CSS files.

Listing 2-7. Setting the Character Encoding of CSS with an At-Rule

@charset "UTF-8";

These rules can be used only in external style sheets. In-document style sheet declarations cannot use
@charset rules.

The HTML 4.01 specification defined a charset attribute to the link element for identifying the character
encoding of the target document. In HTML5, however, this attribute is obsolete and should not be used.

Escape Codes, Special Characters, and Symbols
In HTML and XHTML documents, each character can be typed in directly or represented by a character sequence
(also known as a character reference). Two types of character sequences exist: numeric character references and
character entity references.

Assume a document fragment contains an a character with an accent (á). This character can be declared by either
the á or á numeric character references or by the á entity reference in (X)HTML documents
(see the following sections for details). However, the best practice is to type in the á character directly in the markup. The
same is true for the copyright sign (© instead of ©), the registered trademark sign (® instead of ®), and so on.

Characters should always be preferred to escape codes unless they are special characters with syntactic meaning
in (X)HTML or XML, or characters that are invisible or ambiguous. In such cases, using entities is mandatory [16]. In
other words, markup characters used in textual content or attribute values must be escaped. For example, when we
demonstrate (X)HTML source code blocks on a web page and want to avoid processing, the < and > characters should
be provided by their entity names (< and >) in the source code rather than typing them in directly. Analogously,
if an & character is needed as text within an RSS feed or an RDF file, the & entity should be used instead (see the
“Entity References” section for more information).

Numeric References
Numeric character references identify characters by Universal Character Set or Unicode codepoints in the form &#nnnn;
where nnnn is the codepoint in decimal form. Both HTML and XHTML support hexadecimal references as well. In
HTML, they can be applied in either the &#Xhhhh; or &#xhhhh; form. Since XML is case sensitive, in XHTML they must
be in lowercase (&#xhhhh;) [17]. The nnnn or hhhh can be any number of digits and may include leading zeros.

7External฀CSS฀files฀are฀usually฀encoded฀in฀US-ASCII.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ INTERNATIONALIZATION

48

Wherever possible, type in the characters directly instead of their corresponding numeric references. Usually
there is no reason to insert a single apostrophe in the markup as ’ rather than the ’ character itself. If a
character, such as a Japanese ideograph, cannot be typed in with the keyboard, the corresponding character can
be inserted using advanced software tools or copy-pasted from other applications, codecharts, or web sites via the
clipboard. Note that even advanced text editors display many of these directly inserted characters incorrectly during
development; however, browsers will display them correctly if the character encoding of the containing file has been
set properly and the file served correctly.

Entity References
Character entity references refer to characters by the name of the appropriate entity that has the desired character as
its replacement text in the form &name;.

HTML supports 252 character entities [18]. In XHTML, there are 253 entities (including the 5 predefined entities
of XML 1.0) [19]; however, their application is affected by the way XHTML documents are processed. Keep in mind
that XHTML documents, if served correctly, are processed by XML parsers instead of SGML parsers that interpret
HTML documents. Those characters that have a meaning in XML, such as the less-than sign (<), cause parsing errors
if they are provided directly rather than using entities. There are only four character entities whose processing is
guaranteed in all XML environments: &, >, <, and " (&, >, <, and " respectively). Fortunately, this
short list contains those very important character entities that can be used for syntactic notation (ampersand, greater
than, less than). W3C recommends the use of ampersand characters in href attributes of XHTML documents [20].
Particular attention should be paid to URIs that include parameters. Single ampersand characters in these URIs
should be replaced by the & entity [21].

Although the ' entity (apostrophe, U+0027) is among the five predefined entities of XML, it should not be
used in XHTML [22].

Character references should be eliminated since virtually all characters can be represented directly in Unicode
including, but not limited to, all letters and ideograms of natural languages, accentuated letters, special characters,
mathematical signs, and symbols [23]. Direct character use is easier to interpret, maintain, and modify than numeric
or entity references (see Listing 2-8). Texts filled with character references are more difficult to extend and almost
impossible to search. Many characters cannot be represented by references, which often resulted in incorrect
characters on web pages in the 1990s. For example, the small o with tilde, õ, has been displayed instead of o with the
double acute accent (also known as the Hungarumlaut), ő, which is a different character.

Listing 2-8. Three Versions of the Same Central-European Text with Characters, Numeric, and Entity References

Áttekintés</h1>
<p>
A HTML5 a HTML teljes megújulása, új funkciókkal felvértezve.
</p>

Áttekintés</h1>
<p>
A HTML5 a HTML teljes megújulása, új funkciókkal felvértezve.
</p>

Áttekintés</h1>
<p>
A HTML5 a HTML teljes megújulása, új funkciókkal felvértezve.
</p>

CHAPTER 2 ■ INTERNATIONALIZATION

49

Checking I18N
Those settings and markup segments that support internationalization can be checked by the W3C Internationalization
Checker [24]. It can determine whether the HTML/XHTML documents contain non-NFC class names and identifiers, the
language settings of pages, and so on. The validator is described in detail in the “Validating I18N” section in Chapter 14.

Summary
In this chapter, you learned the importance of internationalization settings that enable properly displayed special
characters on web sites. You know by now that there is a wide choice of character encoding systems, many of which
have been used for decades but became obsolete in recent years. There is an ultimate variable-width character
encoding, called UTF-8, which is a flavor of Unicode, omits the BOM, and is backward compatible with the once most
widely used encoding scheme, ASCII.

The next chapter will describe the markup, where most standardization efforts take place. The markup
not only provides the document structure and content but also serves as the basis for accessibility support and
semantic annotations. As you will see, there is a wide choice of markup languages, not just HTML5, the latest and
most popular one. You will learn the HTML and XHTML elements and attributes that can be safely applied in a
variety of documents while maintaining standard compliance. The chapter will also demonstrate the benefits of
strict markup.

References
 1. The Unicode Consortium (2014) The Unicode Standard: A Technical Introduction.

Unicode, Inc. http://www.unicode.org/standard/principles.html. Accessed
14 October 2014

 2. Unicode (2014) Unicode 7.0 Character Code Charts. Unicode Consortium.
http://www.unicode.org/charts/. Accessed 14 October 2014

 3. Yergeau F (2003) UTF-8, a transformation format of ISO 10646 [RFC3629]. The Internet
Society. http://www.ietf.org/rfc/rfc3629.txt. Accessed 14 October 2014

 4. Duerst M, Suignard M (2005) Internationalized Resource Identifiers (IRIs). The Internet
Society. http://www.ietf.org/rfc/rfc3987. Accessed 14 October 2014

 5. Ishida R (2010) An Introduction to Multilingual Web Addresses. World Wide Web
Consortium. http://www.w3.org/International/articles/idn-and-iri/.
Accessed 14 October 2014

 6. Hickson I (ed) (2010) HTML5 (Edition for Web Authors) revision 1.4439. A vocabulary
and associated APIs for HTML and XHTML. Editor’s Draft. World Wide Web Consortium.
http://dev.w3.org/html5/spec-author-view/semantics.html. Accessed 29 September 2010

 7. Hickson I (ed) (2014) HTML5 (including next generation additions still in development).
Draft Standard. Apple Computer, Inc., Mozilla Foundation, and Opera Software ASA.
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html.
Accessed 14 October 2014

http://www.unicode.org/standard/principles.html
http://www.unicode.org/charts/
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3987
http://www.w3.org/International/articles/idn-and-iri/
http://dev.w3.org/html5/spec-author-view/semantics.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html

CHAPTER 2 ■ INTERNATIONALIZATION

50

 8. Dürst M, Freytag A (2013) Characters not suitable for use with markup. In: Unicode in XML
and other Markup Languages. Unicode Technical Report #20. W3C Working Group Note.
World Wide Web Consortium. http://www.w3.org/TR/unicode-xml/#Suitable.
Accessed 14 October 2014

 9. Dürst M, Freytag A (2013) Format Characters Suitable for Use with Markup. In: Unicode in
XML and other Markup Languages. Unicode Technical Report #20. W3C Working Group
Note. World Wide Web Consortium. http://www.w3.org/TR/unicode-xml/#Format.
Accessed 14 October 2014

 10. Ishida R (2013) What do I need to know about the BOM? In: The byte-order mark (BOM)
in HTML. World Wide Web Consortium. http://www.w3.org/International/questions/
qa-byte-order-mark#bomhow. Accessed 14 October 2014

 11. Cawkwell D, Ishida R (2013) Display problems caused by the UTF-8 BOM. World Wide
Web Consortium. http://www.w3.org/International/questions/qa-utf8-bom.
Accessed 14 October 2014

 12. Ishida R (2007). UTF-8 BOM tester. Richard Ishida. http://rishida.net/utils/bomtester/.
Accessed 30 September 2010

 13. Ishida R (2010) Normalization in HTML and CSS. World Wide Web Consortium.
http://www.w3.org/International/questions/qa-html-css-normalization.
Accessed 14 October 2014

 14. Ishida R (2014) Use UTF-8, if you can. In: Choosing & applying a character encoding.
World Wide Web Consortium. http://www.w3.org/International/questions/qa-
choosing-encodings#useunicode. Accessed 14 October 2014

 15. Simonsen K et al (2013) Character sets. The Internet Assigned Numbers Authority.
http://www.iana.org/assignments/character-sets. Accessed 30 September 2010

 16. Ishida R (2010) When to use escapes. In: Using character escapes in markup and CSS.
World Wide Web Consortium. http://www.w3.org/International/questions/qa-
escapes#use. Accessed 14 October 2014

 17. Pemberton S et al (2002) Entity references as hex values. In: XHTML 1.0 – The Extensible
HyperText Markup Language (2nd edn). A Reformulation of HTML 4 in XML 1.0. W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/xhtml1/#h-4.12.
Accessed 14 October 2014

 18. Le Hors A, Jacobs I (ed.) (1999) Character entity references in HTML 4. In: HTML 4.01
Specification. W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/html4/sgml/entities.html. Accessed 14 October 2014

 19. Pemberton S et al (2002) Entity Sets. In: XHTML 1.0 – The Extensible HyperText Markup
Language (2nd edn). A Reformulation of HTML 4 in XML 1.0. W3C Recommendation.
World Wide Web Consortium. http://www.w3.org/TR/xhtml1/#h-A2. Accessed 14
October 2014

 20. Pemberton S et al (2002) Using Ampersands in Attribute Values (and Elsewhere).
In: XHTML 1.0 – The Extensible HyperText Markup Language (2nd edn). A Reformulation
of HTML 4 in XML 1.0. W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/2002/REC-xhtml1-20020801/#C_16. Accessed 14 October 2014

http://www.w3.org/TR/unicode-xml/#Suitable
http://www.w3.org/TR/unicode-xml/#Format
https://www.w3.org/International/questions/qa-byte-order-mark#bomhow
https://www.w3.org/International/questions/qa-byte-order-mark#bomhow
http://www.w3.org/International/questions/qa-utf8-bom
http://www.w3.org/International/questions/qa-html-css-normalization
http://www.w3.org/International/questions/qa-choosing-encodings#useunicode
http://www.w3.org/International/questions/qa-choosing-encodings#useunicode
http://www.iana.org/assignments/character-sets
http://www.w3.org/International/questions/qa-escapes#use
http://www.w3.org/International/questions/qa-escapes#use
http://www.w3.org/TR/xhtml1/#h-4.12
http://www.w3.org/TR/html4/sgml/entities.html
http://www.w3.org/TR/xhtml1/#h-A2
http://www.w3.org/TR/2002/REC-xhtml1-20020801/#C_16

CHAPTER 2 ■ INTERNATIONALIZATION

51

 21. Ishida R (2010) By the way. In: Using character escapes in markup and CSS. World Wide
Web Consortium. http://www.w3.org/International/questions/qa-escapes#bytheway.
Accessed 14 October 2014

 22. Pemberton S et al (2002) The Named Character Reference '. In: XHTML 1.0 – The
Extensible HyperText Markup Language (2nd edn). A Reformulation of HTML 4 in XML
1.0. W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/2002/REC-xhtml1-20020801/#C_16. Accessed 14 October 2014

 23. Ishida R (2010) When not to use escapes. In: Using character escapes in markup and CSS.
World Wide Web Consortium.
http://www.w3.org/International/questions/qa-escapes#not. Accessed 14 October 2014

 24. W3C I18N Activity Group (2013) W3C Internationalization Checker. World Wide Web
Consortium. http://qa-dev.w3.org/i18n-checker/. Accessed 14 October 2014

http://www.w3.org/International/questions/qa-escapes#bytheway
http://www.w3.org/TR/2002/REC-xhtml1-20020801/#C_16
http://www.w3.org/International/questions/qa-escapes#not
http://qa-dev.w3.org/i18n-checker/

53

CHAPTER 3

Markup Languages: More
Than HTML5

Since markup is the essence of web documents, it provides the largest place for standardization efforts. The
popularity of HTML has not decreased since the birth of the Web. Becoming familiar with the versions and variants
of that language and understanding the differences between HTML and XHTML are crucial for understanding the
techniques for changing the document type. The general structure of all web documents follows the same logic.
The latest core version and by far the most popular markup language of the World Wide Web, HTML5, introduced
new structuring elements as well as multimedia element annotations that can be used to create rather sophisticated
document structures. By examining well-structured document examples, you will be able to build correct document
structures on your own. To achieve well-structuredness, the block-line and inline-level elements should be
differentiated, which is also important in understanding how to embed elements into each other (element nesting).
You should also know how to use Formal Public Identifiers and Document Type Definitions for creating standard-
compliant documents. The strict rules of XML declarations are vital for XHTML authoring. HTML5 can be used to
create HTML or XHTML documents (HTML5 or XHTML5, respectively), and documents that can be interpreted
either as HTML or XHTML (polyglot markup).

In this chapter, you will learn about the most important markup standards in web design, covering the most
advanced markup languages along with mixed-namespace document types. I provide sample HTML and XHTML
documents for the sake of easier understanding. You will understand how to distinguish deprecated elements and
attributes to avoid from the ones that can be used in almost all versions and variants of markup languages. Beyond
HTML, you will learn about the XML-powered mixed-namespace documents that display text-based vector graphics
and mathematical annotations. After reading the chapter, you will be able to apply semantically meaningful markup
elements and attributes, eliminate obsolete markup, and create web documents with correct element nesting and
DOM structure.

Note ■ The detailed description of markup basics is beyond the scope of this book. Several resources are available

for both beginner and intermediate developers such as “Getting started with HTML,” a very short overview written by the

author/editor of HTML specifications, Dave Raggett [1], or “HTML: The Markup Language Reference” by Michael Smith [2].

There are also many books on HTML5 [e.g., 3, 4, 5, 6] and XHTML1 but the first HTML5 textbooks were published before

the standardization of HTML5, and often contain incorrect, obsolete, or incomplete descriptions. If you need a short

summary about a particular markup element, the W3C Cheatsheet can be very helpful too [7].

1XHTML฀hand฀coders฀can฀write฀HTML฀markup฀with฀ease.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

54

SGML Languages
Standard Generalized Markup Language (SGML) is a markup language family. It has been used since the mid-1980s.
One of the major features of SGML is flexibility.

The most important SGML language for web designers is HTML, which has been the core language of the World
Wide Web from the very beginning.

Caution ■ Despite the similarities in the markup syntax of earlier HTML versions and HTML5, the latest version is no

longer based on SGML; however, it is backward-compatible with conventional HTML parsing.

HTML
The idea behind Hypertext Markup Language (HTML) was born at the European Laboratory for High-Energy Physics
(CERN) in Geneva, Switzerland, as early as 1989 [8]. One year later, the World Wide Web project was also started there.
In the beginning, HTML was used to share information between scientists. The major elements of the language were
formed at that time, including headings, paragraphs, and hyperlinks, but the semantics of the first documents were
limited [9]. New elements and multimedia capabilities were added later that caused interoperability problems for
documents used across different platforms.

The relatively simple syntax and vocabulary of the language made rapid and wide distribution possible, but it is
also the reason for invalid markup found in more than 90 percent of HTML documents.

XML Languages
Extensible Markup Language (XML) is a universal format for structured documents and data on the World Wide Web.
Since XML has been extended from SGML, it can be considered as a restricted, machine-readable form of SGML that
removes those features of SGML that might result in loose source code.

In contrast to most computer languages, XML has no fixed, predefined set of tags. With XML, individual markup
formats can be defined. Some of the most well-known and frequently used XML formats and/or XML serializations on
the Web are XML, XHTML, SVG, MathML, RDF, and Atom.

Many markup languages were originally designed for textual content, later followed by other types of information
such as music and video, playlists, vector graphics, and news feeds. The big advantage of XML is that it is strict,
well-defined, and extendible. With XML you can combine multiple markup languages into single profiles, such
as XHTML + MathML + SVG or XHTML + SMIL. The additional vocabularies (elements, attributes, and further
components) of other XML applications can be used through the namespace mechanism declared by the xmlns
attribute. This is one of the major advantages of XHTML over HTML2.

XHTML
Extensible Hypertext Markup Language (XHTML) is an XML language family that can be used as an alternative
to HTML. XHTML is an application of XML and thus more restrictive than HTML. In contrast to HTML, XHTML
documents must be written without errors; otherwise, rendering engines give error messages instead of rendering the
content. XHTML documents require an XML parser rather than an SGML parser.

2HTML5฀provides฀additional฀features฀through฀its฀Application฀Programming฀Interfaces฀(APIs).฀Before฀the฀introduction฀of฀HTML5,฀
the฀XHTML฀modules฀and฀external฀vocabularies฀provided฀the฀only฀way฀to฀extend฀the฀core฀markup฀features,฀which฀was฀available฀฀
in฀XHTML฀documents฀only.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

55

Documents served with an XML MIME type, such as application/xhtml+xml, are treated as XML documents
by browsers; in other words, they are parsed by an XML processor. Consequently, XML and HTML are processed
differently. In fact, even minor syntactic errors will prevent an XML document from being rendered correctly. In
contrast, the errors of such documents would be ignored in the HTML syntax. A parsing error of XML documents can
easily result in the “Yellow Screen of Death.”

Version Overview
Understanding the major differences and capabilities of the different markup language versions and variants and
analyzing sample documents with minimum content known as skeleton documents is very useful. These documents
can serve as the basis for hand coding from scratch. While indentation is used to provide clear, easy-to-understand
code, tabulators can be omitted to obtain optimal code length. Since all provided documents are valid character by
character on an as-is basis, they can be used to create standards-compliant documents from scratch, and should be
extended with valid markup only to maintain validity. All these documents can be downloaded from the book’s web
page at www.apress.com, as well as from the companion web site of the book at www.masteringhtml5css3.com.

HTML Versions and Variants
This section will highlight the milestones of HTML history. The described HTML versions have made a significant
impact on the evolution of the Web, and were used to form newer standards. Some of these old HTML versions were
used for more than 10 years.

The formal specification of HTML was created in 1992, and this specification has evolved constantly, introducing
new SGML Document Type Definitions. HTML soon became the lingua franca of web publishing. HTML documents
can be created manually in plain-text editors as well as in WYSIWYG environments.3 HTML is not case-sensitive.

HTML 2.0 was created by the HTML Working Group of the Internet Engineering Task Force in 1995 as the RFC
1866 specification [10]. HTML 2.0 was the first standardized form of the core HTML elements. HTML 2.0 was used for
platform-independent hypertext documents [11]. The HTML 2.0 document type is obsolete and considered as historic.

HTML 3.2 is the first HTML Recommendation from W3C. HTML 3.2 introduced new elements for tables, applets,
superscripts, subscripts, and text flows around images [12]. HTML 3.2 was backward-compatible with version 2.0.
The code in Listing 3-1 is a fragment of an HTML 3.2 document which demonstrates bad practices.

Listing 3-1. Bad Practices in an Old HTML Document (Just Demonstration, Should Not Be Used)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<title>An HTML 3.2 example</title>
<body bgcolor="#FFF6F0"
 text="#000000" link="#C00000">
<h1 align=center>Example header</h1>
 <p><img align=left border=0 alt="Example:"
width=102 height=52
src=http://www.example.com/images/author.jpg> <i>The Author</i>
</body>

This is very poor quality code, because some of the attributes are not quoted (for example, width=102 instead of
width="102"), strictly presentational attributes (bgcolor, align) are used that should be written in CSS instead, the
paragraph is not closed (the </p> tag is missing), and so forth.

3Web฀Quality฀Assurance฀relies฀on฀hand฀coding.

http://www.apress.com/
http://www.masteringhtml5css3.com/

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

56

Tip ■ Although HTML allows both capitalized and lowercase letters in element and attribute names, it is better to use

lowercase letters, which are allowed in every markup (including XHTML, which is case-sensitive).

HTML 4 was an ISO-conforming version (ISO 8879) and the de facto standard, the “publishing language of
the World Wide Web,” for years [13]. The specification was released in 1997 and revised in 1998. Listing 3-2 shows a
fragment of a typical HTML 4.0 document.

Listing 3-2. A Typical HTML 4 Document (Obsolete)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>An HTML 4.0 example</title>
</head>
<body>
 ...
</body>
</html>

Note the similarity between the structure of this document and the previous one. The core HTML structure is still
the same.

HTML 4 was superseded by HTML 4.01, the most well-known HTML version before HTML5, and the primary
markup language of the Web for more than a decade. The HTML 4.01 W3C Recommendation was released in late
1999. The language had three variants: the Strict, the Transitional, and the Frameset [14]. At that time, the best choice
was the Strict flavor, which contained those elements only that had been selected for inclusion in future versions.
The Transitional variant was created to make it easier for web designers to stop using deprecated tags and gave time
to learn writing strict markup without these obsolete tags (hence the name). In the late 1990s, web sites often had a
layout where the menu on the top or left was written in one file and the main content in another (frames), while the
index file was used to control and open these files simultaneously. Such frameset documents are obsolete and should
not be used anymore due to the associated issues. If you accessed a web site with a broken frameset, for example,
missing contents took up the whole window. If a visitor arrived through a direct link to a framed page, the text was
out of context. Search engines could not index frameset documents effectively. There were linking and bookmarking
issues, and further problems such as the Back button did not work in browsers. Frames also reduced the amount of
usable space on a web page and caused problems with printing.

XHTML Versions and Variants
XHTML is a document type family that is the reformulation of HTML in XML rather than SGML. Typical XHTML
file extensions are .html, .htm, .xhtml, .xht, and .xml. XHTML documents usually apply the application/xhtml+xml
Internet media type; however, there are occasional exceptions (see next chapter).

Beyond the core versions of XHTML (Table 3-1), several compounds, extensions, and special profiles are known
(Table 3-2), and further ones can also be defined. The additional mechanisms allow XHTML subsets or supersets.
XHTML 1.1 + MathML 2.0 + SVG 1.1 and XHTML+RDFa documents are typical examples for supersets of XHTML.
Because of the additional (external) element sets, these mixed-namespace documents have a wider variety of markup
elements than plain XHTML documents.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

57

XHTML 1.1 + MathML 2.0 + SVG 1.1 documents can be written in any of the compound languages, all of which
have their own document format (XHTML document, MathML document, or SVG document). The selected language
is the host language (see the “XHTML + MathML + SVG” section later in the chapter).

XHTML 1.0

According to the subtitle of its specification released in 2000 (and revised in 2002), XHTML 1.0 is “a reformulation of HTML
4 in XML 1.0” [19]. Similar to the three flavors of HTML 4.01, XHTML 1.0 also defines the Strict, Transitional, and Frameset
variants, all of which are the XML serialization of their corresponding predecessors. XHTML 1.0 Strict includes those
elements and attributes only that have not been deprecated in HTML 4.01. Every “missing” element and attribute can be
substituted by CSS styles. Similar to HTML 4.01 Transitional, XHTML 1.0 Transitional also provides the presentational
elements such as center or font that are not allowed in the Strict variant. Listings 3-3 and 3-4 show an example.

Table 3-1. Core XHTML Versions

Version Descriptive Name Site Status Date

XHTML 1.0 A reformulation of HTML 4 in XML 1.0 www.w3.org/TR/xhtml1/ R 1/26/2000

r. 8/1/2002

XHTML 1.1 Module-based XHTML www.w3.org/TR/xhtml11/ R 5/31/2001

r. 10/7/2010

XHTML 2.0
(XHTML2)

– www.w3.org/TR/xhtml2/ WD4 7/26/2006

XHTML5 A vocabulary and associated APIs for XHTML www.w3.org/TR/html5/ PR 1/22/2008

XHTML 5.1 A vocabulary and associated APIs for HTML
and XHTML

www.w3.org/TR/html51/ WD 12/17/2012

R: W3C Recommendation PR: Proposed Recommendation WD: W3C Working Draft r: revised

Table 3-2. Special and Mixed-Namespace XHTML Document Types

Version Descriptive Name Status Date

XHTML 1.1 + MathML 2.0 + SVG 1.1 An XHTML + MathML + SVG Profile [15] WD 8/9/2002

XHTML-MP 1.2 XHTML Mobile Profile R5 7/29/2008

XHTML-Print

XHTML-Print 2nd ed.

XHTML for Printing R

R

9/20/2006

11/23/2010

XHTML+RDFa 1.0 RDFa in XHTML [16] R 10/14/2008

XHTML+RDFa 1.1 Support for RDFa via XHTML Modularization [17] R 6/7/2012

XHTML+RDFa 1.1 2nd ed. Support for RDFa via XHTML Modularization [18] R 8/22/2013

R: W3C Recommendation WD: W3C Working Draft

4The฀XHTML2฀specification฀is฀no฀longer฀actively฀developed,฀and฀was฀last฀updated฀in฀2010.
5The฀specification฀was฀standardized฀by฀Open฀Mobile฀Alliance฀not฀W3C.

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/xhtml2/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html51/

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

58

Listing 3-3. An Element Deprecated a Long Time Ago Is Still Used in XHTML 1.0 Transitional Documents

<center>
 <p>
 A paragraph aligned to center.
 </p>
</center>

Listing 3-4. The Code of Listing 3-3 Written in XHTML 1.0 Strict and Styled by CSS

.center {
 text-align: center;
}

<p class="center">
A paragraph aligned to center.
<p>

XHTML 1.0 also has a Frameset variant, although, as we saw earlier, framesets should not be used anymore.
Listing 3-5 presents an XHTML 1.0 Strict skeleton document.

Listing 3-5. An XHTML 1.0 Strict Skeleton Document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html 
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" 
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Minimal XHTML 1.0 Document</title>
 <meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8" />
 </head>
 <body>
 <p>
 This is a minimal XHTML 1.0 document.
 </p>
 </body>
</html

Tip ■ The XHTML 1.0 Strict skeleton document is the best starting point for any kind of XHTML documents, because

this document type contains fundamental markup elements only that have been derived from HTML and are still current

in most markup languages. This markup can also be extended using external vocabularies (which changes the document

type to a mixed-namespace document type). If you update XHTML 1.0 Strict documents to HTML5, minimal changes are

needed (such as removing the DTD and using new elements).

www.allitebooks.com

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.allitebooks.org

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

59

XHTML 1.1

Over the years markup language developers realized that there are presentational components in markup languages
that can be handled more efficiently with style sheets. Moreover, web documents developed for mobile devices can use
limited resources more effectively if a subset of selected elements is applied in a document rather than the whole set of
elements. This is the basic idea behind XHTML modularization, and these element subsets are called element modules.

XHTML 1.1, the “module-based XHTML,” contains exclusively those elements that are defined by the
“Modularization of XHTML” [20]. Elements deprecated in HTML 4 and XHTML 1.0 cannot be used in XHTML 1.1.
The modules of XHTML 1.1 are the following [21]:

Structure Module: •฀ body, head, html, title

Text Module: •฀ abbr, acronym, address, blockquote, br, cite, code, dfn, div, em, h1, h2, h3, h4,
h5, h6, kbd, p, pre, q, samp, span, strong, var

Hypertext Module: •฀ a

List Module: •฀ dl, dt, dd, ol, ul, li

Object Module: •฀ object, param

Presentation Module: •฀ b, big, hr, i, small, sub, sup, tt

Edit Module: •฀ del, ins

Bi-Directional Text Module: •฀ bdo

Forms Module: •฀ button, fieldset, form, input, label, legend, select, optgroup, option,
textarea

Table Module: •฀ caption, col, colgroup, table, tbody, td, tfoot, th, thead, tr

Image Module: •฀ img

Client-Side Image Map Module: •฀ area, map

Server-Side Image Map Module: •฀ ismap attribute on img

Intrinsic Events Module: event attributes•฀

Metainformation Module: •฀ meta

Scripting Module: •฀ noscript, script

Stylesheet Module: •฀ style element

Style Attribute Module (deprecated): •฀ style attribute

Link Module: •฀ link

Base Module: •฀ base

The description of the previous modules, their elements and attributes, and their minimal content are defined by
the “Modularization of XHTML” [20].

Listing 3-6 shows an XHTML 1.1 skeleton document.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

60

Listing 3-6. An XHTML 1.1 Skeleton Document

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" 
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>XHTML 1.1 sample document title</title>
 <meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8" />
 </head>
 <body>
 <p>
 XHTML 1.1 sample document body
 </p>
 </body>
</html>

XHTML 1.1 can also be used in mixed-namespace documents to support mathematical markup and vector
graphics (see “XTHML+MathML+SVG”).

XHTML 2.0

XHTML 2.0 (also denoted as XHTML2) could have been the next-generation markup language and the successor of
XHTML 1.0 and 1.1. However, it remained on the Working Draft level and never became a Recommendation.

Although XHTML 2.0 reused elements from earlier versions of markup languages, it had backward compatibility
issues. However, web designers familiar with XHTML 1.0 and 1.1 could easily develop XHTML 2.0 documents.

The “Modularization of XHTML” refers to XHTML 2.0 as not just another markup language but as an XHTML host
language [20]. In XHTML 2.0, there were several updated modules compared to the “Modularization of XHTML.”

After the W3C shifted its focus from XHTML 2.0 to HTML5, many features originally introduced in the XHTML 2.0
working draft were assigned to independent working groups to continue their development (RDFa, XForms, XML
Events, etc.).

HTML5
HTML5 was initially proposed by individuals from Apple, the Mozilla Foundation, and Opera Software, known as
the Web Hypertext Application Technology Working Group (WHATWG) [22]. Later, the W3C validated the WHATWG
proposal and announced to work on a new HTML specification [23]. WHATWG found XHTML 2.0 too document-
centric and inappropriate for blogs, forums, web stores, and multimedia sites. Their major goal was to create a
platform for dynamic web applications [24].

While its name might be misleading, HTML5 is not just another HTML language. It is the complete reformulation
of former markup languages with new capabilities. HTML5 is designed to be backward-compatible with older
browsers, and uses a syntax that is compatible with both HTML and XHTML documents. In HTML5, you can use the
well-known text/html media type, or a new media type called text/html-sandboxed, which makes it possible to
interpret a file without giving the content access to the rest of the web site. Because of a new approach that separates
authoring and rendering conformance requirements, deprecated tags are not needed anymore.

All modern browsers released in or after 2012 have good HTML5 support. The HTML5 support of older browsers
can be tested with services such as the “HTML5 test” for backward compatibility [25]. For those who want to
contribute to the development of HTML5, several tests are available on the W3C testing web page, where current tests
can be reviewed and new tests submitted [26].

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

61

HTML5 introduced new structural and multimedia elements for the markup, and Application Programming
Interfaces (APIs) to extend the capabilities of the core specification, and provide the option to develop web
applications. The web applications written in HTML5 are accessible and device-independent, and need declarative
programming (much less coding) compared to traditional procedural programming [27], while code reuse is easy.
To use HTML5 in its full glory, it is usually used together with other technologies such as CSS3, XML, and JavaScript
libraries.

Listing 3-7 shows an HTML5 skeleton document.

Listing 3-7. An HTML5 Skeleton Document

<!DOCTYPE html>
<html>
 <head>
 <title>Sample HTML5 document</title>
 <meta charset="UTF-8" />
 </head>
 <body>
 <header>
 <h1>Document sample</h1>
 </header>
 <section>
 <article>
 <h2>Article1</h2>
 The first article of the document.
 </article>
 <article>
 <h2>Article2</h2>
 The second article of the document.
 </article>
 </section>
 <footer>
 Copyright © 2015 John Smith. All rights reserved.
 </footer>
 </body>
</html>

HTML5 Modules

HTML5 is modular, providing the option to use extension specifications that define new elements, new attributes, new
attribute values, and new APIs. There are three types of HTML5 modules:

 1. Technologies that were originally parts of the HTML5 specification, but later moved
to separate specifications: HTML5 Microdata, HTML5 Canvas, Web Messaging, Web
Workers, Web Storage, WebSocket, Server-Sent Events, WebRTC, WebVTT

 2. Specifications developed as HTML5 extensions: HTML+RDFa, Polyglot Markup, HTML
Editing APIs, Media Capture and Streams, Media Source Extensions

 3. Initially standalone specifications that have been adopted by the HTML5 specification:
SVG, MathML, WAI-ARIA

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

62

The elements and attributes of external vocabularies such as Scalable Vector Graphics
(SVG) or MathML can be embedded directly into the HTML5 markup. For example, an
SVG image can be embedded between the <svg> and </svg> tags such as in Listing 3-8.

Listing 3-8. Directly Embedded SVG in HTML5

<svg xmlns="http://www.w3.org/2000/svg">
<rect stroke="black" fill="blue" x="50px" y="50px" width="300px" height="150px"
stroke-width="2">
</svg>

MathML equations can be embedded similarly. These elements can also be nested for
more complex content [28].

Caution ■ The different HTML5 modules are in various stages of development, and are being standardized

separately (Microdata, Canvas, etc.), including the HTML5 core, which has minor revisions in separate specifications

(HTML 5.1, HTML 5.2).

XHTML5

HTML5 can be written either in HTML syntax (HTML5) or in XML syntax (XHTML5). XHTML5 is the XML serialization
of HTML5. In other words, HTML5 and XHTML5 share the same vocabulary (set of elements and attributes) defined by
the HTML5 specification, but their syntax and parsing rules are different.

HTML5 documents can also be written in a way that they are HTML5 and XHTML5 documents at the same time,
called polyglot markup (overlap language of HTML and XML). A polyglot web document is a valid HTML document
and a well-formed XML document, and produces an identical DOM tree when processed as HTML and when
parsed as XML6 [29]. HTML5 and XHTML5 documents are cross-compatible, but XHTML5 has a stricter syntax. XML
processing instructions can only be used in XHTML5.

Listing 3-9 shows an XHTML5 skeleton document.

Listing 3-9. An XHTML5 Skeleton Document

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>An XHTML5 example</title>
 <meta charset="UTF-8" />
 </head>
 <body>
 <header>
 <h1>Document sample</h1>
 </header>

6Except฀for฀those฀xml,฀xmlns,฀and฀xlink฀attributes฀for฀which฀HTML฀and฀XML฀parsers฀generate฀different฀DOMs,฀e.g.,฀xml:lang,฀
xml:space,฀xml:base,฀xmlns="",฀xmlns:xlink="",฀and฀xlink:href.

http://www.w3.org/2000/svg
http://www.w3.org/1999/xhtml

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

63

 <section>
 <article>
 <h2>Article1</h2>
 The first article of the document.
 </article>
 <article>
 <h2>Article2</h2>
 The second article of the document.
 </article>
 </section>
 <footer>
 Copyright © 2015 John Smith. All rights reserved.
 </footer>
 </body>
</html>

(X)HTML 5.1, (X)HTML 5.2, and Beyond
On December 17, 2012, the W3C published the Candidate Recommendation of HTML5 [30], and introduced the first
minor revision of HTML5 under the name HTML 5.1 (and its XML serialization as XHTML 5.1) [31].

This new version added new features for web applications and new elements based on developers’ feedback.
From this version onward, the W3C will separate controversial or unstable parts of the specification into extension
specifications if needed (such as HTML 5.2 on the roadmap). This makes it possible to finalize the core specification
in a relatively short timeframe without affecting quality (the approach of the original editorial team of HTML5 was
proved inefficient and the standardization of HTML5 was progressing too slowly).

Markup Syntaxes
While similar, there are some significant differences between the HTML and the XHTML syntax as described in the
following sections.

The HTML Syntax
The individual markup components are called elements. In HTML, keywords provided in angle brackets called tags
delimit document fragments to which they are applied. Elements should have a starting tag and an ending tag in the
form shown in Listing 3-10.

Listing 3-10. Pseudocode of Starting and Closing Tags

<element_name> element_content </element_name>

The start tag contains the name of the element, surrounded by angle brackets (in the form <element>). Element
features such as appearance, behavior, or functioning are determined by the optional attributes specified on the start
tag (Figure 3-1). They are separated by spaces.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

64

To distinguish the end tag from the start tag, the end tag has a slash after the opening angle bracket (in the form
</element>). For example, a simple HTML paragraph looks like Listing 3-11.

Listing 3-11. A Simple Paragraph in HTML

<p>A simple paragraph.</p>

The elements can provide the structure and meaning to web documents through the indication of coherent
sections such as headings, paragraphs, lists, tables, image embeddings, forms, and so on.

The default style sheet of the browser used to render the document determines the default appearance. However,
the default appearance can be arbitrarily overridden by external style sheets as will be discussed later when we look at
Cascading Style Sheets (CSS).

Two special tags in HTML are different from all the others. Comments can be added by the <!-- ... --> tag.
The document type can be defined by the <!DOCTYPE> tag (see the “Document Type Declaration” section later in the
chapter).

The XHTML Syntax and Restrictions
The element and attribute sets of the HTML and XHTML languages largely overlap, and most HTML elements can
be used in the corresponding XHTML 1.0 flavor (HTML 4.01 Transitional elements in XHTML 1.0 Transitional, and
HTML 4.01 Strict elements in XHTML 1.0 Strict). However, some elements introduced in the XHTML specifications can
be applied in XHTML exclusively (compare the elements of the various markup language versions in Table 3-7). The
major difference between earlier HTML and XHTML versions is that XHTML is stricter than HTML and it is extensible
while HTML is not.7 The difference between the HTML and XHTML vocabularies completely disappeared with the
introduction of the latest markup versions, HTML5 and XHTML5, since HTML5 has exactly the same elements and
attributes as XHTML5.

The difference between HTML and XHTML can be demonstrated by the fundamental requirements of XHTML.
In fact, these strict rules point out best practices for superior markup that can also be extended with semantic
annotations, and boosted to the desired level of web accessibility. By applying these rules, you can write web
documents that are backward- and forward-compatible at the same time.

<h1 id="books"> A heading </h1>

Start tag End tagContent

Attribute (optional)

Element

Figure 3-1. HTML element structure

7Up฀to฀version฀4.01.฀From฀HTML5,฀external฀vocabularies,฀such฀as฀SVG฀and฀MathML,฀can฀be฀used฀in฀HTML,฀too,฀as฀฀
you฀will฀see฀later.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

65

Well-formedness

According to well-formedness, a basic concept in XHTML, all elements must be closed and element nesting should be
done in the proper order (Listing 3-12). Overlapping elements are incorrect in XHTML (Listing 3-13).

Listing 3-12. Properly Nested Elements

<p>Part of this bold text should be italic as well.</p>

Listing 3-13. Overlapping Elements (Incorrect)

<p>Part of this bold text should be italic as well.</p>

Names Are in Lowercase

Since XML is case-sensitive, all XHTML element and attribute names must be in lowercase.

Required End Tags

In HTML, the end tag of several elements can be omitted, which is not allowed in XHTML (Listings 3-14 and 3-15).

Listing 3-14. Properly Closed Elements

<p>This is the first paragraph.</p>
<p>This is the second one.</p>

Listing 3-15. Unterminated Elements Are Incorrect in XHTML

<p>This is the first paragraph. <p>This is the second one.

All elements that are declared in the DTD as empty elements (meta, link, br, hr, img, input) can be closed either
by an end tag (similar to nonempty elements) or by the shorthand notation; in other words, a space and a slash
character are inserted prior to the end of the declaration, as shown in Listing 3-16.

Listing 3-16. Pseudocode of Element Closing with Shorthand Notation (Self-closing)

<element_name attrib1="value1" ... attribn="valuen" />

which provides shorter code. Although the space before the slash is optional, it is preferred because the result is easier
to read (Listing 3-17). Tags without a closing tag are also known as self-closing tags.

Listing 3-17. Terminated Empty Element

In XHTML, all unterminated elements are incorrect, including unterminated empty elements (Listing 3-18).

Listing 3-18. Unterminated Empty Elements Are Incorrect in XHTML

 unterminated elements are incorrect in XHTML <hr>

The script element applies either to the full form (with the end tag) or to the shorthand notation, depending on
the number of parameters and the behavior of the element.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

66

Quoted Attribute Values

All attributes must include values in XHTML. All attribute values must be quoted (Listing 3-19). Unquoted attribute
values are not allowed in XHTML (Listing 3-20).

Listing 3-19. Defining XHTML Attributes Correctly

<input type="checkbox" name="checkbox" id="checkbox" value="True" checked="checked" />

Listing 3-20. Unquoted and Minimized Attributes (Incorrect in XHTML)

<input type=checkbox name=checkbox id=checkbox value=True checked />

No Attribute Minimization

Attribute-value pairs must be written in full (Listing 3-21). Attribute minimization is not supported by XHTML
(Listing 3-22). Attribute names such as compact and checked cannot be used in elements without specifying their
values (Table 3-3).

Listing 3-21. Attributes Should Be Written in Full

<option value="eng" selected="selected">English</option>

Listing 3-22. Minimized Attribute (Incorrect in XHTML)

<option value="eng" selected>English</option>

Table 3-3. Attributes That Can Be Minimized in HTML, but Not in XHTML

Minimized Attribute (HTML) Full Form (HTML/XHTML)

compact compact="compact"

checked checked="checked"

declare declare="declare"

readonly readonly="readonly"

disabled disabled="disabled"

selected selected="selected"

defer defer="defer"

ismap ismap="ismap"

nohref nohref="nohref"

noshade noshade="noshade"

nowrap nowrap="nowrap"

multiple multiple="multiple"

noresize noresize="noresize"

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

67

Whitespace Handling

Leading and trailing whitespace characters are stripped in XHTML. In contrast to HTML, whitespace characters in
XHTML attribute values are normalized to single spaces. According to the XML specification, a single interword
space (#x20) is appended to whitespace character sequences (#x20, #xD, #xA, #x9) [32].

Using Script and Style Elements

While the content type of the script and style HTML elements is character data (CDATA), it is processed character
data (#PCDATA) in XHTML. The script and style elements are defined with #PCDATA content; in other words, < is
handled as the beginning of markup code, while < is recognized as an entity (Listing 3-23).

Listing 3-23. Unescaped Script Content to Display x<y in XHTML through Javascript

<script type="text/javascript">
 <![CDATA[
 unescaped script content x<y
]]>
</script>

XML processors recognize these CDATA sections, and display the content rather than processing it as XML. If
there is no script content to unescape, the <![CDATA[and]]> lines would be omitted, which is identical to the usual
script embedding in HTML. The CDATA sections are represented as nodes in the Document Object Model.

The unescaped script or style contents are not needed in external script files and styles sheet files.

Identifiers

Instead of the name attribute defined in HTML 4, the id attribute should be used in XHTML for identifiers. XHTML
documents must use the id attribute when defining fragment identifiers on the a, applet, form, frame, iframe, img,
and map elements. This ensures the well-structuredness required by XML.

Element Prohibitions

In XHTML, elements cannot be nested arbitrarily. Those who are not familiar with XHTML often commit nesting
errors. The nesting rules should not be confused with overlapping, which is strictly forbidden in XHTML. The nesting
rules of XHTML 1.0 are similar to those of HTML 4.01, but there are some differences. The table element can contain
a direct tr child element in XHTML, which is not allowed in HTML. In such cases, a tbody element is implied in
HTML but not in XHTML. This behavior is important when tbody is used as a CSS selector. Table 3-4 summarizes
those parent-child element relationships that are not allowed in XHTML.

Table 3-4. XHTML Elements with Prohibitions

Element Prohibition(s)

a Cannot contain other a elements

pre Cannot contain img, object, big, small, sub, or sup elements

button Cannot contain input, select, textarea, label, button, form, fieldset, iframe, or isindex elements

label Cannot contain other label elements

form Cannot contain other form elements

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

68

Since the additional nesting restrictions are defined by XHTML specifications, some nesting violations are not
recognized by validators in XHTML documents, while such errors can be clearly identified in HTML.

Unlike in HTML, texts cannot be provided directly in the XHTML body without wrapping them in container
elements (such as p). Omitting containers in XHTML results in the “character data is not allowed here” error message
in the W3C Markup Validator (see Chapter 14).

Invalid Characters

Web documents containing non-Latin characters or special characters such as the copyright sign (©) or the registered
trademark sign (®), and older HTML documents, especially the ones from the late 1990s and early 2000s, often contain
character entities. While eliminating most character entities is recommended in HTML, it is mandatory in XHTML.
The best practice is to type in the characters directly in the UTF-8 encoded XHTML markup.

Dashes Are Allowed for Comments Only

In XHTML, double dashes are allowed only at the beginning and end of comments (Listing 3-24).

Listing 3-24. A Comment in XHTML

<!-- Comment -->

Avoid Using Deprecated Elements

While a large set of HTML elements can be used in certain XHTML versions and variants as well, the blackface,
blockquote, embed, layer, noembed, and shadow deprecated elements are not allowed in XHTML 1.0 Strict, only in
XHTML 1.0 Transitional and XHTML 1.0 Frameset. These elements should be replaced by style sheets except embed
and noembed whose contents can be provided with object. (Table 3-5).

Table 3-5. Elements Not Allowed in XHTML 1.0 Strict Must Be Avoided

Element Deprecated in Favor of

applet object

basefont Style sheets

center Style sheets

dir ul

font Style sheets

isindex input element, CGI forms

menu ul, nl

s Style sheets

u Style sheets

In XHTML 1.0 Strict, XHTML 1.1, and XHTML5, the ul element should be used instead of the menu element.
XHTML2 introduced the nl element for menus, which is not supported in any other markup language.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

69

The most arguable elements are i and b that are not deprecated and can be used in every XHTML version
to create italic and bold texts, respectively. However, they are purely presentational elements without structural
meaning. Although most user agents render the appropriate structural elements (em and strong) similarly if not
identically to the i and b basic character formatting elements, em and strong are preferred.

As a general rule, use the XHTML 1.0 Strict elements and attributes only, and if you author XHTML5, extend the
markup with the new XHTML5 elements and attributes where needed.

Avoid Deprecated Attributes

Several HTML attributes are deprecated in XHTML in favor of other attributes or style sheets (see Table 3-6).

Table 3-6. Attributes Deprecated in XHTML

Attribute Deprecated in Favor of

alink Style sheets

align Style sheets

background Style sheets

border Style sheets

color Style sheets

compact Style sheets

face Style sheets

height Style sheets

language type attribute

link Style sheets

name id attribute

noshade Style sheets

nowrap Style sheets

size Style sheets

start Style sheets

text Style sheets

type Style sheets

value Style sheets

version DTDs

vlink Style sheets

width8 Style sheets

8It฀is฀deprecated฀on฀certain฀elements฀only฀(e.g.,฀cannot฀be฀used฀on฀td,฀but฀allowed฀on฀img).

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

70

Data Types
The data types that can be used in element contents and attribute values are defined by DTDs and specifications of
the markup language being used. While many elements and attributes allow most Unicode characters (such as the
p, div, and section elements), there are elements and attributes that have specific restrictions. For example, a link in
the href attribute of an a element must contain a valid URL or file path (Listing 3-25). The width attribute of an img
element should be a value expressed by a number, with or without the unit of a certain type (Listing 3-26). Always
make sure that you use valid attribute values only.

Listing 3-25. Correct and Incorrect URLs in the href Attribute Value

 <!-- correct -->
 <!-- correct -->
 <!-- incorrect (contains an illegal character) -->

Listing 3-26. Correct and Incorrect Width Attribute Values

 <!-- correct -->
 <!-- correct -->
 <!-- incorrect
(not allowed unit) -->

Markup elements and attributes can contain a variety of data types, such as case information, SGML basic data
types, text strings, URIs, colors, lengths, content types, language codes, character encodings, single characters, dates
and times, link types, media descriptors, script data, and style sheet data [33].

The syntax of the core markup element content values and attribute values are derived from SGML tokens such
as the following:

•฀ PCDATA: Parsed Character Data. Mixed content; in other words, an element can contain any
number of character data and/or child elements in arbitrary order.

•฀ CDATA: Character data. A sequence of characters from the document character set and may
include character entities. CDATA attribute values should not contain leading or trailing
whitespace characters. User agents replace character entities with characters, replace carriage
returns and tabs with a single space, and ignore line feeds when interpreting CDATA attribute
values. For script and style elements, CDATA sections are treated as raw text and passed
forward as is. The end tag open delimiter </ is considered as the terminator of the element
content.

•฀ NAME, ID: Identifier tokens that must begin with a letter (A–Z, a–z) and may be followed by
any number of letters, digits (0–9), hyphens (-), underscores (_), colons (:), and periods (.)

•฀ NUMBER: Tokens containing a minimum of one digit (0–9).

The SGML tokens were introduced in the ISO 8879 standard [34], and they determine the allowed values of the
data types to be used in markup attributes such as URLs, text, numbers, and so on. The supported characters in the
markup depend on the data type as some characters are reserved or considered unsafe for a particular data type.

The PCDATA and CDATA data types are used mainly in XML applications and serialization, including XHTML,
RSS, Atom, and so on (Chapter 7). SGML and XML Document Type Definition files also use PCDATA and CDATA for
markup declarations.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

71

Caution ■ In HTML, <![CDATA[...]]> is a bogus comment; that is, the sequence of characters is considered as

regular character data. In XHTML, <![CDATA[...]]> is a character data section; in other words, a sequence of characters

to be displayed rather than processed as XML. Without unescape, these sections would result in a well-formedness error

in XML.

HTML5 supports the following data types:

•฀ Text: If Unicode encoded, a sequence of Unicode characters that does not contain U+0000
characters, control characters other than space characters, or any permanently undefined
Unicode characters.

•฀ String: An arbitrary mixture of text and character references.

•฀ Token: A string without space characters.

•฀ Browsing-context name: A string that does not start with an underline (_) character and is at
least one character long.

•฀ Browsing-context name or keyword: A string that is either a browsing-context name or one of
the following literal strings: _blank, _self, _parent, or _top.

•฀ ID: A string without space characters that is at least one character long.

•฀ Name: A string without space characters that is at least one character long.

•฀ Hash-name reference: A string that starts with a # character.

•฀ Number: Integer, positive integer, non-negative integer, floating-point number, positive
floating-point number, or non-negative floating-point number.

•฀ Date and time: A date-time as defined in RFC 3339, with the additional constraints that the
literal letters T and Z must always be uppercase and that the date + full year is described as
four or more digits representing a number greater than 0.

•฀ URL: A valid IRI reference as defined in RFC 3987.

•฀ MIME type: A string identifying a valid MIME media type defined by RFC 2046.

•฀ Character encoding name: A character encoding a name or alias from the IANA registry.

•฀ Meta-charset string: A string with the following parts (in that order): the literal string
text/html;, one or more optional space characters, the literal string charset=, and a
character encoding name (HTML5) or the string UTF-8 (XHTML5).

•฀ Refresh value: Either a non-negative integer or a string containing a non-negative integer, a ;
character, one or more space characters, the string url=, and finally a URL (in this order).

•฀ Default-style name: A string.

•฀ Media-query list: A media query list as defined in the W3C specification “Media Queries” [35].

•฀ Language tag: A language tag as defined in BCP 47 [36].

•฀ List of key labels: An ordered set of unique space-separated tokens, each of which is exactly
one Unicode codepoint in length.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

72

•฀ Dropzone value: An unordered set of unique space-separated tokens, each of which is one of
the values copy, move, or link, or any string with a minimum of three characters, beginning
with the literal string s: (Plain Unicode string) or f: (File items). The default value is copy.

•฀ Functionbody: Any JavaScript code that is a FunctionBody production according to ECMA 262.

•฀ Coordinates: Rectangle coordinates (four integers), circle coordinates (two integers and a
non-negative integer number), or polygon coordinates (minimum six integers).

•฀ Sandbox allow keywords list: An unordered set of unique space-separated tokens that can be
the literal string allow-forms, allow-scripts, allow-top-navigation, or allow-same-origin.

•฀ Pattern: A regular expression that is a JavaScript pattern production according to ECMA 262.

•฀ E-mail address: Any string that matches the ABNF production 1*(atext / ".") "@"
ldh-str 1*("." ldh-str), where atext is as defined in RFC 5322, and ldh-str is as
defined in RFC 1034.

•฀ Color: A string exactly seven characters long, starting with a # character, followed by six
characters in the range 0–9, a–f, and A–F.

Markup Elements
The various versions and variants of HTML support a different set of elements; in other words, they have different
vocabularies, although there are many common elements and attributes that can be used in many or all markup
languages (see Table 3-7, historic versions not included).

Table 3-7. Overview of Markup Elements

Element

HTML 4.01 XHTML (X)HTML

MeaningT F S 1.0 T 1.0 F 1.0 S 1.1 2.0 5

a + + + + + + + + + Hyperlink anchor

abbr + + + + + + + + + Abbreviation

access – – – – – + + – – Accessibility mapping

acronym + + + + + + + – – Acronym

action – – – – – – – + – Action

address + + + + + + + + + Author information

applet + – – + + – – – – Java applet

area + + + + + + + – + Client-side image map

article – – – – – – – – + Logically separate section

aside – – – – – – – – + Additional content section

audio – – – – – – – – + Audio stream

b + + + + + + + – + Bold text style

base + + + + + + + – + Document base URI

basefont + – – + + – – – – Base font size

(continued)

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

73

Element

HTML 4.01 XHTML (X)HTML

MeaningT F S 1.0 T 1.0 F 1.0 S 1.1 2.0 5

bdi – – – – – – – – + Text directionality isolation

bdo + + + + + + + – + Writing direction

big + + + + + + + – – Large text style

blockquote + + + + + + + + + Long quotation

body + + + + + + + + + Document body

br + + + + + + + + + Line break (“break row”)

button + + + + + + + – + Push button

canvas – – – – – – – – + Bitmap canvas

caption + + + + + + + + + (Table/figure) caption

center + – – + + – – – – Content alignment to center

cite + + + + + + + + + Citation

code + + + + + + + + + Code fragment

col + + + + + + + + + Table column

colgroup + + + + + + + + + Table column group

data – – – – – – – – + Machine-readable equivalent

datalist – – – – – – – – + Data list

dd + + + + + + + + + Definition description

del + + + + + + + – + Deleted text

delete – – – – – – – + – Delete

dfn + + + + + + + + + Definition

di – – – – – – – + – Definition item

dir + – – + + – – – – Directory list

dispatch – – – – – – – + – Dispatch

div + + + + + + + + + Generic (block) container
(“division”)

dl + + + + + + + + + Definition list

dt + + + + + + + + + Definition term

em + + + + + + + + + Emphasized text style

embed – – – – – – – – + Embedded content

ev:listener – – – – – – – + – Event listener

fieldset + + + + + + + – + Form control group

figcaption – – – – – – – – + Legend

Table 3-7. (continued)

(continued)

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

74

Element

HTML 4.01 XHTML (X)HTML

MeaningT F S 1.0 T 1.0 F 1.0 S 1.1 2.0 5

figure – – – – – – – – + Paragraph with embedded content
and caption

font + – – + + – – – – Font properties (local)

footer – – – – – – – – + (Document or section) footer

form + + + + + + + – + Interactive form

frame – + – – + – – – – Subwindow (frame)

frameset – + – – + – – – – Window subdivision

group – – – – – – – + – Element group

h – – – – – – – + – Heading

h1 + + + + + + + + + Level 1 heading

h2 + + + + + + + + + Level 2 heading

h3 + + + + + + + + + Level 3 heading

h4 + + + + + + + + + Level 4 heading

h5 + + + + + + + + + Level 5 heading

h6 + + + + + + + + + Level 6 heading

handler – – – – – – – + – Handler definition

head + + + + + + + + + Document head

header – – – – – – – – + Section header

hr + + + + + + + – + Horizontal rule

html + + + + + + + + + Document root

i + + + + + + + – + Italic text style

iframe + – – + + – – – + Inline frame

img + + + + + + + + + Embedded image

input + + + + + + + + + Form input

ins + + + + + + + – + Inserted text

insert – – – – – – – + – Insert

isindex + – – + + – – – – Keyword index that can be
searched by entering keywords

kbd + + + + + + + + + Text to be entered by the user
(“keyboard”)

keygen – – – – – – – – + Key generator

l – – – – – – – + – Line of text

Table 3-7. (continued)

(continued)

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

75

Element

HTML 4.01 XHTML (X)HTML

MeaningT F S 1.0 T 1.0 F 1.0 S 1.1 2.0 5

label + + + + + + + + + Form field label

legend + + + + + + + – + Fieldset legend

li + + + + + + + + + List item

link + + + + + + + + + Media-independent link

load – – – – – – – + – Load

main – – – – – – – – + Main document content

map + + + + + + + – + Client-side image map

mark – – – – – – – – + Marked text

menu + – – + + – – – – Menu list

message – – – – – – – + – Message

meta + + + + + + + + + Generic metadata

meter – – – – – – – – + Scalar measurement

model – – – – – – – + – Model

nav – – – – – – – – + Navigation links section

nl – – – – – – – + – Navigation list

noframes – + – + + – – – – Alternate content for frames

noscript + + + + + + + – + Alternate content for scripts

object + + + + + + + + + Generic embedded object (Flash,
applet, inline frame)

ol + + + + + + + + + Ordered list

optgroup + + + + + + + – + Option group

option + + + + + + + – + Select box item

output – – – – – – – + + Output

p + + + + + + + + + Paragraph

param + + + + + + + + + Named property value
(“parameter”)

pre + + + + + + + + + Preformatted text

progress – – – – – – – – + Task progress

q + + + + + + + + + Short (inline) quotation

range – – – – – – – + – Range definition

rb – – – – – – + + + Ruby base

rbc – – – – – – + + – Ruby base container

Table 3-7. (continued)

(continued)

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

76

Element

HTML 4.01 XHTML (X)HTML

MeaningT F S 1.0 T 1.0 F 1.0 S 1.1 2.0 5

rebuild – – – – – – – + – Rebuild

recalculate – – – – – – – + – Recalculate

refresh – – – – – – – + – Refresh

repeat – – – – – – – + – Repeat

reset – – – – – – – + – Reset

revalidate – – – – – – – + – Revalidate

rp – – – – – – + + + Ruby parentheses

rt – – – – – – + + + Ruby text

rtc – – – – – – + + + Ruby text container

ruby – – – – – – + + + Ruby markup

s + – – + + – – – + Strike-through text style

samp + + + + + + + + + Sample output

script + + + + + + + – + Script statements

secret – – – – – – – + – Secret input

section – – – – – – – + + Document section

select + + + + + + + + + Option selector

select1 – – – – – – – + – Single select

send – – – – – – – + – Send

separator – – – – – – – + – Separator

setfocus – – – – – – – + – Set focus

setindex – – – – – – – + – Set index

setvalue – – – – – – – + – Set value

small + + + + + + + – + Small text style
Side comment (HTML5)

source – – – – – – – – + Media resource

span + + + + + + + + + Generic (inline) container

standby – – – – – – – + – Message (while loading)

strike + – – + + – – – – Strike-through text

strong + + + + + + + + + Strong emphasis, importance

style + + + + + + + + + Style information

sub + + + + + + + + + Subscript

submit – – – – – – – + – Submit

Table 3-7. (continued)

(continued)

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

77

Element

HTML 4.01 XHTML (X)HTML

MeaningT F S 1.0 T 1.0 F 1.0 S 1.1 2.0 5

summary – – – – – – – + – Table summary

sup + + + + + + + + + Superscript

switch – – – – – – – + – Selection

table + + + + + + + + + Table

tbody + + + + + + + + + Table body

td + + + + + + + + + Table data cell

template – – – – – – – – + Template

textarea + + + + + + + + + Multiline text field

tfoot + + + + + + + + + Table footer

th + + + + + + + + + Table header cell

thead + + + + + + + + + Table header

time – – – – – – – – + Date and/or time

title + + + + + + + + + Document title

tr + + + + + + + + + Table row

track – – – – – – – – + Timed track

trigger – – – – – – – + – Trigger

tt + + + + + + + – – Teletype (monospace) text style

u + – – + + – – – + Underlined text style

ul + + + + + + + + + Unordered list

upload – – – – – – – + – File upload

var + + + + + + + + + Variable

video – – – – – – – – + Video

wbr – – – – – – – – + Conditional line break

Table 3-7. (continued)

The core markup elements were introduced in the early versions of HTML, and later versions gradually updated
the set of elements. Some elements became obsolete over time, others were deprecated,9 removed, or replaced. New
specifications often introduce new elements. There are 70 elements listed in the HTML 3.2 specification [37], 91 in
HTML 4.01 [38], and 108 in HTML5 [39].

There is a large similarity between the elements of the Transitional, Frameset, and Strict flavors of HTML as well
as their XHTML counterparts. XHTML 1.0 Frameset is the XML equivalent of HTML 4.01 Frameset, the document
type that provides the definition of frameset documents, which was a common web feature of the late 1990s. XHTML
1.0 Transitional is the XML equivalent of HTML 4.01 Transitional, the document type that includes the presentational

9Prior฀to฀HTML5

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

78

elements, such as center and font that are excluded from the Strict variant. XHTML 1.0 Strict is the XML equivalent
of HTML 4.01 Strict, which includes strictly those elements that have not been deprecated.

The XHTML versions and variants provide a different set of elements. There are 89 elements in XHTML 1.0
Transitional, 92 in XHTML 1.0 Frameset, 78 in XHTML 1.0 Strict, 83 in XHTML 1.1, 99 in XHTML 2.0, and 108 in
XHTML5 (the same as in HTML5) [40]. The applet, basefont, center, dir, font, isindex, menu, s, strike, and u
elements have been deprecated in XHTML 1.0. Consequently, they can be used in XHTML 1.0 Transitional or XHTML
1.0 Frameset but not in XHTML 1.0 Strict or above. Many web designers did not understand this important fact and
applied the Transitional variant of HTML4 or XHTML 1.0 for more than a decade. A Transitional variant, even in
standard-compliant files, allows obsolete elements deprecated in the specification with the intention to indicate that
these elements will be removed from future markup versions and thus should not be used. In other words, millions of
web sites have used a markup until recently that allowed elements already obsoleted in HTML 4.01!

XHTML 1.0 Strict and XHTML 1.1 have a very similar set of elements. The most important differences are that
XHTML 1.1 introduced the Ruby elements and removed the access element. Prior to XHTML 1.1, the lang attribute
was used (instead of xml:lang which is preferred today). The name attribute for anchors and client-side maps was
used until XHTML 1.0, which should be replaced by the id attribute from XHTML 1.1. The essence of XHTML 1.1 is
that elements are collected to modules, making it possible to apply subsets of the full element set in environments
with limited resources (for example, mobile devices), known as XHTML modularization (as mentioned earlier in the
chapter).

XHTML 2.0 has several elements that are not found in any other markup language, namely, action, delete, di,
dispatch, ev:listener, group, h, handler, insert, l, load, message, model, nl, output, range, rebuild, recalculate,
refresh, repeat, reset, revalidate, secret, section, select1, send, bseparator, setfocus, setindex, setvalue,
standby, submit, summary, switch, trigger, and upload. These elements were introduced in XHTML 2.0 but
discontinued in (X)HTML5. XHTML 2.0 supports some XHTML 1.1 elements too, some of which are also included in
(X)HTML5, such as ruby, while others have been excluded, such as rtc. The core elements were derived from earlier
versions.

The latest version of XHTML, XHTML5, has the same set of elements as HTML5, as mentioned earlier. The most
significant extension of markup elements and attributes in the past decade has been realized in (X)HTML5, especially
because of the newly introduced structuring and multimedia elements not supported by any earlier versions.

Block vs. Inline Elements
To provide full control over different document sections, HTML elements are on different levels. Similar to the
character, paragraph, and document formatting levels used in word processors, HTML provides tags with different
scopes. Certain elements, known as inline elements, can be applied both on individual characters and on strings, such
as font features, italic or bold texts, subscripts, and superscripts.10 They are usually placed in paragraphs (p) or divisions
(div) that contain text and/or inline elements. These containers are the block elements that form the basic structure
of web documents. These elements can also be the containers of other block elements. Block-level elements have their
own block margins, width, and height properties that can be set independently from other parts of the document (see
Chapter 5). Block-level elements are usually rendered on a new line. In contrast, inline elements are treated as parts of
the text flow and cannot have margins, cannot have width or height properties, and do break across lines.

In Listing 3-27, the paragraph below the heading begins in a new line, because both h1 and p are block-level
elements. The emphasized text in the paragraph (between and) is rendered continuously and does not
begin in a new line, because em is an inline element. While the div might have margins (set from CSS), the em cannot.

10Obsolete฀HTML฀elements฀used฀exclusively฀for฀character฀formatting฀should฀be฀substituted฀by฀CSS.฀(These฀styling฀elements฀have฀
been฀removed฀from฀the฀Strict฀variants,฀and฀later฀from฀all฀other฀versions.)

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

79

Listing 3-27. Block vs. Inline Elements

<div>
 <h1>Attention</h1>
 <p>View our special offers now!</p>
</div>

Most HTML elements that can be used within the document body are classified as either block-level elements or
inline elements. There are some elements that can be used in both contexts (such as buttons, objects, and scripts).

Block-Level Elements

The following elements are handled as block-level elements in HTML5: article, aside, blockcode, blockquote, body,
button, canvas, caption, col, colgroup, dd, div, dl, dt, embed, fieldset, figcaption, figure, footer, form, h1, h2,
h3, h4, h5, h6, header, hr, li, map, object, ol, output, p, pre, progress, section, table, tbody, textarea, td, tfoot, th,
thead, tr, ul, and video.

Inline Elements

Generally, inline elements can contain text or other inline elements only. They are usually rendered within the current
line. The inline elements of HTML5 are a, abbr, address, area, b, cite, code, del, details, dfn, datalist, em, font, i,
iframe, img, input, ins, kbd, label, legend, link, mark, meter, nav, optgroup, option, q, samp, small, select, source,
span, strong, sub, summary, sup, textarea, tt, u, time, and var.

Elements That Can Be Either Block or Inline Elements

Elements such as button, del, iframe, ins, map, object, and script can be used as either block-level elements or
inline elements. If used as inline elements (e.g., within another inline element or a paragraph), these elements should
not contain any block-level elements.

Attributes
The HTML5 element attributes are summarized in Table 3-8 [41].

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

80

Table 3-8. HTML5 Attributes

Attribute Element(s) Description Value

abbr th Alternative label for header cell
(reference in different context)

Text

accept input Hint for expected file type in file
upload controls

Set of comma-separated
tokens

accept-charset form Character encodings (form
submission)

Ordered set of unique space-
separated tokens (ASCII
case-insensitive)

accesskey HTML elements Keyboard shortcut to activate or
focus element

Ordered set of unique
space-separated tokens
(case-sensitive; one Unicode
codepoint)

action form URL (form submission) URL

alt area, img, input Alternate text for images or input
fields

Text

async script Execute script asynchronously Boolean attribute

autocomplete form Prevent autocompletion for form
control(s)

on | off

autocomplete input, select, textarea Hint for form autofill Autofill field name and
related tokens

autofocus button, input, keygen,
select, textarea

Gives focus to form control
automatically when the page is
loaded

Boolean attribute

autoplay audio, video Media playback starts
automatically

Boolean attribute

border table Indication that the table element
is used for tabular data, not layout

Empty string or 1

challenge keygen String to package with the
generated and signed public key

Text

charset meta Character encoding declaration Preferred MIME name of an
encoding

charset script Character encoding of external
script file

Preferred MIME name of an
encoding

checked input Determines whether the control is
checked

Boolean attribute

cite blockquote, del, ins, q Link to quotation source or
additional information

URL

class HTML elements Element class Set of space-separated tokens

(continued)

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

81

Attribute Element(s) Description Value

cols textarea Maximum number of characters
per line

Non-negative integer greater
than zero

colspan td, th Number of columns that the cell is
to span

Non-negative integer greater
than zero

content meta Meta content Text

contenteditable HTML elements Determines whether the element
is editable

true | false

controls audio, video Playback controls Boolean attribute

coords area Shape coordinates (image map) List of integers

crossorigin audio, img, link, script,
video

Determines how the element
handles crossorigin requests

anonymous | use-
credentials

data object Resource URL URL

datetime del, ins Date and (optionally) time of
modification

Date string with optional
time

datetime time Time value Date or time string

default track Enable the track if there is no more
suitable track

Boolean attribute

defer script Defers script execution Boolean attribute

dir HTML elements Text directionality ltr | rtl | auto11

dirname input, textarea Form field name to send
directionality (form submission)

Text

disabled button, fieldset, input,
keygen, optgroup, option,
select, textarea

Determines whether the form
control is disabled

Boolean attribute

download a, area Indicates resource to be
downloaded rather than
navigating to it, and declares the
filename

Text

enctype form Encoding type (form submission) application/x-www-form-
urlencoded | multipart/
form-data | text/plain

for label Associates the label with a form
control

ID

for output Specifies controls from which the
output was calculated

Unordered set of unique
space-separated tokens
(case-sensitive)

Table 3-8. (continued)

(continued)

11The฀auto฀attribute฀value฀cannot฀be฀used฀on฀the฀bdo฀element.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

82

Attribute Element(s) Description Value

form button, fieldset, input,
keygen, label, object,
output, select, textarea

Associates the control with a form
element

ID

formaction button, input URL to use for form submission URL

formenctype button, input Encoding type to use for form
submission

application/x-www-form-
urlencoded | multipart/
form-data | text/plain

formmethod button, input HTTP method to use for form
submission

GET | POST

formnovalidate button, input Bypass form control validation for
form submission

Boolean attribute

formtarget button, input Browsing context for form
submission

Browsing context name or
keyword

headers td, th Header cells for the cell Unordered set of unique
space-separated tokens
(case-sensitive)

height canvas, embed, iframe, img,
input, object, video

Vertical dimension Non-negative integer

hidden HTML elements Hides element Boolean attribute

high meter Low limit of high range Floating-point number

href a, area, link Hyperlink URL URL12

href base Document base URL URL

hreflang a, area, link Language of the linked resource BCP 47 language tag

http-equiv meta Pragma directive Text

icon command Command icon URL

id HTML elements Element identifier Text

ismap img Determines whether the image is a
server-side image map

Boolean attribute

keytype keygen The type of cryptographic key to
generate

Text

kind track The type of text track subtitles | captions |
descriptions | chapters |
metadata

label optgroup, option, track Label Text

Table 3-8. (continued)

(continued)

12The฀href฀attribute฀value฀cannot฀be฀empty฀on฀link฀elements.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

83

Attribute Element(s) Description Value

lang HTML elements Element language BCP 47 language tag or
empty string

list input List of autocomplete options ID

loop audio, video Determines whether to loop the
media

Boolean attribute

low meter High limit of low range Floating point number

manifest html Application cache manifest URL

max input Maximum value Varies

max meter, progress Upper bound of range Floating-point number

maxlength input, textarea Maximum length of value Non-negative integer

media link, source, style Applicable media Media query

mediagroup audio, video Groups media elements that have
an implicit MediaController

Text

method form HTTP method to use for form
submission

GET | POST

min input Minimum value Varies

min meter Lower bound of range Floating-point number

minlength input, textarea Minimum length Non-negative integer

multiple input, select Whether to allow multiple values Boolean attribute

muted audio, video Whether to mute the media
resource by default

Boolean attribute

name button, fieldset, input,
keygen, output, select,
textarea

Name of form control (form
submission or form.elements API)

Text

name form Form name (document.forms API) Text

name iframe, object Name of nested browsing context Browsing context name or
keyword

name map Image map name to reference
from the usemap attribute

Text

name meta Metadata name Text

name param Parameter name Text

novalidate form Bypasses form control validation
for form submission

Boolean attribute

optimum meter Optimum value in gauge Floating-point number

Table 3-8. (continued)

(continued)

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

84

Attribute Element(s) Description Value

pattern input Pattern to be matched by the value
of the form control

Regular expression matching
the JavaScript pattern
production

placeholder input, textarea Visible label placed within the
form control

Text

poster video Poster frame displayed prior to
video playback

URL

preload audio, video Buffering hint for media none | metadata | auto

readonly input, textarea Determines whether the value is
editable

Boolean attribute

rel a, area, link Relationship between the
document containing the
hyperlink and the destination
resource

Set of space-separated tokens

required input, select, textarea Determines whether the control is
required for form submission

Boolean attribute

reversed ol List with reversed numbering Boolean attribute

rows textarea Number of lines to show Non-negative integer greater
than zero

rowspan td, th Number of rows that the cell is to
span

Non-negative integer

sandbox iframe Security rules for nested content Unordered set of unique
space-separated tokens
consisting of allow-same-
origin, allow-forms, and
allow-scripts (ASCII case-
insensitive)

spellcheck HTML elements Specifies the need for spelling and
grammar check

true | false

scope th Specifies header cell scope row | col | rowgroup |
colgroup

selected option Option selected by default Boolean attribute

shape area Shape type in an image map circle | default | poly | rect

size input, select Control size Non-negative integer greater
than zero

sizes link Icon size for rel="icon" Unordered set of unique
space-separated tokens
(ASCII case-insensitive)

Table 3-8. (continued)

(continued)

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

85

Attribute Element(s) Description Value

span col, colgroup Number of columns spanned by
the element

Non-negative integer greater
than zero

src audio, embed, iframe, img,
input, script, source,
track, video

Resource URL URL

srcdoc iframe A document source of the inline
frame

An iframe srcdoc resource

srclang track Text track language BCP 47 language tag

start ol Ordinal value of the first item Integer

step input Granularity to be matched by the
form control value

Floating-point number
greater than zero, or any

style HTML elements Styles (formatting and
presentation)

CSS declarations

tabindex HTML elements Focus order Integer

target a, area Hyperlink target Browsing context name or
keyword

target base Default browsing context
(hyperlink navigation, form
submission)

Browsing context name or
keyword

target form Browsing context for form
submission

Browsing context name or
keyword

title HTML elements Additional visible information Text

title abbr, dfn Reveals abbreviation or definition Text

title input Input field hint Text

title link Link title Text

title link, style Alternate style sheet set name Text

translate HTML elements Determines whether the element
is to be translated when the page is
localized

yes | no

type a, area, link Hint for resource type MIME type

type button Button type submit | reset | button

type input Form control type input type keyword

type ol List marker type 1 | a | A | i | I

type embed, object, script,
source, style

Resource type MIME type

Table 3-8. (continued)

(continued)

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

86

Attribute Element(s) Description Value

typemustmatch object Determines whether the type
attribute and the Content-Type
value need to match the resource

Boolean attribute

usemap img, object Image map to use Hash-name reference

value button, option Value to be used for form
submission

Text

value data Machine-readable metadata Text

value input Form control value Varies

value li Ordinal value of the list item Integer

value meter, progress Current value of the element Floating point number

value param Parameter value Text

width canvas, embed, iframe, img,
input, object, video

Horizontal dimension Non-negative integer

wrap textarea Wrap type of the form control
(form submission)

soft | hard

Table 3-8. (continued)

The global attributes and event handlers are described in the following sections by category.

Global Attributes
Table 3-9 summarizes those attributes that can be applied to all HTML5 elements.

Table 3-9. Global HTML5 Attributes

Attribute Value

accesskey List of unique space-separated key labels

class Set of space-separated tokens (class name)

contenteditable true | false | "" | empty

dir ltr | rtl

hidden hidden | "" | empty

id Identifier

lang Language code

spellcheck true | false | "" | empty

style String (style definition)

tabindex Integer

title Normal character data (text)

translate yes | no

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

87

The accesskey, class, dir, id, lang, style, tabindex, and title attributes can also be used in HTML 4.

Event Handlers
The interactivity of web sites is achieved by checking whether an element received focus, a key is pressed, the user
touched the touchscreen, and so forth. When such an event occurs, the script declared as the attribute value of the
event handler attribute is executed. The name of event handlers starts with on and is followed by the name of the
corresponding event (onclick, onkeypress, etc.).

When an HTML or XHTML document is loaded into a web browser, it becomes a Document object. An open
browser window can be represented by the Window object. Some event handlers can be applied not only to markup
elements, but also to the Document or Window objects.

Event handlers can be used as content attributes (markup element attributes and some event handlers on the
Window object, Listing 3-28), Interface Definition Language (IDL) attributes [42] (scripting attributes, common to all
event handlers, Listing 3-29), or both.

Listing 3-28. Content Attributes in the Markup

<div id="stunning" class="decoration"><p>...</p></div>

Listing 3-29. IDL Attributes in Scripting (Sets the Same Value as the class Attribute in Listing 3-28)

document.getElementById('stunning').className='decoration'

The following example demonstrates a simple onclick event handler (Listing 3-30).

Listing 3-30. A Button That Displays the Current Time When the User Clicks on It

<p>Click the button to display the date.</p>
<p><button onclick="displayDate()">What’s the time?</button></p>
<script>
 function displayDate() {
 document.getElementById("demo").innerHTML = Date();
 }
</script>
<p id="demo"></p>

Global Event Handlers

The event handlers that are supported by all HTML5 elements (as both event handler content attributes and event
handler IDL attributes) as well as by all Document and Window objects (as event handler IDL attributes) are the
keyboard event handlers, the mouse event handlers, the media event handlers, the form event handlers, and the
document event handlers.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

88

Mouse Event Handlers

On Graphical User Interfaces (GUIs), user actions are often triggered by the mouse. The mouse event attributes
described in Table 3-11 apply to all HTML5 elements.

Table 3-11. Mouse Event Handlers

Attribute Runs the Script...

onclick On a single click

ondblclick On a double-click

onmousedown When the mouse button is pressed

onmouseenter When the mouse pointer reaches an area

onmouseleave When the mouse pointer leaves an area

onmousemove When the mouse pointer moves

onmouseout When the mouse pointer moves out of an element

onmouseover When the mouse pointer moves over an element

onmouseup When the mouse button is released

onmousewheel When the mouse wheel is being rotated

onscroll When the scrollbar of an element is being scrolled

Table 3-10. Keyboard Event Handlers

Attribute Runs the Script When...

onkeydown A key is pressed

onkeypress A key is pressed and released

onkeyup A key is released

Keyboard Event Handlers

HTML supports three keyboard events: the user pressed down a key, the user is holding down a key, and the user
released a key (see Table 3-10).

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

89

Table 3-12. Media Event Attributes

Attribute Runs the Script...

onabort When element loading is aborted

oncanplay When the media data can be started to play with potential buffering

oncanplaythrough When the media data can be played to the end without buffering

oncuechange When the text of the track cue is changed

ondurationchange When the length of the media object is changed

onemptied When the media resource becomes empty

onended When the media object has reached the end

onerror When file loading is unsuccessful

onloadeddata When the media data is loaded

onloadedmetadata When media metadata such as duration is loaded

onloadstart When the browser starts to load the media data

onpause When the media data is paused

onplay When the media data is going to start playing

onplaying When the media data has started playing

onprogress When the browser is fetching the media data

onratechange When the playing rate of the media data has changed

onseeked When the seeking attribute is no longer true and seeking has ended

onseeking When the seeking attribute is true and seeking has begun

onstalled When the media data cannot be fetched

onsuspend When fetching media data has been started but stopped before the entire media file was
fetched

ontimeupdate When the media object changes its playing position

onvolumechange When the media object changes the volume or when volume is set to mute

onwaiting When the media content has stopped playing but is expected to resume

Media Event Handlers

Media event handlers can be used to control audio and video playback (see Table 3-12).

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

90

Form Event Handlers

Form event handlers can be used to make forms interactive (see Table 3-13).

Table 3-13. Form Event Handlers

Attribute Runs the Script...

onblur When an element lost focus

oncancel When cancelling a file upload

onchange On element change

onfocus When an element received focus

oninput On user input

oninvalid On invalid user input

onreset When the user clicks on the Reset button of a form

onselect After some text has been selected in an element

onshow When a menu element is shown as a context menu

onsubmit On form submit

ontoggle When the user opens or closes the details element

Table 3-14. Window Event Handlers

Attribute Runs the Script ...

onafterprint After the document is printed

onbeforeprint Before the document is printed

onbeforeonload Before the document is loaded

onhashchange When the anchor of a URL is changed

onmessage When the message is activated

onoffline When the document goes offline

ononline When the document comes online

onpagehide When the window is hidden

onpageshow When the window becomes visible

onpopstate When the window history changes

Window Event Handlers

The window event handlers supported by all Window objects are summarized in Table 3-14.

(continued)

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

91

The onreadystatechange Event Handler

The only event handler supported exclusively by the Document objects is onreadystatechange, which is triggered
every time the readyState changes which holds the status of the server response to our request.

Clipboard Event Handlers

The clipboard event handlers supported by HTML5 [43] are summarized in Table 3-15.

Table 3-15. Clipboard Event Handlers in HTML5

Attribute Runs the Script...

oncopy When the user copies the content of an element

oncut When the user cuts the content of an element

onpaste When the user pastes some content in an element

onbeforecopy When initiating a copy operation

onbeforecut When initiating a cut operation

onbeforepaste When initiating a paste operation

Table 3-16. Touch Event Handlers

Attribute Runs the Script When...

ontouchcancel A touch point has been disrupted

ontouchend The user removes a touch point from the touch surface, or the touch point physically left the
touch surface

ontouchmove The user moves a touch point along the touch surface

ontouchstart The user places a touch point on the touch surface

Touch Event Handlers

In HTML5 web applications, you can handle touch events from a mobile device or computer touchscreen by using
touch event handlers on the HTML5 canvas to capture the user’s movements and allow them to draw on the canvas.
Table 3-16 summarizes the touch event handlers supported by HTML5 [44].

Attribute Runs the Script ...

onresize13 When the browser window is resized

onstorage When loading

onunload When the user leaves the web page

Table 3-14. (continued)

13Unlike฀all฀the฀other฀window฀event฀handlers,฀onresize฀is฀a฀global฀event฀handler฀which฀is฀supported฀by฀all฀HTML5฀elements฀as฀
well฀as฀all฀Document฀and฀Window฀objects.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

92

HTML Document Structure
HTML documents apply a platform- and language-independent interface known as the Document Object Model
(DOM) that makes it possible to refer to and manipulate markup elements as objects [45]. This model provides
dynamic content access and updates as well as document styling for scripts [46]. The DOM can be considered a
mechanism that makes web pages behave like applications [47]. The DOM can be visualized as a tree structure for the
hierarchy of markup elements within a document (Listing 3-31, Figure 3-2).

Listing 3-31. A Well-Structured HTML Document

<!DOCTYPE html>
<html>
 <head>
 <title>A DOM example</title>
 <link rel="stylesheet"
 type="text/css"
 href="main.css">
 </head>
 <body>
 <p>Paragraph content</p>
 </body>
</html>

<html>

<head> <body>

<title>

rel: "stylesheet"

type: "text/css"

href: "main.css"

<p><link>

Figure 3-2. The DOM tree of Listing 3-31

Improperly closed elements and the missing closing tags destroy the DOM structure, which often has serious
consequences such as disrupted layout or incorrect styling. Thanks to the built-in error-handling feature of web
browsers, many markup errors are corrected on-the-fly, but the intended structure can be presumed only so the
correct web site layout and styling is not guaranteed. Developers should not rely on this error-handling feature!

An HTML document usually consists of a Document Type Declaration (DTD), a Formal Public Identifier (FPI),
and a link associating the document with the appropriate DTD at the very beginning of the file (except HTML5
documents that usually omit the DTD). All HTML documents must have an html root element14 that contains the
document head and the document body [48].

14Even฀if฀the฀element฀was฀marked฀optional฀in฀the฀HTML฀4.01฀specification.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

93

The document head provides processing information and metadata relating to the whole document. The style
sheets are usually linked here too.

The document body holds the content of the document. This can contain simple text, formatted text, images,
videos, applets, or dynamic content, for example. The most common generic containers are the div elements
(Figure 3-3), while the generic inline container is the span element. Blocks of texts that can be considered paragraphs
should be written as the content of the p element.

<div id="header">

<div id="nav">

<div class="section">

<div class="section">

<div class="article">

<div class="article">

<div id="sidebar">

<div id="footer">

<div class="article">

<div class="article">

Figure 3-3. Typical document structure within the body up to HTML 4.01

In older versions of HTML, the typical web document structure looked like Listing 3-32.

Listing 3-32. The Document Structure Up to HTML 4.01

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Sample HTML document structure</title>
 </head>
 <body>
 <div class="section">
 <div class="article">
 <h2>Abstract</h2>
 <p>... first paragraph of main content ...</p>
 </div>
 <div class="article">
 <h2>Overview</h2>
 <p>... second paragraph of main content ...</p>
 </div>
 </div>

http://www.w3.org/TR/html4/strict.dtd

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

94

 <div id="footer">
 <p>
 Copyright © 2011 John Smith. All rights reserved.
 </p>
 </div>
 </body>
</html>

New Semantic Structuring Elements In HTML5
In HTML5 there are additional, meaningful (semantic) structuring elements (Figure 3-4), so the typical structure of
HTML5 documents is more sophisticated and logical (Listing 3-33).

Listing 3-33. Typical HTML5 Document Structure

<!DOCTYPE html>
<html>
 <head>
 <title>Sample HTML5 document structure</title>
 </head>
 <body>
 <header>
 <h1>Document structure sample</h1>
 </header>
 <section>
 <article>
 <h2>Abstract</h2>
 <p>This sample document demonstrates the structure of HTML5 documents.</p>
 </article>
 <article>
 <h2>Overview</h2>
 <p>
 HTML5 adds more semantics to the document stucture. Instead of using general purpose

divisions, it provides meaningful elements.
 </p>
 </article>
 </section>
 <footer>
 <p>
 Copyright © 2015 John Smith. All rights reserved.
 </p>
 </footer>
 </body>
</html>

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

95

The new structuring elements of HTML5 can be summarized as follows:

•฀ article: Articles, blog posts, forum posts, and so on

•฀ aside: Sidebars, such as cross-references to an article

•฀ section: Group of elements (typically with a header and a footer)

•฀ header: The header of a section (usually with a title and maybe a short overview)

•฀ footer: Footer information of the entire page or a part of it (consequently, there might be
more footer tags in a page)

•฀ nav: Navigation elements

While useful, not all these structuring elements can be used on all web pages as they are not always suitable for
the content.

Document Type Declaration
The various markup language versions have different features that should be handled differently. As discussed earlier,
elements of one document type are not always allowed in others so the appropriate rendering strongly relies on the
identification of the document type being used.

The document type must be declared in the top of the document that associates it with a formally defined
specification. The document type declaration can be defined by a Formal Public Identifier (FPI) and the URI of the
so-called Document Type Definition (DTD). These URIs are used for identification, and they are not hyperlinks. This is
a machine-readable way to express “this document is HTML” or “this document is XHTML.” Most DTD driver files are
provided by the World Wide Web Consortium.

An FPI is a human-readable, descriptive name that identifies the HTML version, while the DTD defines the
location of the .dtd file (machine-readable grammar) on the W3C server (this file specifies the rules the document
type should follow).

<header>

<nav>

<aside>

<footer>

<article>

<article>

<article>

<article>

<section>

<section>

Figure 3-4. Document structure in HTML5

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

96

You can see the general syntax of the HTML document type declaration in Listing 3-34. Note that HTML5 has a
simplified DOCTYPE, as you will see.

Listing 3-34. General Syntax of Document Type Declaration

<!DOCTYPE root-element PUBLIC "FPI" 
 SYSTEM "URI"
>

The root element is html since it is the element opened first and closed last in HTML files (see “Core Structure
Elements”).

The various versions of HTML use similar syntax (except HTML5):

HTML 2.0 (historical, not used anymore)•฀

<!DOCTYPE html PUBLIC "-//IETF//DTD HTML 2.0//EN">

HTML 3.2 (historical, not used anymore)•฀

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

HTML 4.0 Transitional (should not be used)•฀

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" 
 "http://www.w3.org/TR/REC-html40/loose.dtd">

HTML 4.0 Frameset (obsolete, should not be used)•฀

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN" 
 "-//W3C//DTD HTML 4.0 Frameset//EN">

HTML 4.0 Strict•฀

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" 
 "http://www.w3.org/TR/REC-html40/strict.dtd">

HTML 4.01 Transitional (should not be used)•฀

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 
 "http://www.w3.org/TR/html4/loose.dtd">

HTML 4.01 Frameset (obsolete, should not be used)•฀

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN" 
 "http://www.w3.org/TR/html4/frameset.dtd">

HTML 4.01 Strict•฀

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 
 "http://www.w3.org/TR/html4/strict.dtd">

HTML 4.01+RDFa•฀

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01+RDFa 1.1//EN" 
 "http://www.w3.org/MarkUp/DTD/html401-rdfa11-1.dtd">

http://www.w3.org/TR/REC-html40/loose.dtd
http://www.w3.org/TR/REC-html40/strict.dtd
http://www.w3.org/TR/html4/loose.dtd
http://www.w3.org/TR/html4/frameset.dtd
http://www.w3.org/TR/html4/strict.dtd
http://www.w3.org/MarkUp/DTD/html401-rdfa11-1.dtd

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

97

HTML5 (•฀ DOCTYPE without DTD). Unlike the former, SGML-based HTML versions, HTML5
requires neither an FPI nor a reference to a DTD. The document type can be defined by the
DOCTYPE declaration <!DOCTYPE html>. Since the text/html serialization of HTML5 is not
SGML-based, HTML5 applies the document type for mode selection only.

<!DOCTYPE HTML>

Core Structure Elements

HTML documents must contain one element that is the parent of all other elements, that is, the html element.
This element is called the root element. It has been standardized in the HTML 2.0 specification, along with the other
two fundamental structure elements, head and body.

The html root element contains all other elements within the document; in other words, the <html> starting tag
and the </html> closing tag delimit the document.

The HTML Head

The head section of HTML documents is the container of processing information and metadata. The document head
should be provided between the <head> and </head> tags and precede the document body.

Common elements in the HTML head (with one example for each) include the following:

•฀ title element (required)

<title>Document title</title>

•฀ meta elements15 (optional, one or more)

<meta name="keywords" content="web standardization, valid XHTML5, valid 
XHTML+RDFa, tableless CSS layout, W3C validation, WCAG, semantic web, 
accessibility">

•฀ link elements (optional, one or more)

<link rel="stylesheet" type="text/css" media="all" href="alt2.css" 
title="Alternate style 2">

•฀ script elements (optional, one or more)

<script type="text/javascript" src="js/loading.js"></script>

The document body is the main content of a web document. It might contain both block and inline elements
including, but not limited to, plain and formatted text, lists, headers, paragraphs, divisions, images, objects, forms,
and tables. However, there are prohibitions that determine which elements can be included in other elements.

Element Nesting

To maintain a logical document structure, certain HTML elements cannot contain all types of data or elements.
For example, elements of a table such as table body and data cells should be within a table; the ins element cannot
contain block-level content when it is used as an inline element, and so on. Some elements cannot contain other
enclosed elements of the same kind (e.g., form, label). The content delimited by some elements can be a certain type
of data only (e.g., script, style).

15See฀Chapter฀7฀for฀details.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

98

Some nesting rules require the knowledge of content categories. In HTML5, the following kinds of content are
differentiated [49]:

•฀ Metadata content: Content that determines the presentation or behavior of the page content, sets
up the relationship of the document with other documents, or provides additional information.

base, command, link, meta, noscript, script, style, title

•฀ Flow content: Most elements that are used in the document and application body are referred
to as flow content.

a, abbr, address, area (as a descendant of a map element), article, aside, audio, b, bdi, bdo,
blockquote, br, button, canvas, cite, code, datalist, del, details, dfn, div, dl, em, embed,
fieldset, figure, footer, form, h1, h2, h3, h4, h5, h6, header, hr, i, iframe, img, input, ins,
kbd, keygen, label, map, mark, math, meter, nav, noscript, object, ol, output, p, pre, progress,
q, ruby, s, samp, script, section, select, small, span, strong, style (only with the scoped
attribute), sub, sup, svg, table, textarea, time, u, ul, var, video, wbr, and textual content

•฀ Sectioning content: Content that defines the scope of headings and footers.

article, aside, nav, section

•฀ Heading content: Content that defines the header of a section.

h1, h2, h3, h4, h5, h6

•฀ Phrasing content: The document text and elements in paragraphs.

a (only with phrasing content), abbr, area (as a descendant of a map element), audio, b, bdi,
bdo, br, button, canvas, cite, codedatalist, del (only with phrasing content), dfn, em, embed, i,
iframe, img, input, ins (only with phrasing content), kbd, keygen, label, map (only with phrasing
content), mark, math, meter, noscript, object, output, progress, q, ruby, s, samp, script, select,
small, span, strong, sub, sup, svg, textarea, time, u, var, video, wbr, and textual content

•฀ Embedded content: Imported content from external resources or content from another
vocabulary directly embedded into the document.

audio, canvas, embed, iframe, img, math, object, svg, video

•฀ Interactive content: Content dedicated to user interaction.

a, audio (only with the controls attribute), button, details, embed, iframe, img (only with the
usemap attribute), input (only if the type attribute is not set to hidden), keygen, label, object
(only with the usemap attribute), select, textarea, video (only with the controls attribute)

The most common elements can be nested as follows:

•฀ html

•฀ head

•฀ title (required)

•฀ script, style

CDATA•฀

•฀ base, meta, link (empty)

•฀ object

•฀ param (empty)

flow•฀

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

99

•฀ body

•฀ ins, del

flow•฀

block•฀

inline•฀

•฀ script

CDATA•฀

block•฀

•฀ address

inline•฀

•฀ article

•฀ header

sectioning (•฀ article, aside, section)

•฀ aside

•฀ header

sectioning (•฀ article, aside, section)

•฀ audio, video

•฀ blockquote

block•฀

•฀ script

CDATA•฀

•฀ div

flow•฀

•฀ dl

•฀ dt

inline•฀

•฀ dd

flow•฀

•฀ fieldset

#PCDATA•฀

inline•฀

flow•฀

•฀ legend

inline•฀

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

100

•฀ form

block except an enclosed •฀ form

•฀ script

CDATA•฀

•฀ footer

flow•฀

•฀ h1, h2, h3, h4, h5, h6, p

inline•฀

#PCDATA•฀

•฀ a

inline except an enclosed •฀ a element

•฀ button

flow except •฀ a, button, fieldset, form, input, label,
select, textarea

•฀ abbr, b, bdo, cite, code, dfn, em, i, kbd, q, samp, small,
span, strong, sub, sup, var

inline•฀

•฀ img, br (empty)

•฀ input (empty)

•฀ label

•฀ label except enclosed label

•฀ map

•฀ area (empty)

block•฀

•฀ object

•฀ param (empty)

•฀ flow

•฀ script

CDATA•฀

•฀ select

•฀ optgroup

option•฀

•฀ option

•฀ textarea

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

101

•฀ header

•฀ h1, h2, h3, h4, h5, h6

•฀ form

•฀ img

flow•฀

•฀ hr (empty)

•฀ nav

•฀ header

sectioning (•฀ article, aside, section)

•฀ noscript

flow•฀

•฀ pre

inline except •฀ img, object, small, sub, sup

•฀ section

•฀ header

•฀ h1, h2, h3, h4, h5, h6

•฀ form

•฀ img

flow•฀

•฀ footer

sectioning (•฀ article, aside, section)

•฀ table

•฀ caption

inline•฀

•฀ colgroup

•฀ col (empty)

•฀ col (empty)

•฀ thead, tbody

•฀ tr

•฀ th, td

flow•฀

•฀ ul, ol

•฀ li

flow•฀

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

102

After understanding the difference between block-level and inline elements, nesting elements is rather
straightforward. Empty elements, such as img or hr, cannot contain other elements. Some elements have restrictions
for not only the elements but also the data types they can contain (for example, the contents of script elements should
be CDATA). Violating the nesting order of element might destroy the DOM structure of the document, which makes
rendering unreliable, risking the usability of the web page.

XHTML Document Structure
The XHTML document structure is similar to that of HTML in the sense that there is a head and a body section;
however, additional restrictions apply. Since XHTML documents are XML documents too, they begin with an XML
declaration not used in HTML. Moreover, there are several document types and profiles to choose from, depending
on the main purpose of the web document being developed.

XML Declaration

The very first line in XHTML documents is usually the optional XML prolog (its application is recommended by W3C).
The most commonly used XML declaration looks like Listing 3-35.

Listing 3-35. The Most Commonly Used XML Declaration

<?xml version="1.0" encoding="utf-8"?>

No content is allowed to precede the declaration (except an optional byte-order mark).
Although the character encoding is optional only, it is highly recommended.
Some older browsers cannot handle the XML declaration. The web page might become invisible, or the content

is rendered incorrectly (for example, in IE6). IE7 ignores the XML prolog and correctly renders the content in Strict
Mode (discussed in Chapter1).

Document Type Declaration

Similar to HTML, XHTML documents use a specific Document Type Declaration16 to identify the document type
being used.

Generally, transforming an XHTML document into another XHTML document type is straightforward, especially
if XHTML 1.0 Strict elements are applied exclusively. However, care must be taken when performing such an action
because of the differences between the specifications. XHTML 1.0 Transitional is much more permissive, and
changing the Document Type Declaration of these documents will probably result in numerous errors that should be
justified in order to obtain a valid XHTML 1.0 Strict, XHTML 1.1, or XHTML5 document.

Until recently, the former Quality Assurance Interest Group at W3C maintained a “Recommended list of Doctype
declarations” [50]. Although it could be considered a “list of valid DTDs,” it is not complete; thus, some of the newer
as well as the most up-to-date document types are not listed (e.g., Mobile Profile, XHTML 2.0, or XHTML+RDFa),
partly because the group closed in 2007. This does not affect the application or validation of such documents. Some
non-W3C validators use the previous list and give warnings if a document type missing from that list is used. Such
warnings are often false positives, because some of the less used, earlier DTDs as well as the latest document types are
not on the list.

16Prior฀to฀XHTML5

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

103

The document type declaration of the various XHTML versions and variants are summarized here:

General documents•฀

XHTML Basic 1.0•฀

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN" 
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">

XHTML Basic 1.1•฀

<!DOCTYPE html PUBLIC 
 "-//W3C//DTD XHTML Basic 1.1//EN" 
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd">

XHTML 1.0 Transitional (should not be used)•฀

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Frameset (obsolete, should not be used)•฀

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" 
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XHTML 1.0 Strict•฀

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" 
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

XHTML Basic 1.1•฀

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN" 
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd">

XHTML 1.1•฀

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" 
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

XHTML 2.0 (XHTML2) (suspended [51])•฀

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 2.0//EN" 
 "http://www.w3.org/MarkUp/DTD/xhtml2.dtd">

XHTML5 (•฀ DOCTYPE without DTD)

<!DOCTYPE html>

XHTML+RDFa•฀

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN" 
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">

http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd
http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd
http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/MarkUp/DTD/xhtml2.dtd
http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

104

Mobile profiles•฀

XHTML Mobile Profile 1.0•฀

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN" 
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">

XHTML Mobile Profile 1.1•฀

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.1//EN" 
 "http://www.openmobilealliance.org/tech/DTD/xhtml-mobile11.dtd">

XHTML Mobile Profile 1.2•฀

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.2//EN" 
 "http://www.openmobilealliance.org/tech/DTD/xhtml-mobile12.dtd">

Mathematical markup•฀

MathML 1.01•฀

<!DOCTYPE math SYSTEM 
"http://www.w3.org/Math/DTD/mathml1/mathml.dtd">

MathML 2.0•฀

<!DOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN" 
 "http://www.w3.org/TR/MathML2/dtd/mathml2.dtd">

MathML 3.0•฀

<!DOCTYPE math PUBLIC "-//W3C//DTD MathML 3.0//EN" 
 "http://www.w3.org/Math/DTD/mathml3/mathml3.dtd">

Graphical markup•฀

SVG 1.0•฀

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" 
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

SVG 1.1 Tiny•฀

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1 Tiny//EN" 
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-tiny.dtd">

SVG 1.1 Basic•฀

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1 Basic//EN" 
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-basic.dtd">

SVG 1.1 Full•฀

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" 
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

http://www.wapforum.org/DTD/xhtml-mobile10.dtd
http://www.openmobilealliance.org/tech/DTD/xhtml-mobile11.dtd
http://www.openmobilealliance.org/tech/DTD/xhtml-mobile12.dtd
http://www.w3.org/Math/DTD/mathml1/mathml.dtd
http://www.w3.org/TR/MathML2/dtd/mathml2.dtd
http://www.w3.org/Math/DTD/mathml3/mathml3.dtd
http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-tiny.dtd
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-basic.dtd
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

105

Compound documents•฀

XHTML + MathML + SVG (using XHTML as the host)•฀

<!DOCTYPE html PUBLIC 
 "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" 
 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd">

XHTML + MathML + SVG (using SVG as the host)•฀

<!DOCTYPE svg:svg PUBLIC 
 "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" 
 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd">

The Root Element in XHTML

All XML documents must contain a root element with the syntax shown in Listing 3-36.

Listing 3-36. Pseudocode of the Root Element

<root>
 <child>
 <subchild>.....</subchild>
 </child>
</root>

The root element of XHTML documents must be html. Furthermore, the root element must contain an xmlns
attribute to associate it with the XHTML namespace. The namespace URI is http://www.w3.org/1999/xhtml for
XHTML 1.0 and XHTML5 documents, and it is http://www.w3.org/2002/06/xhtml2/ for XHTML2 documents.
Consequently, the most common XHTML namespace declaration looks like Listing 3-37.

Listing 3-37. The Most Common XHTML Namespace Declaration

<html xmlns="http://www.w3.org/1999/xhtml">

The natural language of XML documents is often identified by the xml:lang attribute of the html element17
(Listing 3-38).

Listing 3-38. Common Use of the xml:lang Attribute

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">

Namespace Declaration

Beyond the default XHTML namespace http://www.w3.org/1999/xhtml, additional ones can also be used in XHTML
documents. For example, XHTML+RDFa documents often use additional namespaces for semantic markup (for more
details, see Chapter 7). In the example shown in Listing 3-39, the namespace of the FOAF Vocabulary Specification
follows the default namespace declaration.

17Although฀it฀is฀used฀frequently,฀this฀is฀just฀one฀of฀the฀many฀options฀to฀identify฀the฀XML฀document฀language฀(see฀Chapter฀4).

http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd
http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/2002/06/xhtml2/
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

106

Listing 3-39. Additional Namespace Declaration

<html version="XHTML+RDFa 1.0" 
 xmlns="http://www.w3.org/1999/xhtml" xmlns:foaf="http://xmlns.com/foaf/0.1/" 
 xml:lang="en">

In mixed-namespace documents, such as XHTML + MathML + SVG, multiple namespace declarations occur
throughout the document body (unlike the previous ones that are declared in the document head). Listing 3-40 shows
an example.

Listing 3-40. Namespace Declarations in the body of a Compound Document

<!-- ... XHTML content ... -->
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <!-- ... MathML notation ... -->
 </math>
 <!-- ... XHTML content ... -->
 <svg:svg version="1.1" 
 xmlns:svg="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
 <!-- ... SVG graphic ... -->
 </svg>
<!-- ... XHTML content ... -->

The XHTML Head

The title of XHTML documents can be written exactly the same way as in HTML, that is, between the start and end
tags (Listing 3-41).

Listing 3-41. XHTML Document Title

<title>Title of the sample XHTML document</title>

The meta, link, and script elements can be provided in the document head of XHTML like in HTML
documents. However, in XHTML these elements (along with all other elements) should be closed. These empty
elements apply the XHTML shorthand notation (self-closing) (Listing 3-42).

Listing 3-42. A Self-Closing Link Element in XHTML

<link rel="stylesheet" type="text/css" media="all" href="alt2.css" 
 title="Alternative style 2" />

In the following example, the title attribute is used to indicate search engines that show where to locate the
German and Hungarian versions of the original English document (Listing 3-43). The xml:lang attribute declares the
language of the target documents.

Listing 3-43. Links to Other Language Versions of the Same Document

<head>
 <title>The document in English</title>
 <link title="Das Dokument auf Deutsch" 
 rel="alternate" 
 href="http://example.com/german/"
 xml:lang="de" />

http://www.w3.org/1999/xhtml
http://xmlns.com/foaf/0.1/
http://www.w3.org/1998/Math/MathML
http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

107

 <link lang="hu" title="A dokumentum magyarul" 
 rel="alternate" 
 xml:lang="hu" 
 href="http://example.com/hungarian/" />
</head>

The character encoding of the page specified as the link target can be declared by the charset attribute.
The media attribute specifies the medium the link applies to. Table 3-17 summarizes the possible values.

Table 3-17. Values of the media Attribute on the link Element

Value Description

screen Computer screens (default)

tty TeleTypes (fixed character width)

tv Televisions and similar devices (low resolution, limited scrollability)

projection Projectors

handheld Mobile devices, smartphones (small screens, limited bandwidth)

print Print preview/printed pages

braille Braille devices

aural Speech synthesizers

all Suitable for all devices

Listing 3-44 shows an example for three different style sheets written for three different media types
(all, handheld, print).

Listing 3-44. CSS Files for Different Media Types

<link rel="stylesheet" type="text/css" media="all" href="main.css" 
 title="Default style" />

<link rel="stylesheet" type="text/css" media="handheld" href="mobile.css" 
 title="Styles for mobile devices" />

<link rel="stylesheet" type="text/css" media="print" href="print.css" 
 title="Styles for printing" />

The rel attribute (which stands for relationship) is a space-separated list of one or more values specifying the
relationship between the current page and the target resource (Listing 3-45). Possible values are alternate, appendix,
bookmark, chapter, contents, copyright, glossary, help, index, next, prev, section, stylesheet, and subsection.

Listing 3-45. Application Example for the rel Attribute

<link rel="alternate" type="application/rss+xml" title="New feed of example page" 
 href="http://www.example.com/rss.xml" />
<link rel="glossary" title="Glossary" href="glossary/" />
<link rel="copyright" title="Copyright" href="copy/" />

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

108

<link rel="bookmark" title="About" href="about/" />
<link rel="bookmark" title="Services" href="services/" />
<link rel="bookmark" title="Portfolio" href="portfolio/" />
<link rel="bookmark" title="Contact" href="contact/" />

The author of the document can be declared similarly (Listing 3-46).

Listing 3-46. A Link to the Author

<link rel="author"> href="http://www.example.com/" />

The favorites icon (favicon18), a 16×16 pixel square icon by default, can be determined by the shortcut icon or
icon link (Listing 3-47). The first one is supported in all browsers; however, it is not declared in HTML specifications.

Listing 3-47. A Link to the Web Site Icon

<link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

Although the default image format is ICO, modern browsers support other formats too such as PNG, animated
PNG, JPEG, GIF, animated GIF, and SVG. They can be used in the form shown in Listing 3-48.

Listing 3-48. Link Examples for rel="icon"

<link rel="icon" type="image/vnd.microsoft.icon"> href="http://www.example.com/image.ico" />

<link rel="icon" type="image/png"> href="http://www.example.com/image.pgn" />

<link rel="icon" type="image/gif"> href="http://www.example.com/image.gif" />

Tip ■ Since the attribute value icon was not standardized until HTML5 and browser support varies, it is a common

practice to declare the same icon file with both the shortcut icon and icon attribute values.

The files can also be 32×32, 48×48, or 64×64 pixels in size with 8-, 24-, or 32-bit color depth. However, because
of the different browser support, the preferred format for favicons is the de facto file name and type (favicon.ico)
provided in the root directory of the web site. Note that the larger the resolution and color depth, the longer the
download time. File size should be kept within reasonable limits (see Chapter 9 for more on this).

The rel attribute is often used in other contexts as well. The microformats rel="license", rel="nofollow",
and rel="tag", for example, provide various metadata on (X)HTML elements, most commonly on the a element.
Generally they are parts of the document body but are used for specific purposes; thus, they are described later in
Chapter 7.

In the XHTML document head, further attribute values can also be used from namespaces other than the default
XHTML namespace. Listing 3-49 shows an example for that.

Listing 3-49. Linking to an Additional Namespace

<link rel="foaf:primaryTopic" type="application/rdf+xml" title="FOAF" 
href="http://www.example.com/metadata/foaf.rdf" />

18Also฀known฀as฀bookmark฀icon,฀URL฀icon,฀shortcut฀icon,฀or฀web฀site฀icon

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

109

In this case, the FOAF namespace is also required to make the foaf:primaryTopic meaningful. The declaration of
the additional namespace should be provided on the html element, as discussed in the previous section (Listing 3-39).

The XHTML Body

The XHTML document body is similar to the HTML body from the document structuring point of view. However,
XHTML is case-sensitive. Consequently, the JavaScript event handler onload cannot be written with the same camel
case notation onLoad used in HTML. It should be in lowercase (Listing 3-50).

Listing 3-50. Case-Sensitive Event Handler in XHTML

<body onload="function();">

Moving from HTML to XHTML
For over a decade, a common task in web site standardization was to convert HTML documents into XHTML.
However, with the release of a brand new line of HTML, more and more web developers intend to use HTML5, mainly
due to its vocabulary and APIs. This does not mean, however, that HTML syntax must be preferred, because HTML5
documents can be written in XML serialization too (XHTML5). There are several reasons to use stricter markup.
Although some changes to be made on HTML documents while upgrading to XHTML are straightforward, there are
significant differences between the two formats in features and behavior that need to be considered. Since XHTML is
the reformulation of HTML 4 as an application of XML, it can be used as an XML-conforming language with all of its
attendant benefits:

•฀ Strict markup: Unlike HTML, XHTML complies with strict conventions. As a result, there are
no missing end tags, overlapping elements, or unnecessary attributes, just pure code. XHTML
is well-formed and easy to write, interpret, and read. Content and styles are separated.

•฀ Easy introduction of new markup: New elements and attributes can be added quite easily
through XHTML modules.

•฀ XML conformance: As such, they are readily viewed, edited, and validated with standard XML
tools.

•฀ DOM choice: Applets and scripts, and other applications can apply either the HTML
Document Object Model or the XML Document Object Model.

•฀ Interoperability: As web markup languages evolve, documents that conform to XHTML
conventions will be more likely to interoperate within different user agents of the future.

Additionally, backward- as well as forward-compatibility can be ensured with appropriate markup.

Specific Markup Languages
Beyond the general-purpose HTML and XHTML markup languages, there are more specific languages such as the
ones that represent vector graphics (SVG), mathematical annotations (MathML), multimedia presentations (SMIL),
or textual information synchronized with other media (TTML [53]). Such languages are used either in a specific
external file or their reserved words are written directly in general-purpose markup. The following sections provide an
overview of SVG and MathML.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

110

SVG
In contrast to raster graphic formats such as GIF, PNG, or JPEG that have been handled by browsers for years, native
support of vector graphics did not appear until the introduction of HTML5. Although the Vector Markup Language
(VML) and the Precision Graphics Markup Language (PGML) appeared in 1998, they were soon followed by Scalable
Vector Graphics (SVG) in 1999; however, implementers had to wait for a decade.

SVG is an XML-based markup for describing two-dimensional static and dynamic (animated or interactive)
vector graphics [54]. The first version, SVG 1.0, became a W3C Recommendation in 2001, followed by SVG 1.1 in 2003.
Beyond the full version, SVG also has a Tiny specification and a Basic specification optimized for mobile devices [55].
They are described as profiles of SVG 1.1. SVG Tiny 1.2 became a W3C Recommendation in 2008. The full version
of SVG 1.2 has been stalled in the Working Draft stage and dropped in favor of SVG 2.0, which is a completely new
version with advanced support for HTML5, CSS3, and Web Fonts (Chapter 9). Because of the native SVG support in
(X)HTML5 along with the increasing browser support, the SVG format has gradually gained popularity.19 Internet
Explorer 9+, Firefox 3.5+, Safari 3.1+, and Opera 9.5+ have native SVG rendering and embedding support and do not
require a plugin for SVG images.

Caution ■ The browser support for SVG in modern browsers, which do not require a plug-in for displaying SVG,

is different for each embedding method (inline, via img, via object) and feature (SVG effects, SVG in SMIL animation,

SVG filters, SVG in CSS background, and SVG fonts).

Most browsers that support SVG do not render SVG files unless they are served as image/svg+xml. The most
common rendering error with embedded SVG files is that they are served with an incorrect MIME type.

SVG is suitable for logos, graphs, geographical information systems, and so on. The major benefits of the SVG
format can be summarized as follows:

•฀ Accessibility: Images are often magnified by mobile users as well as for the visually impaired.
SVG images are scalable without distortions or quality loss. Moreover, in SVG, text is rendered
as text. Textual equivalents of objects can also be developed.

•฀ Optimal file size: Although it depends on image content complexity, SVG files are generally
smaller in size than their bitmap equivalents.

•฀ Scriptability: All features of SVG images can be manipulated through JavaScript and the DOM.

•฀ Animation: SVG elements and element groups can also be animated without scripting. This
can be achieved by using Synchronized Multimedia Integration Language (SMIL) together
with SVG.

Note ■ SMIL is an XML markup language that defines markup for media synchronization, layout, animations, visual

transitions, and media embedding. It supports presentations with text, images, audio, video, and links to other SMIL

presentations. SMIL is a W3C Recommendation [56].

19Although฀it฀can฀be฀used฀in฀XHTML฀1.x/2.0฀too.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

111

Syntax

The root element of both embedded and inline SVG images is svg. Listing 3-51 shows an example.

Listing 3-51. The svg Root Element

<svg xmlns="http://www.w3.org/2000/svg">
 <rect x="10" y="10" rx="0" ry="0" width="80" height="80" fill="#898989" />
</svg>

The namespace prefix can also be specified on the xmlns attribute. Doing so, the corresponding namespace is
not the default namespace. Consequently, an explicit namespace prefix must be assigned to all elements such as in
Listing 3-52.

Listing 3-52. Explicit Namespace Prefix

<svg:svg xmlns:svg="http://www.w3.org/2000/svg">
 <svg:rect x="10" y="10" rx="0" ry="0" width="80" height="80" fill="#898989" />
</svg:svg>

Both examples draw a rectangle using the rect element with a top-left positioning (x, y), dimensions (width, height),
and optional horizontal and vertical corner radii (rx, ry). If length units are omitted, they are assumed to be in pixels.
The default fill color for such objects is black, which can be overridden by the fill attribute.

Other geometrical shapes can be drawn in SVG similarly. Circles, for example, can be declared by a horizontal
and vertical center and a radius (Listing 3-53).

Listing 3-53. A Circle in SVG

<circle cx="100" cy="100" r="90" stroke="#666" fill="#fff" />

For ellipses, a horizontal and a vertical center, as well as a horizontal and a vertical radius, are required
(Listing 3-54).

Listing 3-54. An Ellipsis in SVG

<ellipse cx="100" cy="100" rx="120" ry="80" fill="blue" />

The svg element can contain any of the following elements, in any order [57]: animation elements (animate,
animateColor, animateMotion, animateTransform, set), descriptive elements (desc, metadata, title), shape
elements (circle, ellipse, line, path, polygon, polyline, rect), structural elements (defs, g, svg, symbol, use),
gradient elements (linearGradient, radialGradient), a, altGlyphDef, clipPath, color-profile, cursor, filter,
font, font-face, foreignObject, image, marker, mask, pattern, script, style, switch, text, and view.

Embedding

SVG images can be embedded in the markup by using the img or object element or by writing the SVG code directly
into the markup (inline SVG).

The first approach applies the markup element img, which is used for other images such as JPEG or PNG
(Listing 3-55).

Listing 3-55. Embedding SVG with the img Element

http://www.w3.org/2000/svg
http://www.w3.org/2000/svg

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

112

However, this embedding type has become supported in browsers with native SVG support only recently. In
browsers and browser versions that do not support SVG embedding via the img element, the object element can be
used (it cannot be ensured that users have an SVG plug-in installed). Listing 3-56 shows an example.

Listing 3-56. Embedding SVG Using object

<object type="image/svg+xml" data="images/cover.svg" width="400" height="300">

</object>

The disadvantage of the technique is that an image is provided as a general object rather than an image, which is
not optimal from the semantic point of view: the meaning of an element representing an image is logically provided
by the img element with more specific information about the content. The major advantage is that it displays the
alternate (in this case PNG) version of the image in browsers that cannot display SVG. Moreover, object elements are
included in the DOM, which allows the SVG image to be scripted.

The third option for providing SVG content is to write it directly into the XHTML or HTML5 markup. The major
risk associated with the direct SVG embedding in XHTML is that XHTML documents containing inline SVG files
should be valid, served as application/xml or application/xml+xhtml, and have an XHTML DOCTYPE. Otherwise, the
SVG images are not displayed in the browser. Moreover, if XHTML documents are served correctly for browsers with
a real XML parsing, Internet Explorer does not render the document at all (not only the SVG images).20 This problem
does not exist in HTML5, where direct SVG embedding is a native feature.

Because of these issues, providing external SVG files is generally a better solution especially if the same file (such
as a logo) is used throughout the site.

There are nonstandardized approaches called SVG Support Libraries such as the JavaScript API “Raphaël” [58].
It supports SVG and VML in a manner that all graphical objects are also DOM objects, with the potential to attach
JavaScript event handlers. Raphaël provides a cross-browser solution; however, it requires JavaScript to be enabled
and applies a programmer interface via JavaScript rather than SVG markup. The advantage of Raphaël is that it
provides VML for IE8 or earlier and provides SVG for all browsers with SVG support.

