SECOND EDITION

Web
Standards

Mastering HTMLS, CSS3, and XML

CREATE OPTIMIZED,
DEVICE-INDEPENDENT WEB SITES
WITH CUTTING-EDGE TECHNOLOGIES

Leslie F. Sikos, Ph.D.

Apresse

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

vww allitebooks.conl

http://www.allitebooks.org

Contents at a Glance

About the AUthOr ... ——————————————_ Xix
About the Technical REVIEWETccsveesssessmsssmssssmssssmssssssssssssssssssssssssssssssssssssssnssnsnssnsnsnsnnsas xxi
o £ Xxiii
Part 1: Web Standards...........ccovsmmissmismmmmssmmms s s s s sssss s snssssnsnnnas 1
Chapter 1: Introduction to Web Standardscccusemmmnisnmmmmmmssssmmmmssssmmmsssssmmssssssmmnan. 3
Chapter 2: Internationalization..........cccuccmmmnnsmmmmmnnsesnmmmnsssnmmssssnmss————————————— 37
Chapter 3: Markup Languages: More Than HTMLS........ccccccnmmssmmmmmmsssssnnssssssssssssssssssenans 53
Chapter 4: Serving and Configurationccccomsmmmmssanmmssssssssssnssssssssssssssssssssssnsssssnssss 127
Chapter 5: Style Sheetsccciiuusmmmmmmmssnnnmmmsssnssmmsssssssnmssssssnnssssssnnssssssnsnssssssnnnsnsssnnnnnnssnn 147
Chapter 6: Scripting and Applications..........ucccimnnseenmmmnsssnmmmsesnmmmsssssss—————— 197
Chapter 7: Metadata and the Semantic Webcccccuneemminnnseemmmmsesmmmmssssnmmssssnm. 233
Chapter 8: Web Syndicationc..cccusmmmmsmmmsssmmsssssmsssssmssssssssssssssssssssssssesssssesssnsessnnsenss 293
Chapter 9: Optimized APPearanCe........cuuusseesssssmmmsssnnnnnssssnssss 317
Chapter 10: AcCeSSIbIItY...cuiemrmimisemnmmmissennmmssssensmmmssssssmmsssssnsnnsssssnsnsssssnnsnessssnnnsessssnnnnnss 349
Part 2: Developing with Standards.............cccmnsmmmnnmnmmneenmmessmnsssmenns 385
Chapter 11: Development TOOISccccvermisssssmssnmmmmmmsssssssssssssmesssssssssssssssssessssssssnsnsnnsnnss 387
Chapter 12: Putting It All TOgetherccciuisemmmmmisssnnmmnssssnmmmssssnmmsssssesssssses s 407
iii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS AT A GLANCE

Chapter 13: Best PractiCes.......cccuummmmssmmmmssnnsssssnsssssssssssnsssssnsssssnsssssnsssssnsssssnsssssnnssssnnsss 433

Chapter 14: Validationcccuunmmsemsmmmmmmmmmmsssssssnmmmssnsssssnnnes 445

Chapter 15: Most COMMON ErTOrsSucccemmmmssssnmmmssssssnmsssssssnssssssssnssssssnsnssssssnnssssssansnnssns 471
IO X aeettiiisnnnnnnsssnnnnnnssssnnnnssssnnnnsssssnnnnnsssssnsnnssssnnsnnssssnnnnssssssnsnnssssnnnnnssssnnnnsssssnnnnnsssnnnnnsssnnns 483
iv

[vww allitebooks.cond

http://www.allitebooks.org

PART 1

Web Standards

In this part of the book, you learn the theory and fundamental concepts of web standards, along with the
standardization bodies that develop standards and the most influential web sites that announce, promote,
and distribute them. After understanding the importance of web standards, you can differentiate technical
specifications under development from de facto and de jure web standards.

One of the very first steps in developing sites in languages other than English or creating multilingual
sites is to select and declare the right character encoding. In these chapters you become familiar with the
most powerful character encoding capable of representing all characters of the written languages of the world
as well as widely used notations and historic scripts.

The history of HTML and XHTML markup languages is crucial to understanding document types, the
core document structure, and the allowed elements and attributes for the selected document type. You learn
the syntax, the restrictions, and benefits of XHTML, and the extension of web documents through external
vocabularies as mixed-namespace documents. By enumerating the benefits of HTML5 over HTML 4.x and
XHTML, you will have a solid understanding of cutting-edge markup standards. As you will see, HTML5 can
be written not only in HTML, but also in XML serialization, and web designers can create so-called polyglot
documents that generate the same DOM tree regardless of the parser. You learn the role of hand coding in
Web Quality Assurance, and why machine-generated code cannot compete with web designers. You also
learn how to add machine-readable annotations to the markup and improve the accessibility of web sites.

Without proper web server configuration, the correct appearance, operation, and behavior of web sites
cannot be guaranteed. You learn about the most widely adopted application protocol, the Hypertext Transfer
Protocol, and the structure of the HTTP header. The most common Internet Media Types (MIME types), the
file format identifiers of the Web, are described. You see how to create permanent URIs by minimizing the
information provided in them and removing file extensions on the web server.

You learn why and how to separate content from appearance using Cascading Style Sheets (CSS), and
what the differences are between the major CSS versions. CSS3 offers mechanisms and properties to create
conditional styles depending on the features of the browsing device, create transitions and text effects, and
provide beautiful typography.

The chapters lead you through techniques to build core web site components based on standards. After
reading these chapters, you will have a solid foundation of web standards and will be able to implement the
right standards for your projects.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1

Introduction to Web Standards

Technical standards are widely used in various fields of life—think of the standards of paper size and the standard
envelopes that fit them, or AC power plugs and their corresponding sockets. Web standards, similar to other
standards, are normative specifications of technologies and methodologies. In other words, they are well-defined
sets of requirements to be satisfied. They are not only ideal from the technical point of view but also represent

user needs. However, web standards are often ignored; the World Wide Web consists of billions of documents that
do not consider proper restrictions or regulations, deproving user experience. This is because the Web is a “free
forum” where everyone can publish pretty much anything without technical skills, content review, or censorship.
Unfortunately, this approach comes at a price: you will often encounter sites that download really slow, collapse in
the browser, or have poor functionality. In spite of the benefits of standard compliance, not only content authors
but also web developers find it challenging to implement web standards, mainly due to the lack of widespread
distribution. Even the most popular web sites can be very confusing, and in contrast to the common misconception,
developers cannot use them as references to learn from. Moreover, web designers often ignore standards because of
the misbelief that developing with standards means an additional workload. Due to their limited knowledge on web
standards, web designers are often not familiar with the benefits of standards compliance and the best practices of
standards-based web design.

In this chapter, you will learn about the significance of web standards and the reliable resources you should
know in order to make the best use of web standards in your web applications. This chapter sets out the major
benefits of web standards. It will also give you a solid understanding of the diversity and status of standards. After
reading the chapter, you will be able to recognize finalized specifications and select the most appropriate ones for
any project.

The Basic Concepts

Web standards are applicable to the World Wide Web (for short, the Web). These formal standards define and describe
various aspects of the Web. According to the Web Standards Project, a major standards promoter, “Web standards are
carefully designed to deliver the greatest benefits to the greatest number of web users while ensuring the long-term
viability of any document published on the Web. Designing and building with these standards simplifies and lowers
the cost of production, while delivering sites that are accessible to more people and more types of Internet devices.
Sites developed along these lines will continue to function correctly as traditional desktop browsers evolve, and as
new Internet devices come to market” [1].

Web standards are often de facto (in practice) standards. Since there is no law that enforces them, web standards are
ignored by a large share of web developers. The Recommendations published by the World Wide Web Consortium (W3C),
the largest web standardization body in the world, are not exceptions either. However, in November 2010, W3C made a
big step forward when it became an ISO/IEC JTC 1 PAS Submitter because any stable core web technologies produced by
W3C are also in the scope of the International Standards Organization (ISO). ISO and the International Electrotechnical
Commission (IEC) can efficiently contribute to the wider, and, if possible, global, adoption of W3C standards by changing
the status of de facto standards to de jure (in principle) [2].

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

Web site standardization refers to the development process of standard web sites or the correction of
nonstandard sites to fulfill the requirements to become standard-compliant sites. This phrase has been recently
associated with widely accepted web design technologies, principles, techniques, and best practices, and
unfortunately, various tricks as well as widely adopted CSS and JavaScript hacks. Most web designers are unaware that
such tricks and hacks should not be used at all.

The main goals of standardization are functionality, interoperability, and browser and resolution independence
in order to maximize user experience, access to content, menu usability, mobile-friendliness, and predictable
behavior.

The Role of Standardization

The goals of web design cannot be achieved without a standardized approach. How would it be possible to use
printers on a daily basis without paper-size standards? How could anyone use electric devices without standardized
voltage? Why do web designers assume that standards are not essential to web quality assurance?

The grammar and other rules defined by web standards should be followed in web design. Although browsers
have strong built-in error-handling features capable of eliminating problems on the client side, web developers
should not misuse these features.

Routine design tasks should be based on standards. Overall, designing costs of standard-compliant web
design are lower because fewer design decisions are needed. A further advantage is that developers can reuse their
knowledge during development.

Poor functionality and usability might have a severe impact on web site traffic and business revenue, because
users switch to other web sites within a few seconds if the content is not provided in an appropriate manner or the
user experience is poor.

Since various browsers interpret incorrect markup in different ways, markup errors can lead to inconsistencies,
bad layout, displeasing styling, and unexpected site behavior. The best way to eliminate such problems is to fulfill all
the requirements of structure, syntax, and other rules described by the appropriate Document Type Definition and
W3C Recommendation (see the “W3C” section).

Web designers usually try to implement the latest popular technologies to meet client expectations and compete
with other developers, but not all of these technologies are standardized. Applying up-to-date web standards
can be challenging, but it is vital for providing powerful, modern features while making web sites ready for later
improvements and future standard implementations. Standard compliance is an essential feature of web site
development that guarantees high code quality [3] and improves overall web site usability.

The Cost of Nonstandardized Markup

All Internet users encounter web sites from time to time that break apart and show partly overlapped or incorrectly
positioned elements and/or unreadable content. The cause is, in most cases, the nonstandard or browser-specific
source code, and sometimes the lack of standard support of the web browser used to render the pages.

The majority of web sites are obsolete from the standardization point of view. Even the largest and most
well-known companies publish nonstandard documents constantly.

The major drawbacks of nonstandardized documents are the following:

¢ Inadequate search engine indexing. Crawlers cannot index incorrectly coded documents
efficiently, which can cause visitor loss.

e Longer download time.

e Longerrendering.

!There are hundreds of other factors that affect search engine indexing.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

Incorrect rendering (one of the most significant drawbacks).
Difficult and inefficient development cycle.

Low level of accessibility.

Low level of backward compatibility.

Lost traffic, fewer visitors, and fewer sales. Because of the inconveniences and problems listed
earlier, web sites that are not standard-compliant have a higher risk of losing functionality,
popularity, and productivity.

Additional bandwidth load and hosting cost. Numerous needless characters in the source
code increase both file size and complexity.

More difficult updating and maintenance.

Benefits of Standard-Compliant Markup

Valid, standard-compliant markup has several advantages. Here are the most important ones:

Search engine crawlers can index documents more adequately, and the content is basically
search engine optimized.

Compared to those websites that violate standards, standard-compliant websites can be
downloaded faster.

Well-structured markup provides faster rendering.
Web documents that apply standards properly are rendered accurately in modern browsers.

More users are accommodated, and they probably stay longer because of correct appearance
and layout.?

Lower development costs (only in case of well-qualified developers and carefully selected
software tools).

Standard-compliant markup serves as the basis for website accessibility.
Backward compatibility is ensured as browsers evolve.

Optimal content lengths and file size (no unnecessary characters are listed in the source
code), as well as cost-optimal storage (potential for cheaper hosting).

Standard-compliant markup is easier to maintain and update than the markup that
violates standards.

Standard-compliant source codes become obsolete later, and upgrading is much easier when
new standards are introduced.

Compatibility with current and future browsers is guaranteed (at least from the developers’
point of view).

Inspire implementation and force web browsers to support standards progressively.

Asyou can see, the standard-compliant, clean code has many advantages over nonstandard code and that’s why
standard compliance is vital in modern web design.

2Assuming that the web site has a decent design.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

Development and Announcement of Standards

Web standards are technical specifications of web technologies released by standardization bodies. Most web standards
are published by the W3C [4]. The W3C Recommendations are vital in standards-based web design.* W3C publishes
the most web specifications by far, covering markup languages, style sheets, metadata, XML technologies, semantic
markup, mathematical notation, graphical formats, and other technologies. However, there are also other influential
standards organizations on the web standardization scene (Table 1-1).

Table 1-1. Influential Organizations in Web Standardization

Organization Abbreviation Web Site Major Specifications

and Standards
Dublin Core Metadata Initiative DCMI www.dublincore.org Dublin Core Metadata
ECMA International ECMA www.ecma-international.org ECMAScript [5]
(formerly ECMA)
International Organization for ISO* www.iso.org Web site engineering and
Standardization other IT standards [6], user

interface standards, PNG
functional specification

Internet Assigned Numbers IANA www.iana.org Domain names, IP address

Authority coordination, protocol
assignments [7]

Internet Engineering IETF www.ietf.org Internet standard (STD)

Task Force documents [8], Request for

Comments (RFC) documents
[9], for example, proper use of
HTTP, MIME, and URI

Unicode Consortium Unicode www.unicode.org Unicode Standard, Unicode
Technical Reports (UTRs) [10]

Web Hypertext Application WHATWG www.whatwg.org HTMLS5, Microdata, Web

Technology Working Group Applications, Web Forms, Web

Workers [11]

World Wide Web Consortium W3C WWW.W3.01g Most web recommendations,
as for example, (X)HTML,
CSS, DOM, XForms, SVG, RDF,
GRDDL, OWL

3The term recommendation indicates the lack of legal status, which is one of the reasons why web standards are not
implemented globally.

“Since the name of the organization would have different abbreviations in all their three official languages, English, French, and
Russian, the organization adopted ISO as its abbreviated name (from the Greek word isos, meaning equal).

[vww allitebooks.cond

www.dublincore.org
http://www.ecma-international.org
www.iso.org
www.iana.org
http://www.ietf.org/
http://www.unicode.org/
http://www.whatwg.org
http://www.whatwg.org/
http://www.w3.org/
http://www.allitebooks.org

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

W3C

Founded and directed by Tim Berners-Lee (sometimes referred to as “the inventor of the Web”), the World Wide Web
Consortium is the largest international organization for developing standards for the World Wide Web. It has several
local offices throughout the world. The members of W3C are mainly universities and research groups that are keen to
participate in the development of web standards. W3C works as an open forum.

Efforts are made to ease contributions to web standards. In fall 2010, W3C released the proposal “Making W3C
the place for new standards” [12]. Openness could be the key to new, easier contributions from the web community,
including independent web developers without W3C membership. It also contributes to the maximization of
knowledge reuse [13]. Important standards such as HTML5, CSS, SVG, MathML, various APIs, RDFa, and Microdata
are summarized in a suite of technical standards called the Open Web Platform, which is open for contributions from
external organizations and the public [14]. W3C is now “an open platform for web standardization” [15].

Many problems web developers face every day have already been solved and published in earlier W3C
Recommendations, often several years ago. News feeds, for example, are not as new as one might think. One of the
first attempts for web syndication was described in 1995 [16], many years before news feeds first appeared on the Web
and became supported by major browsers, operating systems, and office suites. Surprisingly, RSS 0.9 was published as
early as 1999 [17]!

A similar trend holds for markup languages, semantic annotations, vector graphics, equations, and other
specifications.

Mathematical notations are published as GIF image files all over the Internet, although the markup language for
this purpose became a Recommendation in 1999 (with updates soon following).

Vector graphics are seldom used on the Web, although W3C started to develop the SVG standard in 1998, and
it became a Recommendation in 2001.° High-resolution bitmap graphics are used instead. But why? They should be
replaced by SVG whenever possible, and raster graphics should be applied for publishing photographs only. SVG
is supported by Amaya, the free web editor/browser of W3C, and popular graphic suites like Adobe Illustrator and
CorelDraw. From 2010, SVG has also been indexed by Google [18]. SVG 1.2 supports animation too. Editing SVG
is not more complicated than editing bitmaps, so why not use them? SVG files are generally smaller in size, can be
downloaded faster, and unlike bitmaps, SVG images can be resized and arbitrarily magnified without quality loss.

WHATWG

The Web Hypertext Application Technology Working Group (WHATWG) is a professional yet unofficial community
founded by individuals in 2004. The WHATWG was a response to the relatively slow standards development of the
W3C staff and their decision to abandon HTML in favor of XHTML. The WHATWG has an invitation-only committee,
which controls the editing of specifications. Anyone can contribute to the efforts of WHATWG by joining one of its
open mailing lists [19].

ERCIM

The European Research Consortium for Informatics and Mathematics assembles researchers to work in cooperation
on various fields of ICT and applied mathematics including, but not limited to, information system applications,
information storage and retrieval, information interfaces and presentation, data encryption, and database
management [20]. The scientific approach is ensured by 22 organizations from different countries across Europe.
ERCIM has played a major role in the formulation of standards such as SMIL and SVG [21].

’In contrast, Internet Explorer supports SVG natively from 2011 only.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

IETF

The Internet Engineering Task Force (IETF) is a standardization group within the nonprofit organization Internet
Society (ISOC) along with the Internet Architecture Board (IAB). IETF focuses mainly on Internet protocols. IETF
standards are generally on lower levels than web site developers are interested in; however, even the well-known
TCP/IP has been developed by IETE “The mission of the IETF is make the Internet work better by producing high
quality, relevant technical documents that influence the way people design, use, and manage the Internet [8].”
Technical documents are listed on the Requests for Comments (RFC) web site [22].

Ecma International

Ecma International is a nonprofit standards organization that develops and promotes standards for information
and communication systems [23]. One of its most important standards from a web developer’s point of view is the
standardized scripting language ECMAScript (which JavaScript is based on; see the section “JavaScript” for more).

Unicode Consortium

The Unicode Consortium coordinates the development, maintenance, and promotion of Unicode and other
internationalization standards [24]. The nonprofit organization defines the behavior and relationship between Unicode
characters. The consortium works in close collaboration with W3C and ISO. The most important part of the cooperation
is the maintenance of ISO/IEC 10646, the International Standard synchronized with the Unicode Standard.

DCMI

The Dublin Core Metadata Initiative is a registered company in Singapore [25]. The open organization develops

and maintains interoperable metadata standards. DCMI provides annual conferences and workshops, standards
liaison, and standards promotion. The worldwide community of users and developers is supported by DCMI through
collaborative work in discussion forums, communities, and task groups.

TANA

The Internet Assigned Numbers Authority is the organization that oversees global IP address and top-level domain
allocations, root zone management in the Domain Name System (assignments of ccTLDs and gTLDs), MIME types,
and other Internet Protocol-related symbols and numbers [26]. IANA is operated by the nonprofit corporation called
Internet Corporation for Assigned Names and Numbers (ICANN) [27].

OASIS

The Organization for the Advancement of Structured Information Standards (OASIS) works on open standards for
web services, interoperability, security, and ebusiness. Its slogan is “Advancing open standards for the information
society” [28]. The consortium maintains influential information portals on web services as well as on XML [29, 30].

ISO

Founded in 1947, the International Organization for Standardization (ISO) is an international standardization

body that represents various standards organizations from all over the world [31]. ISO provides both industrial and
commercial standards. ISO has developed more than 19,500 international standards on a variety of subjects, many of
which are also used on the Web (for example, country codes, date/time, and time duration annotations).

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

Standards Promotion and Distribution

Most web standards are optional only and not enforced by law (which would be the only way to achieve worldwide
implementation). However, there are new trends that transform the web design industry. For example, there

are accessibility standards enforced by law in some countries (see the section “Defining Web Accessibility”).
Since web standards are not ubiquitous, it can be difficult for web designers to maintain up-to-date knowledge
and learn new technologies. However, they can participate in a variety of events, including workshops and
conferences, and use resources such as textbooks or online specifications to train themselves either as individuals
or professional group members.

Groups and Associations

There are numerous groups among enthusiastic web developers that distribute and expedite standards and harmonize
them with best practices. Membership fees in such groups are generally much lower than those of standardization
bodies. In fact, some of them are open, and anyone can join free of charge. While appealing, many professional
groups and associations focus on the latest technologies rather than standards. The following sections provide a quick
overview of influential groups in web standardization.

The Web Standards Project

The Web Standards Project (WaSP) was founded in 1998 by professional web developers to spread the application of
web standards published mainly by W3C. The Web Standards Project was “a grassroots coalition fighting for standards
which ensure simple, affordable access to Web technologies for all” [1]. The organization focused on standard
support, accessibility, and easier development.

WaSP’s standardization processes were based on task forces. The Project’s aim was to attract the attention of the
most considerable companies and organizations of the world and persuade them to become as standard-compliant
as possible. WaSP task forces included the following:

e Accessibility Task Force

e Adobe Task Force (formerly Dreamweaver Task Force)
e Education Task Force

¢ International Liaison Group

e Microsoft Task Force

e The Street Team

Among others, the Web Standards Project introduced the famous Acid tests used to compare standard support
of browsers (see the section “Standard Compliance Tests”). In 2013, the Web Standards Project stopped working in its
original form, and contributions can be made through other projects only.

Web Standards Group

As a web developer community, the Web Standards Group (WSG) focuses on web standards and best practices to
achieve standard codes. WSG has thousands of members from all over the world [32].

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

International Webmasters Association

The International Webmasters Association is a W3C member that “provides and fosters professional advancement
opportunities among individuals dedicated to or pursuing a Web career, and to work diligently to enhance their
effectiveness, image, and professionalism as they attract and serve their clients and employers” [33].

Web Industry Professionals Association

The Web Industry Professionals Association (WIPA) is a technical association in Australia. WIPA assembles
professional individuals working in the web industry to “exchange ideas, participate in debate, advance education and
promote ethical practice” [34]. WIPA is a major organizer of web courses in Australia.

Open Digital Rights Language Initiative

The Open Digital Rights Language (ODRL) Initiative is an international organization that develops and promotes the
ODRL vocabulary [35], which is an open standard for policy expressions (see the section “DC, IMS, and ODRL").

Staying Informed: Events and Courses

Beyond online resources such as official news feeds, there are several types of appearances and events that
contribute to the worldwide distribution of web standards. The list includes press releases, scientific and professional
conferences, talks, workshops, meetings, discussion forums, symposiums, and tutorials. The papers or presentations
from these events are often available online. Web standardistas can use these documents to maintain up-to-date
knowledge and keep abreast of the latest specifications.

The primary resource for major web standards events such as workshops and conferences as well as
announcements of recommendations and presentations is the W3C web site at www.w3.0rg [36]. Events are classified
as “Talks and appearances” and “Events.” Past events are available in the News Archive [37].

The World Wide Web Consortium also offers online training courses on or related to standards such as SVG or
mobile-friendly web design through a dedicated portal [38]. The courses consist of weekly modules with instructions
(lectures), link collection, activities, and a discussion forum. The quality is guaranteed by the instructors who are
either co-authors or editors of the relevant W3C standards or internationally recognized invited experts. Participants
can expect to spend two to three hours per week on these courses.

The Internationalization & Unicode Conference (IUC) has been organized annually since 1977. It covers the latest
industry standards and best practices on software and web application internationalization. Up-to-date information
about this conference is available at www.unicodeconference.org [39].

IETF meetings are held three times a year. Information on upcoming meetings, requests, materials, proceedings,
and sponsoring are published on the IETF web site [40].

The Dublin Core Metadata Initiative has held the International Conference on Dublin Core and Metadata
Applications annually since 2001 [41].

WIPA provides up-to-date information on upcoming events such as Australian training courses and workshops
on the WIPA web site [34].

The Association for Computing Machinery (ACM) maintains an up-to-date calendar on IT conferences and
events, some of which are related to web technologies [42].

World Standards Day has been celebrated since 1970 by ISO, IEC, and ITU each year on 14 October in Geneva,
Switzerland. The message of World Standards Day 2010 clearly indicated a major aim of standardization: “Standards
make the world accessible for all” [43].

Not all prominent events have a long track history, though. Many promising conferences and workshops are good
initiatives such as the popular conference called Future of Web Apps [44].

There are web sites that are collections of events and articles of a given topic. A good example is
www . semanticmetadata.net, which is a comprehensive site for Semantic Web developers [45].

10

http://www.w3.org/
http://www.unicodeconference.org/
http://www.semanticmetadata.net/

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

Resources

One of the easiest ways to keep up-to-date with web standards is to subscribe to the news feeds of standardization
bodies and organizations, and regularly check their web sites. Course materials, conference proceedings, and
presentation slides are also available on many of these sites. An endless variety of further resources are also available.

W3C provides a weekly newsletter [46]. Its latest news is available in both Atom [47] and RSS [48] news feeds. The
vast majority of W3C documents are public and freely available.

General news on Unicode is available through the news feed of the Unicode Consortium [49].

The Dublin Core Metadata Initiative publishes news on the home page of its web site and provides a news feed [50].
The proceedings of the International Conference on Dublin Core and Metadata Applications are available at the DCMI
Publications page [51].

Scientific journal papers with Digital Object Identifier (DOI) can also be found throughout the Web, although many
of these documents are not in the public domain. Still, most of them provide at least a free abstract, and a reference list.

Types, Stages, and Status of Standards

The Web is a highly innovative medium where constant changes and improvements necessitate continuous standard
development. This results in different document maturity levels. W3C Recommendations progress through five such
levels, which is the W3C process flow [52]:

e Working Draft (WD)

e Last Call Working Draft

e (Candidate Recommendation (CR)
e Proposed Recommendation (PR)
e W3C Recommendation (REC)

The last version is considered by developers as the (de facto) standard to be applied. W3C Recommendations
are sometimes updated by separately published erratum. After a considerable amount of changes, new editions are
published that supersede the current version. Since W3C uses permanent addresses that won’t change over time,
the URI of each version of their specifications is unchanged (and usually includes a datestamp), which ensures the
availability of all versions of their specifications. The document status determines which version is the most
up-to-date one and which one should be applied. The list of current W3C publications and the latest revision of
technical reports can be found in the W3C technical reports folder [53].

Other standardization bodies use different status conventions. The Internet Engineering Task Force, for example,
applies document status such as Internet draft, informational, and proposed standard. The latter one is defined as
a “generally stable specification which has resolved known design choices, is believed to be well-understood, has
received significant community review, and appears to enjoy enough community interest to be considered valuable.
However, further experience might result in a change or even retraction of the specification before it advances [54].
The IETF RFCs are designated as standards, draft standards, proposed standards, best current practices, informational
documents, experimental documents, and historic standards [55).

The Microformat Community uses the status draft specification for those documents that are “somewhat mature
in the development process” and whose stability is not guaranteed [56]. Implementers of such documents are warned
to keep abreast of future developments and changes.

ISO applies the following conventions:

e Preliminary Work Item (PWI)

e New Work Item Proposal (NP or NWIP, NP Amd/TR/TS/TWA)

e Working Draft (AWI, AWI Amd/TR/TS, WD, WD Amd/TR/TS)

e Committee Draft (CD, CD Amd/Cor/TR/TS, PDAmd (PDAM), PDTR, PDTS)

11

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

e Enquiry Draft (DIS, FCD, FPDAmd, DAmd (DAM), FPDISP, DTR, DTS)

e Final Draft International Standard (FDIS, FDAmd (FDAM), PRE, PRF
Amd/TTA/TR/TS/Suppl, FDTR)

e International Standard (ISO TR, TS, IWA, Amd, Cor)

Many web standards are open standards, meaning that the development has been open to individual
contributors; they are publicly available, and certain copyright licenses might apply.

The Variety of Rendering Engines

Web documents and files associated with style sheet files, script files, images, and XML files are processed and
displayed (that is, rendered) or printed by rendering engines (layout engines). They are usually embedded in web
browsers and e-mail clients.

Although the statistics of web browser market share [57, 58, 59, 60, and so on] are usually biased and inaccurate,
one thing is certain: no user agent can be claimed as “the most popular” or the “most widely used” one, because usage
share varies across application areas (mobile browsing, business setting, etc.). Consequently, browser independence
is a fundamental need in web design that ensures interoperability and functionality.

In the early 2010s web browsers reached a really high level of web standards support, and it is now the web
designers’ turn to develop standard-compliant sites that leverage this standard support. To design web sites that
achieve a similar (and not pixel-by-pixel identical) appearance in various browsers has always been a challenge (and
often nightmare) for web designers. While the implementation of core web standards eventually became adequate
in modern browsers, there are specifications under development (such as many CSS3 modules) that are already
implemented partially and/or incorrectly in browsers. Due to this inconsistency and the different functioning and
features, various browsers might render even standard-compliant web sites differently. For years, various tricks and
hacks were used to address the problem which lost their relevance thank to best practices, but such tricks and hacks
are still present in older web sites.

SVG support can serve as a good example for the limited implementation and slow adoption of web standards.
The specification was published in 1999, and no one cared about it until the growing popularity of HTML5, which
natively supports the format. Browsers such as Firefox, Chrome, Opera, or Safari have adopted the standard lately,
although before IE, which is quite disappointing because none of them supported SVG for so many years. In the
early 2000s, one (if not the only one) that did was Amaya. Until recently, many people used the Adobe SVG Viewer
plug-in to display SVG images in their browsers, and most users could not open SVG files at all.

The implementation of elements and attributes does not necessarily mean proper, full support for a markup
language. For example, some browser vendors claimed for years that their product supported MathML; however,
MathML could not be rendered in many cases because of the lack of support for embedding mechanisms and external
files. Even the appropriate MIME type was missing from most implementations.

Standards support, especially of CSS, has been incorrect and/or incomplete in most browsers for years.
Moreover, the latest version of CSS, CSS3, was introduced before the previous one, CSS 2.1, could have gained
complete support in browsers.

There’s always been web designers who preferred one of the browsers over the others, and users who hated one
or more of the major browsers, especially Internet Explorer.® For years, the third-party competitors of IE have been
implementing the latest technologies right after their release (Figure 1-1). Since 2012, Internet Explorer keeps up with
such changes through periodic updates, but previously it was lagging behind the other browsers due to rare updates
and the slow release of new major versions (three years have passed between version 7 and 8, two years between
version 8 and 9, compared to Firefox’s rapid release at six-week intervals since version 5).

°As the built-in browser of Windows, it is more vulnerable than third-party browsers, and older versions of Windows do not support
the latest versions of IE, while the latest version of third-party browsers can be installed even on really old systems. Third-party
browsers have other limitations and issues. Google Chrome, for example, has well-known privacy issues.

12

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

% NEW | Support for connecting to HTTP proxy over HTTPS

NEW | Improved reliability of the se

NEW | Azerbaijani [az] locale added

(® CHANGED I Proprietary window.crypto properties/functions removed
® CHANGED | in favor of the

Debugger interface
B wtmLs I nte from CSS3 Counter Styles
specification implemented

@ HMLs | AMatrix interface implemented

DEVELOPER | bic-bez editor

#+ DEVELOPER | Display which elements have

#+ DEVELOPER | N which displays a list of shortcuts to every

@media rule in the current stylesheet

Figure 1-1. Browser updates provide new features such as advanced support for the latest standards

Trident

Used by Internet Explorer (since version 4) and IE shells, Outlook Express, Maxthon, and various media players,
Trident is one of the most widely used rendering engines. Windows Internet Explorer (formerly Microsoft Internet
Explorer) is a series of graphical web browsers developed by Microsoft. IE has been implemented in the Microsoft
Windows operating systems since 1995.

Although Internet Explorer has been continuously improved in each version, even the most important
standards, that is, the ones that describe the markup and style sheets, were implemented in an incomplete fashion
until version 9. The limited standards support, incorrect floating positions, the expanding box problem, and
especially the implementation of the individual box model of Internet Explorer 6, have caused serious problems in
web design for years.

The standard-compliant mode was introduced in version 6; however, it did not solve the problem. Even some
of the well-known HTML 4.01 elements (for example, abbr) were not supported prior to IE8. Several DHTML
objects did not comply with standards. When web pages were rendered in IE8 mode, however, the methods
and attributes updated in IE8 caused problems with web sites that expected the rendering functionality of
earlier IE versions [61].

13

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

For years Trident has supported HTML 4.01, XML 1.0, XSLT 1.0, and DOM Level 1 with minor implementation
gaps. CSS Level 2 and DOM Level 2 have been provided with major implementation gaps and conformance issues.
The CSS support in Windows Internet Explorer has constantly been evolving. Internet Explorer 6 was the first version
with full CSS Level 1 compliance. However, some selectors such as min-height were missing. Internet Explorer 8 is
the first IE version with nearly complete CSS 2.1 and partial CSS3 support. The CSS features introduced in Internet
Explorer 8 worked only if the web pages were rendered in IE8 mode (or higher). This was ensured by adding the meta
tag described in Listing 1-1 to the head section of web pages, which should be avoided.

Listing 1-1. Version Targeting for Internet Explorer 8 (Should Not Be Used)
<meta http-equiv="X-UA-Compatible" content="IE=8" />

Since Trident version 4 (used by IE8), a built-in RSS/Atom news feed reader is also available through a dedicated
button with the RSS logo.

Microsoft recently recognized the importance of standards support and has begun to take it seriously. First,
Microsoft became an active participant in standards development in the CSS3 and SVG Working Groups at W3C.
Second, it is a co-chair of the HTML5 Working Group and a leader in the HTML5 Testing Task Force.

Trident 5 applied in Internet Explorer 9 introduced support for modern web standards, including HTMLS5,

CSS3, ECMAScript5, DOM Levels 2 and 3, ICC Color Profiles, and SVG [62]. Trident 5 introduced a new hardware-
accelerated JScript engine called Chakra. In contrast to earlier versions that can render only “HTML-compatible”
XHTML documents served incorrectly with the text/html MIME-type, Trident 5 provides full XHTML support.

Trident 6 (IE 10) had improved HTMLS5, CSS3, and EcmaScript5 support, and interoperable HTML5 Quirks Mode.
The major HTML5 improvements were support for the async attribute on HTTP/2 elements, Drag and Drop, File API,
Sandbox, Web Sockets, Web Workers, some Web Performance APIs, HTML5 Video Text Captioning, local storage with
IndexedDB and the HTML5 Application Cache. As for CSS, Trident 6 added support for CSS3 multi-column layout,
grid layout, and flexible box layout, positioned floats, CSSOM Floating Point Value, Media Queries, 3D Transforms, text
shadow, transitions, transforms, animations, gradients, and the font-feature-settings property to access advanced
OpenType features. Trident 6 also supported SVG Filter Effects, JavaScript Typed Arrays (WebGL), and Cross-Origin
Resource Sharing (CORS) for XMLHttpRequest.

IE 11 (powered by Trident 7) supports WebGL and Google’s SPDY open networking protocol. HTML5 support has
further improved, including new features such as HTML5 full screen, HTMLS5 prerender, and HTMLS5 prefetch. Other
new features include WebGL, CSS3 border image, and HTTP/2 support, and improved JavaScript performance.

Gecko

Firefox, Camino, the Mozilla Application Suite, Netscape, Thunderbird, SeaMonkey, and other software apply the
rendering engine Gecko (originally NGLayout) [63]. Netscape released the first version in 1997. In 1998, the Mozilla
project was launched, and the source code was released under an open source license. Gecko is now developed by the
Mozilla Foundation/Corporation. It is written in C++" as a cross-platform layout engine under three licenses:
Mozilla Public License (MPL), GNU General Public License (GPL), and GNU Lesser General Public License (LGPL).
Gecko was originally designed with web standards support in mind and the standards implementation is
improved in each version. Gecko supports HTML5, MHTML, Ruby annotations, CSS3, JavaScript,
ECMAScript 3 and 5, DOM Levels 1/2/3, XML 1.0 and 1.1, SMIL, MathML, RDF, RDDL, XSLT 2.0, XSL-FO 1.0,
XlInclude, XForms, XFrames, XPath 2.0, GraphML and GML/XGMML, SVG 1.1, and Animated PNG (APNG)
images with alpha transparency.Gecko supports DOCTYPE switching for backward compatibility, making it possible
to render nonstandard web sites designed for older browsers correctly. Older Internet Explorer issues such as the
incorrect implementation of the document.all property or the marquee element are also handled.

"The Mozilla Firefox browser has parts written in C/C++, JavaScript, CSS, XUL, and XBL.

14

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

Firefox also provides Google’s Safebrowsing protocol to improve the security of data exchange.
Firefox does not support ActiveX controls by default. Although third-party plug-ins are available, they do not
work safely in all versions and under all platforms.

KHTML

KHTML is the layout engine used by Konqueror. It supports HTML 4.01 and HTML 5. Both screen and paged media
support is provided for CSS 2.1. Beyond the full implementation of CSS 3 selectors (from KDE 3.5.6 [64]), KHTML
supports other CSS3 features, for example, multiple backgrounds, box-sizing, and text-shadow. KHTML supports
DOM 1 and 2 fully and DOM 3 partially. ECMA-262 (JavaScript 1.5) can be used in KHTML, along with the graphic
formats PNG, MNG, JPEG, GIFE, and SVG).

WebKit

The forked (adopted) version of KHTML is the open source WebKit layout engine. The most well-known browser
that uses WebKit is Apple Safari. Google Chrome used WebKit until version 27. Further browsers that use(d) WebKit
are Amazon Kindle, Arora, Midori, OmniWeb, Shiira, iCab (4+), Epiphany, SRWare Iron, and Maxthon (3+). WebKit
has been used on several mobile devices such as the Apple iPad, iPhone, and iPod Touch, as well as the browser on
Android, Palm webOS, and Symbian S60. The desktop version of Safari is available for both Apple and

Windows computers.

Being one of the first implementers of the latest standards (which have also been proved by the Acid2 and Acid3
tests), Safari has always been considered as one of the most innovative web browsers. Safari 5, for example, was
amongst the first browsers that supported the newly introduced HTML5 features such as Media Support, full-screen
playback for the video element, canvas, Geolocation, structuring elements, Ajax history, the draggable attribute,
forms validation, the sandbox attribute, and Ruby annotation. Safari 5 handled CSS animations, CSS effects, and Web
Fonts, provided JavaScript support (ECMAScript 262 version 3), and handled JSON, XML 1.0, and SVG 1.1. Advanced
accessibility features have also been introduced in Safari 5 such as VoiceOver Screen Reader, ARIA Support,
enhanced keyboard navigation, full-page zoom, content zoom, closed captions for HTMLS5 video, custom style sheets,
and minimum font size. It also had a built-in news feed reader [65]. These features have further been improved in
later versions.

The very first version of the other popular browser that used the WebKit rendering engine, Google Chrome, passed
the Acid1 and Acid2 tests, indicating good web standards support. Chrome passes the Acid3 test from version 4.

Presto

Presto was the rendering engine used by the Opera Desktop browser from version 7 to 15, along with the Opera
Devices SDK, and the Opera Mobile and Mini variants. Opera served as the basis for other browsers such as Nintendo
DS and DSi, Nokia 770, and Wii Internet Channel, as well as the browser for Sony Mylo COM-1.

One of the reasons for Presto’s good web standards support was Opera Software’s W3C membership [66]. Opera
was amongst the first browsers with HTML5 support covering the canvas, video, audio, web forms, contentEditable,
the input attribute and the input type, the viewport meta element, and HTML5 APIs like Web Workers, Geolocation,
Selectors, Touch Events, as well as CSS3 selectors, SVG, and SMIL [67].

Blink

The Blink rendering engine, announced in April 2013, is a fork of Webkit and used in Google Chrome 28+, Opera 15+,
Webview (Android 4.4+), RockMelt, and Amazon Silk. Blink has excellent HTML5 and CSS3 support, and it deprecates
vendor prefixes used in non-standard style sheets.

15

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

Amaya

Unlike other browsers that are typically used exclusively to display web documents, Amaya was a free, open source
web browser and a WYSIWYG web developer environment in one. Managed by W3C, Amaya supported HTML 4.01,
XHTML 1.0, XHTML Basic, XHTML 1.1, HTTP 1.1, MathML 2.0, CSS2, and SVG [68]. Distributions were available for
Windows, Linux, and Mac. While still available, the latest version was released in 2012 when Amaya’s development
was discontinued.

Testing the Standard Support of Browsers

Web browsers can be tested from two different aspects: supported standards and user experience through
performance and features. The development of browser tests depends on the approach and aim. From the web
design perspective the first one is more important. The most influential browser tests are platform-independent, and
can compare not only different browsers, but also the same browser running on different platforms. Incomplete or
incorrect standard support is usually tested with comprehensive tests, many of which are public. Most browser tests
require human evaluation to identify bugs with full certainty.

Automatic layout tests are difficult to execute on mobile devices because layout tests generate a screenshot and
compare it to a reference image.

Two different versions of the same web page supposed to result in exactly the same rendering can be compared
using ref-tests [69]. Mozilla also provides an automated testing framework using MochiKit JavaScript libraries [70].
The test applies JavaScript function calls. These browser-specific tests cannot be used for general browser comparisons.

The World Wide Web Consortium provides HTML tests [71], CSS test suites [72], mobile tests [73], a MathML test
suite [74], SVG test suites [75], and internationalization tests [76]. W3C is open to browser test suggestions as well [77].

The web design community develops specialized browser tests such as the HTML5 Test [78] and the CSS3 Test [79)].

Standard Compliance Tests

The most well-known browser tests for standard compliance are the Acid fests. The name refers to the acid tests used
for gold assessment. Instead of gold purity, however, these Acid tests provide a fast and easy-to-understand indication
of the standard compliance of rendering engines. In spite of that, the Acid tests have always been criticized for testing
not only the core markup and style sheet compliance, but also a set of rarely used features, along with those without a
finalized specification.

The first version of the Acid test, Acidl, was written in HTML 4.0 Strict in late 1998 to check interoperability issues
between earlier web browsers. Acidl tests several features with stress on compliance with the CSS1 specification on a
page against a reference image [80]. According to the document title, Acid1 is a “display/box/float/clear test.”

Acid2is a test page published by the Web Standards Project in 2005. Again, a reference image is provided that
should be compared to the rendered version. Note that the nose should change to blue when the mouse hovers over
the face [81]. Beyond this hovering effect, Acid2 tests the paint order, the object element, data URISs, alpha transparency
of PNG images, and several CSS features (absolute, relative, and fixed positioning, the CSS box model, CSS table
formatting, CSS generated content, and CSS parsing). Safari was the first among the widely used browsers that passed
Acid2 in late 2005. Others followed two to three years later. For example, Firefox passed the test from version 3.0.

Acid3 has been launched in 2008, and updated in September 2011. The 100 subtests grouped in 6 “buckets”
cover various parts of the following standards: data URI scheme, HTTP 1.1 Protocol, HTTP status codes, Unicode 5.0
UTF-8 and UTF-16, the image/png and text/plain content types, the HTML 4.0 Transitional, HTML 4.01 Strict, and
XHTML 1.0 Strict markup languages, DOM Level 2 (Core, HTML, Events, Style, Views, Traversal, Range), the object
element, ECMAScript (including garbage collection), CSS selectors, SVG 1.1 (including fonts), and SMIL 2.1. Not only
those browsers fail the test that cannot achieve the score 100/100, but also the ones that cannot render the animation
smoothly or render it differently than what is presented in the reference (Figure 1-2 [82]).

16

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

I.-I\C|d3.--

94/100

ke this reference rendering

Figure 1-2. The Acid3 test in a browser that failed to pass

The following were the first stable, public browser releases that passed the Acid3 test:
e Apple Safari 4.0 (the very first web browser to pass Acid3 [83])
e Bolt1.6[84]

e Epiphany 2.28.0 [85]

e Firefox 4 (updated Acid3)

e Google Chrome 4.0.249.78 [86]
e Internet Explorer 10

e iPhone3.1

e Irisl.l.4

e Opera 10.6 [87]

e Opera Mobile 9.7 [88]

17

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

Comprehensive Tests

There are several other considerations in rendering engines beyond standard compliance, for example, security or
CSS Selectors API [89] support.

Layout tests, Mochi tests, and RefTests can be performed by BrowserTests, a repository of browser test cases and
test suites [90].

A comprehensive comparison and evaluation of overall browser functionality are provided by BrowserScope.
It is a “community-driven project for profiling Web browsers” [91]. The site provides up-to-date information on recent
tests performed on the latest browser versions. Browsers can be compared, and tests can be run on the browser used
for rendering the site.

Standards vs. Quirks Modes, DOCTYPE Switching

Standard-compliance problems of web browsers are not recent. The situation has been constantly improved,
however. After partially supporting the W3C Recommendations, browser users and web site developers faced a
serious problem. Millions of web sites developed earlier for older browsers looked fine in obsolete rendering engines
but had serious issues in the latest ones. In other words, compliance with W3C Recommendations became a problem.

In 1998, Todd Fahrner from the Web Standards Project invented the solution known as DOCTYPE switching [92].
Older, nonstandard documents with a missing DOCTYPE might produce different results in various rendering engines.
Modern browsers check the DOCTYPE, and if the expected behavior follows W3C standards, the document is rendered
in Standards Mode (Strict Mode). If the Document Type Definition is missing, browsers switch to a mode known as
Quirks Mode®[93] that can deal with the nonstandard, unexpected behavior of older browsers (Figure 1-3).

/= XHTML document - Windows Internet Explorer /2 XHTML document - Windows Internet Explorer

G LAY -] w3.ong v Q v g wi.org b

& TIL document ¢ | @8 ¥HTML document
Test file for Standards/Quirks Test file for Standards/Quirks
A div with A& div with CSS width: 170px.
css margin:20px, padding:50px
width- 170px and border Gpx
margin:20px
padding 50px
and
border.6px
Textin a p element
.Textm atable

Text in a p element

:.Teﬂ“lna Tab.ie.:

Figure 1-3. W3C test file in Standards Mode [94] and Quirks Mode [95]

8In Internet Explorer 9 and 10, the backward compatibility mode is called Compatibility Mode, which was renamed in Internet
Explorer 11 to Emulation, providing a mechanism that can also be triggered manually to render version-targeted web sites with
older versions of the rendering engine.

18

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

One of the most famous browser bugs was the Internet Explorer box model bug that made identical pixel-by-pixel
rendering in various browsers impossible. It occurred as Microsoft’s own box model implementation instead of the
W3C CSS box model [96] in earlier versions of Microsoft Internet Explorer. (Some web developers, however, argue
that the box model implemented in IE5 was more logical than that of W3C's [97]; still, it was not standard.) IE6 and
newer versions eliminate the problem in Standards Mode. For the sake of compatibility, however, the bug is still
present in Quirks Mode. (Internet Explorer for Mac, which was discontinued in 2006, was not affected.) According
to the W3C CSS1 specification, released in 1996 (revised later several times), determining the width and height
attributes of all block-level elements should affect the width and height of visible elements only while the padding,
borders, and margins should be applied later. Internet Explorer 5 wrapped the content, padding, and borders within
a predetermined width/height. As a result, the rendering box was different from what was expected. The box model is
present in newer versions of the Cascading Style Sheets specification too, including CSS 2.1 [98] and CSS3 [99].

Standard-compliant web pages can be opened faster since browsers can use Standards Mode instead of figuring
out nonstandard markup in Quirks Mode.

Internet Explorer 6 rendered all pages in Quirks Mode if anything other than a byte-order mark appeared before
the DOCTYPE declaration.Modern browsers render all pages providing a DOCTYPE in Standards Mode, whether they are
served with or without an XML declaration.

Problem Statement

It is a common misconception that web standardization is a well-regulated process. In reality, there is no clear set of
rules to follow. Although W3C develops web technologies for markup, annotation, styles, and so on, that will sooner
or later obtain an official mandate, the implementation of their “standards” (recommendations) is an expectation
only. Unlike the standards announced by standardization organizations, for example, the ISO, web recommendations
are adopted globally because of the lack of an official status [100]. Individual vendors and web site developers

might follow some of the recommendations, might not. This approach proved to be insuffiecient in the widespread
implementation of web standards. In fact, 99.9 percent of web sites are obsolete in terms of standards compliance
[101], since a large share of web sites are based on invalid code.

A comprehensive validation test series was conducted in 2011 on the 350 most popular web sites in the world
(selected by Alexa index® [102]). The test found 94 percent of those web sites failed the web standards validation tests
that covered character encoding, markup, and style sheets.

While UTF-8 should be used everywhere, 12 other character encodings were also used, namely, ISO-8859-1,
GB2312, Shift_JIS, GBK, Windows 1251, EUC-JP, Windows 1256, ISO-8859-15, ISO-8859-2, ISO-8859-7, ISO-8859-9,
and Windows 874. As for the markup languages, nine (X)HTML versions and variants were identified which confirms
web designer unawareness and lack of skills or experience. At the time of the test, 14 percent of web sites had applied
HTMLS5 before the specification had been finalized, 23 percent used the obsolete HTML 4.01 Transitional, 45 percent
the XHTML 1.0 Transitional, 8 percent the XHTML 1.0 Strict, 5 percent the HTML 4.01 Strict, and 5 percent other
languages such as HTML 4.0 Transitional, HTML 4.0 Strict, and XHTML 1.1 (Figure 1-4). Although two versions,
XHTML 1.0 Strict and HTMLS5, can be considered modern markup languages, they were applied incorrectly: the
markup was full of errors on many sites. This situation was clearly indicated by the average number of markup errors,
which was 6. The number of style sheet errors was even higher, with an incredible high maximum of 738 errors (!) in a
single CSS file. The average number of CSS errors was 45. And these numbers represented the index files only.

°Naturally, the list of web sites changes constantly, but it does not change the conclusion.

19

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

HTML 4.01

Ottler Strict OtI‘:er HTML5

shift Jis &% UTF-8 5% 5% 14%
3% 60% XHTML 1.0

Strict
8%

GB2312
8%

1S0-8859-1
21%

HTML 4.01
Transitional

23% XHTML 1.0

Transitional
45%

Figure 1-4. Many involved in web design do not know web standards at all

In 2014, another test series indicated a much higher share of HTML5 with UTF-8 encoding (approx. 95%), while
standard compliance was still an issue with not only the markup, but incorrect implementation such as that of vendor-
specific CSS3 properties in the style sheets. The large number of markup errors (max. 875) and CSS errors (max. 750)
is a clear indication that the implementation of web standards did not improve over the years and that many web
content authors and web designers do not know what they are doing.

Many people publishing on the Web are content authors rather than web designers, and only very few web
designers are experts in web standards. The majority of web content authors do not even know the underlying
technologies and standards, not to mention the best practices to implement those standards. Expectations
do not force people to apply web technologies and standards correctly, and the lack of consensus makes the
Web chaotic. Compared to programming languages such as C, the Web is an error-tolerant environment. This
featuresimplifies web publishing to the extent that everyone can create web pages without solid web design
skills (through content management and templates), but without web quality assurance, often resulting in bad
quality code [103].

Companies desire a professional appearance to sell their products and often focus on design and marketing
exclusively. In most cases, designers know little if anything about web standardization. Without knowing the potential
inherent in web standards, people won’t make the effort to create standard-compliant web sites.

Incorrect or incomplete standard implementations of web browsers are responsible for further problems in
web standardization. Even standardized web sites might break apart in browsers that do not support web standards
fully and correctly. Optimal rendering can be expected only if standards are implemented correctly by both browser
vendors and web designers.

Web publishing is often oversimplified, and only a very limited number of web designers are hand coders, which
is a major key to standardized web development. Since content authors need content management via graphical
interfaces and dynamic content, proper standards implementations in authoring tools and templates could contribute
to web standardization significantly. For example, if a standard-compliant WordPress template is deployed, the code
quality of the empty site is inherently standard-compliant, but someone without proper skills can break this standard
compliance with a single character. While the markup quality of web site templates have improved in recent years, the
cutting edge CSS3 implementations are usually still not standard-compliant.

Beyond a certain point, markup and style sheet errors cannot be tolerated. Web documents full of errors
often contain improperly nested elements, malformed tags, and other markup errors referred to as tag soup. Tables
should be used only for organizing data, not for layout or design. Missing tags should not be tolerated. Bad markup
extends download time and rendering time since processing the errors is more complicated than rendering
error-free, standard-compliant (valid) code. Efficiency can be boosted by optimizing the code. Accessibility can also
be increased, along with cross-browser compatibility and forward compatibility.

20

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

Limited Standards Support in Machine-Generated Code

Server-side technologies, such as PHP, ASP, or Ruby on Rails, are popular because of their powerful assistance

in creating dynamic web sites and web applications. While powerful, server-side technologies and Content
Management Systems often produce markup without proper structuring and semantics that would make web sites
work better [104].

Nonprofessional authors using WYSIWYG software, such as Adobe Dreamweaver, produce a large share of web
sites. Until recently, many of them provided nonstandard output. Modern versions of web development authoring
tools support W3C standards. The same is true for open source environments providing dynamic content such as
social networking sites, blog portals, and so on.

Still, these software tools are responsible for billions of web sites published on the Web without considering
standard compliance. Users often try to modify or extend the template code creating nonstandard code even if the
template was originally standards-compliant (which is not always the case).

While most software tools do not reach full standard compliance, web standards implementations are constantly
improved. Some content management systems support not only core standards but, like Drupal, not fundamental
standards such as RDFa'® [105].

The standard compliance of markup and styles provided by WYSIWYG authoring tools is extremely important
because of the large number of authors applying them. However, even standard-compliant markup and style sheets can
be easily messed up with incorrect code by those content authors who do not understand the principles and coding.

Major Concerns

Similar to documents, books, or movies, web sites that meet all criteria and user requirements cannot be
created—what'’s suitable for one audience might not be for another, and even if you try to adhere to every relevant
standard published, you will find that certain standards cannot be used in combination with others. Web
designers should still strive to comply with the core web standards, which contributes to code quality . Fulfilling
the fundamental requirements for standard compliance leads to best practices. Standardized web sites provide
satisfactory and predictable functionality and behavior, usability, stability, and optimal performance.

Bad Practices

While best practices are widely applied in programming, web developers and unskilled content authors do not take web
design best practices seriously. “It works this way—why bother with standard compliance?” This is the approach serious
web developers would be best to forget. Bad markup including, but not limited to, browser-specific code fragments,
heavily nested table layouts, structure mixed with layout, locally applied style attributes, attribute minimization, missing
attribute values, and other anomalies significantly increase code length, complexity, download, and rendering time.

Lack of Support

Web standards support is unsatisfactory. There are no ultimate practical guidelines on web standards for the less
experienced. While most web standards are freely available, most people find them too difficult to understand and
implement in real-life applications.

Where standard compliance is an official requirement, such as on government portals or EU project web sites,
the best solution is to hire web standardistas to develop suitable web sites. Web designers often focus on appearance
rather than code quality while managers and directors concentrate mainly on the content. Most people cannot realize
that standard compliance could be the only solution for many of their problems, such as browser-dependent web
pages, incorrect rendering, or poor functionality.

"From version 7.

21

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

Unconcern

One of the major problems with web standards is that free access to them is not sufficient to convince people to use
them. Standard implementations of authoring tools are limited, and the web sites produced by them seldom follow
standards. While constantly evolving, the standards support of web browsers is often incomplete.

With the growing popularity of web publishing, the need to make the process easier arose. As a result, easy-to-use
Content Management Systems appeared on the market, and nearly everyone became capable of publishing on the
Web without advanced web design skills. To maintain web site functionality on the millions of badly coded web sites,
browser vendors made their products foolproof and error-tolerant. People began to think that what was beneath the
surface did not matter.

Many people still generate poor quality code web sites through easy-to-use Content Management Systems
without a full understanding of web design principles and best practices. For some it is just a hobby; for others it is
an income source. The importance of web standards should be highlighted by influential companies throughout
the world to make these people understand the associated problems. Web design trends are forced by business and
marketing to achieve popularity or fulfill business requirements. For example, because of the lack of support for
Flash on the Apple iPhone, early HTML5 implementations appeared that applied unfinished specifications but at the
same time expedited standards evolution and application. Everyone interested in web design, whether a professional
or not, should become familiar with web standards, because they are vital in web development and worth learning
(instead of copying bad practices from others).

Without several years experience, no one can understand the options. Which markup language is the most
modern one? It is not possible to answer the question without knowing HTML, XHTML, XML, the Semantic Web, the
maturity levels of web standards, and cutting edge web technologies.

Thanks to HTML5 and CSS3, web standards got more attention since the early 2010s; however, worldwide
adoption is still far away. Manual coding is rare, so Content Management Systems have the potential to help content
authors and web designers comply with web standards based on standard-compliant templates and code blocks.
Some stages of web standardization, such asaccessibility evaluation or error checking, cannot be fully automated (see
Chapter 11). Only web standardistas can manipulate the content and the entire markup and style sheets character by
character, along with all the files of a web site, but not all web designers are such experts in web standards.

Influential Sites

Developers often have the logical idea to follow the practices of the most popular and widely used web sites in the
world. However, these web sites cannot serve as references in standardization simply because they often have serious
problems with standard compliance.

It is shocking that the personal web sites of the top web designers in the world also suffer from markup and style
sheet errors. Most of them try to avoid criticism by omitting the W3C conformance icons linking to W3C validators
that would reveal their bad code with a single click.

A good starting point is to find web sites with modern features and standard-compliant code. However, this
can be very difficualt and misleading. Certainly, it is impossible to fulfill all user requirements, but web sites that
focus on standards compliance and are labeled with the logo “Valid XHTML’ or “Valid CSS” often come with a lack
of design and exhibit limited use of technologies. Good examples are the web sites of web standardization bodies
or web accessibility designers. Even if the source code is valid and free of errors, the code often has other issues.
Expected components such as news feeds or favorites icons (favicons) are missing, semantic markup is not used, and
so on. These features do not affect the validity of such web documents, which cannot be used exclusively as starting
points for developing modern, standard-compliant web sites. Not only personal web sites and blogs but also precise
technical documents can be presented beautifully. Remember, web standardization is not a sacrifice! Some of the
largest and most popular web sites in the world apply standards successfully while proving the highest level of user
experience.

But not all. Take a closer look at a code fragment from one of the largest web sites in the world (Listing 1-2).

22

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

Listing 1-2. High-Traffic Web Sites Do Not Necessarily Apply Standard Code

<body class="ego_page home hasLeftCol fbx ie8 win Locale_en_US">

<input type="hidden" id="post_form_id" name="post_form_ id"
value="b053066a05482d5739d31c033b5fd90" autocomplete="off" /><div

id="pagelet presence"></div><div id=" HiddenContainer" style="position:absolute; top:-10000px;
width:0px; height:0px;" ></div><div id="blueBar" class=""></div><div id="globalContainer"><div
id="dialogContainer"></div><div id="c4d06220d5f2c97d20912236"><div class="ptm clearfix"
id="pageHead"><h1 id="pagelogo">

Such software-generated markup codes are almost impossible to understand even if you are an experienced
hand-coder. There are problems with virtually every element and attribute. The class attribute has an empty value.
Identifiers are unreasonably long and not descriptive at all, such as c4d06220d5f2c97d20912236. There is inline style
in the source, which should be in an external style sheet.The layer positioning with -10,000 pixels is obviously a trick
that could be eliminated by proper implementation of standards. Attributes should not be empty, especially if they are
intended to be used for identification (a class without a name cannot be used to identify an element class). Even for
these few lines, the error list is long.

Visual Appeal Over Functionality

Design is one of the major concerns in web site development. Adobe Flash is an ideal technology to provide a
stunning appearance, catch attention, and stream videos. Full Flash sites, however, have several disadvantages. Unless
the web document is a single-page, brochure-style home page that provides contact data, it is far better to develop
(X)HTML content, because textual markup has several benefits over binary files. It is especially true with the
exploitation of the new, interactive HTML5 elements and CSS3 properties, which are good alternatives to Flash content.

Graphic designers are not necessarily web developers. As a consequence, Flash movies are often embedded
incorrectly. Although Flash files can theoretically work in any browser with an appropriate plug-in, markup codes
controlling them can be browser-dependent, which should be eliminated.

There is nothing wrong with Flash, but it is better used for headers and inline animations only. The combination
of XHTML and CSS can provide a similar, even more advanced, user experience, but without the need to download
large files in full before showing the content of the index page. While it is not a problem for fast connections, there are
millions of users around the world who have to wait for half a minute to download such contents. Even if the Flash
files are streamed in certain browsers, the menus and content are unusable until downloading is completed. Web
sites based on markup can be indexed and searched more effectively, are smaller in size, and have full control over the
browser window by default. Text content is much more robust to render than any other format. Even if some images
fail to download or there are some styling problems, the content is still there (if not absolutely positioned outside the
window or written in the color identical to the background). Unlike that of Flash contents, (X)HTML text sharpness,
font size, and other features can be changed upon user request directly from the browser."!

Some software companies recognized the advantages of markup languages over Flash and released tools to
convert Flash files to HTML (for example, FlashKeeper [106]). Even Adobe has an FLA-HTML converter called
Wallaby [107]. However, similar to other automated markup generators, extended care must be taken with them
because the result is often invalid and, therefore, not optimal.

Well-Formedness

A basic requirement for XML documents and a desired one for all web documents is well-formedness, which is vital
in standardization, because it guarantees that the list of syntax rules defined in the corresponding specifications are
satisfied.

!"Although there are advanced font manipulation possibilities in Flash Player from version 10, too.

23

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

To achieve well-formedness in SGML languages such as HTML, elements should be opened and closed properly.
Empty elements must also be terminated. Elements should be nested properly so that overlapping does not occur.
The root element of the document should contain all other elements.

Since SGML parsers are extremely error-tolerant, these rules are rarely followed completely by HTML developers,
which results in markup errors. Thus, the lack of well-formedness leads directly to incorrect, nonstandard markup.

In XML languages such as XHTML, well-formedness has additional requirements. The element tags are case
sensitive; that is, start and end tags must match exactly. Well-formed XML documents should contain properly
encoded and legal Unicode characters only. These characters, however, can also be used directly in element names
and attributes, not just in character data (document text). Characters with special meaning in XML can be used for
markup instructions only, for example, <, >, or &. If they are intended to be represented as text, their entity codes
should be applied (see the section “Entity references”).

Characters that go against well-formedness rules can cause certain XML parsers to be unable to process XML
files (XHTML documents, RDF metadata, RSS feed channels, and so on). Such special characters might also result
in error messages. A single (not well-formed) character can make the whole file impossible to process. For example,
the XML file of a valid RSS feed opened locally in a modern browser is presented as a tree structure. The same file
retrieved from a server is represented as a news feed. If the file, however, contains just one illegal character, the
browser gives an error message instead of displaying the page content (Figure 1-5).

© XML parsing failed

AML parsing failed: syniax error (Line: 38, Character. 10)

Reparse document as HTML

wel-for

dness constraint entity declared

J.orgTR/REC-xmi#wi-entdeclared

Figure 1-5. An XML parsing error in a browser

24

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

Interoperability

There is an endless variety of computing platforms, operating systems, and browsers available on the market.
Every manufacturer and developer tries to provide additional features; thus, products are constantly competing
with each other. This diversity results in different operations and functionalities. The functionality and behavior

of web sites across the different systems are not guaranteed by default but can be achieved by implementing
widestream standardized solutions. Naturally, users want to use various systems together that allow truly efficient
communication. Data access would be restricted without standards, and platform-dependent solutions would rule
the market.

Web interoperability ensures that standard-compliant web pages can be viewed in any browser under any
operating system, from Windows to Mac OS and Linux, and not only on desktop computers but also on mobile
devices, including tablets and smartphones.

Several technologies support interoperability and should be used in web development, including, but not limited
to, UTF-8 character encoding, XML documents, structural and semantic markup with XHTML or HTML5 [108],
DOM scripting, ECMAScript, CSS-based layout, separated structure, presentation and behavior, equations described
in MathML, and semantic metadata.

Browser Independence

“One page, many views” has always been a nightmare for web developers. Although it is a natural user expectation for
all web sites to look and behave the same way in various browsers, it is far from straightforward to fulfill.

Anyone who slaps a “this page is best viewed with Browser X” label on a Web page appears to
be yearning for the bad old days, before the Web, when you had very little chance of reading a
document written on another computer, another word processor, or another network.

—Tim Berners-Lee [109]

While there is a variety of web browsers on the market, the majority uses only a few browsers, namely,
Internet Explorer, Mozilla Firefox, Google Chrome,Safari, and for a lesser extent, Opera. Focusing on these flagships
is usually sufficient, especially when the major rendering engines behind these browsers—Trident, Gecko, WebKit,
and Blink—are the ones that power the most popular mobile browsers too (Trident is used on Windows Phone
smartphones, Firefox for mobile (Fennec) running on Android phones use Gecko, while iPhones and iPads use
Webkit). Statistics show that only very few visitors use browsers powered by other rendering engines.

No one wants to drive potential customers away, so it is very important to avoid browser-specific coding. The
best approach is to create sites that are best viewed with any browser which can be indicated clearly by the logo of the
“Viewable with any browser” campaign [110].

To create very similar (more or less identical) appearance in all major browsers, various tricks have been applied
for years to ensure functionality. However, browser-targeted code blocks do not work satisfactorily under all browsers,
so more and more different hacks were added to support different browsers (and older browser versions), resulting
in a mass of incorrect code. The right approach is to create standard-based web sites. Even if some standards are
not fully supported in some browsers (which is actually a headache for web designers), standard-compliant codes
are at least ready for the future [111], and can serve as excellent starting points for best practices and web standards
evolution.

A very bad practice associated with the problem of the different rendering behavior of browsers is code forking.
Code forking is the development of multiple versions of the same content for various browsers. Code forking should
not be applied because the resulting code cannot be used in the long term.

