
Rob Larsen

The

Uncertain

Web
WEB DEVELOPMENT IN A CHANGING LANDSCAPE

www.allitebooks.com

http://www.allitebooks.org

WEB DE VELOPMENT

The Uncertain Web

ISBN: 978-1-491-94590-2

US $29.99 CAN $31.99

“ A refreshingly honest

look at the chaotic,

wonderful world of

web development, with

handy, practical advice

for making future-

friendly, backward-

compatible websites.”
—Jeremy Keith

Research and Development, Clearleft

Twitter: @oreillymedia

facebook.com/oreilly

What’s the best way to develop for a Web gone wild?

That’s easy. Simply scrap the rules you’ve relied on all

these years and embrace uncertainty as a core tenet

of design. In this practical book, veteran developer

Rob Larsen outlines the principles of what he calls The

Uncertain Web, and shows you techniques necessary

to successfully make the transition.

By combining web standards, progressive enhancement,

an iterative approach to design and development, and a

desire to question the status quo, your team can create

sites and applications that will perform well in a wide

range of present and future devices. This guide points

the way.

Topics include:

 ■ Navigating thousands of browser/device/

OS combinations

 ■ Focusing on optimal, not absolute solutions

 ■ Feature detection, Modernizr, and polyills

 ■ RWD, mobile irst, and progressive

enhancement

 ■ UIs that work with multiple user input

modes

 ■ Image optimization, SVG, and server-side

options

 ■ The horribly complex world of web video

 ■ The Web we want to see in the future

Rob Larsen has spent 13 years

building websites and applications

for some of the world’s biggest

brands. He’s applied that experi-

ence to teaching a broad audience

in Beginning HTML and CSS.

www.allitebooks.com

http://www.allitebooks.org

Rob Larsen

The Uncertain Web

www.allitebooks.com

http://www.allitebooks.org

The Uncertain Web

by Rob Larsen

Copyright © 2015 Rob Larsen. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department: 800-998-9938
or corporate@oreilly.com.

Editors: Simon St. Laurent and Amy Jolly‐
more

Production Editor: Colleen Lobner

Copyeditor: Marta Justak

Proofreader: Jasmine Kwityn

Indexer: Ellen Troutman-Zaig

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Illustrator: Rebecca Demarest

December 2014: First Edition

Revision History for the First Edition:

2014-12-02: First release

2015-01-07: Second release

See http://oreilly.com/catalog/errata.csp?isbn=9781491945902 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Uncertain
Web, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their prod‐
ucts are claimed as trademarks. Where those designations appear in this book, and
O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed
in caps or initial caps.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to
ensure that your use thereof complies with such licenses and/or rights.

ISBN: 978-1-491-94590-2

[LSI]

www.allitebooks.com

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491945902
http://www.allitebooks.org

Table of Contents

Preface. ix

1. Embracing Uncertainty. 1
Embrace Uncertainty 2
From Microsoft’s Monoculture to Today’s Healthy Chaos 5
Where We Are Right Now 7

Browsers 7
The Open Web Platform 14
Connection Speeds and Quality 23
The Human–Computer Interface 24
Screen Resolution and Orientation 26
Pixel Density 27
What’s 2% Anyway? 31
This Is What We Wanted 33

2. Navigating the Uncertain Web. 35
Don’t Blame the Web for Being the Web 36
Identify and Embrace Your Audience 37
Test and Pray for the Best 41
Focus on Optimal, Not Absolute Solutions 46
Embrace Accessibility 49

Provide Text Alternatives for All Non-Text Content 50
Ensure Information and Structure Can Be Separated

from Presentation 53
Make All Functionality Operable via a Keyboard

Interface 53

iii

www.allitebooks.com

http://www.allitebooks.org

Content Can Be Paused by the User Unless the Timing
or Movement Is Part of an Activity Where Timing or
Movement Is Essential 54

Provide Mechanisms to Help Users Find Content,
Orient Themselves Within It, and Navigate Through It 55

Help Users Avoid Mistakes and Make It Easy to Correct
Mistakes 56

Support Compatibility with Current and Future User
Agents (Including Assistive Technologies) 57

Don’t Stop There 57
Lose Your Technology Biases 58

The iPhone Is the Only Mobile Experience 59
Closed. Won’t Fix. Can’t Reproduce. 60
Contrary to Popular Opinion, Internet Explorer Does

Exist 60
Embrace Empathy 62

Lose Your Stack Biases 63
jQuery 64
MVWhatever 64

Keep at Least One Eye on the Cutting Edge 65
Spread Your Wings (and Question Your Assumptions) 67

3. Lay a Foundation for the Future with Feature Detection and
Polyfills. 69
Feature Detection 70

Looking at a More Complicated Feature Detection 72
Using Modernizr 73

Old IE: The One Thing Modernizr Does Modernize 73
Using (and Not Using) Modernizr 74
Feature Detection with Modernizr 77
Customizing Modernizr 80
Using Modernizr’s Tests 81
Cross Browser Polyfills 83
Additional Modernizr Methods 85
Managing the Undetectables 87
Common Feature Tests and Associated Polyfills 90

“Frontend Development Done Right” 93

4. Selecting Responsive Design or Another Mobile Experience. 95
Boston Globe’s RWD Redesign 96
Really? RWD for Every Site? 97

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Mobile First, RESS, and the Rest of the Mobile
Development Universe 100
Dedicated Mobile Experience 100
Mobile First 101
Progressive Enhancement 101
RESS 101

Choosing a Development Path 102
The Size and Skills of Your Team 102
The Requirements of Your Site or Application 103
Your Demographics 103
Your Budget 103
Benefits of RWD 104
Downsides of RWD 105
Benefits of a Dedicated Mobile Experience 106
Downsides of a Dedicated Mobile Experience 106
If Facebook Jumped Off a Bridge, Would You Jump Off a

Bridge, Too? Or: What Do the Biggest Sites in the
United States Do? 108

Choose the Architecture That Makes Sense for Your
Project 110

Redirects Should Resolve Logically 112
Redirect Options 114

Simple Redirection 114
Options for More Complicated Queries 118

Always Offer an Escape from the Mobile Version 119
Be Fluid and Design for Your Design 122

Feel Free to Abuse Minor Breakpoints 125
On Relative Units 127

“Accepting the Ebb and Flow of Things” 129

5. Working with User Input. 131
The State of User Input on the Web 132

The Conceptual Problem with “Touch” Detection 134
The Technical Problem with “Touch” Detection 134

What It Means to Get It Wrong 137
You Can Fail Completely 137
You Can Fail Just a Little 140

Design for a Spectrum of Potential User Inputs 141
Lean Toward Finger-Friendly Interfaces for All

Interfaces 141
Don’t Rely on Hover 142

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Embrace Clarity 142
Working with the Full User Input Spectrum 142

The Current State of Touch and Mouse Event Handling 143
Assume Nothing and Accommodate Everyone 158

6. The Surprisingly Complex World of Images on the Web. 159
While We Weren’t Paying Attention, Images Got

Complicated 161
We Want to Serve the Smallest Possible File Size 163
We Need to Take Advantage of the Browser Preloader 163
We Want to Serve Correctly Sized Images to Multiple

Resolutions 164
We Need to Serve the Correct Image for Multiple Pixel

Ratio Devices 164
We Want to Choose Different Sizes/Images at Different

Breakpoints 164
We Want to Use Design Breakpoints 164
Serving the Correct Format 165
Images Are Easy, and They Should Stay Easy 165

Optimizing Images for the Web 165
JPEG 165
Choosing the Right File Format 169
Look for a CDN Solution 170

Responsive Images 170
The Option of Doing Nothing (or Nothing New, at

Least) 171
srcset 172
picture 175
Picturefill, the picture Polyfill 180

Embrace SVG 182
On the Server Side 186
A Practical Developers Guide to All of This Complexity 186

Identify How Important Images Are to Your Site 187
Get the Basics Right 187
Use the Simplest Possible Solution 187
Learn to Love SVG 188
Test! 188

Conclusion 188

7. The Horribly Complex World of Web Video. 191
The Core Technology 192

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

The HTML video Element 192
The Flash Fallback 195
Containers and Codecs 196
Video.js 199
Mime Types and Adaptive Bitrate Streaming 202

Letting the Pros Handle It 204
YouTube 204
Vimeo 208

Make the Best of a Complicated Situation 212

8. The Web We Want. 213
Things Can Get Better (But They Do Occasionally Get

Worse) 214
Firefox Announced Support for h.264 214
Picture Comes Back from the Dead 215
Pointer Events Might Be Dead 216
I Knew Something Like This Would Happen 216

Let’s Push Things Forward 216
A Web Built By Developers, Browser Vendors, and

Standards Bodies 217
A Web That Is Fast, Widely Available, and Reliable 218
A Web Where There’s Nothing to Win 220

The Web We Want Starts with Us 221

Index. 223

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

The best way to approach the Web today is to forgo hard-and-fast rules
and design for uncertainty. Embracing uncertainty as a core tenet of
web development and scrapping the rules we’ve relied on in the past
few years is the best bet for creating future-proof web solutions.

In the early 2000s, there was basically one browser (Internet Explorer
6), one platform (Windows XP), and one screen resolution (1024 ×
768) that mattered. With that setup, you could design, develop, and
test the vast majority of web users with one desktop computer. The
biggest question on the horizon, it seemed, was when it would be viable
to design for 1280-pixel screens.

This limited field of play meant that there was an expectation that sites
and applications would look the same everywhere for everyone. Best
practices were honed and codified into hard-and-fast rules that drove
design and development. Major choices, such as the size of the basic
design grid, were no longer choices. Everyone started with a static, 960-
pixel grid and then sliced and diced it as needed.

Today, things couldn’t be more different. With the launch of the iPhone
and the iPad, the rise of Android, and the growth of not just one but
two real contenders to Microsoft’s position as the dominant desktop
web browser (Firefox and Chrome), developers and designers have an
ocean of variables to navigate. Every question around a site design is
now filled with options.

Initially, developers and designers tried to navigate this new reality by
creating new rules. But the problem was that the goalposts kept mov‐
ing. As soon as a new hard and fast rule was created, some new wrinkle
would render it impotent. People designed and built iPhone sites,

ix

assuming that Apple’s dominance in the smartphone market was a
permanent condition. They tested for touch capabilities and assumed
that touch users would never have a mouse.

As Android’s huge growth over the past few years, and the presence
of Chromebooks and Windows 8 laptops with both mouse and touch
capabilities have proved, those new rules have a short shelf life.

Even patterns like responsive web design (RWD), which some saw as
a single solution for design and development moving forward, fell
apart when applied against complicated application patterns and the
questions of bandwidth and the challenge of mobile performance.

By combining web standards, progressive enhancement, an iterative
approach to design and development, and a desire to question the
status quo, teams can create sites and applications that should perform
well in a wide range of present and future devices. By focusing on
optimal solutions with intelligent fallbacks and forgoing the desire for
absolute solutions, design and development can work together to cre‐
ate a Web that is fast, widely available, and reliable.

This book will outline both the concept and underlying principles of
the uncertain Web and introduce some of the techniques necessary to
make the successful transition.

A Word on the Web Today
The evolution of the Web as a development platform and the incredible
growth in the number of web-enabled devices has pushed the Web
into places it could never have reached before. In the past decade, we’ve
gone from a stagnant platform with a handful of browsers and oper‐
ating systems connecting to the Web to a vibrant, Open Web Platform
serving a dizzying array of browsers and devices.

That’s the big picture.

The thing is, most of the time, front-line developers don’t get to spend
time looking at the big picture. You know how it is—it’s usually a chal‐
lenge just getting the next release out the door. Whether you’re build‐
ing a site for a client, working on the latest version of your JavaScript
framework, or simply trying to make sure people can read the text on
your blog, there’s not a lot of time available to muse about the way the
Web as a whole has changed. Instead, you focus on solutions to indi‐
vidual problems, because those are the ones keeping you from going

x | Preface

home at a reasonable hour. Even folks who are tasked with keeping
track of the big trends can get sidetracked by specific storms that pop
up. It’s hard to keep your eye on the big picture when you’re watching
10 (long!) emails an hour come through on a standards topic you’re
following with interest.

That’s where this book comes in. Judging by the conversations I see on
GitHub, StackOverflow, Twitter, and IRC, it seems like people don’t
really think about how fundamentally the Web has changed. Whether
it’s searching for the perfect test to detect a “mouse” user versus a
“touch” user or designing a responsive site for the “perfect” set of media
query breakpoints, there are many developers still trying to hammer
out absolute rules and rigid best practices. People are clearly looking
to develop sites and applications within clearly defined boundaries.

Although that can be a comforting idea and was once possible, those
days are long gone. It’s time for a new approach.

The quote from Yehuda Katz at the beginning of the first chapter, sums
up, cleverly, two of the threads that you’ll see throughout the book.
Flip ahead and check it out, or read it live on Twitter.

Hopefully, when you’re done with this book, you’ll be doing less crying.

Today’s Web is a wild place. The Web has never been a static platform,
no matter how much people might wish it were so. You just can’t con‐
trol who’s going to request your content. You can’t control the browser
or device they’re using, and you certainly can’t guarantee things like
the operating system, screen resolution, bandwidth, or available sys‐
tem fonts. For developers coming from pretty much any other disci‐
pline, the number of things that are out of the developer’s control can
be mind-boggling. That statement will only grow more true with every
passing day. Standards are changing on, in some cases, a daily or
weekly basis, new devices are coming online at a furious pace, and
browser vendors are going at it tooth and nail to innovate their way
to the top of the league tables. With an ecosystem like that, trying to
collapse everything you do as a developer into something that can fit
into a neat little box is a recipe for frustration. Embracing the ecosys‐
tem for the wild mess that it is and developing with an eye toward the
uncertainty the Web will throw at you is the best way to reach whom‐
ever might want to get at your site or application with whatever they
have in their pocket or on their desktop—now and in the future.

Preface | xi

http://bit.ly/uw-katz

The tools to do this are already here; you just need an adjustment in
the way you view the Web and the way you develop for it.

Who Should Read This Book
The primary audience is intermediate to advanced web developers—
the folks on the front lines of dealing with these issues on a day-to-day
basis and those who serve as the main channel for new frontend de‐
velopment techniques and trends to make their way into organiza‐
tions. This book is geared toward developers who work primarily in
HTML, CSS, and JavaScript and who have a solid understanding of
cross-browser (if not cross-form-factor or cross-device) development
techniques.

The secondary audience consists of user experience designers, web-
focused visual designers, and web-focused engineers from other pro‐
gramming disciplines. To properly build for the modern Web, there
needs to be cohesion in site design and architecture from start to finish.
The material here should familiarize other disciplines with the best
way to approach designing and developing for the present and future
of the Web. As a natural bridge between design and the server, the core
web developer is always going to be the glue that binds this process
together, but having everyone on board will help improve the
finished product.

Navigating This Book
This book is organized into three parts.

Chapter 1 and Chapter 2 will establish the current environment we’re
in and show us how embracing uncertainty and building for the Web
as it exists is the way to go. If you’ve been handed this book by a cow‐
orker and you’re not particularly technical (at least in terms of frontend
development), then these two chapters (and the conclusion) are the
ones to read.

The next several chapters present some of the technical challenges
we’re facing on the Web and illustrate some of the ways that embracing
uncertainty can help solve them. Chapter 3 provides a quick intro‐
duction to Modernizr and feature detection (techniques to enable or
disable functionality based on browser support). From there, we move
on to responsive web design (Chapter 4), user input in the current
multidevice landscape (Chapter 5), images on the Web (Chapter 6),

xii | Preface

and modern web video (Chapter 7). If you’re interested in a way to
think about this stuff technically, then you’ll want to read these chap‐
ters. Each one is split between examining the true scope of a problem
on the modern Web and looking at solutions and how embracing un‐
certainty can help you reach the widest possible audience.

I didn’t plan it this way when I started the book, but the last three
technical chapters (Chapters 5–7) represent the full spectrum of suc‐
cess and failure in the standards process. Video represents a good
standard gone bad, user input represents a problem still in search of
a solution after several years of development, and images represent a
success created by the entire technical web community (standards
authors, web developers, and browser vendors).

Chapter 8 takes a final look at the uncertain Web and then talks about
the Web as I want to see it evolve over the next 20 years.

Online Resources
The following sites are where modern web design and development
are being figured out. These sites have all directly influenced the de‐
velopment of this book:

• HTML5 Rocks—A resource for Open Web HTML5 developers

• LukeW Ideation + Design | Digital Product Strategy & Design

• QuirksMode—for all your browser quirks

• Web Hypertext Application Technology Working Group

• The Modernizr issue tracker on GitHub

• CSS Tricks

• A List Apart: For People Who Make Websites

Preface | xiii

http://www.html5rocks.com/en/
http://www.lukew.com/
http://www.quirksmode.org/
http://www.whatwg.org/
https://github.com/Modernizr/Modernizr/issues?state=open
http://css-tricks.com/
http://alistapart.com/

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases,
data types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/roblarsen/the-uncertain-web.

This book is here to help you get your job done. In general, if example
code is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of

xiv | Preface

https://github.com/roblarsen/the-uncertain-web

examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not re‐
quire permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “The Un‐
certain Web by Rob Larsen (O’Reilly). Copyright 2015 Rob Larsen,
978-1-491-94590-2.”

If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital li‐
brary that delivers expert content in both book
and video form from the world’s leading authors
in technology and business.

Technology professionals, software developers, web designers, and
business and creative professionals use Safari Books Online as their
primary resource for research, problem solving, learning, and certif‐
ication training.

Safari Books Online offers a range of product mixes and pricing pro‐
grams for organizations, government agencies, and individuals. Sub‐
scribers have access to thousands of books, training videos, and pre‐
publication manuscripts in one fully searchable database from pub‐
lishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann,
IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and doz‐
ens more. For more information about Safari Books Online, please
visit us online.

Preface | xv

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and
any additional information. You can access this page at http://bit.ly/
uncertain_web.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I’d like to thank all the people who put up with me pestering them for
feedback while I was developing this idea into a proper book. In par‐
ticular, Paul Irish, Bob Holt, Marc Neuwirth, and Adam McIntyre all
provided great feedback on the concept and the title. Thanks to you
guys, I felt like I was actually onto something. Bob and Adam deserve
double thanks for their excellent technical (and beyond) feedback
throughout the writing process.

Everyone from O’Reilly has been great throughout this project, and I
want to wrap the whole company up in a bear hug for that. I especially
want to thank Simon St. Laurent for taking an idea sketched out in a
few paragraphs and pitched at the airport in Denver and then turning
it into the book you’re reading now. I also have to thank Amy Jollymore

xvi | Preface

http://bit.ly/uncertain_web
http://bit.ly/uncertain_web
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

for shepherding me through this project with welcome positivity and
great insight.

I’d also like to thank Lynn Haller from Studio B for getting this concept
into O’Reilly’s hands in the first place and for taking care of the busi‐
ness end of this whole book-writing thing.

Finally, I’d like to thank my wife for her love and support. I’m always
busy doing something silly like writing a book, and she’s always there
for me. I couldn’t ask for anything more.

Preface | xvii

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Embracing Uncertainty

The web platform is Write Once, Cry Everywhere.

— Yehuda Katz

I love the Web. I’ve been making sites for a living since 1999, and I still
love the work as much as I did in those crazy days. I’m not sure how
many other folks I know who can say the same thing about their pro‐
fession. Admittedly, the Web has been very good to me. I’ve been able
to travel the world, have written a bunch of articles and a couple of
books, and have paid my bills with nothing but a keyboard for the past
decade and a half. The thing is, while all that is great and I thank my
lucky stars that I’ve had this career, what I really love about the Web
is that it made good on its early promise. It might have sounded a little
hokey or looked like just hype to fill a five-minute slot on the evening
news, but the Web really has managed to connect people in incredible
ways—ways we couldn’t even have imagined 25 years ago. Individuals
who would never have had a voice can now broadcast to the world
with blogs, YouTube, Twitter, and Facebook. Politicians, filmmakers,
video game developers, and anyone else with an idea can tap into the
power of individuals to finance their dreams, five dollars at a time.
Lessons from the world’s great universities like Stanford and MIT, as
well as lessons made directly for the Web from organizations like Khan
Academy, are available for free to anyone in the world who can connect
to the Web. With sites like GitHub, taking part in open source software
is as easy as firing up a web browser and finding a place to help out
with even the most massive open source projects like jQuery, Node.js,
or Ruby on Rails.

1

It’s only getting better. As more and more people come online, they’re
exposed to these same opportunities and start to feed back into the
system with a unique voice: hard work on some open source bug,
adding to the coverage of breaking news (say, sharing a photo of a
plane landing on the Hudson River), or something as simple as buying
a business cat tie on Etsy and turning the wheels of commerce.

It’s really pretty cool.

I could go on about this for a while and, if I didn’t have other plans,
I’d be tempted to do just that. I do have plans though, so I’m going to
resist the impulse.

This chapter will introduce the core concept of uncertainty in the
context of web development. From there, we’ll look at where we came
from with Microsoft’s monoculture in the early 2000s, and then we’ll
look in depth at where we are today. Throughout, we’ll look at what
the factors that have gotten us here can teach us about the future of
the Open Web Platform and related ecosystem.

You won’t be an absolute expert on everything the Web has to offer
just by reading this chapter, but you should have a much better sense
of where we’ve been, where we are, what’s on the horizon, what some
current issues are, and what kinds of things might surprise us in
the future.

Embrace Uncertainty
Along with the landscape, the general philosophy of making websites
and applications has slowly shifted over the past decade or so. It’s
moved gradually from the rigorously defined boundaries of the Mi‐
crosoft monoculture to the fluid environment we have today. Design
approaches like responsive web design, technology patterns like pro‐
gressive enhancement, and libraries like Modernizr are all much better
suited to today’s Web than anything that came before. Fixed-width
sites with “best viewed with” banners that broke without third-party
plug-ins like Adobe Flash or failed to function if the user visited with
a new, novel web browser (no matter how powerful) don’t have to exist
anymore. We’re better than that.

That’s a good start.

The thing is, although we’ve mostly shifted away from static 960px
grids and all of the other baggage that came with the limited universe,

2 | Chapter 1: Embracing Uncertainty

http://bit.ly/uw-plane
http://bit.ly/uw-plane
http://bit.ly/uw-cat-tie

the shift has been isolated to islands of innovation and has generally
only happened in reaction to outside stimuli. Every change in the
browser and device landscape has sent people scurrying, trying to
solve problems caused by new features, browsers, or form factors. Al‐
though there have been some truly flexible solutions crafted for these
issues, there are just as likely to be a newly revised set of inflexible
guidelines put up, only to be revisited the next time the landscape
shifts. It’s time to get ahead of the curve and do our best to cure the
disease and not just treat the symptoms.

It’s time to embrace uncertainty.

Embracing uncertainty means that we need to make the final leap away
from the search for absolutes in order to appreciate the Web for what
it actually is. As we’ll examine in this chapter, it’s a place where a wide
range of devices running a wide range of web browsers in the hands
of many different kinds of people are all trying to find their way to
something that matters to them. Whether it’s a farmer in Africa trying
to figure out the score of the latest Manchester United match, a banker
in Hong Kong trying to get a price for Bordeaux futures, or a small
business owner in the United States setting up an Etsy shop, the Web
is making important connections for people, and we need to help them
on their way.

So how to do it?

We’ll start by looking at specific recommendations beginning with the
next chapter, but even before you start to look at the particulars, you
can start to change the way you look at the process.

The initial step is to understand, from the second that you start a site
design, that you (probably) can’t control what devices, browsers, and
form factors will be ingesting your content. Even better, if you can let
go of the desire to control what devices, browsers, and form factors are
accessing your site, you’ll be even happier with your results. While
some organizations and certain applications can dictate specific
browser and OS versions, you’re probably not going to be able to do
so on your end. Unless you’re in control of your users’ machines or are
offering something no one can get anywhere else, you should be trying
to satisfy as many browsers and devices as you possibly can.

Embrace Uncertainty | 3

“But My Client Doesn’t Care”
A common issue when people start to embrace anything new
in the web development sphere, whether it’s a formal usabili‐
ty program, an accessibility initiative, or a web performance
optimization project, is getting buy-in from clients or inter‐
nal stakeholders who might not immediately understand the
benefit of something new and unfamiliar. I imagine much the
same reaction to the concepts present in this book. I’ve cer‐
tainly seen my share of pushback when sharing some of the
ideas I’ll be discussing, so I expect other people will see the
same thing. All you can do is do what I’ve done: make your
case with enthusiasm and data to back it up. You can’t force
people to change their ways, but if you present good data with
conviction, you’ve got a better chance than if you sit idly by
and do nothing.

The next, most important step is not only to accept that you can’t
control the browser and device environment, but to embrace the eco‐
system for what it is—a sign that the Web is a healthy platform. Tens
of thousands of browser/device/OS combinations is a feature of the
Web, not a problem.

I talk to a lot of people, and there are plenty of complaints about the
Web as a platform. I’m not talking about specific complaints about
specific features. I’m talking about complaints about the Web itself.

Many Java/C/C++ developers just shake their heads at the idea that
code written for the Web can be executed in so many different envi‐
ronments and can have just as many different results. To them, the
Web is just nuts. On the other end of the spectrum, many web devel‐
opers have their favorite browsers, great hardware, new smartphones,
and everything else gets the short end of the stick. These are the folks
who go over the top in GitHub issues with their hatred of Internet
Explorer, test 99% of the time in Chrome, and are actively wishing for
WebKit to be the only rendering engine on the Web because it would
make things so much easier for them.

Don’t be either extreme.

Instead of worrying about the fracture in the Web and wishing that it
was something else, accept the Web for the blessing that it is. And it is
a blessing. Because the core technology can run, unaltered, on billions
of devices in the hands of billions of people, you have immediate access
to all of those billions of people and all of those billions of devices.

4 | Chapter 1: Embracing Uncertainty

How great is that?

From Microsoft’s Monoculture to Today’s
Healthy Chaos
In the early 2000s, there was basically one browser, one platform, and
one screen resolution that mattered. You could test the experience of
the vast majority of your users, with excellent fidelity, simply by run‐
ning Windows XP with Internet Explorer 6 and switching between a
couple of different screen resolutions (i.e., 800 × 600 and 1024 × 768
pixels). Add in Internet Explorer 5 and 5.5, and you could hit, by some
estimates, more than 95% of the Web. In the end, Internet Explorer
held market share of near or above 90% for most of the first half of the
2000s.

To Be Fair, Internet Explorer Was the Good Browser in 1999
Whatever you might think of their business practices at the
time (and the courts certainly didn’t take kindly to them), if
you had to choose to develop for any browser in the late dot-
com era, it was going to be Internet Explorer. Far from being
the butt of jokes, Internet Explorer versions 4 through 6 were,
at the time, each the best available browser by a wide margin.
I’ve said it many times, and I’ll say it again here, the worst major
browser ever was Netscape 4. Internet Explorer 6 may have
overstayed its welcome by about seven years, but Netscape 4
was simply born bad.

What’s more, beyond simply being the most powerful brows‐
er, the Internet Explorer team consistently pushed out power‐
ful features and APIs that still resonate on the Web today. For
one example, the XMLHttpRequest object, which serves as the
foundation of modern frontend development, was an Inter‐
net Explorer innovation. It really doesn’t get any more impor‐
tant than that, in terms of single innovations that have changed
the way that we architect web solutions.

For more perspective on what Internet Explorer brought to the
Web in those early days, check out my blog post, “Some Inter‐
net Explorer Innovations You Probably Forgot About While
Waiting for IE6 To Die” and Nicholas Zakas’ blog post, “The
Innovations of Internet Explorer.”

From Microsoft’s Monoculture to Today’s Healthy Chaos | 5

http://bit.ly/uw-browser-share
http://www.justice.gov/atr/cases/f3800/msjudgex.htm#vf
http://bit.ly/uw-ie-innov
http://bit.ly/uw-ie-innov
http://bit.ly/uw-ie-innov
http://bit.ly/uw-ie-innov2
http://bit.ly/uw-ie-innov2

Slowly, from the height of Internet Explorer’s dominance (reached in
the middle of 2004), things began to turn. It really started with Firefox,
the heir to the Netscape mantle, chipping away at Internet Explorer’s
dominance by presenting an independent, standards-compliant al‐
ternative. With Opera revamped for modern development in 2003 (it
had previously been great for CSS and weird for JavaScript), the 2003
release of Apple Safari, and 2008 release of Google’s Chrome browser,
Internet Explorer had real competition on multiple fronts, each taking
a chunk out of the giant until it was eventually toppled as not only the
dominant browser version, but the dominant browser family in May
2012.

What’s more, while all that desktop competition was heating up, an
entirely new front in the browser wars opened up with the unprece‐
dented growth of the mobile Web. With the launch of the iPhone and
iPad and the dominant growth of phones powered by Google’s An‐
droid operating system that followed, both the absolute number of
users and the number of devices used to connect to the Web per
user grew.

Additionally, browser vendors have almost universally (with Apple
being the only holdout) instituted a policy automatically pushing up‐
dates. Gone are the days of new browser versions shipping every cou‐
ple of years alongside a new OS update. This new commitment from
the browser vendors has allowed us to add new web platform features
at a breakneck pace. It has also led to a spread of browser versions, as
different organizations and individuals move to the latest version at
their own speed.

So, instead of having a couple of machines dedicated to testing and
getting 95% coverage, anyone who really pays attention to this stuff
can have a testing lab with 50 or more devices and still struggle to cover
the same high proportion of the Web that was possible during Micro‐
soft’s heyday.

If Hollywood were going to do an edgy reboot of the “Rip Van Winkle”
story, they might as well use a web developer, because a developer
taking a nap under his desk (as I often threaten to do) in 2004 and
waking up today would be bewildered by the changes in the landscape.
Imagine a cockeyed Owen Wilson asking, “Google has a browser?”
There’d be a lot of that kind of thing.

I mean, I’ve been paying close attention the whole time, and the
changes are just nuts to me.

6 | Chapter 1: Embracing Uncertainty

http://bit.ly/uw-ie-dominance
http://bit.ly/uw-chrome-dominance
http://bit.ly/uw-chrome-dominance

Let’s make some sense of it all.

Where We Are Right Now
I don’t think you’d find anyone outside of Redmond who yearns for
the days when Internet Explorer was basically the whole Web, though
I can’t help but think there’s a little bit of “be careful what you wish
for” in the current state of affairs. It wasn’t quite as exciting and no‐
where near as powerful, but it was much easier to wrap your head
around the ecosystem in 2003. These days, it’s sometimes hard to wrap
your head around individual topics. Because it’s so complicated, this
section is going to focus on making general sense of the current eco‐
system.

Plainly stated, the number of variables at play in terms of screen res‐
olution, pixel depth, browser capabilities, form factors, and human–
computer interface input options are practically infinite. You can start
to tally up the possibilities as we go through the details of the various
sections. “Let’s see, we’ve got 10 major browser versions; 50 different
screen resolutions between 340px × 280px and 3840px × 1080px; pixel
densities in a spectrum from from 72dpi up past 300dpi.” Add to that
the incredible growth of new web-enabled devices and related mobile-
driven penetration of previously untapped web markets, like most of
Africa, and the idea that you can create any finite set of guidelines and
still produce quality web experience for the largest possible audience
is pretty much crazy.

On with the show.

Browsers
Every discussion of the state of the web platform begins with the web
browser. These days, the browser landscape is robust, with as much
competition as we’ve ever had (see Figure 1-1). They’re split across
several browser vendors and muliple version numbers, but there are
basically four broad streams in the world of browser development. At
the heart of each of these streams is a layout engine. For the uninitiated,
the layout engine is the core code in a web browser that defines how
markup and styles are rendered.

Where We Are Right Now | 7

Figure 1-1. Logos from 18 different browsers or browser versions

These streams are as follows:

Microsoft’s Trident, which powers Internet Explorer
After twiddling their thumbs for the better part of a decade with
Internet Explorer 6 eventually dragging the whole Web down,
Microsoft is thankfully back in the business of making good web
browsers. Older versions of Internet Explorer (6–8) are still a pox
on the Web. IE9 and above are considered “modern browsers,”
which is shorthand for something that most people are happy to
code for. Trident also shows up in other Windows-based applica‐
tions as a ready-made web browsing component; so if you ever
find yourself trying to debug some Windows app that also allows
you to browse web pages, try to figure out what version of Trident
it’s running.

Browsers based on the WebKit open source project
This used to be a larger category (more on that in a second), but
it still includes Apple’s Safari on the desktop, iOS Safari, older
versions of Google’s Chrome, the Android Browser, and dozens
of other niche browsers, including those running on BlackBerry
devices, pre-Microsoft Nokia devices, and the Playstation 3 and
4. For many years, WebKit led the standards charge, and it still
will play a strong role in standards efforts going forward.

Browsers based on the Blink open source project
Forked from WebKit in 2013, Blink is the layout engine behind
the latest versions of Chrome and Opera. With both companies
having a heavy focus on the standards process, Blink might be the
gold standard for cutting-edge web development
moving forward.

Mozilla’s Gecko, which runs under the hood of Firefox
As an independent voice not tied to a large corporate entity (Mo‐
zilla is a nonprofit organization), Gecko is both important for

8 | Chapter 1: Embracing Uncertainty

driving standards and as an independent foil to the more corpo‐
rate stakeholders in the development of the web platform

In addition to the rendering engine, each of these streams has an as‐
sociated JavaScript engine, which completes the core platform func‐
tionality for each when packaged as a web browser. These JavaScript
Engines are as follows:

Chakra
This is used in Internet Explorer. It is a massive improvement from
the engine running in legacy versions of the browser. Interestingly,
it compiles scripts on a separate CPU core, parallel to the
web browser.

SquirrelFish Extreme/Nitro
It’s the JavaScript engine for WebKit.

V8
This is the JavaScript engine used in Google Chrome and Blink-
derived versions of Opera. It’s also at the core of Node.js, and it is
a very influential project. V8 was the first JavaScript engine to
compile JavaScript to native code before executing it, increasing
performance significantly from previous engines.

SpiderMonkey
It’s the JavaScript engine in Firefox. The heir to the original Java‐
Script engine, it is written by JavaScript’s creator Brendan Eich.

These four streams are very competitive on both JavaScript and ren‐
dering fronts, which is why working with modern browsers is now
generally a pretty good experience. And although there are differences
between browsers in each stream (both based on when the specific
browser version was created and on downstream changes made to the
code for specific vendors’ needs), knowledge of each stream can serve
as a shorthand for what to expect with each browser based on
the stream.

Of course, all of these streams break down further into specific brows‐
ers. That’s where things get really complicated. It’s possible to keep
track of the various streams, but it’s much tougher to deal with specific
browser versions.

Depending on your geographical focus or vertical, there are probably
6–10 general browser families you might have to pay attention to on

Where We Are Right Now | 9

a given project, and each of them might contain two or more specific
active versions:

Internet Explorer
Depending on your market, you might have to test against six
versions of Internet Explorer (6–11). After the dormancy of the
mid-2000s, IE is basically releasing a new version every year, al‐
lowing for a much faster introduction of new features. Microsoft
has also joined the automatic update brigade, which is a welcome
change after years of a very conservative update policy.

Firefox
Most people running Firefox are on the automatic upgrade cycle,
so it’s generally OK to simply test against the latest version, al‐
though if you’ve got an “enterprise” market it might be useful to
test against the Extended Support Release. Firefox is on a short
release cycle, releasing multiple new versions every year.

Chrome
Most people running Chrome on the desktop are automatically
updated to the latest version. Chrome pioneered the short browser
release cycle.

Safari
Versions 5–8 can be seen in the wild. Major releases are slower
than other browsers, although they do bundle features into minor
releases.

Opera
Most people running Opera on the desktop are automatically up‐
dated to the latest version. Opera is on a rapid release cycle.

Chrome (mobile)
There are mobile versions of Chrome available for iOS and An‐
droid 4.0+. In a twist that perfectly sums up how complicated the
browser universe is, Chrome for Android uses Blink, and Chrome
for iOS uses WebKit. There’s also a Samsung-based fork of
Chrome that accounts for something like 25% of mobile Chrome
traffic.

iOS Safari
Safari on iOS is updated along with the OS, so you have to look at
iOS version numbers to assess what versions are in play. This is
iOS 5–8 at its broadest. (iOS 5.1.1 is the highest available for the
first-generation iPad.)

10 | Chapter 1: Embracing Uncertainty

www.allitebooks.com

http://bit.ly/uw-firefox-esr
http://bit.ly/uw-samsung-chrome
http://bit.ly/uw-samsung-chrome
http://www.allitebooks.org

Opera Mini
If you don’t pay attention to the mobile browser space, it might
surprise you how popular this browser is on mobile devices. Data
is sent through a proxy server and compressed, saving you time
and data. There are a lot of versions of this out there. You will see
examples from the 4, 5, and 7* versions in the wild.

Opera Mobile
This is a blink-based browser for Android.

Android Browser
This is the default browser on Android phones. Like iOS Safari,
it varies with the Android version and can differ from device to
device, because anyone from carriers to device manufacturers has
access to the code before it gets into your hand. There could be
dozens of different variations out there.

IE Mobile
Based on Trident, versions 9 (appearing on Windows Phone 7),
10 (Windows Phone 8), and 11 (Windows Phone 8.1) are in
the wild.

UC Browser
This is a mobile, proxy browser based on the WebKit rendering
engine. It’s popular in China, India, and other emerging markets.

That’s a pretty daunting list. It was only a few years ago that we would
point to the Yahoo! Graded Browser Support Table and call it a day.
Now you don’t want to blink, lest some other entry show up on the
back of some new OS or handset.

Before we move on from here, it’s worth getting a general sense of the
popularity of each of these browsers and of the browser families. You’re
going to want to make decisions based on your needs, but you can’t do
that without having plenty of information at your disposal.

Let’s take a look at a couple of snapshots of the browser market as of
March 2014. First, let’s look at desktop and tablet browsers with
Table 1-1 and the associated bar chart in Figure 1-3. These are good
numbers, but are skewed by the fact that StatCounter isn’t as strong in
some places (e.g., China), as it is in others. That manifests itself most
prominently in the absence of IE6 from these charts (it’s bundled into
“other”), where it should at least gain a mention because it’s still a big
browser in China. With that caveat aside, it is useful to take a look at
the spread across individual browser versions. The biggest negative

Where We Are Right Now | 11

http://bit.ly/uw-gbs

on the list is probably IE8 still hanging out at 6.2%. I’m sure 360 Safe
Browser is going to have some of you confused as well. It’s a Chinese
browser with a publicized security focus (that might actually be loaded
with spyware) based on Trident.

Table 1-1. Desktop browser market share

Browser Market share %

Chrome (all) 43.66

Firefox 5+ 18.27

IE 11.0 8.27

IE 8.0 6.2

Safari iPad 5.19

IE 10.0 3.83

IE 9.0 3.5

Safari 7.0 1.76

Android 1.18

Safari 5.1 1.05

Safari 6.1 0.89

360 Safe Browser 0 0.84

Opera 15+ 0.69

Other 4.66

Source: http://gs.statcounter.com/

Figure 1-2. Desktop/tablet browser market share

Table 1-2 and the associated bar chart in Figure 1-2 show the mobile
market. For many people, the fact that the stock Android browser,
Chrome, and Safari on the iPhone don’t make up 100% of the market
might come as a shock, but it’s true. Unless you’re really paying atten‐
tion, you’re probably missing 50% of the mobile browser market in
your testing. You’re not alone. I asked on Google Plus how many peo‐

12 | Chapter 1: Embracing Uncertainty

http://www.360safe.com/
http://www.360safe.com/
http://bit.ly/uw-360-malware
http://bit.ly/uw-360-malware
http://gs.statcounter.com/

ple had ever tested with Opera mobile, and two people said yes. I asked
at a table of speakers at a jQuery conference how many had ever heard
of UC Browser, and no one had.

Table 1-2. Mobile market share

Browser Market share %

Android 25.74

iPhone 21.5

Opera 13.03

Chrome 13.59

UC Browser 11.17

Nokia 5.21

IE Mobile 2.19

Other 7.57

Source: http://gs.statcounter.com/

Figure 1-3. Mobile browser market share

It’s important to know what’s out there, and it’s imperative to test
against as many of these browsers as possible, but it’s rarely useful,
when you’re sitting down to develop a site, to fixate on the ins and outs
of any one particular browser or to target code specifically for certain
browsers or browser versions. For starters, it’s an overwhelming list,
and if you try to fork your code based on every browser and version,
you’ll end up playing the world’s worst game of Whack-a-Mole. In‐
stead, for development, you need to think in terms of features. This
concept, feature detection (versus browser detection) has been a com‐
mon concept in web development for a long time, but now it’s more
important than it’s ever been. We’ll talk more about how to leverage
feature detection (and when to make an exception and fall back to
browser detection) in Chapter 3, but the core concept is not to ask

Where We Are Right Now | 13

http://gs.statcounter.com/

“What browser is this?” It’s to ask “Does your browser support the
feature I want to use?”

That will help you if some new, suddenly popular browser makes an
entry into this list, sometime in the future. Which is probably going
to happen sooner than you think.

Please Upgrade Your Browser
One ironic way that browser detection bit developers in the
past was a rampant practice in the early 2000s. Some of those
sites are still around, so they can serve as a snarky reminder to
focus on features and not browsers. Because Internet Explor‐
er was so dominant and Netscape 4.*, the only other browser
with any market share at all, was so horrible, it was common
for people to sniff for Internet Explorer and leave an upgrade
message for people running basically anything else. You will
still see these warnings on some pages, except these days they
are telling you to upgrade the latest Chrome or Firefox to In‐
ternet Explorer 6.

The Open Web Platform
Although the Web has always been a wonderfully messy and vibrant
place, where sites can go from a sketch on the back of a napkin to a
headline-making enterprise with a billion-dollar valuation in the
course of a few months, the World Wide Web Consortium (W3C), the
organization responsible for the standards that the Web is built upon,
often moves more like it’s overseeing transatlantic shipping in
the 1800s.

If, in the early 2000s, you were the kind of person who paid attention
to their activities, you could wait for years for anything interesting to
happen. There was lots of discussion, lots of tweaking of existing spec‐
ifications, and really not much else. Couple this with Microsoft shut‐
tering Internet Explorer for lack of competition and slow (occasionally
contentious) movement at ECMA, the organization responsible for
the ECMAScript (the language commonly known as JavaScript) spec‐
ification, and you can see how things stagnated.

Let’s look at some dates to give you a sense of just how bad it was:

• In December 1997, the W3C published the HTML4.0
specification.

14 | Chapter 1: Embracing Uncertainty

• In early 1998, they published the XML 1.0 Standard.

• In May 1998, the Cascading Style Sheets (CSS) level 2 specification
was published.

• The ECMASCript Specification version 3.0 was released in
December 1999.

• XHTML 1.0, the specification that redefined HTML as a subset of
XML was published as a recommendation in January 2000.

• Internet Explorer 6 was released on August 27, 2001.

• SVG 1.0 became a W3C Recommendation on September 4, 2001.

After that, not much happened.

“Things” happened, of course. Meetings were held, road maps were
prepared, and progress, of a sort, toward the Web of the future was
visible in incremental revisions to standards. This orderly progress, to
someone with only a passing interest in these sorts of things, probably
seemed like a positive trend.

I sometimes felt like I knew everything about web specifications at the
time, although I didn’t really. Instead of spending time learning about
new things on the horizon, as there weren’t any, I used to do deeper
dives into the existing specifications. I actually had binders with print‐
outs of the xHTML1.0, HTML4.0, and CSS2 specifications. I could do
that because things moved so slowly, those printouts stayed valid for
a really long time.

The reality on the Open Web was different than any perception of
“orderly progress.” Out in the real world, the Web was busy taking over.
Fueled by a heady mixture of popular interest, maniacal hype, gobs of
money, and (for many people) an honest belief in the Web as a platform
with the power to change the world, the Web was very quickly being
pushed and pulled in directions the standards bodies never dreamed
of when they were drafting their documentation. Compare the needs
of the Web of the mid-1990s, when these standards documents were
being written, to the Web of the dot-com era, and you’ll see why so
many problems fell to the creativity of web developers to solve. People
had to be clever to bolt together solutions with the existing, somewhat
limited, set of tools that were available.

Still, all the cleverness in the world wasn’t enough to get around the
main limitations of the standards and the browsers themselves. Some‐
thing as simple as generating rounded corners for an HTML element

Where We Are Right Now | 15

was a topic worthy of dozens of articles, blog posts, and probably a
patent or two.

Other topics were either practically impossible or took many years to
solve. The many creative, technically complicated solutions to serving
custom fonts over the Web fell into this category. Leveraging third-
party technologies like Flash, Vector Markup Language (VML), and
eventually Canvas, libraries like cufón and SIFR brought custom type
to the Web through heroic individual effort and at the cost of third-
party dependencies (and questionable licensing legality). This meant
that even developers who believed in the Open Web Stack had to rely
on closed technologies to simply get a corporate typeface onto the Web
in a maintainable way.

Something had to give.

Web standards, Flash, and the rebirth of the Open Web Platform

All that really needs to be said about the immediate effectiveness of
the late 1990s standards work is that the era that directly followed it
was dominated by Adobe Flash as the platform of choice for anything
even remotely interesting on the Web. Everything from financial
dashboards and video delivery to the slickest marketing work was
handled by Adobe’s ubiquitous Flash plug-in. Unfortunately for peo‐
ple who believed that the Web was most effective when it was built on
top of open standards, Flash provided a far richer platform for devel‐
oping serious interactive applications and “cool” effects for marketing
sites.

It became the de facto standard for deep interaction on the Web.

The core web technologies were basically ignored. The overall per‐
ception was that JavaScript was a toy language used for occasional form
validation, CSS was poorly understood and even more poorly imple‐
mented in web browsers, and HTML was most useful as a dumb con‐
tainer for serving Flash files.

Throughout this dark period, there were still people championing
these technologies and to a very large extent it’s down to them that
we’re where we are today. From organizations like the Web Standards
Project (WaSP) and the wildly influential mailing list/online maga‐
zine A List Apart, and through the work of individuals like Peter Paul
Koch and Eric Meyer, the fundamental technologies that drove the
Web were being reevaluated, documented, and experimented with at

16 | Chapter 1: Embracing Uncertainty

a furious pace. Quietly, invaluable work was being done documenting
browser behavior, crafting best practices, and solving implementation
issues. Although it wasn’t the most fashionable work, there was plenty
of activity using open standards in creative ways. That research and
code served as the foundation for the revolution that would follow and
change the course of the Web.

That revolution had two main drivers. One took place under the eye
of the W3C itself, and the other came straight from the front lines.

The first event was the formation of the Web Hypertext Application
Technology Working Group (WHATWG). The second was the as‐
tounding adoption of Ajax-based web development.