MathML
The Mathematical Markup Language (MathML) is an XML application for describing mathematical annotations on
the Web. It provides content and structure, making it possible to index and process equations.

The first version of the Mathematical Markup Language, MathML 1.0, has become a W3C Recommendation in
1998 [59] and slightly modified in 1999 as MathML 1.01 [60]. After three years of development, MathML2 has obtained
the Recommendation status in 2001, which has been further improved as the second edition until 2003 [61]. After
recognizing the limitations of the second version, several new features have been introduced in MathML3, such as
advanced line breaking and indentation, elementary math notation, alignment of Content MathML with OpenMath,
support for bi-directional languages, new attributes for the math tag, semantic annotations, interaction with the host
environment, linking, and new elements such as mglyph and mpadded [62].

MathML is supported by a variety of applications including web pages, e-books, screen readers, Braille displays,
equation editors, ink input devices, and e-learning and computational software tools. However, the rendering engine
implementation for MathML varies, and no browser provides full MathML support.

Internet Explorer has no native MathML support, and the MathPlayer plug-in has been used for versions up to
IE8. Unfortunately, MathPlayer does not work under IE9. Native rendering support for MathML is available in
Gecko-based browsers such as Firefox and Camino from the first versions and in Safari from version 5.1. Opera
supports MathML since version 9.5. Google added MathML support to Chrome 24 which was removed from later
versions.

20This฀problem฀can฀be฀eliminated฀by฀specifying฀the฀MIME฀type฀text/html฀for฀Internet฀Explorer฀and฀application/xml฀for฀other฀
browsers฀on฀the฀server.

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

113

Syntax

MathML has presentational, content, and mixing markup elements. There are two types of flavor for MathML markup.
The first one focuses on the display of equations, known as Presentation MathML. The second, Content MathML,
stresses the semantic meaning of the mathematical annotation.

Similar to XHTML, there are two types of elements in MathML: the ones with the start and end tags and the
empty elements that are self-closing. However, the ratio of empty elements is much higher in MathML than in
XHTML. Elements can have optional attributes that consist of a name and a value (the latter one is quoted in double
or single quotes). The majority of MathML attribute values must be in a predetermined format such as a positive
integer or the keyword true.

In MathML there are container elements such as mrow (a group of subexpressions) and token elements such as mi
(identifier; i.e., a name of a constant, a variable, or a function). The element mo represents an operator (e.g., +), a fence
(e.g., {), or a separator (e.g., ,). Numeric literals are specified by mn. The proper use of mi, mo, and mn is vital to provide
adequate information for rendering engines to apply the correct typographic rules. Containers can contain other
elements only while token elements delimit plain-text characters, special entity references, or symbols (the smallest
units with meaning). Listing 3-57 shows an example.

Listing 3-57. A Simple Example for Container and Token Elements in MathML

<mrow>
 <mi>a</mi>
 <mo>+</mo>
 <mi>b</mi>
</mrow>

Entity references begin with an ampersand (&) and end with a semicolon (;). Beyond keywords such as α,
a numeric format referring to the Unicode codepoint of the symbol is also allowed. More than 1,800 symbols are
supported.

The MathML namespace is http://www.w3.org/1998/Math/MathML. It can be declared in two ways: using the
xmlns attribute or an attribute with an xmlns prefix. In the first case, the default namespace applies to the element on
which it is provided, as well as all child elements (Listing 3-58).

Listing 3-58. A Presentation MathML Document Fragment Applying the MathML Namespace

<math mode="display" xmlns="http://www.w3.org/1998/Math/MathML">
 <mrow>
 <mi>x</mi>
 <mo>=</mo>
 <mfrac>
 <mrow>
 <mrow>
 <mo>-</mo>
 <mi>b</mi>
 </mrow>
 <mo>±<!--PLUS-MINUS SIGN--></mo>
 <msqrt>
 <mrow>
 <msup>
 <mi>b</mi>
 <mn>2</mn>
 </msup>

http://www.w3.org/1998/Math/MathML
http://www.w3.org/1998/Math/MathML

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

114

 <mo>-</mo>
 <mrow>
 <mn>4</mn>
 <mo>⁢<!--INVISIBLE TIMES--></mo>
 <mi>a</mi>
 <mo>⁢<!--INVISIBLE TIMES--></mo>
 <mi>c</mi>
 </mrow>
 </mrow>
 </msqrt>
 </mrow>
 <mrow>
 <mn>2</mn>
 <mo>⁢<!--INVISIBLE TIMES--></mo>
 <mi>a</mi>
 </mrow>
 </mfrac>
 </mrow>
</math>

This is identical to the Content notation in Listing 3-59.

Listing 3-59. The Content MathML Equivalent of Listing 3-58

<math>
 <apply>
 <eq/>
 <ci>x</ci>
 <apply>
 <divide/>
 <apply>
 <plus/>
 <apply>
 <minus/>
 <ci>b</ci>
 </apply>
 <apply>
 <root/>
 <apply>
 <minus/>
 <apply>
 <power/>
 <ci>b</ci>
 <cn>2</cn>
 </apply>
 <apply>
 <times/>
 <cn>4</cn>
 <ci>a</ci>
 <ci>c</ci>
 </apply>
 </apply>

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

115

 </apply>
 </apply>
 <apply>
 <times/>
 <cn>2</cn>
 <ci>a</ci>
 </apply>
 </apply>
 </apply>
</math>

Both should be rendered as the following well-known quadratic formula in browsers that support MathML:

x
b b ac

a
=
- ± -2 4

2

In the second case, the prefix associates other elements and attributes with a particular namespace. For example,
the namespace and the prefix are declared on the body element, as shown in Listing 3-60.

Listing 3-60. Namespace and Prefix Declaration on the body

<body xmlns:m="http://www.w3.org/1998/Math/MathML">

which adds meaning to mathematical notations such as the ones in Listing 3-61.

Listing 3-61. An Example for Using the MathML Prefix

<m:math>
 <m:mrow>
 <m:mi>x</m:mi>
 <m:mo>+</m:mo>
 <m:mn>y</m:mn>
 </m:mrow>
</m:math>

Embedding

Since MathML is an XML language, it can be directly embedded into XML files, including XHTML (see the next
section). Because of the lack of support for namespaces, MathML embedding was not supported by HTML versions
up to 4.01. HTML5 is the first version of HTML that supports MathML.

Combinations, Profiles, and Mixed-Namespace Documents
Several newly developed web site features are very useful but not required for basic documents. These technologies
are defined by various specifications that can be used as the extensions of certain versions of (X)HTML. One of them
combines markup and additional semantics, while another supports mathematical markup and vector graphics within
(X)HTML documents. Some of these compound documents have their own DTDs they can be validated against and
namespaces21 that provide containers for the context of identifiers, including uniquely named elements and attributes.

21By฀utilizing฀namespaces,฀XHTML฀documents฀can฀provide฀extensibility฀by฀including฀fragments฀from฀other฀XML-based฀languages฀
such฀as฀SVG฀and฀MathML.฀This฀option฀was฀the฀privilege฀of฀XHTML฀languages,฀and฀was฀not฀supported฀by฀HTML฀before฀HTML5.

http://www.w3.org/1998/Math/MathML

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

116

(X)HTML+RDFa
The need for publishing semantically meaningful structured data, such as metadata in RDFa, is not recent. RDFa in
XHTML became a World Wide Web Consortium (W3C) Recommendation on 14 October, 2008 [63]. XHTML+RDFa
(Extensible Hypertext Markup Language + Resource Description Framework in attributes) is an extended version
of the XHTML markup language for supporting RDF through a collection of attributes and processing rules in the
form of well-formed XML documents. This combination is one of the most advanced markup codes. XHTML+RDFa
provides the option to develop Semantic Web content by embedding rich semantic markup. Version 1.1 of the
language is a superset of XHTML 1.1, integrating the attributes according to RDFa Core 1.1. In other words, it is
RDFa support through XHTML Modularization. The RDFa Core 1.1 specification describes how attributes can be
used to express structured data in any markup language, with an emphasis on HTML (instead of XHTML), SVG, the
Open Document Format, and other web-enabled document formats [64]. If the host language is XHTML, it is called
XHTML+RDFa 1.1 [65].

The RDFa markup in XHTML+RDFa reuses the markup code, thus eliminating the need for unnecessary
duplications. XHTML+RDFa can provide machine-readable metadata within the markup code, which makes
additional user functionalities available. Most important of all, actions can be performed automatically that enable
up-to-date publishing, structured searches, and sharing [66].

XHTML+RDFa has never been widely distributed, mainly because of the lack of support in authoring tools and
content management systems [67] and because web designers are not familiar with RDFa. Although the specification
HTML+RDFa 1.1 is primarily an extension of HTML5, it describes rules and guidelines for applying RDFa, not only in
HTML5 but also in HTML 4.01 and XHTML5 [68].

Listing 3-62 presents an XHTML+RDFa skeleton document.

Listing 3-62. An XHTML+RDFa Skeleton Document with an Additional Namespace

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN" 
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
<html version="XHTML+RDFa 1.0" 
 xmlns="http://www.w3.org/1999/xhtml" 
 xmlns:foaf="http://xmlns.com/foaf/0.1/" xml:lang="en">
 <head>
 <title>An XHTML+RDF example</title>
 <meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8" />
 </head>
 <body>
 <p>This is a paragraph with semantic content. It was written by 
 John Smith.
 </p>
 </body>
</html>

The RDFa notation is described in Chapter 7.

XHTML-Print
XHTML-Print is defined in the W3C Recommendation “Modularization of XHTML” [19]. This profile can be used in
printing environments without installing printer-specific drivers. XHTML-Print can also be useful for mobile devices
and low-cost printers that often come with a lack of large (full-page) buffers and that generally print from top-to-
bottom and left-to-right with portrait orientation.

The XHTML-Print document structure is based on the XHTML 1.0 specification. However, application and usage
restrictions apply for images, styles, and forms.

http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd
http://www.w3.org/1999/xhtml
http://xmlns.com/foaf/0.1/

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

117

XHTML + MathML + SVG
One of the easiest ways to demonstrate the power of XML is to create mixed-namespace documents. General and
mathematical markup as well as vector graphics can be described within the same document by the XHTML +
MathML + SVG profile. This profile combines XHTML 1.1, MathML 2.0, and SVG 1.1.

The host language of XHTML + MathML + SVG documents can be either XHTML or SVG.

XHTML as the Host Language

Listing 3-63 shows a typical XHTML + MathML + SVG document.

Listing 3-63. An XHTML + MathML + SVG Skeleton Document in XHTML

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC 
 "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" 
 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" dir="ltr">
 <head>
 <title>Sample XHTML 1.1 plus MathML 2.0 plus SVG 1.1 document</title>
 <meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8" />
 <link rel="stylesheet" type="text/css" href="style/style.css"/>
 </head>
 <body>
 <h2 id="math">MathML sample</h2>
 <p>Math expression
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <mrow>
 <mi>y</mi>
 <mo>=</mo>
 <mfrac>
 <mn>1</mn>
 <msqrt>
 <mrow>
 <msup>
 <mi>x</mi>
 <mn>2</mn>
 </msup>
 <mo>+</mo>
 <mn>1</mn>
 </mrow>
 </msqrt>
 </mfrac>
 </mrow>
 </math>
 inside an XHTML paragraph.</p>
 <h2 id="svg">SVG sample</h2>

http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/1998/Math/MathML

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

118

 <p>
 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="5em" height="4em" 
 viewBox="0 0 500 400" version="1.1">
 <svg:title>A star</svg:title>
 <svg:polygon style="fill:red; stroke:blue; stroke-width:10" 
 points="210,46 227,96 281,97 238,129 
 254,181 210,150 166,181 182,129 
 139,97 193,97" />
 </svg:svg>
 </p>
 </body>
</html>

Developers have the freedom to change the parameter entities of the DTD if required. Since MathML and SVG
require additional support, the validity of the previous code does not guarantee that the document will be rendered
correctly by all web browsers.

SVG as the Host Language

A mixed document can be created by inserting XHTML and MathML into SVG with foreignObject (Listing 3-64).

Listing 3-64. An XHTML+MahtML+SVG Skeleton Document in SVG

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC 
 "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" 
 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd"[
 <!ENTITY % SVG.prefixed "IGNORE" >
 <!ENTITY % XHTML.prefixed "INCLUDE" >
 <!ENTITY % XHTML.prefix "xhtml" >
 <!ENTITY % MATHML.prefixed "INCLUDE" >
 <!ENTITY % MATHML.prefix "math" >
]>
<svg version="1.1" xml:lang="en" 
 xmlns="http://www.w3.org/2000/svg" 
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <desc>SVG as the host language</desc>
 <!-- ... SVG content ... -->
 <switch>
 <foreignObject width="800px" height="600px">
 <xhtml:p xmlns:xhtml="http://www.w3.org/1999/xhtml">
 <!-- ... XHTML content ... -->
 <math:math xmlns:math="http://www.w3.org/1998/Math/MathML">
 <!-- ... MathML content ... -->
 </math:math>
 <!-- ... XHTML content ... -->
 </xhtml:p>
 </foreignObject>
 </switch>
 <!--... SVG content ... -->
</svg>

http://www.w3.org/2000/svg
http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd
http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink
http://www.w3.org/1999/xhtml
http://www.w3.org/1998/Math/MathML

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

119

Choosing a Markup Language
Since web designers tend to implement the latest markup language even when it is not standardized, rendering web
pages written in the most up-to-date markup always involves some risks.

The Transitional variants of HTML 4.01 and XHTML 1.0 have been developed to ease the work of web developers
by providing features whose replacements have already been planned (tagged as deprecated elements). Their
purpose was to give developers time to change obsolete markup, not to maintain them. The Traditional variants
intended to provide a way to make the transition to modern web standards. Frameset documents are contradictory
with the philosophy of XHTML. Consequently, the Frameset variant of XHTML 1.0 had a purpose similar to that of the
Transitional variant. Both variants have been designed with backward compatibility in mind. In other words, XHTML
1.0 Strict should have been used exclusively after its introduction wherever possible. Although many content authors
have done so, error-free markup has always been very rare. But what is the point of applying a strictly regulated
markup in implementations full of errors? To be fair, web designers are not the only ones to blame because they
often have to deal with incorrect markup in the form of third-party and CMS-generated dynamic content based on
templates that are not standard-compliant.

The potential for modularization in XHTML 1.1 has not been exploited either. XHTML 2.0 has been criticized by
web developers, and the W3C was pushed to suspend the development of the specification.

Because of the new, advanced features introduced in (X)HTML5, it became the recommended markup language.
However, there is no reason to change a valid XHTML 1.0 Strict markup of conventional web documents to HTML5
unless some new features introduced in HTML5 would be really beneficial for the content.

The Benefits of XHTML 1.x over HTML 4.x
In spite of the advantages of strict XML codes, it took several years for developers to realize the power of XHTML and
to implement XHTML instead of HTML. Both HTML and XHTML have their advantages and disadvantages
(see Table 3-18).

Table 3-18. HTML vs. XHTML

Benefits of HTML Benefits of XHTML

Backward compatibility ·

Well-known syntax ·

Error-tolerance ·

“Loose” syntax that might be convenient for ·
some developers (permissive nesting,
omission of certain tags and attributes)

Strict XML syntax, well-formed markup ·

Easier maintenance ·

Direct integration with other XML vocabularies, e.g., SVG, ·
MathML

XML processing ·

Forced elimination of presentational markup ·

It is easy to see that some HTML features that claimed to be advantageous are not necessarily real benefits
because precise, strict markup should always be considered better than loose markup.

The Benefits of HTML5 over HTML 4.x and XHTML
The latest version of HTML overcame several limitations and inconsistencies of earlier HTML versions and XHTML.
The new parsing rules of HTML5 are not based on SGML, which makes parsing more flexible and improves
compatibility. The new elements provide more sophisticated document structuring (article, aside, figure, footer,
section, etc.), new types of form controls, and advanced multimedia embedding (audio, video). The obsolete
markup elements were dropped, including acronym, applet, basefont, big, center, dir, font, frame, frameset,
isindex, noframes, strike, and tt. New attributes have been introduced, such as the id, tabindex, and hidden global

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

120

attributes, and the custom data attribute data-*. The charset attribute on the meta element and the async attribute
on the script element have been improved. Inline SVG and MathML can be embedded in text/html documents.
HTML5 provides advanced features for web applications through its APIs, introducing a new area in web site
development.

Most web designers and the W3C recommend HTML5 for most web sites and web applications.

HAML: Markup Preprocessing
Haml (HTML abstraction markup language) is a lightweight markup language used to describe XHTML web
documents without traditional inline coding. Haml is created to overcome the limitations of traditional template
engines, accelerating and simplifying template creation while making markup as neat as possible [69]. The functions
of Haml can be used to replace inline page templating systems, such as ASP, RHTML, and PHP. The main principle of
Haml is beautiful, DRY (Don’t Repeat Yourself), well-indented markup with a clear HTML structure.

Alternatives to Web Markup
Although the lion’s share of web documents are published in (X)HTML files, forms, brochures, flyers, posters,
animations, source codes, presentations, and office documents are often provided in other formats such as in the ones
indexed by Google [70]:

Adobe Flash •฀ (.swf)

Adobe Portable Document Format (•฀ .pdf)

Adobe PostScript (•฀ .ps)

Autodesk Design Web Format (•฀ .dwf)

Basic source code (•฀ .bas)

C/C++ source code (•฀ .c, .cc, .cpp, .cxx, .h, .hpp)

Google Earth (•฀ .kml, .kmz)

GPS eXchange Format (•฀ .gpx)

Hancom Hanword (•฀ .hwp)

Java source code (•฀ .java)

Microsoft Excel (•฀ .xls, .xlsx)

Microsoft PowerPoint (•฀ .ppt, .pptx)

Microsoft Word (•฀ .doc, .docx)

OpenOffice presentations (•฀ .odp)

OpenOffice spreadsheet (•฀ .ods)

OpenOffice text (•฀ .odt)

Perl source code (•฀ .pl)

Python source code (•฀ .py)

Rich Text Format (•฀ .rtf, .wri)

Text (•฀ .ans, .asc, .cas, .txt, .text)

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

121

Always use the appropriate file type for web publishing. Markup documents are preferred for general contents
and should be used whenever possible. With the introduction of HTML5, the share of documents published as
markup has become larger than ever before. HTML5—especially empowered by CSS3 style sheets and jQuery
scripts—has all the features to create animations instead of Flash, presentations instead of PowerPoint presentations,
and so forth. Still, editable documents should not be converted into markup. Downloading a Word document and
modifying it to fit your needs can be very convenient. Printable documents that need to be signed only are frequently
provided in PDF. Special file types are confusing and cannot be processed by user agents.22 It is the web author’s
responsibility to provide documents in the right file format.

Summary
In this chapter, you learned about the versions and variants of markup languages, which is beneficial for many
reasons. First, it is required to know the history of markup languages to become capable of choosing the most suitable
markup for your projects. Second, the relationship between these markup languages is vital when moving from one
document type to another. Third, becoming familiar with the vocabulary of HTML and XHTML languages can be
useful not only for comparison but also to ensure that you use only those elements and attributes that are allowed in
the chosen document type. While most modern web sites are written in HTML5, there are millions of sites written in
older markup languages. More and more owners of obsolete web sites order an HTML5 upgrade or a complete site
redesign based on HTML5, CSS3, and jQuery, while most new projects are based on these technologies.

Error-free markup code is among the most important features of standard-compliant web sites, but its full
potential can be used only if it is served with proper settings. The next chapter will discuss the basics of server
configuration, the most common content types, and the URIs used to query and link web sites.

References
 1. Raggett D (2005) Getting started with HTML, revised version. World Wide Web

Consortium. http://www.w3.org/MarkUp/Guide/. Accessed 18 October 2014

 2. Smith M (2010) HTML: The Markup Language Reference. World Wide Web Consortium.
http://dev.w3.org/html5/markup/. Accessed 21 January 2011

 3. Pilgrim M (2010) HTML5: Up and Running. O’Reilly Media, Sebastopol

 4. Meloni JC, Morrison M (2009) Teach Yourself HTML and CSS in 24 Hours (8th edn). Sams,
Indianapolis

 5. Lemay L, Colburn R (2010) Teach Yourself Web Publishing with HTML and CSS in One
Hour a Day: Includes New HTML5 Coverage (6th edn). Sams, Indianapolis

 6. Powell TA (2010) HTML & CSS: The Complete Reference (5th edn). McGraw-Hill Osborne

 7. W3C (2010) W3C Cheat Sheet. World Wide Web Consortium. http://www.w3.org/2009/
cheatsheet/. Accessed 18 October 2014

 8. Quittner J (1999) Tim Berners Lee – Time 100 People of the Century. Time Magazine.
http://205.188.238.181/time/time100/scientist/profile/bernerslee.html.
Accessed 11 September 2010

22Unknown฀file฀types฀that฀browsers฀cannot฀recognize฀by฀extension฀might฀still฀be฀processed฀or฀rendered฀(such฀as฀unknown฀formats฀
provided฀in฀XML฀serialization฀are฀probably฀be฀represented฀as฀an฀XML฀tree).

http://www.w3.org/MarkUp/Guide/
http://www.w3.org/2009/cheatsheet/
http://www.w3.org/2009/cheatsheet/

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

122

 9. Lie HW, Saarela J (1998) Multi-purpose publishing using HTML, XML, and CSS.
Association for Computing Machinery, Inc. http://www.w3.org/People/Janne/porject/
paper.html. Accessed 18 October 2014

 10. Berners-Lee T (2013) Hypertext Markup Language – 2.0, RFC 1866. Network Working
Group, Internet Engineering Task Force. http://datatracker.ietf.org/doc/rfc1866/.
Accessed 18 October 2014

 11. Connolly D (1999) HTML 2.0 Materials. World Wide Web Consortium.
http://www.w3.org/MarkUp/html-spec/. Accessed 18 October 2014

 12. Raggett D (1997) HTML 3.2 Reference Specification, W3C Recommendation. World Wide
Web Consortium. http://www.w3.org/TR/REC-html32. Accessed 18 October 2014

 13. Raggett D, Le Hors A, Jacobs I (1998) HTML 4.0 Specification, W3C Recommendation.
World Wide Web Consortium. http://www.w3.org/TR/1998/REC-html40-19980424/.
Accessed 18 October 2014

 14. Raggett D, Le Hors A, Jacobs I (1999) HTML 4.01 Specification, W3C Recommendation.
World Wide Web Consortium. http://www.w3.org/TR/html401/. Accessed 18 October
2014

 15. Masayasu I (ed) (2002) An XHTML + MathML + SVG Profile. World Wide Web Consortium.
http://www.w3.org/TR/XHTMLplusMathMLplusSVG/xhtml-math-svg.html. Accessed 18
October 2014

 16. Adida B, Birbeck M, McCarron S, Pemberton S (2008) RDFa in XHTML: Syntax and
Processing. A collection of attributes and processing rules for extending XHTML to
support RDF. W3C Recommendation. World Wide Web Consortium. http://www.w3.org/
TR/2008/REC-rdfa-syntax-20081014/. Accessed 18 October 2014

 17. McCarron S (2010) XHTML+RDFa 1.1. Support for RDFa via XHTML Modularization. W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/2012/REC-
xhtml-rdfa-20120607/. Accessed 18 October 2014

 18. McCarron S (2010) XHTML+RDFa 1.1 – Second Edition. Support for RDFa via XHTML
Modularization. W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/xhtml-rdfa/. Accessed 18 October 2014

 19. Pemberton S et al (2002) XHTML 1.0 The Extensible HyperText Markup Language
(2nd edn). A Reformulation of HTML 4 in XML 1.0. W3C Recommendation. World Wide
Web Consortium. http://www.w3.org/TR/xhtml1/. Accessed 18 October 2014

 20. Altheim M, Boumphrey F, Dooley S, McCarron S, Schnitzenbaumer S, Wugofski T (2001)
Modularization of XHTML. W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/. Accessed 18
October 2014

 21. Altheim M, McCarron S (eds) (2001) The XHTML 1.1 Document Type. W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/xhtml11/
doctype.html. Accessed 18 October 2014

 22. Hickson I (2010) Welcome to the WHATWG community. Maintaining and evolving HTML
since 2004. Web Hypertext Application Technology Working Group.
http://www.whatwg.org. Accessed 18 October 2014

http://www.w3.org/People/Janne/porject/paper.html
http://www.w3.org/People/Janne/porject/paper.html
http://datatracker.ietf.org/doc/rfc1866/
http://www.w3.org/MarkUp/html-spec/
http://www.w3.org/TR/REC-html32
http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/XHTMLplusMathMLplusSVG/xhtml-math-svg.html
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
http://www.w3.org/TR/2012/REC-xhtml-rdfa-20120607/
http://www.w3.org/TR/2012/REC-xhtml-rdfa-20120607/
http://www.w3.org/TR/xhtml-rdfa/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
http://www.w3.org/TR/xhtml11/doctype.html
http://www.w3.org/TR/xhtml11/doctype.html
http://www.whatwg.org/

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

123

 23. Hickson I (2007) W3C restarts HTML effort. In: The WHATWG Blog, 7 March 2007. Web
Hypertext Application Technology Working Group. http://blog.whatwg.org/w3c-
restarts-html-effort. Accessed 18 October 2014

 24. Hickson I (2008) Relationship to XHTML2. In: HTML 5. A vocabulary and associated APIs
for HTML and XHTML, W3C Working Draft. World Wide Web Consortium.
http://www.w3.org/TR/2008/WD-html5-20080122/#relationship0. Accessed 18 October 2010

 25. Leenheer N (2013) The HTML5 test – How well does your browser support HTML5? Niels
Leenheer. http://www.html5test.com/. Accessed 18 October 2014

 26. W3C (2011) Testing – HTML Wiki. World Wide Web Consortium. http://www.w3.org/
html/wiki/Testing. Accessed 18 October 2014

 27. Pemberton S (2010) XML and Applications. World Wide Web Consortium.
http://www.w3.org/2010/Talks/11-11-steven-applications/. Accessed 18 October 2014

 28. Van Kesteren A (2010) HTML5 differences from HTML4. World Wide Web Consortium.
http://www.w3.org/TR/2010/WD-html5-diff-20100624/. Accessed 18 October 2014

 29. Graff E, Silli LH (2014) Polyglot Markup: A robust profile of the HTML5 vocabulary. World
Wide Web Consortium. http://www.w3.org/TR/html-polyglot/. Accessed 18 October
2014

 30. Berjon, R, Leithead, T, Navara, ED, O’Connor, E, Pfeiffer, S (eds) (2012) HTML5.
A vocabulary and associated APIs for HTML and XHTML. W3C Candidate
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/2012/CR-
html5-20121217/. Accessed 18 October 2014

 31. Berjon, R, Leithead, T, Navara, ED, O’Connor, E, Pfeiffer, S (eds) (2012) HTML 5.1. A
vocabulary and associated APIs for HTML and XHTML. World Wide Web Consortium.
http://www.w3.org/TR/2012/WD-html51-20121217/. Accessed 18 October 2014

 32. Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F (2013) Extensible Markup
Language (XML) 1.0, Section 3.3.3 Attribute-Value Normalization. World Wide Web
Consortium. http://www.w3.org/TR/REC-xml/#AVNormalize. Accessed 18 October 2014

 33. Raggett D, Le Hors A, Jacobs I (eds) (1999) Basic HTML data types. In: HTML 4.01
Specification. World Wide Web Consortium. http://www.w3.org/TR/html4/types.html.
Accessed 18 October 2014

 34. ISO (1996) “Information Processing — Text and Office Systems — Standard Generalized
Markup Language (SGML)”. ISO 8879:1986/Cor 1:1996. International Organization for
Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.htm?csnumber=28557. Accessed 18 October 2014

 35. Lie H W, Çelik T, Glazman D, van Kesteren A (eds) (2012) Media Queries. W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/css3-
mediaqueries/. Accessed 18 October 2014

 36. Phillips A, Davis M (eds) (2009) Tags for Identifying Languages. Internet Engineering Task
Force. http://tools.ietf.org/html/bcp47. Accessed 18 October 2014

 37. Raggett D (1997) HTML 3.2 Reference Specification. W3C Recommendation. World Wide
Web Consortium. http://www.w3.org/TR/REC-html32. Accessed 18 October 2014

http://blog.whatwg.org/w3c-restarts-html-effort
http://blog.whatwg.org/w3c-restarts-html-effort
http://www.w3.org/TR/2008/WD-html5-20080122/#relationship0
http://www.html5test.com/
http://www.w3.org/html/wiki/Testing
http://www.w3.org/html/wiki/Testing
http://www.w3.org/2010/Talks/11-11-steven-applications/
http://www.w3.org/TR/2010/WD-html5-diff-20100624/
http://www.w3.org/TR/html-polyglot/
http://www.w3.org/TR/2012/CR-html5-20121217/
http://www.w3.org/TR/2012/CR-html5-20121217/
http://www.w3.org/TR/2012/WD-html51-20121217/
https://www.w3.org/TR/REC-xml/#AVNormalize
http://www.w3.org/TR/html4/types.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28557
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28557
http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/css3-mediaqueries/
http://tools.ietf.org/html/bcp47
http://www.w3.org/TR/REC-html32

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

124

 38. Raggett D, Le Hors A, Jacobs I (eds) (1999) Index of Elements. In: HTML 4.01 Specification.
W3C Recommendation. World Wide Web Consortium. http://www.w3.org/TR/html401/
index/elements.html. Accessed 18 October 2014

 39. Hickson I, Berjon R, Faulkner S, Leithead T, Navara ED, O’Connor E, Pfeiffer S (eds) (2014)
Index of elements. In: HTML5. A vocabulary and associated APIs for HTML and XHTML.
World Wide Web Consortium. http://www.w3.org/TR/html5/index.html#elements-1.
Accessed 18 October 2014

 40. Hickson I, Berjon R, Faulkner S, Leithead T, Navara ED, O’Connor E, Pfeiffer S (eds) (2014)
HTML vs XHTML. In: HTML5. A vocabulary and associated APIs for HTML and XHTML.
World Wide Web Consortium. http://www.w3.org/TR/html5/introduction.html#
html-vs-xhtml. Accessed 18 October 2014

 41. Hickson I, Berjon R, Faulkner S, Leithead T, Navara ED, O’Connor E, Pfeiffer S (eds) (2014)
HTML5 attributes. In: HTML5. A vocabulary and associated APIs for HTML and XHTML.
World Wide Web Consortium. http://www.w3.org/TR/html5/index.html#attributes-1.
Accessed 18 October 2014

 42. McCormack C (2012) Web IDL. World Wide Web Consortium. http://www.w3.org/TR/
WebIDL/. Accessed 28 October 2014

 43. Steen HRM (ed) (2014) Clipboard API and events. World Wide Web Consortium.
http://www.w3.org/TR/clipboard-apis/. Accessed 28 October 2014

 44. Schepers D, Moon S, Brubeck M, Barstow A (eds) (2013) Touch Events. W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/touch-events/.
Accessed 28 October 2014

 45. Le Hégaret P (2009) Document Object Model (DOM). World Wide Web Consortium.
http://www.w3.org/DOM/. Accessed 18 October 2014

 46. Le Hors A, Le Hégaret P, Wood L, Nicol G, Robie J, Champion M, Byrne S (eds) (2004)
Document Object Model (DOM) Level 3 Core Specification 1.0. W3C Recommendation.
World Wide Web Consortium. http://www.w3.org/TR/2004/REC-DOM-Level-3-
Core-20040407/. Accessed 18 October 2014

 47. Zeldman J, Marcotte E (2010) A Standard Way to Make Web Pages Behave Like
Applications. In: Designing with Web standards, 3rd Ed., New Riders, Berkeley

 48. Raggett D, Le Hors A, Jacobs I (1999) The global structure of an HTML document. In:
HTML 4.01 Specification. W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/REC-html40/struct/global.html. Accessed 18 October 2014

 49. Hickson I (ed) (2011) Kinds of content. In: HTML5 – A vocabulary and associated APIs
for HTML and XHTML. World Wide Web Consortium. http://www.w3.org/TR/html5/
content-models.html#kinds-of-content. Accessed 14 August 2011

 50. Dubost K, Curran P (2011) Recommended Doctype Declarations to use in your Web
document. Quality Assurance Interest Group, World Wide Web Consortium.
http://www.w3.org/QA/2002/04/valid-dtd-list.html. Accessed 18 October 2014

 51. Axelsson J, Birbeck M, Dubinko M, Epperson B, Ishikawa M, McCarron S, Navarro A,
Pemberton S (2006) The XHTML 2.0 Document Type. In: XHTML 2.0, W3C Working Draft.
World Wide Web Consortium. http://www.w3.org/TR/xhtml2/xhtml2-doctype.html#s_
doctype. Accessed 23 September 2010

http://www.w3.org/TR/html401/index/elements.html
http://www.w3.org/TR/html401/index/elements.html
http://www.w3.org/TR/html5/index.html#elements-1
https://www.w3.org/TR/html5/introduction.html#html-vs-xhtml
https://www.w3.org/TR/html5/introduction.html#html-vs-xhtml
http://www.w3.org/TR/html5/index.html#attributes-1
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/clipboard-apis/
http://www.w3.org/TR/touch-events/
http://www.w3.org/DOM/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/REC-html40/struct/global.html
http://www.w3.org/QA/2002/04/valid-dtd-list.html
http://www.w3.org/TR/xhtml2/xhtml2-doctype.html#s_doctype
http://www.w3.org/TR/xhtml2/xhtml2-doctype.html#s_doctype

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

125

 52. Adams G (ed), Dolan M, Freed G, Hayes S, Hodge E, Kirby D, Michel T, Singer D (2013)
Timed Text Markup Language (TTML) 1.0. W3C Recommendation. World Wide Web
Consortium. http://www.w3.org/TR/ttaf1-dfxp/. Accessed 18 October 2014

 53. W3C SVG Working Group (2014) What is SVG? Graphics Markup for the Web. World Wide
Web Consortium. http://www.w3.org/Graphics/SVG/. Accessed 18 October 2014

 54. Andersson O, Berjon R, Dahlström E, Emmons A, Ferraiolo J, Grasso A, Hardy V, Hayman
S, Jackson D, Lilley C, McCormack C, Neumann A, Northway C, Quint A, Ramani N,
Schepers D, Shellshear A (eds) et al (2008) Scalable Vector Graphics (SVG) Tiny 1.2
Specification. W3C Recommendation. World Wide Web Consortium. http://www.w3.org/
TR/SVGTiny12/. Accessed 18 October 2014

 55. Bulterman D, Jansen J, Cesar P, Mullender S, Hyche E, DeMeglio M, Quint J, Kawamura H,
Weck D, Pañeda XG, Melendi D, Cruz-Lara S, Hanclik M, Zucker DF, Michel T (eds) (2008)
Synchronized Multimedia Integration Language (SMIL 3.0). W3C Recommendation.
World Wide Web Consortium. http://www.w3.org/TR/SMIL/. Accessed 18 October 2014

 56. Dahlström E, Dengler P, Grasso A, Lilley C, McCormack C, Schepers D, Watt J, Ferraiolo J,
Fujisawa J, Jackson D (eds) (2011) The svg element. In: Scalable Vector Graphics (SVG) 1.1
(Second Edition). W3C Recommendation. World Wide Web Consortium.
 http://www.w3.org/TR/SVG11/struct.html#SVGElement. Accessed 18 October 2014

 57. Baranovskiy D (2012) Raphaël — JavaScript Library. Dmitry Baranovskiy.
http://raphaeljs.com/. Accessed 18 October 2014

 58. Ion P, Miner R (eds), Buswell S, Devitt S, Diaz A, Poppelier N, Smith B, Soiffer N, Sutor
R, Watt S et al (1998) Mathematical Markup Language (MathML) 1.0 Specification. W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/1998/REC-
MathML-19980407/. Accessed 18 October 2014

 59. Buswell S, Devitt S, Diaz A, Ion P, Miner R, Poppelier N, Smith B, Soiffer N, Sutor R,
Watt S et al (1999) Mathematical Markup Language (MathML) 1.01 Specification. W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/REC-MathML/.
Accessed 18 October 2014

 60. Ausbrooks R, Buswell S, Carlisle D, Dalmas S, Devitt S, Diaz A, Froumentin M, Hunter R,
Kohlhase M, Poppelier N, Smith B, Soiffer N, Sutor R, Watt S et al (2003) Mathematical
Markup Language (MathML) Version 2.0 (Second Edition). W3C Recommendation. World
Wide Web Consortium. http://www.w3.org/TR/MathML2/. Accessed 18 October 2014

 61. Carlisle D, Ion P, Miner R (eds), Ausbrooks R, Buswell S, Carlisle D, Chavchanidze G,
Dalmas S, Devitt S, Diaz A, Dooley S, Hunter R, Kohlhase M, Lazrek A, Libbrecht P, Miller
B, Rowley C, Sargent M, Smith B, Soiffer N, Sutor R, Watt S et al (2010) Mathematical
Markup Language (MathML) Version 3.0 2nd Edn. W3C Recommendation. World Wide
Web Consortium. http://www.w3.org/TR/MathML3/. Accessed 18 October 2014

 62. Adida B, Birbeck M, McCarron S, Pemberton S (eds) (2008) RDFa in XHTML: Syntax
and Processing. A collection of attributes and processing rules for extending XHTML to
support RDF. W3C Recommendation. World Wide Web Consortium. http://www.w3.org/
TR/2008/REC-rdfa-syntax-20081014/. Accessed 18 October 2014

 63. Adida B, Birbeck M, McCarron S, Herman I (eds) (2010) RDFa Core 1.1. Syntax and
processing rules for embedding RDF through attributes. World Wide Web Consortium.
http://www.w3.org/TR/2010/WD-rdfa-core-20101026/. Accessed 18 October 2014

http://www.w3.org/TR/ttaf1-dfxp/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/SVGTiny12/
http://www.w3.org/TR/SVGTiny12/
http://www.w3.org/TR/SMIL/
http://www.w3.org/TR/SVG11/struct.html#SVGElement
http://raphaeljs.com/
http://www.w3.org/TR/1998/REC-MathML-19980407/
http://www.w3.org/TR/1998/REC-MathML-19980407/
http://www.w3.org/TR/REC-MathML/
http://www.w3.org/TR/MathML2/
http://www.w3.org/TR/MathML3/
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
http://www.w3.org/TR/2010/WD-rdfa-core-20101026/

CHAPTER 3 ■ MARKUP LANGUAGES: MORE THAN HTML5

126

 64. McCarron S (ed) (2010) XHTML+RDFa 1.1 – Support for RDFa via XHTML Modularization.
World Wide Web Consortium. http://www.w3.org/TR/2010/WD-xhtml-rdfa-20100422/.
Accessed 18 October 2014

 65. Pollock JT (2009) Semantic Web for Dummies. Wisley Publishing, Hoboken

 66. Watson M (2009) Scripting Intelligence: Web 3.0 Information, Gathering and Processing.
Apress, Berkeley

 67. Sporny M, McCarron S (eds), Adida B, Birbeck M, Pemberton S (authors) (2010)
HTML+RDFa 1.1. Support for RDFa in HTML4 and HTML5. World Wide Web Consortium.
http://www.w3.org/TR/2010/WD-rdfa-in-html-20101019/. Accessed 18 October 2014

 68. Catlin H, Weizenbaum N, Clarke N, Walsh N (2014) Haml. http://haml.info/. Accessed
21 October 2014

 69. Google Inc. (2014) What file types can Google index? Google Webmaster Central.
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=35287.
Accessed 18 October 2014

http://www.w3.org/TR/2010/WD-xhtml-rdfa-20100422/
http://www.w3.org/TR/2010/WD-rdfa-in-html-20101019/
http://haml.info/
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=35287

127

CHAPTER 4

Serving and Configuration

The correct appearance and web documents handling cannot be guaranteed simply by applying strict, error-free
markup. Web server configuration has a significant impact on web site appearance, operation, and behavior. Documents
should be served with the proper media type and character encoding. Content negotiation can be used to serve various
document versions to browsers supporting the corresponding media types. XHTML documents can be served as either
HTML or XML, but there is a huge difference in processing. XML files are processed by XML parsers that are far more
error-sensitive than SGML parsers. XHTML served as XML involves the risk that the document cannot be rendered at
all. On the other hand, backward-compatible serving cannot use the benefits of strict XML markup. There are several
aspects of sending HTML and XHTML from the server to the rendering engine, all of which should be considered to
achieve proper settings.

In this chapter, you will learn how to configure your web site, browser, and server in order to serve web documents
correctly. Becoming familiar with the most important MIME types is crucial for properly serving web documents and
the files used by them, for example, style sheets, images, audio and video files, ZIP archives, and office documents.
Beyond Internet media types, you will also learn domain configuration; the difference between URIs, URLs, and
URNs; the application of base directories; and practices to eliminate file extensions.

The HTTP Header
The foundation of data communication on the World Wide Web is the Hypertext Transfer Protocol (HTTP). It is a
networking protocol that functions as a request-response protocol in a client-server computing model. In this model,
a typical client is a web browser, while an application that runs on the host of a web site is a server. During each query,
the client submits an HTTP request message to the server. In return, the server sends a response message to the client
that contains additional data, such as completion status information about the request, which is sent along with web
documents from the server to the user agent. These header fields form the HTTP header. The header fields determine
the parameters of the HTTP communication. HTTP requests are used to indicate which content types and character
sets are acceptable (Accept, Accept-Charset), the date and time the message was sent (Date), the domain name
(Host), a string representing a user agent (User-Agent), and so on.

As you can see in Listing 4-1, HTTP responses provide the name of the server (Server), an alternate location
for the returned data (Content-Location), and the date and time after which the response expires (Expires). The
Vary field confirms whether the cached response can be used rather than repeat the request. The Platform for
Privacy Preferences Project (P3P) policy can be set by the P3P field. An identifier of a specific version of the resource
is provided by ETag. These are the most common HTTP header fields, but there are many more, all of which are
described by RFC 4229 [1].

CHAPTER 4 ■ SERVING AND CONFIGURATION

128

Listing 4-1. HTTP Header Example

HTTP/1.1 200 OK
Date: Fri, 10 Sep 2010 10:05:08 GMT
Server: Apache/2.2.16 (Unix) PHP/5.3.3
Content-Location: index.html
Vary: negotiate,accept-language,accept-charset
TCN: choice
P3P: policyref=http://example.com/p3p.xml
Cache-Control: max-age=21600
Expires: Fri, 10 Sep 2010 16:05:08 GMT
Last-Modified: Fri, 21 Aug 2009 22:18:49 GMT
ETag: "3668bab8;37e77d1c"
Accept-Ranges: bytes
Content-Length: 11537
Connection: close
Content-Type: text/html; charset=UTF-8
Content-Language: en

Internet Media Types (MIME)
Internet media types (also known as MIME types or content-types) determine the way browsers handle web
documents. They are the file format identifiers of the Web. Thus, it is crucial to set the right media type for web site
components and web pages.

The Multipurpose Internet Mail Extensions (MIME) specification was introduced in 1992 by the Internet
Engineering Task Force (see Chapter 1 for more information on the IETF). Most specifications are available as an
IETF/ISOC Request for Comments (RFCs). Although the original MIME concept was designed to format non-ASCII
messages,1 it is used in web browsers to make it possible to render or process files other than (X)HTML. The Internet
media types are standardized by IANA registration (again, see Chapter 1 for more information on the IANA) [2].
Nonstandard MIME types and subtypes can be recognized by their prefix, since they all begin with x-. Vendor-specific
subtypes begin with vnd., while personal subtypes begin with prs.

Media types consist of a minimum of two parts: a type, a subtype, and optional parameters.
XML data can be assigned to two MIME media types: application/xml and text/xml. They are defined by RFC 3023

[3]. Further, MIME types can be identified by the suffix +xml. The most important media type from a web standardista’s
point of view is the XML media type registered for XHTML, namely, application/xhtml+xml, which is defined in
RFC 3236 [4]. Although XHTML documents could be served with the application/xhtml+xml, application/xml, or
text/xml media type, W3C recommends serving XHTML as XML with its dedicated MIME type application/xhtml+xml
[5]. However, using this media type cannot guarantee proper XML handling without a correct XML header
(see Chapter 3 for more on XML headers). Furthermore, Internet Explorer 6 and earlier IE versions do not render the
contents of documents served as application/xhtml+xml; instead, users are prompted to download the file.

Caution ■ If the media type for an XHTML web page is set to text/html, it will be parsed as HTML. If the media type

is set to application/xhtml+xml, browsers will parse the document as XML. This is a huge difference! XHTML files

served with the proper MIME cannot contain a single error; otherwise, the document will not be rendered, and the XML

parser will give an error, as already mentioned earlier in Chapters 1 and 3.

1The฀advanced฀version,฀S/MIME,฀supports฀message฀encryption฀too.

CHAPTER 4 ■ SERVING AND CONFIGURATION

129

Another registered XML media type is application/atom+xml, which is used for the Atom Syndication Format
(see Chapter 8) defined by RFC 4287 [6]. Other frequently used XML media types of this kind are application/rss+xml
(RSS; see Chapter 8), application/mathml+xml (MathML; see Chapter 3), image/svg+xml (SVG; see Chapter 3), and
application/xslt+xml (XSLT; see Chapter 5). The full list of MIME types is published on the IANA web site [2].

The Content-Type field of the HTTP header describes the data format as a MIME media type (Listing 4-2).
Additionally, this entry can also provide the character encoding of the document (as discussed earlier in Chapter 2).

Listing 4-2. A Content-Type Example

Content-Type: application/xhtml+xml; charset=UTF-8

The MIME type of web pages can also be set on the document level with the meta element such as in Listing 4-3.

Listing 4-3. MIME Type Declaration with the meta Element

<meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8" />

Generally, the MIME type text/html is used for HTML documents, and the application/xhtml+xml is used for
XHTML documents. However, XHTML documents can be served with both (as we’ll see later in the chapter).

The wide variety of Internet media types is not fixed. Custom MIME types can also be registered at IANA [7].

Common Media Types
The most common media types are listed in the next sections. Note that this is not a full list by any means.

Application-Specific Media Types

Table 4-1 summarizes the most common application-specific MIME types.2

2Cannot฀be฀used฀in฀IE8฀or฀earlier

Table 4-1. Common Application-Specific Media Types

Media Type Specification Description

application/atom+xml RFC 4287 [6], RFC 5023 [8] Atom news feed

application/ecmascript RFC 4329 [9] ECMAScript

application/javascript RFC 4329 [9] JavaScript

application/json RFC 4627 [10] JavaScript Object Notation

application/mathml-content+xml MathML 3.0, Appendix B [11] Content MathML

application/mathml-presentation+xml MathML 3.0, Appendix B [11] Presentation MathML

application/mathml+xml MathML 3.0, Appendix B [11] MathML

application/octet-stream RFC 2046 [12] Nonspecified binary data

application/ogg RFC 5334 [13] Ogg multimedia container

(continued)

CHAPTER 4 ■ SERVING AND CONFIGURATION

130

Vendor-Specific Media Types

Table 4-2 summarizes the most common vendor-specific MIME types.

Table 4-2. Common Vendor-Specific Media Types

Media type Specification Description

application/vnd.google-earth.kml+xml IANA registration [25] Google Earth file in XML

application/vnd.google-earth.kmz IANA registration [26] Google Earth file

application/msword IANA registration [27] Microsoft Word file

application/vnd.ms-excel IANA registration [28] Microsoft Excel file

application/vnd.ms-powerpoint IANA registration [29] Microsoft PowerPoint file

application/vnd.oasis.opendocument.graphics IANA registration [30] OpenDocument Graphics

application/vnd.oasis.opendocument.
presentation

IANA registration [31] OpenDocument Presentation

application/vnd.oasis.opendocument.
spreadsheet

IANA registration [32] OpenDocument Spreadsheet

application/vnd.oasis.opendocument.text IANA registration [33] OpenDocument Text

Table 4-1. (continued)

Media Type Specification Description

application/pdf RFC 3778 [14] PDF document

application/postscript RFC 2045 [15]

RFC 2046 [12]

PostScript

application/rdf+xml RFC 3870 [16] RDF document

application/rtf IANA registration [17] RTF document

application/sgml RFC 1874 [18] SGML document

application/smil+xml RFC 4536 [19] SMIL document

application/soap+xml RFC 3902 [20] Simple Object Access
Protocol

application/sparql-query In: SPARQL Query Language for RDF [21] SPARQL

application/sparql-results+xml In: SPARQL Query Results XML Format
[22]

SPARQL Query Results

application/xhtml+xml RFC 3236 [4] XHTML document

application/xml RFC 3023 [3] XML document

application/xml-dtd RFC 3023 [3] DTD file

application/xslt+xml In: XSLT 2.0 [23] XSL Transformations

application/zip IANA registration [24] ZIP archive file

CHAPTER 4 ■ SERVING AND CONFIGURATION

131

It is highly probable that nonstandardized MIME types associated with widely used file formats will become
registered in the near future. The application/x-dvi represents device-independent documents, which is not a
standard. The MIME type of LaTeX files, application/x-latex, is not standardized yet either, similar to the widely
adopted media type, application/x-shockwave-flash used for Adobe Flash. The application/x-rar-compressed
MIME type of RAR archives are also still not standardized.

Audio Media Types

Table 4-3 summarizes the most common audio MIME types.

Image Media Types

Table 4-4 summarizes the most common image MIME types.

Table 4-3. Common Audio Media Types

Media Type Specification Description

audio/mpeg RFC 3003 [34] MPEG audio, for example, MP3

audio/ogg RFC 5334 [13] Ogg Vorbis, Flac, and other audio

audio/vorbis RFC 5215 [35] Vorbis Encoded Audio

audio/x-ms-wma MS KB 288102 [36] Windows Media Audio

audio/vnd.wave RFC 2361 [37] WAV audio

Table 4-4. Common Image Media Types

Media Type Specification Description

image/gif RFC 2045 [15], RFC 2046 [12] GIF image

image/jpeg RFC 2045 [15], RFC 2046 [12] JPEG image

image/png RFC 2083 [38]; IANA registered [39] PNG image

image/svg+xml In: SVG Tiny 1.2 Appendix M [40] SVG vector image

image/tiff RFC 3302 [41] TIFF image

image/vnd.microsoft.icon IANA registered [42] ICO image (icon)

CHAPTER 4 ■ SERVING AND CONFIGURATION

132

Multipart Object Media Types

Table 4-5 summarizes the most common multipart object media types.

Text Media Types

Table 4-6 summarizes the most common text media types.

Video Media Types

Table 4-7 summarizes the most common video media types.

Table 4-5. Common Multipart Object Media Types

Media Type Specification Description

multipart/mixed RFC 2045 [15], RFC 2046 [12] MIME e-mail

multipart/alternative RFC 2045 [15], RFC 2046 [12] MIME e-mail

multipart/related RFC 2387 [43] MIME e-mail; used by MHTML (HTML
mail)

multipart/form-data RFC 2388 [44] MIME web form

multipart/signed RFC 1847 [45] Digital signature

multipart/encrypted RFC 1847 [45] Encrypted message

Table 4-6. Common Text Media Types

Media Type Specification Description

text/css RFC 2318 [46] Cascading Style Sheets (CSS)

text/csv RFC 4180 [47] Comma-separated values

text/html RFC 2854 [48] HTML

text/javascript RFC 4329 [9] JavaScript; obsoleted in favor of application/javascript

text/plain RFC 2046 [12] RFC 3676 [49] Textual data

text/xml RFC 3023 [3] Extensible Markup Language

Table 4-7. Common MIME Types for Video

Media Type Specification Description

video/mpeg RFC 2045 [15], RFC 2046 [12] MPEG-1 video

video/mp4 RFC 4337 [50] MP4 video

video/ogg RFC 5334 [13] Ogg Theora or other video

video/quicktime IANA registered [51] QuickTime video

video/x-ms-wmv MS KB 288102 [36] Windows Media Video

CHAPTER 4 ■ SERVING AND CONFIGURATION

133

Serving XHTML
There are two approaches for serving XHTML, both of which have their advantages and disadvantages. They are
described in the following sections.

Serving XHTML as HTML
In the early days of the Web, HTML was the exclusive markup language. After several years, new innovations appeared
that could not have been covered by HTML. XML rules have been added to HTML, creating XHTML, a new line of
markup languages. These best practices are the rules applied when converting HTML documents to XHTML, as
discussed earlier in Chapter 3.

However, the vocabulary of HTML 4.01 has been more or less preserved; thus, it is similar to that of XHTML 1.0.
Consequently, XHTML documents can be served as HTML to rendering engines. This approach provides backward
compatibility. Media types can be used to request browsers to handle XHTML as HTML instead of XML. If the media
type of an XHTML document is defined as text/html, the rendering engine will parse the web page as if it were
HTML. If the media type is given as application/xhtml+xml, browsers will process the document as XML.

Several server and server-side scripting platforms (PHP, ASP, and so on) apply the text/html media type for
web content by default. The “dirty secret” of XHTML is that several browsers with an XML parser treat documents
served as text/html with XHTML syntax and DOCTYPE as HTML.3 But backward compatibility comes at a price: the
impressive features of XML cannot be used at all in XHTML served this way. And what is the point of applying strict
rules if documents cannot use their full potential? Where backward compatibility is not a major concern, the solution
is to serve XHTML as XML.

Serving XHTML as XML
While code quality strongly depends on markup structure and correctness, the reliability of rendering is also determined
by the browser. The browsers’ behavior of refusing to render invalid XHTML markup might seem frustrating; however,
the browsers have a really good reason to do so. Browsers process those HTML documents that contain markup errors by
guessing the intentions of the content author or web designer, often resulting in undesirable layout and poor styling.

There are scenarios where errors cannot be tolerated. In scientific publishing, for example, the representation of
mathematical equations should be reliable. If such documents are published on the Web with MathML embedded in
XHTML, errors cannot be tolerated because the consequences can cost millions or be fatal. This is the main reason for
the extreme error sensitivity of XML parsers.

Being an XML language family, XHTML is meant to be served as XML to leverage all the benefits of XML.
However, it also involves a serious risk. Web documents served as application/xhtml+xml request browsers to
process them according to the rules of XML. Since invalid XHTML markup is not rendered at all in web browsers,
extended care should be taken when serving XHTML as XML. One simple character at the wrong location in the
source code results in an XML parsing error message instead of the web page content (as already hinted in Chapter 1).
This is one of the reasons why HTML has always been preferred by most content authors and web designers. However,
you should not be afraid of writing pure XHTML code. If you learn how to use the practices described in the previous
chapter, you will be able to create not only error-free XHTML documents but also any kind of structured markup.

Although modern browsers support the application/xhtml+xml MIME type, some older browsers do not. One of
the options to preserve backward compatibility with older browsers and support advanced XML applications for modern
ones is the technique called content negotiation. It can be done through .htaccess4 settings or using server-side scripting
languages.

3Real฀XML฀parsers฀such฀as฀that฀of฀Firefox฀or฀Safari฀consider฀the฀MIME฀type฀of฀documents฀(as฀sent฀by฀the฀server)฀rather฀than฀file฀
syntax฀and฀DOCTYPE฀only.
4A฀common฀configuration฀file฀on฀web฀servers฀such฀as฀Apache.฀Note฀that฀the฀file฀begins฀with฀a฀period฀and฀has฀no฀extension.

CHAPTER 4 ■ SERVING AND CONFIGURATION

134

The HTTP specification defines the mechanism for serving different versions of the same resource [1]. Document
types, document languages, and image types are some examples [52]. The preferred and acceptable document
format(s)—in our case, the preference between HTML and XHTML files—can be defined in the HTTP header, as
shown in Listing 4-4.

Listing 4-4. Content Negotiation in the HTTP Header

Accept: text/html, application/xhtml+xml, application/xml; q=0.9, */*; q=0.8

Using the previous example, the browser can specify that HTML and XHTML are preferred to XML. The
“relative quality parameter” (q) and its value (qvalue) are considered as follows. All items without a specified
preference value get the default value 1 (in this case text/html and application/xhtml+xml). The specified value for
application/xml is 0.9, and all the other formats 0.8. The precedence values ordered in descending order reveal the
actual precedence, in other words, 1 for text/html and application/xhtml+xml, 0.9 for application/xml, and 0.8
for any other content types.

On Apache servers, the directive shown in Listing 4-5 should be added to your .htaccess (or httpd.conf) file to
set the HTTP headers required for the correct MIME type.

Listing 4-5. Preference Between text/html and application/xhtml+xml

Options +Multiviews
AddType application/xhtml+xml;qs=0.8
AddType text/html;qs=0.9

The “quality of source” parameter (qs), set to 0.8 in our example, determines whether the AddType directive
applies the specified MIME type. Since the qs value for application/xhtml+xml is smaller than that of text/html,
application/xhtml+xml will be used by compliant browsers only; otherwise, the preferred version will be the MIME
type text/html.

Content negotiation can also be implemented in server-side scripting languages such as PHP (Listing 4-6), ASP
(Listing 4-7), and C# (Listing 4-8).

Listing 4-6. Content Negotiation in PHP

$accept = $_SERVER["HTTP_ACCEPT"];
$ua = $_SERVER["HTTP_USER_AGENT"];
if (isset($accept) && isset($ua)) {
 if (stristr($accept, "application/xhtml+xml") || stristr($ua, "W3C_Validator")) {
 header("Content-Type: application/xhtml+xml");
 }
}

Listing 4-7. Content Negotiation in ASP

Dim strAccept, strUA
strAccept = Request.ServerVariables("HTTP_ACCEPT").Item
strUA = Request.ServerVariables("HTTP_USER_AGENT").Item
If InStr(1, strAccept, "application/xhtml+xml") > 0 Or InStr(1, strUA, "W3C_Validator") > 0
 Then Response.ContentType = "application/xhtml+xml"
End If

CHAPTER 4 ■ SERVING AND CONFIGURATION

135

Listing 4-8. Content Negotiation in C# in ASP .NET

string accept = Request.ServerVariables["HTTP_ACCEPT"];
string ua = Request.ServerVariables["HTTP_USER_AGENT"];
if (accept != null && ua != null) {
 if (accept.IndexOf("application/xhtml+xml") >=0 || ua.IndexOf("W3C_Validator") >= 0) {
 Response.ContentType = "application/xhtml+xml";
 }
}

The previous codes perform content negotiation with their own syntax. In PHP, for example, the server
variables contained in the $_SERVER array are used to evaluate the HTTP Accept header of the user agent and set the
appropriate MIME type via the header function (Listing 4-6).

URIs, URLs, and URNs
A Uniform Resource Identifier (URI) is a character string that identifies a name or a resource on the Internet (RFC 2396
[53]). URIs can be classified as Uniform Resource Locators (URLs; RFC 1738 [54]), Uniform Resource Names (URNs),
or both. A URN defines the identity of a resource, while the URL provides a method for finding it (including protocol
and path). URIs are often used incorrectly as the synonym for URL, although URI is a wider term (RFC 3305 [55]).
Both the URN and the URL are subsets of URI, but they are generally disjoint sets.

The best-known examples for URLs are the web site addresses on the World Wide Web. Listing 4-9 shows the
general URL syntax.

Listing 4-9. URL Syntax

protocol://domain:port/path?query_string#fragment_identifier

The protocol (scheme name) is followed by a colon. The other parts of URLs depend on the scheme being used.
Usually there is a domain name or an IP address, an optional port number, and an optional path to the resource
or script. Programs such as PHP or CGI scripts might have a query string. The end of the URL can be an optional
fragment identifier.

Since many of these sections are optional, one or more of them are omitted. Listing 4-10 shows an example,
where http is the protocol, www.masteringhtml5css3.com is the domain, and the path leads to the shop directory.

Listing 4-10. A Typical URL

http://www.masteringhtml5css3.com/shop/

URI references are widely used in markup languages, for example, as the attribute value of the href attribute on
the a element in HTML or as the system identifier after the SYSTEM keyword in an XML DTD.

Persistent URIs
Everyone knows the frustrating feeling when a web site address typed into the address bar of the browser is not
available, or when clicking on a hyperlink generates a File not found error.

There are many reasons why URIs can be temporarily or permanently unavailable. The simplest reason is that
the requested files have been moved to another folder or they have removed from the server. Another reason is
that technologies applied on the server have been changed. For example, a company used CGI scripts but recently
changed to Perl, and the URIs of the files located in the cgi-bin directory have become obsolete.

http://www.masteringhtml5css3.com/
http://www.masteringhtml5css3.com/shop/

CHAPTER 4 ■ SERVING AND CONFIGURATION

136

There are only a few cases when it is acceptable to discontinue a web address, such as if the company or
organization has been closed. Unless there is a really good reason to do so, we addresses should not be changed.

Poorly designed URIs are responsible for a large share of dead links on the Web. While challenging, URIs can be
designed in a way that there will be no need to change them for the years to come.

Designing URIs

URIs can be designed to be persistent by minimizing the information provided in them [56]. The author of an updated
document can be different from that of the original one, and thus the author should not be included. The subject
should also be eliminated since it changes very fast. For example, a web technology blog should apply the directory
name markup instead of the names of exact technologies that are currently the most up-to-date one (HTML5). Directory
names that indicate the status of documents such as draft or latest should not be used in URIs simply because
document status changes over time. A persistent URI is required for the latest version of each document.

Some parts of a web site might be restricted to members only. The access should also be eliminated from URIs
because documents might be moved from the private section to the public one, or vice versa.

The most frequently provided needless information in URIs is the file extension. Technologies and tools that are
currently considered as the most advanced will probably change in the near future, or the developer might change
the applied technologies. Changed URIs can affect not only the findability of web pages or web page components but
also your maintenance tasks. Carefully selected directory names are logical and seldom should be changed in the
references in the markup.

Tip ■ Use the name script or scripts for the directory where you store the script files of a web site instead of php or

javascript, because if you adopt further scripting languages later, the URIs in the files of the site will reflect a specific

language rather than a common name. Similarly, the directory name style or styles is more practical than css or xsl,

and the name news or feed is more fortunate than rss or atom. The name images is better than jpg, and a doc or docs

directory can hold a variety of documents from PDF to Word documents, not just a certain type.

Directory names that indicate software mechanisms such as cgi-bin should also be eliminated from URIs.
They might change. Topic names, company sections, access levels, or security levels are also inappropriate for URIs.
Classifications can also change. The creation date is constant so it can be included in web addresses, however, dates
are not the best strings for SEO. Keep in mind that multiple web servers can be hidden behind an apparent server with
proxying and redirection.

Beyond providing descriptive names for users and machines, URIs should be simple, stable, and manageable.
Properly designed URIs are fundamental parts of the Semantic Web [57].

Domain Names

Web resources can be located by unique IP addresses. However, they are hard to remember. Consequently, domain
names are used instead in most cases. Figure 4-1 shows the relationship between a domain name and a URL;
www.example.com is a subdomain of the node example.com, which is the subdomain of the com domain (stands for
commercial). The domain name syntax rules are defined by RFC 1035 [58], RFC 1123 [59], and RFC 2181 [60].

CHAPTER 4 ■ SERVING AND CONFIGURATION

137

The tree of subdomains can contain a maximum of 127 levels. Each label may contain up to 63 characters.
According to RFC 2181, the full length of a domain name is 253 characters.

Conventional domain names cannot contain Latin alphabet-based characters with diacritics, non-Latin
characters, or scripts. With the introduction of Internationalized Domain Names (IDN), it is possible to represent
names and words in several languages in native alphabets and scripts.

Domain names should be thought over before they are registered. They should be easy to remember and easy to
spell [61]. There are also SEO considerations. While the name of a person generally remains the same over the years,
a product or technology name can change. For example, the owner of a DVD store has probably changed from DVD
sales to Blu-ray sales with the beginning of the HD era. However, the domain name containing the word DVD still
represents the old technology. If the word movie or films would have been used, the domain name would not have
become obsolete. Finding an appropriate domain name, which is still free and contains popular keywords, can be a
real challenge, though.

No WWW

Although the www subdomain is very common on the Web, some webmasters consider it outdated or inappropriate
[62]. Similar to mail servers that do not use the request@mail.example.com format, web servers can allow access to
web pages though the main domain.

On Apache servers, the www. can be removed from the URIs within the domain by adding the code in Listing 4-11
to the .htaccess file. Its name stands for hypertext access. This file provides directory-level access control that can be
used for authorization, authentication, redirection, blocking, customized error response, and cache control.

Listing 4-11. Removing www. from URIs with .htaccess Configuration

RewriteEngine On
RewriteCond %{HTTP_HOST} ^www\.example\.com$ [NC]
RewriteRule ^(.*)$ http://example.com/$1 [R=301,L]

This code makes it unnecessary to remove the www. from every hyperlink of the web site one by one. However,
a large share of webmasters disagrees with removing the www. from URIs [63]. According to their reasoning, www. is a
reminder that the World Wide Web (WWW) is just one of the many services on the Internet.

http://www.example.com

Scheme name

(protocol)
Domain

name

Prefix

(World Wide Web

subdomain)

Top-level domain

(TLD)

Uniform Resource Locator (URL)

Figure 4-1. The domain within the URL

CHAPTER 4 ■ SERVING AND CONFIGURATION

138

Tip ■ The previous code is usually not needed since an unlimited number of subdomains are generally included in the

domain registration price. It is a common practice that domain owners point both the main domain and the www subdo-

main to the same directory of the web server. In other words, www.domain.com is the preferred URI, and users retrieving

domain.com are redirected to www.domain.com. Doing so, users can access the same content with and without www.

Base href

The previous sections discussed absolute URLs. Since many web page components are located in the subdirectories
of the root directory associated with the domain, relative URLs can also be used. They are shorter, however, and not
always convenient. For example, if the hierarchy is too deep and the style sheets are located in a styles directory
three directories above a web page, the path becomes rather long (Listing 4-12).

Listing 4-12. A Long Path in a Complex Web Site

<link rel="stylesheet" type="text/css" href="../../../styles/main.css" />

While the parent directory references and the delimiters (../../../) can be shortened by referring to the root
directory (/) instead, this can be omitted by declaring all locations according to the root directory (Listing 4-13).5

Listing 4-13. Setting a Base Directory for a Web Site

<base href="http://example.com/" />

The specified URL is used as the base for all relative URLs in the document. By adding the base element to the
document head, the original example can be simplified (Listing 4-14).

Listing 4-14. A Short Path According to the Base Directory

<link rel="stylesheet" type="text/css" href="styles/main.css" />

Eliminating File Extensions

One of the key techniques for creating permanent URIs is to remove file extensions. On a file-based web server such
as Apache, this can be done by content negotiation [64]. We used content negotiation earlier in the chapter to set the
precedence between MIME types; now we will use it for creating a precedence order for file types. As a result, file
extensions can be kept on the files but can safely be removed from links [65].

Using a type map file, Apache servers can check the directory for all files with the given name and any extension
and select the appropriate one (the one with the highest precedence). A type map file takes precedence over the
extension of the file (even if the special search for implicit file name pattern match, Multiviews, is enabled). The
precedence of a higher-quality image file variant can be set by the qs parameter. In Listing 4-15, the file logo.svg will
be used for all URIs that refer to the file without extension. If there is no SVG version of that file in the directory, the
PNG version will be used.

5Starting฀the฀file฀path฀with฀a฀/฀is฀relative฀while฀defining฀a฀base฀directory฀is฀absolute฀referencing.

CHAPTER 4 ■ SERVING AND CONFIGURATION

139

Listing 4-15. Precedence Order of File Types Set by the qs Parameter

URI: logo

URI: logo.svg
Content-type: image/svg+xml; qs=0.8

URI: logo.png
Content-type: image/jpeg; qs=0.5

The qs value varies from 0.000 to 1.000. Variants with a qs value of 0.000 will never be chosen. Entries of the
different variants are separated by blank lines that cannot be used within entries.

Explicitly setting paths to specific file variants is not feasible for larger sites with hundreds or thousands of files.
The second option for content negotiation on Apache servers is to use the MultiViews search feature, where the server
performs an implicit file name pattern match within directories and chooses from the results. MultiViews is a fine
option for eliminating file extensions that contributes to easy maintenance (in case new file versions will be used) and
optimal markup (because of shorter links). MultiViews can be enabled in the server configuration or .htaccess file
(Listing 4-16).

Listing 4-16. MultiViews Enabled

<Directory /home/www/example/htdocs>
Options + MultiViews
</Directory>

Now when the server receives a request for /images/logo and /images/logo does not exist, the server searches
inside the images directory looking for all files named logo.*, assigning MIME types based on the extension of each
file. The server then chooses the best match based on the preferences and delivers that resource. For example, let’s
assume that the images directory contains the following file variants: logo.svg, logo.png, and logo.gif. When there
is a query for /images/logo, the precedence order will be considered in the answer to the query (Listing 4-17).

Listing 4-17. The Precedence Order of Image File Formats

Accept: image/svg+xml; q=.8, image/png; q=.5, image/gif;q=0.2, */*;q=0.1

When MultiViews is enabled, the server will search the referenced directory and deliver the image with the
highest quality (thanks to the highest precedence), in other words, logo.svg. This is achieved in a way that URIs in
HTML/XHTML files do not need to contain the file extension, which makes maintenance easier and reduces file size.
URIs can now omit the technology behind the resource. Since example.com/images/logo.svg becomes
example.com/images/logo, the logo embedding used throughout the site becomes <img src="logo"
alt="Company logo"> instead of .

While a URI ending in .html or .php will probably remain the same in the near future, even widely used file types
might soon become obsolete or less frequently used within a few years. Flash animations (.swf) are often replaced by
HTML5 markup (.html), a PNG image (.png) by its SVG equivalent (.svg), and so on. As a consequence, all currently
created internal links of the site as well as the external links on other sites will be invalid.

The World Wide Web Consortium has mastered eliminating extensions in links. Even images of the site are
provided without extension in links (the files have extensions), so the links pointing to the file in thousands of web
documents should not be modified if the image will be changed, as, for example, from logo.png to logo.svg.

References with extensions remain usable; however, they do not allow the server to select the best of currently
available and future formats. With a type map declaration or with enabled MultiViews search [66], on the other hand,
raster images used for ages can be updated to their new, SVG versions in no time. The file name without the extension
is content-type generic, while file names with extensions are content-type specific.

CHAPTER 4 ■ SERVING AND CONFIGURATION

140

There is a special file supported by all web servers, called index.html. When users do not specify a file in the
address bar, browsers open this file by default (with content negotiation, the extension can be not only .html but
also .php, .jsp, .aspx, and so on). This is the reason why web sites can be opened without typing the file name and
extension to the end of the domain name such as www.example.com/index.html. This server behavior can also be
used for creating permanent access to web pages within a site. Instead of adding the about.html, services.html,
portfolio.html, and contact.html files to the root directory of the domain, they can be provided as index.html
files within their own subdirectories. As a result, the pages of the site can be accessed as www.example.com/about/,
www.example.com/services/, and so on, without file extensions. Naturally, original file names can also be kept if the
default file of each directory is set on the server. However, in that case, server settings should also be migrated if the
hosting provider of the web site is changed.

Namespace URIs

Namespace URIs are used to uniquely identify an XML application and separate it from other XML languages. The
prefixes associated with a namespace URI are handy when you want to associate an element or an attribute with a
particular XML namespace. Although a namespace URI does not necessarily point to a particular document, many
do, such as the http://www.w3.org/1999/xhtml namespace used by XHTML 1.x/5 (discussed earlier in Chapter 3).
The previous namespace URI will let the XML parser know that the elements and attributes used in the document are
from the XHTML vocabulary.

Note ■ Some namespace URIs point to the web page of the corresponding specification or standard, but many do not

and are strings only.

Even if they are generally designed stable, namespaces might evolve over time [67]. To eliminate the problem,
namespaces are often registered as Persistent Uniform Resource Locators at purl.org [68]. If the resource they point to
changes, the URI can be modified in the profile settings on purl.org, which will provide the up-to-date URI with the
persistent address.

The XML namespaces are standardized according to the corresponding W3C Recommendation [69].

Summary
In this chapter, you learned about the general structure of an HTTP header, which provides information about web
documents sent by the server. You know the most common MIME types and their declaration by now, which can
be used to ensure that browsers will properly handle your web site components. You also know how to use content
negotiation on the server to eliminate file extensions, which makes future maintenance easier. Furthermore, you
learned how to serve XHTML properly, which makes all the difference, because XHTML documents served as
application/xhtml+xml will be parsed by an XML parser rather than a much less error-sensitive HTML parser. You
know how to design URIs in order to maximize their persistence.

By now you are ready to create standard-compliant markup and use the proper settings for serving the files of
your web sites. In the next chapter, you will learn techniques for separating web site content from its presentation by
using Cascading Style Sheets (CSS).

http://www.w3.org/1999/xhtml
https://purl.org
https://purl.org

CHAPTER 4 ■ SERVING AND CONFIGURATION

141

References
 1. Nottingham M, Mogul J (2005) HTTP Header Field Registrations. RFC 4229. The Internet

Society. http://tools.ietf.org/html/rfc4229. Accessed 19 October 2014

 2. IANA (2014) MIME Types. The Internet Assigned Numbers Authority.
http://www.iana.org/assignments/media-types/. Accessed 19 October 2014

 3. Murata M, Laurent S, Kohn D (2001) XML Media Types. The Internet Society.
http://tools.ietf.org/html/rfc3023. Accessed 19 October 2014

 4. Baker M, Stark P (2002) The ‘application/xhtml+xml’ Media Type. The Internet Society.
http://tools.ietf.org/html/rfc3236. Accessed 19 October 2014

 5. Masayasu I (2002) XHTML Media Types. World Wide Web Consortium.
http://www.w3.org/TR/2002/NOTE-xhtml-media-types-20020801/. Accessed 19 October 2014

 6. Nottingham M, Sayre R (eds) (2005) The Atom Syndication Format. The Internet Society.
http://tools.ietf.org/html/rfc4287. Accessed 19 October 2014

 7. IANA (2002) Application for Media Type. The Internet Assigned Numbers Authority.
http://www.iana.org/cgi-bin/mediatypes.pl. Accessed 19 October 2014

 8. Gregorio J, de Hora B (eds) (2007) The Atom Publishing Protocol. Proposed standard. The
Internet Society. http://tools.ietf.org/html/rfc5023. Accessed 19 November 2014

 9. Hoehrmann B (2006) Scripting Media Types. The Internet Society.
http://tools.ietf.org/html/rfc4329. Accessed 19 October 2014

 10. Crockford D (2006) The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627. The Internet Society. http://tools.ietf.org/html/rfc4627. Accessed
19 October 2014

 11. Carlisle D, Ion P, Miner R (eds) et al (2014) Selection of Media Types for MathML
Instances. In: Mathematical Markup Language (MathML) Version 3.0 2nd edn. W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/MathML3/
appendixb.html. Accessed 19 October 2014

 12. Freed N, Borenstein N (1996) Octet-Stream Subtype. In: Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types. RFC 2046. The Internet Society.
http://tools.ietf.org/html/rfc2046. Accessed 19 October 2014

 13. Goncalves I, Pfeiffer S, Montgomery C (2008) Ogg Media Types. RFC 5334. The Internet
Society. http://tools.ietf.org/html/rfc5334. Accessed 19 October 2014

 14. Taft E, Pravetz J, Zilles S, Masinter L (2004) The application/pdf Media Type. RFC 3778. The
Internet Society. http://tools.ietf.org/html/rfc3778. Accessed 19 October 2014

 15. Freed N, Borenstein N (1996) Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies. RFC 2045. Internet Engineering Task Force.
http://tools.ietf.org/html/rfc2045. Accessed 19 October 2014

 16. Swartz A (2004) The application/rdf+xml Media Type Registration. RFC 3870. The Internet
Society. http://www.ietf.org/rfc/rfc3870.txt. Accessed 19 October 2014

 17. IANA (2007) Registration of the MIME type application/rtf. Internet Assigned Numbers
Authority. http://www.iana.org/assignments/media-types/application/rtf. Accessed
19 October 2014

http://tools.ietf.org/html/rfc4229
http://www.iana.org/assignments/media-types/
http://tools.ietf.org/html/rfc3023
http://tools.ietf.org/html/rfc3236
http://www.w3.org/TR/2002/NOTE-xhtml-media-types-20020801/
http://tools.ietf.org/html/rfc4287
http://www.iana.org/cgi-bin/mediatypes.pl
http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc4329
http://tools.ietf.org/html/rfc4627
http://www.w3.org/TR/MathML3/appendixb.html
http://www.w3.org/TR/MathML3/appendixb.html
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc5334
http://tools.ietf.org/html/rfc3778
http://tools.ietf.org/html/rfc2045
http://www.ietf.org/rfc/rfc3870.txt
http://www.iana.org/assignments/media-types/application/rtf

CHAPTER 4 ■ SERVING AND CONFIGURATION

142

 18. Levinson E (1995) SGML Media Types. Internet Assigned Numbers Authority.
http://www.rfc-editor.org/rfc/rfc1874.txt. Accessed 19 October 2014

 19. Hoschka P (2006) The application/smil and application/smil+xml Media Types. RFC 4536.
The Internet Society. http://www.ietf.org/rfc/rfc4536.txt. Accessed 19 October 2014

 20. Baker M, Nottingham M (2004) The “application/soap+xml” media type. RFC 3902. The
Internet Society. http://tools.ietf.org/html/rfc3902. Accessed 19 October 2014

 21. Prud’hommeaux E, Seaborne A (2007) Internet Media Type, File Extension and Macintosh
File Type. In: SPARQL Query Language for RDF. World Wide Web Consortium.
http://www.w3.org/TR/2007/CR-rdf-sparql-query-20070614/#mediaType. Accessed 19
October 2014

 22. Beckett D, Broekstra J (eds) (2007) Internet Media Type, File Extension and Macintosh File
Type. In: SPARQL Query Results XML Format. World Wide Web Consortium.
http://www.w3.org/TR/2007/CR-rdf-sparql-XMLres-20070925/#mime. Accessed 19
October 2014

 23. Kay M (ed) (2007) The XSLT Media Type. In: XSL Transformations (XSLT) Version 2.0.
W3C Recommendation. World Wide Web Consortium. http://www.w3.org/TR/2007/REC-
xslt20-20070123/#media-type-registration. Accessed 19 October 2014

 24. Paul Lindner (ed) (1993) Registration of the new MIME Content-Type/Subtype
application/zip. Internet Assigned Numbers Authority. http://www.iana.org/
assignments/media-types/application/zip. Accessed 19 October 2014

 25. Ashbridge M (2006) Registration of the MIME type application/vnd.google-earth.kml+xml.
Internet Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
application/vnd.google-earth.kml+xml. Accessed 19 October 2014

 26. Ashbridge M (2006) Registration of the MIME type application/vnd.google-earth.kmz.
Internet Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
application/vnd.google-earth.kmz. Accessed 19 October 2014

 27. Lindner P (1993) Registration of the Media Type application/msword. Internet Assigned
Numbers Authority. http://www.iana.org/assignments/media-types/application/
msword. Accessed 19 October 2014

 28. Gill SS (1996) Registration of the MIME type application/vnd.ms-excel. Internet Assigned
Numbers Authority. http://www.iana.org/assignments/media-types/application/
vnd.ms-excel. Accessed 19 October 2014

 29. Gill SS (1996) Registration of the MIME type application/vnd.ms-powerpoint. Internet
Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
application/vnd.ms-powerpoint. Accessed 19 October 2014

 30. Schubert S (2009) The application/vnd.oasis.opendocument.graphics MIME type. Internet
Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
application/vnd.oasis.opendocument.graphics. Accessed 19 October 2014

 31. Schubert S (2009) The application/vnd.oasis.opendocument.presentation MIME type.
Internet Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
application/vnd.oasis.opendocument.presentation. Accessed 19 October 2014

 32. Schubert S (2009) The application/vnd.oasis.opendocument.spreadsheet MIME type.
Internet Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
application/vnd.oasis.opendocument.spreadsheet. Accessed 19 October 2014

http://www.rfc-editor.org/rfc/rfc1874.txt
http://www.ietf.org/rfc/rfc4536.txt
http://tools.ietf.org/html/rfc3902
http://www.w3.org/TR/2007/CR-rdf-sparql-query-20070614/#mediaType
http://www.w3.org/TR/2007/CR-rdf-sparql-XMLres-20070925/#mime
http://www.w3.org/TR/2007/REC-xslt20-20070123/#media-type-registration
http://www.w3.org/TR/2007/REC-xslt20-20070123/#media-type-registration
http://www.iana.org/assignments/media-types/application/zip
http://www.iana.org/assignments/media-types/application/zip
http://www.iana.org/assignments/media-types/application/vnd.google-earth.kml+xml
http://www.iana.org/assignments/media-types/application/vnd.google-earth.kml+xml
http://www.iana.org/assignments/media-types/application/vnd.google-earth.kmz
http://www.iana.org/assignments/media-types/application/vnd.google-earth.kmz
http://www.iana.org/assignments/media-types/application/msword
http://www.iana.org/assignments/media-types/application/msword
http://www.iana.org/assignments/media-types/application/vnd.ms-excel
http://www.iana.org/assignments/media-types/application/vnd.ms-excel
http://www.iana.org/assignments/media-types/application/vnd.ms-powerpoint
http://www.iana.org/assignments/media-types/application/vnd.ms-powerpoint
http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.graphics
http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.graphics
http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.presentation
http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.presentation
http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.spreadsheet
http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.spreadsheet

CHAPTER 4 ■ SERVING AND CONFIGURATION

143

 33. Schubert S (2009) The application/vnd.oasis.opendocument.text MIME type. Internet
Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
application/vnd.oasis.opendocument.text. Accessed 19 October 2014

 34. Nilsson M (2000) The audio/mpeg Media Type. RFC 3003. The Internet Society.
http://tools.ietf.org/html/rfc3003. Accessed 19 October 2014

 35. Barbato L (2008) RTP Payload Format for Vorbis Encoded Audio. RFC 5215. The Internet
Society. http://tools.ietf.org/html/rfc5215. Accessed 19 October 2014

 36. Microsoft Support (2003) MIME Type Settings for Windows Media Services. KB 288102.
Microsoft Corporation. http://support.microsoft.com/kb/288102. Accessed 19 October
2014

 37. Fleischman E (1998) WAVE and AVI Codec Registries. RFC 2361. The Internet Society.
http://tools.ietf.org/html/rfc2361. Accessed 19 October 2014

 38. Boutell T et al (1997) PNG (Portable Network Graphics) Specification Version 1.0. RFC
2083. Internet Engineering Task Force. http://tools.ietf.org/html/rfc2083. Accessed
14 November 2014

 39. Randers-Pehrson G (1996) Registration of the Media Type image/png. Internet Assigned
Numbers Authority. http://www.iana.org/assignments/media-types/image/png.
Accessed 19 October 2014

 40. Andersson O et al (2008) Media Type Registration for image/svg+xml. In: Scalable Vector
Graphics (SVG) Tiny 1.2 Specification. W3C Recommendation. http://www.w3.org/TR/
SVGTiny12/mimereg.html. Accessed 19 October 2014

 41. Parsons G, Rafferty J (2002) Tag Image File Format (TIFF) – image/tiff MIME Sub-type
Registration. RFC 3302. The Internet Society. http://tools.ietf.org/html/rfc3302.
Accessed 19 October 2014

 42. Butcher S (ed) (2003) Vendor Tree - vnd.microsoft.icon. Internet Assigned Numbers
Authority. http://www.iana.org/assignments/media-types/image/vnd.microsoft.icon.
Accessed 19 October 2014

 43. Levinson E (1998) The MIME Multipart/Related Content-type. RFC 2387. The Internet
Society. http://tools.ietf.org/html/rfc2387. Accessed 19 October 2014

 44. Masinter L (1998) Returning Values from Forms: multipart/form-data. RFC 2388. The
Internet Society. http://tools.ietf.org/html/rfc2388. Accessed 19 October 2014

 45. Galvin J, Murphy S, Crocker S, Freed N (1995) Security Multiparts for MIME: Multipart/
Signed and Multipart/Encrypted. RFC 1847. The Internet Engineering Task Force.
http://tools.ietf.org/html/rfc1847. Accessed 19 October 2014

 46. Lie H, Bos B, Lilley C (1998) The text/css Media Type. RFC 2318. The Internet Society.
http://tools.ietf.org/html/rfc2318. Accessed 19 October 2014

 47. Shafranovich Y (2005) Common Format and MIME Type for Comma-Separated Values
(CSV) Files. RFC 4180. The Internet Society. http://tools.ietf.org/html/rfc4180.
Accessed 19 October 2014

 48. Connolly D, Masinter L (2000) The ‘text/html’ Media Type. RFC 2854. The Internet Society.
http://tools.ietf.org/html/rfc2854. Accessed 19 October 2014

 49. Gellens R (2004) The Text/Plain Format and DelSp Parameters. The Internet Society.
http://tools.ietf.org/html/rfc3676. Accessed 19 October 2014

http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.text
http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.text
http://tools.ietf.org/html/rfc3003
http://tools.ietf.org/html/rfc5215
http://support.microsoft.com/kb/288102
http://tools.ietf.org/html/rfc2361
http://tools.ietf.org/html/rfc2083
http://www.iana.org/assignments/media-types/image/png
http://www.w3.org/TR/SVGTiny12/mimereg.html
http://www.w3.org/TR/SVGTiny12/mimereg.html
http://tools.ietf.org/html/rfc3302
http://www.iana.org/assignments/media-types/image/vnd.microsoft.icon
http://tools.ietf.org/html/rfc2387
http://tools.ietf.org/html/rfc2388
http://tools.ietf.org/html/rfc1847
http://tools.ietf.org/html/rfc2318
http://tools.ietf.org/html/rfc4180
http://tools.ietf.org/html/rfc2854
http://tools.ietf.org/html/rfc3676

CHAPTER 4 ■ SERVING AND CONFIGURATION

144

 50. Lim Y, Singer D (2006) MIME Type Registration for MPEG-4. RFC 4337.
http://tools.ietf.org/html/rfc4337. Accessed 19 October 2014

 51. Lindner P (ed) (1993). Registration of the MIME content-type/subtype video/quicktime.
Internet Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
video/quicktime. Accessed 19 October 2014

 52. Fielding R, Irvine UC, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P, Berners-Lee
T (1999) Hypertext Transfer Protocol – HTTP/1.1. World Wide Web Consortium and
The Internet Society. http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.
Accessed 19 October 2014

 53. Berners-Lee T, Fielding R, Masinter L (1998) Uniform Resource Identifiers (URI): Generic
Syntax. RFC 2396. The Internet Society. http://tools.ietf.org/html/rfc2396. Accessed
19 October 2014

 54. Berners-Lee T, Masinter L, McCahill M (eds) (1994) Uniform Resource Locators (URL).
RFC 1738. The Internet Engineering Task Force. http://tools.ietf.org/html/rfc1738.
Accessed 19 October 2014

 55. Mealling M, Denenberg R (eds) (2002) Report from the Joint W3C/IETF URI Planning
Interest Group: Uniform Resource Identifiers (URIs), URLs, and Uniform Resource Names
(URNs): Clarifications and Recommendations. RFC 3305. The Internet Society.
http://tools.ietf.org/html/rfc3305. Accessed 14 November 2014

 56. Berners-Lee T (1998) Cool URIs don’t change. World Wide Web Consortium.
http://www.w3.org/Provider/Style/URI. Accessed 19 October 2014

 57. Sauermann L, Cyganiak R (eds), Ayers D, Völkel M (2008) Cool URIs for the Semantic Web.
World Wide Web Consortium. http://www.w3.org/TR/cooluris/. Accessed
19 October 2014

 58. Mockapetris P (1987) Domain names – Implementation and specification. RFC 1035. The
Internet Engineering Task Force. http://tools.ietf.org/html/rfc1035. Accessed 19
October 2014

 59. Braden R (ed) (1989) Requirements for Internet Hosts – Application and Support. RFC
1123. The Internet Engineering Task Force. http://tools.ietf.org/html/rfc1123.
Accessed 19 October 2014

 60. Elz R, Bush R (1997) Clarifications to the DNS Specification. RFC 2181. The Internet
Engineering Task Force. http://tools.ietf.org/html/rfc2181. Accessed
19 October 2014

 61. Nielsen J (1999) URL as UI. Jakob Nielsen. http://www.nngroup.com/articles/url-as-ui/.
Accessed 19 October 2014

 62. No WWW (2012) www. is deprecated. http://no-www.org/. Accessed 19 October 2014

 63. Hampton M (2011) www. is not deprecated. Michael Hampton. http://www.yes-www.org.
Accessed 19 October 2014

 64. Fielding R, Irvine UC, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P, Berners-Lee T
(1999) Content Negotiation. In: Hypertext Transfer Protocol – HTTP/1.1. The Internet
Society. http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html. Accessed
19 October 2014

http://tools.ietf.org/html/rfc4337
http://www.iana.org/assignments/media-types/video/quicktime
http://www.iana.org/assignments/media-types/video/quicktime
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://tools.ietf.org/html/rfc2396
http://tools.ietf.org/html/rfc1738
http://tools.ietf.org/html/rfc3305
http://www.w3.org/Provider/Style/URI
http://www.w3.org/TR/cooluris/
http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc1123
http://tools.ietf.org/html/rfc2181
http://www.nngroup.com/articles/url-as-ui/
http://no-www.org/
http://www.yes-www.org/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html

CHAPTER 4 ■ SERVING AND CONFIGURATION

145

 65. TASF (2013) Content Negotiation. Apache HTTP Server Version 2.0. The Apache Software
Foundation. http://httpd.apache.org/docs/2.0/content-negotiation.html. Accessed
19 October 2014

 66. TASF (2013) Apache Module mod_negotiation. The Apache Software Foundation.
http://httpd.apache.org/docs/2.0/mod/mod_negotiation.html#typemaps. Accessed
19 October 2014

 67. Berners-Lee T (ed) (2006) Namespace Changes over Time. In: URIs for W3C namespaces.
World Wide Web Consortium. http://www.w3.org/2005/07/13-nsuri. Accessed 19
October 2014

 68. OCLC, Zepheira (2014) Persistent Uniform Resource Locators (PURL). OCLC Online
Computer Library Center Inc., Zepheira LLC. http://purl.org. Accessed 19 October 2014

 69. Bray T, Hollander D, Layman A, Tobin R, Thompson HS (eds) (2009) Namespaces in XML
1.0 (Third Edition). W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/xml-names/. Accessed 19 October 2014

http://httpd.apache.org/docs/2.0/content-negotiation.html
http://httpd.apache.org/docs/2.0/mod/mod_negotiation.html#typemaps
http://www.w3.org/2005/07/13-nsuri
http://purl.org/
http://www.w3.org/TR/xml-names/

147

CHAPTER 5

Style Sheets

A golden rule in web site standardization is to separate content from appearance. External style sheets should be
preferred to inline styles except when only a small portion of a web page is styled. The syntax and naming convention
of external style sheets and the style attribute values are slightly different. To achieve the highest code quality, the style
sheets must be valid (error-free), and optimized in terms of scope, inheritance, and declaration order.

In this chapter, you will learn frequently used standards for styling web sites, including general CSS grammar
rules and selector syntaxes that are vital for every web site. After examining the differences between properties of
different CSS versions, you will gain a solid understanding of standardization issues and the challenges of providing
backward-compatibility. You will also become familiar with fundamental principles in CSS ruleset optimization.
Furthermore, you will analyze the methods used by rendering engines for determining the styles to apply.

Cascading Style Sheets
Cascading Style Sheets (CSS) is a style sheets language (style language) introduced by W3C. Cascading refers to the
process of determining the priority of styling rules. CSS is used to define the presentational semantics of structured
documents. It provides control over visual as well as aural1 characteristics of HTML and XHTML documents and
their elements. Some typical features are, for example, fonts, colors, backgrounds, margins, borders, and layers. CSS
provides a powerful feature to support more than just visual media and target special browsers running on different
types of devices: media types. CSS supports not only the most commonly used visual media type but also other media
types that can be grouped as follows:

•฀ Aural: Properties for aural browsers. Examples: pitch, pitch-range, play-during, richness,
voice-family.

•฀ Interactive: Properties for devices that allow user interaction. Examples: nav-down, nav-index,
nav-left, nav-right, nav-up.

•฀ Paged and noncontinuous: Properties for the content of documents split into one or more
discrete pages, such as the pages of documents to print. Examples: image-orientation, page,
page-break-before, page-break-inside, page-policy, size.

•฀ Speech: Properties for styling speech. Examples: cue, cue-after, cue-before, mark, mark-after,
mark-before, pause, speak-header, speak-numeral, speak-punctuation, speech-rate, stress.

1Although฀most฀styles฀associated฀with฀web฀documents฀are฀visual,฀CSS฀supports฀aural฀properties฀as฀well,฀including฀volume,฀
speaking,฀pause,฀cue,฀spatial฀properties,฀and฀voice฀characteristics.฀They฀are฀used฀for฀aural฀presentation,฀such฀as฀when฀a฀document฀is฀
converted฀to฀plain฀text฀and฀fed฀to฀a฀screen฀reader.฀Beyond฀improved฀accessibility,฀aural฀style฀sheets฀also฀have฀a฀potential฀in฀online฀
education,฀entertainment,฀in-car฀use,฀and฀so฀on.

CHAPTER 5 ■ STYLE SHEETS

148

As you will see later in the chapter, most CSS properties are visual properties or can be applied to all media, but
there are many properties designed for a specific media type.

One of the major concepts of CSS is to separate HTML/XHTML content from appearance, in other words, to
distinguish style from structure. Another aim is centralization, which means providing full control over the styles of
multiple documents from a single location.

Although CSS is used primarily for styling (X)HTML web documents, it can also be applied to all kinds of XML
documents, for example XUL or SVG [1]. In SVG, many CSS properties are reused for styling, such as font properties,
text properties, and other visual properties. SVG also uses CSS features such as the CSS syntax, selectors, external
style sheets, cascading, inheritance, and at-rules, each of which will be described later in detail. Since SVG is an XML
application, internal CSS style sheets can be provided as CDATA sections (Listing 5-1).

Listing 5-1. Embedded CSS in SVG

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG August 1999//EN"
 "http://www.w3.org/Graphics/SVG/SVG-19990812.dtd">
<svg>
 <defs>
 <style>
 <![CDATA[main { font-size: 14px; font-family: Georgia, serif; }]]>
 </style>
 </defs>
 <text class="main">Here is my title</text>
</svg>

CSS can even be used for mathematical notations with or without MathML, the markup language discussed in
Chapter 3, which is especially designed for publishing equations and mathematical symbols on the Web [2, 3].

Levels, Profiles, and Modules
The various versions of CSS are often referred as CSS levels. Each CSS level is based on the previous level and adds
new properties and features. The three most significant versions are CSS1, CSS 2.1, and CSS3.

Subsets of at least one level of CSS created for a particular device are called CSS profiles, such as the CSS Print
Profile [4], the CSS TV Profile [5], and the CSS Mobile Profile [6].

The specifications that form CSS3 are called CSS modules.

Caution ■ Profiles are not equal to media types, which were introduced in CSS2.

The three major CSS versions are described in the following sections.

CSS1

CSS Level 1, the first Cascading Style Sheet specification, was published in 1996. It is a W3C Recommendation, but
its development has been closed by W3C [7]. CSS1 introduced styles for font properties, element color, alignment,
tables, margin, border, padding, and positioning. CSS1 properties can be applied to uniquely identified elements or
element groups.

http://www.w3.org/Graphics/SVG/SVG-19990812.dtd

CHAPTER 5 ■ STYLE SHEETS

149

CSS2 and CSS 2.1

CSS Level 2 was developed as a superset of CSS1 and has been extended with several new features. The most
important ones are layer order (z-index), three types of element positioning (absolute, relative, and fixed), the
aural media type, and bidirectional text.

CSS Level 2 Revision 1, often abbreviated as CSS 2.1 [8], has been the ultimate styling solution on the Web for
many years. CSS 2.1 became a W3C Recommendation in 2011.

CSS3

The development of CSS Level 3 (CSS3) started in 2005. In contrast to further CSS specifications, CSS3 is modularized [9].
The CSS3 modules are described in separate specifications such as Selectors, Media Queries, Text, Backgrounds
and Borders, Colors, 2D Transformations, 3D Transformations, Transitions, Animations, and Multi-Columns. The
modules are in different stages of development and browser implementation. Until recently, only a few modules had
been standardized, such as the Color module [10], the Namespaces module [11], the Selectors module [12], and the
Media Queries module [13].

A variety of new functions and features have been introduced in CSS3 such as border-radius, box-shadow,
background-origin; color declaration in HSL, HSLA, and RGBA; text-shadow; text-overflow; word-wrap; box-sizing;
attribute selectors; transitions; multiple backgrounds; multicolumn layout; Web Fonts; and speech.

Grammar and Conventions
Parsing errors caused by nonexisting properties, incorrect values, malformed declarations, and so on, can be
eliminated by following the proper CSS syntax. The grammar ensures syntactically correct CSS, which makes it
possible for browsers to handle parsing rules, selector, property, value, and unit notations correctly. Although the
fundamental rules are similar, each CSS version has its own syntax [14]. Being a superset of CSS 2.1, CSS3 introduced
additional semantic constraints.

Identifiers and Classes

The ID and class identifiers should always start with a letter. These identifiers correspond to the id and class markup
attributes. Since an element with an id attribute is unique within a web page, ID identifiers can be used to style
a unique element of a page. If the same styles are applied to multiple elements, class identifiers should be used.
Identifier names are case sensitive. Using the letters a–z and the numbers 0–9 is highly recommended, although
underscores and hyphens are also allowed. Names should be meaningful and semantic. Unique names should be
applied.

Units

CSS3 supports both absolute measurement values (Table 5-1) and relative length units, including font-relative and
viewport-relative units.

CHAPTER 5 ■ STYLE SHEETS

150

Font-relative lengths can be expressed in em, ex, and in CSS3 also in ch or rem (Table 5-2).

Table 5-2. Font-Relative CSS Units

Unit Description

em 1 em is equal to the current font size, which can be used to automatically adapt the font size
proportions to the font size chosen by the user in the browser. The em unit defines the proportion
of the width and height of a given letter with respect to the point size of a given font. This unit
originates in typography.

ex 1 ex is the x-height of a font (approximately half the font size).

ch The used advance measure of the 0 glyph (ZERO, U+0030) of the font used to render the text.

rem The computed value of font-size on the root element.

Table 5-3. Viewport-Relative CSS3 Units

Unit Description

vw 1% of the width of the initial containing block.

vh 1% of the height of the initial containing block.

vmin The smallest vw and vh.

vmax The largest vw or vh.

Table 5-1. Absolute CSS Units

Unit Description

in Inch.

cm Centimeter.

mm Millimeter.

pt 1 point is equal to 1/72 inch.

pc 1 pica is equal to 12 points.

px 1 pixel is a dot on the screen.

In CSS3, lengths can also be expressed relative to the viewport size (Table 5-3), which is very useful in
mobile-friendly website design.

Note ■ In spite of this variety, only three of these units are used most of the time: %, em, and px.

CHAPTER 5 ■ STYLE SHEETS

151

Color Declarations

There are several notations in CSS for declaring colors. A brief overview is provided in the following sections,
which is important because color declaration examples will be used intensively in the demonstrational rulesets
throughout the chapter.

Hexadecimal Notation

Hexadecimal notation is by far the most commonly used notation for declaring colors in CSS. In the RGB color space
used on the Web, any color can be represented by additive color mixing, using the different intensity variants of three
colors: Red, Green, and Blue (RGB). Two hundred and fifty-six shades of the three base colors are sufficient to mix
any color, because any two adjacent shades of red, green, or blue with an intensity difference of 1/256 cannot be
distinguished by the human eye. Since there are 256 shades for each channel, the values vary from 0 to 255 (00 to ff
in hexadecimal notation) per channel; 0 is the darkest shade of the channel, and 255 is the lightest.

The hexadecimal numeral system applies the positional (also known as place-value) notation. In contrast to
the 10 digits of the decimal numeral system, in the hexadecimal system there are 16 symbols from 0 to 9 and a to f
(the letters represent the values from 10 to 15). The latest symbol corresponds to the value multiplied by the 0th
power2 of 16, the symbol preceding the last symbol represents the value multiplied by the 1st power of 16, and so forth.

Consequently, the symbols 0–9 in hexadecimal notation correspond to the identical numbers in decimal
notation, while a in hex is equal to 10 in the decimal system, b to 11, c to 12, d to 13, e to 14, and f to 15. Further
numbers can be computed by the place-value (starting from 0). For example, the hexadecimal value e8 corresponds
to the decimal value 232, because 14·161 + 8·160 = 14·16 + 8·1 = 224 + 8 = 232. Conversion from decimal to hexadecimal
can be performed similarly, but with the reverse computation. For example, 86 in decimal notation is 56 in
hexadecimal notation, because 86/16 = 5.375, so the first digit is 5. 5·16=80, and the remainder is 6, which is the
second digit, because 5·161 + 6·160 = 5·16 + 6·1 = 80 + 6 = 86.

In CSS, hexadecimal color declarations begin with a number sign (#), followed by six hexadecimal (hex) values,
two for each channel (this can be abbreviated to three digits if the groups of digits are identical). They are used to
mix colors arbitrarily. For example, pure red can be set by #ff0000. In other words, the intensity of the red channel is
maximal (ff), while the intensity of green and blue are minimal (00). Similarly, pure green is #00ff00, while pure blue
is #0000ff. If the values of each channel are set to 00, the result is black (#000000). If all values are maximal, you get
white (#ffffff). If the values for each channel are identical, the result is a shade of gray (Listing 5-2).

Listing 5-2. A Gray Font Color Declared for All Paragraphs

p {
 color: #898989;
}

Tip ■ If the two digits of each channel are identical, they can be abbreviated by omitting the second digit.

For example, #f00 represents red, #0f0 represents green, #00f represents blue, #000 represents black, #fff

represents white, and so on.

2Any฀nonzero฀number฀raised฀to฀the฀power฀0฀is฀1.

CHAPTER 5 ■ STYLE SHEETS

152

The RGB and RGB(a) Notations

The saturation of each color channel in the RGB model can also be declared by either decimal numbers or
percentages (Listing 5-3).

Listing 5-3. Simple RGB Notation

p {
 color: rgb(0, 255, 0) /* equivalent to rgb(0, 100%, 0), #00ff00 and #0f0 */
}

The previous notation is supported by CSS 2.1 but has been extended in CSS3 with the transparency (alpha
channel) of the color. This notation is known as RGB(a). For example, the pure green with 75 percent transparency
(which corresponds to 25 percent opacity) can be declared as shown in Listing 5-4. Note that the alpha is always a
percentage (a value from 0 to 1) rather than running from 0–255 as the colors do.

Listing 5-4. An RGB(a) Notation in CSS3

p {
 color: rgb(0, 255, 0, 0.25);
}

The HSL(a) Notation

In CSS, colors can also be denoted by the HSL(a) notation, where the colors are represented by their hue, saturation,
and lightness. The first value can be a number from 0 to 360, while the second and third values can be declared as a
percentage. The alpha channel works the same way as in RGB(a) (Listing 5-5).

Listing 5-5. A Transparent Color in HSL(a) Notation

#warning {
 background-color: hsl(240, 78%, 50%, 0.25);
}

Tip ■ If you want to use a color seen on a photograph or on a web site, you can obtain the code in many ways. First,

you can check the style sheet of the page or site for the color code. If this is not convenient, there are other techniques to

get the color code. If there are no advanced image-processing applications installed on your computer, you should simply

create a screenshot using the Print Screen button and copy and paste it to a basic image manipulation application, such

as Microsoft Paint. Select the Color Picker tool, and click the color of your choice. Choose the Edit Colors option from the

Color menu, and click Define custom colors.3 You get the hue, lightness, and saturation of the color, along with the red,

green, and blue components. Since they are provided in decimal, they need to be converted into hexadecimal with an

application such as the Windows Calculator (in Scientific Mode). If you have a more advanced image manipulator than

Paint, such as Adobe Photoshop, you can use the Color Picker tool on the pasted image to get the color code in different

color spaces and notations, including decimal and hexadecimal.

3The฀version฀of฀Paint฀in฀Windows฀7฀has฀a฀ribbon฀interface฀instead฀of฀the฀conventional฀menu฀found฀in฀earlier฀versions.

CHAPTER 5 ■ STYLE SHEETS

153

Web-Safe Colors

In the early days of color computer screens, only 256 different colors were supported. In that era, a list of 216 colors
was referred to as web-safe colors. This cross-browser color palette was used to ensure that all computers, including
the ones using a 256-color palette, would display the colors correctly. Web-safe colors consist of 00, 33, 66, cc, and ff
values for each channel (for example, 00ff00, 663300, 993300, cc6600, and ff9966).

Note ■ Web-safe colors are not interesting from the presentational point of view anymore, since all modern screens,

monitors, and projectors are capable of representing any colors from the RGB color space.

Color Names

CSS supports the names of 16 basic colors. These keywords are easier to read than their corresponding hexadecimal
values4 (Table 5-4). Using hexadecimal notation, however, is strictly recommended (see Chapter 13).

Table 5-4. CSS Color Names Handled by All Browsers

Color Hexadecimal Equivalent

aqua (= cyan) #00ffff (can be abbreviated as #0ff)

black #000000 (can be abbreviated as #000)

blue #0000ff (can be abbreviated as #00f)

magenta (= fuchsia) #ff00ff (can be abbreviated as #f0f)

gray #808080

green #008000

lime #00ff00 (can be abbreviated as #0f0)

maroon #800000

navy #000080

olive #808000

purple #800080

red #ff0000 (can be abbreviated as #f00)

silver #c0c0c0

teal #008080

white #ffffff (can be abbreviated as #fff)

yellow #ffff00 (can be abbreviated as #ff0)

4After฀learning฀color฀mixing฀with฀hexadecimal฀notation,฀using฀these฀values฀becomes฀a฀routine฀task.

CHAPTER 5 ■ STYLE SHEETS

154

Selector Syntaxes

A CSS selector identifies those markup elements to which the CSS style(s) will be applied. Specific element groups are
styled by various types of selectors. The general structure of a CSS rule (or CSS ruleset for multiple declarations), as
shown in Figure 5-1, can be written with the pseudocode shown in Listing 5-6.

h1

color:

}

Selector

Value

Rule

Property

Declaration

#006600;

{

Figure 5-1. CSS rule structure

Listing 5-6. Pseudocode of CSS Rulesets

selector [, selector2, ..., selectorn] [:pseudo-class] {
 property: value;
 [property2: value2;
 ...
 propertym: valuem;]
}

Multiple declarations of the same selector can be organized into groups separated by semicolons (;).

Tip ■ Although it is legal to omit the semicolon after the last declaration in a ruleset, it is strongly recommended to

always provide it. It makes maintenance and modifications easier and becomes handy when a declaration is moved

to another location in the CSS.

For example, the rules in Listing 5-7 can be written as shown in Listing 5-8.

Listing 5-7. It Is Not Optimal to Declare Rules of the Same Element Separately

h1 { font-weight: bold }
h1 { font-size: 1.6em }
h1 { font-family: Verdana, sans-serif }

Listing 5-8. Rules of the Same Element Should Be Grouped

h1 {
 font-weight: bold;
 font-size: 1.6em;
 font-family: Verdana, sans-serif;
}

CHAPTER 5 ■ STYLE SHEETS

155

Although they are equivalent, the second version should be preferred for many reasons. First, it is shorter and
thus contributes to code length optimality. Second, further declarations of other selectors might accidentally be
inserted between the single lines, making the CSS file much harder to maintain. Finally, the second arrangement is
easier to read, which makes development easier.

Element Selectors

If all paragraphs of a web site are intended to be written in Garamond with 1.2em font size, the ruleset looks
like Listing 5-9.

Listing 5-9. A Ruleset for All Paragraphs

p {
 font-size: 1.2em;
 font-family: Garamond, serif;
}

This applies to all paragraphs in the markup such as the ones in Listing 5-10.

Listing 5-10. Paragraphs to Be Styled by the Ruleset of Listing 5-9

<p>
 A paragraph.
</p>
<p>
 Another paragraph.
</p>

Naturally, a subset of paragraphs might have a different ruleset that partially or fully overrides the general rules
(see the “Cascading” section later in the chapter).

In the previous example, the selector selects a markup element. Such selectors are called element selectors
and apply the corresponding element names themselves. The curly braces contain the properties of the element
to style, along with the values to which they should be changed. The curly braces and the content between them
is the declaration block. The property-value pairs are separated from each other by semicolons. The properties are
separated from their values by colons. Each line is called a declaration or statement.

The selectors are separated by combinators, that is, whitespace, > or +. Further whitespace characters might be
present between the combinators and the simple selectors around them [15].

Selectors can also be grouped if the same CSS rules apply to them. The comma (,) should be used as the
combinator. Grouping common rules contributes to CSS code optimality. For example, Listing 5-11 changes the color
and font size of both div elements with the id attribute articles and relatedlinks, respectively.

Listing 5-11. Common Rules Can Be Grouped to Avoid Duplication

#articles, #relatedlinks {
 color: white;
 font-size: 1.8em;
}

CHAPTER 5 ■ STYLE SHEETS

156

Class Selectors

Class selectors, which begin with a period (.), select all elements with a class attribute identical to the value specified
in them. Since the class attribute can be applied multiple times in a web page, class selectors can style any element
within the document with the same class identifier. For example, the rule in Listing 5-12 is referred in the markup, as
shown in Listing 5-13 and Listing 5-14.

Listing 5-12. Class Selector Example

.abstract {
 font-size: 1.1em;
 }

Listing 5-13. The Class Selector in Listing 5-12 Can Be Applied to Headings

<h3 class="abstract">Abstract</h3>

Listing 5-14. The Same Class Selector Can Also Be Applied to Paragraphs

<p class="abstract">
 The abstract of the first Chapter
</p>

If the ruleset should be applied for certain types of elements with the specified class name, a more specific rule
can be written by providing the element name before the period. For example, if the previous rule should be valid
exclusively for paragraphs, it should be extended by declaring the desired element type (Listing 5-15).

Listing 5-15. A Rule for All Paragraphs with the Class Name abstract

p.abstract {
 font-size: 1.1em;
 }

ID Selectors

Certain markup elements are intended to be unique throughout a web document; that is, they can occur only once
per web page. They are identified by the identifier attribute id. Those selectors that select the unique element on the
web page with the id attribute equal to the value specified in them are called ID selectors and begin with a hash mark
(#). Listing 5-16 shows an example.

Listing 5-16. An ID Selector Example

#main {
 margin-left: 120px;
}

Listing 5-17 shows a markup example where the previous rule is applied.

Listing 5-17. Example Content for Which the ID Selector #main Can Be Applied

<div id="main">
 The main content has a left margin of 120 pixels.
</div>

CHAPTER 5 ■ STYLE SHEETS

157

Universal Selectors

A universal selector matches the name of any element type on a web page (any elements regardless of the type).
The universal selector is referred to with an asterisk (*). Listing 5-18 shows an example.

Listing 5-18. A Universal Selector Example

*.caution {
 color: #ff2318;
}

The asterisk can be omitted if the universal selector is not the only component of a simple selector (Listing 5-19).

Listing 5-19. A Rule from Which the Asterisk Can Be Safely Omitted

.caution {
 color: #ff2318;
}

Considering the markup shown in Listing 5-20, the selector div * em will match most em elements and apply
to the content of the em element in h1 (favorite), p (impressive), the first li element (hybrid electric), and the
second li (fuel efficient). In the last two cases, the * matches the ul or the li.

Listing 5-20. A Demonstration Markup for the Universal Selector

<body>
 <div>
 <h1>My favorite car</h1>
 <p>The Lexus CT 200h is impressive due to the following reasons:</p>

 It is a hybrid electric car.
 It is a fuel efficient car.

 That's why it is a nice entry-level luxury hatchback.
 </div>
</body>

Since the em element with the content entry-level luxury is an immediate child of the div element, there is
nothing for the * to match between div and em.

Caution ■ The implementation of universal selectors is imperfect in Internet Explorer 7 and earlier.

Attribute Selectors

Attribute selectors select every element with the attribute specified within square brackets. An attribute type or an
attribute with a specific value can be styled with them. For example, all img elements with the title attribute within
the document can have a yellow border by applying the rule shown in Listing 5-21.

CHAPTER 5 ■ STYLE SHEETS

158

Listing 5-21. An Attribute Selector Example with an Attribute

img[title] {
 border-color: #ff0;
}

Attribute selectors can be used not only for attributes but also for attribute-attribute value pairs. For example,
a 10-pixel border can be added to all logo.png images within the web page with the CSS rule shown in Listing 5-22.

Listing 5-22. An Attribute Selector with an Attribute and an Attribute Value

img[src="logo.png"] {
 border: 10px;
}

This applies to multiple instances of the markup in Listing 5-23 throughout the web page.

Listing 5-23. A Markup Code Where Listing 5-22 Is Applied

Child Selectors

Child selectors select the right-hand element in the selector if and only if it is a direct child of the left-hand element.
The greater-than sign (>) is used between the child and the ancestor. Listing 5-24 shows an example.

Listing 5-24. Child Selector Example

td > a {
 font-weight: bold;
}

This is applied to all hyperlinks within table data cells, such as in Listing 5-25, but does not affect hyperlinks in
general such as in Listing 5-26.

Listing 5-25. A Hyperlink Example for the Child Selector in Listing 5-24

<td>Private Cloud Services</td>

Listing 5-26. The Child Selector Example Is Not Applied to Anchors That Are Not Children of a Data Cell

Domain registration

Caution ■ Child selectors are not supported in Internet Explorer 6 and earlier.

http://www.privatecloud.services/
http://www.domainregistrationwebhosting.com.au/

CHAPTER 5 ■ STYLE SHEETS

159

Descendant Selectors

Styles of elements that are lower on the DOM tree can be provided by descendant selectors that use the element names
separated by spaces. In contrast to child selectors, descendant selectors do not require the child element to be a direct
child of the ancestor. Listing 5-27 shows an example.

Listing 5-27. Descendant Selector Example

td a {
 font-weight: bold;
}

This is applied to all hyperlinks within table data cells, for example to Listing 5-25 (similar to the child selector
shown previously) or Listing 5-28. This rule does not affect hyperlinks in general, however.

Listing 5-28. An Anchor Example Where Listing 5-27 Is Applied

<td><p>The textbook Web Standards is a comprehensive
guide to current and future standards for the World Wide Web.</p></td>

Note the difference between the child selector and the descendant selector.

Adjacent Sibling Selectors

Adjacent sibling selectors select the element on the right-hand side of the selector if and only if it has an instance of the
element on the left-hand side next to it. The + sign is applied as the combinator. Sibling elements are on the same level
within the DOM hierarchy. Listing 5-29 shows an example.

Listing 5-29. Adjacent Sibling Selector Example

h2 + p {
 color: #0f0;
}

This selector applies to Listing 5-30, but neither to Listing 5-31 nor Listing 5-32.

Listing 5-30. Elements That Apply the Green Color from Listing 5-29

Heading</h2>
<p>A paragraph</p>

Listing 5-31. A Paragraph That Does Not Apply the Rule Shown in Listing 5-29

<p>A paragraph</p>

Listing 5-32. Because of the Missing Level 2 Heading Preceding the Paragraph, the Style Is Not Applied Here Either

Heading</h1>
<p>A paragraph</p>

Caution ■ Adjacent sibling selectors are not supported in IE6 or earlier.

http://www.masteringhtml5css3.com/

CHAPTER 5 ■ STYLE SHEETS

160

Pseudoclasses

Pseudoclasses, which use colons to separate an element from its state, are more sophisticated selectors. They are
frequently used to determine the style of hyperlinks, depending on their states. For example, Listing 5-33 applies to all
a elements but only when the mouse hovers over the link.

Listing 5-33. Link Color to Be Applied in Case an Anchor Is Being Hovered Over

a:hover {
 color: #000080;
}

Another example is Listing 5-34, which changes the color of all hyperlinks that have already been visited5 to green.

Listing 5-34. Link Color Set to Visited Hyperlinks

a:visited {
 color: #0f0;
}

Pseudoelements

Pseudoelements can be used to add style to specific element parts instead of whole elements. They can also be applied
for inserting content before or after certain elements. The combinator is a colon (:). For example, the CSS rule in
Listing 5-35 changes the font size of the first letter of all paragraphs within the web page to 2 em.

Listing 5-35. A Rule for the First Letter of Paragraphs

p:first-letter {
 font-size: 2em;
}

Property Value Types

CSS property values can be the following:

Keywords (for example, •฀ auto)

Basic data types (for example, •฀ %)

Combination of keyword and custom data (for example, •฀ url
('http://www.masteringhtml5css3.com/img/webstandardsbook.jpg')

Shorthand Notation

Certain CSS properties can be grouped into a single property declaration. The most common shorthand notations are
described in the following sections.

5According฀to฀the฀current฀browser฀history.

http://www.masteringhtml5css3.com/img/webstandardsbook.jpg

CHAPTER 5 ■ STYLE SHEETS

161

Shorthand Notation for Font Properties

Font properties can be written either in the full form shown in Listing 5-36 or with the shorthand notation
of Listing 5-37.

Listing 5-36. If Several Font Properties Should Be Set for the Same Element, the Ruleset Becomes Too Long

p {
 font-weight: bold;
 font-size: 1em;
 line-height: 1.2em;
 font-family: Garamond;
 font-style: normal;
}

Listing 5-37. Shorthand Notation for Font Properties

p { font: bold 1em/1.2em Garamond }

Note ■ In the second case, the font-style property is not set and thus takes the value defined as the default value

for that property in the CSS specification, which is normal.

