
www.allitebooks.com

http://www.allitebooks.org

Visual Media Processing Using
MATLAB Beginner's Guide

Learn a range of techniques from enhancing and adding
artistic effects to your photographs, to editing and
processing your videos, all using MATLAB

George Siogkas

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Visual Media Processing Using MATLAB Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1170913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-720-0

www.packtpub.com

Cover Image by George Siogkas (siogkas@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
George Siogkas

Reviewers
R. Surya Murali

Ashish Uthama

Alexander Wright

Acquisition Editor
Joanne Fitzpatrick

Lead Technical Editor
Anila Vincent

Technical Editors
Chandni Maishery

Iram Malik

Manal Pednekar

Project Coordinator
Navu Dhillon

Proofreader
Elinor Perry-Smith

Indexers
Hemangini Bari

Monica Ajmera Mehta

Graphics
Ronak Dhruv

Production Coordinator
Kirtee Shingan

Cover Work
Kirtee Shingan

www.allitebooks.com

http://www.allitebooks.org

About the Author

George Siogkas is currently the Associate Dean of the Department of Engineering and
Informatics at New York College, Greece, where he has been teaching as a senior lecturer
for the past four years. He also has more than ten years of research experience in
the academia. His keen passion for MATLAB programming, especially in the areas of image
and video processing, was developed while working towards a PhD in the field
of computer vision for intelligent transportation systems.

Dr. Siogkas received his PhD in Electrical and Computer Engineering from the University
of Patras, Greece in 2013.

For more information about the author, visit his webpage, at http://www.cvrlab.com/
gsiogkas.

I would like to first and foremost thank my beautiful wife, Maro, who put up
with my exhausting writing schedule for both this book and my PhD thesis,
while staying focused enough to organize our wedding. I would also like to
thank my parents and my brother for their continuous support, especially
during this past year. Without the encouragement from all of them, this
project would never even have got started in the first place.

I would also like to thank everyone at Packt Publishing who got involved
in this book, especially Joanne Fitzpatrick, Hardik Patel, Navu Dhillon, and
Anila Vincent. They played a very important role in helping me understand
the rationale behind such a writing project and provided invaluable
feedback throughout the writing process. Also, a special thanks goes
to the reviewers, R. Surya Murali, Ashish Uthama, and Alexander Wright,
who provided very useful and insightful comments and suggestions for
improving the quality of the book. Without them all, this book would
never have reached its publishing stage.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

R. Surya Murali received his PhD in Chemical Engineering from Osmania University. He has
seven years of research experience on Membrane technology for gas and liquid separations.
He has worked as a senior research fellow and junior research fellow at the Indian
Institute of Chemical Technology. He also has experience in the installation, operation, and
maintenance of membrane separation systems at laboratory and pilot plant levels. He has
developed expertise in the synthesis, modification, and characterization of various types of
membranes for different membrane processes. He has also gained knowledge in developing
simulation programs in Microsoft Excel, C, and MATLAB.

I am thankful to my family and friends for their constant support
and encouragement.

Ashish Uthama is a developer in the Image Processing Toolbox team at Mathworks,
makers of MATLAB. He has a Bachelor’s degree in Electronics and Communication from PESIT,
Bangalore, India, and a Master’s degree in Applied Science from UBC, Vancouver, Canada.

Alexander Wright is a computer vision programmer specializing in histopathological
image analysis for the automated diagnosis of cancer patients. He has been using MATLAB
and C++ in this domain since 2006 in collaboration with the School of Computing and the
Section of Pathology, Anatomy and Tumour Biology, at the University of Leeds. Alex has
co-authored many research articles that base their research on his image analysis
algorithms, and is interested in the standardization of automated histology image
analysis for routine clinical application. In his spare time, Alex enjoys performing image
manipulation in MATLAB and Adobe Photoshop for web design projects, and playing his
bass guitar at unnecessarily loud volumes.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
�� Fully searchable across every book published by Packt
�� Copy and paste, print and bookmark content
�� On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1

Chapter 1: Basic Image Manipulations	 7
Getting acquainted with the MATLAB environment	 8

Default subwindows of the environment	 8
The Command Window	 9
The Current Folder window	 10
The Details window	 10
The Workspace window	 10

The ribbon	 10
The HOME tab	 11
The PLOTS tab	 11
The APPS tab	 11

The editor	 12
The EDITOR window	 13

Importing and displaying an image	 13
Importing and displaying an image using the command line	 13

Time for action – importing and displaying an image	 14
Importing and displaying an image using imtool	 15

Time for action – using imtool to extract useful information	 16
Applying geometric transformations	 19

Performing image rotation	 19
Time for action – rotating an image and displaying the result	 19

Performing image mirroring	 21
Time for action – mirroring an image and displaying the result	 21

Resizing an image	 23
Cropping an image	 24
Saving an image	 25

Time for action – cropping and resizing an image, then saving it as BMP	 26
Summary	 30

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Working with Pixels In Grayscale Images	 33
Accessing image pixels and changing their values	 33

Changing the pixel values of a square area using loops	 35
Changing the pixel values of a square area using indexing	 36
Writing and using scripts	 36

Time for action – whiten an area and blacken another	 39
Thresholding an image	 41

Image thresholding using for loops	 41
Image thresholding using indexing	 42
Image thresholding using im2bw	 43
Image thresholding using an automatic threshold	 44

Calculating and displaying histograms with imhist	 45
Histogram equalization for contrast enhancement	 46
Contrasting enhancement using imadjust	 47
Contrasting enhancement using imcontrast	 48
Adaptive histogram equalization using adapthisteq	 49
Custom functions for complex tasks	 51
Time for action – using imtool to pinpoint differences	 53
Restoring old photographs	 57
Time for action – restoring your ancestors' photographs	 57
Summary	 60

Chapter 3: Morphological Operations and Object Analysis	 63
The importance of binary images	 64
Time for action – understanding the value of thresholding	 64
Enlarging and shrinking a region of interest	 66
Time for action – using dilation and erosion to refine ROIs	 67

Choosing a structuring element	 71
Using strel to generate structuring elements	 72

Altering structuring elements from strel to suit our needs	 73
Time for action – ROI refinement using strel	 74

More morphological operations	 78

Manually defining a non-rectangular ROI	 78
Using roipoly to make a mask	 78
Using imfreehand to make a mask	 80

Time for action – making a custom object eraser function	 81
Analyzing objects in an image	 84

Detecting edges in an image	 84
Detecting corners in an image	 86
Detecting circles in an image	 87

Summary	 90

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 4: Working with Color Images	 91
An introduction to color image processing	 92
Basic color image manipulations	 93
Setting a rectangular area to a specified color	 95
Time for action – repainting two areas in a color image	 96
Thresholding color images	 97
Time for action – isolating the red pixels in an image	 98
Achieving color masking	 101
Time for action – color isolation	 102
The importance of different color spaces	 104
Time for action – color space transformation	 104
CIE-L*a*b* for more efficient color masking	 106
Time for action – color isolation using CIE-L*a*b*	 106
Fixing illumination issues in RGB color images	 110
Fixing illumination issues in CIE-L*a*b*	 112
A practical example – red eye reduction	 113
Time for action – writing a function for red eye reduction	 114
Taking advantage of eye circularity	 117
Time for action – automating our function for red eye reduction	 117
Summary	 122

Chapter 5: 2-Dimensional Image Filtering	 123
An introduction to image filtering	 124
Processing neighborhoods of pixels	 124
The basics of convolution	 127
The ugly mathematical truth	 128
Time for action – applying averaging filters in images	 129
Alternatives to convolution	 132
Using imfilter	 133
Creating filters with fspecial	 133
Different ways to blur an image	 134
Time for action – how much blurring is enough	 134
Time to make art using blurring	 137
Time for action – creating the bokeh effect in an image	 137
Removing noise using blurring	 141
Time for action – trying to remove different types of noise	 142
The importance of the median filter	 145
 Time for action – removing salt & pepper with medfilt2	 146
Bringing back the details	 147
Time for action – enhancing the edges in our images	 147

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Brighten up the lights	 149
Time for action – brighten up the lights in our soldier picture	 150
Summary	 151

Chapter 6: Mixing Images for Science or Art	 153
The importance of mixing or combining images	 154
Using multispectral imaging	 154
Loading and manipulating the multispectral images	 155
Time for action – visible spectrum from a multiband image of Rio	 156
Time for action – working with invisible spectrums	 159
Creating composite images	 162

Using imfuse to create a composite image	 162
Using imshowpair to inspect a composite image	 162

Time for action – cloning the seagull	 162
One step beyond – blending selected image regions	 166
Time for action – directing a threatening scene	 168
Creating High Dynamic Range images	 172
Time for action – composing your own HDR images	 172
Stitching images for the creation of panoramas	 175
Time for action – basic approach to panorama stitching	 175
Summary	 179

Chapter 7: Adding Motion – From Static Images to Digital Videos	 181
An introduction to digital videos	 182
The meaning of frames	 182

Interlaced versus progressive	 182
Frame rates and their importance	 183
Calculating number of frames	 184
Some thoughts on choosing frame rates	 184

Loading videos in MATLAB	 185
Loading videos with aviread	 185
Loading videos with mmreader	 187
Loading videos with VideoReader	 188
Choosing which function to use for video reading	 189

Playing back videos in MATLAB	 190
Time for action – reading and playing back a video	 191
Making videos from static images	 192
Time for action – constructing and saving a video	 193
Inspecting a video using montage	 195
Time for action – don't wait for the ball	 195
A tool just for your playback needs – implay	 196

Using the GUI of implay	 197

Table of Contents

[v]

Using implay to play a video file	 199
Using implay to play an image sequence	 199

Creating time-lapse videos	 199
Time for action – time-lapsing a regular video	 200
Saving your time-lapse videos in a gif file	 201
Summary	 202

Chapter 8: Acquiring and Processing Videos	 205
Using MATLAB for digital video recording	 206

The Hardware Browser window	 206
The Information window	 207
The Desktop Help window	 207
The Preview window	 207
The Acquisition Parameters window	 208

The General tab	 208
The Device Properties tab	 208
The Logging tab	 208
The Triggering tab	 209
The Region of Interest tab	 209

The Session Log window	 209
Time for action – capturing a video using a firewire connection	 210
The importance of video compression	 214

Checking the size of an uncompressed video	 215
Checking the size of an MP4 video without any motion	 216
Checking the size of an MP4 video with high motion	 217

Working with uncompressed videos	 218
Working with large videos in postproduction	 219

Time for action – making an edge detection video	 219
Acquiring frames for time-lapse videos	 221

Detecting your acquisition hardware	 222
Creating a video object and acquiring a frame	 222

Time for action – using MATLAB as an intervalometer	 224
Real-time processing of time-lapse videos	 226
Time for action – creating time-lapses with isolated colors	 226
Real-time processing of normal videos	 228

Evaluating real-time capabilities with a simple example	 228
Time for action – adjusting the contrast of the video	 229

Revisiting the contrast adjustment example	 231
Time for action – adding preview in our code	 231
Summary	 234

Table of Contents

[vi]

Chapter 9: Spatiotemporal Video Processing	 235
Basic video processing with MATLAB	 235

Cropping and resizing our video	 236
Time for action – loading, cropping, resizing, and saving a video	 236

Filtering your video frames	 241
Time for action – reducing the blocking effect	 241
Deinterlacing videos in MATLAB	 243

Intra-frame filtering for deinterlacing tasks	 244
Deinterlacing with the Computer Vision System Toolbox	 244
Time for action – deinterlacing a video using the vision toolbox	 244
Deinterlacing with the custom functions	 246
Time for action – deinterlacing with line repetition	 246
Time for action – deinterlacing with the scan line interpolation	 248
Inter-frame filtering for the deinterlacing tasks	 250

Temporal deinterlacing by field merging	 250
Time for action – deinterlacing with field merging	 251
Temporal deinterlacing by field averaging	 253
Time for action – deinterlacing with field averaging	 253
Mixing intra-frame and inter-frame deinterlacing	 256

Vertical and temporal interpolation for deinterlacing	 256
Time for action – vertical and temporal interpolation method	 256
Adding a new dimension to the filters	 259

Spatiotemporal averaging filter	 260
Time for action – implementing a spatiotemporal averaging filter	 260

Using convolution for spatiotemporal averaging	 263
Time for action – spatiotemporal averaging filter with the convn function	 263
Summary	 265

Chapter 10: From Beginner to Expert – Handling Motion and 3-D	 267
Detecting and estimating motion in videos	 268

Detecting motion	 268
Time for action – detecting a moving object in a still scene	 269
Time for action – detecting motion in a complex scene	 271
Estimating the motion	 273

Estimating motion using optical flow	 275
Time for action – tracking people with Horn-Schunck optical flow	 275
Time for action – warping frames using optical flow	 280
Compensating camera motion using feature tracking	 283
Time for action – tracking feature points for motion
compensation of a shaky video	 283

Table of Contents

[vii]

Working with stereoscopic images	 288
Time for action – creating a 3-D video from left and right videos	 289
Time for action – creating a 3-D video from a regular one	 290
Summary	 292

Appendix: Pop Quiz Answers	 295

Index	 301

Preface
Digital visual media has, undoubtedly, become a vital part of our everyday lives. Analog means
of storing and processing information have gradually faded and are nowadays used either
by aficionados of analog media, or for very specialized applications. Capturing and storing
image or video information have rapidly become common, fast, and cheap processes, since
almost everyone can have access to a digital electronic device that can be used for these aims,
whether it is a photographic or video camera, or even a mobile phone. The outburst
of visual media-capturing devices has led to an increase of amateur photographers and
weekend filmmakers, who often have a problem deciding what software to use to process
their stored images or videos. The rule of thumb is that free software solutions often have
limited functionalities or are very complicated, while commercial solutions tend to be very
expensive and sometimes do not provide all the functionalities that a user would hope for.

This book presents a rather uncommon alternative solution that might not be considered
by users who only need an image, or a video editing software, but could certainly appeal
to users who are also students, scientists, or just have easy access to the multifunctional,
high level programming environment, called MATLAB.

What this book covers
Chapter 1, Basic Image Manipulations, introduces you to the environment of MATLAB
and takes you on a tour to its basic tools and functionalities. Then, image importing and
displaying in MATLAB is discussed, followed by a demonstration of the MATLAB GUI for
image manipulation. Basic image transformations are covered, such as rotating/flipping,
resizing, and cropping an image. Finally, different ways of writing an image are presented.
The chapter includes hands-on examples that tie most of the processes covered, together.

Chapter 2, Working with Pixels in Grayscale Images, is based on examples of pixel-based
processing of an image. Several classic processes for image enhancement are discussed,
such as thresholding, local, or global contrast enhancement. The methods presented
use several techniques that gently introduce you to the secrets of MATLAB programming.
A practical example in image enhancement concludes this chapter.

Preface

[2]

Chapter 3, Morphological Operations and Object Analysis, introduces the basic methods
of morphological image analysis. In it, you will learn of ways to perform binarization
of a grayscale image using the thresholding methods. Edge detection and other
morphological operators are presented and explained, so that you learn how to select
and manipulate particular image regions that interest you the most. You will also learn
the techniques that automatically detect corners, circles, and lines in an image. Several
hands-on examples will vividly demonstrate all these techniques.

Chapter 4, Working with Color Images, extends previous methods to color images. Some
of the processes mentioned for grayscale are now revisited for color image processing.
Different color spaces and their advantages are explained with examples on color
enhancement in MATLAB. You will learn how illumination and color can be separated and
processed independently. The technique for color isolation is explained through a practical
example and finally, some of the methods mentioned previously are used to teach you how
to develop a popular application: red eye correction in your photographs.

Chapter 5, 2-Dimensional Image Filtering, dives into some more complex issues for image
filtering, such as deblurring and sharpening of images. You will get to work on more
sophisticated techniques for image denoising. Some more interesting and fun examples will
let you start enjoying your experience more deeply. We will work on ways to apply some of
the filter locally, to enhance or blur specific image regions.

Chapter 6, Mixing Images for Science or Art, will wake up the artist, or the scientist in
you. You will learn the techniques that mix channels of multispectral images for scientific
visualization. Then, we will present fun, hands-on examples for blending, or stitching images,
to produce artistic results. We will also work on ways to create artistic HDR (High Dynamic
Range) images in MATLAB. Finally, we will present a simple way to create panoramic images.

Chapter 7, Adding Motion – From Static Images to Digital Videos, introduces you to video
processing by building on the previous knowledge you have acquired. The fact, that videos
can be generated by static images, will help you to better comprehend basic ideas. So, after
covering the basics of video frame processing in MATLAB and demonstrating how we can load
and play back videos, we will show how to create a video from static images. The construction
of a time-lapse video is the basic hands-on example we will be working on in this chapter.

Chapter 8, Acquiring and Processing Videos, demonstrates the functionalities of the image
acquisition tool for MATLAB. You will be given step-by-step examples on ways to shoot video
with your camera and use your computer as a Digital Video Recorder, using the special GUI
tool contained in MATLAB. Video compression and basic color video processing techniques
are also demonstrated in this chapter, accompanied by a discussion on performance issues.

Chapter 9, Spatiotemporal Video Processing, introduces you to command line manipulation
and processing of videos. After covering basic video frames manipulations in MATLAB, you
will learn how to deinterlace videos, using intra-frame, inter-frame, or mixed techniques.
Furthermore, spatiotemporal video filtering is presented, with hands-on examples to help
you get the idea.

Preface

[3]

Chapter 10, From Beginner to Expert – Handling Motion and 3-D, introduces you to methods
of motion detection in videos. Building on basic knowledge, we will get to the point
of creating a simple surveillance system in MATLAB. You will also be taught the basics
of estimating motion using popular optical flow algorithms, included in one of the toolboxes
of MATLAB. You will also be introduced to feature-based image registration for motion
compensation. The working example for this will be video stabilization. Finally, we will
introduce an example of three-dimensional video and cover a very basic and fun example
of turning a regular video to a 3-D one.

What you need for this book
In order to practice what you read in this book, you should have access to a computer with
an installed version of MATLAB. The screenshots you will see in this book are all taken from
MATLAB Version R2012b, which was the most recent one at the time of writing this book.
However, since MATLAB is also a programming language, you will not need to worry about
any differences in the way R2012b looks compared to earlier versions. The great majority
of the things we will cover in this book will be 100 percent compatible with most previous
versions. In the rare cases, when we use a brand new functionality, we will also provide
alternative solutions for previous versions.

The most important thing to make sure of, however, is that you have to find an installed
version of MATLAB that includes at least the two basic toolboxes for image and video
processing: Image Processing Toolbox and Image Acquisition Toolbox. An extra toolbox,
named Computer Vision Toolbox, will also be used for a very small part of video processing.
Toolboxes are collections of ready-made functions for special purposes. For those of you
with a little familiarity with programming, they could be thought of as libraries. The more
toolboxes included in your installation of MATLAB, the more functionalities the environment
will provide for you. Most of our code in this book will be based on basic MATLAB functions
included in all installations and the two toolboxes that were mentioned previously.

Who this book is for
This guide to visual media processing using MATLAB will be very useful to a beginner
programmer who has little or no knowledge of the environment, but would like to use
it as an alternative, or possibly, substitute solution to common image and video editors.
The only thing that you will need to have before starting this book is a basic prior knowledge
of image and video processing to grasp the material covered more easily. Also, some basic
programming experience could come in handy, but is not necessary, since most parts
of the book start from scratch.

Preface

[4]

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own understanding.

Have a go hero – heading
These practical challenges give you ideas for experimenting with what you have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: “Adapthisteq performs global
histogram equalization.”

A block of code is set as follows:

function [output] = CroppedContrastEnhancement(input,method)

% Function that performs area-based image contrast enhancement with
% methodsincorporated in MATLAB toolboxes
% Inputs:
% input - Input image
% method - Enhancement method (1: histeq, 2: imadjust,

Preface

[5]

% 3: adapthisteq)
% Output:
% output - Output image (with enhanced contrast)

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

img = imread(‘my_image.bmp’); % Read image
subplot (1,2,1) % Open a figure for 2 images
imshow(img) % Show original image
title (‘Original image’) % Add title
threshold = 150; % Set threshold level
img(img > threshold) = 255; % Set pixels above 150 to 255
img(img <= threshold) = 0; % Set pixels below 150 to 0
img = logical(img); % Convert img to binary
subplot (1,2,2) % Make second image spot active
imshow(img) % Show thresholded image
title (‘Thresholded image’) % Add title

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “You should start with the first
and easiest step, which is loading and displaying our photograph into the Workspace window.”.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata
section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com

Basic Image Manipulations

Since it was first released, MATLAB has been associated with technical
computing and scientific programming. Due to its high uptake in academia
and its large and active community, it has grown to become a versatile and
multifunctional tool, providing solutions in a vast diversity of fields. Its usage
in image and video processing for scientific applications has been popular
for a while, but more recent versions have included processing tools that
are more user-friendly and aimed at a broader spectrum of users. The
usefulness of MATLAB for image processing is rather self-explanatory, since
it is a programming environment specialized for matrix manipulation and
images are nothing more than matrices.

In this chapter, you will be introduced to the very basics of image manipulation using
MATLAB. Prior experience in using MATLAB is not required, since we will be covering
everything from scratch. Some basic understanding of programming would be beneficial.

More specifically, in this chapter we will cover:

�� The basic details of the MATLAB environment and especially those that will
be used extensively in this book

�� The various ways of loading, displaying, and saving an image using MATLAB

�� The most basic image manipulations that can be handled by MATLAB, that is,
rotation, cropping, and resizing

So, let's get started.

1

Basic Image Manipulations

[8]

Getting acquainted with the MATLAB environment
In order to be able to start working with MATLAB, you should install it on your system. Since
the installation is a very straightforward process, we will not cover it here. The only thing
you have to be certain of, is that your installation includes the Image Processing and Image
Acquisition toolboxes, which are necessary for the purposes of this book. A few examples
towards the end will also need the Computer Vision System Toolbox in order to work.
The version of MATLAB we will be using is 2012b, the latest available version at the time
of writing this book.

The functions and processes covered in this book have also been
tested in MATLAB 2013a during the revision process, and work
without any problems.

The first thing we see when opening MATLAB 2012b is a window comprising other windows
and a ribbon with various toolbars. The ribbon has grouped sets of many processes that
can be helpful for a beginner, but may prove distracting when the user has acquired more
experience. This is why, besides giving a few details in this chapter, we will be avoiding
extensive use of the ribbon, limiting it to the most time-saving and relevant processes
to digital media processing. The subwindows residing in the environment of MATLAB will
be our basic tools in this book, along with the MATLAB editor, which is the basic core tool
for writing your own scripts and functions.

Default subwindows of the environment
The pre-set windows you will face when first using the application will be:

�� The Command Window

�� The Workspace window

�� The Command History window

�� The Current Folder window

�� The Details window

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this
book elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[9]

It is worth noting that the environment of MATLAB 2012b has been
altered significantly compared to previous versions, mainly because
of the inclusion of a ribbon menu resembling the one used in Microsoft
Office 2007 onward. However, since most of the processes described
in this book are based on using the command line, users of previous
versions will not have problems following the examples.

The Command Window
Most of the MATLAB usage time will probably be spent on typing commands in the
command line. The command line resides in the Command Window and starts with the
symbol fx which is clickable and contains a list of all installed functions organized by toolbox.
Following this symbol, there is the prompt symbol, >>, followed by a blinking cursor at the
place where you can enter commands. All codes that must be written in the command line
will be preceded by the prompt symbol in this book.

Basic Image Manipulations

[10]

The available commands are all the inherent MATLAB functions, most of which help you
manipulate matrices (hence the name: MATrixLABoratory). In this book, we will mainly
be using functions for image manipulation, included in the Image Processing and Image
Acquisition toolboxes.

The Current Folder window
The Current Folder window is basically a file manager, resembling Windows Explorer. You can
navigate your way through the folders in your computer, in order to find files you would like
to use in your work, for example, an image you would like to load. By default, MATLAB can
access the contents of the current folder and a number of folders that have been included
in its path. During installation, all the folders containing the installed toolboxes have been
added to MATLAB's path; hence the functions and files contained in them can be accessed
no matter what the current folder is.

The Details window
The Details window is also informative, displaying information about the file you have
selected in the current folder window. The details are displayed only when the selected
file is recognized by MATLAB.

The Workspace window
The Workspace window is used for a constant view of all variables that are present,
providing information about their names, types, plus minimum and maximum values,
where this is applicable.

The ribbon
The ribbon contains a collection of basic MATLAB processes and resides in the top part of the
environment window. It is based on the latest Graphical User Interface trends, like the ones
used in Microsoft Office software products since the 2007 version. It has three main tabs:

�� HOME

�� PLOTS

�� APPS

These three tabs are briefly described in the following sections.

Chapter 1

[11]

The HOME tab
The HOME tab contains the most basic and generic processes used in MATLAB. In this book,
we will only need some of them.

As we can see in the previous image, there are six main groups of processes present on the
HOME tab; FILE, VARIABLE, CODE, SIMULINK, ENVIRONMENT, and RESOURCES.

From these six groups, we will certainly need the FILE group processes to create or open
MATLAB files. The VARIABLE group is a new addition in MATLAB 2012b, providing an
intuitive, yet unnecessary way for variable creation. The group named CODE is useful for
code analysis, the SIMULINK group is used for a tool that is not covered in this book, the
ENVIRONMENT group is a way to tweak the setting of the MATLAB environment, and finally,
RESOURCES are processes for getting online and offline help.

The PLOTS tab
The PLOTS tab is a tool that helps you plot variables. Besides traditional plotting capabilities
(for example, creating a graph from x and y coordinates), it can also be used as an alternative
way to show images stored in variables or even to play videos stored in variables.

The APPS tab
The APPS tab is also a rather new addition and provides a quick way to access basic MATLAB
tools by clicking on their icons, rather than writing their name in the command line. We can
use it to quickly access the Image Acquisition or the Image Viewer tools, which are useful
for digital media processing.

Basic Image Manipulations

[12]

The editor
A very important tool in MATLAB, besides the default ones you see when first opening the
environment, is the editor. The editor can be invoked in various ways, depending on what
you want to accomplish. The three basic ways are:

�� Click on the New Script icon on the HOME tab

�� Click on the New icon on the HOME tab and then click on either one of the first four
choices: Script, Function, Example, or Class

�� Click on the Open icon on the HOME tab and then either search for a file in your
computer with a .m extension (MATLAB code) by clicking on Open…, or selecting
a file from the RECENT FILES list

Chapter 1

[13]

The EDITOR window
Once you have invoked the editor using any of the ways mentioned previously, a new
window will pop up. In this window, you can write, alter, and save your code using a powerful
code editor. We will not go into detail here, since to fully comprehend the functionalities
of this tool, we first have to learn how to write code in MATLAB.

Importing and displaying an image
Now that we have seen most of the menus and windows we will be using, let's start
with the very basics of image processing. MATLAB is a computing language that works
with matrices. Consequently, in order for us to work with images, they have to be
imported as matrix variables in MATLAB. There are several ways to accomplish this.
Here, we will see the most practical ones.

Importing and displaying an image using the command line
The most generic—compatible with almost all versions of the software that include the Image
Processing Toolbox—way to import an image in MATLAB is through the command line.

In the command line, you can type commands that invoke the functions that have been
installed with MATLAB. Functions can be thought of as black boxes, which can be fed with
appropriate inputs and provide appropriate outputs.

The MATLAB function that can be used to import images is imread. The easiest way to use
it is to type it into the command line, passing the path to an image as the input string. This will
import the image into a variable in the MATLAB workspace. The name of the variable is defined
by you, by assigning a name to the output. Once you have done this, you can then display your
image by using imshow. This function is designed to display a matrix variable as an image.
Let's see now how you can import and display your first image using the command line.

Basic Image Manipulations

[14]

Time for action – importing and displaying an image
Let's assume that you have an image called my_image.bmp, which you want to import
and then display in MATLAB. The steps you should follow are these:

1.	 Ensure that your current folder (its contents are shown in the Current Folder
window) contains the image. If not, either copy it there or select the folder that
contains it.

2.	 Click in the Command Window area to be able to write something in the command
line. Once you see a blinking cursor in the command line, you are ready to type.

3.	 Type the following commands in the command line:

>> img = imread('my_image.bmp');
>> imshow(img)

4.	 A window displaying the selected image must now be open. You can maximize,
minimize, or adjust its size according to your liking.

Chapter 1

[15]

What just happened?
The steps you followed in the previous section used two predefined MATLAB functions, one
for opening an image (imread) and one for displaying it (imshow). Step 1 is a prerequisite
for imread to find the file. An alternative to navigating to the folder containing the image
would be to include the full path to the filename given as input. If, for example, the folder
containing the image was C:\images\ ,then the first command would be:

>> img = imread('C:\images\my_image.bmp');

Either way, imread stores the image in the variable img which is a matrix of size equal
to that of the image.

The image used in the previous example, as well as all images and videos
used throughout this book, can be found at the author's website. Its URL is
http://www.cvrlab.com/gsiogkas/.

Importing and displaying an image using imtool
Using the command line is not the only way to open and display images. MATLAB also
provides a basic image processing tool, called imtool. This tool can be invoked by typing
its name in the command line, or by clicking on its icon on the ribbon in the APPS tab. If you
select to invoke imtool, a new window which includes basic image manipulation choices,
opens. To open an image in imtool, we must click on File and then Open… to browse
through the folders and load the image of our choice. Let's work with the same image
as before, namely, my_image.bmp. Once the image is open in imtool, we can see and
access most available functionalities of the tool on its toolbar. Starting from left to right,
the icons appearing in the toolbar can be used to:

�� Navigate the image using a smaller, overview window

�� Inspect pixel values in a neighborhood of your choice

�� Display image information

�� Adjust image contrast

�� Get Help.

�� Crop the image

�� Measure distances

�� Zoom in/out

www.allitebooks.com

http://www.allitebooks.org

Basic Image Manipulations

[16]

�� Drag image to pan

�� Adjust contrast/brightness via mouse motion

�� Change the scale of the displayed image

Time for action – using imtool to extract useful information
Now that we know what the imtool can do, let's use it to get some more information about
our image. Suppose that we want to know the color, depth, and size of our image, the values
of the pixels around an area we want to inspect, and the distances (in pixels) of some pairs
of points on the image, we will have to take the following steps:

1.	 Click on the third icon from the left, , that displays information about the image.
You will see that the new window that appears contains a lot of information about
the image, including its width, height, and bit depth.

Chapter 1

[17]

2.	 To make your task easier, you should first zoom in using the magnifying glass
with the plus symbol (). Let's zoom in on the area containing the moving track
(top of the image).

3.	 Then, click on and place the blue crosshair that appears on the image on the
track. You will now be able to see the values of the pixels in the small area selected
by your crosshair. If you enlarge the selected area by dragging its sides, the values
will not be visible, but you will still be able to inspect details in the image.

4.	 Now let's measure the dimensions of the track that we have zoomed in on. Zoom
in as much as you like to see the details and then click on .

Basic Image Manipulations

[18]

5.	 To measure the length between two points, you should left-click on the first point
and keeping the left mouse button clicked, move the cursor to the second point and
release the mouse button. This will draw a line between the two points you selected
and place a label on it, displaying its length in pixels. Let's repeat this process
to measure the dimensions of the truck.

6.	 Now that you have measured the distances you needed, you might want to save
the resulting image with the overlaid distance measurements. Click on File and then
Print to Figure, in order to display your processed image in a new window and then
navigate to File | Save As to get a chance to select the name and type of the image
you want to save.

What just happened?
The process described previously is generally useful for people who work with image
enhancement and analysis. In image processing, you will often need to inspect an image in
terms of color values or measured in terms of distance, and so on. The analysis of the image
regions should be easily extractable so that the results can be passed on to others. These
functionalities are covered by imtool. In our example, we used the image information icon,
which gave us an idea on what values to expect (8 bit depth means values from 0 to 255)
and what the image dimensions are. Then, we located and inspected the region of our choice
using the zoom in/out and the pixel values inspection tools. When we decided on the actual
part of the image we wanted to measure, we used the distance measurement tool to see
the dimensions of the selected object on screen. Finally, we exported our enhanced results
to a new image of our chosen format, using the Print to Figure functionality.

Chapter 1

[19]

Applying geometric transformations
By now you have already mastered how to open an image and display it as it is using the
Command Window. Now, it is time to learn how to apply basic geometric transformations
to an image and display them along with the original. Geometric transformations are probably
the most common functionalities of every image editor, no matter how basic it is. They do not
generally alter the content of an image, but actually change the grid of pixels so that processes,
such as image rotation or mirroring are achieved. Cropping and resizing of images are also two
basic geometric transformations. In this section, we will see how all these transformations can
be achieved in MATLAB.

Performing image rotation
For image rotation, you can use the function imrotate. Again, you will be working
in the Command Window, where you will have to type the functions to perform the
transformations. Only this time, we will use a few more lines of code, to display the results
in a single window.

Time for action – rotating an image and displaying the result
Let's start rotating and displaying the image. Assuming you have solved the problem of the
image being in a visible path, you should follow these steps:

1.	 Open the image. Let's use the previous one:

>> img = imread('my_image.bmp');

2.	 Now, rotate the image using imrotate. Let's try rotating the image by 90, 180,
and 270 degrees, storing each result in a different variable:

>> img90 = imrotate(img,90);
>> img180 = imrotate(img,180);
>> img270 = imrotate(img,270);

3.	 Hopefully, you have typed all commands correctly, so now you should be able
to see four different matrices in the Workspace window, each one containing
a rotated version of the original image. Now let's try to display all the images
in the same window. In the Command Window, type:

>> figure
>> subplot(2,2,1)
>> imshow(img)
>> title('Original Image')
>> subplot(2,2,2)
>> imshow(img90)
>> title('Image Rotated 90 degrees')

Basic Image Manipulations

[20]

>> subplot(2,2,3)
>> imshow(img180)
>> title('Image Rotated 180 degrees')
>> subplot(2,2,4)
>> imshow(img270)
>> title('Image Rotated 270 degrees')

You should now be able to see a window displaying the original (not rotated or rotated by 0
degrees) image and its three aforementioned rotated versions, like the following screenshot:

What just happened?
The process you just performed can be split into two parts; the first part is the image
rotation process, which took place in step 2, producing three rotated versions of your
original image. The function imrotate can take two inputs, an image and an angle
by which the image will be rotated. The angle need not necessarily be a multiple of 90.
It could be any arbitrary angle, between -360 and 360 degrees. Also note that the rotation
is performed in a counter-clockwise fashion. If you wish to perform clockwise rotation,
you should use a negative angle as a second input to imrotate.

Chapter 1

[21]

The second part of the process described previously, is for displaying the produced images.
The subplot command splits the window that opens into m rows and n columns and then
activates the subwindow that resides in the r-th position. Following this notation, the subplot
function should be called as subplot(m,n,r). In our example, we used two rows and two
columns; hence the first two inputs were equal to two. The third input was changed each
time, so that the images displayed after each subplot (using imshow) would be placed in
a different subwindow. Another thing worth noting is that the subwindows in a subplot
are numbered in a column-wise fashion (that is, 1 is for the first row-first column, 2 is for
the first row-second column, and so on). Finally, for clarity of the displayed information,
we have added a title over each displayed image, using the title function, with the
message we want entered as a string input.

If you want to display your images in different windows, you should replace
each subplot(m,n,r) command with figure. This way, you would end
up with four open windows for the example illustrated previously.

Performing image mirroring
In order to perform image mirroring, we will use one of the following functions: fliplr,
flipud, and flipdim. If you want to mirror a grayscale image, the first two functions
can be used. The first one, fliplr, is used to mirror an image about its vertical axis. This
means that the columns of the image will be interchanged, so that the first column becomes
the last and vice versa. Accordingly, flipud can be used to mirror an image about the
horizontal axis. These two functions only work when the input matrix is 2-dimensional (that
is, a grayscale image). When we have to deal with color images, we need to use flipdim
because it can also accept a second input declaring the dimension that will be flipped.

Time for action – mirroring an image and displaying the result
Now let's try to perform image mirroring in both dimensions using the first two functions
described previously. Again, we will use the same grayscale image as before. If you have
started from scratch repeat step 1 from the previous example. Then, take the following steps:

1.	 Use fliplr and flipud in the Command Window to perform left-right and
up-down flipping of your image:

>> img_lr = fliplr(img);
>> img_ud = flipud(img);

2.	 Now, display the original image and the mirrored versions in different windows, using:

>> figure, imshow(img)
>> figure, imshow(img_lr)
>> figure, imshow(img_ud)

Basic Image Manipulations

[22]

Now you should see three different windows displaying the original image and its two
mirrored versions. Each window that appears will be placed on top of the previous one,
so you should drag-and-drop them next to each other in order to get a result as follows:

What just happened?
The process you just followed is mostly self-explanatory. You have used the same grayscale
image as before, stored in the matrix variable img, and then used the flipping functions
of MATLAB to perform mirroring about the two axes. Then, at step 2, you executed the
command to show the images in different windows. Notice that you can write more than one
command in the same line, provided that they are separated either by a comma (in which
case, any result generated by the command will be printed in the Command Window)
or a semicolon (nothing will be printed in the Command Window).

Have a go hero – using flipdim and comparing the results
Now let's try to use the alternative function, which can also be used for color images. How
would you use flipdim to produce the same results as in the previous example and then
display all results in one window with respective titles?

This is actually a simple process, involving some of the steps described previously. Assuming
you still have img_lr and img_ud in your Workspace window from the previous process,
you should first perform image flipping using the flipdim command.

The result you will get is a window containing the left-right flipped images on the first line
and the up-down flipped images on the second line. If you have done everything correctly,
the two images in the first row should be identical and so should remove the two images
in the second row.

Chapter 1

[23]

Resizing an image
A very common functionality of any self-respecting image editor is that of image resizing.
MATLAB is no different, since it provides the user with resizing capabilities, using popular
algorithms. More specifically, MATLAB's Image Processing Toolbox incorporates the imresize
function, which accepts at least two inputs. The first input is the matrix variable containing the
image you want to resize and the second input is either a scaling factor (by which the original
image size will be multiplied) or a matrix with two elements; a number of rows and a number
of columns for the resized image. As an example, let's assume we have a grayscale image
of 240 rows and 320 columns stored in the matrix A. If we wanted to resize it to half its original
size, that is 120 rows and 160 columns and assign the result to matrix B, then we would have
the following two equivalent ways of accomplishing that through the command line:

>> B = imresize(A,0.5);
>> B = imresize(A,[120 160]);

Note that the default resizing algorithm prior to MATLAB Version R2007a
was different. So, if you want to replicate results generated with earlier
versions, you should use the function imresize_old.

The result in both cases would be exactly the same, but there is also a third method
of acquiring it. Let's suppose that we want to resize image A, so that it fits vertically into
a predefined space, which we know consists of 120 pixels. In that case, we wouldn't need
to know its exact number of columns and instead of the commands we used previously,
we could use:

>> B = imresize(A,[120,NaN]);

Basic Image Manipulations

[24]

Here, we have to say a few words about how MATLAB performs image resizing. The
default method is cubic interpolation, but you can also use nearest neighbor or bilinear
interpolation. Other valid choices could be interpolation kernels, but they go beyond our
scope here. In order to specify a different interpolation method, you should add a third input
in your function call. For example, if in the previous example you wanted to use bilinear
interpolation, you should type in:

>> B = imresize(A,[120,NaN],'bilinear');

Note that if you want to find out more about a function and the
different inputs it can accept, you can use the command line help
of MATLAB by typing in the word help and the name of the function
you want to investigate. You can try this by typing help imresize.

Cropping an image
Another useful tool incorporated in image editors is image cropping. In its most typical form,
it consists of a manual tool for defining and placing a rectangular area; this process produces
a new image that contains only the part of the original image that lies in the rectangle.
Assuming you have loaded and displayed an image using imshow in the command line,
you can crop it and place the results in a new matrix (let's call it cropped), by typing:

>> cropped = imcrop;

Once you do that, you will have to use the mouse to define the rectangular area to be
cropped, by clicking on the left mouse button and keeping it pressed while moving the
mouse, until you are happy with the resulting rectangle. Once you let go off the left mouse
button, you are able to adjust its position and/or size, double-click on the left mouse button
when the result is acceptable. This process stores the part of the image residing in the
rectangle into matrix cropped, which will have the same dimensions as the rectangle.

Another way to crop an image would be to define the rectangle by using specific coordinates.
This often happens when you know the exact area you want to crop beforehand, so you can
define them as a second input to imcrop. Let's suppose that the upper left corner of the
rectangular area of image A you want to crop is on pixel (x, y), where x is the row number
and y is the column number. If the rectangle has a width of w pixels and a height of h pixels,
you should type in the command line:

>> cropped = imcrop(A,[y,x,w,h]);

Chapter 1

[25]

If you think that the way the MATLAB handles rectangle coordinates
is impractical, you should try coming up with a way to adjust it to your
needs. Suppose you want to choose a rectangle that starts at row x_min,
ends at row x_max, and is bounded by the columns y_min and y_max.
In that case, the second input of imcrop would be [y_minx_miny_
max-y_minx_max-x_min].

Saving an image
Up to now, we have learned how to perform several image manipulations in MATLAB, but
we haven't seen how the results can be saved using the Command Window. In fact, the
solution is rather intuitive. Since almost everything we have seen so far had to do with
calling functions with rather self-explanatory, such as imread, writing an image is rather
unsurprisingly called imwrite.

Of course, like any self-respecting image processing software, MATLAB gives you a wide
variety of choices regarding the type of the image you want to save. In fact, it supports most
of the known image formats, such as JPEG, BMP, PGM, PNG, and TIFF. The most common
way of using imwrite is by feeding it three inputs. For example, if we need to save an image
we have stored in matrix variable img, as a JPEG image of the same size, we should use:

>> imwrite(img,'new_image.jpg','JPEG');

This command would result in saving a JPEG image named new_image.jpg, using the
default quality factor. The user has the ability to choose a different quality factor, since
the matter of compression is a very important one in image processing. The higher the
quality factor (it may be any integer from 0 to 100) defined by the user, the less is the image
degradation caused by compression. When saving a JPEG image, the user can also define
the color bit depth (8, 12, or 16 for grayscale and 8 or 12 for color images), the mode of
compression (lossy or lossless), and a possible comment that might have to be saved in the
JPEG. By default, the saved image will be 8 bits if grayscale (8 bits/color channel, if color)
with lossy compression, quality of 75, and with no comments embedded.

If we assume that we want to save our image as JPEG, but with a quality factor of 100, lossy
compression, and the comment Packt embedded in the JPEG, we should type in:

>> imwrite(img,'new_image.jpg','JPEG','Quality',100,'Comment',
 'Packt') ;

As you might have understood by now, passing optional inputs in a function is a rather
straightforward process, provided that you know what these inputs are called and what their
supported values are (that is, what values can be accepted).

www.allitebooks.com

http://www.allitebooks.org

Basic Image Manipulations

[26]

Time for action – cropping and resizing an image, then saving
it as BMP

To get a better grasp of the three functions we presented in the previous three sections,
we can use the example of a very common image processing drill, which is to select and crop
a part of an image we would like to keep and then resize it to our desired dimensions and
save it as a new image. We'll use our previous image as a start, so our first move is to load it.
The whole process is described in the following steps:

1.	 Load the image using imread and save it in the variable img:

>> img = imread('my_image.bmp');

2.	 Crop the image using imcrop and save the result in the variable cropped:

>> cropped = imcrop(img);

3.	 Now, resize the resulting image to double its size using imresize and display
it using imshow:

>> cropped2 = imresize(cropped,2);
>> imshow(cropped2);

Chapter 1

[27]

4.	 Now, let's see the sizes of the two images from steps 2 and 3 using size:

>> size(cropped)
ans=
 114 196
>> size(cropped2)
ans=
 228 392

As we see, the sizes are OK (cropped2 is double the size of cropped, 114 x 196 versus
228 x 392). Now, we can save our final image as a BMP using imwrite:

>> imwrite(cropped2,'cropped_image.bmp','BMP');

You should now be able to see the resulting BMP image in the Current Folder window.

Basic Image Manipulations

[28]

What just happened?
Well, you just performed one of the most common processes in the everyday life of an
amateur photographer. You started by loading your image into the workspace of MATLAB
in step 1, proceeded with selecting and cropping a rectangular area of your choice in step 2,
went on to resize it to double its original size and check the resulting image size, and finally,
saved your cropped and resized result to a BMP image file. Now, you are ready to move
on to harder tasks.

Have a go hero – tailoring an image to suit your needs
Let's now suppose that we would like to process a photo from our holidays, by rotating it 90
degrees to have the proper orientations, cropping a specific area we want to keep, rotating
this area as much as needed so that it is not crooked, and then resize it to 360 rows
(say, we want to fit it in a specific space with 360 pixels of height). At the end, we would
like to save our result in high quality JPEG, embedding a comment that reads I just
finished Chapter 1. How would you accomplish all these things?

First of all, don't panic! All these steps have already been covered in this chapter, so it's
just a matter of using the right functions in the right order.

You should start with the first and easiest step, which is loading and displaying our photograph
into the Workspace window. The result would look something like the following screenshot:

Chapter 1

[29]

Now that your photo has been saved in a variable, you can rotate it so that it has the correct
orientation. Then, use imcrop and select the sunny area of the image with the mouse.

However, the resulting image is tilted! So, let's try to fix it. Here comes the trial and error
process. You must try the various possible small angle values in imrotate, so that you find
the result you are happy with. This image should look fine if you rotate it clockwise by an
angle of about 5 degrees. Optionally, we can display our steps in the same figure and get
the following result:

Basic Image Manipulations

[30]

As you can see from the last image, while our final image is not tilted, it has black borders
caused by the rotation by an angle that is not a multiple of 90. This means that you need yet
another cropping step, to keep the image part that we actually want. When you have edited
the image to your liking, proceed in resizing the image using imresize, and declare the
number of rows you want the image to have in the second input. Finally, you can save the
image in the predefined format using imwrite.

The default method for rotation used in imrotate is nearest neighbor. This
method produces rather suboptimal results, when rotating an image by an angle
that is not a multiple of 90 degrees. If you want to produce a better result, you
could try entering a different method as a third input, like this:

>> img90c2 = imrotate(img90c,-5, 'bicubic');

Pop quiz – image processing in MATLAB
Q1. MATLAB is a very good choice for image processing purposes for various reasons. Try
to answer which of the following reasons are valid:

1.	 MATLAB represents images as matrices and treats most variables as such.

2.	 MATLAB is open source and can be used by anyone.

3.	 MATLAB has a set of toolboxes that offer a variety of powerful and useful tools
for image manipulation.

4.	 Function imrotate rotates an image in a clockwise function.

Summary
This chapter was a quick dive into the ways that MATLAB can replace your everyday image
editing tool, while giving you extra parameterization choices that you wouldn't have in basic
software. More specifically, you have learned the basic ways to:

�� Load and display an image in MATLAB using the command line

�� Load, display, manipulate, and save an image using imtool

�� Rotate, flip, or mirror an image in the command line

�� Crop and resize an image using functions

�� Save an image in a variety of formats

Chapter 1

[31]

These processes are core functionalities of everyday image manipulation for every amateur
photographer. They provide the foundations for any complex image processing task and will
be used throughout the book. So, congratulations! You have set the first stepping stone to
climb to more sophisticated image processing tasks. The rest of the chapters will guide you
through some more complex image processing that MATLAB offers and will then move on
to video processing. Depending on your needs, you will either be able to use it as a quick
reference for any of the techniques it covers, or you can read through the chapters in
a sequential order, as you would do in a Media Processing course.

The next chapter will introduce you to different ways to work with grayscale image pixels and
manipulate their values. On finishing it, you will be able to enhance and improve the visual
quality of an image. Have fun!

Working with Pixels In Grayscale
Images

Now you have grasped some basic visual media processes that MATLAB has to
offer. You have learned how to import and export images, apply basic geometric
transformations on them, and generally perform tasks that are included in most
basic image editors. In this chapter, you will start building up your MATLAB skills
by taking advantage of ready-made functions that allow editing of pixel values
in an image. You will also start making your own small programs, save them as
scripts or functions, and apply them in practical examples.

In this chapter, we will cover:

�� How to manipulate one or more pixels in an image using for loops, or indexing

�� How to perform histogram-based processing using MATLAB

�� How to write our first scripts and functions for automating more complex processes

 So, let's get started!

Accessing image pixels and changing their values
To gain a better understanding of how MATLAB treats images, we have to revisit the way
it stores them in the Workspace window. In the previous chapter, we discussed the origin
of MATLAB and why it is an ideal choice for processing images. So, let's start with a simple
quiz to freshen your memory.

2

Working with Pixels in Grayscale Images

[34]

Let's start using the matrix manipulation property of MATLAB to our advantage. We have
already seen how to import an image into the Workspace window, using the imread function:

>> img = imread('my_image.bmp');

Importing the image automatically generates a matrix variable in the Workspace window.
Its dimensions (rows, columns, and colors) are the same as the original image and it also
has the same depth (given in bits). In our example, the resulting matrix is 485 x 656
and its type is uint8, it means that the matrix has 485 rows, 656 columns, and its values
are unsigned integers with a depth of 8 bits spanning from 0 (black) to 255 (white).
The Workspace window also shows which are the largest and smallest pixel values in the
specified image (not necessarily 0 and 255):

In order to examine the value of a certain pixel, we should type in the command line the
name of the image, followed by the row and column of the pixel we want (for example,
the pixel in row 45, and column 150):

>> img(45,150)

The command we just typed in will produce a visible output, since we did not use a
semicolon at the end. The output following the command will be as follows:

ans =

 63

Now that we see how to examine a specific pixel, it is easy for us to alter its value. Taking into
account the acceptable range of values for a uint8 matrix element [0,255], we can type in
the following code to change the value of the chosen pixel to 255, thus making it white:

>> img(45,150) = 255;

Of course, the change in one pixel is hardly noticeable for the naked eyes. So how about
trying to change pixel values in a wider area, for example, a window of size 20 x 20 pixels.
This is where things start becoming a little more complicated, since now we have got
to choose between two alternative ways to perform this task; the usual programming
technique using for loops and the MATLAB technique, using indexing. We will address
both ways, because very interesting conclusions can be drawn from this example.

Chapter 2

[35]

Changing the pixel values of a square area using loops
For those readers who are already familiar with programming, this section shouldn't be too
hard to understand. However, since the book aims at wider audiences, we will try to explain
the logic behind using loops to accomplish changing pixel values.

In traditional programming languages, such as C, C++, or Java, the way to scan through every
element of a vector (one-dimensional matrix) is through increasing the value of a variable,
let's call it pos, which holds the position of an element scanned at each step, starting from
the first position and ending at the last position. This variable will be used to define which
element of the array we examine (or change) in each step.

For example, if we want to assign the value 255 to every element of matrix A with
dimensions 1 x 5, we will write the following lines of code:

for pos = 1:5
A(pos)=255;
end

If you are a more experienced programmer, you might find it odd
that we use a variable (A) that seems to grow in size inside a loop.
Furthermore, the variable is automatically generated at the first step
of the loop. Both of these actions are feasible in MATLAB, however
the former should generally be avoided for the sake of performance.
For the time being, we are going to take advantage of the feasibility
of these actions, to keep things simple.

In case of a two-dimensional matrix, for example, B of size 5 x 10, the value assigning
procedure will require two for loops, one for the rows and one for the columns.
In accordance with this, we should use the following code, using two variables, pos_r
(to be used for rows) and pos_c (to be used for columns), to loop through the matrix:

for pos_r = 1:5
 for pos_c = 1:10
 B(pos_r, pos_c)=255;
 end
end

Now, in case we want to alter the values of the elements of matrix B in a 2 x 4 area starting
at the second row and second column, we should use the following code:

for pos_r = 2:2+2
 for pos_c = 2:2+4
 B(pos_r, pos_c)=255;
 end
end

www.allitebooks.com

http://www.allitebooks.org

Working with Pixels in Grayscale Images

[36]

If you have experience with other programming languages, you must have
noticed a significant difference in the way we number the positions in
an array. While in C/C++, for example, numbering the elements of an N x 1
array starts with 0 and ends at N-1, MATLAB uses values from 1 to N.