The WHATWG

The WHATWG was born at the W3C Workshop on Web Applications
and Compound Documents in June 2004. This W3C meeting was or‐
ganized around the new (at the time) W3C activity in the web appli‐
cation space and included representatives from all the major browser
vendors, as well as other interested parties. There, in the first 10-
minute presentation of session 3 on the opening day of the two-day
event, representatives from Mozilla and Opera presented a joint paper
describing their vision for the future of web application standards.
This position paper was authored in response to the slow general pace
of innovation at the W3C and the W3C’s focus on XML-based tech‐
nologies like xHTML over HTML. It presented a set of seven guiding
design principles for web application technologies. Because these
principles have been followed so closely and have driven so much of
what’s gone into the specifications over the last several years, they’re
repeated in full here. Some were driven by the mistakes of xHTML
(“Users should not be exposed to authoring errors”), and others were
driven by good sense (“practical use” and the desire for an “open pro‐
cess”). All have been visible in the process in the intervening years.
The specifications are as follows:

Where We Are Right Now | 17

Backwards compatibility, clear migration path

Web application technologies should be based on technologies
authors are familiar with, including HTML, CSS, DOM, and Java‐
Script.

Basic Web application features should be implementable using be‐
haviors, scripting, and style sheets in IE6 today so that authors have
a clear migration path. Any solution that cannot be used with the
current high-market-share user agent without the need for binary
plug-ins is highly unlikely to be successful.

Well-defined error handling

Error handling in Web applications must be defined to a level of detail
where User Agents do not have to invent their own error handling
mechanisms or reverse engineer other User Agents’.

Users should not be exposed to authoring errors

Specifications must specify exact error recovery behaviour for each
possible error scenario. Error handling should for the most part be
defined in terms of graceful error recovery (as in CSS), rather than
obvious and catastrophic failure (as in XML).

Practical use

Every feature that goes into the Web Applications specifications must
be justified by a practical use case. The reverse is not necessarily true:
every use case does not necessarily warrant a new feature.

Use cases should preferably be based on real sites where the authors
previously used a poor solution to work around the limitation.

Scripting is here to stay

But should be avoided where more convenient declarative markup
can be used.

Scripting should be device and presentation neutral unless scoped in
a device-specific way (e.g. unless included in XBL).

Device-specific profiling should be avoided

Authors should be able to depend on the same features being imple‐
mented in desktop and mobile versions of the same UA.

Open process

The Web has benefited from being developed in an open environ‐
ment. Web Applications will be core to the web, and its development
should also take place in the open. Mailing lists, archives and draft
specifications should continuously be visible to the public.

The paper was voted down with 11 members voting against it and 8
voting for it.

18 | Chapter 1: Embracing Uncertainty

Thankfully, rather than packing up their tent and going home, ac‐
cepting the decision, they decided to strike out on their own. They
bought a domain, opened up a mailing list, and started work on a series
of specifications. They started with three:

Web Forms 2.0
An incremental improvement of HTML4.01’s forms.

Web Apps 1.0
Features for application development in HTML.

Web Controls 1.0
A specification describing mechanisms for creating new interac‐
tive widgets.

Web Controls has since gone dormant, but the other two, Web Forms
and Web Apps, eventually formed the foundation of the new HTML5
specification.

Score one for going it alone.

As was mentioned, they’ve stuck to their principles over the years.
Arguably, the most important of these principles is the very open na‐
ture of the standards process in the hands of the WHATWG. Before
the birth of the WHATWG, the standards process and surrounding
discussion took place in a series of very exclusive mailing lists, requir‐
ing both W3C membership (which costs thousands or tens of thou‐
sands of dollars, depending on the size and type of your organization)
and then specific inclusion in the particular Working Group under
discussion. There were public discussion mailing lists, but those were
far from where the real action was taking place. It was a very small
group of people, operating in a vacuum, completely separated from
the people working on these pivotal technologies on a day-to-
day basis.

Instead of that exclusionary approach, the WHATWG made sure its
activities were taking place in the open. If you subscribed to the mail‐
ing list and commented, you were suddenly part of the solution. This
has led to vibrant, high-volume discussion feeding into the standards
process. There are still many people involved who are far removed
from the day-to-day business of making websites and applications, but
there’s also a constant stream of input from people who are knee deep
in building some of the biggest sites on the planet.

Where We Are Right Now | 19

It’s not perfect, of course. They weren’t kidding when they stated “every
use case does not necessarily warrant a new feature.” If you follow the
WHATWG mailing list, it seems like not a month goes by without
someone proposing a new feature, complete with valid use cases, and
failing to get their proposal approved. This can end up being frustrat‐
ing for all involved, and the mailing list has been known to get heated
from time to time. For one example, months of discussion around a
standardized mechanism to control the way scripts were loaded and
executed went nowhere despite well-reasoned arguments from a num‐
ber of high-profile sources. The discussion there has since restarted,
so maybe this time it will stick. The lengthy, and oftentimes acrimo‐
nious, discussion of a solution for responsive images stretched out
over a period of four years with a peaceful resolution only showing up
recently, so there is hope.

Everyone isn’t happy all the time, but the process works. Even with the
hiccups and flame wars, things move much more quickly than they
did at any period before the WHATWG was founded, and there’s less
confusion about how the decisions are made, even if people don’t agree
with them.

Ajax

On February 18, 2005, Jesse James Garrett, cofounder and president
of design consultancy Adaptive Path, wrote an article entitled “Ajax:
A New Approach to Web Applications.” In it, he described a new, at
the time, trend in apps like Gmail and Google Maps that focused on
smooth application-like experiences. He coined the term Ajax to de‐
scribe it and called the pattern “a fundamental shift in what’s possible
on the Web.”

He was certainly right.

Garrett’s post didn’t invent the technology pattern, of course. It had
actually been growing organically for several years, with the funda‐
mental technologies in place as early as 2000. What the post did do
was give focus to the trend with an intelligent, easy-to-understand
definition and a very marketable name. With that focus, the pattern
went from a vague collection of sites and apps tied together by a com‐
mon design and interaction feel and technology stack, to being some‐
thing that you could easily market and discuss. Instead of saying “I
want to build a fast app that doesn’t rely on multiple page loads like

20 | Chapter 1: Embracing Uncertainty

www.allitebooks.com

http://www.allitebooks.org

Google Maps using standard web technologies,” you could say “I want
this app to use Ajax” and people would instantly get what that meant.

The immediate popularity of Ajax meant that a number of very intel‐
ligent developers started to take a look at the infrastructure for devel‐
oping web applications in a cross-browser way. Before Ajax,
standards-based development was mostly focused on markup and
style, which was valuable when doing content sites, but didn’t provide
the full solution when approaching the complexities of a browser-
based application. After Ajax, standards-based development included
a dynamic, interactive component that drew engineers from other
programming disciplines in droves. There were a lot of problems to
solve, and it seemed like every company in America was looking for
someone to solve them. Libraries like Prototype, Dojo, MooTools, and
eventually jQuery rose up to fill in the gaps between the various
browser implementations. These libraries, becoming more and more
robust, eventually began to feed back into the standards process with
common patterns being brought out of libraries and into the browser.

Tracking the Open Web Platform today

One of the great challenges of working on the Web today is keeping
abreast of the changes in the standards space. This section will give
you a quick guide to the current standards development landscape and
will offer some hints on how to keep up to date with developments in
the standards landscape.

The current standards development landscape generally breaks down
as follows:

HTML and related APIs
Main development of what’s referred to as the “living standard”
happens with the WHATWG. The mailing list archives are also
online. This work is an ongoing extension of the work done for
HTML5. A so-called “snapshot specification,” HTML5 is currently
a candidate recommendation at the W3C.

CSS
CSS development has been broken down into smaller modules.
CSS 2.0 was a monolithic specification that covered everything to
do with CSS. For CSS3, the decision was made to break down the
specification into specific features. This means there are some
modules further along in the development process than others.
The W3C’s big list of modules is available here.

Where We Are Right Now | 21

http://www.whatwg.org/
http://www.whatwg.org/mailing-list
http://bit.ly/uw-html5
http://bit.ly/uw-w3c-modules

ECMAScript
The ECMAScript mailing list is where all the action happens.

With the parallel tracks of the WHATWG kick-starting the standards
process and Ajax making the intersection of HTML, CSS, and Java‐
Script some of the most important technical real estate in the world,
the standards space went into overdrive and browser vendors started
tripping over themselves to implement those newly minted standards.

On the surface, this is great—we get new toys!

There are a couple of downsides. One is that it’s basically impossible
to keep track of everything. For my part, I actively follow the devel‐
opment of the ECMAScript specification and the work of the
WHATWG. That means I have to rely on other people to point out
the cool work being done in CSS. And, even ignoring CSS, it’s pretty
easy to miss a couple of weeks or even a month or two of discussion
on the mailing lists. You go away for vacation, and the whole thing
might be turned upside down by the time you get back.

Another downside is that people, in the rush to implement new fea‐
tures in the browser or to experiment with them on the Web, some‐
times make mistakes. Whether it’s a poorly vetted specification; the
well-meaning, but awkward decision to prefix experimental CSS fea‐
tures; the tendency of “new” HTML5 features to occasionally go away
(like the loss of the hgroup element or the disappearance and subse‐
quent reappearance of the time element); or the decision to implement
an alpha feature in a site meant for human consumption, only to see
it break in a later version of the target browser; the rush for the new
and shiny has had its share of casualties over the past few years.

Navigating this space is important, though. As you’ll see in one ex‐
ample in the section on responsive images in Chapter 6, following the
standards discussion, learning about potential JavaScript solutions,
and implementing standard stable patterns can produce great long-
term benefit for your site. It’s just sometimes tough to figure out when
something is really stable, so the closer you can get to the discussions,
the better. Not many people have the time needed to be involved in
even a single feature discussion as an active participant, forget about
the mailing list as a whole, but you really should have time to at least
monitor the subject lines, checking in where applicable.

The ECMAScript specification is also being worked out in public. If I
only had time to detail all the ins and outs of the ECMAScript-shaped

22 | Chapter 1: Embracing Uncertainty

http://bit.ly/uw-ecmascript

black hole you can see on the standards timeline between the third
edition in December 1999 and the release of the fifth edition 10 years
later. The fact that they completely skipped over the fourth edition
because it ended up being too contentious a process is probably all you
really need to know. The good news is, the TC39 committee has patch‐
ed up its differences, invited a bunch of workaday developers into the
standards body, and generally been pretty great for the past few years.
They’re hard at work finalizing the sixth edition (aka ES6), which
promises to be a revolutionary step forward in the development of the
language. Work on ES7 and ES8 is also underway. Work on the ES6
specification also happens on a high volume, public mailing list and
because of the way that the body is structured it’s much easier for them
to invite individual experts onto the committee.

Keep Your Résumé Handy
If you work somewhere that doesn’t allow you even enough
time to monitor the subject lines on these mailing lists and
you’re still relied upon to stay, to quote many a job descrip‐
tion, “up to date with the latest technologies,” then it might
be time to have a talk with your boss. If there was any time to
stay ahead of the curve, it’s right now.

Connection Speeds and Quality
I’ve been interested in web performance since the 1990s. We didn’t
really have a name for it back then. I just remember reading that the
optimal speed of a human–computer interaction is less than 100ms
and thinking “on the Web, we can’t do anything that fast.” Download
speeds alone were bad enough that 100ms was a tough task for even
the simplest sites.

Unfortunately, even though download speeds and hardware specs
have greatly improved, because developers and designers have con‐
sistently pushed the envelope and designed for higher-performance
hardware and faster connections than is the current norm, we’re still
seeing some of the same issues we did back then. With the addition of
sketchy mobile networks into the mix, the question of connection
speeds and bandwidth is still a serious issue.

We’ve got a more nuanced look at what makes a fast site these days
and have dozens of tools at our disposal to figure out what’s right or
wrong with our pages. That’s great. But until we change the way we
approach making web pages and design to the reality of our audience

Where We Are Right Now | 23

http://bit.ly/uw-webpage-growth
http://bit.ly/uw-webpage-growth

and not what we wish their reality to be, performance is never going
to be what it should be.

For one example, the grand master of web performance, Steve Soud‐
ers, did some research and found that over 60% of the bytes on the
Web are in images and that image payloads are only getting larger. It’s
not unheard of for a site to serve more than 10MB–20MB for a single
page. There have been examples, like one notorious one from Oak‐
ley, of up to 85MB. It was a rich, visually exciting site. It also took
minutes to load even on a broadband connection. People are strug‐
gling with ways to cut down image sizes but still satisfy the “big image”
trend visible across the Web. Google, being Google, has even proposed
a new, lighter-weight image format known as WEBP.

And that question doesn’t really factor in the complexities of people
browsing the Web over mobile networks. The reported speeds for the
major mobile carriers have grown steadily, but the quality of connec‐
tion on mobile isn’t nearly what you can expect from a wired connec‐
tion or even that of a cafe WiFi. Complete dead spots, holes in 4G
coverage, train tunnels, signal concentration (try to get a signal at a
heavily attended conference), and who knows what else (solar flares?)
all conspire to make your mobile connection flaky. Add to that the
demands that connections make on your battery (an HTTP connec‐
tion means the radio has to make a connection to the local cell tower,
that spikes the power usage on the device), other limitations of mobile
connections, and the expectations of users with metered bandwidth,
and it’s clear that you should be designing with the idea of limiting
bandwidth as a primary goal.

This is especially true if you have a global audience. The whole conti‐
nent of Africa, home to more than one billion people, basically skipped
over the desktop altogether and will only ever connect to the Internet
using a mobile device on networks of unknown quality.

Balancing performance, battery life, and bandwidth usage is a juggling
act that will be touched on throughout this book.

The Human–Computer Interface
The marriage of the mouse with the graphical user interface launched
the personal computer revolution. Being able to manipulate files and
perform other tasks with the click of a mouse opened up the power of
computers to the point where they took over the world. A second rev‐
olution in human–computer interfaces took place with the rise of

24 | Chapter 1: Embracing Uncertainty

http://bit.ly/uw-bytes-per-page
http://bit.ly/uw-img-payloads
http://bit.ly/uw-oakley
http://bit.ly/uw-oakley
http://bit.ly/uw-mobile-connection

touchscreen-enabled smartphones and tablets. One of the biggest
challenges facing web developers these days arises from the fact that
both of these interface paradigms are active on the Web. Trying to sort
out what events to support and which design enhancements for
touchscreens to enable is a hard problem to solve.

Even before widespread adoption of smartphones and tablets with
touchscreen displays, there was complexity involved in properly cod‐
ing for various human–computer interfaces. In addition to the mouse,
providing keyboard-based navigation hooks and shortcuts has been
an important, if neglected, part of web development both for power
users and as a vital accessibility feature. With the flood of touchscreen
devices, the picture became even more complicated. Everything from
the size of buttons to the use of hover effects had to be reevaluated.

People initially tried to solve this problem by separating the world into
two binary states—touch-capable or nontouch-capable. Touch-
capable devices would get big buttons and gesture events and
nontouch-capable devices would get the old-school web experience.

The thing is, it’s not really a binary choice. From Windows 8 laptops
to Chromebooks and even things like the Samsung Galaxy Note with
its hover-capable and fine-grained stylus, there are many devices that
can have a mouse, or mouse-like implement, in the case of a pen or
stylus, and be a touchscreen at the same time.

Personally, there are moments when I’m doing artwork on my Win‐
dows 8 laptop where I’ll have the mouse/touchpad, can touch the
screen, and will be drawing with an interactive pen on a drawing tablet.
What kind of user am I?

Adding to this already complicated story is the fact that the common
detection for touch capability only reports whether or not the browser
supports touch events by testing for the ontouchstart in the windows
object, not if the device is a touchscreen:

Where We Are Right Now | 25

if('ontouchstart' in window) {

 console.log("touch events are present in the window

 object");

}

So, even if you wanted to treat it as a binary, you can’t reliably do so.

We can’t forget about the future, either. It’s coming whether you want
it to or not. Devices with “floating touch” already exist, which means
the hover event might be activated by a finger gradually approaching
the surface of the screen on a device with no peripheral mouse
or stylus.

And taking the third dimension even further, how common will purely
gestural interfaces like the Microsoft Kinect be in the years to come?

Producing robust interfaces that work with a keyboard, mouse, finger,
or with a hand waving through the air (like it just doesn’t care) is one
of the most important challenges you face as a web developer today.

Screen Resolution and Orientation
One of the legacies we’ve dealt with as we transitioned from the world
of print to the world of the Web was the desire for designers to have
pixel-level control over every aspect of their designs when ported to
the Web. This was somewhat possible when we had a limited set of
screen resolutions to deal with and people designed fixed-width de‐
signs. These days, it’s significantly more complicated as more and more
designs are based on flexible grids, and the number of display resolu‐
tions has grown out of control.

In the early 2000s, the biggest questions we had about screen resolu‐
tions were around the transition between 800px × 600px and 1024px
× 768px. It seemed momentous at the time, but it took the community
years to decide to make the switch en masse. These days? The stats for
my blog, HTML + CSS + JavaScript, list 125 separate screen resolu‐
tions, ranging from 234px × 280px to such massive displays as 3840px
× 1080px and 2880px × 1800px. Nine separate display resolutions each
represent more than 5% of the total visits. Long gone are the days
where you would open up a Photoshop template with a couple of
guidelines set up showing a 960-pixel grid and then fold in different
browsers. These days, figuring out which resolutions to target or
whether to target resolutions at all is just the first question you need
to tackle before launching into a design and development effort. Fig‐
uring out whether or not to leverage responsive web design or other

26 | Chapter 1: Embracing Uncertainty

http://htmlcssjavascript.com/

techniques to tackle multiple resolutions is also a key decision. It’s not
the last, however. It’s down to the point where things like the question
of doing any preliminary design is on the table for some applications.
These days, some people rely instead on quick, iterative design and
refinement to create the look and feel for a site. This won’t work for
something whose sole purpose is to be a thing of beauty, I imagine,
but for a lot of sites, it’s a wonderful option.

Once you’ve got that sorted out, you’ve then got the difference between
landscape and portrait display to deal with. That state can change one
or more times per browsing session.

Although I’m sure people are tempted to start plastering something
like “best viewed in the latest Chrome at 1920 × 1080” on their sites in
order to get the best possible resolution for their design, it’s only going
to get more difficult to predict “standard” screen resolutions going
forward, so your designs potentially have to take into account a broad
range of resolutions.

Pixel Density
With the release of Apple’s Retina-branded displays and the screen
quality arms race that followed, the quality of displays on smart‐
phones, tablets, and laptops has undergone a remarkable transforma‐
tion over the past few years. Where once the highest quality displays
were solely the domain of high-end design shops looking for the high‐
est fidelity for their print design work, now incredible quality displays
are in millions of pockets and laptops around the world. The bad news
is that not every display is created equal, so there’s a bit of a learning
curve when it comes to dealing with these displays gracefully when
building visually striking sites and applications.

For a long time, displays had a pixel density of either 72 or 96dpi (dots
per inch). For a long time, this was shorthand for web developers to
spot designers who were used to working in print. You would get a file,
clearly exported out of Quark XPress (or later, Adobe InDesign) that
was just gigantic because it was set to some print resolution. The design
would be for a 1024 × 768 monitor, and it would be a 4267 × 3200 or
larger Photoshop document. The first thing you would do would be
to shrink the resolution down and hope that the design dimensions fit
onto the typical screens of the time.

Where We Are Right Now | 27

Then, along came smartphones, and that shorthand went away in a
hurry. In fact, both sides of the designer/developer divide have had to
relearn the ins and outs of preparing files for the Web.

Why? If you’re near a standard desktop monitor, stick your face as
close to it as you would your phone, and (with some exceptions) you
should be able to see the individual pixels. With your face right up
there, images will look blocky, and most importantly, text will be hard
to read as details designed into the typeface will be blurred out for lack
of resolution. This is what your smartphone would look like if we didn’t
have higher-density displays. Driven by the need to create crisp text
and images on small screens while simultaneously providing the larg‐
est possible screen real estate, device manufacturers have all improved
their pixel density. This started with devices that came in around
150dpi, most famously the branded Retina display from Apple. Nowa‐
days, 300+ dpi displays are common.

So, great, right? What’s the problem? Let’s quickly take a look at refer‐
ence pixels and device pixels to illustrate why this new reality has added
complexity to our lives.

Device pixels are the smallest units of display on the screen. They’re
defined by the physical characteristics of the screen, so they’re the part
of this equation that’s set in stone (or glass.) The reference pixel is a
practical measurement built on top of the physical system. It’s defined
to be roughly equivalent to the size of a 96dpi pixel at arm’s length,
roughly 0.26 mm. High-density displays can have more than one de‐
vice pixel per 0.26mm, but they will render your page at an effective
96dpi. This is pretty much seamless as CSS borders, backgrounds, type,
and the like can be clearly calculated and rendered to match the ex‐
pected reference pixels. These displays can also take advantage of the
higher density to render clearer text as fonts are built to scale and the
extra detail that can go into those reference pixels makes text clearer
and much closer to the resolution you would see on printed matter.

The one major exception to this flood of benefits is with bitmapped
images. Print designers have long had an opposite shorthand to their
own little DPI test. Instead of getting files too large for the Web, print
designers are used to being sent files prepped for the Web to use in
print campaigns. If you’ve ever done this, you’ll know from their feed‐
back that you can’t scale bitmapped images up. If you need to print an
image at 300dpi, all the information for the full resolution of the image
needs to be there or else it will look like junk. No matter what TV

28 | Chapter 1: Embracing Uncertainty

shows like CSI might try to tell you, there’s really no push button
“zoom and enhance” that will make a blurry image clear as day.

So, on the Web now, if you need to show a 200px × 200px image on a
high-density display, you need to provide more than 200px × 200px
worth of data. If you don’t, your images will look crummy. The fol‐
lowing example illustrates the difference. Consider the following
markup. It shows two images side by side. The images are 240 reference
pixels square as defined by the height and width attribute on both
images. The first image file was exported at 240 pixels square. The
second is 668 pixels square. In the source, it’s compressed down to 240
pixels with the height and width attributes:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 </head>

 <body>

 <h1>The Uncertain Web</h1>

 <h2>Chapter 01</h2>

 <img src="react-graffiti-96.jpg"

 width="240" height="240" />

 <img src="react-graffiti-267.jpg"

 width="240" height="240" />

 </body>

</html>

In the first screenshot, from a standard density monitor, the two im‐
ages are rendered identically (Figure 1-4).

Figure 1-4. A screenshot from a standard density display

Where We Are Right Now | 29

The second screenshot, taken on a 267dpi high-density display (the
Samsung Galaxy Note 2), shows the differences in quality between the
two images (Figure 1-5). The dimensions are the same, in reference
pixels, but the higher number of device pixels in the Note 2 requires
additional data to render clearly.

Figure 1-5. A screenshot from a high-density display

This is a thorny problem. As you’ve learned already, there are plenty
of web users (billions) on crummy connections. Many web users are
also on metered data plans and don’t want to spend all their hard-
earned money downloading data they’ll never use. Serving those users
the smallest possible payload with the best possible quality is key to
creating great user experiences. On the opposite end of the spectrum,
consumers with high-density displays ponied up the extra money for
their fancy devices and want to get the high-end experience they’ve
seen in the demos and TV commercials. They’ll also notice that the
negative fuzzy images stick out once you’re used to the photographic
crispness of a high-density display.

So, factoring in screen size, pixel density, and the size of the browser
window itself means that there are suddenly a lot of factors to work
through when dealing with bitmapped images. Do you serve everyone
2x images, scaling down for everyone, but in the end serving bytes that
people on standard density displays aren’t going to use? Or do you
serve standard size images, sacrificing some blurriness for better per‐
formance in all browsers? Or do you bite the bullet and dive into the
hornet’s nest of responsive images? Add it up, and it’s clear that trying

30 | Chapter 1: Embracing Uncertainty

www.allitebooks.com

http://www.allitebooks.org

to navigate the proper density of images is one of the trickiest areas of
web development right now.

There are no easy answers on how to deal with it beyond using Scalable
Vector Graphics (SVG) and forgoing bitmaps entirely (not always
possible) or, drastically, not using images at all (even less possible in
most environments.)

What’s 2% Anyway?
If you’ve been thinking about these numbers and are already consid‐
ering ways you’ll cut corners, knocking browsers or screen resolutions
off your testing and support matrix because they only represent 2% or
5% market share, it’s worth taking a minute to think about what those
numbers really mean. Based on your needs and requirements, you
might be perfectly justified in many different support configurations.
Although I strongly believe in supporting the largest possible per‐
centage of web users, I also recognize that reality dictates certain sup‐
port strategies. For example, working in financial services or health
care, two industries that I’ve done a lot of work in, might require that
I treat Internet Explorer 8 as a first-class browser. You, on the other
hand, might be working on a site that caters to web developers and
designers and might not see even 1% of your visits from IE8. So, instead
of treating it as a first-class experience, you could provide simplified,
alternative content or even devil-may-care support to IE8 users be‐
cause that’s not your audience.

It’s useful to go examine your audience in this way whenever you’re
crafting support strategies. You might think you’re comfortable with
ignoring a certain browser from your testing plan, but then when you
crunch the numbers and truly examine the makeup of your audience,
you might realize that you’ll probably need to spend some time testing
in it or even craft some sort of optimized solution.

For one wildly unpopular example, according to Microsoft’s IE6
Countdown site, IE6 still accounts for 4.2% of the global browser mar‐
ket. However that number stacks up against other stats we’ve seen, for
the sake of argument, let’s take their metric at face value. And anyway,
Microsoft isn’t looking to overstate the presence of a browser that, at
this point, brings them nothing but negative publicity, so that’s got to
count for something. At first blush, 4% might seem like a small num‐
ber, but that’s before you really break down the numbers. For easy
math, let’s say there are 2,500,000,000 people out there with access to

Where We Are Right Now | 31

http://www.ie6countdown.com/
http://www.ie6countdown.com/

the Web. That puts that 4% market share at something like
100,000,000. For an easy comparison, that’s just about the population
of the Philippines, which just happens to be the 12th most populous
country in the world. Looking at the numbers more closely, the high
percentage of those Internet Explorer users in China (22% of the Chi‐
nese market) means that most of those users—80,000,000 or so—are
Chinese. That puts the 100,000,000 IE6 users in a particularly Chinese
context. That might mean you don’t care because you have zero Chi‐
nese audience, but 100,000,000 users still means this is a choice you
should make actively and not just with the wave of a hand because IE6
is annoying. If you’re starting a site design and you’re a global company,
you have to ask yourself if you can safely ignore those users. Maybe
you can, but it’s safer to look at the question with as much information
as you can muster instead of blocking your eyes and ears and assuming
it’ll all be OK. That way, when someone asks why you did or did not
prepare for IE6, you can give a reasoned response.

Interestingly, desktop Safari also has around 4% market share. Most
developers I know wouldn’t dream of ignoring Safari, but at the end
of the day it’s still the same 100,000,000 people. Granted, it’s much
easier to develop for Safari, and the typical Mac user has enough dis‐
posable income that they can buy a Mac, so they’re a more appealing
demographic, but it does make for an interesting perspective.

For an even smaller slice, and one that has a different mind share (as
it’s mostly ignored instead of being hated), Opera Mini comes in at
around 2% total market share by some measures. Most developers I’ve
talked to have never tested with it and don’t really know much about
it. But its estimated 50,000,000 users are more than the population of
California and Illinois combined. Would you ignore Chicago, San
Francisco, and Los Angeles without a good reason? Probably not.
Granted, Opera Mini has its own demographic quirks, but it shouldn’t
be completely ignored.

This isn’t to say that you are somehow required to actively support any
of these browsers. Not everyone has enough resources to design and
develop for, test, and fix bugs across every device and browser. That
said, it is important to keep some perspective and know what it really
means when you’re chewing over some of these numbers. At the end
of the day, they may not matter to you, but you can’t really make that
decision unless you know what decision you’re actually making.

32 | Chapter 1: Embracing Uncertainty

Beyond your own existing analytics, there are several different re‐
sources you can look at to figure out the browser market:

• Peter Paul Koch writes intelligently about browser market share
on this blog.

• Stat Counter offers statistics based on billions of page views every
month.

• The Wikimedia Foundation publishes statistics based on the bil‐
lions of page views generated by their own network of sites.

• Microsoft’s IE6 Countdown clock is the best source of information
about IE6’s continued presence.

Also, with the number of cloud-based testing environments on the
market and the fact that most design teams will have a variety of
smartphones in the pockets of various members of the team, getting
basic coverage isn’t that hard if you decide to go for it.

This Is What We Wanted
Freaked out? Paranoid that the ground underneath you will shift at
any moment? Good. Because it will. I’m not the type to predict things
like space hotels and cryonic suspension in order to emigrate into the
future, but I can tell you there will be new devices, form factors, Open
Web Platform features, and human–computer input modes that you’ll
have to deal with as a web developer for as long as the role exists. And
really, this is the way it should be. The only reason everything was
allowed to go dormant in the early 2000s was because competition in
the space disappeared. Once true competition returned, the natural
way of the Open Web, which is to be as crazy as I’ve just described it,
returned with a vengeance.

The good news is, all of these devices, form factors, and browsers all
share one thing. They work on top of the Open Web Platform: HTML,
CSS and JavaScript. If you seize on this shared platform and try to
create the best possible experience for the broadest possible range of
devices, you’ll be able to reach users in every nook and cranny of the
globe.

The remainder of this book will look at ways to tap into the Open Web
Platform in order to do that.

So let’s look at how to make this happen.

Where We Are Right Now | 33

http://bit.ly/uw-qb-market-share
http://bit.ly/uw-qb-market-share
http://statcounter.com/
http://statcounter.com/
http://bit.ly/uw-wikimedia
http://bit.ly/uw-wikimedia
http://bit.ly/uw-ie6-countdown
http://bit.ly/uw-ie6-countdown
http://bit.ly/uw-clarke
http://bit.ly/uw-clarke

CHAPTER 2

Navigating the Uncertain Web

So I guess an escalator is stairs with progressive enhancement. Or
those walkways in the airports that make you walk really fast. I guess

that’s just a floor that’s been progressively enhanced. An electric
toothbrush is a progressively enhanced toothbrush.

— Jeremy Keith

So, now that you know what you’re up against and are ready to wrap
the whole Web in a big, inclusive bear hug, it’s time to learn about some
of the ways you can build widely compatible sites and applications.

What follows is a series of high-level ideas that will allow you to ap‐
proach compatibility in a nimble way and piece together your own
solutions to these issues when you’re faced with the Web’s uncertainty.
If you’re an experienced developer, then many of the lessons presented
here might be familiar to you. Even if they are, looking at them in the
context of uncertainty will likely give you new or different perspectives
on the ways these concepts could be used to create compatible
web solutions.

All of these concepts will be touched on and expanded throughout
the book.

Read this chapter, get the conceptual flavor, and then you’ll fill out the
details with some of the technical samples in this book, with your own
work, and with your own research. That said, it should be noted that
some of these topics are worthy of a book of their own, so we won’t be
able to cover everything in detail.

Additionally, it will cement these concepts if, while reading this chap‐
ter, you start to apply these concepts to the kind of problems you face

35

in your day-to-day job. If you’re at an agency and building 2–25
projects a year, you’re going to have different needs than a product
person who might work on 2–3 releases of the same project every year,
and you’re going to seize on different aspects of this as important
to you.

The one thing that I’ll ask is that you read through this chapter with
an open mind.

Don’t Blame the Web for Being the Web
No, we didn’t just diverge into the self-help section.

Hear me out, and I promise we’ll get back to the technical pieces in
just a second.

We’ve already defined that the Web is a diverse place that’s getting more
diverse every single day. That’s pretty much impossible to ignore. So,
if you accept the Web’s diversity (and maybe even celebrate it), and
you’re getting angry about one thing (maybe Internet Explorer 8) or
another (the stock Android Browser), just take a minute to remind
yourself that this is just the way the Web is.

Repeat after me, this is just the way the Web is.

It’s true. Unless we return to a new monoculture (sorry, Google, but
I’m rooting against Chrome on that front), there’s always going to be
a “bad” browser. That’s not magic, and it isn’t a new concept. As soon
as the current “bad” browser dies, the second-to-worst browser slots
in to take its place. Google’s Paul Irish wrote about it in 2011 with his
post "Browser Market Pollution: IE(x) Is the New IE6.” Even ignoring
Internet Explorer as an obvious bogeyman, if we’d had the WebKit
monoculture some of you were hoping for a few years ago, we’d still
have the frustrating gap between great browsers like Chrome and
oddballs like the stock Android browser.

Getting yourself worked up about the Web having a spectrum of
browser quality is like getting mad at the ocean for being wet. It’s the
price we pay for having access to anything that can connect to the Web.

The ability to deal with a varied environment gracefully is going to be
one of your greatest strengths as a web developer. I’ve worked with,
managed, and hired a lot of frontend engineers over the past 15 years.
Without fail, the best ones were the ones that knew this intuitively.

36 | Chapter 2: Navigating the Uncertain Web

http://bit.ly/uw-bmp

I’m not insisting that you actively enjoy working with crummy brows‐
ers. I’m just like you. I want the most powerful tools available across
the most possible browsers. I just understand that dealing with a wide
variety of browsers is a core part of my job, so it doesn’t drive me as
crazy as it seems to drive other people. I can’t guarantee it, but if you
do the same, I think you’ll be happier if you, too, accept the Web for
what it is and get on with the business of making cool things.

Identify and Embrace Your Audience
You would think this would be automatic, but you’d be surprised how
many times I’ve had to ask clients what browsers and operating sys‐
tems their current users were using and what browsers and operating
systems were important to them going forward. They often don’t have
this information at hand. The specific answers to these questions mat‐
ter. You can look at web-scale statistics for browser and operating sys‐
tem market share to get some idea of where things are and where
they’re going, but the only metrics that truly matter are those for your
audience. If you’re redesigning Cult of Mac, your browser and OS
profile is going to be very different from the profile for the Microsoft
Developer Network.

Different browsers reach a different percentage of users in different
geographical regions. For example, if you’re a global sports brand that
outfits the heavy hitters of the sports world, with a large existing fan
base in the People’s Republic of China, it would be wise to notice the
huge number of Internet Explorer 6 users in that country. Although it
might not mean that you tailor your content for IE6 or limit what you
do on newer browsers (there are lots of new computers, iPhones, iPads,
and Android devices in China, too), it does mean there’s going to be
some attention paid to how the site operates when the browser’s feature
set is limited.

Identify and Embrace Your Audience | 37

http://www.cultofmac.com/
http://bit.ly/uw-msdn
http://bit.ly/uw-msdn

Why China?
It’s come up a couple of times, so in case you’re wondering,
there are two basic causes for the persistent high percentage of
Internet Explorer 6 usage in China: software piracy and soft‐
ware requirements at government and other large-scale sites.
A great number of PCs in China are running pirated versions
of Windows XP. Because people are wary of upgrading through
Microsoft, lest their machines be somehow crippled by Mi‐
crosoft, they’re stuck running the default browser.

Perversely, because so many people are still running it and have
historically run it, some government sites require IE6 in or‐
der to function.

For a few years now, Peter Paul Koch has been doing a series of deep
dives into country-specific browser markets on his blog. You should
do some research with your own audience, but the insights he offers
are an invaluable aid to the discussion.

As I can attest, having served as a consultant for some big banks and
a fair share of health care companies, this same lesson about legacy IE
applies to certain industries. Even in the United States, where older
versions of IE are dying off, the numbers of pre-IE8 users in health
care and finance are much higher than the rest of the Web as a whole.
Like the users in China locked in by the regional administration re‐
quiring IE6, these users are often locked in because of the software
requirements of legacy systems. Two of the largest companies I’ve
worked with as a consultant were running Internet Explorer 7 as the
only supported internal web browser until 2013. With both, I was fo‐
cused on a broad range of browser support on my projects, so it wasn’t
like I was stuck in an IE7 time-warp, but it did factor into some of the
decisions we made when building sites in those environments. I mean,
if a site doesn’t work on the CEO’s computer, then it doesn’t matter
how well it plays in Chrome.

Obviously, knowing this kind of information in advance makes your
life significantly easier. If, for example, you’re planning on leveraging
SVG for data visualizations, you would want to look at Raphaël, which
has built-in support for legacy Internet Explorer versions rather than
Snap.svg, the successor which solely leverages modern browser fea‐
tures.

Or you may want to leverage progressive enhancement to create a
bare-bones experience for legacy browsers of all stripes (Android prior

38 | Chapter 2: Navigating the Uncertain Web

http://bit.ly/uw-qb-by-country
http://raphaeljs.com/
http://snapsvg.io/

to 2.3 doesn’t support SVG either) and then layer interactive func‐
tionality on top of the basic experience.

Thanks, Dmitry
Both Snap.svg and Raphaël were authored by Adobe’s
Dmitry Baranovskiy. He’s very much at the center of the SVG
universe.

SVG came onto the scene in 2001 and was basically ignored by
many in the web development world because of a lack of sup‐
port in Internet Explorer and no clear API. Raphaël changed
that by providing VML-based support for Internet Explorer
and adding in a friendly, feature-rich API. Other libraries, like
D3 and Highcharts, have helped cement SVG’s popularity, but
Raphaël started the ball rolling.

So, if you’re a fan of working with SVG (I am), thank Dmitry
for opening up the floodgates.

On the flip side, if you look at your statistics and your site goals and
you recognize that your audience is predominantly mobile, you will
want to skip over some of the big images and heavy frameworks you’ll
find on desktop-centric designs and architectures. A lean, small-
screen optimized design is going to serve the most important segment
of your audience best, and if you do it right, you’ll still be providing a
fast, effective interface for your desktop users.

Of course, as the recent Slate redesign shows (Figure 2-1), you can go
too far in embracing mobile and miss the mark for your desktop
users. Many users echoed the sentiments expressed in Andrea Peter‐
son’s Washington Post article, "I Hate the New Slate. But It Wasn’t De‐
signed for Me." Their fully responsive design works very well on mo‐
bile devices. It’s a solid, small-screen design that makes use of color,
type, and selected photography to present a really great small-screen
experience.

The desktop/large-screen view, on the other hand, feels like a slave to
the small screen (Figure 2-2). Boxes fight for dominance, and their
placement feels almost like chance. The single-serving cohesion of the
small-screen experience becomes a large-screen experience without
unity or hierarchy.

Identify and Embrace Your Audience | 39

http://d3js.org/
http://www.highcharts.com/
http://bit.ly/uw-new-slate
http://bit.ly/uw-new-slate

Figure 2-1. The Slate redesign seen in a small-screen configuration

Figure 2-2. The Slate redesign seen in a desktop configuration

40 | Chapter 2: Navigating the Uncertain Web

www.allitebooks.com

http://www.allitebooks.org

Test and Pray for the Best
Once you’ve identified your audience, where they are, and what they’re
using, it’s time to define the technical demographics you’re going to
target. This will break down to the set of browsers, devices, and screen
resolutions that make up your audience. Your job, once you’ve got
some sense of whom you’re targeting, is to figure out how to
target them.

It’s Never Too Late
Even if you’re the caretaker of a project that’s already out the
door, these concepts can help you with your approach to both
feature development and maintenance. It’s better to have this
information right off the bat, but if you don’t, you can still use
it, wherever you are in the software development lifecycle, to
improve your site or application. Often, you’ll hear “build for
mobile first,” but if your audience primarily uses desktop
browsers, the opposite is just as valid.

Whatever you’re doing, there are going to be types of users you’ll really
focus on. It might be everyone in the whole world on any web-
connected device, or it might be mobile users from emerging markets.
It’ll probably be something in between. Regardless, you should have a
pretty good idea of the capabilities and form factors your users will
have. Once you have that, you’ll want to come up with a testing and
support strategy. This is the list of browsers and devices that you’re
going to test against and the profile of browsers and devices that you’re
going to support. At this point, no one is going to be able to test against
every possible browser/device that they support. You can also break
down the concept of support to include limited and full support.

Test and Pray for the Best | 41

Yahoo! Graded Browser Support
There was a time when all you needed to do was point your
client or internal stakeholders to Yahoo!’s Graded Browser
Support Matrix in order to define a support strategy for your
site. Yahoo! would assign every major browser a grade of A
(primary development and QA support), C (baseline develop‐
ment and QA support, bugs fixed for catastrophic issues), and
X (browsers that aren’t developed against or tested against, but
are expected to be capable browsers). Although the explosion
of browsers and devices has rendered the support matrix it‐
self less important, the concept of graded browsers still reso‐
nates in many corners.

For example, continuing with SVG as our key feature, imagine you’re
building a site to track workouts of runners. It will rely heavily on SVG
in order to create interactive visualizations of the runner’s pace, heart
rate, and other metrics.

When you’re working through these kind of questions, you’ll want to
leverage the site Can I Use… heavily (Figure 2-3). Can I Use pro‐
vides simple access to support matrices for a huge number of web
platform features. Popping over to the SVG support page, you learn
that native support for SVG is present in everything but older Internet
Explorer versions and older Android devices.

As you can see with all the green numbers in Figure 2-3, that means
you have a pretty wide range of supported browsers with full support
for your key technology.

Internet Explorer 8 and Android pre-2.3 still represent a pretty large
percentage of users, and you want to offer at least some level of support
for them. You know Raphaël doesn’t add SVG support to older An‐
droid devices because there’s no VML there to hook into, so you may
decide to add partial support to those browsers by creating static PNG
representations of the visualizations on the server side and serving
them as regular images.

42 | Chapter 2: Navigating the Uncertain Web

https://github.com/yui/yui3/wiki/YUI-Target-Environments
https://github.com/yui/yui3/wiki/YUI-Target-Environments
http://caniuse.com/
http://caniuse.com/svg

Figure 2-3. SVG support in early 2014 (data from caniuse.com)

With that general support matrix in place, the specific devices you’ll
test against really just depend on your time and resources. If you’ve
got a big budget and a dedicated QA team, you might test against and
require sign-off for more than 20 or 30 device/browser combinations.
The following list is just a sample, but it gives you a taste of what a
truly broad testing program would look like. This list also assumes you
would test in multiple mobile browsers (Chrome, Opera Mini, UC
Browser) on one or more of the devices.

This is a lot of work, but to really get this stuff right, you’ve got to do
some hard work. That includes testing. The devices you should con‐
sider are as follows:

• Samsung Galaxy S3

• Samsung Galaxy S4

• Samsung Galaxy S5

• Samsung Galaxy Note II

• Samsung Galaxy Note III

• Nexus 5

• Kindle Fire

• Motorola Droid X (Android 2.3)

• Google Nexus 7

Test and Pray for the Best | 43

• Nokia Lumia 920

• iPhone 4S

• iPad 2G

• iPhone 5s

• iPhone 6

• Chrome (latest): Mac, PC, and a Chromebook

• Firefox (latest): Mac and PC

• Opera (latest): Mac and PC

• IE 8.0 on Windows XP

• IE 9.0 on Windows 7

• IE 10.0 Windows 7/8, including a touchscreen laptop

• IE 11.0 Windows 7/8/8.1, including a touchscreen laptop

• Safari 6.0

You’re probably not going to have the resources or the buy-in organ‐
izationally to purchase and test on that many devices. Not many
people can.

If that’s the case, getting your hands on some dedicated testing devices
(newer Android, something running Android 2.3, an iPhone, and an
iPad) in addition to standard browser testing is the minimum you
should do if you’re truly serious about building compatible sites. If that
sounds like you, your testing stack might look like the following:

• Samsung Galaxy S5

• iPhone 6

• iPad 2G

• Motorola Droid X

• Chrome (latest): Mac and PC

• Firefox (latest): Mac and PC

• Opera (latest): Mac and PC

• IE 8.0 on Windows XP

• IE 9.0 on Windows 7

• IE 10.0 Windows 7

• IE 11.0 Windows 8

44 | Chapter 2: Navigating the Uncertain Web

• Safari 6.0

Unless you’ve got a lot of old hardware lying around, this assumes that
you will use a virtual machine for at least some of the Internet
Explorer testing.

This has a cost. Buying devices might run you $1,000–$1,500 or more,
depending on your coverage. That might seem like a lot, but it’s worth
it. Do everything you can to afford some dedicated testing devices so
that you don’t have to resort to the phones in people’s pockets as your
“testing lab.” That might sound like creative bootstrapping, but it
doesn’t work. People aren’t going to be able to commandeer their cow‐
orkers’ phones for several hours of intense testing. It’s also a crapshoot
whether or not you get coverage for the most popular devices.

In addition to whatever physical devices you have in your testing lab,
you should look into augmenting your testing coverage with a cloud-
based testing service. These services provide software-based virtual
devices for you to test with. These services range from free to $10 or
$100+ per month and can definitely enhance your testing coverage.
However, these can’t completely replace the benefit of testing a site in
a real device in hand. You lose the ability to truly feel and experience
the interactions, and you miss the way the site renders in the actual
device pixels. As a secondary tool, however, these can be invaluable.

It’s especially nice to be able to automate the taking of screenshots in
a large number of browsers at one time in order to verify the rendering
of the page through multiple iterations and form factors.

As a local alternative, both Apple and Google offer emulators (through
Xcode and the Android SDK, respectively) for their mobile experien‐
ces. They’re not as good as an actual device, but they often can do in
a pinch. Chrome’s Developer Tools emulation feature also works well.
This feature allows you to crudely similute a “mobile” experience in
Chrome. It’s not an authentic experience, but it can be helpful to iden‐
tify major issues.

Test and Pray for the Best | 45

China Once Again
Right now, the majority of the smartphone market in China is
owned by local firms. China is also the largest smartphone
market in the world. So, if you’re concerned about China, you’ll
want to know about offerings from companies like Huawei,
Xiaomi, and Lenovo.

Yes, Lenovo makes smartphones. They’re actually the third
largest smartphone manufacturer in the world.

Whatever your scheme, the takeaway here is to become dedicated to
testing as often as you can in as many browsers and devices as you can.
People often perfect their site in one browser and then work backward
from there, filling in holes in everything else. No browser is completely
dominant anymore and the landscape is completely wide open, so
getting as good an experience as possible in as many browsers as pos‐
sible is the way to go.

The only way to do that is to truly experience the site on the targeted
devices and browsers. Testing on a lot of real devices can uncover
improvements that will improve your site in ways that you can’t predict
and will expose you to the experience your users are likely to see. This
can both help to head off bugs and, more importantly, can feed back
into the design process.

Focus on Optimal, Not Absolute Solutions
I’m a fan of single serving sites. Single serving sites are websites made
up of a single page that do only one thing. Many are funny, some are
clever, and some are even useful.

One, in particular, perfectly captures an issue I’ve run into plenty of
times during the planning or design of a site. I can’t tell you the number
of times some question would come up about universal support for a
design feature—for a blast from the past, think of rounded corners or
the clean transparency of 32-bit PNGs. If the feature or design element
was nonessential, my first instinct was always to push back for a sim‐
plified design in the offending browser. If there was strong resistance,
even after explaining the development or performance cost of a work‐
around, I’d have to go into a well-practiced spiel about why it was OK
to present slightly different visions of the site to different browsers. If
I were smarter, I could have just thrown up Do Websites Need to Look

46 | Chapter 2: Navigating the Uncertain Web

http://www.huawei.com/en/
http://www.xiaomi.com/en
http://www.lenovo.com/
http://bit.ly/uw-lenovo-top
http://bit.ly/uw-lenovo-top
http://bit.ly/uw-single-serving
http://isthisyourpaperonsingleservingsites.com/
http://www.downforeveryoneorjustme.com/
http://dowebsitesneedtolookexactlythesameineverybrowser.com/

Exactly the Same in Every Browser?, and the answer would have been
seen as clear as day (Figure 2-4).