Shorthand Notation for Background Properties

Separate background properties (Listing 5-38) have the shorthand property background (Listing 5-39).

Listing 5-38. Separate Background Properties That Can Be Shortened

body {
 background-color: #232323;
 background-image: url('images/bg.jpg');
 background-repeat: no-repeat;
 background-position: 100% 0%;
 background-attachment: fixed;
}

Listing 5-39. Background Properties Combined into a Single Background Property

body {
 background: #232323 url('images/bg.jpg') no-repeat 100% 0% fixed;
}

Shorthand Notation for List Properties

List styles, such as the ones in Listing 5-40, can also be shortened by the enumeration of the individual property
values for the list-style shorthand property (Listing 5-41).

CHAPTER 5 ■ STYLE SHEETS

162

Listing 5-40. List Styles That Can Be Shortened

ul.tick {
 list-style-image: url('tick.png');
 list-style-type: none;
 list-style-position: inside;
}

Listing 5-41. A One-Line Rule for Three List Styling Property Values

ul.tick {
 list-style: url('tick.png') none inside;
}

Shorthand Notation for Padding, Border, and Margin Properties

There are five properties for setting the top, right, bottom, and left padding (padding-top, padding-right,
padding-bottom, padding-left, respectively) or all of them together with the shorthand property padding. Similar
conventions exist for borders (border-top, border-right, border-bottom, border-left, border) and margins
(margin-top, margin-right, margin-bottom, margin-left, margin). There are various options for shortening the
enumeration of property values in a certain order:

Four values set the padding of each side: the top, the right, the bottom, and finally the left •฀
padding (clockwise, starting from top) (Listing 5-42).

Listing 5-42. Padding Shorthand Property with Four Values

#decor {
 padding: 10px 5px 20px 30px;
}

Tip ■ This order is worth memorizing, because it can be used not only for padding but also for borders, margins, and

CSS3 properties such as border-radius.

Three values set the top, right, and left (equally), and the bottom padding (Listing 5-43).•฀

Listing 5-43. Padding Shorthand Property with Three Values

#decor {
 padding: 10px 20px 15px;
}

Two values set an equal padding for the top and bottom sides, and then an equal padding for •฀
the right and left sides (Listing 5-44).

Listing 5-44. Padding Shorthand Property with Two Values

#decor {
 padding: 30px 20px;
}

CHAPTER 5 ■ STYLE SHEETS

163

One value sets an equal padding for all sides (Listing 5-45).•฀

Listing 5-45. Padding Shorthand Property with One Value

#decor {
 padding: 10px;
}

Similar shorthand notations can be used for setting border and margin property values with the border and

margin shorthand properties. Further padding, border, and margin properties can also be written in shorthand
notation. Listing 5-46 shows an example.

Listing 5-46. Border Properties That Can Be Shortened

.book {
 border-width: 1px;
 border-style: solid;
 border-top-color: #000;
 border-right-color: #000;
 border-bottom-color: #000;
 border-left-color: #000;
}

Since the border color of each side is the same in this example, the properties in the third, fourth, fifth, and sixth
lines can be written as border-color (Listing 5-47).

Listing 5-47. The border-color Shorthand Property Sets the Border Color of Each Side of the Element

.book {
 border-width: 1px;
 border-style: solid;
 border-color: #000;
}

Even if the border colors are different, they can be declared by the border-color shorthand property by simply
enumerating the desired colors in the top, right, bottom, left order (clockwise, starting from top).

All the previous properties can be shortened further to a single line, as shown in Listing 5-48.

Listing 5-48. The Shortest Border Declaration for Multiple Properties

.book {
 border: 1px solid #000;
}

Implementation
There are three ways to implement CSS. The chosen method determines the scope of styling.

•฀ Inline style: Styling with the most limited scope. An inline style is embedded in an (X)HTML
tag to which it exclusively applies. This CSS fragment is defined by the style attribute that
can be provided on most markup elements. The attribute value has the same syntax as the
contents of a CSS declaration block except that the delimiting braces are omitted [16].
Listing 5-49 shows an example.

CHAPTER 5 ■ STYLE SHEETS

164

Listing 5-49. Inline Style Declaration Example

•฀ Embedded (internal) style: A code block usually located in the document head. Embedded
styles are used for styling rules unique to that web page (the element to style does not occur in
other pages on the site). Listing 5-50 shows an example.

Listing 5-50. An Example for Embedded Styles

<head>
 ...
 <style type="text/css">
 #disclaimer {
 text-align: center;
 margin-top: 30px;
 margin-bottom: 60px;
 }
 </style>
 ...
<head>

•฀ External style sheet: An external style sheet is a separate file with the .css extension that

contains style rules for multiple web documents, such as an entire web site. This is a
plain-text file usually encoded in US-ASCII. CSS files cannot contain the style element, just
the CSS style rules themselves. Each page refers to that file with the link element in the
(X)HTML head section. Listing 5-51 shows an example.

Listing 5-51. Link to an External Style Sheet File in XHTML

<link rel="stylesheet" type="text/css" href="main.css" />

In XML documents (XML, XUL, SVG, and so on), external style sheets can be provided by the XML processing
instruction xml-stylesheet in the first document section [17] (Listing 5-52).

Listing 5-52. Link to an External Style Sheet File in XML

<?xml-stylesheet type="text/css" href="default.css" title="Default style" ?>

Embedded styles override the corresponding styles declared in an external CSS file, which makes it possible to
use the main styling rules of the web site while declaring some specific ones for a single web page. Inline styles are
even more specific and locally override the styles of the external style sheet as well as the embedded styles (if any).

Style sheets can also import CSS rules from other style sheet files with the @import rule. It should be provided
after the @charset rules (if any) but before all other rules. If the additional CSS files are in the same directory
structure, the path is adequate (Listing 5-53).

Listing 5-53. Reusing an External Style Sheet

@import "styles/alter.css";

CHAPTER 5 ■ STYLE SHEETS

165

The rulesets of the file containing this rule will override the corresponding rules of the imported styles (if any).
For example, if different pages of a site have the same styles except background-color, which is modified as part
of the design, then all the styles can be imported and the background-color property is overwritten (alter.css
in Listing 5-54). Similarly, a style sheet designed for mobile devices can reuse the main styles but remove the
background image6 and set the maximum width of the document body to the largest screen width available on
smartphones today (mobile.css in Listing 5-54). All other styles are imported, including the color and the font-family.

Listing 5-54. Reusing and Extending Styles of the Main CSS File of a Site

main.css alter.css mobile.css

body {

background: url('http://example.com/
images/bg.jpg') no-repeat 100% 0% fixed;

background-color:#004c25;

color: #fff;

font-family: Garamond, serif;

}

...

@import ("main.css");

body {

background-color:#00254c;

}

@import ("main.css");

body {

background-image: none;

max-width: 640px;

}

A more robust declaration provides not the path but the URL of the file. Listing 5-55 shows an example.

Listing 5-55. Importing a Style Sheet File by Providing a Full URL

@import url("http://www.example.com/alter.css");

One of the applications of importing style sheets is to provide alternate styles for web sites that can serve several
purposes. For example, accessibility can be improved by providing different style sheets for different media. The
media-specific CSS files of a site can be controlled in the markup by the media attribute on the link element, as
discussed earlier in Chapter 3. The rulesets of such CSS files have an intersection defined by the main CSS file of
the site. The files of media-specific rules rely on each other and often import rules from each other (Listing 5-56).
Multiple CSS files can also be used for site design.

Listing 5-56. Importing Media-Specific Styles

@import url("print.css") print;
@import url("mobile.css") handheld and (max-width: 480px);

Display and Visibility
The element levels of HTML and XHTML documents have already been discussed. In CSS, (X)HTML elements can
generally be displayed in the following ways:

•฀ Block: Uses the full width available, along with a new line before and after (Listing 5-57)

6In฀the฀example,฀the฀background-image฀property฀is฀set฀using฀the฀shorthand฀property฀background฀in฀the฀main.css฀file.

CHAPTER 5 ■ STYLE SHEETS

166

Listing 5-57. Rule for Elements to Be Displayed As Block

display: block;

•฀ Inline: Uses only as much width as needed without breaking the row (Listing 5-58)

Listing 5-58. Rule for Elements to Be Displayed Inline

display: inline;

•฀ Not di.yed: Removes the element completely from the document so it does not take up any
space, even though its corresponding markup is still in the source code (Listing 5-59)

Listing 5-59. Rule for Elements to Hide Without Spaceholder

display: none;

•฀ Hidden: Hides the element but still takes up space in the layout (Listing 5-60)

Listing 5-60. Rule for Elements to Hide with Spaceholder

visibility: hidden;

Cascading
The C in CSS stands for Cascading. It is a mechanism that determines one declaration among a set of styling rules
that should be applied for a certain element-property pair. Browsers consider three features in the following order to
choose that declaration [18]:

 1. Weight: The declaration with the highest weight is chosen. In CSS3, the weight of a
declaration is based on the origin of the declaration and its level of importance. The origin
can be of three kinds: author, user, and user agent. CSS declarations have two levels of
importance: normal and important (the first one is the default level; the second one is
optional and should be marked). An important declaration looks like Listing 5-61.

Listing 5-61. A Rule with the Highest Level of Importance

#menu {
 margin-top: 12px !important;
}

Tip ■ The proper exploitation of the cascading mechanism eliminates the need for !important rules.

The weight of style sheets derived from the different origins, in descending order, is as
follows:

a. User style sheets (important)

b. Author style sheets (important)

c. Author style sheets (normal)

d. User style sheets (normal)

e. Default style sheets of rendering engines

CHAPTER 5 ■ STYLE SHEETS

167

As a result, declarations written by developers generally have more weight than that of
user style sheets, which have more weight than the default styles of the browser. This is
the reason why links are generally rendered in the font color defined by the web designer
rather than the default anchor color (Listing 5-62).

Listing 5-62. A Rule in a CSS File That Has More Weight Than the Corresponding Rule in
the Default Style Sheet of Browsers

a {
 font-color: #12ee12;
}

 2. Specificity: The declaration with the highest specificity is chosen. The specificity of
selectors can be calculated as follows [19]:

The number of ID attributes in the selector is counted.•฀

The number of other attributes and pseudoclasses in the selector is counted.•฀

The number of element names in the selector is counted.•฀

The concatenation of these numbers is the specificity.•฀

Negative selectors are counted similar to their simple selectors’ argument.•฀

Pseudoelements are ignored.•฀

In Listing 5-63, the specificity of the first declaration is the lowest, and the specificity
of the last one is the largest. The font color of all paragraphs is the same (black), except
those paragraphs that are included in a division, which have a different font color (green).
The div elements with the tip value declared for the class attribute have an even more
specific rule, which makes their font color distinctive (red, which is different from the color
of any other paragraphs).

Listing 5-63. Declarations with Increasing Specificity

p {
 color: #000;
}
div p {
 color: #0f0;
}
.tip p {
 color: #00f;
}

 3. Declaration order: If two declarations have the same weight, origin, and specificity, the last
declaration is chosen (imported style sheets should also be considered). Imported style
rules are processed prior to the rules of the style sheet. The rules of further imported style
sheets are taken into account in the order of the @import rules.

Inheritance
In web markup languages and style sheets, certain codes are automatically reused. In CSS, property values of parent
elements can be set to their children. The specified value of an element-property combination is copied from the
corresponding computed value of the parent element. This procedure is called inheritance. It eliminates the need for

CHAPTER 5 ■ STYLE SHEETS

168

defining properties that are straightforward. If, for example, the background color of a web document is defined, all
container elements, divisions, and paragraphs within the document will inherit that property. Certainly, any of them
can be arbitrarily overridden.

Certain CSS property values are defined as inherited. Unless a value is specified for these element-property
combinations, the value is determined by inheritance.

The inherit value can be used for all properties to be determined by inheritance. For example, color is an
inheritable property. However, the color of anchor elements is commonly set to blue by the user agent style sheet. By
using the value inherit, the declaration of the user agent style sheet can be overridden: all child anchor elements
inherit the value of the foreground color from the parent element (Listing 5-64).

Listing 5-64. Inherited Property Value

#warning {
 color: #000;
}
#warning a:link {
 color: inherit;
}

Note ■ The more specific a property, the fewer elements it can be applied to. As you will see in the overview of CSS

properties, a large share of CSS properties are not inherited at all.

Scopes and Structure
In contrast to the underlined blue hyperlinks used in the first years of the Web, modern web sites often apply different
colors and decorations to accommodate the overall design. When using a dotted underline for hyperlinks, however, it
is rather frustrating that linking images share the same style. To solve the problem, image borders should be removed
and more specific styles set. Listing 5-65 shows an example.

Listing 5-65. Specific Rules to Eliminate the Underline for Links Declared by General Rules

img {
 border: 0;
}

a.nounder {
 border-bottom: none;
}

The scope of rules has a large impact on their application. The rules that apply to more (most) elements within
the same category should be identified in an early stage of web site development. For example, if the vast majority of
paragraphs have the same indent, that value should be applied as a general CSS rule to all p elements (for example,
p { text-indent: 3em; }), and another rule should be written to the class of paragraphs that are different (for
example, p.morein { text-indent: 5em; }).

In the optimal case, both the scope and the inheritance are considered for those properties that can be used as
the basis for the entire web site, such as the default font size (Listing 5-66).

Listing 5-66. The Default Font Size of the Entire Web Site Can Be Inherited from the Document Body

body {
 font-size: 0.8em;
}

CHAPTER 5 ■ STYLE SHEETS

169

For those elements that require a different font size, such as headings, the property can be set specifically
(Listing 5-67), and all the other elements inherit the default font size set for the document body. Consequently, there
is no need to declare the font size for, say, all p and div elements, if the desired font size for them is the default one,
because the property is inherited from the body element.

Listing 5-67. Specific Declarations That Override the Default Font Size Set in the Previous Listing

h1 {
 font-size: 1.4em;
}
h2 {
 font-size: 1.2em;
}
h3 {
 font-size: 1em;
}

The Box Model
The actual markup content of block elements is wrapped around by optional paddings, borders, and margins, called the
CSS box model (Figure 5-2) [20]. These rectangular boxes are generated for certain markup elements in the document tree.

Top border

Top margin

Content

sample

Top padding

Le
ft

 m
a
rg

in

R
ig

h
t m

a
rg

in

Bottom padding

Bottom border

Bottom margin

Le
ft

 b
o
rd

e
r

Le
ft

 p
a
d

d
in

g

R
ig

h
t b

o
rd

e
r

R
ig

h
t p

a
d

d
in

g

H
e
ig

h
t

Width

Figure 5-2. The CSS box model

Text and images appear in the content. The padding clears the area around the content. The padding is affected
by the background color of the box similar to the border area around the padding. The margin is the outermost area
around the border. It has no background color and is transparent. The size of each area can be determined by CSS
properties. Since they are optional, they can also be collapsed to 0 (that is, totally eliminated).

The margins of two vertically adjacent block elements normally collapse into one another; that is, a margin is
rendered according to the size of the larger bottom margin of the first box and that of the top margin of the other below it.

CHAPTER 5 ■ STYLE SHEETS

170

7The฀bug฀was฀not฀present฀in฀Internet฀Explorer฀for฀Mac฀(discontinued฀in฀2006).
8The฀value฀none฀applies฀to฀all฀media.

The IE Box Model Bug

From the first version of CSS, the width and height of all block-level elements specified explicitly determine only
the width or height of the visible element, and the padding, borders, and margins are applied afterward. In earlier
versions of Internet Explorer, the CSS specifications were implemented incorrectly, which is often referred to as the
Internet Explorer box model bug. Internet Explorer 5 included the content, padding, and borders within a specified
width or height, resulting in a narrower or shorter rendering of the box [21] (Figure 5-3).

Top border

Top margin

Content

sample

Top padding

Le
ft

 m
a
rg

in

R
ig

h
t m

a
rg

in

Bottom padding

Bottom border

Bottom margin

Le
ft

 b
o
rd

e
r

Le
ft

 p
a
d

d
in

g

R
ig

h
t b

o
rd

e
r

R
ig

h
t p

a
d

d
in

g

H
e
ig

h
t

Width

Top border

Top margin

Content

sample

Top

padding

Le
ft

 m
a
rg

in

R
ig

h
t m

a
rg

in

Bottom

padding

Bottom border

Bottom margin

Le
ft

 b
o
rd

e
r

Le
ft

 p
a
d

d
in

g

R
ig

h
t b

o
rd

e
r

R
ig

h
t p

a
d

d
in

g

Figure 5-3. Comparison of the W3C and the IE5 box model. Note the different interpretation of the width

Internet Explorer 6 and newer IE versions7 apply the correct implementation in their standards-compliant mode,
but for compatibility reasons, the bug still exists when a page is rendered in Quirks Mode.

Overview of CSS Properties
Table 5-5 summarizes the rich selection of CSS properties. There are 53 properties in CSS1, 122 in CSS2, 115 in
CSS 2.1, and more than 300 (and counting) in CSS3.8

CHAPTER 5 ■ STYLE SHEETS

171

Table 5-5. Overview of CSS Properties

Property CSS1 CSS2 CSS2.1 CSS3 Applicability Inherited Media

align-content – – – + Block containers, flex
containers, and grid
containers

– V

align-items – – – + Block-level elements – V

align-self – – – + Block-level elements – V

alignment-adjust – – – + Inline elements – V

alignment-baseline – – – + Inline elements – V

all – – – + Depends on the property
to which all is used for as
a shorthand property

d d

anchor-point – – – + All elements – V

animation – – – + Block and inline elements – V

animation-delay – – – + Block and inline elements – V

animation-direction – – – + Block and inline elements – V

animation-duration – – – + Block and inline elements – V

animation-fill-mode – – – + All elements, ::before and
::after pseudo-elements

– V

animation-iteration-count – – – + Block and inline elements – V

animation-name – – – + Block and inline elements – V

animation-play-state – – – + Block and inline elements – V

animation-timing-function – – – + Block and inline elements – V

azimuth – + + – All elements + A

backface-visibility – – – + Block and inline elements – V

background + + + + All elements – V

background-attachment + + + + All elements – V

background-clip – – – + All elements – V

background-color + + + + All elements – V

background-image + + + + All elements – V

background-origin – – – + All elements – V

background-position + + + + All elements – V

background-repeat + + + + All elements – V

background-size – – – + All elements – V

baseline-shift – – – + Inline elements – V

(continued)

CHAPTER 5 ■ STYLE SHEETS

172

Property CSS1 CSS2 CSS2.1 CSS3 Applicability Inherited Media

binding – – – + All elements (but not
pseudoelements)

– All

bleed – – – + Page media elements – P

bookmark-label – – – + All elements – All

bookmark-level – – – + All elements – All

bookmark-target – – – + All elements – All

border + + + + All elements – V

border-bottom + + + + All elements – V

border-bottom-color – + + + All elements – V

border-bottom-left-radius – – – + All elements – V

border-bottom-right-radius – – – + All elements – V

border-bottom-style – + + + All elements – V

border-bottom-width + + + + All elements – V

border-collapse – + + ? Table and inline-table
elements

– V

border-color + + + + All elements – V

border-image – – – + Depends on individual
properties

– V

border-image-outset – – – + All elements except
internal table elements
when border-collapse is
set to collapse

– V

border-image-repeat – – – + All elements except
table elements when
border-collapse is set to
collapse

– V

border-image-slice – – – + All elements except
internal table elements
when border-collapse is
set to collapse

– V

border-image-source – – – + All elements except
internal table elements
when border-collapse is
set to collapse

– V

border-image-width – – – + All elements, except
internal table elements
when border-collapse is
set to collapse

– V

(continued)

Table 5-5. (continued)

CHAPTER 5 ■ STYLE SHEETS

173

Property CSS1 CSS2 CSS2.1 CSS3 Applicability Inherited Media

border-left + + + + All elements – V

border-left-color – + + + All elements – V

border-left-style – + + + All elements – V

border-left-width + + + + All elements – V

border-radius – – – + All elements except table
elements when border-
collapse is set to collapse

– V

border-right + + + + All elements – V

border-right-color – + + + All elements – V

border-right-style – + + + All elements – V

border-right-width + + + + All elements – V

border-spacing – + + ? Table and inline-table
elements (also frameset
elements in certain
document types)

+ V

border-style + + + + All elements – V

border-top + + + + All elements – V

border-top-color – + + + All elements – V

border-top-left-radius – – – + All elements – V

border-top-right-radius – – – + All elements* – V

border-top-style – + + + All elements – V

border-top-width + + + + All elements – V

border-width + + + + All elements – V

bottom – + + + Positioned elements – V

box-decoration-break – – – + All elements – V

box-shadow – – – + All elements – V

box-sizing – – – + All elements that accept
width or height

– V

box-snap – – – + Block-level boxes and
internal table elements
except table cells

+ V

box-suppress – – – + All elements – All

break-after – – – + Block-level elements – V

break-before – – – + Block-level elements – V

break-inside – – – + Block-level elements – V

(continued)

Table 5-5. (continued)

CHAPTER 5 ■ STYLE SHEETS

174

Property CSS1 CSS2 CSS2.1 CSS3 Applicability Inherited Media

caption-side – + + ? Table-caption elements + V

chains – – – + Template elements – V

clear + + + + Block-level elements – V

clip – + + ? Absolutely positioned
elements

– V

clip-path – – – + All elements. In SVG,
it applies to container
elements excluding the
defs element and all
graphics elements

– V

clip-rule – – – + SVG graphics elements + V

color + + + + All elements + V

color-interpolation-filters – – – + All filter primitives + V

column-count – – – + Nonreplaced block-level
elements (except table
elements), table cells, and
inline-block elements

– V

column-fill – – – + Multicolumn elements – N

column-gap – – – + Multicolumn elements – V

column-rule – – – + Multicolumn elements – V

column-rule-color – – – + Multicolumn elements – V

column-rule-style – – – + Multicolumn elements – V

column-rule-width – – – + Multicolumn elements – V

columns – – – + Nonreplaced block-level
elements (except table
elements), table cells, and
inline-block elements

– V

contain – – – + All elements – All

content – + + + All elements, ::before,
::after, ::alternate,
::marker, ::line-marker,
margin areas, and @
footnote areas

– All

counter-increment – + + + All elements, ::before,
::after, ::alternate,
::marker, ::line-marker,
margin areas, @footnote
areas, and @page context

– All

Table 5-5. (continued)

(continued)

CHAPTER 5 ■ STYLE SHEETS

175

Property CSS1 CSS2 CSS2.1 CSS3 Applicability Inherited Media

counter-reset – + + + All elements, ::before,
::after, ::alternate,
::marker, ::line-marker,
margin areas, @footnote
areas, and @page context

– All

counter-set – – – + All elements – All

crop – – – + Replaced elements – V

cue – + + + All elements – S

cue-after – + + + All elements – S

cue-before – + + + All elements – S

cursor – + + + All elements + V, I

direction – + + + All elements* + V

display + + + + All elements – V8

display-inside – – – + All elements – All

display-list – – – + All elements – All

display-outside – – – + All elements – All

dominant-baseline – – – + Inline-level elements* – V

elevation – + + – All elements + A

empty-cells – + + ? Table-cell elements + V

filter – – – + All elements. In SVG,
it applies to container
elements without the defs
element and all graphics
elements

– V

flex – – – + Flex items d V

flex-basis – – – + Flex items – V

flex-direction – – – + Flex containers – V

flex-flow – – – + Flex containers d V

flex-grow – – – + Flex items – V

flex-shrink – – – + Flex elements – V

flex-wrap – – – + Flex containers – V

float + + + + All elements* – V

float-offset – – – + Floated elements – V, P

Table 5-5. (continued)

(continued)

CHAPTER 5 ■ STYLE SHEETS

176

Property CSS1 CSS2 CSS2.1 CSS3 Applicability Inherited Media

flood-color – – – + feFlood, feDropShadow – V

flood-opacity – – – + feFlood, feDropShadow – V

flow-from – – – + Non-replaced block
containers

– V

flow-into – – – + All elements except
pseudo-elements

– V

font + + + + All elements + V

font-family + + + + All elements + V

font-feature-settings – – – + All elements + V

font-kerning – – – + All elements + V

font-language-override – – – + All elements + V

font-size + + + + All elements + V

font-size-adjust – + – + All elements + V

font-stretch – – – + All elements + V

font-style + + + + All elements + V

font-synthesis – – – + All elements + V

font-variant + + + + All elements + V

font-variant-alternates – – – + All elements + V

font-variant-caps – – – + All elements + V

font-variant-east-asian – – – + All elements + V

font-variant-ligatures – – – + All elements + V

font-variant-numeric – – – + All elements + V

font-variant-position – – – + All elements + V

font-weight + + + + All elements + V

grid – – – + Grid containers d V

grid-area – – – + Grid items d V

grid-auto-columns – – – + Grid containers – V

grid-auto-flow – – – + Grid containers – V

grid-auto-rows – – – + Grid containers – V

grid-column – – – + Grid items d V

grid-column-end – – – + Grid items – V

grid-column-start – – – + Grid items – V

grid-row – – – + Grid elements d V

Table 5-5. (continued)

(continued)

CHAPTER 5 ■ STYLE SHEETS

177

Property CSS1 CSS2 CSS2.1 CSS3 Applicability Inherited Media

grid-row-end – – – + Grid items – V

grid-row-start – – – + Grid items – V

grid-template – – – + Grid containers d V

grid-template-areas – – – + Grid containers – V

grid-template-columns – – – + Grid containers – V

grid-template-rows – – – + Grid containers – V

hanging-punctuation – – – + Block and inline-block
elements, table cells

+ V

height + + + + All elements except
nonreplaced inline
elements, table columns,
and column groups

– V

hyphens – – – + All elements + V

icon – – – + All elements – All

image-orientation – – – + Images ? P

image-resolution – – – + Replaced elements and
background images

+ V

ime-mode – – – + Text fields – I

initial-letter – – – + ::first-letter pseudo
elements and inline
level first child of a block
container

– V

inline-box-align – – – + Inline block-level elements – V

justify-content – – – + Flex containers – V

justify-items – – – + Block containers, flex
containers, and grid
containers

– V

justify-self – – – + Block-level boxes,
absolutely-positioned
boxes, and grid items

– V

left – + + + Positioned elements – V

letter-spacing + + + + All elements + V

lighting-color – – – + feDiffuseLighting,
feSpecularLighting

– V

line-box-contain – – – + Block-level elements + V

line-break – – – + All elements + V

Table 5-5. (continued)

(continued)

CHAPTER 5 ■ STYLE SHEETS

178

Property CSS1 CSS2 CSS2.1 CSS3 Applicability Inherited Media

line-grid – – – + Block containers – V

line-height + + + + All elements + V

line-snap – – – + All elements + V

line-stacking – – – + Block-level elements + V

line-stacking-ruby – – – + Block-level elements + V

line-stacking-shift – – – + Block-level elements + V

line-stacking-strategy – – – + Block-level elements + V

list-style + + + + All elements with
display: list-item

N V

list-style-image + + + + All elements with
display: list-item

+ V

list-style-position + + + + All elements with
display: list-item

+ V

list-style-type + + + + All elements with
display: list-item

+ V

margin + + + + All boxes except certain
table boxes and certain
inline-level boxes

– V

margin-bottom + + + + All boxes except certain
table boxes and certain
inline-level boxes

– V

margin-left + + + + All boxes except certain
table boxes and certain
inline-level boxes

– V

margin-right + + + + All boxes except certain
table boxes and certain
inline-level boxes

– V

margin-top + + + + All boxes except certain
table boxes and certain
inline-level boxes

– V

marker-offset – + – – Elements with display:
marker

– V

marker-side – – – + List items + V

marks – + – + Page context – V, P

Table 5-5. (continued)

(continued)

CHAPTER 5 ■ STYLE SHEETS

179

Property CSS1 CSS2 CSS2.1 CSS3 Applicability Inherited Media

mask – – – + All elements. In SVG,
it applies to container
elements, excluding the
defs element and all
graphics elements

– V

mask-border – – – +

mask-border-mode – – – + All elements. In SVG,
it applies to container
elements, excluding the
defs element and all
graphics elements

– V

mask-border-outset – – – + All elements. In SVG,
it applies to container
elements, excluding the
defs element and all
graphics elements

– V

mask-border-repeat – – – + All elements. In SVG,
it applies to container
elements, excluding the
defs element and all
graphics elements

– V

mask-border-slice – – – + All elements. In SVG,
it applies to container
elements, excluding the
defs element and all
graphics elements

– V

mask-border-source – – – + All elements. In SVG,
it applies to container
elements, excluding the
defs element and all
graphics elements

– V

mask-border-width – – – + All elements. In SVG,
it applies to container
elements, excluding the
defs element and all
graphics elements

– V

mask-clip – – – + All elements. In SVG,
it applies to container
elements, excluding the
defs element and all
graphics elements

– V

Table 5-5. (continued)

(continued)

CHAPTER 5 ■ STYLE SHEETS

180

Property CSS1 CSS2 CSS2.1 CSS3 Applicability Inherited Media

mask-composite – – – + All elements. In SVG,
it applies to container
elements, except the defs
element and all graphics
elements

– V

mask-image – – – + All elements. In SVG,
it applies to container
elements, excluding the
defs element and all
graphics elements

– V

mask-origin – – – + All elements. In SVG,
it applies to container
elements, excluding the
defs element and all
graphics elements

– V

mask-position – – – + All elements. In SVG,
it applies to container
elements, excluding the
defs element and all
graphics elements

– V

mask-repeat – – – + All elements. In SVG,
it applies to container
elements, excluding the
defs element and all
graphics elements

– V

mask-size – – – + All elements. In SVG,
it applies to container
elements, excluding the
defs element and all
graphics elements

– V

mask-type – – – + All mask elements – V

max-height – + + + All elements except
nonreplaced inline
elements, table rows, and
row groups

– V

max-lines – – – + Fragment boxes – V

max-width – + + + All elements except
nonreplaced inline
elements, table rows, and
row groups

– V

Table 5-5. (continued)

(continued)

CHAPTER 5 ■ STYLE SHEETS

181

Property CSS1 CSS2 CSS2.1 CSS3 Applicability Inherited Media

min-height – + + + All elements except
nonreplaced inline
elements, table rows, and
row groups

– V

min-width – + + + All elements except
nonreplaced inline
elements, table rows, and
row groups

– V

move-to – – – + All elements, ::before,
::after, ::alternate

– All

nav-down – – – + All enabled elements – I

nav-index – – – + All enabled elements – I

nav-left – – – + All enabled elements – I

nav-right – – – + All enabled elements – I

nav-up – – – + All enabled elements – I

object-fit – – – + Replaced elements – V

object-position – – – + Replaced elements – V

opacity – – – + All elements – V

order – – – + Flex items and absolutely-
positioned children of flex
containers

– V

orphans – + + + Block-level elements + V

outline – + + + All elements – V

outline-color – + + + All elements – V

outline-offset – – – + All elements – V

outline-style – + + + All elements – V

outline-width – + + + All elements – V

overflow – + + + Nonreplaced block-level
elements and nonreplaced
inline-block elements

– V

overflow-wrap – – – + All elements + V

overflow-x – – – + Nonreplaced block-level
elements and nonreplaced
inline-block elements

– V

overflow-y – – – + Nonreplaced block-level
elements and nonreplaced
inline-block elements

– V

Table 5-5. (continued)

(continued)

CHAPTER 5 ■ STYLE SHEETS

182

Property CSS1 CSS2 CSS2.1 CSS3 Applicability Inherited Media

padding + + + + All elements – V

padding-bottom + + + + All elements – V

padding-left + + + + All elements – V

padding-right + + + + All elements – V

padding-top + + + + All elements – V

page – + – + Block-level elements + P

page-break-after – + + + Block-level elements – V, P

page-break-before – + + + Block-level elements – V, P

page-break-inside – + + + Block-level elements + P

page-policy – – – + @counter and @string
blocks

? P

pause – + + + All elements – S

pause-after – + + + All elements – S

pause-before – + + + All elements – S

perspective – – – + Block-level and inline-
level elements

– V

perspective-origin – – – + Block-level and inline-
level elements

– V

pitch – + + – All elements + A

pitch-range – + + – All elements + A

play-during – + + – All elements – A

position – + + + All elements – V

presentation-level – – – + All elements + All

quotes – + + + All elements, ::before,
::after, ::alternate,
::marker, ::line-marker,
margin areas, and @
footnote areas

– V

region-fragment – – – + CSS regions – V

resize – – – + Elements with overflow
other than visible

– V

rest – – – + All elements – S

rest-after – – – + All elements – S

rest-before – – – + All elements – S

Table 5-5. (continued)

(continued)

CHAPTER 5 ■ STYLE SHEETS

183

Property CSS1 CSS2 CSS2.1 CSS3 Applicability Inherited Media

richness – + + – All elements + A

right – + + + Positioned elements – V

rotation – – – + Block-level elements,
inline-table elements, and
inline-block elements

– V

rotation-point – – – + Block-level elements – V

ruby-align – – – + All elements and
generated content

– V

ruby-merge – – – + Ruby annotation
containers

+ V

ruby-position – – – + The parent of elements
with display: ruby-text

+ V

shape-image-threshold – – – + Floats – V

shape-outside – – – + Floats – V

shape-margin – – – + Floats – V

size – + – + Page context ? P

speak – + + + All elements + S

speak-as – – – + All elements + S

speak-header – + + – Elements that have table
header information

+ A

speak-numeral – + + – All elements + A

speak-punctuation – + + – All elements + A

speech-rate – + + – All elements + A

stress – + + – All elements + A

string-set – – – + All elements – All

table-layout – + + ? Table and inline-table
elements

– V

tab-side – – – + Elements with display:
stack

+ V

text-align + + + + Block containers + V

text-align-last – – – + Block containers + V

text-combine-upright – – – + Non-replaced inline
elements

+ V

text-decoration + + + + All elements – V

text-decoration-color – – – + All elements – V

Table 5-5. (continued)

(continued)

CHAPTER 5 ■ STYLE SHEETS

184

Property CSS1 CSS2 CSS2.1 CSS3 Applicability Inherited Media

text-decoration-line – – – + All elements –* V

text-decoration-skip – – – + All elements + V

text-decoration-style – – – + All elements – V

text-emphasis – – – + All elements + V

text-emphasis-color – – – + All elements + V

text-emphasis-position – – – + All elements + V

text-emphasis-style – – – + All elements + V

text-height – – – + Inline elements and
parents of element with
display: ruby-text

+ V

text-indent + + + + Block containers + V

text-justify – – – + Block containers, inline
elements

+ V

text-orientation – – – + All elements except table
rows and columns

+ V

text-overflow – – – + Block containers – V

text-shadow – + – + All elements + V

text-space-collapse – – – + All elements + V

text-transform + + + + All elements + V

text-underline-position – – – + All elements + V

text-wrap – – – + All elements + V

top – + + + Positioned elements – V

transform – – – + Block and inline elements – V

transform-origin – – – + Block and inline elements – V

transform-style – – – + Block and inline elements – V

transition – – – + All elements, :before and
:after pseudoelements

– I

transition-delay – – – + All elements, :before and
:after pseudoelements

– I

transition-duration – – – + All elements, :before and
:after pseudoelements

– I

transition-property – – – + All elements, :before and
:after pseudoelements

– V

transition-timing-function – – – + All elements, :before and
:after pseudoelements

– I

Table 5-5. (continued)

(continued)

CHAPTER 5 ■ STYLE SHEETS

185

Property CSS1 CSS2 CSS2.1 CSS3 Applicability Inherited Media

unicode-bidi – + + + All elements* – V

vertical-align + + + + Inline-level elements – V

visibility – + + + All elements + V

voice-balance – – – + All elements + S

voice-duration – – – + All elements – S

voice-family – + + + All elements + S

voice-pitch – – – + All elements + S

voice- range – – – + All elements + S

voice-rate – – – + All elements + S

voice-stress – – – + All elements + S

voice-volume – – – + All elements + S

volume – + + – All elements + A

white-space + + + + All elements + V

widows – + + + Block-level elements + V

width + + + + All elements except
nonreplaced inline
elements, table rows, and
row groups

– V

word-break – – – + All elements + V

word-spacing + + + + All elements + V

word-wrap – – – + All elements + V

wrap-flow – – – + Block-level elements – V

wrap-through – – – + Block-level elements – V

writing-mode – – – + All elements except table
rows and table columns

+ V

z-index – + + + Positioned elements – V

Legend
* Special rules might apply
n Not defined for shorthand properties
d Depends on the individual property
? Not finalized yet
V Visual media
I Interactive media
A Aural media
P Paged media
N Noncontinuous media (continuous media only if column length is constrained)
S Speech media

Table 5-5. (continued)

CHAPTER 5 ■ STYLE SHEETS

186

The browser support of CSS properties varies and is gradually improving. However, even the CSS 2.1 properties
gained a more or less complete and correct implementation only recently. Consequently, old browsers do not support
all properties and have incorrect implementation for many properties. This was the major reason for the huge
difference in rendering the same site under different browsers for years. With the proper, if not full, implementation of
CSS properties in modern browsers, this difference has been decreased to a minimum.

Most Common CSS3 Features and Properties

With CSS3, you can create rounded borders, add shadow to boxes, use an image as a border, and other advanced
styling without creating images in an image processing program such as Photoshop.

border-radius

With CSS3, you can add rounded borders to elements individually using the border-top-left-radius, border-top-
right-radius, border-bottom-right-radius, and border-bottom-left-radius properties (Listing 5-68), or together
with their shorthand property, border-radius (Listing 5-69).

Listing 5-68. Border Radii Set Individually for the Four Corners

div {
 border: 2px solid;
 border-top-left-radius: 2em;
 border-top-right-radius: 1.8em;
 border-bottom-right-radius: 2.2em;
 border-bottom-left-radius: 1.6em;
}

The property value (the radius) can be declared in pixels, ems, or %, which defines the shape of the corners.

Listing 5-69. Identical Border Radius for All Corners

div {
 border: 2px solid;
 border-radius: 25px;
}

The radii values are declared in the order top-left, top-right, bottom-right, and bottom-left. If bottom-left
is omitted, it is the same as top-right. If bottom-right is omitted, it is the same as top-left. If top-right is omitted,
it is the same as top-left. If all four radii values are the same, the border-radius shorthand property should be used
with that value.

box-shadows

In CSS3, the box-shadow property is used to add shadow to divisions (Listing 5-70).

Listing 5-70. Shadow on the div Elements

div {
 box-shadow: 10px 10px 5px #848484;
}

CHAPTER 5 ■ STYLE SHEETS

187

text-shadow

In CSS3, the text-shadow property adds shadow to texts (Listing 5-71).

Listing 5-71. Simple Text Shadow Effect

h2 {
 text-shadow: 2px 3px 5px #00f;
}

The first property value defines the x-offset, the second value is the y-offset, the third value is the z-offset (blur),
and the last value is the color of the shadow. If you want to add multiple shadows, a comma should be used as the
separator (Listing 5-72).

Listing 5-72. Outline Effect Using Multiple Text Shadows

h2 {
 text-shadow: 0 1px 0 #000, 0 -1px 0 #000, 1px 0 0 #000, -1px 0 0 #000;
 color: #fff;
}

Background Size

In CSS3, background images are resizable, making it possible to implement the background image to take up all
available space (Listing 5-73) or be proportional to the screen, regardless of the width of the browser window.

Listing 5-73. Stretched Background

body {
 background: url('/img/bg.jpg') no-repeat;
 background-size: 100% 100%;
}

Multiple Backgrounds

In CSS3, multiple backgrounds can be declared (Listing 5-74). The separate background images are
separated by a comma.

Listing 5-74. Two Background Images for One Element

#container {
 background: url('/img/bg.jpg') 0 0 no-repeat, url('/img/bg2.jpg') 100% 0 no-repeat;
}

In this example, the first image is placed to the top-left position (0 0), while the second to the top-right position
(100% 0). Multiple backgrounds can be especially useful when applying a texture or gradient as the main background,
and a photo as the other.

CHAPTER 5 ■ STYLE SHEETS

188

Transitions

With CSS3, we can add effects to elements that will gradually change from one style to another without JavaScript
or Flash animations. transition-delay determines when the transition effect should start. transition-duration
specifies the length of the transition effect in seconds or milliseconds. transition-property identifies the CSS
property the transition effect is applied for. transition-timing-function specifies the speed curve of the transition
effect. transition is the shorthand property of the four transition properties.

One of the typical transition effects is associated with the event when a user is moving the mouse over an
element (Listing 5-75).

Listing 5-75. Specifying a :hover Effect for div Elements

div:hover {
 width: 400px;
}

If there is no duration specified, the transition will have no effect, because the default value is 0. To specify the
duration, the CSS property to which the transition will be applied must be defined, followed by the transition length
such as transition: width 2s;.

Transition effects can be added to more than one CSS property by separating the properties with a comma
(Listing 5-76).

Listing 5-76. Transition Effects for Width, Height, and Transformation

div {
 transition: width 2s, height 2s, transform 2s;
}

Tip ■ It is recommended to apply CSS3 rules with caution, because most modules of CSS3 are not standardized yet,

and browser support varies. Web designers should ensure the graceful degradation of user experience on older

browsers that do not support CSS3. While the rounded corners declared by using the CSS3 property border-radius

are not rendered by older browsers, the general layout and styling provide a similar appearance in old browsers as with

modern browsers with CSS3 support. Similarly, if Web Fonts—that are not supported by older browsers—are used on a site,

a common font and at least a generic font family should be declared as a fallback mechanism (see Chapter 9 for details).

Initial Property Values
All CSS properties have their initial values that are applied when the property values are set neither by cascading nor by
inheritance. The initial value of each property is defined by the CSS specifications. An initial value is one of the allowed
values of the corresponding CSS property. For example, a color declaration (in any of the allowed formats, typically in
hexadecimal notation), transparent, and inherit are all legal values of the background-color property, from which
transparent is the initial value that can be easily overridden by declaring the desired value in your CSS file (Listing 5-77).

Listing 5-77. The Declared Value Overrides the Initial Value Defined by the CSS Specification

body {
 background-color: #198c00;
}

CHAPTER 5 ■ STYLE SHEETS

189

This is the reason why the background of all paragraphs, divisions, and other elements is transparent. Another
example is the bullet type of lists, which is often used without override. If the value of the property list-style-type
is not set by the developer, the initial value is used for rendering, which is disc. However, it can be overridden by
any other allowed values of that property, including circle, square, decimal, decimal-leading-zero, lower-roman,
upper-roman, lower-greek, lower-latin, upper-latin, armenian, georgian, lower-alpha, upper-alpha, none, and
inherit. The last value, inherit, can be applied not only to list-style-type but also to any other CSS property in
order to explicitly apply the initial value of the corresponding property.

Since the root element has no parent element, its value is set to the initial property value by default.

Default Styles of Rendering Engines
Since the default style sheet of rendering engines contains different property values for certain properties, the
property values that are not declared by the web site developer might look different under various browsers. Because
of the different line heights, margins, font sizes, and other properties, the overall appearance of a web site is typically
not uniform. Although some of the default property values differ slightly only, developers cannot rely on the default
styles of rendering engines.

Tip ■ The inconsistencies between the CSS implementations of browsers can be minimized by overriding the CSS

property values of the default style sheet of rendering engines. This technique is called CSS reset. One of the most

well-known CSS reset files was written and maintained by Eric A. Meyer (Listing 5-78) and can be used on your web site

for free [22].

Listing 5-78. A CSS Reset

/* http://meyerweb.com/eric/tools/css/reset/
 v2.0 | 20110126
 License: none (public domain)
*/
html, body, div, span, applet, object, iframe, h1, h2, h3, h4, h5, h6, p, blockquote, pre, a,
abbr, acronym, address, big, cite, code, del, dfn, em, img, ins, kbd, q, s, samp, small, strike,
strong, sub, sup, tt, var, b, u, i, center, dl, dt, dd, ol, ul, li, fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td, article, aside, canvas, details, embed, figure,
figcaption, footer, header, hgroup, menu, nav, output, ruby, section, summary, time, mark, audio,
video {
 margin: 0;
 padding: 0;
 border: 0;
 font-size: 100%;
 font: inherit;
 vertical-align: baseline;
}
/* HTML5 display-role reset for older browsers */
article, aside, details, figcaption, figure, footer, header, hgroup, menu, nav, section {
 display: block;
}

http://meyerweb.com/eric/tools/css/reset/

CHAPTER 5 ■ STYLE SHEETS

190

body {
 line-height: 1;
}
ol, ul {
 list-style: none;
}
blockquote, q {
 quotes: none;
}
blockquote:before, blockquote:after, q:before, q:after {
 content: '';
 content: none;
}
table {
 border-collapse: collapse;
 border-spacing: 0;
}

XSL
Although it is not widely used and only a limited number of web developers are familiar with it, since 1999 a
technology other than CSS can also be used for styling XML-serialized web documents [23]. Extensible Stylesheet
Language (XSL) is a language family that can be used for styling, manipulation, and transformation of XML files.
There are three XSL languages; however, only one of them is a style sheet language:

•฀ XSL Transformations (XSLT): An XML style sheet language that can be used for transforming XML
documents into other XML documents or other formats such as HTML or plain text. The original
document remains unchanged, and a new document is created based on the existing one.

•฀ XSL Formatting Objects (XSL-FO): An XML markup language applied for specifying the visual
formatting of XML documents. Several software support XSL-FO that can provide various
output formats, including plain text, PDF, PS, SVG, PCL, and MIF.

•฀ XML Path Language (XPath): A non-XML query language that can also be used by XSLT.

XSLT Style Sheets
XSLT style sheets consist of one or more style sheet modules that are part of XML documents or form entire XML
documents by themselves. The typical file extensions of XSLT are .xsl and .xslt. XSLT style sheets use the media
type application/xslt+xml.

Namespaces

The XSLT namespace is http://www.w3.org/1999/XSL/Transform. However, further (reserved) namespaces are also
recognized by XSLT processors [24], including the following:

The standard function namespace, •฀ http://www.w3.org/2005/xpath-functions

The XML namespace, •฀ http://www.w3.org/XML/1998/namespace

The schema namespace, •฀ http://www.w3.org/2001/XMLSchema

The schema instance namespace, •฀ http://www.w3.org/2001/XMLSchema-instance

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/2005/xpath-functions
http://www.w3.org/XML/1998/namespace
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance

CHAPTER 5 ■ STYLE SHEETS

191

Structure

The structure of XSLT style sheets looks like Listing 5-79.

Listing 5-79. XSLT Style Sheet Structure

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:import href="..."/>
 <xsl:include href="..."/>
 <xsl:strip-space elements="..."/>
 <xsl:preserve-space elements="..."/>
 <xsl:output method="..."/>
 <xsl:key name="..." match="..." use="..."/>
 <xsl:decimal-format name="..."/>
 <xsl:namespace-alias stylesheet-prefix="..." result-prefix="..."/>
 <xsl:attribute-set name="...">
 ...
 </xsl:attribute-set>
 <xsl:variable name="...">...</xsl:variable>
 <xsl:param name="...">...</xsl:param>
 <xsl:template match="...">
 ...
 </xsl:template>
 <xsl:template name="...">
 ...
 </xsl:template>
</xsl:stylesheet>

Note that the previous example shows all allowed element types; however, style sheets might contain zero or
more of these elements.

Elements

XSLT style sheets are represented by the xsl:stylesheet or xsl:transform element in XML documents. An
xsl:stylesheet element must have a version attribute. The xsl:stylesheet element may contain the following
types of elements: xsl:import, xsl:include, xsl:strip-space, xsl:preserve-space, xsl:output, xsl:key,
xsl:decimal-format, xsl:attribute-set, xsl:param, xsl:variable, xsl:namespace-alias, and xsl:template.
Table 5-6 provides an overview of XSLT 1.0 elements.

http://www.w3.org/1999/XSL/Transform

CHAPTER 5 ■ STYLE SHEETS

192

Table 5-6. Overview of XSLT Elements

Element Description

apply-imports Applies a template rule from an imported style sheet

apply-templates Applies a template rule to the current element or to the child nodes of the current element

attribute Adds an attribute

attribute-set Defines a named attribute set

call-template Calls a named template

choose Multiple conditional test (used with when and otherwise)

comment Creates a comment node

copy Creates a copy of the current node

copy-of Creates a copy of the current node (with child nodes and attributes)

decimal-format Defines the format to be used for converting numbers into strings with the
format-number function

element Creates an element node in the output document

fallback Declares an alternate code for XSLT elements

for-each Provides a loop within a node set

if Provides a template to be applied in case of a specified condition

import Imports an external style sheet (with lower precedence)

include Includes an external style sheet (with same precedence)

key Declares a key to be used with the key function

message Writes a message (typically error message)

namespace-alias Replaces a namespace in the style sheet to another one in the output

number Determines the position of the current node

otherwise Specifies a default action for the choose element

output Defines the format of the output document

param Adds a (local or global) parameter

preserve-space Defines elements with preserved whitespace

processing-instruction Writes a processing instruction to the output

sort Sorts the output

strip-space Defines the elements from which whitespace should be removed

stylesheet Defines the root element of a style sheet

template Applies a template when a specified node is matched

text Writes text to the output

transform Defines the root element of a style sheet

value-of Extracts the value from the selected node

variable Declares a (local or global) variable

when Specifies an action for the choose element

with-param Defines the parameter value to be passed into a template

CHAPTER 5 ■ STYLE SHEETS

193

The application of XSLT elements is straightforward and follows general XML authoring principles. Listing 5-80
shows an example.

Listing 5-80. XSLT Elements and Attributes Correspond to XML Guidelines

<xsl:param name="page-header-margin">20px</xsl:param>

Standard Attributes

Several standard attributes are associated with XSLT elements, including version, exclude-result-prefixes,
extension-element-prefixes, xpath-default-namespace, default-collation, and use-when. To distinguish
them from attributes defined by authors, they should be written with the namespace notation as xsl:version,
xsl:exclude-result-prefixes, xsl:extension-element-prefixes, xsl:xpath-default-namespace, xsl:default-
collation, and xsl:use-when.

Combining CSS and XSL
XSL can also be used as a bridge between complex XML-based documents and the CSS formatting model. Since
CSS has no XML syntax, CSS properties become XML attributes in the XSL syntax. The main CSS object is chunk.
Additional objects might also be required. Usually they are other chunk objects with functionality such as anchor,
or further objects such as switch. For example, the CSS ruleset in Listing 5-81 can be written in XSL syntax, as
shown in Listing 5-82.

Listing 5-81. CSS Ruleset Example to Be Converted into XSL

{
 font-size: 1.2em;
 text-indent: 1em;
}

Listing 5-82. The XSL Equivalent of Listing 5-81

<css:chunk
 font-size="1.2em"
 text-indent="1em">

CSS Preprocessing
Although CSS is a powerful language, it has limitations compared to traditional programming languages and
especially object-oriented programming languages. For example, CSS does not support mixins such as classes
that contain a combination of methods from other classes. Another desirable CSS feature would be selector
inheritance, which is not supported by CSS. CSS has a set of selectors and pseudo-selectors that group rules
that apply to them. CSS preprocessors extend CSS by providing additional mechanisms available in traditional
programming languages, particularly object-oriented languages, but that are not available in CSS. Such
extensions are very useful in the development of large, complex websites and web applications,9 providing
concise style sheets that are faster to write, and easier to maintain or update. One of the principles in CSS
preprocessing is DRY (Don’t Repeat Yourself (as opposed to WET, Write Everything Twice). The most popular
CSS preprocessors are Sass, LESS, and Stylus.

9Since฀CSS฀is฀abstracted,฀there฀is฀an฀additional฀step฀to฀updates฀and฀changes,฀which฀is฀not฀always฀worthwhile฀in฀small฀web฀projects.

CHAPTER 5 ■ STYLE SHEETS

194

Sass
Sass (Syntactically awesome stylesheets) is a scripting language that is interpreted into Cascading Style Sheets. Sass
has two syntaxes: the original syntax (“the indented syntax”, typically with the file extension .sass), and the newer
syntax, known as SCSS (with the extension .scss). The original syntax is similar to the syntax of Haml, applying
indentation to separate code blocks and newline characters to separate rules. SCSS uses block formatting similar to
that of CSS, braces to denote code blocks, and semicolons to separate lines within a block [25].

LESS
LESS is another CSS preprocessor to make CSS more maintainable, themable, and extendable [26]. LESS is influenced by
Sass and the SCSS syntax. LESS is a nested metalanguage, meaning that any valid CSS code is also valid LESS code (sharing
the same semantics). LESS provides programming mechanisms such as variables, nesting (selectors inside other selectors),
mixins, operators (addition, subtraction, division, and multiplication of property values and colors to create complex
relationships between properties), and functions (manipulation of values through JavaScript). A distinctive feature of LESS
compared to other CSS preprocessors is that LESS allows real-time compilation via less.js within the browser. LESS can
be used on the client-side or the server-side, or compiled into CSS. The file extension of LESS files is .less.

Stylus
The third most popular CSS preprocessor is Stylus, a dynamic style sheet language influenced by Sass and LESS [27].
Stylus runs on the Node platform [28]. In Stylus, colons, semicolons, commas, and braces are optional. Stylus supports
variables, interpolation, mixins, arithmetics, type coercion, dynamic importing, conditionals, iteration, selector
nesting, parent referencing, variable function calls, lexical scoping, functions, optional compression, character
escaping, and robust error reporting. The typical file extension for Stylus files is .styl.

Summary
In this chapter, you learned how to separate presentation from content, which is imperative in web site
standardization. You know the syntax of Cascading Style Sheets, the language used by virtually every web site. You
have mastered the use of CSS selectors and can apply them in your daily work to control the appearance of exactly
those elements or sets of elements that need to be styled. By now you know how to use the cascading feature of CSS
with confidence, which makes it possible to create CSS files that are optimal in length and easy to maintain. You also
know how to ensure backward-compatibility by applying a fallback mechanism and properties supported even by
older browsers. You learned that XML files can be styled not only by CSS but also by using XSL.

In the next chapter, you will learn about the standardization issues of server-side scripting and web applications.

References
 1. Dahlström E, Dengler P, Grasso A, Lilley C, McCormack C, Schepers D, Watt J, Ferraiolo

J, Jun F, Jackson D (eds) (2011) Styling with CSS. In: SVG 1.1 (2nd Edn). World Wide Web
Consortium. http://www.w3.org/TR/SVG/styling.html#StylingWithCSS. Accessed 20
October 2014

 2. Chavchanidze G (2004) Formatting Mathematical Articles with Cascading Style Sheets.
Andrea Razmadze Mathematical Institute. http://www.princexml.com/samples/math.pdf.
Accessed 20 October 2014

 3. Bos B, Carlisle D, Chavchanidze G, Ion PDF, Miller BR (2011) A MathML for CSS Profile.
W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/mathml-for-css/. Accessed 20 October 2014

http://www.w3.org/TR/SVG/styling.html#StylingWithCSS
http://www.princexml.com/samples/math.pdf
http://www.w3.org/TR/mathml-for-css/

CHAPTER 5 ■ STYLE SHEETS

195

 4. Grant M (ed) (2013) CSS Print Profile. World Wide Web Consortium.
http://www.w3.org/TR/css-print/. Accessed 20 October 2014

 5. Hayes S, Adams G, Çelik T, Lie HW (2014) CSS TV Profile 1.0. World Wide Web
Consortium. http://www.w3.org/TR/css-tv. Accessed 20 October 2014

 6. Bos B (ed) (2014) CSS Mobile Profile 2.0. World Wide Web Consortium.
http://www.w3.org/TR/css-mobile/. Accessed 20 October 2014

 7. Lie HW, Bos B (2008) Cascading Style Sheets, level 1. W3C Recommendation (revised
version). World Wide Web Consortium. http://www.w3.org/TR/CSS1/. Accessed
20 October 2014

 8. Bos B, Çelik T, Hickson I, Lie HW (eds) (2011) Cascading Style Sheets Level 2 Revision 1
(CSS 2.1) W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/CSS21/. Accessed 20 October 2014

 9. Meyer EA, Bos B (eds) (2001) Module Descriptions and Related Information. In:
Introduction to CSS3. W3C Working Draft. World Wide Web Consortium.
http://www.w3.org/TR/css3-roadmap/#module. Accessed 09 October 2010

 10. Çelik T, Lilley C, Baron LD, Pemberton S, Pettit B (eds) (2011) CSS Color Module Level 3.
W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/css3-color/. Accessed 20 October 2014

 11. Etemad EJ (ed) (2014) CSS Namespaces Module Level 3. W3C Recommendation. World
Wide Web Consortium. http://www.w3.org/TR/css3-namespace/.
Accessed 20 October 2014

 12. Çelik T, Etemad EJ, Glazman D, Hickson I, Linss P, Williams J (eds) (2011) Selectors Level 3.
W3C Recommendation. http://www.w3.org/TR/selectors/. Accessed 20 October 2014

 13. Rivoal F (ed) (2012) Media Queries. W3C Recommendation.
http://www.w3.org/TR/css3-mediaqueries/. Accessed 20 October 2014

 14. Bos B, Çelik T, Hickson I, Lie HW (eds) (2011) Grammar of CSS 2.1. In: Cascading Style
Sheets Level 2 Revision 1 (CSS 2.1) Specification. W3C Recommendation. World Wide Web
Consortium. http://www.w3.org/TR/CSS21/grammar.html. Accessed 20 October 2014

 15. Bos B, Çelik T, Hickson I, Lie HW (eds) (2011) Selector syntax. In: Cascading Style Sheets
Level 2 Revision 1 (CSS 2.1) Specification. W3C Recommendation. World Wide Web
Consortium. http://www.w3.org/TR/CSS21/selector.html#selector-syntax.
Accessed 20 October 2014

 16. Çelik T, Etemad EJ (eds) (2010) Syntax and Parsing. In: CSS Style Attributes. World Wide
Web Consortium. http://www.w3.org/TR/2010/CR-css-style-attr-20101012/#syntax.
Accessed 20 October 2014

 17. Clark J, Pieters S, Thompson HS (eds) (2010) Associating Style Sheets with XML
documents 1.0 (Second Edition). W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/xml-stylesheet/. Accessed 20 October 2014

 18. Lie HW (ed) (2005) Cascading. In: CSS3 module: Cascading and inheritance.
W3C Working Draft. World Wide Web Consortium.
http://www.w3.org/TR/2005/WD-css3-cascade-20051215/#cascading.
Accessed 20 October 2014

http://www.w3.org/TR/css-print/
http://www.w3.org/TR/css-tv
http://www.w3.org/TR/css-mobile/
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS21/
https://www.w3.org/TR/css3-roadmap/#module
http://www.w3.org/TR/css3-color/
http://www.w3.org/TR/css3-namespace/
http://www.w3.org/TR/selectors/
http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/CSS21/grammar.html
http://www.w3.org/TR/CSS21/selector.html#selector-syntax
http://www.w3.org/TR/2010/CR-css-style-attr-20101012/#syntax
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/2005/WD-css3-cascade-20051215/#cascading

CHAPTER 5 ■ STYLE SHEETS

196

 19. Glazman D, Çelik T, Hickson I, Linss P, Williams J (eds) (2001) Calculating a selector’s
specificity. In: Selectors. World Wide Web Consortium.
http://www.w3.org/TR/2001/CR-css3-selectors-20011113/#specificity.
Accessed 20 October 2014

 20. Bos B, Çelik T, Hickson I, Lie HW (2011) Box model. In: Cascading Style Sheets Level 2
Revision 1 (CSS 2.1) Specification. W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/CSS21/box.html. Accessed 20 October 2014

 21. Silver L (2006) Fix the Box Instead of Thinking Outside It. In: CSS Enhancements in
Internet Explorer 6. Microsoft Corporation.
http://msdn.microsoft.com/en-us/library/bb250395.aspx#cssenhancements_topic3.
Accessed 20 October 2014

 22. Meyer EA, Meyer KS (2014) CSS Tools: Reset CSS. Eric A. Meyer, Kathryn S. Meyer.
http://meyerweb.com/eric/tools/css/reset/. Accessed 20 October 2014

 23. Clark J (ed) (1999) XSL Transformations (XSLT) Version 1.0 W3C Recommendation. World
Wide Web Consortium. http://www.w3.org/TR/xslt. Accessed 20 October 2014

 24. Kay M (ed) (2007) XSL Transformations (XSLT) Version 2.0. W3C Recommendation. World
Wide Web Consortium. http://www.w3.org/TR/xslt20/. Accessed 20 October 2014

 25. Catlin H, Weizenbaum N, Eppstein C (2014) Sass: Syntactically Awesome Style Sheets.
http://sass-lang.com/. Accessed 20 October 2014

 26. Sellier A, Schlinkert J, Page L, Bointon M, Jurčovčová M, Dean M, Mikhailov M (2014)
Getting started | Less.js. http://lesscss.org/. Accessed 20 October 2014

 27. LearnBoost (2014) Stylus—expressive, robust, feature-rich CSS preprocessor.
http://learnboost.github.io/stylus/. Accessed 20 October 2014

 28. Joyent (2014) Node.js. http://nodejs.org/. Accessed 20 October 2014

http://www.w3.org/TR/2001/CR-css3-selectors-20011113/#specificity
http://www.w3.org/TR/CSS21/box.html
http://msdn.microsoft.com/en-us/library/bb250395.aspx#cssenhancements_topic3
http://meyerweb.com/eric/tools/css/reset/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt20/
http://sass-lang.com/
http://lesscss.org/
http://learnboost.github.io/stylus/
http://nodejs.org/

197

CHAPTER 6

Scripting and Applications

Modern web sites are meant to be dynamic. Very few web sites are based purely on document structure and style
sheets. Web site sections often behave differently or react to user input. While small programs can run in the browser,
complex functions are usually executed on the web server. Most dynamic sites are powered by databases that are
handled by server-side scripts. Since server-side languages frequently use variables and reuse large code blocks, the
validity of the generated code relies on the code quality of the development framework, the Content Management
System, or the templates, often resulting in incorrect markup and styles. Even so, web designers can modify the code
so that the server-side system will generate valid, error-free markup and style sheets. This can be challenging if the
framework or CMS core uses invalid syntax and multiplies incorrect code blocks throughout the site.

In this chapter, you will learn why the standardization of dynamic content is more challenging than that of static
pages. Becoming familiar with the basic syntax of the most widely used client-side and server-side scripting languages
is crucial, because small programs written in these languages are often embedded into the markup. The inline
scripts might have an impact on the standards compliance of a whole web page. You will also learn how to provide
alternate content for scripts. Although the standard compliance of the markup generated on the server side using
web programming languages, frameworks, and development platforms to provide web applications is constantly
improving, the generated code is often incorrect. Many of these development technologies are not standardized
but are implemented worldwide and considered de facto standards. Many technologies rely on a number of other
technologies and standards. This chapter provides a quick overview of some of the most common scripting and
application development technologies that often determine the standard compliance of dynamic web sites.

Client-Server Architectures
The distributed application structure that divides tasks and/or workloads between resource or service providers,
called servers, and service requesters, called clients, is known as the client-server model. Clients and servers
communicate over the Web to exchange data and perform tasks.

The client-server architecture represents relationships between cooperating programs in a web application.
For example, a contact form can be evaluated on the client side and processed on the server side.

The general syntax and grammar conventions of the most popular client-side and server-side scripting and
programming languages, technologies, and frameworks are discussed in the following sections. Note that a detailed
description of scripts and applications is beyond the scope of the book.

Scripting and Standards Implementation
A script is program code that does not require preprocessing (such as compiling) before execution [1]. Small dynamic
components of web documents such as the current date or interactive content and behavior can be added by scripting
languages. Modifications can be performed on the web page content without reloading the new version of the page.
Content can be added to or sent from a web page with Asynchronous JavaScript and XML (Ajax) without reloading the
entire updated page.

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

198

Static web pages have constant content that is either valid or not, but can be relatively easily validated and, if
necessary, updated to make the markup and styles standard-compliant. Server-side scripting, on the other hand,
provides content generated on the fly. The source code of the program that generates the markup on the server-side
is quite complex to check for markup errors. Server-side scripts often rely on hard-coded codeblocks that cannot be
easily modified. Validating and standardizing large web sites with hundreds of thousands of web pages relying on
incorrect code can be practically infeasible.

The major problem with web sites relying on data stored in databases and processed by server-side scripts is
the higher complexity and the lack of full control. Templates used by Content Management Systems are not always
standards-compliant which is distributed on all sites that apply the same templates. Moreover, a single problem of
either the script or the database can result in an error message instead of the web page content (Figure 6-1).

Figure 6-1. Content replaced by error message

There is a huge difference between small programs running on web pages and programs created for generating
web pages. Server-side scripting languages are powerful and provide features that cannot be achieved by static
content. There is nothing wrong with small contact forms, for example. However, server-side scripts should be used
only where really needed. A huge advantage of server-side scripts is that they can provide the same headers, footers,
and so on, as templates for identical markup fragments (header, sidebar, main area, footer, etc.) throughout the web
site that can be easily maintained from a single location (in contrast to static web pages). However, the application
of server-side scripting should be minimized on web sites that do not rely on databases and dynamically generated
content, such as small-scale, brochure-style web sites. Undoubtedly, a large share of invalid markup code on the
Web is generated by server-side scripting languages. In many cases, additional practices are required to obtain valid
markup, such as to handle the ampersand characters used as an argument separator in URLs of PHP sessions [2]

Client-Side Development
Client-side development refers to those web programs that run on the client side, generally a web browser, instead
of being executed on the server side (on a web server). Client-side programs can be used to provide different and
changing content on a web page, depending on user input and other variables. For example, “dynamic” greetings can
be added to a web page according to the current time of day.

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

199

Ajax
Ajax is an acronym for Asynchronous JavaScript and XML. It is not a programming language but a group of web
technologies that can be used together, such as HTML, CSS, DOM, JavaScript, XML, and XSLT. Ajax can be used on
the client side to create interactive web applications. Web site applications empowered with Ajax can send data to and
retrieve data from servers asynchronously (which is the reason for the name). Ajax is suitable for avoiding full-page
reloads when exchanging data asynchronously. This approach ensures that the display and behavior of the current
page won’t be affected. Despite the name, Ajax does not require XML; the JavaScript Object Notation (JSON), a
lightweight text-based open standard [3], is often used instead. The requests are not necessarily asynchronous either.
Ajax usually retrieves data using the XMLHttpRequest object [4]. The DOM is used along with JavaScript to dynamically
display information and allow the user to interact with the information presented. The data interchanged using Ajax
can be manipulated using XSLT.

Note ■ Modern browsers have a built-in XMLHttpRequest object. Before IE7, Internet Explorer provided an object

called ActiveXObject.

To demonstrate Ajax, the code in Listing 6-1 creates a link that will replace the content of a div element with the
content of a text file. The Document Object Model is used to manipulate the object. The XMLHTTPRequest object is
used to make the HTTP request load the file ajaxdemo.txt and display its content.

Listing 6-1. Ajax Demonstration

<script type="text/javascript">
 var http = false;
 if (navigator.appName == "Microsoft Internet Explorer") {
 http = new ActiveXObject("Microsoft.XMLHTTP");
 } else {
 http = new XMLHttpRequest();
 }

 function replace() {
 http.open("GET", "ajaxdemo.txt", true);
 http.onreadystatechange=function() {
 if (http.readyState == 4) {
 document.getElementById('repdiv').innerHTML = http.responseText;
 }
 }
 http.send(null);
 }
 </script>

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

200

In the document body, we need a function call and a div with the text to replace (Listing 6-2).

Listing 6-2. The Function Call and the div with the Original Text

<p>
 Click here to replace text
</p>

<div id="repdiv">
 Original text in the markup
</div>

The http.open() argument is the asynchronous argument that sends the request in the background.

Flex
Adobe Flex is a software development kit (SDK) for cross-platform, rich Internet applications based on the Adobe
Flash technology [5]. The user interface layout and behavior are described by a declarative XML-based language,
MXML, while the client logic is created by using the ActionScript 3.0 programming language.

Note ■ ActionScript is an object-oriented language and a dialect of ECMAScript. Consequently, ActionScript is a super-

set of the syntax and semantics of JavaScript. Most frequently, ActionScript is implemented in SWF files.

As an example, let’s create a simple RSS news feed reader! First, we need to write a common XML declaration,
followed by an MXML declaration (Listing 6-3).

Listing 6-3. The XML and MXML Declaration

<?xml version="1.0" ?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

</mx:Application>

Within the mx:Application, our HTTPService should be defined, and the custom controls (DataGrid, TextArea,
and Button) are prepared for the panel (Listing 6-4).

Listing 6-4. The HTTPService and the Panel for the Custom Controls

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">
 <mx:HTTPService id="httpRSS" url="http://www.example.com/rss/" resultFormat="object" />
 <mx:Panel id="reader" title="Simple RSS Reader" width="600">
 </mx:Panel>
</mx:Application

Now it is time to define the DataGrid. The horizontal dimension of the panel should be set by the width
parameter. Each item tag of the RSS file is bound to a DataGrid row by the dataProvider attribute. Next we create an
event handler to display the contents of the description tags inside the RSS items selected by the user. The
entries.selectedIndex variable is used to determine which item was clicked. The description of the corresponding
item is retrieved by httpRSS.result.rss.channel.item[entries.selectedIndex].description. The value of the
RSS description is assigned to the htmlText property of the TextArea (Listing 6-5).

http://www.macromedia.com/2003/mxml
http://www.macromedia.com/2003/mxml

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

201

Listing 6-5. Creating the DataGrid for the RSS Reader

<mx:DataGrid id="entries" width="{reader.width-15}"
 dataProvider="{httpRSS.result.rss.channel.item}"
 cellPress=
 "{body.htmlText=httpRSS.result.rss.channel.item[entries.selectedIndex].description}">
 <mx:columns>
 <mx:Array>
 <mx:DataGridColumn columnName="title" headerText="Title" />
 <mx:DataGridColumn columnName="pubDate" headerText="Date" />
 </mx:Array>
 </mx:columns>
</mx:DataGrid>

Finally, a TextArea needs to be created using the mx:TextArea tag, and a button needs to be created with a click
event handler to call the send() method on the HTTPService object (Listing 6-6).

Listing 6-6. The TextArea and the Button

<mx:TextArea id="body" editable="false" width="{reader.width-15}" height="400" />
<mx:Button label="Load
RSS channel items" click="{httpRSS.send()}" />

HTML5 APIs
HTML5 provides much more than just new structuring elements. HTML5 supports many features that were available
originally through plug-ins or sophisticated code only [6]. Beyond markup elements and attributes, HTML5 specifies
Application Programming Interfaces (APIs) as well [7]. A native drawing API, native sockets, and so on, eliminate the
problems associated with plug-ins.

The HTML5 APIs have separate specifications under W3C standardization. Some of the most frequently used
HTML5 APIs are discussed in the following sections.

The HTML5 Canvas API

The canvas markup element was introduced with HTML5, and the second level of the HTML Canvas 2D Context [8]
was published on December 17, 2012. The HTML5 canvas allows dynamic, scriptable rendering of 2D shapes and
bitmap images on a drawing surface.

Note ■ The HTML5 canvas has no built-in scene graph, which is a general data structure to arrange the logical (and

often spatial) representation of a graphical scene. The scene graph is commonly used by vector-based graphical systems,

including SVG. In SVG, all drawn shapes are stored as an object in the scene graph or the DOM and then rendered as

bitmap graphics. Consequently, if the SVG object attributes are changed, the browser can automatically rerender the

scene, which is not possible on the canvas. From this point of view, SVG graphics are more advanced than shapes on the

HTML5 canvas.

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

202

In Listing 6-7, you can see how to draw a simple triangle on the HTML5 canvas. First, a custom-size canvas is
declared with alternate textual content for older browsers that do not support the HTML5 canvas. Second, a script
element specifies two variables to shorten the code, a two-dimensional canvas, an emerald fill color, the coordinates
of the three corners of a triangle, and the triangle with the fill color.

Listing 6-7. Drawing on the HTML5 Canvas

<canvas id="samplecanvas" width="200" height="200">
 A triangle (requires HTML5 Canvas support)
</canvas>
<script>
 var mycanvas = document.getElementById("samplecanvas"),
 context2d = mycanvas.getContext("2d");
 context2d.fillStyle = "#2ad3a8";
 context2d.beginPath();
 context2d.moveTo(100, 0);
 context2d.lineTo(0, 55);
 context2d.lineTo(165, 100);
 context2d.fill();
</script>

The HTML5 canvas is supported by IE9+, Firefox 3.0+, Chrome 1.0+, Safari 3.0+, and Opera 9.5+.

The HTML5 File and DnD APIs

The HTML5 File API provides easy-to-use file control in web browsers. The File API is being standardized by the
World Wide Web Consortium [9]. The Drag & Drop (DnD) API specification defines an event-based mechanism that
adds additional markup for declaring elements to be draggable on web pages. The DnD API is being developed by the
Web Hypertext Application Technology Working Group [10].

The code in Listing 6-8 creates an interface to choose files either through browsing the directories on your
computer or by using drag and drop. The name, size, and MIME type of the selected files will be retrieved using the
HTML5 File API.

Listing 6-8. File API Demonstration

<h1>Choose file(s)</h1>
<p>
 <input id="upload" type="file" multiple="multiple">
</p>
<div id="drop">
 You can also drag and drop your files here
</div>
<h1>Retrieved file information</h1>
<ul id="fileList">
 <li class="no-items"><no files uploaded yet>

<script>
 (function () {
 var filesUpload = document.getElementById("upload"),
 dropArea = document.getElementById("drop"),
 fileList = document.getElementById("fileList");
 function fileTransfer (files) {

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

203

 var li,
 file,
 fileInfo;
 fileList.innerHTML = "";
 for (var i = 0, fl = files.length; i < fl; i++) {
 li = document.createElement("li");
 file = files[i];
 fileInfo = file.name; // Name
 fileInfo += " (" + file.type + "), "; // Type
 fileInfo += file.size + " bytes"; // Size
 li.innerHTML = fileInfo;
 fileList.appendChild(li);
 };
 };
 filesUpload.onchange = function () {
 fileTransfer(this.files);
 };
 dropArea.ondragenter = function () {
 return false;
 };
 dropArea.ondragover = function () {
 return false;
 };
 dropArea.ondrop = function (evt) {
 fileTransfer(evt.dataTransfer.files);
 return false;
 };
 })();
</script>

The division representing the drop area in the previous example (<div id="drop">) should be styled either with
a border or with a background color to make it visible (Listing 6-9).

Listing 6-9. CSS Ruleset for the Previous Example

#drop {
 border: 2px dashed #f00;
 padding: 10px;
}

Next, create a very simple drag-and-drop example with five words that can be dragged from one division to
another and back. First, declare the div items and make them draggable with the draggable attribute. Then, put them
into a container div and create the second div (the target) (Listing 6-10).

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

204

Listing 6-10. The Markup for the DnD Example

<section>
 <header>
 <h3>Drag the word “DnD” to the other box and back</h3>
 </header>
 <div id="leftDiv" ondragover="dragOver(event)" ondrop="dragDrop(event)">
 <div id="word1" class="dragbox" draggable="true" ondragstart="return
 dragDefine(event)" ondragend="dragEnd(event)">My</div>
 <div id="word2" class="dragbox" draggable="true" ondragstart="return
 dragDefine(event)" ondragend="dragEnd(event)">dog</div>
 <div id="word3" class="dragbox" draggable="true" ondragstart="return
 dragDefine(event)" ondragend="dragEnd(event)">is</div>
 <div id="word4" class="dragbox" draggable="true" ondragstart="return
 dragDefine(event)" ondragend="dragEnd(event)">called</div>
 <div id="word5" class="dragbox" draggable="true" ondragstart="return
 dragDefine(event)" ondragend="dragEnd(event)">Bobby</div>
</div>
 <div id="rightDiv" ondragover="return dragOver(event)" ondrop="dragDropped(event)"></div>
</section>

In the document head, declare a script element, and create the functions to be called (Listing 6-11) when the
following happens:

The item starts to be dragged•฀

The item being dragged is over another item•฀

The drag is complete•฀

The item being dragged is dropped•฀

Listing 6-11. The Functions for Handling Drag and Drop

<script>
 function dragStarted(evt) {
 evt.dataTransfer.effectAllowed = 'move';
 evt.dataTransfer.setData("text/plain", evt.target.getAttribute('id'));
 evt.dataTransfer.setDragImage(evt.target, 0, 0);
 return true;
}

function dragOver(evt) {
 evt.preventDefault();
}

function dragEnded(evt) {
 return true;
}

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

205

function dragDropped(evt) {
 var idDrag = evt.dataTransfer.getData("Text");
 evt.target.appendChild(document.getElementById(idDrag));
 evt.preventDefault();
}
</script>

Finally, declare styles, including the layout and colors for the boxes, in the document head or an external file
(Listing 6-12).

Listing 6-12. The Styles for the Boxes

body {
 width: 800px;
 margin: 100px auto;
}

#leftDiv, #rightDiv {
 float: left;
 width: 200px;
 height: 100px;
 margin: 50px;
 background-color: #bbdeee;
 border: 1px solid #000;
}

.word {
 width: 60px;
 height: 20px;
 margin: 5px;
 text-align: center;
 font-weight: bold;
 background-color: #ff6;
 display: inline-block;
 cursor: move;
}

The File API is supported by Firefox 3.6+, IE10+, Safari 6+, Chrome 6.0+, and Opera 11.5+. The Drag & Drop API is
supported by Firefox 3.5+, Chrome 21+, Opera 12+, and IE9+.

The HTML5 Forms API

HTML5 introduced new attributes for the input element (autocomplete, autofocus, form, formaction, formenctype,
formmethod, formnovalidate, formtarget, height, list, max, min, multiple, pattern, placeholder, required, step,
and width) and new attribute values for the type attribute of the input element (including email, url, number, range),
search, color, and date pickers (date, month, week, time, datetime, and datetime-local), as well as form
validation [11].

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

206

As an example, create an (X)HTML5 form for a registration page of a web site (Listing 6-13).

Listing 6-13. A Registration Form

<form action="newaccount.php" method="post">
 <fieldset title="Create account">
 <p>
 <label for="mailadd">E-mail address:</label>
 <input id="mailadd" type="email" required="required" name="mail"
 placeholder="email@example.com" />
 </p>
 <p>
 <label for="passwd1">Password:</label>
 <input id="passwd1" type="password" required="required" name="pwd" />
 </p>
 <p>
 <label for="passwd2">Confirm password:</label>
 <input id="passwd2" type="password" required="required" name="pwd2" />
 </p>
 <p>
 <label for="website">Website:</label>
 <input type="url" name="website" placeholder="http://www.example.com" />
 </p>
 <p>
 <label for="number">Number:</label>
 <input type="number" name="number" min="0" max="10" placeholder="0-10" />
 </p>
 <p>
 <label for="range">Range:</label>
 <input type="range" name="range" min="0" max="10" step="2" />
 </p>
 <p>
 <input type="submit" value="Create account" />
 </p>
 </fieldset>
</form>

The HTML5 Geolocation API

The Geolocation API provides an interface to retrieve information on the geographical location for a client-side
device. In other words, it can be used in web browsers to find the current position of the user. The location of the user
is not shared until the user confirms the request. The Geolocation API became a W3C Recommendation in 2013 [12].

Listing 6-14 shows an example for the application of the Geolocation API. In the example, the
setOnLoadCallback function is used to create a map. The if-then construct is used to check whether the Geolocation
API is supported, get the current position, and, in case it is successfully retrieved, mark it on the map. If necessary, we
inform the user to accept the Geolocation request, or the location cannot be determined. The location is hard-coded
to Garden Island in Port Adelaide, Australia, which is used until the user enables geolocation. In the else branch, a
nice location is set for users that use a browser without geolocation support.

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

207

Listing 6-14. Retrieving the Location of the User

<div id="map">
</div>
<script src="http://www.google.com/jsapi?key=ABQIAAAAlJFc1lrstqhgTl3ZYo38bBQcfCcww1WgMTx
 EFsdaTsnOXOVOUhTplLhHcmgnaY0u87hQyd-n-kiOqQ">
</script>
<script>
 (function () {
 google.load("maps", "2");
 google.setOnLoadCallback(function () {
 var map = new google.maps.Map2(document.getElementById("map")),
 markerText = "<h2>You are here</h2><p>This is your current position</p>",
 markOutLocation = function (lat, long) {
 var latLong = new google.maps.LatLng(lat, long),
 marker = new google.maps.Marker(latLong);
 map.setCenter(latLong, 15);
 map.addOverlay(marker);
 marker.openInfoWindow(markerText);
 google.maps.Event.addListener(marker, "click", function () {
 marker.openInfoWindow(markerText);
 });
 };
 map.setUIToDefault();
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(function (position) {
 markOutLocation(position.coords.latitude, position.coords.longitude);
 },
 function () {
 markerText = "<p>You should accept the Geolocation request, otherwise your
 position cannot be determined.</p>";
 markOutLocation(59.3325215, 18.0643818); // Garden Island, Port Adelaide, Australia
 });
 }
 else {
 markerText = "<p>Geolocation is not supported. Welcome to my favourite location.</p>";
 markOutLocation(-34.928621, 138.599959); // Rundle Mall, Adelaide, Australia
 }
 });
 })();
</script>

Tip ■ The position is approximate only. In the previous example, we get a marker that does not necessarily mark the

exact location of the user. More sophisticated interfaces, such the “Location-Aware Browsing” test page of Firefox [13],

provide a semitransparent circle above the map rather than a marker pointing to an exact position.

The HTML5 Geolocation API is supported by IE9+, Firefox 3.5+, Chrome 5.0+, Opera 10.6+, and Safari 5+.

http://www.google.com/jsapi?key=ABQIAAAAlJFc1lrstqhgTl3ZYo38bBQcfCcww1WgMTxEFsdaTsnOXOVOUhTplLhHcmgnaY0u87hQyd-n-kiOqQ
http://www.google.com/jsapi?key=ABQIAAAAlJFc1lrstqhgTl3ZYo38bBQcfCcww1WgMTxEFsdaTsnOXOVOUhTplLhHcmgnaY0u87hQyd-n-kiOqQ

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

208

The HTML5 Web Storage API

Web Storage is an API for persistent data storage of key-value pair data (similar to cookies) in browsers
(sessionStorage) and window-local storage saved between sessions (localStorage). The Web Storage API became a
W3C Recommendation in 2013 [14].

Table 6-1 summarizes the methods of localStorage and sessionStorage.

Table 6-1. Web Storage Methods

Method with Parameters Description

setItem(string name, string value) Adds or updates a value in the store

getItem(string name) Retrieves a named value from the stored name-value pairs

removeItem(string name) Removes a named value from the stored name-value pairs

length Number of values stored

key(long index) Name of the key at the index

clear() Clears the store

As an example, create two input fields for the local storage of name-value pairs, as well as a push button to let
the user set the items entered (Listing 6-15). Display the name-value pairs in a table. Create a text field where the user
can add the item to remove from the stored pairs after clicking the associated button. Add a push button that can be
used to clear the stored items. Provide another text field where the item name can be typed to retrieve its value. Since
the table is created by the displayItems function, that function should be loaded by the onload attribute on the body
element as <body onload="displayItems()">.

Listing 6-15. A localStorage Example

<form name="lsform">
 <fieldset title="WebStorage">
 <legend>Local storage of name-value pairs</legend>
 <p>
 <label>Value:</label>
 <input name="data">
 </p>
 <p>
 <label>Name:</label>
 <input name="name">
 </p>
 <p>
 <input type="button" value="Set item" onclick="setTheItem()">
 </p>
 <table id="pairs"></table>
 <p>
 Enter name to remove item:
 <input name="remove">
 <input type="button" value="Remove item" onclick="removeTheItem()">
 <input type="button" value="Clear items" onclick="clearItems()">
 </p>

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

209

 <p>
 Enter name to retrieve value:
 <input name="retrieve">
 <input type="button" value="Get value" onclick="getTheItem()">
 </p>
 <script type="text/javascript">
 function setTheItem() {
 var name = document.forms.lsform.name.value;
 var data = document.forms.lsform.data.value;
 localStorage.setItem(name, data);
 displayItems();
 }
 function getTheItem() {
 var name = document.forms.lsform.retrieve.value;
 window.alert('The value associated with the name ' + name + ' is ' +
 localStorage.getItem(name));
 displayItems();
 }
 function removeTheItem() {
 var name = document.forms.lsform.remove.value;
 document.forms.lsform.data.value = localStorage.removeItem(name);
 displayItems();
 }
 function clearItems() {
 localStorage.clear();
 displayItems();
 }
 function displayItems() {
 var key = "";
 var pairs = "<tr><th>Name</th><th>Value</th></tr>\n";
 var i = 0;
 for (i = 0; i <= localStorage.length-1; i++) {
 key = localStorage.key(i);
 pairs += "<tr><td>" + key + "</td>\n<td>" + localStorage.getItem(key) +
 "</td></tr>\n";
 }
 if (pairs == "<tr><th>Name</th><th>Value</th></tr>\n") {
 pairs += "<tr><td><not set></td>\n<td><not
 set></td></tr>\n";
 }
 document.getElementById('pairs').innerHTML = pairs;
 }
 </script>
 </fieldset>
</form>

The Web Storage API is supported by IE 8+, Firefox 3.5+, Google Chrome 4+ (sessionStorage from 5+), Safari 4+,
and Opera 10.50+.

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

210

The HTML5 Web Workers API

Web Workers is an API that can be used to execute scripts in the background independent from any user interface
scripts. Consequently, the user interface is not affected, and all browser tasks are performed without any delay.

The “worker” in Web Workers refers to a script stored in an external file, which is loaded and executed in the
background (Listing 6-16).

Listing 6-16. Creating a “Worker”

new Worker("worker.js");

While complex JavaScript codes might hang your browser (such as giving an “unresponsive script” warning),
the Web Workers API makes it possible to avoid user interruption, while the browser performs tasks such as event
handling, DOM manipulations, queries, and processes.

Note ■ Since JavaScript was originally designed to run in a single-threaded environment—that is, multiple scripts

cannot be run simultaneously—Web Workers can be considered as an API that brings threading to JavaScript.

In our example, we create a “worker” that counts up from 0 to 10,000 in the background. First, two push buttons
are needed in the document body to start and stop counting (two input elements with unique identifiers), and a
paragraph is needed with an identifier (<p id="result">) where the result will be displayed (Listing 6-17).

Listing 6-17. Markup of a Web Worker Example

<h1>Start/Stop the Worker</h1>
<p>
 <input id="start" type="button" value="Start">
 <input id="stop" type="button" value="Stop">
</p>
<h1>The results</h1>
<p id="result">Click Start to start the Worker</p>
<script>
 (function () {
 function createWorker () {
 worker = new Worker("webworker.js");
 }
 document.getElementById("start").onclick = function () {
 createWorker();
 worker.postMessage(0); // initial value
 worker.onmessage = function (evt) {
 document.getElementById("result").innerHTML = evt.data;
 };
 worker.onerror = function (evt) {
 document.getElementById("result").innerHTML = "Error";
 };
 };

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

211

 document.getElementById("stop").onclick = function () {
 if (worker) {
 worker.terminate();
 }
 };
 })();
</script>

We also need a function for the Start button, an error event handler, and a function for the Stop button.
The function that actually performs the counting takes place in an external .js file (Listing 6-18).

Listing 6-18. The webworker.js File

onmessage = function (evt) {
 for (var i = evt.data, t = 10000; i < t; i++) {
 postMessage(i);
 };
};

The Web Workers API is supported by IE10+, Firefox 3.5+, Chrome 5.0+, Safari 4.0+, and Opera 10.6+.

The HTML5 WebSocket API

The WebSocket API can be used for bidirectional, full-duplex communication over a Transmission Control Protocol
(TCP) socket.

The WebSocket API is being standardized by the World Wide Web Consortium [15].
After building a WebSocket connection with the web server, data can be retrieved from the server using the

onmessage event handler and can be sent from the client to the server by the send() method.
A new WebSocket object can be created as shown in Listing 6-19.

Listing 6-19. A New WebSocket Object

var Socket = new WebSocket(http://example.com/ws/);

Optionally, the protocol can also be specified after the URI.
The WebSocket object has two read-only attributes: Socket.readyState and Socket.bufferedAmount. The first

one represents the connection state (0 is no connection yet, 1 is connection has been built, 2 is closing handshake, 3 is
connection closed or cannot be established). The second attribute gives the number of bytes queued using the send()
method.

The WebSocket API supports four events: open (socket connection established), message (client receives data
from server), error (error in communication), and close (the connection is closed). They can be handled by the
Socket.onopen, Socket.onmessage, Socket.onerror, and Socket.onclose event handlers, respectively.

The two methods of WebSocket are Socket.send() (the send() method transmits data through the connection),
and Socket.close() (the close() method is used to terminate the existing connection).

As an example, we create a bidirectional TCP socket between the client and the server in the document head
(Listing 6-20).

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

212

Listing 6-20. Creating a WebSocket

<script type="text/javascript">
 function myWS() {
 if ("WebSocket" in window) {
 alert("WebSocket is supported by your Browser!");
 var ws = new WebSocket("ws://localhost:9998/echo");
 ws.onopen = function() {
 ws.send("Message to send");
 alert("Message sent...");
 };
 ws.onmessage = function (evt) {
 var received_msg = evt.data;
 alert("Message received...");
 };
 ws.onclose = function() {
 alert("Connection closed...");
 };
 }
 else {
 alert("WebSocket is not supported by your browser!");
 }
 }
</script>

In the document body, the myWS() function should be called to start the WebSocket (Listing 6-21).

Listing 6-21. An Anchor to Start the WebSocket

<p>
 Start WebSocket
</p>

The client program is now ready, but we also need a server with WebSocket support to test it. For example,
pywebsocket, which can be used as a WebSocket stand-alone server and a WebSocket extension for Apache HTTP
servers, is suitable for testing [16].

After the HTTP handshake, the TCP socket is ready for use, and the connection is live; both the server and the
client can send data.

On the client side, the WebSocket API is supported by Firefox 4+, Google Chrome 4+, Safari 5+, and Opera 11+.

Offline Web Applications

The offline web application feature in HTML5 allows online applications to work without interruption even when the
Internet connection is not available. For example, users can compose a message in their webmail client when they
cannot find a Wi-Fi hotspot.

Since the browser has no access to web site files when it is offline, the first step is to specify the required resources
(a simple list of fundamental files) for caching in a file called offline.manifest (Listing 6-22).

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

213

Listing 6-22. An offline.manifest File

CACHE MANIFEST
index.html
styles.css
main.js

This file should be provided as the attribute value of the manifest attribute on the html element (Listing 6-23).
The file should be served with the MIME type text/cache-manifest.

Listing 6-23. Using the Manifest File

<html manifest="offline.manifest">

Users will be requested to allow caching on their computer.
The online/offline state of the browser can be determined by JavaScript using navigator.onLine.
When the browser is offline, the data can be easily stored locally using the Web Storage API discussed earlier, that

is, the sessionStorage to retrieve data during a session or the localStorage to retain values for longer periods.
Offline web applications are supported by Firefox 3.5+, Chrome 1.0+, Safari 4.0+, and Opera 10.6+.

Java Applets
Java is an object-oriented, structured, imperative, cross-platform programming language. Java was originally
developed by Sun Microsystems, which is now owned by Oracle Corporation. Java can be used in a variety of contexts
on the client side as well as the server side, including applets, servlets, Swing applications, and JavaServer Pages (JSP).

Java applets are small applications for performing a specific task and are provided on web sites in a format called
Java bytecode, which can be executed by the Java Virtual Machine (JVM). Although Java applets can be substituted by
alternate technologies such as Flash, Curl, or Microsoft Silverlight, they are still present on the Web.

A Java applet should be provided by two object elements and self-closing parameters. The inner object is used
by Trident and the outer object by Gecko and other rendering engines. Listing 6-24 shows an example.

Listing 6-24. Java Applet Embedding with object

<object classid="java:bookflip.class"
 type="application/x-java-applet"
 archive="bookflip.jar"
 height="120" width="120">
 <param name="res" value="1" />
 <param name="image1" value="01.jpg" />
 <param name="link1" value="NO" />
 <param name="flip1" value="0" />
 <param name="image2" value="02.jpg" />
 <param name="link2" value="NO" />
 <param name="flip2" value="0" />
 <param name="speed" value="4" />
 <object classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93" height="120" width="120" >
 <param name="code" value="bookflip" />
 <param name="archive" value="bookflip.jar" />
 <param name="res" value="1" />

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

214

 <param name="image1" value="01.jpg" />
 <param name="link1" value="NO" />
 <param name="flip1" value="0" />
 <param name="image2" value="02.jpg" />
 <param name="link2" value="NO" />
 <param name="flip2" value="0" />
 <param name="speed" value="4" />
 </object>
</object>

Objects must be rendered only once per page. As you will see, a similar approach exists for Flash objects too
(Chapter 9).

ECMAScript, JavaScript, and jQuery
A widely used scripting language is ECMAScript, which is standardized by Ecma International (ECMA-262 [17],
ECMA-290 [18], ECMA-327 [19], ECMA-357 [20]) and the International Organization for Standardization (ISO/IEC
16262 [21]). The Internet media type of ECMAScript is application/ecmascript, and the file extension is .es.

The three best-known dialects of ECMAScript are JavaScript, JScript, and ActionScript. The first one, JavaScript,
is the primary client-side scripting language on the Web. It is used by millions of web sites to add interaction and
functionality.

jQuery is a comprehensive, cross-platform JavaScript library for simplifying client-side scripting and interactions.
jQuery provides the code blocks for rapid prototyping and developing a unique user interface with minimum coding
and effort. Instead of writing JavaScript code from scratch for an advanced image gallery such as nanoGALLERY [22],
an image slider such as Unslider [23], manipulated content such as Avgrund Modal [24], or animations such as
jQuery UI Effects Core [25], you can reuse the free, open source code licensed under the MIT License. jQuery can be
downloaded from the jQuery web site as an uncompressed or a compressed file [26]. For production environments,
the compressed .js file is recommended. This file can be loaded in the document head with the script element
as any other JavaScript file (Chapter 3). Beyond the core functions of jQuery, the web design community offers
thousands of plug-ins developed and maintained independently.

Caution ■ JavaScript should not be confused with Java. Although both languages have a C-like syntax, JavaScript is

a scripting language, while Java is general programming language. JavaScript has dynamic typing, while Java has static

typing. JavaScript is a weakly typed language, while Java is strongly typed. JavaScript is loaded from human-readable

source code, while Java is retrieved from a compiled bytecode. In contrast to JavaScript objects, which are prototype-

based, Java objects are class-based.

JScript is the Microsoft implementation of ECMAScript [27]. The major implementations of JScript are Windows
Script, and JScript .NET. The typical file extensions of JScript are .js, .jse, .wsf, .wsc, and, if embedded, .htm, .html,
and .asp.

ActionScript is an object-oriented language originally developed by Macromedia, which is now owned by Adobe
Systems. It is implemented in Adobe Flash and, as mentioned earlier, Adobe Flex. The typical file extension of external
ActionScript files is .as. ActionScript reuses the MIME type of ECMAScript.

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

215

Embedding and Loading JavaScript

JavaScript codes applied to a whole web page are usually declared in the (X)HTML head. JavaScript can also be used
locally in the body section of web documents. Those JavaScript codes that are used throughout the entire web site are
written in external files.

Generally, there are three ways to use JavaScript on web sites. They are discussed in the following sections.

Loading JavaScript from an External File

This technique is used when the same script applies to multiple documents. The file extension of external JavaScript
files is .js. The character encoding of these files is usually US-ASCII. JavaScript files encoded in other encoding
schemes might have interoperability problems. While UTF-8 is the perfect choice for (X)HTML web documents and
can be applied as the default character encoding in the text editor of any developer, care must be taken to encode
JavaScript files (similar to CSS files) in US-ASCII whenever possible.

External JavaScript files should contain JavaScript code exclusively (Listing 6-25). The script tags must also be
avoided (Listing 6-26)!

Listing 6-25. JavaScript Code in the Markup

<script type="text/javascript">
 document.write("Nice coding");
</script>

Listing 6-26. The Same Code in an External .js File

document.write("Nice coding");

External JavaScript files can be loaded with the src attribute on the script element.1 Listing 6-27 shows an
example.

Listing 6-27. Loading JavaScript from an External File

<script type="text/javascript" src="scripts/click.js"></script>

This embedding is commonly used for the scripts loaded in the document head and any scripts that are too long
to write directly into the markup. Alternate style selectors, font resizers, and hidden layer controller scripts are some
examples for this approach.

Inline JavaScript

JavaScript can also be written directly in the markup as the content of the script element. Assume we have the JavaScript
function shown in Listing 6-28 and variables in Listing 6-29 either in the document head or in an external .js file.

Listing 6-28. A Short JavaScript Function

function fourdigits(number) {
 return (number < 1000) ? number + 1900 : number;
}

1In฀the฀early฀days฀of฀the฀Web,฀the฀language="javascript"฀attribute-value฀pair฀was฀used฀on฀the฀script฀element,฀which฀was฀later฀
deprecated฀in฀favor฀of฀type="text/javascript".

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

216

Listing 6-29. Variables

var now = new Date();
var year = fourdigits(now.getYear());

This code provides the current year, which can be used for a “dynamic” copyright content as Listing 6-30.

Listing 6-30. Inline JavaScript Example

Copyright © <script type="text/javascript">document.write(year);</script> John Smith

This is an inline JavaScript code. In this case, it will represent the current year between the copyright sign and the
name, as shown in Listing 6-31.

Listing 6-31. The Result of Listings 6-28, 6-29, and 6-30

Copyright © 2011 John Smith

Note that if the JavaScript code cannot run for whatever reasons, the other parts of the document are still
rendered (Listing 6-32).

Listing 6-32. The Result of the Same Code with JavaScript Disabled or Without JavaScript Support

Copyright © John Smith

Event Handlers

JavaScript is often used to provide control over document elements or the browser window according to user
interaction such as clicking an element with the mouse.

Assume three images on a web page intended to modify the font size of the main layer when the user clicks them.
Listing 6-33 shows a possible solution.

Listing 6-33. Functions to Manipulate the Font Size

function normal() {
 var esize = document.getElementById('main').style;
 esize.fontSize = "1.1em";
}

function larger() {
 var esize = document.getElementById('main').style;
 esize.fontSize = "1.4em";
}

function huge() {
 var esize = document.getElementById('main').style;
 esize.fontSize = "1.8em";
}

These three functions can be written either within the script tags in the document or in the external file
font.js. In the latter case, they can be loaded with the src attribute of the script element as discussed earlier in
Listing 6-27 (the file path and name can be arbitrarily modified).

Now the appropriate event handler function can be loaded with the onclick attribute (Listing 6-34).

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

217

Listing 6-34. Event Handlers That Load the Appropriate Function Upon User Click

Which function will run depends on which image link the user clicks.

Determining JavaScript Support

JavaScript support can be easily determined by a script with an alternate content such as in Listing 6-35.

Listing 6-35. JavaScript with Alternate Content

<script type="text/javascript">
 document.write("If this text is displayed, your browser supports scripting, and
 JavaScript is enabled!")
</script>
<noscript>JavaScript is NOT enabled!</noscript>

Browsers that do not support JavaScript will show the content of the noscript element.

The Most Common jQuery Functions

jQuery offers a variety of selectors to manipulate markup elements. The most common selectors are summarized in
Listing 6-36.

Listing 6-36. Common jQuery Selectors

// Select element by identifier
$("#ElementID").something();

// Select element by CSS class
$(".ClassName").something();

// Select elements that have an identifier with a string
$("[id*='value']").something();

// Select elements that have an identifier that begins with a string
$("[id^='value']").something();

// Select elements that have an identifier ending with a string
$("[id$='value']").something();

// Select elements of a particular type
$("div").something();

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

218

Toggle Show and Hide

You can use the toggle function to toggle hide/show of an element in jQuery. An element can be hidden or shown
using the hide and show functions, respectively (Listing 6-37).

Listing 6-37. Toggle, Show, and Hide Functions in jQuery

// Toggle hide/show of an element
$("#DivID").toggle(1000);

// Perform an action after the animation is completed
$("#DivID").toggle(1000, function () {
 alert("Toggle Complete");
});

// Hide an element
$("#DivID").hide(1000);

// Perform an action after the animation is completed
$("#DivID").hide(1000, function () {
 alert("Hide Complete");
});

// Show an element
$("#DivID").show(1000);

// Perform an action after the animation is completed
$("#DivID").show(1000, function () {
 alert("Show Complete");
});

Slide Functions

In jQuery, the basic slide functions are slideToggle, slideUp, and slideDown (Listing 6-38).

Listing 6-38. Toggle, Show, and Hide Functions in jQuery

// Toggle slide up and down
$("#DivID").slideToggle(1000);

// Perform an action after the animation is completed
$("#DivID").slideToggle(1000, function () {
 alert("Slide Toggle Complete");
});

// Slide up
$("#DivID").slideUp(1000);

// Perform an action after the animation is completed
$("#DivID").slideUp(1000, function () {
 alert("Slide Up Complete");
});

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

219

// Slide down
$("#DivID").slideDown(1000);

// Perform an action after the animation is completed
$("#DivID").slideDown(1000, function () {
 alert("Slide Down Complete");
});

Fade Functions

jQuery has the fadeIn, fadeOut, and fadeTo functions to fade an element in or out, or fade it to a specified style
(Listing 6-39).

Listing 6-39. Fade an Element in, out, and to

// Fade in
$("#DivID").fadeIn(1000);

// Perform an action after the animation is completed
$("#DivID").fadeIn(1000, function () {
 alert("Fade In Complete");
});

// Fade out
$("#DivID").fadeOut(1000);

// Perform an action after the animation is completed
$("#DivID").fadeOut(1000, function () {
 alert("Fade Out Complete");
});

// Fade to (fades to specified opacity)
$("#DivID").fadeTo(1000, 0.25);

// Perform an action after the animation is completed
$("#DivID").fadeTo(1000, 0.25, function () {
 alert("Fade To Complete");
});

Animation Functions

Markup elements can be animated by changing the value of their CSS properties with animate (Listing 6-40).

Listing 6-40. Animation with jQuery

$("#DivID").animate({ opacity: 0.75 }, 1000);

// Perform an action after the animation is completed
$("#DivID").animate({ opacity: 0.75 }, 1000, function () {
 alert("Opacity Animation Complete");
});

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

220

Set and Retrieve Input Values

jQuery can set and retrieve the property value of input elements such as textboxes (Listing 6-41).

Listing 6-41. Get and Set Textbox Values

// Get the value of a textbox
var TextboxValue = $("#TextboxID").val();

// Set the value of a textbox
$("#TextboxID").val("New Textbox Value");

Set and Retrieve Element Markup Content

The markup content of elements can be manipulated with the html function (Listing 6-42).

Listing 6-42. Get and Set Markup Content

// Get the markup content of an element
var DivHTML = $("#DivID").html();

// Set markup content
$("#DivID").html("<p>The updated markup content.</p>");

Set and Retrieve Element Text

The textual content of elements can be manipulated with the text function (Listing 6-43).

Listing 6-43. Get and Set Textual Content

// Retrieve the textual content of an element
var DivText = $("#DivID").text();

// Set the textual content of element
$("#DivID").text("The new textual content.");

Set and Retrieve Element Dimensions

The dimensions of markup elements can be retrieved and changed using the height and width jQuery functions
(Listing 6-44).

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

221

Listing 6-44. Get and Set Element dimensions

// Get element height
var ElementHeight = $("#DivID").height();

// Set element height
$("#DivID").height(300);

// Get element width
var ElementWidth = $("#DivID").width();

// Set element width
$("#DivID").width(400);

Handling CSS Classes

CSS Classes can be created and removed using the addClass and removeClass jQuery functions (Listing 6-45).

Listing 6-45. Add and Remove CSS Classes

// Create a CSS class
$("#DivID").addClass("newclassname");

// Remove a CSS class
$("#DivID").removeClass("classname");

// Create a new class and remove the old one
$("#DivID").removeClass("classname").addClass("newclassname");

// Create and remove multiple classes
$("#DivID").removeClass("classname classname2").addClass("newclassname newclassname2");

Change CSS Properties

The CSS properties of markup elements can be manipulated by the css jQuery function (Listing 6-46).

Listing 6-46. Change the CSS Property for an Element

$("#DivID").css("border", "solid 1px #00f");

Silverlight
Silverlight is a freeware application framework created by Microsoft Corporation for developing rich Internet
applications [28]. The runtime environment for Silverlight is available as a web browser plug-in. Silverlight provides
many features similar to those of Adobe Flash, such as animations, drawing objects, reflection effects, glyphs,
and so on.

Silverlight uses the Extensible Application Markup Language (XAML) instead of Scalable Vector Graphics
(SVG). XAML is a declarative, XML-based user interface markup language developed by Microsoft and used
extensively in .NET.

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

222

Similar to Flash, a common embedding option for Silverlight is using the object tag (Listing 6-47).

Listing 6-47. Silverlight Embedding with Alternate Content (Determining Support)

<object id="SilverlightPlugin1" width="300" height="300"
 data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2" >
 <param name="source" value="SilverlightApplication1.xap" />

</object>

Silverlight can be written not only in your text editor but also in the Microsoft Visual Studio software development
platform, which makes it easier to create graphical interfaces displayed simultaneously with the source code.

Server-Side Development
Although static content is adequate for many web site components, advanced web site features, such as web
applications, content management, online banking, form submission, database management, and so on, require
server-side programming.

Note ■ The main difference between client-side and server-side programming is that client-side scripts are

downloaded, interpreted, and executed by the browser, while server-side scripts and applications run on the server.

Tip ■ In contrast to client-side technologies, where the support is embedded in most browsers (such as for JavaScript)

or can be set easily by installing a free plug-in (such as for SilverLight), the support for server-side technologies should

be provided by the hosting service provider. While widely adopted technologies such as PHP and MySQL are supported by

most hosting services, it is strongly recommended that you ask the provider about the support for special technologies

before selecting and paying for a service, because hosting companies usually refuse to install any software components

not included in, or supported by, one of their packages (for example, FFMPEG, ionCube PHP Loader, Apache Ant, Ivy, JTA,

JAXP). Some technologies rely on others, and there might be a prerequisite to install certain software components.

There is a wide variety of server-side scripting and programming languages used to create server-side
applications. Some of the most widely adopted ones are described in the following sections.

ColdFusion
ColdFusion is an application server offered by Adobe [29] to process the ColdFusion Markup Language (CFML).
CFML is a scripting language that uses tags with a structure similar to that of HTML (which is the reason for the name)
[30]; it has a functionality similar to that of PHP. CFML has several implementations beyond Adobe ColdFusion, such
as the .NET Framework, the Java Virtual Machine, and the Google App Engine. Because of its scalability, ColdFusion is
ideal not only for desktop environments but also for the increasingly popular mobile web applications.

The most significant technologies that compete with ColdFusion are BlueDragon [31], Coral Web Builder [32],
IgniteFusion [33], Railo [34], and SmithProject [35].

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.60310.0
http://go.microsoft.com/fwlink/?LinkId=161376

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

223

Java
The Java programming language was already mentioned earlier in the chapter regarding Java applets. However, Java is
also used on the server side.

JavaServer Pages (JSP) is a Java technology for dynamically generated web pages. The syntax of JSP combines
scriptlet elements and markup (typically HTML or XML) [36]. The content of scriptlet elements is Java code that might
be mixed with the markup.

The Java Platform, Enterprise Edition (Java EE) is a popular platform for server-side programming in Java. The
platform and the associated APIs are defined in separate specifications [37, 38].

WebObjects is a Java web application server and web application framework for Mac OS X developed by Apple.
WebObjects is described by Apple specifications [39, 40, 41].

The .NET Framework
Microsoft .NET is a popular software framework with a wide-ranging library [42]. The .NET Framework supports
several programming languages (C#, J#, VB .NET, and so on). Any of these languages can use code written in other
languages, which provides a high level of interoperability. A fundamental part of the framework architecture is the
application virtual machine called Common Language Runtime (CLR), which is Microsoft’s implementation of the
Common Language Infrastructure (CLI). CLI is an ECMA standard (ECMA 335 [43]).

Some applications of the .NET Framework, such as ADO.NET, ASP.NET, and Windows Forms, are not parts of the
previously mentioned standards.

ASP.NET

Active Server Pages, often referred to as ASP or ASP Classic, was a web application framework developed by Microsoft
for creating interactive and dynamic web pages. It has been superseded by ASP.NET, which provides powerful features
for web applications and services [44]. The typical file extensions are .asp for ASP and .aspx for ASP.NET files.

As you can see in Listing 6-48, an ASP script can be embedded in the document body of a web page by delimiting
the script with <% and %>.

Listing 6-48. ASP Script in the Markup

<!DOCTYPE html>
<html>
 <head>
 <title>Simple ASP embedding example</title>
 <meta charset="UTF-8">
 </head>
 <body>

<%
 response.write("Hello, World!")

%>
 </body>
</html>

Before introducing HTML5 support in Visual Studio and ASP.NET in 2011, ASP.NET generated error-free XHTML
markup in most cases. Since ASP.NET does not modify static text and nonserver markup elements, however, the
final markup was not necessarily standards-compliant per XHTML 1.0 Strict. According to Microsoft, some markup
controls providing optional functionality, especially those with a target attribute for specifying their client-side
behavior (AdRotator, BulletedList, HyperLink, HyperLinkColumn, ImageMap, MenuItem, TreeNode), might result in
markup code that is not standard compliant [45].

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

224

C#

A popular programming language often used in .NET is C# (pronounced See Sharp), which has been standardized by
ECMA [46] and ISO [47, 48]. C# is a multiparadigm programming language, which is declarative, generic, functional,
and imperative, and it has strong typing. C# applies object-oriented (class-based) as well as component-oriented
disciplines.

Perl
Perl is a high-level, interpreted, general-purpose, dynamic programming language. The specification of the language
is available at Perl.org [49]. In the late 1990s, Perl became popular as a CGI scripting language because of its parsing
abilities. The core syntax of Perl is summarized in the “Perl style guide” [50]. A very impressive text-processing feature
of Perl is that it can handle text files of arbitrary length if enough memory is available.

PHP
PHP: Hypertext Preprocessor is one of the most popular open source server-side scripting languages. It is a cross-
platform, general-purpose language originally designed for generating dynamic web pages. Some programmers have
tried to introduce “standardized” best practices for PHP over the years [e.g., 51, 52, 53, 54], none of which gained an
official status yet. The major specification of PHP is being maintained by the PHP Group [55], which is considered as
the de facto standard of the language, because there is no formal specification.

PHP is the widely used, free, and efficient alternative to competitors such as ASP.NET.

Embedding and Loading PHP

While some PHP code is embedded in (X)HTML documents and mixed with markup elements, complex PHP
applications are provided in external files.

PHP in the Markup

PHP code is usually delimited by <?php and ?> or <script language="php"> and </script>. The less portable
short tags <? and <?= and ASP-style tags such as <% and <%= should not be used. PHP parsers parse code only within
the delimiters. In XML documents (including XHTML), the first embedding method provides well-formed XML
processing instructions. Since they are not part of the character data in the document, there is the potential that the
combination of markup and PHP code provides valid markup on the server before PHP parsing.

The simplest example for embedding PHP in the markup is a “Hello World” script such as hello.php
(Listing 6-49).

Listing 6-49. “Hello World” in PHP

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Hello World in PHP</title>
 <meta charset="UTF-8" />
 </head>
 <body>
 <?php echo '<p>Hello World</p>'; ?>
 </body>
</html>

http://www.w3.org/1999/xhtml

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

225

Depending on the proper server configuration, the PHP code should be parsed, and the output in Listing 6-50
will be sent to the browser.

Listing 6-50. The Output with Parsed PHP

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Hello World in PHP</title>
 <meta charset="UTF-8" />
 </head>
 <body>
 <p>Hello World!</p>
 </body>
</html>

The resulting markup validates as XHTML5. To make the markup easier to understand, the structural elements
and additional contents were omitted.

PHP in External Files

The typical file extensions of external PHP files are .php, .phtml, .php5, and .phps. External PHP files usually contain
the PHP code between the opening and closing delimiters. In other words, they start with <?php and end with ?>.
However, many PHP files, such as the ones used for settings, do not necessarily have a closing delimiter.

The include command can be used to insert the content of a specified external PHP file into the markup
(Listing 6-51).

Listing 6-51. Embedding a PHP File

<?php include("copyright.php"); ?>

An external PHP file might contain PHP code, markup, or a combination of the two.

Tip ■ It is a common practice to collect the markup fragment of common—frequently repeated—web page contents,

such as menus and legal information, and embed them from an external PHP file. This approach eliminates the

redundancy of common scripting requirements of a site.

Python
Python is a general-purpose high-level programming language [56]. Python, similar to other dynamic languages,
is often used as a scripting language as well. Multiple programming paradigms are supported by Python. Although
Python is mainly object-oriented, it also involves functional programming styles. The capabilities of the language
can be extended by third-party tools; for example, Python code can be provided as stand-alone executables. Python
interpreters are available for a variety of operating systems, which makes Python a cross-platform language.

http://www.w3.org/1999/xhtml

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

226

Ruby
Ruby is a general-purpose, dynamic, and reflective object-oriented programming language. One of the most common
Ruby implementations is the open source web application framework called Ruby on Rails. The major documentation
of Ruby includes the Ruby Core Reference [57], the Ruby Standard Library Reference [58], the Ruby C API Reference [59],
and the document on Rails Searchable APIs [60].

SSJS
Although JavaScript is used primarily on the client side, it has server-side implementations as well. Server-side
JavaScript (SSJS) was first implemented in 1996 in the Netscape Enterprise Server 2.0 and Netscape LiveWire. The
common specifications for SSJS development are provided by the CommonJS community [61]. The Server-Side
JavaScript Google Group makes efforts to create cross-platform SSJS standard APIs [62].

Combinations of Client-Side and Server-Side Technologies
Not all programming environments are purely client-side or server-side technologies. For example, the Google Web
Toolkit has tools for programming JavaScript front-end applications in Java. Ajax applications and rich Internet
applications can be developed in Python using the development tool and framework Pyjamas. An open source
platform for developing rich Internet applications with client-side functionality and server-side processing is Tersus.

Database Technologies
A large share of server-side applications and services rely on data stored in databases. One of the most commonly
used databases on the Web is the cross-platform relational database management system MySQL [63]. It is considered
as a de facto standard and also used by the highest-traffic web sites in the world. Although it is very popular, languages
such Ruby and Python often apply database servers other than MySQL. Some other frequently used database
technologies on the Web are Apache Derby [64], IBM DB2 [65], Firebird [66], Microsoft SQL Server [67], Oracle [68],
PostgreSQL [69], SQLite [70], and Sybase [71].

Alternate Content and Fallback Mechanism for Scripts
In web site standardization, it is vital to provide alternate content for scripts and also design web documents for user
agents that do not support scripting. You can provide the alternate content by using the noscript element. A script is
not executed, and user agents render the content of noscript elements only if the browser configuration eliminates
scripting or in rare cases when the scripting language used in the script element is not supported. Browsers without
client-side scripting support must render the contents of noscript elements.

For example, if dynamically created data is provided by the script element, a direct link to the resource can be
used if scripting is not supported (Listing 6-52).

Listing 6-52. Useful Alternate Content

<noscript>
 <p>Latest News</p>
</noscript>

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

227

There is a practice of commenting out script written in the markup to eliminate rendering element content by
browsers that cannot handle the script element. Advanced rendering engines recognize that scripts in comments
should be executed. This could eliminate the need for comments if external script files are used.

As you learned earlier in the chapter, a properly embedded script does not break page layout or content flow
when JavaScript is not supported. Still, this approach usually cannot provide the same functionality or behavior
as the script would (the provided information should be similar). The importance of alternate content or fallback
mechanism for JavaScript code can be best demonstrated by “dynamic” menus that should not rely on JavaScript
alone, since the functionality of the site will be lost if JavaScript is disabled or the script cannot be loaded.

Let’s assume that you have a special Help screen, contained by a layer that is not shown by default (Listing 6-53)
and displayed only when the user clicks the menu “Help”.

Listing 6-53. A Help div Which Is Not Rendered by Default

#help {
 display: none;
}

Since the help is displayed using JavaScript (Listing 6-54), it will be not available if JavaScript is disabled or not
supported.

Listing 6-54. The Function That Displays the Hidden div

function display_help() {
 document.getElementById("help").style.display = 'block';
}

A good fallback mechanism is to provide a conventional hyperlink—which looks the same as the link calling the
JavaScript code that displays the special Help layer above the page—as an alternate content (Listing 6-55). If the layer
cannot be displayed because of the lack of JavaScript support, the link opens another web document with the same
content the Help div would provide. Although the visual appearance of the “Help screen” and the Help document is
different, the content is the same. One of them is always available.

Listing 6-55. An Advanced Menu Item with Fallback Mechanism

 <script type="text/javascript">
 <a href="javascript:display_help();" title="Guide and access keys" accesskey="h"
 tabindex="22">Help
 </script>
 <noscript>
 <a href="http://example.com/help/" title="Guide and access keys" accesskey="h"
 tabindex="22">Help
 </noscript>

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

228

Summary
In this chapter, you learned about client-side and server-side scripting and programming languages used to create
scripts, applets, and web applications. Using these technologies on a daily basis is inevitable, and you know by now
that they are vital in web applications and web services. However, many of them are vendor-specific and have not
been standardized yet. You also know that a large share of incorrect markup is generated by server-side applications,
even though more and more provide standard-compliant web documents.