Changing the pixel values of a square area using indexing
In the previous section, we saw a generic programming way to alter the values of the
elements in a matrix. However, following this procedure is both cumbersome and inefficient.
Many lines of code will be necessary to manipulate matrix values in predefined areas, while
the use of for loops is computationally inefficient in MATLAB.

An alternative method is to use the powerful indexing method provided by MATLAB.
Indexing is a flexible and expressive way for the selection of user-defined subsets of the
elements of a matrix. Here, we will present the basic functionalities of indexing using
the same examples we did in the previous section.

First, let's try to replace the case of setting all elements of a 1 x 5 matrix A to 255. Instead
of using a for loop, we now use indexing:

A(1:5)=255;

In this example we have achieved the same result as before, using one line of code instead
of three. Imagine what happens in the case of a two-dimensional matrix, for example, B.
Even more lines of code are now saved:

B(1:5, 1:10) = 255;

By now, you should be starting to get an idea. Instead of using the indices we want in
a for loop, we plug them in the row and column dimensions of the matrix we want
to manipulate. Following this rationale, let's alter the values of the elements in the same
2 x 4 area as before:

B(2:2+2, 2:2+4) = 255;

Writing and using scripts
Even if you have understood everything so far, you might still be wondering whether we can
use the command line for all the previous processes. The answer is we can do so. If you copy
and paste all the pieces of code given in the previous command line, everything should work
as described. You can try it for yourself.

Chapter 2

[37]

However, not every process should be executed through the command line. You should try
to write code in files, so that you may re-use it at a later point in time. This is where the
Editor comes in picture. Let's say you want to save the part of code used for the
two-dimensional matrix B, with both methods, printing the result on screen, so that
we can check whether the results are identical (they should be, since the methods are
equivalent). What we will do is, copy and paste the following fragments of code into the
Editor and then save the file with the name MyFirstScript.m. The extension .m will
be added by MATLAB, so don't worry about it. You just assign the name.

for pos_r = 1:5
 for pos_c = 1:10
 B(pos_r, pos_c) = 255;
 end
end
B % To print the result from the loop method
clear B; % Erase matrix B from the workspace
B(1:5, 1:10) = 255;
B % To print the result from the indexing method

Now, you can use your file in MATLAB, provided that you have saved it in your working
directory (it should be visible in Current Folder). Just type the following code in the
command line:

>> MyFirstScript

You should see the following result in the Command Window:

Working with Pixels in Grayscale Images

[38]

As we can see, both results are identical. To verify this, we could use the MATLAB's isequal
function, which compares two matrices used as input and output. It assigns 1 if they are
equal and 0 if they are not. Let's see how it works, by comparing matrix B to itself:

>> isequal(B,B)

The output of the previous code is as follows:

ans =
 1

Indeed, the result was 1. Now, let's make some holes in matrix B and see if they are the
same. Suppose, we want to change the values of the elements residing in the area defined
in the previous examples to 0. Switch to Editor, erase the two lines that have to do with
printing the matrix B, after the two methods add the following lines at the end of your
previous script and then save it as MySecondScript.m:

for pos_r = 2:2+2
 for pos_c = 2:2+4
 B(pos_r, pos_c)= 0;
 end
end
B % print the result of the loop method
clear B;% Erase matrix B from the workspace
B(1:5, 1:10) = 255;% Re-create matrix B
B(2:2+2, 2:2+4) = 0;
B % print the result of the indexing method

This time type the following code in the command line:

>> MySecondScript

Chapter 2

[39]

You should now be able to see the following result in your Command Window:

In the two previous examples, you might have noticed the way to insert
comments in MATLAB is by using the % symbol before the comment.
Whatever follows a % symbol in a line is not executed. Comments are
usually used for providing explanations about the code.

Now that you know the basic theory, you should be able to tackle image processing tasks,
such as making a rectangular area of a grayscale image equal to a value of your choice. So,
let's see if this is true.

Time for action – whiten an area and blacken another
We will again work using my_image.bmp. Let's see if we can write a script that whitens
a 30 x 40 rectangular area on the top-left corner of the image and blackens
a 40 x 50 rectangular area at the bottom-right corner of the image. We can manage
to do so, if we follow these steps:

1.	 First, you should open Editor and select New Script. This can also be achieved
by using the Ctrl + N shortcut keystroke.

2.	 Now, write the first part of the code, which will open the image:
img = imread('my_image.bmp');

3.	 Then you should alter the values of the elements contained in the top-left rectangle
to 255. Let's keep the original image so that we can compare it to the final result.
This will be achieved using the following line of code:
img_final = img;
img_final(1:30,1:40) = 255;

Working with Pixels in Grayscale Images

[40]

4.	 Now, you should assign black values (equal to 0) to the elements contained in
the bottom-right rectangle. In order to define the indices of the pixels you want
to alter, you must use the maximum number of rows and columns. This can be
easily accomplished using the generic keyword end as follows:

img_final(end-39:end,end-49:end) = 0;

5.	 You have finished the altering part. Now, it's time to display the results
(both the original image and the final image), like we did in the previous chapter.
The code for this will be as follows:

subplot(1,2,1)
imshow(img)
title('Original image')
subplot(1,2,2)
imshow(img_final)
title('Processed image')

6.	 Finally, you should save your script. Let's use the name RectangleBrightness
(as before, the extension .m will be added by Editor).

7.	 To see the result, we should run your script. Go to the Command Window and type
the following code:

>> RectangleBrightness

The result should be something like the following image:

What just happened?
First of all, congratulations! You just wrote and executed your first script that alters pixel
values. The commands used were not something new, but they were all executed as a batch for
an image this time, producing the final result you just saw. The method used for the alteration
of the pixel values was indexing, since we said that it is preferable than using for loops.

Chapter 2

[41]

To select the rectangles to be altered, we had to define the top and bottom row indices
and the left and right column indices. The top-left rectangle was defined in a rather
intuitive manner. We used index 1 for both the top row and the left column. The indices
for the bottom row and the right column were set to 30 and 40 respectively.

The tricky part was selecting the indices that should be used for the bottom-right rectangle.
Again, we knew the height and width, but we should use it with respect to the height and
width of the image. However, altering the width and height values for each new image
would be highly impractical. This is why we used the very convenient index keyword end,
which denoted the maximum valued index for each dimension. When it is used for rows,
it automatically takes the value of the maximum number of rows, and when it is used for
columns it takes the maximum number of columns. In our case we used it in both positions,
to calculate the proper top row index (end-39) and bottom row index (end), and also to
calculate the proper left column index (end-49) and right row index (end).

Thresholding an image
Now that you have learned two different ways to work with image pixels, we will present
another useful and common tool found in image processing software, which is thresholding.
Image thresholding can be defined as the process of creating binary images by setting pixels
with values above a certain threshold to 1 and the rest to 0. It is usually used for separating
the foreground from the background of an image. As we did for the previous examples, we
will show three different ways to implement image thresholding in MATLAB; using for loops,
a special way of indexing, and using a ready-made thresholding MATLAB function.

Image thresholding using for loops
The classic programming way to implement grayscale image thresholding is by using
two nested for loops in a similar fashion to the one used in the previous sections. More
specifically, the following script can be used to threshold my_image.bmp:

img = imread('my_image.bmp'); % Read image
subplot (1,2,1) % Open a figure for 2 images
imshow(img) % Show original image
title ('Original image') % Add title
threshold = 150; % Set threshold level
for pos_r = 1:size(img,1) % For all rows
 for pos_c = 1:size(img,2) % For all columns
 if img(pos_r,pos_c) > threshold % Check pixel value
 img(pos_r,pos_c) = 255; % Set pixels above 150 to 255
 else
 img(pos_r,pos_c) = 0; % Set pixels below 150 to 0
 end % End if

Working with Pixels in Grayscale Images

[42]

 end % End columns for loop
 end % End rows for loop
img = logical(img); % Convert img to binary
subplot (1,2,2) % Make second image spot active
imshow(img) % Show thresholded image
title ('Thresholded image') % Add title

If we save this script with the name ThresholdingUsingLoops.m and execute it through
the command line, we will get the following result:

Even though we have managed to accomplish our goal in a straight-forward manner, the
method we used was very generic and does not take advantage of all the special powers
of MATLAB. So, let's take a look at two alternative ways to perform thresholding.

Image thresholding using indexing
We have already mentioned that one of the great advantages of using MATLAB for matrix
manipulation is indexing. Some examples of indexing have already been given, but they
don't seem to be helpful for thresholding tasks. Therefore, we have to explore alternative
indexing methods to perform such tasks. An interesting approach is to define the pixels
we want to access using a condition instead of a predefined range of indices. This method
is called logical indexing and it chooses those pixels that correspond to nonzero values in
the array generated by our condition. You can find more information about logical indexing
at http://www.mathworks.com/company/newsletters/articles/matrix-
indexing-in-matlab.html.

Assuming we want to perform the same task as in the previous section, the equivalent logical
indexing code replacing the two nested for loops, will be just two lines:

img = imread('my_image.bmp'); % Read image
subplot (1,2,1) % Open a figure for 2 images
imshow(img) % Show original image
title ('Original image') % Add title
threshold = 150; % Set threshold level
img(img > threshold) = 255; % Set pixels above 150 to 255
img(img <= threshold) = 0; % Set pixels below 150 to 0

Chapter 2

[43]

img = logical(img); % Convert img to binary
subplot (1,2,2) % Make second image spot active
imshow(img) % Show thresholded image
title ('Thresholded image') % Add title

Saving this script as ThresholdingUsingIndexing.m and executing it through the
command line, yields the following result:

This example reveals the power of logical indexing in MATLAB. The two highlighted lines have
performed the same actions as the for loops they replaced. The first one chose the indices
of pixels in our image that exceeded 150 and replaced the values of the pixels at those
indices with 255. The second one followed the same rationale, choosing indices of pixels
with values less than or equal to 150 and replaced them with zeros. Note that thresholding
using indexing method pinpoints indices in all dimensions; the same command would be
used for a one-dimensional matrix and an N-dimensional matrix.

Image thresholding using im2bw
Now that you know how to programmatically threshold an image, let's see the ready-made
function to perform the same thing. It is called im2bw and we can find more about it using
the help command. Typing help im2bw in the command line will give you all the details
you need to use this function. In this context, we have to make some minor adjustments
in our approach.

As you may have noticed already, after the thresholding process of the previous two
methods, we also performed a conversion of the result to logical form. This was done
in order to follow the convention of thresholding that is the pixel values of the result
should be binary (either 0 or 1). In our case, the original image was 8 bit integer, so
we used the minimum and maximum values (0, 255). To convert the result to binary,
the logical command was used.

Working with Pixels in Grayscale Images

[44]

When using the im2bw function, we should bear in mind that it is designed to work with
threshold values between 0 and 1. This means, that we either have to convert our image
to have pixel values in that range, or convert the threshold. The second is more practical,
so we will divide the threshold value (150 in our case) by the maximum brightness level
of the image (255 in the uint8 case). Since we have compacted our code to a big extent,
we can now load the image, threshold it, and display the final result in just four lines
in the Command Window:

>> img = imread('my_image.bmp');
>> subplot(1,2,1), imshow(img), title('Original Image')
>> img = im2bw(img,150/255);
>> subplot(1,2,2), imshow(img), title('Thresholded Image')

Note that in the last part of code we gave more than one command in a single line. Since
 this is not a formal program, but a command-line script to perform some actions, such
a style is permitted. Whenever you use this style of scripting, remember that the multiple
commands should be separated by either commas (when we don't care if the output of each
function gets printed on screen, or the functions don't produce an output), or semicolons
when we don't want outputs to be printed on screen. Of course, you can also write these
lines of code in a script and execute it through the command line, as we did before.

Image thresholding using an automatic threshold
Till here we have performed all our thresholding tasks using a predefined manual threshold
(in our example, 150). Sometimes, a better threshold choice can be acquired by automatic
techniques, such as the one proposed by Otsu, which chooses the threshold to minimize the
intra-class variance of the black and white pixels (Otsu, N., A Threshold Selection Method from
Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1,
1979, pp. 62-66). This method is used in the function graythresh. The automatic threshold
value estimated by graythresh can then be used instead of a manual value in one of the
processes described previously. Let's see how this can be accomplished using im2bw:

>> img = imread('my_image.bmp')
>> subplot(1,2,1), imshow(img), title('Original Image'')
>> thresh = graythresh(img);
>> img = im2bw(img,thresh);
>> subplot(1,2,2), imshow(img), title('Thresholded Image')

Chapter 2

[45]

As we can see from the result, the automatically defined threshold value produces a very
different result than the one produced by setting the threshold to 150. This means that we
should always choose our threshold carefully depending on what the final goal is. If we want
to see what the automatically selected threshold was, in range – to 1 and in range 0 to 255,
we can type the following commands:

>> thresh
>> thresh*255

The result will be as follows:

>> thresh
thresh =
 0.3882
>> thresh*255
ans =
 99

Choosing graythresh works well when the image we want to threshold is bimodal.
To better understand the meaning of this word, we should discuss histograms.

Calculating and displaying histograms with imhist
The histogram of an image is usually depicted as a bar graph and conveys information about
the distribution of the pixel intensities in a predefined number of bins (ranges of intensities),
spanning from the minimum to the maximum intensity. The information depicted in
a histogram can provide a rough idea about how bright, or dark an image is. It can also give
a first estimation of the optimal threshold for segmenting the pixels of an image into two
or more distinct classes based on their intensities.

To calculate the histogram of an image, we may use the inherent MATLAB function imhist.
This function outputs a one-dimensional matrix containing the distribution of the pixels in
the input image in a set of bins (the default value for grayscale images is 256). The user can
also give an extra input for different number of bins to be used. Let's see how this works
for our previous example:

>> img = imread('my_image.bmp');
>> subplot (1,3,1),imshow(img),title('Original Image')

www.allitebooks.com

http://www.allitebooks.org

Working with Pixels in Grayscale Images

[46]

>> subplot (1,3,2),imhist(img),title('Histogram for 256 bins')
>> subplot (1,3,3),imhist(img,16),title('Histogram for 16 bins')

These previous commands yield to the following result:

This result gives us some insight of why the automatic threshold was estimated to be
99 in the previous step, as this threshold lies between two large distributions centered
approximately at 44 and 125. We can also see what the result of the histogram for a reduced
number of bins looks like, with a higher number of pixels in the y axis, since the numbers
of 16 different bins have been summed into one.

The histogram is useful for a variety of reasons. Apart from being a useful tool for automatic
threshold selection, it can also be applied for the enhancement of images, which is the next
topic in line.

Histogram equalization for contrast enhancement
A very common method of enhancing the contrast of an image is by transforming its pixel
values so that its new histogram matches a predefined distribution. MATLAB offers a function
for this process called as histeq. The function can also be called with one input, in which
case it uses the default target histogram. Let's see what this function does, by writing the
following script:

img = imread('my_image.bmp');
img_eq = histeq(img);
subplot(2,2,1),imshow(img),title('Original Image');
subplot(2,2,2),imshow(img_eq),title('Equalized Image');
subplot(2,2,3),imhist(img,64),title('Original Image Histogram');
subplot(2,2,4),imhist(img_eq,64),title('Equalized Image
 Histogram');

Chapter 2

[47]

Saving this script as HistogramEqualization.m and typing it in the command line,
leads to the following result:

As we can see, the contrast of the image is enhanced and the values are almost evenly
spread throughout the range of possible values (0 to 255). This process usually has the effect
of enhancing useful details, but also at the same time enhancing unwanted noise. Therefore,
this approach should be used cautiously.

Contrasting enhancement using imadjust
A more gentle method for contrast enhancement is using imadjust. In its default form, this
function maps pixel values in the original image to new, altered values while ensuring that
only a small percentage (1 percent) of the values are saturated at low and high intensities
of the original image. This results in a smoother transformation that mostly enhances useful
details. We can see the result of applying this method if we add some more lines to our
previous script:

img = imread('my_image.bmp');
img_eq = histeq(img);
img_adj = imadjust(img);
subplot(2,3,1),imshow(img),title('Original Image');
subplot(2,3,2),imshow(img_eq),title('Equalized Image');
subplot(2,3,3),imshow(img_adj),title('Adjusted Intensity Image');
subplot(2,3,4),imhist(img,64),title('Original Image Histogram');
subplot(2,3,5),imhist(img_eq,64),title('Equalized Image Histogram');
subplot(2,3,6),imhist(img_adj,64),title('Adjusted Image Histogram');

Working with Pixels in Grayscale Images

[48]

If we save this script as HisteqVsImadjust.m and execute it, we get the following screenshot:

It is obvious just by looking at the histograms, that imadjust stretches the histogram of
the image, while histeq spreads it almost evenly. This is why the result of imadjust looks
more natural.

In case we want more control over the final result, we can either tweak the methods used
by defining more inputs that adjust the settings. For instance, we can provide a target
histogram in histeq or a set of lower and higher limits for values that we want to clip
in imadjust. You can play with these settings by using Help to see how the two functions
can be used with extra inputs and then experiment with different input values.

Contrasting enhancement using imcontrast
A tool included in the Image Processing Toolbox, which offers an extra helping hand at
histogram enhancement is imcontrast. It can be invoked by displaying an image and then
calling the imcontrast function with input gcf (get current figure):

>> imshow(img)
>> imcontrast(gcf)

This tool gives an interactive way to the user to adjust the histogram of the image by defining
a maximum and a minimum value, as well as a center for the histogram of the transformed
image. You can do this either by inputting the numerical values of these settings, or by
dragging the three red bars on the histogram. No actions are actually performed on the
original image until the button Adjust Data is clicked. The tool also gives you the option
to clip the outliers of images (pixels with extreme values). In the default setting of 2%,
the 1 percent of minimum values and the 1 percent of maximum values are removed.

Chapter 2

[49]

The methods described so far are quite useful for image enhancement. However, they
all suffer from the same shortcoming; they are global methods, operating on the entire
image. This has the obvious disadvantage of suboptimal enhancement to images with
spatially variant histograms. For such cases, we need the help of locally adaptive histogram
enhancement methods.

The imcontrast tool can also be used for interactive demonstration
of thresholding results. You can see how it works if you reduce the red area
of the histogram to include just one value and then drag it left or right to
dynamically observe the results of thresholding using various thresholds.

Adaptive histogram equalization using adapthisteq
The advantage of adapthisteq is that it splits the image into small rectangular areas
called tiles, and enhances the contrast of these areas by adjusting their local histograms.
This method is also known as contrast limited adaptive histogram equalization (CLAHE)
(Zuiderveld, Karel. Contrast Limited Adaptive Histogram Equalization. Graphic Gems IV.
San Diego: Academic Press Professional, 474-485, 1994). Like almost every other MATLAB
function, adapthisteq can be used with only one input (the image), with all other
parameters set to default values. Such a usage is shown in the following script, in contrast
to the histeq result:

img = imread('my_image.bmp');
img_eq = histeq(img);
img_clahe = adapthisteq(img)
subplot(2,3,1),imshow(img),title('Original Image'');
subplot(2,3,2),imshow(img_eq),title('Equalized Image');
subplot(2,3,3),imshow(img_clahe),title('CLAHE Image');
subplot(2,3,4),imhist(img,64),title('Original Image Histogram');
subplot(2,3,5),imhist(img_eq,64),title('Equalized Image
 Histogram');
subplot(2,3,6),imhist(img_clahe,64),title('CLAHE Image Histogram');

Working with Pixels in Grayscale Images

[50]

Saving this script as HisteqVsClahe.m and running it, leads to the following result:

As we can see, the CLAHE method leads to a less spread result, which has an apparent
positive effect especially on very bright or very dark areas. An even lesser spread histogram
result can be acquired if we do not use the default, uniform, or distribution setting. Let's see
what the other choices (rayleigh and exponential) look like, by running the following
script (ClaheDistributions.m):

img = imread('my_image.bmp');
img_u = adapthisteq(img);
img_r = adapthisteq(img,'Distribution','rayleigh');
img_e = adapthisteq(img,'Distribution','exponential');
subplot(2,3,1),imshow(img_u),title('Uniform distribution');
subplot(2,3,2),imshow(img_r),title('Rayleigh distribution');
subplot(2,3,3),imshow(img_e),title('Exponential distribution');
subplot(2,3,4),imhist(img_u,64),title('Uniform Histogram');
subplot(2,3,5),imhist(img_r,64),title('Rayleigh Histogram');
subplot(2,3,6),imhist(img_e,64),title('ExponentialHistogram');

The resulting images show that the Uniform and Exponential histograms are similar, while
the Rayleigh distribution leads to a less spread result:

Chapter 2

[51]

Until now, we have used functions included in MATLAB toolboxes in conjunction with
basic programming techniques in order to accomplish image enhancement. Our work was
facilitated by the usage of scripts; however these tools are not fully practical for more
demanding tasks. Our life will become a lot easier if we begin to master the art of making
custom-made functions.

Custom functions for complex tasks
A function can be thought of as a black box, which produces output results when fed with
proper inputs. We have already used several ready-made functions so far, but we haven't
made any functions of our own. The biggest advantage of making our own functions is that
we can reuse them with different inputs to produce different results, as opposed to scripts
where inputs must usually be changed by altering and resaving the source code.

To begin, let's attempt to mix all the aforementioned enhancement methods in a single
function that will accept the choice of method from the input. More specifically, we will
make a function that will take two inputs; an image and a number. The image will be
enhanced using the method denoted by the number. After opening the Editor, we type
in the following code:

function [output] = ContrastEnhancement(input,method)

% Function that performs image contrast enhancement with methods
% incorporated in MATLAB toolboxes
% Inputs:
% input - Input image

Working with Pixels in Grayscale Images

[52]

% method - Enhancement method (1: histeq, 2: imadjust,
% 3: adapthisteq)
% Output:
% output - Output image (with enhanced contrast)

switch method
case 1
output = histeq(input);
case 2
output = imadjust(input);
case 3
output = adapthisteq(input);
end

When we are done, we can save the function using the name that is already chosen
(ContrastEnhancement.m). We don't need to explain a lot here, since the basic idea
is rather simple. The function includes the three enhancement methods already explained
earlier. To choose which one to use on the input image, the method input must be set
to 1 if we want to use histeq, 2 if we want to use imadjust, and 3 if we want to use
adapthisteq. The selection is made using the switch case structure, which is a very
widely used method in programming. The switch command defines which variable will be
checked and the case commands check for all acceptable values and connects them to their
respective tasks. To see if our function actually works, let's use it on another version of the
holiday picture we used in the previous chapter:

>> img = imread('holiday_image2.bmp');
>> subplot(2,2,1),imshow(img),title('Original Image');
>> subplot(2,2,2),imshow(ContrastEnhancement(img,1)),title('Histeq
 result');
>> subplot(2,2,3),imshow(ContrastEnhancement(img,2)),title('Imadjust
 result');
>> subplot(2,2,4),imshow(ContrastEnhancement(img,3)),title
 ('Adapthisteq result');

The result reveals the very important role that adaptive histogram equalization can play
in enhancing images with varying illumination.

Chapter 2

[53]

While both histeq and adapthisteq have managed to lighten the left part of the image,
the latter has not only achieved a better result at it, but also has avoided saturating smooth
areas like histeq. In order to understand this a little better, let's use imtool to zoom in the
areas with bigger differences.

Time for action – using imtool to pinpoint differences
Now, it is time to combine the function written in the previous section with what
you learned about imtool in the previous chapter, in order to pinpoint the areas
of the image where adapthisteq provides superior results. The following steps will
help you combine the functions:

1.	 First, let's load the image we will be using:

>> img = imread('holiday_image2.bmp');

2.	 Then you should enhance the image using the two versions of histogram
equalization:

>> img_he = ContrastEnhancement(img,1);
>> img_ahe = ContrastEnhancement(img,3);

3.	 Now, let's use imtool for the first and second result:

>> imtool(img_he)
>> imtool(img_ahe)

Working with Pixels in Grayscale Images

[54]

First, we zoom in using the magnifying glass icon with the plus sign. Once selected,
we use the mouse to select the parts in the two images where adapthisteq
enhances details more (we can enter the same zoom factor):

4.	 Then, we zoom out and zoom in on again the left area of the image so that we
pinpoint the shadowed areas' enhancement:

What just happened?
This time we combined knowledge acquired in this chapter, with what we learned in the
previous one. First, we followed the steps shown earlier to perform two different kinds
of enhancement on our image. Then, we used imtool to zoom into the areas where the
differences between the two chosen methods are more apparent. The results strengthens
our previous view, which was the CLAHE method preferable to all other methods presented
in this chapter, as it provides better results both in very bright and very dark areas.

Chapter 2

[55]

Have a go hero – writing a function to enhance an image area
Now it's time we dive into deeper waters. Let's say you want to create a function that
enhances a certain area of the image, using any of the methods above. This task will need
you to combine several pieces of knowledge acquired so far and also use some settings we
haven't used so far.

To get you started, here is the rationale you have to follow: first, you have to find a way
to cut a specific part of the image that you want to enhance. Then, you will use one of the
enhancement methods on the cropped area, and finally you will have to reattach the area
in its original position.

In the beginning of the function, you should crop a rectangle area of the input image while
knowing the coordinates of the rectangle. Using the help imcrop command, you can find
the following way to call the function:

[I2 RECT] = imcrop(...) returns the cropping rectangle in addition to
 the cropped image.

This description suggests that you can use imcrop with two outputs; the cropped image
I2 and the cropped rectangle coordinates in RECT. This way, you can then use matrix RECT
to replace the selected rectangular area of the original image with the enhanced cropped
image.

Let's say that your function will be named CroppedContrastEnhancement.m. We'll start
you off with its definition, and input/output description, and you can do the rest:

function [output] = CroppedContrastEnhancement(input,method)

% Function that performs area-based image contrast enhancement with
% methodsincorporated in MATLAB toolboxes
% Inputs:
% input - Input image
% method - Enhancement method (1: histeq, 2: imadjust,
% 3: adapthisteq)
% Output:
% output - Output image (with enhanced contrast)

To see if your function works, you could run it for our holiday image and select an area
to perform histogram equalization on:

>> img = imread('holiday_image2.bmp');
>> img2=CroppedContrastEnhancement(img,1);

www.allitebooks.com

http://www.allitebooks.org

Working with Pixels in Grayscale Images

[56]

Then, you have to define the area you want to enhance:

Having selected the area you should be able to double-click on it to generate the result.
The resulting image will be as follows:

>> imshow(img2);

Chapter 2

[57]

Restoring old photographs
Now, we will start a process which will be continued in later chapters of this book. We will
try to practice what we learned in an effort to restore, or at least improve, the appearance
of old pictures.

Time for action – restoring your ancestors' photographs
First off, let me introduce you to my great-grandmother, whose picture will be used for
restoration tasks. Of course, you can use your own ancestors' photographs. The following
steps will help you restore your old photographs:

1.	 Read and show the image in the usual manner, checking also its size:

>> ggm = imread('grandma.bmp');
>> imshow(ggm)
>> size(ggm)

2.	 Unfortunately, this image has two disadvantages; it is very large (2048 x 1536)
and also it is in color (last dimension in size is equal to 3). So, let's try to make our
lives a little easier for the time being, by resizing the image and transforming it
to grayscale. Both steps can be done in the same command:
>> ggm_gray = rgb2gray(imresize(ggm,0.25));

Working with Pixels in Grayscale Images

[58]

3.	 Now that we have a grayscale image sized 512 x 384, we can save it as
graygrandma.bmp (just the first two inputs will suffice for imwrite):
>> imwrite(ggm_gray,'graygrandma.bmp');

An obvious flaw of this picture is the flash glare caused by our camera. This glow
will lead to suboptimal results by our contrast enhancement methods. Till now,
we haven't learned a way to remove such noise, however the thresholding
techniques presented in this chapter can be used to isolate the flash. You could
try verifying this on your own as a practice exercise.

4.	 Just so we are ready to take advantage of this result in the following chapters,
we will try to perform such an isolation. It is obvious that the image brightness
in the glowing area caused by our flash has very high values. Let's try to segment
this area using a high brightness threshold (for example, t=220). This process can
be performed using the following command lines:

>> subplot(1,2,1),imshow(ggm_gray),title(''Original image'');
>> subplot(1,2,2),imshow(ggm_gray>220),title(''Thresholded
 image using t=220'');

The resulting image will be:

Obviously, the image area highlighted by the segmentation process is approximately
equal to the glow produced by the flash. This result will prove useful in later chapters.

5.	 For the time being, we should crop the image part above the flash and play with
the contrast enhancement methods learned so far, to see which result we like more:

>> ggm_cr = imcrop(ggm_gray);
>> subplot(2,2,1)
>> imshow(ggm_cr)
>> title('Original Image')
>> subplot(2,2,2)
>> imshow(ContrastEnhancement(ggm_cr,1))
>> title('Histeq result')

Chapter 2

[59]

>> subplot(2,2,3)
>> imshow(ContrastEnhancement(ggm_cr,2))
>> title('Imadjust result')
>> subplot(2,2,4)
>> imshow(ContrastEnhancement(ggm_cr,3))
>> title('Adapthisteq result')

For the time being, we will have to settle with this artistic contrast enhancement. Of
course, which result is more pleasing to the eye is a rather subjective matter, but probably
most people would agree that the original image is a little flat, while the one produced by
imadjust looks a little more realistic, and the one produced by adapthisteq looks more
artistic. The image produced using histeq has a rather disturbing high contrast and should
be fine-tuned.

What just happened?
In this exercise, we have mixed some of the steps described both in this and the previous
chapter in order to begin restoring an old picture, which has faded over time and been
distorted by the flash of our camera. The restoration of such an image is a rather complex
task, which will span in multiple chapters, but the first steps towards its completion
were covered here. The image was transformed to grayscale and resized and then it was
thresholded to pinpoint the area distorted by the flash glare. This area will be processed
in the following chapters. Finally, the image was cropped to exclude the glare and its contrast
was enhanced using the function we wrote in previous sections.

Working with Pixels in Grayscale Images

[60]

Pop quiz – contrasting enhancement methods
Q1. Which of the following facts are true?

1.	 MATLAB will produce an error if you have matrices growing inside a loop.

2.	 The histogram equalization method tends to result in evenly distributed histograms.

3.	 The Imadjust function allows a specific percentage of pixel values to be saturated
at low and high intensities.

4.	 Adapthisteq performs global histogram equalization.

5.	 Using for loops is the fastest way to threshold an image in MATLAB.

6.	 Using im2bw to perform thresholding suggests that the threshold is set in the
range 0 to 1.

7.	 An automated way to define the brightness threshold value for a grayscale image
is by using graythresh.

Summary
This chapter included several useful techniques to manipulate the values of grayscale image
pixels. At the same time, it provided a first, hopefully gentle, introduction to writing and
running your own scripts and functions in MATLAB. More specifically, you have been taught:

�� How to change pixel values in a rectangular area using for loops, or indexing

�� How to write and execute a script that alters the brightness in specified rectangular
areas of an image

�� How to threshold an image using for loops

�� How to threshold an image using indexing

�� How to threshold an image using im2bw

�� How to perform thresholding using an automatically derived threshold

�� How to calculate and display the histogram of a grayscale image

�� How to perform histogram equalization using histeq

�� How to perform contrast enhancement using imadjust

�� How to perform contrast enhancement using imcontrast

Chapter 2

[61]

�� How to perform adaptive histogram equalization using adapthisteq

�� How to write functions that use all the methods described in this chapter on
practical examples

The next chapter will introduce you to morphological operations and their importance
in image processing. Some methods already presented will be combined with the
morphological operations to enhance images, or segment useful areas. Once finishing it,
you will be able to perform extremely useful tasks that are applied both in computational
photography and in machine vision applications.

Morphological Operations
and Object Analysis

In the previous chapters, you learned various image processing techniques
related to image manipulation. In some of them, we concentrated our
processing on specific regions of the images, predefined by the user. However,
many processes that involve visual media enhancement need to focus on
automatically specified regions of interest. In this chapter, we will present
some basic techniques for selecting the regions of interest, based on image
morphology. We will also revisit the manual selection of regions, presenting
some more flexible tools. Then, you will be demonstrated some basic object
analysis techniques such as edge, corner, and circle detection. Several examples
will help you better understand how morphological operations combined with
object analysis methods can help in targeting our processing on specific areas
of an image.

In this chapter, we shall:

�� Learn about binary images and how they are used for masking

�� Learn about morphological operations and their importance

�� Learn how to use MATLAB tools for Region Of Interest (ROI) selection

�� Learn how to detect edges, corners, and circles in an image

So, let's start!

3

Morphological Operations and Object Analysis

[64]

The importance of binary images
To understand the notion of morphological operations, we will have to revisit the
thresholding techniques presented in the previous chapter. We have already mentioned
that thresholding an image leads to binary images, which are defined by their two possible
pixel values; 0 (for black) and 1 (for white). The way to convert a grayscale image to binary
is through thresholding; that is, setting the pixels above a certain value to 1 and the rest
to 0. Let's now explain the basic reasons for binarizing an image. The purpose of image
binarization can be split into two levels. At a first level, it is used to pinpoint the pixels
of an image that interest us (usually called regions of interest or simply, ROIs), thus giving
us a quick and easy overview of the image content. The binary images derived, are often
called masks. At a second level, it can be used for processing only the selected ROIs
(with pixel values equal to 1) defined by the mask, leaving the rest of the image unaffected.
Let's see the difference using, an example that covers both the functionalities.

Time for action – understanding the value of thresholding
In this example, we will try to separate the two useful aspects of image binarization, so that
we can then use them appropriately. The first thing we will do is to locate a faulty ROI of an
image and then we will try to cover it using what we have already learned. For this example,
we will be again using my great-grandmother's photograph. So, let's start:

1.	 First, we need to load the grayscale image we have created in the previous chapter,
by using imread:

>> img = imread('graygrandma.BMP');

2.	 The second step is to perform thresholding, as we have already done in the previous
chapter (using the same threshold, which was 220):

>> img_bin = (img> 220); % Image img_bin is now binary

3.	 Now, let's perform some rough patching of the image in the specific ROI that has
pixels with values over 220. A way to accomplish this is to change these values
to a grayer shade, for example, 100:

>> img_patched = img;
>> img_patched(img_bin) = 100;

4.	 At this point, we have three images in our Workspace. The original one (img), the
binarized one (img_bin) and the patched one (img_patched). Let's display them
side-by-side to get a better understanding of what happened:

>> subplot(1,3,1),imshow(img),title('Original Image')
>> subplot(1,3,2),imshow(img_bin),title('Binarized Image')
>> subplot(1,3,3),imshow(img_patched),title('Patched Image')

Chapter 3

[65]

The resulting images will be as follows:

What just happened?
As explained earlier, this example pinpoints the usage of thresholded images called masks
to alter the specific parts of the image. The first step, as always, is to load an image into
MATLAB, using the imread function. We chose to use this image, because of the apparent
deficiency caused by the flash of our camera. The ultimate goal is to patch up this deficiency
and produce a smoother result.

The second step is to threshold the image, using a threshold value that isolates the areas
with high brightness values. This was done using the threshold value as 220, as we did
in the previous chapter. Typing img_bin = (img> 220) generates a binary image (mask)
with pixels equal to 1 in the positions where the original image pixels were higher than 220.
All other pixels will be set to 0.

The third step performs the actual masking process. First, we create a duplicate of our
original image, and name it as img_patched. Then, we type in img_patched(img_bin)
= 100 to replace all pixels that are equal to 1 in our mask with the value 100 in the original
image. This command actually tells MATLAB to find the positions of all pixels in the mask
equal to 1 and use them to set the respective pixels of the original image to 100. This could
be accomplished in many alternative ways, but this is the one that depicts the actual use
of a mask, taking advantage of its size being identical to the size of the original image
(or else the replacement command would result in an error message).

Our fourth step is used for verification purposes, as it shows the original image, the binary
mask, and the masked image side-by-side. This way, it is easier to understand the entire
masking process.

An alternative and more compact way to get the same masking result in the
preceding example, would be using img_patched(img > 220) = 100.
This would combine the second and third step into one, but wouldn't save the
mask in a new matrix.

Morphological Operations and Object Analysis

[66]

The preceding example describes a very useful technique in its simplest form. This simple
procedure has two serious flaws; one in the mask definition and one in the image
masking process.

The flaw in the mask definition is the difficulty in pinpointing the specific ROI of our choice,
using just the pixel values. Rarely can we isolate the region we need, by setting a specific
threshold. Even in the example we saw (which is almost ideal for this simple technique),
the mask derived from thresholding includes some pixels equal to 1 in other areas
(for example, the frame of the picture). Also, the image masking result reveals that
the area selected is a little smaller than it should be.

The flaw in the masking process is that the result is roughly patched up and just covers the
area with brightness values that are closer to what would be expected. However, the ideal
result would replace the bright area with something more complex than a patch of equal
brightness values. This patch could be a part of an image that more closely resembles what
has been destroyed by the flash.

In the rest of the chapter, we will be focusing on ways to refine the mask selection process,
so that the resulting mask is more suitable to our needs. This will be accomplished using
various morphological operations that will tweak our mask.

Enlarging and shrinking a region of interest
A very common technique for refining a region of interest derived using thresholding is either
enlarging or shrinking it to fit our target size. This can be accomplished by the morphological
operations called dilation and erosion, respectively. These operations can be implemented
in MATLAB using their respective functions, intuitively named imdilate and imerode.

Explaining and analyzing the mathematical properties of dilation and erosion lie beyond
the scope of this book. We will instead explain their significance using practical examples
that demonstrate their importance for image processing. The basic idea that you have
to understand before we start, is that the two operations can be used for enlarging
or shrinking an ROI (denoted by the instances of 1 in the image) using a structuring
element. Structuring elements can be small binary images generated by the user either
arbitrarily (placing the instances of 1 and 0 in a small image), or by using the strel
function. The choice of a structuring element should be made following two simple rules:

�� The larger the structuring element, the larger the enlarging/shrinking factor

�� Using a structuring element more similar to the shape of the ROI will typically give
you a better result

Let's dive right in, to understand the physical meaning of all these concepts in practice.

Chapter 3

[67]

Time for action – using dilation and erosion to refine ROIs
Since photographs from holidays are a usual target for image enhancement applications,
we'll use one of these for our example, showing three large rocks in the sea. The goal
is to come up with a mask that includes just them. Let's start with our usual steps:

1.	 As always, we'll need to load our image into MATLAB, only now we will also have
to convert it to grayscale:

>> img = imread('3Rocks.jpg');
>> img = rgb2gray(img);

2.	 Now that our image is loaded and transformed to grayscale, let's show it to get
a better idea of our goal:

>> imshow(img);

Morphological Operations and Object Analysis

[68]

3.	 Let's now have a go at thresholding the image. Let's set our threshold to 30, since
the rocks are dark. This time, the threshold denotes the maximum value kept,
meaning we will ask MATLAB to make a mask containing only the pixels with values
below 30, that is, set the pixels of the image with values below 30 equal to 1
(white), and the rest to 0 (black):

>> img_bin = img < 30;
>> figure,imshow(img_bin)

4.	 We can see that we have two problems; one is the inclusion of other dark objects
in the scene (such as people's heads) and the other is the suboptimal selection
of the rocks. First, let's take advantage of the fact that most of the unwanted areas
lie at the bottom of the image. Using the data cursor, , we can see that row 705
can be used as a lower limit for the mask. So, we can set all pixels under that row to 0:

>> img_bin(706:end,:) = 0;
>> imshow(img_bin);

Chapter 3

[69]

5.	 Now, we must do something to eliminate some sparse white dots that shouldn't
be included in the mask. A possible solution is to perform binary erosion, using
a small rectangular element. Let's use the second option, applying a 2x2 structuring
element with all pixels set to 1:

>> img_bin_clean = imerode(img_bin,ones(2));

6.	 Finally, we will perform dilation with a 70x70 structuring element, with all pixels
set to 1 and show the final mask:

>> mask = imdilate(img_bin_clean, ones(70));
>> figure,
>> subplot(1,2,1)
>> imshow(img_bin_clean);title('Image after erosion');
>> subplot(1,2,2),imshow(mask);title('Image after dilation');

7.	 Now, let's try to erase the rocks. The result will not be optimal, but it will
be interesting for comprehending what masking is. We will be using the color
of the sky, so we should use the data cursor on the sky to get some sample
values of the brightness. A better idea is to use our imtool, to observe entire
neighborhoods. Let's do that:

>> imtool(img);

Morphological Operations and Object Analysis

[70]

8.	 We observe that a good choice could be 147, since it is a value repeated a lot near
the left rock.

9.	 Having decided the value we want under our mask, let's try our disappearing act:

>> img_proc = img;
>> img_proc(mask) = 147;
>> subplot(1,2,1),imshow(img),title('Original image')
>> subplot(1,2,2),imshow(img_proc),title('Processed image')

What just happened?
This example covered both dilation and erosion, combining them with techniques learned
earlier. We used a user-defined threshold to acquire a first mask for our image (after we
converted it from color to grayscale). Then, we cleaned the mask from unwanted spots
taking advantage of their distinct location and wrapped up the cleaning process using an
erosion step to eliminate small white spots. To complete the ROIs covering the three rocks,
we then performed image dilation with a rectangular structuring element sized 70x70 pixels,
all equal to 1. The structuring elements were created using MATLAB's ones function, which
returns a matrix with all elements equal to 1. When the function is called with only one
input, N, the output is a square matrix with size NxN pixels. To better understand this,
let's see the result of a 3x3 matrix generated this way:

>> ones(3)

The output of the previous command is as follows:

ans =
 1 1 1
 1 1 1
 1 1 1

Chapter 3

[71]

After creating our mask, we applied a patching-up process like the one described in the
previous section. This time, our goal was to erase the rocks from the picture, replacing their
pixels' values with one that is descriptive of the sky. Of course, using just one brightness
value for such big areas, ends up with a flat result, which is less subtle than we would like.
However, the main goal of erasing the rocks was achieved to a good extent.

The use of imerode to eliminate small objects from our mask is not
always a good idea, since it affects all binary objects in the image. For this
example, we used it in conjunction with imdilate. A better choice for
such tasks would be to use the bwareaopen function, which eliminates
small objects of a predefined size from the image. In the preceding
example, to eliminate objects smaller than 6 pixels, we would replace the
step img_bin_clean = imerode(img_bin, ones(2)); with
img_bin_clean = bwareaopen(img_bin, 6);.

Choosing a structuring element
We mentioned earlier the usage of structuring elements and the two rules we must follow
when choosing them. However, in our example of dilation and erosion, we used a rather
simple rectangular structuring element, consisting of instances of 1. Is there a better choice?
The answer is yes. The objects we want to mask are not rectangular, so the best choice is
definitely not a rectangular structuring element. However, we can observe that the three
rocks are not similar. The two rocks at the sides could be thought of as similar, but they have
opposite orientations (that is, they look like they are mirrored). The shape of the small rock
in the middle does not resemble the others. All these facts lead us to the conclusion that
more than one structuring element should be used. However, we fall right into the next
problem; how will we use different structuring elements for different areas? For this, we will
recollect a technique we used in the previous chapter.

But first thing first; we should start with choosing the ideal structuring element for each rock.
As you may already have understood from the results of the previous example, the sides
of the rocks that are attached to the left and right image borders remain almost untouched.
Their only alteration after imdilate. is being expanded at the top and bottom. The middle
rock has expanded in all directions after dilation.

Morphological Operations and Object Analysis

[72]

To make this more obvious, let's use a basic technique in binary image processing, which
is image subtraction. If we subtract two binary images and observe the result, we will see
which pixels have a different value in the two images. In our example, we will see which
pixels were set to 1 after the dilation process, if we subtract (using function imsubtract)
the mask before the dilation from the final mask and show the pixels that are positive:

>> Z = mask - img_bin; >> figure,imshow(Z)
>> subplot(1,3,1),imshow(img_bin),title('Mask before dilation')
>> subplot(1,3,2),imshow(mask),title('Mask after dilation')
>> subplot(1,3,3),imshow(Z),title('Pixels set to 1 after dilation')

To eliminate unwanted dilation in a specific direction, we should be more careful about
the structuring element we will use. The goal is to produce a structuring element that only
expands our ROI in the desired directions. To achieve this, the structuring element should
have instances of 1 in the pixels facing in the desired directions and instances of 0 in the
rest of the pixels. One way to achieve this is by manually initializing the pixels of a matrix
to fit our needs. Another way to achieve it is using a structuring element provided by
MATLAB's strel function as a starting point and alter it to fit our needs.

Using strel to generate structuring elements
The ready-made strel function, provided by the Image Toolbox of MATLAB, offers various
types of structuring elements. The supported shapes that can be used in the problem we
examine, are square, rectangle, disk, octagon, diamond, line and arbitrary.
More information can be obtained by typing help strel in the command line. For the
time being, we shall just see some of them, by typing in the following lines:

>> se1 = strel('square',10); % 10x10 square
>> se2 = strel('rectangle',[12,8]); % 12x8 rectangle
>> se3 = strel('line',10,45); % line, length 10, angle 45 degrees
>> se4 = strel('disk',10); % disk, radius 10
>> se5 = strel('octagon',12); % octagon, size 12 (must be multiple
 of 3)
>> se6 = strel('diamond',10); % diamond, size 10
>> subplot(2,3,1),imshow(getnhood(se1)),title('Square')

Chapter 3

[73]

>> subplot(2,3,2),imshow(getnhood(se2)),title('Rectangle')
>> subplot(2,3,3),imshow(getnhood(se3)),title('Line')
>> subplot(2,3,4),imshow(getnhood(se4)),title('Disk')
>> subplot(2,3,5),imshow(getnhood(se5)),title('Octagon')
>> subplot(2,3,6),imshow(getnhood(se6)),title('Diamond')

As you may have noticed in the Workspace window, the structuring elements are not saved
as matrices, but as a special type, called strel. This is why in order for us to transform them
into matrices, we use the getnhood function, which allows for them to be processed and
displayed in the ways presented so far.

Altering structuring elements from strel to suit our
needs
Now, let's try to solve our first problem, which was how to create different structuring
elements for each rock, using the ones generated by strel. Observing the rocks could
lead to a useful conclusion, the two side rocks can be modeled as quarters of a disk and
the middle rock could be modeled as half a disk. Let's see if our assumption works well
for the middle rock, in the following example.

Morphological Operations and Object Analysis

[74]

Time for action – ROI refinement using strel
In this example, we shall see how to use the disk structuring element from strel, to have
a better masking result for the middle rock of our holiday picture. To focus on our task, we
will first crop the area we are mostly interested in. Assuming we have cleared our workspace
using clear all (MATLAB's command to clear all the variables), we follow these steps:

1.	 Read our colored image, convert it to grayscale, and crop the area containing
the middle rock:

>> img = imread('3rocks.jpg');
>> rock = imcrop(rgb2gray(img));

2.	 Threshold the cropped image using the same threshold as before (30) and show
the result side-by-side with the original:

>> mask1 = rock < 30;
>> subplot(1,2,1),imshow(rock),title('Original image')
>> subplot(1,2,2),imshow(mask1),title('Initial mask')

3.	 Perform image cleaning, using the imerode function:

>> mask2 = imerode(mask1,ones(2));

4.	 Make the structuring element for this rock, which will be the top half part of a disk.
We will use a disk of radius 26 (you can experiment with other values):

>> se = strel('disk',26); % Make a disk with a radius of 26px
>> se_mat = getnhood(se); % Convert structuring element to
 matrix
>> se_mat(27:end,:) = 0; % Make the bottom half equal to zero

5.	 Perform dilation with the processed structuring element:

>> mask3 = imdilate(mask2,se_mat);

6.	 Erase the rock from the original image using mask3:

>> no_rock = rock;
>> no_rock(mask3) = 200; % Use brightness value 200

Chapter 3

[75]

7.	 Demonstrate the results:

>> subplot(2,2,1),imshow(rock),title('Original image')
>> subplot(2,2,2),imshow(no_rock),title('Masked image')
>> subplot(2,2,3),imshow(mask2),title('Mask before dilation')
>> subplot(2,2,4),imshow(imsubtract(mask3,mask2)),
 title('mask3-mask2')

What just happened?
In the example we just did, we finished tweaking our ROI selection and masking example.
After cropping our image to include only one rock, we followed the same procedure
as before to get to our first mask. Then, in the most important steps of this example
(highlighted code in step 4) we chose the disk structuring element from MATLAB, with
a radius of 26 pixels, converted it to matrix form and set its bottom half to 0. Finally, we
applied dilation using the structuring element we created, used the generated mask to alter
the brightness of the pixels under it in the original image to 200, and displayed our results.

So, by now, you should be starting to get a good idea of how to tweak binary masks using
dilation and erosion, and how these two operations actually affect your images. In a nutshell,
binary masks can be used to focus your pixel processing tasks on specific areas of the image;
dilation and erosion are tools used to expand or shrink your areas of interest respectively.
A better structuring element selection for these operations leads to a better result.

Morphological Operations and Object Analysis

[76]

Have a go hero – write a function to for local dilation/erosion
In the previous chapter, we saw how to write a function that performs enhancement
of a rectangular area specified by the user. Can you do the same for dilation and erosion?
The function should get three inputs; the original binary image, the structuring element
and the selection of operation (one for erosion and two for dilation).

Well, the implementation shouldn't seem so hard now. We will more or less base our
function on what we did in the previous chapter. The first step is to let the user crop
the part of the image to be processed and save its coordinates. Then, we should switch
to the specified operation based on the user's input. The selected operation will then be
performed on the original binary image using the structuring element provided as input.
The final step is to place the cropped region back on the image and return the output.

The function you should write, named CroppedDilationErosion.m, is defined as follows:

function [output] = CroppedDilationErosion(input,se,method)

% Function that performs area-based dilation or erosion with =
% a user-defined structuring element.
% Inputs:
% input - Input image
% se – Structuring element
% method – Morphology operation (1: dilation, 2: erosion)
% Output:
% output - Output image (dilated or eroded)

To check if your function works as expected, you can use the mask from the previous example:

>> img = imread('3rocks.jpg');
>> rock = rgb2gray(img);
>> mask = rock < 30;
>> mask2 = CroppedDilationErosion(mask,ones(10),2); % Erode mask
>> mask3 = CroppedDilationErosion(mask,ones(10),1); % Dilate mask

Chapter 3

[77]

By selecting the following ROI in both operations:

The results would be:

>> subplot(1,3,1),imshow(mask),title('Original mask')
>> subplot(1,3,2),imshow(mask2),title('Mask after erosion')
>> subplot(1,3,3),imshow(mask3),title('Mask after dilation')

We can see that, by selecting an ROI including only the middle rock, the erosion result almost
makes it disappear and the dilation result makes it grow. All the other parts of the image
remain unaffected.

You may be surprised to learn that dilation and erosion are not limited
to binary images, but can also work on grayscale images generating
interesting results. To have a taste, try to call the function we just made
using a grayscale input instead of a binary one.

Morphological Operations and Object Analysis

[78]

More morphological operations
Until now, we have focused extensively on the erosion and dilation operations. It would
be logical for you to start thinking whether is this all that is there? Aren't there any more
morphological operations? The answer is; there are plenty, but you will not be using them
half as much as the two aforementioned operations, at least for everyday tasks. Also, many
of the other morphological operations are based on combinations of dilation and erosion.
An analytical list of morphological operations supported by MATLAB can be found at
http://www.mathworks.com/help/images/morphological-filtering.html.

However, describing all the morphological operations lies beyond the scope of this book.
From here on, we will use those we need and describe them at the same time, so that you
can comprehend the importance of their usage by example.

Manually defining a non-rectangular ROI
Those of you who have worked with image processing tools have probably been wondering
if a manual, freehand selection of a ROI is possible in MATLAB. This is an extremely useful
tool, since there are many applications with ROIs, which should be very tightly defined in
order to be efficiently masked. This is another area in which MATLAB doesn't fall short of
competitive tools. In fact, there are two possible choices; a polygonal ROI defined by many
points can be defined using roipoly, while function imfreehand can be used
for accomplishing a totally free selection. Let's see how we can use them.