Figure 2-4. A Screenshot from Do Websites Need to Look Exactly the
Same in Every Browser?

Not that it would have made much of a difference. At one point, there
was an idea, born out of print production I think, that the design of a
site was an absolute thing. The look of a site in the PSD would be, to
the pixel, the look of the site in every browser across every platform.
As frontend developers, we were driven to extremes in order to achieve
pixel perfection across browsers and operating systems, often having
to explain things like the difference between scrollbars or form ele‐
ments on the Mac and PC being something we couldn’t really
work around.

That site was actually written in reference to the differences between
legacy IE and modern browsers. These days, although the difference
between legacy IE and modern desktop browsers is still a concern, it’s
not the only place this idea manifests itself. When you bundle in the

Focus on Optimal, Not Absolute Solutions | 47

http://dowebsitesneedtolookexactlythesameineverybrowser.com/

dozens of viable browsers and devices out there, there are so many
places where the look of a site can diverge that it would be practically
impossible to actually design an absolute look and feel for every pos‐
sible permutation. An army of Photoshop production artists would be
needed to craft all those pixels. Font rendering, pixel density, web
platform feature support, screen resolution, screen aspect ratio, and a
slew of other factors all aid in the divergences of sites from browser to
browser and device to device.

So, as important as it was in 2008 to understand that adding rounded
corners to a box in IE6 wasn’t worth the effort, understanding that
things will look differently across platforms, browsers, and devices is
now a fundamental concept of web design and development. You will
invariably have dozens of differences in the rendering of your site on
different browsers and platforms.

And that’s OK.

As part of that practiced spiel, I used to say that the only people who
would look at a site in more than one browser were the people who
were building it. Although that’s not true anymore, as people will often
visit one site on the desktop, on a tablet, and with a mobile browser,
they’re already used to differences between the different form factors.
You’re not going to shock them by showing them a different look on
their phone.

It’s actually a benefit—one that they’ll hopefully notice. These days,
the differences among browsers and platforms goes well beyond the
surface. Each of those form factors might need distinctly different fea‐
tures or completely different designs to best satisfy the site’s require‐
ments in every form factor.

This idea needs to be part of your site’s DNA. Your site is not an ab‐
solute thing. There is no one true vision of it. The best possible site
you can have will be the best possible site for everyone that visits it. If
that means it’s a high-DPI, 25MB monstrosity for a guy on a Macbook
Air in a coffee shop in Palo Alto, or just a logo and an unordered list
for someone on a rented-by-the-minute feature phone in Lagos, then
that’s the way it is. Once you have this idea—that is, that you can and
maybe should be presenting different views to different users—it’s
much easier to make intelligent choices based on the site’s require‐
ments and your audience.

48 | Chapter 2: Navigating the Uncertain Web

The tough part of this is getting the message across to all the different
stakeholders on a project. It’s easier than it once was, because as I’ve
mentioned, people are already used to seeing differences with different
devices, but it’s still something that you need to prepare people for
from the start. This approach is most successful when it’s called out
early and often. The last thing you want is someone being confused
by a static PNG in an old Android when everything else is getting a
crazy D3 visualization. Instead, if you communicate your intent, they
should expect it, understand it, and hopefully appreciate it for what
it is.

Embrace Accessibility
Web accessibility ensures that people with disabilities can access the
Web. In general, the goal with accessibility standards is to ensure that
content is served and structured in such a way that users with disa‐
bilities can access it directly, or if direct access isn’t possible because of
their disability (audio content for a deaf user or a visual chart for a
visually impaired user), to provide alternative content that conveys the
same information.

Simply put, if your site is accessible, you’re guaranteeing that you’ll be
able to reach the largest possible audience.

You’re also doing the right thing. It’s not all that difficult to create
accessible sites, and the benefit for people with disabilities
is enormous.

You should be doing this anyway, seriously.

Based on the 2010 U.S. census, 56 million Americans were classified
as having a disability. That’s 18.7% of the total population. Not all dis‐
abilities would hinder the ability of a user to access the Web, but by
taking a deeper look at the data, we can start to see some numbers
emerge. With the understanding that inviduals might have one or
more class of disability, Table 2-1 shows the number of Americans with
disabilities that might interfere with their use of the Web. Numbers for
this are hard to come by, but even using these numbers as a rough
guide, you can estimate that there are millions of Americans that rely
on the accessibility of sites to use the Web.

Embrace Accessibility | 49

http://bit.ly/uw-2010-us-census

Table 2-1. Disabilities that might interfere with use of the Web

Class of
Disability

% of Americans Total # of
Americans

Note

Visual 3.3 8,077,000

Hearing 3.1 7,572,000

Motor 2.8 6,700,000 Based on the number of Americans

with “difficulty grasping objects like a

glass or pencil” as a rough analog for

mouse use

Cognitive 6.3 15,155,000 Covers all mental disabilities

And that’s just in the United States, where this data is readily available.
Extrapolating these patterns to the rest of the world and those tens of
millions of disabled users turns into hundreds of millions.

And, if doing the right thing isn’t enough, as a bonus, creating acces‐
sible sites has the side effect of making your sites more usable by ev‐
eryone and more compatible for all users.

Let’s look at some specific examples. The following accessibility con‐
cepts, taken from the Web Content Accessibility Guidelines 2.0 Ap‐
pendix B, will have a positive impact for all users of your site, especially
users with small screens or low bandwidth.

Provide Text Alternatives for All Non-Text Content
If images fail to load or are loading slowly, alternative text can provide
crucial context to users. Unfortunately, the behavior of this feature is
cranky on mobile. This text is displayed almost universally on the
desktop. The behavior of mobile browsers is varied. Figure 2-5 shows
Firefox, iOS Safari, Chrome, Opera Mini, and Opera displaying a page
with a broken image. Only two of the five display the alternative text.
This is a defect that needs to be corrected. The original bug, with
WebKit, took eight years to fix (too late for the iPhone and stock An‐
droid browser in these screenshots). Hopefully, the related Blink is‐
sue will be fixed sooner rather than later (and fix Opera and Chrome).

Regardless of the current behavior, this is an issue that will be fixed in
future versions of these mobile browsers, so it’s worth adding the info
even if it’s not shown universally today.

50 | Chapter 2: Navigating the Uncertain Web

www.allitebooks.com

http://bit.ly/uw-accessibility
http://bit.ly/uw-accessibility
http://bit.ly/uw-wk-bug
http://bit.ly/uw-blink-issue
http://bit.ly/uw-blink-issue
http://www.allitebooks.org

Figure 2-5. What a broken image looks like in Firefox, iOS Safari,
Chrome, Opera Mini, and Opera

Additionally, low bandwidth or bandwidth-metered users might have
images turned off, which is an option that’s available in mobile brows‐
ers like Opera Mini (see Figure 2-6).

Figure 2-6. Turning off images in Opera Mini and the Android
Browser

Embrace Accessibility | 51

Providing alternative text fills in the blanks left by the ignored images
(see Figure 2-7).

Figure 2-7. Opera Mini with images turned off

Alternative text is likely the accessibility you’re most familiar with, but
it’s important enough to ensure that you’re using them to proper effect.
This checklist from the a11y Project is a good place to start with im‐
proving your alt text.

The Stock Android Browser Is Kind of Crazy
As Figure 2-7 shows, it’s also very easy to manage band‐
width and turn off images in the stock Android browser. What
is surprising is that with images turned off, the Android
browser doesn’t show alternative text or the contents of the
title attribute. So let that serve as a reminder that any key
information on a page should really be in plain text because
you just can’t control everything that happens in the brows‐
er. Even if you’ve got the most fault-tolerant CDN in the
world, an Android browser user can just turn off your im‐
ages, and they’ll never see the important message you were
trying to show them.

52 | Chapter 2: Navigating the Uncertain Web

http://bit.ly/uw-alt-text

All of the recommendations around text alternatives to multimedia
content also apply here. Text is cheap, bandwidth-wise, so it’s a great
added benefit (beyond the core accessibilty requirement) to offer text
alternatives to video and audio content, such as transcripts, for low-
bandwidth users or people who are simply in a rush.

Ensure Information and Structure Can Be Separated
from Presentation
Good structure for your code makes it much easier to translate into
different formats for devices with different capabilities and needs. This
used to be a much bigger issue when people commonly used tables for
layout, but it’s still important now. You want your pages to make logical
sense without styles and without JavaScript. If you can satisfy both of
those requirements, you’re in really good shape. One way to test how
well you’ve structured your content is to view the document’s outline
as defined by the HTML5 specification. If your document outline
looks like a well-structured table of contents, then you’re probably on
the right track.

Make All Functionality Operable via a Keyboard
Interface
Understanding the way that people without a mouse use the Web is
an important (and neglected) exercise for everyone involved in mak‐
ing websites. You really should be testing everything you do without
a mouse, and optimizing for keyboard navigation is one of the best
things you can do for all of your users. This can manifest itself in a
couple of ways. On the most basic level, making sure that common
keyboard interactions behave in an effective, predictable way is very
important. Tab order, skip links, and staying away from keyboard traps
are all important to keyboard users. More advanced keyboard navi‐
gation is great for power users, as well as being a boon to users who
can’t use a mouse. My Gmail workflow is almost all keyboard driven.
I crank through email like a demon. Many other big sites also have
rich keyboard options built into their interface. Type “?” on any of
your favorite sites to see if they, too, have keyboard shortcuts defined.
Here’s the overlay showing GitHub’s rich selection of keyboard short‐
cuts (Figure 2-8).

Embrace Accessibility | 53

http://bit.ly/uw-html5-outliner

Figure 2-8. Keyboard shortcuts on GitHub.com

Satisfying this requirement also helps you think in beneficial ways
about your site interaction model and the way that people can get to
your content. If you avoid complex mouse movements and unclear
interactive elements, you will make it much easier for users of all
stripes to use your site. This includes those users on small screens and
those using an imprecise “pointer” (their finger) to access
your interface.

Content Can Be Paused by the User Unless the Timing or
Movement Is Part of an Activity Where Timing or
Movement Is Essential
The intent of this guideline is to ensure that visually impaired or cog‐
nitively disabled users have time to digest your content. This can
manifest itself in different ways. The success guidelines talk about us‐
ing turn-based games and having no time limit on online tests. Addi‐
tionally, ensuring that video, audio, and time-based visualizations can
be controlled by the user is an important component of this guideline.

A very common example I like to share is to avoid automatically re‐
freshing content after a set period of time or to allow that functionality
to be turned off. Think of a news site that refreshes every couple of
minutes for the possibility of breaking news (and to inflate page views)

54 | Chapter 2: Navigating the Uncertain Web

http://bit.ly/uw-success-gl

or a sports site that refreshes a page automatically to show
updated scores.

Simply put, don’t force updates down your user’s throat. In addition
to the accessibilty concerns, all users can benefit from avoiding this
practice. On mobile, for example, this rule is important for all users
because battery life, bandwidth, and processor time are all significant
factors in the overall mobile experience. You don’t want to download
unnecessary updates, wasting kilobytes of data and battery life.

Provide Mechanisms to Help Users Find Content, Orient
Themselves Within It, and Navigate Through It
This is just good sense, of course, but is especially true when dealing
with smaller screens. Make links make sense, give a good sense of
where users are within your site or application, and give them multiple
ways to reach content. The less you ask a mobile user to do to get to
their important content, the better. I know the flashy demos of the
latest iPhone or Galaxy phone make everything look like a magical
trip through a land populated by magical tech fairies and black turtle-
necked elves (all to a catchy college radio soundtrack), but it’s hard to
do things on a phone sometimes. Operating a phone with one hand,
in the cold, while on the move, trying to get to an appointment on
time? Yeah, that’s exactly the time you want to have to sort through
some random noise on a page looking for the “contact us” link.

For someone living that experience, and we’ve all lived it, having a
clearly labeled “contact us” link with a big fat button that takes users
to a simple list which includes your telephone number is worth more
for the customer’s experience than pretty much anything else you can
do on the Web. You might have the most beautiful site in the world,
but if your customer can’t find your phone number, you might as well
have made your site out of sticks and glue. It’s useless.

USA.gov handles this without any fuss, providing a clearly labeled tel
protocol link at the very top of its homepage in responsive mode.
There’s no mystery here how to get in touch with them, and the tele‐
phone link is available without a second click (Figure 2-9).

Embrace Accessibility | 55

http://usa.gov/

Figure 2-9. An easy-to-use phone link on USA.gov

Help Users Avoid Mistakes and Make It Easy to Correct
Mistakes
It’s hard to fill out forms on the Web. The more help you can give users,
the better. This is true for all users.

What’s interesting is that the work that’s become the HTML5 specifi‐
cation actually started life as work on forms, and a large segment of
the new specification is built upon new form inputs, APIs, elements,
and attributes. You wouldn’t know it looking at the demos and articles
written about the Open Web Platform or in the slow support for these
new features, even in the best browsers. Forms are generally neglected
as a drudgery, even by browser vendors. Adding a new input for tele‐
phone numbers isn’t nearly as sexy as adding WebGL and coding a
JavaScript port of Quake. The thing is, people make money on the Web
with forms—filling them out for a status update or tweet or to buy a
book on Amazon.

The more time and care you spend on your forms, the better off you’ll
be. Making it difficult for people to make errors, offering meaningful
error messages, and designing forms to lessen the user’s cognitive load
are going to directly affect your bottom line.

For example, offering inline validation (checking the form data for
validity as a user enters it) and providing help text in context can help
users more confidently enter the correct information in form fields.
The Microsoft account sign-up form shown in Figure 2-10 illustrates
both of these in action.

56 | Chapter 2: Navigating the Uncertain Web

Figure 2-10. Creating a Microsoft account with inline validation and
contextual help

Support Compatibility with Current and Future User
Agents (Including Assistive Technologies)
I hope you recognize this concept at this point. This is, basically, the
point of the book. I want you to produce sites that will work on ev‐
erything that understands HTML now and in the future.

The fact that the first website ever made still works is a guiding prin‐
ciple here. Don’t back yourself into a corner, and you’ll be sitting pretty
in 2025.

I will say that getting a basic understanding of how assistive technol‐
ogies work and how they may work in the future is a good idea to add
onto the understanding of the browser and device market. You can
implement these rules without testing. The Web is full of active guide‐
lines and conformance checkers for building accessible sites, but it
makes a big difference when you really understand how these markup
and code patterns actually interact with assistive technologies.

Don’t Stop There
All the WCAG guidelines are going to make your site more robust for
all users. The previous examples were just a few cherry-picked ones
that were obviously tied into some of the principles we’re exploring
here and had obvious benefit for all users.

Also, in addition to these existing rules, it’s important to assess the
compatibility and accessibility impact of new technologies and tech‐

Embrace Accessibility | 57

http://bit.ly/uw-first

nology patterns. Issues like the 300ms delay for tap/click on touch
devices (to disable or not disable) and the use of icon fonts, which may
or may not load in older browsers, are multifaceted problems. You
need to actively assess these issues as they surface, or you could end
up with an accessibility nightmare that bleeds across to all your users.

Lose Your Technology Biases
Tech folks generally have great hardware and new, high-powered
smartphones and tablets. Most other people in the world don’t. Tech
folks tend to forget that.

I know what you’re thinking. Your company is super cheap. They ha‐
ven’t bought you a new laptop in two years. You don’t even have a solid-
state disk drive.

Oh, the humanity.

Cheap is a relative measure. On the hardware side, even with compa‐
nies that are “cheap” with developer hardware, where the computers
might be two or even three years old, you’re not doing so poorly. Those
machines were high powered when they were new. They have a ton of
RAM and have had a corporate IT department whacking them into
shape with updates and maintenance. You probably have two huge
monitors and are on a monstrous network. The average consumers
are going to buy the cheapest machines they can find, and then they’ll
run them into the ground. There are certainly exceptions to this—
gamers come to mind—but for the most part, assuming great hard‐
ware is a mistake.

On the smartphone side, although there are certainly people across all
walks of life who upgrade their smartphones for full price, outside of
their contract (those lines outside the Apple store aren’t there because
everyone’s contract is up), there are a lot more gadget-obsessed people
in the technology space. I can’t even keep track of what phone some
of my friends have from month to month.

Technology people are also much more likely to own Macs than the
average consumer. Just 5% or 6% of the global desktop market is Apple,
but look around at the average tech conference, and it’s often a sea of
Macs. People are easily blinded to the reality that Macs remain a small
minority on the desktop.

Developer (derisively): “Who uses Windows anymore?”

58 | Chapter 2: Navigating the Uncertain Web

http://bit.ly/uw-click-delay
http://bit.ly/uw-click-delay
http://bit.ly/uw-icon-fonts

Me (sighing with an ache that would shake the cosmos): “More than
a billion people. That’s all. No need to worry about them, obviously.
Go back to optimizing the site for Safari on a brand new Macbook Air.”

None of these setups are anywhere close to the experience of the aver‐
age user. Thinking that the typical developer and designer experience
is at all “typical” and developing toward it is a longstanding problem,
one made much worse by the broad variation of devices, operating
systems, and browsers in the current ecosystem.

There are many examples of where this can be a real problem.

The iPhone Is the Only Mobile Experience
At the height of the iPhone’s dominance as a mobile platform, it was
typical to base mobile web designs on the interface and interaction
model of the iPhone.

I wasn’t a fan of that approach to begin with, as I think the Web should
embrace the Web, and not copy some other platform, especially one
that’s trying to strangle the Web.

It became an even worse idea as the iPhone rapidly ceded the title of
the dominant mobile platform to Google’s Android. Nowadays, with
Android up over an eye-watering 80% and iOS treading water, iPhone-
style web interfaces are obvious byproducts of a bygone era.

Let me share one specific example of why this was a problem beyond
the overall awkwardness of serving iOS-style designs to people who
are on some other OS. Knowing the design tribe’s deserved allegiance
to Apple, I’m sure the following has happened more than the few times
I’ve seen it.

As you probably know, iOS applications insert a back button into the
application UI. There’s only one button on the iPhone, so you need a
software back button to navigate. In a world where the iPhone is the
only game in town, inserting a back button into your web UI is there‐
fore a good idea. The thing is, the world is pretty blanketed in Android
phones right now, and every Android device has a back button built
in, either as a dedicated software button on the screen or as a physical
button on the device. All of them. It’s required, and it also gets used
all the time, so a back button in the UI of a web app, for an Android
user, is a foreign experience. You’re just wasting precious pixels. But
yet, people do it because the iOS experience is all they know.

Lose Your Technology Biases | 59

Closed. Won’t Fix. Can’t Reproduce.
“That animation is super fast on my machine.”

Another painful example of the trap that tech folks fall into is with
JavaScript performance.

Although there’s a lot of talk about being “jank free” and the web per‐
formance community has grown to be a real force in the industry, the
plain fact is most people don’t look critically at their application per‐
formance in enough devices to truly get a sense of how it runs. As we’ve
discussed, there are underpowered mobile devices, old desktops, and
old browsers aplenty out there waiting to expose problems with your
site. And really, with some of these setups, it’s not just a question of
poor performance. You can easily trip long-running script errors,
freeze the screen, and even crash the browser if you’re not careful. If
you think you’re getting a second look from a user whose browser you
just crashed, you’ve got another thing coming.

Now, obviously, there are simple code-optimization issues you can run
into when working in JavaScript that can cause problems no matter
what your setup is. Even in the latest Chrome, you can do things in
one pattern that might be 10, 20, or even 100 times slower than a
different pattern that produces the same output. It’s just that any of the
latest generation browsers are so fast that, coupled with good hard‐
ware, they’re going to mask problems that older browsers or crummy
hardware will choke on. It’s said so often that it’s a cliche, but the reality
is that it can “work on my machine” only to fail on some other hard‐
ware/browser combination.

Contrary to Popular Opinion, Internet Explorer Does
Exist
This has driven me nuts for more than 10 years (see Figure 2-11).
People don’t test enough in Internet Explorer.

60 | Chapter 2: Navigating the Uncertain Web

http://jankfree.org/
http://bit.ly/uw-long-running
http://bit.ly/uw-for-loop

Figure 2-11. More than 10 years of Internet Explorer logos

Trust me on this. Whether it’s Windows-based developers working all
day in Firefox or Chrome or developers on a Mac not wanting to fire
up Parallels, people don’t test in IE early or often enough.

That’s crazy.

I know it’s the bogeyman, but it remains a huge portion of the browser
market. Depending on where you look for your stats, it’s got a larger
market share than Firefox and Safari combined. Yet, people treat it like
an afterthought. This is less of a problem than it was six or seven years
ago because IE’s market share has halved, but it’s still a major issue
when you’re ignoring hundreds of millions of potential customers.

I’ve managed a lot of developers and projects over the years, and I’ve
had specific feedback on this issue from folks who worked for me on
several different occasions. This is especially problematic, as I’ve done
a lot of consulting and agency work for health-care companies, finan‐
cial services firms, and law firms. There’s a lot of Internet Explorer in
those industries. As I mentioned previously, it’s often the only browser
allowed on internal networks.

From a personal perspective, the single worst day of my life as a con‐
sultant was because of this phenomenon. One day, I returned to my
hotel (in the absolute middle of nowhere), after doing an all-day
workshop, ready to get dinner and then do my best to forget that I was
trapped in the middle of nowhere with nothing to do but cruise around
in my rented Toyota Yaris. Instead of that, I was blessed to discover
that another project I was managing had broken in Internet Explorer
before an important sprint deadline because a developer (Mac-based)
had checked in code (it turned out) with a trailing comma in a Java‐
Script object. That particular catastrophic error indicated that he
hadn’t even opened the site in Internet Explorer (the target browser

Lose Your Technology Biases | 61

for the organization we were working with) before checking his code.
If he had, he would have seen the site fail catastrophically.

And then he went away for the weekend.

Which meant I got to debug his code remotely, from a hotel room in
the absolute middle of nowhere.

Some people would blame IE for my crummy night, because it’s the
bogeyman. Two things about that thought. First, IE can’t win. They
lose when they don’t follow the specification, and they lose when they
do. It’s true. The ES3 specification didn’t allow trailing commas in ob‐
ject literals. Crazy that the IE implementation could be to the specifi‐
cation. Secondly, the developer is to blame because he didn’t test his
code and checked it in. Blaming IE for that is like blaming the rain for
getting you wet if you walk outside without an umbrella.

I think this behavior is at least part of the reason why people have such
a visceral dislike of IE, including later versions, which are actually quite
easy work with. Because so many people save IE for later in the de‐
velopment process, or downright ignore it, their only experience with
the browser is one of shock and betrayal.

If IE were constantly sneaking up on me and punching me in the face
because I wasn’t paying attention, I’d be mad at it, too.

I’ve actually started to see this same response start to creep into de‐
velopers who spend all day in Chrome when they decide to test in
Firefox. It’s not quite an epidemic yet, thankfully.

Embrace Empathy
Don’t blind yourself to what your audience actually is by assuming that
they are just like you. They’re not. Your average experience at work, at
home, or on your phone is almost certainly an optimal view of your
site. Make sure you look at it, really look at it, in every scenario you
can muster. Sure, we’re all guilty of demoing code under the best pos‐
sible circumstances. That’s natural. The thing is, that demo is the ideal
vision of your site. The thing you’re actually building, the down-and-
dirty version, is for people with a completely different relationship
with technology than yours.

Try to get in their shoes instead of assuming everyone else is in yours.

You can accomplish this in a few ways. If your company does user
testing or monitored usability sessions, sit in on them to see how your

62 | Chapter 2: Navigating the Uncertain Web

users actually interact with your site or application. This can be an
incredible experience and is often only seen from the design or user
experience side, so adding a development voice is a big deal for all
involved and can help you get a sense for what your users are all about.

Lose Your Stack Biases
I’ve done a lot of work creating standard baseline tools and documen‐
tation for frontend development, so you’d think I’d be the first person
to argue for setting up an optimal stack and sticking to it.

I’m actually not.

Although I do think limiting the number of available tools is useful
(because having everything available to everyone is just crazy), I don’t
think, in this day and age, proscribing a definitive frontend stack is
useful.

I’m a proponent of using the right tool for the job, so the search for
the “one stack to rule them all” seems like a waste of time to me. If you
craft a perfect stack for creating single-page apps and then end up
building a bunch of page-to-page content sites, you’ve wasted time and
resources with a stack that’s not suited for the work you’re doing.

Now, if you’re building a single monolithic product or site, you will
obviously settle on one stack, because you’ve just got the one thing to
build. But if you’re working on multiple projects or sites in a given
year, limiting yourself to the “one stack” is the wrong way to go.

Your users don’t care if your stack is clever. They don’t care how pow‐
erful your libraries are, how nifty your debugging tools are, or how
easily you can just whip up a demo. What they care about is the speed,
usability, look and feel, interactivity, and features. If your stack isn’t
adding to one of those, then you might be going down the road to stack
obsession.

Certainly having tools you’re comfortable with is important, but at the
end of the day developer comfort isn’t the most important part of this
equation. The experience of the users of your site trumps everything
else. Or at least it should. To that end, doing things like pushing 1 MB
of fancy framework JavaScript down the pipe on a site that’s meant to
be consumed on a mobile device over a potentially dicey connection
is simply a terrible idea. It doesn’t matter how easy it makes your life
if no one is actually going to use the site you’re going to build.

Lose Your Stack Biases | 63

http://html5boilerplate.com/
http://bit.ly/uw-ant-build
http://bit.ly/uw-code-standards
http://bit.ly/uw-code-standards
http://bp.sapient-lab.com/

This stack obsession manifests itself in many ways. Here are some of
them and ways you might want to short-circuit the impulse and better
serve your users.

jQuery
I’m a big fan of jQuery. Its fluent interface is a joy to work with, and
it’s done more than any other codebase to popularize JavaScript. Still,
one of the important reasons to use jQuery, beyond the interface, is to
smooth over cross-browser differences in JavaScript implementations.
These aren’t solely related to legacy Internet Explorer (Dave Methvin
actually says that “jQuery Core has more lines of fixes and patches for
WebKit than any other browser”); however, a lot of the main differ‐
ences are, so depending on your target audience and the skill level of
your team, you might be able to skip it. Although jQuery started off
as a lightweight alternative to beasts like Prototype, it’s still around 30
KB gzipped and minified. In order to save those bytes, it’s an option
to write raw JavaScript or potentially leverage a smaller, jQuery-like
library like Zepto.js (10 KB) instead. It might seem like a small gain,
but if you’re in the mindset of trying to save every possible byte, it is
an option.

Personally, I stick with it because I like using it and worry about saving
bytes in other places. The 30 KB will only be a noticeable download
over the very worst connections (2 GB or crowded WiFi), so it’s not a
place where I would look to optimize.

Use with Caution
Rick Waldron (TC39/Bocoup), Boris Zbarsky (Firefox), John-
David Dalton (Microsoft), and Paul Irish (Chrome) actually
put together a list of all the browser bugs the jQuery 2.*
branch fixes.

MVWhatever
One of the hottest areas of innovation on the frontend over the past
few years has been the creation of frontend model-view-controller
(MVC) style libraries and frameworks. Although many of them quib‐
ble about the acronym (MVVM, MVP), they all bring a common
backend pattern to the frontend and enable a new approach to fron‐
tend application development. Angular, Backbone, and Ember are all
popular entries in this space. They are powerful alternatives to the

64 | Chapter 2: Navigating the Uncertain Web

http://bit.ly/uw-fluent-interface
http://bit.ly/uw-methvin
http://bit.ly/uw-methvin
http://zeptojs.com/
http://bit.ly/uw-jquery2-branch
http://bit.ly/uw-jquery2-branch
http://angularjs.org/
http://backbonejs.org/
http://emberjs.com/

DOM-centric approach of libraries like jQuery and the general DOM-
based application development we’ve been practicing for many years.
Personally, I’ve spent the last couple of years working with Angular
regularly, and I love it. It’s fun, incredibly powerful, and has a strong,
Google-backed community surrounding it.

The thing is, these libraries and frameworks are really designed for
application development, so although they are super powerful tools,
they shouldn’t be grabbed for in every circumstance.

For example, using one of these libraries in place of tried-and-true
server-side templating for a content site doesn’t make sense. It’s very
much the same sort of pattern (variables from some data source are
plugged into some sort of text-based templating engine), but there are
no real benefits to doing it on the frontend.

When we first started learning about web performance, one of the
fundamental lessons was that most of the performance hits on the page
happened in the browser, not on the server. Templating on the server
wasn’t a performance problem for most people.

Why, then, are we rushing headlong to push functionality that was
handled perfectly well by the server down to the frontend? Why, when
the goal is to simplify and lighten the payload in the frontend, are we
willingly passing a task that was solved 15 years ago on the server to
the browser? Having to download a framework, as well as any other
dependencies, is going to slow your site down. Downloading Ajax re‐
quests with the content data, parsing it, and inserting it into the DOM
is also a performance penalty. We’ve learned to minimize the number
of DOM traversals and manipulations. Why add more when the server
can send a rendered page on the back of one HTTP request? It doesn’t
make sense.

Also, if, for some reason one of the JavaScript resources doesn’t load,
someone visits with an old browser, or someone visits with JavaScript
turned off, you might end up with nothing but a blank page. That’s
just awful.

Use these powerful frameworks responsibly.

Keep at Least One Eye on the Cutting Edge
“HTML5” is the buzzword of all buzzwords, but the specification you
can go read is actually an older snapshot of what WHATWG editor

Keep at Least One Eye on the Cutting Edge | 65

http://bit.ly/uw-html5

Ian Hickson calls the “living standard.” The work happening at the
WHATWG is ongoing, important, and is often solving problems that
are keeping us up at night, right now.

Polywho?
In case you were wondering, the term “polyfill” was coined by
Remy Sharp. He describes his reasoning for the name in the
blog post “What Is a polyfill?”

Paul Irish provides a nice definition of a polyfill: “A shim that
mimics a future API providing fallback functionality to older
browsers.”

Alex Sexton coined the term “prollyfill” for “a polyfill for a not
yet standardized API.”

Both of these terms and associated concepts are important ones
when dealing with emerging APIs. If you follow the mailing
lists, you will see the availability of potential polyfill options is
often a factor in deciding whether or not an API is viable.
Although it’s not the only factor, there are many ES6 features
that aren’t possible to be polyfilled (although they can be han‐
dled with preprocessors like TypeScript).

Polyfills will be discussed in more depth in Chapter 3.

We’ve already talked about the standards process a little bit. When it
works, it goes a little something like this:

1. Someone comes along and proposes some feature along with a
well-defined use case.

2. Everyone comes together—the standards people, reps from the
browser vendors, and experts from the front line working through
proposed solutions until a well-formed API surfaces.

3. The API will be published in a form that can be used as a blueprint
for development.

4. Browser vendors will go off and implement solutions available in
early release channels, like Chrome Canary or Firefox Aurora.

5. Developers who like living on the edge, including the wonderful
folks working as developer advocates at the browser vendors, will
work with the new feature giving feedback and honing the API.

66 | Chapter 2: Navigating the Uncertain Web

http://bit.ly/uw-hickson
http://bit.ly/uw-sharp
http://bit.ly/uw-prolly-tweet
http://bit.ly/uw-prolly-tweet

6. Feedback will be assimilated and eventually the feature will be
made available in the regular release channels free for all of us
to use.

Of course, it’s usually much messier than that. Web standards can be
downright ugly at times. The multiyear, multiproposal, multicontro‐
versy responsive images slow-motion trainwreck is a prime example
of that. Four sometimes acrimonious years of proposals, setbacks,
counterproposals, and flame wars have finally brought us a full suite
of solutions to the responsive image use case, but the journey has been
a tough one.

Still, no matter what sort of development you’re doing, you’ll have
some pet problem that you’re looking to tackle. Whether it’s responsive
images, or mechanisms to manage loading script files, or techniques
for measuring web performance, there’s going to be one potential fea‐
ture that you’re going to really care about. At worst, keeping tabs allows
you to plan ahead and learn about the potential polyfill or prollyfill
solutions as early as possible. At best, you can influence the process by
taking part in the discussion, giving feedback on the API, doing early
tests of the browser implementations, or writing a polyfill solution and
sharing it with the community. The closer you can get to the latter
scenario, the better, of course.

The good news is, if the new technology is one that has a reasonable
polyfill path, you can start using the new API immediately and reap
the benefits of native performance when the feature makes its way into
web browsers. You’ve been future-proofed (unless the specification
changes and that feature is removed).

We’ll look at this in more detail when we look at images in Chap‐
ter 6, where we talk about the long, strange (frustrating!) march of
responsive images through the standards process.

Spread Your Wings (and Question Your
Assumptions)
Hopefully this chapter has already gotten you thinking about the way
you’ve approached web development up until now. I’m assuming at
least half of you think I’m an idiot. If so, I must be onto something.
Whatever percentage of these concepts you agree with or feel are ap‐
plicable to you and your particular situation, the biggest takeaway is
the urge to question your assumptions. The things you hand-wave

Spread Your Wings (and Question Your Assumptions) | 67

away might just be fine. Or they may be a problem causing some per‐
centage of your users to have a crummy experience. You can’t know
the difference unless you take a second to really understand the issue.

Now that we’ve gotten the strategic approach to embracing uncertainty
out of the way, it’s time to start looking at practical ways to improve
your odds of creating cool, compatible experiences.

The next chapter introduces feature detection, Modernizr, and poly‐
fills, which will be used throughout the rest of the book. It’s a small
chapter, but is very important for the concept of feature detection, for
the technical ins and outs of developing with Modernizr and using
polyfills. The remaining chapters will examine individual problems,
work through the issues with each, and then present a solution, or
range of solutions, that you can use going forward.

Fun times ahead, I promise you.

68 | Chapter 2: Navigating the Uncertain Web

CHAPTER 3

Lay a Foundation for the Future
with Feature Detection and

Polyfills

I am the last and highest court of appeal in detection.

— Sherlock Holmes, The Sign of the Four

One of the greatest challenges in developing modern websites is man‐
aging the broad range of device and browser capabilities present in the
current ecosystem. One of the core ways to do this is via feature de‐
tection, testing for the presence of specific web platform features. This
is compared to doing browser detection by looking for specific char‐
acteristics in the user agent string and coding for some specific version
of Mobile Safari or Internet Explorer. That’s the way people used to do
things. There are still some use cases for doing browser detection (one
is actually covered in the next chapter), but most of the time you want
to think about feature detection, which is the concern of this chapter
and is the more commonly recommended approach in modern web
development.

Although you can roll your own solutions, the best option for feature
detection on the modern Web is with an open source project called
Modernizr. Modernizr is a feature-detection library that makes it easy
to test for dozens of web platform features, with a catalog of features
growing by one or two a month. This chapter will look at feature de‐
tection in general, introduce Modernizr, show you how to download
and customize the library, and illustrate three common patterns for

69

http://modernizr.com

leveraging Modernizr’s feature detection in order to smoothly work
around a range of browser capabilities.

If you’re looking to do broadly available sites and applications, then
mastering Modernizr is vital to your well-being.

This chapter will also look at the concept of polyfills and how they can
help you experiment with bleeding-edge features in a future safe way.
Additionally, you’ll learn about common features that need testing and
how to handle common support scenarios using polyfills or other
fallbacks. Elementary (Figure 3-1).

Figure 3-1. Sherlock Holmes, illustration for “The Adventure of the
Cardboard Box” (Sidney Paget, 1893; courtesy of Toronto Public Li‐
brary)

Feature Detection
Let’s start with a look at the basic concepts behind feature detection
and also look at how feature detections are written.

70 | Chapter 3: Lay a Foundation for the Future with Feature Detection and Polyfills

http://bit.ly/uw-sherlock
http://bit.ly/uw-sherlock

The core concept of feature detection is actually ancient in web years.
We were the cool guys testing against document.all and docu
ment.layers, the two different and competing methods of accessing
DOM elements, back when DHTML was the hotness.

I speak of the 1990s.

Say you wanted to write a cross-browser implementation of the (at the
time) fancy new DOM method, document.getElementById. You
could do something like the following and test against the W3C meth‐
od, the Internet Explorer method, document.all, or the abominable
Netscape property lookup in the document.layers collection, and
then return the proper element:

function byId(id) {

 if (document.getElementById) {

 return document.getElementById(id);

 }

 else if (document.all) {

 return document.all[id];

 }

 else if (document.layers) {

 return document.layers[id];

 }

}

The importance of feature detection has grown over the years. Back
when the browser landscape was binary and an obsessive developer
could basically keep the entire web platform in (human) memory, it
was very useful. These days? With thousands of pages of specifications
fragmented over the browser spectrum we examined in Chapter 2,
detecting for web platform features is going to help stop you from
going insane. With the Open Web Platform changing daily, and pow‐
erful new features coming online all the time, the ability to use the
latest and greatest features safely is often completely dependent on the
ability to test for features easily and adjust your approach accordingly.
There’s no way for even the most obsessive developer to know which
browser supports which features on what platform, and there’s no way
to know what the future holds for features and browser support. You
have to rely on a system to manage the use of Open Web Platform
features. Feature detection is that system.

Feature detection itself has gotten more complicated. In many cases
the basic pattern of testing directly against the presence of an object
or method on the window or document still holds, but there are many
places, like testing for EXIF Orientation in JPEG images, native form

Feature Detection | 71

validation, or the autoplay attribute on HTML5 video elements,
where different techniques need to be used. The breadth of different
features, different implementation details, complexity of features, and
plain-old browser bugs can all conspire to make your life difficult
when trying to figure out whether or not a user can handle a specific
feature.

Looking at a More Complicated Feature Detection
For a playful, but still instructive example, testing for native Emoji
rendering support in browsers is more complicated than the average
feature detection. Because you need to test for the full cartoon ren‐
dering of the glyph, and not just a flat character, the test fires up an
instance of the Canvas 2D context to read in the Emoji character and
test that a selected pixel is in color:

function testEmoji() {

 var node = document.createElement('canvas');

 if (!(node.getContext && node.getContext('2d'))) {

 return false;

 }

 var ctx = node.getContext('2d');

 ctx.textBaseline = "top";

 ctx.font = "32px Arial";

 //"smiling face with open mouth" emoji

 ctx.fillText('\ud83d\ude03', 0, 0);

 return ctx.getImageData(16, 16, 1, 1).data[0] != 0;

};

So the test for this feature runs seven lines and requires knowledge of
a couple of different technologies (Canvas and Emoji themselves) to
be properly crafted. There are many other web features that require
the same or even a greater level of understanding. I don’t care who you
are, there are going to be examples of advanced feature detection that
are going to be outside your area of expertise. If you run into one of
those, like the three mentioned previously, or other examples, like
testing for CSS Hyphens, formulating your own test can be a hair-
pulling experience.

Thankfully, there’s an answer for that complexity in the form
of Modernizr.

72 | Chapter 3: Lay a Foundation for the Future with Feature Detection and Polyfills

http://bit.ly/uw-emoji
http://bit.ly/uw-emoji-test
http://bit.ly/uw-css-hyphen

Using Modernizr
Modernizr allows you to simply and (mostly) efficiently test for web
platform features without having to break down the individual spec‐
ifications for every feature yourself.

Modernizr Doesn’t Actually Modernize Anything
Modernizr is a terrible name for this library, because it im‐
plies that the library itself “modernizes” older browsers into
supporting new web technologies. This is a common misun‐
derstanding. Although that would be amazing, that’s not what
Modernizr does. With the exception of allowing you to ren‐
der HTML5 elements in older versions of Internet Explorer,
Modernizr is simply a feature-detection library.

It’s going to report the presence or absence of features. What
you do with that information is up to you.

Let’s look at what Modernizr does do and how you can use it to
smoothly enhance the experience for users with advanced browsers
while still maintaining a good browsing experience for users who
might not have access to the best technology.

One of the ways that Modernizr helps with maintaining a good brows‐
ing experience specifically for users of older versions of Internet Ex‐
plorer (which we can all agree isn’t the best technology) is with an
optional component that helps ensure that new HTML5 elements can
be styled and scripted safely. This component isn’t strictly related to
feature detection, but it’s historically been a core feature of Modernizr,
and it’s an important option to keep in mind if you’re planning on
supporting older versions of Internet Explorer. Let’s learn about it.

Old IE: The One Thing Modernizr Does Modernize
There are few lines of code that have had more influence on web de‐
velopment than the HTML5Shiv. Back in the DHTML days, there was
the “Netscape Navigator resize fix” which allowed us to experiment
with the separation of content and style with semantic markup and
CSS by fixing a horrible bug with absolutely positioned elements in
Netscape Navigator 4 breaking when the page was resized. Macrome‐
dia even bundled the fix into Dreamweaver. It would be automatically
inserted whenever you added a div to the document. It was everywhere
and got us started on the path to “table-free” layouts. Still, considering

Using Modernizr | 73

the fact that HTML, CSS, and JavaScript almost died in favor of Flash
after the DHTML era fizzled out, and, conversely, HTML5 has rushed
to take over the planet in the past few years, I think the score is fully
in the HTML5Shiv’s favor.

So, what is it? The HTML5Shiv is a small script that enables the script‐
ing and styling of HTML5 elements in older versions of Internet Ex‐
plorer. Internet Explorer 8 and earlier completely ignored “unknown”
elements. If you were trying to get ahead of the curve and use the
<article> element, things were going to get weird in Internet Ex‐
plorer. You couldn’t style the element directly, and it was dead to the
browser in the cascade. Thankfully, through a serendipitous chain of
events, which you can read all about in Paul Irish’s article, “The History
of the HTML5 Shiv,” it was discovered that by simply using the DOM
method document.createElement to create a single example of any
elements you wanted to use in the page, IE would happily allow you
to script and style previously unknown elements. This allowed the
immediate adoption of the new markup patterns well in advance of
any sort of formal support in browsers and without worry about IE
causing catastrophic problems.

Modernizr includes this script in most common builds. You’ll learn
about the different build options for Modernizr in “Customizing
Modernizr” on page 80, but for now, just assume that unless you’ve
specifically ignored it, Modernizr probably includes the HTML5Shiv,
and you should be OK with using new HTML5 semantic elements,
even if you have to support older versions of Internet Explorer.

Using (and Not Using) Modernizr
At its most basic level, to “use” Modernizr, you just need to include it
in your page. What’s more, if all you’re really after is support for <sec
tion> and <article> in older versions of IE, then that’s it. You’re done.
You don’t have to write another line of code.

Now, if supporting Internet Explorer 8 and earlier is all you’re really
looking to do and you’re not taking advantage of any of the other
features Modernizr offers, it would actually be better to skip Modern‐
izr entirely and simply use the HTML5Shiv without the Modernizr
wrapper and global Modernizr object. This is something that does
happen, so it’s worth taking a look at this configuration.

74 | Chapter 3: Lay a Foundation for the Future with Feature Detection and Polyfills

http://bit.ly/uw-html5-shiv/
http://bit.ly/uw-html5-shiv/

The following sample shows what using the HTMLShiv directly would
look like. By including the HTML5shiv, which is available from the
project homepage, the text will read “green only if shivved” in a nice
green color, even in IE8 and earlier. The screenshot shown in
Figure 3-2 illustrates this.

The code is simple enough. An HTML5 article element wraps two
span elements. The span elements have classes that show or hide and
color the content based on the ability of the browser to recognize
article in the cascade:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <link rel="stylesheet" href="html5shiv.css">

 <!--[if lt IE 9]>

 <script src="html5shiv.js"></script>

 <![endif]-->

 </head>

 <body>

 <article>

 <h1>The Uncertain Web</h1>

 <h2>Green only if

 Not shivved</h2>

 </article>

 </body>

</html>

A simple CSS file (html5shiv.css, as referenced in the HTML) drives
the difference. Browsers that can pick up the article, which includes
Internet Explorer with the HTML5Shiv, hide the notshivved span,
show the shivved span, and color the h2 element green (Figure 3-2):

h2 .shivved {

 display:none;

}

h2 .notshivved {

 display:inline;

}

article h2 .shivved{

 display:inline;

}

article h2 .notshivved {

 display:none;

}

article h2 {

 color:green;

}

Using Modernizr | 75

http://bit.ly/uw-html5-shiv-use
http://bit.ly/uw-html5-shiv-use

Figure 3-2. A screenshot with the HTML5Shiv

Without the HTM5Shiv, it shows “Not shivved” in the default black
text (Figure 3-3).

Figure 3-3. A screenshot without the HTML5Shiv

So, to sum up, include the script and semantic elements work in older
Internet Explorer versions. It really doesn’t get much easier than that.

You Might Want to Inline the HMTL5Shiv
If this is your configuration, you might want to inline the con‐
tents of the HTML5Shiv script instead of including it as a
separate file. This will be slightly faster because you will not
have to make the extra network request for the HTML5Shiv
file.

So now that you’ve seen what the HTML5shiv does and when it makes
sense to skip Modernizr, let’s take a look at using it properly. Unless
you’re only using semantic elements, you’re going to want to take ad‐
vantage of the feature detection options it offers.

76 | Chapter 3: Lay a Foundation for the Future with Feature Detection and Polyfills

Feature Detection with Modernizr
Now that we’ve seen the exception, let’s look at the more common case
of taking advantage of what Modernizr has to offer. Let’s first examine
what Modernizr does to the page. It makes important changes to your
document that you need to understand to fully embrace what it has
to offer.

The Other Exception
It’s worth pointing out that if you’re only using one or two
feature detections from Modernizr, it’s possible to skip the li‐
brary itself and just crib the feature detection logic from the
project without any of the other pieces of the framework. I’m
happy to leverage Modernizr because I don’t want to do a ton
of plumbing if I don’t have to, but if you’re more enterpris‐
ing, it’s worth keeping in the back of your mind.