Web standardistas agree that web sites cannot be expected to look exactly the same way in every browser, but
the information published on web pages should be legible and the functionalities should be available in all major
browsers [112, 113].

25

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

Eliminated Version Targeting

Since rendering engines are constantly evolving, even the various versions of the same browser support standards
differently. To avoid losing users and potential customers who use older browser versions, web developers often
apply various browser- and version-specific solutions in the markup or style sheets. In other words, version targeting
means a considerable amount of additional work for developers, and the result works only in a certain version of a
certain browser.

Due to the advanced standard support of current browser versions, these codes are real threats to functionality or
code optimality, or both. Thus, version targeting should be eliminated, which, on the other hand, can cause problems
with backward compatibility [114]. Although there are some techniques that can be used together with standard
compliance to maximize version independence (for example, resetting the style sheets of the browser), creating web
pages that work properly under all browsers and browser versions is unfeasible.

Browsers to be used for rendering version targeted web documents can be easily defined by a simple meta
declaration in the document head (Listing 1-3).

Listing 1-3. Version Targeting Example (Should Not Be Used)
<meta http-equiv="X-UA-Compatible" content="IE=8;FF=3;0therUA=4" />

The most up-to-date Internet Explorer version can be targeted by adding the IE=edge attribute value to the
content attribute of the meta element [115] (Listing 1-4).

Listing 1-4. Version Targeting for the Latest IE Version (Should Not Be Used)

<meta http-equiv="X-UA-Compatible" content="IE=edge" />

Although targeted browsers might decide more quickly between old, backward-compatible and new,
standard-compliant rendering modes when such data are provided, version targeting should be totally eliminated.
Creating multiple versions of nonstandard markup for the same web page is not only costly but also
unsustainable. Moreover, version targeting and browser detection scripts are not reliable and cannot target the
correct browsers in many cases, because browsers often identify themselves as other browsers or other versions
of the same browser.

Backward Compatibility

Standard-compliant web sites that work well under the currently used browser versions are also ready for the future
but might be rendered incorrectly in older browsers because of the incorrect standards implementations of their
rendering engines. Consequently, even with proper implementation, web standards do not work under all browsers.
The support for old rendering engines, backward compatibility, should be within reasonable limits. Why bother with
browsers that are no longer in use or the “very old” versions of major browsers? Netscape, for example, is “not widely
used anymore” just like Internet Explorer 5 or Mozilla Firefox 3.6. The major problem with this question is how to
define browser obsoletion. Can IE6 be labeled as “very old” and IE8 as “old”? The choice of supported browsers has a
large impact on the traffic and popularity of a web site, and the lack of support for older—even obsolete—browsers
can lead to loss of visitors. Satisfied users cannot be pushed to upgrade their browsers every time a new version
isreleased, and there are users who have to use a version-targeted corporate software. Because of this, there is no
ultimate decision regarding backward compatibility.

26

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

In the late 2000s and early 2010s, one of the biggest agonies regarding backward compatibility was the support
for IE6. Its market share decreased slowly up to 2007 when it lost its popularity considerably, mainly because of the
new versions of Windows and their new Explorer versions,'? as well as the growing popularity of competitors such as
Mozilla Firefox, Apple Safari, and Google Chrome. There was a really good reasoning against the obsolete browser.
First, serious security holes have been pointed out during the years that have been partially covered by later patches.
However, thanks to growing needs, new functions have been introduced in other browsers and in the newer versions
of Internet Explorer. All modern browsers support XML technologies, RSS feeds, and tabbed browsing, for example.
IE8, IE9, and especially IE10 were big steps toward standard compliance and modern functions. Even Microsoft
recommended IE6 users to upgrade [116, 117]. Software giants like Google stopped supporting older browsers, which
is another reason for the upgrade [118]. In 2014, the support for Windows XP has ended, and with the more and more
affordable and powerful modern computers and mobile devices, there is no reason not to use a modern browser with
satisfactory HTML5 and CSS3 support. It is also a great relief for web designers that don’t have to deal with obsolete
browsers anymore.

The major drawback of backward compatibility is that it hinders the widespread use of new technologies at
some point. Still, backward compatibility should be maximized whenever possible. Because of the incomplete or
unsatisfactory standard support of older browsers, providing backward compatibility often results in browser-targeted
hacks and code fragments, as well as nonstandard and even deprecated markup that should be eliminated.

A useful tool to achieve or maximize backward compatibility is the JavaScript library “Modernizr,” which detects
browser support for the latest web standards, including HTML5 and CSS3 modules [119]. This software determines
whether a currently used browser has implemented a given feature, so web designers can apply new technologies in
the browsers that support them and create a fallback mechanism for those browsers that do not.

Forward Compatibility

While a new browser release can be a problem for developers of nonstandard and especially browser-specific web
sites, those web designers who write standard-compliant code do not have to worry, because standard compliance
ensures forward compatibility. Standardized web documents can be easily upgraded to newer standards.

Functionality

Beyond content, functionality is one of the most important web site features, without which all other efforts would
be useless, including a fancy design. While functionality can be ensured by developing with web standards, this often
seems like some kind of sacrifice. For example, the latest standards are not necessarily supported by some rendering
engines, so web designers have to make a decision: either write standard-compliant code and not support some
browsers or provide nonstandard, browser-independent code. The better the standards support in web browsers, the
less frequent this dilemma.

Device Independence

Internet access is no longer restricted to desktop computers. Mobile devices such as tablets, smartphones, and some
e-book readers also have Internet-browsing capabilities. However, some devices—especially the handheld ones—
have limited screen size and scrollability. Mobile-readiness is more important than ever, which also contributes to
web accessibility and usability.

“Internet Explorer 6 was shipped with Windows XP. Versions 7 and 8 can be used on XP, too, while IE9 requires Windows Vista or
Windows 7. IE10 runs under Windows 7 and above.

27

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

There is a wide choice of computer monitors and displays, all of which come with a different size, aspect ratio,
resolution, pixel density, contrast ratio, and color fidelity. To support the wide variety of screens, web sites should be
resolution-independent. Functionality should be satisfactory and similar on a variety of devices regardless of different
hardware controls and features. Device independence provides support for different access mechanisms and different
modes of use (for example, visual and auditory use). The aim of device independence is to “match Web content to
the needs, capabilities, and limitations of the delivery environment” [120]. The popularity of mobile browsing makes
device independence a major concern in modern web design.

Markup languages are good examples for device independence standards. CSS also provides web design
techniques to achieve device independence through device-specific style sheets for mobile phones, projectors, and
printers,**as well as conditional styles depending on viewport size and device features. Java applets can be executed
on a variety of devices under different platforms, because Java is a cross-platform programming language. Image file
formats such as JPEG, TIFF, or GIF are also device-independent files. In document publishing and sharing, PDF is a
classic example for device independence.

Separating Content from Presentation

In the early days of the Web, the major concern in web publishing was the web presence itself. At that time,

web documents were limited mainly to the combination of lightly formatted text content and images. When the
possibilities widened, the Web soon became a full multimedia platform, and inline styles flooded the markup of web
documents. To update the color or the font size of an element throughout a site, the style attributes had to be updated
one by one on each page.

To solve this problem, the W3C introduced a new Golden Rule in web design: formatting should be separated
from structure, which centralizes styling, making it possible to change the styles of an entire web site from a single
location. A further benefit is that the markup becomes shorter, less redundant and complex, clearer, and easier to
interpret and render.

Usability

Usability can be defined as “setting clear and concise goals for a web site, determining a correct and exhaustive set
of user requirements, ensuring that the web site meets user’s expectations, setting usability goals, and providing
useful content” [121]. It is a measure of how easily a system can be used. Usability can be achieved by optimizing user
experience via browser independence, accessibility, expected behavior, logical site structure, and reliable layout.
Confusing content and disturbing effects should be avoided. Usability should not be confused with accessibility,
which means access to all, regardless of user disabilities or device limitations.

Web sites should provide useful content that is relevant and appropriate to the audience. There are numerous
requirements for the appearance of texts, links, lists, controls, graphics, and multimedia objects. Beyond content,
the navigation and site structure should be organized in a way that meets user expectations. This can be achieved by
assessing the site with test users. User experience and user interface design should precede web design and coding.

Reliable Layout

Reliable positioning of web site elements has always been a major concern in web site development. Because of the
enormous number of factors to consider, some elements should be positioned absolutely while others relatively.
There are elements that are meant to be fixed, even if the content exceeds the browser window and the content

is scrolled (see the section “Reliable Positioning”). Layout is in strong correlation with device, resolution, and
browser independence. On mobile-ready web sites, the objects should rescale according to the viewport size and be
proportional to each other, while the text should reflow dynamically on smaller screens.

BThe same web site rendered without the background image on mobile phones is a good example.

28

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

CSS provides both absolute and relative measurement units for defining element dimensions, lengths, and
distances. The appropriate units should be chosen according to the overall design and layout of a web site (see the
section “Sizes and Proportions”). Unreliable or browser-dependent positioning and improperly combined units can
result in unreadable content or limited functionality. The overlapping order of layers might also be a problem if it
makes the content unreadable.

Code Optimality

Web standards provide a way to develop reliable, fully functional, interoperable, device-independent, future-ready
web sites. However, they cannot guarantee optimal code length by default. Even if each character in the source code
has its meaning, that is, none of them is unnecessary, code length might still be far from optimal. Incorrect structuring
in the markup and especially the ignored inheritance in CSS (see the section “Ignored Inheritance”) can increase
complexity and length, resulting in larger file size, slower download and longer rendering time (see the section
“Nonoptimal Code Length”).

Summary

In this chapter, you learned about the importance of web standards, the benefits of standards-based web design,

and the resources where open standards can be accessed and standardization stages followed. Proper standards
implementation is independent from site popularity and the latest web design trends. Software tools with incorrect
or incomplete standards implementations and unskilled content authors produce the most nonstandard markup and
style sheets. The only way to maximize interoperability and secure your web sites for the future is to implement web
standards correctly.

In the next chapter, I will discuss language and character settings on servers and in markup to ensure proper
character representation and provide advanced hints for software agents that search and process web documents.
The internationalization settings of web documents typically precede coding and can be considered as one of the first
steps in standards-based web design.

References

1. Featherstone D, Gustafson A, et al (2013) http://www.webstandards.org. The Web
Standards Project. Accessed 24 October 2014

2. Dardailler D (2010) W3C PAS FAQ. World Wide Web Consortium.
http://www.w3.0rg/2010/04/pastaq. Accessed 24 November 2014

3. Hazaél-Massieux D (2003) Buy standards compliant Web sites. World Wide Web
Consortium. http://www.w3.0rg/0A/2002/07/WebAgency-Requirements. Accessed 24
October 2014

4. 'W3C (2014) Standards. World Wide Web Consortium. http://www.w3.org/standards/.
Accessed 24 October 2014

5. ECMA International (2014) Formal publications. http://www.ecma-international.org/
publications/. Accessed 24 October 2014

6. 1ISO (2014) World Wide Web standards at the ISO website. http://www.iso.org/iso/
search.htm?qt=world+wide+web&published=on&active_tab=standards. International
Organization for Standardization. Accessed 24 October 2014

7. IANA (2014) Website of IANA. http://www.iana.org. Internet Assigned Numbers
Authority. Accessed 24 October 2014

29

http://www.webstandards.org/
http://www.w3.org/2010/04/pasfaq
http://www.w3.org/QA/2002/07/WebAgency-Requirements
http://www.w3.org/standards/
http://www.ecma-international.org/publications/
http://www.ecma-international.org/publications/
http://www.iso.org/iso/search.htm?qt=world%2bwide%2bweb%26published=on%26active_tab=standards
http://www.iso.org/iso/search.htm?qt=world%2bwide%2bweb%26published=on%26active_tab=standards
http://www.iana.org/

CHAPTER 1

30

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

INTRODUCTION TO WEB STANDARDS

IETF (2014) IETF website. http://www. ietf.org. The Internet Engineering Task Force.
Accessed 24 October 2014

IETF (2014) REC pages. http://www.ietf.org/rfc.html. The Internet Engineering Task
Force. Accessed 24 October 2014

Unicode Consortium (2010) Technical Reports. http://www.unicode.org/reports/.
Unicode, Inc. Accessed 24 October 2014

WHATWG (2011) Web Hypertext Application Technology Working Group.
http://www.whatwg.org. Accessed 24 October 2014

Jacobs I (2010) Making W3C the place for new standards.
http://www.w3.0rg/2010/07/community. Accessed 24 October 2014

Dardailler D (2010) Open Standards Policies. In: W3C: An Open Platform for Web
Standardisation. Future Internet Conference - Standardization Workshop. World Wide
Web Consortium. http://www.w3.0rg/2010/12/dd-w3c.html#(3). Accessed 24
October 2014

Dardailler D (2010) W3C Exec Summary. In: W3C: An Open Platform for Web Standardisation.
World Wide Web Consortium. http://www.w3.0rg/2010/06/dd-diplo.html#(7). Accessed 24
October 2014

Dardailler D (2010) W3C: An Open Platform for Web Standardisation. World Wide Web
Consortium. http://www.w3.0rg/2010/12/dd-w3c.html. Accessed 24 October 2014

Guha RV, Bray T (1997) Meta Content Framework using XML. World Wide Web
Consortium. http://www.w3.0rg/TR/NOTE-MCF-XML/. Accessed 24 October 2014

Netscape Communications (1999) My Netscape Network: Quick Start. Netscape.
http://web.archive.org/web/20001208063100/http://my.netscape.com/publish/
help/quickstart.html. (archived version accessed 24 October 2014, original version is no
longer available)

Stanescu B, Sarapata J (2010) Google now indexes SVG. Google Inc.
http://googlewebmastercentral.blogspot.com/2010/08/google-now-indexes-svg.html.
Accessed 24 October 2014

WHATWG (2014) WHATWG Mailing List. Web Hypertext Application Technology Working
Group. http://www.whatwg.org/mailing-1ist. Accessed 24 October 2014

ERCIM (2014) ERCIM website. http://www.ercim.org. The European Research
Consortium for Informatics and Mathematics. Accessed 24 October 2014

Jeffery K (2009) Twenty Years of ERCIM: History and Outlook. European Research
Consortium for Informatics and Mathematics. http://ercim-news.ercim.eu/en77/
joint-ercim-actions/twenty-years-of-ercim-history-and-outlook. Accessed 24
October 2014

IETF (2014) RFC-Editor Webpage. http://www.rfc-editor.org. The Internet Engineering
Task Force. Accessed 24 October 2014

ECMA International (2014) ECMA Website. http://www.ecma-international.org.
Accessed 24 October 2014

Unicode (2014) The Unicode Consortium. Unicode Inc. http://www.unicode.org.
Accessed 24 October 2014

http://www.ietf.org/
http://www.ietf.org/rfc.html
http://www.unicode.org/reports/
http://www.whatwg.org
http://www.w3.org/2010/07/community
https://www.w3.org/2010/12/dd-w3c.html#(3)
https://www.w3.org/2010/06/dd-diplo.html#(7)
http://www.w3.org/2010/12/dd-w3c.html
http://www.w3.org/TR/NOTE-MCF-XML/
http://web.archive.org/web/20001208063100/http://my.netscape.com/publish/help/quickstart.html
http://web.archive.org/web/20001208063100/http://my.netscape.com/publish/help/quickstart.html
http://googlewebmastercentral.blogspot.com/2010/08/google-now-indexes-svg.html
http://www.whatwg.org/mailing-list
http://www.ercim.org/
http://ercim-news.ercim.eu/en77/joint-ercim-actions/twenty-years-of-ercim-history-and-outlook
http://ercim-news.ercim.eu/en77/joint-ercim-actions/twenty-years-of-ercim-history-and-outlook
http://www.rfc-editor.org/
http://www.ecma-international.org/
http://www.unicode.org/

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44.

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

DCMI (2014) The Dublin Core Metadata Initiative. Dublin Core Metadata Initiative
Limited. http://dublincore.org. Accessed 24 October 2014

IANA (2014) Internet Assigned Numbers Authority. http://www.iana.org. Accessed
24 October 2014

ICANN (2014) Internet Corporation for Assigned Names and Numbers. http://www.icann.org.
Accessed 24 October 2014

OASIS (2014) OASIS: Advancing open standards for the global information society.
http://www.oasis-open.org. OASIS. Accessed 24 October 2014

OASIS (2014) The Cover Pages. http://xml.coverpages.org. OASIS.
Accessed 24 October 2014

OASIS (2014) XML.org. http://www.xml.org. Accessed 24 October 2014

ISO (2014) International Organization for Standardization. http://www.iso.org.
Accessed 24 October 2014

WSG (2014) WSG website. http://webstandardsgroup.org. Web Standards Group.
Accessed 24 October 2014

IWA (2014) The International Webmasters Association website. International Webmasters
Association. http://www.iwanet.org. Accessed 24 October 2014

WIPA (2014) The Web Industry Professionals Association website. Web Industry
Professionals Association Incorporated. http://www.wipa.org.au.
Accessed 24 October 2014

ODRL Initiative (2014) ODRL website. Open Digital Rights Language Initiative.
http://odrl.net. Accessed 24 October 2014

W3C (2014) World Wide Web Consortium. http://www.w3.o0rg. Accessed 24 October 2014

W3C (2014) News Archive. World Wide Web Consortium. http://www.w3.org/News/.
Accessed 24 October 2014

W3C (2014) W3DevCampus. World Wide Web Consortium. http://www.w3devcampus . com.
Accessed 24 October 2014

OMG (2014) Internationalization & Unicode Conference. Object Management Group.
http://www.unicodeconference.org. Accessed 24 October 2014

IETF (2014) IETF Meetings. The Internet Engineering Task Force.
http://www.ietf.org/meeting/. Accessed 24 October 2014

DCMI (2014) International Conference on Dublin Core and Metadata Initiatives. Dublin
Core Metadata Initiative. http://dcevents.dublincore.org/. Accessed 24 October 2014

ACM (2014) Calendar. Association for Computing Machinery.
http://www.acm.org/calendar-of-events. Accessed 24 October 2014

Régis J, Morrison A, Touré H (2010) Standards make the world accessible for all - 41st
World Standards Day. International Organization for Standardization.
http://www.iso.org/iso/wsd_message 2010.pdf. Accessed 24 October 2014

Carsonified (2014) The Future of Web Apps Conference. Carsonified.
http://futureofwebapps.com. Accessed 24 October 2014

31

http://dublincore.org/
http://www.iana.org/
http://www.icann.org/
http://www.oasis-open.org/
http://xml.coverpages.org/
http://www.xml.org/
http://www.iso.org/
http://webstandardsgroup.org/
http://www.iwanet.org/
http://www.wipa.org.au/
http://odrl.net/
http://www.w3.org/
http://www.w3.org/News/
http://www.w3devcampus.com/
http://www.unicodeconference.org/
http://www.ietf.org/meeting/
http://dcevents.dublincore.org/
http://www.acm.org/calendar-of-events
http://www.iso.org/iso/wsd_message_2010.pdf
http://futureofwebapps.com/

CHAPTER 1

32

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

INTRODUCTION TO WEB STANDARDS

Lux M (2014) SemanticMetadata.net. Mathias Lux. http://www.semanticmetadata.net.
Accessed 24 October 2014

W3C (2014) Weekly newsletter. World Wide Web Consortium.
http://www.w3.org/News/Public/. Accessed 24 October 2014

W3C (2014) W3C News (Atom new feed). World Wide Web Consortium.
http://www.w3.o0rg/News/atom.xml. Accessed 24 October 2014

W3C (2014) W3C News (RSS new feed). World Wide Web Consortium.
http://www.w3.0rg/News/news.rss. Accessed 24 October 2014

Unicode (2014) The Unicode Blog (news feed). Unicode Consortium.
http://unicode-inc.blogspot.com/feeds/posts/default?alt=rss.
Accessed 24 October 2014

DCMI (2014) News feed of the Dublin Core Metadata Initiative. Dublin Core Metadata
Initiative. http://dublincore.org/news.rss. Accessed 24 October 2014

DCMI (2014) DCMI Publications. Dublin Core Metadata Initiative.
http://dcpapers.dublincore.org/. Accessed 24 October 2014

Dardailler D (2010) W3C Process Flow. In: W3C: An Open Platform for Web
Standardisation. Future Internet Conference - Standardization Workshop.
World Wide Web Consortium. http://www.w3.0rg/2010/12/dd-w3c.html#(7).
Accessed 24 October 2014

W3C (2014) All Standards and Drafts. World Wide Web Consortium.
http://www.w3.0rg/TR/. Accessed 24 October 2014

Bradner S (1996) The Internet Standards Process - Revision 3. The Internet Engineering
Task Force. http://tools.ietf.org/html/rfc2026. Accessed 24 October 2014

IETF (2008) RFC overview. The Internet Engineering Task Force.
http://www.rfc-editor.org/overview.html. Accessed 3 May 2011

TMC (2013) Drafts. In: The microformats wiki. The Microformats Community.
http://microformats.org/wiki/Main_Page. Accessed 24 October 2014

Net Apps (2013) Browser Market Share. Net Applications.
http://www.netmarketshare.com/browser-market-share.aspx?qprid=0.
Accessed 21 October 2014

STAT OWL (2014) Web Browser Market Share. STAT OWL.
http://statowl.com/web_browser market share.php. Accessed 21 October 2014

StatCounter (2014) StatCounter Global Stats. StatCounter. http://gs.statcounter.com/.
Accessed 21 October 2014

W3Counter (2014) Global Web Stats. Awio Web Services LLC.
http://www.w3counter.com/globalstats.php. Accessed 21 October 2014

Microsoft Developer Network (2010) Standards Compliance Updates in Internet Explorer 8.
Microsoft Corporation. http://msdn.microsoft.com/library/dd433047(VS.85).aspx.
Accessed 24 October 2014

Microsoft (2010) http://www.beautyoftheweb.com/#/highlights/html5. Microsoft
Corporation. Accessed 31 December 2010

http://www.semanticmetadata.net/
http://www.w3.org/News/Public/
http://www.w3.org/News/atom.xml
http://www.w3.org/News/news.rss
http://unicode-inc.blogspot.com/feeds/posts/default?alt=rss
http://dublincore.org/news.rss
http://dcpapers.dublincore.org/
https://www.w3.org/2010/12/dd-w3c.html#(7)
http://www.w3.org/TR/
http://tools.ietf.org/html/rfc2026
http://microformats.org/wiki/Main_Page
http://www.netmarketshare.com/browser-market-share.aspx?qprid=0
http://statowl.com/web_browser_market_share.php
http://gs.statcounter.com/
http://www.w3counter.com/globalstats.php
http://msdn.microsoft.com/library/dd433047(VS.85).aspx

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.
80.

81.

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

Scholz F et al (2014) Gecko. Mozilla Developer Network.
https://developer.mozilla.org/en/Gecko. Accessed 24 October 2014

KDE Webmasters (2014) KDE 3.5.6 Changelog. KDE eWV.
http://www.kde.org/announcements/changelogs/changelog3 5 5to3_5 6.php.
Accessed 24 October 2014

Apple (2014) Safari features. Apple Inc. http://www.apple.com/safari/.
Accessed 24 October 2014

W3C (2014) Current members. World Wide Web Consortium.
http://www.w3.org/Consortium/Member/List. Accessed 24 October 2014

Opera Software (2012) Web specifications support in Opera products. Opera Software ASA.
http://www.opera.com/docs/specs/productspecs/. Accessed 24 October 2014

Quint V (ed) (2012) Amaya. W3C's editor/browser. World Wide Web Consortium.
http://www.w3.0rg/Amaya/. Accessed 24 October 2014

Baron LD (2006) Layout Engine Visual Tests (reftest). Mozilla Corporation.
http://mxr.mozilla.org/mozilla-central/source/layout/tools/reftest/README. txt.
Accessed 24 October 2014

Shepherd E (ed) (2014) Mochitest. Mozilla Developer Network.
https://developer.mozilla.org/en/Mochitest. Accessed 24 October 2014

W3C (2014) Testing area. World Wide Web Consortium. http://w3c-test.org/html/.
Accessed 2 October 2014

Bos B (ed) (2010) Official W3C Test Suites. World Wide Web Consortium.
http://www.w3.0rg/Style/CSS/Test/. Accessed 24 October 2014

Andersen W, Hazael-Massieux D (eds) (2010) Mobile Tests. World Wide Web Consortium.
http://www.w3.0rg/2005/MWI/Tests/. Accessed 10 February 2011

Flon PD (ed) (2010) MathML Test Suite. World Wide Web Consortium.
http://www.w3.0org/Math/testsuite/. Accessed 24 October 2014

W3C (2010) SVG test suites. World Wide Web Consortium.
http://www.w3.0rg/Graphics/SVG/WG/wiki/Test Suite Overview. Accessed 24 October 2014

Ishida R (ed) (2010) Internationalization tests. World Wide Web Consortium.
http://www.w3.0rg/International/tests/. Accessed 24 October 2014

Le Hégaret P (2010) How do we test a Web browser? World Wide Web Consortium.
http://www.w3.0rg/0A/2010/09/how_do_we_test_a_web_browser o.html.
Accessed 24 October 2014

Leenheer N (2013) HTMLS5 Test. How well does your browser support HTML5?
http://html5test.com/. Accessed 22 October 2014

Verou L (2014) The CSS3 Test. http://css3test.com. Accessed 22 October 2014

Fahrner T (1998) The Acid1 test. World Wide Web Consortium, the National Insititute of
Standards and Technology, Case Western Reserve University.
http://www.w3.0rg/Style/CSS/Test/CSS1/current/test5526¢.htm. Accessed 24
October 2014

Hickson I (2005) The Acid2 test. Web Standards Project. http://acid2.acidtests.org.
Accessed 24 October 2014

33

https://developer.mozilla.org/en/Gecko
http://www.kde.org/announcements/changelogs/changelog3_5_5to3_5_6.php
http://www.apple.com/safari/
http://www.w3.org/Consortium/Member/List
http://www.opera.com/docs/specs/productspecs/
http://www.w3.org/Amaya/
http://mxr.mozilla.org/mozilla-central/source/layout/tools/reftest/README.txt
https://developer.mozilla.org/en/Mochitest
http://w3c-test.org/html/
http://www.w3.org/Style/CSS/Test/
http://www.w3.org/2005/MWI/Tests/
http://www.w3.org/Math/testsuite/
http://www.w3.org/Graphics/SVG/WG/wiki/Test_Suite_Overview
http://www.w3.org/International/tests/
http://www.w3.org/QA/2010/09/how_do_we_test_a_web_browser_o.html
http://html5test.com/
http://css3test.com/
http://www.w3.org/Style/CSS/Test/CSS1/current/test5526c.htm
http://acid2.acidtests.org/

CHAPTER 1

34

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

INTRODUCTION TO WEB STANDARDS

Hickson I (2008) The Acid 3 test. Web Standards Project. http://acid3.acidtests.org.
Accessed 24 October 2014

Apple (2010) Safari - Learn about the features available in Safari. Apple Inc.
http://www.apple.com/safari/features.html. Accessed 23 September 2010

Scott (2009) Bolt Browser gets Updated to Version 1.6 - Brings New Features! Smartphone
Blogs Network. http://blackberrysync.com/2009/12/bolt-browser-gets-updated-to-
version-1-6-brings-new-features/. Accessed 24 October 2014

Ryan P (2009) Linux garden gets a new GNOME with version 2.28. Ars Technica.
http://arstechnica.com/open-source/news/2009/09/1inux-garden-gets-a-new-
gnome-with-version-228.ars. Accessed 24 October 2014

Laforge A (2010) Google Chrome Releases: Stable Channel Update. Google Inc.
http://googlechromereleases.blogspot.com/2010/01/stable-channel-update 25.html.
Accessed 24 October 2014

Opera Software (2009) Turbocharge your Web experience with Opera 10. Opera Software ASA.
http://www.opera.com/press/releases/2009/09/01/. Accessed 23 September 2010

Engebo HL (2009) Opera Mobile 9.7 with Opera Turbo. Opera Software ASA.
http://my.opera.com/operamobile/blog/2009/03/26/0opera-mobile-9-7-beta-for-
windows-mobile. Accessed 23 September 2010

Van Kesteren A, Hunt L (eds) (2013) Selectors API Level 1. W3C Recommendation. World
Wide Web Consortium. http://www.w3.org/TR/selectors-api/. Accessed 24 October 2014

Pasche S (2010) BrowserTests. Cross-browser automated tests. Google Inc.
http://code.google.com/p/browsertests/wiki/StartPage. Accessed 24 October 2014

Simon L et al (2014) Browserscope. http://www.browserscope.org.
Accessed 24 October 2014

Fahrner T (2002) Geocrawler.com - mozilla-layout - NG layout and 5.0 Navigator. An
e-mail of Todd Fahrner archived by archive.com. Open Source Development Network.
http://web.archive.org/web/20030212115103/http://www.geocrawler.com/
archives/list-name.mbox/123/1998/7/0/1037920/. Accessed 24 October 2014

Ishida R (2010) Serving HTML & XHTML. ‘Standards’ vs ‘Quirks’ modes. World Wide
Web Consortium. http://www.w3.org/International/articles/serving-xhtml/.
Accessed 24 October 2014

Ishida R (2010) XHTML test document for Standards Mode. In: Serving

HTML & XHTML. ‘Standards’ vs ‘Quirks’ modes. World Wide Web Consortium.
http://www.w3.0rg/International/articles/serving-xhtml/standards.html.
Accessed 24 October 2014

Ishida R (2010) XHTML test document for Quirks Mode. In: Serving

HTML & XHTML. ‘Standards’ vs ‘Quirks’ modes. World Wide Web Consortium.
http://www.w3.org/International/articles/serving-xhtml/quirks.html.
Accessed 24 October 2014

Lie HW, Bos B (2008) Formatting model. In: Cascading Style Sheets, level 1. W3C
Recommendation. http://www.w3.0rg/TR/REC-CSS1/#formatting-model. World Wide
Web Consortium. Accessed 24 October 2014

http://acid3.acidtests.org/
http://blackberrysync.com/2009/12/bolt-browser-gets-updated-to-version-1-6-brings-new-features/
http://blackberrysync.com/2009/12/bolt-browser-gets-updated-to-version-1-6-brings-new-features/
http://arstechnica.com/open-source/news/2009/09/linux-garden-gets-a-new-gnome-with-version-228.ars
http://arstechnica.com/open-source/news/2009/09/linux-garden-gets-a-new-gnome-with-version-228.ars
http://googlechromereleases.blogspot.com/2010/01/stable-channel-update_25.html
http://www.opera.com/press/releases/2009/09/01/
http://my.opera.com/operamobile/blog/2009/03/26/opera-mobile-9-7-beta-for-windows-mobile
http://my.opera.com/operamobile/blog/2009/03/26/opera-mobile-9-7-beta-for-windows-mobile
http://www.w3.org/TR/selectors-api/
http://code.google.com/p/browsertests/wiki/StartPage
http://www.browserscope.org/
http://web.archive.org/web/20030212115103/http://www.geocrawler.com/archives/list-name.mbox/123/1998/7/0/1037920/
http://web.archive.org/web/20030212115103/http://www.geocrawler.com/archives/list-name.mbox/123/1998/7/0/1037920/
http://www.w3.org/International/articles/serving-xhtml/
http://www.w3.org/International/articles/serving-xhtml/standards.html
http://www.w3.org/TR/REC-CSS1/#formatting-model

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

CHAPTER 1 © INTRODUCTION TO WEB STANDARDS

Bowman D (2005) Douglas Bowman declares his love to CSS ... Vorsprung durch
Webstandards. http://www.vorsprungdurchwebstandards.de/interviews/
fallinginlovewithcss/douglas-bowman/. Accessed 24 October 2014

Bos B, Celik T, Hickson I, Lie HW (2009) CSS 2.1 Box model. In: Cascading Style Sheets
Level 2 Revision 1 (CSS 2.1) Specification, W3C Candidate Recommendation. World Wide
Web Consortium. http://www.w3.0rg/TR/CSS2/box.html. Accessed 24 October 2014

Bos B (2007) CSS basic box model. World Wide Web Consortium.
http://www.w3.0rg/TR/css3-box/. Accessed 24 October 2014

Gertner M (2008) Is Web Standardization Obsolete? Just Browsing.
http://browsing.justdiscourse.com/2008/01/22/is-web-standardization-obsolete/.
Accessed 9 September 2010

Zeldman J, Marcotte E (2009) 99.9% of websites are obsolete. In: Designing with Web
standards, 3" edn. New Riders, Berkeley

Alexa (2011) Alexa Top 500 Global Sites. Alexa Internet, Inc.
http://www.alexa.com/topsites. Accessed 14 March 2011

Anderson E, DeBolt V, Featherstone D, Gunther L, Jacobs DR, Jensen-Inman L, Mills C,
Schmitt C, Sims G, Walter A (2010) InterACT With Web Standards - A Holistic Approach to
Web Design. New Riders, Berkeley

Zeldman J, Marcotte E (2009) Core forking can be hazardous to your site’s long-term
health. In: Designing with Web standards, 3" edn. New Riders

Herman I, Corlosquet S, Clark L (2010) Combine the Web of Data and the Web of
Documents (RDFa and Drupal 7). Proceedings of the International Semantic Web
Conference 2010, 8 November 2010, Shanghai.
http://www.w3.0rg/2010/Talks/RDFa-Drupal-Tutorial/. Accessed 24 October 2014

Sparkle Media (2010) Publishing Flash Animations to HTML format. Sparkle Media
Systems. http://www.flashkeeper.com/publishhtml.htm. Accessed 12 January 2011

Adobe Labs (2011) Convert Adobe Flash FLA files into HTML and reach more devices.
Adobe Systems Incorporated. http://labs.adobe.com/technologies/wallaby/.
Accessed 22 June 2011

Celik T (2010) HTML5 Now: A Step-by-Step Video Tutorial for Getting Started Today.
New Riders Publishing, Berkeley

Berners-Lee T (1996) Technology Review, July 1996.
http://en.wikiquote.org/wiki/Tim_Berners-Lee. Accessed 24 October 2014

Burstein CD (2011) Viewable with Any Browser: Campaign. Cari D. Burstein.
http://www.anybrowser.org/campaign/. Accessed 24 October 2014

Kyrnin J (2006) Browser Specific Web Designs - Why Should You Care. The New York
Times Company. http://webdesign.about.com/od/browsers/a/aa111797.htm. Accessed
24 October 2014

Allsopp J (2009) It doesn’t have to look the same in every browser. In: Developing with
Web standards. New Riders, Berkeley

Zeldman J (2010) Gentle persuasion. In: Designing with Web standards.
New Riders, Berkeley

35

http://www.vorsprungdurchwebstandards.de/interviews/fallinginlovewithcss/douglas-bowman/
http://www.vorsprungdurchwebstandards.de/interviews/fallinginlovewithcss/douglas-bowman/
http://www.w3.org/TR/CSS2/box.html
http://www.w3.org/TR/css3-box/
http://www.alexa.com/topsites
http://www.w3.org/2010/Talks/RDFa-Drupal-Tutorial/
http://labs.adobe.com/technologies/wallaby/
https://en.wikiquote.org/wiki/Tim_Berners-Lee
http://www.anybrowser.org/campaign/
http://webdesign.about.com/od/browsers/a/aa111797.htm

CHAPTER 1

36

114.

115.

116.

117.

118.

119.

120.

121.

INTRODUCTION TO WEB STANDARDS

Gustafson A (2008) Beyond DOCTYPE: Web Standards, Forward Compatibility, and IE8.
A List Apart Magazine. http://www.alistapart.com/articles/beyonddoctype.
Accessed 24 October 2014

Microsoft Developer Network (2010) Standards by Default: What Does It Mean? Microsoft
Corporation. http://msdn.microsoft.com/en-us/library/cc817575.aspx.
Accessed 24 October 2014

Shankland S (2009) Microsoft actively urges IE 6 users to upgrade. CNET News.
http://news.cnet.com/8301-30685_3-10406468-264.html. Accessed 24 October 2014

Microsoft (2014) The Internet Explorer 6 Countdown. Microsoft Corporation.
http://ie6countdown.com. Accessed 24 October 2014

Protalinski E (2010) Google to send Internet Explorer 6 users packing come March.
Ars Technica. http://arstechnica.com/microsoft/news/2010/01/google-to-send-
internet-explorer-6-users-packing-come-march.ars. Accessed 24 October 2014

Ates F, Irish P, Sexton A (2014) Modernizr: the feature detection library for
HTML5/CSS3. Faruk Ates, Paul Irish, and Alex Sexton. http://www.modernizr.com.
Accessed 24 October 2014

Gimson R, Finkelstein SR, Maes S, Suryanarayana L (eds) (2003) Device Independence
Principles. World Wide Web Consortium. http://www.w3.0rg/TR/di-princ/. Accessed
24 October 2014

Leavitt MO, Shneiderman B, Bailey RW, Barnum C, Bosley], Chaparro B, Dumas J, Ivory
MY, John B, Miller-Jacobs H, Koyani SJ, Lewis JR, Page S, Ramey J, Redish J, Scholtz],
Wigginton S, Wolfson CA, Wood LE, Zimmerman D (eds) (2006) Research-based Web
Design & Usability Guidelines. Department of Health & Human Services (HHS),

U.S. Government. http://guidelines.usability.gov/. Accessed 24 October 2014

http://www.alistapart.com/articles/beyonddoctype
http://msdn.microsoft.com/en-us/library/cc817575.aspx
http://news.cnet.com/8301-30685_3-10406468-264.html
http://ie6countdown.com/
http://arstechnica.com/microsoft/news/2010/01/google-to-send-internet-explorer-6-users-packing-come-march.ars
http://arstechnica.com/microsoft/news/2010/01/google-to-send-internet-explorer-6-users-packing-come-march.ars
http://www.modernizr.com/
http://www.w3.org/TR/di-princ/
http://guidelines.usability.gov/

CHAPTER 2

Internationalization

Web documents are published in all languages of the world, using a variety of character repertoires and features such
as text direction. Several technologies support multilingual websites. To display characters correctly on websites, a
character encoding that supports the required characters should be used to encode the markup files. The character
encoding should be properly declared in the document header, and the documents served with proper server settings.
Capable of representing any characters and ideographs of all natural languages, both ancient and modern, Unicode
can be considered as the ultimate character encoding. To use Unicode, you need to understand the byte-order

marks which provide information about the ordering of individually addressable subcomponents of this multibyte
character encoding. Special characters and symbols can be written in various ways from entity sets and escape codes
to hexadecimal notation.

In this chapter, you will learn how to ensure correct character rendering on web sites, and use the same markup
structures for different language versions of multilingual sites. While the many characters are supported by more than
one character encoding system, Unicode should always be used unless you have a very good reason not to do so. Most
characters can be typed in directly into the markup, but there are some exceptions too. You will also learn the proper
application of character entities and whitespace characters to add special characters to web sites, such as invisible,
unprintable control characters.

The Importance of Character Encoding

Until the mid-1990s, computers mainly supported the characters of the English alphabet only (partly because of the
American dominance on the computer market), and the need for international characters has been satisfied through
hardware code pages, such as CP852 or CP1252, supported by the then-used operating systems (for example, DOS,
Windows 3.1, and Windows 95). The proper display of Central-European characters, for example, depended on the
hardware configuration, the operating system, and the settings of the operating system. A few years later, with the
introduction of the Web, such limitations were no longer acceptable. In 1997, HTML 4.0 added advanced support for
international characters.

The American Standard Code for Information Interchange (ASCII) has been the most widely supported character
encoding scheme, which stores 128 characters on 7 bits. Additional characters have been provided by 8-bit character sets,
such as the ISO/IEC 8859 series of ASCII-based standard character encodings (informally referred to as Latin-1). They were
first published in 1987 and supported most Western European languages and partly supported some other languages.

Most modern character encoding systems are based on ASCII; however, they support many more characters.

If anything other than the most basic Latin characters is needed, many characters on your web site will be
incorrect unless an appropriate character encoding is specified. These standards define not only the identification of
each character and the associated numeric value (codepoint'), but also the way this value is represented in the bits of
the file to be encoded.

!Codepoints are code positions that can be any of the numerical values that form the codespace of a character encoding.

37

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 = INTERNATIONALIZATION

If the character encoding is declared properly, browsers can use the appropriate encoding to render web
documents correctly, including all special characters. Browsers usually have an automatic character encoding
recognition feature as well, which is activated if the character encoding declaration is missing. Based on the setting
and features of the file, the browser might identify the character encoding being used. Users can also select an
encoding scheme manually in most browsers which is not needed if all server and document settings are correct.

As an example, let us assume that we want to publish Christmas greetings in several languages on a web page,
as in Table 2-1.

Table 2-1. Christmas Greetings in Different Languages

Language Greetings
Albanian Gézuar Krishtlindjet e Vitin e Ri
Arabic ‘C?d Il oo 1dasdla 5 Cd oJ 1decsp UG-‘@“’
(Ajmel altehani bemonasebt almilad wa helol alseneh aljedidah)
Bulgarian Yecrura Konena! (Cestita Koleda!)
Dutch Prettige kerstdagen en een Gelukkig Nieuwjaar!
English Merry Christmas and a Happy New Year!
Finnish Hyvii joulua ja onnellista uutta vuotta
French Joyeux Noél et bonne année
German Frohes Fest und guten Rutsch [ins neue Jahr]
Hindi T Tl I gRGTh ?‘[WFIT& (Naye sal ki hardik subhkamnaye n)
Hungarian Kellemes karacsonyi tinnepeket és boldog tj évet!
Italian Buon Natale e felice anno nuovo
Persian wild O pedlas @) Galags a3 zolo pl xS

(Sale noe miladi bar tamami marodme jahan mobarak!)
Russian C Poxxaecrsom XpuctoBeiM 1 C HacTymaromum Hoeeiv ['onom

Urdu Sale No Mobarak

Not all character encoding systems can represent such a character variety. Without choosing the right character
encoding system, undesirable characters such as squares (o) or question marks (€) would appear instead of the
correct form of special characters.? Inappropriate character encoding (or incorrect encoding declaration) can cause
additional problems too; for example, users might not be able to search in the text. In web documents that contain
characters beyond the English alphabet and not encoded correctly, there might be legible characters (sharing the
same codepoint in the advanced and the basic character encoding), and meaningless characters throughout the
document. Due to wrong encoding, databases might become inaccessible too.

Not only incorrect or missing encoding information can spoil text readability, but also missing fonts or fonts that
do not support all characters of the language(s) of the site.

2Special characters in English, but basic characters in another language.

38

CHAPTER 2 © INTERNATIONALIZATION

The set of supported characters depends on the character encoding, which is usually one of the following:
e UTF:UTF-8/UTF-16/UTF-32 (Unicode, worldwide)

e ISO standards: 1ISO-8859-1 (Western Europe), ISO-8859-2 (Central Europe), ISO-8859-3
(Southern Europe), ISO-8859-4 (Northern Europe), [SO-8859-5 (Cyrillic), ISO-8859-6-i
(Arabic), ISO-8859-7 (Greek), ISO-8859-8 (Hebrew, visual), ISO-8859-8-i (Hebrew, logical),
1SO-8859-9 (Turkish), ISO-8859-10 (Latin 6), ISO-8859-11 (Latin/Thai), ISO-8859-13 (Latin 7,
Baltic Rim), ISO-8859-14 (Latin 8, Celtic), ISO-8859-15 (Latin 9), ISO-8859-16 (Latin 10), ISO-
2022-jp (Japanese, e-mails), ISO-ir-111 (Cyrillic KOI-8)

e US-ASCII (basic English)

e Windows: Windows-1250 (Central Europe), Windows-1251 (Cyrillic), Windows-1252 (Western
Europe), Windows-1253 (Greek), Windows-1254 (Turkish), Windows-1255 (Hebrew),
Windows-1256 (Arabic), Windows-1257 (Baltic Rim)

e Encodings for eastern languages: EUC-JP (Japanese, Unix), Shift_JIS (Japanese, Win/Mac),
EUC-kr (Korean), gb2312 (Chinese, simplified), gb18030 (Chinese, simplified), big5 (Chinese,
traditional), Big5-HKSCS (Chinese, Hong Kong), tis-620 (Thai)

e Other: koi8-r (Russian), koi8-u (Ukrainian), Macintosh (MacRoman), and so on.

In spite of this wide variety, only the variants of a single character encoding—Unicode—should be used unless
there is a very good reason not to do so.

Unicode

Unicode is a standard for universal character encoding, which is capable of representing all characters of the written
languages of the world [1]. Beyond the characters of natural languages and widely used notations, all historic scripts
of the world are also covered. Unicode provides codes for approximately 137,000 characters covering 122 scripts (even
historic ones such as Egyptian hieroglyphs), including alphabets, ideograph sets, and symbols. Moreover, the Unicode
codespace supports more than a million codepoints. The Unicode Character Code Charts provide quick access to any
characters and their codepoints [2]. These classifications also give an insight into the wonderful richness of languages
and fields supported by Unicode:

e Scripts

e European scripts: Armenian (including ligatures), Coptic (including Coptic in Greek
block), Cypriot syllabary, Cyrillic, Georgian, Glagolitic, Gothic, Greek, Latin (extended,
including ligatures and fullwidth Latin letters), Linear B (with syllabary and ideograms),
Ogham, Old Italic, Phaistos Disc, Runic, and Shavian

e Phonetic symbols: IPA extensions, phonetic extensions, modifier tone letters, spacing
modifier letters, superscripts and subscripts

e Combining diacritics: Combining diacritical marks and combining half marks
e African scripts: Bamum, Egyptian hieroglyphs, Ethiopic, N’Ko, Osmanya, Tifinagh, and Vai

e Middle Eastern scripts: Arabic, Imperial Aramaic, Avestan, Carian, Cuneiform (including
numbers and punctuation, Old Persian, and Ugaritic), Hebrew, Lycian, Lydian, Mandaic,
0Old South Arabian, inscriptional Pahlavi, inscriptional Parthian, Phoenician, Samaritan,
and Syriac

39

CHAPTER 2 = INTERNATIONALIZATION

e Central Asian scripts: Mongolian, Old Turkic, Phags-Pa, and Tibetan

e South Asian scripts: Bengali, Brahmi, Devanagari, Gujarati, Gurmukhi, Kaithi, Kannada,
Kharoshthi, Lepcha, Limbu, Malayalam, Meetei Mayek, Ol Chiki, Oriya, Saurashtra,
Sinhala, Syloti Nagri, Tamil, Telugu, Thaana, and Vedic extensions

e Southeast Asian scripts: Batak, Balinese, Buginese, Cham, Javanese, Kayah Li, Khmer (with
symbols), Lao, Myanmar (extended), New Tai Lue, Rejang, Sundanese, Tai Le, Tai Tham,
Tai Viet, and Thai

e Philippine scripts: Buhid, Hanunoo, Tagalog, and Tagbanwa

e East Asian scripts: Bopomofo (extended), CJK unified ideographs (Han, extended),
CJK compatibility ideographs (with supplement), CJK / KangXi radicals, Hangul
Jamo (extended) and syllables, Hiragana, Katakana (with phonetic extensions, Kana
supplement, and half-width Katakana), Kanbun, Lisu, and Yi (with syllables and radicals)

e American scripts: Cherokee, Deseret, and Unified Canadian Aboriginal Syllabics

e Other scripts: Alphabetic presentation forms, half-width and full-width forms, and ASCII
characters

e Symbols and punctuation

e Punctuation: General punctuation (ASCII punctuation, Latin-1 punctuation, small form
variants), supplemental punctuation (CJK symbols and punctuation, CJK compatibility
forms, full-width ASCII punctuation, and vertical forms)

o Alphanumeric symbols: Letterlike symbols (including Roman symbols), mathematical
alphanumeric symbols, enclosed alphanumerics, enclosed CJK letters and months, CJK
compatibility symbols (including additional squared symbols)

e Numbers and digits: Aegean numbers, Ancient Greek numbers, ASCII digits (including
fullwidth ASCII digits), common Indic number forms, counting Rod numerals, Cuneiform
numbers and punctuation, number forms, Rumi numeral symbols, superscripts, and
subscripts

e Mathematical symbols: Arrows, mathematical alphanumeric symbols, mathematical
operators, and geometric shapes

e Other symbols: Alchemical symbols, ancient symbols, Braille patterns, and currency
symbols, dingbats, emoticons, game symbols, miscellaneous symbols, musical symbols
(including Ancient Greek musical notation and Byzantine musical symbols), transport
and map symbols, and Yijing symbols

e Special characters: Layout controls, invisible operators, tags, and variation selectors

The standard supports three encoding forms (UTF-8, UTF-16, UTF-32) that use a common repertoire of
characters. They support the same data transmission but in 8, 16, or 32 bits per code unit format, respectively (byte,
word, or double word). They can even be transformed into one another. All three encoding forms need a maximum of
4 bytes (32 bits) of data for each character. Depending on the encoding form chosen (UTF-8, UTF-16, or UTE-32), each
character is represented as a sequence of either one to four 8-bit bytes, one or two 16-bit code units, or a single 32-bit
code unit. Since UTF-8 and UTF-16 are variable-width encodings, UTF-8 results in smaller file size for English texts.
However, UTF-8 requires 3 bytes for an Asian character for which UTF-16 requires only 2 bytes. UTF-32 codepoint
calculations can be performed quickly, but all codepoints require 4 bytes (fixed-width encoding).

40

CHAPTER 2 © INTERNATIONALIZATION

For web publishing, UTF-8 is recommended, which provides interoperability and backward compatibility with
US-ASCIP and has further advantageous characteristics [3]. UTF-8 supports internationalized resource identifiers
(IRIs, multilingual web addresses) [4, 5]. UTF-8 uses at least one byte for encoding while UTF-16 uses two, so a UTF-8
encoded file tends to be smaller than a UTF-16 encoded file. UTF-8 is byte oriented, while UTF-16 and UTF-32 are
not; in other words, the byte order should be declared for UTF-16 and UTF-32 files by the byte-order mark (see the
section “The Byte-Order Mark (BOM)”). UTF-8 is better in recovering from errors than the other Unicode flavors.

There are further variants of UTF-16 and UTF-32, depending on the endianness, which is the order of individually
addressable subcomponents within the character set. If the most significant byte is the first byte (lowest address) and
the least significant byte is the last byte (highest address), the file is called big-endian (UTF-16BE, UTF-32BE). If these
bytes are reversed, the file is referred to as little-endian (UTF-16LE, UTF-32LE). Table 2-2 summarizes the differences
between UTF-8 and the variants of UTF-16 and UTF-32.

Table 2-2. Comparison of Unicode Encoding Schemes

Encoding UTF-8 UTF-16 UTF-16BE UTF-16LE UTF-32 UTF-32BE UTF-32LE
Smallest code point 0000 0000 0000 0000 0000 0000 0000
Largest code point 10FFFF 10FFFF 10FFFF 10FFFF 10FFFF 10FFFF 10FFFF
Code unit size 8 bits 16 bits 16 bits 16 bits 32bits 32 bits 32 bits

Byte order Not provided BOM Big-endian Little-endian BOM Big-endian Little-endian
Fewest bytes per 1 2 2 2 4 4 4

character

Most bytes per 4 4 4 4 4 4 4

character

According to the HTMLS5 specification, “authors are encouraged to use UTF-8. Conformance checkers may
advise authors against using legacy encodings [6]. Authoring tools should default to using UTF-8 for newly created
documents [7]”

Characters That Should Be Avoided In the Markup

Some Unicode characters should not be applied in HTML markup and XML documents (see Table 2-3) because of
one or more of the following reasons:

e They are deprecated in the Unicode standard.

e They cannot be supported without additional data.

e They are difficult to handle because they are stateful.*
e They can be handled more efficiently with markup.

e Theyshould be avoided because of the potential conflict they could cause with
equivalent markup.

3All US-ASCII characters use exactly the same bytes in UTF-8 as in US-ASCII; i.e., a UTF-8 file that contains only ASCII
characters is identical to an ASCII file.

4A character represented by a particular value in the text depends on values provided earlier in the text stream, e.g., escape
sequences or bidirectional embedding controls.

41

CHAPTER 2

INTERNATIONALIZATION

Table 2-3. Unicode Characters Not Suitable for Markup [8]

Codepoint(s)

Description

Comment

U+0340..U+0341
U+17A3, U+17D3
U+2028..U+2029

U+202A..U+202E

U+206A..U+206B
U+206C..U+206D
U+206E..U+206F
U+FFF9..U+FFFB
U+FEFF

U+FFFC
U+1D173..U+1D17A

U+E0000..U+E007F

Clones of grave and accent
Obsolete characters for Khmer

Line and paragraph separator

BIDI (bidirectional) embedding controls
(LRE, RLE, LRO, RLO, PDF)

Activate/Inhibit Symmetric swapping
Activate/Inhibit Arabic form shaping
Activate/Inhibit National digit shapes
Interlinear annotation characters

As ZWNBSP

As Byte Order Mark

Object replacement character

Scoping for Musical Notation

Language Tag code points

Deprecated in Unicode.
Deprecated in Unicode.

<xhtml:br />, <xhtml:p></xhtml:p>, or
equivalent should be used instead.

Strongly discouraged in HTML 4.01.

Deprecated in Unicode.

Deprecated in Unicode.

Deprecated in Unicode.

Ruby markup should be used instead.

U+2060 word joiner should be used instead.

Use only at the start of a file, not as part of markup.
Markup should be used instead, e.g., <object>, .

An appropriate markup language should be
used instead.

xhtml:lang or xml:1lang should be used instead.

Formatting Characters Suitable Also for Markup

There are special formatting characters in Unicode that can also be used in markup languages (see Table 2-4).
They affect text and can be applied for markup simultaneously. These formatting characters are interpreted by

rendering engines.

42

CHAPTER 2 © INTERNATIONALIZATION

Table 2-4. The Most Important Formatting Characters That Can Also Be Used for Markup [9]

Codepoint(s) Name or Function Comment

U+00A0 Nonbreakable space Line break control.

U+00AD Soft hyphen Line break control.

U+200B Zero-width space Line break control.

U+200C..U+200D Zero-width join controls (ZW] and ZWNJ) Required for Persian and many Indic scripts.

U+200E..U+200F Implicit directional marks (LRM and RLM) ~ LRM and RLM are allowed.

U+2011 Nonbreaking hyphen Line break control.

U+2044 Fraction slash Alternatively, MathML markup can be used.

U+2060 Word joiner This should be used for word joiner instead of
U+FEFF (ZWNBSP).

U+2061..U+2064 Invisible mathematical operators Mathematical use.

U+2FF0..U+2FFB Ideographic character description Graphic characters (not controls).

U+303E Ideographic variation indicator Graphic character (not a control).

FE0O..FEOF Variation selectors Modify graphic characters.

E0100..E01DF Variation selectors Modify graphic characters.

Special Characters

Certain Unicode characters deserve extended attention because they should be used with caution.

The Byte-Order Mark (BOM)

Unicode files can contain special bytes at the very beginning known as the byte-order mark (BOM). This codepoint is
the U+FEFF (Zero-width non-breaking space, ZWNBSP). As mentioned earlier, the byte order of UTF-16 and UTF-32
encoded files should be declared, and the BOM provides this information.

In UTF-16, the 2 or 4 bytes of characters can be ordered in two ways (little-endian or big-endian—defining the
direction the bytes should be read in). To choose from the two, documents encoded in UTF-16 should always start
with the BOM. In UTF-8, the BOM is optional since there are no alternate byte sequences, but if it is still provided, it
is called the UTF-8 signature. According to the I18N Activity Group at W3C, the byte-order mark should be omitted in
UTEF-8 [10], mainly because it could cause display problems in some browsers. Typically it produces an extra line or
unwanted characters at the top of the page [11]. An advanced text editor or Richard Ishida’s UTF-8 BOM tester [12] can
be used to check the presence of UTF-8 signatures.

Whitespace Characters

Some Unicode characters are (invisible) whitespace characters that have different line-breaking properties,
different ligating properties, and different widths. These characters are used to separate different parts of the
document with line breaks, tabulators, and spaces. They represent horizontal or vertical spaces on web pages and
contribute to the appearance and layout of content blocks or the entire page. Whitespace characters are typically

43

CHAPTER 2 = INTERNATIONALIZATION

not visible but reserve some space when rendered. The list of whitespace characters varies from context to context.
For example, the form feed control character is considered as whitespace in HTML but not in XML. Each markup
language defines those few whitespace characters that can be applied as part of the markup syntax. The XML
specification defines whitespace as a combination of one or more of the following characters: space (U+0020),
carriage return (U+000D), line feed (U+000A), or tab (U+0009). HTML 4.01 also supports the form feed character
(U+000C) which cannot be used in XHTML.

Not all whitespace characters can be typed in from the keyboard, although the most common ones, such as a
blank space (the basic word divider in Western languages) or a single tabulator, can be typed using the spacebar and
the Tab key, respectively. Advanced text editors usually provide inserting options for whitespaces (see the later section
“Development Tools”).

A very bad practice from the 1990s is to provide whitespaces for typography or layout by embedding blank
images, such as 1x1 pixel spacer.gif files, instead of whitespace characters, margins, or paddings. The biggest
disadvantage of this technique is the lack of structure or semantic meaning in the markup. Such images also have
a negative effect on searchability and accessibility (text browsers and screen readers would read aloud “spacer.gif”
repeatedly). Another huge problem with spaceholder images is that even the slightest changes in the markup can
completely destroy the site layout.

NFC Normalization Is Recommended

In Unicode the same text can be provided with different character sequences. The accentuated a (in other words, a),
for example, can be represented either as the pre-composed U+00E1 (Latin small letter a with acute) or as the decomposed
sequence of U+0061 (Latin small letter a) and U+0301 (Combining acute accent).

The Unicode standard supports four normalization forms: NFC, NFD, NFKC, and NFKD where C stands for
composed (precomposed), D for decomposed, and K represents compatibility.

The normalization form is especially important when accents or other diacritics are used in (X)HTML identifiers
or CSS selectors and class names. If such a word is used in precomposed form in the HTML (for example,
<div id="hangsllyos">), butin decomposed form in the CSS (for example, #hangsilyos { color: red; }), then
the selector won’t match the class name. This problem can be avoided by completely eliminating accented characters
in markup attributes and CSS properties, and use standard English characters only, which is the best practice.

W3C recommends NFC normalization—which is supported by advanced text editors by default—on the Web to
improve interoperability [13].

Unicode Should Be Preferred

Web pages should use one character encoding at a time. Different parts of the same document should not be encoded
with different encoding schemes.

UTF-8 character encoding can simplify multilingual sites. Unicode allows more languages to be used on a
single page than any other encoding system, which makes it ideal for content, forms, scripts, and databases. Due
to its powerful features, Unicode should be used wherever possible [14]. Thanks to the increasing popularity
of HTMLS5 templates and best practices, web designers tend to use UTF-8 for all their projects. The global
distribution of UTF-8 eliminates incorrect automatic encoding detection in browsers rendering documents with
special characters.

Using Unicode does not guarantee that texts will be displayed correctly in browsers. Several scripting languages
such as Arabic require additional techniques to ensure the appropriate character sequence of glyphs.

44

CHAPTER 2 © INTERNATIONALIZATION

Declaring Character Encoding for the Markup
Character encoding of web documents can be determined in many ways:
e Using the HTTP header
e Usingin-document declarations
e Using the pragma directive (HTML 4, XHTML, (X)HTMLS5)
e Usingthemeta charset attribute (HTML5)
e Using the XML declaration® (XHTML)

The last three options are used in the markup, but not the first one, which is applied by the web server. Not all
in-document declarations can be used in all markup languages, but the pragma directive can be used in most. Since
browsers retrieve the character encoding declaration to use the right encoding scheme and display the content
correctly, these declarations must correspond to the actual character encoding of the file.

If the different encoding declarations are inconsistent or contradictory, the following precedence rules determine
the encoding to apply:

1. HTTP Content-Type header
Byte-order mark®
XML declaration

The meta element

LA

The 1ink charset attribute

Encoding Declaration in the HTTP Header

The highest precedence declaration sets the character encoding in the HTTP header. Listing 2-1 shows an example.

Listing 2-1. Setting the Character Encoding in the HTTP Header

HTTP/1.1 200 OK
Date: Tue, 02 Aug 2011 14:18:05 GMT
Server: Apache/2.2.3 (Oracle)

Content-Type: text/html; charset=UTF-8
Content-Language: en

These declarations should be consistent with the in-document declarations.

Documents using UTF-16 should be declared as UTF-16 rather than UTF-16BE or UTF-16LE and provide a byte-order
mark in the file.

HTTP headers are used for other purposes too. For more information on the HTTP header, see Chapter 4.

>The character encoding declaration, if provided exclusively using the XML declaration, is ignored by some rendering engines.
%The BOM was added to the hierarchy in the HTMLS5 specification, but this is not implemented in all browsers yet.

45

CHAPTER 2 = INTERNATIONALIZATION

In-Document Declarations

In HTML 4, the pragma directive should be used at the top of the head element in the form shown in Listing 2-2.

Listing 2-2. Declaring the Character Encoding with the Pragma Directive

<meta http-equiv="Content-type" content="text/html;charset=UTF-8">

The previous declaration can be used in HTMLS5 as well, but HTML5 introduced another option, namely the meta
charset attribute (see Listing 2-3). Either of them can be used, but only one at a time. The whole declaration must fit
within the first 512 bytes of the page.

Listing 2-3. HTML5 meta charset

<meta charset="UTF-8">

The encoding declaration of XHTML documents depends on which MIME type they are served with. If they are
served as text/html, the pragma directive in Listing 2-2 can be used at the top of the head element.

XHTML documents served as XML can use the encoding information of the XML declaration (see Listing 2-4)
in the first line of the document (see Chapter 3).
Listing 2-4. Setting the Character Encoding in XML Documents
<?xml version="1.0" encoding="utf-8"?>

The XML declaration is required for all XML documents that use character encoding other than UTF-8 or UTF-16
or when the encoding is missing from the HTTP header (see later in Chapter 3).

Declaring Character Encoding for CSS

Character encoding declarations can usually be omitted in style sheets. The encoding of external CSS files needs to be
declared if and only if there are non-ASCII characters in the file. The best practice is to use characters from the English
alphabet only, or write non-Latin characters in descriptive selector names or other CSS content without accents.

HTTP Header Declarations

CSS encoding can also be declared in the HTTP Content-Type header. For example, if the character encoding is
UTF-8, the HTTP declaration looks like Listing 2-5.

Listing 2-5. Declaring the Character Encoding for CSS (Rarely Used)

Content-Type: text/css; charset=UTF-8
Using an in-document declaration on top of the HTTP declaration can guarantee that the encoding of the
external CSS file can be determined even if the file is moved or used locally (see the next section).

The character encoding declared in the HTTP header should coincide with the one declared in the CSS file, and
the first one has higher precedence.

46

CHAPTER 2 © INTERNATIONALIZATION

In-Document Declarations

Character encoding can be set by the @charset at-rule with the syntax shown in Listing 2-6.

Listing 2-6. Syntax of the @charset At-Rule

@charset "<charset-name>";

Only one @charset rule can be used per CSS file. It should be declared at the very beginning of the file. No
characters should precede the declaration (only BOM if the CSS file is Unicode encoded?).

The charset-name can be one of the character sets defined by IANA [15]. Some encodings have multiple names
in the IANA registry (the one marked as preferred should be used). Listing 2-7 shows a typical example for character
encoding declaration of external CSS files.

Listing 2-7. Setting the Character Encoding of CSS with an At-Rule
@charset "UTF-8";

These rules can be used only in external style sheets. In-document style sheet declarations cannot use
@charset rules.

The HTML 4.01 specification defined a charset attribute to the 1ink element for identifying the character
encoding of the target document. In HTMLS5, however, this attribute is obsolete and should not be used.

Escape Codes, Special Characters, and Symbols

In HTML and XHTML documents, each character can be typed in directly or represented by a character sequence
(also known as a character reference). Two types of character sequences exist: numeric character references and
character entity references.

Assume a document fragment contains an a character with an accent (3). This character can be declared by either
the á or á numeric character references or by the á entity reference in (X)HTML documents
(see the following sections for details). However, the best practice is to type in the 4 character directly in the markup. The
same is true for the copyright sign (© instead of ©), the registered trademark sign (® instead of ®), and so on.

Characters should always be preferred to escape codes unless they are special characters with syntactic meaning
in (X)HTML or XML, or characters that are invisible or ambiguous. In such cases, using entities is mandatory [16]. In
other words, markup characters used in textual content or attribute values must be escaped. For example, when we
demonstrate (X)HTML source code blocks on a web page and want to avoid processing, the < and > characters should
be provided by their entity names (&1t; and 8gt;) in the source code rather than typing them in directly. Analogously,
ifan & character is needed as text within an RSS feed or an RDF file, the & entity should be used instead (see the
“Entity References” section for more information).

Numeric References

Numeric character references identify characters by Universal Character Set or Unicode codepoints in the form &#nnnn;
where nnnn is the codepoint in decimal form. Both HTML and XHTML support hexadecimal references as well. In
HTML, they can be applied in either the &#Xhhhh; or 8txhhhh; form. Since XML is case sensitive, in XHTML they must
be in lowercase (&#xhhhh;) [17]. The nnnn or hhhh can be any number of digits and may include leading zeros.

"External CSS files are usually encoded in US-ASCII.

47

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 = INTERNATIONALIZATION

Wherever possible, type in the characters directly instead of their corresponding numeric references. Usually
there is no reason to insert a single apostrophe in the markup as 8#8217; rather than the ’ character itself. If a
character, such as a Japanese ideograph, cannot be typed in with the keyboard, the corresponding character can
be inserted using advanced software tools or copy-pasted from other applications, codecharts, or web sites via the
clipboard. Note that even advanced text editors display many of these directly inserted characters incorrectly during
development; however, browsers will display them correctly if the character encoding of the containing file has been
set properly and the file served correctly.