Using roipoly to make a mask
We will start with our three rock images in order to explain the process of making a mask using
roipoly. First, we will load, convert, and crop our image (to make our results more visible):

>> img = imread('3rocks.jpg');
>> rock = rgb2gray(img);
>> rock = imcrop(rock)

Chapter 3

[79]

Then, it is time to call roipoly and define the corner points of our polygon:

>> mask = roipoly(rock);

Once we have finished selecting our points, we double-click on the ROI to save our result.
Let's display the result in a new figure, to verify it worked:

>> figure,imshow(mask)

Success! The rock has been very accurately defined and our mask is probably better than
anything we could generate using an automatic thresholding method. But what happens
when we want even more freedom in our selection and do not wish to click on many points?
Then we would have to use imfreehand, as we will show next.

Morphological Operations and Object Analysis

[80]

Using imfreehand to make a mask
Once again, for the sake of comparison, we will work with the three-rocks image. Without
clearing our workspace (if we have, then we must type in the first three commands of the
previous example and crop the image), we type in the following commands:

>> figure, imshow(rock); % Show image
>> h = imfreehand; % Call imfreehand, using a handle as output
>> pos = wait(h); % Save the positions of all points of the
 selection

After the highlighted code in the second line, we are faced with the image and we can draw
the region we want to isolate by keeping the left mouse button clicked and dragging the
mouse. This is accomplished by using a handle for the output of imfreehand. This handle
is then used as an input to the wait function, to block the MATLAB command line, finally
outputting the positions of the points selected by the user with the imfreehand function.
More information on this little trick can be found at http://www.mathworks.com/help/
images/ref/imfreehand.html.

When we are done defining the ROI, we let go of the mouse button and then double-click on it.

Chapter 3

[81]

When this process is done, we type in the third command to save the row and column
coordinates of all the points on the ROI perimeter in variable pos. These coordinates must
then be converted into a mask:

>> [rows,columns] = size(rock); % Get the size of the image
>> mask_freehand = poly2mask(pos(:,1),pos(:,2),rows,columns);
 % Make mask
>> figure, imshow(mask_freehand)

As we can see, our results are once again very precise and this technique also produces
a smoother result with fewer sharp angles. Now, let's try to combine the various tools we
have demonstrated into one function that can be used for erasing objects from an image.

Time for action – making a custom object eraser function
This time we are going to make a more complex tool. We'll write a function that accepts
an image as an input, prompts the user to select a ROI (using either one of the two methods
described previously) and then prompts the user to select a pixel with the color to be
used for the erasing process. Finally, it will use the color of the pixel chosen by the user
to erase the area defined by the mask. The code will be something like as follows
(we'll call it FreehandMasking.m):

function[output] = FreehandMasking(input,method)

% Function that performs masking of a user-defined ROI
% Inputs:
% input - Input image
% method – ROI selection (1: roipoly, 2: imfreehand)

Morphological Operations and Object Analysis

[82]

% Output:
% output - Output image (masked)

switch method
case 1
mask = roipoly(input);););% Select ROI using roipoly
case 2
figure, imshow(input)
h = imfreehand; % Select ROI using imfreehand
pos = wait(h);
[rows,columns] = size(input);
 mask = poly2mask(pos(:,1),pos(:,2),rows,columns);
end
pix = impixel(input); % Select pixel with eraser color
output = input; % Set output equal to input
output(mask) = pix(1); % Perform masking to erase selected object

1.	 Now let's test our code. We will try to erase two parts of the middle rock of our
examples, using different colors. Let's first type in the commands to crop the middle
rock:

>> img = imread('3rocks.jpg');
>> rock = rgb2gray(img);
>> rock = imcrop(rock)

2.	 Once we crop the area we want to use, we must call the function we just made,
twice. We will now use the roipoly function for the part of the rock that is below
the water level in the image and the imfreehand function for the part of the rock
that is above the water level. First, let's mask the part below sea level (we will
double-click on a pixel from the sky region to select its color for erasing the rock):

>> rock2 = FreehandMasking(rock,1);

Chapter 3

[83]

3.	 Now, we will mask the part above sea level (we will double-click on a pixel from
the sea for erasing the rock):

>> rock3 = FreehandMasking(rock2,2);

4.	 Let's see the final result:

What just happened?
The tool we just finished making is more sophisticated than the others so far. It prompts
twice for user input; once for the ROI selection using the predefined method (given as input)
and once for the selection of the color of the eraser. We took advantage of this functionality
to repeat the example of erasing the middle rock, this time using two colors, one for each
chosen ROI of the rock. The result is even better than before, since the part of the rock
lying below the sea level got erased using a darker color, hence camouflaging the rock more
efficiently. In the following chapters, you will see more exciting examples using the ROI
selection techniques that we presented in this section.

Morphological Operations and Object Analysis

[84]

Analyzing objects in an image
Another main function of image processing is the analysis of image content (binary or other).
When analyzing an image, usually we search for the presence of edges, corners, or circles
inside it. Having this information at hand, we are in the position to detect shapes and locate
specific objects in our images, or enhance selected parts of the image. This has a lot to do
with the subject of ROI selection that we have discussed so far in this chapter. Let's start our
image analysis techniques' overview with the most popular method, which is edge detection.

Detecting edges in an image
Edge detection is a process that typically transforms a grayscale image to a binary one,
denoting all the pixels belonging to lines of different orientations with instances of 1. The
edge detection process is widely used and has been tackled using a variety of techniques.
MATLAB has an inherent function called edge, which has incorporated most of the popular
methods in an easily usable form.

To demonstrate the process, we will use an image with many lines, so that the usefulness
of each algorithm is demonstrated. The one chosen is holiday_image2.bmp. To get a better
idea of all the different methods supported by edge, you can type help edge in the command
line. These methods are Sobel, Prewitt, Roberts, Laplacian of Gaussian (LoG),
zero-cross and Canny. Let's use them all for our images and display the results. In order
for the edge detection to perform faster, we will first resize our image by a scale of 0.5:

>> img = imread('holiday_image2.bmp');
>> img = imresize(img,0.5);
>> BW1 = edge(img,'sobel');
>> BW2 = edge(img,'prewitt');
>> BW3 = edge(img,'roberts');
>> BW4 = edge(img,'log');
>> BW5 = edge(img,'zerocross');
>> BW6 = edge(img,'canny');
>> subplot(3,3,2),imshow(img),title('Original Image')
>> subplot(3,3,4),imshow(BW1),title('Sobel result')
>> subplot(3,3,5),imshow(BW2),title('Prewitt result')
>> subplot(3,3,6),imshow(BW3),title('Roberts result')
>> subplot(3,3,7),imshow(BW4),title('LoG result')
>> subplot(3,3,8),imshow(BW5),title('Zerocross result')
>> subplot(3,3,9),imshow(BW6),title('Canny result')

Chapter 3

[85]

As you can see, the Canny edge detection method provides a much denser result in this case.
Its main advantage seems to be the detection of edges in regions with low brightness values.
The Sobel, Prewitt and Roberts methods appear to be the weakest, producing sparse
results, detecting fewer lines than the other three methods.

The process of edge detection can be used in several ways. The two most popular
applications are those of object segmentation in an image and of image enhancement.
Especially in object segmentation, it is usual for edge detection to be combined with other
methods such as corner detection.

Morphological Operations and Object Analysis

[86]

Detecting corners in an image
Corner detection is another useful tool used for object segmentation, as well as in image
registration algorithms (matching points in one image with corresponding points in another
version of the image that has been transformed, or that has been taken at a different point
of time). A general definition of a corner in the image processing domain is the intersection
of two edges. As such, it is very closely connected to edge detection. MATLAB offers corner
detection through the corner function, which in turn, supports two different algorithms;
Harris corner detection method and Shi &Tomasi's minimum eigenvalue method.

Let's use the same image as before to demonstrate their usage. This time, as corner returns
the coordinates of the detected corners, we will use plot to visualize them. In order for
them to be projected on the original image, we will also use the command hold on before
we call plot. Finally, we will use red circles for the corners detected by the Harris method
and blue asterisks for the ones detected by the minimum eigenvalue method. To better
demonstrate the results, we will crop a part of the image. Let's get to work:

>> img = imread('holiday_image2.bmp');
>> img = imresize(img,0.5);
>> img = imcrop(img);
>> C1 = corner(img);
>> C2 = corner(img, 'MinimumEigenvalue');
>> figure, imshow(img) % Display original image
>> hold on % Hold on the figure
>> plot(C1(:,1), C1(:,2), 'ro'); % Overlay the corners from Harris
>> plot(C2(:,1), C2(:,2), 'b*'); % Overlay the corners from Shi

Chapter 3

[87]

The results show that the Shi-Tomasi method produces more results using the default
settings and that most of the results coincide. However, they are not completely identical,
so we must be careful when choosing which technique to use.

Detecting circles in an image
The last of the popular image processing methods we will visit, which is widely used in
everyday tasks, is circle detection. Circles are a very descriptive feature of many objects that
often need to be detected in an image. To name a few, circle detection can be used to localize
eyes, stars, balls, coins, tires, lights, and so on. MATLAB's inherent function for circle detection
is function imfindcircles. It can be used with several possible inputs, with the only ones
necessary being the input image and the radius (or range of radii) in pixels of the circle we want
to detect. Its output may be only the centers of the detected circles, or it can also contain the
radii of the respective circles and the power of each circle.

We'll demonstrate its usage, using a rather funny example. The cat depicted in the
photograph we will use, has a funny little piece of black fur under its nose, which looks like
a human moustache. Let's try to ignore it for a while and attempt to automatically detect
the cat's eyes, using imfindcircles. We will use the range of radii from 20 to 50 pixels.
The result will be visualized using the MATLAB command viscircles, which is designed
for such use:

>> img = imread('cat.jpg');
>> img = rgb2gray(img);
>> imshow(img)

Here is our cat. Funny little guy, right?

Let's try to locate its eyes. As we said, we will use a range of radii for our algorithm, spanning
from 20 to 50 pixels (if we want to be more accurate, we can use some of the tools MATLAB
provides for measuring distances in an image, for example, imdistline):

>> [centers,radii,metric] =imfindcircles(c,[20 50])

Morphological Operations and Object Analysis

[88]

Now, we can observe our results produced from the last line of code which got displayed
on screen, since we didn't use our semi-colon operator. A close look at the results reveals
that our call to the function located three circles instead of two:

Such counterintuitive results are very common when using an automated technique
for object detection. This is natural, of course, since the algorithm only looks at the
circularity of region, without the use of any additional knowledge to assist in refining
the results. Therefore, refining the results in such tasks is usually a human's job.

Taking a closer look, we see that two of the results have almost identical radii (28.6 to 28.7
pixels). These also have a significantly higher circularity metric than the third one, so they
are definitely more likely to be the cat's eyes. One last clue that could confirm our choice
is the positions of the centers of the detected circles. Unfortunately, the positions in this
example do not greatly vary (similar rows and close columns), so we cannot say for sure.
An assumption that can be made, though, is that the first two circles detected are the eyes
and the third is a smaller symmetric region between them (its center's column coordinate
is near the midpoint of the two other centers), above the cat's nose. Let's see if we are
right. We will visualize the two first circles using viscircles and then we will place a blue
asterisk on the center of the third circle:

>> viscircles(centers(1:2,:), radii(1:2,:));
>> hold on;
>> plot(centers(3,1), centers(3,2),'b*');

Chapter 3

[89]

Spot on! The circle detector indeed located the two eyes, as well as a highly symmetrical
area on the top of the cat's nose. Our rationale in the post-processing phase was correct
and we chose the proper centers of the cat's eyes. Not bad for a procedure based on an
automatic tool, right? We will get to put this method to the test again later in the book.

Pop quiz – object analysis pros and cons
Q1. MATLAB provides several functions that implement complex object analysis tasks.
Can you answer whether the following properties are true?

1.	 The most dense and detailed edge detection result is achieved using function
edge with the Sobel method.

2.	 The corner function provided by MATLAB provides two different methods
for performing corner detection.

3.	 The circle detection performed by imfindcircles can work either with one
radius, or with a range of radii.

Morphological Operations and Object Analysis

[90]

Summary
In this chapter, we presented several useful morphology-based techniques for selecting
regions of interest and masking an image. After visiting several examples based on the
morphology theory, we also provided an introductory presentation of some powerful
object analysis tools that can be used for several image processing applications such
as image enhancement, object detection, image registration, and so on. The focus of this
chapter was on hands-on, practical examples demonstrating the significance of the methods
presented. More specifically, in this chapter we covered:

�� What binary images are and how we can create them using automatic
thresholding techniques.

�� How we can refine a region of interest to better suit our needs, using
dilation (imdilate) and erosion (imerode) to perform enlargement
and shrinking, respectively.

�� What structuring elements are and how they affect the quality of dilation
and erosion results.

�� What masking is and how we can use it to process specific regions of interest
in an image.

�� How to manually select a region of interest in order to define better masks for
our applications, using roipoly and imfreehand.

�� How to detect edges in a grayscale image using function edge.

�� How to detect corners in an image using function corner.

�� How to detect circles in an image with imfindcircles.

In the next chapter, we will expand the methods we have discussed so far to color image
processing. We will produce new functions to implement our functions to color images and
provide specialized solutions that take advantage of the extra information included in these
cases. At the end of the chapter, you will be able to manipulate and process color pictures
to produce results that look more appealing and even apply artistic effects that give your
photographs a more professional look.

Working with Color Images

Up to now, we have only worked with grayscale images. Even in the few
cases where our photographs were in color, we first transformed them
to grayscale and then processed them. However, color image processing
is a much more frequent task in everyday life. It is not that different to what
we have already covered; the basic thing we have to remember is that
instead of two-dimensional matrices, we have to deal with three-dimensional
matrices. In this chapter, we will introduce the concept of color, and expand
the techniques covered so far to color images. Many of the image processing
methods presented in previous chapters will be revisited, while covering
specialized color image processing techniques. All these methods will be
analyzed using practical examples of color image enhancement and artistic
color manipulation.

In this chapter, we will cover:

�� Some basic knowledge of color image processing and its differences from grayscale
image processing

�� How to manipulate and/or threshold the pixel values in color images

�� How to perform color masking

�� What color spaces are and why they are important

�� To use color spaces other than RGB

�� To achieve color isolation in images

�� How to perform red eye reduction

So, let's dive right in!

4

Working with Color Images

[92]

An introduction to color image processing
Before we begin examining the differences of color image processing to grayscale
image processing techniques, we must first understand the difference between color
and grayscale images. As explained in previous chapters, a grayscale image can be
represented as a two-dimensional, m-by-n matrix (m rows and n columns). Its elements,
called pixels, have values spreading from 0 to 255 (in the case of 8-bit images). A value
of zero represents black, a value of 255 represents white, while all the values in between
represent different shades of gray.

In the case of color images, the matrices become three-dimensional. The first two
dimensions, as in the case of grayscale images, are the number of rows and the number
of columns (m-by-n). The difference is that the third dimension typically comprises three
layers, representing colors. That is, color images are three-dimensional (usually m-by-n-by-3)
matrices and can be thought of as three grayscale images combined together. Each image
typically represents one of the colors (that is, Red, Green, and Blue) of the image, which
is therefore characterized as RGB. These three layers are also called color channels
of the color space (RGB in our case).

Similarly to the grayscale image case, when we have a case of color images of 8-bits per
channel, a zero value in one channel represents non-presence of the color, while a 255
value suggests full color presence. The three color channels are mixed together to produce
the final color for each pixel in the image. A pure fundamental color occurs when one
of the three color channels has the maximum value and the two others are equal to zero.
This means that a pixel with {R, G, B} values equal to {255, 0, 0} will be pure red. Similarly,
a pixel with values {0, 255, 0} will be pure green and a pixel with values {0, 0, 255} will
be pure blue. Different mixtures of values in the three basic color channels will ultimately
produce different colors.

A more extensive description of the basic concepts of RGB color images
can be found in Chapter 2, Introduction, of the manual of the Image
Processing Toolbox. It can be found freely available in pdf format on the
website of Mathworks, at http://www.mathworks.com/help/
pdf_doc/images/images_tb.pdf.

What you may have deduced from the previous description of color images, is the fact that
in order to apply the methods covered in previous chapters for color image processing,
we will have to repeat the same process three times (one for each color channel). This
is typically correct, as we will see in the rest of this chapter. Let's start with the basic
image manipulations covered in Chapter 1, Basic Image Manipulations.

Chapter 4

[93]

Basic color image manipulations
Let's start with the very basics. Importing a color image and accessing its pixels is pretty
much the same process as in the case of grayscale images. We can see it using the color
version of the image used in Chapter 1, Basic Image Manipulations. To open both the color
version and the grayscale version, we will use imread twice:

>> img_gray = imread('my_image.bmp');
>> img_color = imread('my_image_color.bmp');

Examining the workspace will reveal the aforementioned difference between grayscale
and color images, which is the dimensionality. As we can see in the following screenshot,
the grayscale version is 485-by-686 and the color version is 485-by-686-by-3.

To display both the grayscale and color images, as well as the three color channels
of the latter separately on the same figure, we will type in:

>> subplot(2,3,1),imshow(img_gray);title('Grayscale image')
>> subplot(2,3,2),imshow(img_color);title('Color image')
>> subplot(2,3,4),imshow(img_color(:,:,1));title('Red channel')
>> subplot(2,3,5),imshow(img_color(:,:,2));title('Green channel')
>> subplot(2,3,6),imshow(img_color(:,:,3));title('Blue channel')

The resulting image will be as shown in the following screenshot:

Working with Color Images

[94]

From the highlighted code shown previously, we can see that indexing in the third dimension
does the trick, leading to successful displaying of the three color channels. In these images,
you can better understand the meaning of separate color channels. A good point to focus on
are the red tips of the fence, which have very bright red values and dark green and blue

values. We can better understand this by using the Inspect Pixel Values option of
imtool and clicking on a pixel of red shade:

>> imtool(img_color)

From this example, we can see that imtool can be used for color images in the same
way we showed in the Chapter 1, Basic Image Manipulations. This time, the three values
displayed for each pixel are not the same (as in the case of grayscale images), but instead
represent the R, G, and B values of the pixel.

While imrotate also has the same usage as in grayscale images, fliplr
and flipud do not. In fact, using them for color images in the same way we did for grayscale
ones results in an error message:

Chapter 4

[95]

The resulting message implies that the color image is not a two-dimensional matrix, thus
cannot be flipped using fliplr. Instead, we must use flipdim for all our color image
mirroring tasks. Therefore, we only have the following way to perform horizontal and
vertical mirroring:

>> img_color_lr = flipdim(img_color,2);
>> img_color_ud = flipdim(img_color,1);
>> subplot(1,2,1),imshow(img_color_lr);title('Left-right mirroring');
>> subplot(1,2,2),imshow(img_color_ud);title('Up-down mirroring');

The rest of the functions we covered in Chapter 1, Basic Image Manipulations, remain almost
identical when using them for color images. More specifically, imresize, imcrop, and
imwrite can be used in the same fashion you already know. We will be using these functions
as we discuss some more complicated color image processes in the rest of this chapter.

Setting a rectangular area to a specified color
The problem of altering the color of a rectangular area of our choice is a little different in the
case of color images. In Chapter 2, Working with Pixels in Grayscale Images, you learned two
different ways to alter pixel values in such a task; through using for loops and through indexing.

In a simple case, using the same value for all the color channels, the two aforementioned
methods can still be used, but in the case of different values in each color channel, the
problem becomes a little more complicated. Let's see these things using a practical example.

Working with Color Images

[96]

Time for action – repainting two areas in a color image
In this example, we will try to set the values of the pixels in the top-left corner of our image
to {R, G, B} = {128, 128, 128} and the values of the pixels in the bottom-right corner
to {R, G, B} = {255, 0, 0}. To see the difference, we will try to accomplish our goal using
indexing. Let's start:

1.	 First off, we load our image and keep a copy:

>> img_color = imread('my_image_color.bmp');
>> img_color_orig = img_color;

2.	 Then, we will try to set our top-left corner to the specified values:

>> img_color(1:50,1:50,:) = 128;

3.	 Now, if we want to do the same for the bottom-right corner, we should modify our
approach. Not all color channels should be set to the same value, thus each color
channel must be changed separately:

>> img_color(end-49:end,end-49:end,1) = 255;
>> img_color(end-49:end,end-49:end,2) = 0;
>> img_color(end-49:end,end-49:end,3) = 0;

4.	 Finally, we will show our results:

>> subplot(1,2,1),imshow(img_color_orig);title('Original
 Image')
>> subplot(1,2,2),imshow(img_color);title('Altered Image')

Chapter 4

[97]

What just happened?
We just managed to play with the colors of a color image. We used the indexing in exactly
the same way you already knew, to turn an area to gray (with all color channels set to 128)
and then we repeated the process for each color channel in another area to set its pixels
to red. A useful observation is that three identical values in all color channels denote a shade
of gray. This fact is rather intuitive, as in Chapter 1, Basic Image Manipulations, we saw that
imtool represented the pixels of grayscale images as triplets of identical values. The process
must be slightly altered when we want a color other than gray. This is why, in our example,
we changed the values in each channel separately.

Thresholding color images
Another technique we have already covered, that is changed in the task of color image
processing, is image thresholding. Color images must be thresholded in each channel
separately using a proper threshold and then the results must be combined together. Let's
try to do this using the automated Otsu thresholding technique we presented in Chapter 2,
Working with Pixels in Grayscale Images.

First, the color channels should be thresholded one by one. Let's see how, writing a script
under the name ColorOtsuThresholding.m:

img_color = imread('my_image_color.bmp'); % Load image
red = im2bw(img_color(:,:,1)); % Threshold red channel
green = im2bw(img_color(:,:,2)); % Threshold green channel
blue = im2bw(img_color(:,:,3)); % Threshold blue channel
bin_image_or = red | green | blue; % Find union using OR
bin_image_and = red & green & blue; % Find intersection using AND
subplot(1,3,1),imshow(img_color),title('Original Image')
subplot(1,3,2),imshow(bin_image_or),title('Binary Union Image')
subplot(1,3,3),imshow(bin_image_and),title('Binary Intersection
 Image')

Running this script gives the following result:

Working with Color Images

[98]

Note that the union of two or more binary images can be acquired using the OR operator,
which in MATLAB, is denoted by symbol "|". Applying this operator to two binary images,
results in an image that contains ones in those pixels that are equal to one in at least one of the
two images. The AND operator denoted by symbol "&" leads to a resulting image that contains
ones in those pixels that are equal to one in both images. Depending on the task, one method
could be preferable to the other. Let's try to illustrate the difference with an example.

Time for action – isolating the red pixels in an image
In this example, we will try to isolate the red-orange tips of the fence in the previous image,
using manual thresholding of all channels. The ultimate goal is to acquire a binary image with
only pixels belonging in the area we want, being equal to one. Let's start by using imtool
to get a better idea of what the RGB values of the pixels we want to isolate are.

1.	 First, we load the image and call imtool:

>> img = imread('my_image_color.bmp');
>> imtool(img);

Then, we will choose Inspect Pixel Values by clicking on the second icon from
the left and placing our cursor on one of the red tips to see the RGB values of
its neighbor pixels. We can repeat the process for other tips and also for getting
samples from other image areas.

Chapter 4

[99]

2.	 Now that we have an idea of what the RGB values are for our ROIs, we can begin
the process of thresholding. By observing the color values with the help of imtool,
we can set a general thresholding rule for our ROIs, which would be something
like: "we want to keep pixels with high R values and low G and B values". The
implementation of this rule could be something like this:

>> red_binary = img(:,:,1) > 150;
>> green_binary = img(:,:,2) < 150;
>> blue_binary = img(:,:,3) < 150;

Now, we can mix the three binary images using the AND operator and display
the result on a new figure:

>> final_mask = red_binary & green_binary & blue_binary;
>> figure, imshow(final_mask)

3.	 We can see that, while we are on the right track, our result is not optimal yet. It
needs a little tweaking of the selected thresholds and perhaps, some morphology.
The wise thing to do in these situations is to write a function that takes the color
thresholds as inputs and returns the thresholded binary image. This way, we will
be able to test several sets of threshold values with one line of code for each,
instead of typing all the commands of step 2. Let's use the editor to write
a function called RGBThreshold.m:

function [output] = RGBThreshold(input,thresholds)
% Function that performs color image thresholding using
% user-defined threshold values. Emphasises red areas.
% Inputs:
% input - Input image
% thresholds – 1x3 matrix with the threshold values
% for the R, G and B color channels.

Working with Color Images

[100]

% Output:
% output - Output image (binary)
red_bin = input(:,:,1) > thresholds(1); % Red thresholding
green_bin = input(:,:,2) < thresholds(2); % Green thresholding
blue_bin = input(:,:,3) < thresholds(3); % Blue thresholding
output = red_bin & green_bin & blue_bin; % Final image

4.	 Let's now use our new function to generate and compare results for three
different sets of thresholds, that is, {R,G,B} = {150,150,150}, {160,130,130},
and {180,140,140}:

>> [output1] = RGBThreshold(img,[150 150 150]);
>> [output2] = RGBThreshold(img,[160 130 130]);
>> [output3] = RGBThreshold(img,[180 140 140]);
>> subplot(1,3,1),imshow(output1),title('Using [150 150 150]')
>> subplot(1,3,2),imshow(output2),title('Using [160 130 130]')
>> subplot(1,3,3),imshow(output3),title('Using [180 140 140]')

5.	 We can now choose the preferred result, so that we can tweak it using the
morphology tools. Let's use the middle result, output2, which apparently needs
dilation to expand the ROIs to the size we would want. First, we will set the pixels
above the line 100 to zero, to exclude unneeded areas. Then, we can use imdilate
with a structuring element like a diamond of size 5px, to see what happens
(we'll show the result next to the original image):

>> output2(1:100,:) = 0;
>> final = imdilate(output2,strel('disk', 5));
>> figure, subplot(1,2,1), imshow(img), title('Original Image')
>> subplot(1,2,2), imshow(final), title('Final binary mask')

Chapter 4

[101]

What just happened?
In this example, we combined several methods presented so far for grayscale images to
generate a modified masking example for color images. We used imtool to acquire a feel
of what the pixel values are for several regions of the image, including the region that we
want to isolate. Then, we wrote a function to perform thresholding using user-defined
threshold values for all the three color channels. With a trial-and-error process, we selected
the most suitable thresholds (step 4), cleaned the areas we did not wish to include, and then
dilated the binary result to acquire the final binary image (step 5).

A useful conclusion derived from this example would be that RGB images can be
thresholded, but the process should really be performed in all color channels in order
to optimize our result. This has to do with the fact that the RGB color space channels are
highly correlated to each other, meaning that all three values are required to describe
a given color. This results in the counterintuitive deduction, that we usually cannot just
threshold the R channel to isolate red pixels, but would need to combine the R channel
mask with the G and B channel masks to produce optimal results.

Achieving color masking
Since we are into masking processes, a valid question deriving from the previous section
would be: since the mask we generated is two-dimensional, how can we use it to perform
masking on a three-dimensional (color) image?

The answer to the question is rather straightforward; we will actually perform separate
masking in each color channel, always using the same binary mask. The tricky part of this
process is that after we perform separate masking in all three channels, we will have to join the
results back together to acquire the final image. A very important MATLAB function, that allows
us to join matrices, is cat. This function normally takes N + 1 inputs, where N is the number
of matrices we wish to join. In the case of a color image, cat would be called with four inputs.
The first one is the dimension along which we want the concatenation to occur and the next
three inputs will be the R, G, and B color channels. Let's show this with an example:

>> img = imread('my_image_color.bmp');
>> R = img(:,:,1); % store R channel in new matrix
>> G = img(:,:,2); % store G channel in new matrix
>> B = img(:,:,3); % store B channel in new matrix
>> img_cat = cat(3,R,G,B); % Re-join color channels
>> img_cat_mixed = cat(3,G,B,R); % Re-join color channels (mixed)
>> subplot(1,3,1),imshow(img),title('Original Image')

Working with Color Images

[102]

>> subplot(1,3,2),imshow(img_cat),title('Concatenated image')
>> subplot(1,3,3),imshow(img_cat_mixed),title('Concatenated image
 mixed')

This example demonstrates clearly, the way the function cat should be used. The color
channels of our image are first stored separately in three different matrices and then we
join them along the three-dimension, first in their normal order and then in a mixed order
(first G, then B, and then R). The first result is, as expected, identical to the original, while
the second one appears chromatically distorted.

Let's now use color masking to achieve a very popular image processing effect, which
is color isolation. This effect is essentially the process of converting the whole color image
to grayscale, while leaving our ROI untouched, which is usually of a specific color
(remember the girl with the red dress in Schindler's list?). We will try to achieve this
result, using the previous image.

Time for action – color isolation
Let's try to perform color isolation for our lake fence photograph. The goal will be to convert
the whole image to grayscale, except the fence tips, that should remain red. Here are the
steps to accomplish this:

1.	 First, we will load the image and generate the same mask as before, using
thresholding, cleaning, and dilation:

>> img = imread('my_image_color.bmp');
>> [output2] = RGBThreshold(img,[160 130 130]);
>> output2(1:100,:) = 0;
>> mask = imdilate(output2,strel('disk', 2));

2.	 Then, we must use the process described above to separate the color channels:

>> R = img(:,:,1); % store R channel in new matrix
>> G = img(:,:,2); % store G channel in new matrix
>> B = img(:,:,3); % store B channel in new matrix

Chapter 4

[103]

3.	 Now it is time to perform masking. We want all pixels outside our regions of interest
to turn to grayscale, which can be achieved by assigning to all channels the same
values (which can be acquired by rgb2gray). All these pixels have the value zero
in our mask. So:

>> img_gray = rgb2gray(img);
>> R(mask == 0) = img_gray(mask == 0);
>> G(mask == 0) = img_gray(mask == 0);
>> B(mask == 0) = img_gray(mask == 0);

4.	 Finally, we have to join our new color channels to acquire our final image and display
our result:

>> img_final = cat(3,R,G,B);
>> figure, imshow(img_final)

Not bad for such a quick process, right?

What just happened?
In this example, you learned how to perform color isolation in an image in a quick and quite
efficient manner. We followed the same steps as before, to generate our mask for the fence
tips, altering just our structuring element to achieve a less crude segmentation. Then, we
split the color channels and used the inverse of our mask (the pixels having a zero value)
to transform all regions, except the ones in the mask, to grayscale. To achieve this, the values
of all pixels equal to zero in the mask were set to their grayscale equivalent, for all color
channels. When the process was finished, we joined the resulting color channels to acquire
our final image. The result may not be optimal, but it is certainly very good, considering
that we did not manually choose the ROIs to be isolated, but instead we performed image
thresholding to generate the mask.

Working with Color Images

[104]

The importance of different color spaces
Every color image processing task presented so far used the RGB color space, which is
probably the most popular one, especially due to its broad usage in computer screens.
The main disadvantage of this color space, however, is the correlation of its color channels,
which makes it almost infeasible to segment specific colors just by using one of the color
channels. Furthermore, the RGB color space is susceptible to shadows and illumination
changes, which cause a very significant distortion in colors.

To tackle these disadvantages, different color spaces, such as HSV or CIE-L*a*b* have been
proposed. These color spaces are modeled more closely to the way humans perceive colors,
they are less sensitive to illumination changes and they are also more appropriate for color
segmentation purposes. MATLAB provides a set of transformations between different color
spaces, based on the functions pair of makecform and applycform. The combination
of these two functions can convert seven different color spaces. Furthermore, MATLAB also
provides three more pairs of functions for color space transformations, between RGB and
HSV, NTSC, and YCbCr. Let's examine the way we can transform RGB to different color spaces,
through an example.

Time for action – color space transformation
In this example, we will demonstrate the usage of inherent MATLAB functions to transform
a RGB image to HSV and to CIE-L*a*b*. For the first one, we will use rgb2hsv and for the
second one we will use makecform and applycform. The following steps will do the trick:

1.	 First we load our image:

>> img = imread('my_image_color.bmp');

2.	 Then, we generate the HSV image:

>> img_hsv = rgb2hsv(img);

3.	 Finally, we will convert our image to CIE-L*a*b*:

>> cform = makecform('srgb2lab'); % Make the transform
 structure
>> img_lab = applycform(img,cform); % Apply transform

4.	 Now, let's demonstrate our results:

>> subplot(3,4,1),imshow(img),title('RGB image')
>> subplot(3,4,2),imshow(img(:,:,1)),title('R channel')
>> subplot(3,4,3),imshow(img(:,:,2)),title('G channel')
>> subplot(3,4,4),imshow(img(:,:,3)),title('B channel')
>> subplot(3,4,5),imshow(img_hsv),title('HSV image')
>> subplot(3,4,6),imshow(img_hsv(:,:,1)),title('H channel')
>> subplot(3,4,7),imshow(img_hsv(:,:,2)),title('S channel')

Chapter 4

[105]

>> subplot(3,4,8),imshow(img_hsv(:,:,3)),title('V channel')
>> subplot(3,4,9),imshow(img_lab),title('CIE-L*a*b* image')
>> subplot(3,4,10),imshow(img_lab(:,:,1)),title('L* channel')
>> subplot(3,4,11),imshow(img_lab(:,:,2)),title('a* channel')
>> subplot(3,4,12),imshow(img_lab(:,:,3)),title('b* channel')

What just happened?
This was just a demonstrative example of basic color space conversions in MATLAB.
The results were presented in a common figure, with each color channel isolated, so that
you can get a better qualitative sense of what the alternative color spaces have to offer.
Both HSV and CIE-L*a*b* separate color from brightness information. In the former case,
the brightness channel is V (Value) and in the latter case, the brightness channel is L
(Lightness). The remaining two channels in each color space include color information.
The basic difference is that in the case of CIE-L*a*b* color space, the two remaining
channels (a* and b*) are so-called color opponent dimensions. Channel a* assigns large
values to red colors and low values to green colors. Similarly, channel b* assigns large
values to yellow pixels and low values to blue pixels. In the case of HSV, color information
is included in channels H (Hue) and S (Saturation). Hue is an angle given in degrees
and Saturation is a length. Combined with Value, they define a cylinder of color shades.

Working with Color Images

[106]

It is useful to notice that the functions described previously do not produce
the expected results, as they are normalized to fit the description of an
image. Therefore, the color spaces produced by applycform, will include
pixel values ranging from 0 to 255. The other three pairs of color space
transformation functions (which exist also in older versions of MATLAB),
will include pixel values ranging from zero to one. This should be something
to beware of, especially if you try to reproduce results that are based in the
original descriptions of color spaces (for example, expect the Hue to have
values from 0 to 180, since it is an angle).

CIE-L*a*b* for more efficient color masking
Based on the theoretical analysis of the previous section, the alternative color spaces seem
better choices for color masking tasks. This is especially true for the case of CIE-L*a*b*
color space, which is particularly useful for such methods. The most important reason
for this, is that CIE-L*a*b* isolates colors into its a* and b* channels in a way that is close
to how humans perceive them. Therefore, in theory, we could rely on just one of the two
color channels (depending on the color we want to isolate) for generating a color mask.
The purer the color, the more probable it is to get the result we want. Let's revisit our
previous color isolation example, using just channel a* for mask creation.

Time for action – color isolation using CIE-L*a*b*
This time we will perform color isolation for our lake fence photograph, using just channel
a*. The goal will remain at converting the whole image to grayscale, except the fence tips
that should remain red. For comparison purpose, we will also perform the RGB process. We
will follow these steps:

1.	 First, we will load the image and generate the same mask as before, using
thresholding, cleaning, and dilation:

>> img = imread('my_image_color.bmp');
>> [output2] = RGBThreshold(img,[160 130 130]);
>> output(1:100,:) = 0;
>> maskRGB = imdilate(output2,strel('disk', 2));

2.	 Let's produce the mask using CIE-L*a*b* color space:

>> cform = makecform('srgb2lab'); % Make the transform
 structure
>> img_lab = applycform(img,cform); % Apply transform
>> maskLab = (img_lab(:,:,2) > 150); % Threshold a* channel

Chapter 4

[107]

3.	 Then, we separate the color channels:

>> R = img(:,:,1); % store R channel in new matrix
>> G = img(:,:,2); % store G channel in new matrix
>> B = img(:,:,3); % store B channel in new matrix

4.	 Now it is time to perform color isolation, using both masks. So:

>> img_gray = rgb2gray(img);
>> R1 = R; G1 = G; B1 = B; % Keep a copy of each color channel
>> R1(maskRGB == 0) = img_gray(maskRGB == 0);
>> G1(maskRGB == 0) = img_gray(maskRGB == 0);
>> B1(maskRGB == 0) = img_gray(maskRGB == 0);
>> R(maskLab == 0) = img_gray(maskLab == 0);
>> G(maskLab == 0) = img_gray(maskLab == 0);
>> B(maskLab == 0) = img_gray(maskLab == 0);

5.	 Finally, we have to join our new color channels for both cases to acquire our final
images and display our results:

>> img_final_RGB = cat(3,R1,G1,B1);
>> img_final_Lab = cat(3,R,G,B);
>> subplot(2,2,1),imshow(maskRGB),title('RGB Mask')
>> subplot(2,2,2),imshow(maskLab),title('L*a*b* Mask')
>> subplot(2,2,3),imshow(img_final_RGB),title('RGB Result')
>> subplot(2,2,4),imshow(img_final_Lab),title('L*a*b* Result')

Working with Color Images

[108]

6.	 In order to examine the difference more closely, we could use imtool in both
results, to zoom in on some details. The following image shows the bottom right
area of the image, cropped, and zoomed to 200%. On the left, we have the RGB
isolation result and on the right, the CIE-L*a*b* isolation result:

What just happened?
This example has made clear the twofold superiority of using CIE-L*a*b* for color isolation.
First, the red color isolation mask is generated using just one color channel, therefore, one
threshold value. Second, the final isolation result is better and more coherent; as such
it does not need morphology adjustments. The process followed is identical with the one
explained before, so no new methods are presented at this point.

Have a go hero – writing a function for region color isolation
You should by now have grasped the process of masking. Furthermore, we have so far
written some custom-made functions to perform various tasks. So, why don't you have a
go at both; write a function that will take in an image along with three color thresholds and
return the isolated color image derived from the thresholds. To make your function more
versatile, add two more functionalities: the support for more than one color space and the
support for regional color isolation (selecting the ROI with the color we want to isolate).

You shouldn't have too much trouble writing a function defined as follows:

function [output] = ROIColorIsolation(input, thresh, cspace)

% Function for color isolation in a user-defined image ROI
% Inputs:
% input - Input image
% thresh - Thresholds matrix ([1st 2nd 3rd])

Chapter 4

[109]

% cspace - Color space for mask selection (0: RGB
% 1: CIE-L*a*b*)
% Output:
% output - Output image (masked)

Let's test your code for correctness. You will call the function twice; once for the RGB case
and once for the CIE-L*a*b* case. The channels you don't want to use in the process should
have a threshold value of zero. To mix things up a little, let's use the book's cover page image
to test your function. Hopefully, you will get some similar results, using the R and G channels
for the RGB method (they both should have high values) and channel b* for the CIE-L*a*b*
method (it also should have high values, denoting yellow color).

>> steps = imread('Steps.bmp');
>> [resultRGB] = ROIColorIsolation(steps,[150 150 0], 0);
>> [resultLab] = ROIColorIsolation(steps,[0 0 150], 1);

In both the cases, our ROI selection is around the flowers at the lower-left part of the image
as shown in the following screenshot:

Working with Color Images

[110]

The results should look something like the following screenshot:

>> subplot(3,1,1),imshow(steps),title('Original Image')
>> subplot(3,1,2),imshow(resultRGB),title('RGB - ROI color
 isolation')
>> subplot(3,1,3),imshow(resultLab),title('L*a*b* - ROI color
 isolation')

Fixing illumination issues in RGB color images
Another area of image processing that has up to now been covered only for grayscale
images is the one of contrast enhancement and handling of illumination problems. The basic
method of generalization to color images is pretty much identical to all the other techniques
presented in this chapter that is, repeating the grayscale process for all color channels. Since,
the functions used in Chapter 2, Working with Pixels in Grayscale Images, for such tasks are
used only for grayscale images (with an exception of imadjust, which also does not work
for color images without defining extra inputs), we will write a function that incorporates
all the contrast enhancement techniques visited so far:

function output = ColorContrastEnhance(input, method)

% Function for color contrast enhancement of input image
% Inputs:
% input - Input image
% method – Enhancement method selection (0: histeq
% 1: adapthisteq
% 2: imadjust)
% Output:
% output - Output image (enhanced)
output = input;
switch method
 case 0
 for i = 1:3

Chapter 4

[111]

 output(:,:,i) = histeq(output(:,:,i));
 end
 case 1
 for i = 1:3
 output(:,:,i) = adapthisteq(output(:,:,i));
 end
 case 2
 for i = 1:3
 output(:,:,i) = imadjust(output(:,:,i));
 end
end

Let's see if our function works as expected:

>> img = imread('Steps.bmp');
>> img1 = ColorContrastEnhance(img, 0);
>> img2 = ColorContrastEnhance(img, 1);
>> img3 = ColorContrastEnhance(img, 2);
>> subplot(1,4,1),imshow(img),title('Original image')
>> subplot(1,4,2),imshow(img1),title('Color histeq')
>> subplot(1,4,3),imshow(img2),title('Color adapthisteq')
>> subplot(1,4,4),imshow(img3),title('Color imadjust')

It is obvious that the histeq and adapthisteq functions lead to a color distortion in this
case, so these methods should be very cautiously used in the case of per-channel processing
of RGB color images. The imadjust function, on the other hand, seems to work fine,
producing an acceptable result.

Working with Color Images

[112]

Fixing illumination issues in CIE-L*a*b*
The color distortion observed in the example of the previous section was caused by the high
correlation between the R, G, and B channels in the case of the RGB image. This is another
reason, why in many cases, a safer choice of color channel for color image processing tasks
is CIE-L*a*b*. Let's try to alter the function written in the previous section, so that it
converts the RGB input image to the CIE-L*a*b* color space, apply the chosen enhancement
method only in the Lightness channel (so that the colors remain unaffected) and then
transform the resulting image back to RGB:

function output = ColorContrastEnhanceLab(input, method)

% Function for color contrast enhancement of input image in L*a*b*
% Inputs:
% input - Input image
% method – Enhancement method selection (0: histeq
% 1: adapthisteq
% 2: imadjust)
% Output:
% output - Output image (enhanced)

cform = makecform('srgb2lab'); % Make the transform structure
img_lab = applycform(input,cform); % Apply transform to L*a*b*

switch method

% Apply chosen method in the Lightness channel (img_lab(:,:,1))

case 0
 img_lab (:,:,1) = histeq(img_lab (:,:,1));
case 1
 img_lab (:,:,1) = adapthisteq(img_lab (:,:,1));
case 2
 img_lab (:,:,1) = imadjust(img_lab (:,:,1));
end

cform = makecform('lab2srgb'); % Make the inverse transform structure
output = applycform(img_lab, cform); % Apply transform to RGB

Now we can test our new function to see if our results have improved:

>> img = imread('Steps.bmp');
>> img1 = ColorContrastEnhanceLab(img, 0);
>> img2 = ColorContrastEnhanceLab(img, 1);
>> img3 = ColorContrastEnhanceLab(img, 2);

Chapter 4

[113]

>> subplot(1,4,1),imshow(img),title('Original image')
>> subplot(1,4,2),imshow(img1),title('CIE – L*a*b* Color histeq')
>> subplot(1,4,3),imshow(img2),title('CIE – L*a*b* Color
 adapthisteq')
>> subplot(1,4,4),imshow(img3),title('CIE – L*a*b* Color imadjust')

Success! No color distortion this time. The adapthisteq result also seems to have added
more detail to the original photograph this time, enhancing the shadowed areas in a way
that is quite pleasing to the eye.

A practical example – red eye reduction
Now that we have presented how most of the image processing techniques met so far are
translated for color images, it is time to give a very practical example mixing several of the
methods. Red eye reduction is a common problem in amateur photography and has been
addressed in several ways. The cause of red eyes in photographs (typically, the ones taken
at night or in dark areas using flash), is the widening of our pupils. This has the effect of
enlarging the area hit by the flash light, causing it to hit our retina, thus illuminating its red
surface which is picked up by our camera lens.

In order to address the red eye issue after it has occurred (in the processing phase of our
photograph), the most common way is to follow these two simple steps:

1.	 Detect the red area in the eye, either automatically, or manually.

2.	 Replace the R pixel values included in the detected area, by a less bright value.
Usually, this value is derived from the average of the two remaining color channels
(G and B), so that the result is not chromatically irrelevant to the shade of the eye.

So, in order to see if this technique really works, we should tackle a real example.

Working with Color Images

[114]

Time for action – writing a function for red eye reduction
In this example, we will use a photograph of me, to try and reduce the red eye effect.
In order to be able to use this tool in other photographs as well, we should make
it as generic as possible.

1.	 First, we should write the following function in our editor (we'll call it
RedEyeReduction.m):

function output = RedEyeReduction(input, thresh)

% Function for red eye reduction in input image
% Inputs:
% input - Input image
% thresh – Threshold value in channel a*
% Output:
% output - Output image (after red-eye reduction)

cform = makecform('srgb2lab'); % Make the transform structure
 img_lab = applycform(input,cform); % Apply transform to
 L*a*b*

eyes = roipoly(input);	 % Select area of eyes
mask = (img_lab(:,:,2) > thresh) & (eyes > 0); % Red pixels in
 eyes

% Split the three color channels
R=input(:,:,1);
G=input(:,:,2);
B=input(:,:,3);

R(mask) = round((G(mask)+B(mask))/2); % Replace R value with
 (G+B)/2

output = cat(3,R,G,B); % Join color channels to form output
 image

Chapter 4

[115]

2.	 Let's now test our function to see if it actually works on my picture. We will choose
an area containing the eyes and use a fairly high threshold value for a* (that is, 150):

>> img = imread('my_red_eyes.bmp');
>> output = RedEyeReduction(img, 150);

3.	 Then, it is time to see what our function has done to the image:

>> subplot(1,2,1),imshow(img),title('Original image')
>> subplot(1,2,2),imshow(output),title('Image after red-eye
 correction')

Working with Color Images

[116]

4.	 The result of our red eye reduction function proved to be a huge success! Or didn't
it? The truth is that, we actually haven't thoroughly tested our function. Let's change
our threshold and see what happens. We'll try with a lower and a higher threshold:

>> output = RedEyeReduction(img, 170); % Picking a very high
 threshold
>> output2 = RedEyeReduction(img, 120); % Picking a very
 low threshold
>> figure,subplot(1,2,1),imshow(output),title('Very high
 threshold')
>> subplot(1,2,2),imshow(output2),title('Very low threshold')

5.	 The results of the previous steps reveal that our function relies very heavily on color;
hence, we should very carefully choose our threshold. Now let's see what happens
if we select a larger area (the results that follows show the selection and result):

>> output3 = RedEyeReduction(img, 150); % Picking a very large
 area

Chapter 4

[117]

What just happened?
When choosing the right threshold, the results achieved in this example are very satisfying,
given that we have only written less than 10 lines of functional code. The process described
above was followed, that is, transforming the image to CIE-L*a*b*, choosing the area
containing the eyes, combining it with our threshold to generate a mask, and then using
the mask to replace R values with the average values of G and B. You should note that in
order to get the average, we performed addition of the two channels, followed by division
by two. This could lead to a non-integer result, so we converted it to integer using the
function round, which rounds the result to the nearest integer value. In the last two steps,
we revealed the ugly truth; our function relies too much on a proper selection of the color
threshold and the eyes area from the user.

Taking advantage of eye circularity
As we can see from the problematic results described previously, the function we have
written should be used very cautiously if we want to have a good output. A way to improve
it would be to take into consideration additional properties of eyes, such as their radial
symmetry. Since our eyes are circular, the red region should also appear circular. This can
be detected using an image presented in Chapter 3, Morphological Operations and Object
Analysis, imfindcircles. Let's see how.

Time for action – automating our function for red eye reduction
This time, we will use one extra tool in our function, removing the need for ROI selection.
The rationale of the refined function will be to first check the image for circular regions in
color channel a* (we must find two) and then perform masking of the pixels in these regions
having high a* values. You may have noticed that we did not mention any manual ROI
selection step. However, we should state the suspected radii for the circle detection.

1.	 Let's see if this approach works, by first writing our function:

function output = RedEyeReductionCircular(input, thresh, radii)

% Function for red eye reduction in input image
% Inputs:
% input - Input image
% thresh – Threshold value in channel a*
% radii – 2x1 matrix with lowest and highest radius
% Output:
% output - Output image (after red-eye reduction)

Working with Color Images

[118]

cform = makecform('srgb2lab'); % Make the transform structure
 img_lab = applycform(input,cform); % Apply transform to
 L*a*b*

a = img_lab(:,:,2); % Isolate a* channel
[I,r] = imfindcircles(a,radii); % Detect circles in ROI

mask = zeros(size(a)); % Make a mask full of zeros

if size(I,1) ~= 2 % If we don't detect a pair of eyes
 disp('No pair of eyes detected in ROI!')
 % In case of failure, revert to the manual function
output = RedEyeReduction(input, thresh);
else
 mask(round(I(1,2)),round(I(1,1)))=1; % First eye center
 mask(round(I(2,2)),round(I(2,1)))=1; % Second eye center
 average_radius = round((r(1)+r(2))/2); % Find average eye
 radius
 mask = imdilate(mask,strel('disk',average_radius)); % Enlarge
 ROIs
 mask = (mask > 0) & a > thresh; % Keep pixels with high a*
 values
 % Split the three color channels
 R=input(:,:,1);
 G=input(:,:,2);
 B=input(:,:,3);

 R(mask) = round((G(mask)+B(mask))/2); % Replace R value with
 (G+B)/2

 output = cat(3,R,G,B); % Join color channels to form output
 image
end

2.	 This time, the results are computed automatically, so if we have chosen proper
values for the threshold and radii, the result should be correct. Let's check if this
is true. First, we load our image and call the function with the proper inputs:

>> img = imread('my_red_eyes.bmp');
>> output = RedEyeReductionCircular(img, 150, [10 25]);

Chapter 4

[119]

3.	 Now, it is time to visualize our results:

>> figure,subplot(1,2,1),imshow(img),title('Original image')
>> subplot(1,2,2),imshow(output),title('Automatic red eye
 reduction')

4.	 So far, so good. Our function seems to be working like a charm! But what happens
when wrong radii are chosen? Will our function revert to the manual method,
or will it fail completely? Let's see what happens if we give very large radii values:

>> figure; % Open new figure
>> output = RedEyeReductionCircular(img, 150, [40 45]);

The output of the previous code is as follows:

No pair of eyes detected in ROI!
Warning: Image is too big to fit on screen; displaying at 33%
> In imuitools\private\initSize at 72
 In imshow at 283
 In roipoly>parse_inputs at 184
 In roipoly at 81
 In RedEyeReduction at 13
 In RedEyeReductionCircular at 22

Working with Color Images

[120]

5.	 The result of the previous action was as expected. The warning message is nothing
to worry about; it comes up every time the image we try to display is very large to fit
on the screen. After the warning message, our image is displayed at 33% of its size
and we must, as before, select the ROI of the eyes:

6.	 After selecting our ROI, we can display the results:

>> figure,subplot(1,2,1),imshow(img),title('Original image')
>> subplot(1,2,2),imshow(output),title('Automatic red eye
 reduction')

Chapter 4

[121]

What just happened?
You have just mastered the secrets behind a simple automated red eye reduction. The
process of ROI selection is no longer needed, as we use the proper MATLAB function to
detect circular objects. We also included a safety check, so that the function does not do
anything if no pair of eyes is detected (or if more than two circular objects are detected).
In this case, we use disp to display an error message in the command line and then we
return the input as output. In case there is a pair of circular objects detected, we locate the
coordinates of their centers, create an empty mask of equal size to our image, and set the
pixels of the centers equal to one. Then, we find the average radius of the two eyes, round
it to the nearest integer, and use it to make a disk structuring element to dilate the centers.
This process leads to an almost perfect mask creation. The mask is then refined using the
color thresholding process used in the previous example and finally, we replace the red pixels
as already described. In the case that no pair of circles is detected, our function falls back
to the previous method implemented and uses the selected threshold and a user-selected
ROI to perform red eye reduction.

Pop quiz – working with color
Q1. Which of the following sentences are true?

1.	 A pixel with RGB values equal to {0,255,0} is red.

2.	 If we set all the pixels of the first dimension, of a three-dimensional matrix
representing an image equal to zero, we will have no red pixels left.