The following HTML page includes the custom build of Modernizr
that comes with the HTML5 Boilerplate project. It’s a curated build
that includes common tests. There are two things to note in this ex‐
ample. There’s a "no-js" CSS class on the HTML element, and Mod‐
ernizr is loaded in the head. If JavaScript is available, Modernizr will
remove the no-js class. If it’s there, it’s useful because it’s a CSS hint
that JavaScript isn’t available in the browser. Modernizr is loaded in
the head, as opposed to the bottom of the body element, because it
needs to perform its tests as soon as possible, in order to, among other
things, avoid a flash of unstyled content (FOUC) and provide the ear‐
liest warning that certain features aren’t available:

<!DOCTYPE html>

<html class="no-js">

 <head>

 <meta charset="utf-8">

 <script

 src="../_assets/js/vendor/modernizr-2.7.1.min.js">

 </script>

 </head>

 <body>

 <h1>The Uncertain Web</h1>

 </body>

</html>

So what happens when it runs? Here’s the same page transformed by
Modernizr when run in Google Chrome. Note the CSS classes on the
HTML element. Each of these classes represents the positive result of

Using Modernizr | 77

http://html5boilerplate.com/
http://bit.ly/uw-fouc

a Modernizr test, indicating, with a CSS class, that the feature
is available:

<html class=" js flexbox canvas canvastext webgl touch

geolocation postmessage websqldatabase indexeddb hashchange

history draganddrop websockets rgba hsla multiplebgs

backgroundsize borderimage borderradius boxshadow textshadow

opacity cssanimations csscolumns cssgradients cssreflections

csstransforms csstransforms3d csstransitions fontface

generatedcontent video audio localstorage sessionstorage

webworkers applicationcache svg inlinesvg smil svgclippaths"

style="">

 <head>

 <meta charset="utf-8">

 <script

 src="../_assets/js/vendor/modernizr-2.7.1.min.js">

 </script>

 </head>

 <body style="">

 <h1>The Uncertain Web</h1>

 </body>

</html>

Here’s the same document after running in Internet Explorer 7. As you
can see, the prefix "no-" is attached to the majority of the classes, in‐
dicating a series of failing tests:

<html class=" js no-flexbox no-canvas no-canvastext no-webgl

no-touch no-geolocation postmessage no-websqldatabase

no-indexeddb no-hashchange no-history draganddrop no-websockets

no-rgba no-hsla no-multiplebgs no-backgroundsize no-borderimage

no-borderradius no-boxshadow no-textshadow no-opacity

no-cssanimations no-csscolumns no-cssgradients no-cssreflections

no-csstransforms no-csstransforms3d no-csstransitions fontface

no-generatedcontent no-video no-audio no-localstorage

no-sessionstorage no-webworkers no-applicationcache no-svg

no-inlinesvg no-smil no-svgclippaths">

 <head>

 <meta charset="utf-8">

 <script

 src="../_assets/js/vendor/modernizr-2.7.1.min.js">

 </script>

 </head>

 <body style="">

 <h1>The Uncertain Web</h1>

 </body>

</html>

Modernizr also creates a Modernizr object in the global JavaScript
namespace, which in addition to several other methods and properties
that you’ll learn about in “Additional Modernizr Methods” on page 85,

78 | Chapter 3: Lay a Foundation for the Future with Feature Detection and Polyfills

offers a Boolean test for each of the tested features. The following code
sample outputs the full set of tests in this custom build:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <script

 src="../_assets/js/vendor/modernizr-2.7.1.min.js">

 </script>

 </head>

 <body>

 <h1>The Uncertain Web</h1>

 <script>

 for (var prop in Modernizr){

 console.log(prop+": "+ Modernizr[prop])

 }

 </script>

 </body>

</html>

The output of the console is visible in Figure 3-4. Chrome, the browser
in this example, supports all of the tested features.

Figure 3-4. Console output showing the result of Modernizr tests in
Google Chrome

This information can be used in a couple of different ways. These tests
can be used to fork code, just like we did when testing for docu
ment.getElementById back in the DHTML era, or you can use these
tests to alternatively load a polyfill solution for the missing feature.
Before we review in depth how to use the tests, let’s look at how you
can get your hands on a copy of Modernizr that makes sense for you.

Using Modernizr | 79

Customizing Modernizr
There are two ways you’re going to use Modernizr. You will want to
have a version for development and one version for production. For
development, you could use the custom build in HTML5 Boilerplate,
as I’ve done here, or the development version that Modernizr itself
provides, which includes all of their core tests for development. Having
all of these tests run every time incurs a slight performance penalty,
but for development, it’s useful to be able to test quickly against a fea‐
ture without having to adjust your build of the library. On the other
hand, for production, you’d want to include tests for just the features
you’re going to use in order to speed up the loading of your site.

For example, if you’re working with SVG and need to work with older
versions of Internet Explorer or the Android browser, you would cre‐
ate a custom build that includes the HTML5Shiv (for older IE) and
the test for SVG. You can do this on the Modernizr download page.

The builder is pretty easy to use. Simply select your features
(Figure 3-5) and download your custom copy.

Figure 3-5. Downloading a custom copy of Modernizr

Now that you know how to get a custom version that includes just the
tests you need, let’s put it to use.

80 | Chapter 3: Lay a Foundation for the Future with Feature Detection and Polyfills

http://bit.ly/uw-modernizr-dev
http://modernizr.com/download/

Using Modernizr’s Tests
This section will show you how to use the Modernizr tests in three
different ways:

• Using the CSS classes

• Using the Modernizr object to test against specific properties and
fork your code

• Using the Modernizr object to test and load a polyfill solution

Using the Modernizr CSS classes is very straightforward. As the fol‐
lowing example shows, you can easily use the svg class on the HTML
element to style the markup on your page. In this case, you will con‐
ditionally load/not load an SVG image in the background of a div
element. If Modernizr finds SVG support and places the svg class on
the HTML element, then the background of the div will be an SVG
image. Otherwise, without SVG support, it’s going to be a PNG. Al‐
though older browsers won’t get the potential scaling or size benefits
of an SVG image, they will get a background image. Nothing breaks.
Newer browsers get all the benefits of SVG. Modernizr makes this easy.
Here’s how it’s done:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <script src="modernizr.custom.52324.js">

 </script>

 <style type="text/css">

 .HTML5 {

 width: 600px;

 height:650px;

 background-position: center bottom;

 background-repeat: no-repeat;

 text-align: center;

 }

 .svg .HTML5 {

 background-image:url(HTML5-logo.svg);

 }

 .no-svg .HTML5 {

 background-image:url(HTML5_Logo_512.png);

 }

 </style>

 </head>

 <body>

 <h1>The Uncertain Web</h1>

Using Modernizr | 81

 <div class="HTML5"><h2>HTML5 is the best</h2></div>

 </body>

</html>

Similarly, using the Modernizr object to test for browser features in
JavaScript is pretty easy as well. As the following code sample shows,
as soon as you load your custom version of Modernizr, the Modern
izr.svg test is available. In this sample, the Modernizr.svg property
is used to conditionally insert an SVG element into the page and bind
a jQuery event to the circle element, which changes its fill color
from hot pink to a very corporate blue on click. If SVG isn’t available,
then an img element is inserted into the document, and a click handler
is attached, which changes its src to a blue image:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <script

 src="modernizr.custom.52324.js">

 </script>

 </head>

 <body>

 <h1>The Uncertain Web</h1>

 <div id="svg"></div>

 <script src="../_assets/js/vendor/jquery-1.11.0.min.js">

 </script>

 <script>

 $(document).ready(function(){

 if (Modernizr.svg){

 $("#svg").load("circle.svg");

 $("#svg").on("click","circle",function(){

 $(this).attr("fill","#003366")

 })

 } else {

 $("#svg").append("");

 $("#svg img").on("click",function(){

 $(this).attr("src","circle-blue.png")

 })

 }

 })

 </script>

 </body>

</html>

Finally, the Modernizr object can be used to test against web platform
features, and using the optional Modernizr.load utility (or your script
loader of choice), load polyfills scripts to fill in functionality for older
browsers. In this example, there is a custom build of Modernizr that

82 | Chapter 3: Lay a Foundation for the Future with Feature Detection and Polyfills

http://bit.ly/uw-modernizr-load
http://bit.ly/uw-mod-custom

includes a test for the input element’s placeholder attribute. Using
Modernizr.load to test against Modernizr.placeholder, a polyfill
called Placeholders.js is loaded if the test fails:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <script src="modernizr.custom.42574.js"></script>

 <script>

 Modernizr.load({

 test: Modernizr.placeholder,

 nope: 'placeholders.min.js'

 });

 </script>

 </head>

 <body>

 <h1>The Uncertain Web</h1>

 <form>

 <div>

 <label for="text">Placeholder:

 <input type="text"

 placeholder="This is example text"></label>

 </div>

 </form>

 </body>

</html>

You’re not required to use Modernizr.load, of course. It’s actually be‐
ing pulled out of the core build of Modernizr for version 3.0 (which
feels like it’s been ready to drop any day for two years now). You can
use any script-loading solution you like, including just using docu
ment.write to insert the script tag into the page. Whatever tool you
use, the pattern remains basically the same. Test for the feature, and if
the test fails, insert the polyfill script.

These three different examples represent the common ways you’ll use
Modernizr.

The benefits and drawbacks of the polyfill option are important to
grasp, so let’s take a look at the general topic of polyfills in a little bit
more detail.

Cross Browser Polyfills
One of the best, somewhat unsung, parts of the Modernizr project is
the collection of HTML5 Cross Browser Polyfills that the community
maintains on the project wiki. If you’re looking to use a new CSS,

Using Modernizr | 83

http://bit.ly/uw-placeholders
http://bit.ly/uw-modernizr-load-pulled
http://bit.ly/uw-html5-cbp

HTML, or JavaScript feature, there’s a chance that you can find a poly‐
fill for the feature on the Modernizr wiki. This is invaluable. Polyfills
have allowed us to move forward with new technologies without leav‐
ing older browsers behind. This, like the HTML5Shiv, has allowed
HTML5 to grow and prosper much faster than anyone initially ex‐
pected. Several, like the one for the humble placeholder attribute you
saw in the previous section, or the not-so-humble Flash and VML-
based polyfills for SVG and Canvas support in older versions of IE,
have been standard options for me for years. I couldn’t have gotten by
without tools like FlashCanvas, a flash-based Canvas polyfill, or Ra‐
phaël, an SVG-authoring library that automatically polyfills for SVG
in older versions of Internet Explorer. They’ve been great to work with
and have allowed us to do things we couldn’t have done otherwise,
without shutting out 10–40% of our audience.

There is a potential dark side, however. Polyfills, depending on the
underlying technology used to create the fallback feature, can at times
be more trouble than they’re worth. Performance, maintenance, and
bug fixing are all made harder with a dependency on polyfills. The
issues that arise are illustrated perfectly in this Stack Overflow answer
from Jason Johnston, the creator of the CSS3 Pie project, to the ques‐
tion “Why are CSS3 PIE and other similar scripts not in use every‐
where?” CSS3Pie, a polyfill for CSS3 features in Internet Explorer, is
an ingenious piece of code that delights people when they first en‐
counter it. It also has a deserved reputation for performance issues:

1. They do incur a certain performance cost. CSS3 PIE in particular
starts to create a noticeable rendering delay after use on about
two dozen elements (in my experience, YMMV.) For that reason
its use on large pages might cause a larger rendering delay than
the time saved downloading image assets.

2. They start to show bugs with complex DOM changes. Lots of
animation, showing/hiding, etc. can sometimes cause PIE to get
out of sync.

3. Related to #2, the added layer of abstraction (and its associated
bugs) can become a detriment on large development teams with
a complex codebase. If you start spending more time debugging
the abstraction than it would take to simply create rounded cor‐
ner images, then the tool is getting in the way.

— Stack Overflow user lojjic
 Stack Overflow Question: Why are CSS3 PIE and other similar

scripts not in use everywhere?

84 | Chapter 3: Lay a Foundation for the Future with Feature Detection and Polyfills

http://flashcanvas.net/
http://css3pie.com/
http://bit.ly/uw-johnston-css3pie
http://bit.ly/uw-johnston-css3pie

So when you’re trying to look at the technology stack for your appli‐
cation and are looking to use some cutting-edge options, keep the
polyfill option in mind. Modernizr makes it easy to conditionally load
resources, so take advantage of that. Also, just because it’s easy doesn’t
mean you have to do it. There are plenty of opportunities to replace
certain features or let certain design elements, like rounded corners
(to pick my favorite example), degrade in older browsers. It takes some
care, but it’s possible to balance the developer ergonomics that Mod‐
ernizr and polyfills provide with user experience goals and frontend
performance.

Additional Modernizr Methods
In addition to the core tests, Modernizr also offers some utilities and
extensibility options that help manage the minefield of modern
development.

Modernizr.prefixed()

Vendor or browser prefixes are string prefixes (e.g., -webkit- or -
moz-) to CSS properties that, theoretically, allow browsers to experi‐
ment with features but still retain the ability to change their mind
about implementation details before the feature is finalized. It didn’t
really work out that way in practice. What’s worse is they’re still some‐
thing to manage in your code. In CSS, they are relatively easy to deal
with, as you can just stack the properties, and the browser will under‐
stand the one that it’s meant to read:

.box_scale {

 -webkit-transform: scale(0.8); /* Chrome, Safari 3.1+ */

 -moz-transform: scale(0.8); /* Firefox 3.5+ */

 -ms-transform: scale(0.8); /* IE 9 */

 -o-transform: scale(0.8); /* Opera 10.50-12.00 */

 transform: scale(0.8); /* Standard! */

}

CSS preprocessors, like SASS and LESS, make this easy, but even writ‐
ing CSS by hand is not too much of a hardship, especially if you write
one class for certain effects and then apply them as needed to indi‐
vidual elements.

In JavaScript, things are less straightforward because you’d have to
actually test against every possibility, every time you wanted to adjust
one of the potentially prefixed features. You can work around this by
liberal use of predefined CSS classes or maybe writing CSS classes into

Using Modernizr | 85

http://bit.ly/uw-vendor-prefix

a style element on the fly, but none of those options are as flexible as
being able to directly manipulate properties of the element’s style
object. Modernizr.prefixed() allows you do to this. This method
returns the correct (prefixed or nonprefixed) property name variant
of your input for the current browser. To use it, you simply call Mod
ernizr.prefixed with the target property as an argument and use
that result in bracket notation to look up the required property:

$('#elem').on("click",function() {

 var transform = 'scale(0.8)';

 this.style[Modernizr.prefixed('transform')] = transform;

});

Modernizr.prefixed also allows you to find prefixed DOM properties
and methods by passing in a second argument. For example, passing
in requestAnimationFrame as the targeted method and window as the
object to search through, would return DOM method wrapped in raf
in supporting browsers:

window.raf = Modernizr.prefixed('requestAnimationFrame', window)

 || function(callback){

 window.setTimeout(callback, 1000 / 60);

}

As you can see, this is a nice, clean way to work around the inconven‐
ience of browser prefixes.

Modernizr.mq()

Modernizr.mq provides a JavaScript method to test a given media
query against the current state of the document. It’s available as an
option on the download page.

For example, the following test queries, for all media, whether or not
the page is at the max-width of 768px, and on page load and resize,
writes the result of the test to the screen:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <script src="modernizr.custom.05753.js"></script>

 </head>

 <body>

 <h1>The Uncertain Web</h1>

 <h2></h2>

 <script

 src="../_assets/js/vendor/jquery-1.10.2.min.js">

86 | Chapter 3: Lay a Foundation for the Future with Feature Detection and Polyfills

 </script>

 <script>

 function maxWidthtest(){

 if (Modernizr.mq('all and (max-width: 768px)')){

 $("h2").text("less than 768px");

 } else {

 $("h2").text("greater than 768px");

 }

 }

 $(document).ready(maxWidthtest);

 $(window).on("resize",maxWidthtest);

 </script>

 </body>

</html>

Modernizr.mq also allows you to test for media query support. Using
a combination of Modernizr.load and Modernizr.mq would allow you
to conditionally load respond.js, a media query polyfill library:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <script src="modernizr.custom.05753.js"></script>

 <script>

 Modernizr.load({

 test: Modernizr.mq("only all"),

 nope: "respond.min.js"

 });

 </script>

 </head>

 <body>

 <h1>The Uncertain Web</h1>

 </body>

</html>

This is a nice feature when working on responsive sites, as you can use
the same vocabulary throughout development to identify breakpoints.

Managing the Undetectables
There are certain web features that aren’t detectable by Modernizr.
There’s even a Modernizr wiki page dedicated to them. There can be
different reasons for this. Performance can be one. Doing some of the
video and audio element tests, for example, would require loading a
video or audio file. That’s really not feasible to test before the end of
the head of the document. Others are blocked by no clear implemen‐
tation hook to test against, like the color and date input types. Still
others are blocked by buggy implementations. You can test against the

Using Modernizr | 87

http://bit.ly/uw-respondjs
http://bit.ly/uw-undetectables

presence of the object, but if the feature doesn’t behave the ways it’s
expected to behave, then the test is useless.

This last issue creeps into (mostly) reliable tests as well. For example
the @font-face test includes a user agent blacklist that improves the
fidelity of the Modernizr test by returning false for known problem
browsers.

There are also certain web features that aren’t so much impossible to
test as they are impossible to conceptualize a thing to test for. There’s
a lot of discussion on the Modernizr repo about how to reliably test
for a user with a touchscreen device. Part of this is due to the poorly
named Modernizr.touch test, which is actually a simple test for the
presence of the touch* family of events. They’ll be renamed to Mod
ernizr. touchevents moving forward, which will help somewhat, but
what people want out of Modernizr here is clearly a test that tells them
whether or not the user is a “mouse” user or a “touch” user. The answer
to this question is so complicated that smoke basically pours out of
people’s heads when they start to think about it. If someone were to
observe my behavior as I type these words, they would find it difficult
to pinpoint what kind of user I am. I’m on a Windows 8 laptop with a
touchscreen and a trackpad. I use both, all the time. Am I a mouse
user? A touch user? I’ve been known to add a pen and drawing tablet
to the device as well. What am I then? A pen user? If you can’t hope to
answer it watching me with human eyes, then what hope do you have
with JavaScript? Even if the question “Can this user ever use a
touchscreen?” can be answered, it might not be the right question to
ask. This particular issue is so large it will be covered in detail in
Chapter 5.

Generally, dealing with undetectable features can be handled in a few
different ways.

You can browser sniff

Back in the day, I would commonly sniff for IE6 using IE’s conditional
comments when working with 32-bit PNGs. I would simply swap out
the PNG for a transparent GIF with CSS. This isn’t foolproof, especially
because using the user agent string for browser sniffing isn’t as precise
as using conditional comments (which themselves are gone in Internet
Explorer 11 on), but it’s sometimes all you can do.

88 | Chapter 3: Lay a Foundation for the Future with Feature Detection and Polyfills

http://bit.ly/uw-user-agent-blacklist
http://bit.ly/uw-modernizr-touch
http://bit.ly/uw-conditional-comments
http://bit.ly/uw-conditional-comments

You can limit your use of these features to safe implementations

Basically, if you can shrug if the feature fails, then go ahead and use it.
The date input is a good example of this. If it’s supported, you get a
fancy date picker. If it’s not supported, it falls back to being a regular
text input. As long as you validate the date the user enters, you’ll be
fine either way.

Design robust systems that work in many different configurations

Don’t rely on any specific configuration. The touch versus mouse ex‐
ample will illustrate this in depth in Chapter 5, as do the image and
video markup patterns seen in Chapters 6 and 7. In general, the idea
is to always choose code patterns that allow your site to function in
legacy browsers. In the case of touch and mouse input, that means
ensuring you’re binding events to both touch and mouse events. With
the embedded media, that means that you provide fallback markup
and media formats for older browsers. Whatever technology you’re
using, the goal should be to provide something functional for everyone
that visits your site.

As you can probably guess, this concept will be covered throughout
the rest of the book.

Forgo the feature entirely

You may just have to skip over the feature entirely in order to ensure
that every user gets a usable experience. A color picker might be the
best example of this. If you’re expecting a user to be able to enter a
color, and you need to support the widest possible browser palette,
then you might have to skip the native color picker and go directly to
a JavaScript library that provides the same functionality. Expecting the
average user to be able to spit out a hex value into a text box is unre‐
alistic, so you need to ensure that the user has the ability to pick from
a full spectrum palette.

Handling undetectables with grace is one of the cornerstones of the
uncertain Web. Sometimes you truly can’t know about a certain fea‐
ture. Accepting that and solving the problem in a way that might not
be binary, but is the best possible solution for the broadest number of
your users is one of the concepts you need to take to heart to be suc‐
cessful on today’s Web.

Using Modernizr | 89

Common Feature Tests and Associated Polyfills
This section examines some of the most common features to test for
with notes on how these tests might fit into your own development.
These were identified as the 10 most popular features from the Mod‐
ernizr custom builder. I’ve grouped several thematically because the
way I approach each group is similar.

Modernizr.touch

That this is the number one test for Modernizr users is validation that
I’ve written the right book. You’ve already learned a little bit about the
complexity of this issue, and you’ll learn much more about this issue
in Chapter 5. For now, I’ll leave you with this warning from the Mod‐
ernizr source: “[Modernizr.touch] indicates if the browser supports
the Touch Events spec, and does not necessarily reflect a touchscreen
device.”

Modernizr.input

That this test is the second most popular is heartening to me, as I’ve
always felt that the new HTML5 form enhancements were neglected
by the development community in favor of sexier additions to the web
platform, like Canvas and Web Sockets. This test is actually an object
that exposes the following individual tests representing new HTML5
input attributes:

• Modernizr.input.autocomplete

• Modernizr.input.autofocus

• Modernizr.input.list

• Modernizr.input.max

• Modernizr.input.min

• Modernizr.input.multiple

• Modernizr.input.pattern

• Modernizr.input.placeholder

• Modernizr.input.required

• Modernizr.input.step

90 | Chapter 3: Lay a Foundation for the Future with Feature Detection and Polyfills

http://bit.ly/uw-modernizr-top
http://bit.ly/uw-modernizr-top

There are plenty of polyfill solutions available for these attributes.
You’ve already seen placeholder in action (albeit with the standalone
placeholder test) already.

Personally, I most often end up using a subset of these tests in concert
with other libraries or frameworks. I might use the placeholder test
to polyfill for the placeholder attribute, but I would use AngularJS’s
built-in form validation tools rather than relying on
Modernizr.input.required and a polyfill.

Modernizr.csstransitions, Modernizr.csstransforms3d, and
Modernizr.csstransforms

These three are an interesting case. Beyond being some of the most
interesting work being done in the CSS specification space, they’ve
also generated some of the greatest CSS demos of the past few years.
In the context of the uncertain Web, they’re also interesting because
they are a technology that I have zero faith in but will always leverage
where possible. Modernizr helps do that. For people with supporting
browsers, being able to leverage these new CSS3 technologies can
really help polish an experience, and in many cases, you can easily
create a decent fallback experience for people with browsers that can’t
keep up.

Modernizr.inputtypes

Like Modernizr.input, this test exposes an object featuring tests for
many of the new input types. The list is as follows:

• Modernizr.inputtypes.color

• Modernizr.inputtypes.date

• Modernizr.inputtypes.datetime

• Modernizr.inputtypes[datetime-local]

• Modernizr.inputtypes.email

• Modernizr.inputtypes.month

• Modernizr.inputtypes.number

• Modernizr.inputtypes.range

• Modernizr.inputtypes.search

• Modernizr.inputtypes.tel

Using Modernizr | 91

http://bit.ly/uw-polyfill-solutions

• Modernizr.inputtypes.time

• Modernizr.inputtypes.url

• Modernizr.inputtypes.week

Pesonally, with the exception of the input types that would throw up
a native datepicker in supporting browsers (date, datetime, datetime-
local, month, time), I don’t actually worry about whether or not a
browser can support email or url as an input type. At the end of the
day, these input types will fall back to acting like text inputs, so there’s
no danger in presenting them to your users—as long as you’re vali‐
dating your inputs.

For those inputs that would activate the native datepicker, I will either
use the tests and will polyfill with a stack suitable polyfill (e.g., jQuery
UI on a jQuery project or Bootstrap Datepicker on a Twitter Bootstrap
project) or will forgo native altogether and just use the library code to
have a single experience to manage.

Modernizr.canvas and Modernizr.svg

If you’re going to use SVG or the Canvas 2D API in any way that
matters, you should have a plan for how to deal with browsers that
don’t support these technologies. Because of that, these tests
are invaluable.

Most of the time, I use static content for older browsers. Charts, for
example, can often be generated automatically as part of a build pro‐
cess or on the server side and served as a JPG or PNG. It’s a more stable
approach, and you’re not overloading an older browser with a polyfill
technology that might tax its JavaScript engine.

That said, if the content needs to be dynamic, using these tests can
allow you to easily serve up polyfill solutions. For pure polyfill solu‐
tions, I’ve had success with SVGWeb for SVG and FlashCanvas for
Canvas. I was especially surprised by how well FlashCanvas handled
the majority of what we threw at it. These solutions are, by nature,
limited. Even when they’re actively maintained (as FlashCanvas is),
they’re always going to be behind the specifications and the browser
vendors, so if you can, look toward leveraging static content.

This is especially important with SVG because there is no polyfill sol‐
ution for SVG in Android 2.3 and older.

92 | Chapter 3: Lay a Foundation for the Future with Feature Detection and Polyfills

http://bit.ly/uw-datepicker
http://bit.ly/uw-datepicker
http://bit.ly/uw-bootstrap-datepicker
http://bit.ly/uw-svgweb
http://flashcanvas.net/

Modernizr.fontface

This is an especially important test for those of you looking to lever‐
age one of the many font icon sets out there like Font Awesome. If you
don’t have decent CSS fallbacks for browsers that don’t support @font-
face, you can really degrade the appearance and usability of your site.

Personally, I’ve never warmed to icon fonts for just that reason, but
they are appealing to many people, so this test is very important.

Modernizr.video

As you’ll see in Chapter 7 where I discuss video in depth, I don’t like
to handle video myself. My preference is to leverage a company that
does video for a living (YouTube, Vimeo, Brightcove, etc.) and let the
experts handle all the complexity of web video. Even if you’re looking
to go it alone, Chapter 7 will show you a different cross-browser ap‐
proach that doesn’t need this test.

“Frontend Development Done Right”
Modernizr and feature detection are cornerstones of your web devel‐
opment toolbox. Being able to quickly add tests for web platform fea‐
tures allows you to craft fallback solutions without too much trouble.
Whether you’re using a polyfill solution, wholly alternative content,
or forgoing features entirely, the JavaScript and CSS tests that Mod‐
ernizr provides are invaluable when you’re working on today’s Web.
Using the CSS classes and the tests available in the Modernizr Java‐
Script object, you can easily fork your code to handle edge cases or
conditionally load polyfills for older browsers. Modernizr allows you
to customize builds to include just the tests and tools you need for
your application. Modernizr also offers utilities for developing with
vendor prefixes and media queries in JavaScript.

Hopefully, this chapter will set you on the path to, as the Modernizr
folks say of their library, “frontend development done right.”

“Frontend Development Done Right” | 93

http://bit.ly/uw-font-awesome

CHAPTER 4

Selecting Responsive Design or
Another Mobile Experience

The control which designers know in the print medium, and often
desire in the web medium, is simply a function of the limitation of
the printed page. We should embrace the fact that the web doesn’t

have the same constraints, and design for this flexibility.
But first, we must accept the ebb and flow of things.

— John Allsopp

One of the places where embracing uncertainty matters most and is
most readily apparent to developers and designers is deciding how to
handle the full depth of devices and screen resolutions out there. Users
expect to be able get to your content and data with any device they’ve
got in their hands. How you satisfy that multiscreen requirement is a
major question facing any project these days. Balancing the desire for
beautiful designs, world-class usability, top performance, and the
maintainability of your platform are all factors that are going to come
into play.

I stole the above quote. Well, I didn’t steal it so much as copy its use as
the lead-in to some writing about responsive web design (RWD). It’s
a few sentences that capture the very heart of the Web that I want—a
flexible, universal medium. That sort of thinking embraces the Web
in ways that I completely endorse. It’s also 14 years old.

So, where did I crib it from? It’s the quote that introduces the article
that introduced RWD to the world.

That article appeared on May 25, 2010, when Ethan Marcotte pub‐
lished the directly named “Responsive Web Design” on A List Apart.

95

http://bit.ly/uw-dao
http://bit.ly/uw-rwd

In the article, he outlined the conceptual and technical framework of
RWD, namely using fluid layout grids and CSS3 media queries to cre‐
ate layouts that could adapt and respond to the characteristics of the
device or user agent—stretching and shrinking to present layouts that
worked on a variety of screen sizes without prior knowledge of the
device characteristics.

Around this time, projects like jQTouch, jQuery Mobile, and Sencha
Touch were coming online and providing tools to produce mobile-
specific sites. The ability to serve content for small screens with one
codebase was an attractive alternative to creating a mobile site at
m.example.com with a new, mobile-specific codebase.

The article made quite a stir. It was an elegant solution that leveraged
just CSS, which made it accessible to the full frontend development
spectrum—from hybrid designer/developers (with little or no Java‐
Script) all the way to full stack developers. People were rightly excited
by the concept, as even at that point, the question of how to handle
mobile devices was a hot topic.

As you’ll see in the next section, one year later, RWD’s place in the web
development and design landscape was solidified beyond reproach.

In this chapter, I’ll share what I’ve learned about RWD over the past
few years and will share lessons from the Web at large in order to give
you the proper perspective to make the decisions on how to architect
your site or application. It will focus on the place for responsive design
techniques in the uncertain Web toolbox, examining use cases where
it absolutely makes sense, where it doesn’t, and where you might have
to flip a coin to decide which way to go. You will also learn some tech‐
niques to leverage on both sides of the responsive/mobile site divide.

Boston Globe’s RWD Redesign
When my local paper, The Boston Globe, relaunched its site Boston‐
Globe.com in September of 2011, it signaled the arrival of RWD as a
viable technique for web design and development at the highest level.
Up until that point, the excitement for the techniques hadn’t really
been matched by a site that proved the effectiveness of RWD at scale.
The site, designed with the help of the Filament Group and design
agency Upstatement, was a polished, cleanly implemented site that
worked well on everything from the desktop to a brand new iPad to
an old Apple Newton, according to Mat Marquis.

96 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

http://bit.ly/uw-css3-media
http://jqtjs.com/
http://jquerymobile.com/
http://bit.ly/uw-sencha-touch
http://bit.ly/uw-sencha-touch
http://bostonglobe.com/
http://bostonglobe.com/
http://filamentgroup.com/
http://upstatement.com/
http://twitter.com/wilto

In Figure 4-1, you can see the site in action. On the left, you see a
desktop view. On the right, you see the small-screen view.

Figure 4-1. BostonGlobe.com in desktop and small-screen views

It made quite a splash. In web development circles, it was basically the
only topic for a couple of days, and even several years later, the project
remains a landmark, constantly referenced when the evolution of
RWD is discussed. The folks involved have widely shared their expe‐
rience and expertise in blog posts, conference talks, and interviews,
further cementing the influence of the project. Even now, both the
Filament Group and Upstatement still feature the project prominently
on their sites.

Of course, it being a website (and therefore on the Web), everyone else
also joined in the discussion, sharing their opinions of the technique,
the specific implementation, and the visual design.

Really? RWD for Every Site?
One reaction in particular was actually the origin of this book. If you’re
a comic book guy like me, you can imagine the bat that crashes through
the window in the classic Batman origin story giving him the idea to
“become a bat.” This was like that, except about websites and not at all
scary (see Figure 4-2). On Twitter and in real life, people stated,
without hesitation, that one day everything would be responsive.

Really? RWD for Every Site? | 97

Figure 4-2. A dramatic re-creation of the origin of this book

Unless you jumped into this book starting from this chapter (if so,
welcome!), then you know how skeptical I was toward the idea that
one day everything would become responsive. Even then, I was wary
of anything that seemed like a magical solution, and seeing several
normally sober voices proclaim that responsive is “the one true way,”
clarified something that had been floating around in my head for a
decade—that there’s no “one true way.” There’s only the best way for
the project you’re currently on. The next project might need the same
tools or approach. It might not.

Which isn’t to say that I’m down on RWD in general. I’m not. I’m a
fan of RWD and have built several sites, including three of my own,
with it. RWD is a clever solution to a big problem, and because the
core concept is so simple, it allows for lots of room to experiment. But,
ask yourself, do you think there’s any one-size-fits-all solution? The
reality is that nothing is a one-size-fits-all solution for the Web. The
Web wasn’t built that way. For my part, even in 2011, I’d already done
enough small-screen development to recognize situations where re‐
sponsive techniques were going to fall short of the requirements I was
looking to meet.

98 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

http://htmlcssjavascript.com/
http://javaplusplusplus.com/
http://itsalljustcomics.com/

For a specific example, a project I was working on at the time used a
force-directed layout to display the relationships between potentially
many dozens of users. Even before we built it, it didn’t take a soothsayer
to figure out that it was going to be difficult to interact with on a small
screen. For one thing, at certain resolutions, even if the visualization
scaled, the text was so small as to be a form of torture. Additionally, to
accommodate dozens of elements on the screen, the nodes themselves
had to be pretty small, so interacting with each node was going to be
a problem for the user on smaller screen devices.

Figure 4-3 shows the difficulty of interacting with one of the nodes
with a finger (and not a particularly fat one, if I do say so myself). This
photo is taken on a large-screen phone, the Galaxy Note II, which
measures 5.95 inches (151.1 mm) × 3.17 inches (80.5 mm). Even on
the Note, the text is difficult to read in Portrait mode.

Figure 4-3. A comparison of the author’s thumb and a single node in
a force-directed graph

The years since the launch of The Boston Globe site have only cemented
this opinion. Considering the amount of work I’ve done with data
grids and on other complex applications, it’s been made clear to me
that there’s a case to be made for completely different interfaces, de‐
pending on design goals, application requirements, and on the class
of device the user is using. There are many situations where a dedicated
mobile site or some hybrid approach is by far the best choice if you
have the skills and resources to execute one. For example, financial
sites might have widely different use cases for mobile and desktop

Really? RWD for Every Site? | 99

http://bit.ly/uw-force-directed
http://bit.ly/uw-data-grids
http://bit.ly/uw-data-grids

users. With complicated financial data, mobile users are often solely
consumers of data—often in the form of reports, simple approval
workflows, or visualizations—and the real work is done on the desk‐
top.

Mobile First, RESS, and the Rest of the Mobile
Development Universe
Before we get deeper into the discussion of RWD, let’s take a minute
to look at some of the other approaches in this space. As you’ll learn
in this section, there are some other concepts in this space like re‐
sponsive web design with server-side components (RESS) and “mobile
first.” None of them really has the same footprint in developers’ minds
that RWD does, so it’s worth discussing what they are and how they
might play into this discussion. Techniques and concepts from all of
these are going to fit well in the toolbox for developing modern, com‐
patible sites—you want as many options as you can get. Whether or
not you subscribe to the label is up to you.

Dedicated Mobile Experience
Initially, when mobile browsers were all terrible, and then later when
there was only one mobile browser and form factor that mattered to
people (the latest iOS Safari running on the latest iPhone), the most
common “mobile” solution was to serve a separate experience opti‐
mized for mobile devices. This manifested itself as either something
so dumbed down that it would run on anything that could access the
Web, or something slick, yet designed to work only on the iPhone.

iphone.example.com
As an aside, the prevalence of iPhone-crafted sites created an
unfortunate web development pattern. As people started to
open up their mobile sites to work with Android (both brows‐
ers were based on WebKit, after all) and then general mobile
browsers, they kept serving content from URLs like http://
bookstore.umanitoba.ca/iPhone/iHome.aspx with iPhone
clearly identified in the URL (not to mention the Apple style
“iHome” in the filename). There’s no reason a website should
expose a target platform in its URL structure.

100 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

http://bookstore.umanitoba.ca/iPhone/iHome.aspx
http://bookstore.umanitoba.ca/iPhone/iHome.aspx

This is accomplished with some sort of redirection based on the user
agent. This can be a simple server or client-side test against the user
agent string (“iPhone,” “iPad,” or “Android”), or a more complex query
using a service like DeviceAtlas, or a Device Description Repository
(DDR) like the Wireless Universal Resource FiLe (WURFL), or
OpenDDR, which uses the user agent string and a dedicated database
to return information about the device’s characteristics. Microsoft has
even built this capability into its .Net MVC framework. The framework
can do server-side device detection and then shows the best view based
on what type of device it detects.

As you’ll soon see, a more nuanced approach to a dedicated mobile
experience that is more flexible in layout (often leveraging RWD tech‐
niques) and doesn’t tie itself to any specific device is still very common,
especially with the largest sites on the Internet.

Mobile First
Mobile first is exactly what the name implies, designing and develop‐
ing the mobile experience first and then potentially working on en‐
hancements for the desktop experience. This concept ties closely with
the concept of progressive enhancement.

Mobile First is also the title of a book by Luke Wroblewski, one of the
people you should be following if you’re interested in
this conversation.

Progressive Enhancement
Progressive enhancement is an old stalwart of web development. The
basic concept of progressive enhancement is to create a widely com‐
patible baseline solution and then add on features and functionality,
depending on available browser features. It differs from mobile first
in that progressive enhancement can also be part of a desktop first
approach to web development.

RESS
I’m not sure how well this acronym will catch on, but it does come up,
so here it is. With REsponsive web design with ServerSide components
(RESS), Luke Wroblewski (I told you he was someone to pay attention
to) attempts to define a hybrid pattern that leverages the server side to

Mobile First, RESS, and the Rest of the Mobile Development Universe | 101

https://deviceatlas.com/
http://bit.ly/uw-wurfl
http://www.openddr.org/

render some elements of a single codebase, depending on the
device class.

I don’t like the acronym personally, because to me it immediately
evokes CSS preprocessors like Compass, SASS, and LESS rather than
RWD. This isn’t a fatal flaw, I guess, but for me it just feels off, and I
never took to using it. Also, where are the W, D, and C?

His advocacy of hybrid solutions is, however, a useful foil to the folks
that seem to have a philosophical aversion to leveraging the server. To
my mind, not taking advantage of the server in web development is
silly, and he understands this completely. Purity in approach doesn’t
win you points with your users. Giving them the best possible expe‐
rience does.

Microsoft’s .Net MVC is geared toward using this type of approach.

Choosing a Development Path
So, if you’re not going to just make every site responsive, then what
are you going to do instead?

You’re going to make the best possible decision for your project.

You’ve got options. The basic spectrum has a fully responsive site (with
one codebase) that responds to the device’s capabilities on one end,
and then dedicated mobile and desktop experiences with two separate,
dedicated codebases on the other. Somewhere in the middle might be
a RESS solution. Nothing on the Web is truly black and white. Your
site can end up anywhere on that spectrum.

This section is going to focus on preparing you for the choice.

What you do is going to be decided on a few factors. The following
sections outline some of the more common factors that will influence
your decision.

The Size and Skills of Your Team
If you’re a lone developer who knows nothing about the server beyond
installing WordPress or Drupal from a web host’s control panel, then
you’re probably going to want to use responsive techniques. Unless
you’ve always wanted to learn about PHP and Apache or C# and IIS,
then you’re going to be much happier sticking to the tools you already
know. On the other hand, if you’re a strong full stack developer or have

102 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

a larger team with more specialization, then more options open up for
you in terms of using the server. Take advantage of them.

The Requirements of Your Site or Application
As we’ve already started to explore, the nature of your site or applica‐
tion is going to be a major determining factor for your approach. On
the one hand, if you are building a pure content (text and images) site
(as many of the first wave of responsive sites were), then responsive is
going to be a good fit. In addition to the existing body of knowledge
you can tap into to get tips and tricks, pure text and images lend
themselves to RWD because it’s easier to resize boxes than it is to re‐
work interactions. On the other hand, if you’re building a more com‐
plicated application, then you may need to create an entirely different
approach for small screens.

Your Demographics
As we discussed in Chapter 2, understanding your audience is key to
knowing what to build.

For example, learning that your audience is increasingly visiting your
site on small-screen mobile devices might mean you create a mobile-
first design and then use RWD or progressive enhancement to enhance
the experience of desktop or other large-screen users.

Alternatively, if you find you’re doing well with immersive desktop
experiences, you may want to ramp up the experience on large screens
and provide a mightily scaled-down version on a dedicated mobile
site.

Your Budget
If you’ve got a budget, you’ve got even more options. I’m not talking
about bringing in consultants or simply paying your own employees
to solve more complex tasks. You can do that, but the more interesting
benefit is that you can leverage solutions from software as a service
(SAAS) providers, or content delivery specialists can make some thor‐
ny problems go away. Without endorsing any specific solution, a sur‐
vey of some of these companies gives you a sense of what they’re of‐
fering. Akamai has a white paper entitled “How To Deliver Fast, En‐
gaging Responsive Web Design Sites”, which, not coincidentally, in‐
cludes a section entitled “Optimize Responsive Web Design Sites with

Choosing a Development Path | 103

http://bit.ly/uw-immersive
http://bit.ly/uw-immersive
http://bit.ly/uw-akamai-rwd
http://bit.ly/uw-akamai-rwd

Akamai.” Strangeloop Networks Mobile Optimizer product promises
to “Accelerate your mobile Web performance by up to 350% automat‐
ically.” I can’t tell you whether or not these or any similar services are
going to be good for your site or application. I can’t know what prob‐
lems you’re trying to solve. What I can tell you is that when I’ve had
the occasion to use services like these, I’ve had some success, and that
these services are all pay to play. You have to have at least some money
to get on board.

Now that you’ve got a sense of what the deciding factors are and what
the general landscape looks like, it’s time to take a look at the drawbacks
and benefits of the two ends of the spectrum, RWD and dedicated
mobile experiences.

Benefits of RWD
The elevator pitch for RWD sounds like alchemy: take one codebase
and handle every device and browser under the sun. With careful de‐
velopment, it actually does a pretty good job of delivering on that
promise. The following list outlines some specific benefits of RWD.

Simplified server side

With a well-crafted responsive design, careful image usage, and an eye
toward performance, you can serve one set of files with minimal
server-side logic for device-specific issues to all your users.

Easier maintenance

RWD allows you to maintain one codebase for your entire frontend.

Lower overall application complexity

You can submarine this somewhat by getting too tricky on the fron‐
tend, trying to serve the perfect experience to too many users (instead
of settling for a good solution that requires less effort), but overall,
with a simpler server setup and one codebase for your frontend, you’re
going to have fewer moving pieces and therefore fewer places where
something can go wrong.

One entry point for search engines

If SEO is a thing you worry about, having a single site and set of URLs
is easier to manage.

104 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

Support for future and unknown devices

By design, RWD ignores specific devices and OSes, so a properly craf‐
ted RWD site automatically provides support for current and
future devices.

Downsides of RWD
There are some downsides to RWD. They might not be as readily ap‐
parent as the benefits, but they can have a detrimental effect on your
site’s effectiveness.

Performance

Frontend performance on responsive sites can be a problem. For an
example that I’m guilty of myself, loading 5-10 full articles on the home
page of a blog might be OK on a fast broadband connection, but it’s a
waste of bytes on a mobile network. Add in the typical desktop payload
of JavaScript, CSS, and images (which has doubled on average since
2010, by the way) and performance can blow up in a big way. All the
HTML, all of those images, all that JavaScript, and all that CSS will be
downloaded on all platforms, whether they need it or not. Beyond
content that might not be seen because it’s 50 screens down the page
on a mobile device, you might have certain functionality for the desk‐
top version of your site, an image carousel or tiled gallery, for example,
that might be broken down to a stacked series of images with no in‐
teractions on a phone. But yet, you’re still serving all that JavaScript
code that has no real benefit for a phone user.

Limited application flexibility

It’s possible to build an application that is both usable and responsive,
but it’s also important to recognize that your users might have different
needs on a phone versus their needs on a larger device. From my ex‐
perience with financial services applications, the biggest need on mo‐
bile is to be able to view and interact with high-impact, focused events
—either to respond to a problem with a specific transaction or to learn
about some market event. On the desktop, the need is likely much
more broad, offering access to an entire system, which in turn might
be linked to other complicated systems. In financial services, the
amount of information present on a single screen of a complicated
application is overkill for a small screen. And that ignores the overall
system complexity where a trader might be set up with three wide‐
screen monitors plastered with data from multiple sources. You can’t

Choosing a Development Path | 105

http://bit.ly/uw-web-page-size
http://bit.ly/uw-web-page-size

interact with any of that data in any meaningful way on mobile unless
it’s broken down into smaller, digestible chunks. Trying to shoehorn
both of those needs into the same codebase and relying on media
queries alone, or media queries and some JavaScript to sort it, isn’t
going to serve your users well. This is especially true when you factor
in the question of performance (a recurring theme with RWD).

Benefits of a Dedicated Mobile Experience
A dedicated mobile experience might not be the trendiest solution in
web design circles right now, but providing a dedicated mobile expe‐
rience has some serious benefits.

Performance optimized for specific devices

You can serve just the code you need for your mobile solution. That
allows you to be as spare as you can be with the code that goes down
the wire. The one exception to this is the demand, in the m.exam‐
ple.com pattern at least, to put in a redirect on the home page, which
is going to cause a performance hit. That said, unless there’s a hamster
driving the server you’re working on, these redirects are going to be
measured in tens of milliseconds, which is still going to be faster than
the download and parsing time of some of the images and JavaScript
that would be needed for the desktop and ignored on mobile.

Heightened application flexibility

You’ve got a clean slate, so you can design a solution that works for
your mobile-specific requirements without worrying about bytes (in
the form of CSS, content, or images) that might be hitching a ride solely
for the desktop.

Downsides of a Dedicated Mobile Experience
A dedicated mobile experience brings its own list of issues.

More complexity on the server side

With a dedicated mobile experience or even with a hybrid solution like
RESS, once you step away from a pure RWD solution, you’re going to
be adding complexity on the server side in the form of redirects, DNS,
and site setup or server-side scripting code (in PHP, C#, Ruby,
Python, etc.).

106 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

Tougher maintenance

Unless you’ve got a large organization with separate teams for desktop
and mobile views, you’re going to have to manage more than one
frontend codebase. If you’ve got a single pool of developers to maintain
both codebases, it’s simply harder to make sure they can all move be‐
tween the two codebases efficiently. You can mitigate this with solid
code standards and development best practices, but it’s still something
you have to manage.

Not as good for search engines

With multiple URLs, you’ve increased the complexity of your rela‐
tionship with search engines. As you’ll see in the section on redirects,
you can manage it; you just need to know that you need to do it and
how to do it.

Link management

If there’s one thing I hate, it’s clicking on an article link on Twitter on
my phone and getting redirected to the mobile front page of the target
site. Don’t do that. If you do separate solutions, you need to make sure
the bridge between the two is seamless. More on this later in
the chapter.

You can miss detection of new and unknown devices

With the growing number of companies creating solid-to-great smart‐
phones, there’s a real danger in missing out, for at least some time, on
the opportunity to serve your best content to a new device that can
readily handle it.

Detection schemes that use the user agent string can be spoofed

At the end of the day, the user agent string is a malleable property of
the browser. Users and browser vendors can both monkey with the
user agent string in ways that you might not be prepared for if you’re
serving specific code for specific browsers and devices.

Choosing a Development Path | 107

The User Agent String Can and Will Be Spoofed
There’s a long history of user agent strings being spoofed in
order to fool detection schemes. Because of the early popular‐
ity of Netscape Navigator and browser sniffing that blocked
really terrible versions of Internet Explorer, almost every
browser (Opera being an exception) identifies itself as “Mozil‐
la.” For a modern example, the Android browser, in addition
to identifying itself as “Android,” also identifies itself as both
“Safari” and “Chrome.”

That’s the generic take on this technology spectrum. Let’s take a quick
look at some specifics.