In the next chapter, you will learn about emerging Semantic Web technologies and machine-readable metadata
annotations.

References
 1. Dominique Hazaël-Massieux D (2013) What is scripting? In: Scripting and Ajax. World

Wide Web Consortium. http://www.w3.org/standards/webdesign/script. Accessed 21
October 2014

 2. Dorward D (2011) Ampersands, PHP Sessions and Valid HTML. World Wide Web
Consortium. http://www.w3.org/QA/2005/04/php-session. Accessed 21 October 2014

 3. Crockford D (2006) The application/json Media Type for JavaScript Object Notation
(JSON). The Internet Society. http://tools.ietf.org/html/rfc4627. Accessed 21
October 2014

 4. van Kesteren A, Aubourg J, Song J, Steen HRM (eds) (2014) XMLHttpRequest Level 1.
World Wide Web Consortium. http://www.w3.org/TR/XMLHttpRequest/. Accessed 21
October 2014

 5. Adobe (2014) Adobe Flex – One codebase, multiple devices. Adobe Systems Inc.
http://www.adobe.com/products/flex/. Accessed 21 October 2014

 6. Lubbers P, Albers B, Salim F (2010) Pro HTML5 programming – Powerful APIs for Richer
Internet Application Development. Apress Media LLC, New York

 7. Pieters S (2014) APIs. In: HTML5 differences from HTML4. World Web Web Consortium.
https://rawgit.com/whatwg/html-differences/master/Overview.html#apis. Accessed
21 October 2014

 8. Cabanier R, Mann J, Munro J, Wiltzius T, Hickson I (eds) (2014) HTML Canvas 2D Context,
Level 2. World Wide Web Consortium. http://www.w3.org/TR/2dcontext2/. Accessed
1 November 2014

 9. Ranganathan A, Sicking J (2013) File API. World Wide Web Consortium.
http://www.w3.org/TR/FileAPI/. Accessed 21 October 2014

 10. Hickson I (ed) (2014) Drag and drop. In: HTML. Web Hypertext Application Technology
Working Group. https://html.spec.whatwg.org/multipage/interaction.html#dnd.
Accessed 21 October 2014

 11. Hickson I (ed) (2014) Forms. In: HTML. Web Hypertext Application Technology Working
Group. http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html.
Accessed 21 October 2014

 12. Popescu A (ed) (2010) Geolocation API Specification. W3C Recommendation. World Wide
Web Consortium. http://www.w3.org/TR/geolocation-API/. Accessed 21 October 2014

http://www.w3.org/standards/webdesign/script
http://www.w3.org/QA/2005/04/php-session
http://tools.ietf.org/html/rfc4627
http://www.w3.org/TR/XMLHttpRequest/
http://www.adobe.com/products/flex/
https://rawgit.com/whatwg/html-differences/master/Overview.html#apis
http://www.w3.org/TR/2dcontext2/
http://www.w3.org/TR/FileAPI/
https://html.spec.whatwg.org/multipage/interaction.html#dnd
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.w3.org/TR/geolocation-API/

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

229

 13. Mozilla (2014) Location-Aware Browsing. http://www.mozilla.com/en/firefox/
geolocation/. Mozilla Corporation. Accessed 21 October 2014

 14. Hickson I (ed) (2013) Web Storage. W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/webstorage/. Accessed 21 October 2014

 15. Hickson I (ed) (2012) The WebSocket API. World Wide Web Consortium.
http://www.w3.org/TR/websockets/. Accessed 21 October 2014

 16. Google (2013) pywebsocket - WebSocket server and extension for Apache HTTP Server for
testing. Google Inc. http://code.google.com/p/pywebsocket/. Accessed 21 October 2014

 17. ECMA (2011) The ECMA 262 standard, 5.1 Edition. Ecma International.
 http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf.
Accessed 21 October 2014

 18. ECMA (1999) ECMAScript Components Specification. The ECMA-290 standard. ECMA
International. http://www.ecma-international.org/publications/files/ECMA-ST/
ECMA-290.PDF. Accessed 21 October 2014

 19. ECMA (2001) ECMAScript 3rd Edition Compact Profile. The ECMA-327 standard. ECMA
International. http://www.ecma-international.org/publications/files/ECMA-ST/
Ecma-327.pdf. Accessed 21 October 2014

 20. ECMA (2005) ECMAScript for XML (E4X) Specification, 2nd edition. The ECMA-357
standard. ECMA International. http://www.ecma-international.org/publications/
files/ECMA-ST/Ecma-357.pdf. Accessed 21 October 2014

 21. ISO (2002) ISO/IEC 16262:2002. International Organization for Standardization.
http://www.iso.org/iso/catalogue_detail.htm?csnumber=33835. Accessed 21
October 2014

 22. Brisbois C (2014) nanoGALLERY. http://nanogallery.brisbois.fr/. Accessed 30
October 2014

 23. Unslider.com (2014) Unslider—the super-tiny jQuery slider. http://unslider.com/.
Accessed 30 October 2014

 24. Voronianski D (2014) Avgrund Modal. http://labs.voronianski.com/jquery.avgrund.js/.
Accessed 30 October 2014

 25. The jQuery Foundation (2014) jQuery UI Effects Core. http://plugins.jquery.com/
ui.effect/. Accessed 30 October 2014

 26. The jQuery Foundation (2014) Downloading jQuery. http://jquery.com/download/.
Accessed 30 October 2014

 27. Microsoft (2014) JScript (ECMAScript3) – Windows Scripting 5.8. Microsoft Corporation.
http://msdn.microsoft.com/en-us/library/hbxc2t98%28v=VS.85%29.aspx. Accessed
21 October 2014

 28. Microsoft (2014) Silverlight. Microsoft Corporation. http://www.silverlight.net.
Accessed 21 October 2014

 29. Adobe (2014) Adobe ColdFusion 11 family. Adobe Systems Inc.
http://www.adobe.com/products/coldfusion-family.html. Accessed 21 October 2014

 30. Brooks-Bilson R (2009) Core CFML Tags. CFML Advisory Committee.
http://www.opencfml.org/display/cfmladvisory/Core+CFML+Tags. Accessed 23 August 2011

http://www.mozilla.com/en/firefox/geolocation/
http://www.mozilla.com/en/firefox/geolocation/
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/websockets/
http://code.google.com/p/pywebsocket/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-290.PDF
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-290.PDF
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-327.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-327.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-357.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-357.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=33835
http://nanogallery.brisbois.fr/
http://unslider.com/
http://labs.voronianski.com/jquery.avgrund.js/
http://plugins.jquery.com/ui.effect/
http://plugins.jquery.com/ui.effect/
http://jquery.com/download/
http://msdn.microsoft.com/en-us/library/hbxc2t98%28v=VS.85%29.aspx
http://www.silverlight.net/
http://www.adobe.com/products/coldfusion-family.html
http://www.opencfml.org/display/cfmladvisory/Core+CFML+Tags

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

230

 31. New Atlanta (2009) Upgrading from ColdFusion. In: BlueDragon 7.1 User Guide. New
Atlanta Communications LLC. http://www.newatlanta.com/products/bluedragon/
self_help/docs/7_1/BlueDragon_71_User_Guide.pdf. Accessed 21 October 2014

 32. rave7 (2014) rave7. http://www.pcaonline.com/index.cfm?DocID=10082&fkb=y.
Accessed 21 October 2014

 33. FindMySoft (ed) (2011) IgniteFusion CFML engine. http://www.findmysoft.com/
scripts/IgniteFusion-CFML-engine-download.html. Accessed 24 August 2011

 34. Railo (2014) Railo - Open Source CFML - Training, Consulting and Support.
http://www.getrailo.com. Accessed 21 October 2014

 35. Placona M (2011) Yet another free ColdFusion engine. Marcos Placona Blog.
http://www.placona.co.uk/52/coldfusion/yet-another-free-coldfusion-engine/.
Accessed 24 August 2011

 36. Sun (2001) JAVASERVER PAGES (JSP) SYNTAX version 1.2. Sun Microsystems, Inc.
http://java.sun.com/products/jsp/syntax/1.2/card12.pdf. Accessed 23 August 2011

 37. Oracle (2014) Your First Cup: An Introduction to the Java EE Platform Release 7 for Java
Platform, Enterprise Edition. Oracle Corporation. http://docs.oracle.com/javaee/7/
firstcup/doc/firstcup.pdf. Accessed 21 October 2014

 38. Oracle (2013) Java EE 7 Specification APIs. Oracle Corporation.
http://docs.oracle.com/javaee/7/api/. Accessed 21 October 2014

 39. Apple (2007) WebObjects Overview. Apple Inc. http://developer.apple.com/legacy/
mac/library/documentation/WebObjects/WebObjects_Overview/WebObjects_
Overview.pdf. Accessed 21 October 2014

 40. Apple (2007) WebObjects Web Applications Programming Guide. Apple Inc.
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/Web_
Applications/Web_Applications.pdf. Accessed 21 October 2014

 41. Apple (2007) WebObjects Enterprise Objects Programming Guide. Apple Inc.
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/
Enterprise_Objects/EnterpriseObjects.pdf. Accessed 21 October 2014

 42. Microsoft (2014) Microsoft .NET Framework. Microsoft Corporation.
http://www.microsoft.com/net. Accessed 21 October 2014

 43. ECMA (2012) Common Language Infrastructure (CLI), 6th edition. ECMA-335 Standard.
ECMA International. http://www.ecma-international.org/publications/files/
ECMA-ST/ECMA-335.pdf. Accessed 21 October 2014

 44. Microsoft (2014) The Official Microsoft ASP.NET Site. Microsoft Corporation.
http://www.asp.net. Accessed 21 October 2014

 45. Microsoft (2010) XHTML Standards in Visual Studio and ASP.NET. Microsoft Corporation.
http://msdn.microsoft.com/en-us/library/exc57y7e.aspx. Accessed 21 October 2014

 46. ECMA (2006) C# Language Specification, 4th edition. ECMA-334 Standard. ECMA
International. http://www.ecma-international.org/publications/files/ECMA-ST/
Ecma-334.pdf. Accessed 21 October 2014

http://www.newatlanta.com/products/bluedragon/self_help/docs/7_1/BlueDragon_71_User_Guide.pdf
http://www.newatlanta.com/products/bluedragon/self_help/docs/7_1/BlueDragon_71_User_Guide.pdf
http://www.pcaonline.com/index.cfm?DocID=10082&fkb=y
http://www.findmysoft.com/scripts/IgniteFusion-CFML-engine-download.html
http://www.findmysoft.com/scripts/IgniteFusion-CFML-engine-download.html
http://www.getrailo.com/
http://docs.oracle.com/javaee/7/firstcup/doc/firstcup.pdf
http://docs.oracle.com/javaee/7/firstcup/doc/firstcup.pdf
http://docs.oracle.com/javaee/7/api/
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/WebObjects_Overview/WebObjects_Overview.pdf
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/WebObjects_Overview/WebObjects_Overview.pdf
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/WebObjects_Overview/WebObjects_Overview.pdf
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/Web_Applications/Web_Applications.pdf
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/Web_Applications/Web_Applications.pdf
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/Enterprise_Objects/EnterpriseObjects.pdf
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/Enterprise_Objects/EnterpriseObjects.pdf
http://www.microsoft.com/net
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf
http://www.asp.net/
http://msdn.microsoft.com/en-us/library/exc57y7e.aspx
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

231

 47. ISO (2012) Information technology – Programming languages – C#. ISO/IEC 23270:2006.
International Organization for Standardization. http://www.iso.org/iso/iso_
catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=42926. Accessed 21
October 2014

 48. ISO (2012) Information technology – Common Language Infrastructure (CLI)
Partitions I to VI. ISO/IEC 23271:2006. International Organization for Standardization.
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.
htm?csnumber=42927. Accessed 21 October 2014

 49. Allen J (ed) (2014) Perl 5 version 14.1 documentation – Full version. Official
documentation for the Perl programming language. Perl5 Porters.
http://perldoc.perl.org/perldoc.tar.gz. Accessed 21 October 2014

 50. Allen J (ed) (2014) Perl version 5.20.1 documentation – Perl style guide.
http://perldoc.perl.org/perlstyle.pdf. Accessed 21 October 2014

 51. Hoff T, Kristiansen F (2003) PHP Coding Standard. Todd Hoff, Fredrik Kristiansen.
http://www.dagbladet.no/development/phpcodingstandard/. Accessed 24 August 2011

 52. Google (2011) PHP Standards Working Group. Google Inc.
http://groups.google.com/group/php-standards. Accessed 24 August 2011

 53. Icontem (2014) PHP standards discussion group opens to the world - PHP Classes.
Icontem. http://www.phpclasses.org/blog/post/96-PHP-standards-discussion-
group-opens-to-the-world.html. Accessed 21 October 2014

 54. Donat J (ed) (2014) PHP Standards. http://phpstandards.net.
Accessed 15 November 2014

 55. Olson P (ed), Achour M, Betz F, Dovgal A, Lopes N, Magnusson H, Richter G,
Seguy D, Vrana J, et al (2014) PHP Manual. PHP Documentation Group.
http://www.php.net/manual/en/. Accessed 21 October 2014

 56. PSF (2014) Welcome to Python.org. Python Software Foundation.
http://www.python.org. Accessed 21 October 2014

 57. Britt J, Neurogami (2014) Index of Files, Classes & Methods in Ruby. James Britt,
Neurogami. http://www.ruby-doc.org/core/. Accessed 21 October 2014

 58. Britt J, Neurogami (2014) Ruby Standard Library Reference. James Britt, Neurogami.
http://www.ruby-doc.org/stdlib/. Accessed 21 October 2014

 59. Britt J, Neurogami (2006) Ruby C API Reference. James Britt, Neurogami.
http://www.ruby-doc.org/doxygen/current/. Accessed 24 August 2011

 60. Kolesnikov V (2009) Rails Searchable API Doc. Vladimir Kolesnikov.
http://railsapi.com. Accessed 24 August 2011

 61. Dangoor K et al (2009) CommonJS: JavaScript Standard Library. The CommonJS
community. http://www.commonjs.org. Accessed 24 August 2011

 62. Google (2014) The CommonJS Google Group. Google Inc.
http://groups.google.com/group/commonjs. Accessed 21 October 2014

 63. Oracle (2014) MySQL: The world’s most popular open source database. Oracle
Corporation. http://www.mysql.com. Accessed 21 October 2014

http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=42926
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=42926
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=42927
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=42927
http://perldoc.perl.org/perldoc.tar.gz
http://perldoc.perl.org/perlstyle.pdf
http://www.phpclasses.org/blog/post/96-PHP-standards-discussion-group-opens-to-the-world.html
http://www.phpclasses.org/blog/post/96-PHP-standards-discussion-group-opens-to-the-world.html
http://phpstandards.net/
http://www.php.net/manual/en/
http://www.python.org/
http://www.ruby-doc.org/core/
http://www.ruby-doc.org/stdlib/
http://www.commonjs.org/
http://groups.google.com/group/commonjs
http://www.mysql.com/

CHAPTER 6 ■ SCRIPTING AND APPLICATIONS

232

 64. ASF (2014) Apache Derby. Apache Software Foundation. http://db.apache.org/derby/.
Accessed 15 November 2014

 65. IBM (2014) DB2 database software. International Business Machines.
http://www-01.ibm.com/software/data/db2/. Accessed 21 October 2014

 66. Firebird Project (2014) Firebird: True universal open source database. Firebird Foundation
Incorporated. http://www.firebirdsql.org. Accessed 21 October 2014

 67. Microsoft (2014) SQL Server. Microsoft Corporation. http://www.microsoft.com/
sqlserver/en/us/default.aspx. Accessed 21 October 2014

 68. Oracle (2014) Oracle Database. Oracle Corporation. http://www.oracle.com/database/.
Accessed 21 October 2014

 69. PostgreSQL GDG (2014) PostgreSQL: The world’s most advanced open source database.
PostgreSQL Global Development Group. http://www.postgresql.org. Accessed 21
October 2014

 70. Hipp DR (2014) SQLite. http://sqlite.org. Accessed 21 October 2014

 71. Sybase (2014) Database Management. Sybase Inc.
http://www.sybase.com/products/databasemanagement. Accessed 21 October 2014

http://db.apache.org/derby/
http://www-01.ibm.com/software/data/db2/
http://www.firebirdsql.org/
http://www.microsoft.com/sqlserver/en/us/default.aspx
http://www.microsoft.com/sqlserver/en/us/default.aspx
http://www.oracle.com/
http://www.postgresql.org/
http://sqlite.org/
http://www.sybase.com/products/databasemanagement

233

CHAPTER 7

Metadata and the Semantic Web

The basic structure of web documents provides the desired appearance and functionality. By default, however, the
content is human-readable only. You can use additional technologies to provide meaning to web documents, making
them machine-readable and human-readable at the same time. There is a wide choice of metadata available, along
with microformats and various annotations that can significantly extend the processability of web documents and the
efficiency of web searches. Structured data should be added to web sites and conventional search engines changed
from brute-force approaches to semantic parsing.

In this chapter, you will learn machine-readable metadata annotations and semantically meaningful attributes.
You will also become familiar with the Resource Description Framework, the fundamental standard behind Semantic
Web technologies. After reading the chapter, you will be able to create new vocabularies, schemes, and ontologies,
and use existing technologies such as

•฀ General metadata in the markup: Conventional meta tags

•฀ Microformats: Metadata provided as attribute values of markup elements

•฀ Microdata: A metadata annotation for general metadata embedding in HTML5

•฀ RDF: A standardized framework for Semantic Web data models

•฀ OWL: A knowledge representation language for describing and sharing web ontologies that
formally represent knowledge as a set of concepts within a domain and the relationships
between those concepts

•฀ FOAF and DOAC: Machine-readable ontologies for people and their professional capabilities

•฀ XMP, Rich Snippets, SearchMonkey RDFa: Metadata formats for images and video clips

The Semantic Web
Until recently, software agents could not handle many kinds of information that could have been associated with
files. Although file structure and extensions provided some information about files, much information could not be
expressed. For example, a file with a .jpg extension has always represented a JPEG image but provided no information
about the shutter speed, exposure program, f-stop, aperture, ISO speed rating, or focal length until the introduction
of metadata formats such as Exif and XMP (see Chapter 9). However, sharing metadata stored in binary files is still
not the most efficient way to share metadata, especially if it is much more generic. In the digital era, electronic files
are being sold (e-books, MP3 files, and so on) that might be retrieved or played on many types of devices. A variety of
metadata technologies can be used to express arbitrary information and represent any kind of knowledge associated
with electronic documents in a machine-readable format. Machine-readable data (automated data) is data stored in
a machine-readable format, making it possible for automated software agents to access and process it without human
intervention.

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

234

To browsers, web documents consisted of human-readable data only. In fact, information was confused with the
containers that contained them. In contrast to the conventional Web (the “Web of documents”), the Semantic Web is
the “Web of data” [1]. The Semantic Web provides machine-processable data, making it possible for software agents
to “understand” the meaning of information (in other words, semantics) presented by web documents. This feature
can be used for a variety of services [2], such as museums [3], community sites [4], podcasting [5], Big Data processing,
and search engines.

Caution ■ The word semantic is used on the Web in other contexts as well. For example, in HTML5 there are semantic

(in other words, meaningful) structuring elements, but this expression refers to the “meaning” of elements. In this context,

the word semantic contrasts the “meaning” of elements, such as that of section (a thematic grouping), with the generic

elements of older HTML versions, such as the “meaningless” div. The semantics of markup elements should not be

confused with the semantics (in other words, machine-processability) of metadata annotations and web ontologies used

on the Semantic Web. The latter can provide far more sophisticated data than the meaning of a markup element.

Conventional web documents can be extended with additional data that add meaning to them rather than
structure alone. Semantic Web is a new approach that is going to change the world of the Web. Surprisingly, Tim
Berners-Lee described the reason for the existence of the Semantic Web as early as 2001 [6]. On the Semantic Web,
data can be retrieved from seemingly unrelated fields automatically in order to combine them, find relations, and
make discoveries [7]. The machine-processability can also be used in huge and complex datasets that are considered
Big Data.

The Semantic Web should be considered an extension of the conventional Web [8]. Web 2.0 is an umbrella term
used for a collection of technologies that form the second generation of the Web, such as Extensible Markup Language
(XML), Asynchronous JavaScript and XML (Ajax), Really Simple Syndication (RSS), and Session Initiation Protocol
(SIP). They are the underlying technologies and standards behind instant messaging, Voice over IP, wikis, blogs,
forums, and web syndication.

The next generation of web services is denoted as Web 3.0, which is an umbrella term usually referring to
customization and semantic contents and more sophisticated web applications toward artificial intelligence,
including computer-generated contents [9].

The Semantic Web is a major aspect of Web 2.0 [10] and Web 3.0 [11]. Web 3.0 can be considered a superset of the
Semantic Web that features social connections and personalization.

Several technologies contribute to the sharing of such information instead of web pages alone, and the number
of Semantic Web applications is constantly increasing.

All data controlled by conventional web applications are kept by the applications themselves, making a significant
share of data and their relationships virtually unavailable for automated processing. Semantic Web applications,
on the other hand, can access this data through the general web architecture and transfer structured data between
applications and web sites [12]. Semantic web technologies can be widely applied in a variety of areas, such as
data integration, resource discovery and classification, cataloging, intelligent software agents, content rating, and
intellectual property right descriptions [13]. A much wider range of tasks can be performed on semantic web pages than
on conventional ones; for example, relationships between data and even sentences can be automatically processed
(see the next sections). Additionally, the efficiency is much higher. For example, a very promising approach provides
direct mapping of relational data to RDF, making it possible to share data of relational databases on the Semantic Web
[14]. Since relational databases are extremely popular in computing, databases that are publicly unavailable can now
be shared on the Semantic Web. Commercial RDF database software packages are already available on the market
(5Store, AllegroGraph, BigData, Oracle, OWLIM, Talis Platform, Virtuoso, and so on) [15]. Semantic tools can also be
used in a variety of other areas, including business process modeling or diagnostic applications [16].

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

235

Along with these benefits, there are several open issues that need further investigation and, in some cases,
the development of new approaches. The largest challenge of Semantic Web applications is to resolve semantic
data quality problems and identify useful and meaningful information [17]. There are more and more promising
approaches; however, they have a common feature: all rely on standard annotations, taxonomies, vocabularies, and
ontologies. We analyze these essential technologies and their features throughout the chapter from a standardization
point of view.

Structured Data
Data should be structured to support advanced processability and searchability by data type. Structured data is data
organized in a structure to become identifiable. Such data has been used for decades in computing, such as in the form
of Access and SQL databases, where queries can be performed to retrieve information (for example, a ZIP code). In
contrast to relational databases, most data on the Web is stored in (X)HTML documents that contain unstructured data.

Conventional web documents contain large amounts of unstructured data that can be rendered in web browsers.
This approach works satisfactorily for publishing purposes; however, a large amount of data stored in, or associated
with, web documents cannot be processed this way. According to Berners-Lee, the data used to describe social
connections between people is a good example for that kind of data [18]: “The Web is more a social creation than a
technical one. I designed it for a social effect—to help people work together—and not as a technical toy. The ultimate
goal of the Web is to support and improve our weblike existence in the world. We clump into families, associations,
and companies. We develop trust across the miles and distrust around the corner. What we believe, endorse, agree
with, and depend on is representable and, increasingly, represented on the Web. We all have to ensure that the society
we build with the Web is of the sort we intend.”

On the Semantic Web, there is a variety of structured data, usually expressed in, or based on, the Resource
Description Framework (RDF), which will be described later in detail. Similar to conventional conceptual modeling
approaches, such as class diagrams and entity relationships, the RDF data model is based on statements that
describe and feature resources, especially web resources, in the form of subject-predicate-object expressions. The
subject corresponds to the resource. The predicate expresses a relationship between the subject and the object. Such
expressions are called triples.

For example, the statement “The grass is green” can be expressed in an RDF triple as follows:

Subject: “The grass”•฀

Predicate: “is”•฀

Object: “green”•฀

RDF is an abstract model that has several serialization formats. Consequently, the syntax of the triple varies from
format to format (see later in the section “Resource Description Framework”).

Caution ■ RDF is a data representation model, not a language like XML.

The authors of the “conventional” Web usually publish unstructured data, because they do not know about
the power of structured data, find RDF too complex, or do not know how to create and publish RDF in any of its
serialization formats. The following are solutions to the problem that add structured data to conventional (X)HTML
markup, which can be extracted by appropriate software and converted to RDF:

Microformats, which reuse markup attributes•฀

Microdata, which extends HTML5 markup with structured metadata•฀

RDFa, which expresses RDF in markup attributes that are not part of (X)HTML vocabularies•฀

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

236

Linked Open Data

Linked Data (also known as Linking Data) can be applied to improve the exploitation of the “Web of data.” The expression
refers to the publishing of structured data in a way that typed links are created between data from different sources [19] to
provide a higher level of usability. By using Linked Data, it is possible to find other, related datasets. Structured data should
meet four requirements to be called Linked Data [20]:

URIs should be assigned to all entities of the dataset.•฀

HTTP URIs are required to ensure that all entities can be referenced and cited by users •฀
and user agents.

Entities should be described using standard formats such as RDF/XML.•฀

Links should be created to other, related entity URIs.•฀

All data that fulfill these requirements and are released for the public are called Linked Open Data (LOD).
The variety of datasets published as Linked Data is represented by the LOD cloud diagram (Figure 7-1) [21].

Figure 7-1. The LOD cloud diagram (courtesy of Max Schmachtenberg, Christian Bizer, Anja Jentzsch, and Richard
Cyganiak)

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

237

The image collects the datasets published according to the Linked Data principles and represents links between
them. The size of the bubbles corresponds to the number of triples stored in each dataset. Contributors include the
Linking Open Data community project, individuals, and organizations.

Machine-Readable Metadata

Metadata is structured data describing information about features and content of web sites. The meta tags written in (X)
HTML head sections, which do not require additional technologies, can be used to describe general data about web pages
(as mentioned earlier in Chapter 3 and will be described in detail in the next section). Semantic, machine-readable labels
can be provided as attribute values of (X)HTML or XML elements by microdata, microformats, or RDFa.

There are several metadata technologies; many apply different annotations. For example, the description of a
person can be expressed in RDFa, microdata, the vCard microformat, and further vocabularies such as FOAF or DOAC.

Special metadata such as licensing can be provided with different notations. Licensing information of images
and of the web pages containing them can be different. Providing license metadata can be beneficial to every web site,
especially the ones that have different copyright than the user content, such as image-sharing portals like Flickr [22].
Image licenses can be provided in basic markup, microdata, rel="license" microformat, and RDFa.

Several metadata technologies have multiple syntaxes. The syntax of microformats, for example, depends on the
host markup languages. In the case of RDF, some syntaxes have the same capabilities but different complexity.

Semantic Annotations
The meta Tags
In the 1990s, meta elements had a large effect on web search results. Since then, their significance has been
decreasing, partly because of the unethical tricks that have been used to manipulate search engine rankings. A good
example is keyword stuffing, which was used to load a web page with popular keywords that were not necessarily
relevant to the page content, either in the meta tags or in the content. In the latter case, the keywords were often
hidden, but the web page that contained them was indexed by search engines. Such tricks made it possible for
developers to achieve higher ranking on search results but significantly increased the number of irrelevant links on
search result lists. Although they are less important nowadays, meta tags still should be used to provide information
on web page contents for search engines.

The meta tags in HTML/XHTML can define a variety of metadata, for example, content type, author, publication
date, keywords, page content description, character encoding, and so on. These tags were introduced in HTML 2.0
and are still current.

The following attributes can be used on the meta element: content, http-equiv, name, and scheme. The first
one is the only required attribute. In HTML5, the scheme attribute is not supported on the meta element, and there is
another attribute called charset. The meta element attributes can specify the following:

•฀ Alternatives to HTTP headers that are sent by web servers prior to the web page content.
Listing 7-1 shows an example.

Listing 7-1. Document Expiry Date Provided by the meta Tag

<meta http-equiv="expires" content="Fri, 15 October 2010 14:15:00 GMT" />

•฀ Names and associated content attributes describing aspects of (X)HTML pages.
Listing 7-2 shows an example.

Listing 7-2. Keyword Declaration with the meta Tag

<meta name="keywords" content="standardization, accessibility" />

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

238

Meta schemes specify a semantic framework defining the meaning of the key and its value •฀
(prior to HTML5). They can also prevent potential ambiguity. Listing 7-3 shows an example.

Listing 7-3. A Meta Scheme

<meta name="foo" content="bar" scheme="DC" />

In this case, the meta scheme is Dublin Core (DC).

The language, keywords, description, and robots attributes contribute to more precise web searches by
defining document language, the most relevant keywords, and a short description. The value of the last attribute,
robots, provides control over search engine behavior for a limited extent [23]. Web pages can be prevented from
being indexed (noindex), crawled (nofollow), cached (noarchive), described (nosnippet), or described according to
the Open Directory Project (noodp) [24]. The combination of the noindex, nofollow values can be substituted by the
value none [25]. This setting can be used, for example, for confidential documents whose content and links should not
be indexed by search engines.1 Web page descriptions retrieved from ODP used by Google, Yahoo!, and Bing can be
disallowed specifically. The meta name to be applied is Googlebot for Google, Slurp for Yahoo!, and msnbot for Bing
(Listing 7-4).

Listing 7-4. meta Tags for Different Crawlers

<meta name="Googlebot" content="noodp" />
<meta name="Slurp" content="noodp" />
<meta name="msnbot" content="noodp" />

If you want to prevent the descriptions and titles retrieved from the Yahoo! Directory from being displayed in
search results, you can use the noydir value [26] (Listing 7-5).

Listing 7-5. Using the noydir Attribute Value

<meta name="robots" content="noydir" />

In spite of the variety of attribute values, using meta tags for preventing search engine indexing or crawling is not
the best solution. The robots.txt file should be used instead for this purpose.

The typical general metadata provided in the head section of web documents looks like Listing 7-6.

Listing 7-6. A Complete Example for meta Tags in XHTML5

<meta charset="UTF-8" />
<meta name="robots" content="index, follow" />
<meta name="content-language" content="en" />
<meta name="author" content="John Smith" />
<meta name="keywords" content="My Darling, pet shop, pet accessories, dog, collar,
 harness, dog lead, dog kennel, dog bowl, dog coats" />
<meta name="description" content="The website of the pet shop My Darling." />

Since the attribute value of the name attribute on the meta element is robots, the value of the content attribute
(index, follow) is applied to all search engines rather than a specific one.

1There฀are฀other฀techniques฀to฀achieve฀similar฀results.฀For฀example,฀web฀documents฀contained฀by฀a฀directory฀that฀is฀disallowed฀in฀
robots.txt฀will฀usually฀be฀excluded฀from฀search฀results.

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

239

Microformats
A special approach to metadata is a set of simple open data formats called microformats (mF). They are highly
correlated with the Semantic Web by applying and reusing features of existing technologies (for example, the (X)
HTML rel attribute) and by introducing new ones with the simplest approaches possible—based on Plain Old
Semantic HTML (POSH) (for example, hCard). They can be applied not only in (X)HTML markup but also in XML,
RSS, Atom, and so on.

Microformats can express site structure, link weight, content type, and human relationships with the class, rel,
and rev attribute values [27]. They are very easy to write, and the number of software supporting them is increasing
(for example, the Operator [28] and Tails Export [29] add-ons for Firefox, the Michromeformats Google Chrome
extension [30], the microformats transformer Optimus [31], or the Microformats Bookmarklet for Safari, Firefox,
and IE [32]).

However, there are still some open issues. For example, applying various microformats as multiple values on the
a element should be avoided (for example, rel="nofollow" and rel="friend"). The rev attribute used by the Vote
Links microformat cannot be used in HTML5.

Profile URIs provided by the profile attribute cannot be used on the head element in HTML5, where the profile
attribute values can be declared for the rel attribute on anchors (a) or link elements (link). As an example, a profile
URI is presented for the hCalendar microformat with all the three options. The hCalendar microformat is based on
the iCalendar standard (RFC 2445 [33]). All contents that use hCalendar notation should refer to the hCalendar XMDP
profile, in other words, http://microformats.org/profile/hcalendar, as shown in Listing 7-7 or Listing 7-8 for the
document head or in Listing 7-9 as part of the document body. These methods can also be combined.

Listing 7-7. Providing the hCalendar Head Profile in the Document Head (Cannot Be Used in HTML5)

<head profile="http://microformats.org/profile/hcalendar">

Listing 7-8. Linking to the hCalendar Profile in the Document Head

<link rel="profile" href="http://microformats.org/profile/hcalendar">

Listing 7-9. Using the hCalendar Profile in the Document Body

hCalendar

New structural elements introduced by HTML5, such as article, nav, and section, are not recognized by certain
microformat parsers.

In the next sections, we will give you an overview of some of the most popular microformats, namely, hCalendar,
hCard, rel="license", rel="nofollow", rel="tag", Vote Links, and XFN.

hCalendar

You can use the hCalendar microformat to create calendar entries for sport events, anniversaries, reminders,
meetings, workshops, conferences, and other events. The root class name for hCalendar is vcalendar. The root class
name for events is vevent, which is required for all event listings.

The properties are represented by the elements of hCalendar. The required properties are dtstart, which should
be provided in the ISO date format,2 and summary.

2Beyond฀microformats฀such฀as฀hAtom,฀hCalendar,฀hCard,฀and฀hReview,฀several฀web฀technologies฀apply฀the฀ISO฀8601฀date฀format฀฀
for฀date-time฀representation,฀such฀as฀XML,฀XML฀schema฀datatypes,฀RDF,฀and฀Atom.

http://microformats.org/profile/hcalendar
http://microformats.org/profile/hcalendar
http://microformats.org/profile/hcalendar
http://microformats.org/profile/hcalendar%22%3EhCalendar%3C/a

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

240

Listing 7-10 shows an hCalendar example.

Listing 7-10. A Three-Day Conference Represented in hCalendar

<div class="vevent">
 <h1 class="summary">Semantic Web Conference ’15</h1>
 <div class="description">Semantic Web Conference 2015 was announced yesterday.</div>
 <div>Posted on: <abbr class="dtstamp" title="20150825T080000Z">Aug 25, 2015</abbr></div>
 <div class="uid">uid1@host.com</div>
 <div>Organized by: js@expl.com</div>
 <div>Dates: <abbr class="dtstart" title="20151012T093000Z">October 12 2015, 9.30am
 UTC</abbr> – <abbr class="dtend" title="20151014T200000Z">October 14 2015, 8.00pm
 UTC</abbr></div>
 <div>Status: Confirmed</div>
 <div>Filed under:</div>

 <li class="category">Conference

</div>

Optional properties include, but are not limited to, location, url, dtend (in ISO date format), duration (in ISO
date duration format), rdate, rrule, category, description, uid, geo, attendee, contact, organizer, attach, and
status. The geo property has the subproperties latitude and longitude, while attendee has the subproperties
partstat and role. According to the specification, the property list is not final and is being extended [34].

Those who have to publish new events regularly might find the hCalendar generator hCalendar-o-matic useful [35].

hCard

The hCard microformat standard can be used to represent contact data of people, companies, and organizations
by semantic markup [36]. hCard metadata should be provided on the contact pages of web sites. In summer 2010,
hCard crossed the 2 billion mark according to Yahoo! Search Monkey, making it the most popular metadata format for
people and organizations on the Web.

hCard is based on the vCard standard (RFC 2426 [37]). In fact, existing vCards can be easily converted to hCard.3

Tip ■ The vCard standard is widely used for storing electronic business cards. For example, Microsoft Outlook uses this

format for the business cards available under Contacts.

The hCard class names should be in lowercase.

Caution ■ The root class name for an hCard is vcard. An element with a class name vcard is itself called an hCard.

3The฀vCard฀notation฀BEGIN:VCARD฀is฀class="vcard"฀in฀hCard,฀N:฀is฀class="n",฀FN:฀is฀class="fn",฀and฀so฀on.

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

241

The two required attributes in hCard are fn and n. However, the second one is optional if any implied “N”
optimization rules are in effect.4 The property n might have the subproperties family-name, given-name,
additional-name, honorific-prefix, and honorific-suffix.

All other properties are optional, including adr, agent, bday, category, class, email, geo, key, label, logo,
mailer, nickname, note, org, photo, rev, role, sort-string, sound, tel2, title, tz, uid, and url. Allowed
subproperties are post-office-box, extended-address, street-address, locality, region, postal-code,
country-name, type, and value for adr; type and value for email; latitude and longitude for geo;
organization-name and organization-unit for org; and type and value for tel2.

A typical hCard code looks like Listing 7-11.

Listing 7-11. A Typical hCard

<div id="hcard-John-Smith" class="vcard">

 John Smith
 <div class="org">Smith and Sons</div>
 smith@example.com
 <div class="adr">
 <div class="street-address">123 Nice Street</div>
 Vancouver,
 BC,
 V5K
 Canada
 </div>
 <div class="tel">+12345678</div>
</div>

The following hCard elements are singular and can be provided just once: fn, n, bday, tz, geo, sort-string, uid,
class, and rev. All other properties are allowed to have multiple instances.

Generally, the visible property values of markup elements represent the value of the hCard property. However,
there are some exceptions.

For hyperlinks that are represented by the a element for one or multiple hCard properties, the href attribute
provides the property value for all properties with a URL value (for example, photo). In case the img element is used,
the src attribute holds the property value for all properties with a URL value. For object elements, the data attribute
provides the property value. The content of the element is the property value for all other properties.

If the title attribute is provided for abbr elements with hCard notation, its value is considered as the hCard
property instead of the element contents used otherwise.

Although it is easy to create it manually, hCard metadata can be generated by the hCard creator hCard-o-matic
on the web site of the authors of the specification [38]. You simply fill in a form about the name, organization, country,
e-mail, and other contact data, and the software generates the hCard.

To provide additional information, microformats can also be nested. For example, a sport event review might
contain not only the review but also personal information (hCard) at the same time (Listing 7-12).

4If฀n฀is฀omitted฀but฀fn฀is฀present,฀the฀value฀of฀n฀will฀be฀equal฀to฀the฀value฀of฀fn.

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

242

Listing 7-12. A Combination of hReview and hCard

<div class="hreview">
 <strong class="item">The winner takes it all
Review

 By John Smith, Editor
 at Consumer Reviews

 Rating: 4.5 out of 5.
 A fascinating performance.
</div>

The review is described by the hReview microformat (class="hreview"). The name of the reviewer is revealed
by span class="reviewer". The hCard microformat is nested inside the hReview microformat in order to provide
additional information about him (a space-separated list of attribute values in).
The hCard properties describe the name (fn), job title (title), and organization (org) of the reviewer.

rel=“license”

There are millions of web resources with some or all rights reserved. Many licenses associated with documents and
objects are sophisticated, and users cannot be expected to know them.

The rel="license" microformat can be added to hyperlinks that point to the description of the license. This is
especially useful for images but can be used for any resources.

Basic image embeddings apply only the src and alt attributes on the img element, such as in Listing 7-13.

Listing 7-13. A Basic Image Embedding

To declare the image license, the rel and href attributes should also be used. In the case of the Creative
Commons Attribution-ShareAlike license, for example, it should be in the form shown in Listing 7-14.

Listing 7-14. Declaring an Image License

<img src="hotel.jpg" alt="The Palace Hotel" rel="license"
 ref="http://creativecommons.org/licenses/by-sa/3.0/" />

The value of the href attribute provides the associated URI of the resource where the license is described. Some
of the most commonly used license deeds are [39] as follows:

Creative Commons Attribution (cc by)•฀

http://creativecommons.org/licenses/by/3.0/

Creative Commons Attribution Share Alike (cc by-sa)•฀

http://creativecommons.org/licenses/by-sa/3.0

Creative Commons Attribution No Derivatives (cc by-nd)•฀

http://creativecommons.org/licenses/by-nd/3.0

Creative Commons Attribution Non-Commercial (cc by-nc)•฀

http://creativecommons.org/licenses/by-nc/3.0

http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by-nd/3.0
http://creativecommons.org/licenses/by-nc/3.0

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

243

Creative Commons Attribution Non-Commercial Share Alike (cc by-nc-sa)•฀

http://creativecommons.org/licenses/by-nc-sa/3.0

Creative Commons Attribution Non-Commercial No Derivatives (cc by-nc-nd)•฀

http://creativecommons.org/licenses/by-nc-nd/3.0

You should select a license that matches what you let others do with your work (distribute commercially or
noncommercially, remix, tweak, share with proper crediting, alter, and so on).

The profile of this microformat is http://microformats.org/profile/rel-license [40], which can be specified
on the head (X)HTML tag as shown in Listing 7-15.

Listing 7-15. The Head Profile of "rel=license"

<head profile="http://microformats.org/profile/rel-license">

rel=“nofollow”

One value of the rel attribute deserves extended attention, because it is often used in search engine optimization (SEO).
When rel="nofollow" is added to a hyperlink, the link destination should not be considered for additional ranking by
search engines. This attribute value can be applied if document owners need hyperlinks without affecting the ranking
of their web pages or links to external web sites. For example, if a hyperlink is vital on the web page but its destination
page has a very low PageRank, the hyperlink should be provided with rel="nofollow" to avoid search engine penalty.

Note ■ PageRank (PR) is a link analysis algorithm used to assign a numerical weighting to each web document in

order to express its relative importance on a 0–10 scale.

For example, if lowprsite.com has a low PR but you have to link to it because of the content presented there, you
can use the rel="nofollow" microformat as shown in Listing 7-16.

Listing 7-16. A Link That Will Be Not Considered by Search Engines While Indexing a Page

Low PR site

Listing 7-17 shows the profile URI of this microformat.

Listing 7-17. The Profile URI of rel="nofollow"

<link rel="profile" href="http://microformats.org/profile/rel-nofollow">

Although it is widely used, there are several open issues about this microformat [41]. The rel="nofollow"
microformat indicates a behavior rather than a relationship, so the definition is illogical. The name of the microformat
does not reflect the real meaning. It is not a noun. It does not affect spamming. Finally, many legitimate nonspam
links might be ignored or given reduced weight, which is an unfortunate side effect that should be eliminated [42].

http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-nd/3.0
http://microformats.org/profile/rel-license
http://microformats.org/profile/rel-license
http://www.lowprsite.com/
http://microformats.org/profile/rel-nofollow

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

244

rel=“tag”

The rel="tag" is still a draft specification since 2005 [43]. Unlike other microformats and general meta keywords, this
microformat can be used for visible links. It can be applied on hyperlink elements to indicate that the destination of
the link is a general author-designated tag (keyword) for the current page.

Within this microformat, spaces can be provided either as + or as %20. Unicode characters are encoded according
to the generic syntax rules of URIs described by the Internet Society (RFC 3986 [44]).

Vote Links

Vote Links is an elemental microformat with three possible values on the rev attribute of the a element: vote-for,
vote-against, and vote-abstain. The values are mutually exclusive. Optionally, visible rollovers can be provided by
the title attribute. Listing 7-18 shows an example.

Listing 7-18. A Vote Links Example

<a rev="vote-for" href="http://example.com/thumbsup/"
 title="HTML should be the primary markup language">HTML5
<a rev="vote-against" href="http://example.com/thumbsdown/"
 title="XHTML should be the primary markup language">XHTML5

Initially, the draft specification applied Vote Links on the rel attribute, which is now deprecated [45].
Listing 7-19 shows the URI profile reference.

Listing 7-19. The URI Profile for Vote Links

<link rel="profile" href="http://microformats.org/profile/vote-links">

XFN

The very first HTML microformat, XHTML Friends Network (XFN), was introduced in December 2003 [46]. XFN was
designed by Global Multimedia Protocols Group to express human relationships with simple hyperlinks [47]. XFN is
especially useful for brochure-style home pages and blog entries.

The name of the person should be provided as the text of the hyperlink (between <a> and). The personal
web site is the target of the hyperlink, in other words, the value of the href attribute. All relationship data can be
provided by the rel attribute on a elements. Multiple values are allowed and should be separated by spaces. The
friendship type can be contact, acquaintance, or friend. If the person is known personally, it can be expressed
by the met attribute value of the rel attribute. For example, a friend of Leslie Sikos whom he knows personally can
publish that relationship on his web site by XFN, as shown in Listing 7-20.

Listing 7-20. Link to the Web Site of a Friend

I am an old friend of Leslie Sikos.

The distance between the residence of the person and that of his friend can be expressed by the co-resident
and neighbor values. Relatives can set to child, parent, sibling, spouse, or kin. The professional relationships
co-worker and colleague are also supported. Feelings can also be expressed (muse, crush, date, sweetheart) [48].

CSS styles can also be added to XFN metadata. For example, friends can be provided in bold and colleagues in
italic with the CSS rules shown in Listing 7-21.

http://microformats.org/profile/vote-links
http://lesliesikos.com/

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

245

Listing 7-21. Styling XFN

a[rel~="friend"] {
 font-weight: bold;
}

a[rel~="colleague "] {
 font-style: italic;
}

Although it is easy to create XFN from scratch, XFN creators such as XFN Creator [49] or Exefen [50] might speed
up development.

XMDP

XHTML MetaData Profiles (XMDP) metadata is an XHTML-based format for defining metadata profiles that are both
machine- and human-readable. XMDP consists of a property definition list, an optional description, and then, if
applicable, one or more definition list items. The profile definition list is identified by the class (Listing 7-22).

Listing 7-22. XMDP Profile Definition

<dl class="profile">

The definition term is identified by the id (Listing 7-23).

Listing 7-23. Definition Term and Data for XMDP

<dt id="property1">property1</dt>
<dd>propertydesc</dd>

The informatively used meta properties author and keywords, for example, can be defined by XMDP as shown in
Listing 7-24 [51].

Listing 7-24. A Complete XMDP Example

<dl class="profile">
 <dt id="author">author</dt>
 <dd>A person who wrote (at least part of) the document.</dd>
 <dt id="keywords">keywords</dt>
 <dd>A comma and/or space separated list of the keywords or keyphrases of the document.</dd>
</dl>

Listing 7-25 shows the structure of an XMDP profile URI.

Listing 7-25. An XMDP Profile URI

<link rel="profile" href="http://gmpg.org/xmdp/samplehtmlprofile.html">

http://gmpg.org/xmdp/samplehtmlprofile.html

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

246

Drafts and Future Microformats

The number of newly developed microformats is increasing. You can apply them to provide specific metadata on a
wide variety of resources.

Address information can be described by adr [52]. Geographic coordinates (latitude-longitude pairs) can be
provided according to the World Geodetic System (WGS) with the geo microformat [53]. hAtom can be used for web
syndication [54]. Information about audio recordings can be embedded by using the hAudio microformat [55]. The
hListing microformat can be applied for open, distributed listings [56]. Image, video, and audio media components
can be described by hMedia [57]. hNews is a microformat to provide news content on web sites [58]. Product
descriptions can be expressed in hProduct [59]. Cooking and baking recipes can be described on the Web with
hRecipe [60]. Resumes and CVs can be published with hResume [61]. Document reviews can be written in hReview
[62]. The rel-directory microdata can indicate that a link destination is a directory listing that refers to the current
page [63]. File attachments provided for downloading can be indicated by the rel-enclosure microformat [64].
rel-home provides a hyperlink to the home page of the web site [65]. The rel-payment microformat is an online
payment mechanism [66]. The reworking of the robots meta tag is the robots-exclusion microformat [67]. The
xFolk microformat (stands for xFolksomony) was designed for publishing collections of bookmarks [68].

The Microformats Community welcomes metadata enthusiasts to create new microformats [69].

HTML5 Microdata
The concept of microdata was introduced in HTML5 for labeling content to describe a specific type of information [70].
HTML5 microdata can be used for semantical descriptions of people, organizations, events, products, reviews,
and links.

Note ■ Many descriptions provided in HTML5 microdata can also be expressed in microformats (discussed earlier),

as well as in RDFa (as you will see later). However, each format has its strengths and weaknesses, as will be described

later in detail.

People

A variety of metadata can be used to describe a person on the Web. One of the options to express properties such as
name, job title, or address is microdata. A person can be described with microdata as shown in Listing 7-26.

Listing 7-26. Describing a Person with Microdata

<div itemscope itemtype="http://data-vocabulary.org/Person">
 Leslie Sikos is the
 manager of
Sikos Web Consulting.
</div>

http://data-vocabulary.org/Person

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

247

Events

Events, such as workshops, conferences, sport events, and so on, can be described by the following microdata properties:

•฀ description: A description of the event

•฀ duration: The duration date of the event in ISO duration format

•฀ endDate (dtend): The ending date and time of the event in ISO date format

•฀ eventType (category): The category of the event, for example, Concert, Festival, Lecture

•฀ geo: Geographical coordinates of the location with two elements: latitude and longitude

•฀ location: Location or venue of the event

•฀ photo: Hyperlink to a photo or image related to the event

•฀ startDate (dtstart): The starting date and time of the event in ISO date format (required)

•฀ summary: The name of the event (required)

•฀ url: Hyperlink of the web page describing the details of the event

For example, a sport event can be described as shown in Listing 7-27.

Listing 7-27. Describing a Sport Event with Microdata

<div>
 National flyball competition

 The national flyball competition is approaching.
 When: Nov 13, 9:00AM—12:00AM
 Where: Dog Park, 123 Arena Eve, Melbourne, VIC
 Category: Sport
</div>

Image Licensing with Microdata

One of the options to provide image licensing information is HTML5 microdata. Listing 7-28 shows an example.

Listing 7-28. Describing the Image License with Microdata

<figure itemscope itemtype="http://example.org/pics" itemref="licenses">

 <figcaption itemprop="title">The DB9.</figcaption>
</figure>
<footer>
 <p id="licenses">All images are licensed under the <a itemprop="license"
 href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons
 Attribution Share Alike license.
 </p>
</footer>

It is strongly recommended you publish photographs on the Web with licensing metadata. This can eliminate
copyright issues and licensing problems as well as contribute to advanced web searches.

http://creativecommons.org/licenses/by-sa/3.0/%22%3ECreative

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

248

Knowledge Organization Systems: Schemas, Vocabularies,
and Ontologies
Taxonomies or controlled vocabularies are structured collections of terms that can be used as metadata element values.
They are parts of conceptual data schemas (conceptual data models) that map concepts and their relationships. The
namespaces reveal the meaning of tags and attributes and form vocabularies. Formalized conceptual structures can be
defined as ontologies, in other words, knowledge representations of sets of concepts in a domain and the relationships
between them. Web ontologies make it possible to describe complex statements in any topic in a machine-readable
format.

Namespaces provide a mechanism to extend the vocabulary of markup languages. To use external vocabularies
and ontologies of various metadata technologies, the XML namespace facility is applied in order to associate all
properties with the appropriate schema that defines them. Specific metadata can be provided this way such as friends
of the author, the nearest airport to the author, GPS coordinates of the office, and so on. User-defined namespaces
(schemas) can be created for additional classes and instances of resources.

Shorthand notations are used throughout the Semantic Web to reduce document length. A popular mechanism
is called the qualified name (Qname), which is applied in XML, XML Schema, RDF, RDF Schema, OWL, Dublin Core,
and so on. The following are the most common Qnames:

•฀ dc

Refers to the namespace URI http://purl.org/dc/elements/1.1/

•฀ owl

Refers to the namespace URI http://www.w3.org/2002/07/owl#

•฀ rdf

Refers to the namespace URI http://www.w3.org/1999/02/22-rdf-syntax-ns#

•฀ rdfs

Refers to the namespace URI http://www.w3.org/2000/01/rdf-schema#

•฀ xsd

Refers to the namespace URI http://www.w3.org/2001/XMLSchema#

The selection of Semantic Web applications is increasing. For example, OntosMiner runs ontology-driven
multilingual information extraction and provides the output in various formats, including RDF(S), XML, OWL,
and N3 [71]. Clinical archetypes can be represented and managed as web ontologies in OWL. OWL can also be
applied for e-government representations. Web ontologies can be applied for considering viewpoints of learning
resources such as online programming courses [72]. Financial headline news can also be represented by
ontologies [73]. The following is a short list of some of the more established knowledge organization systems:

•฀ Functional Requirements for Bibliographic Records, often abbreviated as FRBR, can be used to
express bibliographic records with properties such as creator, part, embodiment, successor,
and subject. FRBR has four classes: Work, Expression, Manifestation, and Item [74].

Licenses of creative works can be denoted by •฀ Creative Commons. The Creative Commons
Rights Expression Language is ideal to describe copyright in RDF. It has properties such as
permits, requires, prohibits, jurisdiction, legalcode, and deprecatedOn, as well as the
classes Work, License, Jurisdiction, Permission, Requirement, and Prohibition [75].

The •฀ Open Digital Rights Language is an open standard for policy expressions and is being
developed and promoted by the ODRL Initiative [76]. The digital management of rights performed
using ODRL has also caught attention, and ODRL is also described as a W3C Note [77].

http://purl.org/dc/elements/1.1/
https://www.w3.org/2002/07/owl#
https://www.w3.org/1999/02/22-rdf-syntax-ns#
https://www.w3.org/2000/01/rdf-schema#
https://www.w3.org/2001/XMLSchema#

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

249

Data related to video files, films, and video production can be described using •฀ VidOnt, the
Video Ontology [78].

Geographic positions can be precisely annotated in •฀ Geo. It has the lat, long, and alt
properties and the SpatialThing and Point classes [79].

Biographical information can be expressed by the •฀ Bio vocabulary [80].

In education, the IMS/IEEE •฀ Learning Object Metadata (LOM) can do a service [81].

Math-Net can be applied to standardize the presentation of information on mathematical •฀
departments and research institutes [82].

People and their social networks can be precisely described in RDF/XML or OWL by Friend •฀
of a Friend (FOAF) properties such as name, homepage, knows, weblog, and interest (see the
section “FOAF”) [83]. FOAF should be used on all social networking sites.

Professional capabilities and achievements can be described by Description of a Career •฀
(DOAC) (see the section “DOAC”) [84]. DOAC is compatible with the European Curriculum
(Europass) that can be generated from a FOAF+DOAC file.

Software projects, in particular open source ones, can be expressed in Description of a Project •฀
(DOAP) [85].

These schemas, vocabularies, and ontologies are just demonstrations for the endless variety. The list is not
complete by any means. VocabularyMarket [86], vocab.org [87], and other libraries collect further specific and
sophisticated vocabularies, schemas, and ontologies such as the Beer Ontology [88], the Music Vocabulary [89], or the
Music Ontology [90]. You can also find many vocabularies with a Google search.

Web ontologies have their limitations and open issues, however. For example, the verification of OWL ontologies
with rule extensions is rather complex. However, they can be verified at the symbolic level by using a declarative
approach (a new language called Datalog) [91]. The semantic differences between various ontologies should be
resolved. The effort to achieve that goal is known as ontology alignment. Storing and retrieving data from large RDFs
can be performed by advanced techniques only [92].

FOAF
FOAF is a machine-readable ontology to describe people and their contact data, interests, and relationships with
other people. In 2007, Berners-Lee defined a new Semantic Web concept known as the “Giant Global Graph”.
He stated that FOAF is an important part of the GGG: “I express my network in a FOAF file, and that is a start of the
revolution” [93].

Unlike conventional online social networks developed in PHP or JSP, FOAF networks can be built without a
centralized database. Additionally, FOAF content can be processed automatically. No one has to search for friends
in FOAF networks because the system itself describes the connections.5 According to the original FOAF project started
in 2000, these systems are open networks [94].

There are more and more FOAF search engines, for example, QDOS FOAFNet [95], netEstate Friend Of A Friend
(FOAF) Search Engine [96], the Semantic Web Search [97], or Quatuo [98]. The latter one, for example, can also be
used for creating FOAF files. However, there are dedicated FOAF generators as well. The most well-known is
FOAF-O-MATIC developed by Leigh Dodds. FOAF files can be generated by filling in a form (Figure 7-2) [99].

5However,฀anybody฀can฀provide฀their฀own฀FOAF฀file฀and฀search฀for฀others’.

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

250

Some of the popular content management systems, such as Drupal, also support FOAF [100]. Prior to these tools,
the lack of a graphical user interface could have been the major reason why this powerful technology has not come
into general use until recently.

The FOAF vocabulary provides a variety of classes and properties to express personal data and relationships [83]:

Basic information•฀

Classes: •฀ Agent, Person

Properties: •฀ name, nick, title, homepage, mbox, mbox_sha1sum, img, depiction (depicts),
surname, family_name, givenname, firstName

Figure 7-2. FOAF-a-matic in action

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

251

Personal information•฀

Properties: •฀ weblog, knows, interest, currentProject, pastProject, plan,
based_near, workplaceHomepage, workInfoHomepage, schoolHomepage, topic_interest,
publications, geekcode, myersBriggs, dnaChecksum

Online accounts•฀

Classes: •฀ OnlineAccount, OnlineChatAccount, OnlineEcommerceAccount,
OnlineGamingAccount

Properties: •฀ holdsAccount, accountServiceHomepage, accountName, icqChatID,
msnChatID, aimChatID, jabberID, yahooChatID

Projects and memberships•฀

Classes: •฀ Project, Organization, Group

Properties: •฀ member, membershipClass, fundedBy, theme

Documents and images•฀

Classes: •฀ Document, Image, PersonalProfileDocument

Properties: •฀ topic (page), primaryTopic, tipjar, sha1, made (maker), thumbnail, logo

A complete FOAF description looks like Listing 7-29.

Listing 7-29. Describing Personal Metadata with FOAF

<foaf:Person>
 <foaf:name>Thomas Davis</foaf:name>
 <foaf:gender>Male</foaf:gender>
 <foaf:title>Mr</foaf:title>
 <foaf:givenname>Thomas</foaf:givenname>
 <foaf:family_name>Davis</foaf:family_name>
 <foaf:homepage rdf:resource="http://www.example.com"/>
 <foaf:weblog rdf:resource="http://www.example.com/blog/"/>
</foaf:Person>

As you will see, such descriptions can be embedded in XML and RDF files. In contrast to the profiles of conventional
community portals, such as the ones driven by PHP and MySQL, the entire content of such files can be automatically
processed. Anyone who publishes a FOAF or DOAC file on their web site can provide a machine-readable personal
introduction, resources, and links to colleagues and friends.

DOAC
FOAF properties can be considered as the semantic equivalents of personal characteristics and relationships
described on Facebook, and DOAC properties are the semantic counterparts of LinkedIn features. The DOAC
vocabulary not only provides classes and properties to describe professional capabilities but also reapplies FOAF
properties from the foaf:Person domain, including doac:summary, doac:experience, doac:education, doac:skill,
doac:reference, and doac:publication [84].

Employment history and career experience can be described by the doac:title, doac:date-starts,
doac:date-ends, doac:position, doac:activity, and doac:location properties of the doac:Experience class.

Education and training information can be provided by the doac:title, foaf:organization, doac:date-starts,
doac:date-ends, doac:subject, and doac:level properties of the doac:Education class.

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

252

The doac:Skill class has the subclasses doac:Skill, doac:LanguageSkill, doac:SocialSkill,
doac:OrganizationalSkill, doac:ComputerSkill, and doac:DrivingSkill.

A FOAF+DOAC file looks like Listing 7-30.

Listing 7-30. A Complete FOAF+DOAC Example

<foaf:Person>
 <foaf:name>John Smith</foaf:name>
 <foaf:mbox rdf:resource="mailto:john@jsmith.com" />
 <foaf:homepage rdf:resource="http://www.jsmith.com" />
 <doac:experience>
 <doac:VolunterExperience>
 <doac:title>CEO</doac:title>
 <doac:organization>ABC Company</doac:organization>
 <doac:start-date>2010-04-06</doac:start-date>
 <doac:end-date>2011-09-18</doac:end-date>
 </doac:VolunterExperience>
 </doac:experience>
 <doac:education>
 <doac:Degree>
 <doac:title>Information Management</doac:title>
 <doac:organization>Nanyang Technological University</doac:organization>
 <doac:start-date>2000-09-01</doac:start-date>
 <doac:end-date>2005-06-15</doac:end-date>
 </doac:Degree>
 </doac:education>
 <doac:skill>
 <doac:LanguageSkill>
 <doac:language>en</doac:language>
 <doac:reads rdf:resource="http://ramonantonio.net/doac/0.1/#nativelevel" />
 <doac:writes rdf:resource="http://ramonantonio.net/doac/0.1/#nativelevel" />
 <doac:speaks rdf:resource="http://ramonantonio.net/doac/0.1/#nativelevel" />
 </doac:LanguageSkill>
 </doac:skill>
</foaf:Person>

Such metadata is especially beneficial when someone is looking for a job or wants to describe the cornerstones
of their career in a machine-processable format. Consequently, DOAC files could be used to enable software agents to
make automatic job offers according to their qualification and experience.

Dublin Core
Dublin Core is a fundamental group of metadata elements developed and distributed by the Dublin Core Metadata
Initiative (DCMI) and standardized by the International Organization for Standardization (ISO 15836 [101]), the
Internet Engineering Task Force (IETF) (RFC 5013 [102]), and the American National Standards Institute (ANSI/NISO
Z39.85-2007 [103]). Dublin Core metadata is often used in (X)HTML document head sections (similar to general meta
tags), in attributes of XHTML+RDFa documents, and in other files such as feed channels. It can be expressed using
meta and link (X)HTML elements, RDFa, RDF/XML representation, and plain XML [104]. The Dublin Core syntax is
provided in the reference model defined by the Dublin Core Abstract Model specification [105].

http://ramonantonio.net/doac/0.1/#nativelevel
http://ramonantonio.net/doac/0.1/#nativelevel
http://ramonantonio.net/doac/0.1/#nativelevel

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

253

The Dublin Core Metadata Element Set defines the 15 fundamental elements of Dublin Core, including
contributor, coverage, creator, date, description, format, identifier, language, publisher, relation, rights,
source, subject, title, and type [106]. If these elements are used exclusively, we are talking about Simple Dublin
Core. The extended set of elements is a higher level of Dublin Core called Qualified Dublin Core, which provides
more specific elements. In addition to the general rules of Simple Dublin Core, further rules apply for Qualified
Dublin Core. Qualified Dublin Core properties can be not only the 15 Dublin Core elements but also other elements
recommended by the Dublin Core Metadata Initiative or DCMI element refinements. Optionally, Qualified Dublin
Core values might have associated encoding schemes, each of which is identified by a name. Element refinements are
handled similarly to properties (element refinement name associated with a Dublin Core namespace).

Dublin Core Namespaces

Dublin Core namespaces can be declared by the rel attribute on the (X)HTML link element or with the xmlns
attribute in XML. The (X)HTML declaration consists of a prefix and a namespace URI (see Listing 7-31).

Listing 7-31. A Dublin Core Namespace Declaration

<link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" />

The namespace URIs of all DCMI properties, classes, and encoding schemes are defined by the following DCMI
namespace URIs [107]:

•฀ http://purl.org/dc/dcmitype/

Classes in the DCMI Type Vocabulary

•฀ http://purl.org/dc/dcam/

Terms used in the DCMI Abstract Model

•฀ http://purl.org/dc/elements/1.1/

The Dublin Core Metadata Element Set, Version 1.1 (the 15 original elements)

•฀ http://purl.org/dc/terms/

All other DCMI properties, classes, and encoding schemes

The DCMI Abstract Model also applies some semantic concepts of the Resource Description Framework and
RDF Schema (RDFS), including resource, property/element, class, syntax encoding scheme, some relationships
(has domain, has range, sub-property of, sub-class of), and the concept of plain and typed value strings [108].

Simple Dublin Core

Dublin Core records consist of one or more properties and their associated property values (Listing 7-32).

Listing 7-32. A DC Property (Creator) and a Value Associated with It (John Smith)

<meta name="DC.Creator" content="John Smith" />

Each property should be an element from the Dublin Core Metadata Element Set. All properties are optional
and may be repeated [109]. The DC property values are considered as literal strings and might have an associated
language (for example, en-US). Dublin Core records and the resources they are applied to are not linked; however,
such a linkage can optionally be provided by the identifier element with the resource URI as the property value
(Listing 7-33).

http://purl.org/dc/elements/1.1/
http://purl.org/dc/dcmitype/
http://purl.org/dc/dcam/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

254

Listing 7-33. Dublin Core Metadata with identifier

<dc:title>
 Tutorials
</dc:title>
<dc:description>
 HTML5 and CSS3 tutorials.
</dc:description>
<dc:publisher>
 Dr. Leslie F. Sikos
</dc:publisher>
<dc:identifier>
 http://www.lesliesikos.com/tutorials/
</dc:identifier>

The Dublin Core Metadata Initiative recommends three general rules for Dublin Core implementation:

 1. Dublin Core properties should be provided as XML elements. Property values should be
the contents of those elements. Listing 7-34 shows an example.

Listing 7-34. Dublin Core Properties as XML Elements

<dc:title>Dublin Core in XML element format</dc:title>

 2. All Dublin Core property names should be lowercase. Listing 7-35 shows an example.

Listing 7-35. Dublin Core Property Names in Lowercase

<dc:title>Dublin Core example</dc:title>

 3. Multiple property values should be declared by repeating the XML element for that

property (see Listing 7-36).

Listing 7-36. Repeated XML Elements for Multiple Dublin Core Property Values

<dc:creator>John Smith</dc:creator>
<dc:creator>Robert Johnson</dc:creator>

Qualified Dublin Core

Qualified Dublin Core makes more specific and advanced (meaningful) annotations possible than Simple Dublin
Core. Using Qualified Dublin Core metadata is similar to adding Simple Dublin Core, except that Qualified Dublin Core
properties can be not only from the set of the original 15 DC elements but also from additional elements or element
refinements defined by the DCMI Metadata Terms recommendation [110]. Furthermore, all Qualified Dublin Core
property values might have an associated encoding scheme with a unique name listed as the Term name in the DCMI
Metadata Terms recommendation.

http://www.lesliesikos.com/tutorials/

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

255

Beyond the general implementation guidelines, the following rules apply for Qualified Dublin Core:

 1. Similar to DC properties, the element refinement names should be XML qualified names
(QName) that link to the associated DCMI namespace name (Listing 7-37).

Listing 7-37. XML QName with Dublin Core

<dcterms:available>2011-04</dcterms:available>

In this example, the date or period when the resource became or will become available is
expressed with Qualified Dublin Core.

Element refinements might have further embedded element refinements.

 2. Encoding schemes should be declared by the xsi:type attribute on the XML element for
the property. The name of the encoding scheme is provided as the attribute value in the
form of a QName. Listing 7-38 shows an example.

Listing 7-38. Encoding Scheme Declaration

<dc:identifier xsi:type="dcterms:URI">
 http://www.example.com/
</dc:identifier>

 3. The names of both the element refinements and the encoding schemes should be those
that are specified in the DCMI Metadata Terms recommendation. The first letter of the
element and element refinement names should always be in lowercase. The first letter of
encoding scheme names should be in uppercase. Scheme names are often provided in all
uppercase. Listing 7-39 shows an example.

Listing 7-39. Element Refinement and Encoding Scheme

<dcterms:isPartOf xsi:type="dcterms:URI">
 http://www.example.com/
</dcterms:isPartOf>

 4. The language of the property value can optionally be provided by using the xml:lang
attribute (Listing 7-40).

Listing 7-40. Setting the Natural Language for Dublin Core

<dc:subject xml:lang="en">
 website standardization
</dc:subject>
<dc:subject xml:lang="hu">
 weblap-szabványosítás
</dc:subject>

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

256

Dublin Core Expressed by (X)HTML Meta and Link Elements

A URI reference can be either a URI or a relative reference expressed in the RFC 3986 format [111]. URI references
should be represented in full (Listing 7-41).

Listing 7-41. A Full URI Reference for the subject Metadata

<link rel="DCTERMS.subject" href="http://example.org/docs" />

Relative references are allowed only if they can be resolved by the base URI (href attribute on the base element
or from the document URI). Listing 7-42 shows an example.

Listing 7-42. A Relative URI Reference for Dublin Core

<base href="http://example.org/docs/" />
<link rel="schema.DCTERMS" href="http://purl.org/dc/terms/" />
<link rel="DCTERMS.isReferencedBy" href="doc1" />

A prefixed name is an abbreviation for a URI used in the DC-HTML format [112]. A DC-HTML prefixed name
consists of a prefix followed by a period (.) and a local name. For example, a DC-HTML prefixed name is expressed as
attribute value in the form shown in Listing 7-43.

Listing 7-43. A DC-HTML Prefixed Name

<link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" />
<meta name="DC.title" content="Smartphone descriptions" />

A Dublin Core statement is represented by either an (X)HTML meta or a link element, depending on the content
of the statement (literal or nonliteral value surrogate). For example, the document title can be provided by the meta
element as presented in Listing 7-44, while the subject is represented by the link element as in Listing 7-45.

Listing 7-44. Document Title Declared Using Dublin Core

<meta name="DC.title" content="Smartphone descriptions" />

Listing 7-45. Document Subject Declared Using Dublin Core

<link rel="DCTERMS.subject" href="http://example.org/topic" title="Topic" />

Dublin Core metadata on the document language, author, and so on, can be declared in the XHTML document
head, as shown in Listing 7-46.

Listing 7-46. Document Language and Creator Described with Dublin Core

<meta name="DC.language" content="en" />
<meta property="dc:creator" content="John Smith" />

Dublin Core Expressed in XML

Creating XML applications with Simple Dublin Core metadata according to XML schemas instead of XML DTDs
is recommended. XML namespaces should be applied to identify Dublin Core elements, element refinements, or
encoding schemes. Properties should be encoded as XML elements and values. The names of these XML elements
should be XML qualified names (QNames). Property names should be all lowercase. The XML element should be
repeated when providing multiple property values.

http://purl.org/dc/terms/
http://purl.org/dc/elements/1.1/

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

257

The xsi:type attribute of the XML element should be applied for implementing encoding schemes. Element
refinements and encoding schemes use the names specified by the DCMI Metadata Terms. The xml:lang attribute
should be applied to provide the language of Qualified Dublin Core values in XML [113]. Listing 7-47 shows a
complex example.

Listing 7-47. Dublin Core in XML

<?xml version="1.0"?>
<metadata
 xmlns="http://example.org/myapp/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://example.com/xmlapp/ http://example.com/schemata/schema.xsd"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>
 DC in XML sample document
 </dc:title>
 <dc:description>
 The description of the XML application.
 </dc:description>
 <dc:publisher>
 John Smith
 </dc:publisher>
 <dc:identifier>
 http://www.example.com
 </dc:identifier>
</metadata>

Dublin Core Description Sets (DC-DS-XML) can also be expressed in XML [114]. These sets consist of one or
more descriptions containing zero or one described resource URI, and one or more statements. The statements
contain one property URI and one value surrogate. Depending on the type of the value surrogate, it can be one value
string (in case of literal value surrogates) or zero or one value URIs, zero or one vocabulary encoding scheme URI, and
zero or more value strings (in case of nonliteral value surrogates). A value string can be a plain value string or a typed
value string. The first one can optionally be associated with a value string language, while the latter one has a syntax
encoding scheme URI. Nonliteral values can also be described by other descriptions.

A description set element has an expanded name with the pair of the XML namespace name
http://purl.org/dc/xmlns/2008/09/01/dc-ds-xml/ and the local name descriptionSet (Listing 7-48).

Listing 7-48. A Description Set Element

<?xml version="1.0" encoding="UTF-8" ?>
<dcds:descriptionSet
 xmlns:dcds="http://purl.org/dc/xmlns/2008/09/01/dc-ds-xml/">
 <dcds:description>
 <dcds:statement
 dcds:propertyURI="http://purl.org/dc/terms/title">
 <dcds:literalValueString>
 Smith and Sons Inc Home Page
 </dcds:literalValueString>
 </dcds:statement>
 </dcds:description>
</dcds:descriptionSet>

http://www.w3.org/2001/XMLSchema-instance
http://purl.org/dc/elements/1.1/
http://purl.org/dc/xmlns/2008/09/01/dc-ds-xml/
http://purl.org/dc/xmlns/2008/09/01/dc-ds-xml/
http://purl.org/dc/terms/title

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

258

Description elements are XML elements that are child elements of description set elements with the name
dcds:description.

A statement element is a single Dublin Core statement represented by a child XML element of a description
element. Statement elements have the name dcds:statement.

Value string elements are child elements of statement elements. Literal value surrogates, the value surrogates
for literal values containing one value string representing a literal, can be encoded by the value string element
dcds:literalValueString, which can be provided just once per statement element.

Nonliteral value surrogates optionally contain a value URI represented as the value of the XML attribute
dcds:valueURI of the statement element (Listing 7-49).

Listing 7-49. Optional Value URI in a Nonliteral Value Surrogate

<dcds:statement
 dcds:propertyURI="http://purl.org/dc/terms/publisher"
 dcds:valueURI="http://example.com">
 <dcds:valueString>Smith and Sons Inc</dcds:valueString>
</dcds:statement>

For nonliteral value surrogates, the vocabulary encoding scheme URI can optionally be provided by the
dcds:vesURI attribute.

The value string language of plain value strings can be provided by the xml:lang attribute of the value string
element. Language identifiers of IETF RFC 4646 or later [115] should be applied. Listing 7-50 shows an example.

Listing 7-50. Value String Language Declaration

<?xml version="1.0" encoding="UTF-8" ?>
 <dcds:descriptionSet
 xmlns:dcds="http://purl.org/dc/xmlns/2008/09/01/dc-ds-xml/">
 <dcds:description
 dcds:resourceURI="http://example.com">
 <dcds:statement
 dcds:propertyURI="http://purl.org/dc/terms/title">
 <dcds:literalValueString xml:lang="en-US">
 Example document
 </dcds:literalValueString>
 </dcds:statement>
 </dcds:description>
</dcds:descriptionSet>

For typed value strings, the syntax encoding scheme URI attribute dcds:sesURI should be used.

Dublin Core Expressed in RDF

Simple Dublin Core can be expressed also in RDF, including RDF/XML serialization [116]. Listing 7-51 shows an
example that includes an XML declaration, a reference to the XML DTD, an RDF declaration, and the resource
descriptions.

http://purl.org/dc/terms/publisher
http://purl.org/dc/xmlns/2008/09/01/dc-ds-xml/
http://purl.org/dc/terms/title

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

259

Listing 7-51. Dublin Core in RDF/XML

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF PUBLIC "-//DUBLIN CORE//DCMES DTD 2002/07/31//EN"
 "http://dublincore.org/documents/2002/07/31/dcmes-xml/dcmes-xml-dtd.dtd">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <rdf:Description>
 <dc:title>Internet for everyone</dc:title>
 <dc:creator>Leslie Sikos</dc:creator>
 <dc:format>Book</dc:format>
 <dc:identifier>ISBN 963 9425 08 7</dc:identifier>
 </rdf:Description>
</rdf:RDF>

XML character-encoding rules apply. Optionally, the language of any element in these documents can be
provided by the xml:lang attribute.

Expressing Qualified Dublin Core in RDF is described by another DCMI specification [117]. In contrast,
properties such as dc:creator and dc:date are considered in this document as entities rather than names.
Listing 7-52 shows an example.

Listing 7-52. Qualified Dublin Core in RDF

<http://www.example.com> dc:creator <http://www.example.org/pj>

The original specifications defining the RDF implementations of DC have been superseded by the 2008
specification [118] and notes [119]. For example, the RDF schemas for DCMI properties and classes have been
removed from the specification.

Knowledge Representation Standards
Resource Description Framework (RDF)
Although it was originally designed as a metadata data model, Resource Description Framework (RDF) has become a
general web resource description and modeling language. It can be used for conceptual description or modeling of
information stored in web resources. RDF can be used to create a machine-readable description about any kind of
resource, because RDF files can be extended with an arbitrary number of external vocabularies. In contrast to many
W3C standards, RDF has no single specification but is defined by a set of documents [120].

The RDF data model can be used for describing any kind of resources that can be identified by a URI. As
mentioned earlier, an RDF document is a sequence of statements called RDF triples (resource–property–value or
subject–predicate–object). The predicate (property) that denotes a relationship between the subject and the object
can be binary only. Any expression in RDF is a collection of triples. A set of triples is called an RDF graph, which is a
directed, labeled graph that represents information on the Web. The nodes of the RDF graph are the resources and
values [121].

As shown earlier, a person can be described using the FOAF vocabulary. Such descriptions can be written either
in XML or in RDF. Listing 7-53 shows how to write FOAF in RDF.

http://dublincore.org/documents/2002/07/31/dcmes-xml/dcmes-xml-dtd.dtd
https://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

260

Listing 7-53. Describing a Person in RDF

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns="http://www.example.com/johnsmith/contact.rdf#">
 <foaf:Person rdf:about="http://www.example.com/johnsmith/contact.rdf#johnsmith">
 <foaf:mbox rdf:resource="mailto:john.smith@example.com" />
 <foaf:homepage rdf:resource="http://www.example.com/johnsmith/" />
 <foaf:family_name>Smith</foaf:family_name>
 <foaf:givenname>John</foaf:givenname>
 </foaf:Person>
</rdf:RDF>

Figure 7-3 represents this file as an RDF graph.

Figure 7-3. A simple RDF graph

As you will see, RDF can be expressed in a variety of formats. For example, Listing 7-54 is another notation of
Listing 7-53. This notation, N3, will also be described later in detail.

https://www.w3.org/1999/02/22-rdf-syntax-ns#
http://xmlns.com/foaf/0.1/

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

261

Listing 7-54. The N3 Equivalent of the Previous Example

@prefix : <http://www.example.org/~joe/contact.rdf#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

:joesmith a foaf:Person ;
 foaf:givenname "Joe" ;
 foaf:family_name "Smith" ;
 foaf:homepage <http://www.example.org/~joe/> ;
 foaf:mbox <mailto:joe.smith@example.org>.

The RDF namespace is http://www.w3.org/1999/02/22-rdf-syntax-ns#, which is conventionally associated
with the namespace prefix rdf:.

The Unicode strings in URI references of RDF graphs cannot contain control characters (#x00–#x1F, #x7F–#x9F).
These URIs should be absolute URIs with optional fragment identifiers.

RDF literals are used to identify values such as numbers and dates. RDF literals are Unicode strings containing one or
two named components. They should be written in UTF-8 normalized in Normalization Form C (Canonical Decomposition
followed by Canonical Composition [122]). RDF literals can be either plain or typed. Plain literals are strings combined with
an optional language tag (normalized to lowercase). They correspond to plain text in a natural language. Typed literals are
strings combined with a datatype URI for applying the lexical-to-value mapping to the literal string.

The Formal Grammar of the Resource Description Framework was introduced in 1999 [123]. RDF has the
following vocabulary:

•฀ rdf:Alt, rdf:Bag, rdf:Seq

Containers of alternatives, unordered containers, and ordered containers (rdfs:Container is
a superclass of the three)

•฀ rdf:List

The class of RDF lists

•฀ rdf:nil

An empty list (an instance of rdf:List)

•฀ rdf:Property

The class of properties

•฀ rdf:Statement, rdf:subject, rdf:predicate, rdf:object

Reification

•฀ rdf:type

A predicate that identifies the class that the resource is an instance of

•฀ rdf:XMLLiteral

The class of typed literals

This vocabulary is also used as the basis for the extensible knowledge representation language, RDF Schema
(see the section “RDF Schema”).

There is a query language called SPARQL (pronounced “Sparkle”) that can be used to retrieve and manipulate
information stored in RDF or in any format that can be retrieved as RDF [124]. The output can be a results set or an RDF
graph. It is also possible to update RDF graphs through a protocol known as the SPARQL 1.1 Uniform HTTP Protocol [125].

http://xmlns.com/foaf/0.1/
https://www.w3.org/1999/02/22-rdf-syntax-ns#
https://www.w3.org/1999/02/22-rdf-syntax-ns#

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

262

The Resource Description Framework technology is important from the standardization point of view for many
reasons. First, the basic data model of RDF is a standard graph. Second, the naming system applies standard URLs.
The data retrieval and composition mechanisms used by RDF are also standard technologies.

RDF can be provided in a variety of syntaxes/serialization formats, for example, RDF XML serialization
(RDF/XML), RDFa, Turtle, Notation3, JSON-LD, N-Triples [126], TRiG [127], and TRiX [128]. The most common ones
are described in the next sections.

RDF in XML Serialization Syntax

The recommended and most frequently used syntax for RDF applications is the XML serialization format, RDF/XML
[129]. Although there are other notations of RDF that are easier to read and write (see the next sections), RDF/XML
provides widely accepted XML documents. However, the fundamental problem with RDF/XML is the contradiction of
representing a graph with a tree structure.

The Internet media type for RDF/XML is application/rdf+xml. The recommended file extension is .rdf.
The XML serialization of RDF provides well-formed XML documents (Chapter 1).
A person’s Wikipedia page, for example, can be described in a machine-readable form in RDF/XML, as shown in

Listing 7-55.

Listing 7-55. A Wikipedia Page Described in RDF/XML

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <rdf:Description rdf:about="http://en.wikipedia.org/wiki/Rowan_Atkinson">
 <dc:title>Rowan Atkinson</dc:title>
 <dc:publisher>Wikipedia</dc:publisher>
 </rdf:Description>
</rdf:RDF>

RDF in N3 Syntax

Notation 3, often abbreviated as N3, is a shorthand non-XML serialization of RDF. It is a superset of RDF and is more
compact than the XML serialization of RDF. The grammar of N3 is defined by W3C in many formats [130], for example,
in Extended Backus-Naur Form (EBNF)6 [131].

The MIME type and character encoding of N3 should be declared as text/n3; charset=utf-8. The typical file
extension is .n3. Tokenizing and whitespace handling are not specified in the grammar.

Base URIs to be used for the parsing of relative URIs can be set with the @base directive in the form
@base <http://example.com/overview/>.

A prefix can be associated to a namespace URI by the @prefix directive.
Several rules for string escaping are derived from Python, namely, stringliteral, stringprefix, shortstring,

shortstringitem, longstring, longstringitem, shortstringchar, and longstringchar. Additionally, the \U extension,
also used in another RDF serialization (N-Triples), can be applied. Legal escape sequences are \newline, \\ (backslash, \),
\' (single quote, '), \" (double quote, "), \n (ASCII Linefeed, LF), \r (ASCII Carriage Return, CR), \t (ASCII Horizontal Tab,
TAB), \uhhhh (Unicode character in BMP), and \U00hhhhhh (Unicode character in plane 1–16 notation). The escapes \a, \b,
\f, and \v cannot be used because the corresponding characters are not allowed in RDF.

6EBNF฀is฀a฀family฀of฀metasyntax฀notations฀that฀can฀be฀used฀to฀express฀context-free฀grammars.

https://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
http://en.wikipedia.org/wiki/Rowan_Atkinson

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

263

Shorthand notation can be used for the following common predicates:

•฀ a (stands for <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>)

•฀ = (stand for <http://www.w3.org/2002/07/owl#sameAs>)

•฀ => (stands for <http://www.w3.org/2000/10/swap/log#implies>)

•฀ <= (stands for <http://www.w3.org/2000/10/swap/log#implies>)

New classes and new properties can be defined in new vocabularies [132]. A class can be defined as Listing 7-56
because the rdf:type property is abbreviated as a in N3.

Listing 7-56. An RDF Class in N3

:Sport a rdfs:Class.

An object of the class can be defined as shown in Listing 7-57.

Listing 7-57. Declare an Object of a Class in N3

:Kayak a :Sport.

Objects can be in multiple classes. Relationships between classes can be written as shown in Listing 7-58.

Listing 7-58. Class Relationships in N3

:Watersport a rdfs:Class; rdfs:subClassOf :Sport.

A property can be defined as shown in Listing 7-59.

Listing 7-59. Property Declaration in N3

:paddle a rdf:Property.

Relationships between classes are not necessarily hierarchical relationships. You can see an example
in Listing 7-60.

Listing 7-60. Nonhierarchical Relationships in N3

:paddle rdfs:domain :Sport;
 rdfs:range :Watersport.

The person’s Wikipedia page described in the previous section can be written in N3 as shown in Listing 7-61.

Listing 7-61. A Wikipedia Page Description in N3

@prefix dc: <http://purl.org/dc/elements/1.1/>.

<http://en.wikipedia.org/wiki/Rowan_Atkinson>
 dc:title "Rowan Atkinson";
 dc:publisher "Wikipedia".

Notation3 has several subsets, including Turtle, N-Triples, N3 RDF, and N3 Rules. The most popular of them is
discussed in the next section.

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2000/10/swap/log#implies
http://www.w3.org/2000/10/swap/log#implies
http://purl.org/dc/elements/1.1/
http://en.wikipedia.org/wiki/Rowan_Atkinson

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

264

RDF in Turtle Syntax

A subset of N3 is the Terse RDF Triple Language, often referred to as Turtle. Turtle provides a syntax to describe RDF
graphs in a compact textual form, which is easy to develop. It is a subset of Notation 3 (N3) and a superset of N-Triples.
Turtle is popular among Semantic Web developers and considered as an easy-to-read alternative to RDF/XML. Turtle
is being standardized by the World Wide Web Consortium [133]. The typical file extension of Turtle files is .ttl. The
character encoding of Turtle files should be UTF-8. The MIME type of Turtle is text/turtle. Turtle is supported by
many software frameworks that can be used for querying and analyzing RDF data, such as Jena [134], Redland [135],
and Sesame [136].

Turtle files consist of a sequence of directives, statements representing triples, and blank lines. Triples can be
written in Turtle as a sequence of subject – predicate – object terms, separated by whitespace, and terminated by a
period (.). URIs should be written in angle brackets (<>). Literals are delimited by double quotes (""). Listing 7-62
shows an example.

Listing 7-62. A Basic Example for the Turtle Syntax

<http://example.com/shop> <http://example.com/contact> "Text content".

URI length can be reduced by the @PREFIX (Listing 7-63).

Listing 7-63. A URI Prefix Declaration

@PREFIX ex: <http://example.com/>.

In that case, the first example can be written as in Listing 7-64.

Listing 7-64. Using a Prefix

ex:shop ex:contact "Text content".

where ex:shop declares the concatenation of http://example.com/ with shop, revealing the original URI
http://example.com/shop.

RDFa

The power of RDF, which was demonstrated earlier, can be exploited through external files written in rather complex
syntax. However, there is a nice exception: RDFa. RDFa (RDF in attributes) adds attribute-level extensions to any
markup language (from this point of view, the host language, as discussed earlier in Chapter 3) in order to describe
structured data. In other words, RDFa notations can be declared in attributes, rather than elements (which is the
approach used by other RDF serialization formats). Although many attributes are defined by RDFa, some markup
attributes (such as href and rel) are reused. Wherever possible, the textual content is also reused. RDFa can serve
as a bridge between the “human and data Webs,” since RDFa makes it possible to write RDF triples in the (X)HTML
markup [137]. Structured information can be extracted and utilized from web documents via an RDFa application
programming interface (RDFa API) [138]. The mechanism of the RDF data model mapping allows RDF triples to be
embedded within web documents as well as the extraction of RDF model triples by compliant software.

RDFa provides the option to embed rich metadata within certain attributes of web documents [139]. The set of
attributes to be used for this purpose is as follows:

•฀ about, src

The Unified Resource Identifier (URI) or compact URI (CURIE) [140] of the resource that
describes the metadata

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

265

•฀ rel, rev

Relationship with another resource

•฀ href, resource

The partner resource

•฀ property

A property for the content of an element

•฀ content

Element content override when using the property attribute (optional)

•฀ datatype

The datatype of text specified for use with the property attribute (optional)

•฀ typeof

The RDF type(s) of the subject (optional)

RDFa makes it possible to arbitrarily mix multiple independently developed vocabularies. It can be parsed
without analyzing the specific vocabularies being applied. This is one of the most advanced technologies to provide
different types of machine-readable structured data in the markup.

Since the “a” in RDFa stands for attributes whose styles are provided most commonly in Cascading Style Sheets, it
is straightforward to use CSS selectors to style the code [141]. For example, if the name of the creator and the book title
of the previous example appear throughout the site, all instances can be styled using universal selectors (Listing 7-65).

Listing 7-65. Styling RDFa

* [property="dc:creator"] {
 color: #2a56d3;
 font-style:italic;

 }
* [property="dc:title"] {
 font-size: 2em;
 font-family: Georgia, serif;
}

The latest news on RDFa can be tracked on the web site of the RDFa Working Group of W3C [142].
As an example, let’s describe a person with RDFa notation using the FOAF vocabulary! First we need to declare

the FOAF namespace (either in the document head or on the body element). The about attribute of RDFa can be used
to express the subject, while the RDFa attribute property sets the predicate (Listing 7-66).

Listing 7-66. An RDFa Annotation Using FOAF

<body xmlns:foaf="http://xlmns.com/foaf/0.1/">
 <p about="#smith" property="foaf:name">John Smith</p>
</body>

The content of the p element is both a human- and machine-readable text that will be rendered on the web page.

http://xlmns.com/foaf/0.1/

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

266

Now extend the previous example with another person and express a relationship between the two persons
(Listing 7-67)! The class of the entity can be declared by the typeof attribute. In this case, we use the Person class from
the FOAF vocabulary to “let the browser know” that John Smith is a person. The second person is declared exactly
the same way. Finally, we use the term knows from the FOAF vocabulary and pass it as the value of the rel attribute to
express that John Smith knows Peter Johnson (declared by the resource attribute).

Listing 7-67. Two People and the Relationship Between Them Expressed Using FOAF in RDFa

<body xmlns:foaf="http://xmlns.com/foaf/0.1">
 <p>
 John Smith is
 interested in smartphones. <span about="#jane" typeof="foaf:Person"
 property="foaf:name">Peter Johnson is an Android developer. <span
 about="#john" rel="foaf:knows" resource="#peter">John and Peter knows each other.

 </p>
</body>

Compare this machine-readable statement with MySQL database records displayed using PHP, and you have a
glimpse of the power of the Semantic Web!

Other vocabularies can be similarly used with RDFa. For example, Dublin Core metadata can be embedded to
the markup using RDFa, as shown in Listing 7-68.

Listing 7-68. An RDFa Annotation Using DC

<p xmlns:dc="http://purl.org/dc/elements/1.1/"
 about="#standardweb" property="dc:title">
 Web standardista Dr. Sikos describes
 web standardization, accessibility, and web semantics in the second edition of
 <cite about="#webstandards" property="dc:title">Web Standards</cite>. The first blog
 post has been published on <span about="#webstandards" property="dc:date"
 content="2014-10-11">11 October 2014.
</p>

Microformats vs. Microdata vs. RDFa

You should have noticed that there are similar concepts defined by certain microformats and HTML5 microdata to
describe people, events, or licenses. RDFa, on the other hand, is not limited to such concepts and can be used to
annotate any kind of resource.

As discussed earlier, microformats reuse HTML attributes (for example, class, title) and have separate
vocabularies that are difficult to combine, because microformats do not use the namespace mechanism. Last but not
least, microformats do not define an RDF representation.7

HTML5 microdata, as also presented earlier, provides new attributes for HTML5 markup. HTML5 microdata is
easy to write and works well in documents that use a single external vocabulary. Combining different vocabularies
is rather complex in HTML5 microdata. Some vocabulary mappings, such as that of Dublin Core elements, are
supported by the technology by default. A missing feature is the concept of data types and namespaces. Fortunately,
however, HTML5 microdata defines a generic mapping to RDF, so it can be used to express triples.

7It฀is฀possible฀to฀transform฀microformats฀to฀RDF฀using฀technologies฀such฀as฀XSLT฀and฀GRDDL,฀but฀such฀transformations฀depend฀฀
on฀the฀vocabularies฀being฀used.

http://xmlns.com/foaf/0.1
http://purl.org/dc/elements/1.1/

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

267

In contrast to microformats and microdata, RDFa is a complete serialization of RDF and hence provides the most
advanced annotation of them all. RDFa defines new markup attributes and uses URIs and namespaces by default.
Consequently, combining vocabularies is very easy (similar to RDF). RDFa is completely flexible regarding literals and
URI resources.

RDF Schema

According to the W3C Metadata Activity, RDF Schema (RDFS) is “a declarative representation language influenced by
ideas from knowledge representation” [143]. RDF Schema extends RDF with structure (classes, properties of properties,
and so on). It can be used to formalize metadata exchange between human-readable and machine-processable
vocabularies. Beyond the basic RDF vocabulary discussed earlier, RDFS has several additional constructs [144]:

Classes•฀

•฀ rdf:Property

•฀ rdf:XMLLiteral

•฀ rdfs:Class

•฀ rdfs:Datatype

•฀ rdfs:Literal

•฀ rdfs:Resource

Properties•฀

•฀ rdf:type

•฀ rdfs:comment

•฀ rdfs:domain

•฀ rdfs:isDefinedBy

•฀ rdfs:label

•฀ rdfs:range

•฀ rdfs:seeAlso

•฀ rdfs:subClassOf

•฀ rdfs:subPropertyOf

These classes and properties provide an even more advanced level of knowledge representation than RDF does
and can be used for basic description of web ontologies. This is the reason why a more expressive language, the Web
Ontology Language (OWL), reuses many RDFS components (see next section).

For example, the resource “macaw” can be declared as a subclass of the class “birds,” as shown in Listing 7-69.

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

268

Listing 7-69. A Simple RDFS Example

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://www.example.com/birds#">
 <rdf:Description rdf:ID="bird">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 </rdf:Description>
 <rdf:Description rdf:ID="macaw">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#bird"/>
 </rdf:Description>
</rdf:RDF>

This notation can also be shortened by using rdfs:Class instead of rdf:Description and omitting rdf:type
(Listing 7-70).

Listing 7-70. An Optimized Version of the Previous Example

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://www.example.com/birds#">
 <rdfs:Class rdf:ID="bird" />
 <rdfs:Class rdf:ID="macaw">
 <rdfs:subClassOf rdf:resource="#bird"/>
 </rdfs:Class>
</rdf:RDF>

Web Ontology Language (OWL)
Web Ontology Language is a knowledge representation language with the primary purpose of creating web ontologies.
Web ontologies can be used for a variety of purposes, such as searching, query formation, indexing, and agent or
service metadata management, or to improve application and database interoperability. Web ontologies are especially
useful for knowledge-intensive applications, where text extraction, decision support, or resource planning are
common tasks, as well as in knowledge repositories used for knowledge acquisition.

The abbreviation of the Web Ontology Language, OWL, is not straightforward on purpose [145]. OWL ontologies
are RDF graphs, in other words, sets of RDF triples. Similar to RDF graphs, OWL ontology graphs can be expressed
in various syntactic notations. There are three variants of OWL: OWL Lite, OWL DL, and OWL Full [146]. OWL is a
higher-level language than RDF; in fact, it is a vocabulary extension of RDF. Consequently, RDF graphs are OWL Full
ontologies.

The default OWL namespace is http://www.w3.org/2002/07/owl#, which defines the OWL vocabulary. There is
no MIME type defined specifically for OWL. Using the application/rdf+xml or the application/xml MIME type for
OWL documents is recommended. The recommended file extension is either .rdf or .owl.

The development of the first version of OWL was started in 2002, and the second version, OWL2, in 2008. OWL
became a W3C Recommendation in 2004 [147], and OWL2 was standardized in 2009 [148, 149].

https://www.w3.org/1999/02/22-rdf-syntax-ns#
https://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#Class
https://www.w3.org/1999/02/22-rdf-syntax-ns#
https://www.w3.org/2000/01/rdf-schema#
https://www.w3.org/2002/07/owl#

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

269

Syntaxes

At the high level, the OWL abstract syntax [150] and the OWL2 functional syntax [151] can be used. OWL also supports
several exchange syntaxes, including RDF syntaxes [152] (RDF/XML [153], RDF/Turtle [154]), the OWL2 XML syntax [155],
and the Manchester syntax [156]. RDF/XML is the normative syntax [157].

For example, a class declaration for a smartphone ontology can be written in various syntaxes, as shown in
Listings 7-71 to 7-75.

Listing 7-71. OWL2 Functional Syntax Example

Ontology(<http://example.com/smartphone.owl>
 Declaration(Class(:Smartphone))
)

Listing 7-72. OWL2 XML Syntax Example

 <Ontology ontologyIRI="http://example.com/smartphone.owl">
 <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>
 <Declaration>
 <Class IRI="Smartphone"/>
 </Declaration>
 </Ontology>

Listing 7-73. RDF/XML Syntax Example

<rdf:RDF>
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:about="#Smartphone"/>
</rdf:RDF>

Listing 7-74. RDF/Turtle Example

<http://example.com/smartphone.owl> rdf:type owl:Ontology.
:Smartphone rdf:type owl:Class.

Listing 7-75. Manchester Syntax Example

Ontology: <http://example.com/smartphone.owl>
Class: Smartphone

Properties

In OWL, the following types of properties exist:

•฀ Object properties that link individuals to other individuals

•฀ Datatype properties that link individuals to data values (subclasses of object properties)

•฀ Annotation property (owl:AnnotationProperty)

•฀ Ontology property (owl:OntologyProperty)

https://www.w3.org/2002/07/owl#

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

270

Property features are defined by the property axioms. The basic form expresses the existence only. For example,
in a smartphone ontology, the property hasTouchscreen can be declared to express a major feature of mobile phones
(see Listing 7-76).

Listing 7-76. A Property Declaration in OWL

<owl:ObjectProperty rdf:ID="hasTouchscreen"/>

OWL property axioms can also define additional characteristics. OWL supports RDF Schema constructs
such as rdfs:subPropertyOf, rdfs:domain, and rdfs:range. Relations to other properties can be expressed by
owl:equivalentProperty and owl:inverseOf (Listing 7-77).

Listing 7-77. Two Equivalent Smartphone Properties (Accelerometer and G-sensor)

<owl:ObjectProperty rdf:ID="hasAccelerometer">
 <owl:equivalentProperty>
 <owl:ObjectProperty rdf:ID="hasGsensor"/>
 </owl:equivalentProperty>
</owl:ObjectProperty>

Global cardinality constraints are defined by owl:FunctionalProperty and owl:InverseFunctionalProperty.
Logical property features are defined by owl:SymmetricProperty and owl:TransitiveProperty [158] (Listing 7-78).

Listing 7-78. A Symmetric Property in OWL

<owl:SymmetricProperty rdf:ID="hasLiveConnection">
 <rdfs:domain rdf:resource="#Smartphone"/>
 <rdfs:range rdf:resource="#Smartphone"/>
</owl:SymmetricProperty>

OWL provides precise declarations for expressing relationships, even if they are evident. For example, the
property hierarchy of two smartphone features can be expressed in functional syntax, as presented in Listing 7-79.

Listing 7-79. Property Hierarchy in OWL

SubObjectPropertyOf(:hasGeotagging :hasCamera)

Classes

Similar to RDF, OWL provides classes to group resources. There are six different class descriptions in OWL:

Class identifier (URI reference). A named instance of •฀ owl:Class, a subclass of rdfs:Class.8
Listing 7-80 shows an example.

Listing 7-80. A Class Identifier in OWL

<owl:Class rdf:ID="Handheld"/>

8In฀OWL฀Lite฀and฀OWL฀DL.฀In฀OWL฀Full฀they฀are฀equivalent.

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

271

Set of individuals (instances of a class) defined by the •฀ owl:oneOf property. For example,
the class of smartphones can be declared in the RDF/XML syntax with the RDF construct
rdf:parseType="Collection", as shown in Listing 7-81.

Listing 7-81. Class Instances in OWL

<owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="#Touch"/>
 <owl:Thing rdf:about="#Type"/>
 <owl:Thing rdf:about="#TouchType"/>
 <owl:Thing rdf:about="#Business"/>
 </owl:oneOf>
</owl:Class>

Property restriction: a value constraint or a cardinality constraint (for example, Listing 7-82).•฀

Listing 7-82. Property Restrictions in OWL

<owl:Restriction>
 <owl:onProperty rdf:resource="hasGPS" />
 <owl:allValuesFrom rdf:resource="#Smartphone" />
</owl:Restriction>

Intersection of two or more class descriptions. For example, the intersection of two •฀ Brochures
enumerations can be described by the statement owl:intersectionOf, as presented
in Listing 7-83.

Listing 7-83. Intersection in OWL

<owl:Class>
 <owl:intersectionOf rdf:parseType="Brochures">
 <owl:Class>
 <owl:oneOf rdf:parseType="Brochures">
 <owl:Thing rdf:about="#Manual" />
 <owl:Thing rdf:about="#Guide" />
 <owl:Thing rdf:about="#Prospectus" />
 </owl:oneOf>
 </owl:Class>
 <owl:Class>
 <owl:oneOf rdf:parseType="Brochures">
 <owl:Thing rdf:about="#Specs" />
 <owl:Thing rdf:about="#Overview" />
 <owl:Thing rdf:about="#Guide" />
 </owl:oneOf>
 </owl:Class>
 </owl:intersectionOf>
</owl:Class>

where the intersection is a class with the only common individual, Guide.

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

272

Union of two or more class descriptions. For example, the union of the previous example •฀
contains the individuals Manual, Guide, Prospectus, Specs, and Overview (if they are all
different).

Complement of a class description. The class extension contains exactly those individuals •฀
that do not belong to the class extension of the class description that forms the object of the
statement. The complement can be described by the owl:complementOf property.

Class descriptions can be combined into class axioms. Class hierarchy can be expressed by subclass axioms
(Listing 7-84).

Listing 7-84. Class Hierarchy in OWL

SubClassOf(:Slide :Smartphone)

The equivalence of two classes express that the individuals contained by them are identical. Listing 7-85 shows
an example.

Listing 7-85. Equivalent Classes in OWL

EquivalentClasses(:Virtualkeyboard :Softquerty)

Although individuals can be members of several classes in general, in many cases memberships are exclusive.
For example, a smartphone belongs to either the bar or the slide form factor. This class disjointness can be expressed
as shown in Listing 7-86.

Listing 7-86. Class Disjointness in OWL

DisjointClasses(:Bar :Slide)

Simple Knowledge Organization System (SKOS)
Simple Knowledge Organization System (SKOS) is a W3C recommendation for representing taxonomies, thesauri,
classification schemes, subject-heading systems, and structured controlled vocabularies. Being one of the most
frequently implemented Semantic Web standards in industrial applications, SKOS is built upon RDF and RDFS to
enable easy publication of controlled vocabularies as linked data. RDF provides interoperability, consistency, and
integrity, and allows knowledge organization systems to be used in distributed, decentralized metadata applications
where metadata are retrieved from multiple resources.

The SKOS standard defines the SKOS data model as an OWL Full ontology [159]. The elements of the SKOS data
model are OWL classes and properties with individual URIs that form the SKOS vocabulary.

Combining Metadata
Schemas are often combined on the Semantic Web in order to apply all those specific vocabularies that are designed
to express metadata on the topic of the web pages being described. The longest lists of namespaces occur in web
documents that provide a significant amount of additional metadata, most commonly, in (X)HTML+RDFa. Listing 7-87
shows an example.

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

273

Listing 7-87. A Long List of Namespaces in an XHTML+RDFa Document

<html version="XHTML+RDFa 1.0" xmlns="http://www.w3.org/1999/xhtml"
 xmlns:air="http://www.daml.org/2001/10/html/airport-ont#"
 xmlns:bio="http://vocab.org/bio/0.1/"
 xmlns:bibo="http://purl.org/ontology/bibo/"
 xmlns:cc="http://creativecommons.org/ns#"
 xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#"
 xmlns:dbp="http://dbpedia.org/property/"
 xmlns:dbr="http://dbpedia.org/resource/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:fb="http://www.facebook.com/2008/fbml"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"
 xmlns:ical="http://www.w3.org/2002/12/cal/icaltzd#"
 xmlns:og="http://opengraphprotocol.org/schema/"
 xmlns:openid="http://xmlns.openid.net/auth#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfa="http://www.w3.org/ns/rdfa#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:rel="http://vocab.org/relationship/"
 xmlns:rss="http://web.resource.org/rss/1.0/"
 xmlns:sioc="http://rdfs.org/sioc/ns#"
 xmlns:smap="http://purl.org/net/ns/sitemap#"
 xmlns:vcard="http://www.w3.org/2006/vcard/ns#"
 xmlns:wot="http://xmlns.com/wot/0.1/"
 xmlns:xhv="http://www.w3.org/1999/xhtml/vocab#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

These vocabulary prefixes allow the use of terms defined by the listed external vocabularies in the current
document. It is highly recommended to list only those namespaces that are actually used in the document, which
contributes to code optimality and easier maintenance. Although unnecessary namespaces do not cause any error
messages in the browser, they make the markup more complex.

Because of the different features of vocabularies, the combined application is not always straightforward.
For example, many terms are included in various vocabularies, and choosing one of them is often driven by personal
preference only. In fact, you should take the specification of the candidate properties into account in order to choose
the most suitable one for your scenario.

Combining Vocabularies in RDF
The easiest way to mix properties from any vocabulary is to create an RDF file. For example, a completely machine-
readable personal profile uses FOAF terms to describe the title, name, gender, IM accounts, home page, phone
number, and relationships of a person. The nearest airport to the office of the person can be expressed with a term
from the Contact vocabulary, the date when the file has been created can be declared by Dublin Core, and so on
(Listing 7-88).

http://www.w3.org/1999/xhtml
https://www.daml.org/2001/10/html/airport-ont#
http://vocab.org/bio/0.1/
http://purl.org/ontology/bibo/
https://creativecommons.org/ns#
https://www.w3.org/2000/10/swap/pim/contact#
http://dbpedia.org/property/
http://dbpedia.org/resource/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://www.facebook.com/2008/fbml
http://xmlns.com/foaf/0.1/
https://www.w3.org/2003/01/geo/wgs84_pos#
https://www.w3.org/2002/12/cal/icaltzd#
http://opengraphprotocol.org/schema/
https://xmlns.openid.net/auth#
https://www.w3.org/2002/07/owl#
https://www.w3.org/1999/02/22-rdf-syntax-ns#
https://www.w3.org/ns/rdfa#
https://www.w3.org/2000/01/rdf-schema#
http://vocab.org/relationship/
http://web.resource.org/rss/1.0/
https://rdfs.org/sioc/ns#
https://purl.org/net/ns/sitemap#
https://www.w3.org/2006/vcard/ns#
http://xmlns.com/wot/0.1/
https://www.w3.org/1999/xhtml/vocab#
https://www.w3.org/2001/XMLSchema#

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

274

Listing 7-88. Several Vocabularies Used for a Personal Profile Written in RDF

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#"
 xmlns:dc="http://purl.org/dc/terms/"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:google="http://rdf.data-vocabulary.org/#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:wot="http://xmlns.com/wot/0.1/"
 xmlns:xhv="http://www.w3.org/1999/xhtml/vocab#"
>
 <rdf:Description rdf:about="http://www.example.com/metadata/foaf.rdf">
 <foaf:title>Dr</foaf:title>
 <foaf:givenname>John</foaf:givenname>
 <foaf:surname>Smith</foaf:surname>
 <foaf:gender>male</foaf:gender>
 <foaf:depiction rdf:resource="http://www.example.com/images/jsmith.jpg"/>
 <foaf:based_near rdf:resource="http://dbpedia.org/resource/New_York "/>
 <contact:nearestAirport rdf:resource="http://www.panynj.gov/airports/jfk.html"/>
 <foaf:phone rdf:resource="tel:+1123456789"/>
 <foaf:homepage rdf:resource="http://www.example.com"/>
 <google:url rdf:resource="http://www.example.com"/>
 <foaf:holdsAccount rdf:resource="http://www.linkedin.com/in/jsmith"/>
 <foaf:holdsAccount rdf:resource="http://www.facebook.com/jsmith"/>
 <foaf:holdsAccount rdf:resource="http://www.twitter.com/jsmith"/>
 <foaf:interest rdf:resource="http://dbpedia.org/resource/Photography"/>
 <foaf:interest rdf:resource="http://dbpedia.org/resource/Semantic_Web"/>
 <foaf:interest rdf:resource="http://dbpedia.org/resource/Classical_music"/>
 <rdfs:seeAlso rdf:resource="http://www.example.com/metadata/foaf.rdf"/>
 <rdfs:seeAlso rdf:resource="http://www.example.com/metadata/doac.rdf"/>
 <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdf:type rdf:resource="http://rdf.data-vocabulary.org/#Person"/>
 <rdf:type rdf:resource="http://purl.org/dc/terms/Agent"/>
 <owl:sameAs rdf:resource="http://www.example.com/about/"/>
 <foaf:publications rdf:resource="http://www.example.com/metadata/doac.rdf"/>
 <foaf:knows rdf:resource="http://www.1stfriendswebsite.net/foaf.rdf"/>
 <foaf:knows rdf:resource="http://www.2ndfriendssite.com/foaf/"/>
 <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2010-08-22</dc:date>
 <dc:creator>John Smith</dc:creator>
 <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/PersonalProfileDocument"/>
 <xhv:stylesheet rdf:resource="http://www.example.com/styles.css"/>
 <wot:assurance rdf:resource="http://www.example.com/signature.asc"/>
 <foaf:primaryTopic rdf:resource="http://www.example.com/about/"/>
 <dc:title>Dr. John Smith associate professor</dc:title>
 </rdf:Description>
</rdf:RDF>

https://www.w3.org/2000/10/swap/pim/contact#
http://purl.org/dc/terms/
http://xmlns.com/foaf/0.1/
https://rdf.data-vocabulary.org/#
https://www.w3.org/2002/07/owl#
https://www.w3.org/1999/02/22-rdf-syntax-ns#
https://www.w3.org/2000/01/rdf-schema#
http://xmlns.com/wot/0.1/
https://www.w3.org/1999/xhtml/vocab#
http://dbpedia.org/resource/New_York
http://www.panynj.gov/airports/jfk.html
http://dbpedia.org/resource/Photography
http://dbpedia.org/resource/Semantic_Web
http://dbpedia.org/resource/Classical_music
http://xmlns.com/foaf/0.1/Person
http://rdf.data-vocabulary.org/#Person
http://purl.org/dc/terms/Agent
https://www.w3.org/2001/XMLSchema#date
http://xmlns.com/foaf/0.1/PersonalProfileDocument

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

275

Microdata and Microformats
As mentioned earlier, overlapping features can be described by both microdata and microformats, as well as arbitrary
features using RDFa. Microformats can also be used simultaneously with (X)HTML5 microdata. For example, hCard
can be written together with microdata, as shown in Listing 7-89.

Listing 7-89. Combining hCard with Microdata

<dl class="vcard" itemscope itemtype="http://data-vocabulary.org/Person">
 <dt class="fn" itemprop="name"><a href="http://example.com"
 itemprop="url">John Smith</dt>
 <dd class="title" itemprop="title">Photographer</dd>
 <dd class="adr" itemprop="address" itemscope
 itemtype="http://data-vocabulary.org/Address"><span class="locality"
 itemprop="locality">Memphis, <abbr title="Tennessee" class="region"
 itemprop="region">TN</abbr>
 38145</dd>
</dl>

Dublin Core and vCard in RDF
The flexibility of the Resource Description Framework makes it simple to use more than one kind of metadata from
external namespaces at the same time. Consequently, rich semantics can be added to documents from a variety of
vocabularies simultaneously (Listing 7-90).

Listing 7-90. Dublin Core and vCard in RDF

<?xml:namespace ns="http://www.w3.org/RDF/RDF/" prefix="RDF" ?>
<?xml:namespace ns="http://purl.oclc.org/DC/" prefix="DC" ?>
<?xml:namespace ns="http://person.org/BusinessCard/" prefix="CARD" ?>
<RDF:RDF>
 <RDF:Description RDF:HREF="http://uri-of-Document-1">
 <DC:Creator RDF:HREF="#Creator_001"/>
 </RDF:Description>
 <RDF:Description ID="Creator_001">
 <CARD:Name>John Smith<CARD:Name>
 <CARD:Email>jsmith@example.net<CARD:Email>
 <CARD:Affiliation>ABC Ltd.<CARD:Affiliation>
 </RDF:Description>
</RDF:RDF>

Dublin Core, vCard, and Math-Net
The introduction of a person on a brochure-style home page can be described in many ways. One of them is the
combination of Dublin Core and vCard. Indexing and processing such data can be enhanced by providing them in
RDF. Listing 7-91 shows an example.

http://data-vocabulary.org/Person
http://data-vocabulary.org/Address
http://www.w3.org/RDF/RDF/
http://purl.oclc.org/DC/
http://person.org/BusinessCard/

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

276

Listing 7-91. Combining DC and vCard with Math-Net

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#">
 <rdf:Description>
 <dc:creator>
 <rdf:Description rdf:about="http://jsmith.com/about.htm">
 <rdfs:label>John Smith</rdfs:label>
 <vCard:FN>John Smith</vCard:FN>
 <vCard:N rdf:parseType="Resource">
 <vCard:Family>Smith</vCard:Family>
 <vCard:Given>John</vCard:Given>
 <vCard:Prefix>Dr</vCard:Prefix>
 </vCard:N>
 <vCard:BDAY>1976-05-12</vCard:BDAY>
 </rdf:Description>
 </dc:creator>
 </rdf:Description>
</rdf:RDF>

It is important to keep in mind that Dublin Core element name conventions and XML element nestings do not
consequently apply to all the other metadata schemas.

Some vocabulary from the Math-Net schemes can be used to extend descriptions of persons expressed by other
vocabularies, including Dublin Core and vCard [160].

DC, IMS, and ODRL
When using the XML or RDF/XML syntax, Dublin Core can be used in combination with external metadata vocabularies
such as IEEE Learning Object Metadata (IMS) [161] or Open Digital Rights Language (ODRL) metadata [162]. For
example, the storage, preservation, and retrieval of digital learning materials at universities can be properly provided by
the combination of Dublin Core, LOM, and local labels describing learning materials when using the Greenstone digital
library software [163].

For example, an online educational system can be described accurately by three different types of metadata
(Listing 7-92).

Listing 7-92. A Combination of DC, IMS, and ODRL

<record
 xmlns="http://www.example.org/virtualtutor/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.org/virtualtutor/
 http://www.example.org/virtualtutor/schema.xsd"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:oex="http://odrl.net/1.0/ODRL-EX"
 xmlns:odd="http://odrl.net/1.0/ODRL-DD"

https://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
https://www.w3.org/2000/01/rdf-schema#
https://www.w3.org/2001/vcard-rdf/3.0#
http://www.w3.org/2001/XMLSchema-instance
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://odrl.net/1.0/ODRL-EX
http://odrl.net/1.0/ODRL-DD

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

277

 xmlns:ims="http://www.imsglobal.org/xsd/imsmd_v1p2">
 <dc:title>
 Virtual Tutor
 </dc:title>
 <dc:identifier xsi:type="dcterms:URI">
 http://www.example.org/virtualtutor/
 </dc:identifier>
 <dc:description>
 Online educational system.
 </dc:description>
 <ims:typicallearningtime>
 <ims:datetime>
 2011-08-02T08:00
 </ims:datetime>
 </ims:typicallearningtime>
 <dc:rights>
 All rights reserved.
 </dc:rights>
 <oex:rights>
 <oex:asset>
 <oex:context>
 <odd:uid idscheme="URI">
 http://www.example.org/virtualtutor/
 </odd:uid>
 </oex:context>
 </oex:asset>
 </oex:rights>
</record>

Special Applications
There are metadata approaches that are specialized for images or a given media content type such as YouTube video.
Some of them are provided in the markup, while others are embedded into binary files such as images.

Image Metadata and XMP
Digital photographs and custom images form integral parts of web sites. Various types of metadata can be provided
with them, including descriptive, technical, and administrative metadata.

An advanced approach is to provide image metadata by markup. The alt attribute is vital for validity. Properly
provided attribute values can improve accessibility too (see Chapter 10). The longdesc attribute, however, which
could be used to provide a link to a long description for images and other nontext contents, has poor software support
and is obsoleted in (X)HTML5.

Beyond the image descriptions provided in markup and the descriptions or image licensing written in RDFa
discussed earlier, advanced and professional image manipulation software such as Adobe Photoshop can be used
to add or modify metadata contained in the image files themselves (Figure 7-4). To a limited extent, file explorers of
modern operating systems can also perform this task.

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

278

Depending on the image format, a wide variety of metadata can be applied, including, but not limited to, title,
author, copyright holder, keywords, orientation, point of view, color space, photographer’s contact data, camera data,
origin, advanced metadata, and more.

Note ■ Several types of metadata about the exposition are embedded in JPEG files taken by digital cameras that can

be retrieved in image viewer and processing applications.

Behind the scenes, Adobe Photoshop applies the Extensible Metadata Platform (XMP) standard created by
Adobe Systems. The serialization of XMP can be embedded into several popular file formats, including GIF, JPEG,
JPEG 2000, PNG, and TIFF images, as well as PDF files9 [164]. GIF supports XMP embedding as an application
extension with the identifier XMP Data and authentication code XMP. In JPEG files, the XMP metadata is embedded at
application segment 1 (0xFFE1) with segment header http://ns.adobe.com/xap/1.0/\x00. In JPEG 2000 images, the
XMP metadata can be located at the uuid atom identified by the UID 0xBE7ACFCB97A942E89C71999491E3AFAC. In PNG
files, XMP is embedded inside an iTXt text block with the keyword XML:com.adobe.xmp. XMP is located at Tag 700 in
TIFF images. The Portable Document Format supports XMP embedding in a metadata stream within a PDF object.

The major problem with images from this aspect is that they are binary files (Figure 7-5) that need different
approaches to be indexed or searched than text files do. For example, in Google Image Search there are additional
aspects, including the techniques applied for eliminating very small (for example, 1×1 pixel) images, scams, and so
forth. Textual metadata used on top of the metadata stored in the image files themselves always provides an advanced
level of processing and sharing options.