3.	 HSV and CIE-L*a*b* handle illumination fluctuations more efficiently, because they
have separate channels for brightness and color information.

4.	 Using histeq is the best out-of-the-box method to correct the illumination of
an RGB image.

5.	 Red eye reduction can be handled efficiently just by thresholding the red channel
of the picture.

Working with Color Images

[122]

Summary
This chapter was dedicated to the presentation of color image processing techniques that
build upon the grayscale methods of previous chapters. The meaning of color was explained,
accompanied by an introduction to color image manipulation. Then, color image thresholding
in various color channels was visited with examples, denoting the significant of a proper color
channel. Several techniques for color image illumination enhancement were also presented
and compared to their grayscale versions. Finally, two alternative ways for red eye reduction
in photographs were developed and explained. More specifically, this chapter covered:

�� What color images are and how they can be manipulated

�� How we can manipulate color images in ways using functions, such as imrotate,
imresize, and flipdim

�� How to change pixel values in all, or selected color channels

�� How we can apply color image thresholding using im2bw

�� What the steps for performing color isolation are and how we can achieve it in RGB
or CIE-L*a*b*

�� How to enhance color image illumination in RGB and CIE-L*a*b*

�� How to perform red eye reduction in manually selected regions of your photographs

�� How to perform automatic red eye reduction in your photographs

In the next chapter, we will present various image filtering techniques, that can be used
either for repairing flawed images or to achieve artistic results. Spatial and frequency filters
will be explained, using practical examples, to understand their importance. Several usual
image processing problems will be addressed using combinations of filtering methods
and other techniques that you have learned so far in this book.

2-Dimensional Image Filtering

Up to this point, you should be able to use MATLAB at a novice level, to perform
various useful image processing operations. It is now time to move on to more
advanced image filtering processes and revisit some of the already covered
ones. In this chapter, we will dig a little deeper into the image filtering theory
and use some more complicated techniques to enhance our images. We will
also provide some more information about the processes that you have already
learned, so that you take a look behind the curtains and see what they really
do. All the methods we will present, will once more be accompanied by
hands-on examples that demonstrate their significance in both typical and
more advanced image processing tasks.

In this chapter, we shall learn:

�� The basic theory on image filtering and processing pixel neighborhoods

�� How we can filter an image using convolution

�� Alternative ways to filter an image

�� Creating image filters in MATLAB

�� Using filters for image blurring

�� How to remove noise from images

�� Enhancing edges in images

�� Filtering only specific ROIs in an image

So, let's get started!

5

2-Dimensional Image Filtering

[124]

An introduction to image filtering
The truth is that, even though we did not explain the notion of filtering thoroughly, you
have already performed several image filtering processes throughout the previous chapters.
Morphological operations and edge detection are actually types of image filtering, even
though we used them in a black box sense, without really looking under the hood. Hopefully,
this approach will get you accustomed to the details of image filtering a little faster.

First of all, let's give a general definition of image filtering; it can be explained as the process
of modifying the values of the pixels using a function that is typically applied on a local
neighborhood of the image. In many situations, applying the function on a neighborhood
involves a special operation, called convolution, with an operand called kernel. In this
sense, you have already applied such a process in the case of erosion or dilation and even
in the case of edge detection. The former processes used the strel function to create a
kernel, while the latter used a kernel based on your choice of the edge detection method.
But let's not get ahead of ourselves. We will try to take things one step at a time, starting by
explaining neighborhood processing.

Processing neighborhoods of pixels
In the previous paragraph, we mentioned that the filtering process typically takes place on a
specific neighborhood of pixels. When this neighborhood process is applied for all pixels, it
is called sliding neighborhood operation. In it, we slide a rectangular neighborhood window
through all possible positions of the image and modify its central pixel using a function of the
pixels in the neighborhood.

Let's see how this is done, using a numeric example. We'll start with something simple, like
a linear filtering process, that is, averaging. Let's suppose that we have a small image, sized
8x8 pixels and we want to modify its pixel values, so that they get assigned with the rounded
average of the pixels' values in their 3x3 neighborhoods.

This will be easier to explain by using a real numeric example. Let's explain what happens
in the step shown in the following image, in which the central pixel of the highlighted 3x3
neighborhood (in the fourth row and sixth column) will be replaced by the average value of
all the pixels in the neighborhood (rounded to the nearest integer):

Chapter 5

[125]

132 101 101 107 115 121 110 92

120

134

143

145

162

127

67

124

146

147

147

155

122

74

122

144

136

138

152

115

78

120

134

121

129

149

113

80

129

134

121

119

142

117

89

123

132

115

113

129

102

89

121

134

107

113

118

95

107

129

138

107

122

122

94

109

132 101 101 107 115 121 110 92

120

134

143

145

162

127

67

124

146

147

147

155

122

74

122

144

136

138

152

115

78

120

134

121

129

149

113

80

129

134

121

119

142

117

89

123

132

121

113

129

102

89

121

134

107

113

118

95

107

129

138

107

122

122

94

109

Let the image be called I, the result in pixel I(4,6) will be:

Substituting the values of the pixels, we can calculate the average value:

Hence, the value of the central pixel of the neighborhood will become 121 (the closest
integer to 120.89).

By repeating the process described previously for all the pixels of the image, we get a result
commonly known as mean filtering or average filtering. The final result of the entire process
is shown in the following figure:

132 101 101 107 115 121 110 92

120

134

143

145

162

127

67

124

146

147

147

155

122

74

122

144

136

138

152

115

78

120

134

121

129

149

113

80

129

134

121

119

142

117

89

123

132

115

113

129

102

89

121

134

107

113

118

95

107

129

138

107

122

122

94

109

53 78 75 77 79 80 77 50

84

90

96

100

95

79

43

125

135

142

147

140

117

65

122

133

138

142

136

115

65

123

129

131

134

130

115

66

124

125

124

126

124

112

66

124

124

121

120

116

110

67

122

123

120

116

112

107

66

80

82

80

77

74

72

45

2-Dimensional Image Filtering

[126]

You may be wondering now; the choice of neighborhood, for the example, was very
convenient, but what happens when we want to change the value of a pixel on the borders
of the image such as let's say pixel I(1,4)? Why was it set to 77 as shown in the image?

This is indeed a valid and natural question, and you are very intuitive if you already thought
about it. The answer is that the way to tackle this problem when you want your resulting image
to be the same size as your original image is to involve only the neighboring pixels that exist in
your calculations. However, since in our example, the calculation that has to be performed is
averaging the neighborhood pixels, the denominator will still be 9, hence, it will be like we pad
the rest of the neighborhood with zeros. Let's demonstrate this example as well:

132 101 101 107 115 121 110 92

120

134

143

145

162

127

67

124

146

147

147

155

122

74

122

144

136

138

152

115

78

120

134

121

129

149

113

80

129

134

121

119

142

117

89

123

132

115

113

129

102

89

121

134

107

113

118

95

107

129

138

107

122

122

94

109

132 101 101 77 115 121 110 92

120

134

143

145

162

127

67

124

146

147

147

155

122

74

122

144

136

138

152

115

78

120

134

121

129

149

113

80

129

134

121

119

142

117

89

123

132

115

113

129

102

89

121

134

107

113

118

95

107

129

138

107

122

122

94

109

0 0 0 0 0 0

As shown in the previous image, the central pixel value gets evaluated as follows:

Of course, since there is no 0th line, the first three operands of the addition are non-existent,
hence set to zero:

Therefore, the result of the averaging process for the aforementioned neighborhood will
be equal to 77 (as shown in the image). This approach is not the only one we have for the
image borders. We could assign the maximum possible value (255 for our example) to the
non-existent pixels, or assign them the mean value of the rest of the neighborhood, and so
on. The choice we make affects the quality of the borders of the image, as we will see in real
pictures later on.

Chapter 5

[127]

The basics of convolution
The process described previously was performed in overlapping neighborhoods of the
image, but no use of a kernel was mentioned. So, what is this all about? And how does the
convolution fit in this framework? Well, the truth is that the process described previously
is actually describing the essence of convolution, which is passing a kernel over all possible
equally sized neighborhoods of the image and using it to modify the value of the central pixel.
The only problem in our case is that we did not use a specific kernel in the process described.
Or did we? Let's try to find out using MATLAB code to perform two-dimensional convolution.

The 3x3 neighborhood we used for the described process can be replaced by a 3x3 kernel,
as long as the final result remains the same. The kernel that accomplishes this effect is a 3x3
matrix with all pixels set to 1/9. Convolving this kernel with the original image produces the
same result as the aforementioned example. To demonstrate the process, we can use the
two-dimensional convolution MATLAB function conv2 as follows, to get the result:

>> original = [132 101 101 107 115 121 110 92
 120 124 122 120 129 123 121 129
 134 146 144 134 134 132 134 138
 143 147 136 121 121 115 107 107
 145 147 138 129 119 113 113 122
 162 155 152 149 142 129 118 122
 127 122 115 113 117 102 95 94
 67 74 78 80 89 89 107 109]; % Create original
 image
>> kernel = ones(3,3)*(1/9); % Create kernel
>> conv_result = conv2(original, kernel,'same'); % Perform
 convolution
>> final_result = round(conv_result) % Rounding of result

The final result obtained is as follows:

final_result =
 53 78 75 77 79 80 77 50
 84 125 122 123 124 124 122 80
 90 135 133 129 125 124 123 82
 96 142 138 131 124 121 120 80
 100 147 142 134 126 120 116 77
 95 140 136 130 124 116 112 74
 79 117 115 115 112 110 107 72
 43 65 65 66 66 67 66 45

2-Dimensional Image Filtering

[128]

As expected, the result is the same as the one calculated using the analytical process
described before. The convolution kernel has done its job. In our process, we used a 8x8
original image and a 3x3 kernel with the values of all pixels as 1/9 (this is what happens
when you get a 3x3 matrix with all instances of 1 and multiply it by 1/9, as we did) and finally
ordered the conv2 function to produce the result using the padding process described
earlier for the borders, hence calculating a result with the same dimensions as the original.

But how did it do it? What exactly is convolution? Now it is time to fully understand
convolution. But first, you must get acquainted with its mathematical equations. Since
learning math is not the purpose of this book, we will try to give you just the basics, so that
you get an idea of what this operation is all about, as it is invaluable for image filtering.

The ugly mathematical truth
Let's start with the mathematical definition of convolution for discrete functions (since
in digital image processing all functions are discrete). To form our problem in a signal
processing sense, we can define it as passing an input image I, through a Linear Space
Invariant (LSI) system, performing convolution with a kernel h (also called a filter), to
produce an output image, g. Hence, we get the following block diagram:

LSI System
h i,j[]

I i,j[] g i,j[]

This process is described mathematically by the following equation:

where * is the symbol for convolution and the large Σ denotes a sum. The reason we have
two sums is because our process is two-dimensional. Without going into too much detail,
we can summarize the process described previously using the following steps, which are also
followed in the implementation of conv2:

1.	 Rotate the convolution kernel by 180 degrees to abide by the process in the double
sum of the equation.

2.	 Determine the central pixel of the neighborhood. This is straightforward when the
neighborhood has an odd number of rows and columns, but must be based on some
rule if either of the dimensions is even.

Chapter 5

[129]

3.	 Apply the rotated kernel to each pixel of the input image. This is a multiplication
of each pixel in the rotated kernel by the corresponding pixel on the image
neighborhood processed. It can be thought of as the weighted sum of the
neighborhood pixels.

The result of conv2 can be either of the following choices:

�� full: Larger than the original image, taking into account all the pixels that can be
computed using the convolution kernel, even if their center falls out of the image.
This is the default choice for the function.

�� same: Same size as the original image, using zeros to calculate border pixel values.

�� valid: Smaller than the original image, so that it uses only pixels that have full valid
neighbors in the computations.

This means that when you want to produce a convolution result with the same size as the
original image, you will have to use same as an input, as we did in our previous example.

By now, those of you that are not very much into math may be tempted to stop reading. So,
let's stop the mathematical jargon and dive into the practical examples. We know what a
convolution does and we have seen an example on the pixels of a very small image, using an
averaging convolution kernel. So, what does this process really do to an image?

Time for action – applying averaging filters in images
We will start off with an easy-to-follow example, so that all the theory described previously
is demonstrated. For our purposes, we will be using one of the images from the previous
chapters. In this example, we will also introduce some new MATLAB functions, to facilitate
your understanding. Let's start:

1.	 First, we load our image, which is holiday_image2.bmp:

>> img = imread('holiday_image2.bmp');

2.	 Then, we generate our convolution kernel, using function fspecial and then rotate
it 180 degrees:

>> kernel = fspecial('average',3);
>> kernel = rot90(kernel,2)

3.	 The output of the code will be as follows:

kernel =
 0.1111 0.1111 0.1111
 0.1111 0.1111 0.1111
 0.1111 0.1111 0.1111

2-Dimensional Image Filtering

[130]

4.	 Now, it is time to use the three different ways of convolving our image:

>> con1 = conv2(img,kernel); % Default usage ('full')
>> con2 = conv2(img,kernel,'same'); % convolution using
 'same'
>> con3 = conv2(img,kernel,'valid'); % convolution using
 'valid'

5.	 In the previous step, you probably got a warning saying:

Warning: CONV2 on values of class UINT8 is obsolete.
Use CONV2(DOUBLE(A),DOUBLE(B)) or CONV2(SINGLE(A),SINGLE(B))
 instead.

6.	 This actually means that UNIT8 type will not be supported by conv2 in the future.
To be on the safe side, you might want to use the suggestion by MATLAB and
convert your image to single prior to convolving it:

>> img = single(img);
>> kernel = fspecial('average',3); % Create 3x3 averaging
 kernel
>> con1 = conv2(img,kernel); % Default usage ('full')
>> con2 = conv2(img,kernel,'same'); % convolution using 'same'
>> con3 = conv2(img,kernel,'valid'); % convolution using
 'valid'

7.	 Now, we can show our results in one figure, along with the original image. This time,
we are going to use an empty matrix as the second argument in imshow, to avoid
having to convert our results to UNIT8:

>> figure;subplot(2,2,1),imshow(img,[]),title('Original')
>> subplot(2,2,2),imshow(con1,[]),title('full')
>> subplot(2,2,3),imshow(con2,[]),title('same')
>> subplot(2,2,4),imshow(con3,[]),title('valid')

Chapter 5

[131]

8.	 It is obvious that the three results are identical, but there is a small detail. Their size
is not. So let's see if we got what we expected. In the Workspace window, you can
see the difference in sizes:

9.	 Let's now discuss the physical, qualitative meaning of averaging an image. What
does it exactly do? The answer is; it performs blurring of the image. To examine this
effect, we can crop the tower from our original and averaged image and display the
result. The tower can be cropped using the following coordinates:

>> tower_original = img(51:210,321:440);
>> tower_blurred = con2(51:210,321:440); figure
>> subplot(1,2,1),imshow(tower_original),title('Original
 tower')
>> subplot(1,2,2),imshow(tower_blurred),title('Blurred tower')

10.	The original image and the blurred image are as follows:

What just happened?
The process described in the previous example demonstrated the usage of convolution in
its various implementations, using the averaging kernel produced using fspecial. This
function is designed to generate kernels for popular filtering tasks, as we will further analyze
in the following sections. In our case, we created a 3x3 kernel of values equal to 1/9 (which
is almost equal to 0.1111, hence the result in step 2). Then, the three different choices of
convolution were applied and the results were displayed along with the original image. Of
course, a detail such as the size of the borders cannot be easily observed in full scale, so we
observed the difference in the sizes of the results. Finally, we displayed a part of the original
image next to the same part of the same convolution result, to prove that the result of the
averaging process is a blurring of the image.

2-Dimensional Image Filtering

[132]

Alternatives to convolution
Convolution is not the only way to perform image filtering. There is also correlation, which
gives us the same result. Filtering an image using correlation can be accomplished
by using the MATLAB function called filter2, which performs, as its name implies,
a two-dimensional filtering of two images. The first input in this case is a kernel (filter) and
the second input is an image (or in a more general case a two-dimensional matrix). We will
not go into detail here, just point out that one main difference between the two methods is
that correlation does not need the kernel to be rotated. The border issue remains, having the
same three approaches as in the case of convolution using conv2. A demonstration on the
equivalence of the two functions is given if we type in the following commands:

>> img = imread('holiday_image2.bmp');
>> img = img(51:210,321:440);
>> kernel = fspecial('average',3);
>> kernel180 = rot90(kernel,3);
>> conv_result = conv2(img,kernel180,'same');
>> corr_result = filter2(kernel,img,'same');
>> subplot(1,3,1),imshow(img),title('Original')
>> subplot(1,3,2),imshow(uint8(conv_result)),title('Blurred - conv2')
>> subplot(1,3,3),imshow(uint8(corr_result)),title('Blurred -
 filter2')

The result of the preceding code is displayed as follows:

In our example, the two kernels used for conv2 and filter2
are identical, since the averaging filter used is square (3x3)
and all its elements are equal. The generalized process shown
will be useful when we have a more complex kernel.

Chapter 5

[133]

Using imfilter
The two alternative solutions for performing image filtering presented so far have their
origin in general two-dimensional signal processing theory. This means that they should be
expanded for three-dimensional signals when we have to deal with colored image filtering.
The process is pretty straightforward and involves repeating the process for all three
separate colored channels. But why do that, when we have a function that takes care of
checking the image before applying the filter and then selecting the correct method?

This specialized function is called imfilter and it is designed for handling images, regardless
if they are grayscale or color. This function can implement both filtering methods described in
previous paragraphs and it can also define the result to be same or full. Its extra functionality
comes in the selection of the way it handles boundary values, and the automatic processing of
color images. Furthermore, this function performs the needed conversions, in case the image
input is integer-valued. Combined with the fspecial function, this will probably be your most
valuable tool in MATLAB when it comes to image filtering.

Creating filters with fspecial
So far you have seen the averaging filter kernel, which can be generated in any method
possible that can produce a mxn matrix with all its values equal to 1/mn.

The fspecial function used in our previous examples is one way to produce the averaging
kernel mentioned. However, it can be used to produce several other filtering kernels.
A simple call to the help of MATLAB on this function shows us its usage in the first few lines
of the result:

>> help fspecial

The call to the help command of MATLAB will give following output:

 fspecial Create predefined 2-D filters.
 H = fspecial(TYPE) creates a two-dimensional filter H of the
 specified type. Possible values for TYPE are:
 'average' averaging filter
 'disk' circular averaging filter
 'gaussian' Gaussian lowpass filter
 'laplacian' filter approximating the 2-D Laplacian operator
 'log' Laplacian of Gaussian filter
 'motion' motion filter
 'prewitt' Prewitt horizontal edge-emphasizing filter
 'sobel' Sobel horizontal edge-emphasizing filter
 'unsharp' unsharp contrast enhancement filter

2-Dimensional Image Filtering

[134]

This means that fspecial can create nine different filters, depending on the input choice
of the user. If we want to categorize them according to their functionality, we will have to use
three broad categories:

�� Image smoothing or Blurring: This is a process that is performed using low-pass
filters. The ones that fspecial provides are average, disk, motion and gaussian.
The filters of this type are generally called low-pass because they only let image
areas with low frequencies (smooth areas without much detail) be unaffected.

�� Edge detection filters: These are the core filters used for the edge detection
techniques visited in Chapter 3, Morphological Operations and Object Analysis. The
ones supported by fspecial are laplacian, log, prewitt and sobel. All these filters
suppress the pixel values in areas that do not have many edges and enhance the
edges in the image. When they are thresholded, they produce results like the ones
generated by edge.

�� Finally, fspecial can create a filter that is used for high-pass filtering, that is, the
enhancement of areas that contain much detail. This has the opposite effect from
the first group of filters and can be accomplished using an unsharp kernel.

In the rest of the chapter, we will try to check the functionality of some of these filters, using
real and practical examples.

Different ways to blur an image
Image blurring or smoothing, can be accomplished in many ways. Three of the most popular
techniques can be accomplished using imfilter and fspecial. Since the tower from the
previous example contains enough detail to show the effect, we will use it for our example.

Time for action – how much blurring is enough
Just like we did in previous chapters, we will write a custom function that incorporates
a combination of MATLAB functions to make our lives easier. This time, our function will
perform image blurring, hence will be called BlurImage.m:

function [output] = BlurImage(input,kernel_choice,kernel_size,method)

% Function for image blurring
% Inputs:
% input - Input image
% kernel_choice – User's choice of filter
% (1: disk
% 2: average
% 3: gaussian)

Chapter 5

[135]

% kernel_size – User's choice of kernel size
% ([radius] for disk,
% [rows, columns] for average,
% [rows, columns, standard deviation] for Gaussian)
% method – User's choice of filtering method
% (1: correlation
% 2: convolution)
% Output:
% output - Output image (after bluring)

switch kernel_choice
 case 1
 kernel = fspecial('disk',kernel_size);
case 2
 kernel = fspecial('average',kernel_size);
case 3
 kernel = fspecial('gaussian',kernel_size);
end

switch method
 case 1
 output = imfilter(input,kernel,'conv');
 case 2
 output = imfilter(input,kernel,'corr');
end

Now we can test our code. Let's filter the same image using three different filters, using
two different sizes:

1.	 First, we will load and crop our image:

>> img = imread('holiday_image2.bmp');
>> img = img(51:180,321:440);

2.	 Then, we will apply the three filters with selected size 3x3:

>> f1 = BlurImage(img,1,1,1);
>> f2 = BlurImage(img,2,[3,3],1);
>> f3 = BlurImage(img,3,[3,3,1.5],1);

3.	 Let's do the same for kernels of size 5x5:

>> f4 = BlurImage(img,1,2,1);
>> f5 = BlurImage(img,2,[5,5],1);
>> f6 = BlurImage(img,3,[5,5,1.5],1);

2-Dimensional Image Filtering

[136]

4.	 Finally, we will display all images in the same figure, next to the original:

>> subplot(2,4,1),imshow(img),title('Original')
>> subplot(2,4,2),imshow(f1),title('Blur by disk of radius 1')
>> subplot(2,4,3),imshow(f2),title('Blur by 3x3 averaging
 kernel')
>> subplot(2,4,4),imshow(f3),title('Blur by 3x3 Gaussian
 kernel')
>> subplot(2,4,6),imshow(f4),title('Blur by disk of radius 2')
>> subplot(2,4,7),imshow(f5),title('Blur by 5x5 averaging
 kernel')
>> subplot(2,4,8),imshow(f6),title('Blur by 5x5 Gaussian
 kernel')

5.	 The result will be as follows:

What just happened?
We have just created a tool that can be useful for the one-step blurring of images. All three
blurring methods are included and you have the choice of filter parameters. The three
methods were then demonstrated, for different kernel sizes, and the effect they have on
an image became obvious. From this example, the pros and cons of each choice are not very
apparent. The only thing that is very apparent is that they all cause a loss of detail, which
could be useful in special cases.

Chapter 5

[137]

Time to make art using blurring
Losing information by blurring an image is not always bad; many photographers use this
effect to add an artistic touch to their images. A common effect is called bokeh and it is the
blurring of out-of-focus areas in a photograph. Let's see how we can create an out-of-focus
effect in one of our photographs. We will use a panoramic night photograph of the city
I grew up in, Ioannina. Let's try the disk kernel with a radius of 25:

>> img = imread('Ioannina.jpg');
>> kernel = fspecial('disk',25);
>> for i=1:size(img,3),
bokeh(:,:,i) = imfilter(img(:,:,i),kernel);
end
>> subplot(2,1,1),imshow(img),title('Original image of Ioannina')
>> subplot(2,1,2),imshow(bokeh),title('Bokeh image of Ioannina')

Now, we will try to add such an effect to our images, by writing a function that will let the
user define the Region Of Interest (ROI) that will remain in focus and then perform blurring
using the disk kernel.

Time for action – creating the bokeh effect in an image
We will now work on another night image taken in Berlin, Germany. We will try to isolate the
light bulb soldier and perform blurring in the other areas of the image. The function we will
use will be able to handle both grayscale and color images. Let's see the function:

function [output] = Bokeh(input, radius)

% Function that performs blurring on the whole image except a user
defined
% ROI,using a disk kernel. The effect resembles the bokeh effect.

2-Dimensional Image Filtering

[138]

% Inputs:
% input - Input image
% radius – User's choice of radius for the disk kernel
% Output:
% output - Output image (only user-defined ROI stays in focus)

kernel = fspecial('disk',radius); % Create disk kernel
disp('Select area to keep in focus!') % Display message to user
mask = roipoly(input); % User selects area of interest
output = []; % Start with an empty image
for i = 1:size(input,3) % Covering the case of color images
 cropped = input(:,:,i); % Perform per-channel processing
 channel = input(:,:,i); % Replica of channel
 cropped(mask == 1) = 0; % Keep only ROI outside mask
 cropped = imfilter(cropped,kernel); % Perform blurring out of ROI
 channel(mask==0) = cropped(mask==0); % Only keep ROI unaffected
 output = cat(3,output,channel); % Concatenate channels
end

Now, we can use our function on the image described:

1.	 Let's start by loading our image:

>> img = imread('soldier.jpg');

2.	 Then, we must call our Bokeh function, giving it the input image name and the
radius of the filter (we will use 15 pixels):

>> [output] = Bokeh(soldier,15);

We get the following message displayed by our function:

Select area to keep in focus!

3.	 Now we select the area we want to keep in focus:

Chapter 5

[139]

4.	 Now, let's show our original image and our artistic result next to each other:

>> subplot(1,2,1),imshow(img),title('Original')
>> subplot(1,2,2),imshow(output),title('Bokeh effect')

What just happened?
In this example, you got to learn a new way to process your images so that you add an
artistic effect to them. The process of ROI selection covered in previous chapters was used
so that we select a region we want to remain unaffected. Then, for all channels of the
image (whether it has one or three), we perform blurring with a disk kernel, which is a good
approximation of the bokeh effect caused by the rendering of out-of-focus light sources by
a photographic lens. This way, you can make the area outside your selection seem naturally
out-of-focus. In a similar manner, you can add other effects in selected parts of your image.
You just have to be careful of what regions you select to take place in the processing (set to 1
in your mask) and which ones you want to keep unaffected (set to zero in your mask).

Have a go hero – add a motion effect in your image
Now it is your turn to take the wheel. Try to alter the Bokeh function we wrote to perform
blurring using the motion filter instead of the disk kernel. The motion filter adds a feel of
motion to your images; the larger the kernel, the faster the motion. Wouldn't it be fun if
the cars in our soldier image seemed to move? Let's try it. You could base your code on the
function we created earlier. Its definition is given below:

function [output] = Motion(input,len)

% Function that performs motion blurring on a user defined
% ROI,using the motionkernel. The effect resembles a local motion.
% Inputs:
% input - Input image
% len – User's choice of length for the motion in pixels

2-Dimensional Image Filtering

[140]

% theta – User's choice of angle for the motion in degrees
% Output:
% output - Output image (only user-defined ROI appears to
 move)

To check if your function works, you should type:

>> img = imread('soldier.jpg');
>> [output] = Motion(soldier,25,0);

Then, you should be able to use the mouse to define the ROI you want to appear as moving:

When displayed next to the original image, the final result should look something like this:

Chapter 5

[141]

Removing noise using blurring
Another very popular image processing task in which blurring is used, is removing noise from
images. Images can be distorted because of various reasons such as, for example, from their
scanning process, where the film grain adds unwanted noise, but the scanner could also
introduce noise, or the photograph to be scanned might have aesthetic marks on it (such
as scratches). Furthermore, even digital photographs may have noise in them, for example,
due to their CCD detectors. Transmitting images over electronic mediums may also corrupt
them, leading to a noisy result. Many types of additive noise have been implemented in
the Image Processing Toolbox of MATLAB and they can be used to simulate some of the
aforementioned image corruptions. The function that is used for adding noise to an image is
called imnoise. Its usage can be explored using help. Let's see the first lines of the result:

>> help imnoise

The output of the preceding command is as follows:

imnoise Add noise to image.
 J = imnoise(I,TYPE,...) Add noise of a given TYPE to the intensity
image
 I. TYPE is a string that can have one of these values:
 'gaussian' Gaussian white noise with constant mean and variance
 'localvar' Zero-mean Gaussian white noise with an intensity-
dependent variance
 'poisson' Poisson noise
 'salt & pepper' "On and Off" pixels
 'speckle' Multiplicative noise
 Depending on TYPE, you can specify additional parameters to
imnoise. All
 numerical parameters are normalized; they correspond to operations
with
 images with intensities ranging from 0 to 1.

This means that we can add five different types of noise to an image. Each type corresponds
to some physical source of noise and this should be taken under consideration in your
chosen course of action for removing noise from an image.

In this section, we will try to get a rule of thumb on which filter should be used for each type
of noise.

2-Dimensional Image Filtering

[142]

Time for action – trying to remove different types of noise
Let's go back to our holiday in Rome picture. We will add different types of noise to it and
then filter the noisy result with our blurring kernels:

1.	 Once again, we will start with loading our image:

>> img = imread('holiday_image2.bmp');

2.	 Now let's add four kinds of noise to it (we'll use the default settings):

>> gauss = imnoise(img,'gaussian');
>> poiss = imnoise(img,'poisson');
>> speck = imnoise(img,'speckle');
>> snp = imnoise(img,'salt & pepper');

3.	 First, we will write a small function that takes the original image, the distorted
image, and the type of noise as input; performs filtering with our three filters and
displays the results. We'll name our function DenoiseAndPlot.m:

function DenoiseAndPlot(original,distorted,type)

% Function that performs filtering of the distorted image with %
three different kernels and displays the results
% Inputs:
% original - Original image
% distorted – Image distorted by noise
% type – Type of noise
% (1: Gaussian, 2: Poisson, 3: speckle, 4: Salt & Pepper)

switch type
 case 1
 message = 'Noisy image (Gaussian)';
 case 2
 message = 'Noisy image (Poisson)';
 case 3
 message = 'Noisy image (speckle)';
 case 4
 message = 'Noisy image (Salt & Pepper)';
end
f1 = BlurImage(distorted,1,2,1);
f2 = BlurImage(distorted,2,[5,5],1);
f3 = BlurImage(distorted,3,[5,5,2],1);
subplot(2,3,1),imshow(original),title('Original image')
subplot(2,3,2),imshow(distorted),title(message)
subplot(2,3,4),imshow(f1),title('Filtered by disk kernel')
subplot(2,3,5),imshow(f2),title('Filtered by averaging kernel')
subplot(2,3,6),imshow(f3),title('Filtered by Gaussian kernel')

Chapter 5

[143]

4.	 Now, we will call our function for the case of Gaussian noise:

>> DenoiseAndPlot(img,gauss,1);

5.	 The result of the preceding code is as follows:

6.	 We can observe that all three filters have a comparable result, with the average filter
causing more detail loss.

7.	 Now, we'll try to remove the Poisson noise using our known filters:

>> DenoiseAndPlot(img,poiss,2);

8.	 Once again, all three filters have a comparable result, with the average filter causing
more detail loss.

2-Dimensional Image Filtering

[144]

9.	 It's time for the third type of noise, which is speckle noise. Once more we execute:

>> DenoiseAndPlot(img,poiss,3);

10.	The results are again similar to previous cases of noise.

11.	Let's finally try the salt & pepper noise:

>> DenoiseAndPlot(img,snp,4);

12.	 The result accomplished for the salt and pepper case appears quite noisy for all three
filters. This gives us a hint that maybe these three blurring filters are not equally
successful for all types of noise. The deduction is really intuitive, but still, we would
have to find another filter that works better, at least for the salt and pepper noise.

Chapter 5

[145]

What just happened?
First of all, we made a very wise choice by writing a function that performs the repeating
parts of our code, which were quite lengthy. The only thing that changed according to our
choice of filter was the title of the noisy image. Hence, we included a switch clause to
change our message depending on the type of noise. All other lines in our function are pretty
straightforward. We passed the noisy image through all of our filters using the BlurImage
function we made earlier and displayed all the results in the same figure as the original and
noisy images.

The results we got were decent for all cases, except the case of salt & pepper noise. Nothing
exceptional and perfect, but the resulting images were generally an improvement over the
noisy ones.

Hence, these three filters can be used for denoising purposes in cases of:

�� Image sensor noise in the brighter parts of an image, which normally resembles
the Poisson noise. This kind of noise is usually called shot noise.

�� Image sensor noise in the darker parts of an image, which normally resembles
the Gaussian noise. This kind of noise is usually called amplifier noise.

�� Film grain noise, which also can be modeled by Gaussian noise.

�� Noise that appears in SAR (Synthetic Aperture Radar) images, which is granular
and appears like speckle noise.

However, the case of noise added by A/D (Analog to Digital) conversion or by errors in image
data bits during transmission cannot be handled very effectively by these filters. This is why
we will now visit another very important filtering method, called median filtering.

The importance of the median filter
The median filter is also a neighborhood filter resembling the averaging filter, but instead
of calculating the average value of the neighborhood it processes, it finds their median value
and assigns it to the central pixel. This difference causes the process of median filtering to be
less sensitive to outliers. Since the salt & pepper noise is essentially a collection of randomly
placed outlier (black or white) pixels, the median filter should work better on this type of
noise. Let's see if this is true, using the function medfit2.

2-Dimensional Image Filtering

[146]

 Time for action – removing salt & pepper with medfilt2
We will start in the usual way and try to remove the salt & pepper noise from our image,
using the median filtering function offered by MATLAB.

1.	 Let's load our image and add salt & pepper noise to it:

>> img = imread('holiday_image2.bmp');
>> snp = imnoise(img,'salt & pepper');

2.	 Now, let's filter it and show the results:

>> denoised = medfilt2(snp,[5,5]);figure
>> subplot(1,3,1),imshow(img),title('Original image')
>> subplot(1,3,2),imshow(snp),title('Noisy image
 (Salt&Pepper)')
>> subplot(1,3,3),imshow(denoised),title('Denoised image')

What just happened?
This is much better. It seems that we have found our preferred filtering solution for the case
of salt and pepper noise. The only thing we did was to apply median filtering to our image
that was distorted by salt and pepper noise, using a 5x5 kernel.

Have a go hero – denoising real images
Now that you have learned most of the filters for noise removal, it is time to put them to
the test with real noise. You should download problematic pictures, for example, taken with
a high ISO setting, or bad JPEG compression artifacts and then try to find which filter can
de-noise them more successfully. A simple search for noisy images on the internet should
provide a multitude of examples to work on.

Chapter 5

[147]

Bringing back the details
Up to now, we have been using filters that subtract details from the images. There
is a way to do the opposite, which is to highlight details. This can be done using the edge
enhancement kernels available, or the unsharp kernel provided by the fspecial function.
The second option is quite straightforward and involves only filtering the image using
the contrast enhancement filter. The first option though, is a little trickier and demands
an understanding of the edge enhancement filtering results. Let's first try to understand
these results, using an example.

Time for action – enhancing the edges in our images
We will now try to get a feel of what edge enhancement is all about. We will use our
holiday image to perform grayscale enhancement and our soldier image to perform color
enhancement (remember that the edge detection techniques of Chapter 3, Morphological
Operations and Object Analysis, involved only grayscale images):

1.	 First, we will load our two images in two matrices:

>> gray = imread('holiday_image2.bmp');
>> color = imread('soldier.jpg');

2.	 Now, let's prepare our kernels (we'll use their default settings):

>> lp = fspecial('laplacian');
>> lg = fspecial('log');
>> pr = fspecial('prewitt');
>> sb = fspecial('sobel');

3.	 Next, we apply the filters to both images (in the same line to save space):

>> g1 = imfilter(gray,lp); c1 = imfilter(color,lp);
>> g2 = imfilter(gray,lg); c2 = imfilter(color,lg);
>> g3 = imfilter(gray,pr); c3 = imfilter(color,pr);
>> g4 = imfilter(gray,sb); c4 = imfilter(color,sb);

2-Dimensional Image Filtering

[148]

4.	 And now, let's show our grayscale results on the same figure:

>> subplot(3,2,1),imshow(gray),title('Original grayscale
 image')
>> subplot(3,2,2),imshow(g1),title('Grayscale Laplacian
 result')
>> subplot(3,2,3),imshow(g2),title('Grayscale LoG result')
>> subplot(3,2,4),imshow(g3),title('Grayscale Prewitt result')
>> subplot(3,2,5),imshow(g4),title('Grayscale Sobel result')

5.	 Finally, let's show our color results on the same figure:

>> subplot(3,2,1),imshow(color),title('Original color image')
>> subplot(3,2,3),imshow(c1),title('Color Laplacian result')
>> subplot(3,2,4),imshow(c2),title('Color LoG result')
>> subplot(3,2,5),imshow(c3),title('Color Prewitt result')
>> subplot(3,2,6),imshow(c4),title('Color Sobel result')

Chapter 5

[149]

What just happened?
You just performed edge enhancement using all the filters available by the fspecial
function. In step 2, we prepared the kernels and in step 3 we filtered our images (loaded in
step 1) with each one of the kernels. Note that, to save space in our text, we took advantage
of the fact that we can give multiple commands in one command line, just by separating
them with the semi-colon symbol (or the comma if we do not care about the result being
printed on screen). The same trick has always been used in the case of plotting, so you
must have understood the logic by now. The results generated in step 4 show that the edge
enhancement filters produce a very interesting effect; in grayscale images they enhance
the areas with sudden transitions between dark and bright (high frequencies) and in color
images, they have the same effect in each color channel, therefore enhancing bright lights
in night scenes. This is an interesting effect, right?

Brighten up the lights
Now, we will take advantage of the last conclusion of the example we just performed, to
brighten the lights in our soldier picture. We already saw that the color edge enhancement
in night scenes has the effect of enhancing light sources. So, what would happen if we used
this result to amplify the lights in our image by adding the result of the edge enhancement
filter to the original image? Normally, we would have to worry about the values after the
addition exceeds 255 (the maximum brightness value of an 8-bit image). However, MATLAB will
automatically truncate these results and make them equal to 255. Therefore, the only thing we
need to be careful about will be to not let many pixels get assigned the maximum value, as this
would give us an unnatural result. Let's see all these things with an example.

2-Dimensional Image Filtering

[150]

Time for action – brighten up the lights in our soldier picture
Once again we will work with our color image depicting the light bulb soldier. The results can
be visible even in the grayscale form of the image, so you could convert it to grayscale before
applying the technique:

1.	 Let's start off with loading our image and creating the filter. We'll use the prewitt
kernel (in its default value it will emphasize horizontal edges):

>> img = imread('soldier.jpg');
>> kernel = fspecial('prewitt');

2.	 Then, we will apply our filter to the image and add the result to our original:

>> edges = imfilter(img,kernel);
>> brighter = img + edges;

3.	 Now, let's see the result side-by-side with the original:

>> subplot(1,2,1),imshow(img),title('Original image');
>> subplot(1,2,2),imshow(brighter),title('Brightened image');

4.	 To get a better idea of the effect, let's crop the left part of the images, containing
Christmas light bulbs on trees:

>> imcrop(brighter);
>> imcrop(img);

Chapter 5

[151]

5.	 It should be obvious that the left image is the brightened one, as it has even
enhanced some light bulbs that seemed dim in the original image (on the right).
Furthermore, we must note once more that the Prewitt filter we used emphasized
just the horizontal edges. On the down side, we have a side-effect of minor,
unimportant details in the sky also being enhanced. A possible way to tackle that
would be to enhance only the pixels with values higher than a certain (either manual
or automatic) threshold. This will be left to you as an exercise, since the way to do
it is already covered in previous chapters.

Pop quiz – image filtering in 2-dimensions
Q1. Which of the following are true?

1.	 Convolution and correlation use identical filtering kernels.

2.	 When you use valid as a filtering choice in conv2, you end up with a smaller
resulting image than the original.

3.	 Filtering an image with the laplacian kernel results in blurring it.

4.	 Salt and pepper noise is best removed by the Gaussian filter.

5.	 Using the unsharp kernel to filter an image results in enhancing details.

Summary
This chapter gave you a rather detailed tool of two-dimensional filtering in MATLAB. The
basic mathematic ideas behind image filtering were explained and practical examples were
given. You got to see various techniques for using two-dimensional filtering in everyday
problems such as removing noise from images, or enhancing areas that are blurred. You also
learned some artistic effects caused by image filtering and practiced on ways to use them
in your images. More specifically, this chapter covered:

�� An introduction to neighborhood-based operations on an image

�� An explanation of what convolution is and why it is important

�� The alternative way to perform filtering, by using correlation

�� The usage of imfilter for performing image filtering

�� How you make kernels with fspecial, for image filtering usage

�� How to blur images and why it is important

�� How to create artistic effects using blurring

2-Dimensional Image Filtering

[152]

�� How to remove noise using blurring

�� How to enhance edges in an image, why it is important, and how it is connected
to edge detection

�� How to brighten up light sources in a night image using edge enhancement

In the next chapter, we will get to discuss exciting and practical examples about artistic and
scientific implementations of image processing. We will work on examples of multispectral
images, panoramas, and HDR images. We will also discuss other artistic effects by mixing
some of the techniques you've learnt so far. All our examples will be accompanied by
hands-on tasks, as always.

Mixing Images for Science or Art

In the previous chapters, we covered how many of the common techniques,
used for image processing, can be implemented using MATLAB. This chapter is
a little bit more advanced in terms of the complexity of the algorithms covered,
but we will present them in a gentle, introductory manner. The results will
be more than interesting, since you will get to learn how to mix, or combine
multiple images to create new ones, either for scientific purposes, or for pure
artistic results. More specifically, in this chapter, we will cover how you can
work with multispectral images in MATLAB, to unveil hidden details.
We will move on to panorama stitching for the creation of beautiful panoramic
images and then we will show blending techniques to combine masked areas
in an image with another image. Finally, we will cover the production of High
Dynamic Range (HDR) images using MATLAB. All these techniques will be
demonstrated in the simplest possible ways, using hands-on examples.

In this chapter, we will cover:

�� What the importance of mixing images is

�� What multispectral images are and how we can manipulate them in MATLAB

�� How we can create composite images in MATLAB

�� How we can blend selected areas of images to create interesting visual results

�� What High Dynamic Range (HDR) images are and how we can create and process
them in MATLAB

�� How we can stitch images to create panoramas in MATLAB

So, let's get started!

6

Mixing Images for Science or Art

[154]

The importance of mixing or combining images
An obvious question for a beginner in the field of image processing, would be about
what the importance of mixing images is. The answer is that the basic idea behind mixing
or combining images is to enrich them and achieve the following results:

�� Enhance the information included in multimodal images, that is, images acquired
from different sensors or scanners, to detect regions of interest. This is a technique
often used in medical imaging applications, such as brain CT/MRI images or body
PET/CT images.

�� See more than the eye can see, by combining images of the same subject,
taken at different frequencies of the electromagnetic spectrum. This is a way
to extract information that is not normally visible to humans, such as for
example, infrared wavelengths.

�� Blend two or more images together to end up with an artistic result.

�� Combine images of the same subject taken using different exposure levels,
to end up with a resulting image with a higher dynamic range.

�� Stitch together multiple images that partially overlap each other, to produce
a larger, panoramic image of the photographed scene.

In the rest of this chapter, we will show how we can achieve many of the examples
mentioned previously, using MATLAB.

Using multispectral imaging
Multispectral imaging is a highly sophisticated technique that proves invaluable
in a multitude of scientific applications. It is widely used in the following fields:

�� In the interpretation of Synthetic Aperture Radar (SAR) images, which are
a little tricky to analyze. Combining the information extracted from them with
the information derived by the multispectral images of the same area, we can
come to many useful conclusions.

�� In the determination of the techniques used by painters and the condition of
paintings; by a thorough examination of the visible, infrared, ultraviolet, and X-ray
pictures of the paintings.

�� In fingerprint image acquisition devices, to capture the relationship between the
visible fingerprint patterns that lie on the skin surface with subsurface patterns that
are invisible to the eye and can be detected using ultrasonic imaging. This way,
the fingerprint acquired is much more detailed.

Chapter 6

[155]

Loading and manipulating the multispectral images
The multispectral images can be stored in various formats. A common format that is often
used to store geospatial map data gathered from satellites is the ERDAS LAN format,
which uses the extension .lan. MATLAB can read these kinds of files using the function
multibandread. Since the files are multiband, in order for us to be able to visualize it in
RGB, we must be able to limit the channels to three. This can be done in a single line of code,
since multibandread can define the bands that will be read into MATLAB. More details
about using this function can be given using our usual tool, which is the help command:

>> help multibandread

The output of the previous code is as follows:

multibandread Read band interleaved data from a binary file
 X = multibandread(FILENAME,SIZE,PRECISION,
 OFFSET,INTERLEAVE,BYTEORDER)
 reads band-sequential (BSQ), band-interleaved-by-line (BIL), or
 band-interleaved-by-pixel (BIP) data from a binary file, FILENAME.
X is
 a 2-D array if only one band is read, otherwise it is 3-D. X is
returned
 as an array of data type double by default. Use the PRECISION
argument
 to map the data to a different data type.

The rest is rather lengthy, so we will leave it at that. The most important thing is that
the function is rather complex and uses several inputs to define how it works. We will try
to demonstrate its use with some useful multiband image processing techniques.

Let's use one of the .lan files included in the Image Processing Toolbox to demonstrate
some basic processing steps. Since, the documentation of MATLAB covers the Landsat
imagery of Paris, France, we will use another example. But first, let's see our choices.

The images included in MATLAB 2012b for use in the examples given in the documentation
are placed in the folder home\toolbox\images\imdemos, where home is the installation
directory of MATLAB. In our case, this is c:\MATLAB\2012b\. Hence, we can have a look
at the images included in this directory, using the following, DOS-like, line of code:

>> dir('C:\MATLAB\R2012b\toolbox\images\imdemos*.lan')

Mixing Images for Science or Art

[156]

This leads to the following result:

In general, the function dir is the same as in DOS; it lists the directories of the current
directory. When it is called with a specified path as an input, it lists the contents of
the directory specified. The use of the wildcard symbol (*) in our example, asks dir
to list all the files in the specified path ending with .lan.

Now that we know there are six different landsat images included in MATLAB, we can choose
which one we want to use in our example. Let's use Rio, Brazil.

Time for action – visible spectrum from a multiband image of
Rio

We will use the file rio.lan for this example and try to manipulate its visible spectrum
bands. The file contains seven bands, from which the third contains red color, the second
green one, and the first blue one. Let's use the following steps to import and process just
these three bands in MATLAB:

1.	 First, we load the multiband image using multibandread (imread could still
be used, in the possible case, where the multiband image is of type .tif):

>> image = multibandread('rio.lan', [512, 512, 7],...
'uint8=>uint8',128, 'bil', 'ieee-le', {'Band','Direct',[3 2
 1]});

2.	 The previous step saves the red, green, and blue bands of the image in a matrix with
8-bit integer values, which can be now displayed as a RGB image, in the usual way:

>> figure,imshow(image),title('Original RGB image')

Chapter 6

[157]

3.	 However, the image derived from step 2 has very little contrast and its color bands
are highly correlated with each other. This is why, the resulting image seems like it is
monochromatic, that is, includes only the shades of one color. To enhance the image
and acquire a more decent and life-like result, we can adjust the contrast of all the
three channels. A way to accomplish this is:

>> for i=1:size(image,3)
adjusted(:,:,i) = imadjust(image(:,:,i));
end
>> subplot(1,2,1),imshow(image),title('Original RGB image')
>> subplot(1,2,2),imshow(adjusted),title('Adjusted RGB image')

4.	 Sometimes we will need to have a result that is even more pronounced, for
example, have the vegetation of a landsat image denoted with a very bright color.
This can be achieved using a so called decorrelation stretch, that produces an image
with high correlation among its bands.

Mixing Images for Science or Art

[158]

5.	 Contrast stretches can easily be achieved using MATLAB's decorrstretch
function, followed by a linear contrast stretch performed by defining the fraction
of the image 'Tol' to be saturated at low and high intensities:

>> stretched = decorrstretch(image,'Tol',0.01);

6.	 Now, we can display our resulting image next to the original:

>> subplot(1,2,1),imshow(adjusted),title('Adjusted RGB image')
>> subplot(1,2,2),imshow(stretched),title('Stretched RGB
 image')

What just happened?
You just got acquainted with multiband images. The first step was to import a binary file,
rio.lan, which is a multiband BIL (Band Interleaved by Line) satellite image of Rio, into
MATLAB. The function used to accomplish this was multibandread, which used the
following as inputs:

�� the name of the binary file ('rio.lan')
�� the number of rows, columns, and bands of the image ([512 512 7])
�� the format used for reading the data from the binary file (integer, that is,
'uint8=>uint8')

�� the offset, that is, the number of bytes after the beginning of the file, where the
data begins (128)

�� the format in which the data is stored ('bil')
�� the byte ordering in which the data is stored ('ieee-le' for little endian)
�� the subset, which is a cell that describes the way the data will be imported

from the binary file (in our example, {'Band','Direct',[3 2 1]} denotes
reading the visible bands of the spectrum, which are the third (red), second
(green), and first (blue))

Chapter 6

[159]

Then, we displayed the imported image and saw that it seems monochromatic, and so
fixed this defect by adjusting the contrast of each color channel separately. To offer an
alternative solution that can further enhance differences in the land surface, we performed
decorrelation stretching, followed by linear stretch of the contrast of the resulting image.
Such techniques might be used as the foundations for geospatial analysis systems that either
automatically or semi-automatically, classify the areas depicted in satellite imagery into
various terrain classes. In the next example, we will see how we can use more bands of the
same multispectral image.

Time for action – working with invisible spectrums
This time, we will not import just the bands belonging to the visible spectrum, but all seven
bands. We will play around a little bit with the resulting images, trying to justify
the importance of the bands. Let's start:

1.	 First, we will import our image, but this time without specifying just three channels:

>> multi = multibandread('rio.lan', [512, 512, 7],...
'uint8=>uint8',128, 'bil', 'ieee-le');

To prove that we have indeed loaded all seven channels, let's check the size
of our resulting matrix:

>> size(multi)

The output of the previous code is as follows:

ans =
 512 512 7

2.	 Since we have a matrix containing seven bands, let's make our RGB image using
another method. We know the mirroring of color channels to bands is R:third,
G:second, and B:first, so we will use an appropriate concatenation method,
followed by the same contrast adjustment technique as before:

>> rgb = cat(3,multi(:,:,3),multi(:,:,2),multi(:,:,1));
>> for i=1:size(rgb,3)
adjusted(:,:,i) = imadjust(rgb(:,:,i));
end

Mixing Images for Science or Art

[160]

3.	 Now, what about the rest of the seven bands? To get a good idea of what they are,
let's display them along with the visible bands and the adjusted RGB image
we created. As you can see from the names assigned, the rest of the bands contain
infrared spectral ranges, with the larger wavelength being the sixth band
(thermal infrared):

>> subplot(2,4,1),imshow(multi(:,:,1)),title('Band 1: Blue')
>> subplot(2,4,2),imshow(multi(:,:,2)),title('Band 2: Green')
>> subplot(2,4,3),imshow(multi(:,:,3)),title('Band 3: Red')
>> subplot(2,4,4),imshow(adjusted),title('Contrast adjusted
 RGB')
>> subplot(2,4,5),imshow(multi(:,:,4)),title('Band 4: Near-IR')
>> subplot(2,4,6),imshow(multi(:,:,5)),title('Band 5: Short-IR
 1')
>> subplot(2,4,7),imshow(multi(:,:,6)),title('Band 6: Thermal-
 IR')
>> subplot(2,4,8),imshow(multi(:,:,7)),title('Band 7: Short-IR
 2')

4.	 The first practical way to use the invisible bands is to construct a near infrared color
image, which in theory will make the vegetation appear reddish and the water
appear dark. This can be achieved by creating an RGB image from the concatenation
of the fourth, third, and second band:

>> nearIR = cat(3, multi(:,:,4), multi(:,:,3), multi(:,:,2));

5.	 Before showing our resulting image, let's create a shortwave infrared image as well.
This kind of image emphasizes changes due to moisture and it is very important for
scientists. It can be created by combining the seventh, fourth, and second bands:

>> shortwIR = cat(3, multi(:,:,7), multi(:,:,4), multi(:,:,2));

Chapter 6

[161]

6.	 Now, let's see our results next to the adjusted RGB image:

>> subplot(1,3,1),imshow(adjusted),title('Contrast adjusted
 RGB')
>> subplot(1,3,2),imshow(nearIR),title('Near Infrared')
>> subplot(1,3,3),imshow(shortwIR),title('Shortwave Infrared')

What just happened?
In this example, we worked on the manipulation of more than the visible bands. We loaded
all seven bands of the file into one matrix and then mixed some of them to create resulting
images that make valuable details more visible. The purpose of this section was not to make
you a geospatial imagery expert, but to provide you with some insight into what the invisible
layers of an image might be. Furthermore, we tried to offer an alternative solution to the
analysis of geospatial data, since MATLAB can also be used for these applications. Since you
got the idea on how to visualize these images, you can mix the techniques presented here
with some of the methods described in previous chapters to enhance, filter, or even mask
the results. The sky is the limit!