If Facebook Jumped Off a Bridge, Would You Jump Off a
Bridge, Too? Or: What Do the Biggest Sites in the United
States Do?
So now that you know the fundamentals, let’s take a look at an inter‐
esting data set. For a slightly different perspective, Table 4-1 lists the
top 10 sites in the United States, according to Alexa. I hit each of those
with a Samsung Galaxy Note II or a Chrome with a spoofed iPhone 4
user agent string, typing in the main site URL and then recording the
results. I wanted to see what sites with practically unlimited budgets
do to solve these issues. The takeaway from this little experiment was
that the largest sites on the Internet uniformly redirect to a mobile-
optimized subdomain or serve a fully mobile-optimized site. The one
slight exception was Wikipedia, which serves a single global gateway
page, only to redirect to a mobile-optimized subdomain for article
pages.

This survey, therefore, shows clear results that go against the trend you
might expect if you follow the web development sites, blogs, and Twit‐
ter accounts where RWD remains a hot topic.

Table 4-1. How the Alexa Top 10 Handles a Mobile Device

Original domain Final domain Result

google.com google.com At first glance, it might appear to be the same site. It’s

not. The downloaded source of the site generated when

using a desktop device was 117KB on 2014-1-4. With

a spoofed iPhone 4 user agent string, it was 10KB.

facebook.com m.facebook.com Mobile-optimized site

youtube.com m.youtube.com Mobile-optimized site

108 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

http://bit.ly/uw-alexa-top-us
http://bit.ly/uw-alexa-top-us

Original domain Final domain Result

yahoo.com m.yahoo.com Mobile-optimized site

amazon.com amazon.com Mobile-optimized site. Same top-level domain (TLD),

but a different path and markup than the desktop view.

ebay.com m.ebay.com Mobile-optimized site

wikipedia.org wikipedia.org Identical to desktop. Article pages are mobile-

optimized, (e.g., http://en.m.wikipedia.org/wiki/

Responsive_web_design).

linkedin.com touch.www.linkedin.com Mobile-optimized site

twitter.com mobile.twitter.com Mobile-optimized site

bing.com www.bing.com Mobile-optimized site. Same TLD, same path, but

different source. Oddly, on January 4, 2014, the spoofed

iPhone 4 user agent string generated a slightly larger

HTML file (44KB versus 48KB)

So, although none of these sites are infallible, it’s instructive to see that
people who can do anything are almost all choosing to do a dedicated
mobile site. This doesn’t mean that you should do the same simply
because that’s what the Facebooks of the world are doing, but it’s what
they do, and we can learn from their decisions.

For a slightly different perspective, Table 4-2 shows the top 10 sites in
the Alexa news category and how they handle a mobile device. There
are more RWD techniques here, but it’s interesting (and also slightly
confusing) to note that the best responsive site (from the BBC) per‐
forms a server redirect before serving a responsive site.

Even where the fit seems to be better, then, people with larger budgets
are opting to do a dedicated mobile experience. There are two excellent
examples of RWD here, one of which, The Guardian, is apparently
going all in with RWD.

Table 4-2. How the Alexa top 10 news sites handle a mobile device

Original domain Final domain Result

news.yahoo.com news.yahoo.com Mobile-optimized site with RWD techniques. Shows

different content based on the user agent. Different

source. Desktop is 294KB. Mobile is 189KB.

huffingtonpost.com m.huffpost.com/us/ Mobile-optimized site.

cnn.com www.cnn.com Mobile-optimized site.

Choosing a Development Path | 109

http://en.m.wikipedia.org/wiki/Responsive_web_design
http://en.m.wikipedia.org/wiki/Responsive_web_design
http://bit.ly/uw-alexa-top-news
http://bit.ly/uw-alexa-top-news

Original domain Final domain Result

reddit.com reddit.com Identical to desktop. The Reddit home page is somehwat

fluid, so it “works” in different sizes. It breaks with very

small screens. i.reddit.com exists, but isn’t automatically

redirected.

bbc.co.uk/news m.bbc.co.uk/news Redirects to an excellent responsive site.

weather.com/ m.weather.com/ A slick mobile web app.

nytimes.com mobile.nytimes.com As of January 19, 2014, this is a mobile-optimized site,

even though the Times just released a redesign.

news.google.com news.google.com Mobile-optimized site.

theguardian.com theguardian.com As of January 4, 2014, a responsive site which states

proudly: “You’re viewing an alpha release of the

Guardian’s responsive website.”

forbes.com forbes.com Mobile-optimized site.

Beyond this look at the very top, there was recently a survey that in‐
dicated that up to 1/8 of the top 10,000 sites were responsive. This list
included sites like starbucks.com, harvard.edu, time.com, and world‐
wildlife.org. So, although the sites at the very top are going for a
mobile-optimized solution, there are some very large, important sites
going for the full RWD solutions.

Choose the Architecture That Makes Sense for Your
Project
If there’s not a one-size-fits-all approach to this, then what are you
supposed to do? How do you choose which direction to go? This sec‐
tion lists some common guidelines for making this decision. This is a
spectrum, so think of these rough guidelines as notable points on the
wavelength of the responsive versus mobile site spectrum. There’s not
just blue and green. Teal is in there somewhere. Your solution might
be the teal of web development.

Frontend developers and small teams

If you’re doing a content site or simple application and are a frontend
developer on a small team or are a team of one and are more focused
on frontend technologies, then you want to go with RWD. Properly
implemented, a responsive site can provide a great experience for a
vast number of users, and the entire experience can be controlled on
the frontend.

110 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

http://i.reddit.com
http://bit.ly/uw-nyt-redesign
http://bit.ly/uw-responsive-sites
http://www.starbucks.com/
http://harvard.edu/
http://www.time.com/time/
http://worldwildlife.org/
http://worldwildlife.org/

Content sites

If you’re serving mostly text and image content, look to RWD, no
matter what your skill set or team size. You can look to augment RWD
with server-side solutions (particularly related to images and other
media), but the techniques for responsive design are well established
for this kind of content, so there’s no reason not to go in that direction.
If you pay careful attention to image sizes and limit the JavaScript
payload, in order to keep things speedy, you can provide a great content
experience across devices.

Applications

If you’re building anything but the most basic application, look to do‐
ing a dedicated mobile experience. Form entry, visualizations, and in‐
teraction patterns might all benefit from optimization for large and
small screens. You may be able to do a fully RWD application, but don’t
force the technique into your application if it doesn’t make sense for
your end users.

Big teams and big budgets

If you’ve got a large, skilled team, look for every opportunity to lev‐
erage the server. Whether that’s with a dedicated mobile experience,
or a responsive site aided and abetted by the server, there are going to
be many opportunities to pass work back to the server and save your
users bytes, connections, and processing time in the browser. Person‐
ally, this is where I’m happiest. Yes, I’m a frontend engineer, but I’ve
been very fortunate over the years to work with some excellent engi‐
neers working on the server side. I can’t count the number of times
I’ve outlined a problem we typically have on the frontend, begun to
talk through the potentially crazy lone-wolf approach (“Well, we could
use JavaScript to…”), and been stopped by a super-smart backend en‐
gineer telling me, “No way dude, we can handle that edge-case and
just serve you the good stuff.” I love that conversation. I don’t need to
be the smartest guy in the room or do the most on the frontend just
to prove that I can, so when someone comes up with a better solution
that takes some of the heavy lifting off the client, I applaud that and
get out of the way.

This is also what the biggest sites on the Web are doing, so you don’t
have to take my word for it.

Choosing a Development Path | 111

Again, this is a spectrum, so there’s no reason to do strictly one thing
or the other. You need to take the options available to you, weigh them
against the site or application you’re building, and make your decision
based on that. As with anything that people are passionate about, peo‐
ple can get a little tribal when it comes to the polar ends of this dis‐
cussion. Don’t fall in love with any solution, and you’ll be better for it.
If you want to have a fully responsive solution but still use your CDN’s
content negotiation to provide images optimized for the individual
user agent, then go ahead and do that. You don’t win points for archi‐
tectural purity. You win points with fast, effective sites that work in a
wide range of devices. You want the best balance between compati‐
bility, design, and functionality.

All that being said, I will urge you to always err on the side of your
users when weighing the benefits of all of these approaches. You can’t
always do the best thing for your users. I know this. I’m guilty of going
for the easy solution on more than one occasion in order to just get
something out the door. I’m also guilty of falling in love with devel‐
opment patterns without fully thinking through the effect on end users
(or willfully ignoring it for convenience). With the goal of broad com‐
patibility in mind, however, you need to guard against both of those
impulses.

The rest of the chapter will look at some specific technical details and
best practices related to redirects, device detection, responsive break‐
points, and server-side feature and capability detection. In addition to
what’s found here, there are also responsive and mobile components
covered in Chapters 5, 6, and 7.

Redirects Should Resolve Logically
If you have a dedicated mobile experience that mirrors one-to-one the
content on your desktop site, and you automatically redirect based on
browser characteristics, then you should ensure that the page the user
redirects to contains the expected content. If you redirect the user to
your mobile home page, you’ve completely failed.

If for some reason the content doesn’t exist in mobile form, don’t re‐
direct. Serve them the expected content.

It’s hard to get people to click on links to your site. There are entire
industries built around the art of getting people to follow links and
read articles. (“Your Friend Clicked on a Link on Facebook, You’ll

112 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

Never Believe What Happened Next.”) Celebrate the fact that the users
are interested in what you’re doing. Don’t punish them for doing it on
their phones.

The easiest way to deal with this is to just ensure that the path and
associated content are identical on both the desktop domain and the
mobile domain. For an example of this that’s clear to see, look at
Table 4-3 to see the way Twitter handles URLs. This is a perfectly clean
solution. They simple insert “mobile” as a subdomain, and everything
else maps one-to-one.

Table 4-3. Twitter’s mobile and desktop URLs

Page Desktop URL Mobile URL

Connect https://twitter.com/i/connect https://mobile.twitter.com/i/connect

Profile https://twitter.com/robreact https://mobile.twitter.com/robreact

Tweet https://twitter.com/robreact/status/

412431960791719936

https://mobile.twitter.com/robreact/status/

412431960791719936

Huffington Post also handles this well, although they handle it in a
slightly different way (Table 4-4). On the desktop, the URLs contain
search engine friendly keywords based on the title of the article and
the article ID, a seven-digit string. On mobile, the URL only contains
the seven digit article ID, creating a slightly shorter URL, which is both
fewer bytes and easier to type on a mobile device.

Table 4-4. Huffington Post’s mobile and desktop URLs

Article Desktop URL Mobile URL

Pope Francis Leaves

Nuns A Voicemail That

You Have To Hear

http://www.huffingtonpost.com/

2014/01/03/pope-francis-nuns-

voicemail_n_4536709.html

http://m.huffpost.com/us/entry/

4536709

Banksy Graffiti Gets

Vandalized In Sundance

Town

http://www.huffingtonpost.com/

2014/01/03/banksy-

vandalized_n_4537545.html

http://m.huffpost.com/us/entry/

4537545

Weird Amazon Web

Structures Built By

Spiders, Scientists

Discover (VIDEO)

http://www.huffingtonpost.com/

2014/01/06/amazon-web-structures-

spiders_n_4548547.html

https://mobile.twitter.com/

robreact/status/

412431960791719936

They can get away with this duplicate content (two separate URLs
serving the exact same content) on the search engine front by using a
canonical link relation. Canonical links define a preferred URL for
similar content, so it’s good to define one on your mobile site in order

Redirects Should Resolve Logically | 113

https://twitter.com/i/connect
https://mobile.twitter.com/i/connect
https://twitter.com/robreact
https://mobile.twitter.com/robreact
https://twitter.com/robreact/status/412431960791719936
https://twitter.com/robreact/status/412431960791719936
https://mobile.twitter.com/robreact/status/412431960791719936
https://mobile.twitter.com/robreact/status/412431960791719936
http://www.huffingtonpost.com/2014/01/03/pope-francis-nuns-voicemail_n_4536709.html
http://www.huffingtonpost.com/2014/01/03/pope-francis-nuns-voicemail_n_4536709.html
http://www.huffingtonpost.com/2014/01/03/pope-francis-nuns-voicemail_n_4536709.html
http://m.huffpost.com/us/entry/4536709
http://m.huffpost.com/us/entry/4536709
http://www.huffingtonpost.com/2014/01/03/banksy-vandalized_n_4537545.html
http://www.huffingtonpost.com/2014/01/03/banksy-vandalized_n_4537545.html
http://www.huffingtonpost.com/2014/01/03/banksy-vandalized_n_4537545.html
http://m.huffpost.com/us/entry/4537545
http://m.huffpost.com/us/entry/4537545
http://www.huffingtonpost.com/2014/01/06/amazon-web-structures-spiders_n_4548547.html
http://www.huffingtonpost.com/2014/01/06/amazon-web-structures-spiders_n_4548547.html
http://www.huffingtonpost.com/2014/01/06/amazon-web-structures-spiders_n_4548547.html
https://mobile.twitter.com/robreact/status/412431960791719936
https://mobile.twitter.com/robreact/status/412431960791719936
https://mobile.twitter.com/robreact/status/412431960791719936
http://bit.ly/uw-canonical-urls

to ensure that the Googles and Bings of the world are looking at the
correct page for search engine ranking.

Show ‘Em What You Got
If, for some reason, you can’t serve mobile-optimized con‐
tent, then serve the desktop content. Your users clicked on a
link expecting some sort of payoff. It might be a bummer to
serve them a full desktop experience, but it’s much worse to
confuse and frustrate them with a balmy redirect.

The canonical relation is straightforward syntax-wise. As the follow‐
ing snippet pulled from my blog shows, it’s just the relation attribute
with a property of “canonical” and then the URL of the resources that
should be treated as the resource of record:

<link rel="canonical"

href="http://htmlcssjavascript.com/web/it-well-do-it-live/">

How to accomplish the redirect itself is a two-part effort. First, you
need to understand how to do the redirect, and then you need to serve
different content. I won’t try to show you how to serve separate tem‐
plates because there are many platforms and technologies you could
be using and a lesson for one might not be at all useful for another. I
will, however, talk about how to do the redirect.

Redirect Options
As I mentioned, there are a few different ways you can do this redirect:
a simple redirect (mobile or not mobile), or one based on device char‐
acteristics using a web service or Device Description Repository
(DDR).

Simple Redirection
The basic pattern for a simple redirect is illustrated in the following
code samples. In these, you’ll do a simple redirect based on the user
agent string. It’s a simple redirect, in that it’s either a mobile user agent
or it’s not, and it redirects (or doesn’t) accordingly. The regular ex‐
pression is from detectmobilebrowsers.com, an open source project
that parses major (and not so major) mobile user agent strings to create
a pretty comprehensive regular expression to detect a mobile device.
There are versions for pretty much every programming language. This
example is in JavaScript, which is as close to a lingua franca as the Web

114 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

http://detectmobilebrowsers.com/

has today, but the logic will be the same, no matter what language
you’re using on the server side.

There are two things happening. First, you set a click event handler to
manually move the user over to the mobile site. It uses window.ses
sionStorage to set a flag indicating the user’s choice of the mobile
site. Following that is the redirect code. It starts with an if…else block,
which is where our tests are executed. The first case tests against the
sessionStorage variable to quickly short circuit further logic if there’s
a match. If there’s no match, we go into an else block where there are
two variables, primaryMobileRegex and secondaryMobileRegex,
which represent two different regular expressions. The first regular
expression tests for the most obvious and most popular mobile devices
in the hope that these likelier use cases will resolve true without having
to evaluate the much larger secondary test. The second, larger test
offers broader coverage, but only if the first test fails. If there’s no value
in sessionStorage, then you test against the regular expressions, re‐
directing to the mobile option that either of them are matching.

Also, notice the link element with the “alternate” rel attribute and
associated media query. This is a hint indicating the presence of
mobile-optimized content. Coupling this pattern with a
rel="canonical" link element is the full pattern preferred by Google
when creating an alternate mobile experience:

<!DOCTYPE html>

<html class="no-js">

 <head>

 <title>Mobile Detection</title>

 <link rel="alternate"

 media="only screen and (max-width: 640px)"

 href="ch04-02-mobile.html" >

 </head>

 <body>

 <h1>Desktop!</h1>

 <p><a href="ch04-02-mobile.html"

 id="switch">Go to the mobile version

 </p>

 <script>

 document.getElementById("switch").addEventListener(

 "click" ,

 function(){

 sessionStorage.setItem("view" , "mobile");

 window.location = this.href;

 });

 (function(UAString,url){

Redirect Options | 115

 if (sessionStorage.getItem("view") == "desktop") {

 return

 } else if (sessionStorage.getItem("view")

 == "mobile") {

 window.location=url;

 } else {

 var primaryMobileRegex = /(android|bb\d+|meego).

 +mobile|avantgo|bada\/

 |blackberry|blazer|compal|elaine|fennec|hiptop|

 iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|

 mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm(os)

 ?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|

 symbian|treo|up\.(browser|link)|vodafone|wap|windows

 (ce|phone)|xda|xiino/i;

 var secondaryMobileRegex = /1207|6310|6590|3gso|4thp|

 50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|

 al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te

 |us)|attw|au(di|\-m|r |s)|avan|be(ck|ll|nq)|bi(lb|rd)

 |bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm

 \-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)

 |dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49

 |ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc

 |fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad

 |un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp(i|ip)|hs

 \-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)

 |i230|iac(|\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|

 iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt(|\/)|klon|

 kpt |kwc\-|kyo(c|k)|le(no|xi)|lg(g|\/(k|l|u)|50|54|\-

 [a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01

 |21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|

 de|do|t(\-| |o|v)|zz)|mt(50|p1|v)|mwbp|mywa|n10[0-2]|

 n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|

 on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1

 |p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl

 (ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07

 |12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro

 (ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)

 |sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)

 |sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h

 \-|v\-|v)|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)

 |tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-

 |m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg

 |te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61

 |70|80|81|83|85|98)|w3c(\-|)|webc|whit|wi(g |nc|nw)

 |wmlb|wonu|x700|yas\-|your|zeto|zte\

 -/i;

 if(primaryMobileRegex.test(UAString) ||

 secondaryMobileRegex.test(UAString.substr(0,4))){

 window.location=url;

 }

 }

116 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

 })(navigator.userAgent ||

 navigator.vendor ||

 window.opera,'ch04-02-mobile.html');

 </script>

 </body>

</html>

In case you’re curious, the argument to the detection function is built
up by testing three possible variations on the user agent string or
equivalent. navigator.userAgent is by far the most common. So
common, in fact, I don’t even know the specific situations where nav
igator.userAgent would fail and fall back to navigator.vendor or
the Opera specific window.opera. All I know is they’re there for what‐
ever arcane situations demand them, and that’s good enough for me.

The mobile landing page is simpler. All it has is a click event handler
set on the link to return to the desktop experience, setting a “desktop”
flag with sessionStorage.setItem:

<!DOCTYPE html>

<html class="no-js">

 <head>

 <title>Mobile Landing Device</title>

 <link rel="canonical" href="ch04-02.html" >

 </head>

 <body>

 <h1>You've Got a Mobile Device</h1>

 <p><a href="ch04-02.html"

 id="switch">Go to the desktop version

 </p>

 <script>

 document.getElementById("switch")

 .addEventListener("click" ,

 function(){

 sessionStorage.setItem("view" , "desktop");

 window.location = this.href;

 });

 </script>

 </body>

</html>

Redirect Options | 117

Web Storage
If you’re not familiar with the web storage specification and
want to use it, keep in mind that sessionStorage only lasts for
the current session. If you want to save user preference for a
longer time in the browser, you can use localStorage, which
is for longer-term storage. It has the same API as sessionStor
age. It just lasts longer.

If you’re using these, you should take a look at the web stor‐
age polyfills on the Modernizr site.

You could alternatively just use cookies for this. This would be
especially helpful if you’re doing a server-side redirect be‐
cause the server would have the same access to cookies that the
browser would. I prefer the web storage interface, but the abil‐
ity to share state easily across the browser and server
is valuable.

Options for More Complicated Queries
If you want to do more complicated queries based on deeper device
characteristics, there are a few options, none of which are perfect.
There are some cloud-based solutions like DeviceAtlas that are going
to be easier to implement, but come at a cost. On the other end, there’s
the OpenDDR project, which is free and open source, but isn’t nearly
as easy to use as a cloud-based solution (especially if you’re not using
C# or Java, the two sample implementations that ship with the project).

That said, if you’ve got the money for a paid service, or the time and
the patience for the OpenDDR project, they are useful because they
allow you to query for device characteristics (much in the way media
queries work) and not just query against the user agent string. A sam‐
ple of the data available in the OpenDDR can be seen in the following
XML snippet. It shows the information recorded on the Samsung
Galaxy S4. As you can see, it gives information about both the physical
characteristics (screen size, touchscreen), software (browser and OS)
and browser capabilities, including core JavaScript capabilities and the
ability to inline images (a common performance technique):

<device id="SPH-L720" parentId="genericSamsung">

 <property name="model" value="SPH-L720"/>

 <property name="marketing_name" value="Galaxy S4"/>

 <property name="displayWidth" value="1080"/>

 <property name="displayHeight" value="1920"/>

 <property name="mobile_browser" value="Android WebKit"/>

 <property name="mobile_browser_version" value="4.0"/>

118 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

http://bit.ly/uw-web-storage-polyfills
http://bit.ly/uw-web-storage-polyfills
https://deviceatlas.com/

 <property name="device_os" value="Android"/>

 <property name="device_os_version" value="4.2.2"/>

 <property name="inputDevices" value="touchscreen"/>

 <property name="dual_orientation" value="true"/>

 <property name="ajax_support_javascript" value="true"/>

 <property name="ajax_support_getelementbyid" value="true"/>

 <property name="ajax_support_inner_html" value="true"/>

 <property name="ajax_manipulate_dom" value="true"/>

 <property name="ajax_manipulate_css" value="true"/>

 <property name="ajax_support_events" value="true"/>

 <property name="ajax_support_event_listener" value="true"/>

 <property name="image_inlining" value="true"/>

 <property name="from" value="oddr"/>

</device>

For my money (or, more often, my client’s money), I think the simple
redirect is going to be good enough when coupled with responsive
techniques—with one exception. Getting access to the device pixels
per inch from services like DeviceAtlas when working with an image-
heavy site, and the task of being able to properly load images to match
the device capabilities would be useful. There are browser-based sol‐
utions to this issue, which you’ll learn about in Chapter 6, but this is
great information to have.

Always Offer an Escape from the Mobile
Version
As I previously described, I hate being on a mobile device and being
redirected to the mobile home page of the site instead of content
specified in the navigated link. One way that this can be somewhat
mitigated is by offering easy access to the full site via a link or button
on the home page. If I can get to the desktop site, I can usually find
the content one way or another (browse or search, if it’s not content
directly on the home page). If I’m redirected to the home page, and
there’s no easy way to request the desktop site, then that’s just about
the worst thing possible.

The Trifecta of Mobile User Antagonism
Actually, redirecting to the home page, adding an interstitial
imploring me to download an Android or iOS app when I get
there, and not offering a link to the desktop site would be the
worst thing possible.

Always Offer an Escape from the Mobile Version | 119

http://bit.ly/uw-deviceatlas-data

Alternatively, if you have an application with a dedicated mobile ex‐
perience that handles the most common use cases, keep in mind the
occasional emergency where someone on his phone might need to
access a feature only available on the desktop, even if it means working
through a desktop interface with fat fingers.

So, if you have a dedicated mobile experience, you need to offer a way
to cross over to the desktop version. You’ve already seen this in action
in the previous section. But from a design perspective, a simple link,
like this one provided by the BBC (Figure 4-4) is probably sufficient.
Just make sure it’s clearly labeled.

Make It Count
Even though you’ve already seen this in the previous exam‐
ple, it’s worth stressing—you must ensure that, once a user
crosses over to the desktop site, you keep her on the desktop
site. Whatever redirection scheme you use must be able to be
overridden by the user’s actions for the length of her session.
If she chooses the desktop site, don’t randomly redirect her
back to the mobile site halfway through her site journey.

Additionally, offer the ability to move back to the mobile site
via an equivalent link. Especially in the case of an application
with different feature sets on mobile and desktop, the ability
to cross back and forth is vital.

120 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

Figure 4-4. Switching from mobile to the desktop on the BBC site

An excellent example of how to handle this hybrid approach, provid‐
ing an optimized mobile experience where possible and seamlessly
falling back to the desktop experience where it’s not, can be seen with
the mobile site from Heritage Auctions, “the world’s third largest auc‐
tioneer” (Figure 4-5). The majority of the common tasks, such as
searching for and browsing auction items, are served through a dedi‐
cated mobile interface. Less common tasks (in this case, working with
their want list feature) are passed back to the desktop display.

Always Offer an Escape from the Mobile Version | 121

Figure 4-5. Creating a want list with Heritage Auctions

It might not be perfect, as in this case where landscape mode was re‐
quired, but you’re always assured of getting the task done.

Be Fluid and Design for Your Design
If you look at many responsive sites, you will see breakpoints set to
“standard” measurements (320px, 480px, 768px, 1024px, 1280px).
These are all defined around typical CSS pixel sizes for popular devices:
iPhones (portrait and landscape), iPads (portrait and landscape), and
large-screen desktops. This is OK, but you could potentially save
yourself some time and proof yourself against unknown devices by
making decisions based on the requirements of your particular site.
You can let the design itself dictate the breakpoints. For a simplified
example, if you’re publishing a typical blog with two columns (one
large for articles and one smaller for ads and sidebar links), and you
have fluid grids that take up a percentage of the screen, then you may
have just one major breakpoint for the entire site. This might be the
point where the sidebar disappears altogether or floats below the main
content. Although that breakpoint might be the width of an iPad in
portrait mode (768 pixels), it might not be. With this concept, coupled
with the use of relative units and the max-width and min-width CSS
properties to keep things from going crazy, you should be all set with
the majority of screen sizes, known and unknown.

This simplified example shows a sketch of how this might look. The
HTML is straightforward. Although it uses all HTML5 sectioning el‐
ements (<header>, <main>, article, <aside>, and <footer>) and as‐
signs WAI-ARIA roles to them, if you swapped out the tag names for

122 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

ids (<div id="header">), then this markup would look like a typical
blog layout from 10 years ago:

<!DOCTYPE html>

<html class="no-js">

 <head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width,

 initial-scale=1">

 <link href="responsive.css" rel="stylesheet"

 type="text/css">

 <script

 src="../_assets/js/vendor/modernizr-2.6.3.min.js">

 </script>

 </head>

 <body>

 <div class="container">

 <header role="banner">

 <h1>Responsive Header!</h1>

 </header>

 <main id="content" class="group" role="main">

 <article>

 <h1>Syndication</h1>

 <p>Eu actually fugiat flexitarian Odd Future single

 origin coffee. Next level ugh actually pour-over,

 farm-to-table artisan McSweeney's magna polaroid tofu.

 Locavore dreamcatcher Shoreditch skateboard. Tumblr

 placeat commodo, Marfa DIY typewriter master cleanse

 tote bag food truck Neutra Austin mumblecore

 accusamus. Est ennui drinking vinegar

 </p>

 </article>

 <aside>

 Text generated with

 Hipster Ipsum. Which is so old it's now ironic.

 </aside>

 </main>

 <footer role="contentinfo"><small>How are you?</small>

 </footer>

 </div>

 </body>

</html>

The CSS is where the magic happens. In this example, the containing
div is set to 100% of the body, with a max-width of 75ems, which maps
to 1200px at a default font size of 16px. There’s more on the use of ems
in the next section, On Relative Units. The main element is set to use
the new flexbox (“flexible box”) display mode with its corresponding
flex-direction property set to row. This combination ensures that

Be Fluid and Design for Your Design | 123

the article and aside will fit side by side in a row, with each filling
the available space. In practice, you would add this test to your Mod‐
ernizr build and use the Modernizr.flexbox Boolean or the .flexbox
class on the html element to provide fallbacks for browsers that don’t
yet support flexbox. Here I’m just assuming you’ve got a newer web
browser in order to run this demo.

The header element has a background image set to have a
background-size of 100%. This ensures that the background will scale
as the page size increases or decreases.

Following that, there’s a single media query set at 40em (640px at the
standard default font size) that changes the flex-direction property
to column, which pushes the article and aside elements into a single
column, better suited to smaller screens. It also swaps out the large
header image for one that works better at smaller resolutions:

@charset "utf-8";

.container {

 margin: auto;

 width: 100%;

 max-width: 80em;

}

main {

 display: flex;

 flex-direction: row;

}

article {

 border: 1px solid #06C;

 width: 70%;

 padding: 1em;

}

aside {

 border: 1px solid #060;

 width: 30%;

 padding: 1em;

}

header h1 {

 line-height: 2em;

 margin: 0;

 text-shadow: 1px 1px 3px #888;

}

header {

 padding: .2em 1em;

 background-image: url(responsive-header.jpg);

 background-size: 100%;

 background-repeat: no-repeat;

 background-color: #2492b4;

 height: 32.1875em;

124 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

 color: #fff;

 background-position: top;

}

/*

Major breakpoint

*/

@media all and (max-width: 40em) {

 main {

 flex-direction: column;

 }

 article {

 width: 100%;

 }

 aside {

 width: 100%;

 }

 header {

 border: 1px solid #000;

 text-align: center;

 background-color: #0d9c2b;

 }

}

Although you could stop there and have a perfectly usable site, you
can add some small touches to the CSS that will improve the layout
across the device spectrum without too much effort. To do that, you
can tweak the design of the header element using minor breakpoints.

Feel Free to Abuse Minor Breakpoints
The following CSS sample shows how this can be accomplished. For
starters, in the first four zones, you’ll adjust the height of the header
to better match the shrinking width of the header image better. At the
smaller sizes, the background image itself is swapped out for one more
suited to a vertical layout.

With all of these, I started with standard dimensions, but tweaked as
necessary, depending on the way it looked. So although you will see
certain em measurements that match common dimensions, there are
others that are chosen simply because the design needed a tweak at
that level. Based on a default 16-pixel font size, 46 ems equals 736
pixels, and 32 ems equals 512 pixels:

/*

Minor breakpoints

*/

@media all and (min-width: 64em) and (max-width: 72em) {

Be Fluid and Design for Your Design | 125

 header {

 height: 30em;

 }

}

@media all and (min-width: 46em) and (max-width: 64em) {

 header {

 height: 24em;

 }

}

@media all and (min-width: 40em) and (max-width: 46em) {

 header {

 height: 18em;

 }

}

@media all and (min-width: 32em) and (max-width: 40em) {

 header {

 background-image: url(responsive-header-thin.jpg);

 height: 42em;

 background-position: center;

 padding: .1em .5em;

 }

}

@media all and (max-width: 32em) {

 header {

 background-image: url(responsive-header-super-thin.jpg);

 height: 24em;

 background-size: auto;

 padding: .1em .2em;

 background-position: bottom;

 }

 header h1 {

 font-size: 1em;

 }

}

Using Brad Frost’s fun, if scary, tool ish, you can see that the layout
flows and functions pretty well across a wide range of resolutions, not
just popular device widths (Figure 4-6).

126 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

http://bit.ly/uw-ish

Figure 4-6. The output from Brad Frost’s ish

This is a simplified example, but recognizing that you don’t have to go
all-in at popular device widths and instead can work within the con‐
fines of your design is important. Your design and the requirements
of your site should be the driving factors of the breakpoints you choose.

On Relative Units
Relative units are your friends. ems, which you probably already know
about, as well as rems, vhs, and vws are all going to help you create
fluid solutions. If you’re not familiar, here’s a quick summary:

em

An em is equivalent to the height of the current font. They were
very popular for a brief period for all measurements on a page
when the default “text increase” behavior in browsers was to sim‐
ply increase the size of the text without adjusting the size of the
boxes. This em-based measurement system was great as it made
for layouts that would smoothly increase when the text was in‐
creased. There were certain difficulties in this approach because
of the fact that the em measurement can change, depending on the
size of the font in that section of the document, but they weren’t
insurmountable. When the default behavior changed to zooming
the entire page, they fell out of favor once again, and pixels reigned
supreme. The pendulum has begun to swing back toward ems, as
they can bring some benefit in responsive designs. Setting break‐
points in ems, for example, allows a zoomed-in interface to react
to breakpoints even when the underlying pixel measurements ha‐
ven’t changed.

Be Fluid and Design for Your Design | 127

http://bit.ly/uw-ems-rwd
http://bit.ly/uw-ems-rwd
http://bit.ly/uw-ems-rwd

rem

A rem is a “root em,” the em value of the font defined on the root
element. This brings all of the benefit of using ems without the
complexity that changing font sizes can bring.

vh

A vh is equal to 1% of the viewport height.

vw

A vw is equal to 1% of the viewport width. These units allow for
viewport relative layouts. If the viewport changes (say in the
change from portrait to landscape on a tablet), these units will
scale proportionally.

Because of the use of relative units, rems, the breakpoints in the pre‐
vious example are triggered, even though the underlying screen size
(in this case, 1600 pixels) never changes (Figure 4-7).

Figure 4-7. Showing breakpoints triggered when the page is zoomed

There’s more to these techniques than is presented here, of course, and
the implementation details will change based on your specific needs.
That said, the idea of being as fluid as you can be with your layout, of
letting the design dictate your breakpoints, and for using minor break‐
points to fine-tune your layout, if needed, are all going to serve you
well going forward.

128 | Chapter 4: Selecting Responsive Design or Another Mobile Experience

“Accepting the Ebb and Flow of Things”
With an open mind and a full toolbox of techniques, your options for
managing the full device spectrum are about as limitless as the number
of devices. By taking advantage of the server where possible and fo‐
cusing on the needs of your application throughout the design process,
you can provide a solid experience for everyone hitting your site, no
matter what the size or shape of the device they’re carrying.

“Accepting the Ebb and Flow of Things” | 129

CHAPTER 5

Working with User Input

No great genius has ever existed without some touch of madness.

— Seneca

Although I am the kind of guy that would write a book about broad
compatibility and serving the broadest possible user base, I’m not
usually the kind of user who unwittingly uncovers problems with de‐
velopers applying hard-and-fast rules to a problem that requires a
more nuanced approach. I’ve always got good hardware, and I run
popular, up-to-date browsers. I should get the best experience possible
whenever I get on the Web, and all but the most myopic developers
are going to serve me something that will work.

This was generally the case until I got a touchscreen laptop. Once I
brought home a Windows 8 laptop, things started to get a little weird.
Pretty much every day I run into a site that has guessed wrong about
my setup in one way or another. This ranges from the catastrophic to
the minor, but there’s always something. Watch me at a coffee shop and
just wait for me to click something a couple of times with a mouse or
touchpad, see nothing happen, smirk, and then touch the same ele‐
ment with a finger in order to activate it. This simple error, only lis‐
tening for touch events, is very common and speaks to a fundamental
misunderstanding of the nature of user input on the Web.

Hopefully, this chapter will make life better for me and everyone else
out there with multiple input modes.

Not that the case of multiple input modes on the same device is the
only issue on the Web today in regards to user input. Touchscreen
laptops are only the latest front in this ongoing struggle to properly

131

capture user input and react to it in a way that makes sense for both
users and developers. The question of how to manage user input, be
it by mouse, keyboard, pen, speech, or gesture, has always been
tricky. This problem is made worse by the fact that developers have
only recently begun to focus on the question in the correct way. Al‐
though it’s still very common to see sites that use simplistic tests to
switch between an interface that relies on traditional mouse events and
one that relies on touch events, more and more talk is now focused on
how best to deal with multiple input modes without treating it like a
binary choice.

This chapter will examine the various factors at play when working
with user input on the modern Web. For starters, we’ll look at the
variety of devices and input modes out there that might be hitting your
site. Additionally, we’ll look at the logic trap that still has developers
testing for “touch” devices and generating faulty results by using bum
logic. In particular, we’ll look at why the common “touch” detection
schemes are flawed. Building off of that, we’ll then look at some strate‐
gies for designing interfaces that work well across all input types. We’ll
then focus on the technical factors that you need to take into account
to manage multiple input modes on the modern Web.

This is one area that is going to only get more confusing in the future,
so if there’s one aspect of modern development where embracing un‐
certainty will make your life easier, this is it. Forget about trying to
guess what users are going to use to interact with your site. Simply be
ready for them to interact, and get out of the way as best you can.

The State of User Input on the Web
Based on the conversations I see on GitHub and Twitter, the basic
landscape isn’t clear to people. Many developers and designers are
iPhone/Mac-based, so they live in a binary world without many of the
innovations in input mode that are increasingly common in the Win‐
dows and Android worlds. Because of that, let’s look at the way that
multiple input modes work in the real world (using myself as a test
subject) and why approaching it with a focus on embracing uncer‐
tainty is going to be the healthiest way to go forward.

My personal gear is a treasure trove of input modes. Let’s examine the
device configurations I can potentially use in a day. As you look at this,
keep in mind there are plenty of alternative configurations (think:
Chromebooks or any number of other convertible laptops) that can

132 | Chapter 5: Working with User Input

http://bit.ly/uw-touchandmouse
http://bit.ly/uw-gettingtouchy

have similar flexibility. I’m just a handy example. You might not be
able to walk a mile in my shoes, but a little empathy for me might help
you make smarter decisions going forward.

If just one person asks, “Would this screw Rob up?” after reading this
section, I’ve done my job well (Figure 5-1).

Figure 5-1. A selection of the author’s devices and device configura‐
tions

In a typical week, I might use:

• A Windows 8.1 laptop set up as a workstation. The laptop is a
touchscreen. The second monitor is not. I work on the large mon‐
itor so I’m generally confined to just a mouse and keyboard, even
if I still have a touchscreen on one of my screens.

• A convertible laptop (a Lenovo Yoga to be precise) running Win‐
dows 8.1 and set up as a laptop. This is a traditional laptop that
also has a touchscreen. It has a trackpad, and I occasionally run
an external mouse on it.

• The Lenovo Yoga in tablet mode. In this configuration, the only
input is touch. The trackpad, which is now folded to the back, is
turned off.

• The Lenovo Yoga, in tablet mode, with a Wacom tablet attached.
This is a fine-grained pointing device that works, effectively, like
a mouse, even if the rest of the device is a tablet.

• The Lenovo Yoga, in laptop mode, with a Wacom tablet attached.
This is basically two mice and a touchscreen.

• A Samsung Galaxy Note II. This is a typical, if really big,
smartphone.

• The Galaxy Note II with the stylus out. This pen is as fine-grained
as a mouse and offers hover capability. I often use this when I’m
visiting a site that only has a desktop view.

The State of User Input on the Web | 133

Should I also point out that I will use a keyboard to navigate a site or
application whenever possible? I think I should. The traditional meth‐
ods for ensuring that keyboard users can access content and func‐
tionality still apply.

Keep in mind that all of these modes can change at any time. So even
if you were able to recognize that I was running the Yoga in tablet mode
at the opening of a browsing session, you couldn’t know for sure that
it would remain in that configuration for the remainder of the session.
That’s the point of having a device like that, after all, being able to
switch contexts and features as needed. I will often go into “tent” mode
when watching video, so any tabs that are open at that point would
have their original assumptions squashed by my desire to put my lap‐
top on my coffee table in order to sit on my couch and watch
web video.

Let’s take a minute to look at the traditional methods of detecting touch
capability and why a positive result doesn’t mean what many people
think it means. There are two ways this detection falls apart—technical
and conceptual. Let’s look at the conceptual issue first.

The Conceptual Problem with “Touch” Detection
As my case illustrates, there’s no simple divide between mouse users
and touch users. Even if you’re willing to throw away the false positives
and negatives that any of the technical approaches to testing might
bring, forking your code in an if…else based on one of the testing
schemes that follows ignores the problem illustrated by my setup. Even
if you can accurately detect users with touch capabilities, you can’t
know for certain that they will only ever need touch. Knowing what
you now know about the spectrum of input modes, what can you safely
do with that information? You can enhance an interface, but you can’t
wall one off based on mouse versus touch.

We’ll look at some concrete examples of how this can break later in
this chapter. Before we do, let’s take a look at the basic technical prob‐
lems with detecting touch.

The Technical Problem with “Touch” Detection
If you follow any open source project with any sort of popularity, you
will eventually see nagging issues that come up repeatedly. These can
be issues that are hard to solve, issues that are solved but not in a way

134 | Chapter 5: Working with User Input

that people might expect, issues that need better documentation, issues
with controversial resolutions, or any number of other reasons. One
such nagging issue on the Modernizr project is the purpose behind
and meaning of the result of the modernizr.touch test.

Because of this, the Modernizr repo has been one of the central sources
of research and discussion on the technical challenges of detecting a
touchscreen. Lucky for us, Modernizr dev Stu Cox has written up a
lot of his research about the question. Looking at his research and
adding on to it, the fundamental issues are as follows.

Using touch APIs to detect “touch” is faulty

The most common test for “touch” is to search for ontouchstart in
the window object. As you’ll see in depth in the examples later in this
chapter, it’s an unreliable test if your goal is to separate out mouse users
from users with touchscreens, because many users can be both. It’s also
unreliable if you’re just trying to figure out if a user has raw touch
capabilities.

For one thing, there’s nothing stopping a browser vendor from im‐
plementing touch APIs or exposing the event handlers in the DOM.
In fact, this is exactly what Chrome 24 did, shipping with these APIs
always available no matter what the configuration or capabilities of the
device were.

Additionally, browsers and OSes can conspire to throw out wonky
results. If the OS reports that a touchscreen is available, because of a
bug or some setting, then the browser will just have to report the false
positive. This has been seen with both Firefox and Chrome on Win‐
dows 8 and some BlackBerry devices.

Modernizr.touch Is Dead
This has been such a problem for Modernizr that it’s gone to
the extreme length of renaming the test from Modern
izr.touch to Modernizr.touchevents in order to better de‐
scribe what the test is actually looking for—the presence of the
touch event’s API in the browser.

This test also fails because the Internet Explorer desktop browsers that
recognize gestures implement a different (and in my mind, superior)
model for inputs called pointer events. They get their own section in
this chapter, but in short, it’s an input event model that combines

The State of User Input on the Web | 135

http://bit.ly/uw-cox

touch, mouse, pen, and anything else you can imagine into a unified
pointer model. So, even though Internet Explorer 10 and 11 on the
desktop have a great interface for gestures, the simplistic ontouch
start in window test fails there.

Small screen might not be touch—large screen might be

The dawn of everyday touchscreen computing was with the iPhone.
So, for at least a little while, if you were presented with a good browser
(it supported media queries, for example) and it had a small screen,
you could assume it was a smartphone and was therefore “touch.”
Conversely, every other good browser was probably a desktop device.

This was never a great idea (there are decent mobile browsers on de‐
vices without touchscreen), and nowadays with the full spectrum of
devices with or without touchscreen capability, it’s basically useless. A
flip phone running Opera Mobile would have media queries and re‐
port it was a small screen, but not have touch capability, and a tablet
or touch-capable laptop would have a mighty big screen but would
possess touch capability.

The future isn’t here yet

There are technologies that might help with this on the horizon. The
pointer media query, for example, will allow you to test for “coarse”
(think finger) or “fine” pointers (mouse, stylus), but this isn’t widely
implemented yet and even if it were, it still falls into the trap of ob‐
scuring the presence of a mouse or stylus on a device with touchscreen
plus some other input. Testing at quirksmode.org with the latest
Chrome, this media query reports “coarse” for me, as Figure 5-2 shows.

I can touch my screen, sure. But as I’ve already pointed out, I can also
have a mouse or pen attached to this machine, so reporting “coarse”
for me doesn’t tell the whole story. I’m also in possession of a fine-
grained control.

136 | Chapter 5: Working with User Input

http://bit.ly/uw-pointertest

Figure 5-2. The result of the media query for “pointer”

Now that we’ve seen the troubles with trying to detect this stuff, let’s
look at how these issues can cause problems for your users.

What It Means to Get It Wrong
Because I’m writing these words on a laptop with a touchscreen, and
I’m constantly (if unintentionally) trolled by developers messing up
touch detection in one way or another, let me start this section with a
couple of examples that I’ve captured over the past year of developers
developing for a “yes touch” or “no touch” world.

This section will look at a couple of examples of how failing to get this
right can have a detrimental effect on your users. These examples aren’t
from fly-by-night operations, either, so a significant number of people
witnessed these examples in the wild. The first represents the danger
of looking at this simplistically. With one faulty piece of logic, your site
can simply fail to work in a browser that can easily support all the
technologies under the hood. The second represents a small error in
logic that degrades the user experience in a subtle, but annoying way.

You Can Fail Completely
In December of 2013, I was excited to learn that Spotify had launched
a “year in review” mini-app full of visualizations of different personal

What It Means to Get It Wrong | 137

and global trends in music. I love music, I’m a Spotify user, and I love
cool visualizations on the Web, so I was excited to check it out.

Except I couldn’t.

I clicked through and was greeted with the message in Figure 5-3. I
was confused. What do I care about mobile for? I was on a laptop. I
wasn’t on a mobile device. Why couldn’t I get to the good stuff?

Figure 5-3. Spotify’s year in review falsely reporting a Windows 8 lap‐
top as a mobile device

I loaded Firefox and got the same result. I started to have a hint of what
was wrong. Seizing on the hint, I loaded the site in Internet Explorer
(Figure 5-4). It worked. My hunch was right. The Spotify team was
using the Modernizr.touch test as a simple mobile/nonmobile gate‐
way. The reason the site was viewable in IE was the fact that IE doesn’t
expose ontouchstart in the window object, and the presence of win
dow.ontouchstart is the heart of the Modernizr test.

138 | Chapter 5: Working with User Input

http://open.spotify.com/user/robreact
http://bit.ly/uw-data-viz

Figure 5-4. Viewing the Spotify Year in Review site on a Windows 8
laptop in Internet Explorer

To further verify the issue, I loaded up Chrome Canary, I turned off
touch events in chrome://flags, and the site suddenly worked. I was on
the same machine with a slightly altered version of Chrome (one less
event exposed on the window object) and suddenly I was “capable” of
viewing the content.

Now, I’m a developer and writer with a keen interest in issues of com‐
patibility on the modern Web, so my experience was frustrating but
still had a silver lining, as I was able to use the experience here in this
book. I also had the tools needed to debug the issue and actually view
the content (which was actually rather cool). But what about all the
users of Chromebooks and Windows 8 laptops that hit that screen and
didn’t have a vested interest in trying to figure out what was going on?
There is no silver lining. It was just frustrating.

If they were really interested in providing a separate solution for small-
screen mobile devices, they should have used one of the redirect
schemes we talked about in Chapter 4 and actually targeted attributes
of mobile devices rather than inferring a mobile device from a property
of the window object. There’s nothing wrong with providing dedicated
mobile experiences; you just need to do it correctly, and inferring
“mobile” from if (Monderizr.touch) isn’t the correct way to do it.

What It Means to Get It Wrong | 139

You Can Fail Just a Little
For a less catastrophic example, take a look at the galleries on
wired.com on a touch-enabled laptop. I discovered rather quickly that
the previous and next arrows that are circled in Figure 5-5 don’t work
on a click event fired on a touch-enabled laptop.