Entity References

Character entity references refer to characters by the name of the appropriate entity that has the desired character as
its replacement text in the form &name;.

HTML supports 252 character entities [18]. In XHTML, there are 253 entities (including the 5 predefined entities
of XML 1.0) [19]; however, their application is affected by the way XHTML documents are processed. Keep in mind
that XHTML documents, if served correctly, are processed by XML parsers instead of SGML parsers that interpret
HTML documents. Those characters that have a meaning in XML, such as the less-than sign (<), cause parsing errors
if they are provided directly rather than using entities. There are only four character entities whose processing is
guaranteed in all XML environments: &, >, &1t;, and " (&, >, <, and " respectively). Fortunately, this
short list contains those very important character entities that can be used for syntactic notation (ampersand, greater
than, less than). W3C recommends the use of ampersand characters in href attributes of XHTML documents [20].
Particular attention should be paid to URIs that include parameters. Single ampersand characters in these URIs
should be replaced by the & entity [21].

Although the &apos ; entity (apostrophe, U+0027) is among the five predefined entities of XML, it should not be
used in XHTML [22].

Character references should be eliminated since virtually all characters can be represented directly in Unicode
including, but not limited to, all letters and ideograms of natural languages, accentuated letters, special characters,
mathematical signs, and symbols [23]. Direct character use is easier to interpret, maintain, and modify than numeric
or entity references (see Listing 2-8). Texts filled with character references are more difficult to extend and almost
impossible to search. Many characters cannot be represented by references, which often resulted in incorrect
characters on web pages in the 1990s. For example, the small o with tilde, 6, has been displayed instead of o with the
double acute accent (also known as the Hungarumlaut), 6, which is a different character.

Listing 2-8. Three Versions of the Same Central-European Text with Characters, Numeric, and Entity References

Attekintés</h1>

<p>

A HTML5 a HTML teljes megijuldsa, Gj funkcidkkal felvértezve.
</p>

Á ttekint8#233;s</h1>

<p>

A HTML5 a HTML teljes megújulása, új funkciókkal felv&i233;rtezve.
</p>

Áttekint8eacute;s</h1>

<p>

A HTML5 a HTML teljes megduacute;julása, új funkcidioacute;kkal felvértezve.
</p>

48

CHAPTER 2 © INTERNATIONALIZATION

Checking I18N

Those settings and markup segments that support internationalization can be checked by the W3C Internationalization
Checker [24]. It can determine whether the HTML/XHTML documents contain non-NFC class names and identifiers, the
language settings of pages, and so on. The validator is described in detail in the “Validating [18N” section in Chapter 14.

Summary

In this chapter, you learned the importance of internationalization settings that enable properly displayed special
characters on web sites. You know by now that there is a wide choice of character encoding systems, many of which
have been used for decades but became obsolete in recent years. There is an ultimate variable-width character
encoding, called UTF-8, which is a flavor of Unicode, omits the BOM, and is backward compatible with the once most
widely used encoding scheme, ASCIL.

The next chapter will describe the markup, where most standardization efforts take place. The markup
not only provides the document structure and content but also serves as the basis for accessibility support and
semantic annotations. As you will see, there is a wide choice of markup languages, not just HTMLS5, the latest and
most popular one. You will learn the HTML and XHTML elements and attributes that can be safely applied in a
variety of documents while maintaining standard compliance. The chapter will also demonstrate the benefits of
strict markup.

References

1. The Unicode Consortium (2014) The Unicode Standard: A Technical Introduction.
Unicode, Inc. http://www.unicode.org/standard/principles.html. Accessed
14 October 2014

2. Unicode (2014) Unicode 7.0 Character Code Charts. Unicode Consortium.
http://www.unicode.org/charts/. Accessed 14 October 2014

3. Yergeau F (2003) UTF-8, a transformation format of ISO 10646 [RFC3629]. The Internet
Society. http://www.ietf.org/rfc/rfc3629.txt. Accessed 14 October 2014

4. Duerst M, Suignard M (2005) Internationalized Resource Identifiers (IRIs). The Internet
Society. http://www.ietf.org/rfc/rfc3987. Accessed 14 October 2014

5. Ishida R (2010) An Introduction to Multilingual Web Addresses. World Wide Web
Consortium. http://www.w3.0rg/International/articles/idn-and-iri/.
Accessed 14 October 2014

6. HicksonI (ed) (2010) HTML5 (Edition for Web Authors) revision 1.4439. A vocabulary
and associated APIs for HTML and XHTML. Editor’s Draft. World Wide Web Consortium.
http://dev.w3.org/html5/spec-author-view/semantics.html. Accessed 29 September 2010

7. HicksonI (ed) (2014) HTMLS5 (including next generation additions still in development).
Draft Standard. Apple Computer, Inc., Mozilla Foundation, and Opera Software ASA.
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html.
Accessed 14 October 2014

49

http://www.unicode.org/standard/principles.html
http://www.unicode.org/charts/
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3987
http://www.w3.org/International/articles/idn-and-iri/
http://dev.w3.org/html5/spec-author-view/semantics.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html

CHAPTER 2

50

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

INTERNATIONALIZATION

Diirst M, Freytag A (2013) Characters not suitable for use with markup. In: Unicode in XML
and other Markup Languages. Unicode Technical Report #20. W3C Working Group Note.
World Wide Web Consortium. http://www.w3.org/TR/unicode-xml/#Suitable.

Accessed 14 October 2014

Diirst M, Freytag A (2013) Format Characters Suitable for Use with Markup. In: Unicode in
XML and other Markup Languages. Unicode Technical Report #20. W3C Working Group
Note. World Wide Web Consortium. http://www.w3.org/TR/unicode-xml/#Format.
Accessed 14 October 2014

Ishida R (2013) What do I need to know about the BOM? In: The byte-order mark (BOM)
in HTML. World Wide Web Consortium. http://www.w3.0rg/International/questions/
ga-byte-order-mark#bomhow. Accessed 14 October 2014

Cawkwell D, Ishida R (2013) Display problems caused by the UTF-8 BOM. World Wide
Web Consortium. http://www.w3.org/International/questions/qa-utf8-bom.
Accessed 14 October 2014

Ishida R (2007). UTF-8 BOM tester. Richard Ishida. http://rishida.net/utils/bomtester/.
Accessed 30 September 2010

Ishida R (2010) Normalization in HTML and CSS. World Wide Web Consortium.
http://www.w3.o0rg/International/questions/ga-html-css-normalization.
Accessed 14 October 2014

Ishida R (2014) Use UTF-8, if you can. In: Choosing & applying a character encoding.
World Wide Web Consortium. http://www.w3.o0rg/International/questions/qa-
choosing-encodings#useunicode. Accessed 14 October 2014

Simonsen K et al (2013) Character sets. The Internet Assigned Numbers Authority.
http://www.iana.org/assignments/character-sets. Accessed 30 September 2010

Ishida R (2010) When to use escapes. In: Using character escapes in markup and CSS.
World Wide Web Consortium. http://www.w3.o0rg/International/questions/qa-
escapes#use. Accessed 14 October 2014

Pemberton S et al (2002) Entity references as hex values. In: XHTML 1.0 - The Extensible
HyperText Markup Language (2nd edn). A Reformulation of HTML 4 in XML 1.0. W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/xhtml1/#h-4.12.
Accessed 14 October 2014

Le Hors A, Jacobs I (ed.) (1999) Character entity references in HTML 4. In: HTML 4.01
Specification. W3C Recommendation. World Wide Web Consortium.
http://www.w3.0rg/TR/html4/sgml/entities.html. Accessed 14 October 2014

Pemberton S et al (2002) Entity Sets. In: XHTML 1.0 - The Extensible HyperText Markup
Language (2nd edn). A Reformulation of HTML 4 in XML 1.0. W3C Recommendation.
World Wide Web Consortium. http://www.w3.o0rg/TR/xhtml1/#h-A2. Accessed 14
October 2014

Pemberton S et al (2002) Using Ampersands in Attribute Values (and Elsewhere).

In: XHTML 1.0 - The Extensible HyperText Markup Language (2nd edn). A Reformulation
of HTML 4 in XML 1.0. W3C Recommendation. World Wide Web Consortium.
http://www.w3.0rg/TR/2002/REC-xhtml1-20020801/#C_16. Accessed 14 October 2014

http://www.w3.org/TR/unicode-xml/#Suitable
http://www.w3.org/TR/unicode-xml/#Format
https://www.w3.org/International/questions/qa-byte-order-mark#bomhow
https://www.w3.org/International/questions/qa-byte-order-mark#bomhow
http://www.w3.org/International/questions/qa-utf8-bom
http://www.w3.org/International/questions/qa-html-css-normalization
http://www.w3.org/International/questions/qa-choosing-encodings#useunicode
http://www.w3.org/International/questions/qa-choosing-encodings#useunicode
http://www.iana.org/assignments/character-sets
http://www.w3.org/International/questions/qa-escapes#use
http://www.w3.org/International/questions/qa-escapes#use
http://www.w3.org/TR/xhtml1/#h-4.12
http://www.w3.org/TR/html4/sgml/entities.html
http://www.w3.org/TR/xhtml1/#h-A2
http://www.w3.org/TR/2002/REC-xhtml1-20020801/#C_16

21.

22.

23.

24.

CHAPTER 2 © INTERNATIONALIZATION

Ishida R (2010) By the way. In: Using character escapes in markup and CSS. World Wide
Web Consortium. http://www.w3.0rg/International/questions/qa-escapes#bytheway.
Accessed 14 October 2014

Pemberton S et al (2002) The Named Character Reference '. In: XHTML 1.0 - The
Extensible HyperText Markup Language (2nd edn). A Reformulation of HTML 4 in XML
1.0. W3C Recommendation. World Wide Web Consortium.

http://www.w3.0rg/TR/2002/REC-xhtm11-20020801/#C_16. Accessed 14 October 2014

Ishida R (2010) When not to use escapes. In: Using character escapes in markup and CSS.
World Wide Web Consortium.
http://www.w3.0rg/International/questions/qa-escapesinot. Accessed 14 October 2014

W3C 118N Activity Group (2013) W3C Internationalization Checker. World Wide Web
Consortium. http://qa-dev.w3.o0rg/i18n-checker/. Accessed 14 October 2014

51

http://www.w3.org/International/questions/qa-escapes#bytheway
http://www.w3.org/TR/2002/REC-xhtml1-20020801/#C_16
http://www.w3.org/International/questions/qa-escapes#not
http://qa-dev.w3.org/i18n-checker/

CHAPTER 3

Markup Languages: More
Than HTMLS

Since markup is the essence of web documents, it provides the largest place for standardization efforts. The
popularity of HTML has not decreased since the birth of the Web. Becoming familiar with the versions and variants
of that language and understanding the differences between HTML and XHTML are crucial for understanding the
techniques for changing the document type. The general structure of all web documents follows the same logic.

The latest core version and by far the most popular markup language of the World Wide Web, HTMLS5, introduced
new structuring elements as well as multimedia element annotations that can be used to create rather sophisticated
document structures. By examining well-structured document examples, you will be able to build correct document
structures on your own. To achieve well-structuredness, the block-line and inline-level elements should be
differentiated, which is also important in understanding how to embed elements into each other (element nesting).
You should also know how to use Formal Public Identifiers and Document Type Definitions for creating standard-
compliant documents. The strict rules of XML declarations are vital for XHTML authoring. HTML5 can be used to
create HTML or XHTML documents (HTML5 or XHTMLS5, respectively), and documents that can be interpreted
either as HTML or XHTML (polyglot markup).

In this chapter, you will learn about the most important markup standards in web design, covering the most
advanced markup languages along with mixed-namespace document types. I provide sample HTML and XHTML
documents for the sake of easier understanding. You will understand how to distinguish deprecated elements and
attributes to avoid from the ones that can be used in almost all versions and variants of markup languages. Beyond
HTML, you will learn about the XML-powered mixed-namespace documents that display text-based vector graphics
and mathematical annotations. After reading the chapter, you will be able to apply semantically meaningful markup
elements and attributes, eliminate obsolete markup, and create web documents with correct element nesting and
DOM structure.

Note The detailed description of markup basics is beyond the scope of this book. Several resources are available
for both beginner and intermediate developers such as “Getting started with HTML,” a very short overview written by the
author/editor of HTML specifications, Dave Raggett [1], or “HTML: The Markup Language Reference” by Michael Smith [2].
There are also many books on HTML5 [e.g., 3, 4, 5, 6] and XHTML' but the first HTML5 textbooks were published before
the standardization of HTML5, and often contain incorrect, obsolete, or incomplete descriptions. If you need a short
summary about a particular markup element, the W3C Cheatsheet can be very helpful too [7].

XHTML hand coders can write HTML markup with ease.

53

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

SGML Languages

Standard Generalized Markup Language (SGML) is a markup language family. It has been used since the mid-1980s.
One of the major features of SGML is flexibility.

The most important SGML language for web designers is HTML, which has been the core language of the World
Wide Web from the very beginning.

Caution Despite the similarities in the markup syntax of earlier HTML versions and HTMLS5, the latest version is no
longer based on SGML; however, it is backward-compatible with conventional HTML parsing.

HTML

The idea behind Hypertext Markup Language (HTML) was born at the European Laboratory for High-Energy Physics
(CERN) in Geneva, Switzerland, as early as 1989 [8]. One year later, the World Wide Web project was also started there.
In the beginning, HTML was used to share information between scientists. The major elements of the language were
formed at that time, including headings, paragraphs, and hyperlinks, but the semantics of the first documents were
limited [9]. New elements and multimedia capabilities were added later that caused interoperability problems for
documents used across different platforms.

The relatively simple syntax and vocabulary of the language made rapid and wide distribution possible, but it is
also the reason for invalid markup found in more than 90 percent of HTML documents.

XML Languages

Extensible Markup Language (XML) is a universal format for structured documents and data on the World Wide Web.
Since XML has been extended from SGML, it can be considered as a restricted, machine-readable form of SGML that
removes those features of SGML that might result in loose source code.

In contrast to most computer languages, XML has no fixed, predefined set of tags. With XML, individual markup
formats can be defined. Some of the most well-known and frequently used XML formats and/or XML serializations on
the Web are XML, XHTML, SVG, MathML, RDF, and Atom.

Many markup languages were originally designed for textual content, later followed by other types of information
such as music and video, playlists, vector graphics, and news feeds. The big advantage of XML is that it is strict,
well-defined, and extendible. With XML you can combine multiple markup languages into single profiles, such
as XHTML + MathML + SVG or XHTML + SMIL. The additional vocabularies (elements, attributes, and further
components) of other XML applications can be used through the namespace mechanism declared by the xmlns
attribute. This is one of the major advantages of XHTML over HTML?2.

XHTML

Extensible Hypertext Markup Language (XHTML) is an XML language family that can be used as an alternative

to HTML. XHTML is an application of XML and thus more restrictive than HTML. In contrast to HTML, XHTML
documents must be written without errors; otherwise, rendering engines give error messages instead of rendering the
content. XHTML documents require an XML parser rather than an SGML parser.

HTMLS5 provides additional features through its Application Programming Interfaces (APIs). Before the introduction of HTMLS5,
the XHTML modules and external vocabularies provided the only way to extend the core markup features, which was available
in XHTML documents only.

54

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Documents served with an XML MIME type, such as application/xhtml+xml, are treated as XML documents
by browsers; in other words, they are parsed by an XML processor. Consequently, XML and HTML are processed
differently. In fact, even minor syntactic errors will prevent an XML document from being rendered correctly. In
contrast, the errors of such documents would be ignored in the HTML syntax. A parsing error of XML documents can
easily result in the “Yellow Screen of Death.”

Version Overview

Understanding the major differences and capabilities of the different markup language versions and variants and
analyzing sample documents with minimum content known as skeleton documents is very useful. These documents
can serve as the basis for hand coding from scratch. While indentation is used to provide clear, easy-to-understand
code, tabulators can be omitted to obtain optimal code length. Since all provided documents are valid character by
character on an as-is basis, they can be used to create standards-compliant documents from scratch, and should be
extended with valid markup only to maintain validity. All these documents can be downloaded from the book’s web
page at www. apress.com, as well as from the companion web site of the book at www.masteringhtml5css3.com.

HTML Versions and Variants

This section will highlight the milestones of HTML history. The described HTML versions have made a significant
impact on the evolution of the Web, and were used to form newer standards. Some of these old HTML versions were
used for more than 10 years.

The formal specification of HTML was created in 1992, and this specification has evolved constantly, introducing
new SGML Document Type Definitions. HTML soon became the lingua franca of web publishing. HTML documents
can be created manually in plain-text editors as well as in WYSIWYG environments.®* HTML is not case-sensitive.

HTML 2.0 was created by the HTML Working Group of the Internet Engineering Task Force in 1995 as the RFC
1866 specification [10]. HTML 2.0 was the first standardized form of the core HTML elements. HTML 2.0 was used for
platform-independent hypertext documents [11]. The HTML 2.0 document type is obsolete and considered as historic.

HTML 3.21is the first HTML Recommendation from W3C. HTML 3.2 introduced new elements for tables, applets,
superscripts, subscripts, and text flows around images [12]. HTML 3.2 was backward-compatible with version 2.0.
The code in Listing 3-1 is a fragment of an HTML 3.2 document which demonstrates bad practices.

Listing 3-1. Bad Practices in an Old HTML Document (Just Demonstration, Should Not Be Used)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<title>An HTML 3.2 example</title>
<body bgcolor="#FFF6F0"
text="#000000" link="#C00000">
<h1 align=center>Example header</h1>
<p><img align=left border=0 alt="Example:"
width=102 height=52
src=http://www.example.com/images/author.jpg> <i>The Author</i>
</body>

This is very poor quality code, because some of the attributes are not quoted (for example, width=102 instead of
width="102"), strictly presentational attributes (bgcolor, align) are used that should be written in CSS instead, the
paragraph is not closed (the </p> tag is missing), and so forth.

3Web Quality Assurance relies on hand coding.

55

http://www.apress.com/
http://www.masteringhtml5css3.com/

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Tip Although HTML allows both capitalized and lowercase letters in element and attribute names, it is better to use
lowercase letters, which are allowed in every markup (including XHTML, which is case-sensitive).

HTML 4 was an ISO-conforming version (ISO 8879) and the de facto standard, the “publishing language of
the World Wide Web,” for years [13]. The specification was released in 1997 and revised in 1998. Listing 3-2 shows a
fragment of a typical HTML 4.0 document.

Listing 3-2. A Typical HTML 4 Document (Obsolete)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

<head>

<title>An HTML 4.0 example</title>

</head>

<body>

</body>

</html>

Note the similarity between the structure of this document and the previous one. The core HTML structure is still
the same.

HTML 4 was superseded by HTML 4.01, the most well-known HTML version before HTMLS5, and the primary
markup language of the Web for more than a decade. The HTML 4.01 W3C Recommendation was released in late
1999. The language had three variants: the Strict, the Transitional, and the Frameset [14]. At that time, the best choice
was the Strict flavor, which contained those elements only that had been selected for inclusion in future versions.

The Transitional variant was created to make it easier for web designers to stop using deprecated tags and gave time
to learn writing strict markup without these obsolete tags (hence the name). In the late 1990s, web sites often had a
layout where the menu on the top or left was written in one file and the main content in another (frames), while the
index file was used to control and open these files simultaneously. Such frameset documents are obsolete and should
not be used anymore due to the associated issues. If you accessed a web site with a broken frameset, for example,
missing contents took up the whole window. If a visitor arrived through a direct link to a framed page, the text was
out of context. Search engines could not index frameset documents effectively. There were linking and bookmarking
issues, and further problems such as the Back button did not work in browsers. Frames also reduced the amount of
usable space on a web page and caused problems with printing.

XHTML Versions and Variants

XHTML is a document type family that is the reformulation of HTML in XML rather than SGML. Typical XHTML
file extensions are .html, .htm, .xhtml, .xht, and .xml. XHTML documents usually apply the application/xhtml+xml
Internet media type; however, there are occasional exceptions (see next chapter).

Beyond the core versions of XHTML (Table 3-1), several compounds, extensions, and special profiles are known
(Table 3-2), and further ones can also be defined. The additional mechanisms allow XHTML subsets or supersets.
XHTML 1.1 + MathML 2.0 + SVG 1.1 and XHTML+RDFa documents are typical examples for supersets of XHTML.
Because of the additional (external) element sets, these mixed-namespace documents have a wider variety of markup
elements than plain XHTML documents.

56

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Table 3-1. Core XHTML Versions

Version Descriptive Name Site Status Date

XHTML 1.0 A reformulation of HTML 4 in XML 1.0 www.w3.0rg/TR/xhtml1/ R 1/26/2000
r.8/1/2002

XHTML 1.1 Module-based XHTML www.w3.0rg/TR/xhtml11/ R 5/31/2001
r.10/7/2010

XHTML 2.0 - www.w3.0rg/TR/xhtml2/ WD* 7/26/2006

(XHTML2)

XHTML5 Avocabulary and associated APIs for XHTML www.w3.0rg/TR/html5/ PR 1/22/2008

XHTML 5.1 A vocabulary and associated APIs for HTML www.w3.0rg/TR/html51/ WD 12/17/2012

and XHTML
R: W3C Recommendation PR: Proposed Recommendation WD: W3C Working Draft r: revised

Table 3-2. Special and Mixed-Namespace XHTML Document Types

Version Descriptive Name Status Date
XHTML 1.1 + MathML 2.0 + SVG 1.1 An XHTML + MathML + SVG Profile [15] WD 8/9/2002
XHTML-MP 1.2 XHTML Mobile Profile R® 7/29/2008
XHTML-Print XHTML for Printing R 9/20/2006
XHTML-Print 2" ed. R 11/23/2010
XHTML+RDFa 1.0 RDFa in XHTML [16] R 10/14/2008
XHTML+RDFa 1.1 Support for RDFa via XHTML Modularization [17] R 6/7/2012
XHTML+RDFa 1.1 2" ed. Support for RDFa via XHTML Modularization [18] R 8/22/2013

R: W3C Recommendation =~ WD: W3C Working Draft

XHTML 1.1 + MathML 2.0 + SVG 1.1 documents can be written in any of the compound languages, all of which
have their own document format (XHTML document, MathML document, or SVG document). The selected language
is the host language (see the “XHTML + MathML + SVG” section later in the chapter).

XHTML 1.0

According to the subtitle of its specification released in 2000 (and revised in 2002), XHTML 1.0 is “a reformulation of HTML
4in XML 1.0” [19]. Similar to the three flavors of HTML 4.01, XHTML 1.0 also defines the Strict, Transitional, and Frameset
variants, all of which are the XML serialization of their corresponding predecessors. XHTML 1.0 Strict includes those
elements and attributes only that have not been deprecated in HTML 4.01. Every “missing” element and attribute can be
substituted by CSS styles. Similar to HTML 4.01 Transitional, XHTML 1.0 Transitional also provides the presentational
elements such as center or font that are not allowed in the Strict variant. Listings 3-3 and 3-4 show an example.

“The XHTML2 specification is no longer actively developed, and was last updated in 2010.
SThe specification was standardized by Open Mobile Alliance not W3C.

57

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/xhtml2/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html51/

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Listing 3-3. An Element Deprecated a Long Time Ago Is Still Used in XHTML 1.0 Transitional Documents

<center>
<p>
A paragraph aligned to center.
</p>

</center>

Listing 3-4. The Code of Listing 3-3 Written in XHTML 1.0 Strict and Styled by CSS

.center {
text-align: center;

}

<p class="center">
A paragraph aligned to center.
<p>

XHTML 1.0 also has a Frameset variant, although, as we saw earlier, framesets should not be used anymore.
Listing 3-5 presents an XHTML 1.0 Strict skeleton document.

Listing 3-5. An XHTML 1.0 Strict Skeleton Document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html <
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" «
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Minimal XHTML 1.0 Document</title>
<meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8" />
</head>
<body>
<p>
This is a minimal XHTML 1.0 document.
</p>
</body>
</html

Tip The XHTML 1.0 Strict skeleton document is the best starting point for any kind of XHTML documents, because
this document type contains fundamental markup elements only that have been derived from HTML and are still current
in most markup languages. This markup can also be extended using external vocabularies (which changes the document
type to a mixed-namespace document type). If you update XHTML 1.0 Strict documents to HTML5, minimal changes are
needed (such as removing the DTD and using new elements).

58

[vww allitebooks.cond

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.allitebooks.org

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

XHTML 1.1

Over the years markup language developers realized that there are presentational components in markup languages
that can be handled more efficiently with style sheets. Moreover, web documents developed for mobile devices can use
limited resources more effectively if a subset of selected elements is applied in a document rather than the whole set of
elements. This is the basic idea behind XHTML modularization, and these element subsets are called element modules.

XHTML 1.1, the “module-based XHTML,” contains exclusively those elements that are defined by the
“Modularization of XHTML’ [20]. Elements deprecated in HTML 4 and XHTML 1.0 cannot be used in XHTML 1.1.
The modules of XHTML 1.1 are the following [21]:

Structure Module: body, head, html, title

Text Module: abbr, acronym, address, blockquote, bx, cite, code, dfn, div, em, h1, h2, h3, h4,
hs, h6, kbd, p, pre, q, samp, span, strong, var

Hypertext Module: a

List Module: d1, dt, dd, o1, ul, 11

Object Module: object, param

Presentation Module: b, big, hr, i, small, sub, sup, tt
Edit Module: del, ins

Bi-Directional Text Module: bdo

Forms Module: button, fieldset, form, input, label, legend, select, optgroup, option,
textarea

Table Module: caption, col, colgroup, table, tbody, td, tfoot, th, thead, tr
Image Module: img

Client-Side Image Map Module: area, map

Server-Side Image Map Module: ismap attribute on img

Intrinsic Events Module: event attributes

Metainformation Module: meta

Scripting Module: noscript, script

Stylesheet Module: style element

Style Attribute Module (deprecated): style attribute

Link Module: 1ink

Base Module: base

The description of the previous modules, their elements and attributes, and their minimal content are defined by
the “Modularization of XHTML” [20].
Listing 3-6 shows an XHTML 1.1 skeleton document.

59

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Listing 3-6. An XHTML 1.1 Skeleton Document

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" «
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>
<title>XHTML 1.1 sample document title</title>
<meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8" />
</head>
<body>
<p>
XHTML 1.1 sample document body
</p>
</body>
</html>

XHTML 1.1 can also be used in mixed-namespace documents to support mathematical markup and vector
graphics (see “XTHML+MathML+SVG”).

XHTML 2.0

XHTML 2.0 (also denoted as XHTML2) could have been the next-generation markup language and the successor of
XHTML 1.0 and 1.1. However, it remained on the Working Draft level and never became a Recommendation.

Although XHTML 2.0 reused elements from earlier versions of markup languages, it had backward compatibility
issues. However, web designers familiar with XHTML 1.0 and 1.1 could easily develop XHTML 2.0 documents.

The “Modularization of XHTML’ refers to XHTML 2.0 as not just another markup language but as an XHTML host
language [20]. In XHTML 2.0, there were several updated modules compared to the “Modularization of XHTML.

After the W3C shifted its focus from XHTML 2.0 to HTML5, many features originally introduced in the XHTML 2.0
working draft were assigned to independent working groups to continue their development (RDFa, XForms, XML
Events, etc.).

HTML5

HTMLS5 was initially proposed by individuals from Apple, the Mozilla Foundation, and Opera Software, known as
the Web Hypertext Application Technology Working Group (WHATWG) [22]. Later, the W3C validated the WHATWG
proposal and announced to work on a new HTML specification [23]. WHATWG found XHTML 2.0 too document-
centric and inappropriate for blogs, forums, web stores, and multimedia sites. Their major goal was to create a
platform for dynamic web applications [24].

While its name might be misleading, HTML5 is not just another HTML language. It is the complete reformulation
of former markup languages with new capabilities. HTMLS5 is designed to be backward-compatible with older
browsers, and uses a syntax that is compatible with both HTML and XHTML documents. In HTMLS5, you can use the
well-known text/html media type, or a new media type called text/html-sandboxed, which makes it possible to
interpret a file without giving the content access to the rest of the web site. Because of a new approach that separates
authoring and rendering conformance requirements, deprecated tags are not needed anymore.

All modern browsers released in or after 2012 have good HTML5 support. The HTML5 support of older browsers
can be tested with services such as the “HTMLS5 test” for backward compatibility [25]. For those who want to
contribute to the development of HTMLS5, several tests are available on the W3C testing web page, where current tests
can be reviewed and new tests submitted [26].

60

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

HTMLS5 introduced new structural and multimedia elements for the markup, and Application Programming
Interfaces (APIs) to extend the capabilities of the core specification, and provide the option to develop web
applications. The web applications written in HTMLS5 are accessible and device-independent, and need declarative
programming (much less coding) compared to traditional procedural programming [27], while code reuse is easy.
To use HTMLS5 in its full glory, it is usually used together with other technologies such as CSS3, XML, and JavaScript
libraries.

Listing 3-7 shows an HTML5 skeleton document.

Listing 3-7. An HTMLS5 Skeleton Document

<!DOCTYPE html>
<html>
<head>
<title>Sample HTML5 document</title>
<meta charset="UTF-8" />
</head>
<body>
<header>
<h1>Document sample</h1>
</header>
<section>
<article>
<h2>Article1</h2>
The first article of the document.
</article>
<article>
<h2>Article2</h2>
The second article of the document.
</article>
</section>
<footer>
Copyright © 2015 John Smith. All rights reserved.
</footer>
</body>
</html>

HTML5 Modules

HTMLS5 is modular, providing the option to use extension specifications that define new elements, new attributes, new
attribute values, and new APIs. There are three types of HTML5 modules:

1. Technologies that were originally parts of the HTMLS5 specification, but later moved
to separate specifications: HTML5 Microdata, HTML5 Canvas, Web Messaging, Web
Workers, Web Storage, WebSocket, Server-Sent Events, WebRTC, WebVTT

2. Specifications developed as HTMLS5 extensions: HTML+RDFa, Polyglot Markup, HTML
Editing APIs, Media Capture and Streams, Media Source Extensions

3. Initially standalone specifications that have been adopted by the HTMLS5 specification:
SVG, MathML, WAI-ARIA

61

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

The elements and attributes of external vocabularies such as Scalable Vector Graphics
(SVG) or MathML can be embedded directly into the HTML5 markup. For example, an
SVG image can be embedded between the <svg> and </svg> tags such as in Listing 3-8.

Listing 3-8. Directly Embedded SVG in HTML5

<svg xmlns="http://www.w3.0rg/2000/svg">
<rect stroke="black" fill="blue" x="50px" y="50px" width="300px" height="150px"

stroke-width="2">
</svg>

MathML equations can be embedded similarly. These elements can also be nested for
more complex content [28].

Caution The different HTML5 modules are in various stages of development, and are being standardized
separately (Microdata, Canvas, etc.), including the HTMLS5 core, which has minor revisions in separate specifications
(HTML 5.1, HTML 5.2).

XHTMLS

HTML5 can be written either in HTML syntax (HTML5) or in XML syntax (XHTML5). XHTMLS5 is the XML serialization
of HTML5. In other words, HTML5 and XHTMLS5 share the same vocabulary (set of elements and attributes) defined by
the HTMLS5 specification, but their syntax and parsing rules are different.

HTML5 documents can also be written in a way that they are HTML5 and XHTML5 documents at the same time,
called polyglot markup (overlap language of HTML and XML). A polyglot web document is a valid HTML document
and a well-formed XML document, and produces an identical DOM tree when processed as HTML and when
parsed as XML® [29]. HTML5 and XHTML5 documents are cross-compatible, but XHTMLS5 has a stricter syntax. XML
processing instructions can only be used in XHTML5.

Listing 3-9 shows an XHTMLS5 skeleton document.

Listing 3-9. An XHTMLS5 Skeleton Document

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>An XHTML5 example</title>
<meta charset="UTF-8" />
</head>
<body>
<header>
<h1>Document sample</h1>
</header>

Except for those xml, xmlns, and x1ink attributes for which HTML and XML parsers generate different DOMs, e.g., xml:lang,
xml:space, xml:base, xmlns="", xmlns:x1link="", and x1ink:href.

62

http://www.w3.org/2000/svg
http://www.w3.org/1999/xhtml

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

<section>
<article>
<h2>Article1</h2>
The first article of the document.
</article>
<article>
<h2>Article2</h2>
The second article of the document.
</article>
</section>
<footer>
Copyright © 2015 John Smith. All rights reserved.
</footer>
</body>
</html>

(X)HTML 5.1, (X)HTML 5.2, and Beyond

On December 17, 2012, the W3C published the Candidate Recommendation of HTMLS5 [30], and introduced the first
minor revision of HTML5 under the name HTML 5.1 (and its XML serialization as XHTML 5.1) [31].

This new version added new features for web applications and new elements based on developers’ feedback.
From this version onward, the W3C will separate controversial or unstable parts of the specification into extension
specifications if needed (such as HTML 5.2 on the roadmap). This makes it possible to finalize the core specification
in a relatively short timeframe without affecting quality (the approach of the original editorial team of HTML5 was
proved inefficient and the standardization of HTML5 was progressing too slowly).

Markup Syntaxes

While similar, there are some significant differences between the HTML and the XHTML syntax as described in the
following sections.

The HTML Syntax

The individual markup components are called elements. In HTML, keywords provided in angle brackets called tags
delimit document fragments to which they are applied. Elements should have a starting tag and an ending tag in the
form shown in Listing 3-10.

Listing 3-10. Pseudocode of Starting and Closing Tags
<element_name» element_content </element_name>
The start tag contains the name of the element, surrounded by angle brackets (in the form <element>). Element

features such as appearance, behavior, or functioning are determined by the optional attributes specified on the start
tag (Figure 3-1). They are separated by spaces.

63

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Element

/\
-)

Start tag Content End tag

- IS —- 1(_/H
<h1 id="books"> A heading</h1>

- J
~

Attribute (optional)

Figure 3-1. HTML element structure

To distinguish the end tag from the start tag, the end tag has a slash after the opening angle bracket (in the form
</element>). For example, a simple HTML paragraph looks like Listing 3-11.

Listing 3-11. A Simple Paragraph in HTML

<p>A simple paragraph.</p>

The elements can provide the structure and meaning to web documents through the indication of coherent
sections such as headings, paragraphs, lists, tables, image embeddings, forms, and so on.

The default style sheet of the browser used to render the document determines the default appearance. However,
the default appearance can be arbitrarily overridden by external style sheets as will be discussed later when we look at
Cascading Style Sheets (CSS).

Two special tags in HTML are different from all the others. Comments can be added by the <!-- ... -->tag.
The document type can be defined by the < !DOCTYPE> tag (see the “Document Type Declaration” section later in the
chapter).

The XHTML Syntax and Restrictions

The element and attribute sets of the HTML and XHTML languages largely overlap, and most HTML elements can
be used in the corresponding XHTML 1.0 flavor (HTML 4.01 Transitional elements in XHTML 1.0 Transitional, and
HTML 4.01 Strict elements in XHTML 1.0 Strict). However, some elements introduced in the XHTML specifications can
be applied in XHTML exclusively (compare the elements of the various markup language versions in Table 3-7). The
major difference between earlier HTML and XHTML versions is that XHTML is stricter than HTML and it is extensible
while HTML is not.” The difference between the HTML and XHTML vocabularies completely disappeared with the
introduction of the latest markup versions, HTML5 and XHTMLS5, since HTML5 has exactly the same elements and
attributes as XHTMLS5.

The difference between HTML and XHTML can be demonstrated by the fundamental requirements of XHTML.
In fact, these strict rules point out best practices for superior markup that can also be extended with semantic
annotations, and boosted to the desired level of web accessibility. By applying these rules, you can write web
documents that are backward- and forward-compatible at the same time.

"Up to version 4.01. From HTMLS3, external vocabularies, such as SVG and MathML, can be used in HTML, too, as
you will see later.

64

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Well-formedness

According to well-formedness, a basic concept in XHTML, all elements must be closed and element nesting should be
done in the proper order (Listing 3-12). Overlapping elements are incorrect in XHTML (Listing 3-13).

Listing 3-12. Properly Nested Elements

<p>Part of this <strongsbold text should be <emyitalic as well.</p>

Listing 3-13. Overlapping Elements (Incorrect)

<p>Part of this bold text should be italic as well.</p>

Names Are in Lowercase

Since XML is case-sensitive, all XHTML element and attribute names must be in lowercase.

Required End Tags

In HTML, the end tag of several elements can be omitted, which is not allowed in XHTML (Listings 3-14 and 3-15).

Listing 3-14. Properly Closed Elements

<p>This is the first paragraph.</p>
<p>This is the second one.</p>

Listing 3-15. Unterminated Elements Are Incorrect in XHTML

<p>This is the first paragraph. <p>This is the second one.
All elements that are declared in the DTD as empty elements (meta, 1ink, br, hr, img, input) can be closed either
by an end tag (similar to nonempty elements) or by the shorthand notation; in other words, a space and a slash

character are inserted prior to the end of the declaration, as shown in Listing 3-16.

Listing 3-16. Pseudocode of Element Closing with Shorthand Notation (Self-closing)

<element_name attribi="value1" ... attribn="valuen" />

which provides shorter code. Although the space before the slash is optional, it is preferred because the result is easier
to read (Listing 3-17). Tags without a closing tag are also known as self-closing tags.

Listing 3-17. Terminated Empty Element

In XHTML, all unterminated elements are incorrect, including unterminated empty elements (Listing 3-18).

Listing 3-18. Unterminated Empty Elements Are Incorrect in XHTML

 unterminated elements are incorrect in XHTML <hr>

The script element applies either to the full form (with the end tag) or to the shorthand notation, depending on
the number of parameters and the behavior of the element.

65

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Quoted Attribute Values

All attributes must include values in XHTML. All attribute values must be quoted (Listing 3-19). Unquoted attribute
values are not allowed in XHTML (Listing 3-20).

Listing 3-19. Defining XHTML Attributes Correctly

<input type="checkbox" name="checkbox" id="checkbox" value="True" checked="checked" />

Listing 3-20. Unquoted and Minimized Attributes (Incorrect in XHTML)

<input type=checkbox name=checkbox id=checkbox value=True checked />

No Attribute Minimization

Attribute-value pairs must be written in full (Listing 3-21). Attribute minimization is not supported by XHTML
(Listing 3-22). Attribute names such as compact and checked cannot be used in elements without specifying their
values (Table 3-3).

Listing 3-21. Attributes Should Be Written in Full

<option value="eng" selected="selected">English</option>

Listing 3-22. Minimized Attribute (Incorrect in XHTML)

<option value="eng" selected>English</option>

Table 3-3. Attributes That Can Be Minimized in HTML, but Not in XHTML

Minimized Attribute (HTML) Full Form (HTML/XHTML)
compact compact="compact"
checked checked="checked"
declare declare="declare"
readonly readonly="readonly"
disabled disabled="disabled"
selected selected="selected"
defer defer="defer"

ismap ismap="1ismap"
nohref nohref="nohref"
noshade noshade="noshade"
nowrap nowrap="nowrap"
multiple multiple="multiple"
noresize noresize="noresize"

66

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Whitespace Handling

Leading and trailing whitespace characters are stripped in XHTML. In contrast to HTML, whitespace characters in
XHTML attribute values are normalized to single spaces. According to the XML specification, a single interword
space (#x20) is appended to whitespace character sequences (#x20, #xD, #xA, #x9) [32].

Using Script and Style Elements

While the content type of the script and style HTML elements is character data (CDATA), it is processed character
data (#PCDATA) in XHTML. The script and style elements are defined with #PCDATA content; in other words, < is
handled as the beginning of markup code, while &1t ; is recognized as an entity (Listing 3-23).

Listing 3-23. Unescaped Script Content to Display x<y in XHTML through Javascript

<script type="text/javascript">
<1 [CDATA[
unescaped script content x8lt;y

1

</script>

XML processors recognize these CDATA sections, and display the content rather than processing it as XML. If
there is no script content to unescape, the <! [CDATA[and]]> lines would be omitted, which is identical to the usual
script embedding in HTML. The CDATA sections are represented as nodes in the Document Object Model.

The unescaped script or style contents are not needed in external script files and styles sheet files.

Identifiers

Instead of the name attribute defined in HTML 4, the id attribute should be used in XHTML for identifiers. XHTML
documents must use the id attribute when defining fragment identifiers on the a, applet, form, frame, iframe, img,
and map elements. This ensures the well-structuredness required by XML.

Element Prohibitions

In XHTML, elements cannot be nested arbitrarily. Those who are not familiar with XHTML often commit nesting
errors. The nesting rules should not be confused with overlapping, which is strictly forbidden in XHTML. The nesting
rules of XHTML 1.0 are similar to those of HTML 4.01, but there are some differences. The table element can contain
a direct tr child element in XHTML, which is not allowed in HTML. In such cases, a tbody element is implied in
HTML but not in XHTML. This behavior is important when tbody is used as a CSS selector. Table 3-4 summarizes
those parent-child element relationships that are not allowed in XHTML.

Table 3-4. XHTML Elements with Prohibitions

Element Prohibition(s)

a Cannot contain other a elements

pre Cannot contain img, object, big, small, sub, or sup elements

button Cannot contain input, select, textarea, label, button, form, fieldset, iframe, or isindex elements
label Cannot contain other label elements

form Cannot contain other form elements

67

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Since the additional nesting restrictions are defined by XHTML specifications, some nesting violations are not
recognized by validators in XHTML documents, while such errors can be clearly identified in HTML.

Unlike in HTML, texts cannot be provided directly in the XHTML body without wrapping them in container
elements (such as p). Omitting containers in XHTML results in the “character data is not allowed here” error message
in the W3C Markup Validator (see Chapter 14).

Invalid Characters

Web documents containing non-Latin characters or special characters such as the copyright sign (©) or the registered
trademark sign (®), and older HTML documents, especially the ones from the late 1990s and early 2000s, often contain
character entities. While eliminating most character entities is recommended in HTML, it is mandatory in XHTML.
The best practice is to type in the characters directly in the UTF-8 encoded XHTML markup.

Dashes Are Allowed for Comments Only

In XHTML, double dashes are allowed only at the beginning and end of comments (Listing 3-24).

Listing 3-24. A Comment in XHTML

<!-- Comment -->

Avoid Using Deprecated Elements

While a large set of HTML elements can be used in certain XHTML versions and variants as well, the blackface,
blockquote, embed, layer, noembed, and shadow deprecated elements are not allowed in XHTML 1.0 Strict, only in
XHTML 1.0 Transitional and XHTML 1.0 Frameset. These elements should be replaced by style sheets except embed
and noembed whose contents can be provided with object. (Table 3-5).

Table 3-5. Elements Not Allowed in XHTML 1.0 Strict Must Be Avoided

Element Deprecated in Favor of
applet object

basefont Style sheets

center Style sheets

dir ul

font Style sheets

isindex input element, CGI forms
menu ul,nl

s Style sheets

u Style sheets

In XHTML 1.0 Strict, XHTML 1.1, and XHTMLS5, the ul element should be used instead of the menu element.
XHTML2 introduced the nl element for menus, which is not supported in any other markup language.

68

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

The most arguable elements are i and b that are not deprecated and can be used in every XHTML version
to create italic and bold texts, respectively. However, they are purely presentational elements without structural
meaning. Although most user agents render the appropriate structural elements (em and strong) similarly if not
identically to the i and b basic character formatting elements, em and strong are preferred.

As a general rule, use the XHTML 1.0 Strict elements and attributes only, and if you author XHTMLS5, extend the
markup with the new XHTML5 elements and attributes where needed.

Avoid Deprecated Attributes

Several HTML attributes are deprecated in XHTML in favor of other attributes or style sheets (see Table 3-6).

Table 3-6. Attributes Deprecated in XHTML

Attribute Deprecated in Favor of
alink Style sheets
align Style sheets
background Style sheets
border Style sheets
color Style sheets
compact Style sheets
face Style sheets
height Style sheets
language type attribute
link Style sheets
name id attribute
noshade Style sheets
nowrap Style sheets
size Style sheets
start Style sheets
text Style sheets
type Style sheets
value Style sheets
version DTDs
vlink Style sheets
width® Style sheets

81t is deprecated on certain elements only (e.g., cannot be used on td, but allowed on img).

69

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Data Types

The data types that can be used in element contents and attribute values are defined by DTDs and specifications of
the markup language being used. While many elements and attributes allow most Unicode characters (such as the

p, div, and section elements), there are elements and attributes that have specific restrictions. For example, a link in
the href attribute of an a element must contain a valid URL or file path (Listing 3-25). The width attribute of an img
element should be a value expressed by a number, with or without the unit of a certain type (Listing 3-26). Always
make sure that you use valid attribute values only.

Listing 3-25. Correct and Incorrect URLs in the href Attribute Value

 <!-- correct -->
 <!-- correct --»
 <!-- incorrect (contains an illegal character) -->

Listing 3-26. Correct and Incorrect Width Attribute Values

 <!-- correct -->
 <!-- correct -->
 <!-- incorrect
(not allowed unit) --»

Markup elements and attributes can contain a variety of data types, such as case information, SGML basic data
types, text strings, URISs, colors, lengths, content types, language codes, character encodings, single characters, dates
and times, link types, media descriptors, script data, and style sheet data [33].

The syntax of the core markup element content values and attribute values are derived from SGML tokens such
as the following:

e PCDATA: Parsed Character Data. Mixed content; in other words, an element can contain any
number of character data and/or child elements in arbitrary order.

e CDATA: Character data. A sequence of characters from the document character set and may
include character entities. CDATA attribute values should not contain leading or trailing
whitespace characters. User agents replace character entities with characters, replace carriage
returns and tabs with a single space, and ignore line feeds when interpreting CDATA attribute
values. For script and style elements, CDATA sections are treated as raw text and passed
forward as is. The end tag open delimiter </ is considered as the terminator of the element
content.

e NAME, ID: Identifier tokens that must begin with a letter (A-Z, a-z) and may be followed by
any number of letters, digits (0-9), hyphens (-), underscores (_), colons (:), and periods (.)

e NUMBER: Tokens containing a minimum of one digit (0-9).

The SGML tokens were introduced in the ISO 8879 standard [34], and they determine the allowed values of the
data types to be used in markup attributes such as URLs, text, numbers, and so on. The supported characters in the
markup depend on the data type as some characters are reserved or considered unsafe for a particular data type.

The PCDATA and CDATA data types are used mainly in XML applications and serialization, including XHTML,
RSS, Atom, and so on (Chapter 7). SGML and XML Document Type Definition files also use PCDATA and CDATA for
markup declarations.

70

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Caution

In HTML, <! [CDATA[...]]> is a bogus comment; that is, the sequence of characters is considered as

regular character data. In XHTML, <! [CDATA[...]]> is a character data section; in other words, a sequence of characters
to be displayed rather than processed as XML. Without unescape, these sections would result in a well-formedness error

in XML.

HTMLS5 supports the following data types:

Text: If Unicode encoded, a sequence of Unicode characters that does not contain U+0000
characters, control characters other than space characters, or any permanently undefined
Unicode characters.

String: An arbitrary mixture of text and character references.
Token: A string without space characters.

Browsing-context name: A string that does not start with an underline (_) character and is at
least one character long.

Browsing-context name or keyword: A string that is either a browsing-context name or one of
the following literal strings: _blank, _self, parent, or top.

ID: A string without space characters that is at least one character long.
Name: A string without space characters that is at least one character long.
Hash-name reference: A string that starts with a # character.

Number: Integer, positive integer, non-negative integer, floating-point number, positive
floating-point number, or non-negative floating-point number.

Date and time: A date-time as defined in RFC 3339, with the additional constraints that the
literal letters T'and Z must always be uppercase and that the date + full year is described as
four or more digits representing a number greater than 0.

URL: A valid IRI reference as defined in RFC 3987.
MIME type: A string identifying a valid MIME media type defined by RFC 2046.
Character encoding name: A character encoding a name or alias from the IANA registry.

Meta-charset string: A string with the following parts (in that order): the literal string
text/html;, one or more optional space characters, the literal string charset=, and a
character encoding name (HTMLS5) or the string UTF-8 (XHTMLS5).

Refresh value: Either a non-negative integer or a string containing a non-negative integer, a ;
character, one or more space characters, the string url=, and finally a URL (in this order).

Default-style name: A string.
Media-query list: A media query list as defined in the W3C specification “Media Queries” [35].
Language tag: A language tag as defined in BCP 47 [36].

List of key labels: An ordered set of unique space-separated tokens, each of which is exactly
one Unicode codepoint in length.

71

CHAPTER 3

MARKUP LANGUAGES: MORE THAN HTML5

Dropzone value: An unordered set of unique space-separated tokens, each of which is one of
the values copy, move, or 1ink, or any string with a minimum of three characters, beginning
with the literal string s: (Plain Unicode string) or f: (File items). The default value is copy.

Functionbody: Any JavaScript code that is a FunctionBody production according to ECMA 262.

Coordinates: Rectangle coordinates (four integers), circle coordinates (two integers and a
non-negative integer number), or polygon coordinates (minimum six integers).

Sandbox allow keywords list: An unordered set of unique space-separated tokens that can be
the literal string allow-forms, allow-scripts, allow-top-navigation, or allow-same-origin.

Pattern: A regular expression that is a JavaScript pattern production according to ECMA 262.

E-mail address: Any string that matches the ABNF production 1*(atext / ".") "@"
ldh-str 1*("." ldh-str), where atext is as defined in RFC 5322, and 1dh-str is as
defined in RFC 1034.

Color: A string exactly seven characters long, starting with a # character, followed by six
characters in the range 0-9, a-f, and A-F.

Markup Elements

The various versions and variants of HTML support a different set of elements; in other words, they have different
vocabularies, although there are many common elements and attributes that can be used in many or all markup
languages (see Table 3-7, historic versions not included).

Table 3-7. Overview of Markup Elements

HTML 4.01 XHTML (X)HTML
Element T F § 10T 10F 10S 11 20 5 Meaning
a + o+ + o+ + + + + + Hyperlink anchor
abbr + o+ + + + + + + + Abbreviation
access - - - - - + + - - Accessibility mapping
acronym + o+ + + + + + - - Acronym
action - - - - - - - + - Action
address + o+ + + + + + + + Author information
applet + - - + + - - - - Java applet
area + o+ + + + + + - + Client-side image map
article - - - - - - - - + Logically separate section
aside - - - - - - - - + Additional content section
audio - - - - - - - - + Audio stream
b + o+ + + + + + - + Bold text style
base + + + + + + + - + Document base URI
basefont + - - + + - - - - Base font size

72

(continued)

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Table 3-7. (continued)

HTML 4.01 XHTML (X)HTML
Element T F § 10T 10F 10S 11 20 5 Meaning

bdi - - - - - - - - + Text directionality isolation
bdo + o+ + + + + + - + Writing direction

big + 4+ + + + + + - - Large text style

blockquote + + + + + + + + + Long quotation

body + 4+ + + + + + + + Document body

br + o+ + + + + + + + Line break (“break row”)
button + o+ + + + + + - + Push button

canvas - - - - - - - - + Bitmap canvas

caption + o+ + 4 + + + + + (Table/figure) caption
center + - - + + - - - - Content alignment to center
cite + o+ + + + + + + + Citation

code + o+ + + + + + + + Code fragment

col + o+ + + + + + + + Table column

colgroup + o+ + + + + + + + Table column group

data - - - - - - - - + Machine-readable equivalent
datalist - - - - - - - - + Data list

dd + o+ + o+ + + + + + Definition description

del + o+ + 4 + + + - + Deleted text

delete - - - - - - - + - Delete

dfn + o+ + + + + + + + Definition

di - - - - - - - + - Definition item

dir + - - + + - - - - Directory list

dispatch - - - - - - - + - Dispatch

div + o+ + + + + + + + Generic (block) container

(“division”)

dl + o+ + + + + + + + Definition list

dt + o+ + + + + + + + Definition term

em + o+ + o+ + + + + + Emphasized text style
embed - - - - - - - - + Embedded content
ev:listener - - - - - - - + - Event listener
fieldset + o+ + 4 + + + - + Form control group
figcaption - - - - - - - - + Legend

(continued)

73

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Table 3-7. (continued)

HTML 4.01 XHTML (X)HTML
Element T F § 10T 10F 10S 11 20 5 Meaning

figure - - - - - - - - + Paragraph with embedded content
and caption

font + - -+ + - - - - Font properties (local)

footer - - - - - - - - + (Document or section) footer

form + 4+ + + + + + - + Interactive form

frame -+ - - + - - - - Subwindow (frame)

frameset -+ - - + - - - - Window subdivision

group - - - - - - - + - Element group

h - - - - - - - + - Heading

h1 + o+ + + + + + + + Level 1 heading

h2 + o+ + + + + + + + Level 2 heading

h3 + o+ + + + + + + + Level 3 heading

h4 + o+ + + + + + + + Level 4 heading

h5 + o+ + + + + + + + Level 5 heading

hé + o+ + + + + + + + Level 6 heading

handler - - - - - - - + - Handler definition

head + o+ + o+ + + + + + Document head

header - - - - - - - - + Section header

hr + o+ + o+ + + + - + Horizontal rule

html + o+ + + + + + + + Document root

i + + + + + + + - + Italic text style

iframe + - - + + - - - + Inline frame

img + o+ + + + + + + + Embedded image

input + o+ + o+ + + + + + Form input

ins + o+ + + + + + - + Inserted text

insert - - - - - - - + - Insert

isindex + - - + + - - - - Keyword index that can be
searched by entering keywords

kbd + o+ + o+ + + + + + Text to be entered by the user
(“keyboard”)

keygen - - - - - - - - + Key generator

1 - - - - - - - + - Line of text

(continued)

74

Table 3-7. (continued)

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

HTML 4.01 XHTML (X)HTML

Element T F § 10T 10F 10S 11 20 5 Meaning

label + o+ + o+ + + + + + Form field label

legend + o+ + o+ + + + - + Fieldset legend

1i + o+ + + + + + + + Listitem

link + o+ + + + + + + + Media-independent link

load - - - - - - - + - Load

main - - - - - - - - + Main document content

map + 4+ + + + + + - + Client-side image map

mark - - - - - - - - + Marked text

menu + - - + + - - - - Menu list

message - - - - - - - + - Message

meta + o+ + + + + + + + Generic metadata

meter - - - - - - - - + Scalar measurement

model - - - - - - - + - Model

nav - - - - - - - - + Navigation links section

nl - - - - - - - + - Navigation list

noframes - + - + + - - - - Alternate content for frames

noscript + o+ + o+ + + + - + Alternate content for scripts

object + + + + + + + + + Generic embedded object (Flash,
applet, inline frame)

ol + o+ + + + + + + + Ordered list

optgroup + o+ + + + + + - + Option group

option + o+ + o+ + + + - + Select box item

output - - - - - - - + + Output

p + o+ + 4+ + + + + + Paragraph

param + o+ + + + + + + + Named property value
(“parameter”)

pre + o+ + o+ + + + + + Preformatted text

progress - - - - - - - - + Task progress

q + o+ + + + + + + + Short (inline) quotation

range - - - - - - - + - Range definition

b - - - - - - + + + Ruby base

rbc - - - - - - + + - Ruby base container

(continued)

75

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Table 3-7. (continued)

HTML 4.01 XHTML (X)HTML
Element F S 10T 1.0F 108 11 20 5 Meaning
rebuild - - - - - - + - Rebuild
recalculate - - - - - - + - Recalculate
refresh - - - - - - + - Refresh
repeat - - - - - - + - Repeat
reset - - - - - - + - Reset
revalidate - - - - - - + - Revalidate
Ip - - - - - + + + Ruby parentheses
rt - - - - - + + + Ruby text
rtc - - - - - + + + Ruby text container
Tuby - - - - - + + + Ruby markup
s - - + + - - - + Strike-through text style
samp + + + + + + + + Sample output
script + + + + + + - + Script statements
secret - - - - - - + - Secret input
section - - - - - - + + Document section
select + + + + + + + + Option selector
select1 - - - - - - + - Single select
send - - - - - - + - Send
separator - - - - - - + - Separator
setfocus - - - - - - + - Set focus
setindex - - - - - - + - Setindex
setvalue - - - - - - + - Set value
small + + + + + + - + Small text style
Side comment (HTMLS5)
source - - - - - - - + Media resource
span + + + + + + + + Generic (inline) container
standby - - - - - - + - Message (while loading)
strike - - + + - - - - Strike-through text
strong + + + + + + + + Strong emphasis, importance
style + + + + + + + + Style information
sub + + + + + + + + Subscript
submit - - - - - - + - Submit

76

(continued)

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Table 3-7. (continued)

HTML 4.01 XHTML (X)HTML
Element T F § 10T 10F 10S 11 20 5 Meaning

summary - - - - - - - + - Table summary

sup + o+ + + + + + + + Superscript

switch - - - - - - - + - Selection

table + o+ + + + + + + + Table

tbody + o+ + o+ + + + + + Table body

td + 4+ + + + + + + + Table data cell
template - - - - - - - - + Template

textarea + o+ + + + + + + + Multiline text field
tfoot + o+ + + + + + + + Table footer

th + o+ + + + + + + + Table header cell
thead + o+ + + + + + + + Table header

time - - - - - - - - + Date and/or time
title + 4 + o+ + + + + + Document title

tr + o+ + + + + + + + Table row

track - - - - - - - - + Timed track
trigger - - - - - - - + - Trigger

tt + o+ o+ 4+ + + + - - Teletype (monospace) text style
u + - - + + - - - + Underlined text style
ul + o+ + o+ + + + + + Unordered list
upload - - - - - - - + - File upload

var + o+ + + + + + + + Variable

video - - - - - - - - + Video

wbr - - - - - - - - + Conditional line break

The core markup elements were introduced in the early versions of HTML, and later versions gradually updated
the set of elements. Some elements became obsolete over time, others were deprecated,” removed, or replaced. New
specifications often introduce new elements. There are 70 elements listed in the HTML 3.2 specification [37], 91 in
HTML 4.01 [38], and 108 in HTML5 [39].

There is a large similarity between the elements of the Transitional, Frameset, and Strict flavors of HTML as well
as their XHTML counterparts. XHTML 1.0 Frameset is the XML equivalent of HTML 4.01 Frameset, the document
type that provides the definition of frameset documents, which was a common web feature of the late 1990s. XHTML
1.0 Transitional is the XML equivalent of HTML 4.01 Transitional, the document type that includes the presentational

Prior to HTML5

77

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

elements, such as center and font that are excluded from the Strict variant. XHTML 1.0 Strict is the XML equivalent
of HTML 4.01 Strict, which includes strictly those elements that have not been deprecated.

The XHTML versions and variants provide a different set of elements. There are 89 elements in XHTML 1.0
Transitional, 92 in XHTML 1.0 Frameset, 78 in XHTML 1.0 Strict, 83 in XHTML 1.1, 99 in XHTML 2.0, and 108 in
XHTMLS5 (the same as in HTML5) [40]. The applet, basefont, center, dir, font, isindex, menu, s, strike, and u
elements have been deprecated in XHTML 1.0. Consequently, they can be used in XHTML 1.0 Transitional or XHTML
1.0 Frameset but not in XHTML 1.0 Strict or above. Many web designers did not understand this important fact and
applied the Transitional variant of HTML4 or XHTML 1.0 for more than a decade. A Transitional variant, even in
standard-compliant files, allows obsolete elements deprecated in the specification with the intention to indicate that
these elements will be removed from future markup versions and thus should not be used. In other words, millions of
web sites have used a markup until recently that allowed elements already obsoleted in HTML 4.01!

XHTML 1.0 Strict and XHTML 1.1 have a very similar set of elements. The most important differences are that
XHTML 1.1 introduced the Ruby elements and removed the access element. Prior to XHTML 1.1, the lang attribute
was used (instead of xml:1ang which is preferred today). The name attribute for anchors and client-side maps was
used until XHTML 1.0, which should be replaced by the id attribute from XHTML 1.1. The essence of XHTML 1.1 is
that elements are collected to modules, making it possible to apply subsets of the full element set in environments
with limited resources (for example, mobile devices), known as XHTML modularization (as mentioned earlier in the
chapter).

XHTML 2.0 has several elements that are not found in any other markup language, namely, action, delete, di,
dispatch, ev:1istener, group, h, handler, insert, 1, load, message, model, nl, output, range, rebuild, recalculate,
refresh, repeat, reset, revalidate, secret, section, select1, send, bseparator, setfocus, setindex, setvalue,
standby, submit, summary, switch, trigger, and upload. These elements were introduced in XHTML 2.0 but
discontinued in (X)HTML5. XHTML 2.0 supports some XHTML 1.1 elements too, some of which are also included in
(X)HTMLS5, such as ruby, while others have been excluded, such as rtc. The core elements were derived from earlier
versions.

The latest version of XHTML, XHTML5, has the same set of elements as HTML5, as mentioned earlier. The most
significant extension of markup elements and attributes in the past decade has been realized in (X)HTML5, especially
because of the newly introduced structuring and multimedia elements not supported by any earlier versions.

Block vs. Inline Elements

To provide full control over different document sections, HTML elements are on different levels. Similar to the
character, paragraph, and document formatting levels used in word processors, HTML provides tags with different
scopes. Certain elements, known as inline elements, can be applied both on individual characters and on strings, such
as font features, italic or bold texts, subscripts, and superscripts.’® They are usually placed in paragraphs (p) or divisions
(div) that contain text and/or inline elements. These containers are the block elements that form the basic structure
of web documents. These elements can also be the containers of other block elements. Block-level elements have their
own block margins, width, and height properties that can be set independently from other parts of the document (see
Chapter 5). Block-level elements are usually rendered on a new line. In contrast, inline elements are treated as parts of
the text flow and cannot have margins, cannot have width or height properties, and do break across lines.

In Listing 3-27, the paragraph below the heading begins in a new line, because both h1 and p are block-level
elements. The emphasized text in the paragraph (between and) is rendered continuously and does not
begin in a new line, because em is an inline element. While the div might have margins (set from CSS), the em cannot.

°Obsolete HTML elements used exclusively for character formatting should be substituted by CSS. (These styling elements have
been removed from the Strict variants, and later from all other versions.)

78

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Listing 3-27. Block vs. Inline Elements

<div>

<h1>Attention</h1>

<p>View our special offers now!</p>
</div>

Most HTML elements that can be used within the document body are classified as either block-level elements or
inline elements. There are some elements that can be used in both contexts (such as buttons, objects, and scripts).

Block-Level Elements

The following elements are handled as block-level elements in HTML5: article, aside, blockcode, blockquote, body,
button, canvas, caption, col, colgroup, dd, div, d1, dt, embed, fieldset, figcaption, figure, footer, form, h1, h2,
h3, h4, h5, h6, header, hr, 1i, map, object, ol, output, p, pre, progress, section, table, tbody, textarea, td, tfoot, th,
thead, tr, ul, and video.

Inline Elements

Generally, inline elements can contain text or other inline elements only. They are usually rendered within the current
line. The inline elements of HTML5 are a, abbr, address, area, b, cite, code, del, details, dfn, datalist, em, font, i,
iframe, img, input, ins, kbd, 1abel, legend, 1ink, mark, meter, nav, optgroup, option, g, samp, small, select, source,
span, strong, sub, summary, sup, textarea, tt, u, time, and var.

Elements That Can Be Either Block or Inline Elements

Elements such as button, del, iframe, ins, map, object, and script can be used as either block-level elements or
inline elements. If used as inline elements (e.g., within another inline element or a paragraph), these elements should
not contain any block-level elements.

Attributes

The HTML5 element attributes are summarized in Table 3-8 [41].

79

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Table 3-8. HTMLS5 Attributes

Attribute Element(s) Description Value
abbr th Alternative label for header cell Text
(reference in different context)
accept input Hint for expected file type in file Set of comma-separated
upload controls tokens
accept-charset form Character encodings (form Ordered set of unique space-
submission) separated tokens (ASCII
case-insensitive)
accesskey HTML elements Keyboard shortcut to activate or Ordered set of unique
focus element space-separated tokens
(case-sensitive; one Unicode
codepoint)
action form URL (form submission) URL
alt area, img, input Alternate text for images or input ~ Text
fields
async script Execute script asynchronously Boolean attribute
autocomplete form Prevent autocompletion for form on|off
control(s)
autocomplete input, select, textarea Hint for form autofill Autofill field name and
related tokens
autofocus button, input, keygen, Gives focus to form control Boolean attribute
select, textarea automatically when the page is
loaded
autoplay audio, video Media playback starts Boolean attribute
automatically
border table Indication that the table element Empty string or 1
is used for tabular data, not layout
challenge keygen String to package with the Text
generated and signed public key
charset meta Character encoding declaration Preferred MIME name of an
encoding
charset script Character encoding of external Preferred MIME name of an
script file encoding
checked input Determines whether the controlis Boolean attribute
checked
cite blockquote, del, ins, q Link to quotation source or URL
additional information
class HTML elements Element class Set of space-separated tokens

80

(continued)

Table 3-8. (continued)

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Attribute Element(s) Description Value
cols textarea Maximum number of characters =~ Non-negative integer greater
per line than zero
colspan td, th Number of columns that the cellis Non-negative integer greater
to span than zero
content meta Meta content Text
contenteditable HTML elements Determines whether the element true|false
is editable
controls audio, video Playback controls Boolean attribute
coords area Shape coordinates (image map) List of integers
crossorigin audio, img, link, script, Determines how the element anonymous | use-
video handles crossorigin requests credentials
data object Resource URL URL
datetime del, ins Date and (optionally) time of Date string with optional
modification time
datetime time Time value Date or time string
default track Enable the track if there is no more Boolean attribute
suitable track
defer script Defers script execution Boolean attribute
dir HTML elements Text directionality ltr|rtl|auto"
dirname input, textarea Form field name to send Text
directionality (form submission)
disabled button, fieldset, input, Determines whether the form Boolean attribute
keygen, optgroup, option, control is disabled
select, textarea
download a, area Indicates resource to be Text
downloaded rather than
navigating to it, and declares the
filename
enctype form Encoding type (form submission) application/x-www-form-
urlencoded | multipart/
form-data | text/plain
for label Associates the label with a form ID
control
for output Specifies controls from which the Unordered set of unique

output was calculated

space-separated tokens
(case-sensitive)

"The auto attribute value cannot be used on the bdo element.