The characterization of the bands is based on information found here:
http://landsat.usgs.gov/best_spectral_bands_to_use.php.
You can visit the page to find a little more information about the usefulness
of each band. Some more ideas on how to work with these images can be found
at http://zulu.ssc.nasa.gov/mrsid/tutorial/Landsat%20
Tutorial-V1.html.

Mixing Images for Science or Art

[162]

Creating composite images
If you got bored with all the science, now it's time for you to dive into the more fun part of
image mixing. A very popular technique that is handled very efficiently by popular image
processing suites is compositing two or more images, to make selected elements in them
appear in the same scene simultaneously. When performed successfully, this technique can
lead to beautiful artistic results, or even hilarious or odd scenes. But before getting to work
on compositing, we should first get to know the tools we will be using in MATLAB.

Using imfuse to create a composite image
The most useful function you will use when it comes to compositing tasks is imfuse. This
function takes two images as input and returns a fused version of these images as output.
The function can also accept extra optional inputs, such as spatial referencing information
for the two input images, fusion method selection, intensity scaling option, and output color
channel for each of the two images. The main output will be the composite of the two input
images. Having the composite image available as an output means we can also save it using
the imwrite function presented in previous chapters.

Using imshowpair to inspect a composite image
Usually, before saving an image, we want to make proper adjustments or experimentations.
Even more so, in the case of compositing, the mixing process normally needs a lot of
tweaking in order to produce the desired result. The tweaking process can be performed
using the imshowpair function, which has the same functionality as imfuse, only without
producing an output image.

Let's start with a small, straightforward example of blending two images using the
aforementioned functions. We will use two pictures of the same seagull, taken only a few
seconds apart.

Time for action – cloning the seagull
In this example, we will demonstrate how we can perform image blending without actually
preprocessing the two input images. Let's start:

1.	 As always, our first step is to import the two images in MATLAB. As already
mentioned, we will use the two images that do not need preprocessing, named
seagull1.jpg and seagull2.jpg:

>> A = imread('seagull1.jpg');
>> B = imread('seagull2.jpg');

Chapter 6

[163]

2.	 Now that we have loaded our images, we can display them next to each other,
to see if they fit our purpose:

>> figure,imshowpair(A,B,'montage');

3.	 It is apparent that the images are quite suitable for our purposes. They have almost
identical backgrounds and the seagull is at a different part of the image in each
picture. So, we can give it a go, by asking MATLAB to blend the two images:

>> imshowpair(A,B,'blend');

Mixing Images for Science or Art

[164]

4.	 Let's now say that we want to achieve a more psychedelic result, with pseudo
colored elements. Well, I have good news for you! MATLAB provides this without
requiring any complex preprocessing steps. All you have to do, is to omit the
'blend' input and let MATLAB use the default choice ('falsecolor'), which
is to show the two images overlaid in different color bands:

>> imshowpair(A,B);

5.	 If we prefer to alter the predefined colors used in the previous step, we can also alter
them. This is done via the 'ColorChannel' input. This input can assign the default
('green-magenta') choice, the 'red-cyan' choice, or any arbitrary choice
that can be generated using a [R G B] vector. Let's try the 'red-cyan' choice:

>> imshowpair(A,B,'ColorChannel','red-cyan');

6.	 Now that we have a rough idea of what we are doing, let's save our last result
into a new image, which we will call 'RedCyanSeagulls.jpg':

>> C = imfuse(A,B,'ColorChannel','red-cyan');
>> imwrite(C,'RedCyanSeagulls.jpg');

Chapter 6

[165]

What just happened?
With this example, you have started to get a grasp on some of the powers of MATLAB
that are really easy to use. The only thing that we really did was to pick two pictures with
the same size, very similar backgrounds, and non-overlapping (or to be more precise,
minimally overlapping) objects in them and blend them using several ready-made choices
of the function pair imshowpair-imfuse. Once we were happy with the result, we saved
it in a new JPEG file using imwrite.

Note that the predefined 'green-magenta' and 'red-cyan' choices for
the color channels can also be accomplished using the [R G B] triplets. The first
one is [2 1 2], meaning that red and blue (magenta) were used for the second
image and green was used for the first image. The second one is [1 2 2], meaning
that green and blue (cyan) were used for the second image, while red was used
for the first image. It's time for you to try out some of this now, so that you
create a work of art with four different versions of the seagull composite picture.

 Have a go hero – playing Warhol with your pictures
In this exercise, you should try to create four different false-color composite versions
of the seagull pictures. Try whichever combinations of [R G B] that you wish and then
concatenate the four images in order to make a large 2x2 grid that contains all of them.

Using the functions imread, imfuse, flipdim, and cat, you should be able to make
a picture that looks like the following screenshot:

This was not exactly difficult, right? Of course, your choices in tweaking the result are
almost unlimited, since only your imagination can dictate what choices you would like
 to make in designing a work of art. You are free to try other choices of inputs, as well
as applying various filters on your results to see what happens.

Mixing Images for Science or Art

[166]

In this exercise, you created a quite interesting visual result using just two plain images.
Playing with the falsecolor method setting and different mixtures of the three color
channels, led to four different variations of the blended image. Flipping two of the images
along the vertical axis led to a more symmetrical outcome. You could experiment with other
kinds of transformations, such as rotation, to further customize your resulting image.

One step beyond – blending selected image regions
In the previous section, we examined ways to produce a composite image from two pictures,
without applying any preprocessing to them. Now, it is time to bring forward some of
the techniques covered in previous chapters, so that we make our resulting images more
sophisticated. Let's start with an easy example. We will try to blend two images of the same
size, by first setting a part of their pixels to zero. We will use two pictures taken in a subway
station of Berlin. Let's first load and see them:

>> A = imread('bench1.jpg');
>> B = imread('bench2.jpg');
>> imshowpair(A,B,'montage')

As you can observe in the montage of these images, the closer bench (in the right picture)
seems to have its upper edge just above the railway ridge of the left picture. If we place
a Data Cursor (tenth icon) at its upper edge, we see that it is located at approximately
the 796th row. Now, we can try our trick: we will make all pixels below the 796th row
of the left image equal to zero and also make all the pixels above the 795th row of
the right image equal to zero. Then, we will blend the two images and display the result:

>> A(796:end,:,:)=0;
>> B(1:795,:,:)=0;

Chapter 6

[167]

>> C = imfuse(A,B,'blend');
>> figure,imshow(C);

The result is quite pleasing to the eye, but because of the blending, its intensity is low.
We can easily fix this by multiplying the result with two:

>> C = C*2; imshow(C)

The result is quite good for such an easy process. But this time, we got lucky. The two
images were meant for each other. But what happens when we want to accomplish a harder
compositing task? What if the areas we want to mix are not so easily distinguishable?
We will see such an example in the next exercise.

Mixing Images for Science or Art

[168]

Time for action – directing a threatening scene
This time we will aim at a task that is a little more difficult than the previous ones. We will
try to blend two images taken at the zoo, so that we create a threatening scene. More
specifically, the first picture is portraying a team of penguins, standing peacefully in their
dome and the second one is portraying a polar bear, strolling in her yard more than 500
meters away. Now, what if we brought the bear closer? This would look alarming, especially
if the blending process is performed correctly. Let's start by loading our pictures, as always:

1.	 Our two pictures are called penguins.jpg and bears.jpg, so we will load them
and display them next to each other:

>> peng = imread('penguins.jpg');
>> bear = imread('bear.jpg');
>> imshowpair(peng,bear)

2.	 Now, these photographs have almost nothing in common, so the prospects of mixing
them don't look very good. Not all hope is lost though. The first step is to crop both
pictures, aiming at having the bear and the penguins roughly at the same height,
without overlapping each other. So, we should call imcrop twice and try our best,
so that our result looks something like this:

>> bear = imcrop(bear);
>> peng = imcrop(peng);
>> subplot(1,2,1),imshow(peng);title('Penguins after cropping')
>> subplot(1,2,2),imshow(bear);title('Bear after cropping')

Chapter 6

[169]

3.	 However, we are not ready yet. Even if your cropping skills are perfect, the two
images could not be exactly the same size. This means that in order for us to be
able to use imfuse properly, we should resize one of them to fit the other. The best
selection is to resize the bear image, since it is larger and we will not cause much
distortion. In order to resize it to the size of the penguin image, we type in:

>> bear = imresize(bear, [size(peng,1) size(peng,2)]);
>> imshowpair(peng,bear,'montage');

4.	 Apart from the fact that our sizes are now OK, we now see that the images could
actually blend together well. We just have to find a way to perform the most seamless
blending possible. Let's try to crop the area of the bear, so that we make a proper
mask (we will also include the rock hiding the front foot, so that it does not seem
unnatural):

>> mask = roipoly(bear);

5.	 Our next step is to use the mask to keep only the areas we want from the two
images. This means that we will keep the area from the bear picture that has
a mask value equal to one and the area from the penguins' picture that has
a mask value equal to zero. Since we are using color images, we have to perform
the masking in every channel. First, we make two new, three-dimensional masks,
that is, by concatenating the mask matrix.

>> bear_mask = cat(3,mask,mask,mask); % Construct bear mask
>> peng_mask = 1- cat(3,mask,mask,mask); % Construct penguin
 mask

Mixing Images for Science or Art

[170]

6.	 Then, we will multiply each mask element-by-element (dot multiplication)
with the image we want to mask, after we have converted its type to single
(so that the multiplication is feasible).

>> bear_img = single(bear).*bear_mask; % Masking of bear
>> peng_img = single(peng).*peng_mask; % Masking of penguins

7.	 Finally, we will convert the result back to uint8 and display the results. Let's see how:

>> bear_img = uint8(bear_img); % Convert result to uint8
>> peng_img = uint8(peng_img); % Convert result to uint8
>> figure, imshowpair(peng_img, bear_img,'montage');

8.	 Now, for the last step, we need to perform blending of the two images:

>> pengbear = imfuse(peng_img,bear_img,'blend');
>> figure, imshow(result)

Chapter 6

[171]

9.	 The final touch will be to repair the contrast of the resulting image. Composite images
created with imfuse, appear to have half their original contrast. A way to fix this
would be to multiply the result with a factor of two. A better way to handle it is to use
some contrast stretching method. In order for the result to be more vivid, we can use
the imadjust function in each color channel separately. To do this, we type in:

>> for i = 1:size(result,3)
result(:,:,i)=imadjust(result(:,:,i));
end
>> imshow(result)

And this is the result. Poor penguins! Lucky for them, it's just an illusion.

What just happened?
This example mixed a lot of what you have learned so far in this book. We wanted to create
a rather challenging composite image, from two images with very few similarities. The only
thing in our favor was the non-overlapping positioning of the penguins and the bear after
we cropped the two images. Cropping the images was necessary also for the better alignment
of the two target areas (penguins and bear) in the vertical axis. Once we did that, we chose
to transfer the bear to the penguin territory, since the bear was larger and could be down-sized
to fit in the other image without losing quality. After down-sizing the bear, we manually
defined a ROI around it to form a mask. The inverse mask was selected for the penguin picture.
Then, we performed masking on the two images, using the respective masks in step 5.
The resulting images were blended and consequently, the result was filtered in each
of its channels using imadjust, to enhance its intensity.

Sometimes, too much information is not necessarily a good thing.
If you look closely, some areas of the blended image at the edges
of the bear's legs give away the fact that our image was processed.
A trick that can be used to reduce this effect is applying a median filter
to smooth the image. This way, the resulting image would be less crisp,
but its imperfections would be camouflaged. To apply the median filter
to a color image, you would need to do it in each channel separately.

Mixing Images for Science or Art

[172]

Creating High Dynamic Range images
So far, we talked about mixing different spectrums or different images. A relatively new
technique that involves mixing different versions of the same scene is High Dynamic Range
photography. In this technique, we mix multiple shots of the same scene, taken at different
Exposure Values (EV). EV, in camera settings, denotes a combination of exposure time and
relative aperture. Rules and suggestions about the optimal EV settings for different subjects
are extensively covered in the theoretical books and websites about photography and are
not really within the scope of this book.

What is within the scope of this book, is to understand what the mixture of multiple EV
pictures can accomplish. In a nutshell, it makes the resulting photograph have a greater
dynamic range between dark and bright areas in the image. However, to use this technique
to its full power, the images that will be mixed should not be 8-bit, since the range of 256
values per color contained in them normally produces artefacts.

Since the average reader of this book normally has access to 8-bit images, we will use such
an example for our demonstration of the method. But first, we will say a word or two about
how to shoot the required images.

First off, you should have a camera that supports manual settings. Second, you should find
the setting for Auto Bracketing, which will allow you to shoot with multiple exposures.
Some cameras give you a choice of three different EV values (usually -2, 0, 2, or -1, 0, 1),
while others have more stops available. An alternative is to manually adjust your preferred
ISO and f-setting and then, using a steady tripod (and ideally a remote control, so that you
do not move your camera at all) to shoot with at least three different exposures.
Immobility is of the essence, since moving the camera or shooting mobile subjects will
result in blurred areas.

After you have taken your three shots, you will have to use the MATLAB's makehdr function
to compose the HDR image and then use tonemap to render the resulting image for viewing
purposes. Let's see an example that demonstrates all these.

Time for action – composing your own HDR images
Now that we know the theory, let's dive into a real life example. For the purposes of this
exercise, we shot three pictures of a scene with a wide range of brightness, in an office, using
three different EV settings: -2, 0, and 2. The names of the three images are image_-2.jpg,
image_0.jpg, and image_2.jpg. So, in order to use them to make an HDR image, we will
follow the steps as shown:

1.	 Save the names of the three images in a cell and the respective EV choices in a matrix:

>> filenames = {'image_-2.jpg', 'image_0.jpg', 'image_2.jpg'};
>> expValues = [-2, 0, 2];

Chapter 6

[173]

2.	 In order to get an idea of what these images look like, we can optionally load them
and display them:

>> im1 = imread('image_-2.jpg');
>> im2 = imread('image_0.jpg');
>> im3 = imread('image_2.jpg');
>> subplot(1,3,1),imshow(im1),title('EV: -2')
>> subplot(1,3,2),imshow(im2),title('EV: 0')
>> subplot(1,3,3),imshow(im3),title('EV: 2')

3.	 Now, we will use the two variables created in step 1 to make our HDR image:

>> hdr = makehdr(filenames, 'ExposureValues', expValues);

4.	 The HDR image now needs some postprocessing to be ready for viewing purposes.
This can be done using tonemap with its default values, which will result in
converting the HDR result to a lower dynamic range RGB image:

>> rgb = tonemap(hdr);

5.	 The result is clearly more detailed, but it includes some grain noise and also some
small blocking effect in smooth areas (such as the desk surface) due to the JPEG
compression and the limited bit depth:

>> rgb = tonemap(hdr);

Mixing Images for Science or Art

[174]

6.	 The grain noise mentioned previously, can be reduced using a median filter.
A 7x7 median filter will suffice, without causing great degradation of the quality
of the image. For color images, we must use the filter separately in each channel.
Combining this filter with contrast adjustment, leads to:

>> for i=1:size(rgb,3)
filtered(:,:,i) = medfilt2(imadjust(rgb(:,:,i)),[7 7]);
end
>> subplot(1,2,1),imshow(im2);title('Original image at 0EV')
>> subplot(1,2,2),imshow(filtered);title('Final HDR result')

What just happened?
This was a basic example of how to shoot and process an HDR image in MATLAB. The use
of JPEG images may not particularly help in getting the full idea of what HDR images
can offer, but you have certainly acquired the basic knowledge on how to create them.
Our process comprised the declaration of the names of our images and the respective
exposure values, followed by a call of the function makehdr. Then, the High Dynamic
Range is converted to RGB using tonemap and if we want, we perform some further
preprocessing steps to acquire our final result.

When we want to create HDR images from action scenes, the process described
previously is usually problematic, because of the subject's movement. In these
situations, we can use cameras that capture raw images of higher color depth
(12, or even 16 bit) and artificially create our three different exposures from
a single shot, using techniques similar to the ones presented here:

http://captainkimo.com/single-exposure-hdr/

Chapter 6

[175]

Stitching images for the creation of panoramas
So far, we have presented image mixing techniques performed by overlaying one image on top
of the other(s). Now, it is time to discuss what happens when we want to make a panoramic
image; that is, combine partially overlapping images to make a larger one. This technique
is often called panorama stitching and it has gained much attention during the last decade.
Nowadays, some modern cameras come with internal stitching algorithms.

To create such an image in the simplest possible way, we need to do two things, namely,
detect (either manually or automatically) some corresponding points in adjacent images
and use them to transform the images, so that their geometry is correct. Blending
the images, so that the connection areas are smoother, might also be needed.

For the purpose of our beginner level tutorial, we will show a manual way to perform
panorama stitching. In our example, we will not make any transformation to the resulting
images, so that we show why this method is not optimal.

Time for action – basic approach to panorama stitching
In this example, we will use three photographs taken from the same point in space, just
by rotating the camera in the horizontal axis. Let's see the steps needed:

1.	 First, as always, we will load and display our images:

>> L = imread('Left.jpg');
>> M = imread('Middle.jpg');
>> R = imread('Right.jpg');
>> subplot(1,3,1);imshow(L);title('Left image')
>> subplot(1,3,2);imshow(M);title('Middle image')
>> subplot(1,3,3);imshow(R);title('Right image')

Mixing Images for Science or Art

[176]

2.	 Now, let's pick two pairs of points that we will use for the connections (remember:
we will not use any geometric transformations here). For the selection, we will use
the Zoom In and the Data Cursor tools. First we do it for the left and middle image:

Then, it is time to pick a pair of points for the middle and right image:

Having pinpointed the two points that will be matched to connect the two images,
we now have to move on to stitching.

Chapter 6

[177]

3.	 Let's start with the left and middle images. The point we selected in the left image is
on row 693, column 2018. In the middle image, the same point resides on row 674,
column 767. This means that the left image should be raised by 693 - 674 = 19 pixels
(so that the points are on the same row). We can accomplish this using circshift.
This function shifts the elements of a matrix in the dimension stated by the user in
a circular fashion; that is, the pixels that fall out of the picture due to the shifting
process, re-appear at the other end:
>> Lr = circshift(L,-19);

Now, we must connect the two images at the vertical line passing through the
common point:
>> First = cat(2,Lr(:,1:2018,:),M(:,767:end,:));

4.	 Now, the resulting image can be combined with the right one, but first, we must
perform an alignment like the one in step 3. The point selected in the middle image
is at row 587 and column 1767, while in the right image, it resides on row 618,
column 466. This means that the right image must be shifted upwards by 618 - 587 =
31 pixels:

>> Rr = circshift(R,-31);

Now, we must connect the two images at the vertical line passing through the
common point:

>> All = cat(2,First(:,1:3019,:),Rr(:,466:end,:));

5.	 Let's see what we have accomplished:

>> imshow(All)

Mixing Images for Science or Art

[178]

6.	 A closer look at the result reveals that several things went wrong; some alignments,
especially in the connection of the middle image to the right one, appear too
distorted. Some experimentation reveals that minor adjustments to the shifting
process and the vertical coordinate for the middle-right connection can improve
things, but even better results will come, by also performing median filtering:

>> Rr = circshift(R,-21);
>> All = cat(2,First(:,1:3019,:),Rr(:,450:end,:));
>> for i = 1:size(All,3)
panorama(:,:,i)=medfilt2(All(:,:,i),[5 5]);
end
>> figure,imshow(panorama)

What just happened?
In this example, we demonstrated the simplest possible approach to panorama stitching.
For acceptable results with minimal effort, this approach is not bad, but the demanding user
should look for more complicated methods; combining feature detection with geometrical
image transformations. The approach presented here, started with the manual selection
of the common points between the images and the usage of their coordinates for aligning
and stitching the images. Some refinement of the exact coordinates is commonly needed,
as well as some postprocessing filtering step, such as median filtering. The final result still
has artefacts, but it is certainly acceptable for such an easy and straightforward process.
The blue sky areas that have appeared at the bottom of the image after the shifting commands,
can either be blacked out, or cropped to achieve a better result.

Chapter 6

[179]

Pop quiz – image mixing details
Q1. Which of the following is true?

1.	 Using bands four through seven of a lan image, adds information that is not visible
to the human eye.

2.	 Blending two images using imfuse, results in an image that is very bright.

3.	 We can perform masking of a color image, by dot multiplying it with
a two-dimensional mask.

4.	 HDR images should be constructed using uncompressed images of a higher depth
than 8-bits.

5.	 The only thing needed for a good panoramic image is to concatenate the images at
the correct column.

Summary
In this chapter, we combined many of the methods presented so far with some new
techniques, to produce results that have scientific or artistic value. Since the methods visited
in this chapter involve some very complex theories for a beginner, we chose to follow a
learn-by-example approach and introduced all the techniques with hands-on exercises on
multispectral imaging, image compositing, HDR imagery, and panorama stitching. More
specifically, this chapter covered:

�� An introductory presentation on mixing methods and their importance

�� A presentation of basic multiband image processing techniques in MATLAB

�� The basic MATLAB tools for performing image blending (imfuse and imshowpair)

�� A thorough explanation of image blending with practical and artistic examples

�� Applications of image compositing using selected areas of the images to create
fiction images

�� How the notion of image blending can go further into combining many low dynamic
range images to create an HDR image

�� A presentation of panorama stitching, with a simplified example, that produces
acceptable results

In the next chapter, we will discuss video processing, by first combining sequences of still
images to create time-lapse videos. We will explain the notions of frame rate and motion and
we will introduce you to the basic MATLAB tools for creating video objects, adding frames to
them, and watching your videos. You will also get hands-on experience of how to make your
own time-lapse videos.

Adding Motion – From Static Images
to Digital Videos

In all the previous chapters, we have focused on ways to import, manipulate,
process, and save static images using MATLAB, in numerous manners and for
various goals. Now, it is time to slowly indulge in the peculiarities of video
processing, using MATLAB as our only tool. We will start with explaining the
nature of videos and the ways they can be created. Some necessary theoretical
details about videos will be explained, followed by instructions on how to load
and view videos in MATLAB. Then, we will continue with ways to create video
streams using static images. These are the fundamentals of time-lapse videos,
so by the end of this chapter you will be able to make your first time-lapse video
using MATLAB. Finally, we will provide another way to save your time-lapse
sequence, which is in gif format.

In this chapter, we will learn:

�� The basic principles of digital video processing
�� The significance of frame rates
�� How we can load videos in MATLAB
�� How we can playback videos in MATLAB
�� How we can create videos using static images
�� How we can inspect all or some of the frames in a video, using MATLAB
�� How to use implay to playback a video
�� How we can create and save time-lapse videos in MATLAB

So, let's start working with videos!

7

Adding Motion – From Static Images to Digital Videos

[182]

An introduction to digital videos
To build a solid foundation for this chapter, as well as the next ones, we must first take some
time to present the fundamental concepts of digital videos. Once again, the theory will be
explained in a very practical way, using hands-on examples wherever possible.

Videos are practically created by joining several still images, called frames. The joining of the
images is performed by adding an extra dimension to hold the sequence. Since, as you already
know by now, grayscale images are two-dimensional and color images are three-dimensional,
grayscale videos will be three-dimensional and color videos will be four-dimensional.
For example, if we join 100 grayscale images of size 1080 rows and 1920 columns, we will get
a matrix that is 1080 x 1920 x 100. Similarly, if we join 100 color images of the same size,
the resulting matrix will be 1080 x 1920 x 3 x 100.

The most usual and natural way to create a digital video is to use a video capturing device, for
example, a video camera. Modern photographic cameras also have the capability of shooting
digital video. Moreover, since a video can be thought of as a sequence of consecutive still
images, it can also be created using photographs, or even sketches. This is a technique that can
also be used to create animated .gif files, as we will see in this chapter. But first, we should
try to explain some important aspects of video processing, always bearing in mind that all
the descriptions pertain to uncompressed videos.

The meaning of frames
This is a trick question, since it can be interpreted in two ways; how many frames do I need
for a video of a certain duration or what is the frame rate needed for a certain amount of
motion to be clearly portrayed?

For both questions to be answered satisfactorily, we first need to talk about two very
important properties of videos; interlacing and frame rates.

Interlaced versus progressive
The first important choice when shooting a video is whether we will shoot it in interlaced
or progressive mode. Interlaced videos contain two kinds of frames; those containing odd
lines and those containing even lines. When displaying these frames consequently (first
odd then even) at a high enough frequency, the viewer cannot distinguish the empty lines
and therefore perceives the video as sequential full frames. Progressive (or non-interlaced)
videos on the other hand, display full frames (all lines appear at each frame). From the
description of these two types of videos, it can be deduced that a progressive video will
demand twice the size of an interlaced video of the same length and resolution. Another
interpretation of this property is that the frame rate of an interlaced video that the human
spectator perceives, is double that of an equally sized progressive video. Which brings us
to the frame rate question; what is it and what does it affect?

Chapter 7

[183]

Frame rates and their importance
The concept of frame rate denotes the number of frames that will be shot (and consequently
displayed) in a second and thus it is measured in frames per second (fps). The number
of frames per second defines the quality of motion capturing in a video, as high frame rates
can capture more changes per second than low frame rates. This is particularly useful
in videos containing lots of motion, for example, sports videos.

The frame rate of a video is highly dependent on the camera used to shoot it and the type
of media it is shot for. Another very important feature of videos that affects the way the
frame rates are described, is whether they are progressive or interlaced. The most widely
used frame rates are:

�� 24 fps progressive, or 24p, as it is more commonly known. A frame rate of 24p
means that every second, 24 frames will be shot (or displayed). This frame rate is
the typical standard for the film industry.

�� A similar frame rate, used mostly in PAL video, is 25p. As its name denotes, this is
a 25 fps frame rate of progressive video. This format is preferred in countries with
an electrical current of 50Hz, as it is divides the frequency evenly. A common
practice is to shoot PAL video at approximately 23.98 fps, slowing it down
by a factor of 1000/1001. This leads to an easier transfer process of the video
to the NTSC format, which is described next.

�� In the U.S.A. and Canada, as well as some other countries which have a 60Hz power
grid, the usual frame rate used is 30 fps progressive, that is, 30p. This video format
is called NTSC and it is usually a better choice when the video will be viewed
on computer monitors, as they are likely to have a refresh rate of 60Hz, which
is divided evenly by 30. It is worth noting that the actual frame rate used for most
NTSC videos is 29.97 fps. This should be taken into account when processing
a video, because in these tasks accuracy matters a lot.

�� Lately, Hollywood moviemakers started experimenting with a frame rate of 48p,
with the first movie to be filmed at this frame rate being The Hobbit.

�� The interlaced equivalents of PAL and NTSC videos mentioned previously are called
50i and 60i respectively. While they are generally better than the progressive
alternatives at half the frame rate (for example, 60i over 30p) in depicting fast
movements (such as in sports videos), they tend to blur details because only half
of the information exists in any given frame.

�� Higher frame rates are also feasible in modern systems such as 50p, 60p (or 59.94
fps for better compatibility with NTSC), or even 120p. These formats are slowly
being spread beyond the field of industrial applications where they were first used
because of their property of capturing high speed processes with great detail.

Adding Motion – From Static Images to Digital Videos

[184]

Calculating number of frames
Now, let's get back to one of our original questions; how many frames do I need for a video
of certain duration of, let's say 20 minutes?

Well, assuming that we shoot in 25p (PAL), the number of frames will be equal to the
number of seconds multiplied by the number of frames per second (25). Since each minute
consists of 60 seconds, we will need:

(20 minutes) x (60 seconds/minute) x (25 frames/second) = 30000 frames.

Now, if we were to shoot our video in classic NTSC format (29.97 fps), we'd need:

(20 minutes) x (60 seconds/minute) x (29.97 frames/second) = 35964 frames.

This is quite a lot of frames, right? This is why video processing is one of the most
time-consuming tasks you can use to stress test a PC. It is also the reason why compression
is a definite must when it comes to storing videos, if you want to avoid having to buy
hard disks regularly.

Some thoughts on choosing frame rates
Selecting the proper frame rate for your video has a lot to do with its intended use. Common
sense dictates that the higher the frame rate, the better the quality of the video in terms of
temporal smoothness (capturing motion details). This is the reason that older silent movies that
were shot at frame rates below 24 fps appear to have an unnatural and jerky motion at times.

However, even 24 or 30 fps do not necessarily guarantee a perfect, fluid capturing and
display of motion. The speeds of the depicted objects, as well as the detail in each of them
also play important roles in choosing a high enough frame rate for your videos and generally
speaking, when having a choice you should go with the higher frame rates, always minding
the peculiarities of conversions between formats.

On the other hand, when dealing with animated sketches, the choice is usually very common;
most of them are drawn to be played at 24 fps. However, the process of drawing 24 sketches
for each second of an animated film is extremely time-consuming and exhausting. The solution
to this issue, is for the designers to draw half, or even a quarter of the images needed and
repeat them as many times as needed to fill the missing frames (for example, when drawing
12 frames for a second, each frame is shown twice to achieve a 24 fps frame rate).

Another important consideration in the aforementioned problem is the sensitivity of human
visual perception. The visual system that we possess is quite complex and cannot be analyzed
easily in a way that would favor a certain frame rate over others. While our eye-brain combo
can be fooled into believing that a hand-drawn cartoon with only 12 unique frames per second
moves smoothly, on the other hand it can detect light flashes that last way less than 1/25th
of a second. This perception can also be affected by the viewing angle; that is, peripheral vision
is even more sensitive to light flickering.

Chapter 7

[185]

Loading videos in MATLAB
Before we start discussing how to create our own videos, it is important to first see how
MATLAB handles videos. In fact, video processing is one of the areas in which MATLAB has
been evolving a lot over these past years. As opposed to image processing, where imread
was introduced in early versions of the software and could be used for loading most popular
image formats, the respective function for video loading has been changed a lot. The main
reason behind the changes was the differences in video compression formats, which did
not allow for a single efficient function that could handle opening every possible one. In
this section, we will present the different functions that can be used in MATLAB for video
importing. This way, readers with previous versions of MATLAB will be able to use the
function they feel most comfortable with.

Loading videos with aviread
The first function used for reading videos in MATLAB was aviread. This function still exists
in Version 2012b, but it is scheduled to be removed in future versions. Furthermore, it has
a limited functionality with respect to the video types that it can read, since it is only
designed to open .avi files. A typical usage of aviread is shown as follows, using one
of the videos included in MATLAB (singleball.avi):

>> A = aviread('singleball.avi');

This command gives the following result:

As you can see, the resulting variable, A, is of type struct. Its size is equal to the number
of frames comprising the video. Luckily, the number of frames was not big, so we had no
problem importing all of them in our workspace. Imagine if we tried to import a 25p video
with one hour duration. Then, we would have needed to store 90000 frames! This would
lead to a certain memory problem, especially if our video was high resolution.

Adding Motion – From Static Images to Digital Videos

[186]

To avoid this problem, it is common to first inspect the videos we are about to process and
then decide on a strategy for importing them. To do this, we can use aviinfo, a function
that complements aviread and aims at drawing information from a video file. To use it,
we just type it in the command line with the video filename as input:

>> aviinfo('singleball.avi');

Now, let's say that we want to import just the first 10 frames of our video. The only thing
needed is to identify the frames we want to load in aviread:

>> A = aviread('singleball.avi', 1:10);

It can be easily deduced that adding a step of 2 in the frames vector, that is, using 1:2:10
instead of 1:10, would lead to skipping even numbered frames, leading to a speed-up of our
image if the playback rate is kept steady.

Since the video imported is stored in a struct, we must find a way to manipulate it using
what we know, that is, multi-dimensional matrices. If we type the name of our struct
in the command line, we get:

>> A

The output of the preceding command is as follows:

A =
1x10struct array with fields:
cdata
colormap

Chapter 7

[187]

This means that the struct has two fields; cdata and colormap. The colormap field
is useful only in the case of videos with indexed images as frames (no color information
is stored in the pixel data). If the color information is directly stored in the pixel data of the
frames (called truecolor images in this case), as in all the cases we have seen so far in this
book, colormap will be an empty matrix. The cdata field holds all pixel information.

If we want to access the 5th frame of our imported video, we will have to use
the following command:

>> frame5 = A(5).cdata;

If, however, we want to read all 10 frames to a four-dimensional matrix, we will have to use
a for loop:

>> for i = 1:10, vid(:,:,:,i) = A(i).cdata; end
>> size(vid)

The output of the preceding code is as follows:

ans =
 360 480 3 10

The second line of code was used to see the size of our result, which is normal, as it shows
that our generated matrix has 360 rows, 480 columns, 3 colors, and 10 frames.

A big disadvantage of aviread for Unix users is that it can only handle
uncompressed .avi files. This is why external toolboxes for video
processing were extensively used in the past. The most important one
is VideoIO, which is still well-maintained and can be found at
http://sourceforge.net/projects/videoio/

Loading videos with mmreader
The next attempt for a video reading function in MATLAB was mmreader. This function
(or class) was part of the introduction of object oriented programming methods in MATLAB
and it supported more video formats than aviread. On the downside, the speed of video
importing, using mmreader was reduced. This function will be abandoned in future releases
of MATLAB, so it would be wise not to use it extensively in your work.

As already mentioned, mmreader is an object oriented function, meaning that its output
is a multimedia reader object that can be used to import video data from a file. The
function that will then import the video from the constructed object is called read.
The process that must be used to achieve the same results shown in the previous
paragraph for aviread, is as follows:

>> vObj = mmreader('singleball.avi');
>> videoA = read(vObj); % read in all frames from video object
>> videoB = read(vObj,[1 10]); % read in only the 10 first frames

Adding Motion – From Static Images to Digital Videos

[188]

This process leads to the following result in our workspace:

As you can see in the figure, the object constructed has an mmreader type, while the two
imported videos are four-dimensional 8-bit integer matrices (rows x columns x colors x
frames). VideoB should be identical to the vid matrix generated in the previous example
(you can check it using the size function). Once again, MATLAB produces a warning about
mmreader, having to do with its removal in future versions.

In case we need to inspect our video file before we load it in MATLAB, we can take advantage
of the fact that we have to create a video object first and use the get function to inspect it.
This can be performed as follows:

>> get(vObj)

Loading videos with VideoReader
The VideoReader function (or class) has almost identical usage to mmreader. The only
visible differences are that it generates a VideoReader object and it usually performs
a little faster. To achieve the same results as in previous paragraphs, we have to type
in the following:

>> vObj = VideoReader('singleball.avi');
>> videoA = read(vObj); % read in all frames from video object
>> videoB = read(vObj,[1 10]); % read in only the 10 first frames
>> size(videoB)

Chapter 7

[189]

The output of the preceding code will be as follows:

As you can see from the results of the previous commands, the results are identical
to previous methods. The second video also has the same number of frames as in previous
tries. Of course, this time we had no complaints from MATLAB about our selection of
function, since VideoReader is the most recently introduced function for video file reading.
Using get on the result of VideoReader will, as you can easily prove yourself, produce the
same result as the one produced for the mmreader result. If we want to use some of the
fields produced by get, for example the number of frames, we can do it by typing:

>> numOfFrames = get(vObj,'NumberOfFrames')

The preceding command will give the following result:

numOfFrames =
 45

Choosing which function to use for video reading
The choice of the best video reading function for your needs is usually made taking into
account three basic parameters; the version of MATLAB you have access to, the format
of the video file you want to process, and the desired speed of processing.

The first parameter cannot be covered extensively here, since the book is based on MATLAB
version 2012b. However, you should take into account that versions of MATLAB prior to
2007b included only aviread. Versions from 2007b to 2010b supported both aviread
and mmreader, and finally since 2010b, all three functions can be used. However, as already
mentioned, you should cautiously use the two oldest functions because they have been
scheduled to be replaced in future versions.

Adding Motion – From Static Images to Digital Videos

[190]

Now, let's see what are the formats that each function supports. As its name implies,
aviread only reads .avi video files, which can only be uncompressed in Unix systems.
The two other functions have pretty much the same functionality when it comes to video
formats. This can be proven using the getFileFormats method that is available in both
mmreader and VideoReader. To see them, we can type in the following commands:

>> mmreader.getFileFormats()
>> VideoReader.getFileFormats()

Both these calls have the same result, which in Windows looks like as follows:

Video File Formats:
 .asf - ASF File
 .asx - ASX File
 .avi - AVI File
 .m4v - MPEG-4 Video
 .mj2 - Motion JPEG2000
 .mov - QuickTime movie
 .mp4 - MPEG-4
 .mpg - MPEG-1
 .wmv - Windows Media Video

Regarding the speed of processing, the improvements are neither so spectacular nor so
definitive that they will dictate the use of either one of the two new functions. The faster of
the three is aviread, but as it is nearly obsolete and it does not support a variety of formats
it should be avoided.

Taking all these facts into consideration, your choice of the appropriate function should
probably be the most recent function supported by your version of MATLAB. Therefore, from
now on we will be using VideoReader for all the video importing tasks we will demonstrate.

Playing back videos in MATLAB
Now that you know how to load a video, it is time to learn how to play it back. As you can
recall, images can be displayed in an open figure, using imshow. However, playing back
a movie is a slightly more complex process. The function that can be used for this process
is called movie. This function takes the name of the variable as input, in which we have stored
the video frames, and plays it back in the current axes (if there aren't any, it creates them). The
process described has two issues; one is that the variable containing the video must be a movie
struct (similar to the one generated by aviread) and the other is that the figure that will
be used to display the movie must be resized to exactly fit the video dimensions. Otherwise,
we may have a result that will include a visible white part of the axes apart from the video.

Movie can also use extra inputs that define playback details. More specifically, it can get the
number of times the movie will be played, the order in which the frames will be displayed,
and the frame rate. Let's see all of these with an example.

Chapter 7

[191]

Time for action – reading and playing back a video
It's time for our first hands-on example in video processing. Let's use the following steps
to import and play-back the video we used before (singleball.avi):

1.	 First, we import the video in a matrix, using VideoReader followed by read:

>> vObj = VideoReader('singleball.avi');
>> video = read(vObj); % read in all frames from video object

2.	 Now, it is time to use the number of frames to create a video structure like the one
that is generated by aviread. Remember, for truecolor frames, it consists of
a cdata field with all the pixel values and an empty colormap field:

>> numOfFrames = get(vObj, 'NumberOfFrames');
>> for i = 1:numOfFrames,
vid(i).cdata = video(:,:,:,i); % Frames are stored in cdata
vid(i).colormap = []; % Colormap is empty
end

3.	 Since we have stored our video in the necessary format, we can now create the
figure in which we have to display it and then call movie:

>> hf = figure;
>> movie(vid)

The last frame of the played-back video will look like as follows:

Adding Motion – From Static Images to Digital Videos

[192]

4.	 Even though we managed to play back our video, there are a couple of things that
are not optimal. One of them is the frame rate. The default frame rate used by
movie, when we have not specified something different, is 12 fps. The other thing
is that we have left the choice about the size of the window for the playback. Let's
try to fix these things by specifying both the attributes, while at the same time ask
MATLAB to playback the video five times. We'll start again from where we left off
at step 2:

>> hf = figure;
>> set(hf,'position',[200 200 vObj.WidthvObj.Height]);
>> movie(hf,vid,5,vObj.FrameRate)

5.	 The result is, as expected, a loop of five consecutive playbacks of our video, at its
proper frame rate.

What just happened?
You just got a first glimpse at some of the things MATLAB is capable of when it comes
to video. First we loaded an .avi video into our workspace as a four-dimensional matrix
and then we converted it to a video structure so that it can be played back properly using
movie. Finally, we fine-tuned our code to make sure that the position and dimensions of the
playback window will be appropriate for our video and then we asked for a five-times repeat
of the video at its original frame rate (specified by vObj.FrameRate). The call to movie was
made with all possible inputs, which are in order of appearance; the handle to the figure we
want our video to be played back in, the name of the video struct variable, the number of
times we want the video to be played back, and the frame rate of the playback.

Making videos from static images
So, now that we know how to import and play back videos in MATLAB, it is time to discuss
how to make our own videos, by stitching together continuous still images. We have already
mentioned that videos are essentially a sequence of static images called frames, which, when
displayed in the proper frame rate portray the sense of motion to the viewer. Therefore, it
is feasible to use sequentially taken photographs to construct a video, provided that their
resolutions and bit-depth are the same. When we have gathered all our photographs in one
place, we can import them in MATLAB using imread, construct a VideoWriter object with
the function of the same name and then use the function writeVideo to add frames to our
video. Let's see all these with an example.

Chapter 7

[193]

Time for action – constructing and saving a video
For this example, we will use a sequence of images derived from a driving video. The frames
must be read into MATLAB and then added to a video object in chronological order. Let's see
how this works:

1.	 First, we will change our working directory to the directory that contains our .jpeg
image sequence. In our example, this directory is called E:\Videos\seq. Of
course in your system the directory containing the sequence may be different, so
you should change the path accordingly. When in this directory, we will save the
filenames of the image sequence to a new struct variable, named contents:

>> cd ('E:\Videos\seq');
>> contents = dir('*.jpeg');

2.	 Then, we must create a video object to store our video in. Let's call it vid.avi:

>> outputVideo = VideoWriter('vid.avi');
>> outputVideo.FrameRate = 15;
>> open(outputVideo);

3.	 Now that we have our filenames stored in the contents variable and we have
opened a video file, we can loop through the filenames of the pictures so that
we load each of them once:

>> for i = 1:length(contents)
im = imread(contents(i).name);
writeVideo(outputVideo,im);
end
close(outputVideo);

4.	 At this point, our brand new video is created. The only thing left is to check our
results. We will once again follow the process described in the previous example
to make the video struct that will be used to play back the video:

>> newVid = VideoReader('vid.avi');
>> for i = 1:newVid.NumberOfFrames
mov(i).cdata = read(newVid,i);
mov(i).colormap = [];
end

5.	 Now, we must create the playback window. We will use the width and height of our
video to set the dimensions of the window and then display its first frame:

>> set(gcf,'position', [300 300 newVid.Width newVid.Height])
>> set(gca,'units','pixels');
>> set(gca,'position',[0 0 newVid.Width newVid.Height])
>> image(mov(1).cdata,'Parent',gca);
>> axis off;

Adding Motion – From Static Images to Digital Videos

[194]

6.	 Finally, we will play back the video at the proper frame rate:

>> movie(mov,1,newVid .FrameRate);

7.	 The output will be as follows:

What just happened?
This time we got to construct a video using a sequence of still images. In the first step of the
process, we changed our working directory to the one containing our images and saved the
filenames in a struct variable using function dir. We used the input *.jpeg because all
of our images were in that format. Since we are already in the folder containing the images,
in step 2 we proceed to create a video object called outputVideo, which will be used to
add our images as frames in a video called vid.avi. In the same step, we also set the video
frame rate to 15 and open the video object for writing. In step 3, we go over all the filenames
saved in the first step, use them to load the respective images in the workspace and then
add them to our video object. After we have added all the frames to our video, it is time to
close it so that it is ready to be played back in MATLAB, or any other video-playing software.

The second part of this example takes over playing back the video we just created. The
prevailing function from our previous sections, VideoReader, is used to load our video to
a video reader object, which is then traversed through all its frames using a for loop. In this
loop, each frame is saved in a struct variable called mov. Step 5 creates the figure in which
our video will be displayed. The position of the bottom-left corner of this figure is placed 300
pixels higher and 300 pixels right of the bottom-left corner of the monitor. The size of the
figure is equal to the size of the video we just opened. The second and third line of code set
the axes to be placed at the exact same place and dimensions as the figure. Then, the first
image of the sequence (also first frame of the video) is displayed in the figure, and the ticks
and labels of the figure are switched off. Finally, in step 6 we use the movie function to play
back the whole video.

Chapter 7

[195]

Have a go hero – make a video with a fade in/fade out effect
Now that you know how to make a video out of still images, let's try to spice things up a
little. You should try to include a fade out effect, followed by a fade in effect. To accomplish
this, you should choose a frame to start your fade out and then lower the values of its pixels
by a constant number (for example, 20). This number should double in the next frame, triple
in the next one, and so on. Make sure that negative values are set to zero. The opposite
process will accomplish the fade in effect, but it is a little trickier, since you have to start from
a dark frame and gradually brighten up the next ones.

Inspecting a video using montage
A useful tool for when we want to inspect all the frames of a video or all the images of a
sequence at the same time, is montage. Its usage will be explained with a simple example
that will demonstrate its importance.

Time for action – don't wait for the ball
In one of our previous examples, we used the video called singleball.avi, which is
included in MATLAB as a demo. This video portrays a static box and a green ball that enters
from the left of the frame and passes underneath the box to exit from the right part of the
frame. Of course, without inspecting the video, we have no idea when the ball enters our
frame. It could be at the beginning of the video, or maybe we would have to wait a while
until we see it. So let's inspect all the frames to get a better idea:

1.	 First off, we load the video using VideoReader:

>> vObj = VideoReader('singleball.avi');
>> video = read(vObj); % read in all frames from video object

2.	 Now, we have our video stored in a four-dimensional matrix. This is enough for
montage to take over:

>> montage(video,'Size',[5 9]) % Using a 5x9 grid for 45 frames

Adding Motion – From Static Images to Digital Videos

[196]

3.	 The result of the preceding steps is as follows:

What just happened?
Now we are in a position to pinpoint the frames that are most useful for us. As we can
remember from the previous example in which we used the same video, it comprises of 45
frames. Thus, our call to montage with a 5 x 9 grid as input is rather intuitive, since it will fit
all frames without leaving any empty spaces. As you can easily observe, the ball enters our
scene at the 13th frame and exits at the 42nd frame. Of course in this example the number
of frames we would exclude knowing this information is small (12 at the beginning and 3
at the end), but it still is 1/3rd of the entire video. However, imagine a long video with only
a few frames containing motion. This overall inspection tool would be a lifesaver in terms
of time and effort. It can also be invaluable in artistic or other video editing tasks, since we
can quickly skim through chunks of frames and pinpoint the ones we want to process.

A tool just for your playback needs – implay
Until now, we have demonstrated ways to display videos in MATLAB that are quite useful
for adding processing steps in the loop, but are somewhat difficult in comparison to
standard video-playing software. However, MATLAB also provides a tool aimed at those
that do not want to get their hands dirty with frame-by-frame processing. Its name
is implay and it has a pretty straightforward usage. It can be used in three different
ways; as a standalone GUI-based video player, as a function that plays back a given image
sequence stored in a matrix and as a function that loads and plays a video given its
filename. Let's see how these work.

Chapter 7

[197]

Using the GUI of implay
This is the most common way to use this tool. It is invoked by typing in its name:

>> implay

This opens the following window:

This GUI gives you the following choices:

�� To open up a new player (clicking on the first icon from the left)

�� Printing your frames (using the second icon from the left)

�� Opening a video file (using the third icon from the left)

�� Opening an image sequence from a matrix in the workspace (fourth icon)

�� Exporting the current frame to imtool for processing (fifth icon)

�� Inspecting information about the open video (sixth icon)

�� Inspecting pixel values by placing a crosshair cursor inside the frame, like we did
in the imtool (seventh icon)

�� Zooming in/out (eighth/ninth icon)

�� Dragging image to pan (tenth icon)

�� Resizing the frame to fit the window (eleventh icon)

�� Resizing the frame to a given ratio (textbox at the top right corner)

Adding Motion – From Static Images to Digital Videos

[198]

When we load a video, a second toolbar opens up beneath the first one:

This second toolbar will probably look familiar to anyone that has used video players
of any kind. Its functionalities are:

�� Go to first frame (first icon)

�� Jump 10 frames back (second icon)

�� Step back one frame (third icon)

�� Stop video (fourth icon)

�� Play video (fifth icon)

�� Step forward one frame (sixth icon)

�� Jump 10 frames forward (seventh icon)

�� Go to last frame (eighth icon)

�� Jump to a frame of your choice (ninth icon)

�� Repeat on/off (tenth icon)

�� Forward/backward playback (eleventh icon)

All these functionalities give the everyday users of MATLAB a handy tool to playback their
videos. Let's see how they can be combined with what we have already shown.

Chapter 7

[199]

Using implay to play a video file
Instead of clicking on the third icon of the GUI, we can call implay with the filename of the
video we want to play as input:

>> implay('singleball.avi');

We can also use a different frame rate:

>> implay('singleball.avi',20);

Using implay to play an image sequence
Combining it with a function such as imread and a loop that goes through all the filenames
of images in a directory, we can also playback an image sequence such as the driving scene
presented in an earlier example:

>> cd ('E:\Videos\seq'); % Change working directory
>> contents = dir('*.jpeg'); % Get names of jpeg images
>> for i = 1:length(contents) % Loop through all images
images(:,:,:,i) = imread(contents(i).name); % Import and save them
end
>> implay(images,15); % Play back the video sequence at 15 fps

Creating time-lapse videos
Until now, we have covered all that we need to make our own time-lapse videos. Time-lapse
is essentially the art of capturing video frames at a very low frame rate. When these frames
are combined and played back at a regular frame rate (say, 25 fps), the viewer gets a sense
that time is moving at a higher speed than normal, hence the term lapse. When the frames
are captured using high resolution photographic cameras or even HDR images, then the
results can be spectacular. Effects such as watching a flower bloom in seconds, or seeing the
sun set or rise in a small time frame can become reality.

Lately, time-lapse photography has become one of the most used modern artistic effects
in documentaries, or even movies. To achieve the impressive time-lapse videos you see in
such cases, complex rigs that move the camera very slowly are combined with devices called
Intervalometers (special devices which are programmed to get the camera to shoot several
pictures at given intervals), to achieve the required precision.

Adding Motion – From Static Images to Digital Videos

[200]

Time for action – time-lapsing a regular video
Making a time-lapse video can also be as simple as skipping several frames from a video,
to keep only the number of frames per second that will achieve the desired effect. Let's see
how we can achieve this.

1.	 Our first step will be to use VideoReader to import a 2-minute driving video called
car2min.avi into MATLAB:
>> E=VideoReader('car2min.avi');

2.	 Then, we will loop through our video using a large step (12 frames) and save the
frames we visit into a new matrix:
>> k = 1; % This will be used as a counter for the frames we
 keep
>> for i = 1:12:E.NumberOfFrames % Visit every 12th frame
v(:,:,:,k)=read(E,i); % Save the frame in the kth position of
 v
k=k+1; % Increase the counter by 1
end

3.	 At this point, we have our video, comprising 104 frames, saved in matrix v. We can
now inspect it using montage:
>> montage(v,'Size',[7 15])

4.	 The result will be as follows:

5.	 Now we can save our time-lapse in a new video, using what we have already learnt:
>> lapse = VideoWriter('timelapse.avi');
>> lapse.FrameRate = 15;
>> open(lapse);
>> for i = 1:size(v,4)
writeVideo(lapse,v(:,:,:,i));
end
close(lapse);

Chapter 7

[201]

6.	 If you want to preview your video, you can use implay:

>> implay('timelapse.avi')

What just happened?
Congratulations! You have just made your first time-lapse video. Of course, it was a little
less sophisticated than the average videos you might have seen in the documentaries, but
nevertheless, it is a first step. You have achieved it by first importing a regular video and
then selecting a large enough step to take sample frames from this video and save them in
a new matrix. Finally, after inspecting all the frames of your newly constructed matrix using
montage, you looped through all the frames to save them in a new video file with a frame
rate of 15 fps. In the following chapters, we will get into the details of how to shoot the
frames for a time-lapse using a photographic camera, a USB cable and a laptop with MATLAB.