Figure 5-5. Nonfunctional buttons on a touch-enabled laptop

Looking at the code, it’s clear that they’re treating the choice of touch
or no-touch as purely binary. Using a ternary operator, they’re creating
an event alias touchity, which uses basically the same test as Mod‐
ernizr.touch to set the event name as touchstart on browsers with
touch capability and click on everything else:

var touchity = (('ontouchstart' in window) ||

 (window.DocumentTouch

 &&

 document instanceof DocumentTouch)) ? 'touchstart' : 'click';

So, later on, when events are bound and touchity is passed into
jQuery’s $.on, under the hood, only touchstart or click is set:

$('.wp35-gallery .nav').add('.curtain').on(touchity, function(e)

{

140 | Chapter 5: Working with User Input

http://www.wired.com
http://bit.ly/uw-wired-code

 autoPlay('forceStop');

 if (isThisADoubleTap()) {

 e.preventDefault();

 }

 if ($(this).hasClass('next')

 || (event.target.id === 'curtain-right')) {

 offsetSlide(1);

 } else {

 offsetSlide(-1);

 }

});

We’ll look at technical best practices for how to handle this kind of a
thing in a later section, but for now just know that if click isn’t fired,
my mouse isn’t going to work. That’s frustrating. It’s also a serious
accessibility concern as keyboard-initiated events won’t fire. Even pure
“touch” devices like the iPhone or many Android phones can be paired
with a keyboard or mouse and will, in many cases, only fire a click
event.

The rest of this chapter will help you avoid these kind of mistakes.

Design for a Spectrum of Potential User Inputs
This section will cover some of the ways you can improve your designs
to better serve the wide variety of user inputs available. Thinking about
the breadth of known devices and trying to stay open to new inputs
will stop you from inadvertently shutting the door on a
potential customer.

Lean Toward Finger-Friendly Interfaces for All
Interfaces
If you design for touchscreens and provide large hit areas for buttons,
you will make life easier for touchscreen users and users with a mouse
or other precise inputs won’t be adversely affected by having a large
hit area.

Everyone wins.

Design for a Spectrum of Potential User Inputs | 141

Touch Target Sizes
44px is the standard size for iPhone buttons. This is based on
the size of a human thumb. It has become the de facto stan‐
dard for “touch-friendly” buttons. You can move up and down
from this number, but it’s a safe baseline from which to work.
Serve the same-sized buttons to everyone.

If you make an interface that is usable for touch, it will be usable with
a mouse. Design for the purpose of the site. You don’t have to design
for a specific form factor or display.

If you’re using a dedicated mobile experience, this won’t change any‐
thing for you, as you’re likely already providing a nice fat hit area. It’s
on the large-screen experience where you’ll need to make changes in
the way you approach design, lowering the information density overall
and using larger interface elements.

Don’t Rely on Hover
Hover effects can be an enhancement, but they shouldn’t be the only
way to get at content or functionality. You should already be aware of
this as an area of concern because keyboard users require focus events
in addition to mouse events to activate hover content, but this is an
even greater concern than the keyboard user. You can activate this
content with a long press on touch-only devices, but that’s a work‐
around for behavior that needs to be rethought in general. If you’re
going to hide content, make an explicit action to expose it.

Embrace Clarity
When you start to design for touch everywhere, you trade off on the
amount of information you can fit on the screen. This can be a good
thing. This forces you to make more aggressive decisions about the
need for certain features and functionality. Bringing some clarity to
your design is a benefit for you and your users.

Working with the Full User Input Spectrum
This section will examine the technical aspects of working with user
input. You will learn how the events you’re familiar with, like click,
work with the touch events we’ve discussed to allow interaction with
the user. You’ll also learn about the new pointer events model, which

142 | Chapter 5: Working with User Input

I, and many others, want to be the model to take us into the future of
event handling in the browser (even if the path of that future is unclear
at present).

The Current State of Touch and Mouse Event Handling
Learning the intricacies of how this works from an event-handling
perspective is important. Although I hope that we’ll have a more
streamlined event system for user input available in the future, dealing
with the full spectrum of touch and mouse events is, for now, a re‐
quirement for every developer looking to properly handle interactions
on the modern Web.

Masters of the Touch Research Universe
Basically everything I know about this I learned from these
three sources: the Modernizr project, Peter Paul Koch, and
Patrick H. Lauke. If you want to know everything there is to
know about this stuff, then keep those three sources on your
radar.

Let’s look at the different components of this issue. From the plain fact
that you can do nothing to the more advanced ways to manage the
variety of user input, this section should get you up and running with
modern event handling.

You don’t have to do anything new

As long as you’re not relying too heavily on hover events (mouseover
and mouseout), and you’re not doing anything that tracks the mouse’s
movements (mousemove), you don’t need to do anything to have a
broadly compatible site or application. Smartphones and tablets were
launched onto a Web that wasn’t specifically tuned for touch, so they
all mimic traditional mouse events. The following code sample rep‐
resents a basic event spy that reports back the mouse and click events
that are performed on an element:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <link rel="stylesheet" href="spy.css">

 </head>

 <body>

 <div id="spy"><p>Tap here</p></div>

Working with the Full User Input Spectrum | 143

http://quirksmode.org/
https://www.splintered.co.uk/

 <div id="reporter"></div>

 <script>

 window.addEventListener('DOMContentLoaded', function() {

 var events = [

 'touchstart','touchmove','touchend','touchenter',

 'touchleave', 'touchcancel', 'mouseover',

 'mousemove','mouseout', 'mouseenter','mouseleave',

 'mousedown','mouseup','focus','blur','click'

];

 for (var i=0; i<events.length; i++) {

 document.getElementById("spy")

 .addEventListener(events[i], function(e){

 document.getElementById("reporter")

 .innerHTML += "<p>"+e.type+"</p>"

 }, false);

 }

 }, false);

 </script>

 </body>

</html>

Figure 5-6 shows the events reported when a finger taps the event spy
element on Chrome in Windows 8.

Figure 5-6. Events reported by Chrome on Windows 8

144 | Chapter 5: Working with User Input

First, we have two touch events (touchstart and touchend) and then
a series of faked mouse events (mouseover, mousemove, mousedown,
mouseup, and click). You can see how much of what you’ve coded for
the mouse still works, as a full set of mouse-based events are faked and
fired. There is only one mousemove event fired, so as I mentioned, if
you’re tracking the mouse for some sort of animation or game play
that won’t work, but otherwise, many basic operations are going to
work without you having to lift a finger.

For a further illustration of the pitfalls of trying to tie this down to a
binary proposition (because I can’t stress that point enough), I did an
interesting test with the pen on the Samsung Galaxy Note 2. As you
can see in Figure 5-7, there are multiple mousemove events fired in
addition to the touch events and simulated click event fired in typical
touch events. This is because the stylus can interact with the screen
even before it touches the surface, and while it does have contact with
the surface, it’s tracked just like a mouse.

Figure 5-7. Mousemove events fired on a Galaxy Note II

Working with the Full User Input Spectrum | 145

This still would “just work” and would actually work with mouse
move events where touchmove would not, but it just goes to show how
difficult it is to identify a “touch” device. If I were using this as a phone
and then pulled out the stylus midstream, I would suddenly have a
“mouse” with hover events and multiple mousemove events. As soon as
the stylus went back in, the “mouse” would be gone.

One major catch: There’s a 300ms delay on compatibility click events

There is a problem with just binding to click events and wiping your
hands of the whole mess. There’s a 300ms delay built into the firing of
the simulated, compatibility click events that we learned about earlier
in the chapter. This is due to the fact that browsers need to wait to see
whether or not you’re doing a double-tap. The double-tap zooms the
screen and is an important enhancement for compatibility and acces‐
sibility. The following code sample illustrates this by doing a crude
timer between the firing of a touchstart event and the simulated
click event:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <link rel="stylesheet" href="spy.css">

 </head>

 <body>

 <div id="spy"><p>Tap here</p></div>

 <div id="reporter"></div>

 <script>

 window.addEventListener('DOMContentLoaded', function() {

 var now, later;

 document.getElementById("spy")

 .addEventListener('touchstart', function(){

 now = Date.now();

 }, false);

 document.getElementById("spy")

 .addEventListener('click', function(){

 later = Date.now();

 document.getElementById("reporter")

 .innerHTML += "<p>Delay:"+(later-now)+"ms</p>"

 }, false);

 }, false);

 </script>

 </body>

</html>

The timing works out to at least a 300ms delay on a Samsung Galaxy
Note II (Figure 5-8). There’s a bit of overhead in the processing of the

146 | Chapter 5: Working with User Input

times, and there are multiple events fired in between the touchstart
and click events, which accounts for the extra few milliseconds.

Figure 5-8. Showing the 300ms delay between the touchstart and
click events

This is a noticeable delay, so it can hinder the perceived responsiveness
of your site if you don’t manage it properly. There are two different
ways to manage this delay.

For starters, the browsers themselves have started to suppress the delay
if the page is not able to be zoomed by the user. Adding the view
port meta element with a value of user-scalable=no in Firefox for
Android and width=device-width in Chrome 32 or later indicates to
the browser that the page shouldn’t be scalable with double-tap and
the delay will be suppressed.

Working with the Full User Input Spectrum | 147

User Scaling Is a Feature
user-scalable=no suppresses all zooming, not just double-
tap to zoom. This means you lose the ability to zoom the page
with pinch-zoom as well. This is a serious accessibility and
usability concern. If you go this route, you have to ensure that
you’re serving content that is going to be readily legible by
visually impaired users.

This technique isn’t supported in iOS or on Windows Phones, so even
if you can safely take advantage of this, you need to look at other op‐
tions to enhance your site performance.

The second option is to bind actions to both click and touchstart,
which ensures that touchscreen devices fire the event as soon as pos‐
sible (touchstart), while still supporting the broadest range of devices
with widely compatible click events still bound. You do need to call
the preventDefault method of the event object in order to stop the
function from being called multiple times. As you’ve already learned,
touch devices call a number of events when a screen is tapped, and if
you’ve bound the same function to two or more of them, the function
will be called multiple times.

An example of how this can go wrong can be seen in the following
code sample. The function toggles the presence of a class, “toggled,”
on the spy element. Tapping the screen with a finger visibly fires the
function twice (visible because of the 300ms delay, of course), turning
the element light brown and then back to the original blue in quick
succession:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <link rel="stylesheet" href="spy.css">

 </head>

 <body>

 <div id="spy"><p>Tap here</p></div>

 <div id="reporter"></div>

 <script>

 window.addEventListener('DOMContentLoaded', function() {

 function beltAndSuspenders(e){

 if (this.className === "toggled"){

 this.className="";

 } else {

 this.className = "toggled";

148 | Chapter 5: Working with User Input

 }

 document.getElementById("reporter")

 .innerHTML += "<p>"+e.type+"</p>"

 }

 document.getElementById("spy")

 .addEventListener('touchstart',

 beltAndSuspenders, false);

 document.getElementById("spy")

 .addEventListener('click', beltAndSuspenders, false);

 }, false);

 </script>

 </body>

</html>

To fix this, you use the e.preventDefault method (where e represents
the event object passed in automatically to the function) in the bel
tAndSuspenders function. This stops multiple events from firing and
allows you to suppress the click delay on an element safely:

function beltAndSuspenders(e){

 e.preventDefault();

 if (this.className === "toggled"){

 this.className="";

 } else {

 this.className = "toggled";

 }

 document.getElementById("reporter")

 .innerHTML += "<p>"+e.type+"</p>"

}

Using this ensures that the function will only fire once, and the spy
element will remain light brown.

Use preventDefault Sparingly
event.preventDafault should only be used on specific in‐
terface elements and not on the body or other parent ele‐
ment. Using event.preventDafault in a function bound to
touchstart will kill the default scroll-by-touch and pinch-to-
zoom behaviors. This is a major accessibility and usability
concern. Suppressing the click delay is great, but not at the
expense of users who might need or want a boost in text size.

In addition to these fundamental solutions, there’s a small library
called FastClick, from the Financial Times, which allows you to sim‐
plify the suppression of the click delay across an entire page safely.
Using it is a snap. Insert the script into the page, and then FastClick

Working with the Full User Input Spectrum | 149

https://github.com/ftlabs/fastclick

intercepts all touch interactions on the body and triggers an immediate
click event when it identifies the need for one:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <link rel="stylesheet" href="spy.css">

 </head>

 <body>

 <div id="spy"><p>Tap here</p></div>

 <div id="reporter"></div>

 <script src="fastclick.js"></script>

 <script>

 window.addEventListener('DOMContentLoaded', function() {

 FastClick.attach(document.body);

 function beltAndSuspenders(e){

 if (this.className === "toggled"){

 this.className="";

 } else {

 this.className = "toggled";

 }

 document.getElementById("reporter")

 .innerHTML += "<p>"+e.type+"</p>"

 }

 document.getElementById("spy")

 .addEventListener('click', beltAndSuspenders, false);

 }, false);

 </script>

 </body>

</html>

At present, FastClick is the recommended path for handling click
events across devices.

Working with the *move events

Working with mousemove and touchmove events is handled similarly
to the way click and touchstart are handled, with some slight ad‐
justments to deal with the potential to have multiple touchpoints
(multiple fingers equals the potential for 10 touches) on the screen.
The following code sample creates a simple canvas demo that will allow
you to draw on the screen using randomly colored circles. The demo
follows your finger or mouse and plots a trail of circles using the x-
and y-coordinates of your mouse or finger on the screen.

Like the previous click and touchstart example, this demo listens
for both mousemove and touchmove events on a canvas element. Like

150 | Chapter 5: Working with User Input

the previous example, bubble uses e.preventDefault to stop other
events from firing. Following that is the one major difference between
this and the click/touchstart example. The function tests to see if
e.touches is available. If it is, it’s a touch event, and in this case at least,
we just access the first touch and get the e.clientX and e.clientY of
the event, which we use to set the x and y of the circle.

e.clientY and e.clientX
e.clientY and e.clientX are event properties that indicate
the x and y position of the event from the upper-left corner of
the screen. If this canvas element were offset slightly from the
top left, we’d have to take into account the offset of the ele‐
ment itself for these coordinates to make sense.

If there is no e.touches, then we simply get the e.clientY and
e.clientX of the single mousemove event directly:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <link rel="stylesheet" href="spy.css">

 </head>

 <body>

 <canvas id="track" width="1024" height="768"></canvas>

 <button id="reset">Reset</button>

 <script>

 window.addEventListener('DOMContentLoaded', function() {

 var canvas = document.getElementById("track"),

 ctx = canvas.getContext("2d");

 function randomHex(){

 return '#'+ Math.floor(Math.random()*16777215)

 .toString(16);

 }

 function circle(params) {

 params = params || {};

 var x = params.x,

 y = params.y,

 radius = params.radius || 10,

 fillStyle = params.fillStyle || false;

 ctx.moveTo(x, y);

 ctx.beginPath();

 ctx.arc(x, y, radius, 0, 2 * Math.PI);

 if (fillStyle) {

 ctx.fillStyle = fillStyle;

 ctx.fill();

 }

Working with the Full User Input Spectrum | 151

 ctx.closePath();

 }

 function bubble(e){

 e.preventDefault();

 var x,y;

 if (e.touches){

 x = e.touches[0].clientX;

 y = e.touches[0].clientY;

 } else {

 x = e.clientX;

 y = e.clientY;

 }

 circle({

 x:x,

 y:y,

 radius:20 * Math.random(),

 fillStyle:randomHex()

 });

 }

 canvas.addEventListener('mousemove', bubble, false);

 canvas.addEventListener('touchmove', bubble, false);

 document.getElementById("reset")

 .addEventListener('click', function(){

 ctx.clearRect(0, 0, 1024, 768);

 }, false);

 }, false);

 </script>

 </body>

</html>

Writing my first name with my finger produces the following result.
Play around with the demo (Figure 5-9). It’s fun.

As you might have inferred from the presence of the e.touches array
in the previous example, handling multiple touches is also possible.

Multitouch Events Are “Touch-Only” Interactions
As soon as there are two or more touch events at one time, only
the touch events are fired. Mouse compatibility events are sup‐
pressed. This makes sense if you think about it because there’s
really no way to model a multitouch interaction with tradi‐
tional mouse events.

152 | Chapter 5: Working with User Input

Figure 5-9. The output of drawing with a finger on the screen

This example expands on the previous one to support multiple touch‐
es. If e.touches is available, instead of getting the first one and getting
the coordinates of a single event, we loop through the entire e.touch
es array and draw a circle for each of the touches present:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <link rel="stylesheet" href="spy.css">

 </head>

 <body>

 <canvas id="track" width="1024" height="768"></canvas>

 <button id="reset">Reset</button>

 <script>

 window.addEventListener('DOMContentLoaded', function() {

 var canvas = document.getElementById("track"),

 ctx = canvas.getContext("2d");

 function randomHex(){

 return '#'+ Math.floor(Math.random()*16777215)

 .toString(16);

 }

 function circle(params) {

 params = params || {};

 var x = params.x,

 y = params.y,

 radius = params.radius || 10,

Working with the Full User Input Spectrum | 153

 fillStyle = params.fillStyle || false;

 ctx.moveTo(x, y);

 ctx.beginPath();

 ctx.arc(x, y, radius, 0, 2 * Math.PI);

 if (fillStyle) {

 ctx.fillStyle = fillStyle;

 ctx.fill();

 }

 ctx.closePath();

 }

 function bubble(e){

 e.preventDefault();

 var x,y;

 if (e.touches){

 for (var i = 0,

 len = e.touches.length;

 i < len; i++){

 x = e.touches[i].clientX;

 y = e.touches[i].clientY;

 circle({

 x:x,

 y:y,

 radius:20 * Math.random(),

 fillStyle:randomHex()

 });

 }

 } else {

 x = e.clientX;

 y = e.clientY;

 circle({

 x:x,

 y:y,

 radius:20 * Math.random(),

 fillStyle:randomHex()

 });

 }

 }

 canvas.addEventListener('mousemove', bubble, false);

 canvas.addEventListener('touchmove', bubble, false);

 document.getElementById("reset")

 .addEventListener('click', function(){

 ctx.clearRect(0, 0, 1024, 768);

 }, false);

 }, false);

 </script>

 </body>

</html>

Drawing a star with two fingers produces the following output
(Figure 5-10).

154 | Chapter 5: Working with User Input

Figure 5-10. The output of drawing with two fingers on the screen

Now that we’ve seen the current state of mouse and touch, let’s look at
a new simplification of these interactions available starting with
Microsoft Internet Explorer 10 and hopefully coming to other
browsers soon.

Pointer events: One event model for mouse, touch, and more

Starting with Internet Explorer 10, Microsoft introduced the Pointer
Events model for handling user input. Pointer Events has since moved
to be a W3C specification. Pointer Events is modeled after traditional
mouse events, except they use the concept of a pointer to apply one
model across all user input, including mouse, touch, and pen. This
allows you to write a single set of events that work across hardware
capabilities. Instead of binding functions to mousemove and touch
move, you simply bind to pointermove and run one function for any
input. No matter what input device appears in the future, your pointer
event will fire as long as the browser and operating system correctly
report the input.

Table 5-1 maps the common mouse events to their corresponding
pointer event.

Working with the Full User Input Spectrum | 155

http://www.w3.org/TR/pointerevents/

Table 5-1. Mouse events mapped to pointer events

Mouse Event Pointer Event

mousedown pointerdown

mouseenter pointerenter

mouseleave pointerleave

mousemove pointermove

mouseout pointerout

mouseover pointerover

mouseup pointerup

The pointer event has all the familiar properties you expect from
mouse events. This makes using Pointer Events pretty straightforward.
With one small CSS-based addition, the code we’ve been working with
to draw randomly colored bubbles is simplified greatly by using Point‐
er Events. For example, there’s no need to fork based on the event type.
There’s also no need to loop through a collection of touches because
each pointer event is handled independently. Looking at just the bub
ble function, you can see that it’s now down to one line. All you need
to do is access the clientY and clientX of the pointer event and pass
it into the circle method:

function bubble(e){

 circle({

 x:e.clientX,

 y:e.clientY,

 radius:20 * Math.random(),

 fillStyle:randomHex()

 });

}

The CSS addition is a single property touch-action, which indicates
whether or not default touch actions should be performed on
the element:

canvas {

 -ms-touch-action: none;

 touch-action: none;

}

As I mentioned, Pointer Events are being standardized by the W3C.
They’re currently a candidate recommendation, which is pretty far
down the road to standardization. They’re currently only supported
by IE10 and IE11, but Firefox Nightly now exposes this functionality
with the option dom.w3c_pointer_events.enabled.

156 | Chapter 5: Working with User Input

http://bit.ly/uw-w3-pointer

For a long time, Chrome had considered adding support for Pointer
Events. In August 2014, they reversed course and announced that they
wouldn’t be moving forward with an implementation, even behind a
flag. Instead, they would look to solve the problem of user input on
the Web with “extensions” to the existing touch events.

Whatever that means.

Safari has also stated they won’t support them, but the hope was that
with Chrome, Firefox, and Internet Explorer adding support, Safari
would come along for the ride. Similar “peer pressure” had worked
with WebGL after all (where Internet Explorer was the odd man out).

This state of events is unfortunate, as I believe this event model is
superior to the current hybrid model we’ve got.

There is a chance that Google will reconsider its decision based on the
stars and discussion on the Chromium Issue, but as of right now, we’re
at an impasse in terms of browser support for Pointer Events.

Confusion Ahead
There was, unfortunately, a similarly named, but entirely sep‐
arate, CSS specification named Pointer Events, which indi‐
cates whether or not an element should receive click/hover
events. You may find both if you search for this topic. At
present, the majority of the useful links are either from Mi‐
crosoft or Patrick H. Lauke’s many presentations and arti‐
cles, so if you’re looking at one of their links, you’re proba‐
bly on the right track.

If you’re interested in working with Pointer Events, there’s a now dep‐
recated but still useful polyfill for Pointer Events from Google’s Poly‐
mer Project. Once you’ve gotten your hands on the script (the Polymer
Project recommends the use of Bower to install the script, but you can
also just download it from this chapter’s code samples), it’s as simple
as including pointerevents.js:

<script src="pointerevents.min.js"></script>

…and then setting the touch-action attribute on the canvas element.
touch-action="none" indicates that Polymer should listen to all
events and not fire scroll events in any direction:

 <canvas id="track"

 width="1024" height="768"

 touch-action="none"></canvas>

Working with the Full User Input Spectrum | 157

http://bit.ly/uw-chrome-pointer
http://bit.ly/uw-chrome-pointer
http://bit.ly/uw-chrome-pointer
http://wiki.csswg.org/spec/css4-ui#pointer-events
http://bit.ly/uw-polymer-pointer
http://bit.ly/uw-polymer-pointer
http://bower.io/
http://bit.ly/uw-pointer-polyfill

This adds Pointer Event support to Chrome 18+, Safari 6+, IE 10, and
Firefox 14+.

Assume Nothing and Accommodate Everyone
Whatever method you choose to handle user input—ignoring touch
entirely and just relying on compatibility events, handling multiple
events, or looking to the future and supporting Pointer Events—the
one constant is that you shouldn’t think about users as being “touch
users” or “mouse users.” Your users can and will have multiple inputs
on the same device and even in the same session. You shouldn’t gate
your site based on what you assume about the input configuration of
your users’ devices. Instead, although you can and should take ad‐
vantage of advanced inputs to provide novel interfaces, you should
provide a solid baseline that takes advantage of the compatibility and
accessibility functionality built into the web platform, web browsers,
and devices.

158 | Chapter 5: Working with User Input

CHAPTER 6

The Surprisingly Complex World
of Images on the Web

The world today doesn’t make sense,
so why should I paint pictures that do?

— Pablo Picasso

More than 20 years after Mark Andreesen first proposed the img ele‐
ment, the image remains the most direct route from the designer’s
imagination to the user’s screen. Sure, with CSS we have many pow‐
erful tools to execute designs, but nothing in our arsenal can compare
to the power of art, illustration, and photography in regards to telling
a story on the Web. The Web is just a new front for the display of the
power of the image. The power of painting and visual art can be seen
in the throngs of people that visit the great museums of the world on
any given day (Figure 6-1) and the Web taps into the same power.

With this innate power, the continued growth of the size of desktop
displays, the increasing quality of displays across form factors, and a
design trend toward large, evocative images have all conspired to push
the image formats and markup tools we have now to their
breaking point.

Add in the vagaries of mobile bandwidth, and all of a sudden, the
landscape for images on the Web is more complicated than it’s ever
been. It’s still the best way to tell a story, but trying to thread the needle
between the best possible performance (serving the smallest possible
image over the fastest connection) while also pleasing the owners of
high-density displays (which require much larger image sizes) has
been an ongoing issue for several years. The demands of responsive

159

http://bit.ly/uw-img-tag
http://bit.ly/uw-img-tag

web design (RWD) have also served to complicate matters, as design‐
ers are interested in using different images entirely depending on cer‐
tain aspects of the user’s browser.

We’ve started to solve some of these issues and are making progress
toward solving them all.

Figure 6-1. The power of image is so great that we’ll wait in lines to
see the world’s art

As I mentioned in Chapter 4, there are server-side options for en‐
hancing RWD implementations. In a RESS-type system, at the tem‐
plate level, a content management system (CMS) might test against a
known set of device characteristics and serve adjusted image elements
or entirely different/dynamically created files as needed. There are also
fancy CDN-based solutions, which will optimize images based on
browser and device characteristics, as well as potential bandwidth.

The innate scalability of Scalable Vector Graphics (SVG) has also be‐
gun to make a comeback. Because the SVG format is based on a series
of rendering instructions delivered to the browser in text format and
not specific pixel information, browsers can scale SVG without in‐
creasing file sizes or bandwidth costs.

In addition to these solutions, there are new options on the horizon.
Thanks to some incredible work by the full web technology commu‐

160 | Chapter 6: The Surprisingly Complex World of Images on the Web

nity (developers, standards folks, and browser vendors), we’ve now
got a new picture element, an associated source element, and new
img attributes that will allow us to handle these use cases in the browser.

If it sounds like a lot to take in, you’re right. If there’s one issue that
requires flexibility and a solid understanding of the tools available to
smooth out the uncertainty, it’s this one. The rest of this chapter will
go through the different issues at play and will look at the technical
solutions that are here for us to use now, as well as those that will help
solve these problems in the future.

While We Weren’t Paying Attention, Images
Got Complicated
As I mentioned in the intro, images on the Web are pretty old. They’re
also vitally important. Without the introduction and wholesale adop‐
tion of images, the Web would have remained a text-based academic
novelty. With images, we got everything from millions of GeoCities
fan sites to Amazon (all the better to sell products) and everything else
that has followed. Images were a vital component of the Web taking
the world by storm.

Technically, images were, up until a few years ago, also very well un‐
derstood. While I’ll admit I’ve written an entire book chapter on im‐
ages, that depth came down to how important they are, not to how
complex they are in practice. The basics of the img element are easy to
understand. You have an img element. You give it an src that points
to an image somewhere on the Web and an alt attribute that provides
textual context of the image, and that’s all you need to get a picture of
a cat on the Web. It was that way for a long time. With the exception
of one small panic when there was a threat of Unisys clobbering the
Web with its GIF-related patent, we pretty much settled into a period
of 10 or 15 years where images were as constant as the seasons.

Then, a few years ago, things started to change.

For one thing, people simply started using larger images. The example
I always point to is Boston.com’s Big Picture blog. It presents 30–40
large images on a single topic with minimal commentary. The thing
that was great about it when it launched was that the images were large.
They were output to fill a 1024-pixel screen. These days it’s common
to find sites that use full-width imagery that stretches well beyond 1024

While We Weren’t Paying Attention, Images Got Complicated | 161

http://bit.ly/uw-gnu-gif
http://bit.ly/uw-gnu-gif
http://www.boston.com/bigpicture/
http://bit.ly/uw-lg-photo

pixels, but sites like the Big Picture really drove that trend. When it
launched, it was a novelty.

This trend comes with a price. Steve Souders has identified this as a
major factor in the web performance space. As Figure 6-2 (generated
with data from the HTTPArchive) shows, the average size of web pages
has ballooned recently. The majority of those bytes are in images.

Figure 6-2. The progression of web page sizes

This is an exciting trend from a visual perspective, but it brings with
it concerns over bandwidth and performance. All those pixels have to
come down the wire. This is especially troubling when you factor in
mobile bandwidth. Getting all those bytes down to a user on a crappy
mobile connection is tough, and people are paying for those bytes as
part of their monthly plan or pay-as-you-go system. Because of this
trend, and because of the overall growing interest in web performance,
there’s been a lot of discussion about how to best optimize images for
the Web and how to serve them as efficiently as possible.

This discussion is complicated by both the design demands of RWD
and the need to serve higher resolution versions of images in order to
“wow” the audience on high-pixel density displays.

162 | Chapter 6: The Surprisingly Complex World of Images on the Web

http://httparchive.org/

A Matter of Semantics
You’re probably thinking—didn’t we already see an example of
using different images at different resolutions and different
crops when we initially talked about RWD? We did. There,
however, we used CSS background images. This larger issue is
about the primary content images you would see in a news site,
blog, or shopping site. These images are primary content, will
be implemented in the DOM as elements on their own, and
need to use standard markup in order to fit into the existing
infrastructure of screen readers, search engines, browsers, and
content management systems.

The following section lays out some of the major factors that have
come into play with images over the past few years. Not so long ago,
the first was our only concern. How things have changed. This is the
landscape we’re attempting to navigate in this chapter.

We Want to Serve the Smallest Possible File Size
This is really the core issue. It just manifests itself in many ways. In a
perfect world, we would only ever send the smallest possible number
of bytes needed to render the image at an acceptable quality level.
Failing a new, adaptive image format, that might not be possible, but
it’s still something that we can improve upon with new markup, tool‐
ing, and awareness of the issue.

We Need to Take Advantage of the Browser Preloader
All modern web browsers use a technique where the browser skips
ahead, while simultaneously reading through the document and
building out the DOM, and reads through the document looking for
additional assets that it can go ahead and start to download. If, for
example, you’ve got a data table that might take hundreds of millisec‐
onds to render, this preloading can help as an image or JavaScript file
later in the DOM can start to download even while the browser is still
reading and rendering the complicated table markup. Ilya Grigorik of
Google says this can improve performance up to 20%. For perfor‐
mance’s sake, therefore, it’s important that any image solution you use
can take advantage of the preloader. This means you should look to
semantic, markup-based solutions wherever possible.

While We Weren’t Paying Attention, Images Got Complicated | 163

http://bit.ly/uw-preloader

We Want to Serve Correctly Sized Images to Multiple
Resolutions
If you’re serving a “big” image to a 2048-pixel monitor, then you want
it to be a “big” image—1600px or more. A big image on a tablet or
phone, on the other hand, might only need to be 320 or 480 pixels
wide. Sending the correct amount of data in this case can significantly
improve performance.

We Need to Serve the Correct Image for Multiple Pixel
Ratio Devices
To produce clean images on devices with a high device pixel ratio, you
need to send down proportionally larger files than are displayed for a
given set of CSS pixels. Images that are crisp on a standard desktop
display would show artifacts on a high-pixel density display. Obvi‐
ously, you can just send higher resolution images to all browsers, but
those pixels come at a bandwidth price, so it’s much better to just send
the correct images to the correct devices.

We Want to Choose Different Sizes/Images at Different
Breakpoints
There is a desire to be able to show different images for different ori‐
entations and screen resolutions. On a large screen, in an article de‐
scribing flora in Tucson, Arizona, you might use a wide image that
shows a variety of the hardy plant life you can find there. On a small
screen in portrait orientation, where the impact of the variety would
be lost because it would display an inch high with little detail, an image
of a Saguaro cactus with a strongly vertical aspect ratio might be a
better choice (Figure 6-3).

We Want to Use Design Breakpoints
Plenty of development these days is based around the concept of media
query breakpoints. They’re one of the primary technologies at the
heart of RWD. Images need to be controlled alongside all the other
design changes that occur in a responsive site.

164 | Chapter 6: The Surprisingly Complex World of Images on the Web

Figure 6-3. An illustration of using art direction on the Web

Serving the Correct Format
If you’re looking to take advantage of Google’s new WebP image for‐
mat, you need to be able to easily serve WebP images to browsers that
support them and serve PNGs or JPEGs to browsers that don’t.

Images Are Easy, and They Should Stay Easy
From an authoring perspective, images are dead easy. If possible, the
solutions we look at should remain easy to use. The most powerful
tools are worthless if they’re not easy to implement. This has proven
to be more difficult than you might imagine.

Optimizing Images for the Web
Before we fully unravel the complexity of responsive images, it’s worth
taking a quick look at the basics of serving images over the Web. This
includes a look at the common image types and how they fit into the
web image toolbox. Many developers still just take whatever a designer
gives them for image assets without taking the time to properly opti‐
mize these images for web delivery. The first part of optimization is
simply ensuring that the correct formats are chosen. Let’s look at the
common image formats and how and when they should be used.

JPEG
The Joint Photographic Experts Group (JPEG) format was developed
to store and compress images such as photographs that require a wide
range of colors. When you export a JPEG, you specify by how much
you want to compress the image. The process to compress a JPEG
involves discarding color data that people would not normally

Optimizing Images for the Web | 165

perceive. Because the format discards this data, the data is lost. The
original cannot be re-created from a compressed version. JPEGs are
therefore referred to as having lossy compression.

JPEGs remain the workhorse format for photographs and full-color
artwork on the Web. The combination of universality in authoring and
rendering, well-established tools for compression, and decent blend
between file size and quality have ensured that JPEGs are the first
choice for full-color artwork.

Progressive JPEGs

There are two types of rendering schemes for JPEGs. One, baseline,
renders the entire image from left to right, top to bottom at the highest
possible quality. If you watch a large image render in a browser, you
can see a baseline image snap into place as it downloads. Progressive
rendering, on the other hand, renders the image in several passes of
increasing quality.

In the 1990s, we would use progressive JPEGs because any image of
reasonable size and quality was going to end up taking a million years
to render on most connections. Progressive rendering presented the
best perceived performance. Now that we’re once again dealing with
dial-up era speeds in some cases on mobile devices, progressive
JPEGs have made a comeback.

Browsers
Not all browsers (older Internet Explorer and Safari 6 are im‐
portant exceptions) render progressive JPEGs in the expected
way, so not everyone gets the perceived performance benefit.
The good news is that browsers that don’t render them in the
expected way still get the benefit of smaller file size with pro‐
gressive JPEGs, so it’s not a total loss with nonsupporting
browsers.

Figure 6-4 shows two versions of the same uncompressed image. One,
on the left, is set to baseline rendering. The other, on the right, is set
to progressive. You can see the difference as each loads slowly in the
browser. The baseline image loads line by line at full resolution. The
progressive image, on the other hand, loads a lower resolution version
almost immediately and then fills in detail as more data is downloaded.

166 | Chapter 6: The Surprisingly Complex World of Images on the Web

http://bit.ly/uw-prog-jpegs
http://bit.ly/uw-prog-jpegs
http://bit.ly/uw-bookofspeed

Figure 6-4. An illustration of progressive rendering versus baseline
rendering

Because the full width and height of the image are sketched out by the
browser early, the apparent performance is much better. Something
that looks relatively complete happens earlier.

GIF

Graphics Interchange Format (GIF) images are created using a palette
of up to 256 colors. Each pixel of the image is one of these 256 colors.
Every GIF can have a different palette of 256 colors selected from the
full true color (24-bit) range of more than 16 million colors. The GIF
format stores the palette of colors in a lookup table. Each pixel refer‐
ences the color information in the lookup table rather than directly
specifying its own color information. This means that, if many pixels
use the same colors, the image doesn’t repeat the same color informa‐
tion, which results in a smaller file size. Because of the limited palette,
GIFs have been traditionally used for flat graphics like logos or icons
rather than photographic images. Because of the popularity of Portable
Network Graphics (PNGs), a patent-free alternative to GIF that has
gained popularity over the past 10 years, GIFs have fallen out of favor
for web production—with the grand exception of animated GIFs.
Animated GIFs allow you to store multiple frames of an animation in
a single file. These low-quality loops have earned a beloved place in
the toolbox of goofballs across the Web.

PNG

PNG was developed in the late 1990s in direct response to the Unisys
GIF patent controversy mentioned earlier. The PNG format was ini‐
tially designed for the same use cases as GIF images—basically serving
8-bit flat graphics over the Web. The designers of the format eventually
amped it up a little. The 8-bit PNG solves the same problems as an 8-
bit GIF, using only 256 colors and on/off transparency, but there is an
enhanced 24-bit version of PNG, which has two big advantages:

• Like a JPEG, PNG 24 supports the full true color spectrum.

Optimizing Images for the Web | 167

• A map provides different levels of transparency for every pixel,
which allows for softer, anti-aliased edges.

Additionally, PNGs tend to compress to a smaller file size than their
GIF equivalent. All of these benefits, mixed with the spark of the GIF
patent scare all those years ago, mean that PNG is the format of choice
for limited color graphics.

Tooling around PNGs is also excellent, with tools like PNG Crush
available to squeeze every last byte out of your images.

SVG

Scalable Vector Graphics are referred to as vector graphics. Compared
to bitmaps, in which the file contains information about every pixel
in the image, vector graphics are defined as mathematical coordinates
that define the shapes, paths, text, and other elements that define the
image.

As I mentioned in Chapter 2, it’s only been over the past few years that
they have come to prominence, but SVG images are an excellent option
for certain types of graphics. If your site’s target audience supports it,
or you are willing to build out PNG alternatives for older Android and
Internet Explorer, they’re a great option. If you work with SVG, you
can avoid much of the complexity of the responsive images discussion.

WebP

Offered here as a bit of a novelty for the present, WebP is Google’s
answer to the question of images on the Web. WebP is a new image
format created by the Internet giant that offers significant file size gains
over the existing contenders. Google says “WebP is a new image format
that provides lossless and lossy compression for images on the Web.
WebP lossless images are 26% smaller in size compared to PNGs.
WebP lossy images are 25–34% smaller in size compared to JPEG im‐
ages at equivalent SSIM index.”

Sounds great.

Except no one but the Blink browsers are looking to support WebP
any time soon. So, although it’s an interesting technology to explore
and potentially use as an enhancement if you’re enterprising, it’s not
yet ready to replace JPEGs or PNGs. This is especially true because the
current tooling for outputting images to WebP isn’t as robust as the
other common formats. There are a handful of command-line and

168 | Chapter 6: The Surprisingly Complex World of Images on the Web

utility tools available, but WebP support isn’t yet in popular authoring
programs like Adobe Fireworks or Photoshop without a plug-in, so
adoption isn’t as easy as telling the production staff to “output WebP”
when cutting graphics. It requires automation or the use of a manual
utility to get WebP images prepped for the Web.

Choosing the Right File Format
Performance is the driving factor for all of this discussion, so under‐
standing the basics of choosing the right file format is important no
matter what choices you end up making with regard to responsive
images.

Usually, one or another format will be the obvious choice for you. The
rule of thumb is:

• Use JPEGs for photorealistic pictures with a lot of detail or subtle
shade differences you want to preserve.

• Use SVG (potentially in concert with PNG fallbacks for older
browsers) for images with flat color and hard edges if you’re con‐
cerned with scaling images across multiple resolutions and don’t
want to deal with the complexity of the responsive image solu‐
tions.

• Use PNGs for images with flat color (rather than textured colors)
and hard edges, such as diagrams, text, or logos, and learn the
various options for responsive images to deal with scaling images
across multiple resolutions.

Obviously, depending on the size and organization of your team, you
might have more or less control over this process. If you’re a frontend
developer responsible for cutting images, then obviously you’ve got
control. If not, and the work is done by a designer or production per‐
son on the design team, then it’s worth taking some time to train them
on the importance of choosing the correct format and choosing output
options that best balance the needs of visual clarity with file size.

Additionally, even if you’ve made the correct choice with the basic file
format, there are still some ways in which you can optimize your im‐
ages using automated tools. This post by Addy Osmani outlines the
various options for adding image optimization automation to your
process. If you’re not using build automation, learning the various
options available to you when you export images for the Web in your

Optimizing Images for the Web | 169

http://bit.ly/uw-img-opt
http://bit.ly/uw-img-opt
http://bit.ly/uw-img-opt

software package of choice is invaluable. Using the correct settings at
that stage can make a later optimization step redundant.

Look for a CDN Solution
At one point, a CDN solution for images was a real expense and took
a lot of technical knowledge to get up and running smoothly. These
days, that’s not the case. With options like Amazon’s Cloudfront out
there with example code for every language, a robust ecosystem of
tools, and bargain basement prices, the ability to serve your images
from geographically optimized locations off fast servers is within the
reach of even the most penny-pinching organization.

Definitely try to take advantage of the speed benefits of a CDN. They
also allow you to “shard” across different domains, pipelining requests
and improving performance. A CDN will be the foundation upon
which all your other image delivery enhancements are built.

Responsive Images
Now that we’ve taken a quick look at the basics of images on the Web,
let’s look at the extensions to the HTML specifications that have come
along over the past few years to solve some of the more advanced use
cases outlined previously.

The path to these solutions has been long and occasionally contro‐
versial. I’m usually happy to trace the history of web standards devel‐
opment, but the path to picture, srcset, and sizes is so convoluted
that it’s beyond even my capacity for tracing web dev folklore.

The basic gist is as follows.

As RWD took off, people recognized that the current markup solutions
weren’t enough to solve the complexities of content images in RWD
sites. The picture element was proposed in response to this issue. The
developer community liked the proposal and began working on hon‐
ing the solution as a proper specification, working as the Responsive
Image Community Group (RICG). The WHATWG and browser ven‐
dors didn’t end up liking the RICG proposed solution and eventually
came up with an alternative proposal, the srcset attribute. The de‐
veloper community was underwhelmed. Still, because it solved some
use cases and browser vendors were amenable to implementation,
srcset ended up being adopted.

170 | Chapter 6: The Surprisingly Complex World of Images on the Web

http://responsiveimages.org/
http://responsiveimages.org/

A partial solution is better than no solution at all, of course, but there
were still issues--including the file format and art direction use cases
outlined earlier.

A couple more years of discussion happened.

Other solutions were proposed.

Eventually… the picture element was brought back from the dead,
whipped into a form that the WHATWG, browser vendors, and the
developer community all liked. picture made it into the specification.

The rest of this section will look at these different solutions from a
technical perspective.

The Option of Doing Nothing (or Nothing New, at Least)
Before we look at the new-fangled solutions, it is worth pointing out
that you solve this to a decent degree without resorting to anything
new. With a responsive layout, the use of a little CSS, and images with
enough bytes to render decently at higher resolutions, you don’t need
to do anything using new technology to provide a good visual expe‐
rience for your users across a wide spectrum of devices. This is pre‐
cisely what I do for my personal, art-heavy blog. My needs are pretty
simple, so I can get away with this approach. I want to scale images
between 320 and 800 CSS pixels with additional support for 2x dis‐
plays.

I output my images at around 1600 pixels, and as a hedge, I pay real
attention to using the proper format/settings out of Photoshop. At
their worst, these images are 200 KB or so, which isn’t bad on a desktop
but can be somewhat slow on mobile (Figure 6-5).

Figure 6-5. Bare-bones responsive images on JavaPlusPlusPlus.com

Responsive Images | 171

http://javaplusplusplus.com/

These two lines of CSS will scale the image within its containing block:

img {

 max-width: 100%;

 height: auto;

}

For my particular use case, this is a “good enough” solution. I’m aware
that I’m serving too many bytes to some users, but I’m not at the point
where I’m willing to bite the bullet and implement one of the new
solutions. At some point, support, tooling, and my own free time will
converge to get me to take the plunge, but for right now I’m willing to
forgo the optimal solution for one that looks pretty good and takes
very little maintenance.

For better or worse, that’s still an option for you, too.

srcset
The srcset attribute is a new attribute added to the img element. It
can also be used in concert with the picture element, but for now
we’re going to focus on its original use, which is as an addition to
img. Like the standard src attribute, the srcset attribute provides the
browser information about the source for the img. Instead of a single
image URL, however, the srcset attribute points to a comma-
separated list of URLs and associated hints regarding the image size
or pixel density. Let’s look at an example to understand how those
hints work.

For Now, This Is a WebKit and Blink Story
At present, Chrome, Safari, and Opera are the only browsers
that support srcset out of the box. Firefox has it hidden
behind a flag.

In the following code, the srcset attribute provides an indication of
the device pixel ratio the referenced image should apply to. In this case,
there are two options, although you can have as many as you need.
First is more-colors-small.jpg, which is 600 × 350 pixels wide. It is
meant to display at standard resolution. The second image, more-
colors-large.jpg, is 1200 × 700 pixels and is meant for higher resolution
displays. Although it will display at 600 × 350 CSS pixels, it’s got enough
additional image information to look clean in higher resolution devi‐
ces as well.

172 | Chapter 6: The Surprisingly Complex World of Images on the Web

The common src attribute is still there for browsers that don’t un‐
derstand srcset:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body>

 <img

 srcset="more-colors-small.jpg 1x,

 more-colors-large.jpg 2x"

 src="more-colors-small.jpg"

 alt="Many colors!"

 width="600" height="350">

 </body>

</html>

This is the solution for the device pixel ratio use case. With src as a
fallback for every browser that supports images, and an alt attribute
for those that don’t, this is a good, backward-compatible solution. Just
the way I like it.

To solve more complicated use cases, the srcset attribute can work
in tandem with the new sizes attribute to use media queries to serve
separate image sources, displayed with different relative dimensions
based on the browser’s screen real estate. The following code sample
illustrates how this works. It’s a little complicated. In fact, all of the
remaining examples in this section are a little complicated. Still, these
new attributes can be combined in very powerful ways, so it’s worth
wrapping your head around the complexity.

In this example, the element starts with a src attribute for nonsup‐
porting browsers. In this case, I’ve chosen a smallish image to ensure
that it loads speedily, no matter what device or browser. Following that,
there’s the new sizes attribute (Blink browsers only at present). sizes
accepts a media query/image size pair (or list of pairs). The following
illustration (Figure 6-6) breaks down the components. The first part
is the media query. This media query should be familiar if you’ve used
them in your CSS. If the query is true, then the image size is set to
60vw. If the media query fails, the size falls back to the default size
of 100vw.

Responsive Images | 173

Figure 6-6. The anatomy of a sizes attribute

There can be any number of media query/size pairs. The first one to
match wins, and if none match, then the fallback value is used.