(continued)

81

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Table 3-8. (continued)

Attribute Element(s) Description Value
form button, fieldset, input, Associates the control with a form ID
keygen, label, object, element
output, select, textarea
formaction button, input URL to use for form submission URL
formenctype button, input Encoding type to use for form application/x-www-form-
submission urlencoded | multipart/
form-data | text/plain
formmethod button, input HTTP method to use for form GET | POST
submission
formnovalidate button, input Bypass form control validation for Boolean attribute
form submission
formtarget button, input Browsing context for form Browsing context name or
submission keyword
headers td, th Header cells for the cell Unordered set of unique
space-separated tokens
(case-sensitive)
height canvas, embed, iframe, img, Vertical dimension Non-negative integer
input, object, video
hidden HTML elements Hides element Boolean attribute
high meter Low limit of high range Floating-point number
href a, area, link Hyperlink URL URL"?
href base Document base URL URL
hreflang a, area, link Language of the linked resource BCP 47 language tag
http-equiv meta Pragma directive Text
icon command Command icon URL
id HTML elements Element identifier Text
ismap img Determines whether the image isa Boolean attribute
server-side image map
keytype keygen The type of cryptographic keyto ~ Text
generate
kind track The type of text track subtitles | captions |
descriptions | chapters |
metadata
label optgroup, option, track Label Text

"2The href attribute value cannot be empty on link elements.

82

(continued)

Table 3-8. (continued)

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Attribute Element(s) Description Value
lang HTML elements Element language BCP 47 language tag or
empty string
list input List of autocomplete options ID
loop audio, video Determines whether to loop the Boolean attribute
media
low meter High limit of low range Floating point number
manifest html Application cache manifest URL
max input Maximum value Varies
max meter, progress Upper bound of range Floating-point number
maxlength input, textarea Maximum length of value Non-negative integer
media link, source, style Applicable media Media query
mediagroup audio, video Groups media elements that have Text
an implicit MediaController
method form HTTP method to use for form GET | POST
submission
min input Minimum value Varies
min meter Lower bound of range Floating-point number
minlength input, textarea Minimum length Non-negative integer
multiple input, select Whether to allow multiple values ~ Boolean attribute
muted audio, video Whether to mute the media Boolean attribute
resource by default
name button, fieldset, input, Name of form control (form Text
keygen, output, select, submission or form.elements API)
textarea
name form Form name (document.forms API) Text
name iframe, object Name of nested browsing context Browsing context name or
keyword
name map Image map name to reference Text
from the usemap attribute
name meta Metadata name Text
name param Parameter name Text
novalidate form Bypasses form control validation ~ Boolean attribute
for form submission
optimum meter Optimum value in gauge Floating-point number

(continued)

83

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Table 3-8. (continued)

Attribute Element(s) Description Value
pattern input Pattern to be matched by the value Regular expression matching
of the form control the JavaScript pattern
production
placeholder input, textarea Visible label placed within the Text
form control
poster video Poster frame displayed prior to URL
video playback
preload audio, video Buffering hint for media none | metadata|auto
readonly input, textarea Determines whether the valueis ~ Boolean attribute
editable
rel a, area, link Relationship between the Set of space-separated tokens
document containing the
hyperlink and the destination
resource
required input, select, textarea Determines whether the controlis Boolean attribute
required for form submission
reversed ol List with reversed numbering Boolean attribute
TOWS textarea Number of lines to show Non-negative integer greater
than zero
rowspan td, th Number of rows that the cellisto =~ Non-negative integer
span
sandbox iframe Security rules for nested content ~ Unordered set of unique
space-separated tokens
consisting of allow-same-
origin, allow-forms, and
allow-scripts (ASCII case-
insensitive)
spellcheck HTML elements Specifies the need for spellingand true | false
grammar check
scope th Specifies header cell scope row | col | rowgroup |
colgroup
selected option Option selected by default Boolean attribute
shape area Shape type in an image map circle|default|poly|rect
size input, select Control size Non-negative integer greater
than zero
sizes link Icon size for rel="icon" Unordered set of unique

space-separated tokens
(ASCII case-insensitive)

84

(continued)

Table 3-8. (continued)

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Attribute Element(s) Description Value
span col, colgroup Number of columns spanned by ~ Non-negative integer greater
the element than zero
srC audio, embed, iframe, img, = Resource URL URL
input, script, source,
track, video
srcdoc iframe A document source of the inline An iframe srcdoc resource
frame
srclang track Text track language BCP 47 language tag
start ol Ordinal value of the first item Integer
step input Granularity to be matched by the Floating-point number
form control value greater than zero, or any
style HTML elements Styles (formatting and CSS declarations
presentation)
tabindex HTML elements Focus order Integer
target a, area Hyperlink target Browsing context name or
keyword
target base Default browsing context Browsing context name or
(hyperlink navigation, form keyword
submission)
target form Browsing context for form Browsing context name or
submission keyword
title HTML elements Additional visible information Text
title abbr, dfn Reveals abbreviation or definition Text
title input Input field hint Text
title link Link title Text
title link, style Alternate style sheet set name Text
translate HTML elements Determines whether the element yes | no
is to be translated when the page is
localized
type a, area, link Hint for resource type MIME type
type button Button type submit | reset | button
type input Form control type input type keyword
type ol List marker type 1la]Ali|I
type embed, object, script, Resource type MIME type
source, style
(continued)

85

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Table 3-8. (continued)

Attribute Element(s) Description Value
typemustmatch object Determines whether the type Boolean attribute
attribute and the Content-Type
value need to match the resource
usemap img, object Image map to use Hash-name reference
value button, option Value to be used for form Text
submission
value data Machine-readable metadata Text
value input Form control value Varies
value 1i Ordinal value of the list item Integer
value meter, progress Current value of the element Floating point number
value param Parameter value Text
width canvas, embed, iframe, img, Horizontal dimension Non-negative integer
input, object, video
wrap textarea Wrap type of the form control soft | hard

(form submission)

The global attributes and event handlers are described in the following sections by category.

Global Attributes

Table 3-9 summarizes those attributes that can be applied to all HTML5 elements.

Table 3-9. Global HTML5 Attributes

Attribute Value

accesskey List of unique space-separated key labels
class Set of space-separated tokens (class name)
contenteditable true|false|"" | empty

dir ltr|rtl

hidden hidden|"" | empty

id Identifier

lang Language code

spellcheck true|false|"" | empty

style String (style definition)

tabindex Integer

title Normal character data (text)

translate yes |no

86

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

The accesskey, class, dir, id, lang, style, tabindex, and title attributes can also be used in HTML 4.

Event Handlers

The interactivity of web sites is achieved by checking whether an element received focus, a key is pressed, the user
touched the touchscreen, and so forth. When such an event occurs, the script declared as the attribute value of the
event handler attribute is executed. The name of event handlers starts with on and is followed by the name of the
corresponding event (onclick, onkeypress, etc.).

When an HTML or XHTML document is loaded into a web browser, it becomes a Document object. An open
browser window can be represented by the Window object. Some event handlers can be applied not only to markup
elements, but also to the Document or Window objects.

Event handlers can be used as content attributes (markup element attributes and some event handlers on the
Window object, Listing 3-28), Interface Definition Language (IDL) attributes [42] (scripting attributes, common to all
event handlers, Listing 3-29), or both.

Listing 3-28. Content Attributes in the Markup

<div id="stunning" class="decoration"><p>...</p></div>

Listing 3-29. IDL Attributes in Scripting (Sets the Same Value as the class Attribute in Listing 3-28)

document.getElementById('stunning').className="decoration'
The following example demonstrates a simple onclick event handler (Listing 3-30).

Listing 3-30. A Button That Displays the Current Time When the User Clicks on It

<p>Click the button to display the date.</p>
<p><button onclick="displayDate()">What’s the time?</button></p>
<script>
function displayDate() {
document.getElementById("demo").innerHTML = Date();
}
</script>
<p id="demo"></p>

Global Event Handlers

The event handlers that are supported by all HTMLS5 elements (as both event handler content attributes and event
handler IDL attributes) as well as by all Document and Window objects (as event handler IDL attributes) are the
keyboard event handlers, the mouse event handlers, the media event handlers, the form event handlers, and the
document event handlers.

87

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Keyboard Event Handlers

HTML supports three keyboard events: the user pressed down a key, the user is holding down a key, and the user
released a key (see Table 3-10).

Table 3-10. Keyboard Event Handlers

Attribute Runs the Script When...
onkeydown A key is pressed

onkeypress A key is pressed and released
onkeyup Akey is released

Mouse Event Handlers

On Graphical User Interfaces (GUIs), user actions are often triggered by the mouse. The mouse event attributes
described in Table 3-11 apply to all HTML5 elements.

Table 3-11. Mouse Event Handlers

Attribute Runs the Script...

onclick On a single click

ondblclick On a double-click

onmousedown When the mouse button is pressed

onmouseenter When the mouse pointer reaches an area
onmouseleave When the mouse pointer leaves an area
onmousemove When the mouse pointer moves

onmouseout When the mouse pointer moves out of an element
onmouseover When the mouse pointer moves over an element
onmouseup When the mouse button is released

onmousewheel When the mouse wheel is being rotated

onscroll When the scrollbar of an element is being scrolled

88

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Media Event Handlers

Media event handlers can be used to control audio and video playback (see Table 3-12).

Table 3-12. Media Event Attributes

Attribute Runs the Script...

onabort When element loading is aborted

oncanplay When the media data can be started to play with potential buffering

oncanplaythrough When the media data can be played to the end without buffering

oncuechange When the text of the track cue is changed

ondurationchange When the length of the media object is changed

onemptied When the media resource becomes empty

onended When the media object has reached the end

onerror When file loading is unsuccessful

onloadeddata When the media data is loaded

onloadedmetadata When media metadata such as duration is loaded

onloadstart When the browser starts to load the media data

onpause When the media data is paused

onplay When the media data is going to start playing

onplaying When the media data has started playing

onprogress When the browser is fetching the media data

onratechange When the playing rate of the media data has changed

onseeked When the seeking attribute is no longer true and seeking has ended

onseeking When the seeking attribute is true and seeking has begun

onstalled When the media data cannot be fetched

onsuspend When fetching media data has been started but stopped before the entire media file was
fetched

ontimeupdate When the media object changes its playing position

onvolumechange When the media object changes the volume or when volume is set to mute

onwaiting When the media content has stopped playing but is expected to resume

89

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Form Event Handlers

Form event handlers can be used to make forms interactive (see Table 3-13).

Table 3-13. Form Event Handlers

Attribute Runs the Script...

onblur When an element lost focus

oncancel When cancelling a file upload

onchange On element change

onfocus When an element received focus

oninput On user input

oninvalid On invalid user input

onreset When the user clicks on the Reset button of a form
onselect After some text has been selected in an element
onshow When a menu element is shown as a context menu
onsubmit On form submit

ontoggle When the user opens or closes the details element

Window Event Handlers

The window event handlers supported by all Window objects are summarized in Table 3-14.

Table 3-14. Window Event Handlers

Attribute Runs the Script ...

onafterprint After the document is printed
onbeforeprint Before the document is printed
onbeforeonload Before the document is loaded
onhashchange When the anchor of a URL is changed
onmessage When the message is activated
onoffline When the document goes offline
ononline When the document comes online
onpagehide When the window is hidden
onpageshow When the window becomes visible
onpopstate When the window history changes

(continued)

90

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Table 3-14. (continued)

Attribute Runs the Script ...

onresize® When the browser window is resized
onstorage When loading

onunload When the user leaves the web page

The onreadystatechange Event Handler

The only event handler supported exclusively by the Document objects is onreadystatechange, which is triggered
every time the readyState changes which holds the status of the server response to our request.

Clipboard Event Handlers

The clipboard event handlers supported by HTMLS5 [43] are summarized in Table 3-15.

Table 3-15. Clipboard Event Handlers in HTML5

Attribute Runs the Script...

oncopy When the user copies the content of an element
oncut When the user cuts the content of an element
onpaste When the user pastes some content in an element
onbeforecopy When initiating a copy operation

onbeforecut When initiating a cut operation

onbeforepaste When initiating a paste operation

Touch Event Handlers

In HTML5 web applications, you can handle touch events from a mobile device or computer touchscreen by using
touch event handlers on the HTML5 canvas to capture the user’s movements and allow them to draw on the canvas.
Table 3-16 summarizes the touch event handlers supported by HTMLS5 [44].

Table 3-16. Touch Event Handlers

Attribute Runs the Script When...
ontouchcancel A touch point has been disrupted
ontouchend The user removes a touch point from the touch surface, or the touch point physically left the

touch surface
ontouchmove The user moves a touch point along the touch surface

ontouchstart The user places a touch point on the touch surface

3Unlike all the other window event handlers, onresize is a global event handler which is supported by all HTMLS5 elements as
well as all Document and Window objects.

91

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

HTML Document Structure

HTML documents apply a platform- and language-independent interface known as the Document Object Model
(DOM) that makes it possible to refer to and manipulate markup elements as objects [45]. This model provides
dynamic content access and updates as well as document styling for scripts [46]. The DOM can be considered a
mechanism that makes web pages behave like applications [47]. The DOM can be visualized as a tree structure for the
hierarchy of markup elements within a document (Listing 3-31, Figure 3-2).

Listing 3-31. A Well-Structured HTML Document

<!DOCTYPE html>
<html>
<head>
<title>A DOM example</title>
<link rel="stylesheet"
type="text/css"
href="main.css">
</head>
<body>
<p>Paragraph content</p>
</body>
</html>

[<title> l | <link> | [<p> l

rel: "stylesheet"
type: "text/css"

href: "main.css"

Figure 3-2. The DOM tree of Listing 3-31

Improperly closed elements and the missing closing tags destroy the DOM structure, which often has serious
consequences such as disrupted layout or incorrect styling. Thanks to the built-in error-handling feature of web
browsers, many markup errors are corrected on-the-fly, but the intended structure can be presumed only so the
correct web site layout and styling is not guaranteed. Developers should not rely on this error-handling feature!

An HTML document usually consists of a Document Type Declaration (DTD), a Formal Public Identifier (FPI),
and a link associating the document with the appropriate DTD at the very beginning of the file (except HTML5
documents that usually omit the DTD). All HTML documents must have an html root element' that contains the
document head and the document body [48].

“Even if the element was marked optional in the HTML 4.01 specification.

92

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

The document head provides processing information and metadata relating to the whole document. The style
sheets are usually linked here too.

The document body holds the content of the document. This can contain simple text, formatted text, images,
videos, applets, or dynamic content, for example. The most common generic containers are the div elements
(Figure 3-3), while the generic inline container is the span element. Blocks of texts that can be considered paragraphs
should be written as the content of the p element.

| <div id="header"> |

| <div id="nav"> |

<div class="section"> . .
R LR | | <div id="sidebar">

| <div id="footer"> |

Figure 3-3. Typical document structure within the body up to HTML 4.01

In older versions of HTML, the typical web document structure looked like Listing 3-32.

Listing 3-32. The Document Structure Up to HTML 4.01

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/html4/strict.dtd">
<html>
<head>
<title>Sample HTML document structure</title>
</head>
<body>
<div class="section"»
<div class="article"»
<h2>Abstract</h2>
<p>... first paragraph of main content ...</p>
</divy
<div class="article"»
<h2>Overview</h2>
<p>... second paragraph of main content ...</p>
</div>
</div>

93

http://www.w3.org/TR/html4/strict.dtd

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

<div id="footer"»
<p>
Copyright © 2011 John Smith. All rights reserved.
</p>
</div>
</body>
</html>

New Semantic Structuring Elements In HTML5

In HTMLS there are additional, meaningful (semantic) structuring elements (Figure 3-4), so the typical structure of
HTML5 documents is more sophisticated and logical (Listing 3-33).

Listing 3-33. Typical HTML5 Document Structure

<!DOCTYPE html>
<html>
<head>
<title>Sample HTML5 document structure</title>
</head>
<body>
<header>
<h1>Document structure sample</h1>
</header>
<section>
<article>
<h2>Abstract</h2>
<p>This sample document demonstrates the structure of HTML5 documents.</p>
</article»
<articley
<h2>0verview</h2>
<p>
HTML5 adds more semantics to the document stucture. Instead of using general purpose
divisions, it provides meaningful elements.
</p>
</article»
</section>
<footer>
<p>
Copyright © 2015 John Smith. All rights reserved.
</p>
</footer>
</body>
</html>

94

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

| <header> |
| <nav> |
<section>)
e IRl - <aside>
<article>
<article>
<section>
<article>
<article>
| <footer>

Figure 3-4. Document structure in HTML5

The new structuring elements of HTML5 can be summarized as follows:
e article: Articles, blog posts, forum posts, and so on
e aside: Sidebars, such as cross-references to an article
e section: Group of elements (typically with a header and a footer)
e header: The header of a section (usually with a title and maybe a short overview)

e footer: Footer information of the entire page or a part of it (consequently, there might be
more footer tags in a page)

e nav: Navigation elements

While useful, not all these structuring elements can be used on all web pages as they are not always suitable for
the content.

Document Type Declaration

The various markup language versions have different features that should be handled differently. As discussed earlier,
elements of one document type are not always allowed in others so the appropriate rendering strongly relies on the
identification of the document type being used.

The document type must be declared in the top of the document that associates it with a formally defined
specification. The document type declaration can be defined by a Formal Public Identifier (FPI) and the URI of the
so-called Document Type Definition (DTD). These URISs are used for identification, and they are not hyperlinks. This is
a machine-readable way to express “this document is HTML’ or “this document is XHTML.” Most DTD driver files are
provided by the World Wide Web Consortium.

An FPIis a human-readable, descriptive name that identifies the HTML version, while the DTD defines the
location of the . dtd file (machine-readable grammar) on the W3C server (this file specifies the rules the document
type should follow).

95

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

You can see the general syntax of the HTML document type declaration in Listing 3-34. Note that HTMLS5 has a
simplified DOCTYPE, as you will see.

Listing 3-34. General Syntax of Document Type Declaration

<!DOCTYPE root-element PUBLIC "FPI" «
SYSTEM "URI"

The root element is html since it is the element opened first and closed last in HTML files (see “Core Structure
Elements”).
The various versions of HTML use similar syntax (except HTMLS5):

e HTML 2.0 (historical, not used anymore)

<!DOCTYPE html PUBLIC "-//IETF//DTD HTML 2.0//EN">
e HTML 3.2 (historical, not used anymore)

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
e HTML 4.0 Transitional (should not be used)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" «
"http://www.w3.org/TR/REC-html40/1loose.dtd">

e HTML 4.0 Frameset (obsolete, should not be used)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN" «
"-//W3C//DTD HTML 4.0 Frameset//EN">

e HTML 4.0 Strict

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" «
"http://www.w3.0rg/TR/REC-html40/strict.dtd">

e HTML 4.01 Transitional (should not be used)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" «
"http://www.w3.0org/TR/html4/loose.dtd">

e HTML 4.01 Frameset (obsolete, should not be used)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN" «
"http://www.w3.org/TR/html4/frameset.dtd">

e HTML 4.01 Strict

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" «
"http://www.w3.org/TR/html4/strict.dtd">

e HTML4.01+RDFa

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01+RDFa 1.1//EN" «
"http://www.w3.org/MarkUp/DTD/html401-rdfa11-1.dtd">

96

http://www.w3.org/TR/REC-html40/loose.dtd
http://www.w3.org/TR/REC-html40/strict.dtd
http://www.w3.org/TR/html4/loose.dtd
http://www.w3.org/TR/html4/frameset.dtd
http://www.w3.org/TR/html4/strict.dtd
http://www.w3.org/MarkUp/DTD/html401-rdfa11-1.dtd

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

e HTMLS5 (DOCTYPE without DTD). Unlike the former, SGML-based HTML versions, HTML5
requires neither an FPI nor a reference to a DTD. The document type can be defined by the
DOCTYPE declaration <!DOCTYPE html>. Since the text/html serialization of HTMLS5 is not
SGML-based, HTMLS5 applies the document type for mode selection only.

<!DOCTYPE HTML>

Core Structure Elements

HTML documents must contain one element that is the parent of all other elements, that is, the html element.
This element is called the root element. It has been standardized in the HTML 2.0 specification, along with the other
two fundamental structure elements, head and body.

The html root element contains all other elements within the document; in other words, the <html> starting tag
and the </html> closing tag delimit the document.

The HTML Head

The head section of HTML documents is the container of processing information and metadata. The document head
should be provided between the <head> and </head> tags and precede the document body.
Common elements in the HTML head (with one example for each) include the following:

e titleelement (required)
<title>Document title</title>
e metaelements! (optional, one or more)

<meta name="keywords" content="web standardization, valid XHTML5, valid <
XHTML+RDFa, tableless CSS layout, W3C validation, WCAG, semantic web, «
accessibility">

e link elements (optional, one or more)

<link rel="stylesheet" type="text/css" media="all" href="alt2.css" «
title="Alternate style 2">

e script elements (optional, one or more)

<script type="text/javascript" src="js/loading.js"></script>

The document body is the main content of a web document. It might contain both block and inline elements
including, but not limited to, plain and formatted text, lists, headers, paragraphs, divisions, images, objects, forms,
and tables. However, there are prohibitions that determine which elements can be included in other elements.

Element Nesting

To maintain a logical document structure, certain HTML elements cannot contain all types of data or elements.

For example, elements of a table such as table body and data cells should be within a table; the ins element cannot
contain block-level content when it is used as an inline element, and so on. Some elements cannot contain other
enclosed elements of the same kind (e.g., form, label). The content delimited by some elements can be a certain type
of data only (e.g., script, style).

15See Chapter 7 for details.

97

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Some nesting rules require the knowledge of content categories. In HTMLS5, the following kinds of content are

differentiated [49]:

98

Metadata content. Content that determines the presentation or behavior of the page content, sets
up the relationship of the document with other documents, or provides additional information.

base, command, link, meta, noscript, script, style, title

Flow content: Most elements that are used in the document and application body are referred
to as flow content.

a, abbr, address, area (as a descendant of a map element), article, aside, audio, b, bdi, bdo,
blockquote, br, button, canvas, cite, code, datalist, del, details, dfn, div, d1, em, embed,
fieldset, figure, footer, form, h1, h2, h3, h4, h5, h6, header, hr, i, iframe, img, input, ins,
kbd, keygen, 1label, map, mark, math, meter, nav, noscript, object, ol, output, p, pre, progress,
g, ruby, s, samp, script, section, select, small, span, strong, style (only with the scoped
attribute), sub, sup, svg, table, textarea, time, u, ul, var, video, wbr, and textual content

Sectioning content: Content that defines the scope of headings and footers.
article, aside, nav, section

Heading content: Content that defines the header of a section.

h1, h2, h3, h4, h5, h6

Phrasing content: The document text and elements in paragraphs.

a (only with phrasing content), abbr, area (as a descendant of a map element), audio, b, bdi,

bdo, bz, button, canvas, cite, codedatalist, del (only with phrasing content), dfn, em, embed, i,
iframe, img, input, ins (only with phrasing content), kbd, keygen, 1abel, map (only with phrasing
content), mark, math, meter, noscript, object, output, progress, g, ruby, s, samp, script, select,
small, span, strong, sub, sup, svg, textarea, time, u, var, video, wbr, and textual content

Embedded content: Imported content from external resources or content from another
vocabulary directly embedded into the document.

audio, canvas, embed, iframe, img, math, object, svg, video
Interactive content. Content dedicated to user interaction.

a, audio (only with the controls attribute), button, details, embed, iframe, img (only with the
usemap attribute), input (only if the type attribute is not set to hidden), keygen, label, object
(only with the usemap attribute), select, textarea, video (only with the controls attribute)

The most common elements can be nested as follows:

html
e head
o title (required)
e script, style
e CDATA
e base, meta, link (empty)
e object
e param(empty)

o flow

CHAPTER 3

e body
e ins,del
e flow
e block
e inline
e script
e CDATA
e block
e address
e inline
e article
e header
e sectioning (article, aside, section)
e aside

e header
e sectioning (article, aside, section)
e audio, video

e blockquote

e block
e script
e CDATA
o div
o flow
e dl
o dt
e inline
e dd
o flow
o fieldset
e #PCDATA
e inline
e flow
e legend
e inline

MARKUP LANGUAGES: MORE THAN HTML5

99

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

e form

e block except an enclosed form

e script
e CDATA
e footer
e flow

e h1,h2,h3,h4,h5, h6, p

e inline
e #PCDATA
e 2

¢ inline except an enclosed a element
e button

o flowexcepta, button, fieldset, form, input, label,
select, textarea

e abbr, b, bdo, cite, code, dfn, em, i, kbd, q, samp, small,
span, strong, sub, sup, var

e inline
e img, br (empty)
e input (empty)
e label
e label except enclosed label
e map

e area(empty)

e block
e object
e param(empty)
o flow
e script
e CDATA
e select
e optgroup
e option
e option

e textarea

100

CHAPTER 3

header

e h1,h2,h3,h4,hs5, h6

e form

e img

o flow

hr (empty)
nav

e header

e sectioning (article, aside, section)
noscript

o flow

pre

e inline except img, object, small, sub, sup
section

e header

e h1,h2,h3,h4, h5, h6

e form

o img

o flow
e footer

e sectioning (article, aside, section)

table
e caption
e inline

e colgroup
e col (empty)

e col (empty)
e thead, tbody

o tr
e thtd
o flow
ul, ol
o 1i
o flow

MARKUP LANGUAGES: MORE THAN HTML5

101

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

After understanding the difference between block-level and inline elements, nesting elements is rather
straightforward. Empty elements, such as img or hr, cannot contain other elements. Some elements have restrictions
for not only the elements but also the data types they can contain (for example, the contents of script elements should
be CDATA). Violating the nesting order of element might destroy the DOM structure of the document, which makes
rendering unreliable, risking the usability of the web page.

XHTML Document Structure

The XHTML document structure is similar to that of HTML in the sense that there is a head and a body section;
however, additional restrictions apply. Since XHTML documents are XML documents too, they begin with an XML
declaration not used in HTML. Moreover, there are several document types and profiles to choose from, depending
on the main purpose of the web document being developed.

XML Declaration

The very first line in XHTML documents is usually the optional XML prolog (its application is recommended by W3C).
The most commonly used XML declaration looks like Listing 3-35.

Listing 3-35. The Most Commonly Used XML Declaration

<?xml version="1.0" encoding="utf-8"?>

No content is allowed to precede the declaration (except an optional byte-order mark).

Although the character encoding is optional only, it is highly recommended.

Some older browsers cannot handle the XML declaration. The web page might become invisible, or the content
is rendered incorrectly (for example, in IE6). IE7 ignores the XML prolog and correctly renders the content in Strict
Mode (discussed in Chapterl).

Document Type Declaration

Similar to HTML, XHTML documents use a specific Document Type Declaration' to identify the document type
being used.

Generally, transforming an XHTML document into another XHTML document type is straightforward, especially
if XHTML 1.0 Strict elements are applied exclusively. However, care must be taken when performing such an action
because of the differences between the specifications. XHTML 1.0 Transitional is much more permissive, and
changing the Document Type Declaration of these documents will probably result in numerous errors that should be
justified in order to obtain a valid XHTML 1.0 Strict, XHTML 1.1, or XHTML5 document.

Until recently, the former Quality Assurance Interest Group at W3C maintained a “Recommended list of Doctype
declarations” [50]. Although it could be considered a “list of valid DTDs,” it is not complete; thus, some of the newer
as well as the most up-to-date document types are not listed (e.g., Mobile Profile, XHTML 2.0, or XHTML+RDFa),
partly because the group closed in 2007. This does not affect the application or validation of such documents. Some
non-W3C validators use the previous list and give warnings if a document type missing from that list is used. Such
warnings are often false positives, because some of the less used, earlier DTDs as well as the latest document types are
not on the list.

1Prior to XHTML5

102

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

The document type declaration of the various XHTML versions and variants are summarized here:

General documents

e XHTML Basic 1.0

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN" «
"http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">

) XHTML Basic 1.1

<IDOCTYPE html PUBLIC «
"-//W3C//DTD XHTML Basic 1.1//EN" «
"http://www.w3.0rg/TR/xhtml-basic/xhtml-basic11.dtd">

e XHTML 1.0 Transitional (should not be used)

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" «
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

e XHTML 1.0 Frameset (obsolete, should not be used)

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" «
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-frameset.dtd">

e XHTML 1.0 Strict

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" «
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

. XHTML Basic 1.1

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN" «
"http://www.w3.0rg/TR/xhtml-basic/xhtml-basic11.dtd">

e XHTMLI1.1

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" «
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml11.dtd">

e XHTML 2.0 (XHTML2) (suspended [51])

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 2.0//EN" «
"http://www.w3.org/MarkUp/DTD/xhtml2.dtd">

e XHTML5 (DOCTYPE without DTD)
<IDOCTYPE html>
e XHTML+RDFa

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN" «
"http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">

103

http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd
http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd
http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/MarkUp/DTD/xhtml2.dtd
http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTML5
e Mobile profiles
e XHTML Mobile Profile 1.0

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN" «
"http://www.wapforum.org/DTD/xhtml-mobile10.dtd">

e XHTML Mobile Profile 1.1

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.1//EN" «
"http://www.openmobilealliance.org/tech/DTD/xhtml-mobile11.dtd">

e XHTML Mobile Profile 1.2

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.2//EN" «
"http://www.openmobilealliance.org/tech/DTD/xhtml-mobile12.dtd">

e Mathematical markup

e MathML1.01

<!DOCTYPE math SYSTEM «
"http://www.w3.org/Math/DTD/mathml1/mathml.dtd">

. MathML 2.0

<!DOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN" «
"http://www.w3.0org/TR/MathML2/dtd/mathml2.dtd">

e MathML 3.0

<!DOCTYPE math PUBLIC "-//W3C//DTD MathML 3.0//EN" «
"http://www.w3.org/Math/DTD/mathml3/mathml3.dtd">

e Graphical markup
e SVG1.0

<IDOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" «
"http://www.w3.0rg/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

e SVG1.1Tiny

<IDOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1 Tiny//EN" «
"http://www.w3.org/Graphics/SVG/1.1/DTD/svgl1-tiny.dtd">

. SVG 1.1 Basic

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1 Basic//EN" «
"http://www.w3.org/Graphics/SVG/1.1/DTD/svgl1-basic.dtd">

e SVG1.1Full

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" «
"http://www.w3.o0rg/Graphics/SVG/1.1/DTD/svgll.dtd">

104

http://www.wapforum.org/DTD/xhtml-mobile10.dtd
http://www.openmobilealliance.org/tech/DTD/xhtml-mobile11.dtd
http://www.openmobilealliance.org/tech/DTD/xhtml-mobile12.dtd
http://www.w3.org/Math/DTD/mathml1/mathml.dtd
http://www.w3.org/TR/MathML2/dtd/mathml2.dtd
http://www.w3.org/Math/DTD/mathml3/mathml3.dtd
http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-tiny.dtd
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-basic.dtd
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

e Compound documents

e XHTML + MathML + SVG (using XHTML as the host)

<!DOCTYPE html PUBLIC +
"-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" «
"http://www.w3.0rg/2002/04/xhtml-math-svg/xhtml-math-svg.dtd">

e XHTML + MathML + SVG (using SVG as the host)

<!DOCTYPE svg:svg PUBLIC «
"-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" «
"http://www.w3.0rg/2002/04/xhtml-math-svg/xhtml-math-svg.dtd">

The Root Element in XHTML

All XML documents must contain a root element with the syntax shown in Listing 3-36.

Listing 3-36. Pseudocode of the Root Element

<root>
<child>
<subchild>..... </subchild>
</child>
</rooty

The root element of XHTML documents must be html. Furthermore, the root element must contain an xmlns
attribute to associate it with the XHTML namespace. The namespace URILis http://www.w3.0rg/1999/xhtml for
XHTML 1.0 and XHTML5 documents, and itis http://www.w3.0rg/2002/06/xhtml2/ for XHTML2 documents.
Consequently, the most common XHTML namespace declaration looks like Listing 3-37.

Listing 3-37. The Most Common XHTML Namespace Declaration
<html xmlns="http://vwww.w3.0rg/1999/xhtml">

The natural language of XML documents is often identified by the xml: lang attribute of the html element'”
(Listing 3-38).

Listing 3-38. Common Use of the xml : 1ang Attribute

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">

Namespace Declaration

Beyond the default XHTML namespace http://www.w3.0rg/1999/xhtml, additional ones can also be used in XHTML
documents. For example, XHTML+RDFa documents often use additional namespaces for semantic markup (for more
details, see Chapter 7). In the example shown in Listing 3-39, the namespace of the FOAF Vocabulary Specification
follows the default namespace declaration.

7Although it is used frequently, this is just one of the many options to identify the XML document language (see Chapter 4).

105

http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd
http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/2002/06/xhtml2/
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

Listing 3-39. Additional Namespace Declaration

<html version="XHTML+RDFa 1.0" «
xmlns="http://www.w3.0rg/1999/xhtml" xmlns:foaf="http://xmlns.com/foaf/0.1/" +~
xml:lang="en">

In mixed-namespace documents, such as XHTML + MathML + SVG, multiple namespace declarations occur
throughout the document body (unlike the previous ones that are declared in the document head). Listing 3-40 shows

an example.

Listing 3-40. Namespace Declarations in the body of a Compound Document

<l-- ... XHTML content ... -->
<math xmlns="http://www.w3.org/1998/Math/MathML">
<!-- ... MathML notation ... -->
</mathy

<!-- ... XHTML content ... -->
<svg:svg version="1.1" «~
xmlns:svg="https//www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/x1ink">
<!-- ... SVG graphic ... -->
</svg>
<!-- ... XHTML content ... -->

The XHTML Head

The title of XHTML documents can be written exactly the same way as in HTML, that is, between the start and end
tags (Listing 3-41).

Listing 3-41. XHTML Document Title

<title>Title of the sample XHTML document</titles

The meta, 1ink, and script elements can be provided in the document head of XHTML like in HTML
documents. However, in XHTML these elements (along with all other elements) should be closed. These empty
elements apply the XHTML shorthand notation (self-closing) (Listing 3-42).

Listing 3-42. A Self-Closing Link Element in XHTML

<link rel="stylesheet" type="text/css" media="all" href="alt2.css" «
title="Alternative style 2" />

In the following example, the title attribute is used to indicate search engines that show where to locate the
German and Hungarian versions of the original English document (Listing 3-43). The xm1: lang attribute declares the
language of the target documents.

Listing 3-43. Links to Other Language Versions of the Same Document

<head>
<title>The document in English</title>
<link title="Das Dokument auf Deutsch" «~
rel="alternate" «~
href="http://example.com/german/"
xml:lang="de" />

106

http://www.w3.org/1999/xhtml
http://xmlns.com/foaf/0.1/
http://www.w3.org/1998/Math/MathML
http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

<link lang="hu" title="A dokumentum magyarul" «
rel="alternate" «~
xml:lang="hu" «~
href="http://example.com/hungarian/" />

</head>

The character encoding of the page specified as the link target can be declared by the charset attribute.
The media attribute specifies the medium the link applies to. Table 3-17 summarizes the possible values.

Table 3-17. Values of the media Attribute on the 1ink Element

Value Description

screen Computer screens (default)

tty TeleTypes (fixed character width)

tv Televisions and similar devices (low resolution, limited scrollability)
projection Projectors

handheld Mobile devices, smartphones (small screens, limited bandwidth)
print Print preview/printed pages

braille Braille devices

aural Speech synthesizers

all Suitable for all devices

Listing 3-44 shows an example for three different style sheets written for three different media types
(all, handheld, print).

Listing 3-44. CSS Files for Different Media Types

<link rel="stylesheet" type="text/css" media="all" href="main.css" «
title="Default style" />

<link rel="stylesheet" type="text/css" media="handheld" href="mobile.css" «~
title="Styles for mobile devices" />

<link rel="stylesheet" type="text/css" media="print" href="print.css" «~
title="Styles for printing" />

The rel attribute (which stands for relationship) is a space-separated list of one or more values specifying the
relationship between the current page and the target resource (Listing 3-45). Possible values are alternate, appendix,
bookmark, chapter, contents, copyright, glossary, help, index, next, prev, section, stylesheet, and subsection.

Listing 3-45. Application Example for the rel Attribute

<link rel="alternate" type="application/rss+xml" title="New feed of example page" «
href="http://www.example.com/rss.xml" />

<link rel="glossary" title="Glossary" href="glossary/" />

<link rel="copyright" title="Copyright" href="copy/" />

107

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

<link rel="bookmark" title="About" href="about/" />

<link rel="bookmark" title="Services" href="services/" />
<link rel="bookmark" title="Portfolio" href="portfolio/" />
<link rel="bookmark" title="Contact" href="contact/" />

The author of the document can be declared similarly (Listing 3-46).

Listing 3-46. A Link to the Author

<link rel="author"> href="http://www.example.com/" />

The favorites icon (favicon'®), a 16x16 pixel square icon by default, can be determined by the shortcut icon or
icon link (Listing 3-47). The first one is supported in all browsers; however, it is not declared in HTML specifications.
Listing 3-47. A Link to the Web Site Icon

<link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

Although the default image format is ICO, modern browsers support other formats too such as PNG, animated
PNG, JPEG, GIF, animated GIF, and SVG. They can be used in the form shown in Listing 3-48.

Listing 3-48. Link Examples for rel="icon"

<link rel="icon" type="image/vnd.microsoft.icon"> href="http://www.example.com/image.ico" />

<link rel="icon" type="image/png"> href="http://www.example.com/image.pgn" />

<link rel="icon" type="image/gif"> href="http://www.example.com/image.gif" />

Tip Since the attribute value icon was not standardized until HTML5 and browser support varies, it is a common
practice to declare the same icon file with both the shortcut icon and icon attribute values.

The files can also be 32x32, 48x48, or 64x64 pixels in size with 8-, 24-, or 32-bit color depth. However, because
of the different browser support, the preferred format for favicons is the de facto file name and type (favicon.ico)
provided in the root directory of the web site. Note that the larger the resolution and color depth, the longer the
download time. File size should be kept within reasonable limits (see Chapter 9 for more on this).

The rel attribute is often used in other contexts as well. The microformats rel="1icense", rel="nofollow",
and rel="tag", for example, provide various metadata on (X)HTML elements, most commonly on the a element.
Generally they are parts of the document body but are used for specific purposes; thus, they are described later in
Chapter 7.

In the XHTML document head, further attribute values can also be used from namespaces other than the default
XHTML namespace. Listing 3-49 shows an example for that.

Listing 3-49. Linking to an Additional Namespace

<link rel="foaf:primaryTopic" type="application/rdf+xml" title="FOAF" «
href="http://www.example.com/metadata/foaf.rdf" />

$Also known as bookmark icon, URL icon, shortcut icon, or web site icon

108

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

In this case, the FOAF namespace is also required to make the foaf:primaryTopic meaningful. The declaration of
the additional namespace should be provided on the html element, as discussed in the previous section (Listing 3-39).

The XHTML Body

The XHTML document body is similar to the HTML body from the document structuring point of view. However,
XHTML is case-sensitive. Consequently, the JavaScript event handler onload cannot be written with the same camel
case notation onLoad used in HTML. It should be in lowercase (Listing 3-50).

Listing 3-50. Case-Sensitive Event Handler in XHTML

<body onload="function();">

Moving from HTML to XHTML

For over a decade, a common task in web site standardization was to convert HTML documents into XHTML.
However, with the release of a brand new line of HTML, more and more web developers intend to use HTML5, mainly
due to its vocabulary and APIs. This does not mean, however, that HTML syntax must be preferred, because HTML5
documents can be written in XML serialization too (XHTMLS5). There are several reasons to use stricter markup.
Although some changes to be made on HTML documents while upgrading to XHTML are straightforward, there are
significant differences between the two formats in features and behavior that need to be considered. Since XHTML is
the reformulation of HTML 4 as an application of XML, it can be used as an XML-conforming language with all of its
attendant benefits:

e Strict markup: Unlike HTML, XHTML complies with strict conventions. As a result, there are
no missing end tags, overlapping elements, or unnecessary attributes, just pure code. XHTML
is well-formed and easy to write, interpret, and read. Content and styles are separated.

e Easy introduction of new markup: New elements and attributes can be added quite easily
through XHTML modules.

e XML conformance: As such, they are readily viewed, edited, and validated with standard XML
tools.

e DOM choice: Applets and scripts, and other applications can apply either the HTML
Document Object Model or the XML Document Object Model.

e Interoperability: As web markup languages evolve, documents that conform to XHTML
conventions will be more likely to interoperate within different user agents of the future.

Additionally, backward- as well as forward-compatibility can be ensured with appropriate markup.

Specific Markup Languages

Beyond the general-purpose HTML and XHTML markup languages, there are more specific languages such as the
ones that represent vector graphics (SVG), mathematical annotations (MathML), multimedia presentations (SMIL),
or textual information synchronized with other media (TTML [53]). Such languages are used either in a specific
external file or their reserved words are written directly in general-purpose markup. The following sections provide an
overview of SVG and MathML.

109

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

SVG

In contrast to raster graphic formats such as GIF, PNG, or JPEG that have been handled by browsers for years, native
support of vector graphics did not appear until the introduction of HTML5. Although the Vector Markup Language
(VML) and the Precision Graphics Markup Language (PGML) appeared in 1998, they were soon followed by Scalable
Vector Graphics (SVG) in 1999; however, implementers had to wait for a decade.

SVG is an XML-based markup for describing two-dimensional static and dynamic (animated or interactive)
vector graphics [54]. The first version, SVG 1.0, became a W3C Recommendation in 2001, followed by SVG 1.1 in 2003.
Beyond the full version, SVG also has a Tiny specification and a Basic specification optimized for mobile devices [55].
They are described as profiles of SVG 1.1. SVG Tiny 1.2 became a W3C Recommendation in 2008. The full version
of SVG 1.2 has been stalled in the Working Draft stage and dropped in favor of SVG 2.0, which is a completely new
version with advanced support for HTML5, CSS3, and Web Fonts (Chapter 9). Because of the native SVG support in
(X)HTMLS along with the increasing browser support, the SVG format has gradually gained popularity.'® Internet
Explorer 9+, Firefox 3.5+, Safari 3.1+, and Opera 9.5+ have native SVG rendering and embedding support and do not
require a plugin for SVG images.

Caution The browser support for SVG in modern browsers, which do not require a plug-in for displaying SVG,
is different for each embedding method (inline, via img, via object) and feature (SVG effects, SVG in SMIL animation,
SVG filters, SVG in CSS background, and SVG fonts).

Most browsers that support SVG do not render SVG files unless they are served as image/svg+xml. The most
common rendering error with embedded SVG files is that they are served with an incorrect MIME type.

SVG is suitable for logos, graphs, geographical information systems, and so on. The major benefits of the SVG
format can be summarized as follows:

e Accessibility: Images are often magnified by mobile users as well as for the visually impaired.
SVG images are scalable without distortions or quality loss. Moreover, in SVG, text is rendered
as text. Textual equivalents of objects can also be developed.

e Optimal file size: Although it depends on image content complexity, SVG files are generally
smaller in size than their bitmap equivalents.

e Scriptability: All features of SVG images can be manipulated through JavaScript and the DOM.

e Animation: SVG elements and element groups can also be animated without scripting. This
can be achieved by using Synchronized Multimedia Integration Language (SMIL) together
with SVG.

Note SMIL is an XML markup language that defines markup for media synchronization, layout, animations, visual
transitions, and media embedding. It supports presentations with text, images, audio, video, and links to other SMIL
presentations. SMIL is a W3C Recommendation [56].

Although it can be used in XHTML 1.x/2.0 too.

110

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Syntax

The root element of both embedded and inline SVG images is svg. Listing 3-51 shows an example.

Listing 3-51. The svg Root Element

<svg xmlns="http://www.w3.0rg/2000/svg"»
<rect x="10" y="10" rx="0" ry="0" width="80" height="80" fill="#898989" />
</svg>

The namespace prefix can also be specified on the xmlns attribute. Doing so, the corresponding namespace is
not the default namespace. Consequently, an explicit namespace prefix must be assigned to all elements such as in
Listing 3-52.

Listing 3-52. Explicit Namespace Prefix

<svgssvg xmlns:svg="http://www.w3.0rg/2000/svg">
<svg:rect x="10" y="10" rx="0" ry="0" width="80" height="80" fill="#898989" />
</svg:svg>

Both examples draw a rectangle using the rect element with a top-left positioning (x, y), dimensions (width, height),
and optional horizontal and vertical corner radii (rx, ry). If length units are omitted, they are assumed to be in pixels.
The default fill color for such objects is black, which can be overridden by the fill attribute.

Other geometrical shapes can be drawn in SVG similarly. Circles, for example, can be declared by a horizontal
and vertical center and a radius (Listing 3-53).

Listing 3-53. A Circle in SVG

<circle cx="100" cy="100" r="90" stroke="#666" fill="#fff" />

For ellipses, a horizontal and a vertical center, as well as a horizontal and a vertical radius, are required
(Listing 3-54).
Listing 3-54. An Ellipsis in SVG
<ellipse cx="100" cy="100" rx="120" ry="80" fill="blue" />

The svg element can contain any of the following elements, in any order [57]: animation elements (animate,
animateColor, animateMotion, animateTransform, set), descriptive elements (desc, metadata, title), shape
elements (circle, ellipse, line, path, polygon, polyline, rect), structural elements (defs, g, svg, symbol, use),

gradient elements (1inearGradient, radialGradient), a, altGlyphDef, c1ipPath, color-profile, cursor, filter,
font, font-face, foreignObject, image, marker, mask, pattern, script, style, switch, text, and view.

Embedding

SVG images can be embedded in the markup by using the img or object element or by writing the SVG code directly
into the markup (inline SVG).

The first approach applies the markup element img, which is used for other images such as JPEG or PNG
(Listing 3-55).
Listing 3-55. Embedding SVG with the img Element

111

http://www.w3.org/2000/svg
http://www.w3.org/2000/svg

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

However, this embedding type has become supported in browsers with native SVG support only recently. In
browsers and browser versions that do not support SVG embedding via the img element, the object element can be
used (it cannot be ensured that users have an SVG plug-in installed). Listing 3-56 shows an example.

Listing 3-56. Embedding SVG Using object

<object type="image/svg+xml" data="images/cover.svg" width="400" height="300">

</object>

The disadvantage of the technique is that an image is provided as a general object rather than an image, which is
not optimal from the semantic point of view: the meaning of an element representing an image is logically provided
by the img element with more specific information about the content. The major advantage is that it displays the
alternate (in this case PNG) version of the image in browsers that cannot display SVG. Moreover, object elements are
included in the DOM, which allows the SVG image to be scripted.

The third option for providing SVG content is to write it directly into the XHTML or HTML5 markup. The major
risk associated with the direct SVG embedding in XHTML is that XHTML documents containing inline SVG files
should be valid, served as application/xml or application/xml+xhtml, and have an XHTML DOCTYPE. Otherwise, the
SVG images are not displayed in the browser. Moreover, if XHTML documents are served correctly for browsers with
areal XML parsing, Internet Explorer does not render the document at all (not only the SVG images).? This problem
does not exist in HTML5, where direct SVG embedding is a native feature.

Because of these issues, providing external SVG files is generally a better solution especially if the same file (such
as alogo) is used throughout the site.

There are nonstandardized approaches called SVG Support Libraries such as the JavaScript API “Raphaél” [58].
It supports SVG and VML in a manner that all graphical objects are also DOM objects, with the potential to attach
JavaScript event handlers. Raphaél provides a cross-browser solution; however, it requires JavaScript to be enabled
and applies a programmer interface via JavaScript rather than SVG markup. The advantage of Raphaél is that it
provides VML for IE8 or earlier and provides SVG for all browsers with SVG support.

MathML

The Mathematical Markup Language (MathML) is an XML application for describing mathematical annotations on
the Web. It provides content and structure, making it possible to index and process equations.

The first version of the Mathematical Markup Language, MathML 1.0, has become a W3C Recommendation in
1998 [59] and slightly modified in 1999 as MathML 1.01 [60]. After three years of development, MathML2 has obtained
the Recommendation status in 2001, which has been further improved as the second edition until 2003 [61]. After
recognizing the limitations of the second version, several new features have been introduced in MathML3, such as
advanced line breaking and indentation, elementary math notation, alignment of Content MathML with OpenMath,
support for bi-directional languages, new attributes for the math tag, semantic annotations, interaction with the host
environment, linking, and new elements such as mglyph and mpadded [62].

MathML is supported by a variety of applications including web pages, e-books, screen readers, Braille displays,
equation editors, ink input devices, and e-learning and computational software tools. However, the rendering engine
implementation for MathML varies, and no browser provides full MathML support.

Internet Explorer has no native MathML support, and the MathPlayer plug-in has been used for versions up to
IE8. Unfortunately, MathPlayer does not work under IE9. Native rendering support for MathML is available in
Gecko-based browsers such as Firefox and Camino from the first versions and in Safari from version 5.1. Opera
supports MathML since version 9.5. Google added MathML support to Chrome 24 which was removed from later
versions.

2This problem can be eliminated by specifying the MIME type text/html for Internet Explorer and application/xml for other
browsers on the server.

112

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Syntax

MathML has presentational, content, and mixing markup elements. There are two types of flavor for MathML markup.
The first one focuses on the display of equations, known as Presentation MathML. The second, Content MathML,
stresses the semantic meaning of the mathematical annotation.

Similar to XHTML, there are two types of elements in MathML: the ones with the start and end tags and the
empty elements that are self-closing. However, the ratio of empty elements is much higher in MathML than in
XHTML. Elements can have optional attributes that consist of a name and a value (the latter one is quoted in double
or single quotes). The majority of MathML attribute values must be in a predetermined format such as a positive
integer or the keyword true.

In MathML there are container elements such as mrow (a group of subexpressions) and foken elements such as mi
(identifier; i.e., a name of a constant, a variable, or a function). The element mo represents an operator (e.g., +), a fence
(e.g., {), or a separator (e.g., ,). Numeric literals are specified by mn. The proper use of mi, mo, and mn is vital to provide
adequate information for rendering engines to apply the correct typographic rules. Containers can contain other
elements only while token elements delimit plain-text characters, special entity references, or symbols (the smallest
units with meaning). Listing 3-57 shows an example.

Listing 3-57. A Simple Example for Container and Token Elements in MathML

<MIow>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>

</mrow>

Entity references begin with an ampersand (&) and end with a semicolon (;). Beyond keywords such as 8alphaj;,
a numeric format referring to the Unicode codepoint of the symbol is also allowed. More than 1,800 symbols are
supported.

The MathML namespace is http://www.w3.0rg/1998/Math/MathML. It can be declared in two ways: using the
xmlns attribute or an attribute with an xmlns prefix. In the first case, the default namespace applies to the element on
which it is provided, as well as all child elements (Listing 3-58).

Listing 3-58. A Presentation MathML Document Fragment Applying the MathML Namespace

<math mode="display" xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<MTow>
<mrow>
<mo>-</mo>
<mi>b</mi>
</mrow>
<mo>±<!--PLUS-MINUS SIGN--></mo>
<msqrt>
<MIow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>

113

http://www.w3.org/1998/Math/MathML
http://www.w3.org/1998/Math/MathML

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

<mo>-</mo>
<mrow>
<mn>4</mn>
<mo>⁢<!--INVISIBLE TIMES--></mo>
<mi>a</mi>
<mo>⁢<!--INVISIBLE TIMES--></mo>
<mi>c</mi>
</mrow>
</mrow>
</msqrt>
</mrow>
<MIow>
<mn>2</mn>
<mo>⁢<!--INVISIBLE TIMES--></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
</math>

This is identical to the Content notation in Listing 3-59.

Listing 3-59. The Content MathML Equivalent of Listing 3-58

<math>
<apply>
<eq/>
<ciyx</ci>
<apply>
<divide/>
<apply>
<plus/>
<apply>
<minus/>
<ci>b</ci>
</apply>
<apply>
<root/>
<apply>
<minus/>
<apply>
<power/>
<ci>b</ci>
<en>2</cn>
</apply>
<apply>
<times/>
<cn>4</cn>
<cira</ci>
<cire¢/ci>
</apply>
</apply>

114

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

</apply>
</apply>
<apply>
<times/>
<cn>2</cn>
<cira</ci>
</apply>
</apply>
</apply>
</math>

Both should be rendered as the following well-known quadratic formula in browsers that support MathML:

—b+b*-4ac

2a

X =

In the second case, the prefix associates other elements and attributes with a particular namespace. For example,
the namespace and the prefix are declared on the body element, as shown in Listing 3-60.

Listing 3-60. Namespace and Prefix Declaration on the body

<body xmlns:m="http://www.w3.org/1998/Math/MathML">
which adds meaning to mathematical notations such as the ones in Listing 3-61.

Listing 3-61. An Example for Using the MathML Prefix

<m:math>
<m:mrow>
<m:mi>x</m:mi>
<m:mo>+</m:mo>
<m:mn>y</m:mn>
</m:mrow>
</m:math>

Embedding

Since MathML is an XML language, it can be directly embedded into XML files, including XHTML (see the next
section). Because of the lack of support for namespaces, MathML embedding was not supported by HTML versions
up to 4.01. HTMLS5 is the first version of HTML that supports MathML.

Combinations, Profiles, and Mixed-Namespace Documents

Several newly developed web site features are very useful but not required for basic documents. These technologies
are defined by various specifications that can be used as the extensions of certain versions of (X)HTML. One of them
combines markup and additional semantics, while another supports mathematical markup and vector graphics within
(X)HTML documents. Some of these compound documents have their own DTDs they can be validated against and
namespaces? that provide containers for the context of identifiers, including uniquely named elements and attributes.

2By utilizing namespaces, XHTML documents can provide extensibility by including fragments from other XML-based languages
such as SVG and MathML. This option was the privilege of XHTML languages, and was not supported by HTML before HTMLS.

115

http://www.w3.org/1998/Math/MathML

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

(X)HTML+RDFa

The need for publishing semantically meaningful structured data, such as metadata in RDFa, is not recent. RDFa in
XHTML became a World Wide Web Consortium (W3C) Recommendation on 14 October, 2008 [63]. XHTML+RDFa
(Extensible Hypertext Markup Language + Resource Description Framework in attributes) is an extended version
of the XHTML markup language for supporting RDF through a collection of attributes and processing rules in the
form of well-formed XML documents. This combination is one of the most advanced markup codes. XHTML+RDFa
provides the option to develop Semantic Web content by embedding rich semantic markup. Version 1.1 of the
language is a superset of XHTML 1.1, integrating the attributes according to RDFa Core 1.1. In other words, it is
RDFa support through XHTML Modularization. The RDFa Core 1.1 specification describes how attributes can be
used to express structured data in any markup language, with an emphasis on HTML (instead of XHTML), SVG, the
Open Document Format, and other web-enabled document formats [64]. If the host language is XHTML, it is called
XHTML+RDFa 1.1 [65].

The RDFa markup in XHTML+RDFa reuses the markup code, thus eliminating the need for unnecessary
duplications. XHTML+RDFa can provide machine-readable metadata within the markup code, which makes
additional user functionalities available. Most important of all, actions can be performed automatically that enable
up-to-date publishing, structured searches, and sharing [66].

XHTML+RDFa has never been widely distributed, mainly because of the lack of support in authoring tools and
content management systems [67] and because web designers are not familiar with RDFa. Although the specification
HTML+RDFa 1.1 is primarily an extension of HTMLS5, it describes rules and guidelines for applying RDFa, not only in
HTMLS5 but also in HTML 4.01 and XHTMLS5 [68].

Listing 3-62 presents an XHTML+RDFa skeleton document.

Listing 3-62. An XHTML+RDFa Skeleton Document with an Additional Namespace

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN" «
"http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
<html version="XHTML+RDFa 1.0" «
xmlns="http://www.w3.0rg/1999/xhtml" «
xmlns:foaf="http://xmlns.com/foaf/0.1/" xml:lang="en">
<head>
<title>An XHTML+RDF example</title>
<meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8" />
</head>
<body>
<p>This is a paragraph with semantic content. It was written by «
John Smith.
</p>
</body>
</html>

The RDFa notation is described in Chapter 7.

XHTML-Print

XHTML-Print is defined in the W3C Recommendation “Modularization of XHTML" [19]. This profile can be used in
printing environments without installing printer-specific drivers. XHTML-Print can also be useful for mobile devices
and low-cost printers that often come with a lack of large (full-page) buffers and that generally print from top-to-
bottom and left-to-right with portrait orientation.

The XHTML-Print document structure is based on the XHTML 1.0 specification. However, application and usage
restrictions apply for images, styles, and forms.

116

http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd
http://www.w3.org/1999/xhtml
http://xmlns.com/foaf/0.1/

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

XHTML + MathML + SVG

One of the easiest ways to demonstrate the power of XML is to create mixed-namespace documents. General and
mathematical markup as well as vector graphics can be described within the same document by the XHTML +
MathML + SVG profile. This profile combines XHTML 1.1, MathML 2.0, and SVG 1.1.

The host language of XHTML + MathML + SVG documents can be either XHTML or SVG.

XHTML as the Host Language

Listing 3-63 shows a typical XHTML + MathML + SVG document.

Listing 3-63. An XHTML + MathML + SVG Skeleton Document in XHTML

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" <~
"http://www.w3.0rg/2002/04/xhtml-math-svg/xhtml-math-svg.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" dir="1tr">
<head>
<title>Sample XHTML 1.1 plus MathML 2.0 plus SVG 1.1 document</title>
<meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8" />
<link rel="stylesheet" type="text/css" href="style/style.css"/>
</head>
<body>
<h2 id="math">MathML sample</h2>
<p>Math expression
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<mrow>
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msqrt>
</mfrac>
</mrow>
</math>
inside an XHTML paragraph.</p>
<h2 id="svg">SVG sample</h2>

117

http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/1998/Math/MathML

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

<p>
<svg:svg xmlns:svg="http://www.w3.0rg/2000/svg" width="5em" height="4em" «
viewBox="0 0 500 400" version="1.1">
<svg:title>A star</svg:title>
<svg:polygon style="fill:red; stroke:blue; stroke-width:10" «
points="210,46 227,96 281,97 238,129 «~
254,181 210,150 166,181 182,129 «
139,97 193,97" />
</svg:svg>
</p>
</body>
</html>

Developers have the freedom to change the parameter entities of the DTD if required. Since MathML and SVG
require additional support, the validity of the previous code does not guarantee that the document will be rendered
correctly by all web browsers.

SVG as the Host Language

A mixed document can be created by inserting XHTML and MathML into SVG with foreignObject (Listing 3-64).

Listing 3-64. An XHTML+MahtML+SVG Skeleton Document in SVG

<?xml version="1.0"?>

<!DOCTYPE svg PUBLIC +«
"-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" «
"http://www.w3.0rg/2002/04/xhtml-math-svg/xhtml-math-svg.dtd"[«
<IENTITY % SVG.prefixed "IGNORE" >

<IENTITY % XHTML.prefixed "INCLUDE" >
<IENTITY % XHTML.prefix "xhtml" >
<IENTITY % MATHML.prefixed "INCLUDE" >
<IENTITY % MATHML.prefix "math" >

1>
<svg version="1.1" xml:lang="en" «
xmlns="http://www.w3.0rg/2000/svg" «
xmlns:x1link="http://www.w3.0rg/1999/x1ink">
<desc>SVG as the host language</desc>
<!-- ... SVG content ... -->
<switch>
<foreignObject width="800px" height="600px">
<xhtml:p xmlns:xhtml="http://www.w3.0rg/1999/xhtml">
<!-- ... XHTML content ... -->
<math:math xmlns:math="http://www.w3.0rg/1998/Math/MathML">
<!-- ... MathML content ... -->
</math:math>
<!-- ... XHTML content ... -->
</xhtml:p>
</foreignObject>
</switch>
<!--... SVG content ... -->
</svg>

118

http://www.w3.org/2000/svg
http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd
http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink
http://www.w3.org/1999/xhtml
http://www.w3.org/1998/Math/MathML

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Choosing a Markup Language

Since web designers tend to implement the latest markup language even when it is not standardized, rendering web
pages written in the most up-to-date markup always involves some risks.

The Transitional variants of HTML 4.01 and XHTML 1.0 have been developed to ease the work of web developers
by providing features whose replacements have already been planned (tagged as deprecated elements). Their
purpose was to give developers time to change obsolete markup, not to maintain them. The Traditional variants
intended to provide a way to make the transition to modern web standards. Frameset documents are contradictory
with the philosophy of XHTML. Consequently, the Frameset variant of XHTML 1.0 had a purpose similar to that of the
Transitional variant. Both variants have been designed with backward compatibility in mind. In other words, XHTML
1.0 Strict should have been used exclusively after its introduction wherever possible. Although many content authors
have done so, error-free markup has always been very rare. But what is the point of applying a strictly regulated
markup in implementations full of errors? To be fair, web designers are not the only ones to blame because they
often have to deal with incorrect markup in the form of third-party and CMS-generated dynamic content based on
templates that are not standard-compliant.

The potential for modularization in XHTML 1.1 has not been exploited either. XHTML 2.0 has been criticized by
web developers, and the W3C was pushed to suspend the development of the specification.

Because of the new, advanced features introduced in (X)HTMLS5, it became the recommended markup language.
However, there is no reason to change a valid XHTML 1.0 Strict markup of conventional web documents to HTML5
unless some new features introduced in HTML5 would be really beneficial for the content.

The Benefits of XHTML 1.x over HTML 4.x

In spite of the advantages of strict XML codes, it took several years for developers to realize the power of XHTML and
to implement XHTML instead of HTML. Both HTML and XHTML have their advantages and disadvantages
(see Table 3-18).

Table 3-18. HTML vs. XHTML

Benefits of HTML Benefits of XHTML
¢ Backward compatibility o Strict XML syntax, well-formed markup
¢ Well-known syntax e Easier maintenance
e Error-tolerance e Direct integration with other XML vocabularies, e.g., SVG,
e “Loose” syntax that might be convenient for MathML
some developers (permissive nesting, o XML processing
omission of certain tags and attributes) e Forced elimination of presentational markup

It is easy to see that some HTML features that claimed to be advantageous are not necessarily real benefits
because precise, strict markup should always be considered better than loose markup.

The Benefits of HTML5 over HTML 4.x and XHTML

The latest version of HTML overcame several limitations and inconsistencies of earlier HTML versions and XHTML.
The new parsing rules of HTML5 are not based on SGML, which makes parsing more flexible and improves
compatibility. The new elements provide more sophisticated document structuring (article, aside, figure, footer,
section, etc.), new types of form controls, and advanced multimedia embedding (audio, video). The obsolete
markup elements were dropped, including acronym, applet, basefont, big, center, dir, font, frame, frameset,
isindex, noframes, strike, and tt. New attributes have been introduced, such as the id, tabindex, and hidden global

119

CHAPTER 3 © MARKUP LANGUAGES: MORE THAN HTMLS

attributes, and the custom data attribute data-*. The charset attribute on the meta element and the async attribute
on the script element have been improved. Inline SVG and MathML can be embedded in text/html documents.
HTMLS5 provides advanced features for web applications through its APIs, introducing a new area in web site
development.

Most web designers and the W3C recommend HTMLS5 for most web sites and web applications.

HAML: Markup Preprocessing

Haml (HTML abstraction markup language) is a lightweight markup language used to describe XHTML web
documents without traditional inline coding. Haml is created to overcome the limitations of traditional template
engines, accelerating and simplifying template creation while making markup as neat as possible [69]. The functions
of Haml can be used to replace inline page templating systems, such as ASP, RHTML, and PHP. The main principle of
Haml is beautiful, DRY (Don’t Repeat Yourself), well-indented markup with a clear HTML structure.

Alternatives to Web Markup

Although the lion’s share of web documents are published in (X)HTML files, forms, brochures, flyers, posters,
animations, source codes, presentations, and office documents are often provided in other formats such as in the ones
indexed by Google [70]:

e Adobe Flash (.swf)

e Adobe Portable Document Format (. pdf)
e Adobe PostScript (.ps)

e Autodesk Design Web Format (. dwf)

e Basic source code (.bas)

e C/C++source code (.c, .cc, .cpp, .cxX, .h, .hpp)
e Google Earth (.kml, .kmz)

e GPSeXchange Format (.gpx)

¢ Hancom Hanword (. hwp)

e Javasource code (.java)

e Microsoft Excel (.x1s, .x1sx)

e Microsoft PowerPoint (.ppt, .pptx)

e Microsoft Word (.doc, .docx)

e OpenOffice presentations (.odp)

e OpenOffice spreadsheet (.ods)

e OpenOffice text (.odt)

e Perl source code (.pl)

e Python source code (.py)

e Rich Text Format (.rtf, .wri)

e Text(.ans, .asc, .cas, .txt, .text)

120

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Always use the appropriate file type for web publishing. Markup documents are preferred for general contents
and should be used whenever possible. With the introduction of HTMLS5, the share of documents published as
markup has become larger than ever before. HTML5—especially empowered by CSS3 style sheets and jQuery
scripts—has all the features to create animations instead of Flash, presentations instead of PowerPoint presentations,
and so forth. Still, editable documents should not be converted into markup. Downloading a Word document and
modifying it to fit your needs can be very convenient. Printable documents that need to be signed only are frequently
provided in PDF. Special file types are confusing and cannot be processed by user agents.? It is the web author’s
responsibility to provide documents in the right file format.