Figure 7-4. Manipulating image file metadata in Photoshop

9External฀.xmp฀sidecar฀files฀can฀be฀provided฀for฀all฀other฀file฀formats฀that฀do฀not฀support฀embedded฀XMP฀metadata.

http://ns.adobe.com/xap/1.0//x00

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

279

Metadata for YouTube Videos
YouTube, the popular video sharing web site provides a convenient option to embed videos stored on YouTube
servers to custom web pages. RDFa notation can be used to improve the effectiveness of web searches on such videos.

The details on how to create standard-compliant markup from the YouTube embedding code by eliminating the
embed tag and moving the required attributes to the object tag will be described later in Chapter 13.

There are two video metadata formats to be written in the markup that are recognized by Google: Facebook
Share and Yahoo! SearchMonkey RDFa [165]. They can be used alternately or simultaneously. They should be written
directly into the markup in a way that they can be read without JavaScript or Flash.

Facebook Share and RDFa Rich Snippets

The image and video resource URLs are required for Facebook Share (image_src and video_src). The medium
property supports the values audio, image, video, news, blog, and mult. Video size can be provided using the
video_width and video_height properties. The MIME type of videos can be identified by video_type (with the value
application/x-shockwave-flash). A brief description of up to 200 characters can be written by using the description
property. The title of the video, which can be a maximum of 60 characters long, can be added by the title property.
These properties are also recognized by Google.

A complete Facebook Share example looks like Listing 7-93.

Listing 7-93. A Facebook Share Example

<meta name="title" content="Smith plays BWV543" />
<meta name="description" content="Organist John Smith plays Praeludium and Fuge in A minor
 by J. S. Bach" />
<link rel="image_src" href="http://example.com/543thumb.jpg" />
<link rel="video_src" href="http://example.com/bach/543vid.swf" />
<meta name="video_width" content="640" />
<meta name="video_height" content="385" />
<meta name="video_type" content="application/x-shockwave-flash" />

Figure 7-5. Textual RDF metadata in a binary JPEG image file

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

280

Yahoo! SearchMonkey RDFa

Yahoo! SearchMonkey metadata can be provided on the object tag as demonstrated in Listing 7-94.

Listing 7-94. A Yahoo! SearchMonkey Example

<object type="application/x-shockwave-flash" width="480" height="385"
 data="http://www.youtube.com/v/a38-oj8VEXI&hl=en_US&fs=1&" rel="media:video"
 resource="http://www.youtube.com/v/a38-oj8VEXI&hl=en_US&fs=1&"
 xmlns:media="http://search.yahoo.com/searchmonkey/media/"
 xmlns:dc="http://purl.org/dc/terms/">

</object>

The SearchMonkey media namespace xmlns:media is required, and the only acceptable value is
"http://search.yahoo.com/searchmonkey/media/". The GIF, JPEG, or PNG image with a resolution of 105×93 pixels
that previews the video before the user clicks the Play button should be defined by the URI as the href attribute value
of media:thumbnail. The video to be played when the user clicks the Play button should be defined by the resource of
media:video.

All other tags are optional, including the Dublin Core namespace (xmlns:dc) and Dublin Core metadata
(dc:contributor, dc:creator, dc:date, dc:description, dc:identifier, dc:license, dc:subject), the media
metadata (media:duration, media:height, media:player, media:region, media:title, media:type, media:views,
media:width), as well as review:rating [166].

Metadata in SEO
Although there is no strict correlation between higher page ranking or better search list positions and standardized
web sites, several technologies contribute to better, higher-quality web documents. Semantic content adds
meaning to web documents, making information indexing, searching, and processing easier. Metadata annotations
considerably extend the potential of web searches.

The potential in web documents enriched with RDFa is increasing since major search engines have begun
to index and process these annotations. Google, for example, started to apply the hCard, hProduct, and hReview
microformats as well as RDFa in 2009 on search result pages as what it calls Rich Snippets [167]. Yahoo! has indexed
RDFa and microformats since 2008 [168]. Web site content enriched with RDFa or microformats can enhance web
searches by providing useful structured data [169].

Google indexes microdata, microformats, and RDFa contact properties derived from the hCard microformat,
including name, nickname, photo, title, role, url, affiliation, friend, contact, acquaintance, and address. The
fn, org, and adr microformats properties that stand for name, affiliation, and address, respectively, are also displayed
on search engine result pages.10 Additionally, Google recognizes the friend, contact, and acquaintance XFN
microformats [170]. Relationships and connections expressed in XFN and FOAF are also processed by Google [171].

As discussed earlier, the nofollow attribute value of the rel attribute on anchor elements can be used to ensure
that the web page will gain no PageRank from the destination link. Such links are followed by Google, but PageRank
is not added. Bing does not follow the link, and the page is not indexed. Yahoo! follows the link and indexes the page.
Listing 7-95 shows an example.

10Google฀displays฀human-readable฀content฀only.฀Machine-readable฀metadata฀is฀not฀displayed.฀For฀example,฀the฀date฀declared฀as฀฀
the฀content฀of฀the฀span฀element฀ 06 December,
8 PM฀is฀the฀human-readable฀content,฀which฀is฀specified฀independently฀from฀the฀machine-readable฀attribute฀value฀of฀the฀
title฀attribute฀in฀the฀ISO฀date฀format฀(2011-12-06T20:00-08:00).

http://www.youtube.com/v/a38-oj8VEXI&hl=en_US&fs=1&
http://www.youtube.com/v/a38-oj8VEXI%26amp;hl=en_US%26amp;fs=1%26amp
http://purl.org/dc/terms/

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

281

Listing 7-95. Applying the nofollow Attribute on a Link

External site

Yahoo! SearchMonkey supports the following metadata [172]:

Microformats, including hCard, hCalendar, hReview, hAtom, hResume, adr, geo, tag, and XFN•฀

RDFa•฀

eRDF (embedded RDF)•฀

Microformat searches in Yahoo! can be performed easily with queries in the form shown in Listing 7-96.

Listing 7-96. Microformat Search Syntax used by Yahoo!

searchmonkeyid:com.yahoo.page.uf.metadata_name

where metadata_name is the name of the metadata in lowercase. RDFa and eRDF searches are similar. The only

difference is that the string uf should be changed to rdf. For example, the hCard microformat can be searched with
the query searchmonkeyid:com.yahoo.page.uf.hcard, RDF in attributes with searchmonkeyid:com.yahoo.page.
rdf.rdfa, and so on.

Metadata annotations such as RDFa can effectively contribute to better search results. The more semantic
content is provided on the Web, the more reasonable and relevant search results can be expected from search
engines.11 Properly set metadata can help search engines better process and provide personal introductions,
contact data, and full descriptions of persons and human relationships in search results. The indexing of brochure-
style business cards and personal information described in (X)HTML markup, XML, RDF, FOAF, and DOAC is
straightforward. However, semantic contents embedded in conventional markup can be processed only if they
are supported by the mechanisms used by web crawlers. Fortunately, search engines can process more and more
metadata types.

In spite of the huge potential of metadata implementations in search engine optimization, there are several
limitations in real-life applications. For example, image metadata cannot be fully exploited since a large share of social
media and photo-sharing web sites either remove all embedded metadata during upload or apply a new, on-the-fly
generated file without them (even in another file format). Images uploaded to the Internet by anonymous Wikipedia
editors, on the other hand, can be found by their embedded metadata indexed by Google (if available). It is arguable
whether this feature is advantageous.

Similar to any other data, it is important to decide wisely what to publish on the Web. It is no problem at all to
publish the ISBN number of a book or a link to the DBpedia description of a web site item; however, several types
of metadata are risky to publish since they can be abused. Especially e-mail addresses, phone numbers, and instant
messenger screen names should be provided with extreme precaution.

Metadata embedding goes hand in hand with accessibility. Accessibility guidelines can ensure that alternate
content is provided for objects and that the document structure is well organized (Chapter 10).

Some SEO practices do not contribute to user experience (UX) such as frequently repeated keywords that can
decrease human readability [173].

11Markup฀is฀only฀one฀thing฀considered฀by฀search฀engines.฀For฀example,฀well-written,฀unique,฀and฀frequently฀updated฀site฀content฀is฀
becoming฀more฀and฀more฀important฀for฀gaining฀better฀positions฀on฀search฀results.

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

282

Summary
In this chapter, you learned the fundamental concepts of the Semantic Web. You know by now how to create machine-
readable metadata annotations and external metadata files manually. You are familiar with the most common
schemas, vocabularies, and ontologies; the major serializations of the Resource Description Framework; and the
basics of creating ontologies with OWL. You know how to combine annotations derived from different vocabularies,
describe licenses and images in machine-readable formats, and use this metadata to boost the searchability of the
files of your web site.

The next chapter will show you how to create standard-compliant news feed channels from scratch and
maximize their interoperability.

References
 1. Herman I (ed) (2009) How would you define the main goals of the Semantic Web? In: W3C

Semantic Web FAQ. World Wide Web Consortium. http://www.w3.org/2001/sw/SW-
FAQ#swgoals. Accessed 1 November 2014

 2. Sbodio LM, Martin D, Moulin C. Discovering Semantic Web services using SPARQL and
intelligent agents. Web Semantics: Science, Services and Agents on the World Wide Web
2010, 8(4):310–328

 3. Hyvönen E, Mäkelä E, Salminen M, Valo A, Viljanen K, Saarela S, Junnila M, Kettula S.
MuseumFinland — Finnish museums on the semantic web. Web Semantics: Science,
Services and Agents on the World Wide Web 2005, 3(2–3):224–241

 4. Bojārs U, Breslin JG, Finn A, Decker S. Using the Semantic Web for linking and reusing data
across Web 2.0 communities. Web Semantics: Science, Services and Agents on the World
Wide Web 2008, 6(1):21–28

 5. Celma Ò, Raimond Y. ZemPod: A semantic web approach to podcasting. Web Semantics:
Science, Services and Agents on the World Wide Web 2008, 6(2):162–169

 6. Berners-Lee T (2001) Business Model for the Semantic Web. World Wide Web Consortium.
http://www.w3.org/DesignIssues/Business. Accessed 1 November 2014

 7. Murphy T (2010) Lin Clark On Why Drupal Matters. Socialmedia.
http://socialmedia.net/2010/09/07/lin-clark-on-why-drupal-matters.
Accessed 9 September 2010

 8. Hausenblas M, Adida B, Herman I (2008) RDFa – Bridging the Web of Documents and
the Web of Data. Joanneum Research, Creative Commons, World Wide Web Consortium.
http://www.w3.org/2008/Talks/1026-ISCW-RDFa/. Accessed 1 November 2014

 9. Kobie N (ed) (2011) Q&A: Conrad Wolfram on communicating with apps in Web 3.0.
Dennis Publishing Ltd. http://www.itpro.co.uk/621535/q-a-conrad-wolfram-on-
communicating-with-apps-in-web-3-0. Accessed 25 August 2011

 10. Ankolekar A, Krötzsch M, Tran T, Vrandečić, D. The two cultures: Mashing up Web 2.0 and
the Semantic Web. Web Semantics: Science, Services and Agents on the World Wide Web
2008, 6(1):70–75

 11. Shannon V (2006) A “more revolutionary” Web. International Herald Tribune.
The New York Times Company. http://www.nytimes.com/2006/05/23/technology/
23iht-web.html?scp=1&sq=A+%27more+revolutionary%27+Web&st=nyt.
Accessed 1 November 2014

http://www.w3.org/2001/sw/SW-FAQ#swgoals
http://www.w3.org/2001/sw/SW-FAQ#swgoals
http://www.w3.org/DesignIssues/Business
http://www.w3.org/2008/Talks/1026-ISCW-RDFa/
http://www.nytimes.com/2006/05/23/technology/23iht-web.html?scp=1&sq=A+%27more+revolutionary%27+Web&st=nyt
http://www.nytimes.com/2006/05/23/technology/23iht-web.html?scp=1&sq=A+%27more+revolutionary%27+Web&st=nyt

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

283

 12. Adida B, Birbeck M, McCarron S, Herman I (eds) (2013) Abstract. In: RDFa Core 1.1. Syntax
and processing rules for embedding RDF through attributes. W3C Recommendation.
World Wide Web Consortium. http://www.w3.org/TR/rdfa-core/. Accessed
1 November 2014

 13. Herman I (2009) W3C Semantic Web Frequently Asked Questions. World Wide Web
Consortium. http://www.w3.org/RDF/FAQ. Accessed 1 November 2014

 14. Arenas M, Bertails A, Prud’hommeaux E, Sequeda J (eds) (2012) A Direct Mapping of
Relational Data to RDF. W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/rdb-direct-mapping/. Accessed 1 November 2014

 15. Clark K (2010) The RDF Database Market. Clark & Parsia, LLC. http://weblog.
clarkparsia.com/2010/09/23/the-rdf-database-market/. Accessed 1 November 2014

 16. Oinonen K (2005) On the road to business application of Semantic Web technology.
Semantic Web in Business – How to proceed. In: Industrial Applications of Semantic
Web: Proceedings of the 1st IFIP WG12.5 Working Conference on Industrial Applications
of Semantic Web. International Federation for Information Processing. Springer
Science+Business Media Inc., New York

 17. Nagy M, Vargas-Vera M (2010) Towards an Automatic Semantic Data Integration:
Multi-agent Framework Approach. In: Semantic Web. In-Teh, Vukovar

 18. Dertouzos LM, Berners-Lee T, Fischetti M (1999) Weaving the Web: The Original Design
and Ultimate Destiny of the World Wide Web by Its Inventor. Harper San Francisco, San
Francisco

 19. Bizer C, Heath T, Berners-Lee T. Linked data — The story so far. Semantic Web and
Information Systems 2009, 5(3):1–22

 20. Berners-Lee T (2009) Linked Data. World Wide Web Consortium. http://www.w3.org/
DesignIssues/LinkedData.html. Accessed 1 November 2014

 21. Cyganiak R, Jentzsch A (2014) Linking Open Data cloud diagram.
http://lod-cloud.net. Accessed 1 November 2014

 22. Yahoo (2014) Flickr – Photo sharing. Yahoo! Inc. http://www.flickr.com. Accessed 1
November 2014

 23. Google Webmaster Central Team (2007) Using the robots meta tag. Google Inc.
http://googlewebmastercentral.blogspot.com/2007/03/using-robots-meta-tag.html.
Accessed 1 November 2014

 24. AOL (2014) ODP – Open Directory Project. AOL Inc. http://www.dmoz.org. Accessed 1
November 2014

 25. TWRP (2007) About the Robots <META> tag. The Web Robots Pages.
http://www.robotstxt.org/meta.html. Accessed 1 November 2014

 26. Sullivan D (2007) Yahoo Provides NOYDIR Opt-Out Of Yahoo Directory Titles &
Descriptions. Search Engine Land. Third Door Media. http://searchengineland.com/
yahoo-provides-noydir-opt-out-of-yahoo-directory-titles-descriptions-10631.
Accessed 1 November 2014

 27. Smarty A (2010) How to Use Various REL Attributes – Learning Microformats. Search
Engine Journal. http://www.searchenginejournal.com/how-to-use-various-
rel-attributes-learning-microformats/16144/. Accessed 1 November 2014

http://www.w3.org/TR/rdfa-core/
http://www.w3.org/RDF/FAQ
http://www.w3.org/TR/rdb-direct-mapping/
http://weblog.clarkparsia.com/2010/09/23/the-rdf-database-market/
http://weblog.clarkparsia.com/2010/09/23/the-rdf-database-market/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://lod-cloud.net/
http://www.flickr.com/
http://googlewebmastercentral.blogspot.com/2007/03/using-robots-meta-tag.html
http://www.dmoz.org/
http://www.robotstxt.org/meta.html
http://searchengineland.com/yahoo-provides-noydir-opt-out-of-yahoo-directory-titles-descriptions-10631
http://searchengineland.com/yahoo-provides-noydir-opt-out-of-yahoo-directory-titles-descriptions-10631
http://www.searchenginejournal.com/how-to-use-various-rel-attributes-learning-microformats/16144/
http://www.searchenginejournal.com/how-to-use-various-rel-attributes-learning-microformats/16144/

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

284

 28. Kaply M (2010) Operator Add-on for Firefox. Michael Kaply.
https://addons.mozilla.org/en-US/firefox/addon/4106/. Accessed 1 November 2014

 29. De Bruin R (2010) Tails Export Add-on for Firefox. Robert de Bruin.
https://addons.mozilla.org/en-US/firefox/addon/2240/. Accessed 1 November 2014

 30. Ryckbost B (2014) Michromeformats Google Chrome extension. Brian Ryckbost.
https://chrome.google.com/extensions/detail/oalbifknmclbnmjlljdemhjjlkmppjjl.
Accessed 1 November 2014

 31. Baranovskiy D (2014) Optimus – Microformats Transformer. Dmitry Baranovskiy.
http://microformatique.com/optimus/. Accessed 1 November 2014

 32. Left Logic (2010) Microformats Bookmarklet. Left Logic Ltd. http://leftlogic.com/
projects/microformats_bookmarklet. Accessed 17 November 2010

 33. Dawson F, Stenerson D (1998) Internet Calendaring and Scheduling Core Object
Specification (iCalendar). The Internet Society. http://www.ietf.org/rfc/rfc2445.txt.
Accessed 1 November 2014

 34. Çelik T, Suda B (2013) hCalendar 1.0. The Microformats Community.
http://microformats.org/wiki/hcalendar. Accessed 1 November 2014

 35. King R, Çelik T (2012) hCalendar Creator. The Microformats Community.
http://microformats.org/code/hcalendar/creator. Accessed 1 November 2014

 36. Çelik T, Suda B (2013) hCard 1.0. The Microformats Community.
http://microformats.org/wiki/hcard. Accessed 1 November 2014

 37. Dawson F, Howes T (1998) vCard MIME Directory Profile. The Internet Society.
http://www.ietf.org/rfc/rfc2426.txt. Accessed 1 November 2014

 38. Çelik T (2005) hCard Creator. The Microformats Community. http://microformats.org/
code/hcard/creator. Accessed 1 November 2014

 39. Casserly C, Domicone A, Green L, Heung A, Kinkade N, Linksvayer M, Park J, Peters
D, Rees J, Roberts A, Rose T, Ruttenberg A, Schultz AJ, Steuer E, Vollmer T, Webber C,
Wilbanks J, Yergler N, Yip J et al (eds) (2014) Licenses. Creative Commons.
http://creativecommons.org/about/licenses/. Accessed 1 November 2014

 40. Çelik T (2013) rel=“license”. http://microformats.org/wiki/rel-license.
The Microformats Community. Accessed 1 November 2014

 41. Olbertz D (2010) No to rel=“nofollow”. Fight Spam not Blogs. Dirk Olbertz.
http://nonofollow.net. Accessed 13 November 2010

 42. Çelik T, Marks K (eds), Cutts M, Shellen J (2013) rel=“nofollow”. The Microformats
Community. http://microformats.org/wiki/rel-nofollow. Accessed 1 November 2014

 43. Çelik T, Marks K (eds), Powazek D (2014) rel=“tag”. The Microformats Community.
http://microformats.org/wiki/rel-tag. Accessed 1 November 2014

 44. Berners-Lee T, Fielding R, Masinter L (2005) Uniform Resource Identifier (URI): Generic
Syntax. The Internet Society. http://www.ietf.org/rfc/rfc3986.txt. Accessed 1
November 2014

 45. Çelik T, Marks K (2010) Vote Links. The Microformats Community.
http://microformats.org/wiki/vote-links. Accessed 1 November 2014

https://addons.mozilla.org/en-US/firefox/addon/4106/
https://addons.mozilla.org/en-US/firefox/addon/2240/
https://chrome.google.com/extensions/detail/oalbifknmclbnmjlljdemhjjlkmppjjl
http://microformatique.com/optimus/
http://www.ietf.org/rfc/rfc2445.txt
http://microformats.org/wiki/hcalendar
http://microformats.org/code/hcalendar/creator
http://microformats.org/wiki/hcard
http://www.ietf.org/rfc/rfc2426.txt
http://microformats.org/code/hcard/creator
http://microformats.org/code/hcard/creator
http://creativecommons.org/about/licenses/
http://microformats.org/wiki/rel-license
http://microformats.org/wiki/rel-nofollow
http://microformats.org/wiki/rel-tag
http://www.ietf.org/rfc/rfc3986.txt
http://microformats.org/wiki/vote-links

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

285

 46. Paul A (2003) Social networking beginning to take shape on the Web. The Seattle Times.
http://community.seattletimes.nwsource.com/archive/?date=20031229&slug=paul29.
Accessed 1 November 2014

 47. GMPG (2014) XFN – XHTML Friends network. Global Multimedia Protocols Group.
http://gmpg.org/xfn/. Accessed 1 November 2014

 48. Lewis EP (2008) Getting Semantic With Microformats, Part 2: XFN. Emily P. Lewis.
http://ablognotlimited.com/index.php/articles/getting-semantic-with-
microformats-part-2-xfn/. Accessed 1 November 2014

 49. Mullenweg M, Çelik T (2004) XFN 1.1 Creator. Global Multimedia Protocols Group.
http://gmpg.org/xfn/creator. Accessed 1 November 2014

 50. Mullenweg M (2014) Exefen. Matthew Mullenweg. http://ma.tt/tools/exefen.php/.
Accessed 1 November 2014

 51. Çelik T (2003) XMDP: Introduction and Format Description. Global Multimedia Protocols
Group. http://gmpg.org/xmdp/description. Accessed 1 November 2014

 52. Çelik T (2013) The adr microformat Draft Specification. The Microformats Community.
http://microformats.org/wiki/adr. Accessed 1 November 2014

 53. Çelik T (2013) The geo microformat Draft Specification. The Microformats Community.
http://microformats.org/wiki/geo. Accessed 1 November 2014

 54. Janes D, Carlyle B, Tantek Çelik T (2013) The hAtom microformat. The Microformats
Community. http://microformats.org/wiki/hatom. Accessed 1 November 2014

 55. Sporny M, McEvoy M et al (2013) The hAudio microformat. The Microformats
Community. http://microformats.org/wiki/haudio. Accessed 1 November 2014

 56. Çelik T, Khare R, Rădulescu A (eds), Arkin A, Donato C, King R (2014) The hListing
microformat. The Microformats Community. http://microformats.org/wiki/hlisting.
Accessed 1 November 2014

 57. McEvoy M, Çelik T, Marks K, Hodder M, Begbie R, Kinberg J, Messina C, Rein L, Newell C,
Sporny M, Johnson M (2014) The hMedia microformat. The Microformats Community.
http://microformats.org/wiki/hmedia. Accessed 1 November 2014

 58. Malek J, Myles S, Moore M, Ng M, Martin TB (2013) The hNews microformat.
The Microformats Community. http://microformats.org/wiki/hnews.
Accessed 1 November 2014

 59. Lee P, Myers J, Cook C, Gustafson A (2013) The hProduct microformat. The Microformats
Community. http://microformats.org/wiki/hproduct. Accessed 1 November 2014

 60. Lörtsch T (ed), Berriman F, Ward B, Inkster T (2013) The hRecipe microformat.
The Microformats Community. http://microformats.org/wiki/hrecipe.
Accessed 1 November 2014

 61. Çelik T, Jones G (eds), King R, Levine J, Marks K (2013) The hResume microformat Draft
Specification. The Microformats Community. http://microformats.org/wiki/hresume.
Accessed 1 November 2014

 62. Çelik T (ed) (2014) The hReview microformat. The Microformats Community.
http://microformats.org/wiki/hreview. Accessed 1 November 2014

http://community.seattletimes.nwsource.com/archive/?date=20031229&slug=paul29
http://gmpg.org/xfn/
http://ablognotlimited.com/index.php/articles/getting-semantic-with-microformats-part-2-xfn/
http://ablognotlimited.com/index.php/articles/getting-semantic-with-microformats-part-2-xfn/
http://gmpg.org/xfn/creator
http://ma.tt/tools/exefen.php/
http://gmpg.org/xmdp/description
http://microformats.org/wiki/adr
http://microformats.org/wiki/geo
http://microformats.org/wiki/hatom
http://microformats.org/wiki/haudio
http://microformats.org/wiki/hlisting
http://microformats.org/wiki/hmedia
http://microformats.org/wiki/hnews
http://microformats.org/wiki/hproduct
http://microformats.org/wiki/hrecipe
http://microformats.org/wiki/hresume
http://microformats.org/wiki/hreview

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

286

 63. King R, Cook B, Çelik T, Marks K (2013) The rel-directory microformat. The Microformats
Community. http://microformats.org/wiki/rel-directory. Accessed 1 November
2014

 64. Marks K (2013) The rel=“enclosure” microformat. The Microformats Community.
http://microformats.org/wiki/rel-enclosure. Accessed 1 November 2014

 65. Ayers D (2014) The rel=“home” microformat. The Microformats Community.
http://microformats.org/wiki/rel-home. Accessed 1 November 2014

 66. Pedersen AH, Kinberg J, Dedman J, van Dijk P (2014) The rel-payment microformat.
The Microformats Community. http://microformats.org/wiki/rel-payment.
Accessed 1 November 2014

 67. Janes P (2013) The Robot Exclusion Profile. The Microformats Community.
http://microformats.org/wiki/robots-exclusion. Accessed 1 November 2014

 68. Gibson B (2013) The xFolk microformat. The Microformats Community.
http://microformats.org/wiki/xfolk. Accessed 1 November 2014

 69. Çelik T (ed) (2013) So you wanna develop a new microformat? The Microformats
Community. http://microformats.org/wiki/process. Accessed 1 November 2014

 70. Hickson I (2013) HTML Microdata. World Wide Web Consortium. http://www.w3.org/
TR/microdata/. Accessed 1 October 2014

 71. Ontos (2014) OntosMiner. Ontos AG. http://www.ontos.com/products/ontosminer/.
Accessed 1 November 2014

 72. Wu G (ed) (2010) Semantic Web. In-Tech, Vukovar

 73. Mellouli S, Bouslama F, Akande A (2010) An ontology for representing financial headline
news. doi:10.1016/j.websem.2010.02.001

 74. Davis I, Newman R, D’Arcus B (2005) Expression of Core FRBR Concepts in RDF. Richard
Newman, Ian Davis. http://vocab.org/frbr/core.html. Accessed 1 November 2014

 75. Creative Commons (2011) Describing Copyright in RDF. Creative Commons Rights
Expression Language. Creative Commons. http://creativecommons.org/ns. Accessed
1 November 2014

 76. ODRL (2014) ODRL Community Group. http://www.w3.org/community/odrl/. Accessed
1 November 2014

 77. Iannella R (2002) Open Digital Rights Language (ODRL) Version 1.1. World Wide Web
Consortium. http://www.w3.org/TR/odrl. Accessed 1 November 2014

 78. Sikos LF (2014) VidOnt – the video ontology. Leslie F. Sikos. http://vidont.org/.
Accessed 2 November 2014

 79. Berners-Lee T (ed) (2009) WGS84 Geo Positioning: an RDF vocabulary. World Wide Web
Consortium. http://www.w3.org/2003/01/geo/wgs84_pos.rdf. Accessed 1 November 2014

 80. Davis I, Galbraith D (2011) BIO: A vocabulary for biographical information. Ian Davis,
David Galbraith. http://vocab.org/bio/0.1/. Accessed 1 November 2014

 81. IMS (2006) IMS Meta-data Best Practice Guide for IEEE 1484.12.1-2002 Standard
for Learning Object Metadata. Version 1.3 Final Specification. IMS Global Learning
Consortium. http://www.imsglobal.org/metadata/mdv1p3/imsmd_bestv1p3.html.
Accessed 1 November 2014

http://microformats.org/wiki/rel-directory
http://microformats.org/wiki/rel-enclosure
http://microformats.org/wiki/rel-home
http://microformats.org/wiki/rel-payment
http://microformats.org/wiki/robots-exclusion
http://microformats.org/wiki/xfolk
http://microformats.org/wiki/process
http://www.w3.org/TR/microdata/
http://www.w3.org/TR/microdata/
http://www.ontos.com/products/ontosminer/
http://dx.doi.org/10.1016/j.websem.2010.02.001
http://vocab.org/frbr/core.html
http://creativecommons.org/ns
http://www.w3.org/community/odrl/
http://www.w3.org/TR/odrl
http://vidont.org/
http://www.w3.org/2003/01/geo/wgs84_pos.rdf
http://vocab.org/bio/0.1/
http://www.imsglobal.org/metadata/mdv1p3/imsmd_bestv1p3.html

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

287

 82. Universität Osnabrück (2002) Math-Net RDF Collection. Universität Osnabrück.
http://www.iwi-iuk.org/material/RDF/1.1/. Accessed 1 November 2014

 83. Brickley D, Miller L et al (2014) FOAF Vocabulary Specification. Dan Brickley and Libby
Miller. http://xmlns.com/foaf/spec/. Accessed 1 November 2014

 84. Parada RA (2008) DOAC Vocabulary Specification. Ramon Antonio Parada.
http://ramonantonio.net/doac/0.1/. Accessed 21 February 2011

 85. Dumbill E (2011) DOAP. Edd Dumbill. http://trac.usefulinc.com/doap. Accessed 22
February 2011

 86. W3C (2013) VocabularyMarket. http://www.w3.org/wiki/VocabularyMarket.
Accessed 1 November 2014

 87. Davis I (2006) vocab.org - A URI space for vocabularies. Ian Davis. http://vocab.org.
Accessed 21 February 2011

 88. Aumueller D (2006) Beer Ontology. David Aumueller. http://www.purl.org/net/
ontology/beer.owl. Accessed 1 November 2014

 89. Kanzaki M (2007) Music Vocabulary. http://www.kanzaki.com/ns/music.rdf.
Accessed 1 November 2014

 90. Pickering R (2014) The Music Ontology. http://musicontology.com. Accessed 2
November 2014

 91. Baumeister J, Seipel D (2010) Anomalies in ontologies with rules. Web Semant 2010,
8(1):55–68. doi:10.1016/j.websem.2009.12.003

 92. Khan L (2009) Semantic Web and Cloud Computing. In: Research of Dr. Latifur Khan. The
University of Dallas. http://www.utdallas.edu/~lkhan/research.html. Accessed 13
November 2010

 93. Berners-Lee T (2007) Giant Global Graph. Massachusetts Institute of Technology.
http://dig.csail.mit.edu/breadcrumbs/node/215. Accessed 1 November 2014

 94. Brickley D (2014) The FOAF Project. http://www.foaf-project.org. Accessed 1
November 2014

 95. QDOS (2010) FOAFNet. QDOS. http://foaf.qdos.com/. Accessed 23 September 2010

 96. NetEstate (2014) Friend Of A Friend (FOAF) Search Engine. NetEstate.
http://www.foaf-search.net. Accessed 1 November 2014

 97. Intellidimension (2010) Semantic Web Search. Intellidimension.
http://www.semanticwebsearch.com/query/. Accessed 23 September 2010

 98. Quatuo (2010) Search FOAF profiles / Create, manage, store and publish your Friend
of a Friend (FOAF) profile – A Semantic Web project. Quatuo. http://www.quatuo.com.
Accessed 23 September 2010

 99. Dodds L (2014) FOAF-a-matic. http://www.ldodds.com/foaf/foaf-a-matic.en.html.
Leigh Dodds. Accessed 1 November 2014

 100. Walker J (2013) The Drupal FOAF module. http://drupal.org/project/foaf. Dries
Buytaert. Accessed 1 November 2014

http://www.iwi-iuk.org/material/RDF/1.1/
http://xmlns.com/foaf/spec/
http://www.w3.org/wiki/VocabularyMarket
http://vocab.org/
http://www.purl.org/net/ontology/beer.owl
http://www.purl.org/net/ontology/beer.owl
http://www.kanzaki.com/ns/music.rdf
http://musicontology.com/
http://dx.doi.org/10.1016/j.websem.2009.12.003
http://www.utdallas.edu/~lkhan/research.html
http://dig.csail.mit.edu/breadcrumbs/node/215
http://www.foaf-project.org/
http://foaf.qdos.com/
http://www.foaf-search.net/
http://www.ldodds.com/foaf/foaf-a-matic.en.html
http://drupal.org/project/foaf

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

288

 101. ISO (2014) Information and documentation — The Dublin Core metadata element set. ISO
15836:2009. International Organization for Standardization. http://www.iso.org/iso/
iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=52142. Accessed
1 November 2014

 102. Kunze J, Baker T (2007) The Dublin Core Metadata Element Set. The IETF Trust.
http://www.ietf.org/rfc/rfc5013.txt. Accessed 1 November 2014

 103. ANSI, NISO (2007) The Dublin Core Metadata Element Set. ANSI/NISO Z39.85. National
Information Standards Organization. http://www.niso.org/kst/reports/standards/
kfile_download?id%3Austring%3Aiso-8859-1=Z39-85-2007.pdf&pt=RkGKiXzW643Y
eUaYUqZ1BFwDhIG4-24RJbcZBWg8uE4vWdpZsJDs4RjLz0t90_d5_ymGsj_IKVa86hjP37r_
hFEijh12LhLqJw52B-5udAaMy22WJJl0y5GhhtjwcI3V. Accessed 1 November 2014

 104. Hillmann D (2005) Syntax Issues. In: Using Dublin Core. Dublin Core Metadata Initiative.
http://dublincore.org/documents/usageguide/#whichsyntax. Accessed 1 November 2014

 105. Powell A, Nilsson M, Naeve A, Johnston P, Baker T (2007) DCMI Abstract Model. DCMI
Recommendation. Dublin Core Metadata Initiative. http://dublincore.org/documents/
abstract-model/. Accessed 1 November 2014

 106. DCMI (2012) Dublin Core Metadata Element Set, Version 1.1. DCMI Recommendation.
Dublin Core Metadata Initiative. http://dublincore.org/documents/dces/.
Accessed 1 November 2014

 107. Powell A, Wagner H (eds), Weibel S, Baker T, Matola T, Miller E, Johnston P (2007)
Namespace Policy for the Dublin Core Metadata Initiative (DCMI). Dublin Core
Metadata Initiative. http://dublincore.org/documents/dcmi-namespace/.
Accessed 1 November 2014

 108. Powell A, Nilsson M, Naeve A, Johnston P, Baker T (2007) DCMI Abstract Model semantics.
In: DCMI Abstract Model. Dublin Core Metadata Initiative. http://dublincore.org/
documents/2007/02/05/abstract-model/#sect-5. Accessed 1 November 2014

 109. Hillmann D (2005) Using Dublin Core – The Elements, Dublin Core Metadata Initiative.
Dublin Core Metadata Initiative. http://dublincore.org/documents/usageguide/
elements.shtml. Accessed 1 November 2014

 110. DCMI Usage Board (2012) DCMI Metadata Terms. DCMI Recommendation. Dublin Core
Metadata Initiative. http://dublincore.org/documents/dcmi-terms/.
Accessed 1 November 2014

 111. Berners-Lee T, Fielding R, Masinter L (2005) RFC 3986: Uniform Resource Identifier (URI):
Generic Syntax. Internet Engineering Task Force.
http://www.ietf.org/rfc/rfc3986.txt. Accessed 1 November 2014

 112. Johnston P, Powell A (2008) Expressing Dublin Core metadata using HTML/XHTML meta
and link elements. Dublin Core Metadata Initiative.
http://dublincore.org/documents/dc-html/. Accessed 1 November 2014

 113. Powell A, Johnston P (2003) Guidelines for implementing Dublin Core in XML. Dublin
Core Metadata Initiative. http://dublincore.org/documents/dc-xml-guidelines/.
Accessed 1 November 2014

 114. Johnston P, Powell A (2008) Expressing Dublin Core Description Sets using XML (DC-DS-
XML). Dublin Core Metadata Initiative. http://dublincore.org/documents/dc-ds-xml/.
Accessed 1 November 2014

http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=52142
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=52142
http://www.ietf.org/rfc/rfc5013.txt
http://www.niso.org/kst/reports/standards/kfile_download?id%3Austring%3Aiso-8859-1=Z39-85-2007.pdf&pt=RkGKiXzW643YeUaYUqZ1BFwDhIG4-24RJbcZBWg8uE4vWdpZsJDs4RjLz0t90_d5_ymGsj_IKVa86hjP37r_hFEijh12LhLqJw52B-5udAaMy22WJJl0y5GhhtjwcI3V
http://www.niso.org/kst/reports/standards/kfile_download?id%3Austring%3Aiso-8859-1=Z39-85-2007.pdf&pt=RkGKiXzW643YeUaYUqZ1BFwDhIG4-24RJbcZBWg8uE4vWdpZsJDs4RjLz0t90_d5_ymGsj_IKVa86hjP37r_hFEijh12LhLqJw52B-5udAaMy22WJJl0y5GhhtjwcI3V
http://www.niso.org/kst/reports/standards/kfile_download?id%3Austring%3Aiso-8859-1=Z39-85-2007.pdf&pt=RkGKiXzW643YeUaYUqZ1BFwDhIG4-24RJbcZBWg8uE4vWdpZsJDs4RjLz0t90_d5_ymGsj_IKVa86hjP37r_hFEijh12LhLqJw52B-5udAaMy22WJJl0y5GhhtjwcI3V
http://www.niso.org/kst/reports/standards/kfile_download?id%3Austring%3Aiso-8859-1=Z39-85-2007.pdf&pt=RkGKiXzW643YeUaYUqZ1BFwDhIG4-24RJbcZBWg8uE4vWdpZsJDs4RjLz0t90_d5_ymGsj_IKVa86hjP37r_hFEijh12LhLqJw52B-5udAaMy22WJJl0y5GhhtjwcI3V
http://dublincore.org/documents/usageguide/#whichsyntax
http://dublincore.org/documents/abstract-model/
http://dublincore.org/documents/abstract-model/
http://dublincore.org/documents/dces/
http://dublincore.org/documents/dcmi-namespace/
http://dublincore.org/documents/2007/02/05/abstract-model/#sect-5
http://dublincore.org/documents/2007/02/05/abstract-model/#sect-5
http://dublincore.org/documents/usageguide/elements.shtml
http://dublincore.org/documents/usageguide/elements.shtml
http://dublincore.org/documents/dcmi-terms/
http://www.ietf.org/rfc/rfc3986.txt
http://dublincore.org/documents/dc-html/
http://dublincore.org/documents/dc-xml-guidelines/
http://dublincore.org/documents/dc-ds-xml/

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

289

 115. Phillips A, Davis M (2006) Tags for Identifying Languages. The Internet Society.
http://www.ietf.org/rfc/rfc4646.txt. Accessed 1 November 2014

 116. Beckett D, Miller E, Brickley D (2002) Expressing Simple Dublin Core in RDF/XML. Dublin
Core Metadata Initiative. http://dublincore.org/documents/dcmes-xml/.
Accessed 1 November 2014

 117. Kokkelink S, Schwänzl R (2002) Expressing Qualified Dublin Core in RDF / XML. Dublin
Core Metadata Initiative. http://dublincore.org/documents/dcq-rdf-xml/.
Accessed 1 November 2014

 118. Nilsson M, Powell A, Johnston P, Naeve A (2008) Expressing Dublin Core metadata using
the Resource Description Framework (RDF). Dublin Core Metadata Initiative.
http://dublincore.org/documents/dc-rdf/. Accessed 1 November 2014

 119. Nilsson M, Baker T (2008) Notes on DCMI specifications for Dublin Core metadata in RDF.
Dublin Core Metadata Initiative. http://dublincore.org/documents/dc-rdf-notes/.
Accessed 1 November 2014

 120. Beckett D, McBride B (eds) (2004) Introduction. In: RDF/XML Syntax Specification. W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/rdf-syntax-
grammar/#section-Introduction. Accessed 1 November 2014

 121. Klyne G, Carroll JJ, McBride B (eds) (2014) RDF 1.1 Concepts and Abstract Syntax. W3C
Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/rdf11-concepts/. Accessed 1 November 2014

 122. Davis M, Whistler K (eds) (2014) Unicode Standard Annex #15. Unicode Normalization
Forms. The Unicode Consortium. http://www.unicode.org/reports/tr15/#Norm_Forms.
Accessed 1 November 2014

 123. Ora Lassila O, Swick RR (eds) (1999) Formal Grammar for RDF. In: Resource Description
Framework (RDF) Model and Syntax Specification. World Wide Web Consortium.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/#grammar.
Accessed 1 November 2014

 124. The W3C SPARQL Working Group (eds) (2013) SPARQL 1.1 Overview. W3C
Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/sparql11-overview/. Accessed 1 November 2014

 125. Ogbuji C (ed) (2013) SPARQL 1.1 Graph Store HTTP Protocol. W3C Recommendation.
World Wide Web Consortium. http://www.w3.org/TR/sparql11-http-rdf-update/.
Accessed 1 November 2014

 126. Carothers G, Seaborne A (2014) RDF 1.1 N-Triples. A line-based syntax for an RDF graph.
W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/n-triples/. Accessed 1 November 2014

 127. Chris Bizer C, Cyganiak R (2014) RDF 1.1 TriG. RDF Dataset Language . W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/trig/.
Accessed 1 November 2014

 128. Carroll JJ, Stickler P (2004) RDF Triples in XML. HP Laboratories.
http://www.hpl.hp.com/techreports/2003/HPL-2003-268.pdf. Accessed
1 November 2014

 129. Gandon F, Schreiber G (eds) (2014) RDF 1.1 XML Syntax. World Wide Web Consortium.
http://www.w3.org/TR/rdf-syntax-grammar/. Accessed 1 November 2014

http://www.ietf.org/rfc/rfc4646.txt
http://dublincore.org/documents/dcmes-xml/
http://dublincore.org/documents/dcq-rdf-xml/
http://dublincore.org/documents/dc-rdf/
http://dublincore.org/documents/dc-rdf-notes/
http://www.w3.org/TR/rdf-syntax-grammar/#section-Introduction
http://www.w3.org/TR/rdf-syntax-grammar/#section-Introduction
http://www.w3.org/TR/rdf11-concepts/
http://www.unicode.org/reports/tr15/#Norm_Forms
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/#grammar
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/sparql11-http-rdf-update/
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/trig/
http://www.hpl.hp.com/techreports/2003/HPL-2003-268.pdf
http://www.w3.org/TR/rdf-syntax-grammar/

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

290

 130. Berners-Lee T, Connolly D (2011) Notation3 (N3): A readable RDF syntax. W3C Team
Submission. World Wide Web Consortium. http://www.w3.org/TeamSubmission/n3/.
Accessed 1 November 2014

 131. Berners-Lee T, Connolly D (2008) Grammar of N3 in EBNF as used in XML 1.1 format.
World Wide Web Consortium. http://www.w3.org/2000/10/swap/grammar/n3-ietf.txt.
Accessed 1 November 2014

 132. Berners-Lee T (2005) Primer: Getting into RDF & Semantic Web using N3. World Wide
Web Consortium. http://www.w3.org/2000/10/swap/Primer. Accessed 1 November 2014

 133. Prud’hommeaux E, Carothers G (ed), Beckett D, Berners-Lee T (2011) Terse RDF
Triple Language. World Wide Web Consortium. http://www.w3.org/TR/2011/WD-
turtle-20110809/. Accessed 11 November 2014

 134. The Apache Software Foundation (2014) Apache Jena – A free and open source
Java framework for building Semantic Web and Linked Data applications.
http://openjena.org. Accessed 11 November 2014

 135. Beckett D (2014) Redland RDF Libraries. Dave Beckett. http://librdf.org.
Accessed 11 November 2014

 136. Broekstra J, Ansell P, Visser D, Leigh J, Kampman A, Schwarte A (2014) Sesame.
http://rdf4j.org/. Accessed 11 November 2014

 137. Zeldman J, Marcotte E (2009) Designing with Web standards, 3rd edn. New Riders,
Berkeley

 138. Sporny M, Adrian B (eds), Rixham N, Birbeck M, Herman I (2012) RDFa API. An API
for extracting structured data from Web documents. World Wide Web Consortium.
http://www.w3.org/TR/rdfa-api/. Accessed 1 November 2014

 139. Adida B, Birbeck M, McCarron S, Herman I (eds) (2010) RDFa Core 1.1 2nd Ed. Syntax and
processing rules for embedding RDF through attributes. W3C Recommendation. World
Wide Web Consortium. http://www.w3.org/TR/rdfa-core/. Accessed 1 November 2014

 140. Birbeck M, McCarron S (2009) CURIE Syntax 1.0. A syntax for expressing Compact
URIs, W3C Candidate Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/curie/. Accessed 1 November 2014

 141. Lewis JR, Moscovitz M (2009) AdvancED CSS. Friends of ED, Berkeley

 142. Adida B, Herman I (eds) (2012) W3C RDFa Working Group. World Wide Web Consortium.
http://www.w3.org/2010/02/rdfa/. Accessed 1 November 2014

 143. Swick R (ed) (2002) Metadata Activity Statement. World Wide Web Consortium.
http://www.w3.org/Metadata/Activity.html. Accessed 1 November 2014

 144. Brickley D, Guha RV, McBride B (eds) (2014) RDF Schema 1.1. W3C Recommendation.
World Wide Web Consortium. http://www.w3.org/TR/rdf-schema/.
Accessed 1 November 2014

 145. Herman I (2010) “Why OWL and not WOL?” Tutorial on Semantic Web Technologies.
World Wide Web Consortium. http://www.w3.org/People/Ivan/CorePresentations/
RDFTutorial/Slides.html#%28114%29. Accessed 1 November 2014

 146. Smith MK, Welty C, McGuinness DL (eds) (2004) The Species of OWL. In: OWL Web
Ontology Language Guide. W3C Recommendation. http://www.w3.org/TR/2004/REC-
owl-guide-20040210/#OwlVarieties. Accessed 1 November 2014

http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/2000/10/swap/grammar/n3-ietf.txt
http://www.w3.org/2000/10/swap/Primer
http://www.w3.org/TR/2011/WD-turtle-20110809/
http://www.w3.org/TR/2011/WD-turtle-20110809/
http://openjena.org/
http://librdf.org/
http://rdf4j.org/
http://www.w3.org/TR/rdfa-api/
http://www.w3.org/TR/rdfa-core/
http://www.w3.org/TR/curie/
http://www.w3.org/2010/02/rdfa/
http://www.w3.org/Metadata/Activity.html
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/People/Ivan/CorePresentations/RDFTutorial/Slides.html#%28114%29
http://www.w3.org/People/Ivan/CorePresentations/RDFTutorial/Slides.html#%28114%29
http://www.w3.org/TR/2004/REC-owl-guide-20040210/#OwlVarieties
http://www.w3.org/TR/2004/REC-owl-guide-20040210/#OwlVarieties

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

291

 147. Dean M, Schreiber G (eds), Bechhofer S, van Harmelen F, Hendler J, Horrocks I,
McGuinness DL, Patel-Schneider PF, Stein LA (2004) OWL Web Ontology
Language Reference. W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/owl-ref/. Accessed 1 November 2014

 148. Hitzler P, Krötzsch M, Parsia B, Patel-Schneider PF, Rudolph S (eds) (2012) OWL 2 Web
Ontology Language – Primer 2nd Ed. W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/owl-primer/. Accessed 1 November 2014

 149. Motik B, Grau BC, Horrocks I, Wu Z, Fokoue A, Lutz C (eds), Calvanese D, Carroll J, De
Giacomo G, Hendler J, Herman I, Parsia B, Patel-Schneider PF, Ruttenberg A, Sattler U,
Schneider M (2012) OWL 2 Web Ontology Language - Profiles. W3C Recommendation.
World Wide Web Consortium. http://www.w3.org/TR/owl2-profiles/. Accessed
1 November 2014

 150. Patel-Schneider PF, Horrocks I (eds) (2004) Abstract Syntax. In: OWL Web Ontology
Language. Semantics and Abstract Syntax. World Wide Web Consortium.
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/syntax.html.
Accessed 1 November 2014

 151. Motik B, Patel-Schneider PF, Parsia B (eds), Bock C, Fokoue A, Haase P, Hoekstra R,
Horrocks I, Ruttenberg A, Sattler U, Smith M (2012) OWL 2 Web Ontology Language.
Structural Specification and Functional-Style Syntax 2nd Ed. W3C Recommendation. World
Wide Web Consortium. http://www.w3.org/TR/owl-syntax/. Accessed 1 November 2014

 152. Patel-Schneider PF, Motik B (eds), Grau BC, Horrocks I, Parsia B, Ruttenberg A,
Schneider M (2009) OWL 2 Web Ontology Language. Mapping to RDF Graphs. W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/2009/REC-
owl2-mapping-to-rdf-20091027/. Accessed 1 November 2014

 153. Gandon F, Schreiber G (eds) (2014) RDF 1.1 XML Syntax. W3C Recommendation. World
Wide Web Consortium. http://www.w3.org/TR/rdf-syntax-grammar/.
Accessed 1 November 2014

 154. Beckett D, Berners-Lee T (2011) Turtle - Terse RDF Triple Language. World Wide Web
Consortium. http://www.w3.org/TeamSubmission/turtle/. Accessed 1 November 2014

 155. Motik B, Parsia B, Patel-Schneider PF (eds), Bechhofer S, Grau BC, Fokoue A, Hoekstra R
(2012) OWL 2 Web Ontology Language. XML Serialization 2nd Ed. W3C Recommendation.
World Wide Web Consortium. http://www.w3.org/TR/owl-xml-serialization/.
Accessed 1 November 2014

 156. Horridge M, Patel-Schneider PF (2009) OWL 2 Web Ontology Language.
Manchester Syntax. W3C Working Group Note. World Wide Web Consortium.
http://www.w3.org/TR/owl-xml-serialization/www.w3.org/TR/2009/NOTE-owl2-
manchester-syntax-20091027/. Accessed 1 November 2014

 157. W3C OWL Working Group (eds) (2009) Syntaxes. In: OWL 2 Web Ontology Language.
Document Overview. W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/owl2-overview/#Syntaxes. Accessed 1 November 2014

 158. Dean M, Schreiber G (eds), Bechhofer S, van Harmelen F, Hendler J, Horrocks I,
McGuinness DL, Patel-Schneider PF, Stein LA (2004) Properties. In: OWL Web Ontology
Language Reference. W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/owl-ref/#Property. Accessed 1 November 2014

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-primer/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/syntax.html
http://www.w3.org/TR/owl-syntax/
http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/
http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/owl-xml-serialization/
http://www.w3.org/TR/2009/NOTE-owl2-manchester-syntax-20091027/
http://www.w3.org/TR/2009/NOTE-owl2-manchester-syntax-20091027/
http://www.w3.org/TR/owl2-overview/#Syntaxes
http://www.w3.org/TR/owl-ref/#Property

CHAPTER 7 ■ METADATA AND THE SEMANTIC WEB

292

 159. Miles A, Bechhofer S (2009) SKOS Simple Knowledge Organization System
Reference. W3C Recommendation. World Wide Web Recommendation.
http://www.w3.org/TR/skos-reference/. Accessed 2 November 2014

 160. Kokkelink S, Schwänzl R (2002) DC in collaboration with other vocabularies and
DumbDown. In: Expressing Qualified Dublin Core in RDF / XML. Dublin Core Metadata
Initiative. http://dublincore.org/documents/dcq-rdf-xml/#sec3. Accessed 1
November 2014

 161. Barker P, Campbell LM, Roberts A, Smythe C (eds) (2006) IMS Meta-data Best Practice
Guide for IEEE 1484.12.1-2002 Standard for Learning Object Metadata. Final Specification.
IMS Global Learning Consortium. http://www.imsglobal.org/metadata/mdv1p3/imsmd_
bestv1p3.html. Accessed 1 November 2014

 162. Iannella R (ed) (2002) ODRL 1.1 Expression Language Schema. Open Digital Rights
Language Initiative. http://odrl.net/1.1/ODRL-EX-11-DOC/index.html. Accessed 23
October 2010

 163. Rivera-Aguilera AB, Vega-López M, Pozo-Marrero A (2010) Metadata Application Profile:
Integrating Different Metadata Schemes for Cataloguing the Digital Learning Materials
Collections. In: Proceedings of the International Conference on Dublin Core and Metadata
Applications. Dublin Core Metadata Initiative, Pittsburgh

 164. Adobe Systems Inc. (2010) Embedding XMP metadata in application files. In: XMP
specification, Part 3 – Storage in files. http://www.adobe.com/content/dam/Adobe/en/
devnet/xmp/pdfs/XMPSpecificationPart3.pdf. Accessed 1 November 2014

 165. Sikos LF (2011) Advanced (X)HTML5 metadata and semantics for Web 3.0 videos.
DESIDOC Journal of Library and Information Technology 2011, 31(4):247–252

 166. Yahoo! Inc. (2009) SearchMonkey – Video. Yahoo! Developer Network. Inc.
http://developer.search.yahoo.com/help/objects/video. Accessed 15 October 2010

 167. Goel K, Guha RV, Hansson O (2009) Introducing Rich Snippets. Google Inc.
http://googlewebmastercentral.blogspot.com/2009/05/introducing-rich-
snippets.html. Accessed 1 November 2014

 168. Birbeck M (2009) Introduction to RDFa. A List Apart Magazine.
http://www.alistapart.com/articles/introduction-to-rdfa. Accessed
1 November 2014

 169. Goel K, Gupta P, Hansson O (2009) Help us make the web better: An update on Rich
Snippets. Google Inc. http://googlewebmastercentral.blogspot.com/2009/10/help-
us-make-web-better-update-on-rich.html. Accessed 1 November 2014

 170. Google Webmaster Central (2010) People. About contact information. Google Inc.
http://www.google.com/support/webmasters/bin/answer.py?answer=146646. Accessed
1 November 2014

 171. Google (2010) Social Graph API. Google Code Labs. http://code.google.com/intl/hu/
apis/socialgraph/. Accessed 11 November 2010

 172. Yahoo! Developer Network (2008) Monkey Finds Microformats and RDF. Yahoo!
Inc. http://developer.yahoo.com/blogs/ydn/posts/2008/12/monkey_finds_
microformats_and_rdf/. Accessed 13 November 2010

 173. Anderson E, DeBolt V, Featherstone D, Gunther L, Jacobs DR, Jensen-Inman L, Mills C,
Schmitt C, Sims G, Walter A (2010) Web writing that works (or doesn’t). In: InterACT With
Web Standards – A Holistic Approach to Web Design. New Riders, Berkeley

http://www.w3.org/TR/skos-reference/
http://dublincore.org/documents/dcq-rdf-xml/#sec3
http://www.imsglobal.org/metadata/mdv1p3/imsmd_bestv1p3.html
http://www.imsglobal.org/metadata/mdv1p3/imsmd_bestv1p3.html
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart3.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart3.pdf
http://www.lesliesikos.com/docs/papers/Advanced_XHTML5_metadata_and_semantics_for_Web_3_videos.pdf
http://googlewebmastercentral.blogspot.com/2009/05/introducing-rich-snippets.html
http://googlewebmastercentral.blogspot.com/2009/05/introducing-rich-snippets.html
http://www.alistapart.com/articles/introduction-to-rdfa
http://googlewebmastercentral.blogspot.com/2009/10/help-us-make-web-better-update-on-rich.html
http://googlewebmastercentral.blogspot.com/2009/10/help-us-make-web-better-update-on-rich.html
http://www.google.com/support/webmasters/bin/answer.py?answer=146646

293

CHAPTER 8

Web Syndication

The amount of up-to-date information shared on the Internet is constantly growing. Web syndication provides news
feed channels in order to publish a summary of recently updated web site contents, latest news, or forum posts. These
web feeds make it possible for users to stay informed without browsing web sites. Moreover, the same feed can also be
shared among multiple web sites. Although the two popular web syndication formats, RSS and Atom, have relatively
easy vocabularies, news feed channels are desired to conform to strict standards, first of all XML.

In this chapter, you will learn how to create standard-compliant news feed channels manually and update them
frequently while maintaining standard compliance. You will be familiarized with the pros and cons of the two major
rivals, RSS and Atom. Moreover, you will learn about the data formats used for news feed elements, along with the
default and legal property values. You will also become familiar with the required channel and item elements, as well
as the ones that should be provided to maximize interoperability.

News Feeds
Web syndication makes web site components available to multiple sites without logging in or downloading irrelevant
components of other sites. The phrase often refers to web news feeds (news channels) that provide an up-to-date
summary of recently added contents and the latest changes of web sites. Most commonly news feeds are used for the
latest news, news headlines, blog entries, and forum posts.

The first technologies for web syndication appeared in 1997, including the Channel Definition Format [1],
Meta Content Framework [2], and scriptingNews [3]. The first version of Really Simple Syndication (RSS), which
later became the most widely used news feed format, was published by Netscape in 1999 [4]. The first part of the
specification of Atom, the other popular news feed, was introduced in 2005.

Since feed readers and aggregators run on a variety of software platforms and devices including, but not limited
to, web browsers, Windows news feed reader gadgets, Microsoft Outlook, and news feed readers on smartphones,
interoperability is vital.

Really Simple Syndication
Really Simple Syndication (RSS) is the most widely used web syndication format. Since RSS is an XML application, it
can be extended through XML namespaces. Beyond its conventional use of representing news and press releases, RSS
also has special applications such as providing up-to-date exchange rates for banks [5].

The typical file extensions for RSS are .rss and .xml. The Internet media type associated with RSS is
application/rss+xml, which is not standardized yet [6].

RSS describes lightweight syndication channels with the properties title, link, description, channel, and item.

CHAPTER 8 ■ WEB SYNDICATION

294

RSS has the following versions: RSS 0.90, RSS 0.91, RSS 0.92, and RSS 2.0. In 2000, the name RDF Site Summary
was in use, which referred to the extensibility with RDF-based modularization [7]. Version 0.91 was called Rich Site
Summary, which dropped the RDF structure and imported elements from the scriptingNews syndication format
developed by Dave Winer for his news site “Scripting News.” The current acronym is Really Simple Syndication. The
latest version of the RSS Specification has a permanent URI at the RSS Advisory Board web site [8]. The most widely
used and most advanced version, RSS 2.0.11 [9], is discussed in the next sections.

Creating an RSS File
To create an RSS file, you first need an XML declaration and an rss element. The rss element is the root element
of RSS files and is the container of a channel element, which provides information about the file and contains item
elements (news feed entries). Listing 8-1 shows the general structure of an RSS file. The version attribute on the
rss element is required, and its value must be 2.0 for RSS 2.0.11 (without indicating the subversion).

Listing 8-1. General Structure of an RSS File with Maximized Interoperability

<?xml version="1.0" encoding="utf-8" ?>
<rss version="2.0" 
 xmlns:content="http://purl.org/rss/1.0/modules/content/" 
 xmlns:dc="http://purl.org/dc/elements/1.1/" 
 xmlns:sy="http://purl.org/rss/1.0/modules/syndication/" 
 xmlns:atom="http://www.w3.org/2005/Atom">
 <channel>
 <title>An RSS news feed example</title>
 <link>http://www.example.com</link>
 <pubDate>Mon, 08 Aug 2011 08:03:00 +0200</pubDate>
 
 <dc:creator>John Smith</dc:creator>
 <description>The news feed of rock star John Smith. Concerts, CDs, and more.</description>
 <language>en</language>
 <sy:updatePeriod>daily</sy:updatePeriod>
 <sy:updateFrequency>1</sy:updateFrequency>
 <atom:link href="http://www.example.com/rss.xml" rel="self" type="application/rss+xml" />
 <item>
 <title>News item 2</title>
 <link>http://www.news2link.com</link>
 <pubDate>Mon, 08 Aug 2011 08:03:00 +0200</pubDate>
 <dc:creator>John Smith</dc:creator>
 <category>CDs</category>
 <guid>http://www.news2link.com</guid>
 <description>Description of news item 2</description>
 <content:encoded>The full content of News #2.</content:encoded>
 </item>

http://purl.org/rss/1.0/modules/content/
http://purl.org/dc/elements/1.1/
http://purl.org/rss/1.0/modules/syndication/
http://www.w3.org/2005/Atom

CHAPTER 8 ■ WEB SYNDICATION

295

 <item>
 <title>News item 1</title>
 <link>http://www.news1link.com</link>
 <pubDate>Sun, 07 Aug 2011 08:48:00 +0200</pubDate>
 <dc:creator>John Smith</dc:creator>
 <category>Concerts</category>
 <guid>http://www.news1link.com</guid>
 <description>A bit more about news 1</description>
 <content:encoded><![CDATA[The full content of News #1. In CDATA sections, 
 markup code can also be included.]]></content:encoded>
 </item>
 </channel>
</rss>

The above example is for demonstration only, real-life applications usually contain many more item elements.

Tip ■ Theoretically, an RSS channel can contain an arbitrary number of items. However, some RSS readers (such as the

news feed reader gadget in Windows Vista and Windows 7) do not support RSS files larger than approximately 150KB or

2,800 lines, which corresponds to approximately 7 months of daily news. It is recommended that you keep the file size

under this limit to maximize interoperability.

Some of the presented elements are required, while others are optional but highly recommended. First we’ll
examine the required elements.

Required Elements
As shown in the previous section, the rss element contains the channel element with all its contents. The required
elements of the channel element in RSS 2.0 are title, link, and description.

The title Element

The title element represents the name of the channel. It often coincides with the title of the web site it is associated
with. Listing 8-2 shows an example.

Listing 8-2. The Title of an RSS Channel

<title>John Smith Headlines</title>

The link Element

The link element is a URI representing the domain where the news feed is located. Listing 8-3 shows an example.

Listing 8-3. A Link in RSS

<link>http://example.com/</link>

CHAPTER 8 ■ WEB SYNDICATION

296

The description Element

The description element contains a sentence or sentence fragment that describes the channel, as demonstrated in
Listing 8-4.

Listing 8-4. A Channel Description in RSS

<description>The latest news about rock star John Smith.</description>

Optional Elements
In RSS 2.0 news feeds, the channel element has 16 optional subelements, including category, cloud, copyright, docs,
generator, image, language, lastBuildDate, managingEditor, pubDate, rating, skipDays, skipHours, textInput,
ttl, and webMaster. We’ll look at all of these subelements in more detail here.

A common feature of all RSS 2.0 elements providing a URL is that they should begin with a URI scheme defined
by IANA [10], for example, http://, https://, news://, mailto://, or ftp://. Note that the http:// and ftp://
schemes can be used from RSS 2.0 onward.

The category Element

One or more categories can be specified for RSS channels, which can be used for classification and filtering.
For example, an RSS news feed of a web site dedicated to Semantic Web events might contain categories such as
conferences, workshops, specifications, and so on. Another example might be a bookseller who uses categories to
indicate the category of the latest book releases so that potential customers can easily track the latest books of a
certain category (for example, fans of history books are not necessarily interested in technical books). The category
element can be used for not only the entire channel but also for each item separately. Listing 8-5 shows an example.

Listing 8-5. A category Element in RSS

<category>Workshops</category>

The element has an optional domain attribute that is a URI identifying a taxonomy (Listing 8-6).

Listing 8-6. Category with Domain

<category domain="http://www.example.com/vocab">WS</category>

The value of the category element declared for the channel can be used by portals for classifying RSS news feed
channels, while the values of category elements are often displayed as hyperlinks, or used as filters (considered as
tags in feed readers). By clicking one of these links, the feed reader hides news entries from all other categories.

The cloud Element

To receive immediate notifications about channel updates, a publish-subscribe protocol can be written for RSS feeds
with the cloud element. It specifies a web service that supports the rssCloud interface (which can be implemented
in HTTP-POST, XML-RPC, or SOAP 1.1). Two request methods are supported: a client-to-cloud call to request
notification and a cloud-to-client call to perform notification. A client request has five required parameters, including
the name of the remote procedure to be called by the cloud when an update occurred, the TCP port of the client, the
remote procedure call path of the client, the string xml-rpc (in case the client uses XML-RPC) or soap (in case SOAP is
used), and the URLs of RSS files. The IP address used for the request for notification must coincide with the IP address
that will receive the notifications. Listing 8-7 shows an example.

CHAPTER 8 ■ WEB SYNDICATION

297

Listing 8-7. Using the cloud Element in RSS

<cloud domain="rpc.example.com" port="80" path="/RPC2" registerProcedure="pingMe" 
 protocol="soap"/>

The update notification sent by the cloud to the client contains one parameter: the URL of the RSS file that
changed. As a response, the client must return the Boolean value TRUE.

The copyright Element

Copyright notice of RSS channels can be provided by the copyright element. Listing 8-8 shows an example.

Listing 8-8. Providing Copyright Information in RSS

<copyright>Copyright © 2015 Christina Sikos. All rights reserved.</copyright>

The docs Element

A hyperlink to the documentation of the applied RSS format can be provided by the docs element. The typical element
value is http://www.rssboard.org/rss-specification.

The generator Element

RSS feeds generated by software tools can easily be recognized from the value of the generator element, where the
generator software usually identifies itself (Listing 8-9).

Listing 8-9. An RSS News Feed Generated by Movable Type

<generator>Movable Type 4.34-en</generator>

If the element is omitted or contains a simple text editor, it usually shows that the feed is written by a hand-coder
at the source level (as we do in this chapter). In such cases, the author provides a text editor such as Notepad++ and
typically identifies himself or herself as the creator using the Dublin Core vocabulary. However, most people apply
feed generators that can generate news feeds in both RSS and Atom, which is especially useful for companies that
publish news feeds in both formats.

The image Element

An optional subelement of the channel element is image, which can be used to provide an image for the RSS feed.
It has three required and three optional subelements:

The URL of the image representing the channel is expressed by the •฀ url subelement.
The image format can be GIF, JPEG, or PNG. Required.

The alternate text of the image is defined by •฀ title. When the RSS is embedded into (X)HTML,
this string is forwarded as the text for the alt attribute. The value of the title subelement
should coincide with the value of the title element of the channel. Required.

http://www.rssboard.org/rss-specification

CHAPTER 8 ■ WEB SYNDICATION

298

The image hyperlink to the site of the channel is determined by the •฀ link subelement.
The value of the link subelement should coincide with the value of the link element of the
channel. Required.

The image width can be determined in pixels by the •฀ width subelement. The default value is
88, and the maximum is 144. Optional.

The image height can be determined in pixels by the •฀ width subelement. The default value is
31, and the maximum is 400. Optional.

The description of the image to be included in the •฀ title attribute of the hyperlink of the
image in (X)HTML can be provided by the description subelement. Optional.

Listing 8-10 shows an example.

Listing 8-10. A Logo Image Specified for an RSS File



Note ■ The image declared for an RSS file is displayed in some RSS readers such as the ones implemented in

browsers but not all (such as the feed reader in Outlook or the Windows feed reader gadget).

The language Element

The natural language of the news feed content can be declared by the language element. For example:

<language>en</language>

Table 8-1 summarizes the allowed values.

http://www.sikoswebconsulting.com.au/img/logo.png
http://www.sikoswebconsulting.com.au/

CHAPTER 8 ■ WEB SYNDICATION

299

Table 8-1. RSS-Specific Language Codes

Language Language Code

Afrikaans af

Albanian sq

Basque eu

Belarusian be

Bulgarian bg

Catalan ca

Chinese (Simplified) zh-cn

Chinese (Traditional) zh-tw

Croatian hr

Czech cs

Danish da

Dutch nl

Dutch (Belgium) nl-be

Dutch (Netherlands) nl-nl

English en

English (Australia) en-au

English (Belize) en-bz

English (Canada) en-ca

English (Ireland) en-ie

English (Jamaica) en-jm

English (New Zealand) en-nz

English (Philippines) en-ph

English (South Africa) en-za

English (Trinidad) en-tt

English (UK) en-gb

English (USA) en-us

English (Zimbabwe) en-zw

Estonian et

Faeroese fo

Finnish fi

French fr

French (Belgium) fr-be

French (Canada) fr-ca

French (France) fr-fr

(continued)

CHAPTER 8 ■ WEB SYNDICATION

300

Table 8-1. (continued)

Language Language Code

French (Luxembourg) fr-lu

French (Monaco) fr-mc

French (Switzerland) fr-ch

Galician gl

Gaelic gd

German de

German (Austria) de-at

German (Germany) de-de

German (Liechtenstein) de-li

German (Luxembourg) de-lu

German (Switzerland) de-ch

Greek el

Hawaiian haw

Hungarian hu

Icelandic is

Indonesian in

Irish ga

Italian it

Italian (Italy) it-it

Italian (Switzerland) it-ch

Japanese ja

Korean ko

Macedonian mk

Norwegian no

Polish pl

Portuguese pt

Portuguese (Brazil) pt-br

Portuguese (Portugal) pt-pt

Romanian ro

Romanian (Moldova) ro-mo

Romanian (Romania) ro-ro

Russian ru

Russian (Moldova) ru-mo

Russian (Russia) ru-ru

(continued)

CHAPTER 8 ■ WEB SYNDICATION

301

All RSS versions support these language codes except the original Netscape version (0.91), which does not
contain the codes et (Estonian) and haw (Hawaiian). The language codes allowed in HTML language tags, defined
in the HTML 4.01 specification [11], and originally in RFC 1766 [12], can also be used. Two-letter primary codes are
reserved for ISO 639 [13] language abbreviations, including fr (French), de (German), it (Italian), nl (Dutch), el
(Greek), es (Spanish), pt (Portuguese), ar (Arabic), he (Hebrew), ru (Russian), zh (Chinese), ja (Japanese), hi (Hindi),
ur (Urdu), and sa (Sanskrit). Two-letter subcodes are ISO 3166 country codes [14].

Language Language Code

Serbian sr

Slovak sk

Slovenian sl

Spanish es

Spanish (Argentina) es-ar

Spanish (Bolivia) es-bo

Spanish (Chile) es-cl

Spanish (Colombia) es-co

Spanish (Costa Rica) es-cr

Spanish (Dominican Republic) es-do

Spanish (Ecuador) es-ec

Spanish (El Salvador) es-sv

Spanish (Guatemala) es-gt

Spanish (Honduras) es-hn

Spanish (Mexico) es-mx

Spanish (Nicaragua) es-ni

Spanish (Panama) es-pa

Spanish (Paraguay) es-py

Spanish (Peru) es-pe

Spanish (Puerto Rico) es-pr

Spanish (Spain) es-es

Spanish (Uruguay) es-uy

Spanish (Venezuela) es-ve

Swedish sv

Swedish (Finland) sv-fi

Swedish (Sweden) sv-se

Turkish tr

Ukrainian uk

Table 8-1. (continued)

CHAPTER 8 ■ WEB SYNDICATION

302

The managingEditor Element

The managingEditor element can be used to provide the e-mail address of the news feed editor. Listing 8-11 shows
an example.

Listing 8-11. Declaring the RSS Editor

<managingEditor>john@example.com (John Smith)</managingEditor>

The pubDate and lastBuildDate Elements

The publication date of the channel content can be provided by the pubDate element. The element value changes
every time the news feed is updated. RSS applies the date and time specification defined in RFC 822 [15] except that
the year can be expressed either in two or four characters (the latter one is preferred). Offsets should be provided
according to the difference from Greenwich Mean Time (GMT)/Coordinated Universal Time (UTC). For example,
an RSS channel updated on 24 November, 2010, at 08:04 a.m. in London, England (in other words, in the GMT time
zone), can state the publication date shown in Listing 8-12, while another news feed published in Suva, Fiji (time zone
1200 GMT or UTC+12), at the same time can be written as shown in Listing 8-13.

Listing 8-12. A Publication Date in the GMT Time Zone

<pubDate>Wed, 24 Nov 2010 08:04:00 GMT</pubDate>

Listing 8-13. A Publication Date in the UTC+12 Time Zone

<pubDate>Wed, 24 Nov 2010 08:04:00 +1200</pubDate>

Caution ■ In countries where jurisdiction observes daylight saving time (summer time), the offset changes twice a year.

The date of the last modification of the news feed can be expressed by the lastBuildDate element in the same
format as pubDate.

The skipHours and skipDays Elements

Periods without updates can be provided by the skipHours element and days by the skipDays element. Allowed
values for skipHours are the integer numbers between 0 and 23 (the time in GMT) (Listing 8-14).

Listing 8-14. An RSS Channel That Should Be Checked for Updates During Business Hours Only

<skipHours>
 <hour>0</hour>
 <hour>1</hour>
 <hour>2</hour>
 <hour>3</hour>
 <hour>4</hour>
 <hour>5</hour>
 <hour>6</hour>
 <hour>7</hour>
 <hour>17</hour>

CHAPTER 8 ■ WEB SYNDICATION

303

 <hour>18</hour>
 <hour>19</hour>
 <hour>20</hour>
 <hour>21</hour>
 <hour>22</hour>
 <hour>23</hour>
</skipHours>

The skipDays element has seven day subelements (the days of the week in full). They can be used to specify those
days when the news feed channel is not updated and thus unnecessary to check for updates (Listing 8-15).

Listing 8-15. An RSS Feed That Is Not Updated on Weekends

 <skipDays>
 <day>Saturday</day>
 <day>Sunday</day>
</skipDays>

Note ■ The declared hours or days are hints only. RSS feed readers may read the channel during the listed periods.

The textInput Element

Another optional subelement of the channel element is textInput, which can be used to specify a search box. It has
four required subelements:

The label of the •฀ Submit button is determined by the title subelement.

The text input area can be described by the •฀ description subelement.

The •฀ name subelement identifies the text object.

The •฀ link subelement provides the URL of the CGI script used for processing requests.

The textInput element is ignored by many RSS readers.

The ttl Element

The duration of caching before refreshing from the source can be expressed in minutes with the ttl element
(which stands for “time to live”). In the case of three hours, for example, it can be written as shown in Listing 8-16.

Listing 8-16. 180-Minute Caching in RSS

<ttl>180</ttl>

The webmaster Element

The e-mail address of the webmaster responsible for the technical issues of the RSS channel can be expressed with the
webMaster element.

CHAPTER 8 ■ WEB SYNDICATION

304

Subelements of the item Element
The item element has ten subelements: author, category, comments, description, enclosure, guid, link, pubDate,
source, and title. All subelements are optional; however, at least a title or a description should be provided for each
item element.

The author Subelement

The e-mail address of the author of the news feed item can be provided by the author subelement. Listing 8-17 shows
an example.

Listing 8-17. The RSS Author

<author>info@example.com (John Smith)</author>

The category and pubDate Subelements

The syntax of the category and pubDate subelements of the item element is the same as that of the corresponding
subelements of the channel element (as discussed in earlier sections).

The comments Subelement

If there is a forum or blog that is related to a news entry (item element), a link to that page can be provided by the
comments subelement of the item element. Listing 8-18 shows an example.

Listing 8-18. Comments of an RSS Item

<comments>http://example.com/blog/new-standard-released/</comments>

The description Subelement

The texts of items (news summaries) are delimited by the description subelement, as shown in Listing 8-19.

Listing 8-19. An RSS Item Description

<description>
 Reports from workshop sessions
</description>

The enclosure Subelement

The enclosure subelement of the item element can be used to describe files (usually audio or video) related to the
news feed item. It has three required attributes: url (URL of the file), length (file size in bytes), and type (media type),
as demonstrated in Listing 8-20.

Listing 8-20. An Enclosure

<enclosure url="http://example.com/download/words.mp3" length="4875577" type="audio/mpeg"/>

CHAPTER 8 ■ WEB SYNDICATION

305

The guid Subelement

Each RSS item might have a string that uniquely identifies it, called the globally unique identifier. The guid
subelement has no specific syntax rules, but its content is usually a URL (Listing 8-21).

Listing 8-21. A guid Specifying a Permalink Related to the News Entry

<item>
 <title>New HTML5 and CSS3 Tutorials</title>
 <link>http://www.lesliesikos.com/tutorials/</link>
 <pubDate>Mon, 06 Feb 2012 14:22:00 +0930</pubDate>
 <dc:creator>Dr. Leslie Sikos</dc:creator>
 <category>Website</category>
 <guid isPermaLink="true">http://www.lesliesikos.com/tutorials/</guid>
 <description>Tutorials on HTML5 video embedding and CSS3 transitions</description>
 <content:encoded>Several tutorials have recently been published on emerging 
 technologies such as HTML5 video embedding and CSS3 transitions.</content:encoded>
</item>

The guid subelement has an optional attribute, isPermaLink, that can be set to true or false. In the first case
(which is the default), the attribute value must be a URL that points to the full article or story described by the item
element). The false value is rarely used. In fact, the whole isPermaLink attribute is often omitted.

Caution ■ The guid subelements, if provided, should be unique throughout the RSS file. This criterion might be difficult

to meet if the frequent updates of the same web site are described multiple times in the file.

The value of a guid subelement is considered a string by RSS readers.

Tip ■ Although the guid subelement is optional, it is recommended to provide it for all item elements in order to

maximize interoperability.

The link Subelement

The URL of an item can be provided by the link subelement. Listing 8-22 shows an example.

Listing 8-22. A Link Declared for an RSS Item

<link>http://example.com/news</link>

The source Subelement

If the item content comes from an external RSS channel, it can be provided by the source subelement. The value is the title
of the resource channel. The source element has one required attribute, url, which is the URL of the resource (Listing 8-23).

Listing 8-23. The Source of an RSS Item

<source url="http://www.example.com/news.xml">John Smith Headlines</source>

http://www.lesliesikos.com/tutorials/
http://www.lesliesikos.com/tutorials/

CHAPTER 8 ■ WEB SYNDICATION

306

The title Subelement

The titles of RSS channel items can be declared by the title subelement of the item element. Listing 8-24 shows an
example.

Listing 8-24. The Title of an RSS Item

<title>A new W3C standard</title>

Namespaces
The default namespace for RSS is http://purl.org/rss/1.0/, which is the permanent URL form of the RDF Site
Summary (RSS) 1.0 namespace, http://web.resource.org/rss/1.0/. The namespace can be provided in the form
presented in Listing 8-25.

Listing 8-25. Declaring the RSS Namespace

<rss version="2.0" xmlns:rss="http://purl.org/rss/1.0/">

Additional data on channel updates can be provided by the web syndication namespace of RSS
(http://purl.org/rss/1.0/modules/syndication/). It extends the RSS channels with three elements:

The period over which the news channel is updated can be described by the •฀ sy:updatePeriod
element. Allowed values are hourly, daily, weekly, monthly, and yearly. If omitted, daily is
assumed.

The frequency of updates can be expressed in relation to the update period with the •฀
sy:updateFrequency element. Its value is a positive integer.

To calculate the publishing schedule, a base date can be defined by the •฀ sy:updateBase
element. It should be a #PCDATA date in one of the W3C date and time formats [16].

By default, news feed entries are plain-text contents. However, news aggregators often support (X)HTML
markup that are not allowed in XML. Entity-encoded and CDATA-escaped contents can be provided with the
content:encoded element defined by the http://purl.org/rss/1.0/modules/content/ namespace. The
content:encoded element is especially useful if the hyperlink delimited by the link element is not enough and
additional hyperlinks are needed (in the news item content). Although text formatting and other markup codes can
also be written this way, they are ignored by many RSS readers.

There is an element, atom:link, that can be used from another syndication format, Atom, to provide the
self-link of the news feed channel. To apply this element, the Atom namespace http://www.w3.org/2005/Atom
should be declared.

Advanced news feeds typically contain at least the namespace declarations presented in Listing 8-26.

Listing 8-26. Typical Namespace Declarations in RSS

<rss version="2.0" 
 xmlns:content="http://purl.org/rss/1.0/modules/content/" 
 xmlns:dc="http://purl.org/dc/elements/1.1/" 
 xmlns:sy="http://purl.org/rss/1.0/modules/syndication/" 
 xmlns:atom="http://www.w3.org/2005/Atom" 
>

http://purl.org/rss/1.0/
http://web.resource.org/rss/1.0/
http://purl.org/rss/1.0/
http://purl.org/rss/1.0/modules/syndication/
http://purl.org/rss/1.0/modules/content/
http://www.w3.org/2005/Atom
http://purl.org/rss/1.0/modules/content/
http://purl.org/dc/elements/1.1/
http://purl.org/rss/1.0/modules/syndication/
http://www.w3.org/2005/Atom

CHAPTER 8 ■ WEB SYNDICATION

307

Doing so, elements can be used from these namespaces in the channel as shown in Listing 8-27 or in item
elements such as in the example in Listing 8-28.

Listing 8-27. Elements from External Namespaces in an RSS Channel

<dc:creator>Dr. Leslie Sikos</dc:creator>
<sy:updatePeriod>daily</sy:updatePeriod>
<sy:updateFrequency>1</sy:updateFrequency>
<sy:updateBase>2011-01-01T12:00+00:00</sy:updateBase>
<atom:link href="http://www.lesliesikos.com/sikos.xml" rel="self" 
 type="application/rss+xml" />

Listing 8-28. An Element from an External Namespace in an RSS Item

<content:encoded><![CDATA[An escaped RSS item can contain markup elements such as 
 hyperlinks that work in all major news feed 
 readers.]]></content:encoded>

Styling RSS Feeds
The browsers that support news feeds usually provide a basic styling or no styling at all (rendering a tree structure
instead). Developers who are not satisfied with that or want to ensure an advanced look (which is also similar in all
browsers) can format RSS channels using CSS or XSLT.

In the first case, a CSS reference is required in the form presented in Listing 8-29.

Listing 8-29. Using a CSS File for Styling RSS

<?xml version="1.0" encoding="utf-8" ?>
<?xml-stylesheet type="text/css" href="css/feed.css" ?>
<rss version="2.0">

Writing the CSS rules is straightforward. For example, the font size of the main title can be increased by the CSS
rule presented in Listing 8-30.

Listing 8-30. Setting the Font Size for the RSS Channel and Title

channel title {
 font-size: 1.4em;
}

The font of the document can be set as shown in Listing 8-31.

Listing 8-31. A CSS Rule for the Entire RSS Document

rss {
 font-family: Verdana, Helvetica, sans-serif;
}

http://www.lesliesikos.com/sikos.xml

CHAPTER 8 ■ WEB SYNDICATION

308

Similarly, further styles can be set for other RSS elements. Much information is not always relevant and can be
omitted, as for example in Listing 8-32.

Listing 8-32. Hiding RSS Elements with CSS

channel link, channel language, channel copyright, channel managingEditor, 
 channel webMaster, channel docs, channel lastBuildDate {
 display: none;
}

The second approach applies XSL Transformation, which provides more control. For example, hyperlinks can be
activated, and node order can be changed. The XSL file can be linked as shown in Listing 8-33.

Listing 8-33. Using XSLT for Styling RSS

<?xml version="1.0" encoding="utf-8" ?>
<?xml-stylesheet type="text/xsl" href="css/feed.xsl" ?>
<rss version="2.0">

Note ■ Additional functionality such as searching or category listings provided by the built-in RSS reader of some

browsers are not available when a custom style sheet is applied to a news feed.

Atom
The Atom news feed specification consists of two standards: the Atom Syndication Format and the Atom Publishing
Protocol (AtomPub or APP). The first one is a web feed format in XML syntax defined by an IETF proposed standard
(RFC 4287 [17]). The second one is an HTTP-based protocol that can be used for creating and updating web resources.
It is also a proposed standard (RFC 5023 [18]). This section focuses on the Atom Syndication Format.

The file extensions of Atom feeds are .atom and .xml. The Internet media type of Atom is application/atom+xml.
The Atom namespace is http://www.w3.org/2005/Atom.

Creating an Atom File
Atom files begin with an XML declaration. The root element of Atom files and the container of news feed entries
(entry elements) is the feed element. Listing 8-34 shows the general structure of an Atom file.

Listing 8-34. General Structure of an Atom File

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title>An Atom news feed example</title>
 <link rel="alternate" type="text/html" href="http://www.example.com/" />
 <link rel="self" type="application/atom+xml" href="http://www.example.com/News/atom.xml" />
 <id>tag:www.example.com,2008-09-29://4</id>
 <updated>2011-08-08T08:03:00Z</updated>
 <entry>
 <title>News item 2</title>
 <link rel="alternate" type="text/html" href="http://www.expl.com/2011.html#entry-9167" />
 <id>tag:www.expl.com,2011://4.9167</id>

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom

CHAPTER 8 ■ WEB SYNDICATION

309

 <published>2011-08-08T08:03:00Z</published>
 <updated>2011-08-08T08:03:00Z</updated>
 <summary>Summary of news entry 2</summary>
 <author>
 <name>John Smith</name>
 </author>
 <category term="Home Page Stories" />
 <category term="Web of Services" />
 <content type="html" xml:lang="en" xml:base="http://www.example.com/">The full content 
 of News #2.</content>
 </entry>
 <entry>
 <title>News item 1</title>
 <link rel="alternate" type="text/html" href="http://www.example.com/news/#entry-9165" />
 <id>tag:www.example.com,2011://4.9165</id>
 <published>2011-08-07T08:48:00Z</published>
 <updated>2011-08-07T08:48:00Z</updated>
 <summary>Summary of news entry 1</summary>
 <author>
 <name>John Smith</name>
 </author>
 <category term="Publication" />
 <category term="Web design" />
 <category term="Press releases" />
 <content type="html" xml:lang="en" xml:base="http://www.example.com/">
 <![CDATA[The full content of News #1. In CDATA sections, 
 markup code can also be included.]]>
 </content>
</entry>
</feed>

These elements and attributes are described in the following sections in detail.

Text Constructs

Text constructs of Atom contain language-sensitive, human-readable texts. An optional attribute of text constructs is
the type attribute. If provided, the attribute must have one of the following values: text, html, or xhtml. If omitted,
Atom feed readers consider text constructs as if they were specified with the default value text. MIME types cannot be
declared as attribute values for the type attribute.

Person Constructs

There are three person constructs in Atom that describe an entity such as a person or a corporation: name, uri, and email.
Atom news feeds must contain exactly one name element that provides the name of the author. The element

content is language-sensitive.
The uri element is optional, and maximum one can be provided to link to the web site of the author. The content

of the uri element is an Internationalized Resource Identifier (IRI) in the form defined by RFC 3987 [19].
The e-mail address of the author can be declared by the optional email element of which no more than one can

be used in an Atom file. The content of the email element should conform to the standard Internet Message Format
defined by RFC 2822 [20].

CHAPTER 8 ■ WEB SYNDICATION

310

Date Constructs

The contents of date construct elements should be declared according to the date-time format defined in RFC 3339 [21].
Date and time should be separated by an uppercase T, while an uppercase Z should be used when the numeric time zone
offset is omitted (Listing 8-35).

Listing 8-35. Some Valid Timestamps in Atom

<updated>2016-12-13T08:15:01Z</updated>
<updated>2016-12-13T08:15:01.25Z</updated>
<updated>2016-12-13T08:15:01+01:00</updated>
<updated>2016-12-13T08:15:01.25+01:00</updated>

All date values of Atom new feeds should comply with the ISO standard on date and time representation (ISO
8601:2004 [22]) and the W3C date and time format [23] specifications, as well as the ISO 8601 Conventions in the W3C
Recommendation “XML Schema Part 2: Datatypes Second Edition” [24].

Containers
There are three container elements in Atom:

The •฀ feed element, which contains the entire feed

The •฀ entry element, which contains a simple news entry

The •฀ content element, which contains a full story (the content of a news entry)

The next sections describe these containers in detail.

The feed Element

As mentioned earlier, the top-level element of Atom feeds is feed; it contains the news feed metadata and contents
(all other Atom elements). One or more author elements are required for feed elements, except all child entry
elements of the feed element contain at least one author element. Exactly one id element must be provided for all
feed elements. The feed elements must contain exactly one updated element. Exactly one title element is required
for all feed elements. The feed elements should contain one link element with a rel attribute value set to self.

An arbitrary number of category and contributor elements can be included in feed elements. Only one
generator is allowed for each feed. The same holds for icon and logo elements as well.

The feed elements can contain a maximum of one link element with a rel attribute value set to alternate that
has the same type and hreflang attribute values. Beyond such link elements, additional link elements might be
included in the feed elements.

Only one rights and subtitle element is allowed for each feed element.

The entry Element

Atom news can be provided by the entry element. It can be a child of the feed element or a stand-alone, top-level
element within the feed. The entry elements must have a minimum of one author element except when a source
element is provided in the entry that has an author element or the feed element contains an author element.
Optionally, entry elements have any number of category elements. The entry elements might have a maximum of
one content element. Another optional subelement of the entry element is the contributor. An arbitrary number of
contributors can be provided.

The entry elements must have an id element.

CHAPTER 8 ■ WEB SYNDICATION

311

The entry elements without content must provide a minimum of one link element with the rel attribute and
the alternate attribute value.

The entry elements cannot contain more than one link element with the rel attribute and the alternate
attribute value with exactly the same type and hreflang attribute values. Optionally, additional link elements can
also be provided for the entry elements.

The entry elements can contain a maximum of one published, rights, source, and summary element.
The summary subelement should be provided for entry elements if the entry contains a content element with the

src attribute or the entry content is Base64 encoded.1

The entry elements must contain exactly one title and one updated element.

The content Element

The Atom news content can be provided by the content element. The content of this element is language-sensitive.
The content element has two attributes: type and src.

The value of the type attribute on the content element might be text, html, or xhtml. If it is omitted, text
is considered the default value by Atom readers. Another option is to provide a MIME media type (but not a
composite type).

The content element has an optional src attribute. The value of this attribute should be an Internationalized
Resource Identifier that conforms to RFC 3987. If the src attribute is provided, the content must be empty. The type
attribute should also be provided with a MIME type along with the src attribute.

Metadata and Content Elements
Similar to RSS, there are several elements in Atom to express metadata and describe the contents of news entries, such
as author, category, contributor, generator, icon, id, link, logo, published, rights, source, subtitle, summary,
title, and updated. Those elements whose specification assigns meaning to the content and the ones with special
restrictions are described in the following sections.

The author Element

The author in Atom feeds can be provided in three levels. If the author element is not provided as a subelement of
an entry element, the author is derived from the author subelement of the source element. Otherwise, the author
declared by the author of the feed element is used to display the author of the news (Listing 8-36).

Listing 8-36. Declaring the Author of an Atom Feed

<author>
 <name>John Smith</name>
</author>

The category Element

The category element has three attributes: the required term and the optional scheme and label (Listing 8-37).

1Although฀the฀type฀attribute฀of฀the฀atom:content฀element฀is฀an฀Internet฀media฀type,฀it฀neither฀is฀an฀XML฀media฀type฀nor฀begins฀
with฀text/฀or฀ends฀in฀/xml or +xml.

CHAPTER 8 ■ WEB SYNDICATION

312

Listing 8-37. A Category Declaration in Atom

<category term="Publication" />

The value of the label attribute is language-sensitive. Character entities used in the attribute values are considered
characters instead of markup.

The contributor Element

The person or company that contributed to an entry or the whole feed can be indicated by the contributor element
(Listing 8-38).

Listing 8-38. A Feed Contributor

<contributor>
 <name>Alex Sikos</name>
</contributor>

The generator Element

If a software tool is used to generate the Atom news feed, it can be identified by the generator element. The generator
element has two optional attributes. The value of the uri attribute should be an Internationalized Resource
Identifier according to RFC 3987. The other optional attribute is version that represents the version of the Atom
generator (Listing 8-39).

Listing 8-39. An Atom Generator Identified in the Feed

<generator uri="http://www.example.com/movabletype/" ver="4.34-en">Movable Type</generator>

The icon Element

Similar to the contents of the uri element and that of the uri attribute of the generator element, the content of the
icon element should also be an IRI reference that conforms to RFC 3987. This element specifies an image file for the
Atom news feed (Listing 8-40). The aspect ratio of the image should be 1:1.

Listing 8-40. An Icon for the Atom Feed

<icon>http://example.com/images/icon.gif</icon>

The id Element

The id element is a permanent identifier provided in lowercase (Listing 8-41). It is used as a subelement of both the
feed element and the entry elements.

Listing 8-41. An Atom Identifier

<id>tag:example.org,2003:3</id>

CHAPTER 8 ■ WEB SYNDICATION

313

Percent-encoding, the mechanism that encodes certain characters of a URI using a string that begins with a
percent sign (%),2 should be eliminated whenever possible.3 Dots should be avoided in URIs. The Internationalized
Resource Identifier should be NFC normalized, or NFKC normalized. Empty fragment identifiers should be preserved.
The URIs in id elements are case-sensitive. Identifiers that apply percent-escaping are considered different from the
ones that do not when comparing id instances.

The link Element

External hyperlinks related to an Atom entry or the whole feed can be provided by the link element. This
element has six attributes: href, rel, type, hreflang, title, and length. The required href attribute contains the
Internationalized Resource Identifier of the link. The optional rel attribute must have a nonempty string as a value
according to either the IRI or the isegment-nz-nc syntax rules of RFC 3987. Allowed values are alternate, related,
self, enclosure, and via. The type attribute, which is optional, must have a MIME media type as its value. The
hreflang attribute is also optional. When provided, it must have an RFC 3066 language tag. The optional title
attribute is language-sensitive. Character entities used in the title are considered characters instead of markup, and
displayed rather than processed. A hint on the advisory length of the linked content can be provided by the optional
length attribute in octets. Listing 8-42 shows a typical link element.

Listing 8-42. A link Element in Atom

<link rel="self" type="application/atom+xml" href="http://example.net/atom.xml" />

The logo Element

An image that visually identifies your Atom news feed can be provided by the logo element (Listing 8-43). Its content
is an IRI reference (RFC 3987). The aspect ratio of the logo image should be 2:1 (horizontal to vertical).

Listing 8-43. A Logo Image of an Atom Feed

<logo>http://example.com/images/icon.gif</logo>

The published Element

The time when the first version of a news entry was written can be specified by a date construct of the published
element (Listing 8-44).

Listing 8-44. A published Element

<published>2014-10-27T10:24:24Z</published>

Such timestamps might coincide with the content of the updated element in the entry.

The rights Element

Custom copyright information can be written as a text construct and added to your Atom news feed using the rights
element (Listing 8-45).

2One฀of฀the฀most฀well-known฀examples฀for฀percent฀encoding฀is฀the฀%20฀string฀that฀appears฀in฀place฀of฀space฀characters฀in฀poorly฀
designed฀URIs.
3If฀percent฀encoding฀is฀essential฀and฀cannot฀be฀eliminated,฀letters฀should฀be฀uppercase฀characters฀A–F.

CHAPTER 8 ■ WEB SYNDICATION

314

Listing 8-45. Copyright Information in Atom

<rights>Copyright © 2014 Leslie Sikos. All rights reserved.</rights>

The source Element

If an entry is derived from an external Atom news feed, the metadata of the original entry can optionally be used as
the subelements of the source element. The author, contributor, rights, and category elements should always
be preserved.

The subtitle Element

Atom feeds can be described by a string provided as the content of a subtitle element, which provides a longer
description than the title element (Listing 8-46).

Listing 8-46. The Description of an Atom News Feed

<title type="text">Leslie Sikos News</title>
<subtitle>
 The news feed of Leslie Sikos. Web design news, publications, and more.
</subtitle>

The summary Element

A short description can be added to each Atom entry with the summary element (Listing 8-47).

Listing 8-47. A Summary of an Atom Entry

<summary>The W3C released the updated specification of HTML5.</summary>

RSS or Atom?
Both RSS and Atom are widely supported in all major consumer feed readers. From the standards points of view,
the RSS 2.0 specification is copyrighted by Harvard University and is considered finalized. Significant changes are
unlikely, although the specification was released under the Creative Commons license. In contrast, Atom 1.0 is a more
feature-rich syndication format which can easily be extended.

The Internet media type application/rss+xml is unregistered while application/atom+xml is registered by IANA.
In contrast to RSS 2.0, which supports the RSS document format only, the Atom Entry documents of the Atom

news feeds can apply any network protocol. As a result, the aggregation and extraction of Atom news feeds have more
possibilities.

Although the namespace of RSS 2.0 is not an XML namespace, it can optionally contain elements from external
XML namespaces (as discussed earlier). The namespace of Atom 1.0 is an XML namespace itself and might also have
elements and attributes from other XML namespaces. The implementation of these external elements and attributes
is clearly defined by specification guidelines. It can be concluded that Atom is more extensible than RSS.

RSS does not support relative URIs, while Atom reuses the xml:base attribute, which allows relative references.
There is no schema defined in RSS 2.0. Atom 1.0 applies the RelaxNG schema, which is the non-normative

ISO-standard ISO/IEC 19757-2:2008 [25]. It can be used to validate the data provided in the Atom news feed.
Optionally, further schemas can be generated from RelaxNG.

Correctly written RSS and Atom files are well-formed XML files that can be processed in many ways and can be
extended using the namespace mechanism. Users usually do not notice the difference between the two formats when
using a feed reader application.

CHAPTER 8 ■ WEB SYNDICATION

315

Summary
This chapter took you through the RSS and Atom new feed formats with all the background information and practices
required to not only create standard-compliant feed channels but also maintain them manually without interrupting
the strict XML syntax, the RSS or Atom format requirements, or the highest level of interoperability.

In the next chapter, you will learn how to secure the layout of your web sites, use advanced typography features
on the Web, and optimize image files to maximize user experience. You will also learn standard-compliant, cross-
browser video and multimedia embedding techniques.

References
 1. Ellerman C (1997) Channel Definition Format (CDF). Microsoft Corporation.

http://www.w3.org/TR/NOTE-CDFsubmit.html. Accessed 13 October 2014

 2. Guha RV, Bray T (eds) (1997) Meta Content Framework Using XML.
http://www.w3.org/TR/NOTE-MCF-XML/. Accessed 13 October 2014

 3. Winer D (1997) Scripting News in XML. Dave Winer.
http://scripting.com/davenet/1997/12/15/scriptingnewsinxml.html. Accessed 23
November 2010

 4. RAB (2008) RSS 0.90 Specification. Transferred from original specification of Netscape
published in 1999. RSS Advisory Board. http://www.rssboard.org/rss-0-9-0.
Accessed 13 October 2014

 5. Asman P, Cannon S, Sommo C (2010) Extending RSS to Meet Central Bank Needs.
In: Proceedings of the International Conference on Dublin Core and Metadata
Applications. Dublin Core Metadata Initiative, Pittsburgh

 6. Cadenhead R, Smith G, Hanna J, Kearney B (2006) The application/rss+xml Media Type.
The Internet Society. http://www.rssboard.org/rss-mime-type-application.txt.
Accessed 13 October 2014

 7. Beged-Dov G, Brickley D, Dornfest R, Davis I, Dodds L, Eisenzopf J, Galbraith D,
Guha RV, MacLeod K, Miller E, Swartz A, van der Vlist E, et al (2008) RDF Site Summary
(RSS) 1.0. RSS-DEV Working Group. http://web.resource.org/rss/1.0/spec.
Accessed 13 October 2014

 8. RAB (2008) The current version of the RSS Specification. RSS Advisory Board.
http://www.rssboard.org/rss-specification. Accessed 13 October 2014

 9. RAB (2010) Specification History. RSS Advisory Board.
http://www.rssboard.org/rss-history. Accessed 13 October 2014

 10. The Internet Corporation for Assigned Names and Numbers (2010) Permanent URI
Schemes. Internet Assigned Numbers Authority.
http://www.iana.org/assignments/uri-schemes.html. Accessed 13 October 2014

 11. Raggett D, Le Hors A, Jacobs I (eds) (1999) Language codes. In: HTML 4.01 Specification.
World Wide Web Consortium. http://www.w3.org/TR/REC-html40/struct/
dirlang.html#langcodes. Accessed 13 October 2014

 12. Alvestrand H (1995) Tags for the Identification of Languages. Internet Engineering Task
Force. http://www.ietf.org/rfc/rfc1766.txt. Accessed 13 October 2014

http://www.w3.org/TR/NOTE-CDFsubmit.html
http://www.w3.org/TR/NOTE-MCF-XML/
http://www.rssboard.org/rss-0-9-0
http://www.rssboard.org/rss-mime-type-application.txt
http://web.resource.org/rss/1.0/spec
http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-history
http://www.iana.org/assignments/uri-schemes.html
http://www.w3.org/TR/REC-html40/struct/dirlang.html#langcodes
http://www.w3.org/TR/REC-html40/struct/dirlang.html#langcodes
http://www.ietf.org/rfc/rfc1766.txt

CHAPTER 8 ■ WEB SYNDICATION

316

 13. ISO (2002) ISO 639-1:2002. International Organization for Standardization.
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_
ics.htm?csnumber=22109. Accessed 13 October 2014

 14. ISO (2006) ISO 3166-1:2006. International Organization for Standardization.
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.htm?csnumber=39719. Accessed 13 October 2014

 15. Crocker DH (ed) (1982) Standard for the format of ARPA internet text messages. University
of Delaware. http://asg.web.cmu.edu/rfc/rfc822.html. Accessed 13 October 2014

 16. Wolf M, Wicksteed C (1997) Date and Time Formats. World Wide Web Consortium.
http://www.w3.org/TR/NOTE-datetime. Accessed 13 October 2014

 17. Nottingham M, Sayre R (eds) (2005) The Atom Syndication Format. Proposed standard.
The Internet Society. http://tools.ietf.org/html/rfc4287. Accessed 13 October 2014

 18. Gregorio J, de Hora B (eds) (2007) The Atom Publishing Protocol. Proposed standard. The
Internet Society. http://tools.ietf.org/html/rfc5023. Accessed 13 October 2014

 19. Duerst M, Suignard M (2005) Internationalized Resource Identifiers (IRIs). The Internet
Engineering Task Force. http://tools.ietf.org/html/rfc3987. Accessed 13 October 2014

 20. Resnick P (ed) (2001) Internet Message Format. The Internet Society.
http://tools.ietf.org/html/rfc2822. Accessed 13 October 2014

 21. Klyne G, Newman C (2002) Date and Time on the Internet: Timestamps. The Internet
Society. http://tools.ietf.org/html/rfc3339. Accessed 13 October 2014

 22. ISO (2004) Data elements and interchange formats – Information interchange –
Representation of dates and times. ISO 8601:2004. International Organization for
Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.htm?csnumber=40874. Accessed 13 October 2014

 23. Wolf M, Wicksteed C (1998) Date and Time Formats. World Wide Web Consortium.
http://www.w3.org/TR/NOTE-datetime. Accessed 13 October 2014

 24. Biron PV, Malhotra A (eds) (2004) ISO 8601 Conventions. In: XML Schema Part 2:
Datatypes Second Edition. W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/xmlschema-2/#isoformats. Accessed 13 October 2014

 25. ISO (2008) ISO/IEC 19757-2:2008. Information technology – Document Schema Definition
Language (DSDL) – Part 2: Regular-grammar-based validation – RELAX NG. International
Organization for Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=52348. Accessed 13 October 2014

http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=22109
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=22109
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39719
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39719
http://www.w3.org/TR/NOTE-datetime
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc2822
http://tools.ietf.org/html/rfc3339
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40874
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40874
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/xmlschema-2/#isoformats
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52348
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52348

317

CHAPTER 9

Optimized Appearance

Design has always been an important factor in web site development, partly because appearance is responsible for
the first impression. If the design of a web site catches the eye, it is more likely that visitors will become customers
or clients. Web typography has recently started to attract attention, especially though proper whitespace handling
and the introduction of web fonts. Images that are fundamental parts of web sites should be optimized for web
publishing in order to achieve a reasonable quality to file size ratio and minimize download time. Since high-speed
Internet connections have become widespread, the need for sharing multimedia content has increased enormously.
Until the new elements introduced in HTML5, general objects have been used to embed audio and video content.
Although design and multimedia are extremely popular, the basic usability principle should always be kept in mind:
functionality over design.

In this chapter, you will learn how to create multiple-column layouts and fixed menus without the now-obsolete
approaches, such as the ones that applied tables and frames. This chapter also describes a CSS property,
called z-index, which provides full control over the appearance of layers above each other.

Until recently, most web sites used one or more fonts from a small list, resulting in a kind of monotony.
There have been many methods for using a greater variety of fonts over the years, but not one was very satisfactory
or dependable. You can now improve the appearance of text by declaring font files to be used for rendering textual
content, which makes it possible to display web pages with carefully selected fonts in superior quality. However,
web sites can contain not only text. You will learn how to optimize images for web publishing and embed multimedia
files such as audio and video.

Layout
The layout of web content determines the overall appearance and has a large impact on functionality,
usability, accessibility, mobile-friendliness, and design. Ideally, web layouts are reliable, as well as browser- and
resolution-independent.

Positioning and Floating
Some web page components are placed on the page in relation to a corner of the browser window, such as the top-left
corner (the 0, 0 position), while the position of others depends on the position of their parent elements (containers).
There are various options including relative, absolute, and fixed positioning. Beyond the appropriate positioning,
you must be careful to provide browser- and resolution-independent solutions.

On your web site, perhaps certain components should “float” on the web page, and the content should appear
next to, rather than above or below, the main text. Typical examples are images, which frequently apply the float
property to wrap text around images.

CHAPTER 9 ■ OPTIMIZED APPEARANCE

318

Absolute and Fixed Positions

Depending on the design and site structure, some page components (logo, menu, header, footer, and so on) are
intended to be fixed and should not move when the page is being scrolled.

The CSS rule position: fixed; is very similar to position: absolute; but the first one prevents element
scrolling when the user scrolls the page while the second does not. The position: fixed; rule is not supported
by Internet Explorer 6 or earlier, which was a major layout problem in web site development for years. Instead of
reverting it to position: absolute; to provide a similar effect, position: fixed; has been considered as
position: static; which results in no positioning at all. Consequently, a layer at the bottom of a web page with
position: fixed; which is intended to be a footer that remains intact when the user scrolls the page, appears on
the page according to the DOM structure in older browsers (prior to IE7), resulting in an unaesthetic appearance or
degraded functionality. Modern browsers support positioning correctly.

Tableless Web Layout
Until recently, especially before HTML5, a significant number of web sites applied presentational markup rather than
semantic code. (X)HTML tables have been used for arranging web site elements and ensuring pixel-by-pixel layout.
This easy and quick “development” was also encouraged by WYSIWYG development tools. However, using tables for
layout has many drawbacks. Web sites whose layout relies on tables waste bandwidth and take longer to download and
render. The document structure is illogical, making semantic data harder or impossible to retrieve. These web sites are
not accessible and are difficult to maintain. Generally speaking, the table-based layout is not mobile-friendly either.

Tableless web layout eliminates the use of tables for page layout and web page element positioning [1]. This does
not mean that tables are not allowed on web pages, but tables should be used exclusively for tabular data.

The positioning and layout of web page components can be fully controlled by layers that are represented as div
elements in the markup. In HTML5, sidebars and widget areas can also be separated logically within the main layout
of a web site using the aside element, which is suitable for contents aside the main page content.

The following sections describe the two most common types of web site layouts. Naturally, developers can create
other layouts, too, i.e., arbitrary layouts can be described by div elements.

Fixed-Width Layouts

Traditional web sites typically have a main container, often aligned or floated to the center, with a predefined width
in pixels (or other units). This approach worked satisfactorily until the early 2010s when mobile browsing gained so
much popularity that mobile support became a fundamental need, introducing a new era of web layouts. However,
many applications, especially industrial sites and web interfaces of older but widely adopted commercial software,
are still based on a fixed-width container.

Multiple-Column Layouts

A typical web page arrangement is the multiple-column layout with floating divisions [2]. Multiple-column sites
usually have a header at the top of each page. The menu is often provided on the left (or right). Additionally, a footer
is a frequently used component on the bottom of each page. The usual number of columns is one, two, or three.
Figure 9-1 shows a typical three-column layout.

CHAPTER 9 ■ OPTIMIZED APPEARANCE

319

You can see the main menu on the top of the page. Underneath the main menu there is the main content. On the
left there are submenus, while on the right there are additional functions, such as a search box and blog entries.

Centralized-Column Layouts

Another typical arrangement applies a centralized column with a width of approximately 700–1000 pixels (typically
760 or 960 pixels). Ideally, such centralized columns are not wider than about 1000 pixels to ensure that the main
content remains visible on resolutions back to 1024×600 (WSVGA)1 or smaller, without truncating the sides or adding
too much empty space to the sides. As you will see in the next section, modern web sites use columns proportional to
the screen rather than columns with a fixed width, which was the common practice for a decade and a half.

Figure 9-1. A three-column layout

1The฀next฀standard฀and฀de฀facto฀standard฀resolutions฀such฀as฀1366×768฀(FWXGA)฀are฀larger฀than฀some฀screen฀resolutions฀of฀modern฀
mobile฀devices฀with฀Internet฀browsing฀capabilities,฀however฀the฀typical฀resolution฀is฀constantly฀growing,฀and฀even฀medium-size฀
tablets฀usually฀support฀1920×1080฀(full฀HD)฀or฀higher฀resolution.฀For฀smaller฀smartphone฀or฀tablet฀screen฀resolutions,฀web฀sites฀can฀
also฀be฀optimized฀using฀alternate฀style฀sheets,฀as฀discussed฀earlier฀in฀Chapter฀5.

CHAPTER 9 ■ OPTIMIZED APPEARANCE

320

Sites with centralized columns usually have the header and the main menu on the top. Optionally, there might
be a secondary or submenu on the left (or right) within the main column. Quite often there is a footer at the bottom,
usually within the main container (not affecting the layout).

There are various possibilities to horizontally center page content. A frequently used method applied the
attribute value auto to the left and right margins of the container (Figure 9-2). This technique was introduced in the
errata of the CSS2 specification [3]. Listing 9-1 shows an example.

Figure 9-2. Centralizing with autowidth margins

Listing 9-1. Centralizing with Autowidth Margins

#content {
 width: 720px;
 margin: 0 auto;
}

This method works on all browsers that support CSS2+.
Another method for centralizing the content, introduced by Simon Coggins, was to use offsets and negative

margins. After declaring the width of the container element (similar to the previous method), its left edge is
horizontally centered within the page by the combination of absolute positioning and a 50 percent left offset. Since
the content begins on the second half of the page, the left margin of the layer should be set to the opposite of half the
width of the layer. For example, if the width of the layer to be centralized is 780px, the left margin should be set to
-390px (Figure 9-3).

CHAPTER 9 ■ OPTIMIZED APPEARANCE

321

Figure 9-3. Centralizing with negative margins

The corresponding CSS ruleset can be written as shown in Listing 9-2.

Listing 9-2. Centralizing with Negative Margins

#main {
 position:absolute;
 width: 780px;
 left: 50%;
 margin-left: -390px;
}

Flexible Layouts with Responsive Web Design

The first attempt to allow access to content and basic functionality of a web site and provide an advanced version of
the same site to browsers with better or more complete web standards support is known as Progressive Enhancement,
which was introduced in 2003. The corresponding approach is often referred to as Graceful Degradation. By applying
best practices such as creating a correct document structure in the markup, web designers can contribute not only to
Progressive Enhancement, but also accessibility and overall code quality.

CHAPTER 9 ■ OPTIMIZED APPEARANCE

322

To provide the highest level of interoperability and usability, web sites should be created by applying techniques
that support an optimal user experience through device-, browser-, and/or feature-detection, so the website will
be easy to navigate and read regardless of the device used for browsing (smartphone, tablet, desktop PC, etc.). As a
result, the textual content of the website won’t be tiny on a phone, and the large pictures will be automatically resized
depending on the screen size and resolution.

Until recently, a large share of web sites have been designed with fixed-width layout (as described in the
previous section) that might provide precise pixel-by-pixel representation, but cannot use the full surface of
today’s large-resolution monitors. It also has serious usability issues on the now widespread mobile devices such
as smartphones and tablets that come with a relatively small screen size. Even on standard resolutions, the user
might use a resized (not maximized) browser window. The endless variety of screen resolutions makes it practically
infeasible to support all resolutions with a design that is optimized for a certain resolution.

More and more people will access digital services via a smartphone or tablet rather than a computer.
In well-developed countries such as Australia, mobile browsing is over 50%, which represents extraordinary growth in
mobile technology.

One of the approaches to address the issues of barely readable texts, inconsistent layout, and inconvenient
scrollability is Responsive Web Design (RWD), which applies a flexible grid layout that is scalable (also known as
responsive layout, liquid layout, or fluid layout). With the standardization and widespread implementation of CSS3
properties in browsers, and the growing need for mobile support, Responsive Web Design became popular in the
early 2010s.

Responsive Web Design aims to achieve optimal user experience in terms of convenient reading and easy
navigation, and “respond” to device features (hence the name). Depending on the characteristics of the device
being used, different layouts are used, along with automatically scaling website elements, including text and images.
Because some web site elements such as Flash headers containing raster graphics and video clips cannot be fully
optimized for automatic scaling, the applicability of Responsive Web Design depends on the web site. In case a
reliable fixed-width layout is used, support for mobile devices can still be provided by creating additional, device-
dependent style sheets.

The use of flexible grid layout provides advanced mobile support while using only one style sheet per site with
conditional styling for the various screen resolution ranges. Flexible layouts provide a way to create multiple column
arrangements that are re-rendered vertically (while maintaining the logical flow) when browsing the site on a smaller
resolution screen (or resizing the browser window). The columns that are adjacent on a high-resolution screen appear
under each other and the text reflows when browsing the same site on a smartphone (Figure 9-4).

Figure 9-4. Flexible layouts adopt to screen size

CHAPTER 9 ■ OPTIMIZED APPEARANCE

323

This technique is advantageous not only for mobile support, but also contributes to (although won’t guarantee)
user experience, accessibility, and usability. While responsive web sites are not necessarily accessible, and not all
accessible web sites are responsive, the proper use of standards results in web sites that are accessible and responsive
at the same time.

Another approach, elastic layout applies fully scalable elements expressed in em rather than % in the style sheets.
Because 1em is the currently specified font size, web page components of elastic layouts can adopt proportionally to
the font size the reader uses.

Set the Viewport

Using the initial scale on mobile browsers can lead to unpredictable layout. To ensure that the device screen width is
used as the viewport width, the meta tag can be used in the document head (Listing 9-3).

Listing 9-3. Set the Device Screen Width As the Viewport Width

<meta name="viewport" content="width=device-width, initial-scale=1.0" />

Create Markup For Responsive Layouts

The first liquid layout designs were based on fixed pixel widths and arbitrary percentage values. If you go one step
further and calculate the appropriate proportions precisely, all elements of the resulting layout will resize their widths
proportionally in relation to one another, regardless of the browsing device.

The proportions for each element can be calculated by dividing the target element by its context. A common
technique is to draw an accurate web comp or mockup in Photoshop or Illustrator, calculate or measure the page
element, and divide it by the full width of the page.

For example, if the layout is 960 pixels wide (“container”), and we have a 300 pixel wide sidebar, the width CSS
property of the target element should have a value of 31.25% (300/960=0.3125) rather than 300px. The sidebar in this
example will always be 31.25% of the width of the main container, regardless of the current width of the container (the
items of the web site remain proportional to each other even if the entire page is rescaled).

Fluid grids are important in Responsive Web Design, but if the width of the browser becomes too narrow, the
layout can start to collapse (a three-column layout, for example, wouldn’t work very well on a small mobile phone).
To address this issue, conditional CSS styling can be applied using CSS3 Media Queries.

Conditional Styling with CSS3 Media Queries

With CSS3 Media Queries, web sites can automatically detect features and feature support, and maximize user
experience by applying different CSS rulesets based on the detected values. A frequently used CSS3 media query
checks the minimum width (min-width), making it possible to apply specific CSS styles if the browser window reaches
a particular width (Listing 9-4).

Listing 9-4. CSS Rules For Mobile Devices Using a Media Query

@media screen and (min-width: 480px) {

 .content {
 float: left;
 }

 /* ... */
}

CHAPTER 9 ■ OPTIMIZED APPEARANCE

324

Such rulesets typically change the width of certain elements, change the floating to ensure that the desired
elements will appear below each other, or disable elements (e.g., social media icons are not displayed when browsing
the site on a mobile) or features (e.g., background image is disabled when browsing the site on a mobile). By creating
similar rulesets for different de facto standard screen resolution ranges, web designers can cover pretty much any kind
of device while providing an ideal user experience.

Older browsers such as Internet Explorer 8 and earlier do not support CSS3 Media Queries. To address this, it is
popular to use a JavaScript fallback mechanism like css3-mediaqueries.js [4] or Respond.js [5].

Responsive Images

One of the approaches to use optimized images for mobile browsing is applying the srcset attribute of HTML5 [6],
which can switch between different versions of the same image depending on the resolution and can be used on the
img and picture elements (Listing 9-5).

Listing 9-5. Displaying Different Image File Versions Depending on Resolution

<img src="ferrari-400.jpg" alt="The Ferrari"
 sizes="(min-width: 600px) 60vw, 100vw"
 srcset="ferrari-200.jpg 200w,
 ferrari-400.jpg 400w,
 ferrari-800.jpg 800w,
 ferrari-1200.jpg 1200w">

The photo width will be 60% of the actual viewport width for browser windows that are at least 600 pixels wide.
On smaller resolutions or browser windows, the photo width will correspond to the full viewport width. The browser
applies the image with the resolution closest to the viewport width from the set of images optimized with a width of
200px, 400px, 800px, and 1200px, respectively, while considering not only the image width, but also the pixel density
of the screen.

If the image is not huge and you want to use the same image file for mobile and desktop, the maximum width
should be set to 100% (Listing 9-6).

Listing 9-6. A Responsive Image Implementation

img {
 max-width: 100%;
}

If the container around the image becomes narrower than the width of the image, then the image will scale down
to match the width of its container. The 100% max-width also ensures that the image does not scale larger than its
native size, which would significantly reduce the image quality (pixelated image).

There are many problems associated with responsive images, such as performance problems due to multiple
image versions downloaded unnecessarily through browser preloading, bandwidth problems if only one huge image
is used, and the Art Direction Problem, when the main object of the image is relatively small compared to the entire
image, and becomes way too small when resizing the image for mobile browsing (e.g., a face becomes tiny while
irrelevant background details are preserved).