The srcset attribute here is more expansive. The list has a series of
images between 200 pixels wide and 1600 pixels wide. The second part
of the value pair in the source set, instead of indicating the preferred
pixel density, hints to the browser the pixel width of the image (200w,
400w, etc.). It’s up to the browser to mix and match the best pixel width
with the appropriate size at different dimensions and pixel densities:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body class="images">

 <img src="more-colors-400.jpg"

 alt="Many colors!"

 sizes="(min-width: 1024px) 60vw, 100vw"

 srcset="more-colors-200.jpg 200w,

 more-colors-400.jpg 400w,

 more-colors-600.jpg 600w,

 more-colors-1200.jpg 1200w,

 more-colors-1600.jpg 1600w">

 </body>

</html>

Personally, I don’t find this syntax all that appealing. I don’t think the
purpose of the long text string inside the srcset attribute is all that
apparent without some explanation, and the same goes for the purpose
of the sizes attribute. Still, it does the job it was designed to do, so it’s
worth wrapping your head around the complexity of the syntax. One
of these days, you’ll want to unlock the power of these new attributes.

174 | Chapter 6: The Surprisingly Complex World of Images on the Web

sizes sizes
The length part of a size can be specified in any valid CSS
length, which adds to the possibilities and complexity of this
attribute. This chapter will stick with vw (viewport width)
measurements.

Of course, srcset and sizes are just a complexity appetizer. With the
new picture element, both the complexity and the power get amped
up. Let’s take a look at it in action.

picture
picture was the first solution proposed for responsive images in
2010. This is where the whole epic responsive image standards
saga began.

In its original concept, picture was designed as a parallel img element,
modeled on the syntax of the HTML5 video and audio elements. The
idea was to have a picture element wrapping a series of source ele‐
ments, which would represent the options for the image source. It
would wrap a default img element for nonsupporting browsers. A
media attribute on each source would hint to the browser the correct
source to use:

<picture alt="original proposal">

 <source src="high-resolution.png" media="min-width:1024px">

 <source src="low-resolution.png">

</picture>

For a variety of reasons, this initial proposal was shot down, even after
much RICG refinement, because of implementation issues. srcset
filled in some of the void, but because it didn’t solve all the responsive
image use cases, there was always a hole in the specification landscape.

Years passed and eventually, after many false starts, picture was res‐
urrected and reworked to fill that hole.

However, instead of being a replacement for img, picture is now an
enhancement to the img element to help browsers sort out the best
possible solution for the source of an image.

Responsive Images | 175

http://bit.ly/uw-css-length
http://bit.ly/uw-css-length
http://bit.ly/uw-lawson-picture/

Firefox and Chrome, Sitting in a Tree…
At present, Chrome and Firefox are the only browsers that
support picture, and both only do so behind a flag or config‐
uration option. In the near term, Opera, Chrome, and Fire‐
fox will all have support out of the box.

Let’s take a look at an example (Figure 6-7). Although the srcset
examples worked with different resolution versions of the same image,
this picture example aims to provide different images for different
resolutions. Here, in larger browser windows, an image that is wider
than it is tall will be shown.

Figure 6-7. The image that will be displayed on large screens

In browser windows smaller than 1024 pixels, a square image will be
used (Figure 6-8).

176 | Chapter 6: The Surprisingly Complex World of Images on the Web

Figure 6-8. The image that will be displayed on small screens

The markup for this is relatively complicated and needs some
explaining.

The picture element wraps the entire solution and tells the browser
that it’s going to be working with this picture element to sort out the
source for the child img element. Before we get to that img, there are
other elements to work through. The first child element we encounter
is the source element. From a developer perspective, source works
the way that the original proposal intended. If the media query match‐
es, that source is used. If it doesn’t, you move onto the next media
query in the stack. Here you have a media query looking for pages with
a minimum width of 1024 pixels. If the media query matches, the
srcset attribute is used to let the browser choose between three sep‐
arate source images, ranging from 600 pixels to 1600 pixels wide.
Because this image is intended to be displayed at 50vw, that will give
good coverage for the majority of displays. Following that, there’s the
fallback img element, which also contains a srcset. If the browser
doesn’t support picture and source or if the previous media queries

Responsive Images | 177

didn’t match, you use the srcset here to get the source for this image.
The sizes attribute allows you to further adjust the display for the
range of sizes smaller than 1024 pixels:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body class="images">

 <picture>

 <source

 media="(min-width: 1024px)"

 sizes="50vw"

 srcset="more-colors-600.jpg 600w,

 more-colors-1200.jpg 1200w,

 more-colors-1600.jpg 1600w">

 <img src="more-colors-square-400.jpg"

 alt="Many colors!"

 sizes="(min-width: 768px) 60vw, 100vw"

 srcset="more-colors-square-200.jpg 200w,

 more-colors-square-400.jpg 400w,

 more-colors-square-600.jpg 600w,

 more-colors-square-800.jpg 800w">

 </picture>

 </body>

</html>

It’s complicated, but this picture pattern solves the question of both
different image sizes and different formats for separate art direction
choices.

The following example takes the picture to the limit, combining dif‐
ferent sizes, different image formats, and art direction in one element.
Hopefully, you won’t have to get this complex yourself, but if you need
to, then this is a pretty good example of how far you can stretch these
new elements and attributes.

Prepping WebP Files
The WebP images in the following code were generated us‐
ing a utility called XNConvert. It’s cross platform and allows
you to quickly create WebP images. If you’re committed to
using WebP, you’ll want to look at automating this process with
whatever build system you’re using. I am not committed to
WebP, so this utility is the way I go when messing around with
these things.

178 | Chapter 6: The Surprisingly Complex World of Images on the Web

http://bit.ly/uw-xnc

The following monster markup block shows how this might be ac‐
complished. It follows the same pattern you just saw with the art di‐
rection use case, with the addition of multiple source elements to
choose from instead of just one. The first source has a media query
looking for displays with a minimum width of 1024 pixels. You’ve seen
that before. The new wrinkle is the addition of the type attribute. If
the browser understands how to render image/webp, then it will use
that source. With source elements, the order matters, so browsers
with larger screens (the matching media query) that support WebP (as
indicated by the type attribute) will never get past this source element
and will serve an appropriately chosen and sized WebP image to
the user.

Just So You Know, the SVG Mime Type Is Image/svg+xml
WebP is used here for the novelty of it, but this feature of
picture is also a great option for using SVG while still pro‐
viding a clean, markup-based fallback for older browsers.

Following that, there is a second source element, which mirrors the
srcset and sizes you saw on the img in the previous example. If the
minimum width media query fails (the browser is smaller than 1024
pixels), but the browser does support the WebP type, this source and
srcset will be chosen by the browser. The next source element does
the same as the first in the stack, at least in terms of media queries and
image sizes, but there is no type attribute. All browsers will use this if
they understand picture, source, and srcset, but don’t understand
the type image/webp. Finally, you have the fallback img element with
the default src and small screen srcset:

Responsive Images | 179

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body class="images">

 <picture>

 <source

 media="(min-width: 1024px)"

 sizes="50vw"

 srcset="more-colors-600.webp 600w,

 more-colors-1200.webp 1200w,

 more-colors-1600.webp 1600w"

 type="image/webp">

 <source

 sizes="(min-width: 768px) 60vw, 100vw"

 srcset="more-colors-square-200.webp 200w,

 more-colors-square-400.webp 400w,

 more-colors-square-600.webp 600w,

 more-colors-square-800.webp 800w"

 type="image/webp">

 <source

 media="(min-width: 1024px)"

 sizes="50vw"

 srcset="more-colors-600.jpg 600w,

 more-colors-1200.jpg 1200w,

 more-colors-1600.jpg 1600w">

 <img src="more-colors-square-400.jpg"

 alt="Many colors!"

 sizes="(min-width: 768px) 60vw, 100vw"

 srcset="more-colors-square-200.jpg 200w,

 more-colors-square-400.jpg 400w,

 more-colors-square-600.jpg 600w,

 more-colors-square-800.jpg 800w">

 </picture>

 </body>

</html>

This is likely as complicated as this new markup can be. You can ob‐
viously get as granular as you like with the media queries and
srcset, but the basic pattern will remain the same, no matter how
detailed you get with your designs.

Picturefill, the picture Polyfill
As you’ve seen, there isn’t universal support for these new elements
and attributes. Thankfully, the folks at the Filament Group have pro‐
vided the Picturefill polyfill, which allows you to use the new respon‐
sive markup patterns now, even in browsers that don’t support the new

180 | Chapter 6: The Surprisingly Complex World of Images on the Web

http://bit.ly/uw-picturefill

elements and attributes. The following code sample shows how easy
it is to use Picturefill. You simply need to add the Picturefill script to
the head of the document, and because of a bug in Internet Explorer
9 (and only IE9), you need to add a video element wrapping the source
elements. This is accomplished using conditional comments, which
will only show the video element in IE9:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <script src="picturefill.js"></script>

 </head>

 <body class="images">

 <picture>

 <!--[if IE 9]><video style="display: none;"><![endif]-->

 <source

 media="(min-width: 1024px)"

 sizes="50vw"

 srcset="more-colors-600.jpg 600w,

 more-colors-1200.jpg 1200w,

 more-colors-1600.jpg 1600w">

 <!--[if IE 9]></video><![endif]-->

 <img src="more-colors-square-400.jpg"

 alt="Many colors!"

 sizes="(min-width: 768px) 60vw, 100vw"

 srcset="more-colors-square-200.jpg 200w,

 more-colors-square-400.jpg 400w,

 more-colors-square-600.jpg 600w,

 more-colors-square-800.jpg 800w">

 </picture>

 </body>

</html>

The folks at the Filament Group have been involved in the develop‐
ment of these new elements and attributes from their very genesis, so
if anyone is going to implement a solid polyfill, it’s going to be them.

Because the support for the whole suite of responsive image markup
is so spotty at present, you’re basically required to use a polyfill solution
across the board. As more and more browsers get native support, you
would look to test with Modernizr or with your own feature detect for
the specific feature you were looking to use and only conditionally
load the polyfill as needed at that point.

Responsive Images | 181

Embrace SVG
Taking a step back from the markup overload we’ve seen in the pre‐
vious section, it’s time to look at how SVG can help you with the ques‐
tion of images and the modern Web. As I’ve mentioned, SVG is vector
based and because of that, the information in the file isn’t based on
pixels but on providing coordinates and instructions embedded in the
file in order to create the image. The following is the source of a simple
SVG image that creates a pink circle. The circle contains a set of
instructions as to where to place the center of the circle (cx and cy)
and how long the radius (r) should be relative to the SVG elements
viewPort:

<svg width="200" height="200"

 viewPort="0 0 200 200" version="1.1"

 xmlns="http://www.w3.org/2000/svg">

 <circle cx="100" cy="100" r="75" fill="#fe57a1"/>

</svg>

This file can be saved as circle.svg and inserted into the document as
the src of an image:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body class="images">

 </body>

</html>

It will look like Figure 6-9 when rendered in the browser.

That’s all pretty straightforward. SVG images can be output from a
good, vector-based drawing program like Adobe Illustrator. Consid‐
ering your designers are already probably using something like Illus‐
trator to create graphics like this means that using SVG might be as
easy as having them choose a different export format.

182 | Chapter 6: The Surprisingly Complex World of Images on the Web

Figure 6-9. A simple SVG example

For the purposes of this chapter and the issue of images on the modern
Web, SVG being vector based basically means there’s no need to pro‐
vide different sizes for different resolutions. The browser will take the
instructions in the SVG file and render an image that will look good
at whatever scale you desire. The instructions like those in the circle
element in the previous example are based on the coordinates of the
viewPort. If the SVG image scales, its defined viewPort scales and any
instructions will scale accordingly.

Take a look at this example, which uses eight separate copies of an SVG
image representing the HTML5 logo. The only change in each is the
width, as defined in the markup. There is no difference in the render‐
ing quality between any of these images:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body class="images">

 </body>

</html>

Embrace SVG | 183

As you can see in Figure 6-10, they’re crisp all the way up to the 3200-
pixel wide rendering of the 200% image. This same power also allows
the browser to fill in the gap between CSS pixels and actual pixels in
higher pixel density displays.

Figure 6-10. Scaling an SVG image is as easy as changing the dimen‐
sions

So, just by switching over to SVG images for more graphical images,
you can solve the problem of scaling images up and down based on
display size and the issues of pixel density. Not too shabby.

One other nice thing about using SVG is that, instead of just being able
to use media queries in your markup to control the display of your
images, you can continue to control the display in CSS files where it
really belongs.

This example shows how to control the width of the HTML5 logo
based on a simple media query (on larger screens, the image will be
displayed at 50%, while on smaller screens, it will be displayed at
100%):

184 | Chapter 6: The Surprisingly Complex World of Images on the Web

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <style>

 .svg {

 width:100%;

 }

 @media all and (min-width: 1024px) {

 .svg{

 width:50%;

 }

 }

 </style>

 </head>

 <body class="images">

 </body>

</html>

This is, in my mind, far more maintainable than the markup-based
solutions. Instead of having to go through the markup to adjust a
bunch of sizes attributes if your design changes, you can control the
display of these images where they should be controlled--alongside
the rest of your design code in your CSS files.

Of course, SVG doesn’t solve everything. For starters, there’s no sup‐
port in older IE and Android older than 3.0, so if you’re looking to
support those browsers you need some scheme to serve PNG versions
of these images. For example, you could use picture plus Picturefill,
some RESS solution, or simply a script that looks for img elements with
an .svg extension and replaces them with .png in offending browsers.
Additionally, there’s no markup-based way to properly solve the art
direction use case where you want to serve an entirely different image,
so if that’s important to you, you would be drifting back into the more
complicated markup waters. And finally, SVG isn’t designed for pho‐
tographic images, so you’re still looking at a markup-based solution
for your cat photos.

Still, looking to leverage SVG wherever it makes sense will simplify
your life in terms of markup and maintenance, and will produce better
quality, no matter what display a supporting browser is running on.

Embrace SVG | 185

On the Server Side
As we’ve touched on, there’s also the option to handle some of these
things on the server side. I’m not going to go into detail because, unlike
HTML, CSS, and JavaScript, which we’re all in agreement on, there are
far too many viable options on the server side for me to be able to
present a decent solution that will be easily translatable to everyone’s
server-side setup.

That said, conceptually the general approaches are pretty easy to un‐
derstand, no matter what the implementation looks like in your lan‐
guage of choice. There are several ways you can augment your han‐
dling of images on the server side.

For example, using one of the mobile detection schemes I talked about,
change the HTML template to point to different images based on
browser characteristics. Even free CMS solutions like WordPress or
Drupal can handle the creation of multiple sizes for images when
they’re uploaded and expose those sizes through an API, so matching
mobile devices to resolutions can happen without too much strain.
This approach solves whatever use case you have (you can easily swap
out whatever image you need for whatever browser) and has the added
benefit of being JavaScript agnostic. There’s no polyfill needed if you’re
just rendering the correct image source on the server side and sending
it down the pipe correctly.

The downside is, of course, you’ve split some display logic from the
CSS or your markup to your template code, but depending on your
team and audience, that might be a trade-off you want to make. If
you’ve got a full-spectrum team with people who are willing to dive in
and do some of this heavy lifting on the server side, take advantage of
it if it makes sense.

A Practical Developers Guide to All of This
Complexity
So, now that you’ve digested all of this information, and there is a lot
of it, what’s the best way to approach all of this? Let’s review what we’ve
learned so far, and try to put it all together in a way that gives us a
foundation for moving forward with images without too much hair-
pulling in the future.

Personally, I’ve looked at this issue with the following factors in mind.

186 | Chapter 6: The Surprisingly Complex World of Images on the Web

Complexity
How hard is it to implement?

Support
How well will this solution work across browsers and platforms?

Flexibility
Can the solution do what I need to do with responsive images?

Maintainability
How difficult would it be to change the display rules for your site
and how much markup is there to sort through?

With those factors in mind, keeping the following points in mind when
you launch a new project will help you sort out the right way to go.

Identify How Important Images Are to Your Site
All images on the Web are not created equal. If you’re an artist or a
photographer, or are working for a global lifestyle brand trying to sell
their latest sneakers in Shenzhen, then you’ve got a lot more interest
in providing the best possible quality images all the time than someone
merely trying to share a stock image on their “contact us” page.

Get the Basics Right
Outputting images in the correct format, at optimal quality, and at the
smallest possible file size gets you a long way toward solving image
performance issues. Use a CDN to ensure that the simple geographic
spread of your audience isn’t causing your hard work to be wasted.
There’s no point in learning about picture if you’re adding a full sec‐
ond to the image download time because you’re serving images from
your office in New York to your best customer in Australia.

Use the Simplest Possible Solution
If you can, stick to solutions with broad compatibility and lower com‐
plexity. With polyfills like Picturefill, it’s possible to use picture and
srcset now, but with fragmented current browser support, a some‐
what uncertain future in browsers (e.g., we haven’t even talked about
Internet Explorer and there’s some question as to whether or not Safari
will ship picture, even though the code is already available for Web‐
Kit), and a specification still in flux (i.e., picture is an “Editor’s Draft”
at the W3C), you should only wade into the deep end if you really need

A Practical Developers Guide to All of This Complexity | 187

to. We’ve reached a really good place in regard to these specifications,
but there’s still room for some surprises to pop up.

Which isn’t to say you shouldn’t use picture or srcset if you really
need to. You should, but only as much as you really need to. Don’t go
straight to picture because it’s the new and shiny thing when the basic
usage of srcset will get you to an 85% solution, and, in turn, don’t use
srcset if a well-crafted img and vanilla src will get you to 85%.

Learn to Love SVG
The simplicity of being able to scale images across multiple break‐
points with just an img element and some CSS is a much easier tran‐
sition than jumping into picture with multiple source elements and
relying on a polyfill.

Test!
Testing your solutions in real devices with all sorts of connections is
going to tell you everything you need to know about where you need
to go. Implementing a simple max-width solution like I do on my blog
might be a “good enough” solution if you test it and find that your
images are small enough to load in only a second on a decent mobile
connection. Or you might find that the 2 MB image you need to pro‐
vide high-density pixels for a full-screen background image basically
freezes your users’ screens and likely causes them to hate you.

There’s also the simple fact that all of these technologies, both in the
browser and in the polyfill, are pretty new, so you might uncover bugs
that were previously unknown. Reporting them makes you a web
platform hero.

Conclusion
Images on the Web have gotten more complicated over the years. Large
image sizes, performance concerns, and the needs of RWD have com‐
bined to make serving images a tricky proposition. By combining a
solid understanding of the basics of image optimization, the use of a
CDN, an embrace of SVG, and a knowledge of the new markup pat‐
terns available, you can solve this complexity right now.

188 | Chapter 6: The Surprisingly Complex World of Images on the Web

And that’s it for this chapter. I’ve once again written a full book chapter
on images; this time, however, it was down to the complexity of the
issue. Hopefully, we’ve reached a complexity plateau for images that
will last for at least a few years (if not the next 20).

Conclusion | 189

CHAPTER 7

The Horribly Complex World of
Web Video

Use only that which works, and
take it from any place you can find it.

— Bruce Lee (as quoted in Bruce Lee:
Fighting Spirit by Bruce Thomas)

One of the most important early drivers for adoption of HTML5 was
Apple’s decision against supporting Adobe Flash on iOS devices. Pick‐
ing the most important side effect of that decision would be difficult,
but one of the biggest was certainly the mad scramble to produce web
video that could play on the iPhone. This, of course, meant the HTML5
video element was suddenly important. It was so important, for a time
at least, that it was common for people to say simply “HTML5” when
they were really discussing serving video with the video element.

The thing is, from the first, the video element has been a tricky thing
to work with in any practical way. This is strange because at first glance
it looks pretty easy to understand, and at its most basic, using the video
element is straightforward. If you’re familiar with the way the replaced
elements like img or object (handy for embedding Flash!) work, you
will understand how to use video (and audio for that matter.) The
associated video API is also simple with easy-to-understand play and
pause methods.

If only the full story were that simple.

Video is the best current example of a web technology that, because of
one factor or another, fails to live up to its promise. Because of that

191

failure, it’s much easier to move away from a pure standards-based
approach to one that solves the issue in a practical matter. No matter
how well designed the element might be, or how easy the API is to use,
commercial and technical hurdles make the practical business of web
video difficult to manage without a lot of expertise. It’s so difficult, in
fact, that I’m happy to pass off the video heavy lifting to third parties
without a second thought to how technically clean their solution
might be.

This chapter will introduce you to web video as it stands and will point
out some of the current problems in the landscape. Video is important,
so understanding how it works fundamentally is a vital thing for
modern web developers and getting a sense of how the third-party
services work is also important if you decide to go that way with video
in the future. This chapter will show you both how to implement video
in a cross-browser way on your own and then will look at how to
leverage a couple of different services to use a third party to serve video
on the Web.

There will be bumps along the way.

The Core Technology
This section will go through basics of video and will, in turn, look at
the many issues that crop up when working with video on the Web.
Each of these issues, by themselves, might seem like a reasonable hur‐
dle to overcome.

The combination of these is where things start to get a little hairy. As
you go through this chapter, start to cross reference the different fac‐
tors in your head. You’ll start to see that, although the basics are not
so bad, video as a whole is a tangled mess to do in a world-class way.

The HTML video Element
The video element is the center of this particular circus. With video
available, Apple was able to skip Flash support in the iPhone and push
people toward a web standards-based video solution instead.

Let’s look at the video element in action. The following code sample
shows a simple video element with some basic JavaScript-driven in‐
teraction. In a supporting browser, this page shows a video of a me‐
chanical cyclist taken at an open air market in Paris along with a simple

192 | Chapter 7: The Horribly Complex World of Web Video

play/pause toggle button to illustrate controlling the video externally.
Figure 7-1 shows what the page looks like in a supporting web browser.

Figure 7-1. The video element in action

In the code, the first important element to note is the video element
itself. Like an img element, the video element has an src attribute,
which points to a video file. Within the video element, there are also
two Boolean attributes. Boolean attributes, which are new to HTML5,
are attributes whose mere presence indicates that the value is true. So,
instead of saying required=true, you can just write required. The
attributes here, controls and autoplay, indicate that there should be
controls (play and pause buttons, etc.) in the video interface and that
the video should automatically play when the page loads. In addition,
there’s an id attribute to serve as a hook for the JavaScript function
used to control the video.

Accessibility Note
The HTML5 track element is an important accessibility en‐
hancement to online video. Although I am trying to get you to
take accessibility seriously, there’s no dialogue in this small clip.
Therefore, there’s no need for subtitles with this video. If you’re
interested in learning more about how subtitles work with
video, check out this succinct article on HTML Rocks.

The Core Technology | 193

http://bit.ly/uw-subtitles

The JavaScript is pretty simple. First, you get references to the video
element and the toggle button using document.getElementById.
Then a function is bound to the click event on the toggle element
using addEventListener. In the function body, the video.play and
video.pause methods are used to play and pause the video depending
on the video’s current state. The video’s current state is tested by ac‐
cessing the Boolean attribute video.paused.

The final piece of this markup is the fallback content, which lives inside
the opening and closing tags of the video element. In this case, the
fallback is a paragraph with some text instructing the user to download
the video. The assumption with this fallback content is that any phone
or computer that doesn’t support video in the browser might be able
to play the video file in a built-in media player. This is especially im‐
portant with the proxy browsers, like Opera Mini, which are the like‐
liest candidates for no video element support on modern mobile de‐
vices. If you’re familiar with the way noscript works, video fallback
content works in much the same way.

We’ll figure out sturdier fallback support for older Internet Explorer
(the most problematic desktop browser) as we expand on the way that
fallback content works throughout the rest of this section:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body class="video">

 <video src="MVI_1749.mp4" controls autoplay

 id="video-sample">

 <p>Your browser can't play HTML5 video.

 Download it instead.</p>

 </video>

 <button id="video-toggle">Pause/Play</button>

 <script>

 var video = document.getElementById("video-sample"),

 toggle = document.getElementById("video-toggle");

 toggle.addEventListener("click", function() {

 if (video.paused) {

 video.play();

 } else {

 video.pause();

 }

 });

 </script>

194 | Chapter 7: The Horribly Complex World of Web Video

 </body>

</html>

That’s a clear API. In this case, I think the WHATWG provided a pretty
good solution for the markup and DOM API portion of serving video
in the browser without the use of a plug-in. It’s everything beyond the
confines of the specification that has kept us on our toes over the past
few years. According to the data from Can I Use?, the preceding code
has full support in only 65% of the worldwide browser market. There
are a few different reasons for this gap. You’ve learned about two (proxy
browsers and Internet Explorer 8 and earlier), and you’ll learn about
the other major one as we make our way through this chapter and
build up a decent solution for getting video in a wide range of browsers.

Let’s start with the most obvious example, the presence of browsers
that don’t support the video element at all, but do support Flash. This
is Internet Explorer 6–8 and represents the largest single block of
nonsupporting browsers out there.

The Flash Fallback
One way to serve video to old browsers is to leverage the fallback
content that you saw earlier in precisely the way it was designed. If a
browser doesn’t understand the video element, it will ignore that el‐
ement and fall back to whatever is contained within the opening and
closing video tags. For Internet Explorer 8 and older, this can be a
Flash-based video solution. This works because if the browser under‐
stands the video element, the video element itself and any child nodes
will be replaced with the browser’s video player. If the browser doesn’t

understand video, then the fallback content, in this case a Flash player,
will be displayed.

All we need to do with this simple Flash player is pass in the existing
source for our video as one of the flashvars and everything
just works:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body class="video">

 <video src="MVI_1749.mp4" controls autoplay

 id="video-sample">

 <object type="application/x-shockwave-flash"

 width="854" height="504" data="smallplayer.swf"

The Core Technology | 195

http://bit.ly/uw-mpeg4

 classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000">

 <param name="flashvars" value="videoURL=MVI_1749.mp4">

 </param>

 <param name="movie" value="smallplayer.swf"></param>

 <param name="bgcolor" value="#ffffff"></param>

 <param value="true"></param>

 <embed type="application/x-shockwave-flash"

 src="smallplayer.swf"

 bgcolor="#ffffff"

 flashvars="videoURL=MVI_1749.mp4"

 width="854" height="504" ></embed>

 <p>Your browser can't play HTML5 video.

 Download it instead.</p>

 </object>

 </video>

 </body>

</html>

This works, but it’s not ideal. For starters, we’ve had to embed that
nasty Flash pattern and then, more importantly, we lose easy access to
the video DOM API. There are ways to talk to Flash from within Java‐
Script (I’ve sure done a lot of it), but talking to both video and Flash
requires forking our code in uncomfortable ways.

I’m actually going to table that particular issue for now, although I do
promise that I’ll have a couple of solutions for you before the chapter
is over.

What I’m going to focus on for a bit is making sure that the video itself
will play in as many browsers as it can. Because, although we’ve added
support for IE8 and earlier by including Flash, we’re still falling short
of getting video everywhere we can get it. We’re still missing Opera
and some versions of Firefox. Why? Well, it’s time to learn a little bit
about containers and codecs and how they pertain to the latest version
of the good old-fashioned browser war.

Containers and Codecs
Simply supporting the video element and related APIs is only half the
story for a practical measure of support in browsers. There are two
technical components to video that are separate to the standards pro‐
cess, but are fundamental to getting video to the browser: codecs and
containers. A codec, a portmanteau of coder and decoder, is software
that, in this case, translates the video signal to and from the compressed
storage format. A container is what we think of as a file format.

196 | Chapter 7: The Horribly Complex World of Web Video

I’m Intentionally Ignoring Audio
I’m ignoring both the audio element and the audio codec
component of web video. This is partially because I want to
keep your heads from exploding. That and there are stan‐
dard audio codecs that pair with each of the video codecs you’ll
learn about later. Basically, if you don’t do anything funky when
you export your video, you will end up with a combination of
audio codec and video codec that makes sense from a sup‐
port perspective. So when I talk about MP4, I’m really talk‐
ing about the h.264 video codec with the AAC audio codec;
when I talk about OGM, I’m really talking about the Theora
video code with the Vorbis Audio codec; and when I talk about
WebM, I’m talking about the VP8 video codec with the Vor‐
bis audio codec.

Have I mentioned this is a rat’s nest? It’s a rat’s nest.

So far in our examples, we’ve seen the MP4 container. Under the hood,
that container is paired with the h.264 video codec. This pairing is
supported by IE9+, Chrome, Safari, and Firefox on the PC (but not
Mac or Linux). Because h.264 is a patent encumbered codec, Opera
(and for a long time, Firefox on the PC) refused to implement it, in‐
stead looking toward open source container/codec combinations like
WebM/VP8 and OGG/Theora.

By the way, when I talked about the latest browser war, it was precisely
this standoff that I was referring to. For a couple of years, it looked like
we would have to work around Firefox’s significant market share in
perpetuity.

Although Firefox eventually found a way to support MP4/h.264 on
the PC, Opera is still a holdout, so we need to tweak our markup to
include Opera and non-PC Firefox (as well as Firefox on all platforms
prior to version 21).

Adobe Plays Nice with h.264
As you might have surmised from the way we seamlessly
passed an MP4 file to the Flash player in our fallback con‐
tent, Flash has built-in support for MP4/h.264.

In the previous example, there was an src attribute directly on the
video element. In this new example, you’ll leverage the same source
attribute you saw with the picture element in the previous chapter.

The Core Technology | 197

http://bit.ly/uw-mozilla-h264
http://bit.ly/uw-mozilla-h264

video works the same way. The first source element that a supporting
browser can play will be used as the source of that element. In this
example, you’re going to see every common video format on the Web,
starting with WebM (for Opera 10.65+, Firefox 4+, and Chrome), then
OGG (for older Opera and older Firefox), and finally MP4 for Safari
and Internet Explorer. Following all of that is the standard fallback
Flash player:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body class="video">

 <video controls autoplay id="video-sample">

 <source src="MVI_1749.webm" type="video/webm">

 <source src="MVI_1749.ogv" type="video/ogg">

 <source src="MVI_1749.mp4" type="video/mp4">

 <object type="application/x-shockwave-flash"

 width="854" height="504"

 data="smallplayer.swf"

 classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000">

 <param name="flashvars"

 value="videoURL=MVI_1749.mp4"></param>

 <param name="movie" value="smallplayer.swf"></param>

 <param name="bgcolor" value="#ffffff"></param>

 <param value="true"></param>

 <embed type="application/x-shockwave-flash"

 src="smallplayer.swf"

 bgcolor="#ffffff"

 flashvars="videoURL=MVI_1749.mp4"

 width="854" height="504" ></embed></object>

 <img src="MVI_1749_1.png"

 width="854" height="480" alt="Video">

 <p>Your browser can't play HTML5 video.

 Download it instead.</p>

 </object>

 </video>

 </body>

</html>

Theoretically, you can get away with just OGG (it’s supported by all
versions of Firefox and Opera that support video) and MP4 here, but
because there are benefits to serving WebM (quality and size in every
browser that supports it and reliability in Chrome), I added the third
format to the stack.

This pattern, which was neatly explained and titled Video for Every‐
body, solves the question of serving video to a good chunk of the pop‐

198 | Chapter 7: The Horribly Complex World of Web Video

http://bit.ly/uw-videoforeverybody
http://bit.ly/uw-videoforeverybody

ulation with just markup. Sure, it’s ugly markup with the Flash fallback
and multiple source elements but it’s still just markup, which is nice.

iOS3 Warning
There was a bug in iOS3 which prevented Safari from seeing
anything other than the first listed source. If, for some rea‐
son, iOS3 is a concern for you, you can lead with the MP4
video, which will ensure that it gets a source it can handle.

If you’re just trying to get video on the page with the default play and
pause button, you’re basically all set at this point. There are some
wrinkles with serving video that you’ll learn about in a minute, but
getting the video onto the page is sorted at this point. The biggest
remaining basic compatibility problem is the loss of a simple, unified
JavaScript API. For that, we’ll have to turn to the first alternative to a
markup-based solution, a JavaScript library built on top of the Video
for Everybody pattern called Video.js.

Video.js
Video.js papers over all of the complexity you’ve seen so far in this
chapter. It also smooths out some of the kinks with compatibility and,
most importantly, provides a unified JavaScript API across browsers
and platforms. Let’s see what it looks like in action.

The first component of note is in the head of the document where you
insert the Video.js CSS and JavaScript files. That’s pretty standard stuff,
but you won’t get very far without it. After that, there’s a small script
tag where a single Video.js option is set, pointing Video.js to the loca‐
tion of the backup SWF on your server. In the body of the page, there’s
a variation on the Video for Everybody pattern. It’s familiar to what
you’ve already seen, but there are a couple of Video.js specific tweaks
to notice. The video element has two classes for styling, video-js and
vjs-default-skin, and a data- attribute (data-setup) that in this
example contains an empty JavaScript object. Depending on your
needs, you might populate this object with several different options
for instantiating the library.

Inside the video element, there are three source elements. This is the
same as the Video for Everybody pattern. The difference with Video.js
is that there’s no object or embed tags for Flash. Thankfully, for the

The Core Technology | 199

http://www.videojs.com/
http://bit.ly/uw-videojs-options

markup at least, Video.js will handle that part if it’s needed. This is
nice, as it cleans up a big chunk of ugly Flash-centric markup.

The script block is where the real benefit of Video.js comes into play.
Video.js provides a unified API, which handles all the differences be‐
tween the Flash and JavaScript APIs. To kick Video.js off, you pass a
reference to your video element to Video.js. This loads Video.js up
with the context of the targeted video element. Once you’ve got that
set up, Video.js has a jQuery style ready method, which executes a
function as soon as the video is loaded.

The this context of the function argument is the video element itself.
I chose to immediately assign this reference to the Video.js enhanced
video element to the variable player, for clarity. After that is set up,
the Video.js API is basically a mirror of the HTML5 video API, with
the one exception of paused. In the HTML5 video API, paused is a
property. In Video.js, it needs to be accessed as a method:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <link href="video-js/video-js.css" rel="stylesheet">

 <script src="video-js/video.js"></script>

 <script>

 videojs.options.flash.swf = "video-js/video-js.swf";

 </script>

 </head>

 <body class="video">

 <video class="video-js vjs-default-skin" controls autoplay

 preload="none" id="video-sample" width="854" height="504"

 poster="MVI_1749_1.png"

 data-setup="{}">

 <source src="MVI_1749.webm" type="video/webm">

 <source src="MVI_1749.ogv" type="video/ogg">

 <source src="MVI_1749.mp4" type="video/mp4">

 <img src="MVI_1749_1.png" width="854" height="480"

 alt="Video" class="vjs-no-js">

 <p class="vjs-no-js">Your browser can't play HTML5

 video. Download it

 instead.</p>

 </video>

 <button id="video-toggle">Pause/Play</button>

 <script>

 videojs("video-sample").ready(function(){

 var player = this,

 toggle = document.getElementById("video-toggle");

 toggle.addEventListener("click", function() {

200 | Chapter 7: The Horribly Complex World of Web Video

 if (player.paused()) {

 player.play();

 } else {

 player.pause();

 }

 });

 });

 </script>

 </body>

</html>

This looks like the way the video element would look without having
to worry about older Internet Explorer. That’s a good thing. We have
added a couple of dependencies with the Video.js script and Video.js
CSS. We’re also still outputting three separate versions of the same file
(although as I mentioned, you could get away with just OGG and
MP4). There’s also a lot of markup to manage, even without the Flash
fallback. So, in short, this is the best cross-browser version of a video
embed we’ve seen so far, and it’s still a lot to manage. There are several
elements, several attributes, Video.js itself, and the looming specter of
multiple file formats to consider, just to get a single video into
the browser.

Is This a Good Time to Mention Silverlight?
It’s not. But I have to mention it at least once, and now is as
good a time as any.

If you watch Netflix or Amazon Video (to point out two huge
examples) on the PC, you’re using a technology called Silver‐
light from Microsoft to stream HD video over the Web. To
introduce Silverlight at this point seems like it’s just piling on
to make your life hell, but it is out there. You wouldn’t typi‐
cally consider it for most video solutions, because not every‐
one can force a plug-in on their users, but as you can tell by
the company, its high-quality streaming is an appealing op‐
tion for those that can dictate plug-in use.

Have I mentioned the options for video on the Web
are confusing?

At this point, even though we’ve done a decent job of getting cross-
browser functionality sorted out, the story isn’t over. There are some
other factors on the server side to keep in mind when looking at serv‐
ing video on the Web. Let’s take a quick look at the issues as they man‐
ifest themselves on the other side of the pipe.

The Core Technology | 201

Mime Types and Adaptive Bitrate Streaming
Serving video is a big deal. There are complexities in serving any‐
thing optimally on the Web, but serving video has taken it to an entirely
new level. It’s complicated, and the penalties for getting it wrong can
very easily produce a failing or just plain terrible end-user experience.
This section won’t go into absolute detail, because it’s a thorny, evolving
subject, but it will go over the issues at play at a really high level so that
you’ll at least know where to look if you want to upgrade your video
experience and keep the end-to-end experience in-house.

Mime types

For starters, video must be served with the proper MIME type. If you
don’t properly set up your server, your videos will fail to play. This
shouldn’t be a great hardship, but it is an extra and important step.

For example, if you’re using Apache and you’ve got direct access to
your server, it’s as simple as adding the following lines to your con‐
figuration file:

AddType video/ogg .ogv

AddType video/mp4 .mp4

AddType video/webm .webm

If you’re using IIS or nginx, it’s similarly straightforward.

The other part of getting getting video to the browser isn’t nearly as
straightforward.

Progressive download versus streaming and a performance dead-end for
most mortals

Even the perfect format, served to the right player with a correct MIME
type is, if it’s served over simple HTTP, still just a really big file that the
browser needs to download byte by byte. This progressive download
over simple HTTP can be inefficient because HTTP is built on top of
TCP, and TCP is designed to ensure the delivery of all the bytes in a
particular message. With video, where smooth playback is far more
important to the user experience than the occasional loss of a byte or
two (or 1,000 for that matter), that focus on byte delivery can be in‐
efficient. It’s better to use all the available bandwidth to ensure that
enough of every frame is available to keep the movie advancing frame
by frame in a smooth manner.

202 | Chapter 7: The Horribly Complex World of Web Video

http://bit.ly/uw-iis
http://bit.ly/uw-nginx

With Flash, the standard method to solve this issue was to use a Real-
Time Messaging Protocol (RTMP) server. RTMP is a proprietary
Adobe technology that works with Flash (another proprietary Adobe
technology) to stream video in an efficient manner.

Of course, as the story goes, Flash (and RTMP along with it) were
dethroned as the single solution for streaming video with the rise of
iOS and the mobile Web in general.

Because the performance argument for streaming video is so strong,
Apple provided a separate technology called HTTP Live Streaming
(HLS), which provides streaming functionality over regular old HTTP.
This technology, now generalized as adaptive bitrate streaming be‐
cause there are other entrants in the market, is a combination of server
and client software that detects a user’s bandwidth and tweaks the
video quality between multiple bitrates and resolutions on the fly. The
video stream can be switched midstream to match the client’s current
connectivity. Compare this to the buffering or playback pause you’ll
see in progressive download when the bitrate isn’t matched by the
available download speed. This technology also has the benefit of op‐
erating over simple HTTP, with the adaptive bits happening between
the client and server at the software level. One major benefit of this is
that it’s much tougher to block this traffic than it would be to block
streaming Flash video, which traveled over a unique port. I commonly
had to explain to clients that their video really did work, but they just
couldn’t see it because their IT department was blocking RTMP traffic
on port 1935.

HLS is very cool. Unfortunately, it’s only supported by iOS and desktop
Safari . For other modern browsers (and potentially Apple devices in
the future), there’s another technology called Dynamic Adaptive
Streaming over HTTP (DASH), which fills the same space. It’s young,
but is gaining momentum rapidly and has support across a good set
of newer browsers (Firefox 31+, Chrome 23+, IE 11+, Opera 20+).

So now we’ve got three separate schemes for streaming video. One
works in Flash. One works in iOS and Safari. One is immature and is
only supported in the latest versions of a subset of browsers.

It’s around this point that I throw in the towel.

Although there are resources out there to help you stream audio and
video, including setting up adaptive media sources, the fractured na‐
ture of support across the various components of web video, the per‐

The Core Technology | 203

http://dashif.org/
http://dashif.org/
http://bit.ly/uw-stream
http://bit.ly/uw-stream
http://bit.ly/uw-adaptive

formance penalties for getting it wrong and the strength and maturity
of the online video community make it mighty tempting to just leave
it to the pros. You may not come to the same conclusion I have, and
you might want to go it alone. But I think it’s important that you con‐
sider forgoing the granular control you might be used to with other
web platform technologies in order to take advantage of the features,
functionality, and performance benefits offered by outfits that focus
exclusively on video (e.g., YouTube, Vimeo, Brightcove, or Kaltura).
Their goal is the same as ours—broad compatibility with whatever the
Web can throw at them.

Letting the Pros Handle It
This section will look at a couple of different options available to get
your video up on the Web without having to directly manage all of the
complexity we’ve looked at so far. There are many different outlets
available for you to get your video on the Web. I recommend YouTube
and Vimeo here, because they’re free, and you can get up and running
quickly. Depending on your specific needs, you might want to stay
with one of these or with an entirely different service. In general, the
process of uploading and controlling video with one of these services
is going to be very similar to what you see here. The biggest differences
will really be outside the technical aspects. Things like the customi‐
zation options available, support options, and bandwidth costs will be
a bigger deciding factor for most organizations when compared to the
JavaScript API and embed code options.

YouTube
The first example most people think of when they think of online video
is probably Google’s YouTube service. It’s for that reason it’s the first
option I’m going to show you. Getting videos onto YouTube is as sim‐
ple as it gets. Assuming you’ve got an account, all you need to do is hit
the Upload button from the YouTube homepage, which brings you to
the page shown in Figure 7-2.

The Web Interface Is Not the Only Option
You can also upload directly from the YouTube app on a mo‐
bile device or, more importantly for most readers of this book,
from the server side using the YouTube API.

204 | Chapter 7: The Horribly Complex World of Web Video

Drag a video into the screen or press the Upload button and select a
file from your hard drive and your video is on the way to being on the
Web just as fast as it can upload (Figure 7-2).

Figure 7-2. Selecting a file to upload on YouTube

From there, you have the option to customize your title and other
metadata (Figure 7-3). Make sure everything is good to go and your
video is on the Web.

Figure 7-3. Customizing your video on YouTube

Letting the Pros Handle It | 205

To use it on your site, grab the supplied embed code, plug it into your
page, and you’re done:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body class="video">

 <iframe width="560" height="315"

 src="//www.youtube.com/embed/rLaa6q_Cbmc"

 frameborder="0" allowfullscreen></iframe>

 </body>

</html

Adding the same simple play/pause interactivity you’ve seen through‐
out the chapter is relatively easy using the YouTube JavaScript API.
There’s one small change to the embed code, namely adding an id to
the iframe in order to easily bind events to it with JavaScript. Follow‐
ing that, there’s a script tag, which includes the iframe API JavaScript
file from YouTube. The script that runs the interaction should be fa‐
miliar enough at this point. The one YouTube specific wrinkle that
really needs some explanation is the onYouTubeIframeAPIReady func‐
tion. This function gets called automatically when the iframe API
JavaScript file is loaded. Inside the function body, you set a player
variable with a reference to the id of the iframe embedded in the page
earlier. The second argument, here an empty object, can be populated
with other properties. These potential options are especially useful if
you’re loading a player dynamically, because you can set the player’s
width, height, YouTube video ID (to load a video dynamically), events,
as well as a slew of other player variables. The rest of the javaScript
mirrors the code you’ve seen in both the pure JavaScript and Video.JS
examples with slightly more verbose method names and properties.
The one important difference is the presence of the more powerful
player.getPlayerState() method in place of the simple paused
property or paused() method you saw in the other examples. Here
you’re checking for two separate states of the player, paused and video
cued. The full list of states and associated integer codes are listed in
Table 7-1.

Table 7-1. YouTube video states

code status

-1 unstarted

0 ended

206 | Chapter 7: The Horribly Complex World of Web Video

http://bit.ly/uw-ytplayers

code status

1 playing

2 paused

3 buffering

5 video cued

The source of the example follows:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body class="video">

 <iframe id="player" width="560" height="315"

 src="//www.youtube.com/embed/rLaa6q_Cbmc?enablejsapi=1"

 frameborder="0" allowfullscreen></iframe>

 <p><button id="video-toggle">Pause/Play</button></p>

 <script src="//www.youtube.com/iframe_api"></script>

 <script>

 var player;

 function onYouTubeIframeAPIReady() {

 player = new YT.Player('player', {});

 }

 toggle = document.getElementById("video-toggle");

 toggle.addEventListener("click", function() {

 if (player.getPlayerState() === 2

 || player.getPlayerState() === 5) {

 player.playVideo();

 } else {

 player.pauseVideo();

 }

 });

 </script>

 </body>

</html>

All in all, this is a straightforward implementation with probably hun‐
dreds (thousands?) of engineers backing it up on the YouTube side.
Without having to know anything about compression, adaptive bitrate
streaming, containers, or codecs, you can get up and running with
video on the Web in just a few minutes. The downside of YouTube is
that it’s ad driven and, at the end of the day, is YouTube. Depending
on your needs, an ad supported, mass-market platform might not be
right for you. If it is, it’s easy to get started, has a pretty powerful API
on both the server and client side, and is supported by Google, so it’s
got the power of the Internet giant behind it.

Letting the Pros Handle It | 207

If YouTube is not your thing, there are plenty of other options. Al‐
though we can’t look at them all in this slim volume, we can take a look
at one that skips the ads, adds options for paid enhancements, and
presents slightly hipper packaging: Vimeo.

Vimeo
Using Vimeo follows a similar pattern to that of YouTube. Basically,
you hit Vimeo, click the Upload button, and you’re presented with a
simple page to start the upload process (Figure 7-4).

Figure 7-4. Selecting a file to upload on Vimeo

From there, just like YouTube, you can customize your title and other
metadata, and then you’re ready to share your video with the world
(Figure 7-5). One difference with Vimeo is that it sometimes takes
longer for your video to get on the Web as a free user. You’re in a
compression/conversion queue with the rest of the riffraff. Unless
you’re publishing breaking news, this isn’t all that much of a big deal,
but it’s something to note in advance, if you’re looking to Vimeo as an
alternative to YouTube for your video hosting.

208 | Chapter 7: The Horribly Complex World of Web Video

https://vimeo.com/

Figure 7-5. Customizing your video on Vimeo

To use it on your own site, grab the embed code (once again a single
line iframe) and paste it into the body of your page:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body class="video">

 <iframe src="//player.vimeo.com/video/103677495"

 width="500" height="281" frameborder="0"

 webkitallowfullscreen mozallowfullscreen

 allowfullscreen></iframe>

 </body>

</html>

Our interactivity example is also available using the Vimeo API. It
should be noted that, although I like the look and feel of Vimeo and
the Vimeo player, the API and API documentation aren’t at the same
level as YouTube.

Letting the Pros Handle It | 209

As you can see, it’s a little bit more code to get the same interactivity
and what is there isn’t as straightforward. That said, it gets the job done
and that might be all that matters if Vimeo as a whole works for you.