Have a go hero – spinning our time-lapse
So, now that you know how to make a time-lapse, why not use another little trick to make it
spin? You should try to rotate each frame by a fixed, arbitrary angle, and then save the result
using the process you have already learned. If you do it correctly, the size of each frame will
remain unaffected and you will have in your hands, a spinning timelapse video. Make sure that
the angle you choose is not very small, or very large, so that the result is as smooth as possible.

Saving your time-lapse videos in a gif file
Another very popular format that incorporates motion is the graphics interchange format,
shortly known as gif. This is a widely used file format, which supports up to 8-bits per pixel
for each color channel. It can be used for still images, but also for animation. Gif files are very
frequently used in the internet due to their simplicity and portability, which allows for easy
production of animations made from photographs, plots, or sketches. In MATLAB, we can
make a gif file using imwrite.

To save our time-lapse video generated in the previous example in a gif file, we have to
repeat step 4, this time using imwrite:

>> fl = 'gifTimelapse.gif';
>> for i = 1:size(v,4),
[imind,cm] = rgb2ind(v(:,:,:,i),256); % Change rgb frame to indexed
 image
if i==1,
imwrite(imind,cm,fl,'gif', 'Loopcount',inf);
else,
imwrite(imind,cm,fl,'gif','WriteMode','append');
end
end

Adding Motion – From Static Images to Digital Videos

[202]

The file we created, called gifTimelapse.gif, can be opened using any photo editor that
supports animated gif files. Its frame rate in this example is dependent on the frame rate
of the original video. In general, the playback frame rate of gif files can be affected by other
factors as well, for example, the browser that plays the gif.

Pop quiz – image filtering in 2-dimensions
Q1. Which of the following are true?

1.	 implay is a tool supporting image processing tasks.

2.	 A gif file is a static image format that is rarely used.

3.	 Interlaced videos have double the information that progressive videos of the same
size and frame rate have.

4.	 A higher frame rate leads to a smoother depiction of motion.

5.	 A struct variable can be a matrix containing fields of different types.

6.	 Function aviread can read compressed videos in Unix systems.

7.	 Function VideoReader is the most recent video reading function in MATLAB and
therefore it is the safest choice for such tasks.

Summary
This chapter gave an introduction to videos and basic video processing tools contained
in MATLAB. A brief explanation of the various properties of the videos that affect their
quality has been provided in the first half of the chapter, followed by a presentation of the
basic functions used to load videos in MATLAB. Then, ways to playback videos and video
sequences using the command line were demonstrated and the process of video creation
from static images was explained. In the rest of the chapter, two useful tools for inspecting
and playing back videos were discussed and then the creation of time-lapse videos in both
.avi and .gif formats was shown in detail. More specifically, this chapter covered:

�� An introduction to digital video basics

�� A presentation of interlaced and progressive videos

�� A discussion on frame rates and their importance

�� Some thoughts and examples on choosing a frame rate

�� Loading videos in MATLAB using aviread

�� Loading videos in MATLAB using mmreader

�� Loading videos in MATLAB using VideoReader

�� Selecting the best function for reading a video

Chapter 7

[203]

�� Playing back videos in MATLAB using movie

�� Making videos from static images

�� Inspecting a video using montage

�� Using implay to playback videos, or image sequences

�� Creating time-lapse videos from regular ones

�� Saving your videos in gif format

In the following chapter, we will extensively cover ways in which MATLAB can be used for
the acquisition phase of videos or image sequences. We will present imaqtool in detail and
use it to create beautiful time-lapse videos. We will also discuss issues related to disk space
preservation in video processing tasks. Finally, we will show how to process video frames
in small chunks, aiming at producing a new video with enhanced colors and intensity.

Acquiring and Processing Videos

Now that you are acquainted with the processes of importing videos in
MATLAB and creating new ones from still images, it is time we explore another
aspect of MATLAB video processing, which is video acquisition. In this chapter,
we will learn how you can use MATLAB to acquire videos, or sequences of
images, which are saved on your computer rather than the storage of the
camera. Furthermore, we will learn about the storage space problems faced
everyday by video processing professionals and discuss compression issues and
tricks, so that we mitigate this problem. Finally, some difficulties of real-time
video processing in MATLAB will be presented and explained. Various tips on
speeding up such processes will also be given. While learning all these, we
will investigate hands-on examples that will help you comprehend various
implementation techniques.

In this chapter, we will cover:

�� How we can record videos in MATLAB, using the Image Acquisition Tool

�� What video compression is and why it is important

�� How we can work with uncompressed videos in MATLAB

�� How we can make a time-lapse video in MATLAB

�� How we can process videos in real time

So, let's start!

8

Acquiring and Processing Videos

[206]

Using MATLAB for digital video recording
Till now we have used MATLAB as a powerful and versatile image processing tool. In the
previous chapter, we also started exploring its video reading and writing capabilities. You
may be surprised to find out that MATLAB has another useful functionality. It can be used
to capture and record images and videos shot either by external cameras connected to
a PC, or by internal cameras embedded in laptops. The tool that supports these capabilities
is included in the Image Acquisition Toolbox and it is called Image Acquisition Tool.

The Image Acquisition Tool is a simple, yet effective, Graphical User Interface (GUI) that
enables MATLAB to turn your PC to a Digital Video Recorder (DVR). It is invoked by simply
typing its function name in the command line as follows:

>> imaqtool

Once it is called, the window that appears looks like the following screenshot:

In the Image Acquisition Tool window, there are several subwindows that are used for
acquisition purposes. We will briefly learn their properties here, so that you know your way
around when we start using this tool.

The Hardware Browser window
The Hardware Browser window contains the list of acquisition devices that can be used by
the Image Acquisition Tool. If your computer does not have a camera connected to it, or
an embedded camera, this list will be empty. When a camera is detected by the Hardware
Browser window, then its name, followed by its supported video formats are listed in the
window. In our case, just one video camera with two supported formats was connected
to the PC, so expanding its list of supported formats looked like the following screenshot:

Chapter 8

[207]

The default video format was highlighted and written in bold, so that we know that it is
preselected for us. Of course, we can choose the alternative format just by clicking on it.

The Information window
The Information window is used to provide additional information about whichever part
of the list in the Hardware Browser window you have clicked on. In our case, clicking
sequentially on the first three items of the list, leads to the following results:

The Desktop Help window
The Desktop Help window contains helpful information about all the other windows in the
GUI. It will change its contents depending on the window you have chosen to click on.

The Preview window
The Preview window is the part of the tool that provides a visual guide for you on what
the camera is capturing. You can start or stop previewing what your camera sees, by clicking
on the Start Preview or Stop Preview button respectively. From here, you can also start
or stop the acquisition process, by clicking on the Start Acquisition or Stop Acquisition
button respectively. There is also a Trigger button that may be used when you have set the
acquisition trigger to be manual (through the Acquisition Parameters window) and finally
there is an Export Data... button to save the acquired video, or sequence of images. This
option allows you to export the video to a MAT-file, to the MATLAB Workspace, to the Movie
Player, or to a video file using VideoWriter. All previews are displayed in a figure embedded
in the Preview window, the size of which changes dynamically when you change the size
of the window.

Acquiring and Processing Videos

[208]

The Acquisition Parameters window
The Acquisition Parameters window is the panel in which all the settings for the acquisition
process are defined. It contains five different tabs, named General, Device Properties,
Logging, Triggering, and Region of Interest. Let's see what their settings are.

The General tab
The General tab is used to define two things:

�� The number of Frames per trigger that will be acquired (either a user-defined
integer number or infinite).

�� The Color space tab that will be used for the acquired frames. It can be rgb,
grayscale, or YCbCr.

The Device Properties tab
The Device Properties tab will be useful only in cases where your acquisition device allows
it. In our examples it won't be the case, since our camera did not support its properties
to be set. Other cameras may give you the choice of setting properties such as its exposure,
or frame rate.

The Logging tab
The Logging tab allows you to define where the acquired frames will be saved, under which
filename, how high your allowed memory limit will be set, and finally the output file format
you want to use. More specifically:

�� The Log to setting defines where the acquired frames will be saved. The possible
choices are as follows:

�� Save to Memory, in which case the data will be lost if you do not use the
Export Data field which is available in the Preview window.

�� Save to Disk, in which case the data will be saved to your computer's disk
using the VideoWriter function, in the path and under the filename that
you choose in the Disk Logging (VideoWriter) setting.

�� Save to Disk and memory, in which case the data will be stored both in your
computer's disk and memory.

�� The Memory logging setting lets you define the Memory limit (in MB) for the stored
data, in case you have selected it to be saved in the RAM.

Chapter 8

[209]

�� Disk Logging (VideoWriter) allows you to define the folder where the data will
be stored, as well as the Filename of the video stream, or sequence of images
(depending on your choice of output format). Optionally, you can also select the
option Automatically increment filename that ensures that your consecutive video
files will be saved with the same name, but different consecutive numbering
(for example, name_001.avi, name_002.avi, and so on).

The Triggering tab
The Triggering tab allows you to change the following settings:

�� Number of triggers should either be set to a user-specified number, or to Infinite
(you get to decide when your video will stop, by clicking on the Stop Acquisition
button in the Preview window).

�� Trigger type should either be set to Immediate (you start the acquisition by clicking
on the Start Acquisition button in the Preview window), or to Manual (it allows
usage of the Trigger button in the Preview window).

�� Hardware triggering is a setting that is visible only when your device supports it
(it will not be available in our examples). This setting allows for your device to
perform triggering based on parameters that can be altered, but are device-specific.

The Region of Interest tab
The Region of Interest tab allows you to define a region of the frame that you want to be
acquired. By default, the entire frame will be saved, but you can limit the area either by
clicking on the Select or Edit button and then defining a rectangular area of the frame shown
in the Preview window (you must have clicked on Start Preview first), or by setting the
X-offset and the Y-offset as shown in the following screenshot:

The Session Log window
The Session Log window is similar to the Command History window of the MATLAB
environment, which was presented in the first chapter. It is a very useful part of the Image
Acquisition Tool, since it dynamically presents the equivalent command line actions for every
choice you make in the GUI. It can be used to teach you some of the core functions used for
image acquisition, so that later on you can use them in your own MATLAB code.

Acquiring and Processing Videos

[210]

Time for action – capturing a video using a firewire connection
Now it is time to tackle our first video acquisition assignment. We will use the most
common settings to save a video in our disk, explaining every step of the process. The
camera used for this example, will be a 10-year old DV camera, with a firewire (IEEE 1394)
port. The connection to the PC will be via the firewire port on our motherboard. Other
viable solutions can be used, for example, USB web cams, frame grabbers, and so on.
A list of supported hardware per manufacturer and per operating system can be found on
https://www.mathworks.com/products/imaq/supported/index.html.

Now, let's start our process:

1.	 Our first step is to connect the camera using a firewire cable and switch it on in
camera mode. Once we do it, our device should be recognizable by imaqtool.
Since we are working on Windows, we can ensure that our camera is supported,
using a free utility that can be downloaded from https://www.mathworks.
com/products/imaq/supported/detect-devices-utility.zip. Running
the 64 bit executable file detectDevices.exe on our 64 bit system yields to the
following result:

2.	 Since the camera is detected, we should be able to use it in the Image Acquisition
Tool window. Let's verify it by invoking it:

>> imaqtool

Chapter 8

[211]

The output of the previous command is as follows:

As expected, the camera was recognized and it showed up in the Hardware Browser
window, under the name Microsoft DV Camera and VCR (winvideo-1).

3.	 Now that the camera is recognized, we can start setting up the recording. First, let's
change the resolution we will use, from the default 720 x 480, to the slightly larger
720 x 576 resolution. We do this by clicking on the second available item on the list
of supported formats in the Hardware Browser window. Clicking on it leads to the
following result in the Information window:

4.	 The next step is to select some of the details of the acquisition process. For this first
example, we will not use the triggering process. We will just make a simple video
recorder that starts and stops at our command. To achieve this, we will set the
Frames per trigger option in the General tab of the Acquisition Parameters window
to Infinite.

5.	 In order to demonstrate the logging options, we will use both the RAM and the disk.
To do it, we first go to the Acquisition Parameters window and set the Log to option
of the Logging tab to Disk and Memory.

6.	 Then, we define the Memory limit to be 500.0 MB (you can set it lower if you don't
have enough RAM).

Acquiring and Processing Videos

[212]

7.	 Now, it is time to select the name and format of our output video file. We will click
on the Browse... button to select the folder in which we want to store our video.
The folder we will use is E:\Videos\Acquisition\.

8.	 Then, we have to define a name for the stored video in the Filename field
(the default name filled in for you along with the full path is bin.avi). We will
change this to test.avi for this example.

9.	 Our final setting will be to set the format and frame rate of the video we will
acquire. For this example, we will leave the default values that is the Profile field
will be Uncompressed AVI and the Frame Rate field will be 30. If you have followed
all the actions above correctly, you should see the the following Logging tab:

10.	Now that we are finished with the settings, it is time for our final steps. The Preview
window is where we will be working. First off, we click on the Start Preview button,
to generate a small previewing screen that plays the role of the camera LCD screen,
displaying what the camera sees in real time.

11.	When we are ready to record, we click on the Start Acquisition button. This will start
the logging process, both in the RAM and in the disk (in the file we specified in steps
7 and 8).

12.	Finally, when we want to stop the recording, we click on the Stop Acquisition
button. At this point, the test.avi video is safely stored in our disk and we also
have a maximum of 500.0 MB of video stored in our RAM. In case we exceed the
storage limit, we will get a warning message as follows:

Chapter 8

[213]

13.	After we click on the Stop Acquisition button, the Preview window will display a grid
of frames from our recording. In our case, it shows 9 of the total 401 frames that
were acquired (1 every 50). The test.avi video is stored in the disk at this point.

14.	At this point, we can click on the Export Data... button to export the video that has
been logged to the RAM. Since we have already saved our data to a video file, we
will choose to export it also to the MATLAB Workspace. In the textbox defining the
Variable name, we will type test. This leads to our Workspace window containing
a four-dimensional matrix with all the acquired frames in it:

15.	An optional, but useful, step for our learning purposes is to save the session
log to a file, so that we get to keep and study the commands that were used in
this acquisition session. To do this, we click on the disk icon in the Session Log
window and save the commands as a MATLAB script in a folder of our choice. If we
performed all the steps described above correctly, our resulting script should look
something like this:

vid = videoinput('winvideo', 1, 'dvsd_720x576');
src = getselectedsource(vid);
vid.FramesPerTrigger = 1;
vid.FramesPerTrigger = Inf;
vid.LoggingMode = 'disk&memory';
imaqmem(500000000);
diskLogger = VideoWriter('E:\Videos\Acquisition\bin.avi',
'Uncompressed AVI');
vid.DiskLogger = diskLogger;
diskLogger = VideoWriter('E:\Videos\Acquisition\test.avi',
'Uncompressed AVI');
vid.DiskLogger = diskLogger;
preview(vid);
start(vid);
stoppreview(vid);
test = getdata(vid);

Acquiring and Processing Videos

[214]

What just happened?
This was a rather detailed example of a simple way to work with the Image Acquisition Tool
of MATLAB. The steps described the process of setting up the tool to behave as a simple
video recorder, waiting for the user's command to start and stop the acquisition process.
The acquisition is performed at a constant frame rate set to 30 fps and the video is saved
both in the RAM and a predefined folder of the disk. A thing to beware of is that the RAM
can keep a limited amount of data, defined by you. If the video exceeds the set limit, an
error message like the one presented in step 12 pops up. However, you do not lose your
work, since you can stop the recording and export the video logged to the RAM in any of the
available ways you wish. After we saved the video both in an .avi file on the disk and in the
MATLAB Workspace as a four-dimensional matrix, we then proceeded to save the commands
generated from our process in a MATLAB script.

Have a go hero – adding a trigger to our recording
Now that you have an idea of how the Image Acquisition Tool works, it is time that you take
the wheel. Let's try to make a different variation of the acquisition process by adding some
functionality. You should try to set up the tool, so that it gets to do 25 manually triggered
acquisitions of frames. The data should be logged only to the disk, in a folder of your choice,
using the filename test2.mp4. The output file should be compressed as MPEG-4 of a
quality factor of 100 and the frame rate should be 25 fps (leading to a video that is 1 second
long). The choice of resolution is up to you.

If you perform the settings correctly and click on the Start Acquisition button, you will
get a message with a counter that informs you what the number of your click on the Trigger
button will be, out of a total of 25. Every time you click on the Trigger button, the counter
will be increased by one, until it reaches 25, in which case the acquisition process will stop.
This way you will produce a video file that is 1 second long, comprises 25 frames and looks
like a time-lapse video, since you naturally did not click all the frames at a frequency of
1/25th of a second.

The importance of video compression
In our first example in this chapter, we saved an uncompressed AVI video. This led to a very
quick appearance of the message informing us of reaching the limit of 500 MB. The number
of frames captured until the appearance of the message was 401, which equals to the
duration of approximately 13.37 seconds. Quite a large size for such a small video!

Chapter 8

[215]

Let's do some math to understand how this works. As we recall from the previous chapter,
the memory that an uncompressed 8-bit video consumes can be calculated by multiplying
its total number of pixels, by the number of frames by three (the number of color channels).
The resulting size is counted in bytes.

Checking the size of an uncompressed video
We will now try to verify that our resulting video file is as large as we expected it to be, using
Command Window. First we will get the size of our video file:

>> vidInfo = dir('E:\Videos\Acquisition\test.avi'); % get file info
>> fileSize = vidInfo.bytes % save filesize in bytes

The output of the previous code is as follows:

fileSize =
 498986856

Now, let's calculate our expected video file size based on its dimensions:

>> vidObj = VideoReader('E:\Videos\Acquisition\test.avi'); % load
 video
>> expSize = vidObj.Width * vidObj.Height * vidObj.NumberOfFrames * 3

The output of the previous code is as follows:

expSize =
 498908160

As you can observe, the actual video file is a little bigger than expected (approximately 58 KB).
This is caused by the information overhead added by the encoder to construct the actual video
file. If you want to reproduce the results in your own computer, you should, of course, change
the path containing your video.

Acquiring and Processing Videos

[216]

Checking the size of an MP4 video without any motion
Let's now make a compressed video like the one you created in your second exercise. For
the sake of comparison, we have used a resolution of 720 x 480 and placed it in the same
directory as test.avi. We have positioned the camera so that it looks at a window with no
apparent motion for one second. The Frames per trigger field was set to 25, the Trigger type
field to Immediate, and the Number of triggers field to 25. We gave the video the filename
testStill.mp4 and chose also to log it to the RAM and export it to the Workspace
window as testStill. Let's see how its frames look:

Hence, the process will be the same for getting the actual size of the file:

>> vidInfo = dir('E:\Videos\Acquisition\testStill.mp4'); % get file
 info
>> fileSize = vidInfo.bytes % save filesize in bytes

The output is as follows:

fileSize =
166262

For the expected size of the uncompressed equivalent video, we use the number of frames,
which is 25:

>> expSize = 720 * 576 * 25 * 3

The output is as follows:

expSize =
 31104000

Chapter 8

[217]

This is the power of compression. Using MP4 compression, we have managed to limit the
size of our video from an approximate expected 31 MB to approximately 166 KB. Not bad!
The ratio of compression equals to:

>> compressionRatioStill = fileSize / expSize

The output is as follows:

compressionRatioStill =
 0.0053

Now, let's repeat the same thing in a scene with motion.

Checking the size of an MP4 video with high motion
For this experiment, we will start waving a pen in front of the camera for the duration of the
video. This will show us if the videos with high motion have a different compression ratio
than those without much motion. We'll use the same settings as in the previous section
and name our video testMotion.mp4. We will also export the frames to a variable called
testMotion. Let's see how the frames look:

Acquiring and Processing Videos

[218]

The motion included is now obvious, as is the distortion of the images caused by the
fact that our video is interlaced (recall the previous chapter). The expected size of the
uncompressed video remains the same. However, it is intriguing to see what happens with
the actual compressed video size:

>> vidInfo = dir('E:\Videos\Acquisition\testMotion.mp4'); % get file
 info
>> fileSize = vidInfo.bytes % save filesize in bytes

The output is as follows:

fileSize =
527062

So, it's true that the videos that include a lot of motion are bigger that is they have a larger
compression ratio than the ones that include little motion. The actual ratio on this occasion is:

>> compressionRatioMotion = fileSize / expSize

The output is as follows:

compressionRatioMotion=
 0.0169

If you divide the compression ratio of the testMotion.mp4 video to that of the
testStill.mp4 video, you will find that it is approximately 3.2 times larger. The higher the
compression ratio is, the smaller the space savings derived from the compression process.

Working with uncompressed videos
A common question that you might face after reading the previous section, is why don't we
work with MP4 (or other compressed formats) videos so that we do not face as many space
issues? The answer is pretty simple if you stop and think about it. The advantages of compressed
video files cease to exist the moment we load them in MATLAB. Once they are loaded, the
frames contain all the information needed to fill all the elements of a matrix comprising all the
loaded frames. Therefore, it is the same thing as loading an uncompressed video.

We can verify this by inspecting the variables testStill and testMotion created in
the previous section. We will do it using MATLAB function whos, designed for reporting all
information about a given variable. The name of the variable must be given as input, in a
string format. Let's call this function for our two variables. The following line of code gives
information for testStill:

>> whos('testStill')

The output of the previous code is as follows:

Name Size Bytes Class Attributes
testStill 4-D 25920000 uint8

Chapter 8

[219]

The following line of code gives information for testMotion:

>> whos('testMotion')

The output of the previous code is as follows:

Name Size Bytes Class Attributes
testMotion 4-D 25920000 uint8

As you can see, both the variables have the same size in bytes. This proves our previous
speculation and leads to a new, very important question: since we can only store a very
limited amount of frames in our Workspace, how can we process large videos?

The answer to this question is to design our video processing tasks so that they work with
small chunks of our video (for example, 10 frames at a time) and then combine the results
to form the processed video.

Working with large videos in postproduction
We will frequently need to apply some processing tasks to the frames of an already acquired
video sequence. As you may have already understood, this is a very tricky problem, since we
take into consideration the size of the video when it is imported to MATLAB. Let's see how
we can tackle such a task.

Time for action – making an edge detection video
In this example, we will try to postprocess an already captured video file, with a size that is
too big for our memory.

1.	 Suppose that we cannot afford 500 free MB of RAM and select the test.avi
file we created previously. The processing task will be to convert each frame to
grayscale, perform edge-detection and then save the result in a new file.

2.	 In order to avoid exceeding our memory limit, we will process our video in small
chunks, of 10 frames each, which will be processed and added to a video file.
Processing in small chunks accomplishes a trade-off between processing large videos
(might lead to a memory insufficiency error) and processing videos one frame at
a time (while in edge detection this approach is acceptable, it is often unfeasible,
because some processing tasks require more than one frame to work). The following
function will accomplish the task of edge detection:

functionEdgeDetectChunks(inputFn,outputFn,chunkSz)

% Function for edge detection of frames
% Inputs:
% inputFn – Input video filename
% outputFn- Output video filename

Acquiring and Processing Videos

[220]

% chunkSz – Size of chunks
% Output:
% No output needed!!

vIn = VideoReader(inputFn); % Open input file
numF = get(vIn, 'NumberOfFrames'); % Get size in frames
vOut = VideoWriter(outputFn); % Create output file
vOut.FrameRate = vIn.FrameRate;% Equal framerates
open(vOut); % Open output

start = 1; % Start frame
stop = chunkSz; % Stop frame

while (stop <= numF) % As long as we don't exceed the frame limit
frames = read(vIn,[start stop]); % Read a chunk of frames
for i = 1:size(frames,4) % For all frames in chunk
temp = frames(:,:,:,i); % Read a frame
temp = rgb2gray(temp); % Convert it to grayscale
outF = edge(temp); % Perform edge detection
outF = single(outF); % Convert to single
writeVideo(vOut,outF); % Write result
end
start = start + chunkSz; % Next chunk start
stop = stop + chunkSz; % Next chunk end
end

close(vOut); % Close output file

What just happened?
The function that we developed for this example may need some further explanation. First
of all, the inputs were two strings, one for the input file and one for the output file, and
a number that defined the number of frames to be included in our chunks. No output was
needed, since our result was saved straightaway to the output video file.

The first five lines of our function opened the video input file and created an output video
file with the same frame rate. Finally, the output file is opened so we can write on it.

The next couple of lines initialized the limits of our first chunk of frames. It started at the first
frame and ended at the frame number that is equal to the defined size.

Next, the function entered a while loop, where all the processing will take place. The while
condition (stop <= numF) told our program to keep entering the loop until the maximum
limit for our chunk exceeded the total number of frames in our video. Just before each time
the loop reached its end, the limits were increased by a constant chunkSz so that we moved
to the next chunk of frames (see the two highlighted lines of code).

Chapter 8

[221]

Inside the while loop, our function read the chunk of frames defined by our start and
stop values and entered a for loop that processed each of the frames. The processing that
took place is a conversion to grayscale, followed by edge detection. The resulting image was
converted to type single, so that it could be used in a video. Finally, the edge detection
result was saved as a new frame to our output file.

Finally, when our upper limit variable (stop) has exceeded the number of frames in the
video, the function closed the output file and ended.

Have a go hero – getting the last chunk of frames processed
Now that you have spotted the weakness of our function, try to fix it by adding a fail-safe
scenario. You should make sure that the last chunk of frames is processed no matter what.
The way to verify the correctness of your code will be to compare the frame numbers of your
output and input files. These two should be equal, even with a chunk size that is not a factor
of the total number of frames. While you are at it, you could also experiment with other
edge detection techniques, or even edge detection in all three color channels.

Pop quiz – what is the problem with our function?
Q1. Is the following statement correct?

1.	 The resulting output video from the function implemented above may not have
an equal number of frames as our original one (used as input).

Acquiring frames for time-lapse videos
Now that you know how to acquire frames using the Image Acquisition Tool, and you have
also understood the implications of enlarged uncompressed video sizes, it is time to revisit
a technique covered in the previous chapter. More specifically, we will now discuss how the
imaqtool can be used to create time-lapse videos. There are two ways we can use it:

1.	 By acquiring a full video and then following the process shown in the previous
chapter to extract the frames that will be used to make your time-lapse video.
However, this process has the obvious flaw of requiring too much disk space in cases
of videos that may last a day, or more.

2.	 By manually triggering as many frames as you want (after having specified their
number in Number of triggers). Of course, this way isn't ideal either, since it
demands manual interaction.

This leads us to the conclusion that in order to tackle special tasks, such as time-lapse video
creation, we should find alternative methods. For this reason, it is time to turn back to the
powerful MATLAB command line and make use of the functions relating to image acquisition.

Acquiring and Processing Videos

[222]

Detecting your acquisition hardware
The first step to acquiring videos through the command line is to detect the acquisition
devices. This is a process that is performed through the use of imaqhwinfo:

>> imaqhwinfo

The output of the previous command is as follows:

ans =
InstalledAdaptors: {'gentl' 'gige' 'matrox' 'winvideo'}
MATLABVersion: '8.0 (R2012b)'
ToolboxName: 'Image Acquisition Toolbox'
ToolboxVersion: '4.4 (R2012b)'

This result shows us the list of installed hardware adaptors. As you may see in the example
describing the session log in the beginning of the chapter, imaqtool has used the winvideo
adaptor to define the video input method. Hence, this is what we will also use here. Your
selection may differ, according to the hardware you have installed in your computer.

Creating a video object and acquiring a frame
Now it is time to create a video object in our Workspace. This is accomplished using the
function videoinput (exactly as in the code generated by imaqtool):

>> vidObj = videoinput('winvideo', 1, 'dvsd_720x576');

The output of the previous code is as follows:

Error using videoinput (line 228)
There are no devices installed for the specified ADAPTORNAME. See
IMAQHWINFO.

This doesn't look right! Something went wrong here. Despite the fact that the device
is switched on and it has been recognized by imaqhwinfo, MATLAB produces an error
message. Luckily, the solution is simple. We will just reset the image acquisition objects,
using imaqreset, and then retry using videoinput:

>> imaqreset
>> vidObj = videoinput('winvideo', 1, 'dvsd_720x576');

Success! This time, a video object named as vidObj has been created. It holds the
information regarding the acquisition hardware we want to use and the resolution we will
work in. The next step is to acquire a frame. Before we do, let's open a Preview window like
the one used in imaqtool to get a glimpse of what our camera sees:

>> preview(vidObj)

Chapter 8

[223]

The following screenshot is the output of the previous command:

Now, we can grab one frame at any point in time we want and save it in matrix variable
snapshot, using function getsnapshot:

>> snapshot = getsnapshot(vidObj);
>> figure,imshow(snapshot) % Take a look at what we shot

The following screenshot is the output of the previous command:

Acquiring and Processing Videos

[224]

So, now that you know how you can capture a frame using the command line, the sky is the
limit! The next step is to create a free-of-charge MATLAB-based intervalometer for our time-
lapse videos. As already mentioned in the previous chapter, intervalometers are devices that
take over the timing of frame capturing by our device. They also allow for more complicated
adjustments, for example, the shutter speed, HDR multiple exposures, and so on. These
functionalities can be also included in MATLAB, if the capturing device allows the software to
manipulate them. However, the only thing that we will need for our simple example is a way
to control the time intervals between sequential frame acquisitions.

The only extra function we will need is pause. This function pauses the execution of a
program for a given number of seconds (given as input), before allowing it to continue. Let's
see how this will work.

Time for action – using MATLAB as an intervalometer
Our goal here is to write MATLAB code that will create a time-lapse video. Let's suppose
that we want our video to capture frames overnight that is start shooting when we want
it to and then shoot 1 frame every minute, for 8 consecutive hours. This will lead
to a video comprising 8 x 60 frames, which is 480 frames in total. An uncompressed
video with a resolution of 720 x 576 pixels and 8-bits depth per color channel will require
approximately 598 MB. Therefore, you should make sure that you have at least 598 MB
of RAM available to save it.

It goes without saying, that your camera must be plugged to the power outlet so that
we don't face battery problems. If you work with a laptop, it should be plugged in
as well. Let's start using MATLAB as an intervalometer:

1.	 We first reset our hardware devices and set the video input to our preferred
hardware and resolution:

>> imaqreset
>> vidObj = videoinput('winvideo', 1, 'dvsd_720x576');

2.	 It is a good idea to preallocate space for the matrix that will store our 480 frames,
since this will be an early indication of whether you have enough memory. Our
matrix should be of type uint8, so that it matches the video frames that will
be acquired. To do this, type in the following command:

>> timelapse = uint8(zeros(576,720,3,480));

3.	 Now, it is time to write the intervalometer code. It will be a for loop that executes
480 times. In the loop, we must use getsnapshot to acquire a frame and then
pause to wait for a time interval of 1 minute (60 seconds). Printing out a message
that tells us which frame has been captured will also prove useful, as will displaying
the current acquired frame:

>> for i = 1:480

Chapter 8

[225]

timelapse(:,:,:,i) = getsnapshot(vidObj); % Acquire a frame
fprintf('Just acquired frame number %d… \n',i) % Announcement
imshow(timelapse(:,:,:,i)) % Display the current frame
pause(60) % Wait for 60 seconds
end

4.	 After 8 hours, your time-lapse video will be ready! All its frames will have been stored
in matrix timelapse. They are ready for you to play them back, or save them
to a video file. Let's first playback the video to see if we are happy with the result:

>> implay(timelapse)

5.	 Hopefully, our time-lapse video is what we expected to see. If we do not save it now,
we will have wasted 8 hours of our lives for nothing. So, let's use VideoWriter
to save it in compressed, MP4 format. First, we must create a new video file, assign
an object to it, set the frame rate to 25 fps and open it:

>> vidObj2 = VideoWriter('AcquiredTimelapse.mp4','MPEG-4');
>> vidObj2.FrameRate = 25;
>> open(vidObj2);

6.	 Now that we have created the video object, it is time to write our 480 frames to it:

>>f or k = 1:size(timelapse,4) % For all the frames
writeVideo(vidObj2,timelapse(:,:,:,k)); % Write k-th frame to
 file
end

7.	 Finally, we have to close our video object, so that we finalize our process:

>>close(vidObj2);

What just happened?
This previous example demonstrated the power of MATLAB scripting. In just a few lines
of code, you managed to program a camera to shoot a time-lapse video at a frame rate
 of 1 frame per minute for a total of 8 hours, played back your video and then saved it
to a compressed video file. Step 1 was rather common, since we used these two commands
in previous sections. Step 2 is rather important when you are unsure if your memory will
be enough for the video that will be acquired. It is also important in terms of processing
speed, since preallocation generally helps in speeding up the execution of your code.
Step 3 included all the magic, since it performed the acquisition of the video frames
following the requirements set. In order to ensure that our result was what we
wanted, we played back our file after 8 consecutive hours of acquisition, in Step 4.
Finally, Steps 5 through 7 wrote the video in compressed MP4 format, to a file called
AcquiredTimelapse.mp4.

Acquiring and Processing Videos

[226]

Have a go hero – creating a time-lapse creation function
At this point, you have learned how to create time-lapse videos in MATLAB using various
techniques and tools. For this exercise, you should try to embed some of the previous code in
a custom time-lapse function that will get the number of frames to be acquired, the time delay
between them and a filename string as inputs, and will save the time-lapse video created using
the first two inputs to an MP4 video file with the filename given in the third input.

Real-time processing of time-lapse videos
The most advantageous in the case of time-lapse videos is the frame rate of acquisition.
Since we only have to acquire frames at a very low rate, we can dedicate the rest of the
video acquisition time for processing the acquired frames. For instance, when we want
to acquire one frame every minute like in our previous example, the frame rate is 1/1500
of the actual PAL frame rate (in a minute we acquire 1 frame instead of 25*60 in the case
of a regular PAL video).

Technically, this means that we may dedicate the remaining 1499/1500 of each minute
for processing our acquired frame. This usually is enough for real-time application
of all kinds of processing tasks, for example, color masking, image smoothing, and so on.
Ultimately, this means that the acquired video sequence can be artistically processed
to achieve very interesting visual results. To demonstrate one of these results, we will
now try to blend a time-lapse acquisition process with the color isolation techniques
we presented in Chapter 4, Working with Color Images.

Time for action – creating time-lapses with isolated colors
For this example, we will create a time-lapse video with the red color isolated in the scene.
We will use a frame rate of 2 frames per minute and perform the acquisition for 2 hours.
This will create a video consisting of 2 (frames/minute) * 2 hours * 60 (minutes / hour) = 240
frames. Between two consecutive acquisitions, the first acquired frame will be processed for
color isolation:

1.	 The first step is to reset our hardware devices and set the video input to our
preferred hardware and resolution:

>> imaqreset
>> vidObj = videoinput('winvideo', 1, 'dvsd_720x576');

2.	 Next, we will preallocate the space needed for the 240 frames of our video:

>> tl = uint8(zeros(576,720,3,240));

Chapter 8

[227]

3.	 Next, we should write a small function to perform the color isolation. It is a
simplified version of the ROIColorIsolation.m function developed for Chapter 4,
Working with Color Images. It goes as follows:

function [output] = ColorIsolation(image,thresh)

% Function for color isolation in an image % Inputs:
% image - Input image
% thresh - Thresholds matrix ([1st 2nd 3rd])
% Output:
% output - Output image (masked)

R = image(:,:,1); % Separate red channel
G = image(:,:,2); % Separate green channel
B = image(:,:,3); % Separate blue channel
grayIm = rgb2gray(image); % Keep grayscale version of image

% Create mask from three thresholds
mask = R < thresh(1) & G < thresh(2) & B < thresh(3);

% Perform masking
R(mask==0) = grayIm(mask==0);
G(mask==0) = grayIm(mask==0);
B(mask==0) = grayIm(mask==0);

% Join color channels to generate final image
output = cat(3,R,G,B);

4.	 It is now time for the core of our processing program. The essence of the for loop
remains almost the same as before. The only thing we must do is to add a step for
the color isolation. Let's isolate colors with a green value higher than 100:

>> for i = 1:240
temp = getsnapshot(vidObj); % Acquire a frame
fprintf('Processing frame number %d… \n',i) % Announcement
tl(:,:,:,i) = ColorIsolation(temp,[0 100 0]);% Perform
 isolation
subplot(1,2,1),imshow(temp) % Display current frame
subplot(1,2,2),imshow(tl(:,:,:,i)) % Display processed frame
pause(30) % Wait for 30 seconds
end

Acquiring and Processing Videos

[228]

5.	 At this point, we have a matrix called tl, which holds the frames of our time-lapse
video. If we want to save it, we can repeat the process of the previous example:

>> vid = VideoWriter('TimelapseIsolation.mp4','MPEG-4');
>> vid.FrameRate = 25;
>> open(vid);
>> for k = 1:size(tl,4) % For all the frames
writeVideo(vid,tl(:,:,:,k)); % Write k-th frame to file
end
>> close(vid);

What just happened?
In this example, we performed a mixture of methods for color image processing and video
acquisition. A core function that performs color isolation was written, creating a mask from
three user-defined thresholds and using it to remove the colors from all the pixels below
the thresholds (making all their colors equal to the pixel values of the grayscale image). This
function was then incorporated in a for loop that performs frame acquisition, processing,
and displaying with an interval of 30 seconds. In the fifth and final step, the created video
was saved to a MP4 video file, using the process described in previous examples.

Note that the process performed does not lead to a video with frames with
an exact time delay of 30 seconds. This is the natural result, caused by the
delay added to our process from the commands executed between the
frame acquisition and the pause function. A quick solution for more precise
timing could be accomplished by timing the delay using tic and toc, and
subtracting it from the time delay included in pause. The same change
should be also made to previous examples using the same rationale.

Real-time processing of normal videos
As mentioned in the previous section, time-lapse videos are very advantageous for real-time
processing, because of their low frame rates. When we have to perform processing on regular
videos however, things start to become much more difficult. Normally, real-time processing
of 25 fps or 30 fps videos is not feasible in MATLAB, except if the processing tasks are very
basic and they are performed by fast hardware.

Evaluating real-time capabilities with a simple example
In the next example, we will demonstrate a basic video processing code for adjusting the
contrast of the frames after they are acquired and we will time the process so that we assess
the real-time capabilities of MATLAB.

Chapter 8

[229]

Time for action – adjusting the contrast of the video
In this example, we will make a loop for continuous acquisition and per channel contrast
adjustment of frames from our camera. We will time the process using the profile function
of MATLAB so that we demonstrate the bottleneck of our process. This way, you can get
an idea of the time issues arising when performing video processing in MATLAB. Bear in mind
that the machine used for these experiments had a Q9550 Quad-Core CPU, at 2.8 GHz:

1.	 First off, we get our hardware ready:

>> imaqreset
>> vid = videoinput('winvideo', 1, 'dvsd_720x576');

2.	 Now, we preallocate space for the matrix that will hold our frames. For our
experiment, 100 frames will be enough:

>> test = uint8(zeros(576,720,3,100));

3.	 We then start the MATLAB profiler, which will analyze the time spent on each
of our functions:

>>profile on

4.	 Next, we write the for loop that will make it all happen:

>> for i = 1:100
temp = getsnapshot(vid); % Acquire a frame
fprintf('Processing frame number %d… \n',i) % Announcement
test(:,:,i) = imadjust(temp); % Adjust contrast
subplot(1,2,1),imshow(temp) % Display current frame
subplot(1,2,2),imshow(test(:,:,:,i)) % Display processed frame
end

Each display of the resulting frames looks like the following screenshot:

Acquiring and Processing Videos

[230]

5.	 Now, we close the profiler and display its results:

>> profile off % Close profiler
>> profile viewer % Display profiling results

These were the profiling results. Each of the functions was analyzed with regards to the
number of times it was called, the total time spent on it, and its self-time that is the time
spent in the core of the functions, disregarding its child functions.

What just happened?
This example gave us an idea of the time issues hiding behind video processing tasks, even
if they are very basic. The process we selected to investigate was a continuous acquisition
of frames, followed by a per-channel contrast enhancement using the imadjust function
(as discussed in previous chapters). The profile function provided by MATLAB was used
to inspect the timing details of each step of our process. By analyzing our results, we easily
concluded that getsnapshot is the bottleneck of our whole process, taking a total of
26.824 seconds of the time. Taking into account that the second most time-consuming
function was imshow (4.349 seconds in total), we understood that acquiring the snapshots
was unreasonably time-consuming.

Chapter 8

[231]

Revisiting the contrast adjustment example
The results of the previous example were a huge disappointment. Needing to spend
approximately 27 seconds only for the image acquisition part of our 100 frames acquisition
program is prohibiting for real-time applications. It means that each acquisition takes
approximately 27/100 = 0.27 seconds, leading to a frame rate of about 1/0.27 = 3.7 fps
just for the acquisition. This is very far from the 25 fps goal that we need for our PAL video
processing applications. It may be enough for time-lapses, but by no means does it fit the
real-time video processing requirements.

In this case, the solution to our problem is surprisingly unintuitive and simple. The reason
why the getsnapshot function takes so much time lies in the way it works. Ideally, it needs
to have a Preview window of the acquired video open, in order to acquire the frames faster.
If it does not, then the function is delayed because it tries to generate the preview and grab
the frame silently. Let's try to resolve this issue.

Time for action – adding preview in our code
This time, we will repeat the previous experiment, with a minor adjustment; we will add
a preview command in our code. Let's try it:

1.	 First, we will repeat steps 1 to 3 from the previous example:

>> imaqreset
>> vid = videoinput('winvideo', 1, 'dvsd_720x576');
>> test = uint8(zeros(576,720,3,100));
>> profile on

2.	 Now, we will invoke the Preview window using the following command:

>>preview(vid);

3.	 And then, we will once more type in the acquisition-processing nested for loops:

>> for i = 1:100
temp = getsnapshot(vid); % Acquire a frame
fprintf('Processing frame number %d… \n',i) % Announcement
for k = 1:3	 % For all 3 color channels
test(:,:,k,i) = imadjust(temp(:,:,k)); % Adjust contrast
end
subplot(1,2,1),imshow(temp) % Display current frame
subplot(1,2,2),imshow(test(:,:,:,i)) % Display processed frame
end

Acquiring and Processing Videos

[232]

4.	 Finally, we will close and display the profiling results:

>> profile off % Close profiler
>> profile viewer % Display profiling results

Quite different results than what we saw before.

5.	 Our last step is to close the Preview window, since we are done with our acquisition:

>> stoppreview(vid)

What just happened?
This example showed us a general truth about MATLAB programming. The solution to
our problems, especially when they are relevant to processing speed, is frequently much
simpler than expected. In our case here, the solution was to open a Preview window that
continuously displays what our camera sees. This way, the total time spent for 100 calls of
our getsnapshot function fell from a huge 26.824 seconds to a very low 0.353 seconds.
Our code still has not reached 25 fps, since the imshow function needs 5 seconds, hence
leads to a 1/0.05 = 20 fps rate alone, but this is a smaller problem that can be handled
in other ways.

Chapter 8

[233]

Have a go hero – doubling the speed of our code
Now we have reached our most crucial point. Our code is near real-time, but still not actual
real-time. You should try to make adjustments in the code, which will enable it to run at
least twice as fast as the one we have created so far. As different machines will produce
different processing time results, you should have a goal of doubling the performance in
your machine. Therefore, you should time the process of the previous example in your
own machine and then try to improve the code while checking if you have accomplished
your goal (at least doubling the speed). It goes without saying that we seek a performance
increase without throwing out the part of the code displaying our results.

Pop quiz – acquiring and processing videos
Q1. Which of the following are true?

1.	 The Image Acquisition Tool only saves uncompressed video.

2.	 The size of an MP4 video is related only to its resolution and duration.

3.	 A high motion MP4 video with the same settings as a low motion MP4 video will
be larger in size.

4.	 The creation of time-lapse videos can be accomplished by just using a for loop with
getsnapshot and pause inside it.

5.	 The real-time processing of time-lapse videos is more challenging than the real-time
processing of regular frame rate videos.

6.	 Adding preview in our code slows down the frame acquisition process
using getsnapshot.

Acquiring and Processing Videos

[234]

Summary
In this chapter, we presented the video acquisition functionality of MATLAB. The first part
was dedicated to a thorough analysis of the Image Acquisition Tool, which is a basic
GUI-based framework for video acquisition. After presenting a couple of examples on the usage
of imaqtool, we moved on to a discussion on video compression and its great importance.
The difference in compression ratios between still scenes and scenes with high motion was
explained, using two practical, hands-on examples. Then, a small discussion on ways to work
with uncompressed videos was carried out, followed by an example of processing video frames
in chunks to save space. The next part of this chapter was focused on ways to create time-lapse
videos using the command line, either without, or with processing of the acquired frames.
The final part of the chapter revolved around the real-time video processing capabilities of
MATLAB. In these sections, we discussed ways to speed up the acquisition and processing tasks
in order to approach real-time performance. More specifically, this chapter covered:

�� An introduction to using MATLAB as digital video recorder software

�� An explanation of the GUI of the Image Acquisition Tool

�� The importance and functionality of the Hardware Browser window

�� The importance and functionality of the Information window

�� The importance and functionality of the Desktop Help window

�� The importance and functionality of the Preview window

�� The importance and functionality of the Acquisition Parameters window

�� The importance and functionality of the Session Log window

�� The problem of video file sizes and the importance of compression

�� The role of motion in compression

�� The difficulty in uncompressed video processing

�� Ways to process videos in chunks

�� The acquisition of time-lapse videos through the command line

�� The real-time processing capabilities of MATLAB in time-lapse videography

�� The real-time processing capabilities of MATLAB in regular videos

In the next chapter we will get to discuss various spatiotemporal video processing
techniques. Some of them will be just extensions of what you have already learned for
still images, while others will also take into account motion that has temporal differences
between video frames. Interesting tasks like deinterlacing of videos, motion detection, and
video stabilization will be explored, by showing practical ways to achieve them in MATLAB.

Spatiotemporal Video Processing

By now, you should have been familiar with video acquisition and the basic
processing of frames in MATLAB. In this chapter, we will discuss video
processing in a little more depth, starting with basic frame manipulations
based on the techniques already discussed for still images. Then, we
will proceed with describing techniques for intra-frame and inter-frame
processing. In this direction, we will demonstrate and analyze some basic
methods for video deinterlacing and spatiotemporal filtering. These
techniques will be implemented in MATLAB and evaluated with real-life
examples. Extra hands-on exercises will be presented so that you can better
comprehend the usage of the methods.

In this chapter, we will cover:

•	 How to perform some basic video processing tasks in MATLAB, for example,
cropping and resizing

•	 How to deinterlace our videos in MATLAB using various methods

•	 How to apply spatiotemporal filtering to our videos

So, let's start processing!

Basic video processing with MATLAB
In the previous chapter, we were mainly concerned with ways to acquire videos and process
them on the fly, using MATLAB. Furthermore, we have already discussed the basic tools
and functions for loading existing videos into the MATLAB Workspace window in Chapter 7,
Adding Motion – From Static Images to Digital Videos.

9

Spatiotemporal Video Processing

[236]

Now it is time to revisit the issue of processing existing video files and using MATLAB
as a powerful video processing suite. We will start with basic manipulations, such
as importing a video to alter its dimensions or crop it, and save it in a new file.

Cropping and resizing our video
A very common task handled efficiently by all video processing suites, is cropping and resizing
of our video. Usually, the user has to define the area of the video frame that should be cropped
and/or the resizing factor. The video processing software then applies the cropping and/or
resizing and saves the new video file. This is a fairly simple process, which consists of loading
one frame at a time, transforming it using methods from the earlier chapters of this book,
and then saving it in a new video file. Let's see how in our next example.

Time for action – loading, cropping, resizing, and saving a video
This is a rather straightforward procedure that will be implemented as a MATLAB function. We
will write a function that accepts the filename of an existing video file, the resizing factor, the
frames to be processed, and a filename for the output file. The user will be prompted at the
first processed frame to crop it to the desired size and position. The function is as follows:

function CropAndResize(inFnm,resF,framesP,outFnm)

% Function for loading, cropping, resizing and saving a video
% Inputs:
% inFnm – Input video filename
% resF - Resizing factor (must be positive)
% framesP – Frames to be processed ([start end])
% outFnm - Output video filename
% Output:
% No output needed!!

start = framesP(1); % Start frame
stop = framesP(2); % End frame	

% Numeric inputs validation
validateattributes(resF,{'numeric'},{'positive'},'CropAndResize','re
sF')
validateattributes(framesP,{'numeric'},{'positive'},'CropAndResize','
framesP')

% Error handling for frames
if stop > numF

Chapter 9

[237]

 error('Exceeded maximum number of frames!')
elseif start < 1 || stop < 1 || start > stop
 error('Something is wrong with your frame limits!')
end

vIn = VideoReader(inFnm); % Open input file
numF = get(vIn, 'NumberOfFrames'); % Get size in frames
vOut = VideoWriter(outFnm); % Create output file
vOut.FrameRate = vIn.FrameRate; % Equal framerates
open(vOut); % Open output

for i = start:stop % See we don't exceed the frame limit
 frame = read(vIn,i); % Read one frame
 if i == start
 disp('Please crop the image') % Prompt user for cropping
 [temp, RECT] = imcrop(frame); % Crop and keep RECT
 end
 outF = imcrop(frame,RECT); % Perform cropping w. RECT
 outF = imresize(outF, resF); % Perform resizing
 writeVideo(vOut,outF); % Write result
end
close(vOut); % Close output file

Now that we have written our function, it is time for us to test it:

1.	 We can test the function by providing an input filename (we'll use the 2-minute long
driving video from Chapter 7, Adding Motion – From Static Images to Digital Videos,
car2min.avi), a resizing factor (we'll use 2 to double the size of the cropped
image), the starting and ending frame numbers (we'll use 220 and 300), and an
output filename (we'll name it testCar.avi). Using these inputs, we type in the
following command:

>> CropAndResize('car2min.avi',2,[20 100],'testCar.avi');

Spatiotemporal Video Processing

[238]

2.	 The result will be a message, prompting the user to crop the image: Please crop
the image

3.	 Now that we have cropped the image and the video file has started being filled
with frames, the output video file will be visible in the Current Folder window.

Chapter 9

[239]

4.	 We can play our new video using implay:

>> implay('testCar.avi')

What just happened?
In this example, we mixed some of the techniques discussed in previous chapters to write
a function that handled loading, cropping, and resizing a video file, and then saved the result
in a new file.

The first few lines of the function were, as usual, the comments describing the inputs and
outputs expected by the function. The next two lines of code were used for assigning the
start and end frame numbers provided by the user to respective variables. Then, you
got an idea about ways to use defensive programming (that is foreseeing the possible
user-inflicted errors). First, the two numeric inputs, resF and framesP, were checked
for validity, whether they were positive numbers. This check is performed using the
function validateattributes.

Moving on, we check whether the frame numbers were correct, by means of the two blocks
of the if statement. The if clause checked for a possible error in the definition of the last
frame of our video. Of course it can't exceed the maximum number of frames, hence the
check if stop > numF. The elseif clause checked for other errors in the declaration
of the frames to be processed, for example, the frame numbers being negative or zero, and
so on. If either of the error exists, the function is aborted immediately after a proper error
message is displayed in the command line. This is what the function error is used for.

Spatiotemporal Video Processing

[240]

After the validity checks, there were five lines of code we re-used in a previous function
(see section: Time for action – making an edge detection video, from Chapter 8, Acquiring
and Processing Videos). These lines handled the opening of the video and getting its size in
frames (for error handling), then creating and opening a new video file of equal frame rate,
so that we can write on it.

Then, the main block of our code followed. In this block, we acquired one frame at
a time, cropped it, resized it, and wrote it in our new video file. The highlighted if clause
will be true only once (for the first frame we process) and its block will prompt the user
to provide the cropping area, RECT, which will then be used for cropping all the frames
(including the first one).

When all the frames were processed and written in the new video file, the file was closed.

After the function was written, we proceeded in testing its usage in steps 1 through 4. First,
we used 81 frames from a video we have used in Chapter 7, Adding Motion – From Static
Images to Digital Videos and generated a new, cropped video with double the size of its
original area.

When the process was over and we verified the existence of the new video file in our
Current Folder window, we played back the video using implay. The player informed us that
the frame size of the new cropped and resized video is 472 x 706. Our original video was 288
x 360. Since we cropped it before resizing, it is natural for it to be less than double the size
per dimension.