Two popular JavaScript approaches are Picturefill and HiSRC. Picturefill is a responsive image polyfill for the
HTML5 picture element that requires some special markup, namely div elements to represent the image variations,
differentiated by data-media attributes that act like CSS3 Media Queries [7]. HiSRC is a jQuery plugin that enables
you to create low-, medium-, and high-resolution versions of images, and the script will show the appropriate image
version based on Retina-readiness and network speed [8].

A server-side approach is Adaptive Images, which uses a PHP script to intercept any image request and will resize
it on the fly as needed to specified breakpoint sizes and serve the image on your pages automatically [9].

CHAPTER 9 ■ OPTIMIZED APPEARANCE

325

A solution to the Art Direction Problem is to use min-width for the full-size photo and provide a small, cropped
image for resolutions smaller than the specified minimum width (Listing 9-7).

Listing 9-7. Cropped Image Version for Low-Resolution Displays, Full Version for High-Resolution Screens

<picture>
 <source media="(min-width: 960px)" srcset="bridge-full.jpg">

</picture>

For browser windows with a width of 960 pixels and wider, the big-resolution photo is used while smaller browser
windows will display the close-up version.

Text Around Objects

In many cases, web page text should “wrap around” an object or image. You can achieve this effect by using the float
property; in other words, the image (or its container) should float (Listing 9-8).

Listing 9-8. Styles for Containers of Floating Images

#onleft {
 float: left;
}

#onright {
 float: right;
}

Figure 9-5 shows an image without styling and two floating images that use the previous rules. Without floating,
the text does not wrap around the image: only the first line of the text appears next to the image (top photo). The
second image applies the first rule of Listing 9-8 and is rendered on the left, surrounded by text on the right. The third
image uses the second rule of Listing 9-8 and appears on the right, while the text surrounds the image on the left.

CHAPTER 9 ■ OPTIMIZED APPEARANCE

326

Since the text would be rendered right next to the floating images, you should declare margins to get the
final result shown in Listing 9-8. If you intend to display all images of a page on the right side, you can specify the
float:right; rule on images without identifiers or classes as img { float:right; }.

If you want to ensure that the next paragraph is displayed below a floating image, you can use the clear property
to stop the float on the left (clear: right;), on the right (clear: left;), or on both sides of the image (clear:both;).

Layers Above Each Other

Web site components can also be considered in a virtual space where the component order can be set by a CSS
property that represents depth (the third dimension). This property is called z-index. It is frequently used for setting
layer order. The larger the value, the higher the elements in the stack order. The element with the largest z-index
appears above all other elements of the page. This property works on positioned elements only (elements that have a
position rule). For example, the rulesets in Listings 9-9 and 9-10 put the layer with the logo above the main content.

Listing 9-9. The Lower Layer (Compared to Listing 9-10)

#main {
 position:absolute;
 width: 780px;
 left: 50%;
 margin-left: -390px;
 z-index: 1;
}

Figure 9-5. Floating images

CHAPTER 9 ■ OPTIMIZED APPEARANCE

327

Listing 9-10. The Upper Layer (Compared to Listing 9-9)

#logo {
 position: absolute;
 width: 146px;
 height: 120px;
 margin-top: 20px;
 margin-left: 20px;
 z-index: 2;
}

Caution ■ Flash content requires an additional parameter that allows the developer to override the default setting that

renders Flash content in front of other elements (see the section “Embedding Flash in XHTML”).

Typography
Text has always been a fundamental web page feature. The first web documents contained mainly (if not exclusively)
text with black fonts over a white background. In the next few years, the Web gradually transformed to a full multimedia
platform. At the same time, more sophisticated whitespace handling and character encoding have appeared.

In contrast to books and other printed media where proper type arrangements and type design have always been
ensured by typography, until recently the Web lacked these features.

After the introduction of TFT monitors and the ClearType fonts designed for them, characters have become really
clear on the screen. With the increasing popularity of web fonts, an endless variety of fonts appeared on the Web.

You must be careful to provide not only eye-catching fonts and type but also legible text. The technique required
to achieve that aim is known as web typography, which should also guarantee the proper appearance of characters
and whitespace.

Misused Characters
According to the World Wide Web Consortium, you should be careful to apply the proper punctuation marks on the
Web instead of their misused equivalents (Table 9-1) [10]. Which punctuation marks are typographically correct
depends on the natural language of the web page. For example, in British English, single quotes are often preferred
to double quotes, and commas generally park outside rather than inside the closing mark. In other languages, the
quotation marks might be inverted. Similar differences exist in the use of en and em dashes.

Table 9-1. Frequently Applied Punctuation Marks and Their Misused Equivalents

Character Name Entity/Entities Misused Equivalent(s)

“ Opening quote “ "

” Closing quote ” "

’ Apostrophe ’ '

– En dash (ranges) – or – -

— Em dash (change of thought) — or — - or --

… Horizontal ellipsis (an omission or a pause) … or … ...

CHAPTER 9 ■ OPTIMIZED APPEARANCE

328

The opening and closing quotation marks appear identical in certain typefaces, known as the straight, vertical, or
typewriter quotation marks, which should not be used in the text flow. On the other hand, these characters are used in
the markup as the delimiters of attribute values.

Tip ■ Many text editors do not support typographic (curly) quotation marks and insert their misused equivalents.

One of the options for getting the proper quotation marks is to insert them in a word processor (usually by pressing

Shift+2) and then copy the characters to the source code through the clipboard.

Even if the proper quotation marks are used in the markup, browsers might render them incorrectly. Although
it is a straightforward idea to apply the q tag for short quotations,2 browsers render it differently. Firefox 3.6.6 renders
both the opening and the closing quotes correctly. However, IE8 incorrectly applies the character „ for opening the
quote (the closing is correct). In Safari 5 and Opera 10.6, the misused equivalent " is used for rendering. However,
rendering quotes also depends on the language being used and relies on proper language settings in the markup.

Web Fonts
Originally, the Web was developed as a text-based medium. Initially, the selection of fonts available to web designers
was limited to the intersection of fonts natively installed on all major platforms. In 1998, the CSS2 specification
introduced a font matching and downloading mechanism (which has been dropped in CSS 2.1). In CSS3, external fonts
can be applied, along with the declaration of multiple (similar) fonts as a fallback option if the specific fonts cannot be
downloaded or are not installed on the user’s computer. The technique has both legal and technical issues, however.

Fonts are generally copyrighted; thus, their font files cannot be stored and used on web sites. Even the ones
that are advertised as free fonts cannot be used for web sites in many cases [11]. Since a standard font pack has been
released under the “Core fonts for the Web” program by Microsoft, the fonts Arial, Georgia, and Verdana (among
others) have become de facto fonts on the Web.

Caution ■ The character repertoire of typefaces varies greatly. While the English alphabet and the common

punctuation marks are supported by most font files, the list of supported characters should be a major concern for sites

written in a natural language other than English. Multilingual sites should not apply font files that do not support the full

range of required characters, which would make it possible to apply the same fonts for the different language versions.

One of the options to avoid nonsupported characters is to apply Unicode fonts. However, not all fonts presented on font

collection sites as “Unicode fonts” support a really wide range of Unicode characters. In fact, the ones that do are typically

20MB to 25MB in size (compared to the typical font file size of 50KB to 300KB), which is inadequate for web publishing:

the fonts won’t appear while the font files are being downloaded, and this would take much more time than downloading

the entire page with all of its components, including images.

From the technical point of view, the browser support for font embedding and downloading varies from
browser to browser. However, the differences are decreasing because of standardization and the growing popularity
of implementations. Embedded OpenType (EOT) font embedding is supported by Internet Explorer from version 4.
Other browsers have introduced font linking for TrueType (TT) and OpenType (OT) fonts (Firefox 3.5+, Opera 10+,
Safari 3.1+, Google Chrome 4.0+). Internet Explorer 9+ also supports TT/OT fonts but only those that have embedded

2If฀the฀quotation฀is฀longer฀than฀one฀line,฀the฀blockquote฀tag฀should฀be฀used฀instead.

CHAPTER 9 ■ OPTIMIZED APPEARANCE

329

permissions set to installable. TT has been extended to support additional metadata and gzip compression, known as
the Web Open Font Format (WOFF). WOFF is a cross-browser, web-only format being standardized by the W3C [12]
and supported by Internet Explorer 9+, Mozilla Firefox 3.6+, and Google Chrome 5+.

Note ■ The semistructural details appearing on the ends of certain strokes of letters and symbols are known as serifs

in typography. The typefaces that use serifs, such as Times New Roman, Cambria, Garamond, and Georgia, are known as

serif typefaces. The typefaces that do not have these small projecting features are the sans-serif typefaces,3 for example,

Verdana, Tahoma, and Helvetica. Declaring one of the generic font families (serif, sans-serif, cursive, fantasy, monospace)

is an excellent fallback mechanism [13].

Two different fonts (or the same font in two different formats4) can be declared with a fallback mechanism, as
shown in Listing 9-11, and can be applied as demonstrated in Listing 9-12.

Listing 9-11. Using Fonts Stored in Different Formats

@font-face {
 font-family: "Csuff";
 src: url("http://example.com/fonts/csuff.ttf");
 src: url("http://example.com/fonts/csuff.eot");
}

Listing 9-12. Applying Web Fonts with a Fallback Mechanism

p {
 font-family: "Csuff", "Helvetica", sans-serif;
}

Note that a widely available font is also provided, along with the font family declaration that always works, in case
neither of the external fonts can be used.

Tip ■ Serif fonts are easy to read5 and adequate for long text blocks published on web pages in medium or large font

size, as well as for printer style sheets. Sans-serif typefaces are more suitable for short texts in small font size, such as

copyright information in the page footer, which is often written in Verdana or a similar font. Monospace fonts like Courier

and DejaVu Sans Mono are ideal for preformatted text, computer codes, and typewriter effects. Cursive fonts, such as

Comic Sans MS and Brush Script, are used for cursive handwriting such as signatures. Fantasy fonts are best used for

headings and artistic texts (for example, Impact and Copperplate).

3The฀word฀sans฀means฀“without”฀in฀French.
4Although฀there฀are฀tools฀for฀converting฀fonts฀from฀one฀format฀to฀another,฀it฀is฀often฀legally฀prohibited.
5This฀is฀the฀reason฀for฀their฀widespread฀application฀in฀books,฀newspapers,฀and฀magazines.

CHAPTER 9 ■ OPTIMIZED APPEARANCE

330

The normal, bold, and italic versions, as well as the bold and italic fonts, of a typeface are generally stored in
separate files. Consequently, multiple declarations are needed to download and apply the appropriate font styles of
the selected typeface (Listing 9-13). Without that, the content of headings and strong elements will be rendered using
normal fonts rather than bold ones, em elements will be displayed with normal rather than italic fonts, and so on.

Listing 9-13. Multiple Declarations for the Same Typeface

@font-face {
 font-family: Calluna;
 src: url('fonts/Calluna-Regular.otf');
}

@font-face {
 font-family: Callunab;
 src: url('fonts/Calluna-Bold.otf');
}

@font-face {
 font-family: Callunai;
 src: url('fonts/Calluna-It.otf');
}

body {
 font-family: "Calluna", "Helvetica", serif;
}

h1, h2, h3, strong {
 font-family: "Callunab";
}

em {
 font-family: "Callunai";
}

There are also some alternatives for web fonts. A technique called image replacement, which is considered legal
by many, is applied by some web designers to use rendered images of fonts. However, image replacement prevents
text selection, has searchability and accessibility issues, and increases bandwidth use.

Another approach applies the Flash-based solution Scalable Inman Flash Replacement (sIFR). It is similar to
image replacement, but the text is selectable and rendered as a vector graphic. A big disadvantage is that this method
relies on a Flash plug-in on the client side.

The text can also be replaced by SVG or VML6 (for Internet Explorer up to version 8) with JavaScript.
In SVG 1.1, fonts can be created within the SVG document. SVG fonts can improve the semantics of graphics that

represent texts, such as logos. SVG fonts are partly supported by Safari 3+ and Opera 8+.

6SVG฀was฀not฀supported฀by฀earlier฀versions฀of฀Internet฀Explorer,฀which฀supported฀the฀Vector฀Markup฀Language฀(VML)฀instead฀
(now฀obsolete).

CHAPTER 9 ■ OPTIMIZED APPEARANCE

331

Similar to (X)HTML documents, CSS can also be applied in SVG documents so the @font-face rule can be used
for SVG texts too [14]. Listing 9-14 shows an example.

Listing 9-14. An Example for Using the @fontface CSS Rule in SVG

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
 <defs>
 <style>
 <![CDATA[
 @font-face {
 font-family: Calluna;
 src: url('fonts/Calluna-Regular.otf');

 }
]]>
 </style>
 </defs>
 <text x="20" y="40" style="font-family: Calluna, serif; font-size: 1.2em; stroke: #0f0;
 fill: #0f0;">SVG text with Web Fonts</text>
</svg>

Embedding External Content
The majority of web sites contain not only formatted texts but also graphics and multimedia content, audio and video
clips, and Flash animations. In contrast to formatted text content described by markup languages in text files, this type of
content is retrieved from binary files. Although the format and features of such binary files are not standardized for web
publishing, their optimization has a huge impact on overall appearance, look and feel, file size, and download time.

Raster Graphics
Bitmap graphics (also known as raster images), which are stored in a mapped array of bits and represent a grid of
pixels, are common web site components. On the Web, bitmap file formats are used mainly for storing photographs
and other images that are not line art. There are several image file features to be optimized for web publishing,
such as pixel density, color depth, and resolution. You should choose the file format according to the content and the
desired quality.

The Golden Rule of image processing and retouching for the Web is that whatever will be modified, the original
master file should not be overwritten (even if it has a large file size). For example, a title in a compound image created
on multiple layers in Photoshop cannot be modified later if you don’t preserve the .psd file. Similarly, a heavily
retouched or compressed photograph cannot be restored to its original state (which might be useful sometimes) if you
haven’t saved the original file.

Note ■ The following sections describe the major features and possibilities; however, a detailed description of image

processing is beyond the scope of this book.

http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd
http://www.w3.org/2000/svg

CHAPTER 9 ■ OPTIMIZED APPEARANCE

332

Pixel Density

Not just text content but also graphics can and should be optimized for web publishing. The measure of spatial dot
density is dots per inch (dpi), which means the number of individual dots represented in a line within the span of
1 inch (2.54 cm). Although dot density correlates with image resolution, it is related indirectly. Instead of the dots that
are used for printing, computer screens apply pixels to build up images. Their density can be expressed in pixels per
inch (ppi). Although confusing, pixel densities standardized for computer screens are often expressed incorrectly
in dpi rather than ppi (72, 96, and 120 dpi). The lowest value, 72 ppi, derives from typography where 1 point (pt) is
defined to be 1/72 inch (» 0.0139 inch or 352.8 mm). An image displayed on a 72 ppi screen has the same physical
dimensions as the printed version in 72 dpi; in other words, 1 pt on paper is equal to 1 px on the screen. However, this
is just a theoretical approach; it is not accurate and has lost its significance. Since the pixel density affects not only the
quality of image rendering but also text readability, higher values provide better user experience. Modern operating
systems and computer screens usually support 96–120 ppi. The pixel density of a screen can be calculated by the ratio
of the diagonal resolution in pixels (using the Pythagorean Theorem) and the diagonal size in inches:

PPI
d

d

w h

d

p

i

p p

i

= =
+2 2

where

d
p
 is diagonal resolution in pixels,

w
p
 is width resolution in pixels,

h
p
 is height resolution in pixels, and

d
i
 is diagonal size in inches.

For example, the 10.1" display of the Lenovo ThinkPad 10 business tablet with WUXGA (1920×1200) resolution
features 224 ppi, the 12" display of the Microsoft Surface Pro 3 with 2160×1440 resolution 216 ppi, while a 23" full HD
(1920×1080) monitor 96 ppi.

Smartphones are very competitive from this aspect. In 2010, the Apple iPhone 4 featured the largest resolution
screen, called the Retina display (640×960), which gave a high 326 ppi7 pixel density for the 3.5" screen. From 2013
onward, high-end smartphones such as the HTC One and the Samsung Galaxy S5 introduced a full HD display with a
resolution of 1920×1080 on a typical screen size of 4.7–5.1", achieving an even higher pixel density (432–468 ppi).

While the optimal pixel density for web publishing is not standardized, computer screens and operating systems
generally support 120 ppi as a maximum and typically use 96 ppi. Larger pixel densities needlessly increase the file size.

Resolution

On the screen, resolution determines image size, not quality in general (printing is the opposite). As a general rule, the
smallest image size that provides the desired details should be applied. The usual 8–16 MP photos taken by modern
digital cameras are usually too large for web publishing and should be resized to a smaller resolution. Because
huge-resolution photographs are large in size (a few megabytes depending on compression ratio and file format), it
would take too long to download them. Moreover, they have too much detail that might cause legal issues considering
faces, number plates, and so on, in the background. The high-resolution depiction of a human face can be used for
fraudulent purposes because it can be easily retouched and printed (especially in passport size).

Providing width and height attributes on img elements for faster and robust rendering of web page images is
highly recommended. However, these attributes should not be used for resizing photos. Online galleries and albums
should apply small thumbnails linking to the full-size image files.

7At฀a฀distance฀of฀12฀inches฀from฀one’s฀eye,฀this฀is฀the฀maximum฀amount฀of฀detail฀the฀human฀retina฀can฀process฀(hence฀the฀name).

CHAPTER 9 ■ OPTIMIZED APPEARANCE

333

Aliasing

Resizing digital images can result in distortions and quality loss. A high-resolution image displayed at a lower
resolution, for example, might cause distortion artifacts called aliasing. Anti-aliasing allows the edges of objects
to be rendered smoothly. On the Web, anti-aliasing is often applied to fonts and curved web graphics such as
rounded corners.

Anti-aliasing requires additional colors with gradually decreasing intensity that merge with the background
(Figure 9-6).

Figure 9-6. Aliased vs. anti-aliased fonts and circles. The original images are shown above, the magnification below.
Note the pixelated edges on the left images

Using anti-aliased fonts on the Web has pros and cons. The most important advantages are smoother fonts, many
of which are easier to read because of reduced blurring, the similarity with printed types (depending on the font being
used), and often a more aesthetic appearance. However, small fonts become too fuzzy to read, and sharp edges are
not always precise.

Caution ■ The readability of different web fonts is very different, and even the same typeface might look gorgeous

in medium size but becomes unreadable when used with a small font size. There is often a transition between the two

states: some parts of the font curves disappear, while others remain visible. Moreover, the rendering of the same web

fonts is different in various browsers.

Color Depth

The number of bits required for representing the color of a single pixel in a bitmap image or video frame buffer
typically varies from 1 to 232 and is known as color depth. The higher the color depth, the larger the file size, which is
an important factor in image optimization.

Monochrome (binary) images such as line art with black lines and no tonal contrast should be stored with 1 bit
color depth, in other words, two possible values for each pixel.

Black-and-white photographs, which are composed exclusively of 256 shades of gray, should be represented as
8-bit grayscale images (28 = 256).

24-bit color depth (true color) applies red, green, and blue colors with various intensity values between 0 and
255 per channel (RGB color model) to reproduce 28·28·28=224=16,777,216 different colors with additive color mixing.
Since the human eye cannot distinguish any two adjacent intensity values of these channels, this color depth is
suitable for storing photographs.

CHAPTER 9 ■ OPTIMIZED APPEARANCE

334

Photorealistic images with partially transparent parts can be represented in 32 bits with an additional channel
called the alpha channel 8 (that is, RGBA color space).

The color depth of logos, pictograms, and icons varies, depending on the complexity and image content.

Compression

To reduce file size, digital bitmap images are usually compressed. Compressed images are popular not only for storage
but also for web publishing because of the smaller bandwidth requirement.

Image compression can be lossy or lossless. In the case of lossy compressions, part of the original information
is lost and cannot be restored, which might affect image quality. Lossless compression algorithms allow the
reconstruction of the original data from the compressed data, which is a nice feature but not always needed. The
resulting files of lossy compression algorithms are generally smaller in size than the ones using lossless compression.
As you will see, JPEG is the most popular lossy image format, and PNG is the most popular lossless image format on
the Web.

Image-processing software tools usually provide the option to adjust the degree of compression, making it
possible to select a trade-off between storage size and image quality. For example, Adobe Photoshop has a scale for a
JPEG compression ratio with values 0–12. The supported quality ranges are Low (0–4), Medium (5–7), High (8–9), and
Maximum (10–12). The settings are available after determining the name and destination of the file in the File ➤ Save
As… dialog window (Figure 9-7).

Figure 9-7. Excellent quality with small file size

JPEG typically achieves about 10:1 compression with barely noticeable loss in image quality.

8There฀are฀also฀other฀approaches฀to฀provide฀transparency,฀but฀for฀partially฀transparent฀photographs,฀it฀is฀the฀common฀solution.

CHAPTER 9 ■ OPTIMIZED APPEARANCE

335

Interlacing

Certain bitmap formats such as GIF and PNG provide the option to display a degraded fast preview of an image before
it is fully downloaded. The method is known as interlacing. Advanced image-processing software applications support
interlacing and offer the choice to save such files either as interlaced or as noninterlaced. A similar effect can be
achieved in photographs by applying a frequency decomposition hierarchy in progressive JPEG files. In the era of slow,
dial-up connections, interlacing was a useful feature but lost most of its significance after the widespread distribution
of broadband Internet access.

Transparency

Partially transparent images are very popular, and can be used for design effects and images that can be displayed on
different background colors or textures (Figure 9-8).

Figure 9-8. An image on three different backgrounds (first row). The second row is magnified to 600 percent. The
transparent shadow perfectly fits to all backgrounds

Not all raster image formats support transparency, though. GIF is generally a good (sometimes the best)
option for partially transparent geometric shapes and cartoon-style images, while PNG is ideal for more complex
(photorealistic) partially transparent images. With the exception of really simple shapes with relatively large areas of
the same color, PNG is the better option.

Raster File Formats

The most common raster image file formats on the Web are JPEG, GIF, and PNG.
Joint Photographic Experts Group (JPEG) is a common lossy compression format for digital photographs. Part 1

has been standardized in ISO/IEC 10918-1:1994 [15] and ITU-T T.81 (09/92) [16], Part 2 in ISO/IEC 10918-2:1995 [17]
and ITU-T T.83 (11/94) [18], Part 3 in ISO/IEC 10918-3:1997 [19] and ITU-T T.84 (07/96) [20], Part 4 in ISO/IEC 10918-
4:1999 [21] and ITU-T T.86 (06/98) [22], and Part 5 in ISO/IEC FCD 10918-5 [23].

The original version of the Graphics Interchange Format, GIF87a, was introduced in 1987 [24], and the enhanced
version with transparency and interlacing support, GIF89a, was introduced in 1989 [25].

The Portable Network Graphics (PNG) format was standardized by IETF RFC 2083 in 1997 [26] and
ISO/IEC 15948 in 2004 [27]. However, the PNG format has not gained full support until recently. Although Internet
Explorer supports PNG images from version 4.01b, the implementation was neither complete nor correct until IE9

CHAPTER 9 ■ OPTIMIZED APPEARANCE

336

(for example, IE6 had a buggy support for alpha-channel transparency). There were color inconsistencies between
various browsers, partly because of the different handling of gamma correction (for example, colors of PNG images
were displayed incorrectly on Safari for Windows). Fortunately, modern browsers overcame these issues.

To choose the right file format for a given image, the main features of file types and compression algorithms
should be considered (Table 9-2).

Table 9-2. Quick Comparison of JPEG, GIF, and PNG

JPEG GIF PNG

Maximum color depth 24-bit 8-bit 48-bit

Palette Full Restricted Optional

Compression Lossy (in most cases) Lossless Lossless

Transparency – + +

Interlaced mode + (progressive JPEG) + +

Animation – + –9

Optimal usage Photographs Icons, logos, diagrams
(geometric shapes),
clipart, cartoon-style images,
and small animations

Photographs, partially
transparent photographs,
icons, and logos

For example, a simple image such as a solid circle can be stored with two colors in GIF with a very small file size
compared to other formats such as JPEG. For images that have no complex content, the color depth can be reduced
with color palettes (selected/indexed colors) in file formats such as GIF, TIF, and PNG. Anti-aliased images need a
larger color depth resulting in a larger file size. Although GIF and PNG formats are usually better than JPEG for storing
icons and logos, the SVG vector format should be preferred for such content (see the section “Vector Graphics”).

Although it is very efficient on photographs, the JPEG compression algorithm adds additional pixels to the whole
image, including solid areas. As a result, simple images become more complex than they were originally. This is the
main reason why a solid circle stored in JPEG has several times larger file size than a GIF file with the same content
even if the compression is high. Moreover, if the compression ratio is high, JPEG artifacts become noticeable, resulting
in lower image quality. On the other hand, JPEG works perfectly on complex images. If the compression is set
properly, the image quality to file size ratio is excellent.

File Size Optimization

Pixel density, resolution, dimensions, color depth, compression ratio, image complexity, and file format all have a
large impact on file size.

The width and height should be optimized by cropping irrelevant parts of the image especially for scanned and
high-resolution images where image parts can often be removed without losing information.

The required color depth must be used; 24-bit color depth is the default setting in many software tools, which
can be reduced in many cases without affecting image quality. For example, black-and-white drawings should not be
stored with 16 million colors.

The proper compression ratio must be used for all images.
The size-quality ratio can be effectively optimized with the File ➤ Save For Web & Devices... function of

Photoshop (Figure 9-9).

9There฀is฀an฀extension฀called฀Animated฀Portable฀Network฀Graphics฀(APNG)฀that฀supports฀animation.฀APNG฀is฀natively฀supported฀
by฀Firefox฀3+฀and฀Safari฀8+.

CHAPTER 9 ■ OPTIMIZED APPEARANCE

337

Photoshop also offers optimization to a desired file size, but it should be kept in mind that image content and
complexity determine the optimal level of compression.

Beyond the compression settings of JPEG files available in Photoshop or GIMP, some software tools (such as
JPEG Optimizer [28]) are capable of optimizing the file size to quality ratio by applying different compression ratios to
various image areas.

The goal of file size optimization is to achieve the perfect balance between file size and picture quality.
Large-resolution images can be frustratingly slow to download while a fast web page with low-quality images won’t
meet visual expectations.

Small, highly compressed versions (thumbnails) should be provided with links to a larger, high-quality version in
online photo galleries and albums. This approach allows users to determine whether the image is relevant for them
and reasonable to download the larger version, which will naturally take longer.

Vector Graphics
Vector and bitmap images have different application areas. Bitmaps are best suitable for photographs and
photorealistic images, while vector images can be applied for artwork and illustrations that consist of lines and
curves. Nonetheless, bitmaps are still used widely on the Web for all kinds of images, including the ones that should
be provided in a vector format instead. The situation has started to change with the widespread support of SVG in
browsers and the native SVG support in HTML5.

Figure 9-9. Comparison of file formats and settings for web publishing in Photoshop

CHAPTER 9 ■ OPTIMIZED APPEARANCE

338

Scalable Vector Graphics should be preferred for all images that require basic shapes such as circles and
polygons, Bézier paths and curves, text, opacity, transformations (rotation, skew, scale, and so on), gradients, and
animations.10 SVG content can also be combined with bitmap graphics.

Similar to PNG, the browser support of SVG should be taken into account in web design for the sake of backward
compatibility. The SVG support of older browsers was different for inline SVG, external SVG files, and SVG used as a
CSS background image. Prior to HTML5, external SVG files were usually embedded via the object element, while in
HTML5 you can embed external SVG files also with img or the newly introduced svg or embed element, or write the
SVG code directly in the markup (inline SVG). The browser support of the different SVG versions (1.0 and 1.1, Tiny
and Full variants) was also different across older browsers. The Gecko layout engine supports SVG 1.1 Full since 2005,
while WebKit since 2006, but early implementations were incomplete. Opera supports SVG 1.1 Tiny from version 8,
SVG 1.1 Basic fully and SVG 1.1 Full partially from version 9, and SVG Tiny 1.2 (including compressed SVG) partially
from version 9.5 onward. Modern browsers support SVG 1.1 Full correctly, which has a standardized second edition
since 2011.

Flash
Before HTML5, Flash used to be one of the most popular technologies for publishing active content on the Web.
For live video streaming, Flash is still the most popular. Unfortunately, the default embedding code provided by Flash
development tools is often not standard-compliant and has some browser-dependent issues. For Flash contents,
it is important to provide an alternate textual content that can be automatically activated if the Flash content cannot
be displayed.

Embedding Flash in XHTML

The first Flash implementations applied the embed element, which was deprecated in HTML 4 and XHTML in favor of
the object element but then was reintroduced in HTML 5.

To avoid browser- and vendor-specific code, various implementation methods have been introduced, including
duplication (the twice-cooked method), the nested objects method, and Flash Satay. The latter one, Flash Satay,
provides robust and standard-compliant Flash implementation by including an additional movie parameter, and
suggested by the W3C [29]. Listing 9-15 shows an example.

Listing 9-15. Embedding Flash Using Flash Satay

<object type="application/x-shockwave-flash" data="australia.swf" width="735" height="677"
 id="flash">
 <param name="movie" value="australia.swf" />
</object>

Note that the same Flash file is specified both as a data attribute value on the object element and as a movie
parameter value. Note that the classid and codebase parameters used by older methods are eliminated. If the
codebase parameter is left in the code when modifying a traditional Flash embedding code, it prevents Firefox from
rendering the Flash content, and the optionally provided alternate content appears instead (or nothing at all).

One of the known issues of the Flash Satay method is that the Flash movie is not streamed by some browsers such
as Internet Explorer. Waiting for the whole file to download and start to play afterwards works fine for small files and
fast Internet connections only.

If you develop a web page with layers above each other, it might be rather frustrating that Flash content appears
above all other web site elements by default. If you want to set the layer order on web pages with Flash content, an
additional parameter (wmode) is needed (Listings 9-16 and 9-17).

10Similar฀effects฀are฀also฀supported฀by฀CSS3.

CHAPTER 9 ■ OPTIMIZED APPEARANCE

339

Listing 9-16. Setting the wmode for Nontransparent Flash Content

<param name="wmode" value="opaque" />

The parameter value opaque indicates that the content is not transparent. If it is transparent, the attribute value
should be changed to transparent (Listing 9-17).

Listing 9-17. Setting the wmode for Transparent Flash Content

<param name="wmode" value="transparent" />

Although it seems that there is no correlation between the transparency of Flash content and the stack position
of the Flash content in the layer order, the wmode parameter should be used for setting both. Either the opaque or the
transparent attribute value is used on the wmode parameter, Flash content can be sent behind any layer within the
web page (or in any desired position in the layer order). The only problem associated with wmode is that the Flash
content becomes inaccessible to users with screen readers and is therefore best avoided whenever possible.

Similar to (X)HTML markup, Flash content should be accessible and search engine friendly. The version of the
installed Flash plug-in of the browser should be detected to determine whether it is up-to-date. Outdated plug-ins
might encounter functionalities that are supported in higher plug-in versions only, and have vulnerabilities addressed
in newer versions. This should be considered to eliminate broken and missing content.

As for the version dilemma, Adobe provides the Flash Player Detection Kit [30]; however, the code generated by
the kit is not standard-compliant.

DOM scripting can address these issues. An open source example is the SWFObject by Geoff Stearns et al [31].
SWFObject provides a cross-browser method to embed SWF files into web pages using a very small JavaScript code.
This JavaScript code detects Flash Player, declares alternate content, improves search engine indexing, assists Flash
Player downloading if it is not installed, includes Adobe Express Install, and offers an API for JavaScript developers.
However, version detection with JavaScript relies on scripting, results in longer code, and overcomplicates Flash
embedding. As a conclusion, there is no better standard-compliant, cross-browser Flash embedding method than
Flash Satay.

Embedding Flash in (X)HTML5

HTML5 has an embed element for embedded content that requires plug-ins. It supports all the standard attributes and
event attributes of HTML5. Additionally, it has the specific attributes src, type (which specifies MIME type), height,
and width. You can use it as shown in Listing 9-18.

Listing 9-18. Basic Flash Embedding in (X)HTML5

<embed src="australia.swf" />

The embed tag also supports the global and event attributes of HTML5, which have already been discussed
in Chapter 3.

Audio
Prior to HTML5, there has never been native markup support for playing audio on web pages. Most audio content
is played through a plug-in such as Flash. The major problem with this approach is that not all browsers have the
same plug-ins.

HTML5 offers a standard way to include audio content in the markup: the audio element. It can be used to play
sound files as well as audio streams, and adds semantic meaning to the markup. Three major audio formats are supported
by the audio element: MP3, Ogg Vorbis, and WAV. However, the browser support of these formats varies (Table 9-3).

CHAPTER 9 ■ OPTIMIZED APPEARANCE

340

The basic use of the audio element is straightforward (Listing 9-19).

Listing 9-19. Basic Audio Embedding in (X)HTML5

<audio src="valerie.mp3">
</audio>

Beyond the src attribute that specifies the source URL of the audio content to play, there are further attributes for
automatic playing (autoplay="autoplay"), control buttons (controls="controls"), repeating (loop="loop"), and
loading at page load (preload="preload"). The last one is ignored if autoplay is present.

To achieve a higher level of accessibility, alternate content should be provided (Listing 9-20).

Listing 9-20. Alternate Content for Audio

<audio src="valerie.mp3" controls="controls">
 <p>Valerie by Joy</p>
</audio>

Since certain formats supported by a browser cannot be played in another, the audio element allows multiple
source declarations that link to different audio files. Listing 9-21 shows an example.

Listing 9-21. Multiple Source Declaration for Different Formats

<audio controls="controls">
 <source src="valerie.mp3" type="audio/mpeg" />
 <source src="valerie.ogg" type="audio/ogg" />
 <p>Valerie by Joy</p>
</audio>

Browsers can play the first supported format from the different audio formats.

Video
For many years, publishing videos was possible through general object embedding only. Because of the variety of
video and audio codecs and the varying browser support, there is still no ultimate solution for publishing videos on
the Web.

Table 9-3. Audio Format Support for the audio Element in Different Browsers

Format IE Firefox Chrome Opera Safari

MP3 9+ 3.5+11 3.0+ – 3.1+

WAV – 3.5+ 3.0+ 10.5+ 3.1+

Ogg Vorbis – 3.5+ 3.0+ 10.5+ 3.1+

11To฀avoid฀patent฀issues,฀Firefox฀has฀no฀native฀MP3฀support,฀and฀relies฀on฀a฀decoder฀from฀the฀OS.

CHAPTER 9 ■ OPTIMIZED APPEARANCE

341

Embedding Video in XHTML

Content from video-sharing services such as YouTube or Google Video, which serve movies through the Flash Player,12
can be embedded using the Flash Satay method discussed earlier. Listing 9-22 shows an example.

Listing 9-22. Embedding a Flash Video Using Flash Satay

<object type="application/x-shockwave-flash"
 data="http://video.google.com/videoplay?docid=4226784084458819393#" width="400"
 height="326" id="VideoPlayback">
 <param name="movie" value="http://video.google.com/videoplay?docid=4226784084458819393#" />
 <param name="allowFullScreen" value="true" />
 <param name="allowScriptAccess" value="always" />
</object>

Window Media Video files (.wmv) can be embedded by using the MIME type video/x-ms-wmv (Listing 9-23).

Listing 9-23. Embedding a WMV Video File

<object type="video/x-ms-wmv"
 data="http://www.example.com/dreamcar.wmv"
 width="320" height="260">
 <param name="src" value="http://www.example.com/dreamcar.wmv" />
 <param name="autostart" value="true" />
 <param name="controller" value="true" />
</object>

For QuickTime videos, there are dedicated MIME types: the video/quicktime and the application/x-
quicktime. IE tends to open such videos through an ActiveX control. To embed QuickTime videos in a browser-
independent way that also validates, you can use the method presented in Listing 9-24.

Listing 9-24. Embedding a QuickTime Video File

<object classid="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"
 codebase="http://www.apple.com/qtactivex/qtplugin.cab" width="352" height="288">
 <param name="src" value="http://www.example.com/video/dreamcars.mov" />
 <param name="controller" value="true" />
 <param name="autoplay" value="false" />
 <!--[if !IE]>-->
 <object type="video/quicktime" data="http:// www.example.com/video/dreamcars.mov"
 width="352" height="288">
 <param name="autoplay" value="false" />
 <param name="controller" value="true" />
 </object>
 <!--<![endif]-->
</object>

The code provided as IE-style conditional comments13 is used by all browsers except Internet Explorer, in which
these comments are hidden and the outer object is displayed.

12Adobe฀Flash฀Player฀is฀widely฀used฀for฀streaming฀video฀playback฀on฀web฀sites.
13The฀method฀was฀suggested฀by฀Lachlan฀Hunt.

http://www.apple.com/qtactivex/qtplugin.cab

CHAPTER 9 ■ OPTIMIZED APPEARANCE

342

Embedding Video in (X)HTML5

In contrast to the complexity of video embedding with the object element in XHTML, (X)HTML5 provides the video
element, which is easy to use, has full control over the video being embedded, and adds semantic meaning to the
markup. The video element is supported in IE9+, Firefox 3.5+, Chrome 3.0+, Opera 10.5+, and Safari 3.0+. However,
its usability depends also on the supported codecs. If you just think of DivX, Xvid, WMV, FFmpeg, 3ivx, Sorenson, or
Flash Video from the enormous variety of video file formats, the video codec support of web browsers is undoubtedly
in its infancy (Table 9-4).

Table 9-4. Overview of Video Format Support for the video Element in Different Browsers

Format IE Firefox Chrome Opera Safari

H.264 9+ 3.5+14 Dropped – 3.1+

Ogg Theora Installable 3.5+ 3.0+ 10.5+ Installable

WebM Installable 4.0+ 6.0+ 10.6+ Installable

While there is no need to maximize the number of natively supported video formats on the Web, the reliable
support for the most widely used, advanced formats would be desirable.

Note ■ Many video files are stored in container formats that are not restricted to one kind of video and audio codec.

Consequently, the full support for a video container should include the support for all kinds of video and audio codecs

allowed in that container format. For example, if browser vendors would like to introduce support for .flv Flash videos,

it would require support for the H.264/MPEG-4 AVC, Sorenson, Screen Video, and VP6 video codecs, as well as the AAC,

ADPCM, Linear PCM, Nellymoser, MP3, and Speex audio codecs. Moreover, many codecs have proprietary licenses or are

encumbered by patents (this is the reason why Chrome dropped the H.264 support). The different associations of audio

and video codecs along with the licensing issues make it rather complex to standardize video implementations on the

Web. Different formats are suitable for different purposes and application areas, and there is no ultimate choice for video

publishing as it depends on the scenario.

Listing 9-25 shows the basic code for the video element.

Listing 9-25. Basic Video Embedding in (X)HTML5

<video src="sample.ogv">
</video>

Features such as height or width can be added optionally. An image representing a frame from the video
(alternate content) can be defined as the value of the poster attribute (displayed when the video cannot be rendered).
Alternate markup can be defined as the element content between the opening and closing video tags (Listing 9-26).

14To฀avoid฀patent฀issues,฀Firefox฀has฀no฀native฀H.264฀support,฀and฀relies฀on฀a฀decoder฀from฀the฀OS.

CHAPTER 9 ■ OPTIMIZED APPEARANCE

343

Listing 9-26. Additional Properties and Alternate Content for (X)HTML5 Video Embedding

<video src="sample.ogv" width="320" height="240" poster="sample.jpg">
 <p>Download the sample video (OGV, 5.34 MB)</p>
</video>

Video controls can be shown or hidden in the browser by using the controls attribute on the video element
(Listing 9-27).

Listing 9-27. Controls Set to Be Displayed for (X)HTML5 Video Embedding

<video src="xyz.mov" controls="controls">
</video>

Since the video codec support is different in each browser, the same video can be provided in various formats,
avoiding the need to download videos that cannot be played on the system. Listing 9-28 shows an example.

Listing 9-28. The Same Video in Different Formats

<video>
 <source src="video.mp4" type="video/mp4" />
 <source src="video.ogv" type="video/ogg" />
 <p>Download the sample video (OGV)</p>
</video>

However, the MIME type cannot reflect the codecs of videos stored in container formats (for example, H.264 in
MPEG-4). They can be provided by the codecs parameter (Listing 9-29).

Listing 9-29. Declaring Video Codecs in (X)HTML5

<video controls="controls">
 <source src="video.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' />
 <source src="video.ogv" type='video/ogg; codecs="theora, vorbis"' />
 <p>Download the sample video</p>
</video>

Care must be taken to apply single and double quotes alternately for the type attribute values.
The video element of (X)HTML5 provides playback support detection, including the canPlayType() method on

the media element or the onerror event listener. Listing 9-30 is an example of the second method.

Listing 9-30. Video Plackback Support Detection in (X)HTML5

<video controls="controls">
 <source src="video.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' />
 <source src="video.ogv" type='video/ogg; codecs="theora, vorbis"'
 onerror="fallback(this.parentNode)" />
 <p>Download the sample video (OGV)</p>
</video>

Since the video support in browsers varies, there is no ultimate cross-browser video-embedding code.
Although one of the major advantages of the video element is to eliminate the object element and plug-in

declaration in video embedding, the object element can still be useful sometimes. If plug-ins are preferred to simple
error messages, the object element can be embedded into the video element. Flash supports MPEG-4/H.264/AAC
playback, so an .mp4 file can usually be played by the code presented in Listing 9-31.

CHAPTER 9 ■ OPTIMIZED APPEARANCE

344

Listing 9-31. MPEG-4 Plackback

<video controls="controls">
 <source src="video.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'
 onerror="fallback(this.parentNode)" />
 <object data="videoplayer.swf">
 <param name="flashvars" value="video.mp4" />
 <p>Download the sample video (OGV)</p>
 </object>
</video>

Some browsers cannot stream the video or automatically download the whole video file even if playback has
not been started yet. One of the exceptions is Firefox 3.6+, which downloads only a fragment necessary to determine
duration and render a frame from the video. This behavior can be overridden by the preload attribute. The none
attribute value forces the browser to avoid downloading. The metadata attribute value hints that enough data should
be downloaded only to show a frame and determine duration. The auto value downloads the whole video. The effect
of preload="none" can be simulated in browsers that do not support it by omitting the src attribute and source
elements that are provided only if the user clicks a button (Listing 9-32).

Listing 9-32. Loading Video on User Click

<video controls="controls">
 Video not supported
</video>
<input type="button" value="Load video"
 onclick="document.getElementsByTagName('video')[0].src = 'video.mp4';" />

Additionally, customized controls can also be added to the video embedding since the DOM API for video
in (X)HTML5 supports several events that can be handled through JavaScript. Listing 9-33 shows an example.

Listing 9-33. Customized Video Controls

<script>
 var video = document.getElementsByTagName('video')[0];
</script>
<input type="button" value="Play" onclick="video.play()" />
<input type="button" value="Pause" onclick="video.pause()" />

Playback can be started automatically by the autoplay attribute of the video element (Listing 9-34).

Listing 9-34. Video Playback to Be Started Automatically

<video src="abc.mp4" autoplay="autoplay"></video>

However, not all users want to download the video, and a start button is usually preferred. Additionally, if there
are multiple videos on the same page, automatic playing is out of the question, especially if there are at least two that
are not mute.

Currently, the src attribute value of the video tag should be a physical file, which makes it impossible to embed
your favorite video from YouTube directly. For example, the code in Listing 9-35 cannot be used.

CHAPTER 9 ■ OPTIMIZED APPEARANCE

345

Listing 9-35. A YouTube Video Cannot Be Played Using the video Tag (Demonstration Only)

<video src="http://www.youtube.com/watch?v=WgL7DMiTCAY"></video>

(X)HTML5 videos can be dynamically drawn on a canvas with JavaScript using the drawImage method, such as in
Listing 9-36.

Listing 9-36. Video Drawn on the Canvas Using JavaScript

<video src="video.mp4" controls="controls">
 Video not supported
</video>
<canvas id="canvas">
 Canvas not supported
</canvas>
<script>
 var ctx = document.getElementById('canvas').getContext('2d');
 var video = document.getElementsByTagName('video')[0];
 video.onloadeddata = function(e) {
 ctx.canvas.width = video.videoWidth;
 ctx.canvas.height = video.videoHeight;
 ctx.drawImage(video, 0, 0);
 }
</script>

Summary
In this chapter, you learned how to provide an advanced user experience through optimized appearance using
standards. You became familiar with many web site components that contribute to user experience and affect web site
usability and functionality. You know that it is a real challenge to ensure proper appearance across devices, which can
be achieved by creating browser- and resolution-independent web sites with robust layout. You are well aware that
many of the once popular techniques are obsolete, and tables should be used for tabular data only, not for layout. CSS
provides full control over the appearance of web site components, and responsive layouts should be used in place of
fixed-width documents. You also know how to optimize images for your web sites and embed Flash and video files in
a browser-independent, standard-compliant manner.

In the next chapter, you will learn accessibility techniques that maximize user access to your web sites.
By following the accessibility guidelines, you will be capable of supporting not only people with disabilities and
mobile users but also all the others, because everyone benefits from an advanced level of web accessibility.

References
 1. Hazaël-Massieux D (2005) Tableless layout HOWTO. World Wide Web Consortium.

http://www.w3.org/2002/03/csslayout-howto. Accessed 15 October 2014

 2. Cederholm D (2009) CSS layouts. In: Web standards solutions, Special edn.
Friends of ED, Berkeley

 3. W3C (2003) Errata in REC-CSS2-19980512. World Wide Web Consortium.
http://www.w3.org/Style/css2-updates/REC-CSS2-19980512-errata.html.
Accessed 15 October 2014

http://www.youtube.com/watch?v=WgL7DMiTCAY
http://www.w3.org/2002/03/csslayout-howto
http://www.w3.org/Style/css2-updates/REC-CSS2-19980512-errata.html

CHAPTER 9 ■ OPTIMIZED APPEARANCE

346

 4. Google (2014) css3-mediaqueries-js. https://code.google.com/p/css3-mediaqueries-js/.
Accessed 16 October 2014

 5. Jehl S (2011) Respond.js. https://github.com/scottjehl/Respond. Accessed 16
October 2014

 6. Hickson et al (eds) (2014) The picture element. In: HTML 5.1 Nightly. A vocabulary and
associated APIs for HTML and XHTML. World Wide Web Consortium.
http://www.w3.org/html/wg/drafts/html/master/embedded-content.html#attr-
picture-source-srcset. Accessed 16 October 2014

 7. Jehl S et al (2014) Picturefill. https://github.com/scottjehl/picturefill. Accessed 16
October 2014

 8. Grabanski M, Schmitt C (2014) HiSRC. https://github.com/teleject/hisrc. Accessed
16 October 2014

 9. Wilcox M (2014) Adaptive Images. http://adaptive-images.com/. Accessed 16 October 2014

 10. W3C (2010) English Typography. W3C Cheat Sheet. World Wide Web Consortium.
http://www.w3.org/2009/cheatsheet/#typo. Accessed 15 October 2014

 11. Mason B (2009) When Free Fonts Aren’t Free. Small Batch Inc. http://blog.typekit.com/
2009/06/11/when-free-fonts-arent-free/. Accessed 15 October 2014

 12. Kew J, Leming T, van Blokland E (2012) WOFF File Format 1.0. W3C Recommendation.
World Wide Web Consortium. http://www.w3.org/TR/WOFF/. Accessed 15 October 2014

 13. Bos B, Çelik T, Hickson I, Lie HW (2011) Generic font families. In: Cascading Style
Sheets Level 2 Revision 1 (CSS 2.1) Specification. W3C Recommendation. World Wide
Web Consortium. http://www.w3.org/TR/CSS2/fonts.html#generic-font-families.
Accessed 15 October 2014

 14. Dahlström E, Dengler P, Grasso A, Lilley C, McCormack C, Schepers D, Watt J, Ferraiolo J,
Jun F, Jackson D (eds) (2011) The ‘font-face’ element. In: Scalable Vector Graphics (SVG)
1.1 (Second Edition). W3C Recommendation. World Wide Web Consortium.
http://www.w3.org/TR/SVG/fonts.html#FontFaceElement. Accessed 15 October 2014

 15. ISO (2011) Information technology – Digital compression and coding of continuous-tone still
images: Requirements and guidelines. ISO/IEC 10918-1:1994. International Organization for
Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=18902. Accessed 15 October 2014

 16. ITU-T (1992) T.81: Information technology – Digital compression and coding of
continuous-tone still images - Requirements and guidelines. International
Telecommunication Union. http://www.itu.int/rec/T-REC-T.81.
Accessed 15 October 2014

 17. ISO (2008) ISO/IEC 10918-2:1995 Information technology – Digital compression and
coding of continuous-tone still images: Compliance testing. International Organization for
Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=20689. Accessed 15 October 2014

 18. ITU-T (1994) T.83: Information technology – Digital compression and coding of
continuous-tone still images: Compliance testing. International Telecommunication
Union. http://www.itu.int/rec/T-REC-T.83. Accessed 15 October 2014

https://code.google.com/p/css3-mediaqueries-js/
https://github.com/scottjehl/Respond
http://www.w3.org/html/wg/drafts/html/master/embedded-content.html#attr-picture-source-srcset
http://www.w3.org/html/wg/drafts/html/master/embedded-content.html#attr-picture-source-srcset
https://github.com/scottjehl/picturefill
https://github.com/teleject/hisrc
http://adaptive-images.com/
https://www.w3.org/2009/cheatsheet/#typo
http://blog.typekit.com/2009/06/11/when-free-fonts-arent-free/
http://blog.typekit.com/2009/06/11/when-free-fonts-arent-free/
http://www.w3.org/TR/WOFF/
https://www.w3.org/TR/CSS2/fonts.html#generic-font-families
http://www.w3.org/TR/SVG/fonts.html#FontFaceElement
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=18902
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=18902
http://www.itu.int/rec/T-REC-T.81
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=20689
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=20689
http://www.itu.int/rec/T-REC-T.83

CHAPTER 9 ■ OPTIMIZED APPEARANCE

347

 19. ISO (2008) ISO/IEC 10918-3:1997 Information technology – Digital compression and
coding of continuous-tone still images: Extensions. International Organization for
Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=25037. Accessed 15 October 2014

 20. ITU-T (2006) T.84: Information technology - Digital compression and coding of
continuous-tone still images: Extensions. International Telecommunication Union.
http://www.itu.int/rec/T-REC-T.84. Accessed 15 October 2014

 21. ISO (1999) ISO/IEC 10918-4:1999 Information technology – Digital compression and
coding of continuous-tone still images: Registration of JPEG profiles, SPIFF profiles,
SPIFF tags, SPIFF colour spaces, APPn markers, SPIFF compression types and
Registration Authorities (REGAUT). International Organization for Standardization.
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=25431. Accessed 15 October 2014

 22. ITU-T (1999) T.86: Information technology – Digital compression and coding of
continuous-tone still images: Registration of JPEG Profiles, SPIFF Profiles, SPIFF
Tags, SPIFF colour Spaces, APPn Markers, SPIFF Compression types and Registration
authorities (REGAUT). International Telecommunication Union. http://www.itu.int/
rec/T-REC-T.86. Accessed 15 October 2014

 23. ISO (2013) ISO/IEC FDIS 10918-5 Information technology – Digital compression and
coding of continuous-tone still images: JPEG File Interchange Format (JFIF). International
Organization for Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=54989. Accessed 15 October 2014

 24. CompuServe (1987) GIF – Graphics Interchange Format. A standard defining a mechanism
for the storage and transmission of raster-based graphics information. CompuServe
Incorporated. http://www.w3.org/Graphics/GIF/spec-gif87.txt.
Accessed 15 October 2014

 25. CompuServe (1990) Graphics Interchange Format Version 89a. CompuServe Incorporated.
http://www.w3.org/Graphics/GIF/spec-gif89a.txt. Accessed 15 October 2014

 26. Boutell T et al (1997) PNG (Portable Network Graphics) Specification Version 1.0. RFC
2083. Internet Engineering Task Force. http://tools.ietf.org/html/rfc2083.
Accessed 15 October 2014

 27. ISO (2004) ISO/IEC 15948:2004 Information technology – Computer graphics and image
processing – Portable Network Graphics (PNG): Functional specification. International
Organization for Standardization. http://www.iso.org/iso/catalogue_detail.
htm?csnumber=29581. Accessed 15 October 2014

 28. xat.com (2014) JPEG Optimizer: The JPEG Image Compressor for Windows. xat.com
Internet Technology. http://xat.com/jpegopt/. Accessed 15 October 2014

 29. W3C (2012) How can I include flash in valid (X)HTML Web pages? In: Help and FAQ for
the Markup Validator. World Wide Web Consortium. http://validator.w3.org/docs/
help.html#faq-flash. Accessed 15 October 2014

 30. Adobe (2010) Flash Player Detection Kit. Adobe Systems Incorporated.
http://www.adobe.com/products/flashplayer/download/detection_kit/.
Accessed 07 December 2010

 31. Google Inc (2010) Swfobject. Google Project Hosting. http://code.google.com/p/
swfobject/. Accessed 15 October 2014

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=25037
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=25037
http://www.itu.int/rec/T-REC-T.84
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=25431
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=25431
http://www.itu.int/rec/T-REC-T.86
http://www.itu.int/rec/T-REC-T.86
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=54989
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=54989
http://www.w3.org/Graphics/GIF/spec-gif87.txt
http://www.w3.org/Graphics/GIF/spec-gif89a.txt
http://tools.ietf.org/html/rfc2083
http://www.iso.org/iso/catalogue_detail.htm?csnumber=29581
http://www.iso.org/iso/catalogue_detail.htm?csnumber=29581
http://xat.com/jpegopt/
http://validator.w3.org/docs/help.html#faq-flash
http://validator.w3.org/docs/help.html#faq-flash
http://code.google.com/p/swfobject/
http://code.google.com/p/swfobject/

349

CHAPTER 10

Accessibility

With the rapid evolution of web services and technologies, the number of Internet users is constantly increasing.
Since many people suffer from various temporary or permanent disabilities and deficiencies, advanced web
development practices should be applied to provide content that is accessible for all. The importance of web
accessibility is being recognized by an increasing number of web designers and developers. W3C provides useful
guidelines to ensure content accessibility. The accessibility support implemented in modern software tools and
web sites should be clearly indicated so people living with disabilities can easily identify them. HTML5 markup also
supports accessibility through advanced structuring elements, metadata, and Accessible Rich Internet Applications
(ARIAs). Web accessibility techniques are not limited to the visually impaired or people with other disabilities. In fact,
they also ease mobile access to web content and improve overall web page quality.

In this chapter, you will learn the criteria of accessible web sites, along with the techniques to fulfill them. You will
understand the concept of web accessibility and become familiar with the most widely adopted official guidelines.
The corresponding guidelines provide access to your web sites for the disabled and improve the user experience for
people using devices with limited hardware capabilities, such as mobile users. The content of your web sites should
remain legible even if the style sheets are turned off, can be read out loud effectively by screen readers, and rendered
also in text-based browsers such as Lynx. Moreover, the techniques that support accessibility have a nice side effect:
they improve web site usability and user experience as well.

Defining Web Accessibility
By default, web sites containing a variety of components, especially the ones with nontextual content such as
videos, cannot be used by all people. Even common web site components like text might be difficult, and sometimes
impossible, for some people to read. Not all users can see colors or move the mouse. Everybody knows how frustrating
a web site can be when it does not work or has functionality that is very difficult to use for whatever reasons. Now
imagine that feeling magnified by a factor of ten or a hundred, which is what people with disabilities suffer from when
using inaccessible web sites. The degree of frustration varies from person to person, because some people live with
visual impairment, while others with mobility, dexterity, auditory, or cognitive impairment.

More and more countries have introduced legislation addressing the need for web sites to be accessible to people
with disabilities or the requirement to be nondiscriminative against people with disabilities. Some examples are the
Disability Discrimination Act 1992 in Australia [1], the Disability Act 2005 in Ireland [2], the Disability Discrimination
Act 1995 in the United Kingdom [3], or Section 508 Amendment to the Rehabilitation Act of 1973 in the
United States [4].

Web accessibility covers those web site development practices that provide web content usable (“accessible”)
for everybody, including people with disabilities. W3C director Tim Berners-Lee announced the launch of the
International Program Office (IPO) for the Web Accessibility Initiative (WAI) [5] at W3C in 1997 by defining
accessibility as follows: “The power of the Web is in its universality. Access by everyone regardless of disability is an
essential aspect” [6].

CHAPTER 10 ■ ACCESSIBILITY

350

While the brightly contrasting colored strips on the steps of buses provide improved visibility for the visually
impaired, such strips can be useful to other people too (for example, in poor light conditions or when someone
is in a hurry). Many ramps might be useful not only for people in a wheelchair but also for parents with children,
skateboarders, in-line skaters, or people moving heavy goods. Similarly, the improved accessibility of web content is
useful not only for people with disabilities but for any user in general. For example, web accessibility contributes to a
higher level of user experience in mobile browsing, and mobile devices are used by everybody, not only people with
disabilities.

There are several software tools and hardware devices used by people with disabilities for web browsing (and
using the computer in general). Such tools and devices are referred to as Assistive Technology (AT).1 This umbrella
term covers screen readers, screen magnifiers, switch mechanisms, alternative and adaptive keyboards such as large
key keyboards with simplified keyboard layout and approximately four times bigger (and often colored) keys than
the keys on standard keyboards, high-contrast keyboards, keysets (chorded keyboards), keyboards with mousepads
or keyguards, trackballs, mouthsticks, handsticks (keyboard aids, type aids), head pointers (head wands), and so on
(Figure 10-1).

Figure 10-1. Examples for assistive technology

1Sometimes฀the฀term฀Adaptive฀Technology฀is฀also฀used.

According to the 2010 World Standards Day Message, at least 650 million people around the world are affected
by some kind of disability, and accessibility is not only an issue for the elderly or disabled. Anybody at any stage in life
might experience temporarily reduced accessibility [7].

In contrast to the common misbelief, web accessibility authors address much more than just visual impairment.
Many people have motor, mobility, auditory, or cognitive problems. The Web is just as, if not more, important to
people with disabilities than it is to anyone. The reason is that the Web provides access to services and/or information
that cannot be obtained easily without it (for example online ordering) [8]. However, badly designed web sites create
barriers that exclude many people from using the web services [9].

The World Wide Web Consortium provides accessibility guidelines and techniques for web content (WCAG),
authoring tools (ATAG) [10], and user agents (UAAG) [11]. Accessibility test results can be expressed in a special
language called Evaluation Language (EARL) [12].

CHAPTER 10 ■ ACCESSIBILITY

351

The accessibility of dynamic contents and advanced user interfaces developed in a combination of HTML,
JavaScript, Ajax, and other technologies is defined by the collection of specifications released by the Web Accessibility
Initiative (WAI) at the W3C. This collection is known as the Accessible Rich Internet Applications Suite, which includes
the following documents [13]:

•฀ WAI-ARIA technical specification: Accessibility tips for the authors and editors of web
standards, as well as developers of user agents and accessibility evaluation tools [14]

•฀ WAI-ARIA Primer: The technical approach of WAI-ARIA with detailed descriptions of
accessibility problems that can be solved by applying WAI-ARIA [15]

•฀ WAI-ARIA Authoring Practices: A practical guideline for developers about accessible rich
Internet applications developed using WAI-ARIA [16]

•฀ WAI-ARIA User Agent Implementation Guide: Accessibility requirements for user agents [17]

Standards such as Synchronized Multimedia Integration Language (SMIL), which is an XML markup for
describing multimedia presentations [18], or the Timed Text Markup Language (TTML), which provides text in
synchrony with media such as video [19], can also be used to improve site accessibility.

WCAG 1.0
The first version of the Web Content Accessibility Guidelines (WCAG 1.0) became a W3C Recommendation in 1999
with the slogan “how to make web content accessible to people with disabilities.” WCAG 1.0 consists of fourteen
guidelines [20]:

 1. Equivalent alternatives must be provided for auditory and visual content.

 2. Information expressed in colors must also be available and perceivable without colors.

 3. Markup and style sheets must be applied properly.

 4. The natural language(s) of web documents must be declared.

 5. Tables must be created in a way that they transform gracefully.

 6. Pages that apply new technologies must transform gracefully.

 7. User control must be provided for time-sensitive content changes.

 8. Direct accessibility of embedded user interfaces must be ensured.

 9. Web site design must be device-independent.

 10. Interim solutions must be used.

 11. W3C technologies and guidelines must be applied.

 12. Information must be provided on context and orientation.

 13. Navigation must be easy-to-understand.

 14. Documents must be clear and simple.

CHAPTER 10 ■ ACCESSIBILITY

352

Each guideline is subdivided into checkpoints that serve as the basis for checking WCAG conformance. There are
65 checkpoints, each of which has a priority from 1 to 3. As you will see in the next section, they are very similar to the
conformance levels introduced in WCAG 2.0. The three priority levels are the following:

•฀ Priority 1 (cf. Level A conformance): Developers must satisfy these requirements, or else one or
more groups cannot access the content.

•฀ Priority 2 (cf. Level AA (Double-A) conformance: Developers should satisfy these requirements;
otherwise, the content will be difficult to access for some groups. This level removes
significant barriers.

•฀ Priority 3 (cf. Level AAA (Triple-A) conformance: Developers may address these checkpoints in
order to maximize accessibility.

WCAG 2.0
The second version of the Web Content Accessibility Guidelines (WCAG 2.0) became a W3C Recommendation in
2008 [21]. WCAG 2.0 can be summarized with twelve guidelines following four principles [22]:

Principle 1: User interface components and published information perceivable to anyone.

 1. Alternate text must be provided for nontext contents, making it possible to change it into
other forms.

 2. Time-based media must have alternatives.

 3. Web content must be available through different presentations without losing information
or structure.

 4. Both visual and aural contents must be easy to distinguish.

Principle 2: Operable user interface and usable navigation.

 5. All functionality must be available from the keyboard.

 6. Users cannot be forced to perform actions within time limits.

 7. Designs that might cause seizures must be avoided.

 8. Guidance and help must be provided for users to navigate through the site.

Principle 3: Understandable content and operation of the user interface.

 9. Text content must be convenient to read and easy to understand.

 10. Content appearance and operation must be predictable.

 11. Assistance must be provided for users to avoid, find, and correct mistakes.

Principle 4: Robust content with high interoperability that can be used reliably on any kind of user agent,
including assistive technology.

 12. Compatibility must be maximized with current and future user agents and assistive
technology, including the ones running on limited resources [23].

CHAPTER 10 ■ ACCESSIBILITY

353

These guidelines contain 61 success criteria. WCAG 2.0 conformance can be achieved by applying a series of
techniques [24]. Some of them are required to meet success criteria (sufficient techniques), while others are optional
only (advisory techniques). W3C claims that none of the accessibility techniques can be marked as required or
mandatory [25]. They are recommended only, and developers may choose to apply them.

In contrast to WCAG 1.0, which has three priority levels, WCAG 2.0 success criteria are organized into three levels
of conformance. The conformance requirements of all levels of WCAG 2.0 are summarized in the following sections.
Generally, the word must in the following sections—similar to the word use of the WCAG specifications published
by the W3C—corresponds to Level A conformance, which is the minimum level of accessibility in WCAG 2.0 (for
example, text alternative for nontext content). The word should correspond to Level AA conformance (for example,
captions for live synchronized media). The words may and can correspond to Level AAA conformance (for example,
optional sign-language interpreters).

The higher the accessibility conformance level, the more requirements or higher restrictions apply. For example,
Guideline 1.4 describes distinguishable color use and the requirements for separating foreground from background.
To meet level A, you should not rely on color alone for conveying information. Level AA has a stricter requirement and
prescribes a minimum contrast ratio of 4.5:1 (3:1 for large text), while Level AAA demands an even higher contrast
ratio of 7:1 (4.5:1 for large text).

Note that some requirements are general, while others are technology-specific and apply to a certain technology
only, such as Flash. Some techniques can be used either individually or in combination with a similar technique, such
as short and long descriptions, but the corresponding implementation requirements depend on the desired level of
accessibility.

Level AAA conformance is not recommended as a general policy, because there are content types that cannot
be published in a way that the document meets all AAA criteria due to the nature of the content or special technology
features and limitations. In other words, using certain content types might limit the maximum achievable level of
accessibility to WCAG 2.0 AA, while WCAG 2.0 AAA cannot be met if certain content types are present. For example,
section headings can contribute to AAA conformance; however, they cannot be added to all kinds of documents (for
example, a long letter [26]). Naturally, site structure or markup elements should be reorganized, added, or modified
when creating an accessible web site or redesigning a nonaccessible site to become accessible, but there is no reason
for a content author to modify the textual content of a web page just to make the site accessible or more accessible.
Another example is Flash, which had known accessibility barriers at the time the WCAG specifications were
introduced, and generally it was infeasible to provide Flash content and achieve level AAA conformance at the
same time.

Additionally, WCAG conformance can be limited to a conforming alternate version instead of the whole web site.
For example, if the complex design of a web site makes it infeasible to meet WCAG requirements, the site can still be
accessible by providing an alternate style sheet or, in the case of more sophisticated design, an alternate, accessible
version of each page within the site. Consequently, determining WCAG conformance requires deep site analysis and
cannot be judged by simply opening the home page [27].

Note ■ In contrast to documents with tag soup and bad markup, well-structured, standard-compliant web sites with

properly written content provide a basic level of accessibility by default, which can be further extended to achieve the

desired (advanced) level of accessibility.

CHAPTER 10 ■ ACCESSIBILITY

354

Site Structure Requirements

All web pages (not only the home page) must have descriptive titles provided by the title element. Ideally, page titles
are short, identify the subject, logical, and understandable without context. Moreover, titles should be unique and
identify the page within the site. Table 10-1 shows an example.

Table 10-1. Unique and Short, but DescriptiveWeb Page Titles Within a Site

URI Page Title Example

http://www.example.com Index page Professional consultants

http://www.example.com/about/ About page About Professional consultants

http://www.example.com/contact/ Contact page Contact Professional consultants

A hyperlink pointing to the index page must be provided at the top of each web page within a site.

Tip ■ This requirement can be easily provided without interrupting the content or design by adding the link to the web

site logo as .

Links to all other pages of the site must be available directly or indirectly from the home page. The relationship
between the currently visited web page and other parts of the web site can be clearly indicated with properly selected
web site components and well-written element content (descriptive URIs, descriptive titles, metadata provided with
link rel, breadcrumb trails, chapters added using headings, and so on).

Breadcrumb trails may be applied to help the user visualize content structure, ease navigation, and identify the
current location within the site structure as well as within the current web page. This can be obtained by displaying
locations in the path or the location of the current web page within the site structure. Breadcrumb trails might provide
links to previously visited web pages. They are placed in the same location within each web page. Typical separators
used for breadcrumb trailing are ▼, ▲, >, |, ::, and /. For example, it can be clearly indicated that the web store
user is browsing LCD monitors with a screen size equal to or larger than 22 inches as Electronics ➤ Computers &
Accessories ➤ Monitors ➤ LCD ➤ 22 Inches & Up (Figure 10-2).

CHAPTER 10 ■ ACCESSIBILITY

355

The current location may be presented within navigation bars too. The list of all other pages of the site as well as
links to related web pages can also ease navigation. The link element may be applied for clearly indicating multiple
relationships between the current web page and other web pages within the web site (with values of the rel attribute
such as Start, Next, Prev, Contents, and Index). Listing 10-1 shows an example.

Listing 10-1. Declaring Web Page Relationships in the Document Head

<head>
 <title>Chapter 4</title>
 ...
 <base href="http://www.example.com/" />
 <link rel="prev" href="chapter3/">
 <link rel="next" href="chapter5/">
 ...
</head>

A logical tab order must be added to web sites that allows the user to easily navigate through links, objects, and
form controls (Listing 10-2).

Figure 10-2. Breadcrumb trails to ease navigation

CHAPTER 10 ■ ACCESSIBILITY

356

Listing 10-2. Tab Order Declared for the Menu, Search Box, and Flash Header of a Web Page

...
 <base href="http://www.example.com/" />
...

 
 Home

 
 About

 
 Services

 
 Portfolio

 
 Contact

...
<form method="get" action="http://www.google.com/search">
 <fieldset>
 <label for="q">Search query</label>
 <input type="text" name="q" id="q" size="19" maxlength="255" value="Type to search" 
 tabindex="6" />
 <input type="submit" name="btnG" value="Search" tabindex="7" />
 <input type="hidden" name="domains" value="http://www.example.com/" />
 <input type="hidden" name="sitesearch" value="http://www.example.com/" />
 </fieldset>
</form>
...
<object type="application/x-shockwave-flash" data="flash/header.swf" width="720" 
 height="300" id="flash" tabindex="8">
 <param name="movie" value="flash/header.swf" />
 <param name="wmode" value="transparent" />
 <div>
 <img src="images/alter.jpg" alt="The image alternative for the 
 flash header." />
 </div>
</object>

CHAPTER 10 ■ ACCESSIBILITY

357

A search function is vital for all web sites because it might help users find content. A popular approach for
providing a search function to web sites is to create a site-specific Google search field (also shown in the previous
example). The Search button should be adjacent to the search field.

Content sections must begin with a heading element to provide structure (h1–h6). Descriptive headings and
labels must be provided that allow users to select the information relevant to them. Pages can be organized efficiently
with headings. In (X)HTML5, document introductions should apply the header element.

Content Requirements

The order of content in the source code must coincide with the default visual presentation of the content; in other
words, the DOM order must match the visual order. Dynamic content inserted into the Document Object Model
right after the element used to activate the dynamic content insertion ensures a correct tab order (and thus a correct
reading order for screen readers) through the exploitation of the default tab order of user agents. Web page content
must be ordered in a meaningful sequence. This also holds for interactive elements. Page section reordering must
be performed by using the DOM. Repeated components should always be presented in the same order. Users must
be allowed to skip repeated menu items through expandable and collapsible menus. Flash contents must apply the
tabIndex property in order to specify a logical reading order and a logical tab order.

User Assistance

A site map and a table of contents also contribute to accessibility. A help link may be added to every web page. A
dedicated help page can be used to collect information that can be helpful for less experienced users but omitted
from the main content, because they are evident (and even disturbing) for most users. Moreover, a help page might
provide information about special web site features that are not common on the Web. For example, a user of a
highly accessible web site can be informed about the option to control the menu with keyboard buttons, which is
not available on every site. Help may also be provided in the form of an assistant who gives a tour to new visitors on
the functionality and content of the site. Such an assistant can be presented as an animation with a digital character
(also known as a multimedia avatar) or a video clip with a real person, who gives instructions or a service overview or
explains concepts related to the company portfolio (Figure 10-3).

Figure 10-3. An assistant (video clip with a real person) [28]

CHAPTER 10 ■ ACCESSIBILITY

358

Ensured Readability

Ideally, text is easy to read. Complex text content may be summarized in a form that requires a reading ability less
advanced than the upper secondary education level. For example, a technical article can be too complex to read for
some people, and a text summary containing shorter sentences and more common words might be helpful for them. To
achieve AAA conformance, text lines may not exceed an average of 80 characters even if the browser window is resized.

People with certain cognitive disabilities who have trouble tracking single-spaced lines might find 1.5× or double
line spacing more convenient to read. Web pages may have buttons to improve readability by increasing line spaces
and paragraph spaces (Listing 10-3).

Listing 10-3. Sample Buttons for Manipulating Line Space and Paragraph Space

...
<script type="text/javascript">
 function inclineh() {
 document.getElementById('main').style.lineHeight="200%";
 }

 function incpars() {
 var get_ps = document.getElementsByTagName("p");
 for (var i = 0; i < get_ps.length; i++) {
 get_ps[i].style.marginBottom="40px";
 }
 }
</script>
...
<div>
 <img src="images/lineh.png" alt="Line height" 
 title="Increased line height" />
 <img src="images/pspacing.png" alt="Paragraph spacing" 
 title="Increased paragraph spacing" />
</div>
...
<div id="main">
 <p>
 This is the first paragraph of the main content.
 </p>
 <p>
 This is the second paragraph of the main content.
 </p>
</div>

Additionally, the letter-spacing CSS property must be used to control spacing within words (whitespace
between characters) that can further increase readability. Font sizes are best provided in relative units (% or em). The
em unit is preferred for text sizes of containers such as tables where percent-based fonts might result in a way too
large font size when resizing the window. Information presented by text formatting such as font face, font size, or
text decoration must also be accessible without formatting. Basic text formatting should apply not only for (X)HTML
documents but also for plain text. Text files must have text formatting that represents paragraphs, lists, and headings.

The visual presentation of texts should be controlled with CSS properties such as font-family, font-size, font-
style, font-weight, color, letter-spacing, line-height, text-align, text-transform, and background-image
and the :first-line, :first-letter, :before and :after pseudoclasses. These properties and pseudoclasses can
eliminate the need for image text.

CHAPTER 10 ■ ACCESSIBILITY

359

Color Use

Web content must be accessible without the ability of sensory perception required for recognizing locations, shapes,
sizes, or sounds.

Justified text aligned to both the left and right margins can be hard to read for people with certain cognitive
disabilities. Consequently, text aligned to one side only contributes to the highest level of accessibility. If it is not
feasible due to layout purposes, a mechanism may be added to remove full justification upon request.

If users are allowed to use the default colors of their browsers, that is, no background color, text color, or text
background color is specified by CSS rules, users with vision disabilities can override certain colors that they have
trouble seeing. This technique guarantees text readability presented over a background. It is allowed to specify
container layout and border colors, though.

A cross-browser color selector solution may be applied that allows users to change the foreground and
background colors of text sections.

The text-background contrast ratio should be 4.5:1 to achieve AA conformance (3:1 for large text) and may be a
minimum of 7:1 (4.5 for large text) for AAA conformance (including images of text). A high-contrast control should
always be provided that allows users to switch to a presentation with sufficient contrast. You can easily calculate the
contrast ratio between arbitrarily selected colors by considering the differences in luminosity.

The relative luminance is defined by the WCAG 2.0 specification as “the relative brightness of any point in a
colorspace, normalized to 0 for darkest black and 1 for lightest white.” In case of the sRGB color space, the relative
luminance of a color is defined as L = 0.2126 × R + 0.7152 × G + 0.0722 × B, where the R, G, and B components are
defined as follows [29]:

R
R

sRGB

bit= 8

255
 If R

sRGB
£ 0 03928. then R

R
sRGB=
12 92.

 else R
R
sRGB=

+æ
è
ç

ö
ø
÷

0 055

1 055

2 4

.

.

.

G
G

sRGB

bit= 8

255
 If G

sRGB
£ 0 03928. then G

G
sRGB=

12 92.
 else G

G
sRGB=

+æ
è
ç

ö
ø
÷

0 055

1 055

2 4

.

.

.

B
B

sRGB

bit= 8

255
 If B

sRGB
£ 0 03928. then B

B
sRGB=
12 92.

 else B
B
sRGB=

+æ
è
ç

ö
ø
÷

0 055

1 055

2 4

.

.

.

If you don’t want to calculate the color contrast, there are many useful tools that can check it for you, for example
the WebAIM Color Contrast Checker [30], the Luminosity Colour Contrast Ratio Analyser of Juicy Studio [31], or the
Luminosity Contrast Ratio Analyser 1.1 of WAT-C [32].

Information expressed in colors must also be available and perceivable without colors. Additional visual cues
must be available when text color differences are used to convey information. Semantic markup must be added
whenever color cues are used to convey information.

An optional multicolor selection tool added to pages to change the foreground and background colors arbitrarily
allows users to specify colors according to their personal preference (Figure 10-4).

CHAPTER 10 ■ ACCESSIBILITY

360

Information and structure must be separated from presentation to enable different presentations. Various color
combinations can be provided for the text and background of the main content along with component groups within
the web page.

Abbreviations, Definitions, and Foreign Words

The full form of words may precede their shortenings. Abbreviations might have an inline expansion or explanation
they are associated with the first time they occur within a web page. Definitions may be provided by the abbr and
acronym elements for all abbreviations. Defined words can be enclosed by the dfn element. Terms, abbreviations,
initialism, and acronyms can be linked to their definitions in order to provide the highest level of accessibility. Terms
and phrases written as definition list items are the most accessible. They may be collected on a glossary page available
through a simple hyperlink provided by the link element. Alternatively, a search function can be embedded that
provides the definitions through an external online dictionary. Beyond abbreviations, all words or phrases used in an
unusual way or restricted manner can be made more accessible with a definition.

The pronunciation of a special or foreign word provided immediately after the word at least the first time it
occurs within a web page contributes to AAA conformance. Other instances can alternatively provide a link to a list of
pronunciations.

The default language of web documents must be identified in the HTTP header as well as by the lang and/or
xml:lang attribute on the html element in the markup. This is also vital for web pages with Flash content because
embedded Flash objects inherit the language settings provided by the lang and/or xml:lang attributes. Document
sections written in a language other than the default language must be clearly identified on their containers.

To ensure text direction for bidirectional inline content, the right-to-left Unicode marks (‏, ‏, or
U+200F) and left-to-right Unicode marks (‎, ‎ or U+200E) must be applied.

Text direction of inline content must apply the dir attribute to clearly indicate text direction.

Figure 10-4. A color picker example suggested by W3C [33]

CHAPTER 10 ■ ACCESSIBILITY

361

In many languages, such as Arabic, Hebrew, or East Asian languages, text meaning largely depends on
pronunciation. Web content written in such languages may apply Ruby annotation with ruby, rt, and rp elements in
order to provide information about the pronunciation and meaning of text fragments.

Note ■ Ruby annotations were introduced a long time ago in Far Eastern textbooks to provide hints for students about

complex characters. For example, Japanese texts written in the Kanji syllabary (writing system) often contain characters

that are known only by those Japanese who have at least a high school diploma. Ruby texts written in Hiragana, which is

a syllabary all Japanese are familiar with, can make the text clearer. Similarly, traditional Chinese texts can be displayed

in simplified Chinese using Ruby annotations.

Using Ruby, a base text can be declared within the Ruby markup (the content of the ruby element), along with
the associated Ruby text (the rt element), and optionally the Ruby parentheses (rp), that can be declared for browsers
that cannot render Ruby text correctly. For example, pronunciation hints can be provided for words on an educational
portal, while foreign words or unusual names can be transliterated into English (Listing 10-4) or represented using the
International Phonetic Alphabet (IPA) (Listing 10-5).

Listing 10-4. Ruby Annotation for Tokyo

<ruby>
 東京
 <rp> (</rp>
 <rt>Tō kyō</rt>
 <rp>)</rp>
</ruby>

In the case of simple Ruby markup, user agents should render the Ruby text above the base text at approximately
half the font size. In our case, the result should look like Figure 10-5.

Figure 10-5. The Ruby annotation for the word Tokyo rendered in IE9

Note ■ Ruby annotations are rendered most accurately by Internet Explorer.

CHAPTER 10 ■ ACCESSIBILITY

362

Browsers that do not support Ruby annotations will render the previous code inline without interrupting the text
flow (Figure 10-6).

Figure 10-6. The fallback mechanism of the Ruby annotation in action

Figure 10-7. Pronunciation hint provided by Ruby annotation

Figure 10-8. Pronunciation hint rendered inline in browsers that do not support Ruby annotations

Listing 10-5 is rendered in compliant browsers as presented in Figure 10-7.

Listing 10-5. The IPA Representation of an Eastern-European Name Using Ruby Annotation

<p>
 Count
 <ruby>
 István Széchenyi
 <rp>(pronounced: </rp>
 <rt>'iʃtvaːn 'seːtʃeːɲi</rt> <rp>)</rp>
 </ruby>
 was one of the greatest statesmen of Hungarian history.
</p>

In browsers that do not recognize Ruby markup, the same example would be rendered inline (Figure 10-8).

CHAPTER 10 ■ ACCESSIBILITY

363

More complex Ruby annotations can specify not only the default display and fallback mechanism shown earlier
but also positioning offsets, alignment, spacing, and overhang. The Ruby annotation was introduced as an XHTML 1.1
module and can also be used in HTML5. The Ruby annotations can also be styled using CSS3, which provides precise
positioning and line breaking, defines the Ruby box model, and supports the vertical-ideographic layout mode [34].

The most accessible documents apply standard diacritical marks that can be turned on and off.
Properly selected positioning and units should be applied that support the zooming and text resizing features of

browsers.
Accessible web sites have controls that allow users to incrementally change the size of all text (up to 200 percent).

Loss of content or functionality is not acceptable when the text is resized, and the proportions of the text containers
must remain the same.

User Interface

Content must be accessible through alternate user interfaces. Properly written markup must be provided that allows
assistive technology to understand the content, expose information such as form control IDs, and control certain
elements through an API (for example, the DOM).

Standard DOM functions must be applied to dynamically add content to web pages instead of scripting as
script-generated contents are often inaccessible by screen readers.

Note ■ Screen readers may not automatically read dynamically added content. Reading of dynamically added new

content can be ensured by setting the focus to the new element or adding it below the current location where it will be

encountered as the user continues browsing.

Liquid layout should be used on all web sites to present content without introducing unnecessary horizontal
scroll bars. Page content should adapt to the available horizontal space. Layout regions should be resized with text
and reflow as needed to display the page section. Highly accessible web sites eliminate horizontal scrolling even if
the user resizes the browser window. One of the options to achieve such a foolproof layout is to specify proportional
text containers through Responsive Web Design. If it is not feasible on the default screen, an alternate layout may be
provided that does not require horizontal scrolling.

Content positioning should be based on structural markup. The appearance can be enhanced with CSS, but the
content structure must also remain meaningful without style sheets.

If the content of the default version of a web page is not accessible but an alternate, WCAG-conforming version is,
that web page must be linked at the beginning of the nonconforming page. If inaccessible objects cannot be eliminated
from the content, a link must be added adjacent to or associated with these objects that link to an alternate, WCAG-
compliant version. User preference must be saved in a cookie. The accessibility of the alternate version must always be
ensured with .htaccess or the HTTP referrer header. A style switcher must be provided to ensure an alternate version
with WCAG-compliant styles.2 Three different types of style sheets are required to create a style switcher:

 1. Persistent CSS file: The base styles that are used to share common styles throughout the site.
The rel attribute is set to stylesheet, while the title attribute is omitted (Listing 10-6).

Listing 10-6. A Persistent CSS File

<link rel="stylesheet" type="text/css" href="styles/main.css" />

2Since฀not฀all฀functionalities฀can฀be฀provided฀through฀CSS,฀a฀conforming฀alternate฀version฀of฀a฀web฀site฀cannot฀always฀be฀฀
provided฀by฀simply฀creating฀additional฀style฀sheets.

CHAPTER 10 ■ ACCESSIBILITY

364

 2. Preferred CSS file: Styles enabled by default when the page is loaded. The attribute value of
the rel attribute is stylesheet, and the title attribute is provided (Listing 10-7).

Listing 10-7. A Preferred CSS File

<link rel="stylesheet" type="text/css" href="styles/main.css" title="Preferred" />

 3. Alternate CSS files: CSS files designed for alternate versions of the site that reuse the styles
declared in the main style sheet file but overwrite some of them (for example, set the font
size to a larger value, or modify the font color to achieve higher contrast) or add new ones
on top of the reused ones (for example, define a maximum width for mobile devices).
They can be used not only for increasing accessibility but also for design or media-
specific versions of the site (as hinted earlier in Chapter 3). Alternate CSS files have the
rel attribute value alternate stylesheet instead of stylesheet, and a title attribute
identifies them (Listing 10-8).

Listing 10-8. Alternate Style Sheets

<link rel="alternate stylesheet" type="text/css" href="styles/large.css" 
 title="Large" />
<link rel="alternate stylesheet" type="text/css" href="styles/contrast.css" 
 title="Contrast" />

First, create three CSS files, one for the main styles (Listing 10-9) and two for alternate styles that will provide
large font size (Listing 10-10) or huge font size with high contrast (Listing 10-11), respectively.

Listing 10-9. The Main CSS File (main.css)

body {
 background-color:#004c25;
 color: #cff;
 font-family: Garamond, serif;
 font-size: 1.2em;
}

#wrapper {
 width: 800px;
 margin: auto;
}

#wrapper a:link {
 color: #ff0;
}

#wrapper a:hover {
 color: #ffa000;
}

CHAPTER 10 ■ ACCESSIBILITY

365

#wrapper a:visited {
 color: #fff;
}

#colorswitch a:link {
 padding: 10px;
}

Listing 10-10. The CSS File for the Large Font Version (large.css)

@import ("main.css");

body {
 font-size: 1.8em;
}

Listing 10-11. The CSS File for the High-Contrast Version (contrast.css)

@import ("main.css");

body {
 background-color: #000;
 font-size: 2em;
}

#wrapper a:hover {
 color: #ff2121;
}

Next, we need a script that sets the styles from the selected CSS file and stores the choice in a cookie that can
be read if the user returns to the page (Listing 10-12). Without cookies, the alternate styles would be applied for the
current page of the current session only, which is not practical. If a visually impaired user selects the “high-contrast
theme,” he or she would probably like to read all the pages of the site with the same setting.

Listing 10-12. The styleswitcher.js [35]

function setActiveTheme(title) {
 var i, a, main;
 for (i = 0; (a = document.getElementsByTagName("link")[i]); i++) {
 if (a.getAttribute("rel").indexOf("style") != -1 && a.getAttribute("title")) {
 a.disabled = true;
 if (a.getAttribute("title") == title) a.disabled = false;
 }
 }
}

CHAPTER 10 ■ ACCESSIBILITY

366

function getActiveTheme() {
 var i, a;
 for(i = 0; (a = document.getElementsByTagName("link")[i]); i++) {
 if(a.getAttribute("rel").indexOf("style") != -1 && a.getAttribute("title") && 
 !a.disabled) return a.getAttribute("title");
 }
 return null;
}

function getPreferredTheme() {
 var i, a;
 for (i = 0; (a = document.getElementsByTagName("link")[i]); i++) {
 if (a.getAttribute("rel").indexOf("style") != -1
 && a.getAttribute("rel").indexOf("alt") == -1
 && a.getAttribute("title")
) return a.getAttribute("title");
 }
 return null;
}

function createCookie(name,value,days) {
 if (days) {
 var date = new Date();
 date.setTime(date.getTime() + (days*24*60*60*1000));
 var expires = "; expires=" + date.toGMTString();
 }
 else expires = "";
 document.cookie = name + "=" + value + expires + "; path=/";
}

function readCookie(name) {
 var nameEQ = name + "=";
 var ca = document.cookie.split(';');
 for (var i = 0; i < ca.length; i++) {
 var c = ca[i];
 while (c.charAt(0)==' ') c = c.substring(1, c.length);
 if (c.indexOf(nameEQ) == 0) return c.substring(nameEQ.length, c.length);
 }
 return null;
}

window.onload = function(e) {
 var cookie = readCookie("style");
 var title = cookie ? cookie : getPreferredTheme();
 setActiveTheme(title);
}

CHAPTER 10 ■ ACCESSIBILITY

367

window.onunload = function(e) {
 var title = getActiveTheme();
 createCookie("style", title, 365);
}

var cookie = readCookie("style");
var title = cookie ? cookie : getPreferredTheme();
setActiveTheme(title);

Finally, we put all the components together and get the style switcher functionality on our site (Listing 10-13).

Listing 10-13. The Markup Code Featuring the Style Switcher

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-us" lang="en-us">
 <head>
 <title>Style switcher demo</title>
 <meta charset="UTF-8" />
 <link rel="stylesheet" type="text/css" href="styles/main.css" />
 <link rel="stylesheet" type="text/css" href="styles/main.css" title="Preferred" />
 <link rel="alternate stylesheet" type="text/css" href="styles/large.css" title="Large" />
 <link rel="alternate stylesheet" type="text/css" href="styles/contrast.css" 
 title="Contrast" />
 <script type="text/javascript" src="scripts/styleswitcher.js"></script>
 </head>
 <body>
 <div id="wrapper">
 <h1>Style switcher demo</h1>
 <p>This is the content.</p>
 <div id="colorswitch">
 <a href="javascript:void(0);" onclick="javascript:setActiveTheme('Preferred'); 
 return false;" id="default">Default CSS
 <a href="javascript:void(0);" onclick="javascript:setActiveTheme('Large'); 
 return false;" id="larger">Large fonts
 <a href="javascript:void(0);" onclick="javascript:setActiveTheme('Contrast'); 
 return false;" id="contrast">High contrast
 </div>
 </div>
 </body>
</html>

Content scrolled with scripts, such as banners, must have a mechanism to pause or stop scrolling.
Web pages that apply image replacement for text fragments from CSS should have an interface that allows users

to switch between the two versions.
Web content structure should contain proper semantic markup elements. The elements must be used according

to their meaning rather than their (default) appearance. Semantically meaningful markup such as em or strong must
be used for emphasized and special texts. The ol, ul, and dl elements must be applied for both lists and link groups.
Links must be grouped using the map element.

Keyboard users must not be stopped by a web site section accessible exclusively with a mouse. The same holds
for Flash objects that are not keyboard accessible by default.

CHAPTER 10 ■ ACCESSIBILITY

368

Note ■ Duplicated attributes on the same element might cause key errors for assistive technology and must be

eliminated.

The appearance of elements receiving focus or being hovered over with a pointing device should be changed
(for example, highlighted) to provide visual feedback to the user (such as changed background or border color). Flash
content should also provide highly visible focus indication.

Alternate texts, labels, and names should be shared among components with the same functionality.
An optional sign language version provided for all information required to use the content can improve

accessibility for people who are deaf or have cognitive disabilities. It can be either a multimedia avatar using a
technology such as Flash or a video clip of an animated or real sign language interpreter (Figure 10-9).

Figure 10-9. A signing avatar [36]

Web site components such as markup, style sheets, and XML files must be validated to guarantee the proper use
of formal specifications, grammar, syntax, and vocabulary. Opening and closing tags must be used according to the
markup specification. All web pages must be well-formed.

CHAPTER 10 ■ ACCESSIBILITY

369

Markup Requirements for Nontext Content

Images, photos, graphics, and symbols can be applied to improve user experience and help the user understand the
content. However, all nontext contents, such as images, embedded objects (Flash content, applets, audio, video, and
so on), ASCII arts, emoticons, and leetspeaks must have alternate texts.

All images must have an alt attribute. For those images that can be safely ignored by assistive technology, the
title attribute must be omitted and the alt text set to null (alt=""). If an image and its associated text have the same
link, they must be combined in order to avoid unnecessary duplication.

Spacer images such as 1×1 pixel GIF files should be totally eliminated in favor of CSS margins and padding.
For those images and objects where a short description is not sufficient, a long description must be added using

the longdesc attribute or a regular a element with a link to the description.
Nontext content represented in colors must also be available with patterns that can be understood without

colors.
Alternate text must be provided for nontext content that identifies its purpose (even for the content that requires

sensory experience). Additionally, both a short and a long description must be provided for nontext content with an
identical purpose that presents the same information.

If the original nontext content is too long or the same information cannot be achieved with text alone, short
alternate text must be written that briefly summarizes the nontext content.

Images used exclusively for decoration, such as background images, image rollovers, or tab images, must be
provided using CSS. Since there is no additional markup, assistive technology can ignore this nontext content.

Alternate text must be written for all area elements within image maps.
A text or nontext alternative must be provided for all objects. Alternate texts can be written directly in the content

of the object element. Nontext alternatives can be provided by nested objects.
Adjacent nontext content sharing information or functionality must be described by alternate text in order to

avoid unnecessary duplication.

Blinking and Flashing Content

Photoepileptic seizures caused by strobing or flashing effects should be eliminated. A link or button must always be
added to web pages with blinking content that loads equivalent pages without blinking content. Blinking contents
can be included on web pages only by using a technology that provides the option to turn off blinking with a browser
feature. Blinking content must be minimized below 5 seconds using scripts and, if possible, totally eliminated. The
same holds for animated GIF images.

Flashing content must also be minimized. A maximum of three flashes is allowed within 1 second. If it is not
feasible because of the content features, the flashing area must be less than 25 percent of 10 degrees of the visual field.
The content is not allowed to violate the general flash threshold or red flash threshold, which avoids photosensitive
seizures. There are tools, such as the Photosensitive Epilepsy Analysis Tool (PEAT) [37], that can be used to evaluate
flashing content to reduce the risk of seizure.

Flash Objects

The dimensions of embedded Flash objects may be specified in relative units (em or %).
Nontext objects marked with the name property must be applied in Flash to allow assistive technology to access

them. A long text alternative must be provided by the description property for nontext objects in Flash. Text
alternatives must be provided for clickable image hotspots that serve the same purpose. The accessible description of
DataGrids has been used for years to provide information readable by screen readers.

Flash graphics must be marked in a way that they can be ignored by assistive technology if needed. This can be
accomplished by directly exploiting the accessibility features of Flash objects or by applying textual alternatives using
ActionScript.

If adjacent text and image buttons (icons) serve the same purpose, they must be combined into a single button
symbol instance.

CHAPTER 10 ■ ACCESSIBILITY

370

Forms written in markup are preferred to Flash forms. However, if you have to use Flash forms on your site,
the following guidelines should be considered. Flash controls must be understood out of context. To achieve this,
control labels can be changed via scripting to provide additional information. Similar to their markup equivalents,
the required fields of Flash forms must be clearly indicated. Related Flash form controls must be grouped together to
provide semantic meaning. Flash forms must be validated on the client side. If errors are found, a description must be
added to the controls containing invalid data. Flash form controls must have an associate text label (for example, via
auto labeling). Only CheckBox and RadioButton components get labels by default.

There must be an option to pause scrolling Flash contents controlled by a script.
Blinking of Flash contents must be controlled by scripts to stop within a maximum of five seconds.

Link Requirements

Hyperlink anchors must always have a text description that clearly identifies the purpose of the link. Links must
apply the title attribute to provide additional link text. Hyperlinks must have a descriptive alternate text that clearly
indicates the purpose of the link.

Additional link text added for advanced screen reader and Braille display support can be hidden using CSS
selectors (without visibility:hidden or display:none). This link text can also be applied in combination with a
style switcher. Repetitive content must be avoided.

A control must be added to the top of each web page providing an alternate page version with link texts that are
sufficient to determine their purpose even without context.

The purpose of a link must be clear even without context (applying a descriptive link text), and the container
context (paragraph, preceding heading, list item, table cell, and its associated table heading) must also be written in a
way that further improves the clarity of the purpose of the link.

The minimum contrast ratio of 3:1 should be ensured between link colors and text colors. Moreover, additional
visual cues must be provided on focus for links and controls where color alone is used to identify them.

Destination URIs are generally not descriptive enough. The link text Read more... is, for example, not sufficient
to understand a link. If the description precedes the link in the same sentence, such link texts can be understandable,
however, screen readers would still read “Read more”. The link purpose must be identified using the combination
of link text and the text of the enclosing sentence to ensure a logical text flow for screen readers. Link text changed
dynamically upon context must be provided whenever necessary.

Links should be added to all web page elements and objects that do not support long descriptions as attribute
values. The links must be next to the nontext content. The location of the long description must be indicated in the
short description (if applicable). For example, the short description of an image provides the text “Comparison of
smartphone operating systems—see details below,” while the long description below the image states “In Figure 1,
you can see the market share of smartphone operating systems, including Android, iOS, Windows Mobile, and
BlackBerry OS.”

If a web page contains blocks of repeated content such as navigation links or table of contents, a link must be
added to the beginning of the blocks that allows users to bypass them. The top of the web page must contain links to
the different sections of the content.

Dialog messages must be device-independent. Pop-up windows should be eliminated whenever possible. If a
new window cannot be eliminated, an advanced warning may be provided. To avoid confusion, new windows opened
on user request with the target attribute may have a proper link text clearly indicating that the content will be opened
in a new window. As a general rule, however, links should be opened in the same window rather than a new window
or tab. While this approach contributes to accessibility, it might lead to loss of visitors (if you point to an external site
and the visitors forget to return to your site

CHAPTER 10 ■ ACCESSIBILITY

371

User Input and Form Requirements

Form controls and links must be provided using (X)HTML elements rather than other technologies such as Flash.
Text inputs of forms must have a title attribute that can be used for providing context-sensitive help.
An accessible name must be applied for labeling Flash form controls. Flash buttons must always have an

accessible label that describes the purpose of the link. Flash image buttons must have accessible names that provide
information about the function of the buttons but do not describe the images in general.

The label property must be set for the Button, CheckBox, and RadioButton Flash form components explicitly. As
a result, the label text appears next to the component and becomes available for assistive technology.

Groups of form controls must have a description provided by the legend element and must be grouped with
fieldset.

A button must be applied along with select elements to perform an action. The option elements must be
grouped with optgroup within select elements.

To keep proportions, textual form elements such as input boxes and buttons should be resized when the text size
has significantly changed in the browser.

Beyond enumerated options, forms sometimes allow user-defined values (typically with the text other, please
specify) for which text descriptions must be provided.

Text instructions must be added to the beginning of forms and fieldsets that clearly indicate the required input.
Text input elements may have a spell checker. Required fields must be clearly indicated, for example with an asterisk
(*) character. The user must be informed through a text description if the input is a prohibited value, falls outside the
allowed limits, or is provided in a nonsupported format.

When using technologies that support Accessible Rich Internet Applications (WAI-ARIA), the allowed range of
entry fields should be identified with the aria-valuemin and aria-valuemax properties. User agents typically do not
permit users to enter values outside the specified range and generate a validation error if users do so.

Expected data formats presented with examples minimize the probability of incorrect or insufficient user input.
The same holds for review and correction options offered before form submitting. A mechanism should be provided
for web applications so that users can recover information deleted by mistake.

Multipart forms must provide a checkbox on the first page that gives users more time if they need it or completely
avoids session time limits.

User input should be validated by means of client-side scripting. If errors are found, an alert dialog must be used
to inform the user. Error messages can also be added via the DOM. Additionally, a mechanism should be provided
that helps users find the location of input errors. If the information supplied by the user is not adequate and cannot be
accepted, correct text should be suggested (if available).

If a Captcha is used on a form, alternate text must be added that describes the purpose of the test such as “the test
determines whether or not the user is human”. There should be an option to refresh the Captcha, i.e., generate another
distorted image if the user cannot read the first one.

A checkbox provided in addition to Submit buttons encourages users to review their input before submitting. If
confirmation is required to continue a selected action, form submission problems can be minimized or eliminated.
After submission, a stated time period should be provided when the order/request can be updated or canceled by the
user. A success feedback should always be provided when data is submitted successfully.

The aria-describedby WAI-ARIA property can be applied to attach descriptive information to one or more
elements. Form controls must be associated with text labels by the label element. When the label element cannot be
used, the title attribute must be applied. Labels must be positioned immediately before the field (with text direction
taken into account) except the labels of radio buttons and checkboxes that are positioned after the field. Form fields
and the buttons that clearly indicate their purpose must be adjacent.

CHAPTER 10 ■ ACCESSIBILITY

372

A text cue must be added to colored form control labels to combine color and text or character cues to convey
information. For example, required field labels represented in red can be quickly recognized by most people, but not
all people can see colors. However, they can still read text cues or listen to them.

A description must be associated with form controls indicating context changes in advance. A submit button
must be used in order to allow users to explicitly request changes of context. The aria-required WAI-ARIA property
can be used to indicate that user input is required before submission. Text descriptions must be provided to identify
required fields that were not completed.

Table Requirements

Tabular information must be presented with the table element. Table captions must be associated with tables by
using the caption element. Data cells and header cells must be associated with the id, header, and scope attributes
in tables. In Flash, the DataGrid component must be used to associate column headers with cells. These components
must have a caption text. The summary attribute must be applied on the table element to provide a short description
of the table (which is used by screen readers).

User Control Requirements

Every web site’s functionality must be accessible not only with pointing devices such as a mouse but also with the
keyboard. This also holds for Flash contents (using the click event on standard components).

A control must be provided on all web pages that allows users to stop moving or blinking contents, or prevent
automatic content updates.

Both a pause and a restart option must be provided for all automatically refreshing or disappearing contents such
as banners or flash headers. A link to the alternate content for the time-based media must be placed immediately next
to the nontext content. Users should not be forced to complete any activities within time limits. Users must always be
warned by a script if the time limit is about to expire. This also holds for Flash content.

Users must always have the option of setting time limits to ten times the default value. The option for extending
the default time limit also applies for Flash contents. There must be a mechanism to turn off time limits.

The actions of markup elements such as anchors and form elements must be keyboard-accessible. Event
handlers must be device-independent and allow not only the mouse but also keyboard access to full content
functionality (for example, drag and drop). This can be achieved using redundant keyboard and mouse event
handlers. The same holds for Flash contents as well as all scripting functions.

Web servers that require user authentication often terminate sessions for security reasons after a certain period
of time spent without user activity. If the user cannot provide the input quickly enough, the session times out before
data submission, and reauthentication is required. Servers should store such data in a temporary cache and retain
them after a successful user reauthentication, so the user can continue filling in the form rather than starting it all over
again, because all previously entered data is restored. Reauthorization pages may hide and encrypt user data.

Context changes must apply predictable actions. For example, if data entries of a form cannot be presented on a
single page, the second page should not be loaded automatically after the user presses the Tab key on the last entry of
the first page, because it can confuse screen reader users, which must be avoided.

Automatic redirections should be eliminated whenever possible. Both client-side (meta refresh) and server-side
(HTTP response) redirections have accessibility issues that can confuse users.

Certain user interface components are highlighted by some browsers when they receive focus. For example, a
form input is slightly highlighted in Google Chrome and strongly highlighted in Safari by default but not highlighted at
all in IE, Firefox, and Opera (Figure 10-10).

CHAPTER 10 ■ ACCESSIBILITY

373

Since highlighting varies from component to component and from browser to browser, the high visibility of focus
indicators should be ensured by web developers.

Form components, links, and all elements with a tabindex attribute greater than 0 can receive focus. However,
the default focus indicator of some platforms is not highly visible and may be difficult to see against certain
backgrounds. The visibility of focus indicators should always be ensured.

Nonessential alerts are optional. Ideally, users are not disturbed with unnecessary modal pop-up windows
(dialog windows that require the user to click the OK button to disappear).

Time-based media such as presentations must always have an alternate textual version or description.
Automatically updated contents may be eliminated and a mechanism provided to postpone automatic content
update. Moving and scrolling texts must also be available in a static page section or window

Live Media, Audio, and Video Requirements

Prerecorded synchronized media such as video clips must have captions. Sounds can be played on user request only.
Sound effects must automatically be turned off within three seconds. Additionally, an easily discoverable control must
be located near the beginning of the page for turning sound on/off. Flash contents must also have a control for the
same purpose.

In Flash movies, screen reader detection with the flash.accessibility.Accessibility.active property can be
used to turn off sounds that are played automatically if assistive technology is used (by default, the sound can still be
played automatically).

Nonspeech sounds in audio files may be at least 20 dB lower than the speech audio content.
An additional, user-selectable audio track must be provided with audio descriptions.
A spoken version of the text can significantly improve site accessibility because it is more accurate and

perceivable than the speech of screen readers.
Live audio-only contents may have text alternatives. This can be achieved by a real-time caption service with

a trained human operator who can type the text with small delay. Note that such services are very rarely used in
practice.

A link to a text transcript of a prepared statement or script may be provided for scripts followed by live audio
contents. These scripts can be more accurate and complete than live transcriptions; however, care must be taken to
ensure correct synchronization.

Accessible alternatives must be provided for time-based media presenting audio-only or video-only contents.
A descriptive label must be provided for live audio-only and live video-only content.

Figure 10-10. Default browser highlighting of the same input field in Firefox and Safari (the second text input is
selected)

CHAPTER 10 ■ ACCESSIBILITY

374

Videos must be provided with extended audio comments that fully describe the video content. Additionally, a
second version of video content must always be provided with audio descriptions to maximize accessibility. This also
holds for Flash audio-visual materials. Gaps of dialogue must be filled with extended audio descriptions using SMIL.

Video-only content, which is inaccessible to blind and some visually impaired people, must have an audio
alternative in a common audio format such as MP3. Video stream accessibility can be maximized with sign language
interpreters through a synchronized video whose display can be selected by the user.

Captions must be added for video contents that can be turned on and off upon request because they maximize
availability. Captions must provide information for the hearing impaired not only about the dialogue but also the
sound descriptions (unlike conventional subtitles).

Migrating from WCAG 1.0 to WCAG 2.0
Some projects require web site upgrade from WCAG 1.0 to WCAG 2.0. Several WCAG 1.0–compliant sites require little
or no changes at all to meet WCAG 2.0. WCAG 2.0 is based on WCAG 1.0; however, there are some differences in the
approach and requirements.

Sites that meet WCAG 1.0 partly fulfill WCAG 2.0 by default. The two versions of WCAG are compatible.
Consequently, it is possible to meet both WCAG 1.0 and WCAG 2.0 requirements at the same time. Because of the
advanced flexibility of the second version, however, a WCAG 2.0–compliant site does not automatically meet the
requirements of WCAG 1.0. Some WCAG 2.0 success criteria are very similar to WCAG 1.0 checkpoints. On the other
hand, there are WCAG 1.0 requirements that are not needed in WCAG 2.0. Some WCAG 2.0 requirements are more
specific than the related requirements in WCAG 1.0 [38].

WCAG 1.0 is technology-specific [39], while WCAG 2.0 applies to W3C and non-W3C technologies as long as they
provide accessibility [40].

WCAG 1.0 uses interim solutions (“until user agents. . .”), while WCAG 2.0 success criteria compliance assumes
user agent support.

In WCAG 1.0, JavaScript is considered a technology with accessibility problems [41]. In fact, JavaScript can be
accessible, depending on the application and functionality being used (which we’ll discuss in more detail later).
Scripting techniques successfully tested with screen readers are considered in WCAG 2.0.

The major steps of migrating from WCAG 1.0 to 2.0 can be summarized as follows [42]:

 1. Conformance parameters should be determined.

 2. Applied technologies should be determined.

 3. The application potential of technical requirements should be analyzed.

 4. WCAG 1.0 checkpoints should be checked related to WCAG 2.0 requirements.

 5. WCAG 2.0 success criteria should be checked.

Finally, strange as it sounds, not everyone is enthused over the highest level of web accessibility. Although
WCAG 2.0 is very impressive from the accessibility point of view, it is criticized for many reasons. For example, the
specifications are very long and complex, the technology-neutral descriptions are rather difficult to implement for
developers, very special requirements are included (especially for AAA conformance, like the real-time caption
service), some definitions are difficult to understand, inaccessible page versions are tolerated when an accessible
version is present, testing is far too complex, and not all content can be written in a way that conforms to the strictest
requirements [43].

CHAPTER 10 ■ ACCESSIBILITY

375

U.S. Section 508
Beyond W3C standards, there are country-specific standards and/or legislations on web accessibility around the
world. In the United States, a basic requirement for government web sites is Section 508 compliance. Subpart B of
the Amendment describes technical standards. The most important part for web developers is §1194.22 (Web-based
Intranet and Internet Information and Applications) [44].

The web-based technology and information criteria defined by Section 508 are based on W3C WAI guidelines.
Consequently, §1194.22 and WCAG 1.0 checkpoints are consistent [45].

There are no limitations on graphic or animation use, but they must be provided in an accessible form. Beyond
the text labels and descriptions provided for graphics, this section also addresses usability of style sheets, forms,
scripting, multimedia contents, image maps, languages, and plugins.

An alternate text should be written for all nontext elements. Multimedia presentations should be synchronized
with their equivalent alternatives. Information cannot be expressed in color alone.

Information representation cannot rely exclusively on associated style sheets.
Row and column headers should be declared for data tables.
Data cells and header cells of data tables should be associated.
Client-side image maps should be preferred to server-side image maps except where the regions cannot be

defined with an available geometric shape.
Redundant text links should be provided for all active regions of server-side image maps.
Frames should have unique titles.
Screen flickering with a frequency of 2–55 Hz should be eliminated.
A text-only page should be provided with equivalent information and functionality.
Assistive technology must be able to access content generated by scripting.
Web content that requires third-party software such as plug-ins must provide a link to the plug-in web site.
Forms should be accessible for assistive technology.
Users should be allowed to skip repetitive navigation links.
Users should be notified on timed response requirements and allowed to extend time limits.

Semantic (X)HTML5 Elements and WAI-ARIA
The new semantic markup elements introduced in the HTML5 specification such as header, footer, article,
section, aside, and nav involve accessibility potential.

The support for ARIA roles is also increasing. ARIA roles can be applied as additional markup to improve
accessibility potential; in other words, their presence does not cause any problems on systems without ARIA support.
ARIA roles are added as attributes to elements such as banner, complementary, contentinfo, form, main, navigation,
or search. Several ARIA roles describe document structure, namely, article, columnheader, definition, directory,
document, group, heading, img, list, listitem, math, note, presentation, region, row, rowheader, separator, and
toolbar.

The role of structuring elements can be provided by the role attribute. Listing 10-14 shows an example.

Listing 10-14. Using the role Attribute

<header role="banner" />

Certain roles must be unique within a page. The banner header code shown is a good example. While developers
can use an unlimited number of headers, only one header can be a banner header.

CHAPTER 10 ■ ACCESSIBILITY

376

JavaScript Accessibility
Hidden content, navigation, and strange user control behavior provided by scripting can cause confusion and
accessibility problems. For example, the onblur event used for checking user input can override the default behavior
of user agents and maintains focus until the correct answer is given, which makes it impossible for screen readers
to access any other parts of the page (including the feedback text provided elsewhere) without entering the correct
answer. Not all event handlers are device-independent, and some rely on the mouse (onmouseover, onmouseout,
ondblclick) or keyboard (onkeydown, onkeyup), and cannot be triggered on all devices. If device-independent event
handlers are used (such as onfocus, onblur, onselect, or onchange), content and functionality provided through
scripting are accessible, full keyboard control is provided, and the scripts do not cause confusion by modifying or
overriding normal browser functionality, then scripts can be accessible [46]. When JavaScript cannot be made natively
accessible, an accessible alternative must be provided.

Drop-down and fly-out menus are commonly used throughout the Web. However, the onmouseover and
onmouseout event handlers cannot be made directly accessible to keyboard users. Thus, an alternative must be
provided.

The onfocus and onblur event handlers can be inconvenient or inaccessible for keyboard users to trigger.
The onclick event handler is a device-independent event handler; however, some applications rely on the

mouse. In contrast to links or form controls, where the onclick event handlers can be triggered by pressing the Enter
key, plain text and table cells cannot gain focus while navigating with the keyboard. Consequently, keyboard users
cannot activate the onclick event for elements other than links or form controls. If this event is used with a form
element (for example, for form validation), it is not a problem, and the Submit button using the onclick event can be
activated by both pointing devices and keyboards.

The ondblclick event handler is generally mouse-dependent, because it is associated with the double-click of
the mouse, and there is no equivalent event on some other input devices such as on keyboards.

Drop-down selection lists such as language selectors usually apply the onchange event handler. Going directly to
the corresponding version by selecting an option from the list with a single click is very convenient for mouse users.
However, these lists are not accessible for keyboard users who cannot select anything else but the first option (after
pressing the cursor down key on the keyboard, the first option is selected immediately). One possible solution for the
problem is to add a button to be the trigger of the onclick event handler. However, in this case all users should press
the button after selecting the desired option to trigger the event handler.

The onselect event handlers can also be applied in a device-independent way.
Certain event handlers such as onkeydown and onkeyup can be triggered exclusively by the keyboard. The actions

associated with them cannot be accessed by the mouse.
Dynamic content, such as the current time presented by document.write, cannot be read by screen readers.

Note ■ Some features of dynamic web pages can also be achieved by pure CSS (especially CSS3) and some JavaScript

code block eliminated (for example, transitioning effects or transforming menu items). However, screen readers

can handle certain CSS features poorly, for example, elements hidden by display: none; or visibility: hidden;.

PDF Accessibility
Adobe Acrobat and Adobe Reader provide accessibility (Figure 10-11) as well as screen reader options. They are
available under Edit ➤ Preferences or directly with the shortcut Ctrl+K. You can find the screen reader option under
View ➤ Read out loud.

CHAPTER 10 ■ ACCESSIBILITY

377

Figure 10-11. Accessibility preferences in Adobe Acrobat/Acrobat Reader

CHAPTER 10 ■ ACCESSIBILITY

378

The accessibility of unstructured PDF files varies. Their reading order can be changed. They provide automatic
tagging and authors can optionally use manual tagging. Protected files cannot be saved to accessible formats.

Texts of structured PDF files are fully accessible. Hyperlinks are functional. The alternate text of images is
accessible (if present). Page numbers are correct. Screen readers can read basic data tables correctly. If provided, the
optional bookmarks can further improve accessibility. Protected files are also accessible. However, even structured
PDF files have some known accessibility issues. Paragraphs, for example, cannot be located perfectly, and font
attribute information is not available.

Figure 10-12. Accessibility Setup Assistant

Special features such as the Setup Assistant can be set under Edit ➤ Accessibility ➤ Setup Assistant (Figure 10-12).
Image-only PDF files, which are usually created by scanning paper documents, have accessibility issues. In such

files, text cannot be searched and colors cannot be adjusted. Screen readers cannot read the image-only PDF files.
Authors should use the OCR capabilities of Acrobat to provide text documents as text and preserve structure at the
same time.

CHAPTER 10 ■ ACCESSIBILITY

379

Flash Accessibility
Although accessibility was a weak point of the Flash technology for years, eventually both the developer environment
and the free player had been improved. Adobe Flash Professional and Adobe Flash Player have several features to
support assistive technology.

The layout and structure can be rather complex in Flash movies, making it very difficult for screen readers to read
the content. A description added for the entire movie can give hints for screen readers about the movie structure.

Text equivalents must be added for graphic elements such as names for graphic icons or descriptions for
gesturing animations. Element groups must have a single text equivalent.

Movies that never stop moving cause screen readers to refresh frequently. Even on web pages that contain a
movie at the bottom, screen readers might interpret motion as a page update and return to the top to start reading
again. This behavior can be eliminated by making the child objects of movie clips or entire movies inaccessible [47].

To allow users to control motion, Next buttons must be added to movies instead of displaying information for a
limited time.

Several user interface components are accessible in Flash that automate common accessibility tasks such as
labeling or providing keyboard access. The accessibility object can be enabled with the class enableAccessibility().

The FLVPlayback component provides the option to include a video player in Flash applications to play
downloaded Adobe Flash Video (FLV) files and streaming FLV files. The FLVPlaybackCaptioning component
associates captions to your video. The captioning component supports the Timed Text Markup Language (TTML)
W3C standard, along with multiple captioning and toggle control.

There are various approaches for providing control over reading order in Flash such as limiting stage size,
providing an additional, linear version of the content or specifying reading order via ActionScript.

User controls must be accessible through the keyboard. Keyboard shortcuts must be added to buttons. In order to
consider the limitations of screen readers, scripts must be kept within frames and empty movie clips used as buttons
must be avoided.

In Flash Professional CS5, a new component was introduced to display audio captions contained either in Timed
Text format (DFXP) or integrated with the FLV file as cue points. Flash Professional CS5 also added native support for
accessible video player skins.

User controls such as the Play and Pause buttons are mandatory for audio playback.
For all controls, it is important to provide the user with feedback on the control as it changes.
The general rules for color selection described earlier in the WCAG requirements also apply for Flash contents.

Accessibility of Mathematical Notations
Mathematical equations provided in GIF images can be hard to read for the visually impaired and, if provided without
a textual description, are inaccessible for screen readers.

In contrast, MathML equations are accessible. The accessibility potential of MathML is clearly demonstrated
by the accessibility features of a free MathML plug-in for Internet Explorer,3 Design Science MathPlayer [48]. The
software provides audio or Braille descriptions for mathematical notations to screen readers. MathPlayer also has
native speech capabilities (speak expression from the local menu). It allows keyboard navigation. MathPlayer 2
also contains MathZoom that allows users to magnify individual expressions. The matching algorithm ensures that
the font size of mathematical notations is increased when the surrounding text is zoomed. Additionally, MathPlayer
supports line breaks, which can improve readability if the font size is increased. It provides synchronized highlighting
of subexpressions that are being read out loud, which helps people with certain learning disabilities such as dyslexia
or dyscalculia

3Since฀Internet฀Explorer฀has฀native฀MathML฀support฀from฀version฀9,฀a฀MathML฀plugin฀is฀required฀for฀earlier฀versions฀only.฀฀
Design฀Science฀also฀provides฀tools฀for฀creating฀mathematical฀notations฀such฀as฀MathType฀(see฀section฀“MathType”).

CHAPTER 10 ■ ACCESSIBILITY

380

Summary
In this chapter, you learned the accessibility guidelines for the markup, style sheets, client- and server-side scripting,
and multimedia content. You are now capable of creating web sites with the desired level of accessibility that can be
used by anyone, regardless of user disability or browsing device limitations.

In the next chapter, you will learn about fundamental programs for your web design toolbox. You will become
familiar with the core software features for choosing your advanced text editor, specific editors, and other web
development tools that can ease your work significantly.