Summary

In this chapter, you learned about the versions and variants of markup languages, which is beneficial for many
reasons. First, it is required to know the history of markup languages to become capable of choosing the most suitable
markup for your projects. Second, the relationship between these markup languages is vital when moving from one
document type to another. Third, becoming familiar with the vocabulary of HTML and XHTML languages can be
useful not only for comparison but also to ensure that you use only those elements and attributes that are allowed in
the chosen document type. While most modern web sites are written in HTMLS5, there are millions of sites written in
older markup languages. More and more owners of obsolete web sites order an HTML5 upgrade or a complete site
redesign based on HTML5, CSS3, and jQuery, while most new projects are based on these technologies.

Error-free markup code is among the most important features of standard-compliant web sites, but its full
potential can be used only if it is served with proper settings. The next chapter will discuss the basics of server
configuration, the most common content types, and the URIs used to query and link web sites.

References

1. Raggett D (2005) Getting started with HTML, revised version. World Wide Web
Consortium. http://www.w3.org/MarkUp/Guide/. Accessed 18 October 2014

2. Smith M (2010) HTML: The Markup Language Reference. World Wide Web Consortium.
http://dev.w3.org/html5/markup/. Accessed 21 January 2011

3. Pilgrim M (2010) HTML5: Up and Running. O’Reilly Media, Sebastopol

4. Meloni JC, Morrison M (2009) Teach Yourself HTML and CSS in 24 Hours (8th edn). Sams,
Indianapolis

5. Lemay L, Colburn R (2010) Teach Yourself Web Publishing with HTML and CSS in One
Hour a Day: Includes New HTML5 Coverage (6th edn). Sams, Indianapolis

6. Powell TA (2010) HTML & CSS: The Complete Reference (5th edn). McGraw-Hill Osborne

7. 'W3C (2010) W3C Cheat Sheet. World Wide Web Consortium. http://www.w3.0rg/2009/
cheatsheet/. Accessed 18 October 2014

8. Quittner J (1999) Tim Berners Lee - Time 100 People of the Century. Time Magazine.
http://205.188.238.181/time/time100/scientist/profile/bernerslee.html.
Accessed 11 September 2010

2Unknown file types that browsers cannot recognize by extension might still be processed or rendered (such as unknown formats
provided in XML serialization are probably be represented as an XML tree).

121

http://www.w3.org/MarkUp/Guide/
http://www.w3.org/2009/cheatsheet/
http://www.w3.org/2009/cheatsheet/

CHAPTER 3

122

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

MARKUP LANGUAGES: MORE THAN HTML5

Lie HW, Saarela J (1998) Multi-purpose publishing using HTML, XML, and CSS.
Association for Computing Machinery, Inc. http://www.w3.0rg/People/Janne/porject/
paper.html. Accessed 18 October 2014

Berners-Lee T (2013) Hypertext Markup Language - 2.0, RFC 1866. Network Working
Group, Internet Engineering Task Force. http://datatracker.ietf.org/doc/rfc1866/.
Accessed 18 October 2014

Connolly D (1999) HTML 2.0 Materials. World Wide Web Consortium.
http://www.w3.0rg/MarkUp/html-spec/. Accessed 18 October 2014

Raggett D (1997) HTML 3.2 Reference Specification, W3C Recommendation. World Wide
Web Consortium. http://www.w3.0rg/TR/REC-htm132. Accessed 18 October 2014

Raggett D, Le Hors A, Jacobs I (1998) HTML 4.0 Specification, W3C Recommendation.
World Wide Web Consortium. http://www.w3.0rg/TR/1998/REC-htm140-19980424/.
Accessed 18 October 2014

Raggett D, Le Hors A, Jacobs I (1999) HTML 4.01 Specification, W3C Recommendation.
World Wide Web Consortium. http://www.w3.0xrg/TR/html401/. Accessed 18 October
2014

Masayasu I (ed) (2002) An XHTML + MathML + SVG Profile. World Wide Web Consortium.
http://www.w3.0rg/TR/XHTMLplusMathMLplusSVG/xhtml-math-svg.html. Accessed 18
October 2014

Adida B, Birbeck M, McCarron S, Pemberton S (2008) RDFa in XHTML: Syntax and
Processing. A collection of attributes and processing rules for extending XHTML to
support RDE W3C Recommendation. World Wide Web Consortium. http://www.w3.org/
TR/2008/REC-rdfa-syntax-20081014/. Accessed 18 October 2014

McCarron S (2010) XHTML+RDFa 1.1. Support for RDFa via XHTML Modularization. W3C
Recommendation. World Wide Web Consortium. http://www.w3.0rg/TR/2012/REC-
xhtml-rdfa-20120607/. Accessed 18 October 2014

McCarron S (2010) XHTML+RDFa 1.1 - Second Edition. Support for RDFa via XHTML
Modularization. W3C Recommendation. World Wide Web Consortium.
http://www.w3.0rg/TR/xhtml-rdfa/. Accessed 18 October 2014

Pemberton S et al (2002) XHTML 1.0 The Extensible HyperText Markup Language
(27 edn). A Reformulation of HTML 4 in XML 1.0. W3C Recommendation. World Wide
Web Consortium. http://www.w3.0rg/TR/xhtml1/. Accessed 18 October 2014

Altheim M, Boumphrey F, Dooley S, McCarron S, Schnitzenbaumer S, Wugofski T (2001)
Modularization of XHTML. W3C Recommendation. World Wide Web Consortium.
http://www.w3.0rg/TR/2001/REC-xhtml-modularization-20010410/. Accessed 18
October 2014

Altheim M, McCarron S (eds) (2001) The XHTML 1.1 Document Type. W3C
Recommendation. World Wide Web Consortium. http://www.w3.o0rg/TR/xhtml11/
doctype.html. Accessed 18 October 2014

Hickson I (2010) Welcome to the WHATWG community. Maintaining and evolving HTML
since 2004. Web Hypertext Application Technology Working Group.
http://www.whatwg.org. Accessed 18 October 2014

http://www.w3.org/People/Janne/porject/paper.html
http://www.w3.org/People/Janne/porject/paper.html
http://datatracker.ietf.org/doc/rfc1866/
http://www.w3.org/MarkUp/html-spec/
http://www.w3.org/TR/REC-html32
http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/XHTMLplusMathMLplusSVG/xhtml-math-svg.html
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
http://www.w3.org/TR/2012/REC-xhtml-rdfa-20120607/
http://www.w3.org/TR/2012/REC-xhtml-rdfa-20120607/
http://www.w3.org/TR/xhtml-rdfa/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
http://www.w3.org/TR/xhtml11/doctype.html
http://www.w3.org/TR/xhtml11/doctype.html
http://www.whatwg.org/

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Hickson I(2007) W3C restarts HTML effort. In: The WHATWG Blog, 7 March 2007. Web
Hypertext Application Technology Working Group. http://blog.whatwg.org/w3c-
restarts-html-effort. Accessed 18 October 2014

Hickson I (2008) Relationship to XHTML2. In: HTML 5. A vocabulary and associated APIs
for HTML and XHTML, W3C Working Draft. World Wide Web Consortium.
http://www.w3.0rg/TR/2008/WD-html5-20080122/#relationship0. Accessed 18 October 2010

Leenheer N (2013) The HTMLS5 test - How well does your browser support HTML5? Niels
Leenheer. http://www.html5test.com/. Accessed 18 October 2014

W3C (2011) Testing - HTML Wiki. World Wide Web Consortium. http://www.w3.org/
html/wiki/Testing. Accessed 18 October 2014

Pemberton S (2010) XML and Applications. World Wide Web Consortium.
http://www.w3.0rg/2010/Talks/11-11-steven-applications/. Accessed 18 October 2014

Van Kesteren A (2010) HTMLS5 differences from HTML4. World Wide Web Consortium.
http://www.w3.0rg/TR/2010/WD-html5-diff-20100624/. Accessed 18 October 2014

Graff E, Silli LH (2014) Polyglot Markup: A robust profile of the HTML5 vocabulary. World
Wide Web Consortium. http://www.w3.0rg/TR/html-polyglot/. Accessed 18 October
2014

Berjon, R, Leithead, T, Navara, ED, O’Connor, E, Pfeiffer, S (eds) (2012) HTML5.

A vocabulary and associated APIs for HTML and XHTML. W3C Candidate
Recommendation. World Wide Web Consortium. http://www.w3.0rg/TR/2012/CR-
html5-20121217/. Accessed 18 October 2014

Berjon, R, Leithead, T, Navara, ED, O’Connor, E, Pfeiffer, S (eds) (2012) HTML 5.1. A
vocabulary and associated APIs for HTML and XHTML. World Wide Web Consortium.
http://www.w3.0rg/TR/2012/WD-html51-20121217/. Accessed 18 October 2014

Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F (2013) Extensible Markup
Language (XML) 1.0, Section 3.3.3 Attribute-Value Normalization. World Wide Web
Consortium. http://www.w3.0rg/TR/REC-xml/#AVNormalize. Accessed 18 October 2014

Raggett D, Le Hors A, Jacobs I (eds) (1999) Basic HTML data types. In: HTML 4.01
Specification. World Wide Web Consortium. http://www.w3.0rg/TR/html4/types.html.
Accessed 18 October 2014

ISO (1996) “Information Processing — Text and Office Systems — Standard Generalized
Markup Language (SGML)" ISO 8879:1986/Cor 1:1996. International Organization for
Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.htm?csnumber=28557. Accessed 18 October 2014

Lie HW, Celik T, Glazman D, van Kesteren A (eds) (2012) Media Queries. W3C
Recommendation. World Wide Web Consortium. http://www.w3.0rg/TR/css3-
mediaqueries/. Accessed 18 October 2014

Phillips A, Davis M (eds) (2009) Tags for Identifying Languages. Internet Engineering Task
Force. http://tools.ietf.org/html/bcp47. Accessed 18 October 2014

Raggett D (1997) HTML 3.2 Reference Specification. W3C Recommendation. World Wide
Web Consortium. http://www.w3.0rg/TR/REC-html32. Accessed 18 October 2014

123

http://blog.whatwg.org/w3c-restarts-html-effort
http://blog.whatwg.org/w3c-restarts-html-effort
http://www.w3.org/TR/2008/WD-html5-20080122/#relationship0
http://www.html5test.com/
http://www.w3.org/html/wiki/Testing
http://www.w3.org/html/wiki/Testing
http://www.w3.org/2010/Talks/11-11-steven-applications/
http://www.w3.org/TR/2010/WD-html5-diff-20100624/
http://www.w3.org/TR/html-polyglot/
http://www.w3.org/TR/2012/CR-html5-20121217/
http://www.w3.org/TR/2012/CR-html5-20121217/
http://www.w3.org/TR/2012/WD-html51-20121217/
https://www.w3.org/TR/REC-xml/#AVNormalize
http://www.w3.org/TR/html4/types.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28557
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28557
http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/css3-mediaqueries/
http://tools.ietf.org/html/bcp47
http://www.w3.org/TR/REC-html32

CHAPTER 3

124

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

MARKUP LANGUAGES: MORE THAN HTML5

Raggett D, Le Hors A, Jacobs I (eds) (1999) Index of Elements. In: HTML 4.01 Specification.
W3C Recommendation. World Wide Web Consortium. http://www.w3.oxrg/TR/html401/
index/elements.html. Accessed 18 October 2014

Hickson I, Berjon R, Faulkner S, Leithead T, Navara ED, O’Connor E, Pfeiffer S (eds) (2014)
Index of elements. In: HTML5. A vocabulary and associated APIs for HTML and XHTML.
World Wide Web Consortium. http://www.w3.0rg/TR/html5/index.html#elements-1.
Accessed 18 October 2014

Hickson I, Berjon R, Faulkner S, Leithead T, Navara ED, O’Connor E, Pfeiffer S (eds) (2014)
HTML vs XHTML. In: HTMLS5. A vocabulary and associated APIs for HTML and XHTML.
World Wide Web Consortium. http://www.w3.0rg/TR/html5/introduction.htmli#
html-vs-xhtml. Accessed 18 October 2014

Hickson I, Berjon R, Faulkner S, Leithead T, Navara ED, O’Connor E, Pfeiffer S (eds) (2014)
HTMLS5 attributes. In: HTML5. A vocabulary and associated APIs for HTML and XHTML.
World Wide Web Consortium. http://www.w3.o0rg/TR/html5/index.html#attributes-1.
Accessed 18 October 2014

McCormack C (2012) Web IDL. World Wide Web Consortium. http://www.w3.org/TR/
WebIDL/. Accessed 28 October 2014

Steen HRM (ed) (2014) Clipboard API and events. World Wide Web Consortium.
http://www.w3.0rg/TR/clipboard-apis/. Accessed 28 October 2014

Schepers D, Moon S, Brubeck M, Barstow A (eds) (2013) Touch Events. W3C
Recommendation. World Wide Web Consortium. http://www.w3.0rg/TR/touch-events/.
Accessed 28 October 2014

Le Hégaret P (2009) Document Object Model (DOM). World Wide Web Consortium.
http://www.w3.0rg/DOM/. Accessed 18 October 2014

Le Hors A, Le Hégaret P, Wood L, Nicol G, Robie J, Champion M, Byrne S (eds) (2004)
Document Object Model (DOM) Level 3 Core Specification 1.0. W3C Recommendation.
World Wide Web Consortium. http://www.w3.0rg/TR/2004/REC-DOM-Level-3-
Core-20040407/. Accessed 18 October 2014

Zeldman J, Marcotte E (2010) A Standard Way to Make Web Pages Behave Like
Applications. In: Designing with Web standards, 3rd Ed., New Riders, Berkeley

Raggett D, Le Hors A, Jacobs I (1999) The global structure of an HTML document. In:
HTML 4.01 Specification. W3C Recommendation. World Wide Web Consortium.
http://www.w3.0rg/TR/REC-html40/struct/global.html. Accessed 18 October 2014

Hickson I (ed) (2011) Kinds of content. In: HTMLS5 - A vocabulary and associated APIs
for HTML and XHTML. World Wide Web Consortium. http://www.w3.org/TR/html5/
content-models.htmlitkinds-of-content. Accessed 14 August 2011

Dubost K, Curran P (2011) Recommended Doctype Declarations to use in your Web
document. Quality Assurance Interest Group, World Wide Web Consortium.
http://www.w3.0rg/0A/2002/04/valid-dtd-1ist.html. Accessed 18 October 2014

Axelsson], Birbeck M, Dubinko M, Epperson B, Ishikawa M, McCarron S, Navarro A,
Pemberton S (2006) The XHTML 2.0 Document Type. In: XHTML 2.0, W3C Working Draft.
World Wide Web Consortium. http://www.w3.0rg/TR/xhtml2/xhtml2-doctype.html#s_
doctype. Accessed 23 September 2010

http://www.w3.org/TR/html401/index/elements.html
http://www.w3.org/TR/html401/index/elements.html
http://www.w3.org/TR/html5/index.html#elements-1
https://www.w3.org/TR/html5/introduction.html#html-vs-xhtml
https://www.w3.org/TR/html5/introduction.html#html-vs-xhtml
http://www.w3.org/TR/html5/index.html#attributes-1
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/clipboard-apis/
http://www.w3.org/TR/touch-events/
http://www.w3.org/DOM/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/REC-html40/struct/global.html
http://www.w3.org/QA/2002/04/valid-dtd-list.html
http://www.w3.org/TR/xhtml2/xhtml2-doctype.html#s_doctype
http://www.w3.org/TR/xhtml2/xhtml2-doctype.html#s_doctype

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

CHAPTER 3 MARKUP LANGUAGES: MORE THAN HTML5

Adams G (ed), Dolan M, Freed G, Hayes S, Hodge E, Kirby D, Michel T, Singer D (2013)
Timed Text Markup Language (TTML) 1.0. W3C Recommendation. World Wide Web
Consortium. http://www.w3.0rg/TR/ttaf1-dfxp/. Accessed 18 October 2014

W3C SVG Working Group (2014) What is SVG? Graphics Markup for the Web. World Wide
Web Consortium. http://www.w3.0rg/Graphics/SVG/. Accessed 18 October 2014

Andersson O, Berjon R, Dahlstr6m E, Emmons A, Ferraiolo J, Grasso A, Hardy V, Hayman
S, Jackson D, Lilley C, McCormack C, Neumann A, Northway C, Quint A, Ramani N,
Schepers D, Shellshear A (eds) et al (2008) Scalable Vector Graphics (SVG) Tiny 1.2
Specification. W3C Recommendation. World Wide Web Consortium. http://www.w3.oxrg/
TR/SVGTiny12/. Accessed 18 October 2014

Bulterman D, Jansen J, Cesar P, Mullender S, Hyche E, DeMeglio M, Quint J, Kawamura H,
Weck D, Panieda XG, Melendi D, Cruz-Lara S, Hanclik M, Zucker DE, Michel T (eds) (2008)
Synchronized Multimedia Integration Language (SMIL 3.0). W3C Recommendation.
World Wide Web Consortium. http://www.w3.0rg/TR/SMIL/. Accessed 18 October 2014

Dahlstrom E, Dengler P, Grasso A, Lilley C, McCormack C, Schepers D, Watt J, Ferraiolo J,
Fujisawa J, Jackson D (eds) (2011) The svg element. In: Scalable Vector Graphics (SVG) 1.1
(Second Edition). W3C Recommendation. World Wide Web Consortium.
http://www.w3.0rg/TR/SVG11/struct.html#SVGELlement. Accessed 18 October 2014

Baranovskiy D (2012) Raphaél — JavaScript Library. Dmitry Baranovskiy.
http://raphaeljs.com/. Accessed 18 October 2014

Ion P, Miner R (eds), Buswell S, Devitt S, Diaz A, Poppelier N, Smith B, Soiffer N, Sutor
R, Watt S et al (1998) Mathematical Markup Language (MathML) 1.0 Specification. W3C
Recommendation. World Wide Web Consortium. http://www.w3.0rg/TR/1998/REC-
MathML-19980407/. Accessed 18 October 2014

Buswell S, Devitt S, Diaz A, Ion P, Miner R, Poppelier N, Smith B, Soiffer N, Sutor R,

Watt S et al (1999) Mathematical Markup Language (MathML) 1.01 Specification. W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/REC-MathML/.
Accessed 18 October 2014

Ausbrooks R, Buswell S, Carlisle D, Dalmas S, Devitt S, Diaz A, Froumentin M, Hunter R,
Kohlhase M, Poppelier N, Smith B, Soiffer N, Sutor R, Watt S et al (2003) Mathematical
Markup Language (MathML) Version 2.0 (Second Edition). W3C Recommendation. World
Wide Web Consortium. http://www.w3.0rg/TR/MathML2/. Accessed 18 October 2014

Carlisle D, Ion P, Miner R (eds), Ausbrooks R, Buswell S, Carlisle D, Chavchanidze G,
Dalmas S, Devitt S, Diaz A, Dooley S, Hunter R, Kohlhase M, Lazrek A, Libbrecht P, Miller
B, Rowley C, Sargent M, Smith B, Soiffer N, Sutor R, Watt S et al (2010) Mathematical
Markup Language (MathML) Version 3.0 2nd Edn. W3C Recommendation. World Wide
Web Consortium. http://www.w3.0rg/TR/MathML3/. Accessed 18 October 2014

Adida B, Birbeck M, McCarron S, Pemberton S (eds) (2008) RDFa in XHTML: Syntax

and Processing. A collection of attributes and processing rules for extending XHTML to
support RDE W3C Recommendation. World Wide Web Consortium. http://www.w3.org/
TR/2008/REC-rdfa-syntax-20081014/. Accessed 18 October 2014

Adida B, Birbeck M, McCarron S, Herman I (eds) (2010) RDFa Core 1.1. Syntax and
processing rules for embedding RDF through attributes. World Wide Web Consortium.
http://www.w3.0rg/TR/2010/WD-rdfa-core-20101026/. Accessed 18 October 2014

125

http://www.w3.org/TR/ttaf1-dfxp/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/SVGTiny12/
http://www.w3.org/TR/SVGTiny12/
http://www.w3.org/TR/SMIL/
http://www.w3.org/TR/SVG11/struct.html#SVGElement
http://raphaeljs.com/
http://www.w3.org/TR/1998/REC-MathML-19980407/
http://www.w3.org/TR/1998/REC-MathML-19980407/
http://www.w3.org/TR/REC-MathML/
http://www.w3.org/TR/MathML2/
http://www.w3.org/TR/MathML3/
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
http://www.w3.org/TR/2010/WD-rdfa-core-20101026/

CHAPTER 3

126

64.

65.
66.

67.

68.

69.

MARKUP LANGUAGES: MORE THAN HTML5

McCarron S (ed) (2010) XHTML+RDFa 1.1 - Support for RDFa via XHTML Modularization.
World Wide Web Consortium. http://www.w3.0rg/TR/2010/WD-xhtml-rdfa-20100422/.
Accessed 18 October 2014

Pollock JT (2009) Semantic Web for Dummies. Wisley Publishing, Hoboken

Watson M (2009) Scripting Intelligence: Web 3.0 Information, Gathering and Processing.
Apress, Berkeley

Sporny M, McCarron S (eds), Adida B, Birbeck M, Pemberton S (authors) (2010)
HTML+RDFa 1.1. Support for RDFa in HTML4 and HTML5. World Wide Web Consortium.
http://www.w3.0rg/TR/2010/WD-rdfa-in-html-20101019/. Accessed 18 October 2014

Catlin H, Weizenbaum N, Clarke N, Walsh N (2014) Haml. http://haml.info/. Accessed
21 October 2014

Google Inc. (2014) What file types can Google index? Google Webmaster Central.
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=35287.
Accessed 18 October 2014

http://www.w3.org/TR/2010/WD-xhtml-rdfa-20100422/
http://www.w3.org/TR/2010/WD-rdfa-in-html-20101019/
http://haml.info/
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=35287

CHAPTER 4

Serving and Configuration

The correct appearance and web documents handling cannot be guaranteed simply by applying strict, error-free
markup. Web server configuration has a significant impact on web site appearance, operation, and behavior. Documents
should be served with the proper media type and character encoding. Content negotiation can be used to serve various
document versions to browsers supporting the corresponding media types. XHTML documents can be served as either
HTML or XML, but there is a huge difference in processing. XML files are processed by XML parsers that are far more
error-sensitive than SGML parsers. XHTML served as XML involves the risk that the document cannot be rendered at
all. On the other hand, backward-compatible serving cannot use the benefits of strict XML markup. There are several
aspects of sending HTML and XHTML from the server to the rendering engine, all of which should be considered to
achieve proper settings.

In this chapter, you will learn how to configure your web site, browser, and server in order to serve web documents
correctly. Becoming familiar with the most important MIME types is crucial for properly serving web documents and
the files used by them, for example, style sheets, images, audio and video files, ZIP archives, and office documents.
Beyond Internet media types, you will also learn domain configuration; the difference between URIs, URLs, and
URNSs; the application of base directories; and practices to eliminate file extensions.

The HTTP Header

The foundation of data communication on the World Wide Web is the Hypertext Transfer Protocol (HTTP). It is a
networking protocol that functions as a request-response protocol in a client-server computing model. In this model,
a typical client is a web browser, while an application that runs on the host of a web site is a server. During each query,
the client submits an HTTP request message to the server. In return, the server sends a response message to the client
that contains additional data, such as completion status information about the request, which is sent along with web
documents from the server to the user agent. These header fields form the HTTP header. The header fields determine
the parameters of the HTTP communication. HTTP requests are used to indicate which content types and character
sets are acceptable (Accept, Accept-Charset), the date and time the message was sent (Date), the domain name
(Host), a string representing a user agent (User-Agent), and so on.

As you can see in Listing 4-1, HTTP responses provide the name of the server (Server), an alternate location
for the returned data (Content-Location), and the date and time after which the response expires (Expires). The
Vary field confirms whether the cached response can be used rather than repeat the request. The Platform for
Privacy Preferences Project (P3P) policy can be set by the P3P field. An identifier of a specific version of the resource
is provided by ETag. These are the most common HTTP header fields, but there are many more, all of which are
described by RFC 4229 [1].

127

CHAPTER 4 © SERVING AND CONFIGURATION

Listing 4-1. HTTP Header Example

HTTP/1.1 200 OK

Date: Fri, 10 Sep 2010 10:05:08 GMT

Server: Apache/2.2.16 (Unix) PHP/5.3.3
Content-Location: index.html

Vary: negotiate,accept-language,accept-charset
TCN: choice

P3P: policyref=http://example.com/p3p.xml
Cache-Control: max-age=21600

Expires: Fri, 10 Sep 2010 16:05:08 GMT
Last-Modified: Fri, 21 Aug 2009 22:18:49 GMT
ETag: "3668bab8;37e77d1c"

Accept-Ranges: bytes

Content-Length: 11537

Connection: close

Content-Type: text/html; charset=UTF-8
Content-Language: en

Internet Media Types (MIME)

Internet media types (also known as MIME types or content-types) determine the way browsers handle web
documents. They are the file format identifiers of the Web. Thus, it is crucial to set the right media type for web site
components and web pages.

The Multipurpose Internet Mail Extensions (MIME) specification was introduced in 1992 by the Internet
Engineering Task Force (see Chapter 1 for more information on the IETF). Most specifications are available as an
IETF/ISOC Request for Comments (RFCs). Although the original MIME concept was designed to format non-ASCII
messages,’ it is used in web browsers to make it possible to render or process files other than (X)HTML. The Internet
media types are standardized by IANA registration (again, see Chapter 1 for more information on the IANA) [2].
Nonstandard MIME types and subtypes can be recognized by their prefix, since they all begin with x-. Vendor-specific
subtypes begin with vnd., while personal subtypes begin with prs.

Media types consist of a minimum of two parts: a type, a subtype, and optional parameters.

XML data can be assigned to two MIME media types: application/xml and text/xml. They are defined by RFC 3023
[3]. Further, MIME types can be identified by the suffix +xml. The most important media type from a web standardista’s
point of view is the XML media type registered for XHTML, namely, application/xhtml+xml, which is defined in
RFC 3236 [4]. Although XHTML documents could be served with the application/xhtml+xml, application/xml, or
text/xml media type, W3C recommends serving XHTML as XML with its dedicated MIME type application/xhtml+xml
[5]. However, using this media type cannot guarantee proper XML handling without a correct XML header
(see Chapter 3 for more on XML headers). Furthermore, Internet Explorer 6 and earlier IE versions do not render the
contents of documents served as application/xhtml+xml; instead, users are prompted to download the file.

Caution If the media type for an XHTML web page is set to text/html, it will be parsed as HTML. If the media type
is set to application/xhtml+xml, browsers will parse the document as XML. This is a huge difference! XHTML files
served with the proper MIME cannot contain a single error; otherwise, the document will not be rendered, and the XML
parser will give an error, as already mentioned earlier in Chapters 1 and 3.

'The advanced version, S/MIME, supports message encryption too.

128

CHAPTER 4 © SERVING AND CONFIGURATION

Another registered XML media type is application/atom+xml, which is used for the Atom Syndication Format
(see Chapter 8) defined by RFC 4287 [6]. Other frequently used XML media types of this kind are application/rss+xml
(RSS; see Chapter 8), application/mathml+xml (MathML; see Chapter 3), image/svg+xml (SVG; see Chapter 3), and
application/xslt+xml (XSLT; see Chapter 5). The full list of MIME types is published on the IANA web site [2].

The Content-Type field of the HTTP header describes the data format as a MIME media type (Listing 4-2).
Additionally, this entry can also provide the character encoding of the document (as discussed earlier in Chapter 2).

Listing 4-2. A Content-Type Example

Content-Type: application/xhtml+xml; charset=UTF-8

The MIME type of web pages can also be set on the document level with the meta element such as in Listing 4-3.

Listing 4-3. MIME Type Declaration with the meta Element

<meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8" />

Generally, the MIME type text/html is used for HTML documents, and the application/xhtml+xml is used for
XHTML documents. However, XHTML documents can be served with both (as we'll see later in the chapter).
The wide variety of Internet media types is not fixed. Custom MIME types can also be registered at IANA [7].

Common Media Types

The most common media types are listed in the next sections. Note that this is not a full list by any means.

Application-Specific Media Types

Table 4-1 summarizes the most common application-specific MIME types.?

Table 4-1. Common Application-Specific Media Types

Media Type

Specification

Description

application/atom+xml
application/ecmascript
application/javascript
application/json
application/mathml-content+xml
application/mathml-presentation+xml
application/mathml+xml
application/octet-stream

application/ogg

REC 4287 [6], REC 5023 [8]
RFC 4329 [9]
RFC 4329 [9]
REC 4627 [10]
MathML 3.0, Appendix B [11]
MathML 3.0, Appendix B [11]
MathML 3.0, Appendix B [11]
RFC 2046 [12]

RFC 5334 [13]

Atom news feed
ECMAScript

JavaScript

JavaScript Object Notation
Content MathML
Presentation MathML
MathML

Nonspecified binary data

Ogg multimedia container

2Cannot be used in IES or earlier

(continued)

129

CHAPTER 4 © SERVING AND CONFIGURATION

Table 4-1. (continued)

Media Type Specification Description
application/pdf RFC 3778 [14] PDF document
application/postscript RFC 2045 [15] PostScript
RFC 2046 [12]
application/rdf+xml RFC 3870 [16] RDF document
application/rtf TANA registration [17] RTF document
application/sgml RFC 1874 [18] SGML document
application/smil+xml RFC 4536 [19] SMIL document
application/soap+xml RFC 3902 [20] Simple Object Access
Protocol
application/sparql-query In: SPARQL Query Language for RDF [21] SPARQL
application/sparql-results+xml In: SPARQL Query Results XML Format SPARQL Query Results
(22]
application/xhtml+xml RFC 3236 [4] XHTML document
application/xml RFC 3023 [3] XML document
application/xml-dtd RFC 3023 [3] DTD file
application/xslt+xml In: XSLT 2.0 [23] XSL Transformations
application/zip TANA registration [24] ZIP archive file
Vendor-Specific Media Types
Table 4-2 summarizes the most common vendor-specific MIME types.
Table 4-2. Common Vendor-Specific Media Types
Media type Specification Description
application/vnd.google-earth.kml+xml IANA registration [25] Google Earth file in XML
application/vnd.google-earth.kmz IANA registration [26] Google Earth file
application/msword TANA registration [27] Microsoft Word file
application/vnd.ms-excel IANA registration [28] Microsoft Excel file

application/vnd.ms-powerpoint
application/vnd.oasis.opendocument.graphics

application/vnd.oasis.opendocument.
presentation

application/vnd.oasis.opendocument.
spreadsheet

application/vnd.oasis.opendocument.text

IANA registration [29]
IANA registration [30]
IANA registration [31]

TANA registration [32]

IANA registration [33]

Microsoft PowerPoint file
OpenDocument Graphics

OpenDocument Presentation

OpenDocument Spreadsheet

OpenDocument Text

130

CHAPTER 4 © SERVING AND CONFIGURATION

It is highly probable that nonstandardized MIME types associated with widely used file formats will become
registered in the near future. The application/x-dvi represents device-independent documents, which is not a
standard. The MIME type of LaTeX files, application/x-1latex, is not standardized yet either, similar to the widely
adopted media type, application/x-shockwave-flash used for Adobe Flash. The application/x-rar-compressed
MIME type of RAR archives are also still not standardized.

Audio Media Types

Table 4-3 summarizes the most common audio MIME types.

Table 4-3. Common Audio Media Types

Media Type Specification Description

audio/mpeg RFC 3003 [34] MPEG audio, for example, MP3
audio/ogg RFC 5334 [13] Ogg Vorbis, Flac, and other audio
audio/vorbis RFC 5215 [35] Vorbis Encoded Audio
audio/x-ms-wma MS KB 288102 [36] Windows Media Audio
audio/vnd.wave RFC 2361 [37] WAV audio

Image Media Types

Table 4-4 summarizes the most common image MIME types.

Table 4-4. Common Image Media Types

Media Type Specification Description

image/gif RFC 2045 [15], RFC 2046 [12] GIF image

image/jpeg RFC 2045 [15], RFC 2046 [12] JPEG image

image/png RFC 2083 [38]; IANA registered [39] PNG image

image/svg+xml In: SVG Tiny 1.2 Appendix M [40] SVG vector image
image/tiff RFC 3302 [41] TIFF image
image/vnd.microsoft.icon IANA registered [42] ICO image (icon)

131

CHAPTER 4 © SERVING AND CONFIGURATION

Multipart Object Media Types

Table 4-5 summarizes the most common multipart object media types.

Table 4-5. Common Multipart Object Media Types

Media Type Specification Description
multipart/mixed RFC 2045 [15], RFC 2046 [12] MIME e-mail
multipart/alternative RFC 2045 [15], RFC 2046 [12] MIME e-mail

multipart/related RFC 2387 [43] MIME e-mail; used by MHTML (HTML
mail)
multipart/form-data RFC 2388 [44] MIME web form

multipart/signed RFC 1847 [45] Digital signature
multipart/encrypted RFC 1847 [45] Encrypted message
Text Media Types

Table 4-6 summarizes the most common text media types.

Table 4-6. Common Text Media Types

Media Type Specification Description

text/css RFC 2318 [46] Cascading Style Sheets (CSS)

text/csv RFC 4180 [47] Comma-separated values

text/html REC 2854 [48] HTML

text/javascript RFC 4329 [9] JavaScript; obsoleted in favor of application/javascript
text/plain RFC 2046 [12] RFC 3676 [49] Textual data

text/xml RFC 3023 [3] Extensible Markup Language

Video Media Types

Table 4-7 summarizes the most common video media types.

Table 4-7. Common MIME Types for Video

Media Type Specification Description

video/mpeg RFC 2045 [15], RFC 2046 [12] MPEG-1 video

video/mp4 RFC 4337 [50] MP4 video

video/ogg RFC 5334 [13] Ogg Theora or other video
video/quicktime TANA registered [51] QuickTime video
video/x-ms-wmv MS KB 288102 [36] Windows Media Video

132

CHAPTER 4 © SERVING AND CONFIGURATION

Serving XHTML

There are two approaches for serving XHTML, both of which have their advantages and disadvantages. They are
described in the following sections.

Serving XHTML as HTML

In the early days of the Web, HTML was the exclusive markup language. After several years, new innovations appeared
that could not have been covered by HTML. XML rules have been added to HTML, creating XHTML, a new line of
markup languages. These best practices are the rules applied when converting HTML documents to XHTML, as
discussed earlier in Chapter 3.

However, the vocabulary of HTML 4.01 has been more or less preserved; thus, it is similar to that of XHTML 1.0.
Consequently, XHTML documents can be served as HTML to rendering engines. This approach provides backward
compatibility. Media types can be used to request browsers to handle XHTML as HTML instead of XML. If the media
type of an XHTML document is defined as text/html, the rendering engine will parse the web page as if it were
HTML. If the media type is given as application/xhtml+xml, browsers will process the document as XML.

Several server and server-side scripting platforms (PHP, ASP, and so on) apply the text/html media type for
web content by default. The “dirty secret” of XHTML is that several browsers with an XML parser treat documents
served as text/html with XHTML syntax and DOCTYPE as HTML.? But backward compatibility comes at a price: the
impressive features of XML cannot be used at all in XHTML served this way. And what is the point of applying strict
rules if documents cannot use their full potential? Where backward compatibility is not a major concern, the solution
is to serve XHTML as XML.

Serving XHTML as XML

While code quality strongly depends on markup structure and correctness, the reliability of rendering is also determined
by the browser. The browsers’ behavior of refusing to render invalid XHTML markup might seem frustrating; however,
the browsers have a really good reason to do so. Browsers process those HTML documents that contain markup errors by
guessing the intentions of the content author or web designer, often resulting in undesirable layout and poor styling.

There are scenarios where errors cannot be tolerated. In scientific publishing, for example, the representation of
mathematical equations should be reliable. If such documents are published on the Web with MathML embedded in
XHTML, errors cannot be tolerated because the consequences can cost millions or be fatal. This is the main reason for
the extreme error sensitivity of XML parsers.

Being an XML language family, XHTML is meant to be served as XML to leverage all the benefits of XML.
However, it also involves a serious risk. Web documents served as application/xhtml+xml request browsers to
process them according to the rules of XML. Since invalid XHTML markup is not rendered at all in web browsers,
extended care should be taken when serving XHTML as XML. One simple character at the wrong location in the
source code results in an XML parsing error message instead of the web page content (as already hinted in Chapter 1).
This is one of the reasons why HTML has always been preferred by most content authors and web designers. However,
you should not be afraid of writing pure XHTML code. If you learn how to use the practices described in the previous
chapter, you will be able to create not only error-free XHTML documents but also any kind of structured markup.

Although modern browsers support the application/xhtml+xml MIME type, some older browsers do not. One of
the options to preserve backward compatibility with older browsers and support advanced XML applications for modern
ones is the technique called content negotiation. It can be done through . htaccess* settings or using server-side scripting
languages.

*Real XML parsers such as that of Firefox or Safari consider the MIME type of documents (as sent by the server) rather than file
syntax and DOCTYPE only.
4A common configuration file on web servers such as Apache. Note that the file begins with a period and has no extension.

133

CHAPTER 4 © SERVING AND CONFIGURATION

The HTTP specification defines the mechanism for serving different versions of the same resource [1]. Document
types, document languages, and image types are some examples [52]. The preferred and acceptable document
format(s)—in our case, the preference between HTML and XHTML files—can be defined in the HTTP header, as
shown in Listing 4-4.

Listing 4-4. Content Negotiation in the HTTP Header

Accept: text/html, application/xhtml+xml, application/xml; g=0.9, */*; =0.8

Using the previous example, the browser can specify that HTML and XHTML are preferred to XML. The
“relative quality parameter” (q) and its value (qvalue) are considered as follows. All items without a specified
preference value get the default value 1 (in this case text/html and application/xhtml+xml). The specified value for
application/xmlis 0.9, and all the other formats 0. 8. The precedence values ordered in descending order reveal the
actual precedence, in other words, 1 for text/html and application/xhtml+xml, 0.9 for application/xml, and 0.8
for any other content types.

On Apache servers, the directive shown in Listing 4-5 should be added to your . htaccess (or httpd.conf) file to
set the HTTP headers required for the correct MIME type.

Listing 4-5. Preference Between text/html and application/xhtml+xml

Options +Multiviews
AddType application/xhtml+xml;qs=0.8
AddType text/html;qs=0.9

The “quality of source” parameter (gs), set to 0.8 in our example, determines whether the AddType directive
applies the specified MIME type. Since the gs value for application/xhtml+xml is smaller than that of text/html,
application/xhtml+xml will be used by compliant browsers only; otherwise, the preferred version will be the MIME
type text/html.

Content negotiation can also be implemented in server-side scripting languages such as PHP (Listing 4-6), ASP
(Listing 4-7), and C# (Listing 4-8).

Listing 4-6. Content Negotiation in PHP

$accept = $_SERVER["HTTP_ACCEPT"];
$ua = $_SERVER["HTTP_USER_AGENT"];
if (isset($accept) && isset($ua)) {
if (stristr($accept, "application/xhtml+xml") || stristr($ua, "W3C Validator")) {
header("Content-Type: application/xhtml+xml");
}

}

Listing 4-7. Content Negotiation in ASP

Dim strAccept, strUA

strAccept = Request.ServerVariables("HTTP_ACCEPT").Item

strUA = Request.ServerVariables("HTTP_USER_AGENT").Item

If InStr(1, strAccept, "application/xhtml+xml") > 0 Or InStr(1, strUA, "W3C Validator") > 0
Then Response.ContentType = "application/xhtml+xml"

End If

134

CHAPTER 4 © SERVING AND CONFIGURATION

Listing 4-8. Content Negotiation in C# in ASP .NET

string accept = Request.ServerVariables["HTTP_ACCEPT"];
string ua = Request.ServerVariables["HTTP_USER_AGENT"];
if (accept != null && ua != null) {
if (accept.IndexOf("application/xhtml+xml") >=0 || ua.IndexOf("W3C Validator") »>= 0) {
Response.ContentType = "application/xhtml+xml";
}
}

The previous codes perform content negotiation with their own syntax. In PHP, for example, the server
variables contained in the $_SERVER array are used to evaluate the HTTP Accept header of the user agent and set the
appropriate MIME type via the header function (Listing 4-6).

URIs, URLs, and URNs

A Uniform Resource Identifier (URI) is a character string that identifies a name or a resource on the Internet (RFC 2396
[53]). URIs can be classified as Uniform Resource Locators (URLs; RFC 1738 [54]), Uniform Resource Names (URNs),
or both. A URN defines the identity of a resource, while the URL provides a method for finding it (including protocol
and path). URIs are often used incorrectly as the synonym for URL, although URI is a wider term (RFC 3305 [55]).
Both the URN and the URL are subsets of URI, but they are generally disjoint sets.

The best-known examples for URLs are the web site addresses on the World Wide Web. Listing 4-9 shows the
general URL syntax.

Listing 4-9. URL Syntax

protocol://domain:port/path?query string#fragment identifier

The protocol (scheme name) is followed by a colon. The other parts of URLs depend on the scheme being used.
Usually there is a domain name or an IP address, an optional port number, and an optional path to the resource
or script. Programs such as PHP or CGI scripts might have a query string. The end of the URL can be an optional
fragment identifier.

Since many of these sections are optional, one or more of them are omitted. Listing 4-10 shows an example,
where http is the protocol, www.masteringhtml5css3.comis the domain, and the path leads to the shop directory.

Listing 4-10. A Typical URL
http://www.masteringhtml5css3.com/shop/

URI references are widely used in markup languages, for example, as the attribute value of the href attribute on
the a element in HTML or as the system identifier after the SYSTEM keyword in an XML DTD.

Persistent URIs

Everyone knows the frustrating feeling when a web site address typed into the address bar of the browser is not
available, or when clicking on a hyperlink generates a File not found error.

There are many reasons why URIs can be temporarily or permanently unavailable. The simplest reason is that
the requested files have been moved to another folder or they have removed from the server. Another reason is
that technologies applied on the server have been changed. For example, a company used CGI scripts but recently
changed to Perl, and the URIs of the files located in the cgi-bin directory have become obsolete.

135

http://www.masteringhtml5css3.com/
http://www.masteringhtml5css3.com/shop/

CHAPTER 4 © SERVING AND CONFIGURATION

There are only a few cases when it is acceptable to discontinue a web address, such as if the company or
organization has been closed. Unless there is a really good reason to do so, we addresses should not be changed.

Poorly designed URIs are responsible for a large share of dead links on the Web. While challenging, URIs can be
designed in a way that there will be no need to change them for the years to come.

Designing URIs

URIs can be designed to be persistent by minimizing the information provided in them [56]. The author of an updated
document can be different from that of the original one, and thus the author should not be included. The subject
should also be eliminated since it changes very fast. For example, a web technology blog should apply the directory
name markup instead of the names of exact technologies that are currently the most up-to-date one (HTML5). Directory
names that indicate the status of documents such as draft or latest should not be used in URIs simply because
document status changes over time. A persistent URI is required for the latest version of each document.

Some parts of a web site might be restricted to members only. The access should also be eliminated from URIs
because documents might be moved from the private section to the public one, or vice versa.

The most frequently provided needless information in URISs is the file extension. Technologies and tools that are
currently considered as the most advanced will probably change in the near future, or the developer might change
the applied technologies. Changed URIs can affect not only the findability of web pages or web page components but
also your maintenance tasks. Carefully selected directory names are logical and seldom should be changed in the
references in the markup.

Tip Use the name script or scripts for the directory where you store the script files of a web site instead of php or
javascript, because if you adopt further scripting languages later, the URIs in the files of the site will reflect a specific
language rather than a common name. Similarly, the directory name style or styles is more practical than css or xs1,
and the name news or feed is more fortunate than rss or atom. The name images is better than jpg, and a doc or docs
directory can hold a variety of documents from PDF to Word documents, not just a certain type.

Directory names that indicate software mechanisms such as cgi-bin should also be eliminated from URIs.
They might change. Topic names, company sections, access levels, or security levels are also inappropriate for URIs.
Classifications can also change. The creation date is constant so it can be included in web addresses, however, dates
are not the best strings for SEO. Keep in mind that multiple web servers can be hidden behind an apparent server with
proxying and redirection.

Beyond providing descriptive names for users and machines, URIs should be simple, stable, and manageable.
Properly designed URIs are fundamental parts of the Semantic Web [57].

Domain Names

Web resources can be located by unique IP addresses. However, they are hard to remember. Consequently, domain
names are used instead in most cases. Figure 4-1 shows the relationship between a domain name and a URL;

www . example.comis a subdomain of the node example.com, which is the subdomain of the com domain (stands for
commercial). The domain name syntax rules are defined by RFC 1035 [58], RFC 1123 [59], and RFC 2181 [60].

136

CHAPTER 4 © SERVING AND CONFIGURATION

Uniform Resource Locator (URL)

F’_____—///______“W

Scheme name Domain
(protocol) name
N A
g R (.]

http://www.example.com

- —

Prefix Top-level domain
(World Wide Web (TLD)
subdomain)

Figure 4-1. The domain within the URL

The tree of subdomains can contain a maximum of 127 levels. Each label may contain up to 63 characters.
According to RFC 2181, the full length of a domain name is 253 characters.

Conventional domain names cannot contain Latin alphabet-based characters with diacritics, non-Latin
characters, or scripts. With the introduction of Internationalized Domain Names (IDN), it is possible to represent
names and words in several languages in native alphabets and scripts.

Domain names should be thought over before they are registered. They should be easy to remember and easy to
spell [61]. There are also SEO considerations. While the name of a person generally remains the same over the years,
a product or technology name can change. For example, the owner of a DVD store has probably changed from DVD
sales to Blu-ray sales with the beginning of the HD era. However, the domain name containing the word DVD still
represents the old technology. If the word movie or films would have been used, the domain name would not have
become obsolete. Finding an appropriate domain name, which is still free and contains popular keywords, can be a
real challenge, though.

No WWW

Although the www subdomain is very common on the Web, some webmasters consider it outdated or inappropriate
[62]. Similar to mail servers that do not use the request@mail.example.com format, web servers can allow access to
web pages though the main domain.

On Apache servers, the www. can be removed from the URIs within the domain by adding the code in Listing 4-11
to the . htaccess file. Its name stands for hypertext access. This file provides directory-level access control that can be
used for authorization, authentication, redirection, blocking, customized error response, and cache control.

Listing 4-11. Removing www. from URIs with .htaccess Configuration

RewriteEngine On
RewriteCond %{HTTP_HOST} “www\.example\.com$ [NC]
RewriteRule ~(.*)$ http://example.com/$1 [R=301,L]

This code makes it unnecessary to remove the waw. from every hyperlink of the web site one by one. However,

a large share of webmasters disagrees with removing the www. from URIs [63]. According to their reasoning, www. is a
reminder that the World Wide Web (WWW) is just one of the many services on the Internet.

137

CHAPTER 4 © SERVING AND CONFIGURATION

Tip The previous code is usually not needed since an unlimited number of subdomains are generally included in the
domain registration price. It is a common practice that domain owners point both the main domain and the www subdo-
main to the same directory of the web server. In other words, www.domain. com is the preferred URI, and users retrieving
domain.com are redirected to www.domain.com. Doing so, users can access the same content with and without www.

Base href

The previous sections discussed absolute URLs. Since many web page components are located in the subdirectories
of the root directory associated with the domain, relative URLs can also be used. They are shorter, however, and not
always convenient. For example, if the hierarchy is too deep and the style sheets are located in a styles directory
three directories above a web page, the path becomes rather long (Listing 4-12).

Listing 4-12. A Long Path in a Complex Web Site
<link rel="stylesheet" type="text/css" href="../../../styles/main.css" />

While the parent directory references and the delimiters (../../../) can be shortened by referring to the root
directory (/) instead, this can be omitted by declaring all locations according to the root directory (Listing 4-13).5

Listing 4-13. Setting a Base Directory for a Web Site

<base href="http://example.com/" />

The specified URL is used as the base for all relative URLs in the document. By adding the base element to the
document head, the original example can be simplified (Listing 4-14).

Listing 4-14. A Short Path According to the Base Directory

<link rel="stylesheet" type="text/css" href="styles/main.css" />

Eliminating File Extensions

One of the key techniques for creating permanent URIs is to remove file extensions. On a file-based web server such
as Apache, this can be done by content negotiation [64]. We used content negotiation earlier in the chapter to set the
precedence between MIME types; now we will use it for creating a precedence order for file types. As a result, file
extensions can be kept on the files but can safely be removed from links [65].

Using a type map file, Apache servers can check the directory for all files with the given name and any extension
and select the appropriate one (the one with the highest precedence). A type map file takes precedence over the
extension of the file (even if the special search for implicit file name pattern match, Multiviews, is enabled). The
precedence of a higher-quality image file variant can be set by the gs parameter. In Listing 4-15, the file logo. svg will
be used for all URIs that refer to the file without extension. If there is no SVG version of that file in the directory, the
PNG version will be used.

SStarting the file path with a / is relative while defining a base directory is absolute referencing.

138

CHAPTER 4 © SERVING AND CONFIGURATION

Listing 4-15. Precedence Order of File Types Set by the qs Parameter
URI: logo

URI: logo.svg
Content-type: image/svg+xml; s=0.8

URI: logo.png
Content-type: image/jpeg; qs=0.5

The gs value varies from 0.000 to 1.000. Variants with a gs value of 0.000 will never be chosen. Entries of the
different variants are separated by blank lines that cannot be used within entries.

Explicitly setting paths to specific file variants is not feasible for larger sites with hundreds or thousands of files.
The second option for content negotiation on Apache servers is to use the MultiViews search feature, where the server
performs an implicit file name pattern match within directories and chooses from the results. MultiViews is a fine
option for eliminating file extensions that contributes to easy maintenance (in case new file versions will be used) and
optimal markup (because of shorter links). MultiViews can be enabled in the server configuration or . htaccess file
(Listing 4-16).

Listing 4-16. MultiViews Enabled

<Directory /home/www/example/htdocs>
Options + MultiViews
</Directory>

Now when the server receives a request for /images/logo and /images/logo does not exist, the server searches
inside the images directory looking for all files named logo. *, assigning MIME types based on the extension of each
file. The server then chooses the best match based on the preferences and delivers that resource. For example, let’s
assume that the images directory contains the following file variants: logo.svg, logo.png, and logo.gif. When there
is a query for /images/logo, the precedence order will be considered in the answer to the query (Listing 4-17).

Listing 4-17. The Precedence Order of Image File Formats

Accept: image/svg+xml; q=.8, image/png; q=.5, image/gif;q=0.2, */*;g=0.1

When MultiViews is enabled, the server will search the referenced directory and deliver the image with the
highest quality (thanks to the highest precedence), in other words, logo. svg. This is achieved in a way that URIs in
HTML/XHTML files do not need to contain the file extension, which makes maintenance easier and reduces file size.
URIs can now omit the technology behind the resource. Since example.com/images/logo.svg becomes
example.com/images/logo, the logo embedding used throughout the site becomes <img src="logo"
alt="Company logo"> instead of .

While a URI ending in . html or . php will probably remain the same in the near future, even widely used file types
might soon become obsolete or less frequently used within a few years. Flash animations (. swf) are often replaced by
HTML5 markup (.html), a PNG image (.png) by its SVG equivalent (. svg), and so on. As a consequence, all currently
created internal links of the site as well as the external links on other sites will be invalid.

The World Wide Web Consortium has mastered eliminating extensions in links. Even images of the site are
provided without extension in links (the files have extensions), so the links pointing to the file in thousands of web
documents should not be modified if the image will be changed, as, for example, from logo.png to logo.svg.

References with extensions remain usable; however, they do not allow the server to select the best of currently
available and future formats. With a type map declaration or with enabled MultiViews search [66], on the other hand,
raster images used for ages can be updated to their new, SVG versions in no time. The file name without the extension
is content-type generic, while file names with extensions are content-type specific.

139

CHAPTER 4 © SERVING AND CONFIGURATION

There is a special file supported by all web servers, called index.html. When users do not specify a file in the
address bar, browsers open this file by default (with content negotiation, the extension can be not only . html but
also .php, .jsp, .aspx, and so on). This is the reason why web sites can be opened without typing the file name and
extension to the end of the domain name such as www.example.com/index.html. This server behavior can also be
used for creating permanent access to web pages within a site. Instead of adding the about.html, services.html,
portfolio.html, and contact.html files to the root directory of the domain, they can be provided as index.html
files within their own subdirectories. As a result, the pages of the site can be accessed as www.example.com/about/,
www.example.com/services/, and so on, without file extensions. Naturally, original file names can also be kept if the
default file of each directory is set on the server. However, in that case, server settings should also be migrated if the
hosting provider of the web site is changed.

Namespace URIs

Namespace URIs are used to uniquely identify an XML application and separate it from other XML languages. The
prefixes associated with a namespace URI are handy when you want to associate an element or an attribute with a
particular XML namespace. Although a namespace URI does not necessarily point to a particular document, many
do, such as the http://www.w3.0rg/1999/xhtml namespace used by XHTML 1.x/5 (discussed earlier in Chapter 3).
The previous namespace URI will let the XML parser know that the elements and attributes used in the document are
from the XHTML vocabulary.

Note Some namespace URIs point to the web page of the corresponding specification or standard, but many do not
and are strings only.

Even if they are generally designed stable, namespaces might evolve over time [67]. To eliminate the problem,
namespaces are often registered as Persistent Uniform Resource Locators at purl.org [68]. If the resource they point to
changes, the URI can be modified in the profile settings on purl.org, which will provide the up-to-date URI with the
persistent address.

The XML namespaces are standardized according to the corresponding W3C Recommendation [69].

Summary

In this chapter, you learned about the general structure of an HTTP header, which provides information about web
documents sent by the server. You know the most common MIME types and their declaration by now, which can
be used to ensure that browsers will properly handle your web site components. You also know how to use content
negotiation on the server to eliminate file extensions, which makes future maintenance easier. Furthermore, you
learned how to serve XHTML properly, which makes all the difference, because XHTML documents served as
application/xhtml+xml will be parsed by an XML parser rather than a much less error-sensitive HTML parser. You
know how to design URIs in order to maximize their persistence.

By now you are ready to create standard-compliant markup and use the proper settings for serving the files of
your web sites. In the next chapter, you will learn techniques for separating web site content from its presentation by
using Cascading Style Sheets (CSS).

140

http://www.w3.org/1999/xhtml
https://purl.org
https://purl.org

CHAPTER 4 © SERVING AND CONFIGURATION

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Nottingham M, Mogul J (2005) HTTP Header Field Registrations. RFC 4229. The Internet
Society. http://tools.ietf.org/html/rfc4229. Accessed 19 October 2014

IANA (2014) MIME Types. The Internet Assigned Numbers Authority.
http://www.iana.org/assignments/media-types/. Accessed 19 October 2014

Murata M, Laurent S, Kohn D (2001) XML Media Types. The Internet Society.
http://tools.ietf.org/html/rfc3023. Accessed 19 October 2014

Baker M, Stark P (2002) The ‘application/xhtml+xml’ Media Type. The Internet Society.
http://tools.ietf.org/html/xrfc3236. Accessed 19 October 2014

Masayasu I (2002) XHTML Media Types. World Wide Web Consortium.
http://www.w3.0rg/TR/2002/NOTE-xhtml-media-types-20020801/. Accessed 19 October 2014

Nottingham M, Sayre R (eds) (2005) The Atom Syndication Format. The Internet Society.
http://tools.ietf.org/html/rfc4287. Accessed 19 October 2014

IANA (2002) Application for Media Type. The Internet Assigned Numbers Authority.
http://www.iana.org/cgi-bin/mediatypes.pl. Accessed 19 October 2014

Gregorio J, de Hora B (eds) (2007) The Atom Publishing Protocol. Proposed standard. The
Internet Society. http://tools.ietf.org/html/rfc5023. Accessed 19 November 2014

Hoehrmann B (2006) Scripting Media Types. The Internet Society.
http://tools.ietf.org/html/rfc4329. Accessed 19 October 2014

Crockford D (2006) The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627. The Internet Society. http://tools.ietf.org/html/rfc4627. Accessed
19 October 2014

Carlisle D, Ion P, Miner R (eds) et al (2014) Selection of Media Types for MathML
Instances. In: Mathematical Markup Language (MathML) Version 3.0 2*¢ edn. W3C
Recommendation. World Wide Web Consortium. http://www.w3.org/TR/MathML3/
appendixb.html. Accessed 19 October 2014

Freed N, Borenstein N (1996) Octet-Stream Subtype. In: Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types. RFC 2046. The Internet Society.
http://tools.ietf.org/html/rfc2046. Accessed 19 October 2014

Goncalves I, Pfeiffer S, Montgomery C (2008) Ogg Media Types. RFC 5334. The Internet
Society. http://tools.ietf.org/html/rfc5334. Accessed 19 October 2014

Taft E, Pravetz J, Zilles S, Masinter L (2004) The application/pdf Media Type. RFC 3778. The
Internet Society. http://tools.ietf.org/html/rfc3778. Accessed 19 October 2014

Freed N, Borenstein N (1996) Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies. RFC 2045. Internet Engineering Task Force.
http://tools.ietf.org/html/rfc2045. Accessed 19 October 2014

Swartz A (2004) The application/rdf+xml Media Type Registration. RFC 3870. The Internet
Society. http://www.ietf.org/rfc/rfc3870.txt. Accessed 19 October 2014

IANA (2007) Registration of the MIME type application/rtf. Internet Assigned Numbers
Authority. http://www.iana.org/assignments/media-types/application/rtf. Accessed
19 October 2014

141

http://tools.ietf.org/html/rfc4229
http://www.iana.org/assignments/media-types/
http://tools.ietf.org/html/rfc3023
http://tools.ietf.org/html/rfc3236
http://www.w3.org/TR/2002/NOTE-xhtml-media-types-20020801/
http://tools.ietf.org/html/rfc4287
http://www.iana.org/cgi-bin/mediatypes.pl
http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc4329
http://tools.ietf.org/html/rfc4627
http://www.w3.org/TR/MathML3/appendixb.html
http://www.w3.org/TR/MathML3/appendixb.html
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc5334
http://tools.ietf.org/html/rfc3778
http://tools.ietf.org/html/rfc2045
http://www.ietf.org/rfc/rfc3870.txt
http://www.iana.org/assignments/media-types/application/rtf

CHAPTER 4

142

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

SERVING AND CONFIGURATION

Levinson E (1995) SGML Media Types. Internet Assigned Numbers Authority.
http://www.rfc-editor.org/rfc/rfc1874.txt. Accessed 19 October 2014

Hoschka P (2006) The application/smil and application/smil+xml Media Types. REC 4536.
The Internet Society. http://www.ietf.org/rfc/rfc4536.txt. Accessed 19 October 2014

Baker M, Nottingham M (2004) The “application/soap+xml” media type. RFC 3902. The
Internet Society. http://tools.ietf.org/html/rfc3902. Accessed 19 October 2014

Prud’hommeaux E, Seaborne A (2007) Internet Media Type, File Extension and Macintosh
File Type. In: SPARQL Query Language for RDFE. World Wide Web Consortium.
http://www.w3.0rg/TR/2007/CR-1df-sparql-query-20070614/#mediaType. Accessed 19
October 2014

Beckett D, Broekstra J (eds) (2007) Internet Media Type, File Extension and Macintosh File
Type. In: SPARQL Query Results XML Format. World Wide Web Consortium.
http://www.w3.0rg/TR/2007/CR-rdf-sparql-XMLres-20070925/#mime. Accessed 19
October 2014

Kay M (ed) (2007) The XSLT Media Type. In: XSL Transformations (XSLT) Version 2.0.
W3C Recommendation. World Wide Web Consortium. http://www.w3.0rg/TR/2007/REC-
xs1t20-20070123/#media-type-registration. Accessed 19 October 2014

Paul Lindner (ed) (1993) Registration of the new MIME Content-Type/Subtype
application/zip. Internet Assigned Numbers Authority. http://www.iana.org/
assignments/media-types/application/zip. Accessed 19 October 2014

Ashbridge M (2006) Registration of the MIME type application/vnd.google-earth.kml+xml.
Internet Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
application/vnd.google-earth.kml+xml. Accessed 19 October 2014

Ashbridge M (2006) Registration of the MIME type application/vnd.google-earth.kmz.
Internet Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
application/vnd.google-earth.kmz. Accessed 19 October 2014

Lindner P (1993) Registration of the Media Type application/msword. Internet Assigned
Numbers Authority. http://www.iana.org/assignments/media-types/application/
msword. Accessed 19 October 2014

Gill SS (1996) Registration of the MIME type application/vnd.ms-excel. Internet Assigned
Numbers Authority. http://www.iana.org/assignments/media-types/application/
vnd.ms-excel. Accessed 19 October 2014

Gill SS (1996) Registration of the MIME type application/vnd.ms-powerpoint. Internet
Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
application/vnd.ms-powerpoint. Accessed 19 October 2014

Schubert S (2009) The application/vnd.oasis.opendocument.graphics MIME type. Internet
Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
application/vnd.oasis.opendocument.graphics. Accessed 19 October 2014

Schubert S (2009) The application/vnd.oasis.opendocument.presentation MIME type.
Internet Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
application/vnd.oasis.opendocument.presentation. Accessed 19 October 2014

Schubert S (2009) The application/vnd.oasis.opendocument.spreadsheet MIME type.
Internet Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
application/vnd.oasis.opendocument.spreadsheet. Accessed 19 October 2014

http://www.rfc-editor.org/rfc/rfc1874.txt
http://www.ietf.org/rfc/rfc4536.txt
http://tools.ietf.org/html/rfc3902
http://www.w3.org/TR/2007/CR-rdf-sparql-query-20070614/#mediaType
http://www.w3.org/TR/2007/CR-rdf-sparql-XMLres-20070925/#mime
http://www.w3.org/TR/2007/REC-xslt20-20070123/#media-type-registration
http://www.w3.org/TR/2007/REC-xslt20-20070123/#media-type-registration
http://www.iana.org/assignments/media-types/application/zip
http://www.iana.org/assignments/media-types/application/zip
http://www.iana.org/assignments/media-types/application/vnd.google-earth.kml+xml
http://www.iana.org/assignments/media-types/application/vnd.google-earth.kml+xml
http://www.iana.org/assignments/media-types/application/vnd.google-earth.kmz
http://www.iana.org/assignments/media-types/application/vnd.google-earth.kmz
http://www.iana.org/assignments/media-types/application/msword
http://www.iana.org/assignments/media-types/application/msword
http://www.iana.org/assignments/media-types/application/vnd.ms-excel
http://www.iana.org/assignments/media-types/application/vnd.ms-excel
http://www.iana.org/assignments/media-types/application/vnd.ms-powerpoint
http://www.iana.org/assignments/media-types/application/vnd.ms-powerpoint
http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.graphics
http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.graphics
http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.presentation
http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.presentation
http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.spreadsheet
http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.spreadsheet

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

CHAPTER 4 © SERVING AND CONFIGURATION

Schubert S (2009) The application/vnd.oasis.opendocument.text MIME type. Internet
Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
application/vnd.oasis.opendocument.text. Accessed 19 October 2014

Nilsson M (2000) The audio/mpeg Media Type. RFC 3003. The Internet Society.
http://tools.ietf.org/html/rfc3003. Accessed 19 October 2014

Barbato L (2008) RTP Payload Format for Vorbis Encoded Audio. RFC 5215. The Internet
Society. http://tools.ietf.org/html/rfc5215. Accessed 19 October 2014

Microsoft Support (2003) MIME Type Settings for Windows Media Services. KB 288102.
Microsoft Corporation. http://support.microsoft.com/kb/288102. Accessed 19 October
2014

Fleischman E (1998) WAVE and AVI Codec Registries. RFC 2361. The Internet Society.
http://tools.ietf.org/html/rfc2361. Accessed 19 October 2014

Boutell T et al (1997) PNG (Portable Network Graphics) Specification Version 1.0. RFC
2083. Internet Engineering Task Force. http://tools.ietf.org/html/rfc2083. Accessed
14 November 2014

Randers-Pehrson G (1996) Registration of the Media Type image/png. Internet Assigned
Numbers Authority. http://www.iana.org/assignments/media-types/image/png.
Accessed 19 October 2014

Andersson O et al (2008) Media Type Registration for image/svg+xml. In: Scalable Vector
Graphics (SVG) Tiny 1.2 Specification. W3C Recommendation. http://www.w3.0rg/TR/
SVGTiny12/mimereg.html. Accessed 19 October 2014

Parsons G, Rafferty J (2002) Tag Image File Format (TIFF) - image/tiff MIME Sub-type
Registration. RFC 3302. The Internet Society. http://tools.ietf.org/html/rfc3302.
Accessed 19 October 2014

Butcher S (ed) (2003) Vendor Tree - vind.microsoft.icon. Internet Assigned Numbers
Authority. http://www.iana.org/assignments/media-types/image/vnd.microsoft.icon.
Accessed 19 October 2014

Levinson E (1998) The MIME Multipart/Related Content-type. RFC 2387. The Internet
Society. http://tools.ietf.org/html/rfc2387. Accessed 19 October 2014

Masinter L (1998) Returning Values from Forms: multipart/form-data. RFC 2388. The
Internet Society. http://tools.ietf.org/html/rfc2388. Accessed 19 October 2014

Galvin J, Murphy S, Crocker S, Freed N (1995) Security Multiparts for MIME: Multipart/
Signed and Multipart/Encrypted. RFC 1847. The Internet Engineering Task Force.
http://tools.ietf.org/html/rfc1847. Accessed 19 October 2014

Lie H, Bos B, Lilley C (1998) The text/css Media Type. RFC 2318. The Internet Society.
http://tools.ietf.org/html/rfc2318. Accessed 19 October 2014

Shafranovich Y (2005) Common Format and MIME Type for Comma-Separated Values
(CSV) Files. REC 4180. The Internet Society. http://tools.ietf.org/html/xrfc4180.
Accessed 19 October 2014

Connolly D, Masinter L (2000) The ‘text/html’ Media Type. RFC 2854. The Internet Society.
http://tools.ietf.org/html/rfc2854. Accessed 19 October 2014

Gellens R (2004) The Text/Plain Format and DelSp Parameters. The Internet Society.
http://tools.ietf.org/html/xfc3676. Accessed 19 October 2014

143

http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.text
http://www.iana.org/assignments/media-types/application/vnd.oasis.opendocument.text
http://tools.ietf.org/html/rfc3003
http://tools.ietf.org/html/rfc5215
http://support.microsoft.com/kb/288102
http://tools.ietf.org/html/rfc2361
http://tools.ietf.org/html/rfc2083
http://www.iana.org/assignments/media-types/image/png
http://www.w3.org/TR/SVGTiny12/mimereg.html
http://www.w3.org/TR/SVGTiny12/mimereg.html
http://tools.ietf.org/html/rfc3302
http://www.iana.org/assignments/media-types/image/vnd.microsoft.icon
http://tools.ietf.org/html/rfc2387
http://tools.ietf.org/html/rfc2388
http://tools.ietf.org/html/rfc1847
http://tools.ietf.org/html/rfc2318
http://tools.ietf.org/html/rfc4180
http://tools.ietf.org/html/rfc2854
http://tools.ietf.org/html/rfc3676

CHAPTER 4

144

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.
63.