Have a go hero – adding rotation and more error-checking
Now that you have a first function to use as basis, let's try to add more functionality to it. You
should try to include another input to our previous function, which will be used as the angle
by which to rotate our video frames, using imrotate. This functionality is very handy when
we have used our camera in portrait orientation to shoot video. This way, our video does not
show up as we would expect. Has it ever happened to you?

Another addition you can try to make to the code is an error-checking clause, for cases where
the resizing factor is less than or equal to zero. This will lead to a result that is not acceptable,
since the result of imresize with negative resizing factors is an empty matrix. No video can
be constructed using empty frames, so we really should prevent this from happening.

Chapter 9

[241]

Filtering your video frames
Now that we have discussed how we can import an existing video file and apply basic image
manipulation techniques on its frames, it is time we move on to more complex filtering. You
probably have already noticed that the quality of the video we have made in the previous
example is not exactly optimal. It has a very intense blocking effect (neighboring rectangular
blocks in the image have very visible borders), especially due to the resizing process we have
used. As you may recall, in order for imresize to accomplish adding pixels where they don't
exist, it uses the cubic interpolation method by default. This is a fast, but suboptimal method
and can lead to serious blocking effects.

Instead of going back to the function we have written in the previous example and use
different methods of interpolation available with imresize to enhance our video, we will
try to accomplish it by filtering the frames. A common way to do it is to apply a smoothing
filter to each of the frames, so that the blocking effect is reduced. Let's see how we can do it,
using the following example.

Time for action – reducing the blocking effect
The process shown here should seem very familiar. Each of the frames in the video will
be filtered using a disk filtering element and saved in a new video file, which hopefully
will appear less distorted by the blocking effect:

1.	 Let's start by importing the video file in our Workspace window:

>> vIn = VideoReader('testCar.avi')

2.	 Now, we have to make a new video file and set its frame rate equal to the one
we opened:

>> vOut = VideoWriter('carSmooth.avi'); % Create output file
>> vOut.FrameRate = vIn.FrameRate; % Equal frame rates
>> open(vOut); % Open output

3.	 We should also get the number of total frames of the original video, so that we
can use it in a for loop:

>> numF = get(vIn, 'NumberOfFrames'); % Get size in frames

4.	 Finally, we will write a for loop, for smoothing and writing the frames:

>> for i = 1:numF % For all frames in video
frame = read(vIn,i); % read i-th frame
fKernel = fspecial('disk',5); % Create filter kernel
for j = 1:3 % For all color channels
% Filter each channel using a 5 pixel radius disk element
out(:,:,j,i) =imfilter(frame(:,:,j),fKernel);
end % End inner for
end % End outer for

Spatiotemporal Video Processing

[242]

5.	 At this point, matrix variable out contains all 81 frames of the video, smoothed
using a 5 pixel radius disk element. Using a disk element, reduces the blocking
effect, but also leads to loss of detail (because of smoothing). We can verify this
by displaying the original last frame of the video next to its smoothed version:

>> subplot(1,2,1), imshow(frame), title('Original Frame')
>> subplot(1,2,2), imshow(out(:,:,:,end)), title('Smoothed Frame')

6.	 An even better idea of the smoothing result can be gained by showing a smaller area
of the two images. Let's use a rectangular area in the middle-left part of the image:

>> original = frame(250:350,10:210,:); % Crop original frame
>> filtered = out(250:350,10:210,:,end); % Crop smoothed frame
>> figure, subplot(1,2,1), imshow(original),title('Original Area')
>> subplot(1,2,2), imshow(filtered), title('Smoothed Area')

What just happened?
This example demonstrated a simple way to reduce the blocking effect that often appears
in videos and images due to compression or resizing. The rationale of this process is quite
simple and requires only a few basic steps, most of which you have already learned.

The first two steps handled the input and output video files, using identical functions as
before. The step 3 was necessary so that we know how many frames the input video had.

Chapter 9

[243]

The number of steps were used in the outer for loop of step 4, so that we processed every
single one. In this loop, once we assigned a frame to a temporary variable called frame, we
filtered each one of its three color channels using the aforementioned filter. The filter was
constructed using the function fspecial. Each filtered frame (with index i) was assigned
to a new layer of matrix out (also with index i), one color channel at a time.

Once the two for loops are terminated, we visualized our results in steps 5 and step 6.
As you can easily observe, the blocking effect was reduced by the filtering process, but
as a consequence there was an apparent loss of detail due to smoothing.

Deinterlacing videos in MATLAB
Now, it is time to visit a very common topic in video processing; video deinterlacing. As you
might recall, videos can be split into two categories: interlaced and progressive. The former
contain frames with either odd or even rows present, while the latter contain frames with all
the rows present. The frame rates of videos do not let the human eye easily distinguish the
difference, making interlaced videos a compelling choice when we want to save space.

However, there are cases in which interlacing is visible to the human eye. A common example
is still frames from videos that include motion, which exhibit interlacing artifacts. An example
of such artifacts is shown in the following example, which is a frame extracted from a driving
video (shot from inside a moving vehicle). We have also cropped an area of the image where
the interlacing artifacts are more intense, so that you understand the problem even better.

>> A = imread('interlaced.bmp');	 % Load interlaced image
>> B = imcrop(A,[480 400 200 100]); % Crop detail of interlaced frame
>> subplot(1,2,1),imshow(A);title('Entire Interlaced Frame')
>> subplot(1,2,2),imshow(B);title('Cropped Area of Interlaced Frame')

Spatiotemporal Video Processing

[244]

Intra-frame filtering for deinterlacing tasks
You can now see clearly that the interlaced frame appears distorted especially on the edges of
the cars. To reduce the artifacts, we will have to filter the image. Till now, we have only worked
on methods for filtering a single image (or video frame), commonly known as intra-frame
filtering. Therefore, we will start by using such methods for our first deinterlacing tasks.

Deinterlacing with the Computer Vision System Toolbox
For our first deinterlacing example, we will use the Computer Vision System Toolbox of
MATLAB for the first time. Till here, we have not used it because most of our tasks did not
demand it. Deinterlacing can also be performed without this toolbox, which we will see this
later on, but we will use it anyway, to get some quick results for our examples.

Time for action – deinterlacing a video using the vision toolbox
The Computer Vision System Toolbox has an object that can handle three common methods
of deinterlacing. The object is intuitively called Deinterlacer. Let's see its usage on our
example interlaced image.

1.	 First, we have to load our image. If you have cleared your workspace, type the
following command:

>> A = imread('interlaced.bmp');	 % Load interlaced image

2.	 Then, we have to initialize the Deinterlacer object. Let's use the default settings:

>> deintObj = vision.Deinterlacer; % create deinterlacing
 System object

3.	 Now it is time to apply the deinterlacing method specified by the default settings
(line repetition method) to our interlaced frame:

>> A2 = step(deintObj, A); % Apply de-interlacing method

4.	 Finally, we will see the before and after images and cropped parts, side-by-side:

>> B = imcrop(A,[480 400 200 100]); % Crop interlaced detail
>> B2 = imcrop(B,[480 400 200 100]); % Crop deinterlaced detail
>> subplot(2,2,1),imshow(A);title('Entire Interlaced Frame')
>> subplot(2,2,2),imshow(A2);title('EntireDe-Interlaced Frame')
>> subplot(2,2,3),imshow(B);title('Cropped Interlaced Area')
>> subplot(2,2,4),imshow(B2);title('Cropped De-Interlaced
 Area')

Chapter 9

[245]

What just happened?
This example demonstrated the usage of the Deinterlacer object of the Computer Vision
System Toolbox, with the default method setting, which is the line repetition. As the name
implies, this method deinterlaces an image by repeating the odd (or even) lines to replace
the even (or odd) lines, keeping the overall image size the same. The effect was obviously
positive, as the jagged artifacts on the edges of the car have been significantly reduced.
The repetition of lines was probably the simplest way to solve the problem. The process,
as shown in the example, was quite simple; first we loaded our interlaced image, then we
initialized a deinterlacing System object, and we called the step method to apply the
process (deinterlacing) to our target input (the interlaced image). The final step was useful
for a qualitative evaluation of the success of our method. From its results, we can see that
even with the simplest method the deinterlaced result looks better than the interlaced input.

Spatiotemporal Video Processing

[246]

Have a go hero – comparing the deinterlacing methods
Now it is time for you to tweak the settings of the Deinterlacer object. You should try
to initialize three different objects, one for each method (line repetition, linear interpolation,
and vertical temporal median filtering). Apply all of them to the interlaced image and
compare the same cropped area as before. If you implement the described process
successfully, you should get an image like the one that follows:

You should also try to experiment with other areas of the image, so that you get a better
idea of the pros and cons of each method depending on the content of the image.

Deinterlacing with the custom functions
As we have already mentioned, deinterlacing an image using intra-frame techniques does
not necessarily have to be implemented using the Computer Vision System Toolbox. Instead,
we can apply certain techniques covered in earlier chapters to implement the methods
included in the Deinterlacer object. In fact, two of them are quite easy to implement.
Let's start from the default method, line repetition.

Time for action – deinterlacing with line repetition
The first method we will implement will be deinterlacing with line repetition. This method
is based on repeating the odd (or even) rows of the image to fill the blank even (or odd)
ones, respectively. In this example, we will replace each even line in the image with the
previous odd one. Let's start:

1.	 First, we load our original, interlaced image:

>> A = imread('interlaced.bmp'); % Load interlaced image

Chapter 9

[247]

2.	 Then, we initialize with zero values a matrix of equal size to A, so that we can store
the deinterlaced image, which is as follows:

>> B = uint8(zeros(size(A))); % Pre-allocate space for the result

3.	 Next, we must perform the line repetition process, using a for loop for all rows
of the image. The even rows of matrix B will be replaced by the previous odd row
of matrix A, while the odd rows of both images will be equal:

>> for i = 1:size(A,1), % For all rows in A
if mod(i,2) == 0, % if i is even
B(i,:,:) = A(i-1,:,:); % Replace i-th row of B with (i-1)-th
 of A
else % if i is odd	
B(i,:,:)= A(i,:,:); % Replace i-th row of B with i-th row of A
end % End if
end % end for

4.	 Now, matrix B should have the deinterlaced version of image A in it. In the
preallocation step we used uint8 as the type of the elements, so we will need
no further processing. Let's display the cropped area result again:

>> A2 = imcrop(A,[480 400 200 100]); % Crop interlaced image
>> B2 = imcrop(B,[480 400 200 100]); % Crop deinterlaced frame
>> subplot(1,2,1),imshow(A2);title('Cropped Interlaced Area')
>> subplot(1,2,2),imshow(B2);title('CroppedDeinterlaced Area')

What just happened?
This time we wrote our own deinterlacing code, based on functions we already knew and
one little trick to check if the row we are checking in the for loop is odd or even. After
we loaded the image we have been using for our deinterlacing examples, we created some
space for us to store the result of our process. The result was an 8-bit per channel color
image, that's why we forced matrix B to be uint8. In the beginning it didn't have to include
specific values (although it could be set equal to A to save some lines of code), so we set
all of them to zero, using the zeros function.

Spatiotemporal Video Processing

[248]

Our main procedure comprised a for loop, that will let us visit all rows in the image. As
already described, the odd lines of the result should be identical to the odd lines of the
input, while the even rows of the result should be equal to the previous odd rows of the
input. To accomplish this, we needed to use a trick based on discrete mathematics. The
trick is to check the result of the Modulo 2 operation, which in MATLAB is calculated using
the mod function. The first input of the function is the number we want to check and the
second being the base of the operation. The function returns the remainder of the division
of the first input by the second input In the case of even numbers being divided by 2, the
remainder is always zero; hence this is the check we perform in the first highlighted line of
code to see if i is even. If it is, we make the i-th row of matrix B (the result), equal to the
(i-1)-th row of the input image A. In the opposite case, row i of matrix B is assigned the
values of row i of matrix A.

Finally, we followed the same steps as before to compare a cropped area of the original
image to the same cropped area of the resulting image. The result was as expected and
should actually be equivalent to the one produced by applying the default Deinterlacer
object to the input.

There is an easy way to check if the result of our code and the result from
the previous example using the line repetition method are equal. To do it,
you should subtract them and check if the result of the subtraction is a matrix
containing only zero values, or alternatively use the function isequal.

Time for action – deinterlacing with the scan line interpolation
In this example, we will demonstrate an alternative method for deinterlacing, based on the
averaging of the lines above and below the interlaced one. Since only a minor change will
be made in step 3 of the previous process, we will show this process in a little less detail:

1.	 First, we will repeat steps 1 and 2 from the previous example, to load our image
and preallocate space:

>> A = imread('interlaced.bmp'); % Load interlaced image
>> B = uint8(zeros(size(A))); % Pre-allocate space for the
 result

2.	 Before we proceed, we must first convert the input to type single so that the
averaging process is not confined to the range of values 0-255:

>> A = single(A); % Convert input to single

Chapter 9

[249]

3.	 Now, we will write the exact same loop as before, with only one minor change;
we will replace the line repetition with an averaging process:

>> for i = 1:size(A,1)-1, % For all rows in A (except the last)
if mod(i,2) == 0, % if i is even
% Replace i-th row of C with average of (i-1)-th and (i+1)-th
 of A
C(i,:,:) = round((A(i-1,:,:) + A(i+1,:,:)) / 2);
else % if i is odd
C(i,:,:) = A(i,:,:); % Replace i-th row of B with i-th row
 of A
end % End if
end % end for	

4.	 Before demonstrating the results, we have to do two things. Make the last row
of the image equal to the one above it and revert the input to its original state
(type uint8):

>> C(end,:,:) = A(end-1,:,:);
>> A = uint8(A); % Convert A back to uint8

5.	 Once again, we demonstrate our results:

>> A2 = imcrop(A,[480 400 200 100]); % Crop interlaced image
>> C2 = imcrop(C,[480 400 200 100]); % Crop deinterlaced frame
>> subplot(1,2,1),imshow(A2);title('Cropped Interlaced Area')
>> subplot(1,2,2),imshow(C2);title('CroppedDe-Interlaced Area')

 What just happened?
This time we tried something a little more complicated than a simple line replacement. The
pixels in even rows of the input were substituted by the average values of the pixels in the
rows above and below (in the respective column). This way, the jagged artifacts were further
reduced and there were also less blurring and flickering. The differences from the previous
example were not too many.

Spatiotemporal Video Processing

[250]

After loading our input image and preallocating space for the output, we converted the
input to type single, because we wanted to be able to add values that could exceed the
maximum uint8 value without being clipped to 255 (for example, the single type result
of 140 + 180 will be 320, while the uint8 type result would be 255).

The for loop had only two small differences to the one in the previous example. The first
one was that we do not include the last row in the loop, because the value of i + 1 would
fall off limits. The second difference was that we did not replace even rows with the ones
above them, but we replaced them with the average of the ones above and below them.

To complete our process, we converted the input back to type uint8 and also replaced the
last row of the output image (which was not filled in the loop) with the row above it. Finally,
we demonstrated the results in the cropped area we used in previous examples so that we
saw the differences. The result should be identical to the one generated using the linear
interpolation method in previous examples.

Have a go hero – comparing the deinterlacing methods
Now that you have seen how two of the three methods included in the Deinterlacer
object can be implemented, you should try to make your own custom function that
applies them to an input image. The function (let's call it MyDeinterlacer.m) should
take two inputs: the interlaced image and the choice of method. The output should be the
deinterlaced image generated by the process.

Inter-frame filtering for the deinterlacing tasks
So far, we have discussed purely spatial filtering methods for image and video frame
deinterlacing. The spatial approach however does not take into account the temporal
continuity of video frames that led to the idea of interlacing to begin with. A different
approach that takes into account the differences and similarities between consecutive
frames so that missing lines are filled, is called inter-frame filtering. Methods based on
this approach rely on blending rows from consecutive frames to construct the deinterlaced
version of a frame. In this section, we will discuss two alternative inter-frame methods.

Temporal deinterlacing by field merging
The first inter-frame method used for deinterlacing is field merging. This method is pretty
simple and relies on substitution of the missing odd rows of a frame with the odd rows of the
next one and consequent substitution of the even rows of the next frame with the even rows
of its previous one.

Chapter 9

[251]

This way, we fill the blank rows and acquire an image with no gaps, but there is a downside;
having replaced the rows of an image with rows from a later or earlier frame, we have
obviously messed with the temporal consistency within the frame. In simple words, we have
included image information that has not happened yet (when using rows from the next frame),
or has happened in the past (when using rows from a previous frame). This method is perfectly
acceptable when no (or very little) motion exists in the video we are trying to deinterlace, but
in scenes with high motion it introduces a new artifact, called a ghosting effect.

Time for action – deinterlacing with field merging
For this example, we are going to make a simple function implementing the field merging
technique. We will assume that our video is small and given as a matrix variable input to the
function, and we are also going to include a second input that will help us decide which rows
to start replacing. If the input is 1, the odd rows of the first frame will be replaced by the odd
rows from the second frame and the even rows of the second frame will be replaced by the
even rows of the first frame. If the input is 2, the even rows of the first frame will be replaced
by the even rows from the second frame, and the odd rows of the second frame will be
replaced by the odd rows of the first frame. Finally, the output will be the deinterlaced video.

1.	 Let's write the function implementing the field merging technique:

function [vid] = FieldMerge(vid,order)

% Function for de-interlacing a video using Field Merging
% Inputs:
% vid – Input video matrix (we assume color video)
% order - Choice for row replacement
% (1: odd rows from odd frames,
% 2: even rows from odd frames)
% Output:
% vid - Output video matrix (de-interlaced)

for fr = 1:size(vid,4)-1% For all frames (but the last)
 for row = 1:size(vid,1) % For all rows in frame
 switch order % Checking choice for the order of merging
 case 1 % Odd rows from odd frames
 if mod(fr,2) == 0% For even frames
 if mod(row,2) == 0% Replace even rows
 vid(row,:,:,fr) = vid(row,:,:,fr-1);
 end
 else % For odd frames
 if mod(row,2) ~= 0 % Replace odd rows
 vid(row,:,:,fr) = vid(row,:,:,fr+1);

Spatiotemporal Video Processing

[252]

 end
 end
 case 2
 if mod(fr,2) == 0 % For even frames
 if mod(row,2) ~= 0 % Replace odd rows
 vid(row,:,:,fr) = vid(row,:,:,fr-1);
 end
 else % For odd frames
 if mod(row,2) == 0 % Replace even rows
 vid(row,:,:,fr) = vid(row,:,:,fr+1);
 end
 end
 otherwise
 error('Unknown method.') % Error message
 end
 end
end

What just happened?
The function we just wrote performs deinterlacing based on the process of field merging.
It may seem a little complicated, but it really is simple. The first thing the function does is
check the choice of order for the row replacement. This check is performed by the switch
statement, with two possible acceptable results for case 1 and case 2 (all other inputs
will result to an error message being generated by the otherwise command).

When the input is equal to 1, we have to replace the odd rows of the odd frames with the
odd rows of the next available frame. Similarly, we will replace the even rows of even frames
with the even rows of the previous available frame. We have already used the Modulo 2
command to differentiate odd and even rows in previous examples. We just have to also use
it here to differentiate odd and even frames. This is why we used the mod function twice in
the for loop; once for the frame (fr) and once for the row (row). The two highlighted lines
of code actually did the replacement of even and odd rows.

The process when the input is equal to 2 is identical to the one described in the previous
code. The only difference is in the if clauses checking for odd and even rows to replace.
This time, odd rows are substituted in even frames and even rows in odd frames.

You may have noticed that in the previous examples we used if and else for the
replacement of the rows of the image, while in this example we only used a single if. This
is because this time we replaced the rows on the input matrix itself. Therefore, the rows
that do not need replacement remain intact; hence skipping the else part of the code.

Chapter 9

[253]

Note that this method skips the last frame. This can be avoided in half the
cases since, for example, the last frame of an even frame scene with order = 1
can be deinterlaced, while for order = 2 cannot (it looks for the next frame and
falls off the frame limits). Our previous code does not include this check and
therefore always skips the last frame to be safe. This choice was made to reduce
complexity in our code.

Have a go hero – evaluating the field merge method
Now it is time for you to check if our code works or not. You should find, or shoot an interlaced
video, load it in MATLAB (be careful not to use a video that is too big) and then call the function
FieldMerge and compare some frames from its output to the frames of the original video
stream. Try to use the function in both the still scenes and motion scenes. What do you see?
Is there a difference? What about changing the second input to 2 instead of 1?

Temporal deinterlacing by field averaging
The previous method we used had obvious disadvantages caused by the usage of just one row
from a different point in time to replace a blank row at the present time. This method can be
improved a little, if we use field averaging. This time, instead of using just the next (or previous)
frame as a source for missing information, we will use both adjacent frames, which will replace
the row in our current frame with the average value of the same rows in the previous and next
frames. This will have a better result in terms of temporal continuity but it demands larger
storage space and also cannot deinterlace the first and the last frame (instead of just the last
as in the previous example). Let's see how this process is implemented.

Time for action – deinterlacing with field averaging
This example demonstrates the use of the field averaging technique. The code in our
function will be based on the previous example, but this time we have to make some minor
adjustments to fit our problem. Let's see the function that performs field averaging:

function [vid] = FieldAverage(vid,order)

% Function for de-interlacing a video using Field Average
% Inputs:
% vid – Input video matrix (we assume color video)
% order - Choice for row replacement
% (1: odd rows from odd frames,
% 2: even rows from odd frames)
% Output:
% vid - Output video matrix (de-interlaced)

Spatiotemporal Video Processing

[254]

vid = single(vid); % Convert matrix to single to perform
 averaging
 for fr = 2:size(vid,4)-1% For all frames (but the first &
 last)
 for row = 1:size(vid,1) % For all rows in frame
 switch order % Checking choice for the order of merging
 case 1 % Odd rows from odd frames
 if mod(fr,2) == 0 % For even frames
 if mod(row,2) == 0 % Replace even rows
 vid(row,:,:,fr) = ...
 (vid(row,:,:,fr-1) + vid(row,:,:,fr+1)) / 2 ;
 end
 else % For odd frames
 if mod(row,2) ~= 0 % Replace odd rows
 vid(row,:,:,fr) = ...
 (vid(row,:,:,fr-1) + vid(row,:,:,fr+1)) / 2 ;
 end
 end
 case 2 % Even rows from odd frames
 if mod(fr,2) == 0 % For even frames
 if mod(row,2) ~= 0 % Replace odd rows
 vid(row,:,:,fr) = ...
 (vid(row,:,:,fr-1) + vid(row,:,:,fr+1)) / 2 ;
 end
 else % For odd frames
 if mod(row,2) == 0 % Replace even rows
 vid(row,:,:,fr) = ...
 (vid(row,:,:,fr-1) + vid(row,:,:,fr+1)) / 2 ;
 end
 end
 otherwise
 error('Unknown method.') % Error message
 end
 end
end
vid = uint8(vid); % Convert matrix back to uint8

At this point, we may want to check our results on a real interlaced video scene. We have
a quite challenging one provided, named inter.avi. It is the driving video stream we used
for the still image deinterlacing examples. Let's put our function to the test:

1.	 First, we load our video into the Workspace window:

>> obj = VideoReader('inter.avi');

2.	 Then, we read in all the video frames (the video is small, so it can be done):

>> vid = read(obj);

Chapter 9

[255]

3.	 This is the part where we put our function to the test. Let's use it once with the
second input being 1 and once with the second input being 2:

>> [vid1] = FieldAverage(vid,1);
>> [vid2] = FieldAverage(vid,2);

4.	 Now, we demonstrate the results for an odd and an even frame:

>> subplot(2,3,1),imshow(vid(:,:,:,5)),title('Odd frame')
>> subplot(2,3,4),imshow(vid(:,:,:,6)),title('Even frame')
>> subplot(2,3,2),imshow(vid1(:,:,:,5)),title('Odd frame-1')
>> subplot(2,3,3),imshow(vid2(:,:,:,5)),title('Odd frame-2')
>> subplot(2,3,5),imshow(vid1(:,:,:,6)),title('Even frame-1')
>> subplot(2,3,6),imshow(vid2(:,:,:,6)),title('Even frame-2')

 What just happened?
This time our function had a few tricks. At first, the input video matrix was converted
to type single, so that averaging could be performed. We saw this conversion used earlier
in the line interpolation example. When the whole process was completed, we converted the
matrix back to uint8.

The next alteration we made to our code was to exclude the first frame from the loop.
The last frame was excluded in the previous example as well, so we need not change that.
Therefore, our loops went through the values of 2:size(vid,4)-1.

Spatiotemporal Video Processing

[256]

Our final change in the code was the rule for replacement. Whatever row we are in, the
values of its elements will be replaced by the respective average values of the previous and
next frame rows. This is accomplished by the following lines of code:

vid(row,:,:,fr) = … (vid(row,:,:,fr-1)+vid(row,:,:,fr+1))/2;

The three dots are there to indicate that the next line is the continuation of the current line
and is not a new command.

The steps 1 to 4 were used for assessment of the method we implemented. The results show
that, because of the nature of the scene none of the methods performed very well. In some
areas we had a slight improvement of the result, but in other areas we had a deterioration
of the result.

Mixing intra-frame and inter-frame deinterlacing
As we saw in the previous examples, intra-frame and inter-frame deinterlacing methods
come with their advantages and disadvantages. A rather intuitive conclusion would be that,
if we managed to somehow combine the advantages of the two methods, we would be able
to produce much better results.

Vertical and temporal interpolation for deinterlacing
Let's try to implement a method that has the advantages of both intra-frame and inter-frame
methods. One way to accomplish this is to substitute each row with the average of the
neighboring rows both in time and space. More specifically, if we have to substitute the row
r in the frame of the video, we will do it using the average of rows r-1 and r+1 of frame f,
row r from frame f-1, and row r from frame f+1. Let's see this in action.

Time for action – vertical and temporal interpolation method
Now it is time to implement the process described in the previous paragraph. The function
that we will use is based on the previous two examples:

function [vid] = SpatioTemporalAverage(vid,order)

% Function for de-interlacing a video using spatiotemporal averaging
% Inputs:
% vid – Input video matrix (we assume color video)
% order - Choice for row replacement
% Output:
% vid - Output video matrix (de-interlaced)

vid = single(vid); % Convert matrix to single to perform averaging

Chapter 9

[257]

 switch order % Checking choice for the order of merging
 case 1 % Odd rows from odd frames
 for fr = 2:size(vid,4)-1 % For all frames (but first&last)
 for row = 2:size(vid,1)-1 % For all rows (but first&last)
 if mod(fr,2) == 0 % For even frames
 if mod(row,2) == 0 % Replace even rows
 vid(row,:,:,fr) = ...
 ((vid(row,:,:,fr-1) + vid(row,:,:,fr+1)) ...
 + (vid(row-1,:,:,fr) + vid(row+1,:,:,fr))) / 4;
 end
 else % For odd frames
 if mod(row,2) ~= 0 % Replace odd rows
 vid(row,:,:,fr) = ...
 ((vid(row,:,:,fr-1) + vid(row,:,:,fr+1)) ...
 + (vid(row-1,:,:,fr) + vid(row+1,:,:,fr))) / 4;

 end
 end
 end
 end
 case 2 % Even rows from odd frames
 for fr = 2:size(vid,4)-1 % For all frames (but first&last)
 for row = 2:size(vid,1)-1 % For all rows (but first&last)
 if mod(fr,2) == 0 % For even frames
 if mod(row,2) ~= 0 % Replace odd rows
 vid(row,:,:,fr) = ...
 ((vid(row,:,:,fr-1) + vid(row,:,:,fr+1)) ...
 + (vid(row-1,:,:,fr) + vid(row+1,:,:,fr))) / 4;
 end
 else % For odd frames
 if mod(row,2) == 0 % Replace even rows
 vid(row,:,:,fr) = ...
 ((vid(row,:,:,fr-1) + vid(row,:,:,fr+1)) ...
 + (vid(row-1,:,:,fr) + vid(row+1,:,:,fr))) / 4;
 end
 end
 end
 end
 otherwise
 disp('Unknown method.') % Error message
 end
vid = uint8(vid); % Convert matrix back to uint8

Spatiotemporal Video Processing

[258]

At this point, we can check our results to evaluate the importance of including
spatiotemporal information for the deinterlacing:

1.	 First, we load the same video as before into the Workspace window and read
in all of its frames:

>> obj = VideoReader('inter.avi');
>> vid = read(obj);

2.	 Now, we use the new function, once with the second input as 1, and once with
the second input as 2:

>>[vid1] = SpatioTemporalAverage(vid,1);
>>[vid2] = SpatioTemporalAverage(vid,2);

3.	 Now, we demonstrate the results for an odd and an even frame:

>> subplot(2,3,1),imshow(vid(:,:,:,5)),title('Odd frame')
>> subplot(2,3,4),imshow(vid(:,:,:,6)),title('Even frame')
>> subplot(2,3,2),imshow(vid3(:,:,:,5)),title('Odd frame-1')
>> subplot(2,3,3),imshow(vid4(:,:,:,5)),title('Odd frame-2')
>> subplot(2,3,5),imshow(vid3(:,:,:,6)),title('Even frame-1')
>> subplot(2,3,6),imshow(vid4(:,:,:,6)),title('Even frame-2')

Chapter 9

[259]

What just happened?
Once again, the function is based on previous examples, with only few alterations,
highlighted in the previous code. The first alteration was the frames that were treated by the
process. Instead of leaving only the last one out, here we also left the first one out. Similarly,
we did not process both the first and the last rows of each frame. The last alteration was the
interpolation rule, which became spatiotemporal (spatial because rows of the same frame
were weighed-in, and temporal because rows from the next and previous frames were also
weighed-in):

vid(row,:,:,fr) = ...
 ((vid(row,:,:,fr-1) + vid(row,:,:,fr+1)) ...
 + (vid(row-1,:,:,fr) + vid(row+1,:,:,fr))) / 4;

This way, the resulting frame carried information both from its contents and from the
neighboring frames. To demonstrate our results, we loaded and processed the same video
as before, using steps 1 through 3. If you compare the results generated now to those
generated in the previous example, you will clearly understand the importance of the
spatiotemporal technique.

Have a go hero – Comparing deinterlacing techniques
Now it is your turn to examine and evaluate the deinterlacing techniques presented so far.
The goal is to apply these methods to interlaced videos of your choice and crop the frames
accordingly so that you compare details of each method. Try to use both the still scene
videos and high motion videos.

As we saw in this section, scenes with a lot of motion are not handled
completely effectively by the methods presented here. In these cases,
to further reduce artifacts, we have to consider using more complex methods
of interpolation that are motion-adaptive or motion-compensated. These
methods are quite complex for the purposes of this book and require more
sophisticated algorithms, with somewhat difficult mathematics.

Adding a new dimension to the filters
Till here, you should have started realizing the importance of temporal information in videos.
Further using it in deinterlacing tasks, temporal information can be combined with spatial
information to filter video frames. Some of the spatial filters, which we have already seen
in previous chapters, as well as in this one, can easily be expanded in more dimensions,
so that we include temporal information as well. In this section, we will see some of them.

Spatiotemporal Video Processing

[260]

Spatiotemporal averaging filter
A really straightforward to implement, spatiotemporal filter, is the averaging one. Applying
it to a video is not so complicated, provided that you have understood the basics of image
filtering. To demonstrate the process, we will use grayscale video streams.

The algorithmic description of the process of performing spatiotemporal averaging to
a grayscale video is given by these following steps:

1.	 Define the neighborhood for filtering in terms of rows x columns x frames.

2.	 Decide what will happen in borders (if you will be padding or not).

3.	 Start the filtering process using three for loops (one for the rows, one for the
columns, and one for the frames).

Let's see how we can implement this process.

Time for action – implementing a spatiotemporal averaging
filter

Now that we know the steps of the process, we can write a function that performs it.
The function will have some similarities to the spatiotemporal deinterlacing function
implemented in the previous example. It will take as input a grayscale video in a matrix
variable (if it is not grayscale it will convert each frame to grayscale) and the filtering
neighborhood, and will produce as output a matrix containing the filtered video:

function [vid] = SpatioTemporalAveraging(vid,nhood)

% Function for de-interlacing a video using Field Merging
% Inputs:
% vid – Input video matrix (we assume grayscale video)
% nhood - Dimensions of filtering neighborhood
% Output:
% vidOut - Output video matrix (filtered)

vid = single(vid); % Convert matrix to single to perform averaging
 vidOut = zeros(size(vid)); % Create a zero-valued matrix to hold
 the result
 % For all frames except the ones that fall off limits
 for frame = ceil(nhood(3)/2):size(vid,3)-ceil(nhood(3)/2)
 % For all rows except the ones that fall off limits
 for row = ceil(nhood(1)/2):size(vid,1)-ceil(nhood(1)/2)

Chapter 9

[261]

 % For all columns except the ones tha fall off limits
 for column = ceil(nhood(2)/2):size(vid,2)-ceil(nhood(2)/2)
 % Crop the neighborhood area
 neighborhood = vid(row-
 round(nhood(1)/2)+1:row+round(nhood(1)/2),...
 column-round(nhood(2)/2)+1:column+round(nhood(2)/2),
 frame-round(nhood(3)/2)+1:frame+round(nhood(3)/2));
 % Calculate its mean and assign it to the central pixel
 vidOut(row,column,frame) = mean(neighborhood(:));
 end
 end
 end
vidOut = uint8(vidOut); % Convert matrix to type uint8

Now, it is time to test our function. Beware that this is a time-consuming function, because
of the three nested loops. It's going to take a while for each frame, so don't use it on a very
large video:

1.	 We'll use our driving video comprising 28 frames:

>> obj = VideoReader('inter.avi');
>> vid = read(obj);

2.	 Now, we will convert our color video matrix to grayscale, frame-by-frame, right after
we initialize a new uint8 type matrix with zeros, to store our result in:

>> grayVid = uint8(zeros(size(vid,1), size(vid,2), size(vid,4)));
>> for i = 1:size(vid,4),
grayVid(:,:,i) = rgb2gray(vid(:,:,:,i));
end

3.	 Let's test our function now, for a cubical neighborhood of 3 rows, 3 columns,
and 3 frames:

>> filteredVid = SpatioTemporalAveraging(grayVid,[3 3 3]);

Spatiotemporal Video Processing

[262]

4.	 After a while (the time needed depends on your CPU), you will see in your
workspace a variable called filteredVid. Let's display a frame of this matrix next
to the same frame of our original matrix, to see what the results of the filtering
process were:

>> subplot(1,2,1),imshow(grayVid(:,:,10)),title('Original
 frame')
>> subplot(1,2,2),imshow(filteredVid(:,:,10)),title('Filtered
 frame')

What just happened?
This example has demonstrated how you can program a spatiotemporal blurring process for
grayscale video streams in MATLAB. The function began with a type conversion of the input
video matrix, so that averaging was feasible followed by the initialization of a new matrix
that stored the resulting video.

Then, we moved on to three nested for loops, by making sure to set the limits of each of
the loops in a manner that ensured our process won't fall off the borders of the image. This
choice resulted in an image with a small black border in all its four edges. The size of the
border will depend on the size of the filtering neighborhood.

In each step of the triple for loop, we cropped the cubical neighborhood centered at the
pixel under examination (row, column, and frame):

neighborhood = vid(row-round(nhood(1)/2)+1:row+round(nhood(1)/2),...
 column-round(nhood(2)/2)+1:column+round(nhood(2)/2), ...
 frame-round(nhood(3)/2)+1:frame+round(nhood(3)/2));

Then, the average value of the neighborhood was calculated and used to replace the value of
the central pixel of the neighborhood:

vidOut(row,column,frame) = mean(neighborhood(:));

Chapter 9

[263]

The steps 1 through 4 evaluated the usage of the filtering process. First the video was loaded
and stored to a matrix variable. Then, in step 2, the input video was converted to grayscale,
frame-by-frame. Each of the frames is stored in a type uint8 matrix initialized with zero
values. The step 3 applied the filter to our grayscale video and finally, in step 4 we displayed
one frame from the resulting video next to the same frame from the original video. As you
can see, the result of such a spatiotemporal filtering process was adding a shaky effect to our
video. The more the motion in the area of the frame was, the more intense the effect will be.

Have a go hero – creating a spatiotemporal median filter
Before we move on, you should try to alter the filtering function we made in the previous
example, to give a spatiotemporal median filtering result instead of the averaging result
we have programmed. The only change will be in the line where the averaging calculation
was performed. If you want, you can also add a third input to the previous function to let
the users choose which of the two methods they prefer to use. A third addition to the code
would be to add padding, to eliminate the thin black border from the result.

Using convolution for spatiotemporal averaging
The previous implementation of the spatiotemporal averaging filter was interesting, but had
a real big disadvantage; it was really slow. The alternative way to perform such a process is to
take advantage of the multidimensional version of convolution. In Chapter 5, 2-Dimensional
Image Filtering, we discussed the method of convolution and described how it can be used
for image filtering. Now, it is time to expand the convolution operation to more dimensions
and perform spatiotemporal (three-dimensional) filtering to our video frames.

In order to implement the process of spatiotemporal averaging by means of convolution,
we have to use the function convn provided by MATLAB. This function is called exactly
like conv2, with the only difference that the inputs must be n-dimensional (in our case
three-dimensional). Let's see how this works.

Time for action – spatiotemporal averaging filter with the convn
function

In order to see how the averaging filter is implemented, we will use the same example as
before. We will follow these steps:

1.	 First off, we load our video and convert it to grayscale, using the first two steps of
the previous example:
>> obj = VideoReader('inter.avi');
>> vid = read(obj);
>> grayVid = uint8(zeros(size(vid,1), size(vid,2), size(vid,4)));
>> for i = 1:size(vid,4),
grayVid(:,:,i) = rgb2gray(vid(:,:,:,i));
end

Spatiotemporal Video Processing

[264]

2.	 Now, we must generate a three-dimensional filter to use for the averaging process.
Its dimensions can be the same as the neighborhood we used before. To perform
averaging, it must have all its values equal to 1/n, where n are the number of
elements in the filter. Let's create it:

>> avFilt = ones(3,3,3); % Make a 3x3x3 matrix full of ones
>> avFilt = avFilt/numel(avFilt); % Make all elements equal to
 1/n

3.	 All we have to do now is to apply convolution between grayVid and avFilt:

>> filteredVid = convn(grayVid, avFilt); % Apply convolution
>> filteredVid = uint8(filteredVid); % Convert to uint8

4.	 Let's demonstrate one frame of the filtered stream next to the same frame from
the original video:

>> subplot(1,2,1),imshow(grayVid(:,:,15)),title('Original
 frame')
>> subplot(1,2,2),imshow(filteredVid(:,:,15)),title('Filtered
 frame')

What just happened?
This was another way to implement spatiotemporal smoothing using an averaging filter. The
steps were pretty simple and similar to the processes discussed in Chapter 5, 2-Dimensional
Image Filtering. The first step was to prepare our video for the process by converting it
to grayscale, frame-by-frame. Once this was over, we created the filter for the averaging
process. It was a 3 x 3 x 3 filter with all its values equal to 1 / (3*3*3).

Next, we applied n-dimensional convolution for n=3. The result of the convolution was
transformed to uint8, and then one of its frames was demonstrated next to the respective
original frame for qualitative evaluation purposes.

Chapter 9

[265]

Pop quiz – videos and filters
Q1. Which of the following are true?

1.	 If we filter an image or a video frame using a disk filtering element, we create the
so-called blocking effect.

2.	 Interlaced videos take up double the space of progressive ones with the same
dimensions, color depth, and number of frames.

3.	 Some methods for deinterlacing can lead to ghosting effects.

4.	 Spatiotemporal averaging leads to frame sharpening.

5.	 Using convn for averaging instead of making a triple nested for loop leads to faster
processing speed.

Summary
This chapter was dedicated to intra-frame and inter-frame techniques for video filtering,
which can be used for a variety of tasks. We discussed basic video manipulations, such
as resizing, rotating, mirroring, and cropping, and proceeded to frame-by-frame spatial
filtering of a video. Then, we focused extensively on a very common process in video
processing, which is deinterlacing an interlaced video stream. Methods for intra-frame and
inter-frame deinterlacing were discussed, as well as fusion of the two. For these processes,
several advantages and disadvantages were brought to the surface and discussed. Finally,
we discussed spatiotemporal filtering of videos and focused especially on spatiotemporal
averaging. All these were presented and discussed with real examples and exercises.
More specifically, in this chapter we discussed:

•	 Cropping and resizing video streams

•	 Rotating video streams and checking for errors

•	 Reducing the blocking effect using spatial filtering

•	 Intra-frame filtering for video deinterlacing, using the Computer Vision
System Toolbox

•	 Intra-frame deinterlacing of videos using line repetition

•	 Intra-frame deinterlacing of videos using line interpolation

•	 Inter-frame deinterlacing using field merging

•	 Inter-frame deinterlacing using field averaging

•	 Mixing intra-frame and inter-frame de-interlacing

•	 Applying spatiotemporal averaging to a grayscale video

•	 Using convn to apply spatiotemporal averaging

Spatiotemporal Video Processing

[266]

In the next and final chapter, we will discuss various real-life video processing tasks, such
as motion detection, video stabilization, feature selection, and three-dimensional image
and video processing. We will use intriguing hands-on exercises to demonstrate how these
tasks can be implemented in MATLAB and discuss their implications and ways to tackle
them efficiently.

From Beginner to Expert – Handling
Motion and 3-D

The methods and techniques we have presented in the previous chapters
introduced you to the very basics of video processing. We did not get into the
mathematical details involved in such processing and preferred to demonstrate
how the theory comes into action using hands-on, practical exercises that
hopefully helped you comprehend the essence of the algorithms. In this final
chapter, we will try to spice things up a little, going into more complex methods
that require some more mathematical insight. We will avoid going into the
most difficult details, but nevertheless, this chapter may seem a little more
challenging than the others, as it will demonstrate basic motion detection and
estimation techniques, combine them with the notion of image registration
and use them for video stabilization. Furthermore, we will indulge in the field of
three-dimensional image and video processing and create our own 3-D videos.

In this chapter, we will cover:

�� How we can detect motion in videos

�� How motion can be estimated using optical flow

�� Ways to compensate camera movement in videos using registration

�� How stereoscopic videos can be easily created

So, let's dive right in!

10

From Beginner to Expert – Handling Motion and 3-D

[268]

Detecting and estimating motion in videos
So far, the only time we had to handle inter-frame processing was for the filtering methods
for de-interlacing and smoothing of videos demonstrated in the previous chapter. These
methods were not very sophisticated, as they did not aim at extracting useful information,
for example, detecting and estimating motion from the video frame sequences.

Motion detection can be loosely defined as the process of detecting changes in the
relative position of an object to its background (however, this background is defined) in
the consecutive frames of a video. Intuitively, this process could be based on a simple
subtraction of these consecutive frames, so that the values of the pixels that change appear
brighter than those that remain constant. For various reasons, this simplistic approach is not
always successful. In this chapter, we will discuss why.

On the other hand, motion estimation is a more challenging problem; it aims at estimating
a set of vectors that describes the motions of pixels in consecutive frames. This means that
ideally, a motion estimation process can perfectly describe the changes of all pixel
positions from one frame of a video to the next. This description has several flaws, since
a video captures the three-dimensional real world images and transforms them to fit the
two-dimensional plane of a screen. You can understand that mapping all the pixels from
one frame to all the pixels in the other frame is impossible, since real world scenes captured
in video suffer from occlusions, lighting changes, camera movements, and so on.

Let's start our discussion on the issues of motion detection and estimation with
some examples.

Detecting motion
The first problem in motion detection is to identify which pixels change their values in
consecutive frames. Usually, this is an indication that the particular pixels represent parts
of moving objects, since one of the most popular constraints used in motion estimation,
as we will see later in the chapter, is the brightness constancy constraint.

Chapter 10

[269]

Time for action – detecting a moving object in a still scene
For this first example, let's try to pinpoint the moving pixels in a video by a simple
subtraction of consecutive frames. By subtracting two consecutive frames of a color video,
the result we will get is a three-dimensional matrix of values near zero in pixels, which
remain constant, and higher values in pixels that have a big alteration in their values.

1.	 First, let's load a video that does not contain a lot of motion in its entire duration.
Such a video, used in a previous chapter, showed a green ball that entered a scene
from the left and exited from the right after passing through a box. The video is
called singleball.avi. Let's load it and display its montage:

>> vObj = VideoReader('singleball.avi');
>> video = read(vObj); % read in all frames from video object
>> montage(video,'Size',[5 9]) % Using a 5x9 grid for 45 frames

2.	 Our next step is to subtract each frame from the previous and save the result in
a new matrix. Since the video has 45 frames, the result will be a 44 frame video
(the first frame does not have a previous one to use for the subtraction). For our
convenience, we can use an equally-sized matrix and leave the first frame blank:

>> subtracted = zeros(size(video));
>> for i = 2:size(video,4), % For all frames but the first one
% Subtract each frame from its next one
subtracted(:,:,:,i) = video(:,:,:,i) - video(:,:,:,i-1);
end

From Beginner to Expert – Handling Motion and 3-D

[270]

3.	 Now, let's show the montage of the result. Can you predict what it will be?

>> montage(subtracted,'Size',[5 9]) % Show montage of
 subtracted

4.	 Why don't we go one step further? Now that we have a matrix of all our frames with
the detected ball standing out, we can use them to display the trajectory of the ball.
How will we do it? One easy way is to add all the frames together and show them
as one single image:

>> total = sum(subtracted,4); % Addition of all frames (4-th
 dim.)
>> total = mat2gray(total); % Normalize the whole matrix to
 [0,1]

5.	 Now we will display our result. Note that the image will be in color. Applying the
mat2gray function just results in each of the channels being normalized to [0,1]:

>> figure,imshow(total)

Chapter 10

[271]

What just happened?
So, in this simple example, you made your own motion detector for a very controlled scene.
As you can see from the resulting montage, the only pixels that are not dark are the pixels
that belong to the moving green ball. The first step of the process consisted of a drill that
you must have been very comfortable with; we read a video, loaded all its frames into the
workspace, and displayed a montage of all of them (the grid we use in montage depends on
the total number of frames). Next, we initialized a zero-valued matrix to store the result of
the detection and proceeded to write a for loop that subtracted each frame from its next
one. Afterwards, we displayed a montage of all the frames of the detection result. Our final
step was to display the trajectory of the ball in the frames sequence. This was accomplished
by adding all the frames of the detection video together, confining the result to the range
[0,1] to be treated as an image by MATLAB and then displayed it using imshow.

Time for action – detecting motion in a complex scene
The example we saw previously is a very simple one. The background is still, there is no
particular fluctuation of the brightness on the scene, and the moving object has a very
distinctive color. Let's now see what happens when we have a more complex scene to
handle. We will work with the driving video, presented in the previous chapter, which
represents one of the most challenging scenarios; a moving camera, with a scene with
moving background, and several moving objects. Let's start:

1.	 Our first step is, as always, to load the video we will process:

>> obj = VideoReader('inter.avi'); % Read video file
>> vid = read(obj); % Load all frames

2.	 The montage of our frames looks like this:

>> montage(vid,'Size',[4 7]) % Using a 4x7 grid for our 28
 frames

From Beginner to Expert – Handling Motion and 3-D

[272]

3.	 Now, we will subtract each frame from the next one, excluding the first. The result
will be stored in a predefined matrix:

>> subtracted = zeros(size(vid)); % Preallocate space
>> for i = 2:size(vid,4), % For all frames but the first one
% Subtract each frame from its next one
subtracted(:,:,:,i) = vid(:,:,:,i) - vid(:,:,:,i-1);
end

4.	 Let's see the montage of all the motion detection frames:

>> montage(vid,'Size',[4 7]) % Using a 4x7 grid for our 28
 frames

5.	 Now, let's add all the frames together and see what comes up. This time we will
do it for both the original video and the motion detection one:

>> total1 = sum(vid,4); % Addition of all frames (4-th dim.)
>> total1 = mat2gray(total1); % Normalize the whole matrix
>> total2 = sum(subtracted,4); % Addition of all frames
>> total2 = mat2gray(total2); % Normalize the whole matrix
>> subplot(1,2,1),imshow(total1),title('Sum of original
 frames')
>> subplot(1,2,2),imshow(total2),title('Sum of detection
 frames')

Chapter 10

[273]

What just happened?
This time around, our results are not so informative. While the subtraction results showed
the moving pixels in each pair of consecutive frames, there was no real indication of which
of them was moving, or were still and just have a relative motion to the moving camera.
Even more vague results were produced by the addition of the frames. Both the results of
adding the original frames and of adding the subtracted frames were blurry and do not give
us enough information about the motion in the scene.

The only areas of the image that appear to have stayed still during the short duration of the
video were the sky and a small portion of the road. However, this result is highly unintuitive,
since the road surface was definitely moving relative to our camera. This, in fact, is one of
the main difficulties in detecting motion in videos. Smooth objects with very little detail in
them appear motionless, except for their borders (when they are colored differently to the
background). When the object under examination is the road (or something of similarly large
size and smoothness), a big part of it appears to be still, according to the frame subtraction
result. Another difficulty in detecting motion in a video is posed by the insufficient frame rate
for very quick moving objects, that is, when the objects in the video make large movements
from one frame to the next, motion detection might produce a very evident ghosting effect.

Have a go hero – making your own surveillance system
Now that you have seen the difference in difficulties between the still scenes and complex
scenes, let's go back to the easy problem. You should be able to write a piece of code that
receives input from a camera, converts the frames to grayscale, and displays a warning
message every time the mean difference of brightness values between the two consecutive
frames exceeds a predefined level.

For a more complicated example, you could even split your frame in rectangular areas and
announce in the warning message which area has been intruded (for example, by using a
command, such as disp('Area #1 appears to have high activity!')).

All the tools you need to accomplish this task have been presented. You should revise how
you can get a live video input in MATLAB, convert RGB to grayscale, and calculate mean
values in two dimensions (Hint: the function mean2 is useful). For the second task, you have
to devise a way to split the image into blocks and check all of them with a for loop.

Estimating the motion
The task of motion detection that was presented in the previous section is a relatively easy
process, especially for simple scenes. The real challenge appears when we actually have to
estimate the motion between two images; that is, come up with a motion vector that gives
us a way to transform the first frame to the second and vice versa.

From Beginner to Expert – Handling Motion and 3-D

[274]

The motion vector usually comprises two numbers (or coordinates); one showing the length
of the motion in pixels, r, and one showing the direction of the motion in degrees, θ. This
pair of coordinates is called polar. An equivalent way to portray the motion of a pixel is by
defining the length of the motion in pixels, in the vertical and horizontal direction. These
coordinates are called cartesian. In the example of the following figure, you can see all the
coordinates needed to describe the motion of a pixel moving from point (x1,y1) = (0,0)
to point (x2,y2) = (4,3).

x

y

0 0.5 1 1.5 2 2.5 3 3.5 4

(x2,y2)=(4,3)

r=5

3

2.5

2

1.5

1

0.5

0

(x1,y1)=(0,0)

=36.87 degrees

You can use MATLAB to convert from one type of coordinates to the
other. The functions that accomplish the conversions are cart2pol
(cartesian to polar) and pol2cart (polar to cartesian). They need two
inputs and produce two outputs.

The task of accurate motion estimation is a very complicated one and can also be deemed
impossible when the video used includes a mixture of occlusions, background motion,
multiple moving objects, brightness variations, shadows, camera motion, and so on.
Indulging in such complex problems is beyond the scope of this book, so we will stick to easy
problems with acceptable solutions.

Chapter 10

[275]

Estimating motion using optical flow
A very popular way to estimate motion in a video is by using optical flow algorithms. Optical
flow is a widely researched area of computer vision and several algorithms, each with
their own pros and cons, have been proposed. Its ultimate goal is to use spatiotemporal
information from the frame sequence of a video to estimate motion vectors between
consecutive pairs of frames. The specifics of how these algorithms achieve their final goal are
too technical for our purposes. Here, we will demonstrate the usage of two of them in the
Computer Vision System Toolbox of MATLAB, so that you get an idea of what they can do.
The optical flow algorithms that are included in the toolbox are the ones by Horn-Schunck
and Lucas-Kanade.