References
 1. AustLII (1992) Disability Discrimination Act. Australasian Legal Information Institute.

http://www.austlii.edu.au/au/legis/cth/consol_act/dda1992264/. Accessed
13 October 2014

 2. Office of the Houses of the Oireachtas (2005) Disability Act. The National Parliament
of Ireland. http://www.oireachtas.ie/documents/bills28/acts/2005/a1405.pdf.
Accessed 13 October 2014

 3. OPSI (1995) Disability Discrimination Act. The UK Statue Law Database.
http://www.statutelaw.gov.uk/content.aspx?activeTextDocId=3330327. Accessed
13 October 2014

 4. U.S. Access Board (2010) Section 508 Homepage: Electronic and Information Technology.
United States Access Board. http://www.access-board.gov/508.htm. Accessed
13 October 2014

 5. Henry SL (ed) (2011) Web Accessibility Initiative (WAI). World Wide Web Consortium.
http://www.w3.org/WAI/. Accessed 13 October 2014

 6. W3C (1997) World Wide Web Consortium Launches International Program Office for Web
Accessibility Initiative. World Wide Web Consortium. http://www.w3.org/Press/IPO-
announce. Accessed 13 October 2014

 7. Régis J, Morrison A, Touré H (2010) World Standards Day Message.
International Organization for Standardization.
http://www.iso.org/iso/wsd2010/wsd2010_message.htm. Accessed 14 October 2010

 8. Paciello MG (2000) Web Accessibility for People with Disabilities. CMP Books, Lawrence

 9. Henry SL, McGee L (eds) (2010) Accessibility. In: Web Design and Applications. World
Wide Web Consortium. http://www.w3.org/standards/webdesign/accessibility.
Accessed 13 October 2014

 10. Richards J, Spellman J, Treviranus J, May M (eds) (2010) Authoring Tool Accessibility
Guidelines (ATAG) 2.0. World Wide Web Consortium. http://www.w3.org/TR/ATAG20/.
Accessed 13 October 2014

 11. Allan J, Ford K, Richards J, Spellman J (eds) (2010) User Agent Accessibility Guidelines
(UAAG) 2.0. World Wide Web Consortium. http://www.w3.org/TR/UAAG20/. Accessed
13 October 2014

 12. Abou-Zahra S, Squillace M (eds) (2009) Evaluation and Report Language (EARL) 1.0
Schema. World Wide Web Consortium. http://www.w3.org/TR/EARL10-Schema/.
Accessed 13 October 2014

http://www.austlii.edu.au/au/legis/cth/consol_act/dda1992264/
http://www.oireachtas.ie/documents/bills28/acts/2005/a1405.pdf
http://www.statutelaw.gov.uk/content.aspx?activeTextDocId=3330327
http://www.access-board.gov/508.htm
http://www.w3.org/WAI/
http://www.w3.org/Press/IPO-announce
http://www.w3.org/Press/IPO-announce
http://www.w3.org/standards/webdesign/accessibility
http://www.w3.org/TR/ATAG20/
http://www.w3.org/TR/UAAG20/
http://www.w3.org/TR/EARL10-Schema/

CHAPTER 10 ■ ACCESSIBILITY

381

 13. Henry SL (ed) (2011) The WAI-ARIA Documents. In: WAI-ARIA Overview. World Wide Web
Consortium. http://www.w3.org/WAI/intro/aria.php#is. Accessed 13 October 2014

 14. Craig J, Cooper M, Pappas L, Schwerdtfeger R, Seeman L (2011) Accessible Rich Internet
Applications (WAI-ARIA) 1.0. World Wide Web Consortium. http://www.w3.org/TR/
wai-aria/. Accessed 13 October 2014

 15. Pappas L, Schwerdtfeger R, Cooper M (2010) WAI-ARIA 1.0 Primer – An introduction to
rich Internet application accessibility challenges and solutions. http://www.w3.org/TR/
wai-aria-primer/. Accessed 13 October 2014

 16. Scheuhammer J, Cooper M (2010) WAI-ARIA 1.0 Authoring Practices – An author’s guide
to understanding and implementing Accessible Rich Internet Applications. World Wide
Web Consortium. http://www.w3.org/TR/wai-aria-practices/. Accessed 13 October
2014

 17. Snow-Weaver A, Cooper M (2010) WAI-ARIA 1.0 User Agent Implementation Guide –
A user agent developer’s guide to understanding and implementing Accessible Rich
Internet Applications. World Wide Web Consortium. http://www.w3.org/TR/wai-aria-
implementation/. Accessed 13 October 2014

 18. Bulterman D, Jansen J, Cesar P, Mullender S, Hyche E, DeMeglio M, Quint J, Kawamura H,
Weck D, Pañeda XG, Melendi D, Cruz-Lara S, Hanclik M, Zucker DF, Michel T (eds) (2008)
Synchronized Multimedia Integration Language (SMIL 3.0). W3C Recommendation.
World Wide Web Consortium. http://www.w3.org/TR/SMIL/. Accessed 13
October 2014

 19. Adams G (ed) (2013) Timed Text Markup Language (TTML) 1.0 (Second Edition). W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/ttaf1-dfxp/.
Accessed 13 October 2014

 20. Chisholm W, Vanderheiden G, Jacobs I (eds) (1999) Web Content Accessibility Guidelines
1.0. World Wide web Consortium. http://www.w3.org/TR/WAI-WEBCONTENT/. Accessed
13 October 2014

 21. Caldwell B, Cooper M, Reid LG, Vanderheiden G, Chisholm W, Slatin J, White J (eds)
(2008) Web Content Accessibility Guidelines (WCAG) 2.0. World Wide Web Consortium.
http://www.w3.org/TR/WCAG20/. Accessed 13 October 2014

 22. Vanderheiden G, Reid LG, Caldwell B, Henry SL, Lemon G (eds) (2010) How to Meet
WCAG 2.0. A customizable quick reference to Web Content Accessibility Guidelines 2.0
requirements (success criteria) and techniques. World Wide Web Consortium.
http://www.w3.org/WAI/WCAG20/quickref/. Accessed 13 October 2014

 23. Vanderheiden G, Reid LG, Caldwell B, Henry SL (2008) How to meet WCAG 2.0. A
customizable quick reference to Web Content Accessibility Guidelines 2.0 requirements
(success criteria) and techniques. World Wide Web Consortium. http://www.w3.org/WAI/
WCAG20/quickref/20081211/. Accessed 13 October 2014

 24. Cooper M, Reid LG, Vanderheiden G, Caldwell B, Chisholm W, Slatin J (eds) (2010)
Techniques for WCAG 2.0. Techniques and Failures for Web Content Accessibility
Guidelines 2.0. World Wide Web Consortium. http://www.w3.org/TR/WCAG20-TECHS/.
Accessed 13 October 2014

http://www.w3.org/WAI/intro/aria.php#is
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria-primer/
http://www.w3.org/TR/wai-aria-primer/
http://www.w3.org/TR/wai-aria-practices/
http://www.w3.org/TR/wai-aria-implementation/
http://www.w3.org/TR/wai-aria-implementation/
http://www.w3.org/TR/SMIL/
http://www.w3.org/TR/ttaf1-dfxp/
http://www.w3.org/TR/WAI-WEBCONTENT/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/WAI/WCAG20/quickref/
http://www.w3.org/WAI/WCAG20/quickref/
http://www.w3.org/WAI/WCAG20/quickref/20081211/
http://www.w3.org/WAI/WCAG20/quickref/20081211/
http://www.w3.org/TR/WCAG20-TECHS/

CHAPTER 10 ■ ACCESSIBILITY

382

 25. Cooper M, Reid LG, Vanderheiden G, Caldwell B, Chisholm W, Slatin J (eds) (2010) Appendix
A. How to refer to WCAG 2.0 from other documents. In: Understanding WCAG 2.0.
A guide to understanding and implementing Web Content Accessibility Guidelines 2.0.
World Wide Web Consortium. http://www.w3.org/TR/UNDERSTANDING-WCAG20/
appendixA.html. Accessed 13 October 2014

 26. Cooper M, Reid LG, Vanderheiden G, Caldwell B (eds) (2010) Section Headings:
Understanding SC 2.4.10. In: Understanding WCAG 2.0. World Wide Web Consortium.
http://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-
headings.html. Accessed 13 October 2014

 27. Abou-Zahra S et al (eds) (2005) Conformance Evaluation of Web Sites for Accessibility.
World Wide Web Consortium. http://www.w3.org/WAI/eval/conformance.html.
Accessed 13 October 2014

 28. WebsynergiDesign (2011) Accessibility – Our Experience & Accessible web site Design
Portfolio. WebsynergiDesign Ltd. http://www.websynergi.com/accessibility/
accessibility-bobby-w3c.aspx. Accessed 13 October 2014

 29. Caldwell B, Cooper M, Reid LG, Vanderheiden G (eds) (2008) Relative luminance.
In: Web Content Accessibility Guidelines (WCAG) 2.0. W3C Recommendation.
World Wide Web Consortium. http://www.w3.org/TR/2008/REC-WCAG20-
20081211/#relativeluminancedef. Accessed 13 October 2014

 30. WebAIM (2011) Color Contrast Checker. Utah State University. http://webaim.org/
resources/contrastchecker/. Accessed 13 October 2014

 31. Juicy Studio (2011) Luminosity Colour Contrast Ratio Analyser. Juicy Studio.
http://juicystudio.com/services/luminositycontrastratio.php. Accessed
13 October 2014

 32. WAT-C (2005) Luminosity Contrast Ratio Analyser 1.1. Web Accessibility Tools
Consortium. http://www.wat-c.org/tools/CCA/LCRA/index.html. Accessed
13 October 2014

 33. Cooper M, Reid LG, Vanderheiden G, Caldwell B, Chisholm W, Slatin J (eds) (2010) Color
Picker. Working example. In: Techniques for WCAG 2.0. Techniques and Failures for
Web Content Accessibility Guidelines 2.0. World Wide Web Consortium.
http://www.w3.org/WAI/WCAG20/Techniques/working-examples/G175/index.php.
Accessed 13 October 2014

 34. Ishida R (ed) (2011) CSS3 Ruby Module. World Wide Web Consortium.
http://www.w3.org/TR/css3-ruby/. Accessed 13 October 2014

 35. Sowden P (2001) Alternative Style: Working With Alternate Style Sheets. A List Apart
Magazine. http://www.alistapart.com/d/alternate/styleswitcher.js. Accessed
13 October 2014

 36. W3C (2004) Demonstration of Signing Avatar Technology as used in the Signing Science
Project. TERC. http://www.w3.org/2004/Talks/0628-rdig-sims/vcom3d-signsci.mov.
Accessed 13 October 2014

 37. Trace Center (2011) Photosensitive Epilepsy Analysis Tool (PEAT). The University of
Wisconsin. http://trace.wisc.edu.peat/. Accessed 11 September 2011

http://www.w3.org/TR/UNDERSTANDING-WCAG20/appendixA.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/appendixA.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-headings.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-headings.html
http://www.w3.org/WAI/eval/conformance.html
http://www.websynergi.com/accessibility/accessibility-bobby-w3c.aspx
http://www.websynergi.com/accessibility/accessibility-bobby-w3c.aspx
http://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef
http://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef
http://webaim.org/resources/contrastchecker/
http://webaim.org/resources/contrastchecker/
http://juicystudio.com/services/luminositycontrastratio.php
http://www.wat-c.org/tools/CCA/LCRA/index.html
http://www.w3.org/WAI/WCAG20/Techniques/working-examples/G175/index.php
http://www.w3.org/TR/css3-ruby/
http://www.alistapart.com/d/alternate/styleswitcher.js
http://www.w3.org/2004/Talks/0628-rdig-sims/vcom3d-signsci.mov

CHAPTER 10 ■ ACCESSIBILITY

383

 38. EOWG, WCAG WG (eds) (2009) Comparison of WCAG 1.0 Checkpoints to WCAG 2.0,
in Numerical Order. World Wide Web Consortium. http://www.w3.org/WAI/WCAG20/
from10/comparison/. Accessed 13 October 2014

 39. Chisholm W, Vanderheiden G, Jacobs I (eds) (1999) Guideline 11. Use W3C technologies
and guidelines. In: Web Content Accessibility Guidelines 1.0. World Wide Web
Consortium. http://www.w3.org/TR/WAI-WEBCONTENT/#gl-use-w3c. Accessed
13 October 2014

 40. Cooper M, Reid LG, Vanderheiden G, Caldwell B, Chisholm W, Slatin J (2008)
Understanding Accessibility Support. In: Understanding WCAG 2.0. A guide to
understanding and implementing Web Content Accessibility Guidelines 2.0. World Wide
Web Consortium. http://www.w3.org/TR/2008/NOTE-UNDERSTANDING-WCAG20-20081211/
conformance.html#uc-accessibility-support-head. Accessed 13 October 2014

 41. Chisholm W, Vanderheiden G, Jacobs I (eds) (1999) Guideline 6. In: Web Content
Accessibility Guidelines 1.0. World Wide Web Consortium. http://www.w3.org/TR/
WCAG10/wai-pageauth.html#tech-scripts. Accessed 13 October 2014

 42. Swan H, Henry S (2010) How to Update Your Web Site from WCAG 1.0 to WCAG 2.0.
World Wide Web Consortium. http://www.w3.org/WAI/WCAG20/from10/websites.html.
Accessed 13 October 2014

 43. Clark J (2006) To hell with WCAG2. A List Apart. http://www.alistapart.com/articles/
tohellwithwcag2. Accessed 13 October 2014

 44. The United States Government (2010) § 1194.22 Web-based intranet and Internet
information and applications. In: Section 508 Standards Guide. The United States
Government. http://www.section508.gov/docs/Section%20508%20Standards%20Guide.
pdf. Accessed 04 February 2011

 45. The United States Government (2010) Note to §1194.22. In: Section 508 Standards
Guide. The United States Government. http://www.section508.gov/
index.cfm?fuseAction=stdsdoc. Accessed 04 February 2011

 46. WebAIM (2014) Creating Accessible JavaScript. Overview of Creating Accessible JavaScript.
Web Accessibility in Mind. http://webaim.org/techniques/javascript/. Accessed
13 October 2014

 47. Adobe (2014) Adobe Flash accessibility design guidelines. Adobe Systems Incorporated.
http://www.adobe.com/accessibility/products/flash/best_practices.html.
Accessed 13 October 2014

 48. Design Science (2014) MathPlayer Can Speak! MathPlayer: Speech instructions and
examples. Design Science. http://www.dessci.com/en/products/mathplayer/tech/
accessibility.htm. Accessed 13 October 2014

http://www.w3.org/WAI/WCAG20/from10/comparison/
http://www.w3.org/WAI/WCAG20/from10/comparison/
http://www.w3.org/TR/WAI-WEBCONTENT/#gl-use-w3c
http://www.w3.org/TR/2008/NOTE-UNDERSTANDING-WCAG20-20081211/conformance.html#uc-accessibility-support-head
http://www.w3.org/TR/2008/NOTE-UNDERSTANDING-WCAG20-20081211/conformance.html#uc-accessibility-support-head
http://www.w3.org/TR/WCAG10/wai-pageauth.html#tech-scripts
http://www.w3.org/TR/WCAG10/wai-pageauth.html#tech-scripts
http://www.w3.org/WAI/WCAG20/from10/websites.html
http://www.alistapart.com/articles/tohellwithwcag2
http://www.alistapart.com/articles/tohellwithwcag2
http://www.section508.gov/docs/Section%20508%20Standards%20Guide.pdf
http://www.section508.gov/docs/Section%20508%20Standards%20Guide.pdf
http://webaim.org/techniques/javascript/
http://www.adobe.com/accessibility/products/flash/best_practices.html
http://www.dessci.com/en/products/mathplayer/tech/accessibility.htm
http://www.dessci.com/en/products/mathplayer/tech/accessibility.htm

PART 2

Developing with Standards

After learning the specifications required for creating standard-compliant web site components, you have to
bring theory to practice. In this part of the book, you analyze the most common web site errors and master
techniques and best practices through step-by-step guides to be able to plan and create standards-compliant
web sites with confidence. You write well structured markup and core web sites components such as lists,
tables, forms, and news feeds.

You get useful tips to set up a convenient and efficient web designer environment, and learn the
distinctive features of advanced text editors that make them suitable for hand coding, such as correct
whitespace handling, UTF-8 and UTF-16 support, and syntax highlighting. You see free and commercial
web development tools, the most common semantic editors and reasoners for ontology development, and
Responsive Web Design frameworks to design fluid grids for mobile-friendly web sites. You see how to analyze
the DOM tree and modify the element containers with the built-in development tools of modern browsers,
or update the CSS of a site on-the-fly in Firefox Inspector to get an instant preview without modifying any
physical files. It will be demonstrated why and how to test site robustness in a text-based browser, under
multiple browsers, and without style sheets.

You learn the best practices to create mobile-friendly layout, set font size proportional to the viewport
size, properly combine CSS units, embed YouTube videos and Google Maps as valid HTML5, and ensure
backward-compatibility and robustness through fallback mechanisms.

You learn about the fundamental validation services to check the markup, the style sheets, links,
semantics, and news feeds individually or together using Unicorn, the unified validator. You become familiar
with sophisticated accessibility validators such as Wave to identify accessibility barriers, and tools to evaluate
the contrast ratio between foreground and background. You learn how to check semantic annotations by
extracting machine-readable metadata using Indice. Once you achieve standard compliance, you can express
validity and represent technologies with official icons and logos.

387

CHAPTER 11

Development Tools

Since modern markup elements and attributes are becoming more and more sophisticated, complex development
software tools are used to generate web pages. Advanced text editors are fundamental programs in the toolbox of
every web designer. Advanced text editors can be used for a variety of tasks, and provide very useful features such as
syntax highlighting, line numbering, filters, uppercase-lowercase converters, spell checker, and so forth. They can also
be integrated as the default editor of FTP clients, providing the option to directly edit files stored on the web server
in an advanced environment. The implementation of Semantic Web technologies is efficient with semantic editors
and reasoners. Markup correctors can be used to improve code quality. WYSIWYG editors and content management
systems can be useful for rapid development; however, their code quality varies greatly.

In this chapter, you will learn about software tools that can help you develop standard-compliant web sites.
You will become familiar with those vital features that should be considered when selecting your development tools,
optimizers, and testing environments.

Feature Requirements
Although experienced web designers can write valid code in any text editor, the editor you select for your toolbox
needs some advanced features that are vital for efficient hand-coding:

Comprehensive character encoding support, including full Unicode support•฀

Whitespace character support•฀

Control character support, for example, CR+LF (Windows), LF only (UNIX), and Apple •฀
(CR only) break rows

Multifile editing with tabs•฀

Customizable color schemas for •฀ syntax highlighting (XHTML, CSS, XML, scripts, and so on)

Undo/redo•฀

Forced word wrap•฀

Line numbering•฀

Auto indent•฀

Guides for tag pairs and element nesting•฀

OS integration (adds application to right-click menu)•฀

The selected editor should be integrated with at least one of your browsers as the default source code editor,
which you can use to open the currently rendered web document for editing with a button or hotkey.

CHAPTER 11 ■ DEVELOPMENT TOOLS

388

There are additional features of text editors that are not vital but can be useful:

Customized color and font settings•฀

Customizable toolbars•฀

Spell checker•฀

Templates•฀

Bookmarks•฀

Full drag-and-drop support•฀

Built-in FTP client or integration with an (S)FTP client•฀

Conversions (uppercase, lowercase, invert case, and initial caps)•฀

International versions (can be convenient for some developers)•฀

Support for double-byte character systems (DBCS) used in Far East languages such as Chinese •฀
or Japanese (if required)

Browser preview•฀ 1 (launching the default or selected web browser for debugging and testing)

Text Editors
In contrast to word processors such as Microsoft Word or OpenOffice.org Writer, plain-text editors cannot be used
for document formatting, but they are suitable for creating web pages. However, basic text editors are not convenient
for web design, because some vital features are missing from them. For example, many of them do not handle control
characters and whitespaces correctly. The most well-known examples are Notepad under Windows and vi under Linux.

Advanced text editors such as WordPad provide text formatting and other additional features. Source code editors
are advanced text editors with additional tools specifically designed for hand-coders and programmers. The most
common feature of them is syntax highlighting for a variety of markup languages, style sheets, and programming
languages. These full-featured editors are comprehensive tools suitable for hand-coding web pages. The following are
some examples:

Linux

BlueFish [1]•฀

Komodo Edit [2]•฀

Mac OS

BBEdit [3]•฀

TextWrangler [4]•฀

1Some฀developers฀do฀not฀use฀this฀feature฀and฀open฀the฀desired฀browser(s)฀manually.

https://OpenOffice.org

CHAPTER 11 ■ DEVELOPMENT TOOLS

389

Windows

EditPad Lite (free [5] and low-cost versions [6] are available)•฀

EditPlus [7]•฀

NotePad++ (free, open source [8])•฀

TextPad (low cost, free evaluation [9])•฀

Cross-platform

Arachnophilia (available for Windows, Linux, Unix, FreeBSD, and Mac OS [10])•฀

As an example, let’s look at the major features of Notepad++. It is a multifile editor with convenient file manager
options. Notepad++ saves multiple files with a single click, opens recently edited files, and provides tabs for each
opened file. It has a fully customizable interface with advanced features such as line markers, guides for opening
and closing tag pairs, structuring guides to collapse or reveal the currently edited level of the DOM tree, and syntax
highlighting (Figure 11-1).

Figure 11-1. Syntax highlighting and tag pair guides in Notepad++

CHAPTER 11 ■ DEVELOPMENT TOOLS

390

There are a variety of programming and web development languages supported in syntax highlighting from
HTML to XML and from PHP to Ruby. There are several predefined color themes you can select from, or you can
create new ones to your taste. The different document components (indent guidelines, marks, carets, whitespaces,
tag pairs, active and inactive tabs, and so on) can be styled individually. Notepad++ can change text direction of
documents. It also supports a variety of character encodings, can add and remove byte-order marks, supports
big-endian and little-endian Unicode files, and converts files from one encoding to another.2 The documents
opened in the application can be previewed in any installed browsers.

Notepad++ also provides advanced text transformation functionalities, such as escaping certain characters,
transforming lowercase characters to uppercase (or vice versa), searching for matching strings, converting decimal
numbers to their hexadecimal equivalents, inserting the current date and time, sorting lists ascending or descending,
automatically converting leading spaces to tabs, and so on. Notepad++ also supports macros, which you can run
multiple times. The list of features can be extended through additional plug-ins, such as the MIME tools for Base64
encoding and decoding.

WYSIWYG Editors
Graphical authoring tools can be comfortable, but standard compliance is not guaranteed by many of them. They
have features that can be useful even for experienced web designers, and they provide an interface with markup
window, instant preview, and advanced debugging tools. Still, not all developers apply them, and some use an
advanced text editor exclusively. The graphical developing environments usually require only a basic knowledge
of markup and CSS (and sometimes no technical background whatsoever), which is the major reason for their
extreme popularity. Because of the large number of features, however, there might be usability issues. For example,
the interface can be confusing and intimidating to some users, especially the ones without expertise. In spite of
the graphical interface, some systems are difficult to master. All web development tools have a different interface,
and someone who is an expert in one of them is not necessarily familiar with other systems, which is a limitation,
especially if the editor is available for one platform only. In contrast, hand coders can work in pretty much any
environment, because text editors are available for all platforms, and their major functionalities are very similar.

Most WYSIWYG editors can also be used as source code editors. Many features of graphical editors can be useful
for web designers, such as database management features, web server configuration features, and frameworks.
However, only a few WYSIWYG editors are dedicated to standards compliance such as XStandard XHTML and W3C
Amaya (Figure 11-2).

2This฀feature฀can฀be฀used฀for฀those฀encodings฀that฀can฀be฀reasonably฀converted฀to฀another,฀more฀advanced฀encoding฀without฀
sacrificing฀special฀characters฀(for฀example,฀ANSI฀to฀UTF-8).

CHAPTER 11 ■ DEVELOPMENT TOOLS

391

Many commercial and free editing tools exist [11]. Compared to advanced text editors and source code editors,
however, many commercial WYSIWYG editors are not affordable to everyone. On the other hand, there are several
graphical developers that are not only free but also open source. Here are some examples:

Windows

Microsoft Expression Web [12] (commercial, free trial available)•฀

Microsoft WebMatrix [13] (freeware)•฀

Cross-platform

Adobe Dreamweaver, available for Windows and Mac OS (commercial) [14]•฀

W3C Amaya, a free, open source (X)HTML, MathML, and SVG editor [15]•฀

XStandard XHTML, the standards-compliant XHTML editor, available for Windows and Mac •฀
OS (free lite version) [16]

The standard compliance of Dreamweaver, the industry-leading authoring application is constantly evolving.
However, it took several years for the development team to reach a high level of web standards support. The latest
versions of Dreamweaver support HTML, CSS, XSLT, JavaScript, ActionScript, XML, ASP, ColdFusion, JSP,
and PHP. Some features and tools in Dreamweaver are useful not only for development in general but also for
standard-compliant development. Some examples are invalid code highlighting, syntax error alerts displayed in

Figure 11-2. An SVG file in Amaya

CHAPTER 11 ■ DEVELOPMENT TOOLS

392

the info bar, the list of CSS properties associated with the currently selected element, and syntax highlighting. The
program interface is highly customizable and features different modes for displaying the code, the result, or both at
the same time (Figure 11-3).

Figure 11-3. Code and design can be displayed simultaneously in Adobe Dreamweaver

Content Management Systems and Bloggers
Content management systems are WYSIWYG tools developed mainly for web content authoring and blog publishing.
Many of them are driven by PHP. The most well-known content management systems are cross-platform, such as
Drupal [17], Joomla! [18], and WordPress [19]. Beyond the common tasks of web publishing, they provide modern
functionalities to support semantic annotations, SEO, and accessibility. However, the standard support of content
management systems varies, and these systems are responsible for a large share of invalid markup on the Web.
Figure 11-4 shows a typical example.

CHAPTER 11 ■ DEVELOPMENT TOOLS

393

Although there are more and more content management systems that claim to generate standard-compliant
code (LiveStoryboard [20], WebDandy [21], sNews [22], and so on), most of them do not provide a holistic approach to
standards implementation.

Web Standards Support
The standards support of editors varies. Several tools implement certain markup versions or variants only, while
others have limited CSS support (Table 11-1). No ultimate solution exists, but any comprehensive tool can be a good
choice for hand-coders. For example, BlueFish supports not only all (X)HTML versions and variants but also RSS,
Atom, MathML, CSS, JavaScript, Java, XSLT, XForms, and XPath.

Figure 11-4. Errors and warnings in every tenth row of the markup generated by a CMS

Table 11-1. Markup Language Support of Some Editors with Validation Feature

HTML 4.01 XHTML HTML 5

1.0 1.1 2

S T F S T F

Amaya – + – + + – + – –

BlueFish + + + + + + + + +

Dreamweaver + + – + + – + – +

Freeway + + – + + – – – +

KompoZer + + – + + – – – –

Expression Web + + + + + + + – +

CHAPTER 11 ■ DEVELOPMENT TOOLS

394

Figure 11-5. The HermiT reasoner running in Protégé

Specific Editors
Beyond advanced text editors, there are other programs that cannot be missed from the toolbox of web designers.
Such tools are semantic editors, semantic reasoners, MathML editors, and markup correctors.

Semantic Editors and Reasoners
Along with the increasing popularity of OWL, more and more tools are appearing on the market for OWL
development. Web ontologies are machine-processable, and semantic reasoners (also known as reasoning engines or
rules engines) can be used to infer logical consequences from facts or axioms described by the ontologies. Some of the
most useful semantic editors and reasoners are described next.

Protégé is a free open source framework [23] and one of the most widely used OWL editors. It is an efficient tool
for developing and testing ontologies. Protégé supports several file formats and syntaxes, including OWL, OWL in
functional syntax, OWL in Manchester syntax, RDF/XML, OBO flat file, KRSS2, Latex, and Turtle. It can directly open
not only saved files but also online ontologies.

HermiT is an OWL Reasoner that can be used to determine ontology consistency, identify relationships between
classes, and perform further tasks. It can be used from the command line, in Java applications, or as a Protégé plug-in
(Figure 11-5).

CHAPTER 11 ■ DEVELOPMENT TOOLS

395

HermiT is released under the LGPL license [24]. TopBraid Composer is a graphical development tool for data
modeling and semantic data processing that supports standards such as RDF, OWL, and SPARQL [25]. Pellet is an
OWL 2 Reasoner for Java [26]. Racer 2.0 supports standards such as RDF, RDFS, OWL Lite, OWL DL, and SPARQL.
Connectivity with external software is also possible [27]. FaCT++ is a Description Logic reasoner compatible with
OWL DL and OWL 2 [28].

MathType
MathType is an advanced editor for mathematical notations developed by Design Science. The equations and
annotations can be edited through a powerful graphical user interface (Figure 11-6).

Figure 11-6. Equation editing in MathType

The software is available for Windows and Mac OS [29]. The editor is often embedded into Microsoft Word to
replace the Equation Editor (either as a new menu or as a new ribbon, depending on the Word version), but it can also
be used in other word processors such as OpenOffice, Google Docs, or Apple Pages. The mathematical annotations
edited in MathType can also be exported to MathML and LaTeX. In fact, using MathType is one of the easiest ways to
generate MathML. Beyond MathType, the W3C browser/editor Amaya can also be used to generate MathML.

Markup Correctors
Although sophisticated markup components such as metadata require human decision, conventional (X)HTML
markup elements and attributes can be reliably corrected automatically. They can be useful in many cases; however,
markup correctors do not replace hand-coder web standards experts. In contrast to developers, software tools do not
always support the latest standards; some of them are discontinued or will be updated several years after the release
of a standard.

CHAPTER 11 ■ DEVELOPMENT TOOLS

396

HTML Tidy

HTML Tidy is a markup corrector that fixes invalid HTML and improves the layout and indent style of the markup.
The tool was developed by Dave Raggett, the coauthor and editor of several markup specifications at W3C. Since it is
written in ANSI C, precompiled binaries are available for a variety of platforms and can be compiled for further ones.
HTML Tidy is available under the W3C license at Sourceforge.net (both as a downloadable binary and as the source
code) [30] or as an online service at W3C [31].

The software can identify and correct missing or mismatched end tags, mixed-up tags, and quotes, as well as
change markup layout according to predefined styles [32].

Tidy for PHP

The HTML markup generated by PHP scripts can be checked and corrected by the PHP extension Tidy. As an
example, functions can be written to take HTML markup fragments as strings and run them through HTML Tidy. The
output is a valid markup. This approach makes automatic page processing and standardization possible. If there are
errors in the code, the location (line, column) and the error cause are clearly indicated or automatically corrected [33].

Log Validator

W3C Log Validator “combines a Server Log analysis engine with batch validation, link checking, and other
quality-oriented processing, for step-by-step improvement and maintenance of Web Site Quality” [34]. It finds the
most frequently downloaded invalid documents, broken links, other errors, and inconsistencies, and it sets a priority
list for fixing them. This feature is designed for standardizing large-scale invalid web sites step by step by correcting
only a certain amount of documents at a time. Eventually, the whole site will be fixed, but you can determine how to
schedule development time and effort.

Log Validator applies processing modules that validate the latest server logs against markup and style sheet
recommendations (according to W3C HTML and CSS Validation Services). The SurveyEngine module creates
a summary of errors for the most popular documents that might affect the overall quality of the site. The basic
processing module generates only a list of documents by popularity. Log Validator supports three types of output:
raw, mail, and HTML.

Responsive Web Design Frameworks
Responsive frameworks are used by web designers to build a web site using a grid-based layout with predefined
base code without spending a huge amount of time creating a grid structure from scratch. The following sections
summarize some of the most popular Responsive Web Design frameworks.

Foundation
ZURB Foundation is one of the most popular free tool collections for responsive website and web application
development [35]. It contains HTML and CSS-based design templates for typography, forms, buttons, navigation and
other interface components, as well as optional JavaScript extensions.

Foundation is modular and based on Sass style sheets so that web designers can enjoy the benefits of variables,
functions, operators, nested selectors, as mixins. From version 3.0 onward, Foundation can also be customized
through a form to choose and modify the components needed for your project.

The default flexible grid layout of Foundation is 940 pixels wide, and supports the following device categories:
mobile phones in portrait and landscape orientation, tablets, and PCs with low and high resolution screens. Selecting
a device category adjusts the column width.

CHAPTER 11 ■ DEVELOPMENT TOOLS

397

Bootstrap
Bootstrap is a free, open-source collection of tools for creating responsive web sites3 and web applications [36]. The
templates of Bootstrap are based on HTML5 and CSS3, and cover navigation, typography, forms, buttons, and other
web site components (Figure 11-7), as well as optional JavaScript extensions. Bootstrap is compatible with all the
modern browsers, and gracefully degrades when used on older browsers such as Internet Explorer 8.

Figure 11-7. A Bootsrap template

The modular structure of Bootstrap relies on a set of LESS style sheets called bootstrap.less, making it possible
to use variables, functions, operators, nested selectors, and mixins.

The default grid system for Responsive Web Design comes with a 1,170 pixels wide grid layout, however, web
designers can choose a variable-width layout as well. The four target device classes in both cases are mobile phones
with portrait and landscape orientation, tablets and desktop computers with low and high resolution screen. Selecting
a device class modifies the width of the columns.

To use Bootstrap in the markup, you have to download the CSS file of Bootstrap and link it in the document head.
Alternatively, the CSS file from the downloaded Less or Sass style sheets can be compiled with a special compiler. If
you want to use the JavaScript components too, you have to load them on top of the jQuery library in your markup.

3Since฀version฀2.

CHAPTER 11 ■ DEVELOPMENT TOOLS

398

Skeleton
Skeleton is a boilerplate for responsive, mobile-friendly development [37]. The default grid of Skeleton is a variation of
the 960 pixels wide grid system. Skeleton’s typography feature supports strong hierarchy with basic styles. The default
font is Helvetica Neue, which can be easily changed. Regular paragraphs have a font size of 14px and 21px line height by
default. Skeleton also supports buttons, forms, and other responsive web site components through CSS3 Media Queries.

Less Framework
The Less Framework is an adaptive CSS grid system, containing four layouts and three sets of typography presets, all
based on a single grid composed of 68 px columns with 24 px gutters [38]. The four layouts are the default, 992px wide
10 column layout, the Tablet layout with 8 columns at 768 pixels, the mobile layout with 3 columns at 320 pixels, and
the wide mobile layout with 5 columns at 480 pixels. Only the number of columns and the width of the outer margins
change in different layouts. The typography of the Less Framework is based on harmonious type sizes calculated using
the Golden Ratio. The Less Framework provides backward-compatibility through graceful degradation to the default
992px layout.

Gumby
Gumby Framework is a responsive CSS framework, including multiple grid types with different column variations
such as a 12-grid and a 16-grid layout system [39]. Gumby supports nested gridding, and supports hybrid grids, tiles,
fancy tiles, and semantic tiles. Gumby Framework is built on a Sass preprocessor, and uses modular scale and a
Golden Ratio tool for typography. Gumby is easy to customize, and all the main components, their colors, sizes, and
fonts can be quickly changed.

Browsers as Development Tools
Although the primary aim of web browsers is to process and render web documents, they can also be used in
development and standardization. Accessibility can be effectively evaluated by turning off style sheets and nontext
content or by applying a text-based browser.

There are various built-in development tools in browsers such as the Developers Tools in Internet Explorer (F12) [40]
which, among others, have a DOM Explorer, a Console, a Debugger, and Emulation. Emulation can be useful to
test older web sites that targeted a particular version of Internet Explorer, or simply to test any web site for
backward-compatibility. To do so, you can change the document mode, the browser profile, and the user agent
string (Figure 11-8).

CHAPTER 11 ■ DEVELOPMENT TOOLS

399

In Firefox, you can launch the Inspector by pressing F12 or right-clicking any element of a web site and selecting
Inspect Element (Q) from the local menu. The Inspector is a very useful tool, allowing web designers to analyze not
only the DOM tree but also the style sheets applied to an element, including the rulesets declared explicitly and the
ones inherited from parent elements (Figure 11-9). Those styles that are not applied are crossed out, making it easy
to identify more specific styles. The CSS styles can be disabled and re-enabled by clicking on the checkbox in front
of them. Any of the CSS styles can also be overwritten on the temporary files used to render the page, providing the
option to check a different background color, font size, etc. without actually modifying any physical files.

Safari’s Developer Tools are available from Edit ➤ Preferences ➤ Advanced ➤ Show Develop Menu in menu bar [41],
or by right-clicking an element of a web page and selecting Inspect element. Opera also offers a similar feature
under Page ➤ Developer Tools [42] and by right-clicking an element and selecting Inspect Element. The Developer
Tools of Google Chrome can show the DOM tree, the applied CSS rulesets, including the computed property values,
and Event listeners (available under More tools ➤ Developer Tools or by pressing Ctrl + Shift + I).

Figure 11-8. Emulation in Internet Explorer

Figure 11-9. Firefox Inspector

CHAPTER 11 ■ DEVELOPMENT TOOLS

400

Validator and Debugger Plug-ins
Browsers can also be extended with additional functionality by installing developer plug-ins, many of which are
freely available.

There are numerous add-ons for Firefox that can be useful for developers [43]. For example, HTML Validator is an
extension that adds HTML validation inside Firefox [44]. It clearly indicates the number of markup errors as an icon in
the status bar when browsing. Live HTTP Headers displays HTTP headers of a page and while browsing [45]. FireFTP
is a free, secure, cross-platform (S)FTP client for the browser [46]. The User Agent Switcher extension adds a menu
and a toolbar button to switch the user agent of the browser [47]. The IE Tab extension supports Internet Explorer
rendering from IE6 to IE9, which can be useful for testing purposes [48]. The Web Developer extension adds various
web developer tools to a browser, such as the option to disable certain styles or display CSS by media type [49]. One of
the most comprehensive developer add-ons for Firefox is Firebug [50]. It integrates several development tools to the
browser to directly edit, debug, and monitor HTML, CSS, and JavaScript (Figure 11-10).

Figure 11-10. Firebug in action

Some of these Firefox tools are also available under Chrome (for example, Firebug [51], Web Developer [52]), and
the ones that do not have a Chrome version have their equivalents for Chrome (such as IE Tab [53]). There are many
other developer tools under Chrome [54], such as W3C HTML5 & CSS3 Validator [55], Validity that validates the markup
from the address bar (or with hotkeys) [56], colorPicker [57], XML Tree [58], Resolution Test [59], just to mention a few.

Testing Web Pages in Text Browsers
Testing a web site in text browsers such as Lynx [60] is the best method to check information availability without styles
and graphics4 as well as accessibility. Properly designed web content remains usable in text browsers (Figure 11-11),
while a large share of web sites do not.

4Lynx฀cannot฀display฀nontext฀contents฀by฀default,฀but฀external฀programs฀can฀be฀launched฀from฀Lynx฀such฀as฀image฀viewers฀฀
or฀video฀players.

CHAPTER 11 ■ DEVELOPMENT TOOLS

401

View the Source Code
Web browsers provide the option to view the source code of the currently opened web page (usually by selecting
View ➤ Source or Page Source, selecting a similar menu item from the local menu, or pressing Cmd/Ctrl+U or in
Safari Cmd/Ctrl+Alt+U). This feature can be used to analyze the markup and other components of the site. Although it
can be very useful to learn from other developers, it is crucial to keep in mind that a large amount of web sites are not
standard-compliant and should not be considered as a reference or best practice.

There is a difference between the copyright of the web site content and that of the markup code that displays it.
As a general rule, copying code of other web sites without permission is not allowed to be published unless there is a
license that allows you to do so.

Figure 11-11. Browsing an accessible site in Lynx

CHAPTER 11 ■ DEVELOPMENT TOOLS

402

Summary
In this chapter, you learned how to select development tools, regardless of the platform of your preference. By
now you should know the vital features that are needed for effective work, such as support for control characters
and special characters like the BOM, and syntax highlighting. The most fundamental tool of standards-based web
design is an advanced text editor, and a carefully selected combination of software tools can expedite your web site
standardization efforts, both in redesign and start-from-scratch projects.

After you have acquired the standards, approaches, and knowledge described in the previous chapters, it is time
to apply the theory in practice. In the next chapter, all these things will be used together in step-by-step guides to
improve your hand-coding skills.

References
 1. Sessink O (2014) BlueFish. The Bluefish Project Team. http://bluefish.openoffice.nl/.

Accessed 4 November 2014

 2. ActiveState Software (2014) Komodo. ActiveState Software.
http://www.activestate.com/komodo-ide. Accessed 4 November 2014

 3. Bare Bones Software (2014) BBEdit. Bare Bones Software, Inc.
http://www.barebones.com/products/bbedit/. Accessed 4 November 2014

 4. Bare Bones Software (2014) TextWrangler. Bare Bones Software, Inc.
http://www.barebones.com/products/textwrangler/index.html.
Accessed 4 November 2014

 5. Goyvaerts J (2014) EditPad Lite. Just Great Software Co. Ltd.
http://www.editpadlite.com. Accessed 4 November 2014

 6. Goyvaerts J (2014) EditPad Pro. Just Great Software Co. Ltd. http://www.editpadpro.com.
Accessed 4 November 2014

 7. ES-Computing (2014) EditPlus – Text editor, HTML Editor, PHP Editor and Java Editor for
Windows. ES-Computing. http://www.editplus.com. Accessed 4 November 2014

 8. Ho D et al (2014) Notepad++. Don Ho. http://notepad-plus-plus.org. Accessed 4
November 2014

 9. HELIOS (2014) TextPad. Helios Software Solutions.
http://www.textpad.com/products/textpad/. Accessed 4 November 2014

 10. Lutus P (2014) Arachnophilia. http://www.arachnoid.com/arachnophilia/.
Accessed 4 November 2014

 11. htmlArea (2014) WYSIWYG editor directory. htmlArea. http://www.htmlarea.com.
Accessed 4 November 2014

 12. Microsoft (2011) Microsoft Expression Web. Microsoft Corporation.
http://www.microsoft.com/en-us/download/details.aspx?id=36179.
Accessed 4 November 2014

 13. Microsoft (2014) Microsoft Corporation. http://www.microsoft.com/web/webmatrix/.
Accessed 4 November 2014

 14. Adobe (2014) Adobe Dreamweaver. Adobe Systems Incorporated.
http://www.adobe.com/products/dreamweaver/. Accessed 4 November 2014

http://bluefish.openoffice.nl/
http://www.activestate.com/komodo-ide
http://www.barebones.com/products/bbedit/
http://www.barebones.com/products/textwrangler/index.html
http://www.editpadlite.com/
http://www.editpadpro.com/
http://www.editplus.com/
http://notepad-plus-plus.org/
http://www.textpad.com/products/textpad/
http://www.arachnoid.com/arachnophilia/
http://www.htmlarea.com/
http://www.microsoft.com/en-us/download/details.aspx?id=36179
http://www.microsoft.com/web/webmatrix/
http://www.adobe.com/products/dreamweaver/
http://www.adobe.com/products/dreamweaver/

CHAPTER 11 ■ DEVELOPMENT TOOLS

403

 15. Quint V, Carcone L (eds) (2012) Amaya. World Wide Web Consortium.
http://www.w3.org/Amaya/. Accessed 4 November 2014

 16. Belus Technology (2014) XStandard: free standards-compliant XHTML WYSIWYG editor.
Belus Technology Inc. http://xstandard.com/. Accessed 4 November 2014

 17. Buytaert D (2014) Drupal. Dries Buytaert. http://drupal.org. Accessed 4 November 2014

 18. Moffatt S et al (2014) Joomla! The CMS Trusted By Millions for their Websites.
http://www.joomla.org. Accessed 4 November 2014

 19. Mullenweg M, Boren R, Jaquith M, Ozz A, Westwood P (2014) WordPress.
http://wordpress.org/. Accessed 4 November 2014

 20. liveSTORYBOARD (2012) liveSTORYBOARD web content management. Web standards
save time, decrease costs, increase flexibility - don't ignore them. liveSTORYBOARD, Inc.
http://www.livestoryboard.com/Benefits/CMS-standards-compliant.html.
Accessed 4 November 2014

 21. Web Dandy (2014) Web Dandy Content Management System - Accessibility Comes
As Standard. http://www.webdandy-cms.co.uk/w3c-standards.htm. Accessed 4
November 2014

 22. sNews (2014) sNews − Lightweight Content Management System. http://snewscms.com.
Accessed 4 November 2014

 23. Stanford University (2014) The Protégé Ontology Editor and Knowledge Acquisition System.
Stanford Center for Biomedical Informatics Research. http://protege.stanford.edu/.
Accessed 4 November 2014

 24. Motik B, Shearer R, Glimm B, Stoilos G, Horrocks I (2014) Hermit OWL Reasoner.
University of Oxford. http://hermit-reasoner.com/. Accessed 4 November 2014

 25. TopQuadrant (2014) TopBraid Composer. TopQuadrant Inc.
http://www.topquadrant.com/products/TB_Composer.html. Accessed 4 November 2014

 26. Clark & Parsia (2013) Pellet: The Open Source OWL 2 Reasoner. Clark & Parsia LLC.
http://clarkparsia.com/pellet. Accessed 4 November 2014

 27. Haarslev V, Hidde K, Möller R, Wessel M et al (2014) Racer.
http://www.ifis.uni-luebeck.de/~moeller/racer/index.html. Accessed 4 November 2014

 28. Tsarkov D et al (2014) FaCT++. Dmitry Tsarkov et al.
http://code.google.com/p/factplusplus/. Accessed 4 November 2014

 29. Design Science (2014) MathType – equation editor. Design Science.
http://www.dessci.com/en/products/mathtype/. Accessed 4 November 2014

 30. Raggett D, Paehl D, Nelson C, Hennecke C, Teague T (2008) HTML Tidy Library Project.
SourceForge.net: Find, Create, and Publish Open Source software for free.
http://tidy.sourceforge.net. Accessed 4 November 2014

 31. Connolly D, Hazaël-Massieux D (2014) Tidy your HTML. World Wide Web Consortium.
http://services.w3.org/tidy/tidy. Accessed 4 November 2014

 32. Raggett D (2012) Clean up your Web pages with HTML TIDY. Dave Raggett.
http://www.w3.org/People/Raggett/tidy/. Accessed 4 November 2014

http://www.w3.org/Amaya/
http://xstandard.com/
http://drupal.org/
http://www.joomla.org/
http://wordpress.org/
http://www.livestoryboard.com/Benefits/CMS-standards-compliant.html
http://www.webdandy-cms.co.uk/w3c-standards.htm
http://snewscms.com/
http://protege.stanford.edu/
http://hermit-reasoner.com/
http://www.topquadrant.com/products/TB_Composer.html
http://clarkparsia.com/pellet
http://www.ifis.uni-luebeck.de/~moeller/racer/index.html
http://code.google.com/p/factplusplus/
http://www.dessci.com/en/products/mathtype/
http://tidy.sourceforge.net/
http://services.w3.org/tidy/tidy
http://www.w3.org/People/Raggett/tidy/

CHAPTER 11 ■ DEVELOPMENT TOOLS

404

 33. The PHP Group (2014) PHP: Tidy – manual. The PHP Group.
http://php.net/manual/en/book.tidy.php. Accessed 4 November 2014

 34. Thereaux O, Dubost K, Bless T, Skytta V, Cope AS, Rezic S et al (2007) LogValidator. World
Wide Web Consortium. http://www.w3.org/QA/Tools/LogValidator/. Accessed 4
November 2014

 35. ZURB (2014) Foundation | The Most Advanced Responsive Front-end Framework from
ZURB. http://foundation.zurb.com. Accessed 4 November 2014

 36. Otto M, Thornton J et al (2014) Bootstrap—The world’s most popular mobile-first and
responsive front-end framework. http://getbootstrap.com. Accessed 4 November 2014

 37. getskeleton.com (2014) Skeleton: Beautiful Boilerplate for Responsive, Mobile-Friendly
Development. http://www.getskeleton.com. Accessed 4 November 2014

 38. Korpi J (2014) Less Framework. http://lessframework.com. Accessed 4 November 2014

 39. Digital Surgeons (2014) Gumby - A Flexible, Responsive CSS Framework - Powered by
Sass. http://gumbyframework.com. Accessed 4 November 2014

 40. Microsoft (2014) Debugging HTML and CSS with the Developer Tools. Microsoft
Corporation. http://msdn.microsoft.com/en-us/library/dd565627(v=VS.85).aspx.
Accessed 4 November 2014

 41. Apple (2014) Safari Developer Tools. Apple Inc. https://developer.apple.com/safari/tools/.
Accessed 4 November 2014

 42. Bovens A (2010) Opera extensions developer workflow. Opera Software ASA.
http://dev.opera.com/articles/view/opera-extensions-developer-workflow/.
Accessed 02 March 2011

 43. Mozilla (2014) Web development :: Add-ons for Firefox. Mozilla Foundation.
https://addons.mozilla.org/en-US/firefox/extensions/web-development/.
Accessed 4 November 2014

 44. Gueury M (2014) Html Validator. Mozilla Corp. https://addons.mozilla.org/en-us/
firefox/addon/html-validator/. Accessed 4 November 2014

 45. Savard D, Coukouma N (2014) Live HTTP Headers. Mozilla Corp.
https://addons.mozilla.org/en-us/firefox/addon/live-http-headers/.
Accessed 4 November 2014

 46. Čuvalo M (2014) FireFTP. Mozilla Corp. https://addons.mozilla.org/en-US/firefox/
addon/fireftp/. Accessed 4 November 2014

 47. Pederick C (2014) User Agent Switcher. Mozilla Corp. https://addons.mozilla.org/en-
US/firefox/addon/user-agent-switcher/. Accessed 4 November 2014

 48. Mozilla (2014) IE Tab V2. Mozilla Corp. https://addons.mozilla.org/en-US/firefox/
addon/ie-tab-2-ff-36/. Accessed 4 November 2014

 49. Pederick C (2014) Web Developer. Mozilla Corp. https://addons.mozilla.org/en-US/
firefox/addon/web-developer/. Accessed 4 November 2014

 50. Hewitt J, Odvarko J, et al (2014) Firebug. Mozilla Corp. http://getfirebug.com/.
Accessed 4 November 2014

http://php.net/manual/en/book.tidy.php
http://php.net/manual/en/book.tidy.php
http://www.w3.org/QA/Tools/LogValidator/
http://foundation.zurb.com/
http://getbootstrap.com/
http://getskeleton.com/
http://www.getskeleton.com/
http://lessframework.com/
http://gumbyframework.com/
http://msdn.microsoft.com/en-us/library/dd565627(v=VS.85).aspx
https://developer.apple.com/safari/tools/
https://addons.mozilla.org/en-US/firefox/extensions/web-development/
https://addons.mozilla.org/en-us/firefox/addon/html-validator/
https://addons.mozilla.org/en-us/firefox/addon/html-validator/
https://addons.mozilla.org/en-us/firefox/addon/live-http-headers/
https://addons.mozilla.org/en-US/firefox/addon/fireftp/
https://addons.mozilla.org/en-US/firefox/addon/fireftp/
https://addons.mozilla.org/en-US/firefox/addon/user-agent-switcher/
https://addons.mozilla.org/en-US/firefox/addon/user-agent-switcher/
https://addons.mozilla.org/en-US/firefox/addon/ie-tab-2-ff-36/
https://addons.mozilla.org/en-US/firefox/addon/ie-tab-2-ff-36/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
http://getfirebug.com/

CHAPTER 11 ■ DEVELOPMENT TOOLS

405

 51. Simonetti P (2014) Firebug Lite for Google Chrome. Mozilla Corp.
http://getfirebug.com/releases/lite/chrome/. Accessed 4 November 2014

 52. Pederic C (2014) Web Developer. Mozilla Corp. https://chrome.google.com/webstore/
detail/bfbameneiokkgbdmiekhjnmfkcnldhhm. Accessed 4 November 2014

 53. Blackfish (2014) IE Tab. Blackfish Software. https://chrome.google.com/webstore/
detail/hehijbfgiekmjfkfjpbkbammjbdenadd. Accessed 4 November 2014

 54. Google (2014) Google Chrome Developer Tools page. Google Inc.
https://chrome.google.com/webstore?category=ext%2F11-web-development.
Accessed 4 November 2014

 55. Cebeci G (2014) HTML Validator. https://chrome.google.com/webstore/detail/html-
validator/cgndfbhngibokieehnjhbjkkhbfmhojo?hl=en. Accessed 4 November 2014

 56. Renyard I (2014) Validity. Ian Renyard. https://chrome.google.com/webstore/detail/
bbicmjjbohdfglopkidebfccilipgeif. Accessed 4 November 2014

 57. Dematte P (2014) colorPicker. Peter Dematte. https://chrome.google.com/webstore/
detail/jegimleidpfmpepbfajjlielaheedkdo. Accessed 4 November 2014

 58. Stroop A (2014) XML Tree. Alan Stroop. https://chrome.google.com/webstore/detail/
gbammbheopgpmaagmckhpjbfgdfkpadb. Accessed 4 November 2014

 59. Beckford B (2014) Resolution Test. Ben Beckford. https://chrome.google.com/webstore/
detail/idhfcdbheobinplaamokffboaccidbal. Accessed 4 November 2014

 60. Dickey T et al (2014) Lynx source distribution and potpourri. Internet Software
Consortium. http://lynx.isc.org/. Accessed 4 November 2014

http://getfirebug.com/releases/lite/chrome/
https://chrome.google.com/webstore/detail/bfbameneiokkgbdmiekhjnmfkcnldhhm
https://chrome.google.com/webstore/detail/bfbameneiokkgbdmiekhjnmfkcnldhhm
https://chrome.google.com/webstore/detail/hehijbfgiekmjfkfjpbkbammjbdenadd
https://chrome.google.com/webstore/detail/hehijbfgiekmjfkfjpbkbammjbdenadd
https://chrome.google.com/webstore?category=ext%2F11-web-development
https://chrome.google.com/webstore/detail/html-validator/cgndfbhngibokieehnjhbjkkhbfmhojo?hl=en
https://chrome.google.com/webstore/detail/html-validator/cgndfbhngibokieehnjhbjkkhbfmhojo?hl=en
https://chrome.google.com/webstore/detail/bbicmjjbohdfglopkidebfccilipgeif
https://chrome.google.com/webstore/detail/bbicmjjbohdfglopkidebfccilipgeif
https://chrome.google.com/webstore/detail/jegimleidpfmpepbfajjlielaheedkdo
https://chrome.google.com/webstore/detail/jegimleidpfmpepbfajjlielaheedkdo
https://chrome.google.com/webstore/detail/gbammbheopgpmaagmckhpjbfgdfkpadb
https://chrome.google.com/webstore/detail/gbammbheopgpmaagmckhpjbfgdfkpadb
https://chrome.google.com/webstore/detail/idhfcdbheobinplaamokffboaccidbal
https://chrome.google.com/webstore/detail/idhfcdbheobinplaamokffboaccidbal
http://lynx.isc.org/

407

CHAPTER 12

Putting It All Together

Being familiar with web technologies and standards is not sufficient for standardizing invalid sites and developing
valid sites from scratch. Web site standardization is always a complex project, and it takes into account a variety of
requirements simultaneously. The list includes, but is not limited to, full standard compliance; optimal code length;
interoperability; meaningful, structured, and accessible content; adequate metadata; and proper settings. Creating
valid code can be learned most efficiently through the collection of step-by-step guidelines provided in this chapter.

After becoming familiar with web standards, it is time to learn how to create fundamental standard-compliant
web site components from scratch in a text editor and extend them for your web pages. Most XHTML code fragments
you will learn can be used as the basis for XHTML projects and HTML5 markup for new HTML projects. You will
see how to use indentations to create clear, easy-to-maintain markup and provide the end tags immediately after
the opening tags to avoid tags to be missed. The presented guidelines also demonstrate the proper, logical use of
structural elements from paragraphs to lists and from tables to forms. Even if web development environments provide
useful templates and functions, it is very useful to understand how to create core web site structures manually. After
mastering the basic structure of lists, tables, objects, and forms, you will be able to extend, modify, and standardize
the corresponding markup elements and never get lost in the details even if the markup is rather long and complex.1

Choosing the Relevant Standards
When it comes to the implementation of web standards, there is no ultimate choice. The browser support,
the web design trends, and the user expectations are constantly changing. Most web designers consider W3C
Recommendations as de facto standards; however, there are standards released by other standardization bodies
as well, such as ERCIM, IETF, WaSP, or WSG (as discussed in Chapter 1). Even those web designers who know the
mainstream web standards well do not necessarily implement them correctly.

The choice of standards has a serious impact on each phase of web site standardization and future extensibility.
The decision-making has to precede the initial steps of design and coding by considering the features, strengths, and
weaknesses of the various standards and technologies.

Switching Between Standards
It is a common misconception that implementing the latest technologies immediately at all costs is the key to
developing modern web sites. In fact, the latest technologies without finalized specification are not recommended for
use. The latest standards (with the W3C status “Recommendation”) should be applied exclusively, and the Working

1Each฀step-by-step฀guide฀in฀this฀chapter฀focuses฀on฀a฀particular฀element฀or฀element฀group฀and฀the฀corresponding฀markup฀elements.฀
The฀complexity฀of฀the฀markup฀will฀increase฀drastically฀when฀adding฀additional฀contents฀and฀attributes,฀but฀the฀basic฀structure฀always฀
remains฀the฀same.

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

408

Drafts, which are subject to change, should not be used, unless you want to participate in the standards development
as a first implementer. Since these technologies are at varying degrees of adoption and standardization, web site
functionality cannot be guaranteed and the markup cannot be validated with full certainty (or validators provide this
feature as an experimental tool only). User experience might degrade due to nonworking components, users might
be prompted to download files of unknown types, and so on. Functionality and usability are more important than the
incorrect use of the latest, often nonfinalized specifications (Figure 12-1).

Figure 12-1. Modern markup applied incorrectly. What is the point?

Naturally, web designers cannot fall behind if they want to remain competitive, but they should not rely on
unofficial resources such as blog posts. Convincing clients and decision-makers to use the right standards can also be
a challenge when it comes to the well-underestimated Web Quality Assurance and strict timeframes.

Step-by-Step Development
Creating a standard-compliant web site with valid markup, styles, semantic content, and accessible code should be
the preferable way to develop a web site. You can verify whether individual technologies are standard-compliant
by validating the markup, the style sheet, and further components such as the feed channel during development.
However, the full standards compliance of a whole web site is more complex than that. As discussed throughout this
book, full standards compliance covers valid character encoding declaration (preferably UTF-8), valid HTML or valid
XHTML markup (the stricter, the better), valid CSS, valid RSS or valid Atom news feed, valid RDF, valid metadata, valid
XML, valid object embedding, valid script embedding, WCAG 2.0 and Section 508 conformance, accessibility, mobile-
friendliness, the application of Semantic Web technologies, browser- and resolution-independent code, and proper
server settings, just to mention the most important ones.

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

409

Starting from Scratch
Typically, you should perform the following core tasks when creating a web site from scratch:

Determine the document type.•฀

Create the •฀ index.html file. All required elements must be provided, along with the ones that
are highly recommended for structuring.2 As a general rule, the html element should be used
as the root element for all HTML and XHTML documents. Markup documents should contain
a document head (between <head> and </head>) and a document body (delimited by <body>
and </body>). Beyond the general container div and paragraph p used in HTML 4.01 and
XHTML, or the more specific HTML5 structuring elements header, article, and section, the
cohesive parts of web page content should have headings. In (X)HTML, there are six levels
of headings: h1, h2, h3, h4, h5, and h6 (from the largest to the smallest). Levels should not be
skipped (for example, applying h4 in a document in which there is no h3 but just h1 and h2).

Multiply files. Carefully applied copying and pasting reduces development time for hand-•฀
coders. It provides integrity throughout the site; however, modifications should be done on all
files if the initial file has been modified. Such modifications are often easier on dynamic sites,
which typically store the identical sections centrally.

Create the primary style sheet file (for example, •฀ main.css) with an initial design for basic
layout, colors, and font styles (they will be updated later). The main designing concepts
should be determined in advance.

Provide optional elements. Which optional elements are reasonable depends on the project. •฀
The various meta elements are recommended in most cases. Several link elements are also
frequently applied including, but not limited to, links to external files such as the Atom or
RSS news feed (atom.xml, rss.xml), the web site icon (favicon.ico), or optional metadata
(metadata.rdf, foaf.rdf, doac.rdf).

Add useful extensions. The number of useful—and free—web site extensions and APIs is •฀
constantly increasing. Some are Google Analytics tracking code (JavaScript), interactive
Google Maps for contact details, or the Like and Tweet buttons for social networking.
Although they are popular and used by millions, most of them are not standardized. Care
must be taken to avoid invalid embedding codes provided by third-party software developers.

Note ■ This doesn’t mean you have to sacrifice third-party content, because many invalid embedding codes can be

rewritten in a standard-compliant manner.

Do additional tasks depending on client needs.•฀

Set up hosting on a web server.•฀

Beyond the simplest static sites, all web sites apply server-side scripting and applications with •฀
prerequisite technology support and configuration. These depend on the user needs.

2Development฀tools฀often฀provide฀templates฀and฀skeleton฀documents฀to฀begin฀your฀work฀with.฀Even฀text฀editors฀have฀options฀to฀insert฀
markup฀elements,฀which฀can฀be฀faster฀than฀typing.

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

410

Upload and install.•฀

Static files can be directly uploaded to the web server.•฀

Server-side applications usually have some installation files that should be uploaded •฀
to the server. These files can be executed on the server to install and configure the
application.

Share the web site through a domain.•฀

Note that there is no fixed order for these tasks, although some always precede others. Furthermore, these
steps apply for static web pages. If the site relies on server-side scripting, the steps depend on the type of the system.
Content Management Systems such as WordPress or Joomla! generate the basic site structure during initialization.
Such systems are usually based on PHP, so the index page of the site will be index.php rather than index.html, all
web site data will be stored in a database such as MySQL instead of static HTML files, headings and footers are stored
centrally, and new pages are typically created through the menu of the graphical user interface.

Following the basic principles discussed in the next sections can serve as the basis for developing standard-
compliant code from scratch. The list of web site components is not complete by any means. However, most of these
samples can be applied in a variety of markup languages and style sheets and are frequently applied in web design.

Note ■ The order of the step orders is a suggestion only.

XHTML

XHTML 1.0 Strict documents can be developed with the following steps. Other XHTML documents can be authored
similarly by applying the desired document type.

 1. Create XML declaration.

<?xml version="1.0" encoding="UTF-8"?>

 2. Add document type declaration.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

 3. Add root element with default namespace and language setting.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html 
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

411

 4. Additional namespaces can also be added upon request.

 5. Add document head and body.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

</head>
<body>

</body>
</html>

 6. Add document title.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>XHTML Document Sample</title>
</head>
<body>

</body>
</html>

 7. Add head content, including metadata, base URI, links, and scripts. Although they are
optional elements, many of them are used frequently. The most common one of all is the
link to an external CSS file:

a. Create a basic link with the file path or URI. If XHTML syntax is used, self-closing is
required.

<link href="styles/main.css" />

b. Set the link type.

<link type="text/css" href="styles/main.css" />

c. Identify the link role.

<link rel="stylesheet" type="text/css" href="styles/main.css" />

d. Set the media type (optional).

<link rel="stylesheet" type="text/css" media="all" href="styles/main.css" />

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

412

 8. Head content can be arbitrarily extended upon request, for example with metadata from
external vocabularies such as DC. A typical head section with highly customized content
looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html 
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>XHTML Document Sample</title>
 <meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8" />
 <meta http-equiv="Content-Style-Type" content="text/css" />
 <meta name="robots" content="noindex, nofollow" />
 <meta name="content-language" content="en" />
 <meta name="author" content="Dr. Leslie Sikos" />
 <meta name="keywords" content="Dr. Leslie F. Sikos, networking" />
 <meta name="description" content="Contact data of IT pro Dr. Leslie Sikos.
 Website standardization, semantic websites, accessability, professional
 photography, videography, multimedia & more." />
 <base href="http://www.lesliesikos.com/" />
 <link rel="alternate" type="application/rss+xml" title="Dr. Leslie Sikos IT
 professional" href="http://www.lesliesikos.com/sikos.xml" />
 <link rel="author" href="http://www.lesliesikos.com/" />
 <link rel="shortcut icon" href="favicon.ico" />
 <link rel="stylesheet" type="text/css" media="all" href="styles/sikos.css"
 title="Default style" />
 <link rel="stylesheet" type="text/css" media="handheld" href="styles/mobile.css"
 title="Styles for mobile devices" />
 <link rel="stylesheet" type="text/css" media="print" href="styles/print.css"
 title="Styles for printing" />
 <script type="text/javascript" src="js/help.js"></script>
 <script type="text/javascript" src="js/access.js"></script>
 </head>
 <body>

 </body>
</html>

 9. Add body content.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html 
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" 
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>XHTML Document Sample</title>
 <meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8" />
 <meta http-equiv="Content-Style-Type" content="text/css" />
 <meta name="robots" content="noindex, nofollow" />

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.lesliesikos.com/
http://www.lesliesikos.com/sikos.xml
http://www.lesliesikos.com/
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

413

 <meta name="content-language" content="en" />
 <meta name="author" content="Dr. Leslie Sikos" />
 <meta name="keywords" content="Dr. Leslie F. Sikos, networking" />
 <meta name="description" content="Contact data of IT pro Dr. Leslie Sikos.
 Website standardization, semantic websites, accessability, professional
 photography, videography, multimedia & more." />
 <base href="http://www.lesliesikos.com/" />
 <link rel="alternate" type="application/rss+xml" title="Dr. Leslie Sikos IT
 professional" href="http://www.lesliesikos.com/sikos.xml" />
 <link rel="author" href="http://www.lesliesikos.com/" />
 <link rel="shortcut icon" href="favicon.ico" />
 <link rel="stylesheet" type="text/css" media="all" href="styles/sikos.css"
 title="Default style" />
 <link rel="stylesheet" type="text/css" media="handheld" href="styles/mobile.css"
 title="Styles for mobile devices" />
 <link rel="stylesheet" type="text/css" media="print" href="styles/print.css"
 title="Styles for printing" />
 <script type="text/javascript" src="js/help.js"></script>
 <script type="text/javascript" src="js/access.js"></script>
 </head>
 <body>
 <p>
 An XHTML 1.0 Strict Document.
 </p>
 </body>
</html>

 (X)HTML5

(X)HTML5 documents can be developed with the following steps:

 1. Create the Document Type Declaration. In XHTML5, the DTD can optionally be preceded
by the XML prolog, which is not used in HTML5.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html>

 2. Add the root element. In XHTML5, the xmlns attribute is used to define the XHTML
namespace on the html element. In HTML5, this attribute is not used.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">

</html>

http://www.lesliesikos.com/
http://www.lesliesikos.com/sikos.xml
http://www.lesliesikos.com/
http://www.w3.org/1999/xhtml

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

414

 3. Add document head and body.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>

 </head>
 <body>

 </body>
</html>

 4. Add the document title. Similar to the example discussed in the previous section,
metadata, base URI, links, and scripts can be added arbitrarily.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Sample XHTML5 document structure</title>
 </head>
 <body>
 </body>
</html>

 5. Add the character encoding declaration.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Sample XHTML5 document structure</title>
 <meta charset="UTF-8" />
 </head>
 <body>
 </body>
</html>

In XHTML5, the character encoding declaration is terminated with the shorthand notation, which does
not apply to HTML5 where <meta charset="UTF-8"> is used.

 6. Create the structure with a header, section, and footer.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Sample XHTML5 document structure</title>
 <meta charset="UTF-8" />
 </head>

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

415

 <body>
 <header>
 <h1>Document sample</h1>
 </header>
 <section>

 </section>
 <footer>
 Copyright © 2015 John Smith. All rights reserved.
 </footer>
 </body>
</html>

 7. Provide content.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Sample XHTML5 document</title>
 <meta charset="UTF-8" />
 </head>
 <body>
 <header>
 <h1>Document sample</h1>
 </header>
 <section>
 <article>
 <h2>Article1</h2>
 The first article of the document.
 </article>
 <article>
 <h2>Article2</h2>
 The second article of the document.
 </article>
 </section>
 <footer>
 Copyright © 2015 John Smith. All rights reserved.
 </footer>
 </body>
</html>

which can be written in HTML5 as follows:

<!DOCTYPE html>
<html>
 <head>
 <title>Sample HTML5 document</title>
 <meta charset="UTF-8">
 </head>

http://www.w3.org/1999/xhtml

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

416

 <body>
 <header>
 <h1>Document sample</h1>
 </header>
 <section>
 <article>
 <h2>Article1</h2>
 The first article of the document.
 </article>
 <article>
 <h2>Article2</h2>
 The second article of the document.
 </article>
 </section>
 <footer>
 Copyright © 2015 John Smith. All rights reserved.
 </footer>
 </body>
</html>

Links
Hyperlinks are fundamental elements of web pages that can be added to the markup as follows:

 1. Provide the basic anchor. It can be a URI of an external site such as the following:

e. or a path within your site such as the following:

f. Hyperlinks can also point to a document segment (identified by the id attribute) with
a fragment identifier. Here’s an example:

 2. Set the target (if required). External links are often intended to be opened in a new
window. Here’s an example:

 3. Add a tabbing index to improve accessibility (optional).

 4. Ensure that external links won’t affect the PageRank of your site (optional).

g. Steps 2 and 4 apply for external links only.

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

417

Images
Images are embedded with the img element. If XHTML syntax is used, self-closing is required. The location of the
image file is determined by the src (source) attribute.

 1. Embed a basic image.

 2. Provide alternate content that can be rendered in case the image cannot be displayed
(fundamental for accessibility).

 3. Provide a text to be displayed when the user moves the mouse over the image (optional). It
can be the same as the alternate text or different.

<img src="images/logo.png" alt="The logo of Big Profit Company" title="The logo of Big
Profit Company" />

Lists
List items of both ordered (ol) and unordered lists (ul) are delimited by and (Listing 12-1).

Listing 12-1. List Item Structure in Ordered and Unordered Lists

...

...

 1. An unordered list can be created as follows:

 2. The list items can be added arbitrarily.

 Apricot
 Cherry
 Peach

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

418

Definition lists define definition terms (dt) and their descriptions (dd) (Listing 12-2).

Listing 12-2. A Definition List Example

<dl>
 <dt>
 <label>Web site development</label>
 </dt>
 <dt>RDF</dt>
 <dd>A W3C acronym for Resource Description Framework, an XML specification for 
 metadata models.</dd>
 <dt>RSS</dt>
 <dd>Really Simple Syndication. An XML format for frequently updated content, e.g., 
 news headlines, blog entries.</dd>
</dl>

List Accessibility

You can improve the accessibility of lists by adding elements such as accesskey and tabindex. Here’s an example:

 Home

 About

 Gallery

 Shop

 Exhibitions

 Contact

Styling Lists

You can use unordered lists for more general purposes than ordered lists. Unordered lists are often used to build
menus.3 Typical horizontal menus override the default display style, as shown in Listing 12-3, in order to render the
list items next to instead of below each other.

3XHTML฀2.0฀also฀provides฀the฀more฀specific฀element฀nl฀for฀navigation฀lists,฀which฀is฀not฀supported฀by฀any฀other฀markup฀language.

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

419

Listing 12-3. Styling of List Items to Be Displayed Inline

li {
 display: inline;
}

A simple style frequently applied for the hyperlinks of such list items are bottom borders (Listing 12-4).

Listing 12-4. Bottom Border for Menu Hyperlinks

a:hover {
 color: #949295;
 border-bottom: 1px solid #949295;
}

Naturally, this style is seldom applied globally. Instead, it is extended with the identifier of the list or its container
parent element such as #main a:hover or #navtabs li a:hover.

A usual technique for creating custom navigation effects is to add a background image to the list items.
Listing 12-5 shows an example.

Listing 12-5. Custom Navigation Effect with a Background Image

li {
 background: url('images/navbg.png') 5px no-repeat;
 padding-left: 16px;
}

If certain links, such as the first, the last, or the currently selected one, have different styles than all the others,
unique identifiers should be provided for them (Listing 12-6).

Listing 12-6. More Specific Rules for the First and Last Items

 <li id="first">
 Home

...
 <li id="last">
 Contact

The first ruleset can be styled as shown in Listing 12-7.

Listing 12-7. A Specific Ruleset for the First List Items

li.first {
 background: none;
 padding-left: 0;
}

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

420

If the project is more than just a small web page, these styles should not be applied globally, simply because
these specific styles would be applied to all lists throughout the document, most of which should be overridden (there
would be more styling rules to override than the inherited rules that suit our needs). Instead, an identifier should be
added to the list such as shown in Listing 12-8.

Listing 12-8. An Unordered List Used for Navigation Is Identified to Be Styled Differently

<ul id="navtabs">
 <li id="first">
 Home

 ...
 <li id="last">
 Contact

From now on, all styles should begin with #navtabs (Listing 12-9).

Listing 12-9. A Specific Ruleset for Styling the First List Items of the Unordered List navtabs

#navtabs li.first {
 background: none;
 padding-left: 0;
}

Alternatively, the styles can be declared at the container level and use inheritance to style the list.4 This approach
is useful when multiple lists are used within the document that have the same styles or are slightly different only. Such
differences can be easily overridden by more specific styling rules.

Additional styles can be declared for access keys and further features. For example, the markup in Listing 12-10
can be styled with the CSS rules shown in Listing 12-11.

Listing 12-10. A Span Used to Style an Access Key

Sitemap

Listing 12-11. CSS Rules for Access Keys

span.ak {
 color: red;
 background-color: #ffb;
 border-bottom: solid #000080 1px;
}

The default bullets can be changed to arbitrary characters or images by CSS. Listing 12-12 shows an example,
which applies to unordered lists such as the one presented in Listing 12-13.

4฀Note฀that฀in฀this฀case฀the฀identifiers฀should฀be฀changed฀from฀id฀to฀class฀in฀the฀markup฀and฀from฀hash฀mark฀(#)฀to฀period฀(.)฀฀
in฀the฀CSS.

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

421

Figure 12-2. Custom bullets with CSS

Listing 12-12. Bullet Image

ul.tick {
 list-style-image: url('images/tick.png')
}

Listing 12-13. Application of the Custom Bullet Style Presented in Listing 12-12

<h1>The major benefits of standard compliance</h1>
<ul class="tick">
 Resolution independence
 Browser independence
 Interoperability
 Robust functionality

The result is visually more appealing (and more specific) than a list with ordinary bullets (Figure 12-2).

Tables
Let’s assume that a 5×5 comparison table of the first 4 iPhone models needs to be presented on a web page
(Table 12-1).

Table 12-1. A Sample Table to Be Coded

Model iPhone iPhone 3G iPhone 3GS iPhone 4

Preinstalled OS iPhone OS 1.0 iPhone OS 2.0 iPhone OS 3.0 iOS 4.0

Display resolution 480×320 480×320 480×320 960×640

CPU clockrate 620 MHz 620 MHz 833 MHz 1 GHz

Camera 2 MP 2 MP 3 MP 5 MP (rear), 0.3 MP (front)

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

422

 1. All tables should have an opening and a closing tag.

<table>
</table>

 2. Table rows should be delimited by <tr> and </tr>. The first row starts like this:

<table>
 <tr>
 </tr>
</table>

 3. Table header cells should be written between <th> and </th>. Since the desired table has
five columns, five header cell elements are required:

<table>
 <tr>
 <th></th><th></th><th></th><th></th><th></th>
 </tr>
</table>

 4. A new row should be started for the first row of data cells.

<table>
 <tr>
 <th></th><th></th><th></th><th></th><th></th>
 </tr>
 <tr>
 </tr>
</table>

 5. Data cells should be provided by td tags. Since the desired table has five columns, five data
cell elements are required for each row.

<table>
 <tr>
 <th></th><th></th><th></th><th></th><th></th>
 </tr>
 <tr>
 <td></td><td></td><td></td><td></td><td></td>
 </tr>
</table>

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

423

 6. Since the structure of rows is identical, the table row containing the five data cells can be
copied three times with a simple copy and paste:

<table>
 <tr>
 <th></th><th></th><th></th><th></th><th></th>
 </tr>
 <tr>
 <td></td><td></td><td></td><td></td><td></td>
 </tr>
 <tr>
 <td></td><td></td><td></td><td></td><td></td>
 </tr>
 <tr>
 <td></td><td></td><td></td><td></td><td></td>
 </tr>
 <tr>
 <td></td><td></td><td></td><td></td><td></td>
 </tr>
</table>

 7. Finally, the cells should be filled with data:

<table>
 <tr>
 <th>Model</th><th>iPhone</th><th>iPhone 3G</th><th>iPhone 3GS</th><th>iPhone 4</th>
 </tr>
 <tr>
 <td>Preinstalled OS</td><td>iPhone OS 1.0</td><td>iPhone OS 2.0</td><td>iPhone 
 OS 3.0</td><td>iOS 4.0</td>
 </tr>
 <tr>
 <td>Display resolution</td><td>480x320</td><td>480x320</td><td>480x320</td> 
 <td>960x640</td>
 </tr>
 <tr>
 <td>CPU clockrate</td><td>620 MHz</td><td>620 MHz</td><td>833 MHz</td><td>1 GHz</td>
 </tr>
 <tr>
 <td>Camera</td><td>2 MP</td><td>2 MP</td><td>3 MP</td><td>5 MP (rear), 
 0.3 MP (front)</td>
 </tr>
</table>

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

424

Table Accessibility

You can further improve the markup to increase accessibility. Processing and understanding tables can be
challenging for nonvisual browsers. You can use the table header (th) and the caption (caption) markup elements
to increase table accessibility. The first element is useful for visual browsers too, while the second one is valuable for
screen readers.

The table header element th not only adds meaning to the first row but is repeated by screen readers when each
row of the table is read. It helps the visually impaired understand the correlations between table cells.

The textual description of the table can be provided by the caption element (Listing 12-14).

Listing 12-14. Table Caption

<table>
 <caption>
 A comparison table of iPhone models.
 </caption>
 <tr>
 <th>Model</th><th>iPhone</th><th>iPhone 3G</th><th>iPhone 3GS</th><th>iPhone 4</th>
 </tr>
 <tr>
 <td>Preinstalled OS</td><td>iPhone OS 1.0</td><td>iPhone OS 2.0</td><td>iPhone OS 
 3.0</td><td>iOS 4.0</td>
 </tr>
 <tr>
 <td>Display resolution</td><td>480x320</td><td>480x320</td><td>480x320</td> 
 <td>960x640</td>
 </tr>
 <tr>
 <td>CPU clockrate</td><td>620 MHz</td><td>620 MHz</td><td>833 MHz </td><td>1 GHz</td>
 </tr>
 <tr>
 <td>Camera</td><td>2 MP</td><td>2 MP</td><td>3 MP</td><td>5 MP (rear), 0.3 MP (front)</td>
 </tr>
</table>

You can also add access keys to the table cells if required.

Table Styling

Although table headers are usually rendered in bold by most browsers, the default styles of table cells, padding,
and borders are different in each rendering engine, which is not always acceptable. All table features can be styled
arbitrarily through CSS rulesets, however. For example, the default value of the border-collapse property, separate,
can be overridden in order to make borders collapse into a single border whenever possible (Listing 12-15).

Listing 12-15. Set Borders to Collapse

table {
 border-collapse: collapse;
}

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

425

In this case, the border-spacing and empty-cells properties will be ignored. The padding and border of the
header and data cells can be set as shown in Listing 12-16.

Listing 12-16. Padding and Border for Header and Data Cells

th, td {
 padding: 10px;
 border: 1px solid #13b141;
}

Drop-Down Selection Lists
Selection lists can provide options to choose from. Suppose a language selector is needed for a multilingual web site.
It can be developed as follows:

 1. Create a selection list with the select element.

<select>

</select>

 2. Add the default option.

<select>
 <option value="http://www.example.com" selected="selected">English</option>

</select>

 3. Add further options. Provide the URIs of each language version as the option values.

<select>
 <option value="http://www.example.com" selected="selected">English</option>

 <option value="http://de.example.com">Deutsch</option>
 <option value="http://fr.example.com">Français</option>
 <option value="http://es.example.com">Español</option>
 <option value="http://ja.example.com">本語</option>
</select>

 4. To load the appropriate web page, the subdomains provided as the option values can be
used as target URIs through an event handler. Although the use of the onchange event
handler would be logical, it would be inaccessible for keyboard users. One of the solutions
is to provide a button with an onclick event handler, which is device-independent. For
example, the following function

<script type="text/javascript">
 function goto_URL(object) {
 window.location.href=object.options[object.selectedIndex].value;
 }
</script>

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

426

declared in the document head or a linked external file can be used by the onclick event
handler on the input element as follows:

<form>
 <select id="langsel">
 <option value="http://www.example.com" selected="selected">English</option>
 <option value="http://de.example.com">Deutsch</option>
 <option value="http://fr.example.com">Français</option>
 <option value="http://es.example.com">Español</option>
 <option value="http://ja.example.com">本語</option>
 </select>
 <input type="button" value="Go!" onclick="goto_URL(this.form.langsel);" />
</form>

 5. Note that other methods can also be applied such as server-side redirection, which
eliminates the need for JavaScript.

Forms
Basic forms can be created with the following steps:

 1. Create an empty form.

<form>

</form>

 2. Specify the location of the server-side script used to process data from the form.

<form action="register.php">

</form>

 3. Specify the method to be used for sending data. The form data can be sent as URL
variables (method="get") or as an HTTP post (method="post").

The get method appends the form data to the URL as name-value pairs, which makes it •฀
possible to bookmark the result of the form submission. Because of the length limitations
of URLs, however, it cannot be ensured that all form data will be transferred. Moreover,
the get method is inadequate for transforming sensitive information such as passwords,
because the data will be visible in the address bar of the browser.

The post method sends the form data as an HTTP post transaction. This method has no •฀
size limitations and is more secure than the get method.

<form method="post" action="register.php">

</form>

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

427

 4. Create logical group(s) for form elements.

<form method="post" action="register.php">
 <fieldset>

 </fieldset>
 <fieldset>

 </fieldset>
</form>

 5. Add the desired form controls such as text fields (text) and checkboxes (checkbox) and
their attributes.

<form method="post" action="register.php">
 <fieldset>
 <input type="text" name="firstname" id="firstname" size="15" maxlength="255" />

<input type="text" name="lastname" id="lastname" size="20" maxlength="255" />
 </fieldset>
 <fieldset>
 <input type="checkbox" name="interests" value="1" id="photo" />
 <input type="checkbox" name="interests" value="2" id="video" />
 <input type="checkbox" name="interests" value="3" id="web" />
 </fieldset>
</form>

 6. Improve accessibility. The label element adds a label to a form control. The legend
element assigns a caption to a fieldset. The tabbing order can be set by tabindex
attributes.

<form method="post" action="register.php">
 <fieldset>
 <legend>Personal data</legend>
 <label for="firstname">First name</label>

 <input type="text" name="firstname" id="firstname" size="15" maxlength="30" 
 tabindex="12" />

 <label for="lastname">Last name</label>

 <input type="text" name="lastname" id="lastname" size="20" maxlength="50" 
 tabindex="13" />
 </fieldset>
 <fieldset>
 <legend>Main interests</legend>
 <input name="interests" type="checkbox" value="1" id="photo" tabindex="14" />
 <label for="photo">Photography</label>

 <input name="interests" type="checkbox" value="2" id="video" tabindex="15" />
 <label for="video">Videography</label>

 <input name="interests" type="checkbox" value="3" id="web" tabindex="16" />
 <label for="web">Web</label>
 </fieldset>
</form>

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

428

Flash Content
You can embed a Flash file with the general object tag in XHTML as follows:

 1. Declare an application/x-shockwave-flash object.

<object type="application/x-shockwave-flash">

</object>

 2. Add the source with cross-browser code.

<object type="application/x-shockwave-flash" data="flash/header.swf">
 <param name="movie" value="flash/header.swf" />

</object>

 3. Provide attributes such as dimensions and an identifier (if required).

<object type="application/x-shockwave-flash" data="flash/header.swf" width="610" 
 height="224" id="flash">
 <param name="movie" value="flash/header.swf" />

</object>

 4. If the Flash content has a transparent background, it should be declared as an optional
parameter. This is also required for providing the possibility to set layer order within the
web page.

<object type="application/x-shockwave-flash" data="flash/header.swf" width="610" 
 height="224" id="flash">
 <param name="movie" value="flash/header.swf" />
 <param name="wmode" value="transparent" />

</object>

 5. Add alternate content such as a placeholder image and text descriptions to improve
accessibility. If a short description is not sufficient, a good practice is to add a hyperlink to
a resource that describes the object.

<object type="application/x-shockwave-flash" data="flash/header.swf" width="610" 
 height="224" id="flash">
 <param name="movie" value="flash/header.swf" />
 <param name="wmode" value="transparent" />
 <img src="images/altheader.jpg" alt="The image alternative for 
 the Flash header." title="Our headquarters" />
</object>

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

429

In (X)HTML5, the embed tag can be used instead of object.

 1. Create an embed element. Since the parameters can be provided as attributes of embed, the
self-closing tag can be applied in XHTML5 as follows:

<embed />

Evidently, the shorthand notation should be omitted in HTML5.

 2. Add the path or URI of the file. It can be done by using the src attribute instead of data
applied on object elements.

<embed src="flash/header.swf" />

 3. Add dimension and optional parameters.

<embed src="flash/header.swf" width="550" height="400" wmode="transparent" />

RSS News Feeds
Creating RSS news feeds generally consists of the following steps:

 1. Create the XML declaration. Since RSS 2.0 news feeds should be valid XML documents,
the first line is the XML declaration:

<?xml version="1.0" encoding="utf-8"?>

The character encoding is optional but recommended.

 2. Create the RSS channel. The contents of the RSS channel should be written within the rss
and channel tags as follows:

<rss version="2.0">
<channel>

</channel>
</rss>

If additional namespaces are required, they should be added to the rss element. Interoperability can be
maximized by providing escaped HTML markup, the creator with Dublin Core metadata, the update period and
frequency defined by the syndication namespace, and the self-link from the Atom vocabulary. The following
namespace declarations should be added:

<rss version="2.0"
 xmlns:content="http://purl.org/rss/1.0/modules/content/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
 xmlns:atom="http://www.w3.org/2005/Atom"
>

http://purl.org/rss/1.0/modules/content/
http://purl.org/dc/elements/1.1/
http://purl.org/rss/1.0/modules/syndication/
http://www.w3.org/2005/Atom

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

430

 1. Provide feed information, including the required title, link, and description elements,
as well as optional elements such as lastBuildDate and language.

<title>John Smith photography</title>
<link>http:// example.com/</link>
<description>The news feed of Alaskan photographer John Smith.</description>
<lastBuildDate>Fri, 10 Feb 2012 14:47:00 GMT-0900</lastBuildDate>
<language>en-US</language>

 2. Provide news items. To create a valid RSS 2.0 feed channel with the highest level of
interoperability, each item should have the following elements: title, link, description,
pubDate, and guid.

<item>
 <title>Photo exhibition</title>
 <link>http://example.com/events/</link>
 <pubDate>Fri, 10 Feb 2012 14:47:00 GMT-0900</pubDate>
 <dc:creator>John Smith</dc:creator>
 <category>Events</category>
 <guid>http://example.com/events/</guid>
 <description>Best shots of 2011</description>
 <content:encoded><![CDATA[My photo exhibition 
 Best shots of 2011 takes place at the 
 Moose Hotel in Anchorage, AK, USA on 17–18 February 2012.]]></content:encoded>
</item>

This is the section that can be copy-pasted and then modified each time the feed channel is
updated with the latest news. The next news should be provided before the latest one, that is,
earlier in the source code.

 3. Validate.

 4. Share. News feeds are usually used by linking to the XML file that contains them.5 To use
the built-in RSS reader of modern browsers, a link should be provided in the (X)HTML
document head. Here’s an example:

<link rel="alternate" type="application/rss+xml" title="John Smith photography" 
 href="http://www.example.com/rss.xml" />

This makes it possible for browsers to recognize that the current web page has an RSS news feed.

Making Web Sites Valid Through Redesign
The stricter the markup, the easier to upgrade it to a newer markup version. However, in certain cases, migrating to
another standard is not feasible without completely rewriting the site. Regarding style sheets, valid CSS 2.1 can be
easily extended with CSS3 features in most cases. Still, standardizing an existing site can be a difficult task.

5Another฀option฀is฀to฀retrieve฀the฀desired฀number฀of฀channel฀items฀with฀scripting.฀If฀you฀want฀to฀publish฀the฀latest฀news฀as฀part฀of฀a฀
web฀page฀rather฀than฀a฀separate฀file,฀you฀need฀a฀script฀that฀opens฀the฀file,฀retrieves฀the฀contents฀of฀the฀news฀feed฀items,฀and฀
generates฀the฀corresponding฀markup฀code.

CHAPTER 12 ■ PUTTING IT ALL TOGETHER

431

Generally, there are two possibilities: rewrite the whole site from scratch or manually standardize each page (or
page template) one by one. Both seem to need much more work than developers can afford. The first approach often
results in broken links. The second approach requires lots of time and work (unless the site is very small) and can be
performed in only a few cases.

The World Wide Web Consortium suggests a solution: carefully selected sections should be updated
systematically [1]. The most frequently served (most popular) documents can be identified by the Log Validator,
which also tries to find n invalid documents among the most popular ones (as discussed in the previous chapter).
Certainly, the whole project is affected by the deadline and the affordable workload.

Summary
In this chapter, you saw a series of step-by-step guides for manually creating fundamental web site components
character by character. By learning the semantic use of structural elements, you are now capable of creating
meaningful markup with a logical flow and a perfect DOM. The carefully created markup provides a high level of
interoperability and can be rendered in virtually any browser running on any kind of device without multiple site
versions. Even if CSS is disabled, the headings, paragraphs, lists, and other site components remain legible, and the
content is accessible to not only the latest browsers but also to very old versions and mobile browsers with limited
capabilities and standard support.

In the next chapter, you will learn widely used standard-compliant best practices that can be applied in your
daily work.

Reference
 1. Thereaux O (2011) Making your web site valid: a step by step guide. World Wide Web

Consortium. http://www.w3.org/QA/2002/09/Step-by-step. Accessed 2 November 2014

http://www.w3.org/QA/2002/09/Step-by-step

433

CHAPTER 13

Best Practices

Beyond optimal markup and styles provided by the proper implementation of web standards, there are designing
conventions that are browser-independent, reliable, and satisfactory, and considered as best practices. It is important
to know the techniques that provide standard-compliant code and distinguish them from those tricks and hacks that
cause incorrect markup or decrease interoperability.

By now you should know the major web standards for markup, styles, news feeds, and other web site
components. It is time to learn how to apply these standards in practice, which can be used in the daily work of
web designers. Even standard-compliant web pages do not necessarily provide content in a meaningful, logical
manner; thus, you should learn the purpose of markup elements and CSS properties to maximize web page quality.
The ultimate aim is to find the right combination of structure, presentation, and behavior and to separate them to
maximize the benefits of web standards.

Appropriately Used Elements
A crucial decision in web design is which elements to implement for representing your content and achieving the
desired web site behavior. The general rules can be summarized as follows:

Tables for tabular data•฀

Floating elements instead of tables for positioned components (very bad practice)•฀

Headers instead of general paragraphs•฀

Paragraphs instead of separate lines with break rows (very bad practice)•฀

Paragraphs for text paragraphs instead of divisions•฀

Definition lists for terms and their descriptions instead of general paragraphs•฀

Headers, articles, and sections instead of general •฀ div containers (HTML5)

The •฀ audio and video elements instead of general object embeddings (HTML5)

Violating any of these rules is usually a gross error even if the web site validates.

CHAPTER 13 ■ BEST PRACTICES

434

Content in Logical Order
Even though CSS styling makes it possible to arbitrarily position document sections and elements, content should be
written in a logical order. This approach has the following advantages:

Easier development and maintenance•฀

Higher efficiency in text-based browsers•฀

Legible and usable content even without CSS (in case the •฀ .css file cannot be loaded or the
style sheets are turned off)

Improved accessibility through advanced support for aural browsers and screen readers that •฀
will read the pages without breaking continuity

Mobile-Friendly Layout
In Responsive Web Design, you can create conditional styles with CSS3 to be applied depending on the screen
resolution. On smartphones, even if the resolution is huge, it is more convenient to have a collapsed, easy-to-tap
menu than a wide menu on a full-width page. Tablets usually have bigger screens, while desktop monitors are even
bigger in size, but the resolution of smaller screens is not necessarily smaller than that of big monitors. The best
practice is to create the core styles for the site, and create conditional style override for the different screen resolution
ranges using min-width and/or max-width, and a font size proportionally bigger for smaller screens (Listing 13-1).
Mobile First Design means that the core styles are designed for mobile devices and the style override adjusts the layout
and font size to bigger screens while the standard approach is just the opposite.

Listing 13-1. Conditional CSS3 Styles for Different Screen Resolution Ranges

@media (min-width:320px) {

 body{
 background: none;
 }

 #content {
 width: 300px;
 font-size: 7.2vw;
 }
}

@media (min-width:480px) {

 #content {
 width: 460px;
 font-size: 5.9vw;
 }

}

CHAPTER 13 ■ BEST PRACTICES

435

@media (min-width:1025px) and (max-width: 2560px) {

 #content {
 width: 960px;
 font-size: 3vw;
 }

}

In this example, the first ruleset is applied on small-resolution screens of entry-level and older smartphones
and phones in portrait orientation; the second ruleset is applied to smartphones in landscape orientation with
a resolution anywhere between 480px and 1024px; while the third ruleset is used on high-resolution tablets in
landscape orientation, as well as on ultrabooks, laptops, and desktop computers.

Browser-independent design with liquid layout is ideal in all cases where the design allows content positioning
in a way that it spans the entire page width according to the available space (expands or contracts as required1). Note
that high-resolution displays are often found on relatively small devices with very high pixel density such as modern
tablets where the font size has to be changed proportionally, otherwise the text becomes illegible.

Sizes and Proportions
Style sheet validity does not guarantee proper sizes and proportions. The selection of CSS units has a large impact on
the overall appearance of web page components, as well as the usability and readability of the content.

Lengths in Relative Units
The relative units of CSS (em and %), which are computed according to a feature of another element, should be used
for lengths. In Responsive Web Design, the font size is set proportionally to the viewport size, as discussed earlier
(vw, vh, vmin, vmax).

The absolute units such as inches, centimeters, points, and pica can be used only if the physical characteristics
of the target media are known. A typical example is a printing option of a web page where the default output for an
official document can be in 12pt Times New Roman with 2.5 cm margins on a standard-sized paper, such as the North
American letter paper (8.5×11˝) or standard A4 paper (210×297 mm, ISO 216 international standard [1]).

Combine Units Properly
The em unit can be used in CSS to provide scalable styles. It is a general unit for measuring lengths such as page
margins or element paddings. It allows developers to specify several CSS properties relative to the current font size.
Consequently, margins declared in this unit stay in proportion even if the user magnifies the font size.

To ease the calculation of font sizes expressed in em, user experience expert Richard Rutter introduced a
technique that applies a font size of 62.5 percent on the body element (Listing 13-2) [2].

Listing 13-2. The Rutter Method

body {
 font-size: 62.5%;
}

1Liquid฀layout฀works฀not฀only฀for฀different฀resolutions,฀but฀also฀for฀resized฀windows฀on฀the฀same฀resolution.

CHAPTER 13 ■ BEST PRACTICES

436

Since 62.5 percent of the 16px default size used by many user agent style sheets is 10px, the previous rule makes
the font size of the paragraphs styled by the rule in Listing 13-3 be 12 pixels because 1.2·10 = 12px.

Listing 13-3. Font Size Easily Calculated Using the Rutter Method

p {
 font-size: 1.2em;
}

Caution ■ Although widely implemented, this value is not completely reliable and might be different in some browsers.

Although em-based sizing could be used to ensure readable font sizes on any screen, this approach has a known
issue. If the user changes the default font size or applies zooming in the browser, the text might become unreadable.
On the other hand, font sizes set in pixels are robust in different environments but not proportional to other elements
and the screen. The larger the resolution, the smaller the font size. Moreover, the built-in text zoom of browsers
cannot be used in all cases for content with pixel-based font sizes.

Note ■ Because of the differences between browsers, font sizing on the Web is challenging. Absolute positioned

content is not scaled uniformly in all cases by the magnifier feature in IE7+ (sometimes they are scaled smaller).

IE supports both zooming and text size changes for fonts set with %, em, or named sizes. Firefox 3+ supports both

zooming and text size changes. Opera 9+ also has a zooming feature. Zooming might give different results under

different browsers, depending on the content and the styles associated with the page.

Embedding External Content Properly
Since the Web is a truly full multimedia platform, web pages often have embedded video clips, interactive objects, and
other external components. Because of the incorrect embedding codes provided by the content resources, however,
additional tasks are required in many cases to make them standard-compliant. Moreover, standardization cannot
be performed sometimes because of the inadequate code provided along with the embedding code. Even if web
developers standardize the invalid embedding code, they cannot correct the associated namespaces, scripts, and
other components. A good example is the classic “Like” box of Facebook2. The namespace and vocabulary provided
with the embedding code generated in the developers’ section on Facebook.com are not consistent. One of the
“solutions” developers use on the Web is to add the incorrect markup section to a JavaScript function such as the one
in Listing 13-4, which writes the markup fragment delimited by apostrophes into the (X)HTML source.3

Listing 13-4. A Widely Used Trick to Embed Invalid Code

document.write('<script src="http://connect.facebook.net/en_US/all.js#xfbml=1"></script>
 <fb:like-box href="http://www.facebook.com/pages/Your-page/122946805997761" width="280"
 show_faces="true" stream="false" header="false"></fb:like-box>');

2฀Fortunately,฀Facebook฀provides฀a฀valid฀HTML5฀embedding฀code฀for฀“Like”฀buttons฀and฀boxes฀since฀fall฀2011.฀However,฀the฀
classic฀embedding฀code฀is฀still฀used฀on฀many฀websites.

3Assuming฀that฀JavaScript฀is฀enabled.

http://connect.facebook.net/en_US/all.js%23xfbml=1

CHAPTER 13 ■ BEST PRACTICES

437

The same fragment gives error messages in validators if it is written directly in the markup. The iframe version
of the button has problems too because it cannot be used in XHTML. It can be rewritten as an object (with the same
parameters), but then it stops working. Users of APIs and third-party software components often apply the previous
trick if they want their web page to validate.

Caution ■ Providing markup code with document.write in JavaScript is a hack that you should not use. The same

trick is applied for validating virtually any kind of otherwise incorrect markup that definitely cannot be accepted by real

web standardistas. The document will validate only because the content written in the external .js file is ignored by the

validator. This code is still not valid! How to provide such content without sacrificing either functionality or validity is an

open question in many cases, though.

Embedding YouTube Videos as Valid XHTML or HTML5
YouTube, the popular video sharing portal offers two types of embedding codes for videos:

The older-style embed code applies the •฀ object element with parameters and an embed
element. It supports Flash playback only.

The new embed code uses an •฀ iframe and supports both Flash and HTML5 video content.

Under each video on YouTube, there is a Share button that provides a link to the current video with options
such as long link, HD link, and declaring a starting position for playback. After clicking on the Embed link, a text box
appears with the selected new-type embedding code ready for copying to the clipboard. Below that text box there are
further options for customizing the embedding code, such as declaring the size4 or using the old-style embed code.

From the standardization point of view, both versions need some improvement.
In XHTML, the following issues should be addressed:

The •฀ embed element contained by the older-style embedding code is invalid in XHTML.

The •฀ iframe element used by the new-style embedding code cannot be used in XHTML 1.0
Strict or XHTML 1.1 (only in XHTML 1.0 Transitional, which should not be used). Moreover,
the data and type attributes should be provided to maximize interoperability (without them,
the embedding will not work under certain browsers). However, providing the data attribute
while preserving the movie parameter from the suggested embedding code ensures browser-
independence, because some rendering engines will use the outer declaration (the value of
the data attribute on the object element), and others will use the inner declaration (the value
of the movie parameter) to identify the resource URL (similarly to the Flash Satay method used
for Flash embedding covered in Chapter 9).

In HTML5, the following issues should be addressed:

If you prefer the new-style embedding code, the •฀ frameborder and allowscreen attributes
should not be used on the iframe element.

If you want to use the old-style code, the •฀ data and type attributes are missing from the object
element. Moreover, the param elements as well as the embed element should be closed using
the shorthand notation rather than the closing tags </param> and </embed>.

4The฀size฀can฀also฀be฀modified฀arbitrarily฀later฀in฀the฀markup฀when฀using฀the฀embedding฀code.

CHAPTER 13 ■ BEST PRACTICES

438

Suppose we want to embed the video with the embedding code presented in Listings 13-5 and 13-6.

Listing 13-5. New Embed Code for Example Video Suggested by YouTube

<iframe width="560" height="315" src="//www.youtube.com/embed/WgL7DMiTCAY" frameborder="0"
allowfullscreen></iframe>

Listing 13-6. Old-Style Embed Code for Example Video Suggested by YouTube

<object width="560" height="315"><param name="movie" value="//www.youtube.com/v/
WgL7DMiTCAY?hl=en_US&version=3"></param><param name="allowFullScreen" value="true">
</param><param name="allowscriptaccess" value="always"></param><embed src="//www.youtube.com/v/
WgL7DMiTCAY?hl=en_US&version=3" type="application/x-shockwave-flash" width="560" height="315"
allowscriptaccess="always" allowfullscreen="true"></embed></object>

In XHTML, the old-style embedding should be preferred and modified accordingly (Listing 13-7).

Listing 13-7. The Standardized Embedding Code in XHTML/HTML5

<p>
 <object type="application/x-shockwave-flash"
 data="//www.youtube.com/v/WgL7DMiTCAY?hl=en_US&version=3"
 width="560" height="315">
 <param name="movie"
 value="//www.youtube.com/v/WgL7DMiTCAY?hl=en_US&version=3" />
 <param name="allowFullScreen" value="true" />
 <param name="allowscriptaccess" value="always" />
 </object>
</p>

Note ■ The nesting rules of the applied document type should not be forgotten. In XHTML 1.0 Strict, the object

element should be wrapped in a container element such as div or p; otherwise, the code will not validate.

The same code can also be used in HTML5, where the embed element could also be preserved; however, it can be
safely removed: the first two lines ensure browser-independence. In HTML5, the new-style embedding code can also
be used. It can be standardized by removing the frameborder and allowfullscreen attributes (Listing 13-8).

Listing 13-8. A Standard-Compliant YouTube Embedding in (X)HTML5

<iframe width="560" height="315" src="//www.youtube.com/v/WgL7DMiTCAY?hl=en_US&version=3">
</iframe>

http://www.youtube.com/embed/WgL7DMiTCAY
http://www.youtube.com/v/WgL7DMiTCAY?hl=en_US%26amp;version=3
http://www.youtube.com/v/WgL7DMiTCAY?hl=en_US%26amp;version=3
http://www.youtube.com/v/WgL7DMiTCAY?hl=en_US&version=3
http://www.youtube.com/v/WgL7DMiTCAY?hl=en_US&version=3
http://www.youtube.com/v/WgL7DMiTCAY?hl=en_US&version=3
http://www.youtube.com/v/WgL7DMiTCAY?hl=en_US&version=3
http://www.youtube.com/v/WgL7DMiTCAY?hl=en_US&version=3

CHAPTER 13 ■ BEST PRACTICES

439

Embedding Google Maps as Valid XHTML or HTML5
A popular way of defining the position of offices, restaurants, and so on, on web sites is embedding interactive Google
Maps objects.

The source code provided by Google Maps looks like Listing 13-9.

Listing 13-9. A Google Maps Embedding Code Provided by Google

<iframe width="425" height="350" frameborder="0" scrolling="no" marginheight="0" marginwidth="0"
src="http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=Honolulu,+HI,+United+
States&sll=37.0625,-95.677068&sspn=50.557552,89.208984&ie=UTF8&hq=&hnear=Honolulu,
+Hawaii&ll=21.306944,-157.858333&spn=0.234454,0.479279&t=h&z=12&output=embed">
</iframe>
<small><a href="http://maps.google.com/maps?f=q&source=embed&hl=en&
geocode=&q=Honolulu,+HI,+United+States&sll=37.0625,-95.677068&sspn=50.557552,89.208984&
ie=UTF8&hq=&hnear=Honolulu,+Hawaii&ll=21.306944,-157.858333&spn=0.234454,0.479279&
t=h&z=12" style="color:#0000FF;text-align:left">View Larger Map</small>

However, this code is not standard-compliant. In HTML5, the frameborder, scrolling, marginheight, and
marginwidth attributes should be removed (styling should be achieved through CSS). In XHTML, the embedding
code should be modified as follows:

Since the inline frame element (•฀ iframe) cannot be used in XHTML 1.0 Strict and XHTML 1.1,
it should be replaced by the object tag.

The •฀ type attribute should be defined with the value text/html; otherwise, the map will not
appear even if the code is valid.

The •฀ src attribute should be replaced by the data attribute.

The •฀ frameborder, scrolling, marginheight, and marginwidth attributes should be removed.

The •฀ object element should be enclosed by a p or div container element.

Styles should be defined by CSS to fit into page design (if the default appearance is not •฀
acceptable).

The result should be in the form presented in Listing 13-10.

Listing 13-10. A Standardized Version of the Embedding Code in Listing 13-9

<p>
 <object type="text/html" width="425" height="350" data="http://maps.google.com/maps?f=
 q&source=s_q&hl=en&geocode=&q=Honolulu,+HI,+United+States&
 sll=37.0625,-95.677068&sspn=50.557552,89.208984&ie=UTF8&hq=&
 hnear=Honolulu,+Hawaii&ll=21.306944,-157.858333&spn=0.234454,0.479279&
 t=h&z=12&output=embed">
 </object>

 <a href="http://maps.google.com/maps?f=q&source=embed&hl=en&geocode=&
 q=Honolulu,+HI,+United+States&sll=37.0625,-95.677068&sspn=50.557552,
 89.208984&ie=UTF8&hq=&hnear=Honolulu,+Hawaii&ll=21.306944,
 -157.858333&spn=0.234454,0.479279&t=h&z=12">View Larger Map
</p>

CHAPTER 13 ■ BEST PRACTICES

440

This embedding code works on all modern browsers and validates as XHTML 1.0 Strict, XHTML 1.1, and HTML5.
There is just one issue with (X)HTML documents embedded with the object element: the layer order set by z-index
in the CSS is ignored by older versions of Internet Explorer.

Semantic Web Best Practices
The World Wide Web Consortium provides Semantic Web best practices on implementing RDF Schema and OWL,
and use them with object-oriented programming languages [3]. Image Annotation on the Semantic Web [4] describes
the importance and advantages of image metadata, and provides guidelines for semantic image annotation and use
cases. Further documents on Linked Data and controlled vocabularies are the Best Practices for Publishing Linked
Data [5], the Linked Data Platform Best Practices and Guidelines [6], and the Best Practice Recipes for Publishing RDF
Vocabularies [7].

WAI-ARIA Best Practices
The W3C WAI-ARIA Authoring Practices Guide describes best practices for developing rich Internet applications [8].
Approaches are recommended to create accessible widgets, keyboard navigation, form properties, drag-and-drop
support, relationships, dialog boxes, and reusable component libraries.

Mobile Web Best Practices
More and more users browse the Internet on smartphones and tablets with smaller screen size, limited bandwidth,
and a less convenient interface than desktop computers. Mobile-optimized web pages should be designed and served
in the appropriate manner to provide a reasonable user experience. The specific features of mobile devices should be
taken into account when designing for mobile media [9]. The most important considerations are as follows [10]:

•฀ Limited bandwidth: Techniques such as compression, caching, and minimized data size
can contribute to a better user experience for 3G and 4G mobile browsing5. Cookies and
redirections should be eliminated whenever possible.

•฀ Limited processing capacity: A large DOM, huge background images, a large number of scripts,
and so on, can increase processing time. As a result, users will have to wait for relatively long
periods of time, which should be avoided. Simple markup can be provided for mobile devices
with XHTML Basic [11]. As for styles, CSS has a profile dedicated to mobile devices [12]. Note
that smartphone processors became very powerful in the early 2010s, featuring multi-core
architectures with a relatively high clock rate that do not have limited processing capacity
anymore.

•฀ Limited technology support: Do not rely on scripts, embedded objects, cookies, or style sheets.
Tabular presentation should be minimized. Since mobile browsers usually support a small
set of file types only, download sections should warn users of files provided in formats poorly
supported by mobile devices.

5Smartphones฀are฀often฀connected฀to฀the฀Internet฀through฀WiFi฀unless฀the฀user฀is฀on฀the฀go.

CHAPTER 13 ■ BEST PRACTICES

441

•฀ Smaller interface: The automatic sign-in feature and unchanged focus on dynamically updated
pages can make the use of mobile applications more convenient. Preselected default values
should be provided where possible. Default text entry mode, language, and/or input format
should be specified [13]. The small screen size should be taken into account for sizing and
positioning. Absolute units and pixel measures should be eliminated.

•฀ Harder navigation: The simpler the top navigation, the easier to use on mobile devices.
Link targets should be clearly identified. Access keys used for accessibility might also ease
navigation.

•฀ Flexibility: If devices are classified, the user experience can be boosted significantly. Providing
alternate content for JavaScript is important.

•฀ Mobile-specific features: Certain web page components can be exploited more on mobile
devices than on computers. Telephone numbers, for example, should be provided with a
direct calling feature. Physical addresses should be easy to forward to the GPS application.

Rendering web sites on mobile devices require optimization. Pop-up windows should be completely eliminated.
Graphical components should not be used for spacing. The use of image maps should be reduced. Bad practices such
as frames or table-based layouts should be avoided because they can make web pages unusable on mobile devices.

Providing Robustness
Web developers should ensure that the content can be used even if some technologies cannot be used or fail. Some
common examples are discussed in the following sections.

Declaring Fallback Generic Fonts
Because of the endless variety of fonts available for computers, it cannot be guaranteed that a special font exists in
each browser. One of the generic font families defined by the CSS specification, that is, serif, sans-serif, cursive,
fantasy, and monospace [14], should always be specified. Let’s look at an example of text provided in Gill Sans, which
is not available for all users. The rule shown in Listing 13-11 can be applied; it ensures that the document text will
be rendered with Gill Sans when available and any other sans-serif font when not. Depending on the browser and
configuration applied, it might be Arial, Helvetica, or a similar font.

Listing 13-11. A Fallback Mechanism for Fonts

body {
 font-family: "Gill Sans", sans-serif;
}

Certainly, you can specify further (preferably similar) fonts of the same type as well (Listing 13-12), from which
the first available will be applied, but the generic font family declaration will always work.

Listing 13-12. A List of Similar Fonts Preceding the Generic Font Family

body {
 font-family: "Gill Sans", "London", "Corinthian", sans-serif;
}

CHAPTER 13 ■ BEST PRACTICES

442

Declarations with Appropriate Specificity
Web developers often have to choose from a variety of settings and options. As a general rule, declarations should
be defined in a way that obtains the desired effect or functionality on the widest range of devices and settings. For
example, the color names reliably supported by CSS are limited to 16 colors (as discussed in Chapter 5). Although they
are known by all browsers and seem developer-friendly, the hexadecimal notation should be preferred because there
is no ultimate color list for the Web. Certain browsers support additional color names, but they are not standardized.
There is no reason to mix the basic color names and other color notations in the CSS. After all, hexadecimal notation
can produce virtually any color.

Testing
Since several web site features cannot be guaranteed by standardization, testing is vital in most cases.

Rendering in Multiple Browsers
Because of the differences of rendering engines, markup, and style, validity cannot ensure proper rendering under
different user agents. Consequently, the legibility and functionality of web sites should be checked on all major
browsers before publishing.6 The more sophisticated the site design, the more complicated it is to provide similar
rendering under different browsers. There are freely available, browser-independent style sheets that eliminate this
time-consuming task. Good examples are the W3C Core Styles [15].

Readability Without Styles
An advanced method for testing web sites is to render them with the default style sheet of the browser. Properly
structured, logically constructed web documents remain legible without the style sheet(s) developed for them. This
test is also useful for checking content accessibility.

Summary
In this chapter, you learned standardized best practices that should be differentiated from the trends introduced
by enthusiastic content authors and developers. You can safely apply these time-proven techniques in almost all
scenarios and improve the overall web page quality, from code optimality to robust rendering.

The standard compliance of web sites created using the techniques and standards presented so far should be
approved by validation, which will be described in the next chapter.

6As฀discussed฀in฀the฀previous฀chapter,฀some฀browsers฀provide฀the฀option฀to฀render฀web฀pages฀with฀different฀rendering฀engines,฀and฀
there฀are฀more฀and฀more฀plug-ins฀available฀for฀testing฀browser-independence฀on฀tabs.

CHAPTER 13 ■ BEST PRACTICES

443

References
 1. ISO (2011) Writing paper and certain classes of printed matter – Trimmed sizes – A and B

series, and indication of machine direction. ISO 216:2007. International Organization for
Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.htm?csnumber=36631. Accessed 2 November 2014

 2. Rutter R (2004) How to size text using ems. Richard Rutter. http://clagnut.com/blog/348.
Accessed 2 November 2014

 3. Knublauch H, Oberle D, Tetlow P, Wallace E (eds) (2006) A Semantic Web Primer for
Object-Oriented Software Developers. World Wide Web Consortium.
http://www.w3.org/TR/sw-oosd-primer/. Accessed 2 November 2014

 4. Troncy R, van Ossenbruggen J, Pan JZ, Stamou G (eds), Halaschek-Wiener C,
Simou N, Tzouvaras V (2007) Image Annotation on the Semantic Web. World Wide Web
Consortium. http://www.w3.org/2005/Incubator/mmsem/XGR-image-annotation/.
Accessed 2 November 2014

 5. Hyland B, Atemezing G, Villazón-Terrazas B (eds) (2014) Best Practices for Publishing
Linked Data. World Wide Web Consortium. http://www.w3.org/TR/ld-bp/.
Accessed 2 November 2014

 6. Burleson C, Gutiérrez ME, Mihindukulasooriya N (eds) (2014) Linked Data Platform Best
Practices and Guidelines. World Wide Web Consortium. http://www.w3.org/TR/ldp-bp/.
Accessed 2 November 2014

 7. Berrueta D, Phipps J (eds) (2008) Best Practice Recipes for Publishing RDF Vocabularies.
World Wide Web Consortium. http://www.w3.org/TR/swbp-vocab-pub/.
Accessed 2 November 2014

 8. Scheuhammer J, Cooper M (eds) (2013) WAI-ARIA 1.0 Authoring Practices. An author’s guide
to understanding and implementing Accessible Rich Internet Applications. World Wide Web
Consortium. http://www.w3.org/TR/wai-aria-practices/. Accessed 2 November 2014

 9. Connors A, Sullivan B (eds) W3C (2010) Mobile Web Application Best Practices. W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/mwabp/.
Accessed 2 November 2014

 10. W3C (2014) Mobile Web Application Best Practices Cards. World Wide Web Consortium.
http://www.w3.org/2010/09/MWABP/. Accessed 2 November 2014

 11. McCarron S, Ishikawa M (eds) (2010) XHTML Basic 1.1 Second Edition. W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/xhtml-basic/.
Accessed 2 November 2014

 12. Bos B (ed) (2014) CSS Mobile Profile 2.0. World Wide Web Consortium.
http://www.w3.org/TR/css-mobile/. Accessed 2 November 2014

 13. W3C (2010) Mobile Web Best Practices. W3C Cheatsheet. World Wide Web Consortium.
http://www.w3.org/2009/cheatsheet/#mwbp. Accessed 2 November 2014

 14. Bos B, Çelik T, Hickson I, Lie HW (eds) (2010) Generic font families. In: Cascading
Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. World Wide Web Consortium.
http://www.w3.org/TR/2010/WD-CSS2-20101207/fonts.html#generic-font-families.
Accessed 2 November 2014

 15. Bos B (2009) W3C Core Styles. World Wide Web Consortium. http://www.w3.org/
StyleSheets/Core/Overview.html. Accessed 2 November 2014

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=36631
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=36631
http://clagnut.com/blog/348
http://www.w3.org/TR/sw-oosd-primer/
http://www.w3.org/2005/Incubator/mmsem/XGR-image-annotation/
http://www.w3.org/TR/ld-bp/
http://www.w3.org/TR/ldp-bp/
http://www.w3.org/TR/swbp-vocab-pub/
http://www.w3.org/TR/wai-aria-practices/
http://www.w3.org/TR/mwabp/
http://www.w3.org/2010/09/MWABP/
http://www.w3.org/TR/xhtml-basic/
http://www.w3.org/TR/css-mobile/
http://www.w3.org/2009/cheatsheet/#mwbp
http://www.w3.org/TR/2010/WD-CSS2-20101207/fonts.html#generic-font-families
http://www.w3.org/StyleSheets/Core/Overview.html
http://www.w3.org/StyleSheets/Core/Overview.html

445

CHAPTER 14

Validation

The various computer languages used on the Web, including but not limited to (X)HTML, CSS, RDF, and RSS,
provide structure, style, metadata, semantics, and other document features. Similar to natural languages, they have
their own grammar, vocabulary, and syntax that need to be followed. However, just like the grammar, structural, or
spelling errors that occur in documents written in natural languages, web documents might also have errors in them.
Validation is the task of checking the source code of web documents against a DTD or schema. It contributes to
error-free, clean code and increases overall web page quality.

Even a single character might affect your carefully created standard-compliant code, so it is important to
regularly check your documents. After achieving the necessary routine, you are able to modify or extend web
documents at the source level without violating standard compliance. In this chapter, you will learn about the tools
that help you locate and correct errors if they occur and can assure you whether your code is error-free.