64.

SERVING AND CONFIGURATION

Lim Y, Singer D (2006) MIME Type Registration for MPEG-4. RFC 4337.
http://tools.ietf.org/html/rfc4337. Accessed 19 October 2014

Lindner P (ed) (1993). Registration of the MIME content-type/subtype video/quicktime.
Internet Assigned Numbers Authority. http://www.iana.org/assignments/media-types/
video/quicktime. Accessed 19 October 2014

Fielding R, Irvine UC, Gettys], Mogul J, Frystyk H, Masinter L, Leach P, Berners-Lee

T (1999) Hypertext Transfer Protocol - HTTP/1.1. World Wide Web Consortium and
The Internet Society. http://www.w3.0rg/Protocols/rfc2616/rfc2616-sec14.html.
Accessed 19 October 2014

Berners-Lee T, Fielding R, Masinter L (1998) Uniform Resource Identifiers (URI): Generic
Syntax. RFC 2396. The Internet Society. http://tools.ietf.org/html/rfc2396. Accessed
19 October 2014

Berners-Lee T, Masinter L, McCahill M (eds) (1994) Uniform Resource Locators (URL).
RFC 1738. The Internet Engineering Task Force. http://tools.ietf.org/html/rfc1738.
Accessed 19 October 2014

Mealling M, Denenberg R (eds) (2002) Report from the Joint W3C/IETF URI Planning
Interest Group: Uniform Resource Identifiers (URIs), URLs, and Uniform Resource Names
(URNS): Clarifications and Recommendations. RFC 3305. The Internet Society.
http://tools.ietf.org/html/rfc3305. Accessed 14 November 2014

Berners-Lee T (1998) Cool URIs don’t change. World Wide Web Consortium.
http://www.w3.0rg/Provider/Style/URI. Accessed 19 October 2014

Sauermann L, Cyganiak R (eds), Ayers D, Volkel M (2008) Cool URIs for the Semantic Web.
World Wide Web Consortium. http://www.w3.0rg/TR/cooluris/. Accessed
19 October 2014

Mockapetris P (1987) Domain names - Implementation and specification. RFC 1035. The
Internet Engineering Task Force. http://tools.ietf.org/html/xrfc1035. Accessed 19
October 2014

Braden R (ed) (1989) Requirements for Internet Hosts - Application and Support. RFC
1123. The Internet Engineering Task Force. http://tools.ietf.org/html/rfc1123.
Accessed 19 October 2014

Elz R, Bush R (1997) Clarifications to the DNS Specification. RFC 2181. The Internet
Engineering Task Force. http://tools.ietf.org/html/rfc2181. Accessed
19 October 2014

Nielsen J (1999) URL as UL Jakob Nielsen. http://www.nngroup.com/articles/url-as-ui/.
Accessed 19 October 2014

No WWW (2012) www. is deprecated. http://no-www.org/. Accessed 19 October 2014

Hampton M (2011) www. is not deprecated. Michael Hampton. http://www.yes-www.org.
Accessed 19 October 2014

Fielding R, Irvine UC, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P, Berners-Lee T
(1999) Content Negotiation. In: Hypertext Transfer Protocol - HTTP/1.1. The Internet
Society. http://www.w3.0rg/Protocols/rfc2616/rfc2616-sec12.html. Accessed

19 October 2014

http://tools.ietf.org/html/rfc4337
http://www.iana.org/assignments/media-types/video/quicktime
http://www.iana.org/assignments/media-types/video/quicktime
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://tools.ietf.org/html/rfc2396
http://tools.ietf.org/html/rfc1738
http://tools.ietf.org/html/rfc3305
http://www.w3.org/Provider/Style/URI
http://www.w3.org/TR/cooluris/
http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc1123
http://tools.ietf.org/html/rfc2181
http://www.nngroup.com/articles/url-as-ui/
http://no-www.org/
http://www.yes-www.org/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html

65.

66.

67.

68.

69.

CHAPTER 4 © SERVING AND CONFIGURATION

TASF (2013) Content Negotiation. Apache HTTP Server Version 2.0. The Apache Software
Foundation. http://httpd.apache.org/docs/2.0/content-negotiation.html. Accessed
19 October 2014

TASF (2013) Apache Module mod_negotiation. The Apache Software Foundation.
http://httpd.apache.org/docs/2.0/mod/mod_negotiation.htmli#typemaps. Accessed
19 October 2014

Berners-Lee T (ed) (2006) Namespace Changes over Time. In: URIs for W3C namespaces.
World Wide Web Consortium. http://www.w3.0rg/2005/07/13-nsuri. Accessed 19
October 2014

OCLC, Zepheira (2014) Persistent Uniform Resource Locators (PURL). OCLC Online
Computer Library Center Inc., Zepheira LLC. http://purl.org. Accessed 19 October 2014

Bray T, Hollander D, Layman A, Tobin R, Thompson HS (eds) (2009) Namespaces in XML
1.0 (Third Edition). W3C Recommendation. World Wide Web Consortium.
http://www.w3.0rg/TR/xml-names/. Accessed 19 October 2014

145

http://httpd.apache.org/docs/2.0/content-negotiation.html
http://httpd.apache.org/docs/2.0/mod/mod_negotiation.html#typemaps
http://www.w3.org/2005/07/13-nsuri
http://purl.org/
http://www.w3.org/TR/xml-names/

CHAPTER 5

Style Sheets

A golden rule in web site standardization is to separate content from appearance. External style sheets should be
preferred to inline styles except when only a small portion of a web page is styled. The syntax and naming convention
of external style sheets and the style attribute values are slightly different. To achieve the highest code quality, the style
sheets must be valid (error-free), and optimized in terms of scope, inheritance, and declaration order.

In this chapter, you will learn frequently used standards for styling web sites, including general CSS grammar
rules and selector syntaxes that are vital for every web site. After examining the differences between properties of
different CSS versions, you will gain a solid understanding of standardization issues and the challenges of providing
backward-compatibility. You will also become familiar with fundamental principles in CSS ruleset optimization.
Furthermore, you will analyze the methods used by rendering engines for determining the styles to apply.

Cascading Style Sheets

Cascading Style Sheets (CSS) is a style sheets language (style language) introduced by W3C. Cascading refers to the
process of determining the priority of styling rules. CSS is used to define the presentational semantics of structured
documents. It provides control over visual as well as aural’ characteristics of HTML and XHTML documents and

their elements. Some typical features are, for example, fonts, colors, backgrounds, margins, borders, and layers. CSS
provides a powerful feature to support more than just visual media and target special browsers running on different
types of devices: media types. CSS supports not only the most commonly used visual media type but also other media
types that can be grouped as follows:

e Aural: Properties for aural browsers. Examples: pitch, pitch-range, play-during, richness,
voice-family.
e Interactive: Properties for devices that allow user interaction. Examples: nav-down, nav-index,

nav-left, nav-right, nav-up.

e Paged and noncontinuous: Properties for the content of documents split into one or more
discrete pages, such as the pages of documents to print. Examples: image-orientation, page,
page-break-before, page-break-inside, page-policy, size.

e Speech: Properties for styling speech. Examples: cue, cue-after, cue-before, mark, mark-after,
mark-before, pause, speak-header, speak-numeral, speak-punctuation, speech-rate, stress.

! Although most styles associated with web documents are visual, CSS supports aural properties as well, including volume,
speaking, pause, cue, spatial properties, and voice characteristics. They are used for aural presentation, such as when a document is
converted to plain text and fed to a screen reader. Beyond improved accessibility, aural style sheets also have a potential in online
education, entertainment, in-car use, and so on.

147

CHAPTER 5 ' STYLE SHEETS

As you will see later in the chapter, most CSS properties are visual properties or can be applied to all media, but
there are many properties designed for a specific media type.

One of the major concepts of CSS is to separate HTML/XHTML content from appearance, in other words, to
distinguish style from structure. Another aim is centralization, which means providing full control over the styles of
multiple documents from a single location.

Although CSS is used primarily for styling (X)HTML web documents, it can also be applied to all kinds of XML
documents, for example XUL or SVG [1]. In SVG, many CSS properties are reused for styling, such as font properties,
text properties, and other visual properties. SVG also uses CSS features such as the CSS syntax, selectors, external
style sheets, cascading, inheritance, and at-rules, each of which will be described later in detail. Since SVG is an XML
application, internal CSS style sheets can be provided as CDATA sections (Listing 5-1).

Listing 5-1. Embedded CSS in SVG

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG August 1999//EN"
"http://www.w3.org/Graphics/SVG/SVG-19990812.dtd">
<svg>
<defs>
<style>
<V[CDATA[main { font-size: 14px; font-family: Georgia, serif; }]]»
</style>
</defs>
<text class="main">Here is my title</text>
</svg>

CSS can even be used for mathematical notations with or without MathML, the markup language discussed in
Chapter 3, which is especially designed for publishing equations and mathematical symbols on the Web [2, 3].

Levels, Profiles, and Modules

The various versions of CSS are often referred as CSS levels. Each CSS level is based on the previous level and adds
new properties and features. The three most significant versions are CSS1, CSS 2.1, and CSS3.

Subsets of at least one level of CSS created for a particular device are called CSS profiles, such as the CSS Print
Profile [4], the CSS TV Profile [5], and the CSS Mobile Profile [6].

The specifications that form CSS3 are called CSS modules.

Caution Profiles are not equal to media types, which were introduced in CSS2.

The three major CSS versions are described in the following sections.

CSS1

CSS Level 1, the first Cascading Style Sheet specification, was published in 1996. It is a W3C Recommendation, but
its development has been closed by W3C [7]. CSS1 introduced styles for font properties, element color, alignment,
tables, margin, border, padding, and positioning. CSS1 properties can be applied to uniquely identified elements or
element groups.

148

http://www.w3.org/Graphics/SVG/SVG-19990812.dtd

CHAPTER 5 * STYLE SHEETS

CSS2 and CSS 2.1

CSS Level 2 was developed as a superset of CSS1 and has been extended with several new features. The most
important ones are layer order (z-index), three types of element positioning (absolute, relative, and fixed), the
aural media type, and bidirectional text.

CSS Level 2 Revision 1, often abbreviated as CSS 2.1 [8], has been the ultimate styling solution on the Web for
many years. CSS 2.1 became a W3C Recommendation in 2011.

CSS3

The development of CSS Level 3 (CSS3) started in 2005. In contrast to further CSS specifications, CSS3 is modularized [9].
The CSS3 modules are described in separate specifications such as Selectors, Media Queries, Text, Backgrounds
and Borders, Colors, 2D Transformations, 3D Transformations, Transitions, Animations, and Multi-Columns. The
modules are in different stages of development and browser implementation. Until recently, only a few modules had
been standardized, such as the Color module [10], the Namespaces module [11], the Selectors module [12], and the
Media Queries module [13].

A variety of new functions and features have been introduced in CSS3 such as border-radius, box-shadow,
background-origin; color declaration in HSL, HSLA, and RGBA; text-shadow; text-overflow; word-wrap; box-sizing;
attribute selectors; transitions; multiple backgrounds; multicolumn layout; Web Fonts; and speech.

Grammar and Conventions

Parsing errors caused by nonexisting properties, incorrect values, malformed declarations, and so on, can be
eliminated by following the proper CSS syntax. The grammar ensures syntactically correct CSS, which makes it
possible for browsers to handle parsing rules, selector, property, value, and unit notations correctly. Although the
fundamental rules are similar, each CSS version has its own syntax [14]. Being a superset of CSS 2.1, CSS3 introduced
additional semantic constraints.

Identifiers and Classes

The ID and class identifiers should always start with a letter. These identifiers correspond to the id and class markup
attributes. Since an element with an id attribute is unique within a web page, ID identifiers can be used to style

a unique element of a page. If the same styles are applied to multiple elements, class identifiers should be used.
Identifier names are case sensitive. Using the letters a-z and the numbers 0-9 is highly recommended, although
underscores and hyphens are also allowed. Names should be meaningful and semantic. Unique names should be
applied.

Units

CSS3 supports both absolute measurement values (Table 5-1) and relative length units, including font-relative and
viewport-relative units.

149

CHAPTER 5 ' STYLE SHEETS

Table 5-1. Absolute CSS Units

Unit Description

in Inch.

cm Centimeter.

mm Millimeter.

pt 1 pointis equal to 1/72 inch.
pc 1 pica is equal to 12 points.
px 1 pixel is a dot on the screen.

Font-relative lengths can be expressed in em, ex, and in CSS3 also in ch or rem (Table 5-2).

Table 5-2. Font-Relative CSS Units

Unit Description

em 1 em is equal to the current font size, which can be used to automatically adapt the font size
proportions to the font size chosen by the user in the browser. The em unit defines the proportion
of the width and height of a given letter with respect to the point size of a given font. This unit

originates in typography.
ex 1 ex is the x-height of a font (approximately half the font size).
ch The used advance measure of the 0 glyph (ZERO, U+0030) of the font used to render the text.
rem The computed value of font-size on the root element.

In CSS3, lengths can also be expressed relative to the viewport size (Table 5-3), which is very useful in
mobile-friendly website design.

Table 5-3. Viewport-Relative CSS3 Units

Unit Description

VW 1% of the width of the initial containing block.
vh 1% of the height of the initial containing block.
vmin The smallest vw and vh.

vmax The largest vw or vh.

Note In spite of this variety, only three of these units are used most of the time: %, em, and px.

150

CHAPTER 5 * STYLE SHEETS

Color Declarations

There are several notations in CSS for declaring colors. A brief overview is provided in the following sections,
which is important because color declaration examples will be used intensively in the demonstrational rulesets
throughout the chapter.

Hexadecimal Notation

Hexadecimal notation is by far the most commonly used notation for declaring colors in CSS. In the RGB color space
used on the Web, any color can be represented by additive color mixing, using the different intensity variants of three
colors: Red, Green, and Blue (RGB). Two hundred and fifty-six shades of the three base colors are sufficient to mix
any color, because any two adjacent shades of red, green, or blue with an intensity difference of 1/256 cannot be
distinguished by the human eye. Since there are 256 shades for each channel, the values vary from 0 to 255 (00 to ff
in hexadecimal notation) per channel; 0 is the darkest shade of the channel, and 255 is the lightest.

The hexadecimal numeral system applies the positional (also known as place-value) notation. In contrast to
the 10 digits of the decimal numeral system, in the hexadecimal system there are 16 symbols from 0to 9 and a to f
(the letters represent the values from 10 to 15). The latest symbol corresponds to the value multiplied by the 0™
power? of 16, the symbol preceding the last symbol represents the value multiplied by the 1* power of 16, and so forth.

Consequently, the symbols 0-9 in hexadecimal notation correspond to the identical numbers in decimal
notation, while a in hex is equal to 10 in the decimal system, b to 11, c to 12, d to 13, e to 14, and f to 15. Further
numbers can be computed by the place-value (starting from 0). For example, the hexadecimal value e8 corresponds
to the decimal value 232, because 14-16' + 8:16° = 14-16 + 8-1 = 224 + 8 = 232. Conversion from decimal to hexadecimal
can be performed similarly, but with the reverse computation. For example, 86 in decimal notation is 56 in
hexadecimal notation, because 86/16 = 5.375, so the first digit is 5. 5-16=80, and the remainder is 6, which is the
second digit, because 5-16' + 6-16°=5-16 + 6-:1 =80 + 6 = 86.

In CSS, hexadecimal color declarations begin with a number sign (#), followed by six hexadecimal (hex) values,
two for each channel (this can be abbreviated to three digits if the groups of digits are identical). They are used to
mix colors arbitrarily. For example, pure red can be set by #f£0000. In other words, the intensity of the red channel is
maximal (), while the intensity of green and blue are minimal (00). Similarly, pure green is #0000, while pure blue
is #0000ff. If the values of each channel are set to 00, the result is black (#000000). If all values are maximal, you get
white (#ffffff). If the values for each channel are identical, the result is a shade of gray (Listing 5-2).

Listing 5-2. A Gray Font Color Declared for All Paragraphs

p{
color: #898989;

}

Tip If the two digits of each channel are identical, they can be abbreviated by omitting the second digit.
For example, #foo represents red, #ofo represents green, #oof represents blue, #000 represents black, #fff
represents white, and so on.

2Any nonzero number raised to the power 0 is 1.

151

CHAPTER 5 ' STYLE SHEETS

The RGB and RGB(a) Notations

The saturation of each color channel in the RGB model can also be declared by either decimal numbers or
percentages (Listing 5-3).

Listing 5-3. Simple RGB Notation

p {

color: rgh(0, 255, 0) /* equivalent to rgh(0, 100%, 0), #00ffo0 and #0fo */

}

The previous notation is supported by CSS 2.1 but has been extended in CSS3 with the transparency (alpha
channel) of the color. This notation is known as RGB(a). For example, the pure green with 75 percent transparency
(which corresponds to 25 percent opacity) can be declared as shown in Listing 5-4. Note that the alpha is always a
percentage (a value from 0 to 1) rather than running from 0-255 as the colors do.

Listing 5-4. An RGB(a) Notation in CSS3

p{
color: rgh(0, 255, 0, 0.25);

The HSL(a) Notation

In CSS, colors can also be denoted by the HSL(a) notation, where the colors are represented by their hue, saturation,
and lightness. The first value can be a number from 0 to 360, while the second and third values can be declared as a
percentage. The alpha channel works the same way as in RGB(a) (Listing 5-5).

Listing 5-5. A Transparent Color in HSL(a) Notation

#warning {
background-color: hsl(240, 78%, 50%, 0.25);
}

Tip If you want to use a color seen on a photograph or on a web site, you can obtain the code in many ways. First,
you can check the style sheet of the page or site for the color code. If this is not convenient, there are other techniques to
get the color code. If there are no advanced image-processing applications installed on your computer, you should simply
create a screenshot using the Print Screen button and copy and paste it to a basic image manipulation application, such
as Microsoft Paint. Select the Color Picker tool, and click the color of your choice. Choose the Edit Colors option from the
Color menu, and click Define custom colors.? You get the hue, lightness, and saturation of the color, along with the red,
green, and blue components. Since they are provided in decimal, they need to be converted into hexadecimal with an
application such as the Windows Calculator (in Scientific Mode). If you have a more advanced image manipulator than
Paint, such as Adobe Photoshop, you can use the Color Picker tool on the pasted image to get the color code in different
color spaces and notations, including decimal and hexadecimal.

3The version of Paint in Windows 7 has a ribbon interface instead of the conventional menu found in earlier versions.

152

CHAPTER 5 * STYLE SHEETS

Web-Safe Colors

In the early days of color computer screens, only 256 different colors were supported. In that era, a list of 216 colors
was referred to as web-safe colors. This cross-browser color palette was used to ensure that all computers, including
the ones using a 256-color palette, would display the colors correctly. Web-safe colors consist of 00, 33, 66, cc, and ff
values for each channel (for example, 0000, 663300, 993300, cc6600, and ff9966).

Note Web-safe colors are not interesting from the presentational point of view anymore, since all modern screens,
monitors, and projectors are capable of representing any colors from the RGB color space.

Color Names

CSS supports the names of 16 basic colors. These keywords are easier to read than their corresponding hexadecimal
values* (Table 5-4). Using hexadecimal notation, however, is strictly recommended (see Chapter 13).

Table 5-4. CSS Color Names Handled by All Browsers

Color Hexadecimal Equivalent

aqua (= cyan) #00ffff (can be abbreviated as #0ff)
black #000000 (can be abbreviated as #000)
blue #0000ff (can be abbreviated as #00f)

magenta (= fuchsia) #ff00ff (can be abbreviated as #f0f)

gray #808080
green #008000
lime #00ff00 (can be abbreviated as #00)
maroon #800000
navy #000080
olive #808000
purple #800080
red #0000 (can be abbreviated as #f00)
silver #c0c0co
teal #008080
white #ffffff (canbe abbreviated as #fff)
yellow #ffff00 (can be abbreviated as #ff0)

4After learning color mixing with hexadecimal notation, using these values becomes a routine task.

153

CHAPTER 5 ' STYLE SHEETS

Selector Syntaxes

A CSS selector identifies those markup elements to which the CSS style(s) will be applied. Specific element groups are
styled by various types of selectors. The general structure of a CSS rule (or CSS ruleset for multiple declarations), as
shown in Figure 5-1, can be written with the pseudocode shown in Listing 5-6.

Rule

h1 { Decl/aration

Selector

Property Value
Figure5-1. CSSrule structure

Listing 5-6. Pseudocode of CSS Rulesets

selector [, selector2, ..., selectorn] [:pseudo-class] {
property: value;
[property2: value2;

propertym: valuem;]

Multiple declarations of the same selector can be organized into groups separated by semicolons (;).

Tip Although it is legal to omit the semicolon after the last declaration in a ruleset, it is strongly recommended to
always provide it. It makes maintenance and modifications easier and becomes handy when a declaration is moved
to another location in the CSS.

For example, the rules in Listing 5-7 can be written as shown in Listing 5-8.

Listing 5-7. 1t Is Not Optimal to Declare Rules of the Same Element Separately

h1 { font-weight: bold }
h1 { font-size: 1.6em }
h1 { font-family: Verdana, sans-serif }

Listing 5-8. Rules of the Same Element Should Be Grouped

h1 {
font-weight: bold;
font-size: 1.6em;
font-family: Verdana, sans-serif;

}

154

CHAPTER 5 * STYLE SHEETS

Although they are equivalent, the second version should be preferred for many reasons. First, it is shorter and
thus contributes to code length optimality. Second, further declarations of other selectors might accidentally be
inserted between the single lines, making the CSS file much harder to maintain. Finally, the second arrangement is
easier to read, which makes development easier.

Element Selectors

If all paragraphs of a web site are intended to be written in Garamond with 1.2em font size, the ruleset looks
like Listing 5-9.

Listing 5-9. A Ruleset for All Paragraphs

p{
font-size: 1.2em;

font-family: Garamond, serif;

}

This applies to all paragraphs in the markup such as the ones in Listing 5-10.

Listing 5-10. Paragraphs to Be Styled by the Ruleset of Listing 5-9

<p>
A paragraph.
</p>
<p>
Another paragraph.
</p>

Naturally, a subset of paragraphs might have a different ruleset that partially or fully overrides the general rules
(see the “Cascading” section later in the chapter).

In the previous example, the selector selects a markup element. Such selectors are called element selectors
and apply the corresponding element names themselves. The curly braces contain the properties of the element
to style, along with the values to which they should be changed. The curly braces and the content between them
is the declaration block. The property-value pairs are separated from each other by semicolons. The properties are
separated from their values by colons. Each line is called a declaration or statement.

The selectors are separated by combinators, that is, whitespace, » or +. Further whitespace characters might be
present between the combinators and the simple selectors around them [15].

Selectors can also be grouped if the same CSS rules apply to them. The comma (,) should be used as the
combinator. Grouping common rules contributes to CSS code optimality. For example, Listing 5-11 changes the color
and font size of both div elements with the id attribute articles and relatedlinks, respectively.

Listing 5-11. Common Rules Can Be Grouped to Avoid Duplication

#articles, #relatedlinks {
color: white;
font-size: 1.8em;

}

155

CHAPTER 5 ' STYLE SHEETS

Class Selectors

Class selectors, which begin with a period (.), select all elements with a class attribute identical to the value specified
in them. Since the class attribute can be applied multiple times in a web page, class selectors can style any element
within the document with the same class identifier. For example, the rule in Listing 5-12 is referred in the markup, as
shown in Listing 5-13 and Listing 5-14.

Listing 5-12. Class Selector Example

.abstract {
font-size: 1.1em;

}
Listing 5-13. The Class Selector in Listing 5-12 Can Be Applied to Headings

<h3 class="abstract">Abstract</h3>

Listing 5-14. The Same Class Selector Can Also Be Applied to Paragraphs

<p class="abstract">
The abstract of the first Chapter
</p>

If the ruleset should be applied for certain types of elements with the specified class name, a more specific rule
can be written by providing the element name before the period. For example, if the previous rule should be valid
exclusively for paragraphs, it should be extended by declaring the desired element type (Listing 5-15).

Listing 5-15. A Rule for All Paragraphs with the Class Name abstract

p.abstract {
font-size: 1.1em;

}

ID Selectors

Certain markup elements are intended to be unique throughout a web document; that is, they can occur only once
per web page. They are identified by the identifier attribute id. Those selectors that select the unique element on the
web page with the id attribute equal to the value specified in them are called ID selectors and begin with a hash mark
(#). Listing 5-16 shows an example.

Listing 5-16. An ID Selector Example

#main {
margin-left: 120px;

}

Listing 5-17 shows a markup example where the previous rule is applied.

Listing 5-17. Example Content for Which the ID Selector #main Can Be Applied

<div id="main">
The main content has a left margin of 120 pixels.
</div>

156

CHAPTER 5 * STYLE SHEETS

Universal Selectors

A universal selector matches the name of any element type on a web page (any elements regardless of the type).
The universal selector is referred to with an asterisk (*). Listing 5-18 shows an example.

Listing 5-18. A Universal Selector Example

* caution {
color: #ff2318;
}

The asterisk can be omitted if the universal selector is not the only component of a simple selector (Listing 5-19).

Listing 5-19. A Rule from Which the Asterisk Can Be Safely Omitted

.caution {
color: #ff2318;

}

Considering the markup shown in Listing 5-20, the selector div * em will match most em elements and apply
to the content of the em element in h1 (favorite), p (impressive), the first 1i element (hybrid electric), and the
second 1i (fuel efficient).In the last two cases, the * matches the ul or the 11i.

Listing 5-20. A Demonstration Markup for the Universal Selector

<body>
<div>
<h1>My favorite car</hi>
<p>The Lexus CT 200h is impressive due to the following reasons:</p>

It is a hybrid electric car.
<1i>It is a fuel efficient car.

That's why it is a nice entry-level luxury hatchback.
</div>
</body>

Since the em element with the content entry-level luxury is animmediate child of the div element, there is
nothing for the * to match between div and em.

Caution The implementation of universal selectors is imperfect in Internet Explorer 7 and earlier.

Attribute Selectors

Attribute selectors select every element with the attribute specified within square brackets. An attribute type or an
attribute with a specific value can be styled with them. For example, all img elements with the title attribute within
the document can have a yellow border by applying the rule shown in Listing 5-21.

157

CHAPTER 5 ' STYLE SHEETS

Listing 5-21. An Attribute Selector Example with an Attribute

img[title] {
border-color: #ffo;

}

Attribute selectors can be used not only for attributes but also for attribute-attribute value pairs. For example,
a 10-pixel border can be added to all logo. png images within the web page with the CSS rule shown in Listing 5-22.

Listing 5-22. An Attribute Selector with an Attribute and an Attribute Value

img[src="logo.png"] {
border: 10px;

}

This applies to multiple instances of the markup in Listing 5-23 throughout the web page.

Listing 5-23. A Markup Code Where Listing 5-22 Is Applied

Child Selectors

Child selectors select the right-hand element in the selector if and only if it is a direct child of the left-hand element.
The greater-than sign (») is used between the child and the ancestor. Listing 5-24 shows an example.

Listing 5-24. Child Selector Example

td » a {
font-weight: bold;
}

This is applied to all hyperlinks within table data cells, such as in Listing 5-25, but does not affect hyperlinks in
general such as in Listing 5-26.

Listing 5-25. A Hyperlink Example for the Child Selector in Listing 5-24

<td><a href="http://www.privatecloud.services"sPrivate Cloud Services</as</td»

Listing 5-26. The Child Selector Example Is Not Applied to Anchors That Are Not Children of a Data Cell

<a href="http://www.domainregistrationwebhosting.com.au"sDomain registration</a»

Caution Child selectors are not supported in Internet Explorer 6 and earlier.

158

http://www.privatecloud.services/
http://www.domainregistrationwebhosting.com.au/

CHAPTER 5 * STYLE SHEETS

Descendant Selectors

Styles of elements that are lower on the DOM tree can be provided by descendant selectors that use the element names
separated by spaces. In contrast to child selectors, descendant selectors do not require the child element to be a direct
child of the ancestor. Listing 5-27 shows an example.

Listing 5-27. Descendant Selector Example

td a {
font-weight: bold;

}

This is applied to all hyperlinks within table data cells, for example to Listing 5-25 (similar to the child selector
shown previously) or Listing 5-28. This rule does not affect hyperlinks in general, however.
Listing 5-28. An Anchor Example Where Listing 5-27 Is Applied

<td><p>The textbook <a href="http://www.masteringhtml5css3.com"sWeb Standards</as» is a comprehensive
guide to current and future standards for the World Wide Web.</p></td>

Note the difference between the child selector and the descendant selector.

Adjacent Sibling Selectors

Adjacent sibling selectors select the element on the right-hand side of the selector if and only if it has an instance of the
element on the left-hand side next to it. The + sign is applied as the combinator. Sibling elements are on the same level
within the DOM hierarchy. Listing 5-29 shows an example.

Listing 5-29. Adjacent Sibling Selector Example

h2 + p {
color: #ofo;

}

This selector applies to Listing 5-30, but neither to Listing 5-31 nor Listing 5-32.

Listing 5-30. Elements That Apply the Green Color from Listing 5-29
Heading</h2»

<p>A paragraph</p>

Listing 5-31. A Paragraph That Does Not Apply the Rule Shown in Listing 5-29

<p>A paragraph</p»>

Listing 5-32. Because of the Missing Level 2 Heading Preceding the Paragraph, the Style Is Not Applied Here Either

Heading</h1»
<p>A paragraph</p>

Caution Adjacent sibling selectors are not supported in IE6 or earlier.

159

http://www.masteringhtml5css3.com/

CHAPTER 5 ' STYLE SHEETS

Pseudoclasses

Pseudoclasses, which use colons to separate an element from its state, are more sophisticated selectors. They are
frequently used to determine the style of hyperlinks, depending on their states. For example, Listing 5-33 applies to all
a elements but only when the mouse hovers over the link.

Listing 5-33. Link Color to Be Applied in Case an Anchor Is Being Hovered Over

athover {
color: #000080;

}

Another example is Listing 5-34, which changes the color of all hyperlinks that have already been visited® to green.

Listing 5-34. Link Color Set to Visited Hyperlinks

asvisited {
color: #ofo;

}

Pseudoelements

Pseudoelements can be used to add style to specific element parts instead of whole elements. They can also be applied
for inserting content before or after certain elements. The combinator is a colon (:). For example, the CSS rule in
Listing 5-35 changes the font size of the first letter of all paragraphs within the web page to 2 em.

Listing 5-35. A Rule for the First Letter of Paragraphs

p:first-letter {
font-size: 2em;

}

Property Value Types
CSS property values can be the following:
¢ Keywords (for example, auto)
e Basic data types (for example, %)

e Combination of keyword and custom data (for example, url
("http://www.masteringhtml5css3.com/img/webstandardsbook.jpg")

Shorthand Notation

Certain CSS properties can be grouped into a single property declaration. The most common shorthand notations are
described in the following sections.

SAccording to the current browser history.

160

http://www.masteringhtml5css3.com/img/webstandardsbook.jpg

CHAPTER 5 * STYLE SHEETS

Shorthand Notation for Font Properties

Font properties can be written either in the full form shown in Listing 5-36 or with the shorthand notation
of Listing 5-37.

Listing 5-36. If Several Font Properties Should Be Set for the Same Element, the Ruleset Becomes Too Long

p{
font-weight: bold;
font-size: 1em;
line-height: 1.2em;
font-family: Garamond;
font-style: normal;

}

Listing 5-37. Shorthand Notation for Font Properties

p { font: bold 1em/1.2em Garamond }

Note In the second case, the font-style property is not set and thus takes the value defined as the default value
for that property in the CSS specification, which is normal.

Shorthand Notation for Background Properties
Separate background properties (Listing 5-38) have the shorthand property background (Listing 5-39).

Listing 5-38. Separate Background Properties That Can Be Shortened

body {
background-color: #232323;
background-image: url('images/bg.jpg');
background-repeat: no-repeat;
background-position: 100% 0%;
background-attachment: fixed;

}

Listing 5-39. Background Properties Combined into a Single Background Property

body {
background: #232323 url('images/bg.jpg') no-repeat 100% 0% fixed;
}

Shorthand Notation for List Properties

List styles, such as the ones in Listing 5-40, can also be shortened by the enumeration of the individual property
values for the list-style shorthand property (Listing 5-41).

161

CHAPTER 5 ' STYLE SHEETS

Listing 5-40. List Styles That Can Be Shortened

ul.tick {
list-style-image: url('tick.png');
list-style-type: none;
list-style-position: inside;

}
Listing 5-41. A One-Line Rule for Three List Styling Property Values
ul.tick {
list-style: url('tick.png') none inside;
}

Shorthand Notation for Padding, Border, and Margin Properties

There are five properties for setting the top, right, bottom, and left padding (padding-top, padding-right,
padding-bottom, padding-1left, respectively) or all of them together with the shorthand property padding. Similar
conventions exist for borders (border-top, border-right, border-bottom, border-left, border) and margins
(margin-top, margin-right, margin-bottom, margin-left, margin). There are various options for shortening the
enumeration of property values in a certain order:

e Four values set the padding of each side: the top, the right, the bottom, and finally the left
padding (clockwise, starting from top) (Listing 5-42).

Listing 5-42. Padding Shorthand Property with Four Values

#tdecor {
padding: 10px 5px 20px 30pX;

}

Tip This order is worth memorizing, because it can be used not only for padding but also for borders, margins, and
CSS3 properties such as border-radius.

e Three values set the top, right, and left (equally), and the bottom padding (Listing 5-43).

Listing 5-43. Padding Shorthand Property with Three Values

#decor {
padding: 10px 20px 15px;

e Two values set an equal padding for the top and bottom sides, and then an equal padding for
the right and left sides (Listing 5-44).

Listing 5-44. Padding Shorthand Property with Two Values

#decor {
padding: 30px 20px;

162

CHAPTER 5 * STYLE SHEETS
e One value sets an equal padding for all sides (Listing 5-45).

Listing 5-45. Padding Shorthand Property with One Value

#decor {
padding: 10px;

Similar shorthand notations can be used for setting border and margin property values with the border and
margin shorthand properties. Further padding, border, and margin properties can also be written in shorthand
notation. Listing 5-46 shows an example.

Listing 5-46. Border Properties That Can Be Shortened

.book {
border-width: 1px;
border-style: solid;
border-top-color: #000;
border-right-color: #000;
bordex-bottom-color: #000;
border-left-color: #000;

Since the border color of each side is the same in this example, the properties in the third, fourth, fifth, and sixth
lines can be written as border-color (Listing 5-47).

Listing 5-47. The border-color Shorthand Property Sets the Border Color of Each Side of the Element

.book {
border-width: 1px;
border-style: solid;
bordex-color: #000;

}

Even if the border colors are different, they can be declared by the border-color shorthand property by simply
enumerating the desired colors in the top, right, bottom, left order (clockwise, starting from top).
All the previous properties can be shortened further to a single line, as shown in Listing 5-48.

Listing 5-48. The Shortest Border Declaration for Multiple Properties

.book {

border: 1px solid #000;
}
Implementation

There are three ways to implement CSS. The chosen method determines the scope of styling.

e Inline style: Styling with the most limited scope. An inline style is embedded in an (X)HTML
tag to which it exclusively applies. This CSS fragment is defined by the style attribute that
can be provided on most markup elements. The attribute value has the same syntax as the
contents of a CSS declaration block except that the delimiting braces are omitted [16].
Listing 5-49 shows an example.

163

CHAPTER 5 ' STYLE SHEETS

Listing 5-49. Inline Style Declaration Example

e Embedded (internal) style: A code block usually located in the document head. Embedded
styles are used for styling rules unique to that web page (the element to style does not occur in
other pages on the site). Listing 5-50 shows an example.

Listing 5-50. An Example for Embedded Styles

<head>

<style type="text/css"»
#disclaimer {
text-align: center;
margin-top: 30px;
margin-bottom: 60px;
}
</style>

<head>

e External style sheet: An external style sheet is a separate file with the .css extension that
contains style rules for multiple web documents, such as an entire web site. This is a
plain-text file usually encoded in US-ASCII. CSS files cannot contain the style element, just

the CSS style rules themselves. Each page refers to that file with the 1ink element in the
(X)HTML head section. Listing 5-51 shows an example.

Listing 5-51. Link to an External Style Sheet File in XHTML

<link rel="stylesheet" type="text/css" href="main.css" /»

In XML documents (XML, XUL, SVG, and so on), external style sheets can be provided by the XML processing
instruction xml-stylesheet in the first document section [17] (Listing 5-52).
Listing 5-52. Link to an External Style Sheet File in XML
<?xml-stylesheet type="text/css" href="default.css" title="Default style" ?»

Embedded styles override the corresponding styles declared in an external CSS file, which makes it possible to
use the main styling rules of the web site while declaring some specific ones for a single web page. Inline styles are
even more specific and locally override the styles of the external style sheet as well as the embedded styles (if any).

Style sheets can also import CSS rules from other style sheet files with the @import rule. It should be provided
after the @charset rules (if any) but before all other rules. If the additional CSS files are in the same directory
structure, the path is adequate (Listing 5-53).

Listing 5-53. Reusing an External Style Sheet

@import "styles/alter.css";

164

CHAPTER 5 * STYLE SHEETS

The rulesets of the file containing this rule will override the corresponding rules of the imported styles (if any).
For example, if different pages of a site have the same styles except background-color, which is modified as part
of the design, then all the styles can be imported and the background-color property is overwritten (alter.css
in Listing 5-54). Similarly, a style sheet designed for mobile devices can reuse the main styles but remove the
background image® and set the maximum width of the document body to the largest screen width available on
smartphones today (mobile.css in Listing 5-54). All other styles are imported, including the color and the font-family.

Listing 5-54. Reusing and Extending Styles of the Main CSS File of a Site

main.css alter.css mobile.css

body { @import ("main.css"); @import ("main.css");
background: url('http://example.com/ body { body {

images/bg.jpg’) no-repeat 100% 0% fixed; packground-color:#00254c; background-image: none;
background-color:#004c25; } max-width: 640px;
color: #fff; }

font-family: Garamond, serif;

}

A more robust declaration provides not the path but the URL of the file. Listing 5-55 shows an example.

Listing 5-55. Importing a Style Sheet File by Providing a Full URL

@import url("http://www.example.com/alter.css");

One of the applications of importing style sheets is to provide alternate styles for web sites that can serve several
purposes. For example, accessibility can be improved by providing different style sheets for different media. The
media-specific CSS files of a site can be controlled in the markup by the media attribute on the 1ink element, as
discussed earlier in Chapter 3. The rulesets of such CSS files have an intersection defined by the main CSS file of
the site. The files of media-specific rules rely on each other and often import rules from each other (Listing 5-56).
Multiple CSS files can also be used for site design.

Listing 5-56. Importing Media-Specific Styles

@import url("print.css") print;
@import url("mobile.css") handheld and (max-width: 480px);

Display and Visibility

The element levels of HTML and XHTML documents have already been discussed. In CSS, (X)HTML elements can
generally be displayed in the following ways:

e Block: Uses the full width available, along with a new line before and after (Listing 5-57)

‘In the example, the background-image property is set using the shorthand property background in the main.css file.

165

CHAPTER 5 ' STYLE SHEETS

Listing 5-57. Rule for Elements to Be Displayed As Block
display: block;

Inline: Uses only as much width as needed without breaking the row (Listing 5-58)

Listing 5-58. Rule for Elements to Be Displayed Inline

display: inline;

Not di.yed: Removes the element completely from the document so it does not take up any
space, even though its corresponding markup is still in the source code (Listing 5-59)

Listing 5-59. Rule for Elements to Hide Without Spaceholder

display: none;
Hidden: Hides the element but still takes up space in the layout (Listing 5-60)

Listing 5-60. Rule for Elements to Hide with Spaceholder

visibility: hidden;

Cascading

The Cin CSS stands for Cascading. It is a mechanism that determines one declaration among a set of styling rules
that should be applied for a certain element-property pair. Browsers consider three features in the following order to
choose that declaration [18]:

1.

166

Weight: The declaration with the highest weight is chosen. In CSS3, the weight of a
declaration is based on the origin of the declaration and its level of importance. The origin
can be of three kinds: author, user, and user agent. CSS declarations have two levels of
importance: normal and important (the first one is the default level; the second one is
optional and should be marked). An important declaration looks like Listing 5-61.

Listing 5-61. A Rule with the Highest Level of Importance

#tmenu {
margin-top: 12px !important;

Tip The proper exploitation of the cascading mechanism eliminates the need for ! important rules.

The weight of style sheets derived from the different origins, in descending order, is as
follows:

a. User style sheets (important)
b. Author style sheets (important)
c. Author style sheets (normal)

d. User style sheets (normal)

e. Default style sheets of rendering engines

CHAPTER 5 * STYLE SHEETS

As aresult, declarations written by developers generally have more weight than that of
user style sheets, which have more weight than the default styles of the browser. This is
the reason why links are generally rendered in the font color defined by the web designer
rather than the default anchor color (Listing 5-62).

Listing 5-62. A Rule in a CSS File That Has More Weight Than the Corresponding Rule in
the Default Style Sheet of Browsers

a{

font-color: #12ee12;

}

2. Specificity: The declaration with the highest specificity is chosen. The specificity of
selectors can be calculated as follows [19]:

e The number of ID attributes in the selector is counted.

e The number of other attributes and pseudoclasses in the selector is counted.
e The number of element names in the selector is counted.

e The concatenation of these numbers is the specificity.

e Negative selectors are counted similar to their simple selectors’ argument.

e Pseudoelements are ignored.

In Listing 5-63, the specificity of the first declaration is the lowest, and the specificity

of the last one is the largest. The font color of all paragraphs is the same (black), except
those paragraphs that are included in a division, which have a different font color (green).
The div elements with the tip value declared for the class attribute have an even more
specific rule, which makes their font color distinctive (red, which is different from the color
of any other paragraphs).

Listing 5-63. Declarations with Increasing Specificity

p{
color: #000;
}
div p {
color: #0f0;
}
tip p {
color: #00f;
}

3. Declaration order: If two declarations have the same weight, origin, and specificity, the last
declaration is chosen (imported style sheets should also be considered). Imported style
rules are processed prior to the rules of the style sheet. The rules of further imported style
sheets are taken into account in the order of the @import rules.

Inheritance

In web markup languages and style sheets, certain codes are automatically reused. In CSS, property values of parent
elements can be set to their children. The specified value of an element-property combination is copied from the
corresponding computed value of the parent element. This procedure is called inheritance. It eliminates the need for

167

CHAPTER 5 ' STYLE SHEETS

defining properties that are straightforward. If, for example, the background color of a web document is defined, all
container elements, divisions, and paragraphs within the document will inherit that property. Certainly, any of them
can be arbitrarily overridden.

Certain CSS property values are defined as inherited. Unless a value is specified for these element-property
combinations, the value is determined by inheritance.

The inherit value can be used for all properties to be determined by inheritance. For example, color is an
inheritable property. However, the color of anchor elements is commonly set to blue by the user agent style sheet. By
using the value inherit, the declaration of the user agent style sheet can be overridden: all child anchor elements
inherit the value of the foreground color from the parent element (Listing 5-64).

Listing 5-64. Inherited Property Value

#warning {
color: #000;

}

#warning a:link {
color: inherit;

}

Note The more specific a property, the fewer elements it can be applied to. As you will see in the overview of CSS
properties, a large share of CSS properties are not inherited at all.

Scopes and Structure

In contrast to the underlined blue hyperlinks used in the first years of the Web, modern web sites often apply different
colors and decorations to accommodate the overall design. When using a dotted underline for hyperlinks, however, it
is rather frustrating that linking images share the same style. To solve the problem, image borders should be removed
and more specific styles set. Listing 5-65 shows an example.

Listing 5-65. Specific Rules to Eliminate the Underline for Links Declared by General Rules

img {
border: 0;

}

a.nounder {
border-bottom: none;

}

The scope of rules has a large impact on their application. The rules that apply to more (most) elements within
the same category should be identified in an early stage of web site development. For example, if the vast majority of
paragraphs have the same indent, that value should be applied as a general CSS rule to all p elements (for example,
p { text-indent: 3em; }), and another rule should be written to the class of paragraphs that are different (for
example, p.morein { text-indent: 5em; }).

In the optimal case, both the scope and the inheritance are considered for those properties that can be used as
the basis for the entire web site, such as the default font size (Listing 5-66).

Listing 5-66. The Default Font Size of the Entire Web Site Can Be Inherited from the Document Body

body {
font-size: 0.8em;

}

168

CHAPTER 5 * STYLE SHEETS

For those elements that require a different font size, such as headings, the property can be set specifically
(Listing 5-67), and all the other elements inherit the default font size set for the document body. Consequently, there
is no need to declare the font size for, say, all p and div elements, if the desired font size for them is the default one,
because the property is inherited from the body element.

Listing 5-67. Specific Declarations That Override the Default Font Size Set in the Previous Listing

h1 {

font-size: 1.4em;
}
h2 {

font-size: 1.2em;
}
h3 {

font-size: 1em;
}

The Box Model

The actual markup content of block elements is wrapped around by optional paddings, borders, and margins, called the
CSS box model (Figure 5-2) [20]. These rectangular boxes are generated for certain markup elements in the document tree.

Top margin
Top border
: Top padding :
1 1
= 1D Xl | =
/52| Content |.5'2|2
= S 1 B S sl T g
£z §8:¢|8
(4] = «
|25 sample 58|
| — 1
: Width :
| Bottom padding 1
Bottom border

Bottom margin

Figure 5-2. The CSS box model

Text and images appear in the content. The padding clears the area around the content. The padding is affected
by the background color of the box similar to the border area around the padding. The margin is the outermost area
around the border. It has no background color and is transparent. The size of each area can be determined by CSS
properties. Since they are optional, they can also be collapsed to 0 (that is, totally eliminated).

The margins of two vertically adjacent block elements normally collapse into one another; that is, a margin is
rendered according to the size of the larger bottom margin of the first box and that of the top margin of the other below it.

169

CHAPTER 5 ' STYLE SHEETS

The IE Box Model Bug

From the first version of CSS, the width and height of all block-level elements specified explicitly determine only
the width or height of the visible element, and the padding, borders, and margins are applied afterward. In earlier
versions of Internet Explorer, the CSS specifications were implemented incorrectly, which is often referred to as the
Internet Explorer box model bug. Internet Explorer 5 included the content, padding, and borders within a specified
width or height, resulting in a narrower or shorter rendering of the box [21] (Figure 5-3).

Top margin
Top border
__________________ .
: Top padding 1
I
|
I
= D =
=(zig| Content |_2:z |z
€| 8's & 812 |3
| 's =T 83 |8
(] —
5|35 sample SR
|
I
|
I
: Bottom padding I
Bottom border

Bottom margin

Width
------ ‘-I'o-p-m-a;g-in- T
Top border
———————— 1
1 Top |
| i =
|5, = padding 2 é %“
£|E 1S [Content | 2 2| Z
g s 1 g ontent | 5 | ; 3
sle' S sample §|9, 8
33:3 Bottom g"&‘%
5 I
| padding]

Bottom border

Bottom margin
Figure 5-3. Comparison of the W3C and the IE5 box model. Note the different interpretation of the width

Internet Explorer 6 and newer IE versions’ apply the correct implementation in their standards-compliant mode,
but for compatibility reasons, the bug still exists when a page is rendered in Quirks Mode.

Overview of CSS Properties

Table 5-5 summarizes the rich selection of CSS properties. There are 53 properties in CSS1, 122 in CSS2, 115 in
CSS 2.1, and more than 300 (and counting) in CSS3.?

"The bug was not present in Internet Explorer for Mac (discontinued in 2006).
8The value none applies to all media.

170

Table 5-5. Overview of CSS Properties

CHAPTER 5 * STYLE SHEETS

Property CSS1 €SS2 (CSS2.1 CSS3 Applicability Inherited Media
align-content - - - + Block containers, flex - A

containers, and grid

containers
align-items - - - + Block-level elements - \Y
align-self - - - + Block-level elements - \%
alignment-adjust - - - + Inline elements - \Y
alignment-baseline - - - + Inline elements - \Y
all - - - + Depends on the property d d

to which all is used for as

a shorthand property
anchor-point - - - + All elements - \Y
animation - - - + Block and inline elements - A%
animation-delay - - - + Block and inline elements - \Y%
animation-direction - - - + Block and inline elements - \Y%
animation-duration - - - + Block and inline elements - \Y%
animation-fill-mode - - - + Allelements, ::before and - \Y%

::after pseudo-elements
animation-iteration-count - - - + Block and inline elements - \Y%
animation-name - - - + Block and inline elements - A%
animation-play-state - - - + Block and inline elements - \Y
animation-timing-function - - - + Block and inline elements - A%
azimuth - + + - All elements + A
backface-visibility - - - + Block and inline elements - \Y
background + + + + Allelements - A
background-attachment + + + + Allelements - \%
background-clip - - - + Allelements - A%
background-color + + + + Allelements - A
background-image + + + + Allelements - A
background-origin - - - + Allelements - A%
background-position + + + + Allelements - A
background-repeat + + + + Allelements - A
background-size - - - + Allelements - \Y
baseline-shift - - - + Inline elements - \Y

(continued)

171

CHAPTER 5 ' STYLE SHEETS

Table 5-5. (continued)

Property CSS1 CSS2 (CSS2.1 CSS3 Applicability Media
binding - - - + All elements (but not All
pseudoelements)
bleed - - - + Page media elements P
bookmark-label - - - + All elements All
bookmark-level - - - + All elements All
bookmark-target - - - + Allelements All
border + + + + All elements A%
border-bottom + + + + All elements \Y
border-bottom-color - + + + All elements \Y
border-bottom-left-radius - - - + Allelements \Y
border-bottom-right-radius - - - + Allelements \Y
border-bottom-style - + + + Allelements \%
border-bottom-width + + + + Allelements \Y
border-collapse - + + ? Table and inline-table \Y
elements
border-color + + + + All elements A%
border-image - - - + Depends on individual \Y
properties
border-image-outset - - - + All elements except \%
internal table elements
when border-collapse is
set to collapse
border-image-repeat - - - + All elements except \Y%
table elements when
border-collapse is set to
collapse
border-image-slice - - - + All elements except A%
internal table elements
when border-collapseis
set to collapse
border-image-source - - - + All elements except A
internal table elements
when border-collapseis
set to collapse
border-image-width - - - + All elements, except \%
internal table elements
when border-collapseis
set to collapse
(continued)

172

Table 5-5. (continued)

CHAPTER 5 * STYLE SHEETS

Property CSS1 (€SS2 (CSS2.1 CSS3 Applicability Inherited Media
border-left + + + + Allelements - \Y
border-left-color - + + + Allelements - \Y
border-left-style - + + + Allelements - \Y
border-left-width + + + + All elements - \Y
border-radius - - - + All elements except table - \Y

elements when border-

collapseissetto collapse
border-right + + + + Allelements - \Y
border-right-color - + + + All elements - \Y
border-right-style - + + + Allelements - \Y
border-right-width + + + + Allelements - \Y%
border-spacing - + + ? Table and inline-table + \Y

elements (also frameset

elements in certain

document types)
border-style + + + + All elements - \Y
border-top + + + + Allelements - \Y
border-top-color - + + + Allelements - \Y%
border-top-left-radius - - - + All elements - \Y
border-top-right-radius - - - + All elements* - \%
border-top-style - + + + Allelements - \%
border-top-width + + + + All elements - \Y
border-width + + + + Allelements - \Y%
bottom - + + + Positioned elements - \%
box-decoration-break - - - + Allelements - \Y
box-shadow - - - + Allelements - A
box-sizing - - - + All elements that accept - \4

width or height
box-snap - - - + Block-level boxes and + \4

internal table elements

except table cells
box-suppress - - - + Allelements - All
break-after - - - + Block-level elements - A
break-before - - - + Block-level elements - A
break-inside - - - + Block-level elements - \4

(continued)

173

CHAPTER 5 ' STYLE SHEETS

Table 5-5. (continued)

Property CSS1 CSS2 (CSS2.1 CSS3 Applicability Inherited Media
caption-side - + + ? Table-caption elements + \Y%
chains - - - + Template elements - \Y
clear + + + + Block-level elements - \%
clip - + + ? Absolutely positioned - \Y%

elements
clip-path - - - + Allelements. In SVG, - A

it applies to container

elements excluding the

defs element and all

graphics elements
clip-rule - - - + SVG graphics elements + \%
color + + + + All elements + \Y%
color-interpolation-filters - - - + Allfilter primitives + \Y
column-count - - - + Nonreplaced block-level - \Y%

elements (except table

elements), table cells, and

inline-block elements
column-fill - - - + Multicolumn elements - N
column-gap - - - + Multicolumn elements - \Y
column-rule - - - + Multicolumn elements - A%
column-rule-color - - - + Multicolumn elements - A%
column-rule-style - - - + Multicolumn elements - \Y
column-rule-width - - - + Multicolumn elements - A%
columns - - - + Nonreplaced block-level - A%

elements (except table

elements), table cells, and

inline-block elements
contain - - - + All elements - All
content - + + + All elements, : :before, - All

::after, ::alternate,

::marker, : :1line-marker,

margin areas, and @

footnote areas
counter-increment - + + + All elements, : :before, - All

::after, ::alternate,

. :marker, : :1ine-marker,

margin areas, @footnote

areas, and @page context

(continued)

174

CHAPTER 5 * STYLE SHEETS

Table 5-5. (continued)

Property CSS1 CSS2 (CSS2.1 CSS3 Applicability Inherited Media

counter-reset - + + + All elements, : :before, - All
::after, : :alternate,
::marker, : :1ine-marker,
margin areas, @footnote
areas, and @page context

counter-set - - - + All elements - All
crop - - - + Replaced elements - A%
cue - + + + All elements - S
cue-after - + + + Allelements - S
cue-before - + + + Allelements - S
cursor - + + + All elements + V1
direction - + + + All elements* + \Y%
display + + + + All elements - Ve
display-inside - - - + Allelements - All
display-list - - - + Allelements - All
display-outside - - - + All elements - All
dominant-baseline - - - + Inline-level elements* - \Y
elevation - + + - All elements + A
empty-cells - + + ? Table-cell elements + \Y
filter - - - + All elements. In SVG, - A%

it applies to container
elements without the defs
element and all graphics

elements
flex - - - + Flex items d \Y
flex-basis - - - + Flex items - A%
flex-direction - - - + Flex containers - \Y
flex-flow - - - + Flex containers d \Y
flex-grow - - - + Flexitems - \Y
flex-shrink - - - + Flex elements - \Y%
flex-wrap - - - + Flex containers - \Y
float + + + + All elements* - \%
float-offset - - - + Floated elements - V, P
(continued)

175

CHAPTER 5 ' STYLE SHEETS

Table 5-5. (continued)

Property CSS1 CSS2 (CSS2.1 CSS3 Applicability Inherited Media
flood-color - - - + feFlood, feDropShadow - A%
flood-opacity - - - + feFlood, feDropShadow - \Y
flow-from - - - + Non-replaced block - \Y%
containers
flow-into - - - + All elements except - \Y%
pseudo-elements
font + + + + Allelements + \Y
font-family + + + + Allelements + \%
font-feature-settings - - - + Allelements + \Y
font-kerning - - - + Allelements + \Y
font-language-override - - - + Allelements + \Y
font-size + + + + All elements + \Y
font-size-adjust - + - + Allelements + A
font-stretch - - - + Allelements + \Y
font-style + + + + All elements + \Y
font-synthesis - - - + Allelements + \Y
font-variant + + + + All elements + \Y%
font-variant-alternates - - - + Allelements + \Y%
font-variant-caps - - - + Allelements + \Y
font-variant-east-asian - - - + Allelements + A
font-variant-ligatures - - - + Allelements + \Y
font-variant-numeric - - - + Allelements + \Y%
font-variant-position - - - + Allelements + A
font-weight + + + + Allelements + \Y
grid - - - + Grid containers d \Y
grid-area - - - + Grid items d \Y
grid-auto-columns - - - + Grid containers - \Y
grid-auto-flow - - - + Grid containers - \Y
grid-auto-rows - - - + Grid containers - \Y
grid-column - - - + Griditems d \Y
grid-column-end - - - + Grid items - \Y
grid-column-start - - - + Grid items - \%
grid-row - - - + Grid elements d \Y
(continued)

176

Table 5-5. (continued)

CHAPTER 5 * STYLE SHEETS

Property CSS1 CSS2 (CSS2.1 CSS3 Applicability Inherited Media
grid-row-end - - - + Griditems A%
grid-row-start - - - + Grid items \Y
grid-template - - - + Grid containers \Y
grid-template-areas - - - + Grid containers \Y
grid-template-columns - - - + Grid containers \Y
grid-template-rows - - - + Grid containers \Y
hanging-punctuation - - - + Blockand inline-block \Y
elements, table cells
height + + + + All elements except \Y
nonreplaced inline
elements, table columns,
and column groups
hyphens - - - + Allelements \Y%
icon - - - + Allelements All
image-orientation - - - + Images P
image-resolution - - - + Replaced elements and \Y
background images
ime-mode - - - + Textfields I
initial-letter - - - + t:first-letter pseudo \Y%
elements and inline
level first child of a block
container
inline-box-align - - - + Inline block-level elements \%
justify-content - - - + Flexcontainers \Y
justify-items - - - + Block containers, flex \Y%
containers, and grid
containers
justify-self - - - + Block-level boxes, A%
absolutely-positioned
boxes, and grid items
left - + + + Positioned elements A%
letter-spacing + + + + Allelements \Y
lighting-color - - - + feDiffuselighting, \Y%
feSpecularLighting
line-box-contain - - - + Block-level elements A%
line-break - - - + All elements \%
(continued)

177

CHAPTER 5 ' STYLE SHEETS

Table 5-5. (continued)

Property CSS1 CSS2 (CSS2.1 CSS3 Applicability Inherited Media
line-grid - - - + Block containers - \Y
line-height + + + + All elements + \Y
line-snap - - - + Allelements + A%
line-stacking - - - + Block-level elements + A%
line-stacking-ruby - - - + Block-level elements + \Y
line-stacking-shift - - - + Block-level elements + A
line-stacking-strategy - - - + Block-level elements + \Y
list-style + + + + All elements with N \Y
display: list-item
list-style-image + + + + All elements with + A%
display: list-item
list-style-position + + + + All elements with + A
display: list-item
list-style-type + + + + All elements with + A%
display: list-item
margin + + + + Allboxes except certain - \Y%
table boxes and certain
inline-level boxes
margin-bottom + + + + Allboxes except certain - \%
table boxes and certain
inline-level boxes
margin-left + + + + Allboxes except certain - \Y
table boxes and certain
inline-level boxes
margin-right + + + + Allboxes except certain - \Y%
table boxes and certain
inline-level boxes
margin-top + + + + All boxes except certain - v
table boxes and certain
inline-level boxes
marker-offset - + - - Elements with display: - \Y
marker
marker-side - - - + Listitems + \Y
marks - + - + Page context - V, P
(continued)

178

Table 5-5. (continued)

CHAPTER 5 * STYLE SHEETS

Property

CSS1

CSS2 (CSS2.1 CSS3

Applicability

Inherited Media

mask

mask-border

mask-border-mode

mask-border-outset

mask-border-repeat

mask-border-slice

mask-border-source

mask-border-width

mask-clip

- - +

All elements. In SVG,

it applies to container
elements, excluding the
defs element and all
graphics elements

All elements. In SVG,

it applies to container
elements, excluding the
defs element and all
graphics elements

All elements. In SVG,

it applies to container
elements, excluding the
defs element and all
graphics elements

All elements. In SVG,

it applies to container
elements, excluding the
defs element and all
graphics elements

All elements. In SVG,

it applies to container
elements, excluding the
defs element and all
graphics elements

All elements. In SVG,

it applies to container
elements, excluding the
defs element and all
graphics elements

All elements. In SVG,

it applies to container
elements, excluding the
defs element and all
graphics elements

All elements. In SVG,

it applies to container
elements, excluding the
defs element and all
graphics elements

- \Y%

(continued)

179

CHAPTER 5 ' STYLE SHEETS

Table 5-5. (continued)

Property

CSS2 (CSS2.1 CSS3

Applicability

Media

mask-composite

mask-image

mask-origin

mask-position

mask-repeat

mask-size

mask-type
max-height

max-1lines

max-width

+

All elements. In SVG,
it applies to container

elements, except the defs

element and all graphics
elements

All elements. In SVG,

it applies to container
elements, excluding the
defs element and all
graphics elements

All elements. In SVG,

it applies to container
elements, excluding the
defs element and all
graphics elements

All elements. In SVG,

it applies to container
elements, excluding the
defs element and all
graphics elements

All elements. In SVG,

it applies to container
elements, excluding the
defs element and all
graphics elements

All elements. In SVG,

it applies to container
elements, excluding the
defs element and all
graphics elements

All mask elements

All elements except
nonreplaced inline

elements, table rows, and

TOW groups
Fragment boxes

All elements except
nonreplaced inline

elements, table rows, and

rOW groups

180

(continued)

Table 5-5. (continued)

CHAPTER 5 * STYLE SHEETS

Property CSS1 (€SS2 (CSS2.1 CSS3 Applicability Inherited Media
min-height - + + + All elements except - \Y

nonreplaced inline

elements, table rows, and

TOw groups
min-width - + + + All elements except - \%

nonreplaced inline

elements, table rows, and

Tow groups
move-to - - - + All elements, : :before, - All

::after, ::alternate
nav-down - - - + All enabled elements - I
nav-index - - - + All enabled elements - I
nav-left - - - + All enabled elements - I
nav-right - - - + Allenabled elements - I
nav-up - - - + Allenabled elements - I
object-fit - - - + Replaced elements - \Y
object-position - - - + Replaced elements - \Y
opacity - - - + Allelements - \Y%
order - - - + Flex items and absolutely- - \Y%

positioned children of flex

containers
orphans - + + + Block-level elements + \Y%
outline - + + + All elements - A%
outline-color - + + + All elements - A%
outline-offset - - - + All elements - \Y%
outline-style - + + + Allelements - \%
outline-width - + + + All elements - \Y%
overflow - + + + Nonreplaced block-level - \Y%

elements and nonreplaced

inline-block elements
overflow-wrap - - - + Allelements +
overflow-x - - - + Nonreplaced block-level -

elements and nonreplaced

inline-block elements
overflow-y - - - + Nonreplaced block-level - A%

elements and nonreplaced

inline-block elements

(continued)

181

CHAPTER 5 ' STYLE SHEETS

Table 5-5. (continued)

Property CSS1 CSS2 (CSS2.1 CSS3 Applicability Inherited Media
padding + + + + Allelements - \%
padding-bottom + + + + All elements - \Y
padding-left + + + + Allelements - A
padding-right + + + + Allelements - \%
padding-top + + + + All elements - \Y
page - + - + Block-level elements + P
page-break-after - + + + Block-level elements - V, P
page-break-before - + + + Block-level elements - V, P
page-break-inside - + + + Block-level elements + P
page-policy - - - + @counter and @string ? P
blocks
pause - + + + Allelements - S
pause-after - + + + Allelements - S
pause-before - + + + Allelements - S
perspective - - - + Block-level and inline- - \Y%
level elements
perspective-origin - - - + Block-level and inline- - \%
level elements
pitch - + + - Allelements + A
pitch-range - + + - Allelements + A
play-during - + + - Allelements - A
position - + + + Allelements - \Y%
presentation-level - - - + Allelements + All
quotes - + + + All elements, : :before, - \Y%
. :after, : :alternate,
. :marker, : :1ine-marker,
margin areas, and @
footnote areas
region-fragment - - - + CSS regions - \Y%
resize - - - + Elements with overflow - \Y
other than visible
rest - - - + All elements - S
rest-after - - - + Allelements - S
rest-before - - - + Allelements - S
(continued)

182

Table 5-5. (continued)

CHAPTER 5 * STYLE SHEETS

Property CSS1 CSS2 (CSS2.1 CSS3 Applicability Inherited Media
richness - + + - All elements + A
right - + + + Positioned elements - \Y
rotation - - - + Block-level elements, - \Y%
inline-table elements, and
inline-block elements
rotation-point - - - + Block-level elements - \%
ruby-align - - - + All elements and - \Y
generated content
Tuby-merge - - - + Ruby annotation + \%
containers
ruby-position - - - + The parent of elements + \Y%
with display: ruby-text
shape-image-threshold - - - + Floats - \Y
shape-outside - - - + Floats - \Y
shape-margin - - - + Floats - \Y
size - + - + Page context ? P
speak - + + + Allelements + S
speak-as - - - + Allelements + S
speak-header - + + - Elements that have table + A
header information
speak-numeral - + + - Allelements + A
speak-punctuation - + + - Allelements + A
speech-rate - + + - All elements + A
stress - + + - All elements + A
string-set - - - + Allelements - All
table-layout - + + ? Table and inline-table - \Y%
elements
tab-side - - - + Elements with display: + \Y
stack
text-align + + + + Block containers + \%
text-align-last - - - + Block containers + \Y
text-combine-upright - - - + Non-replaced inline + \Y
elements
text-decoration + + + + Allelements - \Y%
text-decoration-color - - - + All elements - \Y
(continued)

183

CHAPTER 5 ' STYLE SHEETS

Table 5-5. (continued)

Property CSS1 CSS2 (CSS2.1 CSS3 Applicability Inherited Media
text-decoration-line - - - + Allelements —* \Y
text-decoration-skip - - - + Allelements + A
text-decoration-style - - - + Allelements - A%
text-emphasis - - - + Allelements + \Y%
text-emphasis-color - - - + Allelements + \Y
text-emphasis-position - - - + Allelements + A%
text-emphasis-style - - - + Allelements + \Y%
text-height - - - + Inline elements and + \Y

parents of element with

display: ruby-text
text-indent + + + + Block containers +
text-justify - - - + Block containers, inline +

elements
text-orientation - - - + All elements except table + \Y%

rows and columns
text-overflow - - - + Block containers - \Y
text-shadow - + - + Allelements + \Y%
text-space-collapse - - - + Allelements + \Y%
text-transform + + + + All elements + \Y
text-underline-position - - - + Allelements + A%
text-wrap - - - + All elements + \Y%
top - + + + Positioned elements - \Y%
transform - - - + Block and inline elements - A%
transform-origin - - - + Blockand inline elements - \Y
transform-style - - - + Blockand inline elements - \Y
transition - - - + All elements, :before and - I

:after pseudoelements
transition-delay - - - + All elements, :before and - I

:after pseudoelements
transition-duration - - - + All elements, :before and - I

:after pseudoelements
transition-property - - - + All elements, :before and - \Y

:after pseudoelements
transition-timing-function - - - + All elements, :before and - I

:after pseudoelements

(continued)

184

Table 5-5. (continued)

CHAPTER 5 * STYLE SHEETS

Property CSS1 €SS2 (CSS2.1 CSS3 Applicability Inherited Media
unicode-bidi - + + + All elements* - \Y
vertical-align + + + + Inline-level elements - A%
visibility - + + + Allelements + \Y
voice-balance - - - + All elements + S
voice-duration - - - + Allelements - S
voice-family - + + + Allelements + S
voice-pitch - - - + Allelements + S
voice- range - - - + Allelements + S
voice-rate - - - + Allelements + S
voice-stress - - - + Allelements + S
voice-volume - - - + Allelements + S
volume - + + - All elements + A
white-space + + + + Allelements + \Y
widows - + + + Block-level elements + \Y%
width + + + + All elements except - A%

nonreplaced inline

elements, table rows, and

row groups
word-break - - - + Allelements + \%
word-spacing + + + + Allelements + \Y
word-wrap - - - + Allelements + \Y
wrap-flow - - - + Block-level elements - \Y%
wrap-through - - - + Block-level elements - \Y
writing-mode - - - + All elements except table + \Y

rows and table columns
z-index - + + + Positioned elements - \Y%
Legend

* Special rules might apply
Not defined for shorthand properties
Depends on the individual property

Not finalized yet
Visual media
Interactive media
Aural media
Paged media

wZUB < Nas

Speech media

Noncontinuous media (continuous media only if column length is constrained)

185

CHAPTER 5 ' STYLE SHEETS

The browser support of CSS properties varies and is gradually improving. However, even the CSS 2.1 properties
gained a more or less complete and correct implementation only recently. Consequently, old browsers do not support
all properties and have incorrect implementation for many properties. This was the major reason for the huge
difference in rendering the same site under different browsers for years. With the proper, if not full, implementation of
CSS properties in modern browsers, this difference has been decreased to a minimum.