The optical flow method by Horn and Schunck is described in: B. K. Horn
and B. G. Schunck, Determining optical flow, Artificial intelligence, vol.
17, no. 1–3, pp. 185–203, 1981.

The method by Lucas and Kanade can be found in: B. D. Lucas and T.
Kanade, An iterative image registration technique with an application to
stereo vision, in Proceedings of the 7th international joint conference on
Artificial intelligence, 1981.

Time for action – tracking people with Horn-Schunck optical
flow

First, we are going to demonstrate the method described by Horn and Schunck. A good
example of its usage can be found if you type vision.OpticalFlow System object in
the search box on the top-right corner of your MATLAB window. The help page for the object
includes an example based on the viptraffic.avi video. In this example, we will show
some alternative steps for the same process, using a different video as input.

Since we will be using the Computer Vision System Toolbox for the optical flow algorithms,
we might as well use another one of the videos included in its demos. The video is called
atrium.avi and shows several people walking in an atrium in arbitrary trajectories. Our
goal is to estimate their motions. Since the methods for the optical flow we will use can be
applied only to grayscale videos, we will also convert our frames to grayscale of type uint8.
Here, we will try to estimate the motion between the 89th and 90th frames.

1.	 First, we will load our video and get the number of its frames, using the method
VideoReader. Before we do that, we clear our workspace:

>> clear all;
>> videoObj = VideoReader('atrium.avi'); % Open video

From Beginner to Expert – Handling Motion and 3-D

[276]

2.	 Then, we must create a system object for motion estimation:

>> opticalFlow = vision.OpticalFlow('ReferenceFrameDelay',
 1,...
'Method','Horn-Schunck',...
'OutputValue', 'Horizontal and vertical components in
 complex form');

3.	 Now, it is time to start the frame-by-frame processing of our video and estimate
the motion between the pair of frames 89 and 90.

>> for i = 89:90 % For frames 89 and 90
frame = read(videoObj,i); % Load one frame at a time
temp = rgb2gray(frame); % Convert frame to grayscale
im(:,:,i-88) = single(temp); % Convert frame to single (for
 calculations)
of(:,:,i-88) = step(opticalFlow, im(:,:,i-88)); % Estimate
 optical flow
end

4.	 The optical flow result is in complex form. This means that the matrix holding it
contains the elements of the format x+yi. The real part, x, is the flow in axis x and
the imaginary part, y, is the flow in axis y. We can isolate these results by using the
real and imag functions.

>> xMotion = real(of);
>> yMotion = imag(of);

5.	 The absolute value of the real and imaginary parts gives the magnitude of the
optical flow. This measure depicts how large the motion of a pixel is, without
carrying any information about its direction. It is given by:

>> absMotion = abs(of);

6.	 At this point, it is a good idea to display the two consecutive frames side-by-side
(we have to convert them back to uint8):

>> subplot(2,2,1),imshow(uint8(im(:,:,1))),title('89th frame');
>> subplot(2,2,2),imshow(uint8(im(:,:,2))),title('90th frame');

Chapter 10

[277]

7.	 And at the bottom line of the figure, we will demonstrate their difference using
a color composite image and a normalized image of the absolute optical flow value:

>> subplot(2,2,3)
>> imshowpair(im(:,:,1),im(:,:,2), 'ColorChannels','red-cyan');
>> title('Composite Image (Red – Frame 89, Cyan – Frame 90)');
>> subplot(2,2,4)
>> imshow(mat2gray(absMotion(:,:,2)))
>> title('Normalized absolute optical flow value');

8.	 In order to depict the direction of the optical flow, we can use a system object that
draws lines (and other shapes) on an image, called ShapeInserter. To use it,
we have to first initialize its settings:

>> shapeInserter =
 vision.ShapeInserter('Shape','Lines','BorderColor','Custom',
 'CustomBorderColor', 255);

9.	 Then, we have to create a matrix containing the origin coordinates of the motion
vectors we want to draw, with their magnitudes amplified by a factor of our choice
(here, we will amplify them by two). For this purpose, we will use a helper function
called videooptflowlines:

>> lines = videooptflowlines(of(:,:,2), 2);

From Beginner to Expert – Handling Motion and 3-D

[278]

10.	Now, we can draw the motion vector map on our image, using step and display
our result:

>> out = step(shapeInserter, im(:,:,2), lines);
>> figure,imshow(uint8(out))

11.	From the previous picture, we can observe that some vectors near or on the walking
persons, appear to be unnaturally long. Also, we can see that some vectors on the
background also appear longer than they should. These values are often called
outliers. Let's fix this by setting values below or above a threshold to zero:

>> of(abs(of)>20)=0;
>> of(abs(of)<5)=0;

12.	Now, let's re-draw our result:

>> lines = videooptflowlines(of(:,:,2), 2);
>> out = step(shapeInserter, im(:,:,2), lines);
>> figure,imshow(uint8(out))

Chapter 10

[279]

What just happened?
This example might seem to be like a little too much, a little too quickly. However, most
of the steps it covers are pretty simple to follow. Let's try to explain them one by one.

In step 1, we loaded our video and in step 2, we created a system object that will be used
to estimate the optical flow using the Horn-Schunck method.

Step 3 contains the core of our optical flow estimation process. It can easily be altered
to estimate the optical flow for all frame pairs in the video; however, here it was used to
estimate the flow only for one frame pair (frames 89 and 90).

Steps 4 and 5 demonstrated the nature of the optical flow results. We have used the
'Horizontal and vertical components in complex form' choice, therefore the
result was a matrix with complex values. These two steps showed how we can decompose
it into three matrices: one with the vertical motions (xMotion), one with the horizontal
motions (yMotion), and one with the absolute motions (absMotion).

In steps 6 and 7, we displayed our two frames, their composite color image, and the absolute
optical flow values as a grayscale image.

Next, in steps 8 and 9 we created a shape inserter object, we made a matrix with the
coordinates of the motion vector lines we wish for it to draw and then, in step 10, we drew
the lines on the frame and displayed the result.

Since our resulting image contained a lot of outliers, we filtered out values that are too large
(over 20 pixels absolute value) and too small (under 5 pixels absolute value) from our optical
flow result in step 11. Finally, we repeated the drawing process described previously, in step 12.

From the results of steps 10 and 12, we can make the following observations:

�� The motion vectors seem to be centered on the moving persons, but they also seem
to be rather arbitrary. This makes it doubtful if they can be used for reconstructing
the first frame using the second one and the optical flow.

�� The particular optical flow estimation method does not produce entirely useful
results, with many outliers that confuse the final result.

�� The optical flow information seems very useful, especially in surveillance systems. As
you can easily observe, it has detected the hidden person on the right of the frames.

From Beginner to Expert – Handling Motion and 3-D

[280]

Have a go hero – estimating optical flow using Lucas-Kanade
Now, it's your turn. Since we have covered the whole process in much detail, you can now
repeat it for the Lucas-Kanade method. The only thing you have to change is the 'Method'
setting in the optical flow system object. You may also want to experiment with different
frames of the atrium video or other videos. If you do that, it may be necessary also to tweak
the amplification factor in step 9, or the thresholds in step 11.

Time for action – warping frames using optical flow
Now that you have seen both the methods, it is time to try and reconstruct the first frame
of the pair, using the second one and the optical flow field. We will try to accomplish that
by a straightforward method called interpolation. This method actually tries to estimate
unknown data, given a known set of data. In our case, the known set of data comprises the
pixel values in the second frame of the pair and the motion vectors. We will repeat the same
procedure for both the Horn-Schunck and Lucas-Kanade methods.

1.	 We start by loading our video:

>> clear all;
>> videoObj = VideoReader('atrium.avi'); % Open video

2.	 Now, we'll create two system objects, one for each optical flow method:

>> ofHS = vision.OpticalFlow('ReferenceFrameDelay', 1,...
'Method','Horn-Schunck', 'OutputValue', 'Horizontal and vertical
components in complex form'); % Horn Schunck method
>> ofLK = vision.OpticalFlow('ReferenceFrameDelay', 1,...
'Method','Lucas-Kanade', 'OutputValue', 'Horizontal and
 vertical components in complex form'); % Lucas-Kanade
 method

3.	 Perform the optical flow estimation with both the methods:

>> for i = 89:90 % For frames 89 and 90
frame = read(videoObj,i); % Load one frame at a time
temp = rgb2gray(frame); % Convert frame to grayscale
im(:,:,i-88) = single(temp); % Convert frame to single (for
 calculations)
hs(:,:,i-88) = step(ofHS, im(:,:,i-88)); %Estimate HS optical
 flow
lk(:,:,i-88) = step(ofLK, im(:,:,i-88)); %Estimate LK optical
 flow
end

Chapter 10

[281]

4.	 To make our jobs easier, we will create the x and y motion matrices from the optical
flow results (the second one estimated):

>> xHS = real(hs(:,:,2));
>> yHS = imag(hs(:,:,2));
>> xLK = real(lk(:,:,2));
>> yLK = imag(lk(:,:,2));

5.	 We will also create the absolute motion matrices:

>> absHS = abs(hs(:,:,2));
>> absLK = abs(lk(:,:,2));

6.	 Now, it is time to perform the interpolation for both the results. First, we will make
the grid for the coordinates of the pixels, using meshgrid:

>> [x,y]=meshgrid(1:videoObj.Width ,1:videoObj.Height);

7.	 This is the time to perform our warping, that is, the interpolation that will re-create
the first frame from our pair. We will do this twice, once for every optical flow method:

>> warpHS=interp2(x,y,im(:,:,2),x+xHS,y+yHS); % Warped H-S
>> warpLK=interp2(x,y,im(:,:,2),x+xLK,y+yLK); % Warped L-K

8.	 Finally, we will display our results from the warping process next to the original
first frame that we are trying to re-create. First, we convert every result back
to type uint8:

>> im = uint8(im);
>> warpHS = uint8(warpHS);
>> warpLK = uint8(warpLK);
>> subplot(2,2,1), imshow(warpHS), title('Horn-Schunck Warp')
>> subplot(2,2,3), imshow(im(:,:,2)), title('Original frame')
>> subplot(2,2,2), imshow(warpLK), title('Lucas-Kanade Warp')

From Beginner to Expert – Handling Motion and 3-D

[282]

9.	 It is worth displaying the result in the areas around the two moving persons, so that
we get a better idea of the power of each algorithm:

>> figure,subplot(2,3,1), imshow(warpHS(181:274,40:114)),
 title('Horn-Schunck Warp')
>> subplot(2,3,2), imshow(im(181:274,40:114,2)),
 title('Original frame')
>> subplot(2,3,3), imshow(warpLK(181:274,40:114)),
 title('Lucas-Kanade Warp')
>> subplot(2,3,4), imshow(warpHS(91:170,383:424)), title('Horn-
 Schunck Warp')
>> subplot(2,3,5), imshow(im(91:170,383:424,2)),
 title('Original frame')
>> subplot(2,3,6), imshow(warpLK(91:170,383:424)),
 title('Lucas-Kanade Warp')

What just happened?
This example has demonstrated the quality of the two optical flow algorithms included in
MATLAB, in terms of frame reconstruction. This time, we repeated the process presented
in the previous example, for both the methods. After acquiring the results and isolating
the vertical, horizontal, and absolute motion values, we performed warping, using two-
dimensional interpolation. The results were then demonstrated, proving the superiority of
the Lucas-Kanade optical flow algorithm over the Horn-Schunck one, at least for the example
examined here and for the default settings for the optical flow implementations. However,
even though the Lucas-Kanade method achieved better results, it as far from ideal. The
ghosting effect as more apparent, especially in the case of the faster moving person.

Chapter 10

[283]

Have a go hero – making your own surveillance system
It is now your turn to experiment some more. First, you should thoroughly read the help
page of the vision.OpticalFlow system object, either inside MATLAB, or at http://www.
mathworks.com/help/vision/ref/vision.opticalflowclass.html.

Next, you should try to implement different versions of the Horn-Schunck and the Lucas-
Kanade algorithms by tweaking the settings. Some settings that you should pay attention
to are the smoothness setting, the iteration count for the Horn-Schunck algorithm, and the
temporal gradient filter for the Lucas-Kanade algorithm.

Compensating camera motion using feature tracking
The optical flow algorithms we have presented so far are very useful, but have limited use
in the case of motion compensation in videos shot by a moving camera. In that case, the
camera motion must be compensated using other techniques, as the optical flow-based
warping does not produce seamless results.

For the camera motion to be estimated, we must focus on one or more points that remain
stable, or have known motion and examine the change in their coordinates, which we
must then compensate. The points that are chosen must be distinguishable in all frames,
so that their appearances can be matched to each other. When we just need to find the
correspondence between two small sets of characteristic points in two frames of a video,
we are talking about the feature tracking. When the process has to do with finding
the correspondences between all points in two frames of the same scene, it is called
image registration.

One of the most challenging uses of feature tracking applications is in video stabilization.
In its most difficult form, video stabilization must be performed in complex environments,
with plenty of moving objects and also moving areas in the background. This is the case
in the example that follows.

Time for action – tracking feature points for motion
compensation of a shaky video

For this example, we will use the shaky_car.avi video file included in the Computer Vision
System Toolbox of MATLAB. In the first frame, we will manually choose an area in which we
will be looking for feature points. Then, we will try to track these feature points in the rest
of the frames in the video. Finally, the coordinate differences between the points we track
will be used for motion compensation. Let's start:

1.	 The first step will be, as always, to load our video:

>> videoObj = VideoReader('shaky_car.avi');

From Beginner to Expert – Handling Motion and 3-D

[284]

2.	 Now, we will read a frame:

>> frame = read(videoObj,1);

3.	 Next, we choose a rectangular area:

>> imshow(frame);
>> ROI=round(getPosition(imrect))

4.	 We can also show our selected area of interest (we will use the preceding car):

>> im = insertShape(frame, 'Rectangle', ROI, 'Color', 'red');
>> figure; imshow(im);

5.	 It is the time to detect and show the feature points in the area we chose. We will
use the FAST corner detector:

>> points = detectFASTFeatures(rgb2gray(frame), 'ROI', ROI);
>> im = insertMarker(im, points.Location, '+', 'Color',
 'white');
>> figure, imshow(im);

Chapter 10

[285]

6.	 This is the point where we initialize the tracker function for the feature points
and the MarkerInserter function for drawing the points we track:

>> tracker = vision.PointTracker('MaxBidirectionalError', 1);
>> initialize(tracker, points.Location, frame);
>> markerInserter =
 vision.MarkerInserter('Shape','Plus','BorderColor','White');

7.	 Finally, we must loop through all the frames in our video and track the features
inside our region of interest (ROI). The result will be saved in a new matrix,
initialized right before the for loop:

>> vOut =
 zeros(videoObj.Height,videoObj.Width,3,videoObj.
 NumberOfFrames);
>> for i = 1:videoObj.NumberOfFrames	 % For all frames
frame = read(videoObj,i); % Load a frame
[points, validity] = step(tracker, frame); % Track points
out = insertMarker(frame, points(validity, :), '+'); % Draw
 points
end
>> vOut = uint8(vOut);	 % Convert vOut to uint8 for displaying

From Beginner to Expert – Handling Motion and 3-D

[286]

8.	 Let's see if our method proved to be robust by displaying a montage of the
first 18 frames:

>> montage(uint8(vOut(:,:,:,1:18)),'Size',[3 6])

9.	 Since we are sure that our feature tracking is successful and robust, we can use
the coordinates of the feature points to stabilize the video. All we have to do is
to shift the horizontal and vertical dimensions of the second frame of each pair,
by the mean amount of pixels our features have moved to each direction
(relative to the first frame):

>> stab =
 zeros(videoObj.Height,videoObj.Width,3,videoObj.
 NumberOfFrames);
>> for i = 1:videoObj.NumberOfFrames % For all frames
frame = read(videoObj,i); % Load a frame
if i == 1
[points, validity] = step(tracker, frame); % Track points
pFirst = points(validity,:);	 % Save coordinates
stab(:,:,:,i) = frame;		 % Store 1st frame
else
[points, validity] = step(tracker, frame); % Track points
% Calculate shifting values
sh = round(mean(points(validity,:)-pFirst));
stab(:,:,:,i) = circshift(frame,[sh(1) sh(2) 0 0]);
end
>> stab = uint8(stab);	 % Convert stab to uint8 for displaying

Chapter 10

[287]

10.	At this point, we can check to see if the result is acceptable, by playing back the
video matrix stab:

>> implay(stab)

Our results are only a little bit better. This is because our method of shifting
by the mean value is very simplistic and does not really ensure the stabilization
of the video. A more sophisticated, yet beyond the scope of this book, way
to accomplish this is included in MATLAB demos and can also be found at
http://www.mathworks.com/help/vision/ug/feature-
detection-extraction-and-matching.html#btj3w6s.

What just happened?
You have just been introduced to basic methods of feature point tracking and a first attempt
of its usage in video stabilization. The first two steps involved the usual opening of a video
file. In steps 3 and 4, we chose and displayed a region of interest for our feature tracking
process. Step 5 detected the features residing in the ROI in the first frame and then we use
step 6 to initialize a tracker object. In step 7, a loop through all the frames of the video,
performed tracking of the feature points and drew them in each frame. All the annotated
frames are saved in a new matrix called vOut. The first 18 frames of this matrix are displayed
in a montage in step 8. Finally, in step 9, we attempted a very simplistic stabilization method
by shifting the dimensions of each frame, by the mean number of pixels our feature points
have moved towards each direction compared to their positions in the first frame. The result
of this method was displayed in step 10, to come to a realization that the simplicity of the
method had a very negative effect on its efficiency.

From Beginner to Expert – Handling Motion and 3-D

[288]

Have a go hero – tweaking the settings of the stabilization demo
As we mentioned before, MATLAB comes with a much more complicated, yet also much
more efficient stabilization method. For the sake of challenging yourself, why don't you try
to go to the link provided in the previous example and alter the feature detection process of
the method to use alternative methods? The original demo uses the detectFASTFeatures
function also, but on the entire image. It also introduces various complicated concepts, such
as geometric transformation, but you shouldn't mess with that at this point. Your goal will
be to make a function using the code you'll find in the URL, which will be able to work with
other videos as well and also use the other feature detection methods (according to the
choice the user provides as input):

�� detectHarrisFeatures

�� detectMinEigenFeatures

�� detectMSERFeatures

�� detectSURFFeatures

Working with stereoscopic images
The second big category of advanced image and video processing methods is dealing with
stereoscopic images. Stereoscopic images are usually shot either by two normal cameras
positioned in parallel and only a few centimeters apart, or by stereoscopic cameras with two
lenses and separate image sensors for each one. Either way, the lenses have a distance from
each other that resembles the distance between the human eyes, and allows the camera(s)
to shoot images that can be fused to simulate three-dimensional vision.

The need for the two fields of view leads to a subsequent doubling of the frame rate
and storage space needs. This is because instead of showing just one image, modern 3-D
televisions must display two images, one for the left and one for the right eye. Similarly,
to store a 3-D video, we need to have double the space compared to a normal 2-D video.

Image registration is again the most significant aspect of 3-D image and video processing.
The only way to correctly display the left and right frames is to know the exact
correspondence of points from one to the other. The correspondence becomes easier
when the camera(s) used are placed very carefully in terms of alignment and distance from
each other.

For our first example, we will demonstrate a rather old-fashioned way to make a 3-D video
in MATLAB. By old-fashioned, we mean that we will be mixing both the left and right
videos into one, with the red color containing the right channel information and the cyan
(green and blue) carrying the left channel information. This way, our 3-D video can
be watched with an ordinary pair of red-cyan 3-D glasses.

Chapter 10

[289]

We will assume that you have done the following:

�� Shot two synchronized videos (both cameras started shooting simultaneously)

�� With perfect alignment (both cameras were placed perfectly parallel to each other,
on the same horizontal surface) and

�� With a distance not very far from each other (about 7 cm from the centre of one
lens to the centre of the other will be perfect)

Time for action – creating a 3-D video from left and right videos
Assuming you have done everything right and shot your left and right video, you can follow
the next steps to mix them into one that can be watched using a pair of red-cyan 3-D glasses
(using the imfuse function we have already discussed in the previous chapter):

1.	 First, load the two videos:

>> left = VideoReader('left.avi'); % Open left video file
>> right = VideoReader('right.avi'); % Open right video file

2.	 Create and open a video file to write your results in:

>> vidOut = VideoWriter('Vid3D.avi'); % Open 3D video
 file
>>open(vidOut);

3.	 Now we must loop through all the frames:

>> for i = 1:left.NumberOfFrames % For all frames
l = read(left,i); % Load i-th left frame
r = read(right,i); % Load i-th right frame
%Fuse the right and left channel into a red-cyan false color
 image
v3 = imfuse(r,l,'falsecolor','ColorChannels','red-cyan');
writeVideo(vidOut ,v3); % Write frame to video
end
close(vidOut);

What just happened?
This was pretty simple, right? The process of making a 3-D false-colored video is really
a piece of cake, provided you have shot your left and right channels. The steps are very few,
since the only things that have to be done are opening the input videos for the left and right
camera, creating an output video for the fused 3-D frame sequence, and then reading each
frame of the right and left channel and fusing them using imfuse. The generated image was
written as a new frame in the output video. When the whole process was over, we closed the
open video object used for writing, so that the video was finalized.

From Beginner to Expert – Handling Motion and 3-D

[290]

Time for action – creating a 3-D video from a regular one
But what happens if we do not have two cameras and we want to experiment with
the 3-D video making process? Well, we can actually be creative. A left and right image from
a stereoscopic video will ideally only have a horizontal shift of some pixels. This means that
if we take a simple, monocular video and shift its frames towards one horizontal direction,
we can create a synthetic right, or left image. More specifically, by shifting the frame to the
right, we create a synthetic left frame and shifting it to the left, we create a synthetic right
frame. Let's demonstrate this and adjust the previous example to work with a regular video.

1.	 First, we will open a regular video. We can use one of the videos included in
MATLAB. Here, we will use the video file rhinos.avi distributed with the Image
Processing Toolbox:

>> vid = VideoReader('rhinos.avi'); % Open video file

2.	 Create and open a video to write our results in:

>> sV = VideoWriter('Synthetic3D.avi'); % Open 3D video file
>> open(sV)

3.	 Again, we must loop through all the frames:

>> for i = 1:vid.NumberOfFrames % For all frames
frame = read(vid,i); % Read i-th frame
l = circshift(frame,[0 10 0 0]); % Create synthetic left frame
r = circshift(frame,[0 -10 0 0]); % Create synthetic right
 frame
l(:,1:10,:) = 0; % Darken shifted part of left image
r(:,end-9:end,:) = 0; % Darken shifted part of right image
%Fuse the right and left channel into a red-cyan false color
 image
v3 = imfuse(r,l,'falsecolor','ColorChannels','red-cyan');
writeVideo(sV ,v3); % Write frame to video
end
close(sV);

Chapter 10

[291]

4.	 Now, we can play back our video:

>> implay('Synthetic3D.avi')

What just happened?
You just became familiar with the process of creating a synthetic red-cyan 3-D video using
only a few steps, even if you don't have two cameras to shoot a real stereoscopic video.
The process had only a few tweaks in comparison with the one followed in the previous
example. The first two steps involved loading a regular video and also creating and opening
a video file to save our synthetic 3-D frames in. Then, the for loop, that will load each frame
of our original video, is written. In it, after loading one frame at a time, we created two
synthetic right and left frames by horizontally shifting our original frame to the left and right,
respectively. Then, we erased the circularly shifted areas from the right and left part of the
image to avoid irregular artifacts that come from the opposite part of the image (remember
that circshift brings the part of the image that falls off the borders into the opposite side
of the image). Finally, we performed fusing of the two images into one and wrote it as a new
frame in our output video file. After the for loop is over, we closed the output file to finalize
the process.

From Beginner to Expert – Handling Motion and 3-D

[292]

Have a go hero – writing a function for 3-D video creation
Now that you know the process of 3-D video creation, why don't you try to turn the code given
in the previous example into a function? The function should get four inputs from the user: the
input video filename, the output video filename, the shifting distance in pixels, and a choice
of whether the left and right parts should be darkened (as we did in the example), or cut.
In the second case, the output video will not have equal dimensions to the input video.

Pop quiz –working with video frames
Q1. Which of the following are true?

1.	 Subtracting two frames can result in pinpointing the moving objects in a scene,
when the videos are shot in confined environments.

2.	 Large moving objects with little detail in them can be mistaken as immobile when
relying solely on information from frame subtraction.

3.	 We can seamlessly reconstruct a frame of a video just by knowing its next frame
and the Horn-Schunck optical flow between them.

4.	 We can create a red-cyan stereoscopic video from a regular monocular video, just
by shifting the original frames in the vertical direction.

Summary
In this chapter, we described some more complicated methods of image and video
processing, focusing on explaining the rationale behind them, without using difficult
mathematics. Most of the methods were presented through hands-on exercises to help
you comprehend the physical meaning of the algorithms, without being too caught up
in the details. More specifically, in this chapter, we discussed:

�� Motion detection and its meaning

�� Use of frame subtraction to detect motion in simple and complex videos

�� Motion estimation and its meaning

�� Estimation of motion in a video using optical flow

�� To track people in video sequences using optical flow

�� A simplistic method for video stabilization

�� Reconstruction of video frames using optical flow information

�� Feature tracking in videos using the FAST feature detector

Chapter 10

[293]

�� Some basics of image registration

�� Stereo vision and its meaning

�� Creation of a 3-D video from videos shot by a stereoscopic pair of cameras

�� Creation of a 3-D video from a regular video by shifting its frames in both
vertical directions

Pop Quiz Answers

Chapter 1, Basic Image Manupulation

Pop quiz – image processing in Matlab

Q1 1, 3

Chapter 2, Working with Pixels in Grayscale Images

Pop quiz – contrasting enhancement methods

Q1 1.	 False: It is just a warning.

2.	 True

3.	 True

4.	 True

5.	 False

6.	 True

7.	 True

Pop quiz answers

[296]

Chapter 3, Morphological Operations and Object Analysis

Pop quiz – object analysis pros and cons

Q1 1.	 False

2.	 True

3.	 True

Chapter 4, Working with Color Images

Pop quiz – working with color

Q1 1.	 False: Green.

2.	 True.

3.	 True.

4.	 False: The imadjust function is better at this.

5.	 False: We have to take into account the region we threshold and confine
it around the eyes.

Chapter 5, 2-Dimensional Image Filtering

Pop quiz – image filtering in 2-dimensions

Q1 1.	 False: They are 180 degrees different.

2.	 True.

3.	 False: Edge enhancement.

4.	 False: Median.

5.	 True.

Appendix

[297]

Chapter 6, Mixing Images for Science or Art
Pop quiz – image mixing details

Q1. 1.	 True.

2.	 False: It is dim and should be multiplied by two.

3.	 False: We need to dot-multiply it with
a three-dimensional mask that could be made by concatenating three
replicas of the original mask.

4.	 True: Using compressed, 8 bit images leads to noisy results with visible
blocking effect.

5.	 False: Many more aspects must be considered, such as pairing points
between images and applying geometric transformations to preserve
correct image geometry.

Chapter 7, Adding Motion – From Static Images
to Digital Videos
Pop quiz – image filtering in 2-dimensions

Q1. 1.	 False: It is designed for playback of videos, or image sequences

2.	 False: It can support animations and it is widely used

3.	 False: Half the information

4.	 True

5.	 True

6.	 False: It supports only uncompressed videos

7.	 True

Pop quiz answers

[298]

Chapter 8, Acquiring and Processing Videos
Pop quiz – what is the problem with our function?

Q1 True: The problem is that, if the last chunk to be processed
is not exactly equal to chunkSz, it will be skipped because the its upper limit will exceed
the total number of frames.

Pop quiz – acquiring and processing videos

Q1 1.	 False: It supports compressed formats, such
as MP4 and Motion JPEG as well.

2.	 False: It has also to do with the bit-depth of its channels, the quality
of the compression, the frame rate and the amount of motion
in the video.

3.	 True.

4.	 True: Provided that our video acquisition device is already initialized.

5.	 False: The slower frame rate of time-lapse videos is beneficial for such
tasks.

6.	 False: It speeds it up substantially.

Chapter 9, Spatiotemporal Video Processing

Pop quiz – videos and filters

Q1 1.	 False: We remove the blocking effect by using disk filtering element.

2.	 False: Interlaced videos take up half the size.

3.	 True: Temporal and spatiotemporal filtering lead to ghosting effects.

4.	 False: Spatiotemporal averaging leads to blurring of the frames.

5.	 True.

Appendix

[299]

Chapter 10, From Beginner to Expert – Handling Motion
and 3-D

Pop quiz – working with video frames

Q1. 1.	 True

2.	 True

3.	 False - We can only partially reconstruct it

4.	 False – We must shift them in the horizontal direction

Index
Symbols
3-D video

creating, from left videos 287
creating, from regular video 288, 289
creating, from right videos 287

A
Acquisition Parameters window

about 206, 209
Device Properties tab 206
General tab 206
Logging tab 206
Region of Interest tab 207
Triggering tab 207

A/D (Analog to Digital) conversion 143
adapthisteq

about 49
used, for histogram equalization 49, 50

applycform function 102
APPS tab 11
Auto Bracketing 170
automatic threshold

used, for image thresholding 44, 45
average filters 132
averaging 122
averaging filters

applying, in images 127
aviread

about 188
videos, loading with 183-185

B
back videos

playing 189, 190
playing, in Matlab 188
reading 189, 190

binary images 62
bokeh effect

about 135
creating 135, 137

C
camera motion

compensating, feature tracking used 281
cart2pol 272
cartesian 272
CCD detectors 139
CIE-L*a*b*

about 104
illumination issues, fixing 110, 111
used, for color isolation 104-106
used, for color masking 104

circle detection 85
circshift function 175, 289
color image processing

about 89, 90
areas, repainting 94
manipulations 91-93
rectangular area, setting to rectangular

area 93, 94

[302]

color images thresholding
performing 95
red pixels, isolating 96-98

color isolation
performing 100, 101
performing, CIE-L*a*b* used 104-106

color masking
achieving 99
CIE-L*a*b*, using 104

color spaces
about 102
CIE-L*a*b* 102
disadvantages 102
HSV 102
RGB color space 102
transforming 102, 103

Color space tab 206
Command History window 207
command line

used, for displaying image 13
used, for importing image 13

Command Window 9
complex scene

motion, detecting 269-271
composite images

creating 160
creating, imfuse used 160
falsecolor method, using 163, 164
inspecting, imshowpair used 160
seagull, cloning 160-163
threatening scene, creating 166-169

Computer Vision System Toolbox
used, for deinterlacing 242

contents variable 191
contrast enhancement, of image

histogram equalization, performing 46, 47
performing, imadjust used 47, 48
performing, imcontrast used 48

contrast limited adaptive histogram equalization
(CLAHE) 49

conv2
implementing 126
results 127

convolution
about 122
basics 125, 126
mathematical definition 126

corner detection 84, 85
correlation 130
Current Folder window 10
custom functions

used, for deinterlacing 244
using, for complex tasks 51, 53
writing, for enhancing image area 55, 56

custom object eraser function
creating 79, 81

D
decorrstretch function 156
default subwindows, Matlab

Command Window 9
Current Folder window 10
Details window 10
Workspace window 10

deinterlacing. See video deinterlacing
DenoiseAndPlot.m function 140
Desktop Help window 205
Details window 10
detectFASTFeatures function 286
Device Properties tab, Acquisition Parameters

window 206
digital video 180
Digital Video Recorder. See DVR
dilation 64
disk filters 132
Disk Logging (VideoWriter) 207
DVR

about 204
Matlab, used for 204

E
edge detection 82
edge detection filters 132
edge detection video

creating 217-219
edge enhancement

performing 145-147
editor

about 12
invoking 12

EDITOR window 13
erosion 64

[303]

Export Data... button 205, 211
Exposure Values (EV) 170
eye circularity

advantages 115

F
fade in effect

used, for creating videos 193
fade out effect

used, for creating videos 193
false-color composite versions 163
feature tracking

used, for compensating camera motion 281
using, for shaky video motion compensation

281-285
field averaging

used, for deinterlacing 251-253
field merge method

evaluating 251
field merging

used, for deinterlacing 248-250
firewire connection

used, for capturing videos 208-212
flipdim

used, for image mirroring 22
for loops

about 269, 289
used, for image thresholding 41

frame
about 180
acquiring 220, 221
acquiring, for time-lapse videos 219
last chunk, getting 219
number, calculating 182
rates 181
rates, selecting 182
warping, optical flow used 278-280

frames per second (fps) 181
Frames per trigger 206
fspecial function

used, for creating filters 131

G
gaussian filters 132
General tab, Acquisition Parameters

window 206

geometric transformations
applying 19
image, cropping 24
image mirroring, performing 21, 22
image, resizing 23
image rotation, performing 19, 20
image, saving 25

getFileFormats method 188
getnhood function 71
getsnapshot function 229
ghosting effect 271
gif 199
gif file

time-lapse videos, saving 199
Graphical User Interface. See GUI
graphics interchange format. See gif
grayscale image

converting, to binary 62
rectangular area, blackening 39
rectangular area, whitening 39

GUI 204

H
Hardware Browser window 204
Hardware triggering 207
HDR images

about 170
composing 170, 172
creating 170

High Dynamic Range images. See HDR images
histogram equalization

performing, adapthisteq used 49, 50
histogram, of image

calculating 45
displaying 46

HOME tab 11
Horn-Schunck optical flow

estimating, Lucas-Kanade used 278
people, tracking with 273-277

HSV 102

I
illumination issues, CIE-L*a*b*

fixing 110, 111
illumination issues, RGB color images

fixing 108, 109

[304]

im2bw
used, for image thresholding 43, 44

imadjust
used, for contrasting enhancement 47, 48

image
averaging filters, applying 127, 129
binarizing 62
combining 152
cropping 24
cropping, imcrop used 26
displaying, command line used 13, 15
displaying, imtool used 15
histogram, calculating 45
histogram, displaying 46
importing, command line used 13, 15
importing, imtool used 15
lights, brighting up 148, 149
mirroring 21, 22
mirroring, flipdim used 22
mixing 152
panorama stitching 173
resizing 23
resizing, imresize used 26
rotating 19, 20
saving 25
saving, in BMP 27
tailoring 28, 29
thresholding 41
thresholding, automatic threshold used 44, 45
thresholding, for loops used 41
thresholding, im2bw used 43, 44
thresholding, indexing used 42, 43

Image Acquisition Tool window
about 204
Acquisition Parameters window 206
Desktop Help window 205
Hardware Browser window 204
Information window 205
Preview window 205
Session Log window 207
trigger, adding to recording 212

image blurring
performing 132, 134
used, for removing noise 139

image content analysis
circles, detecting 85-87
corners, detecting 84, 85

edges, detecting 82, 83
performing 82

image filtering
about 122
convolution 125
correlation 130
neighborhoods of pixels, processing 122-124

image filters
creating, fspecial used 131, 132

image pixels. See pixels
Image Processing Toolbox 139
image regions

blending 164, 165
image registration. 281, 286
image sequence

playing, implay used 197
Image smoothing or Blurring 132
Image Toolbox 70
imcontrast

used, for contrasting enhancement 48
imfilter

about 131
using 131

imfreehand function
used, for creating mask 78, 79

imfuse functions
about 287
used, for creating composite image 160

imnoise 139
implay

about 194
GUI, using 195, 196
used, for playing image sequence 197
used, for playing video file 197

imread function 63, 183
imshowpair functions

used, for inspecting composite image 160
imtool

used, for displaying image 15
used, for extracting information 16, 18
used, for importing image 15
used, for pinpointing differences 53, 54

indexing
used, for image thresholding 42

Information window 205
inter-frame deinterlacing 248

[305]

interlaced
versus progressive 180

intervalometer
about 197
Matlab, using as 222, 223

intra-frame deinterlacing
about 242
mixing, with inter-frame deinterlacing 254

invisible spectrums
working with 157

isolated colors
used, for creating time-lapse videos 224-226

K
kernel 122

L
laplacian filters 132
lapse 197
lights

brightening up 148
Linear Space Invariant (LSI) system 126
line repetition

used, for deinterlacing 244-246
log filters 132
Logging tab, Acquisition Parameters window

Disk Logging (VideoWriter) 207
Log to setting 206
Memory logging setting 206

Log to setting 206

M
makecform function 102
MarkerInserter function 283
masks 62
Matlab

back videos, playing 188
digital video 180
editor 12
frames 180
geometric transformations, applying 19
image, displaying 13
image, importing 13
implay 195
real-time capabilities, evaluating 226

ribbon 10
time-lapse videos, creating 197
time-lapse videos, real-time processing 224
uncompressed video 216
used, for digital video recording 204
using, as intervalometer 222, 223
video compression 212
video processing 233
videos, creating from static images 190
videos inspecting, montage used 193
videos, loading 183

Matlab environment
about 8
default subwindows 8

medfilt2
used, for removing salt & pepper noise 144

median filter 143
median filtering 143
Memory logging setting 206
mmreader

videos, loading with 185, 186
montage

used, for inspecting videos 193, 194
morphological operations

about 62
reference link 76

motion
detecting 266
estimating 271, 272
estimating, optical flow used 273
in complex scene, detecting 269-271
in videos, detecting 266
in videos, estimating 266
moving object in still scene, detecting 267-269

motion effect
creating 137, 138

motion filters 132
mov 192
movie 190
movie function 192
MP4 video

size checking, with motion 215, 216
size checking, without motion 214, 215

multiband BIL (Band Interleaved by Line)
satellite image 156

multibandread function 153

[306]

multispectral images
invisible spectrums, working with 157, 158
loading 153
manipulating 153, 154
visible spectrum bands, manipulating 154-157

multispectral imaging
about 152
using 152

N
noise

removing, blurring used 139-142
NTSC 102
Number of triggers 207

O
old photographs

restoring 57- 59
optical flow

used, for warping frames 278-280
optical flow algorithms 273
Otsu thresholding technique 95
outliers 276
outputVideo 192

P
panorama stitching

about 151 , 173
basic approach 173
performing 173-175

pause function 226
pixels

about 90
accessing 33, 34
values, changing 34

pixel values, square area
changing, indexing used 36
changing, loops used 35

PLOTS tab 11
pos 35
preview command 229
Preview window

about 205
Export Data... button 205
Start Acquisition button 205

Start Preview button 205
Stop Acquisition button 205
Stop Preview button 205
Trigger button 205

prewitt filters 132
progressive

versus interlaced 180

R
real images

denoising 144
red eye reduction

automating 115-118
example 111-114

red eye reduction example
about 111
function, writing for 112-114

region color isolation
function, writing for 106, 108

Region of Interest tab, Acquisition Parameters
window 207

RGB color images
illumination issues, fixing 108, 109

ribbon
about 10
APPS tab 11
HOME tab 11
PLOTS tab 11

ROI
CroppedDilationErosion.m function, writing 74,

75
freehand selection 76
free selection ROI, defining with imfreehand 76
polygonal ROI, defining with roipoly 76
refining 64
refining, dilation used 65-68
refining, erosion used 65-68
refining, strel used 72, 73
structuring element, selecting 69

roipoly function
used, for creating mask 76, 77

S
salt & pepper noise

removing, medfilt2 used 144
SAR (Synthetic Aperture Radar) images 143

[307]

scan line interpolation
used, for deinterlacing 246-248

scripts
using 36-38
writing 36, 37

Session Log window 207
singleball.avi 193
size function 186
sliding neighborhood operation 122
sobel filters 132
spatiotemporal averaging filter

about 258
convolution, using 261
creating 261
implementing 258-261
implementing, with convn 261, 262

Start Acquisition button 205-212
Start Preview button 205
static images

videos, creating from 190
step method 243
stereoscopic images 286, 287
Stop Acquisition button 205, 211
Stop Preview button 205
strel function

about 64
used, for generating structuring elements 70
used, for refining ROI 72

structuring element
about 64
altering 71
generating, strel used 70
selecting 69

surveillance system
creating 271, 281

T
temporal interpolation method, deinterlacing

implementing 254
The Hobbit 181
thresholded images

invoking 62, 63
time-lapse creation function

creating 224
time-lapse videos

creating 197

creating, with isolated colors 224-226
frames, acquiring for 219
real-time processing 224
regular lapsing 198
saving, in gif file 199
spinning 199

tracker function 283
trigger

adding, to recording 212
Trigger button 205
Triggering tab, Acquisition Parameters window

Hardware triggering 207
Number of triggers 207
Trigger type 207

Trigger type 207, 214
truecolor images 185

U
uncompressed video

size, checking 213
working with 216, 217

unsharp kernel 132

V
vertical interpolation method, deinterlacing

implementing 256
vid.avi 192
video compression

about 212, 213
MP4 video size checking, with motion 215, 216
MP4 video size checking, without motion 214,

215
uncompressed video, size checking 213

video deinterlacing
deinterlacing methods, comparing 244
implementing, with custom functions 244
implementing, with field averaging 251-253
implementing, with field merging 248-250
implementing, with line repetition 244, 245
implementing, with scan line

interpolation 246-248
inter-frame filtering 242, 248
performing 241
performing, vision toolbox used 242, 243
techniques, comparing 257

[308]

temporal interpolation method,
implementing 254, 256

vertical interpolation method,
implementing 254, 256

video file
playing, implay used 197

video object
creating 220, 221

videooptflowlines helper function 275
video processing

about 233
blocking effect, reducing 239, 240
error checking 238
rotation, adding 238
video, cropping 234
video deinterlacing 241
video frames, filtering 239
video, loading 234
video, playing 237
video, resizing 234
video, saving 234

VideoReader
about 192
videos, loading with 186, 187

videos
about 183
acquisition hardware, detecting 220
atrium.avi 273
back videos, playing 188-190
back videos, reading 189, 190
capturing, firewire connection 208-212

constructing 191, 192
contrast, adjusting 227, 228
creating, fade in effect used 193
creating, fade out effect used 193
edge detection video, creating 217
functions, selecting for reading 187, 188
inspecting, montage used 193, 194
loading, with aviread 183-185
loading, with mmreader 185, 186
loading, with VideoReader 186
making, from static images 190
motion, detecting 266
motion, estimating 266
normal videos, real-time processing 226
saving 191, 192
singleball.avi 267

visible spectrums
manipulating 154

vision.OpticalFlow system object
URL 281

vObj.FrameRate 190
vOut 285

W
Workspace window 10

Y
YCbCr 102

Thank you for buying
Visual Media Processing Using
MATLAB Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information, please
visit our website: www.PacktPub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

MATLAB Graphics and Data
Visualization Cookbook
ISBN: 978-1-84969-316-5 Paperback:284 pages

Tell data stories with compelling graphics using this
collection of data visualization recipes

1.	 Collection of data visualization recipes with
functionalized versions of common tasks for easy
integration into your data analysis workflow

2.	 Recipes cross-referenced with MATLAB product
pages and MATLAB Central File Exchange
resources for improved coverage

3.	 Includes hand created indices to find exactly
what you need; such as application driven,
or functionality driven solutions

OpenCV 2 Computer Vision Application
Programming Cookbook
ISBN: 978-1-84951-324-1 Paperback: 304 pages

Over 50 recipes to master this library of programming
functions for real-time computer vision

1.	 Teaches you how to program computer vision
applications in C++ using the different features
of the OpenCV library

2.	 Demonstrates the important structures and
functions of OpenCV in detail with complete
working examples

3.	 Describes fundamental concepts in computer vision
and image processing

Please check www.PacktPub.com for information on our titles

OpenCV Computer Vision with Python
ISBN: 978-1-78216-392-3 Paperback:122 pages

Learn to capture videos, manipulate images, and track
objects with Python using the OpenCV Library

1.	 TSet up OpenCV, its Python bindings, and
optional Kinect drivers on Windows, Mac
or Ubuntu

2.	 ICreate an application that tracks and
manipulates faces

3.	 Identify face regions using normal color images
and depth images

PHP Oracle Web Development: Data
processing, Security, Caching, XML,
Web Services, and Ajax
ISBN: 978-1-84719-363-6 Paperback: 440 pages

A practical guide to combining the power, performance,
scalability, and reliability of the Oracle Database with
the ease of use, short development time, and high
performance of PHP

1.	 Program your own PHP/Oracle application

2.	 Move data processing inside the database

3.	 Distribute data processing between the web/PHP
and Oracle database servers

4.	 Create reusable building blocks for PHP/Oracle
solutions

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Basic Image Manipulations
	Getting acquainted with the MATLAB environment
	Default subwindows of the environment
	The Command Window
	The Current Folder window
	The Details window
	The Workspace window

	The ribbon
	The HOME tab
	The PLOTS tab
	The APPS tab

	The editor
	The EDITOR window

	Importing and displaying an image
	Importing and displaying an image using the command line

	Time for action – importing and displaying an image
	Importing and displaying an image using imtool

	Time for action – using imtool to extract useful information
	Applying geometric transformations
	Performing image rotation

	Time for action – rotating an image and displaying the result
	Performing image mirroring

	Time for action – mirroring an image and displaying the result
	Resizing an image
	Cropping an image
	Saving an image

	Time for action – cropping and resizing an image, then saving
it as BMP
	Summary

	Chapter 2: Working with Pixels In Grayscale Images
	Accessing image pixels and changing their values
	Changing the pixel values of a square area using loops
	Changing the pixel values of a square area using indexing
	Writing and using scripts

	Time for action – whiten an area and blacken another
	Thresholding an image
	Image thresholding using for loops
	Image thresholding using indexing
	Image thresholding using im2bw
	Image thresholding using an automatic threshold

	Calculating and displaying histograms with imhist
	Histogram equalization for contrast enhancement
	Contrasting enhancement using imadjust
	Contrasting enhancement using imcontrast
	Adaptive histogram equalization using adapthisteq
	Custom functions for complex tasks
	Time for action – using imtool to pinpoint differences
	Restoring old photographs
	Time for action – restoring your ancestors' photographs
	Summary

	Chapter 3: Morphological Operations
and Object Analysis
	The importance of binary images
	Time for action – understanding the value of thresholding
	Enlarging and shrinking a region of interest
	Time for action – using dilation and erosion to refine ROIs
	Choosing a structuring element
	Using strel to generate structuring elements

	Altering structuring elements from strel to suit our needs
	Time for action – ROI refinement using strel
	More morphological operations

	Manually defining a non-rectangular ROI
	Using roipoly to make a mask
	Using imfreehand to make a mask

	Time for action – making a custom object eraser function
	Analyzing objects in an image
	Detecting edges in an image
	Detecting corners in an image
	Detecting circles in an image

	Summary

	Chapter 4: Working with Color Images
	An introduction to color image processing
	Basic color image manipulations
	Setting a rectangular area to a specified color
	Time for action – repainting two areas in a color image
	Thresholding color images
	Time for action – isolating the red pixels in an image
	Achieving color masking
	Time for action – color isolation
	The importance of different color spaces
	Time for action – color space transformation
	CIE-L*a*b* for more efficient color masking
	Time for action – color isolation using CIE-L*a*b*
	Fixing illumination issues in RGB color images
	Fixing illumination issues in CIE-L*a*b*
	A practical example – red eye reduction
	Time for action – writing a function for red eye reduction
	Taking advantage of eye circularity
	Time for action – automating our function for red eye reduction
	Summary

	Chapter 5: 2-Dimensional Image Filtering
	An introduction to image filtering
	Processing neighborhoods of pixels
	The basics of convolution
	The ugly mathematical truth
	Time for action – applying averaging filters in images
	Alternatives to convolution
	Using imfilter
	Creating filters with fspecial
	Different ways to blur an image
	Time for action – how much blurring is enough
	Time to make art using blurring
	Time for action – creating the bokeh effect in an image
	Removing noise using blurring
	Time for action – trying to remove different types of noise
	The importance of the median filter
	 Time for action – removing salt & pepper with medfilt2
	Bringing back the details
	Time for action – enhancing the edges in our images
	Brighten up the lights
	Time for action – brighten up the lights in our soldier picture
	Summary

	Chapter 6: Mixing Images for Science or Art
	The importance of mixing or combining images
	Using multispectral imaging
	Loading and manipulating the multispectral images
	Time for action – visible spectrum from a multiband image of Rio
	Time for action – working with invisible spectrums
	Creating composite images
	Using imfuse to create a composite image
	Using imshowpair to inspect a composite image

	Time for action – cloning the seagull
	One step beyond – blending selected image regions
	Time for action – directing a threatening scene
	Creating High Dynamic Range images
	Time for action – composing your own HDR images
	Stitching images for the creation of panoramas
	Time for action – basic approach to panorama stitching
	Summary

	Chapter 7: Adding Motion – From Static Images to Digital Videos
	An introduction to digital videos
	The meaning of frames
	Interlaced versus progressive
	Frame rates and their importance
	Calculating number of frames
	Some thoughts on choosing frame rates

	Loading videos in MATLAB
	Loading videos with aviread
	Loading videos with mmreader
	Loading videos with VideoReader
	Choosing which function to use for video reading

	Playing back videos in MATLAB
	Time for action – reading and playing back a video
	Making videos from static images
	Time for action – constructing and saving a video
	Inspecting a video using montage
	Time for action – don't wait for the ball
	A tool just for your playback needs – implay
	Using the GUI of implay
	Using implay to play a video file
	Using implay to play an image sequence

	Creating time-lapse videos
	Time for action – time-lapsing a regular video
	Saving your time-lapse videos in a gif file
	Summary

	Chapter 8: Acquiring and Processing Videos
	Using MATLAB for digital video recording
	The Hardware Browser window
	The Information window
	The Desktop Help window
	The Preview window
	The Acquisition Parameters window
	The General tab
	The Device Properties tab
	The Logging tab
	The Triggering tab
	The Region of Interest tab

	The Session Log window

	Time for action – capturing a video using a firewire connection
	The importance of video compression
	Checking the size of an uncompressed video
	Checking the size of an MP4 video without any motion
	Checking the size of an MP4 video with high motion

	Working with uncompressed videos
	Working with large videos in postproduction

	Time for action – making an edge detection video
	Acquiring frames for time-lapse videos
	Detecting your acquisition hardware
	Creating a video object and acquiring a frame

	Time for action – using MATLAB as an intervalometer
	Real-time processing of time-lapse videos
	Time for action – creating time-lapses with isolated colors
	Real-time processing of normal videos
	Evaluating real-time capabilities with a simple example

	Time for action – adjusting the contrast of the video
	Revisiting the contrast adjustment example

	Time for action – adding preview in our code
	Summary

	Chapter 9: Spatiotemporal Video Processing
	Basic video processing with MATLAB
	Cropping and resizing our video

	Time for action – loading, cropping, resizing, and saving a video
	Filtering your video frames

	Time for action – reducing the blocking effect
	Deinterlacing videos in MATLAB
	Intra-frame filtering for deinterlacing tasks

	Deinterlacing with the Computer Vision System Toolbox
	Time for action – deinterlacing a video using the vision toolbox
	Deinterlacing with the custom functions
	Time for action – deinterlacing with line repetition
	Time for action – deinterlacing with the scan line interpolation
	Inter-frame filtering for the deinterlacing tasks
	Temporal deinterlacing by field merging

	Time for action – deinterlacing with field merging
	Temporal deinterlacing by field averaging
	Time for action – deinterlacing with field averaging
	Mixing intra-frame and inter-frame deinterlacing
	Vertical and temporal interpolation for deinterlacing

	Time for action – vertical and temporal interpolation method
	Adding a new dimension to the filters
	Spatiotemporal averaging filter

	Time for action – implementing a spatiotemporal averaging filter
	Using convolution for spatiotemporal averaging

	Time for action – spatiotemporal averaging filter with the convn function
	Summary

	Chapter 10: From Beginner to Expert – Handling Motion and 3-D
	Detecting and estimating motion in videos
	Detecting motion

	Time for action – detecting a moving object in a still scene
	Time for action – detecting motion in a complex scene
	Estimating the motion
	Estimating motion using optical flow

	Time for action – tracking people with Horn-Schunck optical flow
	Time for action – warping frames using optical flow
	Compensating camera motion using feature tracking
	Time for action – tracking feature points for motion compensation of a shaky video
	Working with stereoscopic images
	Time for action – creating a 3-D video from left and right videos
	Time for action – creating a 3-D video from a regular one
	Summary

	Appendix: Pop Quiz Answers
	Index