Concepts
Markup language grammar rules are defined by Document Type Definitions (DTDs). Prior to HTML5/XHTML5,
developers should have provided a reference to the DTD associated with the document type being used (as discussed
in Chapter 3).

Web documents can be verified against these rules, which is called validation. The tools used to perform
validation are called validators. Documents successfully passing validation are claimed to be valid; in other words,
they are free of errors and do not contain incorrectly used elements or attributes. However, validation guarantees
neither well-structuredness nor proper element use [1]. A valid document follows the grammar rules outlined in the
corresponding DTD, which makes it possible for user agents to construct the DOM correctly and render the
document accurately.

Applying the grammar rules defined in DTDs is described in technical specifications, most of which are published
by W3C.

Standard conformance is the feature of those web documents that fulfill all the requirements described by the
appropriate DTD and specification. A web document is valid when it is correctly written in accordance to the formal
grammar included in the technical specification of the corresponding markup language, whereas conformance relates
to the entire specification. Since some conformance requirements, such as the proper use of attribute values, cannot
be described by the formal grammar, validity is only part of conformance. Consequently, validity and conformance
might be identical, but the latter one is a wider term.

Valid documents are written according to the formal grammar of the language being used. Standard-compliant
documents apply the technology the recommended way.

Validation should not be considered as the final step right before web site launch. Instead, it should be performed
as an essential part of web site development. For beginners who cannot write new markup elements and attributes
correctly with 100 percent certainty, validation can help identify potential errors and prevent invalid markup from
being duplicated or multiplied. Even experienced web designers might find validation useful and consider it an
assistance rather than a mandatory task. After inserting new structural elements to the source, for example, it can be

CHAPTER 14 ■ VALIDATION

446

more than inconvenient to identify the numerous—and often identical—closing tags (such as four to five or more
consecutive </div> tags). While finding start tag–end tag pairs is very easy in a file containing 100–200 lines, the task
can be overwhelming for larger files.1

No matter how experienced a developer is or how sophisticated development tools are used, errors are
inevitable. This is where validators can help the work of web designers. As you will see, validators provide error
locations, along with hints for possible causes and potential solutions.

Since validation contributes to overall web page quality, validators and advanced specific checkers are also
known as web quality assurance tools [2].

Markup Validation
The primary validator for HTML/XHTML documents is the W3C Markup Validation Service at
http://validator.w3.org. In fact, Markup Validation Service v1.3 can be used to validate several types of markup [3],
including the following:

•฀ HTML: ISO/IEC 15445:2000 (“ISO HTML”), HTML 2.0, HTML 3.2, HTML 4.01 Frameset, HTML
4.01 Transitional, and HTML5

•฀ MathML: MathML 2.0

•฀ SMIL: SMIL 1.0, SMIL 2.0

•฀ SVG: SVG 1.0, SVG 1.1, SVG 1.1 Basic, SVG 1.1 Tiny

•฀ XHTML: XHTML Basic 1.0, XHTML Basic 1.1, XHTML 1.0 Frameset, XHTML 1.0 Strict,
XHTML 1.0 Transitional, and XHTML 1.1, XHTML Mobile Profile 1.2, XHTML Print 1.0, and
XHTML5

•฀ Mixed-namespace documents: XHTML + RDFa2, XHTML 1.1 + MathML 2.0, and XHTML 1.1 +
MathML 2.0 + SVG 1.1

The W3C Markup Validation Service offers three options to validate web documents:

•฀ Validation by direct input: Validation of the markup provided in a textbox. The code can be
either typed directly or copy-pasted from an advanced text editor. This is suitable for testing.
Since there is no physical file to validate, neither character encoding nor server settings can be
checked by direct input.

•฀ Validation by file uploading: Validation of a file uploaded to a temporary folder. Character
encoding can also be checked. Experienced web designers do not use this option frequently
because the file can be uploaded to the host (final destination) with the same effort (in the
case of static files).

•฀ Validation by URI: Validation of an uploaded version on a web server. This is the ultimate
validation that validates markup, character encoding, and server settings. It’s ideal for final
checking and the validation of web pages developed by others.

1Even฀if฀there฀are฀tools฀that฀represent฀the฀hierarchy฀with฀vertical฀dotted฀lines฀between฀the฀opening฀and฀closing฀tag฀pairs฀฀
(e.g.,฀Notepad++).
2The฀RDFa฀notation฀can฀be฀perfectly฀validated฀in฀XHTML฀documents.฀As฀of฀2011,฀the฀Validator฀still฀does฀not฀recognize฀฀
RDFa฀in฀HTML5,฀however,฀and฀gives฀errors.

http://validator.w3.org/

CHAPTER 14 ■ VALIDATION

447

The W3C validator supports the following character encodings: UTF-8, UTF-16, ISO-8859-1, ISO-8859-2,
ISO-8859-3, ISO-8859-4, ISO-8859-5, ISO-8859-6-i, ISO-8859-7, ISO-8859-8, ISO-8859-8-i, ISO-8859-9, ISO-8859-10,
ISO-8859-11, ISO-8859-13, ISO-8859-14, ISO-8859-15, ISO-8859-16, US-ASCII, EUC-JP, Shift_JIS, ISO-2022-jp, EUC-kr,
gb2312, gb18030, big5, Big5-HKSCS, tis-620, koi8-r, koi8-u, ISO-ir-111, Macintosh, Windows-1250, Windows-1251,
Windows-1252, Windows-1253, Windows-1254, Windows-1255, Windows-1256, and Windows-1257.

Both document type and character encoding are detected automatically and used for validation accordingly.
If detection is not possible, the validator assumes the document type and/or character encoding; however, the
results might be unreliable. Properly served standard-compliant web documents always provide both data; thus,
the validator performs validation accurately. The validator can also be forced manually to use certain document
type and/or character encoding; however, this feature should not be used in general cases. It should be considered a
fallback mechanism rather than an overriding feature.

If there are errors in the markup, they are clearly indicated by the red stripe and the number of errors (Figure 14-1).
Even the favicon of the page becomes a red square.

Figure 14-1. The red stripe and the number of errors and warnings clearly show that the markup is invalid

The consecutive errors and potential errors are listed under the summary sequentially by default, in other words,
in the order of occurrence (location in the markup). This behavior can be overridden to group error messages by error
type. Since many errors can cause further ones (such as a missing closing tag), sequential checking is appropriate in
most cases.

Tip ■ Because of the high potential of correlation between markup errors, it might be convenient to correct some

errors only (especially if the document is full of errors) and then revalidate the document. The number of errors might

decrease exponentially. Revalidation is also useful for testing implementations of special or new markup specifications as

a direct input.

CHAPTER 14 ■ VALIDATION

448

There are several advanced settings of the Markup Validation Service you can use for your standardization
projects. The (X)HTML source code can be displayed with the error messages directly linking to the corresponding
lines. This is a useful feature for developers. The tree structure of document headings can be visualized by the outline
option, which makes it easier to realize which header is missed (if any). Custom 404 error pages sent by the server
can be validated by ticking the checkbox “Validate error pages.” Beyond the concise reports provided by default, more
explanations and longer suggestions can be requested with the Verbose Output option. Another option of the
W3C Markup Validation Service is to correct markup errors using the HTML Tidy tool discussed in Chapter 11.

Beyond the error location, the Markup Validation Service gives hints for corrections and links to the
corresponding specifications and FAQs (Figure 14-2). Some of the characters might be highlighted, which is another
aid, and sometimes makes the detection of invalid characters very easy.

Figure 14-2. The W3C Markup Validation Service clearly indicates error locations and provides useful hints
for correction

The markup validation results and suggestions are useful not only for the less experienced developers but also
for experts. Using the line numbers, it is fairly easy to find errors, which is a prerequisite for correcting them even for
those who do not rely on the correction tips.

After the necessary corrections and the final revalidation, the result should look like Figure 14-3.

CHAPTER 14 ■ VALIDATION

449

Note ■ Validating HTML5 is still an experimental feature at the W3C Markup Validation Service, and the validator will

give a warning (not error) even if the web page being analyzed is valid. The validator does not recognize RDFa annotations

in HTML5, nor XHTML5 documents.3 Furthermore, in contrast to valid XHTML documents, the validator does not provide

validation badges with hyperlinks for valid HTML5 documents. As will be discussed later, such badges can be downloaded

from a separate site.

The W3C Markup Validator is not only free but also open source and available under the W3C Software
License [4]. Anyone is welcome to set up mirrors of the service or contribute to its development.

Although there are other markup validators on the Web, such as the WDG HTML Validator [5], or offline tools such
as Firefox’s HTML Validator plug-in [6], using the W3C Markup Validation Service is recommended. It is part of W3C
Unicorn, which can be used if styles sheets and feed channels are also validated (see later in section “W3C Unicorn”).

Figure 14-3. The green stripe and the result “Passed” indicate that the markup is valid

3The฀XML฀declaration฀and฀all฀namespace฀declarations฀provided฀in฀XHTML5฀result฀in฀an฀error฀message,฀even฀if฀they฀are฀valid.฀
Moreover,฀the฀validation฀result฀of฀XHTML5฀documents฀states฀HTML5฀instead฀of฀XHTML5.

CHAPTER 14 ■ VALIDATION

450

Validating markup is more complicated for developers of dynamic web sites since markup validators generally
cannot deal with server-side scripts such as PHP. Checking the dynamically generated (X)HTML output, performing
corrections, and revalidating documents are all real challenges. This is one of the major reasons why dynamically
generated web pages are often invalid.

Validating XML
XML documents can be validated for conformance with a DTD, an XML schema, or the RELAX NG schema language.
Syntactic well-formedness is a basic requirement, but it does not guarantee XML validity, which has several
constraints, such as proper use of required and optional elements and attributes, correct document structure and
syntax, and properly applied data types.

Although XML validation and parsing are logically independent tasks, both are often performed by XML parsers.
Considering that even a single error can prevent the document from being parsed or its tree structure shown, XML
parsers of web browsers can always be used as basic XML validators.

XML validity is not required by all XML parsers but by the XML parsers that check the document against its
associated schema.

Batch validation of XML files can be performed by the xmlvalidate task of Apache Ant [7]. For example, the
target in Listing 14-1 validates the .xml files in the directory specified by the dir attribute.4

Listing 14-1. Validating XML with xmlvalidate

<target name="validate-xml">
 <xmlvalidate lenient="no">
 <fileset dir="semweb/ont" includes="*.xml" />
 <attribute name="http://xml.org/sax/features/validation" value="true"/>
 <attribute name="http://apache.org/xml/features/validation/schema" value="true"/>
 <attribute name="http://xml.org/sax/features/namespaces" value="true"/>
 </xmlvalidate>
</target>

Validating RDF/XML
RDF documents written in the XML serialization format (RDF/XML) can be checked with the W3C RDF Validation
Service at www.w3.org/RDF/Validator [8]. Validations can be performed by URI or direct input. The Validator not only
checks the RDF code but also represents RDF triples (Figure 14-4).

4Relative฀to฀the฀Ant฀build฀file.

http://xml.org/sax/features/validation
http://apache.org/xml/features/validation/schema
http://xml.org/sax/features/namespaces
http://www.w3.org/RDF/Validator

CHAPTER 14 ■ VALIDATION

451

Optionally, the RDF graph can be generated in various formats, including embedded or linked PNG, SVG, GIF,
PostScript, IsaViz/ZVTM, HPGL, and HPGL/2. Although the arcs look like hand-drawn curves and often overlap each
other—which is not the most visually appealing representation—the image output can be useful for demonstrational
or designing purposes (Figure 14-5). Note that there are only very few similar services available on the Web for
generating graph images from RDF.

Figure 14-4. Subject–predicate–object triples retrieved from a valid RDF file

Figure 14-5. Detail of an RDF graph generated by the W3C RDF Validation Service

Note ■ In contrast to the raster (PNG) output, the SVG output not only has incomparable quality but also contains the

URIs as hyperlinks.

CHAPTER 14 ■ VALIDATION

452

Optionally, the triples can be displayed in N-Triples format. The colors of nodes, arcs, and text, as well as font size
and orientation, can be set as advanced options.

Validating News Feeds
Since RSS and Atom news feeds should be valid XML documents, care must be taken to provide error-free elements
and well-formed XML structure.

The World Wide Web Consortium runs the W3C Feed Validation Service, for Atom and RSS at http://validator.
w3.org/feed/ [9]. Similar to other W3C validators, it provides not only validation by URI but also validation by direct
input. After successful validation, the service provides a “valid RSS” or “valid Atom” logo (depending on the validated
feed), an embedding code, and a text link.

The FEED Validator for Atom and RSS and KML at http://feedvalidator.org can also be used to validate
RSS 2.0 as well as Atom 1.0 feeds [10]. Additionally, it validates elements of the blogChannel, dc, itunes, mod_admin,
mod_syndication, and mod_content5 namespaces.

Validating CSS
Style sheet validations should be performed according to the CSS level being used. Although valid CSS1 style sheets are
also valid CSS 2.1 style sheets, some CSS1 rulesets should be written with slightly different semantics in CSS 2.1 [11].
Since certain CSS2 features are omitted in CSS 2.1, not all CSS2 styles are valid in CSS 2.1 [12]. Similarly, the new
properties introduced in CSS3 are invalid in earlier CSS versions. Valid CSS style sheets must conform to the grammar
rules of the corresponding version and must contain only at-rules, properties, and property values defined in that
specification.

In spite of the relatively wide selection of markup language versions and variants, the document type to be
used for markup validation can usually be selected automatically based on the Document Type Declaration.
However, there is no similar mechanism in CSS, and determining the version of style sheets to be validated is not
so straightforward. First, there is no version declaration in CSS, and second, there is a large overlap between the
vocabularies of different versions, making automatic version detection impossible. Hence, the W3C CSS Validation
Service at http://jigsaw.w3.org/css-validator/ [13] validates style sheets against CSS3 by default. The CSS profile
to be used for validation can be overridden or forced manually as an advanced option. For example, if you want to
pass a CSS file to the validator as CSS3, you should construct a URI6 similar to the one shown in Listing 14-2.

Listing 14-2. Explicitly Selected CSS Profile for Validation

http://jigsaw.w3.org/css-validator/validator?uri=www.example.com/styles/main.css
 &profile=css3&usermedium=all&warning=0&lang=en

Similar to the Markup Validation Service, the CSS validator can perform the validation by URI, file upload, or direct
input. The CSS validator can be used primarily to validate external CSS files, but internal styles can also be checked.
However, in the latter case, the (X)HTML document should be validated first with the Markup Validation Service.

The CSS Validation Service supports CSS1, CSS2, CSS 2.1, and CSS3 style sheets, along with other document
profiles. Media types can be selected manually, including all, aural, Braille, embossed, handheld, print,
projection, screen, TTY, TV, or presentation. The default media type is all. Beyond errors, the validator might
identify warnings as well. Since they might be false positives or the consequence of errors, warnings can be hidden.

5content:encoded฀only
6Naturally,฀you฀can฀select฀the฀profile฀“CSS฀level฀3”฀from฀the฀drop-down฀list฀under฀“More฀Options.”฀However,฀you฀need฀to฀construct฀
a฀URI฀manually฀if฀you฀want฀to฀provide฀a฀validation฀link฀for฀your฀CSS3฀button,฀because฀the฀default฀code฀assumes฀CSS฀2.1.

http://validator.w3.org/feed/
http://validator.w3.org/feed/
http://feedvalidator.org/
http://jigsaw.w3.org/css-validator/

CHAPTER 14 ■ VALIDATION

453

The validation request applies parameters in conjunction with the base URI
http://jigsaw.w3.org/css-validator/validator. The supported parameters are the following:

•฀ uri: The URI of the document to be validated. It can be CSS or (X)HTML.

•฀ text: The CSS document to validate.

•฀ usermedium: The media type used for validation.

•฀ output: html (HTML), xhtml (XHTML, default), soap12 (SOAP 1.2), text (plain text).

•฀ profile: css1, css2, css21, css3, svg, svgbasic, svgtiny, mobile, atsc-tv, tv, or none.

•฀ lang: The report language such as en (default), fr, it, ko, ja, es, zh-cn, nl, de, it, or pl.

•฀ warning: Warning level with possible values no (hidden warnings), 0 (less warnings), 1 or 2
(more warnings). 2 is the default.

The output of the W3C CSS Validation Service is similar to the result page of the W3C markup validator. A green
stripe indicates a valid file, while a red stripe means that the CSS file is invalid.

Validating I18N
The Internationalization Activity Group at the World Wide Web Consortium runs the W3C Internationalization
Checker [14]. The I18N checker can be used to check web pages for internationalization-friendliness according to the
following factors:

•฀ Character encoding: HTTP Content-Type, byte-order mark, XML declaration, the
Content-Type metadata, and HTML5 meta charset

•฀ Language settings: the lang and xml:lang attributes on the html element, the HTTP
Content-Language, and the content-language metadata

•฀ Text direction: ltr (default) or rtl

•฀ The class and id names: Non-ASCII as well as non-NFC classes and identifiers

•฀ Request headers: Accept-Language, Accept-Charset

Validating Hyperlinks
One of the most disappointing experiences in web browsers is the broken hyperlink (dead link). W3C Link Checker
at http://validator.w3.org/checklink is a useful tool for checking internal and external hyperlinks of web
documents [15]. Linked documents can also be checked recursively throughout a maximum of 150 documents. URI
fragments including a hash mark such as index.html#about are included in the test. Links forbidden by the robots
exclusion rules declared in the robots.txt file are not checked (Figure 14-6).

http://validator.w3.org/checklink

CHAPTER 14 ■ VALIDATION

454

Hyperlink validation is useful not only for checking entry points but also for important files such as style
sheet files, scripts, or external URIs that might be modified by other site contributors or administrators any time
without notification. For example, permanent redirections (HTTP response status code 301) are also identified by
Link Checker, and although they work, such links should be updated. The results can be useful for improving user
experience by eliminating broken links and accessibility barriers associated with links of the analyzed web page.

Validating Accessibility
Unlike other web site features, accessibility cannot be validated by validators with 100 percent certainty. While
markup errors, such as incorrect element use, missing tags, or structural errors, can be identified automatically,
accessibility is too complex and sophisticated to be validated automatically [16]. Many potential issues require human
decision, checking, or confirmation. The equivalent functionality of scripts and noscript contents, adequacy of text
descriptions, script functionality and effects, visual lists represented by paragraphs and break rows, and pause options
in objects are some of the features that cannot be checked automatically with full certainty.

Even so, there are useful tools that can make the work of web designers easier [17]. Such tools should be used
throughout the phases of web site development to prevent accessibility barriers, repair encountered barriers, and
improve overall web page quality. The major task of accessibility tools is to identify accessible-friendly elements and
attributes in the markup. Moreover, certain tools can assist developers in performing those checks that cannot be
validated automatically [18]. Accessibility tools perform validation against the Web Accessibility Guidelines of W3C
(WCAG 1.0 and/or WCAG 2.0) as well as Section 508.

A typical online accessibility checker is AChecker (http://achecker.ca [19]) that has been released by the
Inclusive Design Research Centre at the University of Toronto, Canada. AChecker can test web sites for conformance
to various accessibility guidelines, including WCAG 1.0/2.0 Level A/AA/AAA, Section 508, Stanca Act, and BITV. The
interface provides accessibility checking by either URL or file upload. It identifies three types of errors: known, likely,
and potential problems. Known problems are claimed to be errors that can be identified with certainty (for example,
img element with missing alt attribute, missing label for the input element). Likely problems need human decisions
(for example, misused elements, onchange event handler on the select element might cause extreme change in
context). Potential problems are often not errors at all; however, they require human decision and confirmation
(for example, dir attribute may be required to identify changes in text direction, data table may require th elements,
script user interface may not be available from the keyboard). Unfortunately, not every suggestion would validate

Figure 14-6. Link Checker results

http://achecker.ca/

CHAPTER 14 ■ VALIDATION

455

and some of them are incorrect (for example, the lang attribute on the html element is neither valid nor required in
XHTML+RDFa if the natural language of the document is identified by the xml:lang attribute) (Figure 14-7).

Figure 14-7. AChecker provides good suggestions; however, not all of them would be valid

Figure 14-8. Detailed accessibility report with explanations and links to W3C guidelines

AChecker also supports HTML validation. It provides error descriptions and suggestions for corrections.
The online accessibility validation tool Cynthia can perform validations by URI according to Section 508

and WCAG 1.0 with all priority levels [20]. Advanced options are also available such as browser emulation or line
exclusions. Reports are clear and useful for developers dealing with accessibility (Figure 14-8).

One of the most comprehensive accessibility tools is WebAIM WAVE [21]. It is a free online tool at
http://wave.webaim.org that renders web pages with accessibility errors, warnings, and information (Figure 14-9).
It identifies accessible attribute values, inaccessible and potentially inaccessible content such as Flash or scripts, and
device-dependent content such as keyboard traps.

http://wave.webaim.org/

CHAPTER 14 ■ VALIDATION

456

While WAVE is a general accessibility tool focusing on markup, there are much more specific tools as well. For
example, there are several free online tools for evaluating the contrast between text color and background color, such
as the Color Contrast Analyzer [22], the Luminosity Color Contrast Ratio Analyzer [23], or the index of color texts on
white background provided by the University of Wisconsin [24].

It is important to keep in mind that no accessibility tools can perform a complete evaluation by any means.
With the introduction of new semantic elements in HTML5, care must be taken to use the latest accessibility

checkers available.
The final accessibility test is always a real-life test that involves evaluation performed by people with disabilities.

Validating Mobile-Friendliness
With the enormous popularity of mobile browsing, it is vital to test your web sites on mobile devices. However, it is
practically infeasible to check web sites on all kinds of mobile devices. Fortunately, the W3C mobileOK Checker at
http://validator.w3.org/mobile/ can help you analyze the suitability of your web pages for mobile browsing [25].
The mobileOK Checker applies the tests defined in the W3C Recommendation “W3C mobileOK Basic Tests 1.0” [26],
categorizes failures, and gives useful error descriptions (Figure 14-10).

Figure 14-9. Section of an accessible menu rendered by WAVE

http://validator.w3.org/mobile/

CHAPTER 14 ■ VALIDATION

457

After correcting the flagged issues, the web site will fulfill the fundamental requirements for providing a
reasonable mobile browsing experience.

Unified Validators
Although individual validators could be used in combination for validating full web sites, in the case of large projects,
it would be inconvenient and slow. Developers can apply unified validators to perform multiple validations easily
and effectively.

W3C Unicorn
On 27 July 2010, W3C released Unicorn, a unified validator available at http://validator.w3.org/unicorn/ [27]
with the slogan “Improve the quality of the Web.” Unicorn is the ultimate markup, CSS, and news feed validator
and mobileOK checker. Validations can be performed by URI, by file upload, or by direct input individually or
simultaneously. The advanced options are identical to the ones provided by the individual W3C validation services
discussed earlier. Unicorn is available in many languages [28].

Depending on the tests chosen, the output provides information about the validity of the markup, style sheets,
and news feeds, as well as the mobile-friendliness of the web page (Figure 14-11).

Figure 14-10. The W3C mobileOK checker gives useful hints when evaluating web site suitability for mobile browsing

http://validator.w3.org/unicorn/

CHAPTER 14 ■ VALIDATION

458

Similar to the individual W3C validators, valid documents are indicated by a green stripe, while invalid documents
are indicated by a red stripe. By clicking the stripes, the validation test results can be collapsed/uncollapsed by category
(they are uncollapsed by default). On the right side, on each stripe you can see the number of errors, warning, and
information (if any). These numbers are hyperlinks and can be used to jump to the corresponding section on the
page. In case of a valid web page, the validators provide not only reassuring information but also W3C badges with
evaluation links that can be embedded to your valid web page. In other words, the output of Unicorn is identical to the
output of the separate validators.

Total Validator
Another unified validator is Total Validator, which once was an online service. In contrast, the current version is
available exclusively as a desktop software tool for different platforms [29]. The basic version can be downloaded free
of charge. Total Validator is available for different platforms, including Windows, OS X, and Linux.7 Total Validator
is a small and powerful tool that combines a markup validator, an accessibility validator, a spell-checker, and a link
validator (Figure 14-12).

Figure 14-11. The heaven of web standardistas: valid markup, valid style sheet, and valid news feed

7The฀basic฀tool฀is฀Java฀based฀and฀requires฀Java฀1.5฀or฀later.

CHAPTER 14 ■ VALIDATION

459

This interface is used for starting the process only. After declaring the URI of the web page to validate, along with
the parameters, Total Validator opens a browser window and displays the validation results. Errors and warnings are
shown in the markup code with hyperlinks to the corresponding entries of the long description after the markup code
(Figure 14-13).

Figure 14-12. The configuration interface of Total Validator

CHAPTER 14 ■ VALIDATION

460

Beyond common markup languages such as XHTML 1.0 Strict, XHTML 1.1, and HTML5 (and many older
versions), Total Validator also supports HTML + RDFa 1.1, XHTML + RDFa 1.1, HTML5 used as a polyglot language,
and even XHTML5. Accessibility can be checked at all levels of WCAG, as well as according to Section 508. The spell
checker supports American and British English, French, Italian, Spanish, and German.

Total Validator provides screenshots for analyzing web page appearance in different browsers, including various
versions of Firefox from version 1.5, Internet Explorer from version 5.5, Konqueror 3.5, Lynx 2.8, Opera, and Safari.

An interesting option is that the validation result can be saved as HTML and opened with a single click on the
button Last Results the next time the tool is executed.

SortSite
A comprehensive commercial validator is SortSite, developed by PowerMapper [30]. Its main features can be
summarized as follows:

•฀ Accessibility: Check conformance against WCAG 1.0, WCAG 2.0, and Section 508.

•฀ Broken links: Check for broken links and incorrect server configuration.

•฀ Compatibility: Check for browser-specific code, scripts, and image formats.

•฀ Compliance: Check for compliance with EU and U.S. law.

•฀ Markup and styles: HTML, XHTML and CSS validation.

•฀ Search engine optimization: Check Google, Yahoo!, and Bing content guidelines

•฀ Usability: Check against Usability.gov guidelines

Figure 14-13. Validation results with a segment of the markup code (top) and the long description at the bottom
of the page

CHAPTER 14 ■ VALIDATION

461

Extracting Semantic Content
Semantic content of web sites can be checked with the W3C Semantic Data Extractor [31]. It can extract semantic data
such as following:

Generic metadata•฀

Title, author, and description provided in the document head•฀

RDFa metadata embedded in the document body (also generated in RDF/XML)•฀

Related resources•฀

Linked files, for example, RSS or Atom news feeds•฀

Glossary, copyright, and bookmarkable points provided in the document head•฀

Outline of the document•฀

Quotes and citations•฀

Menu points and URIs are provided with hyperlinks.
Another comprehensive semantic data extractor tool is the Sindice Web Data Inspector at http://inspector.

sindice.com [32]. The tool can be used to extract RDF triples from markup, RDF/XML, Turtle, or N3 documents
provided either by URI or by direct input. Sindice Web Data Inspector can be used for retrieving semantic data
(Inspect button), combined semantic data extraction and validation (Inspect + Validate button), or ontology analysis
and reasoning (Figure 14-14).

Figure 14-14. Comprehensive options on the start screen of Sindice Web Data Inspector

http://inspector.sindice.com/
http://inspector.sindice.com/

CHAPTER 14 ■ VALIDATION

462

As a result, the tool provides the full list of subject–predicate–object triples retrieved from the file (Figure 14-15).
The output format can also be changed to N-triples or RDF/XML.

Figure 14-15. Semantic data extraction in progress

The “Sigma” option is a really good demonstration of machine-readable metadata. Software tools can extract
structured data from properly written semantic documents and display them arbitrarily (Figure 14-16). This is the true
essence of the Semantic Web!

CHAPTER 14 ■ VALIDATION

463

A very nice feature of Sindice Web Data Inspector is that a scalable graph can be generated from the semantic
document (Figure 14-17). The graph not only presents the triples but also provides a quick summary of the ontologies
and vocabularies used in the file.

Figure 14-16. A personal description extracted from RDF and displayed in a visually appealing manner

CHAPTER 14 ■ VALIDATION

464

The Sindice Web Data Inspector also has a validation feature with two different options. The first one, called
“RDF syntax validation,” performs an RDF syntax validation according to the W3C specification. The second option is
the “Pedantic validator,” which is a validation over the extracted triples. In case of a valid document, both validators
give the result “Valid document.”

Expressing Validity
Standard conformance of web sites can be expressed easily by the “valid” icons (also known as validity badges or
validity logos). In addition to notifying readers, they can also be used as instant validation links if implemented
correctly. The expected hyperlink is listed in the sample code provided by W3C validators themselves when validating
web documents (Figure 14-18).

Figure 14-17. A scalable graph generated from an RDF file

CHAPTER 14 ■ VALIDATION

465

Note that the codes are just suggestions. For example, the style attribute on the img element can be omitted in
favor of external CSS rules. The recommended embedding code for XHTML [33] is presented in Listing 14-3.

Listing 14-3. Embedding Code for W3C Validation Icons

<p>

 <img src="http://www.w3.org/Icons/valid-xhtml10" alt="Valid XHTML 1.0!" height="31"
 width="88" />

</p>

W3C Icons
The W3C “valid” icons represent a W3C logo on the left and the Recommendation on the right (Figure 14-19). In many
cases, the version or the Recommendation is also shown.

Figure 14-18. W3C validation icons with embedding code

CHAPTER 14 ■ VALIDATION

466

The default size of the icons is 88×31 pixels. The World Wide Web Consortium provides two versions for each
icon: a gold one and a blue one. Web designers are free to choose which one to use. The W3C Trademark License as
well as the logo and icon usage policies apply to all W3C validity icons. Modifying icons is not allowed.

The W3C valid logos can be used exclusively on web pages that pass validation. They are designed for
verification. The icons must provide a hyperlink that validates the web page according to the corresponding W3C
technology or standard. Consequently, clicking a correctly set “valid markup button” should pass the URI of the page
to the W3C Markup Validation Service, which gives the same result page as if the URI was used directly for validation
on the validator web page. The same holds for CSS validation buttons. Consequently, these buttons can also be used
by web designers to revalidate pages every time they are modified. Experts can use this facility to reassure themselves
about the latest modifications without the need for loading the corresponding validator and adding the URI manually,
or copy-pasting the code.

The World Wide Web Consortium does not verify the validity of web pages; thus, it is the Web designers’
responsibility to ensure consistency and conformance.

The full list of W3C validation icons is listed on the W3C Quality Assurance site [34] and includes the following:

•฀ Markup icons: “HTML 2.0”, “HTML 3.2”, “HTML 4.0”, “HTML 4.01”, “ISO-HTML” for ISO/IEC
15445 (legacy missing), “XHTML 1.0”, “XHTML 1.1”, “XHTML Basic 1.0”, “XHTML-Print 1.0”,
and “XHTML+RDFa”

•฀ CSS icons: A general valid “CSS” icon and more specific icons for “CSS level 1” and “CSS level 2”

•฀ XML icons: “XML 1.0”, “XML 1.1”

•฀ SVG icons: “SVG 1.0”, “SVG 1.1”, “SVG 1.2”, “SVG Tiny 1.1”, and “SVG Tiny 1.2”

•฀ MathML icon: “MathML 2.0”

The validity icons are also available directly at the W3C Icon Repository (along with other images) [35].

Representing Technologies
Beyond validation, numerous icons are available to represent web technologies used on a web site. They can express
not only underlying technologies but also dedication, initiatives the site developers agree with, or projects and
organizations they sympathize with. Such icons can also be used to proudly present rarely implemented but advanced
features that can hardly be seen on other sites. The most frequently used W3C technology icons are the following:

“HTML5”•฀

“HTML5 Powered with CSS3/Styling”•฀

“HTML5 Powered with Semantics”•฀

“HTML5 Powered with Offline & Storage”•฀

“HTML5 Powered with Connectivity/Realtime”•฀

“HTML5 Powered with Multimedia”•฀

Recommendation

Version

W3C logo

Figure 14-19. Structure of conventional W3C validity icons

CHAPTER 14 ■ VALIDATION

467

“HTML5 Powered with Graphics, 3D, and effects”•฀

“HTML5 Powered with Device Access”•฀

“HTML5 Powered with Performance & Integration”•฀

Technology names are optional and can be combined (by adding the word “and” prior to
the last technology selected). The badges can be generated with Badge Builder 5000 in
both horizontal and vertical orientations. The HTML5 mark with or without wordmark,
supporting elements, technology classes, and sticker templates are available as separate
SVG and PNG files. The HTML5 logo is also available as a one-color version. All badges are
released with the Creative Commons Attribution 3.0 License [36].

“Made with Cascading Style Sheets”.•฀

Accessibility icons: “WAI-A WCAG 1.0”, “WAI-AA WCAG 1.0”, “WAI-AAA WCAG 1.0” [37], •฀
“WAI-A WCAG 2.0”, “WAI-AA WCAG 2.0”, and “WAI-AAA WCAG 2.0” [38].

Semantic Web technology buttons: “GRDDL”, “OWL”, “POWDER”, “RDF”, “RDFa”, “RIF”, “SKOS”, •฀
and “SPARQL” [39].

However, W3C is not the only institution that releases technology icons and logos. Here are some examples:

“Unicode encoded”•฀

“Dublin Core used here”•฀

“Java—Get it now”•฀

“HCARD”, “XFN FRIENDLY”, and icons and logos for other microformats [40]•฀

“Cynthia tested” [41]•฀

“SEO friendly”•฀

“NO popups, NO spyware”•฀

“Powered by PERL”•฀

PageRank •฀ n/10—PRchecker.info (where n is a number between 1 and 10) [42]

Summary
In this chapter, you learned that there are powerful, efficient tools to check your web documents for errors. They can
be used during development and are very useful for redesign. Many of these validators are free tools and are available
online. The most commonly used ones are markup validators and CSS validators, because the markup and style
sheets are core web site components and can be validated automatically. Validating web site accessibility is a real
challenge, because several aspects of WCAG often require human decision.

The last chapter will enumerate the most common errors that result in invalid markup, style sheets, news feed
channels, and accessibility barriers.

CHAPTER 14 ■ VALIDATION

468

References
 1. Murphy C, Persson N (2009) Valid code is not necessarily well-structured code. In: HTML

and CSS Web Standards Solutions – A Web Standardistas’ Approach. Friends of ED,
Berkeley

 2. Thereaux O et al (ed) (2012) Web Quality Assurance Tools.
http://www.w3.org/QA/Tools/. Accessed 30 October 2014

 3. W3C (2014) The W3C Markup Validation Service v1.3. World Wide Web Consortium.
http://validator.w3.org. Accessed 30 October 2014

 4. W3C (2014) Source code availability for the W3C Markup Validator. World Wide Web
Consortium. http://validator.w3.org/source/. Accessed 30 October 2014

 5. Quinn L (2007) WDG HTML Validator. Liam Quinn.
http://www.htmlhelp.com/tools/validator/. Accessed 30 October 2014

 6. Gueury M (2010) The HTML Validator add-on for Firefox. Marc Gueury.
https://addons.mozilla.org/en-US/firefox/addon/249/. Accessed 30 October 2014

 7. The Apache Ant Project (2014) XMLValidate. The Apache Software Foundation.
http://ant.apache.org/manual/Tasks/xmlvalidate.html. Accessed 30 October 2014

 8. Prud’hommeaux E (2006) W3C RDF Validation Service.
http://www.w3.org/RDF/Validator. Accessed 30 October 2014

 9. Thereaux O et al (2014) W3C Feed Validation Service, for Atom and RSS. World Wide Web
Consortium. http://validator.w3.org/feed/. Accessed 30 October 2014

 10. Ruby S, Pilgrim M, Walton J, Ringnalda P (2009) FEED Validator for Atom and RSS and
KML. Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda.
http://feedvalidator.org. Accessed 30 October 2014

 11. Bos B, Çelik T, Hickson I, Lie HW (eds) (2010) Grammar of CSS 2.1. In: Cascading Style
Sheets Level 2 Revision 1 (CSS 2.1) Specification. W3C Working Draft. World Wide Web
Consortium. http://www.w3.org/TR/CSS/grammar.html. Accessed 05 January 2011

 12. Bos B, Çelik T, Hickson I, Lie HW (eds) (2010) Conformance: Requirements and
Recommendations. In: Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification.
W3C Working Draft. World Wide Web Consortium. http://www.w3.org/TR/CSS/conform.html.
Accessed 05 January 2011

 13. W3C QA (2009) CSS Validation Service. World Wide Web Consortium.
http://jigsaw.w3.org/css-validator/. Accessed 30 October 2014

 14. W3C I18N Activity Group (2013). World Wide Web Consortium.
http://qa-dev.w3.org/i18n-checker/. Accessed 30 October 2014

 15. W3C (2011) W3C Link Checker. World Wide Web Consortium.
http://validator.w3.org/checklink. Accessed 30 October 2014

 16. Abou-Zahra S (ed) (2013) Evaluating Web Sites for Accessibility: Overview. World Wide Web
Consortium. http://www.w3.org/WAI/eval/Overview.html. Accessed 30 October 2014

 17. Abou-Zahra S (ed) (2012) Complete List of Web Accessibility Evaluation Tools. World
Wide Web Consortium. http://www.w3.org/WAI/ER/tools/complete.html. Accessed 30
October 2014

http://www.w3.org/QA/Tools/
http://validator.w3.org/
http://validator.w3.org/source/
http://www.htmlhelp.com/tools/validator/
https://addons.mozilla.org/en-US/firefox/addon/249/
http://ant.apache.org/manual/Tasks/xmlvalidate.html
http://ant.apache.org/manual/Tasks/xmlvalidate.html
http://www.w3.org/RDF/Validator
http://validator.w3.org/feed/
http://feedvalidator.org/
http://www.w3.org/TR/CSS/conform.html
http://jigsaw.w3.org/css-validator/
http://qa-dev.w3.org/i18n-checker/
http://validator.w3.org/checklink
http://www.w3.org/WAI/eval/Overview.html
http://www.w3.org/WAI/ER/tools/complete.html

CHAPTER 14 ■ VALIDATION

469

 18. Abou-Zahra S (ed) (2012) Selecting Web Accessibility Evaluation Tools. World Wide Web
Consortium. http://www.w3.org/WAI/eval/selectingtools.html. Accessed 30 October 2014

 19. ATRC (2011) AChecker (Web Accessibility Checker). University of Toronto.
http://achecker.ca. Accessed 30 October 2014

 20. HiSoftware (2014) HiSoftware Cynthia Says Portal. HiSoftware Inc.
http://www.cynthiasays.com. Accessed 30 October 2014

 21. Kasday L, Andersen A, Smith J, Hernandez D, Bohman P, Anderson S, Maturi N, Varanasi
B, Parija J (2014) WAVE. Web accessibility evaluation tool. Web Accessibility in Mind.
http://wave.webaim.org. Accessed 30 October 2014

 22. Johansson D (2010) Color Contrast Analyzer. Donald Johansson.
http://www.colorsontheweb.com/colorcontrast.asp. Accessed 30 October 2014

 23. Lemon G (2014) Luminosity Colour Contrast Ratio Analyser. Juicy Studio.
http://juicystudio.com/services/luminositycontrastratio.php. Accessed 30
October 2014

 24. UoW (2014) Index of Color Contrast Samples. The University of Wisconsin.
http://trace.wisc.edu/contrast-ratio-examples/index.htm. Accessed 30 October 2014

 25. W3C (2010) W3C mobileOK Checker. Is your Web site mobile-friendly? World Wide Web
Consortium. http://validator.w3.org/mobile/. Accessed 30 October 2014

 26. Owen S, Rabin J (eds) (2008) W3C mobileOK Basic Tests 1.0. W3C Recommendation.
World Wide Web Consortium. http://www.w3.org/TR/mobileOK-basic10-tests/.
Accessed 30 October 2014

 27. W3C (2014) Unicorn - unified validator. World Wide Web Consortium.
http://validator.w3.org/unicorn/. Accessed 30 October 2014

 28. W3C (2014) Translations of Unicorn. World Wide Web Consortium.
http://validator.w3.org/unicorn/translations. Accessed 30 October 2014

 29. Total Validator (2014) Total Validator. http://www.totalvalidator.com.
Accessed 30 October 2014

 30. Powermapper (2014) PowerMapper – Website Testing and Site Mapping Tools.
Powermapper Software. http://www.powermapper.com. Accessed 30 October 2014

 31. Hazaël-Massieux D (ed) (2011) W3C Semantic Data Extractor. World Wide Web
Consortium. http://www.w3.org/2003/12/semantic-extractor.html.
Accessed 30 October 2014

 32. Sindice (2012) Sindice Web Data Inspector. Sindice Ltd. http://inspector.sindice.com.
Accessed 30 October 2014

 33. W3C (2012) “Valid” icons. In: Help and FAQ for the Markup Validator. World Wide Web
Consortium. http://validator.w3.org/docs/help.html#icon. Accessed 30 October 2014

 34. Thereaux O (2009) List of all W3C Validation Icons. World Wide Web Consortium.
http://www.w3.org/QA/Tools/Icons. Accessed 30 October 2014

 35. W3C (2014) W3C Icon Repository. World Wide Web Consortium.
http://www.w3.org/Icons/. Accessed 30 October 2014

 36. W3C (2011) W3C HTML5 logo. World Wide Web Consortium.
 http://www.w3.org/html/logo/. Accessed 30 October 2014

http://www.w3.org/WAI/eval/selectingtools.html
http://achecker.ca/
http://www.cynthiasays.com/
http://wave.webaim.org/
http://www.colorsontheweb.com/colorcontrast.asp
http://juicystudio.com/services/luminositycontrastratio.php
http://trace.wisc.edu/contrast-ratio-examples/index.htm
http://validator.w3.org/mobile/
http://www.w3.org/TR/mobileOK-basic10-tests/
http://validator.w3.org/unicorn/
http://validator.w3.org/unicorn/translations
http://www.totalvalidator.com/
http://www.powermapper.com/
http://www.w3.org/2003/12/semantic-extractor.html
http://inspector.sindice.com/
http://validator.w3.org/docs/help.html#icon
http://www.w3.org/QA/Tools/Icons
http://www.w3.org/Icons/
http://www.w3.org/html/logo/

CHAPTER 14 ■ VALIDATION

470

 37. W3C (2008) W3C Web Content Accessibility Guidelines 1.0 Conformance Logos.
World Wide Web Consortium. http://www.w3.org/WAI/WCAG1-Conformance.
Accessed 30 October 2014

 38. W3C (2012) W3C Web Content Accessibility Guidelines 2.0 Conformance Logos.
World Wide Web Consortium. http://www.w3.org/WAI/WCAG2-Conformance.
Accessed 30 October 2014

 39. Jacobs I (2012) W3C Semantic Web Logos and Policies. World Wide Web Consortium.
http://www.w3.org/2007/10/sw-logos.html. Accessed 30 October 2014

 40. Messina C, Baranovskiy D, Dibble G, Bartelme W (2013) Icons. Microformats Wiki.
Microformats Community. http://microformats.org/wiki/icons.
Accessed 30 October 2014

 41. HiSoftware (2010) Cynthia Tested Button Guidelines – When, Why, and How to use.
HiSoftware Inc. http://www.cynthiasays.com/org/cynthiatested.htm.
Accessed 04 February 2011

 42. Page Rank Checker (2014) Google Page Rank Checker. http://prchecker.info/.
Accessed 30 October 2014

http://www.w3.org/WAI/WCAG1-Conformance
http://www.w3.org/WAI/WCAG2-Conformance
http://www.w3.org/2007/10/sw-logos.html
http://microformats.org/wiki/icons
http://prchecker.info/

471

CHAPTER 15

Most Common Errors

Several factors should be considered to achieve web site validity. The code is written either manually or generated
automatically, and errors are inevitable. Errors occur in the markup, in the style sheet, in the XML files, in scripts, in
server settings, and so forth. By analyzing and learning the most common errors, many of them can be eliminated or
at least minimized. As a result, they can be recognized, identified, and corrected quickly and efficiently.

Even the most carefully created web pages can contain errors. In this chapter, you will learn about the most
common errors and their solutions. It is really beneficial to know them, because they occur rather frequently, and
learning how to correct them will decrease the time required for corrections and ease your standardization efforts.

Common Serving Errors
One of the most common serving errors is to serve XHTML as text/html. For many years, web browsers handled
XHTML markup as if it were HTML. This is known as the “dirty secret of XHTML.” Self-closing tags and other XHTML
specific notations were ignored, and XHTML documents were rendered by SGML parsers instead of XML parsers [1].
As a result, none of the beneficial features of XML was used.

In contrast, modern browsers support the proper MIME type. XHTML documents should be served as
application/xhtml+xml instead of text/html, as discussed in Chapter 4.

Common Markup Errors
Web designers should know all the common markup errors in order to easily identify, find, and correct them.
Incorrectly used elements, wrong document structure, incorrectly closed tags, missing alt attributes, directly
provided ampersand characters, ignored case sensitivity, nonunique identifiers, and misspelled keywords are among
the most common markup errors. Many of them are clearly indicated by markup validators and can be corrected
easily. Validators also provide useful hints on the correction. However, some errors can cause many others. For
example, a missing end tag for a division makes not only the document collapse in the browser but also the nesting to
become incorrect. Consequently, it might happen that an invalid document with 18 errors indicated by a validator has
2–3 errors only. So, do not be frightened by the initial number of errors!

Incorrectly Used Elements
As a golden rule, extended care must be taken to eliminate unnecessary containers in the markup. For example,
images positioned to the right side of the page with the text “wrapping around” can be styled directly instead of
putting them onto floating divisions. Another example is the p tag, which should be used for a paragraph container
and not for carriage return. Look at the (really bad) example shown in Listing 15-1.

CHAPTER 15 ■ MOST COMMON ERRORS

472

Listing 15-1. A Bad Practice That Should Never Be Used

<p>This is a very bad practice
<p>dating back to the early days
<p>of the Web
<p>unfortunately it is still in use
<p>even if it has many drawbacks, e.g.,
<p>illogical
<p>hard to identify related content

The technique of omitting end tags should be forgotten. Although it is allowed in HTML, it is not a clean code
and is invalid in XHTML. Beginners with a basic (X)HTML knowledge might think that br elements should be added
to the end of each line instead of incorrectly forcing line break with paragraphs. They are wrong.

Web content should be logical. The first five rows should belong to a paragraph, and the last two should belong to
an unordered list. The previous example should be written as shown in Listing 15-2.

Listing 15-2. The Correct Markup for Listing 15-1

<p>This is a very bad practice dating back to the early days of the Web. Unfortunately it 
 is still in use even if it has many drawbacks, e.g.,</p>

 Illogical
 Hard to identify related content

Text width can be set by external style sheets in order to achieve similar (or exactly the same) effect expected from
the original example. It all depends on the content and the publishing needs. In this case, the markup in Listing 15-3
with the appropriate style in the external CSS file shown in Listing 15-4 would be a standard solution.

Listing 15-3. A More Advanced Solution

<div id="thinbox">
 <p>This is a very bad practice dating back to the early days of the Web. Unfortunately it 
 is still in use even if it has many drawbacks, e.g.,</p>

 Illogical
 Hard to identify related content

</div>

Listing 15-4. CSS Ruleset for Listing 15-3

.thinbox {
 width: 400px;
 height: 600px;
 font-size: 14px;
}

CHAPTER 15 ■ MOST COMMON ERRORS

473

Incorrect Structure
Incorrectly used elements often violate the DOM model. Required elements should be provided, and nesting rules
should be followed. Moreover, the document structure should be maintained by using correct containers and
elements in the proper manner. Take a look at the code in Listing 15-5.

Listing 15-5. List Items Without Structure or Semantic Meaning (Incorrect)

- first item

- second item

- third item

Since the previous rows are items of a list, they evidently should be collected into an unordered list (Listing 15-6).

Listing 15-6. The Correct Markup for Listing 15-5

 first item
 second item
 third item

The default bullets provided by the li elements can be changed in CSS to an arbitrary character or image
(see the section “Styling Lists”). CSS completely separates presentation from structure; thus, any elements can be
arbitrary styled.

Incorrect HTML5 Structuring

Many of the new structuring elements of HTML5 are often used incorrectly, partly due to code distribution in blog
posts that are not standard-compliant, and described elements and attributes before the finalization of the HTML5
specification.

Using section as Wrapper

With the introduction of section and article, there is a misbelief that the div elements should be completely
eliminated (Listing 15-7).

Listing 15-7. The section Element Used Incorrectly as Document Wrapper

<body>
 <section id="wrapper">
 <!-- Page content -->
 </section>
</body>

In fact, div is still the right element to be used as the document wrapper as well as the generic wrapper of
separate document parts (Listing 15-8).

CHAPTER 15 ■ MOST COMMON ERRORS

474

Listing 15-8. Correct Document Wrapper

<body>
 <div id="wrapper">
 <!-- Page content -->
 </div>
</body>

Overuse of header

Some web designers incorrectly use header elements as containers of headings (Listing 15-9).

Listing 15-9. Too Many Headers

<article>
 <header>
 <h2>Blog post title</h2>
 </header>
 <!-- Article 1 content -->
</article>
<article>
 <header>
 <h2>Blog post 2 title</h2>
 </header>
 <!-- Article 2 content -->
</article>

Code optimality can be achieved by omitting the header container around headings (Listing 15-10).

Listing 15-10. Headings Without header

<article>
 <h2>Blog post title</h2>
 <!-- Article 1 content -->
</article>
<article>
 <h2>Blog post 2 title</h2>
 <!-- Article 2 content -->
</article>

Wrap All Lists in nav

The nav element is ideal for major navigation blocks only and should not be used as a container of all unordered lists.

Incorrectly Used figure Elements

Some web designers incorrectly use figure elements as containers of img elements. However, image such as
logos are not figures, and a figure can be not only an image but also a piece of prose, a code block, a chart in SVG,
and so on.

CHAPTER 15 ■ MOST COMMON ERRORS

475

Misused Tables
Tableless layout: the Web standardistas’ motto. Tables are for organizing data, not for controlling layout. For that
purpose, div and other structuring elements should be used instead. Their positions, sizes, colors, layer orders,
transparencies, and other features can be set via style sheets (Listing 15-12 instead of Listing 15-11).

Listing 15-11. Fragment of a Misused Table

<table border="1" bgcolor="#898989" width="400">
<td align="center" valign="top" spanning="2">
<td>

Listing 15-12. Correct Structure of Tabular Data in the Markup

<table>
 <tr>
 <td>Meaningful content in data cell</td>
 <td>Content of other data cell</td>
 </tr>
</table>

The position of the table is determined by the content elements, text, and images as well as the container div
element. The parameters should be given as CSS rulesets in the external style sheet associated with the document
(see the section “Table Styling”).

Nonoptimal Code Length
Analogously to the “tag soup” discussed in Chapter 1, the more specific “div soup” refers to the misuse and overuse of
divisions (Zeldman calls it divitis [2]). Listing 15-13 shows an example.

Listing 15-13. A Divitis

<div class="maincontainer"><div class="nounderlineleftmargin"><div class="container"><div class="top
headlinesleftalign">The Latest News</div><div class="maintextthickborder"></div></div></div>
</div>

The major problem is that there is no structure at all (even if the code might be valid). Unnecessary divisions
should be removed. Moreover, the names in the preceding example are far too long (although descriptive). They
should be kept within reasonable limits.

Remember that in (X)HTML5 other elements dedicated to structuring should be used as the main containers
except the general wrappers that should still be divs.

Element and Attribute Errors
A gross element error is when elements defined in another specification are used. Elements should be used according
to the document type.

Incorrectly nested elements break the document structure and should be avoided. The location and order of
elements within (X)HTML documents are not arbitrary and should meet the criteria of nesting rules discussed in
Chapter 3.

Both errors can cause the message “document type does not allow element here” in the W3C Markup
Validation Service.

CHAPTER 15 ■ MOST COMMON ERRORS

476

Similar problems are associated with attributes as well. The W3C Markup Validation Service gives the error “there
is no attribute ‘attrib_name’” message. The selection of allowed attributes depends on the document type being used.
For example, several attributes defined in the specification of the Transitional variant of XHTML are not allowed in Strict
XHTML documents, as described in detail in Chapter 3. Similarly, several HTML attributes are prohibited in XHTML.
Styling attributes should be provided in the CSS rather than the markup. Applying vendor-specific extensions such as
marginheight can also cause similar problems. If an element is undefined, its attributes are considered invalid too.

End Tag Errors
The W3C Markup Validation Service clearly indicates the missing end tags by the message “end tag for element
omitted, but its declaration does not permit this.” Additional (unnecessary) end tags are identified as “end tag for
element which is not open” by the W3C Markup Validation Service.

One of the easiest ways to ensure proper element closing is to write the closing tags immediately after opening
them, such as shown in Listing 15-14.

Listing 15-14. Closing Tag Provided Before Any Child Elements

<div>

</div>

Element content should not be written until the closing tag is provided. It might seem evident, but consider
that there could be hundreds of code lines between the opening and closing tags. Moreover, there might be several
identical subsequent closing tags whose opening pairs can be difficult to identify even if indentation is used, or syntax
highlighting is available in your markup editor.

Identifiers
Generally, there are two types of identifiers used in the (X)HTML markup. Naturally, class identifiers used mainly
for styling multiple elements can be applied several times within the same document—not so with the id attribute,
which should be unique throughout the document (such as a fragment identifier).

Common Style Sheet Errors
Although CSS parsers have a mechanism for handling style sheet errors [3], they should be eliminated by proper
authoring and confirmed by validation. Writing declarations with incorrect properties and nonexisting property
values are among the most common errors in CSS.

Nonexisting Properties
One of the most common CSS errors is the application of nonexisting style properties. The W3C CSS Validator clearly
indicates these errors with the message “Property doesn’t exist.”

CSS name convention differs from the ones used in (X)HTML markup. The less experienced might type a CSS
property name that is logical and “should be correct.” For example, the left margin can be set with the margin-left
property, although left-margin (which does not exist) would be more logical. Even if it seems to be straightforward,
the result would be incorrect. If somebody is not familiar with the whole vocabulary of Cascading Style Sheets, all
properties should be checked in the appropriate CSS specification before applying them. Another good example is
a table data cell with vertically centralized content. In the early days of the Web when many styles were provided on
HTML attributes directly, the valign attribute was used on the td element. In CSS, however, there is no property with
the name valign. The corresponding property has a different name: vertical-align.

CHAPTER 15 ■ MOST COMMON ERRORS

477

Nonexisting or Incorrectly Used Property Values
To avoid errors caused by incorrect CSS property values, the allowed values as well as the associated data types
should be known. Additionally, it is very useful to know the initial (default) value. For example, one of the three attribute
values, collapse, separate, or inherit, can be set for the border-collapse property used to set whether table
borders are collapsed into a single border or rendered next to or above each other. The ruleset border-collapse:
yes; cannot be used, because the attribute value yes would be illegal. Since this is an inheritable property, a
corresponding ruleset is needed only if the inherited value is not appropriate for our purposes and needs to be
overridden (or ensured).

Ignored Inheritance
Redundancy often occurs in badly written CSS. Although such style sheets might even be standard-compliant, they
are longer than necessary, use more bandwidth, and are harder to maintain. Code optimality can be achieved only if
inheritance is considered properly. Assume the style rulesets presented in Listing 15-15.

Listing 15-15. Redundant Rulesets (Should Be Optimized)

body {
 font-family: Verdana, Arial, sans-serif;
 font-size: 1.2em;
 color: #351801;
}

p {
 font-family: Verdana, Arial, sans-serif;
 font-size: 1.2em;
 color: #351801;
}

div {
 font-family: Verdana, Arial, sans-serif;
 font-size: 1.2em;
 color: #351801;
}

The previous rules are obviously redundant. Some developers would write them in the form shown in Listing 15-16.

Listing 15-16. A Better Yet Still Redundant Solution

body, p, div {
 font-family: Verdana, Arial, sans-serif;
 font-size: 1.2em;
 color: #351801;
}

Since browsers apply the same styles for the child elements (p and div in this example) as defined for the parent
element (body), the code is still redundant and should be written as shown in Listing 15-17.

CHAPTER 15 ■ MOST COMMON ERRORS

478

Listing 15-17. The Correct Element Selector

body {
 font-family: Verdana, Arial, sans-serif;
 font-size: 1.2em;
 color: #351801;
}

In other words, the second and third rulesets of the original example are not needed and should be deleted.
Note such identical, redundant rules are much more difficult to notice in long CSS files where there are hundreds of
other rulesets between them. That’s why it is important to think the major CSS rules over at the very beginning and
later override those rules only where inherited values are not appropriate for the overall design and layout.

Because the previous ruleset has two properties that can be written with a shorthand property, the code can be
optimized further (Listing 15-18).

Listing 15-18. The Correct Solution

body {
 font: 1.2em Verdana, Arial, sans-serif;
 color: #351801;
}

Descendant selectors (also known as contextual selectors [4]) should be used for optimum code length. Examine
the markup shown in Listing 15-19 and CSS rules in Listing 15-20.

Listing 15-19. Standard-Compliant but Nonoptimal Markup (Classitis)

<div id="main">
 <p class="maintext">The is the main content of the site.</p>
 <p class="maintext">The second paragraph should look like the first one.</p>
 <p class="maintext">In fact, all paragraphs of the document have the same styles.</p>
</div>

Listing 15-20. Standard-Compliant but Nonoptimal Styling Rules

.maintext {
 margin-left: 15px;
 margin-right: 15px;
 margin-top: 10px;
 margin-bottom: 5px;
 font-size: 1.4em;
 color: #1d4c90;
}

Although both the markup and the style rules are presented in a standard form, the code is far from optimal.
This kind of class overuse is called classitis [5]. A much shorter, easier to understand, optimal solution could be the
markup presented in Listing 15-21 with the CSS rules shown in Listing 15-22.

CHAPTER 15 ■ MOST COMMON ERRORS

479

Listing 15-21. The Correct Markup for Listing 15-19

<div id="main">
 <p>The is the main content of the site.</p>
 <p>The second paragraph should look like the first one.</p>
 <p>In fact, all paragraphs of the document have the same styles.</p>
</div>

Listing 15-22. The Optimal CSS Rules

#main p {
 margin: 10px 15px 5px;
 font-size: 1.4em;
 color: #1d4c90;
}

If this is not a unique section of the page, the id attribute could be omitted, and the CSS ruleset could be
modified in order to be applied to p elements in general.

Color Errors
CSS validation often results in color warnings that indicate potential problems with foreground and background colors.
For example, if a very light font color is used on a white background, it might be hard or even impossible to read the
content. In such cases, the W3C CSS Validator gives the message “Same colors for color and background-color in
two contexts.”

However, some of these messages can be considered as false positives since there are cases when visibility is
not a problem at all (transparent or overlapping layers, text on background image, and so on). To be on the safe side,
the text must remain readable even if other components of the page (for example, background image) cannot be
downloaded.

Incorrect Locations
Incorrect location errors are typically caused by not properly closed rulesets. They should be checked one by one
near the line indicated by the W3C CSS Validation Service error message “The element can't appear here in the
context CSS 2.1.”

Transparent Backgrounds
Transparent surfaces are popular throughout the Web. The transparency of a div is usually set as shown in Listing 15-23.

Listing 15-23. A Typical but Nonstandard, Browser-Dependent Ruleset for Transparency

#transdiv {
 opacity: 0.7;
 filter: alpha(opacity=70);
 -moz-opacity: 0.7;
 -khtml-opacity: 0.7;
}

CHAPTER 15 ■ MOST COMMON ERRORS

480

In modern browsers it works fine. However, when validating as CSS 2.1, the validator would give errors. Even in
CSS3, only the first one (opacity) is valid, which works in Firefox, Opera, and Safari but not in IE (which requires the
filter property). Thus, validity can be obtained by removing the last three properties; however, the result won’t work
under Internet Explorer and older versions of other browsers.

A valid, cross-browser solution could be the transparent background image such as the one shown in Listing 15-24.

Listing 15-24. A Transparent PNG Background File Is a Robust Solution

#transdiv {
 background-image: url('images/transpbg.png');
 background-repeat: repeat;
}

Miscellaneous Errors
Not all documents can be checked by validators. Incorrect serving or temporary server errors are the most common
reasons. Without providing data required for automatic document type detection or character encoding detection,
validation cannot be performed or provides unreliable results.

Common News Feed Errors
Valid news feed channels should be well-formed and meet all general XML criteria. Even so, some errors might occur
in manually updated news feeds because of human error. One of the most common errors is an incorrect date. If the
publication date is earlier than the date of updating, validators give an error. This is referred to as an implausible date.
Care must be taken to apply the proper offset whose misuse can lead to the same problem.

Common Script Errors
Scripts are out of the scope of markup validators. Consequently, extended care must be taken to ensure correctness
and proper functionality. It should be ensured that a web page remains usable even if the scripts cannot be executed
for whatever reason. It is important to keep in mind that alternate content written for scripts cannot be checked by
software tools, and their evaluation depends on human decision.

Common Accessibility Errors
In contrast to markup or CSS errors where errors depend on the language version being used, accessibility errors are
determined by the version and level of guidelines considered. A comprehensive overview of accessibility errors and
their solutions (“Failures of Success Criteria”) is collected in the W3C group note describing techniques and failures
for WCAG 2.0 [6]. The most common accessibility errors can be summarized as follows:

Lack of structured markup or table layout•฀

Images that convey important information are embedded through CSS•฀

User control is missing to stop or pause blinking, scrolling, and automatically played sound •฀
files or videos

CHAPTER 15 ■ MOST COMMON ERRORS

481

Missing captions or labels for sound effects and synchronized media•฀

Inadequate user guidance for forms•฀

Difficult navigation and traps•฀

Time limits•฀

Information representation relies exclusively on color, shape, location, or graphics•฀

Inaccessible custom controls•฀

Nonunique identifiers (not only inaccessible but also invalid)•฀

Missing alternate content and long description for nontext content and scripts•฀

Functionality that might disturb the user with nonrequested features such as a new window•฀

Text is not legible or clear enough, too small font size, or insufficient contrast difference •฀
between foreground and background colors or images

Missing document title•฀

Missing or inadequate text alternatives such as filenames or placeholder•฀

Missing labels•฀

Whitespace or control spacing used to create multiple columns in plain text or within words•฀

Automatic form submission without warning•฀

Missing or incorrect tab order declaration•฀

Missing header cells, captions, and summaries in tables•฀

Pointing device-specific event handlers•฀

Nonspecific links such as “Click here” or “More”•฀

Summary
This chapter enumerated the most common errors you might face in your daily work as a web developer. You are well
aware by now how to eliminate them when you develop from scratch and correct them when you redesign a site.

After thoroughly reading this book, you have learned the importance and benefits of web standards and
techniques for writing valid markup from scratch. You know how to recognize standards and differentiate them from
nonfinalized specifications. You now have all the skills required to provide meaningful semantics and machine-
readable metadata, restrict markup to semantics, and achieve full standard compliance in your projects.

CHAPTER 15 ■ MOST COMMON ERRORS

482

References
 1. Hickson I (2009) Sending XHTML as text/html Considered Harmful. Ian Hickson.

http://www.hixie.ch/advocacy/xhtml. Accessed 14 October 2014

 2. Zeldman J, Marcotte E (2010) The Heartbreak of Divitis. In: Designing with Web standards,
3rd Ed., New Riders, Berkeley

 3. Bos B, Çelik T, Hickson I, Wium Lie HW (eds) (2011) Rules for handling parsing errors.
In: Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. W3C Recommendation.
World Wide Web Consortium. http://www.w3.org/TR/CSS21/syndata.html#parsing-errors.
Accessed 14 October 2014

 4. Murphy C, Persson N (2009) HTML and CSS Web Standards Solutions – A Web
Standardistas’ Approach. Friends of ED, Berkeley

 5. Zeldman J, Marcotte E (2010) Classitis: The Measles of Markup. In: Designing with Web
standards, 3rd Ed. New Riders, Berkeley

 6. Cooper M, Reid LG, Vanderheiden G, Caldwell B, Chisholm W, Slatin J (eds) (2014)
Failures for WCAG 2.0. In: Techniques for WCAG 2.0. Techniques and Failures for Web
Content Accessibility Guidelines 2.0. World Wide Web Consortium.
http://www.w3.org/TR/WCAG20-TECHS/failures.html. Accessed 14 October 2014

http://www.hixie.ch/advocacy/xhtml
http://www.w3.org/TR/CSS21/syndata.html#parsing-errors
http://www.w3.org/TR/WCAG20-TECHS/failures.html

A���������
Accessibility Guidelines Authoring tools (ATAGs), 350
Accessibility icons, 467
Accessible Rich Internet

Applications (ARIAs), 349, 351, 375
AChecker, 454
Acid test, 16
Acrobat Reader, 376–377
ActionScript, 200
Active Server Pages (ASP), 223
Adobe Acrobat, 376–377
Adobe Dreamweaver, 392
Adobe Flash Player, 379
Adobe Flash Professional, 379
Adobe Flash Video (FLV), 379
Adobe Flex, 200
Amaya, 16
American Standard Code for

Information Interchange (ASCII), 37
Application programming interfaces (APIs), 61
ASP.NET, 223
Assistive technology (AT), 350
Association for Computing Machinery (ACM), 10
Asynchronous JavaScript and XML (Ajax), 197
Atom

.atom and .xml ile extensions, 308
AtomPub and APP, 308
container

content element, 311
entry element, 310
feed element, 310

date constructs, 310
metadata and content elements

author element, 311
category element, 311
contributor element, 312

generator element, 312
icon element, 312
id element, 312
link element, 313
logo element, 313
published element, 313
rights element, 313
source element, 314
subtitle element, 314
summary element, 314

person constructs, 309
structure, 308–309
text constructs, 309

Atom Publishing Protocol (APP), 308
Atom Syndication Format (AtomPub), 308
Audio, 339

B���������
Blink rendering engine, 15
Bootstrap, 397
Bootstrap.less style sheet, 397
Browsing-context name, 71
Byte-order mark (BOM), 43

C���������
Cascading style sheets (CSSs), 64, 467

box model
IE box model bug, 170
paddings, borders and margins, 169

color declaration
color names, 153
hexadecimal notation, 151
HSL(a) notation, 152
RGB and RGB(a) notations, 152
web-safe colors, 153

Index

483

CSS 1, 148, 171
CSS2 and CSS 2.1, 149, 171
CSS3, 171

background images, 187
background size, 187
border-radius, 186
box-shadow property, 186
development, 149
text-shadow property, 187
transitions, 188

declaration order, 167
deinition, 147
display and visibility, 165–166
features, 147
HTML/XHTML content, 148
icons, 466
identiiers and classes, 149
implementation

embedded/internal style, 164
external style sheet, 164
inline style, 163
media-speciic styles, 165
reusing and extending styles, 165
style sheet ile, URL, 165

inheritance, 167
initial property values, 188–189
LESS, 194
mechanism, 166
media types, 147
parsing errors, 149
proiles, 148
property value types, 160
rendering engines, default styles, 189–190
Sass, 194
scopes and structure, 168–169
selectors

adjacent sibling selectors, 159
attribute selectors, 157–158
child selectors, 158
class selectors, 156
descendant selectors, 159
element selectors, 155
ID selectors, 156
pseudoclasses, 160
pseudoelements, 160
rule structure and

pseudocode, 154–155
universal selectors, 157

shorthand notation
background properties, 161
border and margin properties, 163
font properties, 161
list properties, 161–162
padding property, 162–163

speciicity, 167
Stylus, 194
SVG, 148
units, 149–150
usage, 148
weight, 166
vs. XSL, 193

Character data (CDATA), 67
Character encoding name, 71
Chrome 6.0+, 205
Client-server model, 197
Code optimality, 477
ColdFusion, 222
ColdFusion Markup Language (CFML), 222
Color Contrast Analyzer, 456
Color picker, 360
Common Language Infrastructure (CLI), 223
Common Language Runtime (CLR), 223
Compact URI (CURIE), 264
Content management systems (CSSs), 392
Content MathML, 112–113
Coordinated Universal Time (UTC), 302
Coordinates, 72
Cynthia online accessibility tool, 455, 467

D���������
DataGrid, 200
Data types

href attribute value, 70
HTML5, 71
SGML tokens, 70
width attributes values, 70

Dead link, 453
Declaration block, 155
Default-style name, 71
Description of a career (DOAC), 249
Description of a project (DOAP), 249
Development tools

bloggers, 392
bootstrap, 397
browsers

accessibility, 398
debugging and add-ons, 400
Firefox inspector, 399
Internet Explorer, 398
Web page testing, 400

CSS, 392
feature requirements, 387
Gumby framework, 398
Less framework, 398
markup correctors, 395–396
MathType, 395
semantic editors and reasoners, 394
skeleton, 398

■฀INDEX

484

Cascading style sheets (CSSs) (cont.)

text editors
advanced text editors, 388
Base64 encoding and decoding, 390
macros, 390
Notepad++, 389
plain-text editors, 388
syntax highlighting, 388
text transformation, 390

WYSIWYG editors
Dreamweaver, 391
graphical authoring tools, 390
graphical interface, 390
source code editors, 390
standard-compliant development, 391
W3C Amaya, 390
XStandard XHTML, 390

ZURB Foundation, 396
Device independence, 28
Digital Object Identiier (DOI), 11
Divitis, 475
DOCTYPE switching, 18
Document Object Model (DOM), 67, 92, 102, 109, 199
Document Type Declaration (DTD), 92

FPI, 95
HTML head, 97
nesting elements

embedded content, 98
empty elements, 102
low content, 98
heading content, 98
interactive content, 98
metadata content, 98
phrasing content, 98
rules, 98
sectioning content, 98
table elements, 97

root element, 96–97
syntax, 96
URI, 95
XHTML

compound documents, 105
general documents, 103
graphical markup, 104
mathematical markup, 104
mobile proiles, 104
Quality Assurance Interest Group, 102
XHTML 1.0 Strict, 102

Document Type Deinitions (DTDs), 53, 445
DOM model, 473
Drag & Drop (DnD) API, 202
Dropzone value, 72
Dublin Core abstract model, 252
Dublin Core metadata element set, 253
Dublin Core Metadata Initiative (DCMI), 8, 252–253

E���������
Ecma International, 8
ECMAScript

ActionScript, 214
embedding and loading

event handlers, 216
External File, 215
inline, 215
support, 217

JavaScript, 214
jQuery functions

animation functions, 219
CSS classes and properties, 221
fade functions, 219
selectors, 217
set and retrieve element dimensions, 220
set and retrieve element markup content, 220
set and retrieve element text, 220
set and retrieve input values, 220
slide functions, 218
toggle, show, and hide functions, 218

JScript, 214
Element modules, 59
E-mail address, 72
Embedded OpenType (EOT) font, 328
Errors

accessibility errors, 480
markup errors

element and attribute errors, 475–476
end tag errors, 476
identiiers, 476
incorrectly used elements, 471
incorrect structure, 473
misused tables, 475
nonoptimal code length, 475
validators, 471

serving errors, 471
style sheet errors

color errors, 479
ignored inheritance, 477
incorrect locations, 479
miscellaneous errors, 480
news feed errors, 480
nonexisting/incorrectly used property values, 477
nonexisting properties, 476
script errors, 480
transparent backgrounds, 479–480

European Research Consortium for Informatics
and Mathematics (ERCIM), 7

Evaluation and Report Language (EARL), 350
Event handlers

clipboard, 91
content attributes, 87

■฀INDEX

485

global
form event handlers, 90
keyboard event handlers, 88
media event handlers, 89
mouse event handlers, 88

IDL attributes, 87
onreadystatechange, 91
touch, 91
window, 90

Extended Backus-Naur Form (EBNF), 262
Extensible Application Markup Language (XAML), 221
Extensible Hypertext Markup Language (XHTML)

beneits, 119
core versions, 57
deinition, 54
document structure

additional namespace, 108
charset attribute, 107
CSS iles, diferent media types, 107
favicons, 108
FOAF, 109
German and Hungarian versions, 106
link to the author, 108
media attribute, 107
namespace declaration, 105
rel attribute, 107–108
root directory, 108
root element, 105
self-closing link element, 106
title document, 106
web document development, 102
Web Site Icon, 108
XHTML body, 109
XML declaration, 102

DTD
compound documents, 105
general documents, 103
graphical markup, 104
mathematical markup, 104
mobile proiles, 104
Quality Assurance Interest Group, 102
XHTML 1.0 Strict, 102

ile extensions, 56
Frameset variant, 119
host language, 57
vs. HTML, 119, 133
interoperability, 109
minor syntactic errors, 55
modularization, 119
new markup introduction, 109
parsing error, 55
special and mixed-namespace

document types, 57
strict markup, 109

syntax and restrictions
attributes deprecated, 69
avoid deprecated elements, 68
double dashes, 68
element prohibitions, 67
end tags requirement, 65
identiiers, 67
invalid characters, 68
lowercase names, 65
no attribute minimization, 66
quoted attribute values, 66
script and style elements, 67
well-formedness, 65
whitespace handling, 67

(X)HTML, 72
XHTML 1.0, 57, 119

Frameset, 58, 78
Strict, 78, 119
Transitional, 78

XHTML 1.1, 59, 78
XHTML 2.0, 60, 78, 119
XHTML5, 62
XHTML + MathML + SVG, 117
XHTML modularization, 78
XHTML-Print, 116
(X)HTML+RDFa, 116
XML

ASP, 134
ASP.NET, 135
code reliability, 133
conformance, 109
content negotiation, 133
HTTP header, 134
parsing error message, 133
PHP, 134
text/html and a

pplication/xhtml+xml, 134
Extensible Markup Language (XML)

advantage, 54
deinition, 54
formats/serializations, 54
XHTML (see Extensible Hypertext

Markup Language (XHTML))
xmlns attribute, 54

Extensible Stylesheet Language (XSL)
vs. CSS, 193
XPath, 190
XSL-FO, 190
XSLT

deinition, 190
elements, 191–192
namespaces, 190
standard attributes, 193
structure, 191
xsl and .xslt ile, 190

■฀INDEX

486

Event handlers (cont.)

External content
aliased vs. anti-aliased fonts, 333
color depth, 333
compression, 334
ile size optimization, 336
interlacing, 335
pixel density, 332
raster graphics, 331
raster image ile formats, 335
resolution, 332
transparency, 335

F���������
Facebook Share, 279
Favicon, 108
FEED validator, 452
Firebug, 400
Firefox, 207
Firefox 3.6+, 205
FireFTP, 400
Flash, 338
FLVPlaybackCaptioning component, 379
FOAF, 105, 108–109
FOAF-O-MATIC, 249
Formal Public Identiier (FPI), 53, 92, 95
Friend of a friend (FOAF), 249
Functional Requirements for

Bibliographic Records (FRBR), 248
Functionbody, 72
Fundamental standard-compliant

web site components
feed channel, 408
lash content, 428
forms, 426
images, 417
links, 416
lists

accessibility, 418
access key, 420
bullet image, 421
custom navigation efect, 419
deinition list, 418
drop-down selection lists, 425
irst and last items, 419
irst list items, 419
inline display, 419
menu hyperlinks, 419
ordered and unordered lists, 417
standard compliance, 421
unordered, navtabs, 420

modern markup speciication, 408
redesign, 430
RSS news feeds, 429
scratch (see Scartch)

tables
accessibility, 424
iPhone models, 421
styling, 424

W3C recommendations, 407

G���������
Gecko, 14
Geo microformat, 246
Giant global graph, 249
Google Web Toolkit, 226
Graphical User Interfaces (GUIs), 88
Greenwich Mean Time (GMT), 302
Gumby framework, 398

H���������
Hash-name reference, 71
hAtom microformat, 246
HermiT, 394
hListing microformat, 246
hMedia microformat, 246
hNews microformat, 246
hProduct microformat, 246
hRecipe microformat, 246
hResume microformat, 246
hReview microformat, 246
HTML 2.0, 446
HTML 3.2, 446
HTML 4.01 Frameset, 446
HTML 4.01 Transitional, 446
HTML5, 446, 466
HTML5 APIs

canvas markup element, 201–202
DnD APIs, 202
Geolocation API, 206
oline web application, 212
plug-ins, 201
registration form, 206
WebSocket, 211
Web Storage, 208
Web Workers, 210

HTML abstraction markup
language (HAML), 120

HTML Tidy, 396
HTML validator, 449
HTTP headers, 127–128, 400
Hypertext Markup Language (HTML)

document structure
document body, 93
document head, 93
DOM, 92
DTD (see Document Type Declaration (DTD))
error-handling feature, 92

■฀INDEX

487

FPI, 92
HTML 4.01, 93
root element, 92

DOM choice, 109
formal speciication, 55
HTML 2.0, 55
HTML 3.2, 55
HTML 4, 56
HTML 4.x, 119
HTML5, 60

beneits, 119
CSS3 style sheets and jQuery scripts, 121
data types, 71
document structure, 94
element attributes, 79
event handlers (see Event handlers)
global attributes, 86
HTML 5.1 and HTML 5.2, 63
modules, 61
skeleton document, 61
structural and multimedia elements, 61
text/html-sandboxed, 60
W3C testing web page, 60
WHATWG, 60

interoperability, 54, 109
markup elements

block-level, 78
HTML 4.01, 72
inline, 78
Strict lavors, 77
Transitional, Frameset, 77

new markup introduction, 109
plain-text editors, 55
strict markup, 109
syntax, 63
Transitional variants, 119
WYSIWYG environments, 55
vs. XHTML, 119
XML conformance, 109

Hypertext preprocessor (PHP)
code, markup, 224–225
extension, 396
external iles, 225
Tidy, 396

Hypertext Transfer Protocol (HTTP), 127–128

I���������
ID, 71
IEEE Learning Object Metadata (IMS), 276
IE Tab extension, 400
Image-only PDF iles, 378
Inheritance, 167, 195
Interface Deinition Language (IDL) attributes, 87

Internationalization
character encoding

ASCII, 37
Christmas greetings, 38
CSS, 46
HTTP header, 45
in-document, 46
supported characters, 39

entity references, 48
I18N checker, 49
numeric references, 47
unicode (see Unicode)

Internationalization & Unicode Conference (IUC), 10
Internationalized Domain Names (IDN), 137
International Organization for Standardization (ISO), 8
International Phonetic Alphabet (IPA), 361–362
International Program Oice (IPO), 349
International Webmasters Association, 10
Internet Architecture Board (IAB), 8
Internet Assigned Numbers Authority (IANA), 8
Internet Engineering Task Force (IETF), 8, 11, 252
Internet Explorer, 398
Internet Explorer box model, 19
isegment-nz-nc syntax rules, 313

J���������
Java applet, 213
Java Platform, Enterprise Edition (Java EE), 223
JavaScript, event handlers, 217
JavaServer Pages (JSP), 223
Java Virtual Machine (JVM), 213
Joint Photographic Experts Group (JPEG), 335

K���������
KHTML, 15

L���������
Language tag, 71
Layout

lexible layouts
create markup, 323
CSS3 media queries, 323
elastic layout, 323
loating images, 326
lower layer, 326
pixel-by-pixel representation, 322
Progressive Enhancement, 321
responsive images, 324
Responsive Web Design, 322
screen size, 322
set Viewport Width, 323
upper layer, 327

■฀INDEX

488

Hypertext Markup Language (HTML) (cont.)

positioning and loating
absolute and ixed positions, 318
centralized-column layouts, 319
ixed-width layouts, 318
multiple-column layout, 318
tableless web layout, 318

Learning Object Metadata (LOM), 249
Linked open data (LOD), 236
Luminosity Colour Contrast Ratio Analyser, 359, 456
Lynx, 400

M���������
Markup icons, 466
Markup Language Support, 393
Markup validation

Markup Validation Service v1.3, 446
W3C Markup Validation Service

character encodings, 447
consecutive /potential errors, 447
direct input, 446
error location and hints, 448
fallback mechanism, 447
ile uploading, 446
inal revalidation, 447–449
red stripe and number of errors, 447
revalidation, 447
tree structure, document headings, 448
URI, 446
W3C Unicorn, 449

Mathematical Markup Language (MathML)
applications, 112
attribute values, 113
content and structure, 112
embedding, 115
Gecko-based browsers, 112
MathML 1.0, 112
MathML2, 112
MathML3, 112
syntax

container element, 113
Content MathML, 113–114
mrow element, 113
namespace and preix declaration, 115
Presentation MathML, 113
quadratic formula, 115
self-closing tag, 113
token element, 113
Unicode codepoint, 113

MathML, 379
MathML 2.0, 446
MathML icon, 466
Math-Net, 249, 275
MathPlayer, 379
MathType, 395

Media-query list, 71
Meta-charset string, 71
Metadata, 349

bio vocabulary, 249
conceptual data schemas, 248
Creative Commons Rights

Expression Language, 248
DOAC, 249, 251
DOAP, 249
Dublin core, 275–276

IETF, 252
namespaces, 253
qualiied Dublin Core, 253–254
RDF, 258
simple, 253
(X)HTML meta and link elements, 256
XML applications, 256

FOAF, 249
FRBR, 248
geographic positions, 249
image metadata and XMP, 277
IMS, 276
LOM, 249
Math-Net, 249, 275
meta tags

attributes, 237
crawlers, 238
HTML/XHTML, 237
keyword stuing, 237
noydir attribute value, 238
XHTML5, 238

microdata, 275
events, 247
HTML5, 246
image licensing, 247
people, 246

microformats (mF), 275
applications, 246
deinition, 239
hCalendar, 239
hCard, 240
POSH, 239
proile attribute, 239
rel=”license”, 242
rel=”nofollow”, 243
rel=”tag”, 244
vote links, 244
XFN, 244
XMDP, 245

namespaces, 273
ODRL, 248, 276
ontologies

namespaces, 248
OWL, 249
qname, 248

■฀INDEX

489

OWL (see Web Ontology Language (OWL))
RDF (see Resource description framework (RDF))
SEO, 280
SKOS, 272
taxonomy/controlled vocabulary, 248
vCard, 275
vocabulary, 274
YouTube videos

Facebook share, 279
RDFa Rich Snippets, 279
Yahoo! SearchMonkey RDFa, 280

Microformat Community, 11
MIME type, 71
Mixed-namespace document, 53
mobileOK, 457
Mobile Web best practices, 440
MochiKit JavaScript libraries, 16
Multipurpose Internet Mail Extensions (MIME)

application/xml and text/xml, 128–129
Content-Type ield, 129
ile format identiiers, 128
media types

application-speciic types, 129–130
audio, 131
image, 131
multipart object, 132
text, 132
vendor-speciic types, 130
video, 132

meta element, 129
non-ASCII messages, 128

MySQL, 226

N���������
Nesting rules, 473, 475
.NET framework

ASP.NET iles, 223
C#, 224

NFC normalization, 44
Nonoptimal markup, 478
Nonoptimal styling rules, 478

O���������
Ontology alignment, 249
Open Digital Rights Language (ODRL), 10, 248, 276
Open Directory Project, 238
Open Document Format, 116
OpenType (OT) fonts, 328
Opera 11.5, 205
Organization for the Advancement of Structured

Information Standards (OASIS), 8
OWL. See Web Ontology Language (OWL)

P���������
Pattern, 72
PHP. See Hypertext preprocessor (PHP)
Plain Old Semantic HTML (POSH), 239
Polyglot language, 62
Portable Network Graphics (PNG), 335
Precision Graphics Markup Language (PGML), 110
Presentation MathML, 113
Presto, 15
Protégé, 394
Pyjamas, 226
Python, 225–226

Q���������
Qualiied name (Qname), 248
Quality Assurance, 446
Quirks Mode, 18

R���������
Raphaël, 112
RDFa application programming

interface (RDFa API), 264
RDF graph, 451
RDF in attributes (RDFa)

API, 264
cascading style sheets, 265
Dublin Core (DC), 266
FOAF, 265
microformats vs. microdata, 266
Rich Snippets, 279
styling, 265
triples, 264
Yahoo! SearchMonkey, 280

RDF triple, 450
RDF/XML, 461
Really simple syndication (RSS)

applications, 293
category element, 296
cloud element, 296–297
copyright element, 297
description element, 296
docs element, 297
generator element, 297
image element, 297–298
item elements

author subelement, 304
category and pubDate subelements, 304
comments subelement, 304
description subelement, 304
enclosure subelement, 304
guid subelement, 305
link subelement, 305

■฀INDEX

490

Metadata (cont.)

source subelement, 305
title subelement, 306

language element, 298, 301
lightweight syndication channels, 293
link element, 295
managingEditor element, 302
namespaces, 306–307
optional elements, 296
pubDate and lastBuildDate elements, 302
RDF Site Summary, 294
.rss and .xml ile extensions, 293
skipHours and skipDays elements, 302–303
structure, 294–295
styling, 307–308
textInput element, 303
title element, 295
ttl element, 303

Real-time caption service, 373–374
Reasoning/rules engines. See Semantic reasoners
Redundant rulesets, 477
Refresh value, 71
Relative luminance, 359
RELAX NG, 316, 450
Resource description framework (RDF), 116, 253

Dublin Core, 258
Dublin Core and vCard, 275
graph, 259–260
literals, 261
machine-readable description, 259
N3 equivalent, 261
N3 syntax, 262
namespace, 261
person description, 260
RDFa (see RDF in attributes (RDFa))
schema, 267
SPARQL, 261
triples, 259
turtle syntax, 264
unicode strings, 261
vocabulary, 261, 273
XML serialization syntax, 262

Robots-exclusion microformat, 246
Robots exclusion rules, 453
Ruby annotations, 361
Ruby on Rails framework, 226
Rutter method, 435

S���������
Safari 6+, 205
Sandbox allow keywords list, 72
Scalable Inman Flash Replacement (sIFR), 330
Scalable Vector Graphics (SVG), 62, 221

accessibility, 110
animation, 110

embedding, 111
icons, 466
incorrect MIME type, 110
optimal ile size, 110
PGML, 110
scriptability, 110
syntax, 111
Tiny and Basic speciication, 110
two-dimensional static, 110
vector graphics, 110
VML, 110
XHTML + MathML + SVG, 118

Scratch
index.html ile creation, 409
multiplying iles, 409
optional elements, 409
primary style sheet ile creation, 409
upload and install, 410
web site extensions, 409
XHTML, 410
(X)HTML5, 413

Scripting and applications
alternate content, 226
client-server architectures, 197
client-side development

Adobe Flex, 200
Ajax, 199
ECMAScript (see ECMAScript)
HTML5 APIs (see HTML5 APIs)
Java applet, 213
Silverlight, 221

database technologies, 226
fallback mechanism, 227
server-side development

vs. client-side programming, 222
ColdFusion, 222
Java, 223
.NET framework, 223–224
Perl, 224
PHP, 224
PHP and MySQL, 222
Python, 225
Ruby, 226
SSJS, 226
static content, 222

standards implementation, 197
Search engine optimization (SEO), 243, 280, 460
Section 508, 375, 454–455, 460
Self-closing tag, 65
Semantic reasoners, 394
Semantic Web, 462

best practices, 440
features, 234
human-readable data, 234
machine-readable data, 233, 237

■฀INDEX

491

structured data
LOD, 236
RDF data model, 235

Serif fonts, 329
Server-side JavaScript (SSJS), 226
SGML. See Standard Generalized

Markup Language (SGML)
Silverlight, 221–222
Simple knowledge organization

system (SKOS), 272
Sindice Web Data Inspector, 461, 464
Skeleton document, 55
SMIL 1.0, 446
SMIL 2.0, 446
Software development kit (SDK), 200
SortSite, 460
Source code editors, 388
SPARQL, 261
Standard Generalized Markup

Language (SGML), 471
data types, 70
deinition, 54
HTML (see Hypertext Markup Language (HTML))

String, 71
Structured PDF iles, 378
Style sheets

CSS (see Cascading Style Sheets (CSS))
XSL (see Extensible Stylesheet Language (XSL))

SVG 1.0, 446
SVG 1.1 Basic, 446
SVG 1.1 Tiny, 446
Synchronized Multimedia Integration

Language (SMIL), 110, 351
Syntactically awesome stylesheets (Sass), 194

T���������
Tableless layout, 475
Tersus, 226
Text/html-sandboxed, 60
Time-based media, 373
Timed Text Markup Language (TTML), 351, 379
Total Validator tool, 459
TrueType (TT) fonts, 328
Typography

misused characters, 327
web fonts

bold and italic fonts, 330
“Core fonts for the Web” program, 328
CSS2 speciication, 328
diferent formats, 329
EOT font, 328
fallback mechanism, 329

image replacement, 330
multiple declarations, 330
sIFR, 330
SVG 1.1, 330
TT and OT fonts, 328

U���������
Unicode

BOM, 43
Character Code Charts, 39
characters, 41
encoding forms, 40
formatting characters, 42
NFC normalization form, 44
scripts, 39
symbols and punctuation, 40
UTF-8 character encoding, 44
whitespace characters, 43

Unicode Consortium, 8
Uniform Resource Identiier (URI), 264

base href, 138
cgi-bin directory, 135
deinition, 135
design, 136
domain names, 136–137
ile extension elimination, 138–140
namespace, 140
WWW, 137

Uniform Resource Locators (URLs), 71, 135
Uniform Resource Names (URNs), 135
Unstructured PDF iles, 378
User agents Accessibility Guidelines (UAAG), 350
User Agent Switcher extension, 400

V���������
Validation

accessibility
AChecker, 454–455
Cynthia, 455
HTML, 455
HTML5, 456
markup errors, 454
report, 455
text color and background color, 456
WebAIM WAVE, 455–456

CSS, 452
DTDs, 445
expression, 466
formal grammar, 445
hyperlinks, 453
I18N, 453
markup validation (see Markup validation)

■฀INDEX

492

Semantic Web (cont.)

semantic content extraction
document outline, 461
generic metadata, 461
glossary, copyright,

and bookmarkable points, 461
Pedantic validator, 464
personal description, RDF, 463
quotes and citations, 461
RDF syntax validation, 464
related resources, 461
scalable graph, 463–464
“Sigma” option, 462
Sindice Web Data

Inspector, 461, 463–464
subject–predicate–object triples, 462

standard conformance, 445
technologies representation, 466
uniied validators

expression, 464
Total Validator, 458
W3C Unicorn, 457

web documents, 445
web quality assurance tools, 446
XML

news feeds, 452
parsers, 450
RDF/XML, 450
xmlvalidate, 450

Validity badges, 464
Validity logos, 464
Vector Markup Language (VML), 110
Video

in XHTML, 341
in (X)HTML5

additional properties, 343
alternate content, 343
autoplay, 344
codecs, 343
controls set, 343
customized controls, 344
in diferent formats, 343
format, 342
JavaScript, 345
loading video, 344
MPEG-4 Plackback, 344
plackback support, 343
YouTube video, 345

W���������
WAI-ARIA, 375
WAI-ARIA best practices, 440
WCAG 1.0, 454–455, 460
WCAG 1.0/2.0 Level A/AA/AAA, 454
WCAG 2.0, 454, 460, 480

Web accessibility
assistive technology, 350
EARL, 350
Flash, 379
IPO, 349
JavaScript, 376
legislation addressing, 349
mathematical notations, 379
migration, 374
nontextual content, 349
PDF, 376
semantic (X)HTML5 elements, 375
WAI, 349
WAI-ARIA, 351, 375
WAI-ARIA Primer, 351
WCAG 1.0, 351–352
WCAG 2.0. Web Content

Accessibility Guidelines (WCAG 2.0)
World Wide Web Consortium, 350

Web Accessibility Initiative (WAI), 349, 351
WebAIM WAVE, 455
Web Content Accessibility Guidelines (WCAG), 350
Web Content Accessibility Guidelines (WCAG 1.0), 351
Web Content Accessibility Guidelines (WCAG 2.0)

abbreviations, 360
color usage, 359
deinitions, 360
dynamic content, 357
ensure readability, 358
fallback mechanism, 362
Flash contents, 357
foreign word pronunciation, 360
HTTP header, 360
level AAA conformance, 353
levels of conformance, 353
link requirements, 370
live media, audio, and video requirements, 373
markup requirements, 369
principles, 352
Ruby annotation, 361
site structure requirements

breadcrumb trails, 354–355
content sections, 357
descriptive headings and labels, 357
DescriptiveWeb page titles, 354
document head, 355
hyperlink, 354
link element, 355
rel attribute, 355
search function, 357
tab order, 356

success criteria, 353
table requirements, 372
tab order, 357
user assistance, 357

■฀INDEX

493

user control requirements, 372
user input and form requirements, 371
user interface

alternate CSS iles, 364
alternate version, 363
assistive technology, 363
content positioning, 363
high-contrast version, 365
HTTP referrer header, 363
image replacement, 367
keyboard users, 367
large font version, 365
liquid layout, 363
main CSS ile, 364
multimedia avatar, 368
persistent CSS ile, 363
preferred CSS ile, 364
semantic markup elements, 367
sign language version, 368
standard DOM functions, 363
Style Switcher, 367

WCAG 1.0 migration, 374
xml:lang attribute, 360

Web design
embedding external content

error messages, 437
Google Maps, 439
YouTube videos, 437

Fallback Mechanism, 441
generic font families, 441
logical order content, 434
mobile-friendly layout, 434
mobile web, 440
rules, 433
Semantic Web, 440
sizes and proportions

combine units, 435
relative units, 435

testing, 442
WAI-ARIA, 440

Web Developer extension, 400
Web Hypertext Application Technology

Working Group (WHATWG), 7, 60
Web Industry Professionals

Association (WIPA), 10
Web interoperability, 25
WebKit, 15
Web markup, 120
WebObjects, 223
Web Ontology Language (OWL), 394

classes
disjointness, 272
equivalent classes, 272

hierarchy, 272
identiier, 270
instances, 271
intersection, 271
property restrictions, 271

knowledge-intensive applications, 268
OWL DL, 268
OWL Full, 268
OWL Lite, 268
properties, 269
RDF graphs, 268
syntaxes, 269

Web server coniguration
HTTP header, 127–128
Internet media types (see Multipurpose Internet

Mail Extensions)
URI

base href, 138
cgi-bin directory, 135
deinition, 135
design, 136
domain names, 136–137
ile extension elimination, 138–140
namespace, 140
WWW, 137–138

URL, 135
URN, 135
XHTML (see Extensible Hypertext Markup

Language (XHTML))
WebSocket API, 211
Web standards

compliance test, 16
comprehensive tests, 18
CSS3 Test, 16
de facto standards, 3
deinition, 3
development and announcement

DCMI, 8
Ecma International, 8
ERCIM, 7
IANA, 8
IETF, 8
inluential organizations, 6
ISO, 8
OASIS, 8
Unicode Consortium, 8
W3C, 7
WHATWG, 7

DOCTYPE switching,
standards vs. Quirks mode, 18

goals, 4
HTML5 Test, 16
Internet Engineering Task Force, 11
machine-generated code, 21

■฀INDEX

494

Web Content Accessibility Guidelines (WCAG 2.0) (cont.)

Microformat Community, 11
nonstandardized documents, 4
promotion and distribution

events and courses, 10
International Webmasters

Association, 10
ODRL, 10
resources, 11
WaSP, 9
WIPA, 10
WSG, 9

rendering engines
Amaya, 16
Blink, 15
browser updates, 13
Gecko, 14
KHTML, 15
Presto, 15
Trident, 13
web documents and iles, 12
WebKit, 15

standard compliance requirements
Adobe Flash, 23
backward compatibility, 26
bad practices, 21
code optimality, 29
device independence, 27
forward compatibility, 27
functionality, 27
inluential sites, 22
interoperability, 25
lack of support, 21
reliable layout, 28
unconcern, 22
usability, 28
version targeting, 26
Well-Formedness, 23

standard-compliant markup, 5
style sheet errors, 20
supported standards, 16
user experience, 16
UTF-8, 19
W3C Recommendations, 3, 11

Web Standards Group (WSG), 9
Web Standards Project (WaSP), 9
Web Storage API, 208
Web syndication

application/atom+xml, 314
atom

.atom and .xml ile extensions, 308
AtomPub and APP, 308
author element, 311
category element, 311

content element, 311
contributor element, 312
date constructs, 310
entry element, 310–311
feed element, 310
generator element, 312
icon element, 312
id element, 312
link element, 313
logo element, 313
person constructs, 309
published element, 313
rights element, 313
source element, 314
structure, 308–309
subtitle element, 314
summary element, 314
text constructs, 309

Channel Deinition Format, 293
deinition, 293
Internet media type application/rss+xml, 314
Meta Content Framework, 293
RelaxNG schema, 314
RSS (see Really simple syndication)

Web Workers API, 210
Well-formed XML, 480
Whitespace characters, 43
WordPress, 410
World Wide Web Consortium (W3C), 3, 11

CSS validation service, 452–453, 479
feed validation service, 452
Internationalization Checker, 49, 453
Link Checker, 453
Log Validator, 396
Markup Validation Service, 446, 475
mobileOK checker, 457
Quality Assurance, 466
Semantic Data Extractor, 461
Unicorn, 449
uniied validators, 458
validation icons, 464–465
(X)HTML+RDFa, 116

X���������
xFolk microformat, 246
XHTML. See Extensible Hypertext

Markup Language (XHTML)
XHTML 1.0 Strict, 446
XHTML 1.1, 446
XHTML 1.1 + MathML 2.0, 446
XHTML 1.1 + MathML 2.0 + SVG 1.1, 446
XHTML + MathML + SVG, 106

■฀INDEX

495

■฀INDEX

496

XHTML MetaData
Proiles (XMDP) metadata, 245

XHTML Mobile Proile 1.2, 446
XHTML-Print, 116
XHTML Print 1.0, 446
XML Path Language (XPath), 190
XSL Formatting Objects (XSL-FO), 190
XSL Transformations (XSLT)

deinition, 190
elements, 191–193
namespaces, 190

standard attributes, 193
structure, 191
xsl and .xslt ile, 190

Y���������
Yahoo! SearchMonkey, 280

Z���������
ZURB Foundation, 396

Web Standards

Mastering HTML5, CSS3

and XML

Leslie F. Sikos, Ph.D.

Web Standards—Mastering HTML5, CSS3, and XML

Copyright © 2014 by Leslie F. Sikos, Ph.D.

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0884-7

ISBN-13 (electronic): 978-1-4842-0883-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Ben Renow-Clarke
Technical Reviewer: Charles Brown
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Jim DeWolf, Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jef Olson, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Steve Weiss

Coordinating Editor: Christine Ricketts
Copy Editor: Linda Seifert
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com and on the companion web site of the book at www.masteringhtml5css3.com. For detailed
information about how to locate your book’s source code, go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/
www.masteringhtml5css3.com
www.apress.com/source-code/

v

Contents

About the Author ... xix

About the Technical Reviewer ... xxi

Preface .. xxiii

Part 1 ■ : Web Standards ...1

Chapter 1: Introduction to Web Standards ■ ..3

The Basic Concepts ...3

The Role of Standardization ..4

The Cost of Nonstandardized Markup ... 4

Benefits of Standard-Compliant Markup ... 5

Development and Announcement of Standards ..6

W3C ... 7

WHATWG .. 7

ERCIM .. 7

IETF .. 8

Ecma International .. 8

Unicode Consortium .. 8

DCMI .. 8

IANA ... 8

OASIS ... 8

ISO ... 8

■ CONTENTS

vi

Standards Promotion and Distribution ..9

Groups and Associations ... 9

Staying Informed: Events and Courses .. 10

Resources .. 11

Types, Stages, and Status of Standards ..11

The Variety of Rendering Engines ...12

Trident .. 13

Gecko ... 14

KHTML ... 15

WebKit ... 15

Presto .. 15

Blink... 15

Amaya .. 16

Testing the Standard Support of Browsers ...16

Standard Compliance Tests ... 16

Comprehensive Tests ... 18

Standards vs. Quirks Modes, DOCTYPE Switching ..18

Problem Statement ...19

Limited Standards Support in Machine-Generated Code .. 21

Major Concerns ...21

Bad Practices ... 21

Lack of Support ... 21

Unconcern ... 22

Influential Sites .. 22

Visual Appeal Over Functionality ... 23

Well-Formedness ... 23

Interoperability .. 25

Eliminated Version Targeting ... 26

Backward Compatibility ... 26

Forward Compatibility ... 27

Functionality .. 27

■ CONTENTS

vii

Device Independence .. 27

Separating Content from Presentation .. 28

Usability ... 28

Reliable Layout .. 28

Code Optimality ... 29

Summary ...29

References ..29

Chapter 2: Internationalization ■ ..37

The Importance of Character Encoding ...37

Unicode ...39

Characters That Should Be Avoided In the Markup ... 41

Formatting Characters Suitable Also for Markup .. 42

Special Characters .. 43

NFC Normalization Is Recommended .. 44

Unicode Should Be Preferred ... 44

Declaring Character Encoding for the Markup ..45

Encoding Declaration in the HTTP Header ... 45

In-Document Declarations ... 46

Declaring Character Encoding for CSS ..46

HTTP Header Declarations ... 46

In-Document Declarations ... 47

Escape Codes, Special Characters, and Symbols ..47

Numeric References .. 47

Entity References .. 48

Checking I18N ...49

Summary ...49

References ..49

■ CONTENTS

viii

Chapter 3: Markup Languages: More Than HTML5 ■ ..53

SGML Languages ...54

HTML ... 54

XML Languages ...54

XHTML ... 54

Version Overview ...55

HTML Versions and Variants .. 55

XHTML Versions and Variants .. 56

HTML5 ... 60

(X)HTML 5.1, (X)HTML 5.2, and Beyond ... 63

Markup Syntaxes ...63

The HTML Syntax ... 63

The XHTML Syntax and Restrictions .. 64

Data Types ..70

Markup Elements ..72

Block vs. Inline Elements ... 78

Attributes ...79

Global Attributes .. 86

Event Handlers .. 87

HTML Document Structure ..92

New Semantic Structuring Elements In HTML5 ... 94

Document Type Declaration ... 95

XHTML Document Structure .. 102

Moving from HTML to XHTML ..109

Specific Markup Languages ..109

SVG .. 110

MathML .. 112

■ CONTENTS

ix

Combinations, Profiles, and Mixed-Namespace Documents ...115

(X)HTML+RDFa .. 116

XHTML-Print .. 116

XHTML + MathML + SVG ... 117

Choosing a Markup Language ...119

The Benefits of XHTML 1.x over HTML 4.x .. 119

The Benefits of HTML5 over HTML 4.x and XHTML ... 119

HAML: Markup Preprocessing ...120

Alternatives to Web Markup ..120

Summary ...121

References ..121

Chapter 4: Serving and Configuration ■ ...127

The HTTP Header ...127

Internet Media Types (MIME) ...128

Common Media Types .. 129

Serving XHTML ..133

Serving XHTML as HTML ... 133

Serving XHTML as XML.. 133

URIs, URLs, and URNs ..135

Persistent URIs .. 135

Summary ...140

References ..141

Chapter 5: Style Sheets ■ ...147

Cascading Style Sheets ...147

Levels, Profiles, and Modules .. 148

Grammar and Conventions .. 149

Implementation .. 163

Display and Visibility .. 165

■ CONTENTS

x

Cascading .. 166

Inheritance ... 167

Scopes and Structure .. 168

The Box Model ... 169

Overview of CSS Properties ... 170

Initial Property Values .. 188

Default Styles of Rendering Engines ... 189

XSL ..190

XSLT Style Sheets .. 190

Combining CSS and XSL ..193

CSS Preprocessing ..193

Sass ... 194

LESS .. 194

Stylus ... 194

Summary ...194

References ..194

Chapter 6: Scripting and Applications ■ ...197

Client-Server Architectures ...197

Scripting and Standards Implementation ..197

Client-Side Development ...198

Ajax .. 199

Flex .. 200

HTML5 APIs .. 201

Java Applets .. 213

ECMAScript, JavaScript, and jQuery .. 214

Silverlight .. 221

Server-Side Development ...222

ColdFusion ... 222

Java ... 223

■ CONTENTS

xi

The .NET Framework ... 223

Perl .. 224

PHP .. 224

Python .. 225

Ruby ... 226

SSJS .. 226

Combinations of Client-Side and Server-Side Technologies ...226

Database Technologies ..226

Alternate Content and Fallback Mechanism for Scripts ..226

Summary ...228

References ..228

Chapter 7: Metadata and the Semantic Web ■ ...233

The Semantic Web ...233

Structured Data ... 235

Semantic Annotations ...237

The meta Tags ... 237

Microformats ... 239

HTML5 Microdata .. 246

Knowledge Organization Systems: Schemas, Vocabularies, and Ontologies248

FOAF .. 249

DOAC .. 251

Dublin Core .. 252

Knowledge Representation Standards ..259

Resource Description Framework (RDF) .. 259

Web Ontology Language (OWL) ... 268

Simple Knowledge Organization System (SKOS) ... 272

Combining Metadata ...272

Combining Vocabularies in RDF ... 273

Microdata and Microformats ... 275

■ CONTENTS

xii

Dublin Core and vCard in RDF .. 275

Dublin Core, vCard, and Math-Net ... 275

DC, IMS, and ODRL ... 276

Special Applications ..277

Image Metadata and XMP.. 277

Metadata for YouTube Videos ... 279

Metadata in SEO ..280

Summary ...282

References ..282

Chapter 8: Web Syndication ■ ..293

News Feeds ...293

Really Simple Syndication ...293

Creating an RSS File .. 294

Required Elements .. 295

Optional Elements.. 296

Subelements of the item Element ... 304

Namespaces .. 306

Styling RSS Feeds ... 307

Atom ..308

Creating an Atom File .. 308

Containers ... 310

Metadata and Content Elements ... 311

RSS or Atom? ..314

Summary ...315

References ..315

Chapter 9: Optimized Appearance ■ ...317

Layout ..317

Positioning and Floating .. 317

Tableless Web Layout .. 318

■ CONTENTS

xiii

Typography ..327

Misused Characters ... 327

Web Fonts .. 328

Embedding External Content ...331

Raster Graphics ... 331

Vector Graphics ... 337

Flash .. 338

Audio.. 339

Video .. 340

Summary ...345

References ..345

Chapter 10: Accessibility ■ ...349

Defining Web Accessibility ..349

WCAG 1.0 ... 351

WCAG 2.0 ... 352

Migrating from WCAG 1.0 to WCAG 2.0 ...374

U.S. Section 508 .. 375

Semantic (X)HTML5 Elements and WAI-ARIA ..375

JavaScript Accessibility ...376

PDF Accessibility ...376

Flash Accessibility ...379

Accessibility of Mathematical Notations ...379

Summary ...380

References ..380

Part 2 ■ : Developing with Standards ..385

Chapter 11: Development Tools ■ ...387

Feature Requirements ...387

Text Editors ..388

WYSIWYG Editors ...390

■ CONTENTS

xiv

Content Management Systems and Bloggers ...392

Web Standards Support ... 393

Specific Editors ...394

Semantic Editors and Reasoners .. 394

MathType ... 395

Markup Correctors ... 395

Responsive Web Design Frameworks ...396

Foundation ... 396

Bootstrap ... 397

Skeleton ... 398

Less Framework .. 398

Gumby ... 398

Browsers as Development Tools ...398

Validator and Debugger Plug-ins ... 400

Testing Web Pages in Text Browsers ... 400

View the Source Code .. 401

Summary ...402

References ..402

Chapter 12: Putting It All Together ■ ..407

Choosing the Relevant Standards ...407

Switching Between Standards .. 407

Step-by-Step Development ...408

Starting from Scratch .. 409

Links .. 416

Images ... 417

Lists ... 417

Tables .. 421

Drop-Down Selection Lists .. 425

Forms .. 426

Flash Content ... 428

RSS News Feeds ... 429

■ CONTENTS

xv

Making Web Sites Valid Through Redesign ...430

Summary ...431

References ..431

Chapter 13: Best Practices ■ ..433

Appropriately Used Elements ..433

Content in Logical Order ..434

Mobile-Friendly Layout ..434

Sizes and Proportions ...435

Lengths in Relative Units ... 435

Combine Units Properly ... 435

Embedding External Content Properly ...436

Embedding YouTube Videos as Valid XHTML or HTML5 ... 437

Embedding Google Maps as Valid XHTML or HTML5 ... 439

Semantic Web Best Practices..440

WAI-ARIA Best Practices ...440

Mobile Web Best Practices ..440

Providing Robustness ..441

Declaring Fallback Generic Fonts .. 441

Declarations with Appropriate Specificity ... 442

Testing ...442

Rendering in Multiple Browsers .. 442

Readability Without Styles .. 442

Summary ...442

References ..443

Chapter 14: Validation ■ ...445

Concepts ...445

Markup Validation ..446

Validating XML ...450

Validating RDF/XML ... 450

■ CONTENTS

xvi

Validating News Feeds .. 452

Validating CSS ...452

Validating I18N ..453

Validating Hyperlinks ...453

Validating Accessibility ..454

Validating Mobile-Friendliness ..456

Unified Validators ..457

W3C Unicorn .. 457

Total Validator .. 458

SortSite .. 460

Extracting Semantic Content ...461

Expressing Validity ..464

W3C Icons .. 465

Representing Technologies ...466

Summary ...467

References ..468

Chapter 15: Most Common Errors ■ ...471

Common Serving Errors ..471

Common Markup Errors ..471

Incorrectly Used Elements ... 471

Incorrect Structure .. 473

Misused Tables .. 475

Nonoptimal Code Length ... 475

Element and Attribute Errors ... 475

End Tag Errors ... 476

Identifiers .. 476

Common Style Sheet Errors ..476

Nonexisting Properties .. 476

Nonexisting or Incorrectly Used Property Values ... 477

Ignored Inheritance ... 477

■ CONTENTS

xvii

Color Errors .. 479

Incorrect Locations .. 479

Transparent Backgrounds .. 479

Miscellaneous Errors ... 480

Common News Feed Errors ...480

Common Script Errors ...480

Common Accessibility Errors ...480

Summary ...481

References ..482

Index ...483

xix

About the Author

Leslie F. Sikos, Ph.D. is a computer scientist specializing in web standards,
Responsive Web Design, Semantic Web, and Web Accessibility. Being a hand coder
Web standardista and senior web designer, he is particularly interested in the Open
Web Platform and Web Quality Assurance through standards-based web design
and web site optimization. Living on the cutting edge of web technologies, he
prides himself on creating stunning, well-structured, mobile-friendly web sites with
excellent user experience.

Dr. Sikos is a member of several professional organizations, including the World
Wide Web Consortium (W3C), the Internet Engineering Task Force (IETF), the
Internet Society (ISOC), and the Unicode Consortium. He is also an invited editor
and reviewer actively contributing to the development of open standards.

His research interests include Semantic Web technologies. He can convert
unstructured web contents to structured data, especially Linked Open Data and
Linking Enterprise Data, and manually add machine-readable metadata annotations
to the markup. He is interested in knowledge representation with RDF, OWL, and

SKOS, and the implementation of knowledge organization systems such as controlled vocabularies and ontologies.
He is also a Web Accessibility expert providing web sites with the desired level of accessibility, including

WCAG 1.0 at all priority levels (1, 2, 3), WCAG 2.0 at all conformance levels (A, AA, AAA), and Section 508.
Dr. Sikos is the author of 13 books covering a wide range of topics including JavaScript, XHTML, XML, CSS,

Flash, digital photography, image processing, video authoring, computer hardware, HTML5, and CSS3. Due to his
pedagogical background, he can introduce technical terms and explain complex development issues in plain English.

You can read more about his publications on his fully standards-compliant web site at www.lesliesikos.com.

www.lesliesikos.com

xxi

About the Technical Reviewer

Charles Brown is one of the most noted authors, consultants, and trainers in the
industry today. His books about Dreamweaver and Fireworks have received critical
acclaim and are used worldwide as teaching tools. In addition to his work in the IT
industry, Charles is also a noted concert pianist, organist, and guitarist appearing
in major concert centers worldwide. He began his musical studies at age 4 and went
on to study with famed pianist Vladimir Horowitz. At age 14, he made his debut with
Leonard Bernstein and later studied at the famed Juilliard School. Eventually he
went to Paris to study with the 20th century legend, Igor Stravinsky. While working
with Stravinsky, Charles developed a close friendship with one of the most powerful
artistic forces of the 20th century: Pablo Picasso. What he learned about creativity
from Picasso he uses today in his writings and training work. Charles is a certiied
Macromedia/Adobe trainer who is in heavy demand worldwide. He frequently
speaks at major conferences such as MAX and NAB. You can see his blog at
blog.charlesebrown.net and his web site can be found at CharlesEBrown.net.

blog.charlesebrown.net
CharlesEBrown.net

xxiii

Preface

Since its earliest stage in the 1990s, the Web has been attracting all kinds of content authors. Anybody with minimal
know-how could publish web sites from anywhere, anytime. his easy access has allowed millions of web sites to
appear on the “network of networks” without any kind of content review or censorship. However, the freedom to
publish without limitations led to low-quality code and poor copywriting on many sites.

Online presence is increasingly important in the competitive market, but often people are unware of the costs of
web design and hosting. To keep expenses down, many try to launch and maintain a web site on their own, and are
reluctant to pay for professional web design services. Such people are usually not familiar with the principles of web
design, typography, color theory, or web standards, and do not have graphic design and programming skills either.
hose who use a Content Management System to develop web sites often believe that there is no need for qualiied
professionals anymore in web design. However, while a Graphical User Interface and predeined templates are
easy to use, the quality of software-generated code cannot compete with the markup and style sheets written by
professional web designers. In fact, web authoring and development tools often generate codes that are not
standard-compliant, longer and more complex than optimal, not well-structured, lack semantics, and are inaccessible
to people with disabilities. Even if the code is standard-complaint, content authors without solid web design skills
update the markup incorrectly, resulting in web sites that will violate web standards.

To ensure acceptable download speed, rendering, and functionality for poorly written web sites, browsers are
extremely error tolerant and can ignore incorrect code blocks, handle missing end tags, and so on. his error tolerancy
doesn’t mean that web standards can be ignored! For more than a decade, the inconsistent appearance and behavior
across various browsers was a real challenge, and often frustration, for web designers, a problem laypeople never
understood. Even standard-compliant sites fell apart or rendered incorrectly under various browsers that did not
support a particular markup element or style sheet property. Browser vendors eventually recognized the importance
of standards, and gradually improved their products. In the early 2010s, modern browsers reached an acceptable (and
constantly improving) level of web standards support, and creating robust web sites became almost exclusively the
responsibility of web designers.

From the standardization point of view, it is not an exaggeration that most web sites—including the largest,
frequently updated multi-million dollar portals—often apply obsolete technologies and bad practices, and are not
optimal. Common web design practices take just a few basic principles into account, such as appearance, buzzwords,
and marketing potential, while miss important factors such as document structure, properly implemented standards,
user interface, user experience, and accessibility. Web designers often publish incorrect templates based on popular,
emerging technologies that are not yet standardized to increase their web site traic, and others distribute such code
blocks on other sites, leading to invalid markup and style sheets. Also, there are people who keep using the same
technologies, techniques, and practices for as long as possible even if better technologies and new trends appear.
Unfortunately, the proper implementation of web standards is quite often a minor concern only.

he growing popularity of mobile browsing has led to a huge demand for mobile-friendly web sites. As a result,
supporting smartphones, tablets, and high-resolution monitors became a standard user expectation. How can
web designers create web sites that work perfectly on all these devices when they come with diferent screen size,
resolution, aspect ratio, and scrollability? he answer to this question led to a paradigm shift in the web design
industry called Responsive Web Design that provides an optimal viewing experience regardless of the browsing device.
Responsive Web Design is based on earlier best practices such as progressive enhancement (which was a result of the
even earlier approach, graceful degradation).

■ PREFACE

xxiv

Practical problems are often solved by the web design community, usually in the form of a new technique or
framework. he approaches and software tools that are really eicient become so popular that they are implemented
globally and designers start considering them as best practices. However, there is no ultimate solution for web design
problems. For example, how can machine-readable annotations be leveraged in modern web services? How can web
site appearance and functionality be guaranteed on a variety of platforms? How can the length of the markup and
styling rules be minimized while preserving site information, functionality, and behavior? How can correct character
rendering be ensured on a multilingual site?

Global concerns can often be addressed by the implementation of web standards. Since the development
process of technical speciications can be slow, years can pass between the initial idea, the standard release, and
the practical applications. Implementing speciications that are not yet standardized is usually a bad practice, but
sometimes inevitable, especially when the standard under development is shaped by the feedback from the web
design community.

Users usually do not know that many web site inconsistencies, unreadable elements, and poor functionality are
caused by the low-quality markup and style sheets that do not comply with web standards. Standard compliance
provides backward-and forward-compatibility so web sites can be used on the widest ranges of browsers, including
older, current, and future versions, and will be easy to update when new standards appear. Web standards contribute
to interoperability, platform-, device- and resolution-independence so standards-based web sites are easy to use and
provide excellent user experience regardless of the screen size or resolution, operating system, and browser. Correctly
structured markup is a fundamental requirement for accessibility and machine-readable, semantic annotations, and
also ensures that the information of your site is conveyed even if the style sheets cannot be loaded.

his book is a comprehensive collection of state-of-the-art information on both the core web standards and
lesser-known standards that deserve more attention. In fact, it is written to be the most complete reference of web
standardization resources ever published. he step by-step guides are based on solid theoretical design principles
and standardized speciications, and are demonstrated through sample code while focusing on syntax, formal
grammar, recommended annotations, and other standardization concerns. his book also introduces you to cutting-
edge technologies and best practices that can be implemented in modern web sites to achieve mobile-friendliness,
accessibility, machine-readability, and usability through standard compliance.

	Web Standards
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Preface