Most Common CSS3 Features and Properties

With CSS3, you can create rounded borders, add shadow to boxes, use an image as a border, and other advanced
styling without creating images in an image processing program such as Photoshop.

border-radius

With CSS3, you can add rounded borders to elements individually using the border-top-left-radius, border-top-
right-radius, border-bottom-right-radius, and border-bottom-1left-radius properties (Listing 5-68), or together
with their shorthand property, border-radius (Listing 5-69).

Listing 5-68. Border Radii Set Individually for the Four Corners

div {
border: 2px solid;
border-top-left-radius: 2em;
border-top-right-radius: 1.8em;
boxder-bottom-right-radius: 2.2em;
boxder-bottom-left-radius: 1.6em;

The property value (the radius) can be declared in pixels, ems, or %, which defines the shape of the corners.

Listing 5-69. Identical Border Radius for All Corners

div {
border: 2px solid;
boxder-radius: 25px;

}

The radii values are declared in the order top-left, top-right, bottom-right, and bottom-left. If bottom-left
is omitted, it is the same as top-right. If bottom-right is omitted, it is the same as top-left. If top-right is omitted,
itis the same as top-1left. If all four radii values are the same, the border-radius shorthand property should be used
with that value.

box-shadows

In CSS3, the box-shadow property is used to add shadow to divisions (Listing 5-70).

Listing 5-70. Shadow on the div Elements

div {
box-shadow: 10px 10px 5px #848484;
}

186

CHAPTER 5 * STYLE SHEETS

text-shadow
In CSS3, the text-shadow property adds shadow to texts (Listing 5-71).

Listing 5-71. Simple Text Shadow Effect

h2 {
text-shadow: 2px 3px 5px #00f;
}

The first property value defines the x-offset, the second value is the y-offset, the third value is the z-offset (blur),
and the last value is the color of the shadow. If you want to add multiple shadows, a comma should be used as the
separator (Listing 5-72).

Listing 5-72. Outline Effect Using Multiple Text Shadows

h2 {
text-shadow: 0 1px 0 #000, 0 -1px 0 #000, 1px 0 O #000, -1px O O #000;
color: #fff;

}

Background Size

In CSS3, background images are resizable, making it possible to implement the background image to take up all
available space (Listing 5-73) or be proportional to the screen, regardless of the width of the browser window.
Listing 5-73. Stretched Background

body {
background: url('/img/bg.jpg') no-repeat;
background-size: 100% 100%;

}

Multiple Backgrounds

In CSS3, multiple backgrounds can be declared (Listing 5-74). The separate background images are
separated by a comma.

Listing 5-74. Two Background Images for One Element

#container {
background: url('/img/bg.jpg') 0 0 no-repeat, url('/img/bg2.jpg') 100% O no-repeat;
}

In this example, the first image is placed to the top-left position (0 0), while the second to the top-right position
(200% 0). Multiple backgrounds can be especially useful when applying a texture or gradient as the main background,
and a photo as the other.

187

CHAPTER 5 ' STYLE SHEETS

Transitions

With CSS3, we can add effects to elements that will gradually change from one style to another without JavaScript
or Flash animations. transition-delay determines when the transition effect should start. transition-duration
specifies the length of the transition effect in seconds or milliseconds. transition-property identifies the CSS
property the transition effect is applied for. transition-timing-function specifies the speed curve of the transition
effect. transition is the shorthand property of the four transition properties.

One of the typical transition effects is associated with the event when a user is moving the mouse over an
element (Listing 5-75).

Listing 5-75. Specifying a :hover Effect for div Elements

div:hover {
width: 400px;
}

If there is no duration specified, the transition will have no effect, because the default value is 0. To specify the
duration, the CSS property to which the transition will be applied must be defined, followed by the transition length
such as transition: width 2s;.

Transition effects can be added to more than one CSS property by separating the properties with a comma
(Listing 5-76).

Listing 5-76. Transition Effects for Width, Height, and Transformation

div {
transition: width 2s, height 2s, transform 2s;

}

Tip Itis recommended to apply CSS3 rules with caution, because most modules of CSS3 are not standardized yet,
and browser support varies. Web designers should ensure the graceful degradation of user experience on older
browsers that do not support CSS3. While the rounded corners declared by using the CSS3 property border-radius
are not rendered by older browsers, the general layout and styling provide a similar appearance in old browsers as with
modern browsers with CSS3 support. Similarly, if Web Fonts—that are not supported by older browsers—are used on a site,
a common font and at least a generic font family should be declared as a fallback mechanism (see Chapter 9 for details).

Initial Property Values

All CSS properties have their initial values that are applied when the property values are set neither by cascading nor by
inheritance. The initial value of each property is defined by the CSS specifications. An initial value is one of the allowed
values of the corresponding CSS property. For example, a color declaration (in any of the allowed formats, typically in
hexadecimal notation), transparent, and inherit are all legal values of the background-color property, from which
transparent is the initial value that can be easily overridden by declaring the desired value in your CSS file (Listing 5-77).

Listing 5-77. The Declared Value Overrides the Initial Value Defined by the CSS Specification

body {
background-color: #198c00;

}

188

CHAPTER 5 * STYLE SHEETS

This is the reason why the background of all paragraphs, divisions, and other elements is transparent. Another
example is the bullet type of lists, which is often used without override. If the value of the property list-style-type
is not set by the developer, the initial value is used for rendering, which is disc. However, it can be overridden by
any other allowed values of that property, including circle, square, decimal, decimal-leading-zero, lower-roman
upper-roman, lower-greek, lower-latin, upper-latin, armenian, georgian, lower-alpha, upper-alpha, none, and
inherit. The last value, inherit, can be applied not only to 1ist-style-type but also to any other CSS property in
order to explicitly apply the initial value of the corresponding property.

Since the root element has no parent element, its value is set to the initial property value by default.

Default Styles of Rendering Engines

Since the default style sheet of rendering engines contains different property values for certain properties, the
property values that are not declared by the web site developer might look different under various browsers. Because
of the different line heights, margins, font sizes, and other properties, the overall appearance of a web site is typically
not uniform. Although some of the default property values differ slightly only, developers cannot rely on the default
styles of rendering engines.

Tip The inconsistencies between the CSS implementations of browsers can be minimized by overriding the CSS
property values of the default style sheet of rendering engines. This technique is called CSS reset. One of the most
well-known CSS reset files was written and maintained by Eric A. Meyer (Listing 5-78) and can be used on your web site
for free [22].

Listing 5-78. A CSS Reset

/* http://meyerweb.com/eric/tools/css/reset/

v2.0 | 20110126

License: none (public domain)
*/
html, body, div, span, applet, object, iframe, hi, h2, h3, h4, h5, h6, p, blockquote, pre, a,
abbr, acronym, address, big, cite, code, del, dfn, em, img, ins, kbd, q, s, samp, small, strike,
strong, sub, sup, tt, var, b, u, i, center, dl, dt, dd, ol, ul, 1li, fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td, article, aside, canvas, details, embed, figure,
figcaption, footer, header, hgroup, menu, nav, output, ruby, section, summary, time, mark, audio,
video {

margin: 0;
padding: 0;
border: 0;

font-size: 100%;
font: inherit;
vertical-align: baseline;
}
/* HTML5 display-role reset for older browsers */
article, aside, details, figcaption, figure, footer, header, hgroup, menu, nav, section {
display: block;
}

189

http://meyerweb.com/eric/tools/css/reset/

CHAPTER 5 ' STYLE SHEETS

body {
line-height: 1;
}
ol, ul {
list-style: none;
}

blockquote, q {
quotes: none;

}
blockquote:before, blockquote:after, q:before, q:after {
content: '';
content: none;
}
table {
border-collapse: collapse;
border-spacing: 0;
}

XSL

Although it is not widely used and only a limited number of web developers are familiar with it, since 1999 a
technology other than CSS can also be used for styling XML-serialized web documents [23]. Extensible Stylesheet
Language (XSL) is a language family that can be used for styling, manipulation, and transformation of XML files.
There are three XSL languages; however, only one of them is a style sheet language:

e XSL Transformations (XSLT): An XML style sheet language that can be used for transforming XML
documents into other XML documents or other formats such as HTML or plain text. The original
document remains unchanged, and a new document is created based on the existing one.

e XSL Formatting Objects (XSL-FO): An XML markup language applied for specifying the visual
formatting of XML documents. Several software support XSL-FO that can provide various
output formats, including plain text, PDE PS, SVG, PCL, and MIE

e XML Path Language (XPath): A non-XML query language that can also be used by XSLT.

XSLT Style Sheets

XSLT style sheets consist of one or more style sheet modules that are part of XML documents or form entire XML
documents by themselves. The typical file extensions of XSLT are .xs1 and .xs1t. XSLT style sheets use the media
type application/xslt+xml.

Namespaces

The XSLT namespace is http://www.w3.0rg/1999/XSL/Transform. However, further (reserved) namespaces are also
recognized by XSLT processors [24], including the following:

e The standard function namespace, http://www.w3.0rg/2005/xpath-functions
e The XML namespace, http://www.w3.0rg/XML/1998/namespace
e The schema namespace, http://www.w3.0rg/2001/XMLSchema

e The schema instance namespace, http://www.w3.0rg/2001/XMLSchema-instance

190

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/2005/xpath-functions
http://www.w3.org/XML/1998/namespace
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance

CHAPTER 5 * STYLE SHEETS

Structure
The structure of XSLT style sheets looks like Listing 5-79.

Listing 5-79. XSLT Style Sheet Structure

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:import href="..."/>
<xsl:include href="..."/>
<xsl:strip-space elements="..."/>
<xsl:preserve-space elements="..."/>
<xsl:output method="..."/>
<xsl:key name="..." match="...
<xsl:decimal-format name="..."/>
<xsl:namespace-alias stylesheet-prefix="...

<xsl:attribute-set name="...">

use="..."/>

result-prefix="..."/>

</xsl:attribute-set>

<xsl:variable name="...">...</xsl:variable>
<xsl:param name="...">...</xsl:param>
<xsl:template match="...">

</xsl:template>
<xsl:template name="...">

</xsl:template>
</xsl:stylesheet>

Note that the previous example shows all allowed element types; however, style sheets might contain zero or
more of these elements.

Elements

XSLT style sheets are represented by the xs1:stylesheet or xs1:transform element in XML documents. An
xsl:stylesheet element must have a version attribute. The xs1:stylesheet element may contain the following
types of elements: xs1:import, xsl:include, xsl:strip-space, xsl:preserve-space, xsl:output, xsl:key
xsl:decimal-format, xsl:attribute-set, xsl:param, xsl:variable, xsl:namespace-alias, and xs1:template.
Table 5-6 provides an overview of XSLT 1.0 elements.

191

http://www.w3.org/1999/XSL/Transform

CHAPTER 5 ' STYLE SHEETS

Table 5-6. Overview of XSLT Elements

Element

Description

apply-imports
apply-templates
attribute
attribute-set
call-template
choose

comment

copy

copy-of
decimal-format

element
fallback
for-each

if

import

include

key

message
namespace-alias
number
otherwise
output

param
preserve-space
processing-instruction
sort
strip-space
stylesheet
template

text

transform
value-of
variable

when

with-param

Applies a template rule from an imported style sheet

Applies a template rule to the current element or to the child nodes of the current element
Adds an attribute

Defines a named attribute set

Calls a named template

Multiple conditional test (used with when and otherwise)

Creates a comment node

Creates a copy of the current node

Creates a copy of the current node (with child nodes and attributes)

Defines the format to be used for converting numbers into strings with the
format-number function

Creates an element node in the output document

Declares an alternate code for XSLT elements

Provides a loop within a node set

Provides a template to be applied in case of a specified condition
Imports an external style sheet (with lower precedence)
Includes an external style sheet (with same precedence)
Declares a key to be used with the key function

Writes a message (typically error message)

Replaces a namespace in the style sheet to another one in the output
Determines the position of the current node

Specifies a default action for the choose element

Defines the format of the output document

Adds a (local or global) parameter

Defines elements with preserved whitespace

Writes a processing instruction to the output

Sorts the output

Defines the elements from which whitespace should be removed
Defines the root element of a style sheet

Applies a template when a specified node is matched

Writes text to the output

Defines the root element of a style sheet

Extracts the value from the selected node

Declares a (local or global) variable

Specifies an action for the choose element

Defines the parameter value to be passed into a template

192

CHAPTER 5 * STYLE SHEETS

The application of XSLT elements is straightforward and follows general XML authoring principles. Listing 5-80
shows an example.

Listing 5-80. XSLT Elements and Attributes Correspond to XML Guidelines

<xsl:param name="page-header-margin">20px</xsl:param>

Standard Attributes

Several standard attributes are associated with XSLT elements, including version, exclude-result-prefixes,
extension-element-prefixes, xpath-default-namespace, default-collation, and use-when. To distinguish

them from attributes defined by authors, they should be written with the namespace notation as xs1:version,
xsl:exclude-result-prefixes, xsl:extension-element-prefixes, xsl:xpath-default-namespace, xsl:default-
collation, and xsl:use-when.

Combining GSS and XSL

XSL can also be used as a bridge between complex XML-based documents and the CSS formatting model. Since
CSS has no XML syntax, CSS properties become XML attributes in the XSL syntax. The main CSS object is chunk.
Additional objects might also be required. Usually they are other chunk objects with functionality such as anchor,
or further objects such as switch. For example, the CSS ruleset in Listing 5-81 can be written in XSL syntax, as
shown in Listing 5-82.

Listing 5-81. CSS Ruleset Example to Be Converted into XSL

{
font-size: 1.2em;
text-indent: 1em;

}

Listing 5-82. The XSL Equivalent of Listing 5-81

<css:chunk
font-size="1.2em"
text-indent="1em">

CSS Preprocessing

Although CSS is a powerful language, it has limitations compared to traditional programming languages and
especially object-oriented programming languages. For example, CSS does not support mixins such as classes
that contain a combination of methods from other classes. Another desirable CSS feature would be selector
inheritance, which is not supported by CSS. CSS has a set of selectors and pseudo-selectors that group rules
that apply to them. CSS preprocessors extend CSS by providing additional mechanisms available in traditional
programming languages, particularly object-oriented languages, but that are not available in CSS. Such
extensions are very useful in the development of large, complex websites and web applications,’ providing
concise style sheets that are faster to write, and easier to maintain or update. One of the principles in CSS
preprocessing is DRY (Don’t Repeat Yourself (as opposed to WET, Write Everything Twice). The most popular
CSS preprocessors are Sass, LESS, and Stylus.

°Since CSS is abstracted, there is an additional step to updates and changes, which is not always worthwhile in small web projects.

193

CHAPTER 5 ' STYLE SHEETS

Sass

Sass (Syntactically awesome stylesheets) is a scripting language that is interpreted into Cascading Style Sheets. Sass
has two syntaxes: the original syntax (“the indented syntax’, typically with the file extension .sass), and the newer
syntax, known as SCSS (with the extension .scss). The original syntax is similar to the syntax of Haml, applying
indentation to separate code blocks and newline characters to separate rules. SCSS uses block formatting similar to
that of CSS, braces to denote code blocks, and semicolons to separate lines within a block [25].

LESS

LESS is another CSS preprocessor to make CSS more maintainable, themable, and extendable [26]. LESS is influenced by
Sass and the SCSS syntax. LESS is a nested metalanguage, meaning that any valid CSS code is also valid LESS code (sharing
the same semantics). LESS provides programming mechanisms such as variables, nesting (selectors inside other selectors),
mixins, operators (addition, subtraction, division, and multiplication of property values and colors to create complex
relationships between properties), and functions (manipulation of values through JavaScript). A distinctive feature of LESS
compared to other CSS preprocessors is that LESS allows real-time compilation via less. js within the browser. LESS can
be used on the client-side or the server-side, or compiled into CSS. The file extension of LESS files is . less.

Stylus

The third most popular CSS preprocessor is Stylus, a dynamic style sheet language influenced by Sass and LESS [27].
Stylus runs on the Node platform [28]. In Stylus, colons, semicolons, commas, and braces are optional. Stylus supports
variables, interpolation, mixins, arithmetics, type coercion, dynamic importing, conditionals, iteration, selector
nesting, parent referencing, variable function calls, lexical scoping, functions, optional compression, character
escaping, and robust error reporting. The typical file extension for Stylus files is . styl.

Summary

In this chapter, you learned how to separate presentation from content, which is imperative in web site
standardization. You know the syntax of Cascading Style Sheets, the language used by virtually every web site. You
have mastered the use of CSS selectors and can apply them in your daily work to control the appearance of exactly
those elements or sets of elements that need to be styled. By now you know how to use the cascading feature of CSS
with confidence, which makes it possible to create CSS files that are optimal in length and easy to maintain. You also
know how to ensure backward-compatibility by applying a fallback mechanism and properties supported even by
older browsers. You learned that XML files can be styled not only by CSS but also by using XSL.

In the next chapter, you will learn about the standardization issues of server-side scripting and web applications.

References

1. Dahlstrém E, Dengler P, Grasso A, Lilley C, McCormack C, Schepers D, Watt], Ferraiolo
J, Jun E, Jackson D (eds) (2011) Styling with CSS. In: SVG 1.1 (2™ Edn). World Wide Web
Consortium. http://www.w3.0rg/TR/SVG/styling.html#StylingWithCSS. Accessed 20
October 2014

2. Chavchanidze G (2004) Formatting Mathematical Articles with Cascading Style Sheets.
Andrea Razmadze Mathematical Institute. http://www.princexml.com/samples/math.pdf.
Accessed 20 October 2014

3. Bos B, Carlisle D, Chavchanidze G, Ion PDF, Miller BR (2011) A MathML for CSS Profile.
W3C Recommendation. World Wide Web Consortium.
http://www.w3.0rg/TR/mathml-for-css/. Accessed 20 October 2014

194

http://www.w3.org/TR/SVG/styling.html#StylingWithCSS
http://www.princexml.com/samples/math.pdf
http://www.w3.org/TR/mathml-for-css/

10.

11.

12.

13.

14.

15.

16.

17.

18.

CHAPTER 5 * STYLE SHEETS

Grant M (ed) (2013) CSS Print Profile. World Wide Web Consortium.
http://www.w3.0rg/TR/css-print/. Accessed 20 October 2014

Hayes S, Adams G, Celik T, Lie HW (2014) CSS TV Profile 1.0. World Wide Web
Consortium. http://www.w3.0rg/TR/css-tv. Accessed 20 October 2014

Bos B (ed) (2014) CSS Mobile Profile 2.0. World Wide Web Consortium.
http://www.w3.0rg/TR/css-mobile/. Accessed 20 October 2014

Lie HW, Bos B (2008) Cascading Style Sheets, level 1. W3C Recommendation (revised
version). World Wide Web Consortium. http://www.w3.0rg/TR/CSS1/. Accessed
20 October 2014

Bos B, Celik T, Hickson I, Lie HW (eds) (2011) Cascading Style Sheets Level 2 Revision 1
(CSS 2.1) W3C Recommendation. World Wide Web Consortium.
http://www.w3.0rg/TR/CSS21/. Accessed 20 October 2014

Meyer EA, Bos B (eds) (2001) Module Descriptions and Related Information. In:
Introduction to CSS3. W3C Working Draft. World Wide Web Consortium.
http://www.w3.0rg/TR/css3-roadmap/#module. Accessed 09 October 2010

Celik T, Lilley C, Baron LD, Pemberton S, Pettit B (eds) (2011) CSS Color Module Level 3.
W3C Recommendation. World Wide Web Consortium.
http://www.w3.0rg/TR/css3-color/. Accessed 20 October 2014

Etemad EJ (ed) (2014) CSS Namespaces Module Level 3. W3C Recommendation. World
Wide Web Consortium. http://www.w3.0rg/TR/css3-namespace/.
Accessed 20 October 2014

Celik T, Etemad EJ, Glazman D, Hickson I, Linss P, Williams J (eds) (2011) Selectors Level 3.
W3C Recommendation. http://www.w3.0rg/TR/selectors/. Accessed 20 October 2014

Rivoal F (ed) (2012) Media Queries. W3C Recommendation.
http://www.w3.0rg/TR/css3-mediaqueries/. Accessed 20 October 2014

Bos B, Celik T, Hickson I, Lie HW (eds) (2011) Grammar of CSS 2.1. In: Cascading Style
Sheets Level 2 Revision 1 (CSS 2.1) Specification. W3C Recommendation. World Wide Web
Consortium. http://www.w3.0rg/TR/CSS21/grammar.html. Accessed 20 October 2014

Bos B, Celik T, Hickson I, Lie HW (eds) (2011) Selector syntax. In: Cascading Style Sheets
Level 2 Revision 1 (CSS 2.1) Specification. W3C Recommendation. World Wide Web
Consortium. http://www.w3.0rg/TR/CSS21/selector.html#selector-syntax.
Accessed 20 October 2014

Celik T, Etemad EJ (eds) (2010) Syntax and Parsing. In: CSS Style Attributes. World Wide
Web Consortium. http://www.w3.0rg/TR/2010/CR-css-style-attr-20101012/#syntax.
Accessed 20 October 2014

Clark J, Pieters S, Thompson HS (eds) (2010) Associating Style Sheets with XML
documents 1.0 (Second Edition). W3C Recommendation. World Wide Web Consortium.
http://www.w3.0rg/TR/xml-stylesheet/. Accessed 20 October 2014

Lie HW (ed) (2005) Cascading. In: CSS3 module: Cascading and inheritance.
W3C Working Draft. World Wide Web Consortium.
http://www.w3.0rg/TR/2005/WD-css3-cascade-20051215/#cascading.
Accessed 20 October 2014

195

http://www.w3.org/TR/css-print/
http://www.w3.org/TR/css-tv
http://www.w3.org/TR/css-mobile/
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS21/
https://www.w3.org/TR/css3-roadmap/#module
http://www.w3.org/TR/css3-color/
http://www.w3.org/TR/css3-namespace/
http://www.w3.org/TR/selectors/
http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/CSS21/grammar.html
http://www.w3.org/TR/CSS21/selector.html#selector-syntax
http://www.w3.org/TR/2010/CR-css-style-attr-20101012/#syntax
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/2005/WD-css3-cascade-20051215/#cascading

CHAPTER 5

196

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

STYLE SHEETS

Glazman D, Celik T, Hickson I, Linss P, Williams J (eds) (2001) Calculating a selector’s
specificity. In: Selectors. World Wide Web Consortium.
http://www.w3.0rg/TR/2001/CR-css3-selectors-20011113/#specificity.
Accessed 20 October 2014

Bos B, Celik T, Hickson I, Lie HW (2011) Box model. In: Cascading Style Sheets Level 2
Revision 1 (CSS 2.1) Specification. W3C Recommendation. World Wide Web Consortium.
http://www.w3.0rg/TR/CSS21/box.html. Accessed 20 October 2014

Silver L (2006) Fix the Box Instead of Thinking Outside It. In: CSS Enhancements in
Internet Explorer 6. Microsoft Corporation.
http://msdn.microsoft.com/en-us/library/bb250395.aspxi#cssenhancements_topic3.
Accessed 20 October 2014

Meyer EA, Meyer KS (2014) CSS Tools: Reset CSS. Eric A. Meyer, Kathryn S. Meyer.
http://meyerweb.com/eric/tools/css/reset/. Accessed 20 October 2014

Clark J (ed) (1999) XSL Transformations (XSLT) Version 1.0 W3C Recommendation. World
Wide Web Consortium. http://www.w3.0rg/TR/xslt. Accessed 20 October 2014

Kay M (ed) (2007) XSL Transformations (XSLT) Version 2.0. W3C Recommendation. World
Wide Web Consortium. http://www.w3.0rg/TR/xs1t20/. Accessed 20 October 2014

Catlin H, Weizenbaum N, Eppstein C (2014) Sass: Syntactically Awesome Style Sheets.
http://sass-lang.com/. Accessed 20 October 2014

Sellier A, Schlinkert J, Page L, Bointon M, Juréov¢ova M, Dean M, Mikhailov M (2014)
Getting started | Less.js. http://lesscss.org/. Accessed 20 October 2014

LearnBoost (2014) Stylus—expressive, robust, feature-rich CSS preprocessor.
http://learnboost.github.io/stylus/. Accessed 20 October 2014

Joyent (2014) Node.js. http://nodejs.org/. Accessed 20 October 2014

http://www.w3.org/TR/2001/CR-css3-selectors-20011113/#specificity
http://www.w3.org/TR/CSS21/box.html
http://msdn.microsoft.com/en-us/library/bb250395.aspx#cssenhancements_topic3
http://meyerweb.com/eric/tools/css/reset/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt20/
http://sass-lang.com/
http://lesscss.org/
http://learnboost.github.io/stylus/
http://nodejs.org/

CHAPTER 6

Scripting and Applications

Modern web sites are meant to be dynamic. Very few web sites are based purely on document structure and style
sheets. Web site sections often behave differently or react to user input. While small programs can run in the browser,
complex functions are usually executed on the web server. Most dynamic sites are powered by databases that are
handled by server-side scripts. Since server-side languages frequently use variables and reuse large code blocks, the
validity of the generated code relies on the code quality of the development framework, the Content Management
System, or the templates, often resulting in incorrect markup and styles. Even so, web designers can modify the code
so that the server-side system will generate valid, error-free markup and style sheets. This can be challenging if the
framework or CMS core uses invalid syntax and multiplies incorrect code blocks throughout the site.

In this chapter, you will learn why the standardization of dynamic content is more challenging than that of static
pages. Becoming familiar with the basic syntax of the most widely used client-side and server-side scripting languages
is crucial, because small programs written in these languages are often embedded into the markup. The inline
scripts might have an impact on the standards compliance of a whole web page. You will also learn how to provide
alternate content for scripts. Although the standard compliance of the markup generated on the server side using
web programming languages, frameworks, and development platforms to provide web applications is constantly
improving, the generated code is often incorrect. Many of these development technologies are not standardized
but are implemented worldwide and considered de facto standards. Many technologies rely on a number of other
technologies and standards. This chapter provides a quick overview of some of the most common scripting and
application development technologies that often determine the standard compliance of dynamic web sites.

Client-Server Architectures

The distributed application structure that divides tasks and/or workloads between resource or service providers,
called servers, and service requesters, called clients, is known as the client-server model. Clients and servers
communicate over the Web to exchange data and perform tasks.

The client-server architecture represents relationships between cooperating programs in a web application.
For example, a contact form can be evaluated on the client side and processed on the server side.

The general syntax and grammar conventions of the most popular client-side and server-side scripting and
programming languages, technologies, and frameworks are discussed in the following sections. Note that a detailed
description of scripts and applications is beyond the scope of the book.

Scripting and Standards Implementation

A script is program code that does not require preprocessing (such as compiling) before execution [1]. Small dynamic
components of web documents such as the current date or interactive content and behavior can be added by scripting
languages. Modifications can be performed on the web page content without reloading the new version of the page.
Content can be added to or sent from a web page with Asynchronous JavaScript and XML (Ajax) without reloading the
entire updated page.

197

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Static web pages have constant content that is either valid or not, but can be relatively easily validated and, if
necessary, updated to make the markup and styles standard-compliant. Server-side scripting, on the other hand,
provides content generated on the fly. The source code of the program that generates the markup on the server-side
is quite complex to check for markup errors. Server-side scripts often rely on hard-coded codeblocks that cannot be
easily modified. Validating and standardizing large web sites with hundreds of thousands of web pages relying on
incorrect code can be practically infeasible.

The major problem with web sites relying on data stored in databases and processed by server-side scripts is
the higher complexity and the lack of full control. Templates used by Content Management Systems are not always
standards-compliant which is distributed on all sites that apply the same templates. Moreovery, a single problem of
either the script or the database can result in an error message instead of the web page content (Figure 6-1).

Welcome, Guest. Please or .
Forever v || Login |
Login with username, password and session length
News: SMF - Just Installad s Search |

Database Error

Please try again. If you come back to this error screen, report the error to an
administrator.

Figure 6-1. Content replaced by error message

There is a huge difference between small programs running on web pages and programs created for generating
web pages. Server-side scripting languages are powerful and provide features that cannot be achieved by static
content. There is nothing wrong with small contact forms, for example. However, server-side scripts should be used
only where really needed. A huge advantage of server-side scripts is that they can provide the same headers, footers,
and so on, as templates for identical markup fragments (header, sidebar, main area, footer, etc.) throughout the web
site that can be easily maintained from a single location (in contrast to static web pages). However, the application
of server-side scripting should be minimized on web sites that do not rely on databases and dynamically generated
content, such as small-scale, brochure-style web sites. Undoubtedly, a large share of invalid markup code on the
Web is generated by server-side scripting languages. In many cases, additional practices are required to obtain valid
markup, such as to handle the ampersand characters used as an argument separator in URLs of PHP sessions [2]

Client-Side Development

Client-side development refers to those web programs that run on the client side, generally a web browser, instead

of being executed on the server side (on a web server). Client-side programs can be used to provide different and
changing content on a web page, depending on user input and other variables. For example, “dynamic” greetings can
be added to a web page according to the current time of day.

198

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Ajax

Ajax is an acronym for Asynchronous JavaScript and XML. It is not a programming language but a group of web
technologies that can be used together, such as HTML, CSS, DOM, JavaScript, XML, and XSLT. Ajax can be used on
the client side to create interactive web applications. Web site applications empowered with Ajax can send data to and
retrieve data from servers asynchronously (which is the reason for the name). Ajax is suitable for avoiding full-page
reloads when exchanging data asynchronously. This approach ensures that the display and behavior of the current
page won't be affected. Despite the name, Ajax does not require XML; the JavaScript Object Notation (JSON), a
lightweight text-based open standard [3], is often used instead. The requests are not necessarily asynchronous either.
Ajax usually retrieves data using the XMLHttpRequest object [4]. The DOM is used along with JavaScript to dynamically
display information and allow the user to interact with the information presented. The data interchanged using Ajax
can be manipulated using XSLT.

Note Modern browsers have a built-in XMLHttpRequest object. Before IE7, Internet Explorer provided an object
called ActiveXObject.

To demonstrate Ajax, the code in Listing 6-1 creates a link that will replace the content of a div element with the
content of a text file. The Document Object Model is used to manipulate the object. The XMLHTTPRequest object is
used to make the HTTP request load the file ajaxdemo. txt and display its content.

Listing 6-1. Ajax Demonstration

<script type="text/javascript">
var http = false;

if (navigator.appName == "Microsoft Internet Explorer") {
http = new ActiveXObject("Microsoft.XMLHTTP");
} else {
http = new XMLHttpRequest();
}

function replace() {
http.open("GET", "ajaxdemo.txt", true);
http.onreadystatechange=function() {
if (http.readyState == 4) {
document.getElementById('repdiv').innerHTML = http.responseText;
}

}
http.send(null);

</script>

199

CHAPTER 6 © SCRIPTING AND APPLICATIONS
In the document body, we need a function call and a div with the text to replace (Listing 6-2).

Listing 6-2. The Function Call and the div with the Original Text

<p>
Click here to replace text
</p>

<div id="repdiv">

Original text in the markup
</div>

The http.open() argument is the asynchronous argument that sends the request in the background.

Flex

Adobe Flex is a software development kit (SDK) for cross-platform, rich Internet applications based on the Adobe
Flash technology [5]. The user interface layout and behavior are described by a declarative XML-based language,
MXML, while the client logic is created by using the ActionScript 3.0 programming language.

Note ActionScript is an object-oriented language and a dialect of ECMAScript. Consequently, ActionScript is a super-
set of the syntax and semantics of JavaScript. Most frequently, ActionScript is implemented in SWF files.

As an example, let’s create a simple RSS news feed reader! First, we need to write a common XML declaration,
followed by an MXML declaration (Listing 6-3).

Listing 6-3. The XML and MXML Declaration

<?xml version="1.0" ?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

</mx:Application>

Within the mx:Application, our HTTPService should be defined, and the custom controls (DataGrid, TextArea,
and Button) are prepared for the panel (Listing 6-4).

Listing 6-4. The HTTPService and the Panel for the Custom Controls

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">
<mx:HTTPService id="httpRSS" url="http://www.example.com/rss/" resultFormat="object" />
<mx:Panel id="reader" title="Simple RSS Reader" width="600">
</mx:Panel>

</mx:Application

Now it is time to define the DataGrid. The horizontal dimension of the panel should be set by the width
parameter. Each item tag of the RSS file is bound to a DataGrid row by the dataProvider attribute. Next we create an
event handler to display the contents of the description tags inside the RSS items selected by the user. The
entries.selectedIndex variable is used to determine which item was clicked. The description of the corresponding
item is retrieved by httpRSS.result.rss.channel.item[entries.selectedIndex].description. The value of the
RSS description is assigned to the htmlText property of the TextArea (Listing 6-5).

200

http://www.macromedia.com/2003/mxml
http://www.macromedia.com/2003/mxml

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Listing 6-5. Creating the DataGrid for the RSS Reader

<mx:DataGrid id="entries" width="{reader.width-15}"«
dataProvider="{httpRSS.result.rss.channel.item}"«
cellPress=+
"{body.htmlText=httpRSS.result.rss.channel.item[entries.selectedIndex].description}">
<mx:columns>
<mx:Array>
<mx:DataGridColumn columnName="title" headerText="Title" />
<mx:DataGridColumn columnName="pubDate" headerText="Date" />
</mx:Array>
</mx:columns>
</mx:DataGrid>

Finally, a TextArea needs to be created using the mx: TextArea tag, and a button needs to be created with a click
event handler to call the send() method on the HTTPService object (Listing 6-6).

Listing 6-6. The TextArea and the Button

<mx:TextArea id="body" editable="false" width="{reader.width-15}" height="400" />
<mx:Button label="Load
RSS channel items" click="{httpRSS.send()}" />

HTML5 APIs

HTMLS5 provides much more than just new structuring elements. HTML5 supports many features that were available
originally through plug-ins or sophisticated code only [6]. Beyond markup elements and attributes, HTMLS5 specifies
Application Programming Interfaces (APIs) as well [7]. A native drawing API, native sockets, and so on, eliminate the
problems associated with plug-ins.

The HTMLS5 APIs have separate specifications under W3C standardization. Some of the most frequently used
HTMLS5 APIs are discussed in the following sections.

The HTML5 Canvas API

The canvas markup element was introduced with HTML5, and the second level of the HTML Canvas 2D Context [8]
was published on December 17, 2012. The HTMLS5 canvas allows dynamic, scriptable rendering of 2D shapes and
bitmap images on a drawing surface.

Note The HTML5 canvas has no built-in scene graph, which is a general data structure to arrange the logical (and
often spatial) representation of a graphical scene. The scene graph is commonly used by vector-based graphical systems,
including SVG. In SVG, all drawn shapes are stored as an object in the scene graph or the DOM and then rendered as
bitmap graphics. Consequently, if the SVG object attributes are changed, the browser can automatically rerender the
scene, which is not possible on the canvas. From this point of view, SVG graphics are more advanced than shapes on the
HTML5 canvas.

201

CHAPTER 6 * SCRIPTING AND APPLICATIONS

In Listing 6-7, you can see how to draw a simple triangle on the HTML5 canvas. First, a custom-size canvas is
declared with alternate textual content for older browsers that do not support the HTML5 canvas. Second, a script
element specifies two variables to shorten the code, a two-dimensional canvas, an emerald fill color, the coordinates
of the three corners of a triangle, and the triangle with the fill color.

Listing 6-7. Drawing on the HTML5 Canvas

<canvas id="samplecanvas" width="200" height="200">
A triangle (requires HTML5 Canvas support)
</canvas>
<script>
var mycanvas = document.getElementById("samplecanvas"),
context2d = mycanvas.getContext("2d");
context2d.fillStyle = "#2ad3a8";
context2d.beginPath();
context2d.moveTo(100, 0);
context2d.lineTo(0, 55);
context2d.lineTo(165, 100);
context2d.fill();
</script>

The HTMLS5 canvas is supported by IE9+, Firefox 3.0+, Chrome 1.0+, Safari 3.0+, and Opera 9.5+.

The HTMLS5 File and DnD APIs

The HTMLS5 File API provides easy-to-use file control in web browsers. The File API is being standardized by the
World Wide Web Consortium [9]. The Drag & Drop (DnD) API specification defines an event-based mechanism that
adds additional markup for declaring elements to be draggable on web pages. The DnD API is being developed by the
Web Hypertext Application Technology Working Group [10].

The code in Listing 6-8 creates an interface to choose files either through browsing the directories on your
computer or by using drag and drop. The name, size, and MIME type of the selected files will be retrieved using the
HTMLS5 File APL

Listing 6-8. File API Demonstration

<h1>Choose file(s)</h1>
<p>
<input id="upload" type="file" multiple="multiple">
</p>
<div id="drop">
You can also drag and drop your files here
</div>
<h1>Retrieved file information</h1>
<ul id="filelist">
<1i class="no-items"><no files uploaded yetdgt;</1i>

<script>
(function () {
var filesUpload = document.getElementById("upload"),
dropArea = document.getElementById("drop"),
fileList = document.getElementById("filelList");
function fileTransfer (files) {

202

CHAPTER 6 * SCRIPTING AND APPLICATIONS

var 1i,
file,
filelInfo;
fileList.innerHTML = "";
for (var i = 0, fl = files.length; i < f1; i++) {
1i = document.createElement("1i");
file = files[i];
fileInfo = file.name; // Name
fileInfo += " (" + file.type + "), "; // Type
fileInfo += file.size + " bytes"; // Size
li.innerHTML = fileInfo;
filelist.appendChild(1i);
};
};
filesUpload.onchange = function () {
fileTransfer(this.files);
b
dropArea.ondragenter = function () {
return false;
¥
dropArea.ondragover = function () {
return false;
¥
dropArea.ondrop = function (evt) {
fileTransfer(evt.dataTransfer.files);
return false;
};
IOK
</script>
The division representing the drop area in the previous example (<div id="drop">) should be styled either with
a border or with a background color to make it visible (Listing 6-9).

Listing 6-9. CSS Ruleset for the Previous Example

#drop {
border: 2px dashed #f00;
padding: 10px;

Next, create a very simple drag-and-drop example with five words that can be dragged from one division to
another and back. First, declare the div items and make them draggable with the draggable attribute. Then, put them
into a container div and create the second div (the target) (Listing 6-10).

203

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Listing 6-10. The Markup for the DnD Example

<section>
<header>
<h3>Drag the word “DnD” to the other box and back</h3>
</header>
<div id="leftDiv" ondragover="dragOver(event)" ondrop="dragDrop(event)">
<div id="word1" class="dragbox" draggable="true" ondragstart="return«
dragDefine(event)" ondragend="dragEnd(event)">My</div>
<div id="word2" class="dragbox" draggable="true" ondragstart="returne
dragDefine(event)" ondragend="dragEnd(event)">dog</div>
<div id="word3" class="dragbox" draggable="true" ondragstart="return«
dragDefine(event)" ondragend="dragEnd(event)">is</div>
<div id="word4" class="dragbox" draggable="true" ondragstart="return«
dragDefine(event)" ondragend="dragEnd(event)">called</div>
<div id="words5" class="dragbox" draggable="true" ondragstart="returne
dragDefine(event)" ondragend="dragEnd(event)">Bobby</div>
</div>
<div id="rightDiv" ondragover="return dragOver(event)" ondrop="dragDropped(event)"></div>
</section>

In the document head, declare a script element, and create the functions to be called (Listing 6-11) when the
following happens:

e Theitem starts to be dragged
e Theitem being dragged is over another item
e Thedragis complete

e Theitem being dragged is dropped

Listing 6-11. The Functions for Handling Drag and Drop

<script>
function dragStarted(evt) {
evt.dataTransfer.effectAllowed = 'move';
evt.dataTransfer.setData("text/plain”, evt.target.getAttribute('id'));
evt.dataTransfer.setDragImage(evt.target, 0, 0);
return true;

}

function dragOver(evt) {
evt.preventDefault();

}

function dragEnded(evt) {
return true;

}

204

CHAPTER 6 * SCRIPTING AND APPLICATIONS

function dragDropped(evt) {
var idDrag = evt.dataTransfer.getData("Text");
evt.target.appendChild(document.getElementById(idDrag));
evt.preventDefault();

}

</script>

Finally, declare styles, including the layout and colors for the boxes, in the document head or an external file
(Listing 6-12).

Listing 6-12. The Styles for the Boxes

body {
width: 800px;
margin: 100px auto;

}

#leftDiv, #rightDiv {
float: left;
width: 200px;
height: 100px;
margin: 50px;
background-color: #bbdeee;
border: 1px solid #000;

}

.word {

width: 60px;

height: 20px;

margin: 5px;
text-align: center;
font-weight: bold;
background-color: #ff6;
display: inline-block;
Cursor: move;

The File API is supported by Firefox 3.6+, IE10+, Safari 6+, Chrome 6.0+, and Opera 11.5+. The Drag & Drop API is
supported by Firefox 3.5+, Chrome 21+, Opera 12+, and IE9+.

The HTML5 Forms API

HTMLS5 introduced new attributes for the input element (autocomplete, autofocus, form, formaction, formenctype,
formmethod, formnovalidate, formtarget, height, 1ist, max, min, multiple, pattern, placeholder, required, step,
and width) and new attribute values for the type attribute of the input element (including email, url, number, range),
search, color, and date pickers (date, month, week, time, datetime, and datetime-local), as well as form

validation [11].

205

CHAPTER 6 © SCRIPTING AND APPLICATIONS
As an example, create an (X)HTMLS5 form for a registration page of a web site (Listing 6-13).

Listing 6-13. A Registration Form

<form action="newaccount.php" method="post">
<fieldset title="Create account">
<p>
<label for="mailadd">E-mail address:</label>
<input id="mailadd" type="email" required="required" name="mail"
placeholder="email@example.com" />
</p>
<p>
<label for="passwd1">Password:</label>
<input id="passwd1" type="password" required="required" name="pwd" />
</p>
<p>
<label for="passwd2">Confirm password:</label>
<input id="passwd2" type="password" required="required" name="pwd2" />
</p>
<p>
<label for="website">Website:</label>
<input type="url" name="website" placeholder="http://www.example.com" />
</p>
<p>
<label for="number">Number:</label>
<input type="number" name="number" min="0" max="10" placeholder="0-10" />
</p>
<p>
<label for="range">Range:</label>
<input type="range" name="range" min="0" max="10" step="2" />
</p>
<p>
<input type="submit" value="Create account" />
</p>
</fieldset>
</form>

The HTML5 Geolocation API

The Geolocation API provides an interface to retrieve information on the geographical location for a client-side
device. In other words, it can be used in web browsers to find the current position of the user. The location of the user
is not shared until the user confirms the request. The Geolocation API became a W3C Recommendation in 2013 [12].

Listing 6-14 shows an example for the application of the Geolocation API. In the example, the
setOnLoadCallback function is used to create a map. The if-then construct is used to check whether the Geolocation
API is supported, get the current position, and, in case it is successfully retrieved, mark it on the map. If necessary, we
inform the user to accept the Geolocation request, or the location cannot be determined. The location is hard-coded
to Garden Island in Port Adelaide, Australia, which is used until the user enables geolocation. In the else branch, a
nice location is set for users that use a browser without geolocation support.

206

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Listing 6-14. Retrieving the Location of the User

<div id="map">
</div>
<script src="http://www.google.com/jsapi?key=ABQIAAAALIFc1lrstqhgT13ZY038bBQcfCcwwlWgMTx «
EFsdaTsn0XOVOUhTplLhHcmgnaYou87hQyd-n-ki0gQ" >
</script>
<script>
(function () {
google.load("maps", "2");
google.setOnLoadCallback(function () {
var map = new google.maps.Map2(document.getElementById("map")),
markerText = "<h2>You are here</h2><p>This is your current position</p>",
markOutLocation = function (lat, long) {
var latlLong = new google.maps.latlng(lat, long),
marker = new google.maps.Marker(latLong);
map.setCenter(latLong, 15);
map.addOverlay(marker);
marker.openInfoWindow(markerText);
google.maps.Event.addListener(marker, "click", function () {
marker.openInfolWindow(markerText);
1;
};
map.setUIToDefault();
if (navigator.geolocation) {
navigator.geolocation.getCurrentPosition(function (position) {
markOutLocation(position.coords.latitude, position.coords.longitude);
1
function () {
markerText = "<p>You should accept the Geolocation request, otherwise your«
position cannot be determined.</p>";
markOutLocation(59.3325215, 18.0643818); // Garden Island, Port Adelaide, Australia
D;
}

else {
markerText = "<p>Geolocation is not supported. Welcome to my favourite location.</p>";
markOutLocation(-34.928621, 138.599959); // Rundle Mall, Adelaide, Australia
}
1);
HO;

</script>

Tip The position is approximate only. In the previous example, we get a marker that does not necessarily mark the
exact location of the user. More sophisticated interfaces, such the “Location-Aware Browsing” test page of Firefox [13],
provide a semitransparent circle above the map rather than a marker pointing to an exact position.

The HTMLS5 Geolocation API is supported by IE9+, Firefox 3.5+, Chrome 5.0+, Opera 10.6+, and Safari 5+.

207

http://www.google.com/jsapi?key=ABQIAAAAlJFc1lrstqhgTl3ZYo38bBQcfCcww1WgMTxEFsdaTsnOXOVOUhTplLhHcmgnaY0u87hQyd-n-kiOqQ
http://www.google.com/jsapi?key=ABQIAAAAlJFc1lrstqhgTl3ZYo38bBQcfCcww1WgMTxEFsdaTsnOXOVOUhTplLhHcmgnaY0u87hQyd-n-kiOqQ

CHAPTER 6 * SCRIPTING AND APPLICATIONS

The HTML5 Web Storage API

Web Storage is an API for persistent data storage of key-value pair data (similar to cookies) in browsers
(sessionStorage) and window-local storage saved between sessions (localStorage). The Web Storage API became a
W3C Recommendation in 2013 [14].

Table 6-1 summarizes the methods of localStorage and sessionStorage.

Table 6-1. Web Storage Methods

Method with Parameters Description

setItem(string name, string value) Adds or updates a value in the store

getItem(string name) Retrieves a named value from the stored name-value pairs
removeItem(string name) Removes a named value from the stored name-value pairs
length Number of values stored

key(long index) Name of the key at the index

clear() Clears the store

As an example, create two input fields for the local storage of name-value pairs, as well as a push button to let
the user set the items entered (Listing 6-15). Display the name-value pairs in a table. Create a text field where the user
can add the item to remove from the stored pairs after clicking the associated button. Add a push button that can be
used to clear the stored items. Provide another text field where the item name can be typed to retrieve its value. Since
the table is created by the displayItems function, that function should be loaded by the onload attribute on the body
element as <body onload="displayItems()">.

Listing 6-15. A localStorage Example

<form name="lsform">
<fieldset title="WebStorage">
<legend>Local storage of name-value pairs</legend>
<p>
<label>Value:</label>
<input name="data">
</p>
<p>
<label>Name:</label>
<input name="name">
</p>
<p>
<input type="button" value="Set item" onclick="setTheItem()">
</p>
<table id="pairs"></table>
<p>
Enter name to remove item:
<input name="remove">
<input type="button" value="Remove item" onclick="removeTheItem()">
<input type="button" value="Clear items" onclick="clearItems()">
</p>

208

CHAPTER 6 * SCRIPTING AND APPLICATIONS

<p>
Enter name to retrieve value:
<input name="retrieve">
<input type="button" value="Get value" onclick="getTheItem()">
</p>
<script type="text/javascript">
function setTheItem() {
var name = document.forms.lsform.name.value;
var data = document.forms.lsform.data.value;
localStorage.setItem(name, data);
displayItems();

function getTheItem() {
var name = document.forms.lsform.retrieve.value;
window.alert('The value associated with the name ' + name + ' is ' +«
localStorage.getItem(name));
displayItems();

function removeTheItem() {
var name = document.forms.lsform.remove.value;
document.forms.lsform.data.value = localStorage.removeItem(name);
displayItems();

function clearItems() {
localStorage.clear();
displayItems();

function displayItems() {

var key = "";

var pairs = "<tr><th>Name</th><th>Value</th></tr>\n";

var i = 0;

for (i = 0; i <= localStorage.length-1; i++) {
key = localStorage.key(i);
pairs += "<tr><td>" + key + "</td>\n<td>" + localStorage.getItem(key) ++«
"</td></tr>\n";

}

if (pairs == "<tr><th>Name</th><th>Value</th></tr>\n") {
pairs += "<tr><td>&1t;not setdgt;</td>\n<td>&1t;not«~
setlgt; </td></tr>\n";

}

document.getElementById('pairs').innerHTML = pairs;

}

</script>
</fieldset>
</form>

The Web Storage API is supported by IE 8+, Firefox 3.5+, Google Chrome 4+ (sessionStorage from 5+), Safari 4+,

and Opera 10.50+.

CHAPTER 6 * SCRIPTING AND APPLICATIONS

The HTML5 Web Workers API

Web Workers is an API that can be used to execute scripts in the background independent from any user interface
scripts. Consequently, the user interface is not affected, and all browser tasks are performed without any delay.

The “worker” in Web Workers refers to a script stored in an external file, which is loaded and executed in the
background (Listing 6-16).

Listing 6-16. Creating a “Worker”
new Worker("worker.js");
While complex JavaScript codes might hang your browser (such as giving an “unresponsive script” warning),

the Web Workers API makes it possible to avoid user interruption, while the browser performs tasks such as event
handling, DOM manipulations, queries, and processes.

Note Since JavaScript was originally designed to run in a single-threaded environment—that is, multiple scripts
cannot be run simultaneously—Web Workers can be considered as an API that brings threading to JavaScript.

In our example, we create a “worker” that counts up from 0 to 10,000 in the background. First, two push buttons
are needed in the document body to start and stop counting (two input elements with unique identifiers), and a
paragraph is needed with an identifier (<p id="result">) where the result will be displayed (Listing 6-17).

Listing 6-17. Markup of a Web Worker Example

<h1>Start/Stop the Worker</h1>
<p>
<input id="start" type="button" value="Start">
<input id="stop" type="button" value="Stop">
</p>
<h1>The results</h1>
<p id="result">Click Start to start the Worker</p>
<script>
(function () {
function createWorker () {
worker = new Worker("webworker.js");
}
document.getElementById("start").onclick = function () {
createWorker();
worker.postMessage(0); // initial value
worker.onmessage = function (evt) {
document.getElementById("result").innerHTML = evt.data;
};
worker.onerror = function (evt) {
document.getElementById("result").innerHTML = "Error";
};
};

210

CHAPTER 6 * SCRIPTING AND APPLICATIONS

document.getElementById("stop").onclick = function () {
if (worker) {
worker.terminate();

}
};
NO;
</script>

We also need a function for the Start button, an error event handler, and a function for the Stop button.
The function that actually performs the counting takes place in an external . js file (Listing 6-18).

Listing 6-18. The webworker. js File

onmessage = function (evt) {
for (var i = evt.data, t = 10000; i < t; i++) {
postMessage(i);

)

};

The Web Workers API is supported by IE10+, Firefox 3.5+, Chrome 5.0+, Safari 4.0+, and Opera 10.6+.

The HTML5 WebSocket API

The WebSocket API can be used for bidirectional, full-duplex communication over a Transmission Control Protocol
(TCP) socket.

The WebSocket API is being standardized by the World Wide Web Consortium [15].

After building a WebSocket connection with the web server, data can be retrieved from the server using the
onmessage event handler and can be sent from the client to the server by the send() method.

A new WebSocket object can be created as shown in Listing 6-19.

Listing 6-19. A New WebSocket Object

var Socket = new WebSocket(http://example.com/ws/);

Optionally, the protocol can also be specified after the URI.

The WebSocket object has two read-only attributes: Socket.readyState and Socket.bufferedAmount. The first
one represents the connection state (0 is no connection yet, 1 is connection has been built, 2 is closing handshake, 3 is
connection closed or cannot be established). The second attribute gives the number of bytes queued using the send()
method.

The WebSocket API supports four events: open (socket connection established), message (client receives data
from server), error (error in communication), and close (the connection is closed). They can be handled by the
Socket.onopen, Socket.onmessage, Socket.onerror, and Socket.onclose event handlers, respectively.

The two methods of WebSocket are Socket.send() (the send() method transmits data through the connection),
and Socket.close() (the close() method is used to terminate the existing connection).

As an example, we create a bidirectional TCP socket between the client and the server in the document head
(Listing 6-20).

211

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Listing 6-20. Creating a WebSocket

<script type="text/javascript">
function myWS() {
if ("WebSocket" in window) {
alert("WebSocket is supported by your Browser!");
var ws = new WebSocket("ws://localhost:9998/echo");
ws.onopen = function() {
ws.send("Message to send");
alert("Message sent...");
};
ws.onmessage = function (evt) {
var received msg = evt.data;
alert("Message received...");
};
ws.onclose = function() {
alert("Connection closed...");
};

}
else {

alert("WebSocket is not supported by your browser!");
}
}

</script>
In the document body, the myWS () function should be called to start the WebSocket (Listing 6-21).

Listing 6-21. An Anchor to Start the WebSocket

<p>
Start WebSocket
</p>

The client program is now ready, but we also need a server with WebSocket support to test it. For example,
pywebsocket, which can be used as a WebSocket stand-alone server and a WebSocket extension for Apache HTTP
servers, is suitable for testing [16].

After the HTTP handshake, the TCP socket is ready for use, and the connection is live; both the server and the
client can send data.

On the client side, the WebSocket API is supported by Firefox 4+, Google Chrome 4+, Safari 5+, and Opera 11+.

Offline Web Applications

The offline web application feature in HTML5 allows online applications to work without interruption even when the
Internet connection is not available. For example, users can compose a message in their webmail client when they
cannot find a Wi-Fi hotspot.

Since the browser has no access to web site files when it is offline, the first step is to specify the required resources
(a simple list of fundamental files) for caching in a file called offline.manifest (Listing 6-22).

212

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Listing 6-22. An offline.manifest File

CACHE MANIFEST
index.html
styles.css
main.js

This file should be provided as the attribute value of the manifest attribute on the html element (Listing 6-23).
The file should be served with the MIME type text/cache-manifest.

Listing 6-23. Using the Manifest File

<html manifest="offline.manifest">

Users will be requested to allow caching on their computer.

The online/offline state of the browser can be determined by JavaScript using navigator.onLine.

When the browser is offline, the data can be easily stored locally using the Web Storage API discussed earlier, that
is, the sessionStorage to retrieve data during a session or the localStorage to retain values for longer periods.

Offline web applications are supported by Firefox 3.5+, Chrome 1.0+, Safari 4.0+, and Opera 10.6+.

Java Applets

Java is an object-oriented, structured, imperative, cross-platform programming language. Java was originally
developed by Sun Microsystems, which is now owned by Oracle Corporation. Java can be used in a variety of contexts
on the client side as well as the server side, including applets, servlets, Swing applications, and JavaServer Pages (JSP).

Java applets are small applications for performing a specific task and are provided on web sites in a format called
Java bytecode, which can be executed by the Java Virtual Machine (JVM). Although Java applets can be substituted by
alternate technologies such as Flash, Curl, or Microsoft Silverlight, they are still present on the Web.

A Java applet should be provided by two object elements and self-closing parameters. The inner object is used
by Trident and the outer object by Gecko and other rendering engines. Listing 6-24 shows an example.

Listing 6-24. Java Applet Embedding with object

<object classid="java:bookflip.class"
type="application/x-java-applet"
archive="bookflip.jar"
height="120" width="120">
<param name="res" value="1" />
<param name="imagel" value="01.jpg" />
<param name="link1" value="NO" />
<param name="flip1" value="0" />
<param name="image2" value="02.jpg" />
<param name="link2" value="NO" />
<param name="flip2" value="0" />
<param name="speed" value="4" />
<object classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93" height="120" width="120" >
<param name="code" value="bookflip" />
<param name="archive" value="bookflip.jar" />
<param name="res" value="1" />

213

CHAPTER 6 * SCRIPTING AND APPLICATIONS

<param name="imagel" value="01.jpg" />
<param name="1ink1" value="NO" />
<param name="flip1" value="0" />
<param name="image2" value="02.jpg" />
<param name="1ink2" value="NO" />
<param name="flip2" value="0" />
<param name="speed" value="4" />
</object>
</object>

Objects must be rendered only once per page. As you will see, a similar approach exists for Flash objects too
(Chapter 9).

ECMAScript, JavaScript, and jQuery

A widely used scripting language is ECMAScript, which is standardized by Ecma International (ECMA-262 [17],
ECMA-290 [18], ECMA-327 [19], ECMA-357 [20]) and the International Organization for Standardization (ISO/IEC
16262 [21]). The Internet media type of ECMAScript is application/ecmascript, and the file extension is . es.

The three best-known dialects of ECMAScript are JavaScript, JScript, and ActionScript. The first one, JavaScript,
is the primary client-side scripting language on the Web. It is used by millions of web sites to add interaction and
functionality.

jQuery is a comprehensive, cross-platform JavaScript library for simplifying client-side scripting and interactions.
jQuery provides the code blocks for rapid prototyping and developing a unique user interface with minimum coding
and effort. Instead of writing JavaScript code from scratch for an advanced image gallery such as nanoGALLERY [22],
an image slider such as Unslider [23], manipulated content such as Avgrund Modal [24], or animations such as
jQuery Ul Effects Core [25], you can reuse the free, open source code licensed under the MIT License. jQuery can be
downloaded from the jQuery web site as an uncompressed or a compressed file [26]. For production environments,
the compressed . js file is recommended. This file can be loaded in the document head with the script element
as any other JavaScript file (Chapter 3). Beyond the core functions of jQuery, the web design community offers
thousands of plug-ins developed and maintained independently.

Caution JavaScript should not be confused with Java. Although both languages have a C-like syntax, JavaScript is
a scripting language, while Java is general programming language. JavaScript has dynamic typing, while Java has static
typing. JavaScript is a weakly typed language, while Java is strongly typed. JavaScript is loaded from human-readable
source code, while Java is retrieved from a compiled bytecode. In contrast to JavaScript objects, which are prototype-
based, Java objects are class-based.

JScript is the Microsoft implementation of ECMAScript [27]. The major implementations of JScript are Windows
Script, and JScript .NET. The typical file extensions of JScript are . s, . jse, .wsf, .wsc, and, if embedded, .htm, .html,
and .asp.

ActionScript is an object-oriented language originally developed by Macromedia, which is now owned by Adobe
Systems. It is implemented in Adobe Flash and, as mentioned earlier, Adobe Flex. The typical file extension of external
ActionScript files is . as. ActionScript reuses the MIME type of ECMAScript.

214

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Embedding and Loading JavaScript

JavaScript codes applied to a whole web page are usually declared in the (X)HTML head. JavaScript can also be used
locally in the body section of web documents. Those JavaScript codes that are used throughout the entire web site are
written in external files.

Generally, there are three ways to use JavaScript on web sites. They are discussed in the following sections.

Loading JavaScript from an External File

This technique is used when the same script applies to multiple documents. The file extension of external JavaScript
files is . js. The character encoding of these files is usually US-ASCILI. JavaScript files encoded in other encoding
schemes might have interoperability problems. While UTF-8 is the perfect choice for (X)HTML web documents and
can be applied as the default character encoding in the text editor of any developer, care must be taken to encode
JavaScript files (similar to CSS files) in US-ASCII whenever possible.

External JavaScript files should contain JavaScript code exclusively (Listing 6-25). The script tags must also be
avoided (Listing 6-26)!

Listing 6-25. JavaScript Code in the Markup

<script type="text/javascript"s
document.write("Nice coding");

</scripty

Listing 6-26. The Same Code in an External . js File

document.write("Nice coding");

External JavaScript files can be loaded with the sxc attribute on the script element.! Listing 6-27 shows an
example.
Listing 6-27. Loading JavaScript from an External File
<script type="text/javascript" src="scripts/click.js"></script>

This embedding is commonly used for the scripts loaded in the document head and any scripts that are too long

to write directly into the markup. Alternate style selectors, font resizers, and hidden layer controller scripts are some
examples for this approach.

Inline JavaScript

JavaScript can also be written directly in the markup as the content of the script element. Assume we have the JavaScript
function shown in Listing 6-28 and variables in Listing 6-29 either in the document head or in an external . js file.
Listing 6-28. A Short JavaScript Function

function fourdigits(number) {
return (number < 1000) ? number + 1900 : number;

}

'In the early days of the Web, the language="javascript" attribute-value pair was used on the script element, which was later
deprecated in favor of type="text/javascript".

215

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Listing 6-29. Variables
var now = new Date();
var year = fourdigits(now.getYear());

This code provides the current year, which can be used for a “dynamic” copyright content as Listing 6-30.

Listing 6-30. Inline JavaScript Example

Copyright © <script type="text/javascript"s>document.write(year);</script> John Smith

This is an inline JavaScript code. In this case, it will represent the current year between the copyright sign and the
name, as shown in Listing 6-31.

Listing 6-31. The Result of Listings 6-28, 6-29, and 6-30
Copyright © 2011 John Smith

Note that if the JavaScript code cannot run for whatever reasons, the other parts of the document are still
rendered (Listing 6-32).

Listing 6-32. The Result of the Same Code with JavaScript Disabled or Without JavaScript Support
Copyright © John Smith

Event Handlers

JavaScript is often used to provide control over document elements or the browser window according to user
interaction such as clicking an element with the mouse.

Assume three images on a web page intended to modify the font size of the main layer when the user clicks them.
Listing 6-33 shows a possible solution.

Listing 6-33. Functions to Manipulate the Font Size

function normal() {
var esize = document.getElementById('main').style;
esize.fontSize = "1.1em";

}

function larger() {
var esize = document.getElementById('main').style;
esize.fontSize = "1.4em";

}

function huge() {
var esize = document.getElementById('main').style;
esize.fontSize = "1.8em";

}

These three functions can be written either within the script tags in the document or in the external file
font. js. In the latter case, they can be loaded with the sxc attribute of the script element as discussed earlier in
Listing 6-27 (the file path and name can be arbitrarily modified).

Now the appropriate event handler function can be loaded with the onclick attribute (Listing 6-34).

216

Listing 6-34.

<a href="#"
<img src=

<a href="#"
<img src=

<a href="#"
<img src=

CHAPTER 6

Event Handlers That Load the Appropriate Function Upon User Click

onclick="javascript:normal();">
"images/normal.png" alt="Normal font" title="Normal" />
onclick="javascript:larger();">
"images/larger.png" alt="Larger font" title="Larger" />

onclick="javascript:huge();">
"images/huge.png" alt="Huge font" title="Huge" />

Which function will run depends on which image link the user clicks.

Determining JavaScript Support

SCRIPTING AND APPLICATIONS

JavaScript support can be easily determined by a script with an alternate content such as in Listing 6-35.

Listing 6-35.

JavaScript with Alternate Content

<script type="text/javascript">
document.write("If this text is displayed, your browser supports scripting, and«

JavaScri
</script>

pt is enabled!")

<noscriptyJavaScript is NOT enabled!</noscripts

Browsers that do not support JavaScript will show the content of the noscript element.

The Most Common jQuery Functions

jQuery offers a variety of selectors to manipulate markup elements. The most common selectors are summarized in

Listing 6-36.

Listing 6-36.

// Select e
$("#ELlement

Common jQuery Selectors

lement by identifier
ID").something();

// Select element by CSS class
$(".ClassName").something();

// Select elements that have an identifier with a string
$("[id*="value']").something();

// Select elements that have an identifier that begins with a string
$("[id*="value']").something();

// Select elements that have an identifier ending with a string
$("[id$="value']").something();

// Select elements of a particular type
$("div").something();

217

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Toggle Show and Hide

You can use the toggle function to toggle hide/show of an element in jQuery. An element can be hidden or shown
using the hide and show functions, respectively (Listing 6-37).

Listing 6-37. Toggle, Show, and Hide Functions in jQuery

// Toggle hide/show of an element
$("#DivID").toggle(1000);

// Perform an action after the animation is completed
$("#DivID").toggle(1000, function () {
alert("Toggle Complete");

1;

// Hide an element
$("#DivID").hide(1000);

// Perform an action after the animation is completed
$("#DivID").hide(1000, function () {
alert("Hide Complete");

1

// Show an element
$("#DivID").show(1000);

// Perform an action after the animation is completed
$("#DivID").show(1000, function () {
alert("Show Complete");

b

Slide Functions

In jQuery, the basic slide functions are slideToggle, slideUp, and slideDown (Listing 6-38).

Listing 6-38. Toggle, Show, and Hide Functions in jQuery

// Toggle slide up and down
$("#DivID").slideToggle(1000);

// Perform an action after the animation is completed
$("#DivID").slideToggle(1000, function () {
alert("Slide Toggle Complete");

};

// Slide up
$("#DivID").slideUp(1000);

// Perform an action after the animation is completed
$("#DivID").slideUp(21000, function () {
alert("Slide Up Complete");

B;

218

CHAPTER 6 * SCRIPTING AND APPLICATIONS

// Slide down
$("#DivID").s1lideDown(1000);

// Perform an action after the animation is completed
$("#DivID").slideDown(1000, function () {
alert("Slide Down Complete");

};

Fade Functions

jQuery has the fadeIn, fadeOut, and fadeTo functions to fade an element in or out, or fade it to a specified style

(Listing 6-39).

Listing 6-39. Fade an Element in, out, and to

// Fade in
$("#DivID").fadeIn(1000);

// Perform an action after the animation is completed
$("#DivID").fadeIn(1000, function () {
alert("Fade In Complete");

1

// Fade out
$("#DivID").fadeOut(1000);

// Perform an action after the animation is completed
$("#DivID").fadeOut (1000, function () {
alert("Fade Out Complete");

1

// Fade to (fades to specified opacity)
$("#DivID").fadeTo(1000, 0.25);

// Perform an action after the animation is completed
$("#DivID").fadeTo(1000, 0.25, function () {
alert("Fade To Complete");

B;

Animation Functions

Markup elements can be animated by changing the value of their CSS properties with animate (Listing 6-40).

Listing 6-40. Animation with jQuery

$("#DivID").animate({ opacity: 0.75 }, 1000);

// Perform an action after the animation is completed
$("#DivID").animate({ opacity: 0.75 }, 1000, function () {
alert("Opacity Animation Complete");

1;

219

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Set and Retrieve Input Values

jQuery can set and retrieve the property value of input elements such as textboxes (Listing 6-41).

Listing 6-41. Get and Set Textbox Values

// Get the value of a textbox
var TextboxValue = $("#TextboxID").val();

// Set the value of a textbox
$("#TextboxID").val("New Textbox Value");

Set and Retrieve Element Markup Content

The markup content of elements can be manipulated with the html function (Listing 6-42).

Listing 6-42. Get and Set Markup Content

// Get the markup content of an element
var DivHTML = $("#DivID").html();

// Set markup content
$("#DivID").html("<p>The updated markup content.</p>");

Set and Retrieve Element Text

The textual content of elements can be manipulated with the text function (Listing 6-43).

Listing 6-43. Get and Set Textual Content

// Retrieve the textual content of an element
var DivText = $("#DivID").text();

// Set the textual content of element
$("#DivID").text("The new textual content.");

Set and Retrieve Element Dimensions

The dimensions of markup elements can be retrieved and changed using the height and width jQuery functions
(Listing 6-44).

220

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Listing 6-44. Get and Set Element dimensions

// Get element height
var ElementHeight = $("#DivID").height();

// Set element height
$("#DivID").height(300);

// Get element width
var ElementWidth = $("#DivID").width();

// Set element width
$("#DivID").width(400);

Handling CSS Classes

CSS Classes can be created and removed using the addClass and removeClass jQuery functions (Listing 6-45).

Listing 6-45. Add and Remove CSS Classes
// Create a CSS class
$("#DivID").addClass("newclassname");

// Remove a CSS class
$("#DivID").removeClass("classname");

// Create a new class and remove the old one
$("#DivID").removeClass("classname").addClass("newclassname");

// Create and remove multiple classes
$("#DivID").removeClass("classname classname2").addClass("newclassname newclassname2");

Change CSS Properties

The CSS properties of markup elements can be manipulated by the css jQuery function (Listing 6-46).

Listing 6-46. Change the CSS Property for an Element
$("#DivID").css("border", "solid 1px #00f");

Silverlight

Silverlight is a freeware application framework created by Microsoft Corporation for developing rich Internet
applications [28]. The runtime environment for Silverlight is available as a web browser plug-in. Silverlight provides
many features similar to those of Adobe Flash, such as animations, drawing objects, reflection effects, glyphs,
and so on.

Silverlight uses the Extensible Application Markup Language (XAML) instead of Scalable Vector Graphics
(SVG). XAML is a declarative, XML-based user interface markup language developed by Microsoft and used
extensively in .NET.

221

CHAPTER 6 © SCRIPTING AND APPLICATIONS
Similar to Flash, a common embedding option for Silverlight is using the object tag (Listing 6-47).

Listing 6-47. Silverlight Embedding with Alternate Content (Determining Support)

<object id="SilverlightPlugini" width="300" height="300"«
data="data:application/x-silverlight-2,"«
type="application/x-silverlight-2" >
<param name="source" value="SilverlightApplicationi.xap" />

</object>

Silverlight can be written not only in your text editor but also in the Microsoft Visual Studio software development
platform, which makes it easier to create graphical interfaces displayed simultaneously with the source code.

Server-Side Development

Although static content is adequate for many web site components, advanced web site features, such as web
applications, content management, online banking, form submission, database management, and so on, require
server-side programming.

Note The main difference between client-side and server-side programming is that client-side scripts are
downloaded, interpreted, and executed by the browser, while server-side scripts and applications run on the server.

Tip In contrast to client-side technologies, where the support is embedded in most browsers (such as for JavaScript)
or can be set easily by installing a free plug-in (such as for SilverLight), the support for server-side technologies should
be provided by the hosting service provider. While widely adopted technologies such as PHP and MySQL are supported by
most hosting services, it is strongly recommended that you ask the provider about the support for special technologies
before selecting and paying for a service, because hosting companies usually refuse to install any software components
not included in, or supported by, one of their packages (for example, FFMPEG, ionCube PHP Loader, Apache Ant, Ivy, JTA,
JAXP). Some technologies rely on others, and there might be a prerequisite to install certain software components.

There is a wide variety of server-side scripting and programming languages used to create server-side
applications. Some of the most widely adopted ones are described in the following sections.

ColdFusion

ColdFusion is an application server offered by Adobe [29] to process the ColdFusion Markup Language (CFML).
CFML is a scripting language that uses tags with a structure similar to that of HTML (which is the reason for the name)
[30]; it has a functionality similar to that of PHP. CFML has several implementations beyond Adobe ColdFusion, such
as the NET Framework, the Java Virtual Machine, and the Google App Engine. Because of its scalability, ColdFusion is
ideal not only for desktop environments but also for the increasingly popular mobile web applications.

The most significant technologies that compete with ColdFusion are BlueDragon [31], Coral Web Builder [32],
IgniteFusion [33], Railo [34], and SmithProject [35].

222

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.60310.0
http://go.microsoft.com/fwlink/?LinkId=161376

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Java

The Java programming language was already mentioned earlier in the chapter regarding Java applets. However, Java is
also used on the server side.

JavaServer Pages (JSP) is a Java technology for dynamically generated web pages. The syntax of JSP combines
scriptlet elements and markup (typically HTML or XML) [36]. The content of scriptlet elements is Java code that might
be mixed with the markup.

The Java Platform, Enterprise Edition (Java EE) is a popular platform for server-side programming in Java. The
platform and the associated APIs are defined in separate specifications [37, 38].

WebObjects is a Java web application server and web application framework for Mac OS X developed by Apple.
WebObijects is described by Apple specifications [39, 40, 41].

The .NET Framework

Microsoft .NET is a popular software framework with a wide-ranging library [42]. The .NET Framework supports
several programming languages (C#, J#, VB .NET, and so on). Any of these languages can use code written in other
languages, which provides a high level of interoperability. A fundamental part of the framework architecture is the
application virtual machine called Common Language Runtime (CLR), which is Microsoft’s implementation of the
Common Language Infrastructure (CLI). CLI is an ECMA standard (ECMA 335 [43]).

Some applications of the .NET Framework, such as ADO.NET, ASP.NET, and Windows Forms, are not parts of the
previously mentioned standards.

ASP.NET

Active Server Pages, often referred to as ASP or ASP Classic, was a web application framework developed by Microsoft
for creating interactive and dynamic web pages. It has been superseded by ASP.NET, which provides powerful features
for web applications and services [44]. The typical file extensions are .asp for ASP and .aspx for ASP.NET files.

Asyou can see in Listing 6-48, an ASP script can be embedded in the document body of a web page by delimiting
the script with <% and %>.

Listing 6-48. ASP Script in the Markup

<!DOCTYPE html>
<html>
<head>
<title>Simple ASP embedding example</title>
<meta charset="UTF-8">
</head>
<body>
<%
response.write("Hello, liorld!")
%>
</body>
</html>

Before introducing HTML5 support in Visual Studio and ASP.NET in 2011, ASP.NET generated error-free XHTML
markup in most cases. Since ASP.NET does not modify static text and nonserver markup elements, however, the
final markup was not necessarily standards-compliant per XHTML 1.0 Strict. According to Microsoft, some markup
controls providing optional functionality, especially those with a target attribute for specifying their client-side
behavior (AdRotator, BulletedList, HyperLink, HyperLinkColumn, ImageMap, MenuItem, TreeNode), might result in
markup code that is not standard compliant [45].

223

CHAPTER 6 * SCRIPTING AND APPLICATIONS

C#

A popular programming language often used in .NET is C# (pronounced See Sharp), which has been standardized by
ECMA [46] and ISO [47, 48]. C# is a multiparadigm programming language, which is declarative, generic, functional,
and imperative, and it has strong typing. C# applies object-oriented (class-based) as well as component-oriented
disciplines.

Perl

Perl is a high-level, interpreted, general-purpose, dynamic programming language. The specification of the language
is available at Perl.org [49]. In the late 1990s, Perl became popular as a CGI scripting language because of its parsing
abilities. The core syntax of Perl is summarized in the “Perl style guide” [50]. A very impressive text-processing feature
of Perl is that it can handle text files of arbitrary length if enough memory is available.

PHP

PHP: Hypertext Preprocessor is one of the most popular open source server-side scripting languages. It is a cross-
platform, general-purpose language originally designed for generating dynamic web pages. Some programmers have
tried to introduce “standardized” best practices for PHP over the years [e.g., 51, 52, 53, 54], none of which gained an
official status yet. The major specification of PHP is being maintained by the PHP Group [55], which is considered as
the de facto standard of the language, because there is no formal specification.

PHP is the widely used, free, and efficient alternative to competitors such as ASP.NET.

Embedding and Loading PHP

While some PHP code is embedded in (X)HTML documents and mixed with markup elements, complex PHP
applications are provided in external files.

PHP in the Markup

PHP code is usually delimited by <?php and ?> or <script language="php"> and </script>. The less portable
short tags <? and <?= and ASP-style tags such as <% and <%= should not be used. PHP parsers parse code only within
the delimiters. In XML documents (including XHTML), the first embedding method provides well-formed XML
processing instructions. Since they are not part of the character data in the document, there is the potential that the
combination of markup and PHP code provides valid markup on the server before PHP parsing.

The simplest example for embedding PHP in the markup is a “Hello World” script such as hello.php
(Listing 6-49).

Listing 6-49. “Hello World” in PHP

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Hello World in PHP</title>
<meta charset="UTF-8" />
</head>
<body>
<?php echo '<p>Hello World</p>'; ?»
</body>
</html>

224

http://www.w3.org/1999/xhtml

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Depending on the proper server configuration, the PHP code should be parsed, and the output in Listing 6-50
will be sent to the browser.

Listing 6-50. The Output with Parsed PHP

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Hello World in PHP</title>
<meta charset="UTF-8" />
</head>
<body>
<p>Hello World!</p>
</body>
</html>

The resulting markup validates as XHTML5. To make the markup easier to understand, the structural elements
and additional contents were omitted.

PHP in External Files

The typical file extensions of external PHP files are . php, .phtml, . php5, and . phps. External PHP files usually contain
the PHP code between the opening and closing delimiters. In other words, they start with <?php and end with ?>.
However, many PHP files, such as the ones used for settings, do not necessarily have a closing delimiter.

The include command can be used to insert the content of a specified external PHP file into the markup
(Listing 6-51).

Listing 6-51. Embedding a PHP File

<?php include("copyright.php"); ?>

An external PHP file might contain PHP code, markup, or a combination of the two.

Tip Itis a common practice to collect the markup fragment of common—frequently repeated—web page contents,
such as menus and legal information, and embed them from an external PHP file. This approach eliminates the
redundancy of common scripting requirements of a site.

Python

Python is a general-purpose high-level programming language [56]. Python, similar to other dynamic languages,

is often used as a scripting language as well. Multiple programming paradigms are supported by Python. Although
Python is mainly object-oriented, it also involves functional programming styles. The capabilities of the language
can be extended by third-party tools; for example, Python code can be provided as stand-alone executables. Python
interpreters are available for a variety of operating systems, which makes Python a cross-platform language.

225

http://www.w3.org/1999/xhtml

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Ruby

Ruby is a general-purpose, dynamic, and reflective object-oriented programming language. One of the most common
Ruby implementations is the open source web application framework called Ruby on Rails. The major documentation
of Ruby includes the Ruby Core Reference [57], the Ruby Standard Library Reference [58], the Ruby C API Reference [59],
and the document on Rails Searchable APIs [60].

SSJS

Although JavaScript is used primarily on the client side, it has server-side implementations as well. Server-side
JavaScript (SSJS) was first implemented in 1996 in the Netscape Enterprise Server 2.0 and Netscape LiveWire. The
common specifications for SSJS development are provided by the Common]S community [61]. The Server-Side
JavaScript Google Group makes efforts to create cross-platform SSJS standard APIs [62].

Combinations of Client-Side and Server-Side Technologies

Not all programming environments are purely client-side or server-side technologies. For example, the Google Web
Toolkit has tools for programming JavaScript front-end applications in Java. Ajax applications and rich Internet
applications can be developed in Python using the development tool and framework Pyjamas. An open source
platform for developing rich Internet applications with client-side functionality and server-side processing is Tersus.

Database Technologies

A large share of server-side applications and services rely on data stored in databases. One of the most commonly
used databases on the Web is the cross-platform relational database management system MySQL [63]. It is considered
as a de facto standard and also used by the highest-traffic web sites in the world. Although it is very popular, languages
such Ruby and Python often apply database servers other than MySQL. Some other frequently used database
technologies on the Web are Apache Derby [64], IBM DB2 [65], Firebird [66], Microsoft SQL Server [67], Oracle [68],
PostgreSQL [69], SQLite [70], and Sybase [71].

Alternate Content and Fallback Mechanism for Scripts

In web site standardization, it is vital to provide alternate content for scripts and also design web documents for user
agents that do not support scripting. You can provide the alternate content by using the noscript element. A script is
not executed, and user agents render the content of noscript elements only if the browser configuration eliminates
scripting or in rare cases when the scripting language used in the script element is not supported. Browsers without
client-side scripting support must render the contents of noscript elements.

For example, if dynamically created data is provided by the script element, a direct link to the resource can be
used if scripting is not supported (Listing 6-52).

Listing 6-52. Useful Alternate Content

<noscript>
<p>Latest News</p>
</noscript>

226

CHAPTER 6 * SCRIPTING AND APPLICATIONS

There is a practice of commenting out script written in the markup to eliminate rendering element content by
browsers that cannot handle the script element. Advanced rendering engines recognize that scripts in comments
should be executed. This could eliminate the need for comments if external script files are used.

Asyou learned earlier in the chapter, a properly embedded script does not break page layout or content flow
when JavaScript is not supported. Still, this approach usually cannot provide the same functionality or behavior
as the script would (the provided information should be similar). The importance of alternate content or fallback
mechanism for JavaScript code can be best demonstrated by “dynamic” menus that should not rely on JavaScript
alone, since the functionality of the site will be lost if JavaScript is disabled or the script cannot be loaded.

Let’s assume that you have a special Help screen, contained by a layer that is not shown by default (Listing 6-53)
and displayed only when the user clicks the menu “Help”.

Listing 6-53. A Help div Which Is Not Rendered by Default

t#thelp {
display: none;

}

Since the help is displayed using JavaScript (Listing 6-54), it will be not available if JavaScript is disabled or not
supported.

Listing 6-54. The Function That Displays the Hidden div

function display help() {
document.getElementById("help").style.display = 'block’;

}

A good fallback mechanism is to provide a conventional hyperlink—which looks the same as the link calling the
JavaScript code that displays the special Help layer above the page—as an alternate content (Listing 6-55). If the layer
cannot be displayed because of the lack of JavaScript support, the link opens another web document with the same
content the Help div would provide. Although the visual appearance of the “Help screen” and the Help document is
different, the content is the same. One of them is always available.

Listing 6-55. An Advanced Menu Item with Fallback Mechanism

<script type="text/javascript">
<a href="javascript:display_help();" title="Guide and access keys" accesskey="h"«
tabindex="22"yHelp</a»
</script>
<noscript>
<a href="http://example.com/help/" title="Guide and access keys" accesskey="h"+«
tabindex="22"sHelp
</noscript>
</1i>

227

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Summary

In this chapter, you learned about client-side and server-side scripting and programming languages used to create
scripts, applets, and web applications. Using these technologies on a daily basis is inevitable, and you know by now
that they are vital in web applications and web services. However, many of them are vendor-specific and have not
been standardized yet. You also know that a large share of incorrect markup is generated by server-side applications,
even though more and more provide standard-compliant web documents.

In the next chapter, you will learn about emerging Semantic Web technologies and machine-readable metadata
annotations.

References

1.

10.

11.

12.

228

Dominique Hazaél-Massieux D (2013) What is scripting? In: Scripting and Ajax. World
Wide Web Consortium. http://www.w3.0rg/standards/webdesign/script. Accessed 21
October 2014

Dorward D (2011) Ampersands, PHP Sessions and Valid HTML. World Wide Web
Consortium. http://www.w3.0rg/0A/2005/04/php-session. Accessed 21 October 2014

Crockford D (2006) The application/json Media Type for JavaScript Object Notation
(JSON). The Internet Society. http://tools.ietf.org/html/rfc4627. Accessed 21
October 2014

van Kesteren A, Aubourg J, Song J, Steen HRM (eds) (2014) XMLHttpRequest Level 1.
World Wide Web Consortium. http://www.w3.0rg/TR/XMLHttpRequest/. Accessed 21
October 2014

Adobe (2014) Adobe Flex - One codebase, multiple devices. Adobe Systems Inc.
http://www.adobe.com/products/flex/. Accessed 21 October 2014

Lubbers P, Albers B, Salim F (2010) Pro HTMLS5 programming - Powerful APIs for Richer
Internet Application Development. Apress Media LLC, New York

Pieters S (2014) APIs. In: HTMLS5 differences from HTML4. World Web Web Consortium.
https://rawgit.com/whatwg/html-differences/master/Overview.html#apis. Accessed
21 October 2014

Cabanier R, Mann J, Munro J, Wiltzius T, Hickson I (eds) (2014) HTML Canvas 2D Context,
Level 2. World Wide Web Consortium. http://www.w3.0rg/TR/2dcontext2/. Accessed
1 November 2014

Ranganathan A, Sicking J (2013) File API. World Wide Web Consortium.
http://www.w3.0rg/TR/FileAPI/. Accessed 21 October 2014

Hickson I (ed) (2014) Drag and drop. In: HTML. Web Hypertext Application Technology
Working Group. https://html.spec.whatwg.org/multipage/interaction.htmlitdnd.
Accessed 21 October 2014

Hickson I (ed) (2014) Forms. In: HTML. Web Hypertext Application Technology Working
Group. http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html.
Accessed 21 October 2014

Popescu A (ed) (2010) Geolocation API Specification. W3C Recommendation. World Wide
Web Consortium. http://www.w3.0rg/TR/geolocation-API/. Accessed 21 October 2014

http://www.w3.org/standards/webdesign/script
http://www.w3.org/QA/2005/04/php-session
http://tools.ietf.org/html/rfc4627
http://www.w3.org/TR/XMLHttpRequest/
http://www.adobe.com/products/flex/
https://rawgit.com/whatwg/html-differences/master/Overview.html#apis
http://www.w3.org/TR/2dcontext2/
http://www.w3.org/TR/FileAPI/
https://html.spec.whatwg.org/multipage/interaction.html#dnd
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.w3.org/TR/geolocation-API/

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

CHAPTER 6 * SCRIPTING AND APPLICATIONS

Mozilla (2014) Location-Aware Browsing. http://www.mozilla.com/en/firefox/
geolocation/. Mozilla Corporation. Accessed 21 October 2014

Hickson I (ed) (2013) Web Storage. W3C Recommendation. World Wide Web Consortium.
http://www.w3.0rg/TR/webstorage/. Accessed 21 October 2014

Hickson I (ed) (2012) The WebSocket API. World Wide Web Consortium.
http://www.w3.0rg/TR/websockets/. Accessed 21 October 2014

Google (2013) pywebsocket - WebSocket server and extension for Apache HTTP Server for
testing. Google Inc. http://code.google.com/p/pywebsocket/. Accessed 21 October 2014

ECMA (2011) The ECMA 262 standard, 5.1 Edition. Ecma International.
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf.
Accessed 21 October 2014

ECMA (1999) ECMAScript Components Specification. The ECMA-290 standard. ECMA
International. http://www.ecma-international.org/publications/files/ECMA-ST/
ECMA-290.PDF. Accessed 21 October 2014

ECMA (2001) ECMAScript 3rd Edition Compact Profile. The ECMA-327 standard. ECMA
International. http://www.ecma-international.org/publications/files/ECMA-ST/
Ecma-327.pdf. Accessed 21 October 2014

ECMA (2005) ECMAScript for XML (E4X) Specification, 2nd edition. The ECMA-357
standard. ECMA International. http://www.ecma-international.org/publications/
files/ECMA-ST/Ecma-357.pdf. Accessed 21 October 2014

ISO (2002) ISO/IEC 16262:2002. International Organization for Standardization.
http://www.iso.org/iso/catalogue_detail.htm?csnumber=33835. Accessed 21
October 2014

Brisbois C (2014) nanoGALLERY. http://nanogallery.brisbois.fr/. Accessed 30
October 2014

Unslider.com (2014) Unslider—the super-tiny jQuery slider. http://unslider.com/.
Accessed 30 October 2014

Voronianski D (2014) Avgrund Modal. http://labs.voronianski.com/jquery.avgrund.js/.
Accessed 30 October 2014

The jQuery Foundation (2014) jQuery Ul Effects Core. http://plugins.jquery.com/
ui.effect/. Accessed 30 October 2014

The jQuery Foundation (2014) Downloading jQuery. http://jquery.com/download/.
Accessed 30 October 2014

Microsoft (2014) JScript (ECMAScript3) - Windows Scripting 5.8. Microsoft Corporation.
http://msdn.microsoft.com/en-us/library/hbxc2t98%28v=VS.85%29.aspx. Accessed
21 October 2014

Microsoft (2014) Silverlight. Microsoft Corporation. http://www.silverlight.net.
Accessed 21 October 2014

Adobe (2014) Adobe ColdFusion 11 family. Adobe Systems Inc.
http://www.adobe.com/products/coldfusion-family.html. Accessed 21 October 2014

Brooks-Bilson R (2009) Core CFML Tags. CFML Advisory Committee.
http://www.opencfml.org/display/cfmladvisory/Core+CFML+Tags. Accessed 23 August 2011

229

http://www.mozilla.com/en/firefox/geolocation/
http://www.mozilla.com/en/firefox/geolocation/
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/websockets/
http://code.google.com/p/pywebsocket/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-290.PDF
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-290.PDF
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-327.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-327.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-357.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-357.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=33835
http://nanogallery.brisbois.fr/
http://unslider.com/
http://labs.voronianski.com/jquery.avgrund.js/
http://plugins.jquery.com/ui.effect/
http://plugins.jquery.com/ui.effect/
http://jquery.com/download/
http://msdn.microsoft.com/en-us/library/hbxc2t98%28v=VS.85%29.aspx
http://www.silverlight.net/
http://www.adobe.com/products/coldfusion-family.html
http://www.opencfml.org/display/cfmladvisory/Core+CFML+Tags

CHAPTER 6

230

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

SCRIPTING AND APPLICATIONS

New Atlanta (2009) Upgrading from ColdFusion. In: BlueDragon 7.1 User Guide. New
Atlanta Communications LLC. http://www.newatlanta.com/products/bluedragon/
self_help/docs/7_1/BlueDragon_71_User Guide.pdf. Accessed 21 October 2014

rave? (2014) rave7. http://www.pcaonline.com/index.cfm?DocID=10082&fkb=y.
Accessed 21 October 2014

FindMySoft (ed) (2011) IgniteFusion CFML engine. http://www.findmysoft.com/
scripts/IgniteFusion-CFML-engine-download.html. Accessed 24 August 2011

Railo (2014) Railo - Open Source CFML - Training, Consulting and Support.
http://www.getrailo.com. Accessed 21 October 2014

Placona M (2011) Yet another free ColdFusion engine. Marcos Placona Blog.
http://www.placona.co.uk/52/coldfusion/yet-another-free-coldfusion-engine/.
Accessed 24 August 2011

Sun (2001) JAVASERVER PAGES (JSP) SYNTAX version 1.2. Sun Microsystems, Inc.
http://java.sun.com/products/jsp/syntax/1.2/card12.pdf. Accessed 23 August 2011

Oracle (2014) Your First Cup: An Introduction to the Java EE Platform Release 7 for Java
Platform, Enterprise Edition. Oracle Corporation. http://docs.oracle.com/javaee/7/
firstcup/doc/firstcup.pdf. Accessed 21 October 2014

Oracle (2013) Java EE 7 Specification APIs. Oracle Corporation.
http://docs.oracle.com/javaee/7/api/. Accessed 21 October 2014

Apple (2007) WebObjects Overview. Apple Inc. http://developer.apple.com/legacy/
mac/library/documentation/WebObjects/WebObjects Overview/WebObjects
Overview.pdf. Accessed 21 October 2014

Apple (2007) WebObjects Web Applications Programming Guide. Apple Inc.
http://developer.apple.com/legacy/mac/1library/documentation/WebObjects/Web
Applications/Web_Applications.pdf. Accessed 21 October 2014

Apple (2007) WebObjects Enterprise Objects Programming Guide. Apple Inc.
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/
Enterprise Objects/EnterpriseObjects.pdf. Accessed 21 October 2014

Microsoft (2014) Microsoft .NET Framework. Microsoft Corporation.
http://www.microsoft.com/net. Accessed 21 October 2014

ECMA (2012) Common Language Infrastructure (CLI), 6" edition. ECMA-335 Standard.
ECMA International. http://www.ecma-international.org/publications/files/
ECMA-ST/ECMA-335.pdf. Accessed 21 October 2014

Microsoft (2014) The Official Microsoft ASP.NET Site. Microsoft Corporation.
http://www.asp.net. Accessed 21 October 2014

Microsoft (2010) XHTML Standards in Visual Studio and ASP.NET. Microsoft Corporation.
http://msdn.microsoft.com/en-us/library/exc57y7e.aspx. Accessed 21 October 2014

ECMA (2006) C# Language Specification, 4" edition. ECMA-334 Standard. ECMA
International. http://www.ecma-international.org/publications/files/ECMA-ST/
Ecma-334.pdf. Accessed 21 October 2014

http://www.newatlanta.com/products/bluedragon/self_help/docs/7_1/BlueDragon_71_User_Guide.pdf
http://www.newatlanta.com/products/bluedragon/self_help/docs/7_1/BlueDragon_71_User_Guide.pdf
http://www.pcaonline.com/index.cfm?DocID=10082&fkb=y
http://www.findmysoft.com/scripts/IgniteFusion-CFML-engine-download.html
http://www.findmysoft.com/scripts/IgniteFusion-CFML-engine-download.html
http://www.getrailo.com/
http://docs.oracle.com/javaee/7/firstcup/doc/firstcup.pdf
http://docs.oracle.com/javaee/7/firstcup/doc/firstcup.pdf
http://docs.oracle.com/javaee/7/api/
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/WebObjects_Overview/WebObjects_Overview.pdf
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/WebObjects_Overview/WebObjects_Overview.pdf
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/WebObjects_Overview/WebObjects_Overview.pdf
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/Web_Applications/Web_Applications.pdf
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/Web_Applications/Web_Applications.pdf
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/Enterprise_Objects/EnterpriseObjects.pdf
http://developer.apple.com/legacy/mac/library/documentation/WebObjects/Enterprise_Objects/EnterpriseObjects.pdf
http://www.microsoft.com/net
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf
http://www.asp.net/
http://msdn.microsoft.com/en-us/library/exc57y7e.aspx
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

CHAPTER 6 * SCRIPTING AND APPLICATIONS

ISO (2012) Information technology - Programming languages - C#. ISO/IEC 23270:2006.
International Organization for Standardization. http://www.iso.org/iso/iso_
catalogue/catalogue_ics/catalogue_detail ics.htm?csnumber=42926. Accessed 21
October 2014

ISO (2012) Information technology - Common Language Infrastructure (CLI)
Partitions I to VI. ISO/IEC 23271:2006. International Organization for Standardization.
http://www.iso.org/iso/iso_catalogue/catalogue _ics/catalogue_detail ics.
htm?csnumber=42927. Accessed 21 October 2014

Allen J (ed) (2014) Perl 5 version 14.1 documentation - Full version. Official
documentation for the Perl programming language. Perl5 Porters.
http://perldoc.perl.org/perldoc.tar.gz. Accessed 21 October 2014

AllenJ (ed) (2014) Perl version 5.20.1 documentation - Perl style guide.
http://perldoc.perl.org/perlstyle.pdf. Accessed 21 October 2014

Hoff T, Kristiansen F (2003) PHP Coding Standard. Todd Hoff, Fredrik Kristiansen.
http://www.dagbladet.no/development/phpcodingstandard/. Accessed 24 August 2011

Google (2011) PHP Standards Working Group. Google Inc.
http://groups.google.com/group/php-standards. Accessed 24 August 2011

Icontem (2014) PHP standards discussion group opens to the world - PHP Classes.
Icontem. http://www.phpclasses.org/blog/post/96-PHP-standards-discussion-
group-opens-to-the-world.html. Accessed 21 October 2014

DonatJ (ed) (2014) PHP Standards. http://phpstandards.net.
Accessed 15 November 2014

Olson P (ed), Achour M, Betz E Dovgal A, Lopes N, Magnusson H, Richter G,
Seguy D, VranaJ, et al (2014) PHP Manual. PHP Documentation Group.
http://www.php.net/manual/en/. Accessed 21 October 2014

PSF (2014) Welcome to Python.org. Python Software Foundation.
http://www.python.org. Accessed 21 October 2014

Britt J, Neurogami (2014) Index of Files, Classes & Methods in Ruby. James Britt,
Neurogami. http://www.ruby-doc.org/core/. Accessed 21 October 2014

Britt J, Neurogami (2014) Ruby Standard Library Reference. James Britt, Neurogami.
http://www.ruby-doc.org/stdlib/. Accessed 21 October 2014

Britt], Neurogami (2006) Ruby C API Reference. James Britt, Neurogami.
http://www.Tuby-doc.org/doxygen/current/. Accessed 24 August 2011

Kolesnikov V (2009) Rails Searchable API Doc. Vladimir Kolesnikov.
http://railsapi.com. Accessed 24 August 2011

Dangoor K et al (2009) Common]S: JavaScript Standard Library. The Common]S
community. http://www.commonjs.org. Accessed 24 August 2011

Google (2014) The Common]S Google Group. Google Inc.
http://groups.google.com/group/commonjs. Accessed 21 October 2014

Oracle (2014) MySQL: The world’s most popular open source database. Oracle
Corporation. http://www.mysql.com. Accessed 21 October 2014

231

http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=42926
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=42926
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=42927
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=42927
http://perldoc.perl.org/perldoc.tar.gz
http://perldoc.perl.org/perlstyle.pdf
http://www.phpclasses.org/blog/post/96-PHP-standards-discussion-group-opens-to-the-world.html
http://www.phpclasses.org/blog/post/96-PHP-standards-discussion-group-opens-to-the-world.html
http://phpstandards.net/
http://www.php.net/manual/en/
http://www.python.org/
http://www.ruby-doc.org/core/
http://www.ruby-doc.org/stdlib/
http://www.commonjs.org/
http://groups.google.com/group/commonjs
http://www.mysql.com/

CHAPTER 6

232

64.

65.

66.

67.

68.

69.

70.
71.

SCRIPTING AND APPLICATIONS
ASF (2014) Apache Derby. Apache Software Foundation. http://db.apache.org/derby/.
Accessed 15 November 2014

IBM (2014) DB2 database software. International Business Machines.
http://www-01.ibm.com/software/data/db2/. Accessed 21 October 2014

Firebird Project (2014) Firebird: True universal open source database. Firebird Foundation
Incorporated. http://www.firebirdsql.org. Accessed 21 October 2014

Microsoft (2014) SQL Server. Microsoft Corporation. http://www.microsoft.com/
sqlserver/en/us/default.aspx. Accessed 21 October 2014

Oracle (2014) Oracle Database. Oracle Corporation. http://www.oracle.com/database/.
Accessed 21 October 2014

PostgreSQL GDG (2014) PostgreSQL: The world’s most advanced open source database.
PostgreSQL Global Development Group. http://www.postgresql.org. Accessed 21
October 2014

Hipp DR (2014) SQLite. http://sqlite.org. Accessed 21 October 2014

Sybase (2014) Database Management. Sybase Inc.
http://www.sybase.com/products/databasemanagement. Accessed 21 October 2014

http://db.apache.org/derby/
http://www-01.ibm.com/software/data/db2/
http://www.firebirdsql.org/
http://www.microsoft.com/sqlserver/en/us/default.aspx
http://www.microsoft.com/sqlserver/en/us/default.aspx
http://www.oracle.com/
http://www.postgresql.org/
http://sqlite.org/
http://www.sybase.com/products/databasemanagement

CHAPTER 7

Metadata and the Semantic Web

The basic structure of web documents provides the desired appearance and functionality. By default, however, the
content is human-readable only. You can use additional technologies to provide meaning to web documents, making
them machine-readable and human-readable at the same time. There is a wide choice of metadata available, along
with microformats and various annotations that can significantly extend the processability of web documents and the
efficiency of web searches. Structured data should be added to web sites and conventional search engines changed
from brute-force approaches to semantic parsing.

In this chapter, you will learn machine-readable metadata annotations and semantically meaningful attributes.
You will also become familiar with the Resource Description Framework, the fundamental standard behind Semantic
Web technologies. After reading the chapter, you will be able to create new vocabularies, schemes, and ontologies,
and use existing technologies such as

e General metadata in the markup: Conventional meta tags

e Microformats: Metadata provided as attribute values of markup elements

® Microdata: A metadata annotation for general metadata embedding in HTML5
e RDF: A standardized framework for Semantic Web data models

e OWL: A knowledge representation language for describing and sharing web ontologies that
formally represent knowledge as a set of concepts within a domain and the relationships
between those concepts

e FOAF and DOAC: Machine-readable ontologies for people and their professional capabilities
e XMB Rich Snippets, SearchMonkey RDFa: Metadata formats for images and video clips

The Semantic Web

Until recently, software agents could not handle many kinds of information that could have been associated with

files. Although file structure and extensions provided some information about files, much information could not be
expressed. For example, a file with a . jpg extension has always represented a JPEG image but provided no information
about the shutter speed, exposure program, f-stop, aperture, ISO speed rating, or focal length until the introduction

of metadata formats such as Exif and XMP (see Chapter 9). However, sharing metadata stored in binary files is still

not the most efficient way to share metadata, especially if it is much more generic. In the digital era, electronic files
are being sold (e-books, MP3 files, and so on) that might be retrieved or played on many types of devices. A variety of
metadata technologies can be used to express arbitrary information and represent any kind of knowledge associated
with electronic documents in a machine-readable format. Machine-readable data (automated data) is data stored in
a machine-readable format, making it possible for automated software agents to access and process it without human
intervention.

233

CHAPTER 7 © METADATA AND THE SEMANTIC WEB

To browsers, web documents consisted of human-readable data only. In fact, information was confused with the
containers that contained them. In contrast to the conventional Web (the “Web of documents”), the Semantic Web is
the “Web of data” [1]. The Semantic Web provides machine-processable data, making it possible for software agents
to “understand” the meaning of information (in other words, semantics) presented by web documents. This feature
can be used for a variety of services [2], such as museums [3], community sites [4], podcasting [5], Big Data processing,
and search engines.

Caution The word semantic is used on the Web in other contexts as well. For example, in HTML5 there are semantic
(in other words, meaningful) structuring elements, but this expression refers to the “meaning” of elements. In this context,
the word semantic contrasts the “meaning” of elements, such as that of section (a thematic grouping), with the generic
elements of older HTML versions, such as the “meaningless” div. The semantics of markup elements should not be
confused with the semantics (in other words, machine-processability) of metadata annotations and web ontologies used
on the Semantic Web. The latter can provide far more sophisticated data than the meaning of a markup element.

Conventional web documents can be extended with additional data that add meaning to them rather than
structure alone. Semantic Web is a new approach that is going to change the world of the Web. Surprisingly, Tim
Berners-Lee described the reason for the existence of the Semantic Web as early as 2001 [6]. On the Semantic Web,
data can be retrieved from seemingly unrelated fields automatically in order to combine them, find relations, and
make discoveries [7]. The machine-processability can also be used in huge and complex datasets that are considered
Big Data.

The Semantic Web should be considered an extension of the conventional Web [8]. Web 2.0 is an umbrella term
used for a collection of technologies that form the second generation of the Web, such as Extensible Markup Language
(XML), Asynchronous JavaScript and XML (Ajax), Really Simple Syndication (RSS), and Session Initiation Protocol
(SIP). They are the underlying technologies and standards behind instant messaging, Voice over IP, wikis, blogs,
forums, and web syndication.

The next generation of web services is denoted as Web 3.0, which is an umbrella term usually referring to
customization and semantic contents and more sophisticated web applications toward artificial intelligence,
including computer-generated contents [9].

The Semantic Web is a major aspect of Web 2.0 [10] and Web 3.0 [11]. Web 3.0 can be considered a superset of the
Semantic Web that features social connections and personalization.

Several technologies contribute to the sharing of such information instead of web pages alone, and the number
of Semantic Web applications is constantly increasing.

All data controlled by conventional web applications are kept by the applications themselves, making a significant
share of data and their relationships virtually unavailable for automated processing. Semantic Web applications,
on the other hand, can access this data through the general web architecture and transfer structured data between
applications and web sites [12]. Semantic web technologies can be widely applied in a variety of areas, such as
data integration, resource discovery and classification, cataloging, intelligent software agents, content rating, and
intellectual property right descriptions [13]. A much wider range of tasks can be performed on semantic web pages than
on conventional ones; for example, relationships between data and even sentences can be automatically processed
(see the next sections). Additionally, the efficiency is much higher. For example, a very promising approach provides
direct mapping of relational data to RDE making it possible to share data of relational databases on the Semantic Web
[14]. Since relational databases are extremely popular in computing, databases that are publicly unavailable can now
be shared on the Semantic Web. Commercial RDF database software packages are already available on the market
(5Store, AllegroGraph, BigData, Oracle, OWLIM, Talis Platform, Virtuoso, and so on) [15]. Semantic tools can also be
used in a variety of other areas, including business process modeling or diagnostic applications [16].

234

CHAPTER 7 = METADATA AND THE SEMANTIC WEB

Along with these benefits, there are several open issues that need further investigation and, in some cases,
the development of new approaches. The largest challenge of Semantic Web applications is to resolve semantic
data quality problems and identify useful and meaningful information [17]. There are more and more promising
approaches; however, they have a common feature: all rely on standard annotations, taxonomies, vocabularies, and
ontologies. We analyze these essential technologies and their features throughout the chapter from a standardization
point of view.

Structured Data

Data should be structured to support advanced processability and searchability by data type. Structured data is data
organized in a structure to become identifiable. Such data has been used for decades in computing, such as in the form
of Access and SQL databases, where queries can be performed to retrieve information (for example, a ZIP code). In
contrast to relational databases, most data on the Web is stored in (X)HTML documents that contain unstructured data.

Conventional web documents contain large amounts of unstructured data that can be rendered in web browsers.
This approach works satisfactorily for publishing purposes; however, a large amount of data stored in, or associated
with, web documents cannot be processed this way. According to Berners-Lee, the data used to describe social
connections between people is a good example for that kind of data [18]: “The Web is more a social creation than a
technical one. I designed it for a social effect—to help people work together—and not as a technical toy. The ultimate
goal of the Web is to support and improve our weblike existence in the world. We clump into families, associations,
and companies. We develop trust across the miles and distrust around the corner. What we believe, endorse, agree
with, and depend on is representable and, increasingly, represented on the Web. We all have to ensure that the society
we build with the Web is of the sort we intend.”

On the Semantic Web, there is a variety of structured data, usually expressed in, or based on, the Resource
Description Framework (RDF), which will be described later in detail. Similar to conventional conceptual modeling
approaches, such as class diagrams and entity relationships, the RDF data model is based on statements that
describe and feature resources, especially web resources, in the form of subject-predicate-object expressions. The
subject corresponds to the resource. The predicate expresses a relationship between the subject and the object. Such
expressions are called triples.

For example, the statement “The grass is green” can be expressed in an RDF triple as follows:

e Subject: “The grass”
e Predicate: “is”
e Object: “green”

RDF is an abstract model that has several serialization formats. Consequently, the syntax of the triple varies from
format to format (see later in the section “Resource Description Framework”).

Caution RDF is a data representation model, not a language like XML.

The authors of the “conventional” Web usually publish unstructured data, because they do not know about
the power of structured data, find RDF too complex, or do not know how to create and publish RDF in any of its
serialization formats. The following are solutions to the problem that add structured data to conventional (X)HTML
markup, which can be extracted by appropriate software and converted to RDF:

e Microformats, which reuse markup attributes
e Microdata, which extends HTML5 markup with structured metadata

e RDFa, which expresses RDF in markup attributes that are not part of (X)HTML vocabularies

235

CHAPTER 7 © METADATA AND THE SEMANTIC WEB

Linked Open Data

Linked Data (also known as Linking Data) can be applied to improve the exploitation of the “Web of data.” The expression
refers to the publishing of structured data in a way that typed links are created between data from different sources [19] to
provide a higher level of usability. By using Linked Data, it is possible to find other, related datasets. Structured data should
meet four requirements to be called Linked Data [20]:

e URIs should be assigned to all entities of the dataset.

e HTTP URIs are required to ensure that all entities can be referenced and cited by users
and user agents.

e Entities should be described using standard formats such as RDF/XML.

e Links should be created to other, related entity URIs.

All data that fulfill these requirements and are released for the public are called Linked Open Data (LOD).
The variety of datasets published as Linked Data is represented by the LOD cloud diagram (Figure 7-1) [21].

¥ DBpedia

Publcations
UfoScinces
Cross-Domain
Socil Networking
Geograptic
Government
Wedia
User-Generated Content
ingustcs

Linked Datasets as of August 2014 (&) (&}

Figure 7-1. The LOD cloud diagram (courtesy of Max Schmachtenberg, Christian Bizer, Anja Jentzsch, and Richard
Cyganiak)

236

CHAPTER 7 = METADATA AND THE SEMANTIC WEB

The image collects the datasets published according to the Linked Data principles and represents links between
them. The size of the bubbles corresponds to the number of triples stored in each dataset. Contributors include the
Linking Open Data community project, individuals, and organizations.

Machine-Readable Metadata

Metadata is structured data describing information about features and content of web sites. The meta tags written in (X)
HTML head sections, which do not require additional technologies, can be used to describe general data about web pages
(as mentioned earlier in Chapter 3 and will be described in detail in the next section). Semantic, machine-readable labels
can be provided as attribute values of (X)HTML or XML elements by microdata, microformats, or RDFa.

There are several metadata technologies; many apply different annotations. For example, the description of a
person can be expressed in RDFa, microdata, the vCard microformat, and further vocabularies such as FOAF or DOAC.

Special metadata such as licensing can be provided with different notations. Licensing information of images
and of the web pages containing them can be different. Providing license metadata can be beneficial to every web site,
especially the ones that have different copyright than the user content, such as image-sharing portals like Flickr [22].
Image licenses can be provided in basic markup, microdata, rel="1icense" microformat, and RDFa.

Several metadata technologies have multiple syntaxes. The syntax of microformats, for example, depends on the
host markup languages. In the case of RDF, some syntaxes have the same capabilities but different complexity.

Semantic Annotations
The meta Tags

In the 1990s, meta elements had a large effect on web search results. Since then, their significance has been
decreasing, partly because of the unethical tricks that have been used to manipulate search engine rankings. A good
example is keyword stuffing, which was used to load a web page with popular keywords that were not necessarily
relevant to the page content, either in the meta tags or in the content. In the latter case, the keywords were often
hidden, but the web page that contained them was indexed by search engines. Such tricks made it possible for
developers to achieve higher ranking on search results but significantly increased the number of irrelevant links on
search result lists. Although they are less important nowadays, meta tags still should be used to provide information
on web page contents for search engines.

The meta tags in HTML/XHTML can define a variety of metadata, for example, content type, author, publication
date, keywords, page content description, character encoding, and so on. These tags were introduced in HTML 2.0
and are still current.

The following attributes can be used on the meta element: content, http-equiv, name, and scheme. The first
one is the only required attribute. In HTML5, the scheme attribute is not supported on the meta element, and there is
another attribute called charset. The meta element attributes can specify the following:

o Alternatives to HTTP headers that are sent by web servers prior to the web page content.
Listing 7-1 shows an example.

Listing 7-1. Document Expiry Date Provided by the meta Tag

<meta http-equiv="expires" content="Fri, 15 October 2010 14:15:00 GMT" />

e Names and associated content attributes describing aspects of (X)HTML pages.
Listing 7-2 shows an example.

Listing 7-2. Keyword Declaration with the meta Tag

<meta name="keywords" content="standardization, accessibility" />

237

CHAPTER 7 © METADATA AND THE SEMANTIC WEB

e Meta schemes specify a semantic framework defining the meaning of the key and its value
(prior to HTMLS5). They can also prevent potential ambiguity. Listing 7-3 shows an example.

Listing 7-3. A Meta Scheme

<meta name="foo" content="bar" scheme="DC" />

In this case, the meta scheme is Dublin Core (DC).

The language, keywords, description, and robots attributes contribute to more precise web searches by
defining document language, the most relevant keywords, and a short description. The value of the last attribute,
robots, provides control over search engine behavior for a limited extent [23]. Web pages can be prevented from
being indexed (noindex), crawled (nofollow), cached (noarchive), described (nosnippet), or described according to
the Open Directory Project (noodp) [24]. The combination of the noindex, nofollow values can be substituted by the
value none [25]. This setting can be used, for example, for confidential documents whose content and links should not
be indexed by search engines.! Web page descriptions retrieved from ODP used by Google, Yahoo!, and Bing can be
disallowed specifically. The meta name to be applied is Googlebot for Google, Slurp for Yahoo!, and msnbot for Bing
(Listing 7-4).

Listing 7-4. meta Tags for Different Crawlers

<meta name="Googlebot" content="noodp" />
<meta name="Slurp" content="noodp" />
<meta name="msnbot" content="noodp" />

If you want to prevent the descriptions and titles retrieved from the Yahoo! Directory from being displayed in
search results, you can use the noydir value [26] (Listing 7-5).

Listing 7-5. Using the noydir Attribute Value

<meta name="robots" content="noydir" />

In spite of the variety of attribute values, using meta tags for preventing search engine indexing or crawling is not
the best solution. The robots. txt file should be used instead for this purpose.
The typical general metadata provided in the head section of web documents looks like Listing 7-6.

Listing 7-6. A Complete Example for meta Tags in XHTML5

<meta charset="UTF-8" />

<meta name="robots" content="index, follow" />

<meta name="content-language" content="en" />

<meta name="author" content="John Smith" />

<meta name="keywords" content="My Darling, pet shop, pet accessories, dog, collar,«
harness, dog lead, dog kennel, dog bowl, dog coats" />

<meta name="description" content="The website of the pet shop My Darling." />

Since the attribute value of the name attribute on the meta element is robots, the value of the content attribute
(index, follow)is applied to all search engines rather than a specific one.

IThere are other techniques to achieve similar results. For example, web documents contained by a directory that is disallowed in
robots.txt will usually be excluded from search results.

238

CHAPTER 7 = METADATA AND THE SEMANTIC WEB

Microformats

A special approach to metadata is a set of simple open data formats called microformats (uF). They are highly
correlated with the Semantic Web by applying and reusing features of existing technologies (for example, the (X)
HTML rel attribute) and by introducing new ones with the simplest approaches possible—based on Plain Old
Semantic HTML (POSH) (for example, hCard). They can be applied not only in (X)HTML markup but also in XML,
RSS, Atom, and so on.

Microformats can express site structure, link weight, content type, and human relationships with the class, rel,
and rev attribute values [27]. They are very easy to write, and the number of software supporting them is increasing
(for example, the Operator [28] and Tails Export [29] add-ons for Firefox, the Michromeformats Google Chrome
extension [30], the microformats transformer Optimus [31], or the Microformats Bookmarklet for Safari, Firefox,
and IE [32]).

However, there are still some open issues. For example, applying various microformats as multiple values on the
a element should be avoided (for example, rel="nofollow" and rel="friend"). The rev attribute used by the Vote
Links microformat cannot be used in HTMLS5.

Profile URIs provided by the profile attribute cannot be used on the head element in HTMLS5, where the profile
attribute values can be declared for the rel attribute on anchors (a) or link elements (1ink). As an example, a profile
URI is presented for the hCalendar microformat with all the three options. The hCalendar microformat is based on
the iCalendar standard (RFC 2445 [33]). All contents that use hCalendar notation should refer to the hCalendar XMDP
profile, in other words, http://microformats.org/profile/hcalendar, as shown in Listing 7-7 or Listing 7-8 for the
document head or in Listing 7-9 as part of the document body. These methods can also be combined.

Listing 7-7. Providing the hCalendar Head Profile in the Document Head (Cannot Be Used in HTMLS5)

<head profile="http://microformats.org/profile/hcalendar">

Listing 7-8. Linking to the hCalendar Profile in the Document Head

<link rel="profile" href="http://microformats.org/profile/hcalendar">

Listing 7-9. Using the hCalendar Profile in the Document Body

hCalendar

New structural elements introduced by HTMLS5, such as article, nav, and section, are not recognized by certain
microformat parsers.

In the next sections, we will give you an overview of some of the most popular microformats, namely, hCalendar,
hCard, rel="license", rel="nofollow", rel="tag", Vote Links, and XFN.

hCalendar

You can use the hCalendar microformat to create calendar entries for sport events, anniversaries, reminders,
meetings, workshops, conferences, and other events. The root class name for hCalendar is vcalendar. The root class
name for events is vevent, which is required for all event listings.

The properties are represented by the elements of hCalendar. The required properties are dtstart, which should
be provided in the ISO date format,* and summary.

’Beyond microformats such as hAtom, hCalendar, hCard, and hReview, several web technologies apply the ISO 8601 date format
for date-time representation, such as XML, XML schema datatypes, RDF, and Atom.

239

http://microformats.org/profile/hcalendar
http://microformats.org/profile/hcalendar
http://microformats.org/profile/hcalendar
http://microformats.org/profile/hcalendar%22%3EhCalendar%3C/a

CHAPTER 7 © METADATA AND THE SEMANTIC WEB
Listing 7-10 shows an hCalendar example.

Listing 7-10. A Three-Day Conference Represented in hCalendar

<div class="vevent">
<h1 class="summary">Semantic Web Conference ’15</h1>
<div class="description">Semantic Web Conference 2015 was announced yesterday.</div>
<div>Posted on: <abbr class="dtstamp" title="20150825T080000Z">Aug 25, 2015</abbr></div>
<div class="uid">uidi@host.com</div>
<div>Organized by: js@expl.com</div>
<div>Dates: <abbr class="dtstart" title="20151012T093000Z">0ctober 12 2015, 9.30am«
UTC</abbr> - <abbr class="dtend" title="20151014T200000Z">October 14 2015, 8.00pm«
UTC</abbr></div>
<div>Status: Confirmed</div>
<div>Filed under:</div>

<li class="category">Conference</1i>

</div>

Optional properties include, but are not limited to, location, url, dtend (in ISO date format), duration (in ISO
date duration format), rdate, rrule, category, description, uid, geo, attendee, contact, organizer, attach, and
status. The geo property has the subproperties latitude and longitude, while attendee has the subproperties
partstat and role. According to the specification, the property list is not final and is being extended [34].

Those who have to publish new events regularly might find the hCalendar generator hCalendar-o-matic useful [35].

hCard

The hCard microformat standard can be used to represent contact data of people, companies, and organizations
by semantic markup [36]. hCard metadata should be provided on the contact pages of web sites. In summer 2010,
hCard crossed the 2 billion mark according to Yahoo! Search Monkey, making it the most popular metadata format for
people and organizations on the Web.

hCard is based on the vCard standard (RFC 2426 [37]). In fact, existing vCards can be easily converted to hCard.?

Tip The vCard standard is widely used for storing electronic business cards. For example, Microsoft Outlook uses this
format for the business cards available under Contacts.

The hCard class names should be in lowercase.

Caution The root class name for an hCard is vcard. An element with a class name vcard is itself called an hCard.

3The vCard notation BEGIN:VCARD is class="vcard" in hCard, N: is class="n", FN: is class="fn", and so on.

240

CHAPTER 7 = METADATA AND THE SEMANTIC WEB

The two required attributes in hCard are fn and n. However, the second one is optional if any implied “N”
optimization rules are in effect.* The property n might have the subproperties family-name, given-name,
additional-name, honorific-prefix, and honorific-suffix.

All other properties are optional, including adr, agent, bday, category, class, email, geo, key, label, logo,
mailer, nickname, note, org, photo, rev, role, sort-string, sound, tel2, title, tz, uid, and url. Allowed
subproperties are post-office-box, extended-address, street-address, locality, region, postal-code,
country-name, type, and value for adr; type and value for email; latitude and longitude for geo
organization-name and organization-unit for org; and type and value for tel2.

A typical hCard code looks like Listing 7-11.

Listing 7-11. A Typical hCard

<div id="hcard-John-Smith" class="vcard">

John Smith
<div class="org">Smith and Sons</div>
smith@example.com
<div class="adr">
<div class="street-address">123 Nice Street</div>
Vancouver,
BC,
V5K
Canada
</div>
<div class="tel">+12345678</div>
</div>

The following hCard elements are singular and can be provided just once: fn, n, bday, tz, geo, sort-string, uid,
class, and rev. All other properties are allowed to have multiple instances.

Generally, the visible property values of markup elements represent the value of the hCard property. However,
there are some exceptions.

For hyperlinks that are represented by the a element for one or multiple hCard properties, the href attribute
provides the property value for all properties with a URL value (for example, photo). In case the img element is used,
the sxc attribute holds the property value for all properties with a URL value. For object elements, the data attribute
provides the property value. The content of the element is the property value for all other properties.

If the title attribute is provided for abbr elements with hCard notation, its value is considered as the hCard
property instead of the element contents used otherwise.

Although it is easy to create it manually, hCard metadata can be generated by the hCard creator hCard-o-matic
on the web site of the authors of the specification [38]. You simply fill in a form about the name, organization, country,
e-mail, and other contact data, and the software generates the hCard.

To provide additional information, microformats can also be nested. For example, a sport event review might
contain not only the review but also personal information (hCard) at the same time (Listing 7-12).

“If n is omitted but n is present, the value of n will be equal to the value of fn.

241

CHAPTER 7 © METADATA AND THE SEMANTIC WEB

Listing 7-12. A Combination of hReview and hCard

<div class="hreview">

<strong class="item">The winner takes it all
Review

By John Smith, Editor«

at Consumer Reviews

Rating: 4.5 out of 5.

A fascinating performance.
</div>

The review is described by the hReview microformat (class="hreview"). The name of the reviewer is revealed
by span class="reviewer". The hCard microformat is nested inside the hReview microformat in order to provide
additional information about him (a space-separated list of attribute values in).
The hCard properties describe the name (fn), job title (title), and organization (org) of the reviewer.

rel=“license”

There are millions of web resources with some or all rights reserved. Many licenses associated with documents and
objects are sophisticated, and users cannot be expected to know them.
The rel="1icense" microformat can be added to hyperlinks that point to the description of the license. This is
especially useful for images but can be used for any resources.
Basic image embeddings apply only the src and alt attributes on the img element, such as in Listing 7-13.
Listing 7-13. A Basic Image Embedding

To declare the image license, the rel and href attributes should also be used. In the case of the Creative
Commons Attribution-ShareAlike license, for example, it should be in the form shown in Listing 7-14.
Listing 7-14. Declaring an Image License
<img src="hotel.jpg" alt="The Palace Hotel" rel="license"+~
ref="http://creativecommons.oxrg/licenses/by-sa/3.0/" />
The value of the href attribute provides the associated URI of the resource where the license is described. Some
of the most commonly used license deeds are [39] as follows:
e Creative Commons Attribution (cc by)
http://creativecommons.org/licenses/by/3.0/
e Creative Commons Attribution Share Alike (cc by-sa)
http://creativecommons.org/licenses/by-sa/3.0
e Creative Commons Attribution No Derivatives (cc by-nd)
http://creativecommons.org/licenses/by-nd/3.0
e Creative Commons Attribution Non-Commercial (cc by-nc)

http://creativecommons.org/licenses/by-nc/3.0

242

http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by-nd/3.0
http://creativecommons.org/licenses/by-nc/3.0

CHAPTER 7 = METADATA AND THE SEMANTIC WEB

e Creative Commons Attribution Non-Commercial Share Alike (cc by-nc-sa)
http://creativecommons.org/licenses/by-nc-sa/3.0

e Creative Commons Attribution Non-Commercial No Derivatives (cc by-nc-nd)
http://creativecommons.org/licenses/by-nc-nd/3.0

You should select a license that matches what you let others do with your work (distribute commercially or
noncommercially, remix, tweak, share with proper crediting, alter, and so on).

The profile of this microformatis http://microformats.org/profile/rel-1icense [40], which can be specified
on the head (X)HTML tag as shown in Listing 7-15.

Listing 7-15. The Head Profile of "rel=license"

<head profile="http://microformats.org/profile/rel-license">

rel=“nofollow”

One value of the rel attribute deserves extended attention, because it is often used in search engine optimization (SEO).
When rel="nofollow" is added to a hyperlink, the link destination should not be considered for additional ranking by
search engines. This attribute value can be applied if document owners need hyperlinks without affecting the ranking
of their web pages or links to external web sites. For example, if a hyperlink is vital on the web page but its destination
page has a very low PageRank, the hyperlink should be provided with rel="nofollow" to avoid search engine penalty.

Note PageRank (PR) is a link analysis algorithm used to assign a numerical weighting to each web document in
order to express its relative importance on a 0—10 scale.

For example, if Llowprsite.comhas a low PR but you have to link to it because of the content presented there, you
can use the rel="nofollow" microformat as shown in Listing 7-16.

Listing 7-16. A Link That Will Be Not Considered by Search Engines While Indexing a Page

Low PR site
Listing 7-17 shows the profile URI of this microformat.

Listing 7-17. The Profile URI of rel="nofollow"

<link rel="profile" href="http://microformats.org/profile/rel-nofollow">
Although it is widely used, there are several open issues about this microformat [41]. The rel="nofollow"
microformat indicates a behavior rather than a relationship, so the definition is illogical. The name of the microformat

does not reflect the real meaning. It is not a noun. It does not affect spamming. Finally, many legitimate nonspam
links might be ignored or given reduced weight, which is an unfortunate side effect that should be eliminated [42].

243

http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-nd/3.0
http://microformats.org/profile/rel-license
http://microformats.org/profile/rel-license
http://www.lowprsite.com/
http://microformats.org/profile/rel-nofollow

CHAPTER 7 © METADATA AND THE SEMANTIC WEB

rel="tag”

The rel="tag" is still a draft specification since 2005 [43]. Unlike other microformats and general meta keywords, this
microformat can be used for visible links. It can be applied on hyperlink elements to indicate that the destination of
the link is a general author-designated tag (keyword) for the current page.

Within this microformat, spaces can be provided either as + or as %20. Unicode characters are encoded according
to the generic syntax rules of URIs described by the Internet Society (RFC 3986 [44]).

Vote Links

Vote Links is an elemental microformat with three possible values on the rev attribute of the a element: vote-for,
vote-against, and vote-abstain. The values are mutually exclusive. Optionally, visible rollovers can be provided by
the title attribute. Listing 7-18 shows an example.

Listing 7-18. A Vote Links Example

<a rev="vote-for" href="http://example.com/thumbsup/"«
title="HTML should be the primary markup language">HTML5
<a rev="vote-against" href="http://example.com/thumbsdown/" «
title="XHTML should be the primary markup language">XHTML5

Initially, the draft specification applied Vote Links on the rel attribute, which is now deprecated [45].
Listing 7-19 shows the URI profile reference.

Listing 7-19. The URI Profile for Vote Links

<link rel="profile" href="http://microformats.org/profile/vote-links">

XFN

The very first HTML microformat, XHTML Friends Network (XFN), was introduced in December 2003 [46]. XFN was
designed by Global Multimedia Protocols Group to express human relationships with simple hyperlinks [47]. XFN is
especially useful for brochure-style home pages and blog entries.

The name of the person should be provided as the text of the hyperlink (between <a> and). The personal
web site is the target of the hyperlink, in other words, the value of the href attribute. All relationship data can be
provided by the rel attribute on a elements. Multiple values are allowed and should be separated by spaces. The
friendship type can be contact, acquaintance, or friend. If the person is known personally, it can be expressed
by the met attribute value of the rel attribute. For example, a friend of Leslie Sikos whom he knows personally can
publish that relationship on his web site by XFN, as shown in Listing 7-20.

Listing 7-20. Link to the Web Site of a Friend

I am an old friend of Leslie Sikos.

The distance between the residence of the pers