In the code, the first piece to note are some small tweaks to the URL
of the embedded movie. The first change is the addition of ?api=1 to
the URL. This argument gets the player ready to listen to API calls
from your JavaScript. Then, in an only partially documented wrinkle,
you need to pass the player_id of the embedded iframe to the player.
Without it, none of the API calls will work as expected. This is men‐
tioned in the documentation, but only in reference to multiple players
on the page. Even with only one player, if you’re going to reference it
by id, I’ve found you need this argument appended to the player URL
for anything to work. Following that, you’ll need to add the Vimeo
API JavaScript file to the document.

In case you’re wondering, I haven’t researched why it’s called
Froogaloop.

The script block itself is more complicated than any example we’ve
seen before. It’s not completely horrendous, just different. To kick
things off, you need to pass a reference to the embedded iframe to the
Froogaloop function $f. At this point, the player variable is loaded
with the Vimeo API. Then you create a variable paused, which you’re
going to use to track the state of the player. There is a Vimeo API
method paused, but the way the Vimeo API works makes using that
built-in API method awkward. The Vimeo API uses postmessage to
handle messaging between the iframe, the browser, and the contain
ing page. Because postmessage relies on callback functions to do some
of its work, and the Vimeo API hews pretty strictly to that pattern, the
paused method isn’t quite as easy to use as the paused properties and
methods that we’ve seen. To access the value of the paused API call,
you actually need to pass in a second function, which would then act
on the information provided by the API. It doesn’t just return a
Boolean directly to the calling scope. It only returns the Boolean to
the callback function. So, instead of using the awkward API method,
it’s easier to just track this variable manually by binding methods
against the built-in pause, finish, and playProgress events. Follow‐
ing that bit of nonsense, the second wrinkle is the generally awkward
API design. Instead of the player.APITMETHOD() you might expect,
the Vimeo API methods are passed in as string arguments to the play
er.api method. This is actually pretty weird. It’s not a very common

210 | Chapter 7: The Horribly Complex World of Web Video

JavaScript API design (I think I’ve seen a couple of jQuery plug-ins
that did this but not many), so it might be a little confusing if you’re
not aware of it in advance. With that sorted, the rest of the pattern is
similar to the examples you’ve seen throughout this chapter with play
and pause methods used to control the player:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body class="video">

 <iframe id="player"

 src=

"//player.vimeo.com/video/103677495?api=1&player_id=player"

 width="500" height="281" frameborder="0"

 webkitallowfullscreen mozallowfullscreen

 allowfullscreen></iframe>

 <p><button id="video-toggle">Pause/Play</button></p>

 <script src="//f.vimeocdn.com/js/froogaloop2.min.js">

 </script>

 <script>

 var player = $f(document.getElementById("player"));

 var paused=true;

 var toggle = document.getElementById("video-toggle");

 player.addEvent('ready', function() {

 player.addEvent('pause', function() {

 paused=true;

 });

 player.addEvent('finish', function() {

 paused=true;

 });

 player.addEvent('playProgress', function() {

 paused=false;

 });

 });

 toggle.addEventListener("click", function() {

 if (paused) {

 player.api("play");

 } else {

 player.api("pause");

 }

 });

 </script>

 </body>

</html>

It should be pointed out that if the Froogaloop interface to the API
isn’t to your liking, and it probably won’t be if you’re anything like me,
you can use postmessage directly to control the player. Vimeo docu‐

Letting the Pros Handle It | 211

ments this as well as Froogaloop on their API documentation. It’s ev‐
erything else that Vimeo brings that makes it worth taking a a look at,
so working through the kinks of communication between your page
and their player might be a small hurdle, depending on your needs.

Make the Best of a Complicated Situation
In this chapter, you’ve seen what can happen when good specifications
go bad once they hit the mean streets. From the clear beginnings of
the video element as a replacement for plug-in-based video on the
Web to today’s nasty mosaic of options to sort through in order to get
video on the Web, we’re looking at a present where a modern Web
standards-based solution isn’t necessarily better than what came be‐
fore. Although having to use a proprietary technology like Flash isn’t
part of the ideal Web I really want, I also want a Web that’s easy to
manage from a workflow perspective and doesn’t add multiple layers
of complexity to my life just to get my job done. There’s hope on the
horizon in the form of the HTML video element, DASH, and MP4/h.
264 (or better yet, the unlikely adoption of a patent-free alternative),
but that simple future remains out of reach. Until that magical time,
you’ve got to look long and hard at your video solution, keeping all
options on the table. Whether you decide to go it alone or if you decide
to leverage one of the many third parties, this is one situation where
it’s best to just hold your nose and make decisions based on what’s best
for your users, rather than what might be the best possible solutions
from a pure web standards perspective.

More importantly, in the context of this book at least, the overall com‐
plexity of video reinforces the idea that no matter what the intentions
are of the standards bodies, the real world can throw a spanner in the
works really quickly. When it does and market forces or the commer‐
cial interests of browser vendors get in the way, it’s better to acknowl‐
edge that issue early on and move ahead with the best practical solu‐
tion. Being a champion for web standards is a great thing, as long as
it’s not at the expense of your end users.

212 | Chapter 7: The Horribly Complex World of Web Video

CHAPTER 8

The Web We Want

The Web as I envisaged it, we have not seen it yet.
The future is still so much bigger than the past.

— Tim Berners-Lee

In this book, I’ve poked around some places where the Web is a strange
beast. As the title of the book will tell you, I’ve done so to help you
manage the Web’s uncertainty. I’ve also done so in order to help the
Web grow stronger. The more light we shine on the areas of the Open
Web Platform that don’t work, the better prepared we’ll be as we build
the Web moving forward. Sure, we may never be able to get a patent-
free standard for web video, but that just gives us more motivation to
make sure the Web comes out on top the next time a fight breaks out
between the Web and entrenched commercial interests. We’ve got to
expose the places where the process has fallen apart or fallen prey to
unsavory interests in order to make sure we don’t make those same
mistakes the next time.

This is how we continue to grow the Web and how we strengthen the
web platform.

I truly believe in the quote that opens this chapter. The future of the
Web is much bigger than the past. How much bigger comes down to
people like you and me. With the changes we’re witnessing, there’s
never been a better time to dive in and try to make a difference.

This chapter will look at where we’ve been in this book and some key
points to take away as we spread off to the four corners of the globe to
make the Web a better place for more people, on more devices, and in
more browsers.

213

Things Can Get Better (But They Do
Occasionally Get Worse)
This section will present a slightly unique twist on one of the standard
tech book final chapter constructs—reviewing what you’ve learned. I’m
interested in looking forward in this last chapter, so I’m not going to
recap everything I’ve talked about so far in detail. Instead, I’m going
to share anecdotes that do reference previous chapter topics. These
will reinforce just how much is happening on the ground today and
how we can all work together to make sure things get better as we move
the Web forward.

You see, three of the chapter topics have changed significantly from a
technical or support perspective since I first conceived of this book.
These changes have forced me to change my take on each topic and
adjust my recommendations accordingly. This has happened through‐
out the process of writing this book. It happened once during the
planning stage, once in mid-chapter, and once after a chapter had been
written. Three major changes in less than a year and a half. Two of
these were positive changes (one more than the other). One was de‐
cidedly negative.

Firefox Announced Support for h.264
Right when I was kicking off this project, it was announced that Mo‐
zilla had found a way (through a partnership with Cisco) to provide
support for h.264 video in the Firefox browser. Before this announce‐
ment, the video situation on the Web was even uglier than it is now,
with two sides much more evenly divided across the patent-friendly
and patent-free camps. Web users and web developers were caught in
the middle.

As you’ve learned, h.264 support in Firefox isn’t a salve for everything
wrong with video on the Web, but it definitely lowered the overall
tension level and proved that even when things look hopeless (as it did
in regards to Firefox supporting h.264), things can change rapidly.

The downside to that is that a patent-free alternative to h.264 would
be better for the Web, and Firefox standing its ground would have
strengthened the side of the good guys. Of course, it would have hurt
Firefox in some ways, and, to be honest, getting Apple and Microsoft
to walk away from the h.264 specification would have been a longshot,
as they’re owners of some of the patents administered by MPEG LA

214 | Chapter 8: The Web We Want

http://bit.ly/uw-mpegla

(the patent pool that administers the licenses for h.264). But it was still
one of those times that Firefox proved they were fighting for the Open
Web in a way that the other browser vendors can’t.

So, in some ways, Cisco coming through was good for the Web in terms
of general compatibility, but part of me wishes that Firefox was still
holding out for a better open solution. Although I’m pragmatic enough
to use what’s available, the core technologies we’re building the Web
upon shouldn’t be controlled by commercial interests. In the case of
video, we’re all beholden at one level or another to MPEG LA.
That stinks.

Picture Comes Back from the Dead
In the middle of writing the already tricky chapter on responsive im‐
ages, the picture element came all the way back from the dead and
made it into the specification and Chrome 38, the latest production
version of Chrome.

It had been coming for a while so I only had to rewrite a bit of what I
was working on, and, overall, I was happy about this change. Even
though I’m not a huge fan of the markup, having this option available
for the most complicated responsive image use cases is a big deal. It’s
also the single best, recent example of web developers, browser ven‐
dors, and the folks writing the specifications working together in order
to solve a real-world problem. I would rather that it hadn’t taken four
years, but it did happen and that’s the important thing.

The tireless work on this solution with hands-on involvement from
many camps should serve as a guiding example of the attitude we all
need to take going forward. If something is broken, we need to fix it,
and we need to work together to get the best solution possible into the
browser. We also can’t give up just because we hear “no” from the
browser vendors or the standards bodies. In many ways, the final push
for the return of picture was spurred on by the dismissive reaction
by a Safari developer to an alternative to picture called src-n (he
called it “a grotesque perversion of the HTML language”). The com‐
munity heard “no” one last time and realized that something needed
to get done.

And then it did.

Things Can Get Better (But They Do Occasionally Get Worse) | 215

Pointer Events Might Be Dead
As you’ve read in the chapter on user input, the Pointer Events spec‐
ification, proposed by Microsoft, favored by Firefox and adopted by
the W3C, is up in the air because Chrome isn’t sure whether or not
they are going to support it. This was announced after I finished
the chapter on user input. I found out via Twitter that Chrome was
going to pull planned support for Pointer Events and felt about as
deflated as I’ve ever felt about a web standards topic. For one thing, I
like Pointer Events. I’m not sharing them as the way of the future just
to be hip and share the new stuff. I really like them. Secondly, Google’s
proposed alternative, “incrementally extending our existing input
APIs” doesn’t really offer much of a salve to the wound of two wasted
years looking for this specification to get off the ground and into
browsers.

Maybe, like the door on picture being reopened and bursting through
to get into the specification, the already specified Pointer Events’ work
will come back from the dead and make it into Chrome and the rest
of modern browsers. The Chrome team are listening to feedback, so
hopefully that’s just what’s going to happen.

We shall see.

I Knew Something Like This Would Happen
When I started writing a book about the uncertain nature of the
modern Web, I knew that there would be flux in the very topics I chose
to write about. I just didn’t expect it to touch 60% of the purely tech‐
nical chapters in significant ways.

And this talk of change ignores all of the other, environmental things
that are happening all the time. We’ve got fewer users of IE6 and An‐
droid 2.3, for example. You still have to be aware of them, but we’re
getting closer (slowly) to the day where they’re gone. Things are im‐
proving—we just need to be active and help the process along as best
we can while still trying to reach as many folks as we can.

Let’s Push Things Forward
To me, the Web remains a remarkable platform with unparalleled
reach, tons of content, a rich history of innovation, and a knack for
doing crazy things with whatever is at hand. The things that people

216 | Chapter 8: The Web We Want

http://bit.ly/uw-chr-pointer-support
http://bit.ly/uw-chr-pointer-support
http://bit.ly/uw-chrome-pointer
http://bit.ly/uw-chrome-pointer

have been able to do with the Web in the first 20 years, especially in
the dark ages when the tools were horrible, are remarkable. I believe
in the Web like crazy and think that if we move forward with the same
energy and genius we’ve shown over the past 20 years, the next 20 years
will be even greater. We just need to embrace the Web for being the
Web, build for the Web and ensure that the foundation the Web is built
on is as strong as possible.

How do we do that? I’ve talked about the technical components
throughout the book. Providing widely accessible sites and applica‐
tions is an important component of keeping the Web healthy. People
have to be happy with the Web today if we have any chance of keeping
them on it in the future. There are other, not strictly technical com‐
ponents that I think are just as important.

I’m going to leave you with those.

A Web Built By Developers, Browser Vendors, and
Standards Bodies
Web developers have to be better at influencing the standards pro‐
cess. You’ve learned about successes in this book. The responsive im‐
age solutions we have now are all down to a large degree to web de‐
veloper advocacy. It didn’t come up much in this book, but, for all its
controversies, the TC39 group that writes the ECMAScript (com‐
monly known as JavaScript) specification is populated by working de‐
velopers who have strong voices. They have helped steer the develop‐
ment of the specification in ways that will make our lives better for
years to come.

The thing is, we can do better. As of this writing, and after many years
of discussion, we still don’t have a script-loading and dependency sol‐
ution that everyone can live with. I’m not sure if we even have a set of
agreed-upon requirements and use cases. We still have the mess of
dealing with user input. We’re still scrambling in 15 different direc‐
tions to get video into the browser.

We can solve these problems. We just need to make sure that the
browser vendors and specification authors really understand what
we’re trying to do, and we need to pressure them when they go astray.

It may not seem like it at times, but we’re all on the same side. We need
to trust in the process and in one another. But that trust has to come
along with a commitment from the web developer community that

Let’s Push Things Forward | 217

we’re going to help them along the way with constructive feedback and
a desire to roll up our sleeves and get to work. We’re getting way better
at this, but we can do more.

For a concrete example that’s also highly topical for this book, the push
to resuscitate Chrome’s intent to implement Pointer Events has been
led by developers. Stars and comments on the Chromium issue have
ballooned since they marked it as a “won’t fix,” so hopefully steady
pressure from the developer community will get them to change their
mind.

Regardless of the end result of that push, there are a couple of lessons
to take from this. The first is, we should have gotten involved earlier.
I am guilty of this one myself. As I mentioned, I’m a fan of Pointer
Events, and I’ve been on the issue several times in the course of writing
this book. I didn’t start it or comment on it until they marked it “won’t
fix.” I am, in other words, a big dummy. The second is, our voices
matter, and we need to raise them. If there’s something that matters to
you, like Mat Marquis’ championing of responsive images, then you
should make that interest known. Individuals can directly influence
the growth and transformation of the Web. It’s a great opportunity. It’s
not every day you can work on something that will ripple through and
affect a billion people. The Web offers that.

There are many ways to get involved. From offering feedback on spec‐
ifications, to writing polyfills, to testing browser implementations of
new web features, all the way to getting down to the business of writing
proposals for new web features and functionality, the possibilities are
pretty much endless if you’ve got the interest and will to see the process
through to the end.

A Web That Is Fast, Widely Available, and Reliable
To me, beyond the basic value proposition (are you providing cool
information or a great service?), if you’re building a website or appli‐
cation that is fast, widely available, and reliable, you’re more than half‐
way there. If there’s one thread that runs throughout the examples
you’ve seen so far, it’s that there’s always a thought given to when things
go horribly awry. If you accept that things will be bonkers from time
to time and that someone might try to visit your site on Opera Mini
running on a Micromax phone in the middle of the swirling chaos of
the Chandni Chowk market in Delhi (Figure 8-1) you can start to
anticipate the kind of problems your users might see. Does that guy

218 | Chapter 8: The Web We Want

http://responsiveimages.org/
http://bit.ly/uw-chrome-pointer

care whether or not you’ve got high DPI images for your hero image
or if you’ve got drop shadows on all your menus? Not really. Chances
are pretty good he wants to access your site, retrieve his information,
and get back to his business.

Figure 8-1. Chandni Chowk as seen from the Jama Masjid mosque

The dirty truth of the Web is that desire to get in, get out, and get on
with life is true for people with good computers and strong connec‐
tions. A biochemist in Peoria might be impressed by the excellent fit
and finish of your site, but if your site takes 45 seconds to load even
over her research lab’s broadband connection, she might never get to
see it because she will have already hit her back button or simply closed
the tab.

I’m all for awesome experiences, and there are plenty of places where
the experience can be the whole purpose of a site. That kind of work
is vital to ensure that the techniques we’re using stay fresh and that we
really pound on new technologies to know where they break.

That said, the power of the Web is that it’s universal. There’s no app
store. Everything is available to everyone, or at least it should be. We’ve
got to strive to make that the default for the way that we build for the
Web. We should ensure that even in the worst circumstances, some‐
thing useful is there for the user. We should ensure that even in the
best circumstances, we focus our attention on serving our user’s needs
and not our own vanity.

Let’s Push Things Forward | 219

http://www.ro.me/

A Web Where There’s Nothing to Win
I’m happy to change my mind if I’m presented with new evidence or
if I simply see things in a new light. One of the biggest turnabouts I’ve
had recently is my take on the “us versus them” approach many web
developers take toward the mobile app space. For many web develop‐
ers (and me up until about two years ago), the question of native versus
mobile Web is an existential crisis and is one that can only be solved
by replicating the app experience on the mobile Web. We have to “beat
them” with better experiences, so we need to amp up the technical
toolbox to match them tit for tat. This is one of the reasons we get so
much attention focused on the hottest, hippest technology in demos
and why so much time is spent on the WHATWG discussing how we
get access to the same device-style APIs that native app developers get.

The thing is, it’s not a zero-sum game. Just like TV and movies can all
coexist, the Web and native app space can also coexist and even thrive.
The Web’s ubiquity, platform independence, and freedom to experi‐
ment can’t be matched inside the walled gardens of the App Store and
Google Play. Firing up an idea for the Web and seeing how it goes can
happen as fast as your fingers can type and as fast as you can spin up
a web server. There’s no approval process, and there’s no Apple or
Google standing over your shoulder making sure you don’t break some
arbitrary rule—or with a paw out waiting for a cut.

There’s also no ceiling on how big you can get. Well, with the exception
of the scale of the Web itself, but that’s pretty big (and includes all of
the devices running Android, iOS, Windows Phone, and whatever
other OS you want to throw at it).

Not too shabby.

The Web, if we do it right, is there for everybody as soon as they fire
up a web browser and unlike trying to catch lighting in a bottle to
simply get noticed in an Apple or Google-shaped sandbox, building
for the Web means you’re only limited by what you want to do and
whom you want to reach.

So, for one example that’s taken a lot of people’s time, don’t get bent
out of shape if people are spending a lot of time playing games on their
smartphones. Do you stress out about the XBox? No? Then don’t wor‐
ry about people playing games on their smartphones. If you’re inter‐
ested in the Web as a medium for games, then run with it. There’s lots
of opportunity there, but don’t go into game dev on the Web just to

220 | Chapter 8: The Web We Want

compete with smartphones. The Web didn’t get to where it is by trying
to replicate one-to-one the features and functionality of other media.
It did its own thing and brought over features when they made sense
for the Web. When they came over, they changed to suit the Web. The
limitations of the web platform have always been something we’ve had
to work around, and those limitations have helped keep web devel‐
opers creative. We can improve the fundamentals, but that ability to
bend things to the Web’s will is still a skill we ought to keep.

The Web We Want Starts with Us
I’ve written a couple of books before this one, including a big doorstop
introduction to the breadth of the web platform. Those were pretty
straightforward. If you’re showing someone how to build a menu using
a nav element and a ul, you just build out the menu and explain how
it all works. There’s also usually pretty good documentation for what‐
ever you happen to be writing about, so if you’re stumped, you can
always hit the Web or another book to figure out what’s going on. This
book has been different. My main goal isn’t to to show you how to
implement different features. Sure, I hope you understand picture at
this point, and I really hope you have a better sense of how user input
works on the modern Web, but I’ve really been trying to get you to
think about the way you approach building for the Web. I don’t do all
of the things I want to do on every site, so I don’t expect anyone else
to take everything to heart. What I do hope is that you’ll questions
your assumptions and when you’re planning your site or app, you will
try to include rather than exclude users whenever possible. I also hope
that you’ll take the opportunity to help strengthen the Web as a whole
by helping out in the standards process in whatever way you can.

By building the best sites we can and trying to reach the most people
we can with the best possible experience across a variety of devices,
we’ll be one step closer to fulfilling the universal promise of the Web.

How cool is that?

The Web We Want Starts with Us | 221

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Index

Symbols
360 Safe Browser, 12

A
A List Apart, 16
accessibility, 49–63

assessing impact of new technolo‐
gies, 57

keyboard events on touch-enabled
laptop, 141

pausing content, 54
adaptive bitrate streaming, 203
Adobe Flash (see Flash)
Ajax, 20
Akamai, 103
Alexa, top 10 websites in the U.S., 108

news sites, handling of mobile de‐
vices, 109

Allsopp, John, 95
Android Browser, 11

alternative text and, 52
desktop browser market share, 12
pre-2.3 versions, SVG support

and, 42
turning off images in, 51

Android OS, 6
as dominant mobile platform, 59
Chrome mobile for, 10
testing against, 44

Angular, 64
animated GIFs, 167
Apple

emulators offered through XCode,
45

Retina display, 28
Apple Safari (see Safari)
article and section elements, support

in older IE, 74
audience

empathy for, 62, 133
identifying and embracing, 37
people with disabilities, 49
understanding, 103

audience, support strategies and, 31
audio element and audio codec com‐

ponent of web video, 197

B
Baranovskiy, Dmitry, 39
BBC site, switching from mobile to

desktop, 120

223

Berners-Lee, Tim, 213
bitmapped images, 28
bitmaps, 168
Blink (layout engine), 8
Bootstrap Datepicker, 92
Boston Globe, The, RWD redesign, 96
Boston.com, Big Picture blog, 161
breakpoints

different images or sizes for, 164
using design breakpoints, 164

browser detection, feature detection
versus, 13

browser sniffing, 88
browser/device/OS combinations, 3,

33
devices, testing against, sample list,

43
figuring out how to target, 41
future and unknown, RWD sup‐

port for, 105
JavaScript performance problems,

60
touch capabilities tests, wonky re‐

sults on, 135
browsers

browser families to consider in de‐
velopment projects, 10

bug fixes by jQuery 2 branch, 64
choosing code patterns allowing

your site to function in legacy
browsers, 89

current state and development
streams, 7

designing for, looking for optimal
solutions, 46

desktop and tablet, market shares,
11

emergence to challenge Internet
Explorer, 6

important to your audience, iden‐
tifying, 37

insufficient testing against Internet
Explorer, 60

JavaScript implementation differ‐
ences, 64

mobile, 100
mobile market share, 12
MP4/h.264 video support, 197

picture element support, 176
Pointer events support, 156
prefixes, 85
preloader, taking advantage of, 163
progressive JPEGs, rendering of,

166
quality issues, 36
resources for figuring out the

browser market, 32
srcset attribute (img element),

support for, 172
storage, 118
testing and support strategies, au‐

dience and, 31
updates, automatically pushing, 6
user agent string, spoofing, 108
video element, fallback content for,

194
video formats for, 198

budget, web development path and,
103

buttons, touch-friendly, 142

C
Can I Use website, 42
canonical links, 113
Canvas

Emoji character rendering, testing,
72

HTML5 cross-browser polyfills
for, 84

Modernizr test for Canvas 2D API,
92

CDN solution for images, 170
Chakra (JavaScript engine), 9
China

IE 6 and other browsers in use, 37
smartphone market, 46

Chrome, 6
desktop browser market share, 12
mobile market share, 12
Modernizr test output in, 79
Modernizr touch test and, 139
page with broken image, 50
pointer media query results, 136
testing against, in development

projects, 10

224 | Index

touch capabilities tests, 135
Chrome (mobile), 10
Chromebooks, 25
clientX and clientY event properties,

151
Pointer events, 156

cloud-based testing services, 45
codecs, video, 196
color pickers, 89
compatibility, 35

application performance, testing
in enough devices, 60

assessing impact of new technolo‐
gies, 57

browser/device/OS combinations
to test against, 43

empathy for your real audience, 62
focusing on optimal, not absolute

solutions, 46
frontend MVC style libraries and

frameworks, 64
insufficient testing against Internet

Explorer, 60
iPhone as dominant mobile expe‐

rience, 59
keeping an eye on the cutting

edge, 65
losing your stack biases, 63
making all functionality operable

via keyboard, 53
providing text alternatives for

non-text content, 50
separation of presentation from

information and structure, 53
supporting for current and future

user agents, 57
connection speeds and quality, 23
containers, video, 196
content delivery specialists, 103
content sites, responsive web design

(RWD) for, 111
cookies, 118
country-specific browser markets, 38
Cox, Stu, 135
cross-browser web applications, 21
CSS (Cascading Style Sheets)

browser prefixes, dealing with, 85

classes representing Modernizr
test results, 77

level 2 specification, 14
media queries in CSS3, 96
Modernizr CSS classes, 81
Modernizr tests for CSS3 transfor‐

mations, 91
no-js class, 77
Pointer Events specification, 157
poor understanding and poor im‐

plementation of, 16
relative units, using, 123

minor breakpoints, 125
refresher on, 127

responsive web design (RWD)
and, 96

standards development today,
tracking, 21

touch-action property, 156
CSS3Pie script, 84

D
DASH (Dynamic Adaptive Streaming

over HTTP), 203
data grids, 99
datepickers, input types for, 92
dedicated mobile experience, 100

and Alexa top 10 U.S. news sites,
109

and top 10 U.S. websites, 109
benefits of, 106
choosing for your project, factors

in, 111
downsides of, 106

development team, size and skills of,
102, 110

Device Description Repository
(DDR), 101

device detection
dedicated mobile experience and,

107
more complicated queries, options

for, 118
device pixels, 28
device-specific profiling, avoidance of,

18
disabilities, number of people with, 49

Index | 225

Do Websites Need to Look Exactly the
Same in Every Browser, 46

Dojo, 21
DOM (Document Object Model)

accessing elements, document.all
and document.layers, 71

document.createElement, using in
legacy IE, 74

MVC-style frontends as alternative
to, 65

prefixed properties and methods,
finding with Modernir.prefix,
86

double-tap event, 146
dpi (dots per inch), 27

getting for devices, 119
Dynamic Adaptive Streaming over

HTTP (DASH), 203

E
e.clientX and e.clientY event proper‐

ties, 151
Pointer events, 156

ECMA, 14
ECMAScript, 14, 217

standards development today,
tracking, 21

Emoji rendering support, testing for,
72

emulators, 45
error handling in web applications, 18
event.preventDefault method, 149

F
Facebook, handling of mobile devices,

108
FastClick, 149
feature detection, 13, 69

basic concepts behind, 70
Modernizr library, 69
more complicated, examining, 72
using Modernizr, 77

additional methods, 85
benefits of, 93
common tests and associated

polyfills, 90
cross-browser polyfills, 83

customizing Modernizr, 80
undetectable features, 87
ways to use its tests, 81

feature support
focusing on optimal, not absolute

solutions, 46
testing for, using Modernizr, 73

Filament Group, 96
finding content, 55
finger, interacting with a node in

force-directed graph, 99
finger-friendly interfaces for user in‐

puts, 141
Firefox, 6

desktop browser market share, 12
Gecko layout engine, 8
h.264 video codec support, 214
page with broken image, 50
Pointer events support, 156
SpiderMonkey JavaScript engine, 9
testing against, 43
testing against, in development

projects, 10
touch capabilities tests, 135

Flash, 16
fallback for video element in Inter‐

net Explorer, 195
HTML5 cross-browser polyfills, 84
MP4/h.264 support, 197
streaming video with Real-Time

Messaging Protocol (RTMP),
203

flash of unstyled content (FOUC), 77
flexbox (flexible box) display mode,

123
floating touch, 26
fonts, icon, Modernizr test for, 93
force-directed layout, 99
forgoing features, 89
forms

HTML5 enhancements, Modern‐
izr tests for, 90

input, helping users to avoid mis‐
takes, 56

Froogaloop, 210

226 | Index

G
Garrett, Jesse James, 20
Gecko (layout engine), 8
gestural interfaces, 25
gestures, 132

(see also touch-related topics)
Internet Explorer browsers that

recognize, 135
GIFs, 167
GitHub.com, keyboard shortcuts on,

53
Google

emulators offered through An‐
droid SDK, 45

WeP image format, 165
Google Android (see Android brows‐

er; Android OS)
Google Chrome (see Chrome)
Graphic Interchange Format (GIF),

167
Guardian, The, RWD news site, 109

H
h.264 video codec, 197

Firefox support of, 214
HCIs (see human/computer inter‐

faces)
Heritage Auctions website, mobile

and desktop areas, 121
HLS (HTTP Live Streaming), 203
hover events, not relying too heavily

on, 142, 143
hover-capable devices, 25, 133
HTML

early misperception of, 16
standards development today,

tracking, 21
user agents, past and future, sup‐

porting, 57
HTML 4.0, 14
HTML5, 19, 21

cross-browser polyfills in Modern‐
izr, 83

document outline, viewing, 53
monitoring developments in, 65
sectioning elements, 122
track element, 193

video element, 191, 192–196
HTML5 Boilerplate project, 77
HTML5Shiv, 74

inlining, 76
using directly, 75

HTTP Live Streaming (HLS), 203
Huawei, 46
Huffington Post, mobile and desktop

URLs, 113
human/computer interfaces (HCIs),

24

I
icon fonts, 58

Modernizr test for, 93
IE Mobile, 11

mobile browser market share, 12
images

connections speeds and, 24
on the Web, complex world of,

159–189
choosing sizes/images at differ‐

ent breakpoints, 164
embracing SVG, 182–186
images should be easy, 165
on the server side, 186
optimizing images for the Web,

165–170
practical developers guide,

186–188
responsive images, 170–181
serving correct format, 165
serving correct image for mul‐

tiple pixel ratio devices, 164
serving correctly sized images

to multiple resolutions, 164
serving smallest possible file

size, 163
solutions to complexity, 188
taking advantage of browser

preloader, 163
text alternatives for, display in dif‐

ferent browsers, 50
img element

sizes attribute, 173
srcset attribute, 172, 177

immersive desktop experiences, 103

Index | 227

inline validation, form input, 56
input types (HTML5), Modernizr

tests for, 91
Internet Explorer

bad browser issues and, 36
browsers recognizing gestures, 135
Chakra JavaScript engine, 9
desktop browser market share, 11
Flash fallback for video element,

IE 6-8, 195
IE 6, 14
IE 6, share of browser market, 31
in days of Microsoft monoculture,

5
legacy IE users in U.S. industries,

38
not testing enough in, 60
old versions, modernizing with

Modernizr, 73
older browsers and SVG support,

42
on Windows 8 laptop, Modernizr

touch test and, 138
persistent high usage of IE 6 in

China, 38
Pointer events support, 156
sniffing for IE 6, 88
SVG support, 39
testing against, in development

projects, 10
testing against, sample list, 43
Trident layout engine, 8

iOS
Chrome mobile for, 10
iOS3 and source video bug, 199
market share, Android versus, 59

iOS Safari, 10, 100
page with broken image, 50

iPad, 6
testing against, 44

iPhone, 6, 100
as dominant mobile platform, 59
button size, 142
testing against, 44

J
JavaScript

browser features in, testing using
Modernizr, 82

differences in browser implemen‐
tations, smoothing over, 64

early perception of, 16
not available in a browser, 77
performance problems in different

devices, 60
prefixed features in browsers and,

85
standards-writing group, TC39,

217
Video.js library, 199
Vimeo API, 210
YouTube API, 206

JavaScript engines (browsers), 9
JPEGs, 165

choosing, rule of thumb for, 169
lossy compression, 165
progressive, 166
progressive versus baseline ren‐

dering, 166
jQTouch, 96
jQuery, 21

smoothing over cross-browser
JavaScript differences, 64

jQuery Mobile, 96

K
Keith, Jeremy, 35
keyboard

continuing use of, 134
keyboard events on touch-enabled

laptop, 141
keyboard-based navigation, 25
making all functionality operable

via keyboard interface, 53
Kindle Fire, 43
Kinect, 26
Koch, Peter Paul, 16, 38, 143

L
Lauke, Patrick H., 143
layout engines (web browsers), 7

228 | Index

Lenovo, 46
links, 55

alternate rel attribute and associ‐
ated media query, 115

canonical, 113
difficulty of getting users to follow,

112
management of, dedicated mobile

experience, 107
localStorage, 118
long running script errors, 60
lossy compression, 166

M
Mac operating systems, 58

testing against, 44
maintenance

dedicated moblile experience ap‐
plications and, 107

RWD applications, 104
media queries, 124

in link element, rel attribute, 115
testing with Modernizr.mq, 86

Meyer, Eric, 16
Microsoft

.Net MVC framework, 101
account sign-up form, inline vali‐

dation and contextual help, 56
Kinect, 26
Silverlight, 201

Microsoft monoculture, 2, 5
MIME types, video, 202
mistakes, helping users to avoid and

correct, 56
mobile devices

browsers and their market shares,
12

developing for predominantly mo‐
bile market, 39

human/computer interface (HCI)
revolution, 25

inferring incorrectly from window
object property, 139

iPhone as dominant platform, 59
testing against mobile browsers, 43
text alternatives for non-text con‐

tent, 50

trifecta of mobile user antagonism,
119

Mobile First, 100, 101
mobile Web, 6
mobile website design, 96

(see also responsive web design)
approaches other than RWD, 100

dedicated mobile experience,
100

Mobile First, 101
RESS, 101

being fluid, designing for your de‐
sign, 122

choosing a development path, 102
choosing architecture best for your

project, 110
dedicated mobile experience

benefits of, 106
downsides of, 106

escape from mobile version, al‐
ways offering, 119

how Alexa top 10 sites handle mo‐
bile devices, 108

redirects, options for, 114
more complicated queries, 118

Model View Controller (MVC), fron‐
tend libraries and frameworks, 64

Modernizr, 69
additional methods, 85

Modernizr.mq, 86
Modernizr.prefix, 85

common feature tests and associ‐
ated polyfills, 90

customizing, 80
Emoji rendering support, testing

for, 72
HTML5 cross-browser polyfills, 83
load utility, being pulled from core

build, 83
touch capabilities tests, 135
undetectable features, dealing

with, 87
using, 73

and not using, 74
feature detection with, 77
modernizing old Internet Ex‐

plorer, 73
what it does and doesn’t do, 73

Index | 229

using its tests, 81
Modernizr object testing for

features and forking code,
82

Modernizr object testing for
features and loading polyfill
scripts, 82

web storage polyfills, 118
MooTools, 21
Motorola Droid X, 43
mouse

and computer GUI, first HCI rev‐
olution, 24

and mouse-like implementations,
25

mouse events, 132
handling, current state of, 143

delay on firing of simulated
click events, 146

Pointer events, 155
working with move events, 150

on touch-enabled laptop, 140
Mozilla, 6

(see also Firefox)
paper presented at WHATWG in

2004, 17
MP4 container, 197
MVC (Model View Controller), fron‐

tend libraries and frameworks, 64

N
navigation

keyboard, optimizing for, 53
providing multiple ways to reach

content, 55
.Net MVC framework, 101
Netscape Navigator

Netscape 4, 5
resize fix, 73

news sites, top 10 in U.S., handling of
mobile devices, 109

Nexus, testing against, 43
no-js class (CSS), 77
Nokia

browser, mobile market share, 12
testing against, 43

O
online resources, xiii
open process, web development, 18
Open Web Platform, 14–23

Ajax, 20
browser/device/OS combinations

on, 33
feature detection, importance of,

71
forms, neglect of, 56
tracking today, 21
Web standards, Flash, and rebirth

of, 16
WHATWG (Web Hypertext Ap‐

plication Technology Working
Group), 17

OpenDDR project, 118
Opera, 6

desktop browser market share, 12
mobile browser market share, 12
page with broken image, 50
paper presented at WHATWG in

2004, 17
testing against, 43
testing against, in development

projects, 10
Opera Mini, 11

page with broken image, 50
testing and support strategies and,

32
turning off images in, 51

Opera Mobile, 11
operating systems, 33

(see also browser/device/OS com‐
binations)

Android, 6
important to your audience, iden‐

tifying, 37
orientation (screen), 27

P
pausing content, 54
pen or stylus, devices with, 25
performance

dedicated mobile experience and,
106

examining in enough devices, 60

230 | Index

images and web page sizes, 162
improving with browser preload‐

ing, 163
progressive JPEG rendering, 166
responsive web design (RWD)

sites and, 105
video streaming and, 202

phones, mobile, 6
(see also smartphones)

Picasso, Pablo, 159
picture element, 170, 175, 215

explanation of markup, 177
Picturefill polyfill, 180

pixel density, 27
standard- versus high-density dis‐

play, 30
PNGs, 165, 167

choosing, rule of thumb for, 169
Pointer events, 135

one event model for mouse, touch,
and more, 155

polyfill for, 157
possible death of, 216

pointer media query, 136
polyfills, 66

associated with common Modern‐
izr tests, 90

HTML5 cross-browser polyfills, 83
limitations of, 84
loading with Modernizr for miss‐

ing browser features, 82
media query, Respond.js library,

87
Picturefill, 180
Pointer Events polyfill, Google

Polymer Project, 157
web storage, 118

prefixes, browser, 85
presentation, separation from infor‐

mation and structure, 53
preventDefault method (event), 149
progressive download versus stream‐

ing, 202
progressive enhancement, 35

for mobile site design, 101
progressive rendering, 166
Prototype, 21

Q
quirksmode.org, 136

R
RaphaelJS, 38
Real-Time Messaging Protocol

(RTMP), 203
redirects

mobile and not mobile, options
for, 114
more complicated queries, 118
simple redirects, 114

mobile application design and, 112
reference pixel, 28
refreshes, automatic, 54
regular expressions, testing for mobile

devices, 115
relative units, 122

minor breakpoints with, 125
refresher on, 127

requirements of your site or applica‐
tion, 103

resources, online, xiii
Respond.js media query polyfill li‐

brary, 87
responsive images, 170

option of doing nothing new, 171
picture element, 175
Picturefill picture polyfill, 180
srcset attribute, img element, 172

responsive web design (RWD), 95
and Alexa top 10 U.S. websites,

108
and top 10,000 websites, 110
benefits of, 104
Boston Globe RWD redesign, 96
choosing as development path, 102
choosing for your project, factors

in, 110
downsides of, 105
for every site, 97
images, 163, 170
The Guardian news site, 109

RESS (responsive web design with
server-side components), 100, 101

Retina display, 28
RWD (see responsive web design)

Index | 231

RWD (responsive web design)
breakpoints set to standard meas‐

urements, 122

S
SAAS (software as a service), 103
Safari, 6

desktop browser share, 12
testing against, 10, 43
testing and support strategies and,

32
Samsung Galaxy, 25, 99

device characteristics query, re‐
sults of, 118

mousemove events fired on, 145
testing against, 43

Scalable Vector Graphics (see SVG)
screen orientation, 27
screen resolutions, 26

serving correctly sized images to,
164

screen sizes
designing breakpoints for, 122
touch capabilities and, 136

screenshots in large number of brows‐
ers, automating taking of, 45

scripting in web applications, 18
search engines

dedicated mobile experience and,
107

RWD applications and, 104
section and article elements, support

in older IE, 74
Sencha Touch, 96
server side

greater complexity with dedicated
mobile experience, 106

handling images on, 186
leveraging the server in mobile

web applications, 111
simplified, in RWD applications,

104
video, MIME types and adaptive

bit rate streaming, 202
sessionStorage property, 115, 118
sessionStorage.setItem, 117
Silverlight, 201

single serving sites, 46
sizes attribute (img element), 173
Slate redesign, desktop users and, 39
smartphones, 6

market in China, 46
mouse events on, 143
pixel density and, 28
RWD and performance, 105

Snap.svg, 38
software as a service (SAAS), 103
software-based virtual devices, 45
Souders, Steve, 24, 162
SpiderMonkey (JavaScript engine), 9
Spotify, 137
SquirrelFish Extreme/Nitro, 9
srcset attribute (images), 170, 172

using with sizes attribute, 173
stack biases, losing, 63–65

jQuery, 64
MVC-style frontend libraries and

frameworks, 64
standards process, 66
Strangeloop Networks Mobile Opti‐

mizer, 104
streaming versus progressive down‐

load, 202
support strategies, audience and, 31
SVG (Scalable Vector Graphics), 14,

168
browsers support for, 42
choosing, guidelines for, 169
embracing, 182, 188
HTML5 cross-browser polyfills

for, 84
innate scalability of, 160
legacy browsers and, 38
Modernizr test for, 92

in older IE or Android, 80

T
tablets, mouse events on, 143
technology biases, losing, 58–63
testing and support strategies, audi‐

ence and, 31
text alternatives for non-text content,

50

232 | Index

touch
masters of research on, 143
Modernizr test for, 88, 90

touch capability, 25
detection of

conceptual problem with, 134
results of getting it wrong, 137
technical problem with, 134

touch events, 131
handling, current state of, 143

delay on compatibility click
events, 146

multitouch events, 152
Pointer events, 155
working with move events, 150

touch-action property (CSS), 156
touch-enabled laptop, nonfunctional

buttons on, 140
touchscreens, 25

finger-friendly interfaces, 141
track element, 193
Trident (layout engine), 8
Twitter

handling of mobile devices, 108
mobile and desktop URLs, 113

U
UC Browser, 11

mobile market share, 12
uncertainty, embracing, 1, 33

current state of web technology, 7
from Microsoft monoculture to

healthy chaos today, 5
screen resolutions and devices, 95
this is just the way the Web is, 36

Upstatement, 96
user agent string, 101

detection schemes using, spoofing,
107

redirects based on, 114
user input, working with, 131–158

assume nothing, accommodate ev‐
eryone, 158

author’s devices and device config‐
urations, 133

designing for a spectrum of user
inputs, 141
embracing clarity, 142
finger-friendly interfaces, 141
hover, not relying solely on,

142
full user input spectrum, 142

mouse and touch event han‐
dling, 143

multiple input modes on same de‐
vice, 131

results of getting touch detection
wrong, 137–141
failing a little bit, 140
failing completely, 137

state of user input on the web, 132
touch detection

conceptual problem with, 134
technical problem with, 134

user scaling, 147

V
validation, form input, 56
vector graphics (see SVG)
Vector Markup Language (VML), 39
video

h.264 codec, Firefox support for,
214

Modernizr test for, 93
web, horribly complex world of,

191
core technology, 192–204
letting the pros handle it, 204–

212
making the best of, 212

video element, 191, 192–196
fallback content, 194
Flash fallback for Internet Explor‐

er 6-8, 195
JavaScript code for, 194
source elements in, 197, 199
src and Boolean attributes, 193

Video.js library, 199
Vimeo, 208

customizing your video on, 208
JavaScript API, 210

virtual devices, 45

Index | 233

VML (Vector Markup Language), 39

W
W3C (World Wide Web Consortium),

14
Pointer Events standardization,

156
W3C Workshop on Web Applications

and Compound Documents, 17
WAI-ARIA roles, HTML5 sectioning

elements, 122
web application development

choosing a development path, fac‐
tors in, 102

choosing architecture best for your
project, 110

online resources, xiii
web applications

flexibility, limited with RWD, 105
heightened flexibility with dedica‐

ted mobile experience, 106
lower complexity in RWD applica‐

tions, 104
switching from mobile to desktop

versions, 119
Web Apps 1.0, 19
Web as development platform, x
Web Content Accessibility Guidelines

2.0 Appendix B, 50
Web Controls 1.0, 19
web developers

need for greater influence on
standards process, 217

spreading your wings and ques‐
tioning your assumptions, 67

stack biases, losing, 63–65
technology biases, losing, 58–63

Web Forms 2.0, 19
Web Hypertext Application Technolo‐

gy Working Group (WHATWG),
17
monitoring HTML5 developments

from, 65
web page for this book, xvi
web platform, 2

(see also Open Web Platform)

support matrices for many fea‐
tures, 42

Web Standards Project (WaSP), 16
web storage specification, 118
Web, future of, 213

fast, widely avalable, and reliable
Web, 218

Firefox support for h.264, 214
foundations built by developers,

browser vendors, and stand‐
ards bodies, 217

picture element, rebirth of, 215
possible death of Pointer events,

216
pushing things forward, 216
things can get better, 214
Web we want starts with us, 221
Web with nothing to win, 220

WebKit-based browsers, 8
jQuery patches and fixes for, 64
SquirrelFish Extreme/Nitro Java‐

Script engine, 9
text alternative for broken images,

50
UC Browser, 11

WebM/VP8 video container/codec,
197

WebP images, 165, 168
prepping the files, 178

websites, looking the same on every
browser, 47

WHATWG (Web Hypertext Applica‐
tion Technology Working Group),
17
monitoring HTML5 developments

from, 65
Wikipedia, handling of mobile devi‐

ces, 108
window.ontouchstart, 135, 138
window.sessionStorage, 115
Windows systems

Firefox and Chrome on Windows
8, touch test results, 135

market share, 59
testing against, 44
Windows 8 laptop, 25, 131
Windows XP in China, 38

234 | Index

Wireless Universal Resource FiLe
(WURFL), 101

World Wide Web Consortium (W3C),
14

Wroblewski, Luke, 101, 101

X
XHTML, 14
Xiaomi, 46
XMLHttpRequest object, 5

Y
Yahoo Graded Browser Support Table,

11, 42
YouTube, 204

JavaScript API, 206
video states, 206

Z
Zepto.js library, 64

Index | 235

About the Author
Rob Larsen has spent 13 years building websites and applications for
some of the world’s biggest brands. He applied that experience to
teaching a broad audience in Beginning HTML and CSS.

Colophon
The animal on the cover of The Uncertain Web is the Oriental flying
gurnard (Dactyloptena orientalis). This bottom-dwelling saltwater
fish takes its name from the Old French word “gurnard,” meaning to
grunt; this refers to a distinctive croaking sound it makes when taken
out of the water, produced by a muscle that thumps against its swim
bladder. Other names include sea robin and helmet gurnard, an allu‐
sion to its wide, square head.

Found in the Indo-Pacific region, from East Africa to Polynesia, Aus‐
tralia, and New Zealand, flying gurnard typically inhabit shallow wa‐
ters, including estuaries, coastal bays, and sandy areas. Most measure
between 20 and 40 centimeters (8 and 16 inches) in length, with a
brownish-colored body that tapers from head to tail.

Its most remarkable feature is its massive rounded pectoral fins, which
resemble wings. They are usually held against the body, but when
threatened, the fish spreads them out to the side, causing it to appear
much larger to its enemies. The fins are tinged with bright blue mark‐
ings and sport dark spots that resemble eyes, which serve to further
confuse potential predators such as sea breams and mackerel.

In spite of its name, the flying gurnard is not actually capable of flying.
Rather, it uses its pelvic fins to “walk” along the ocean floor in search
of food. Its diet includes bivalves, crustaceans, and small, bony fish.

Many of the animals on O’Reilly covers are endangered; all of them
are important to the world. To learn more about how you can help, go
to animals.oreilly.com.

The cover image is from loose plates (original source unknown). The
cover fonts are URW Typewriter and Guardian Sans. The text font is
Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and
the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	A Word on the Web Today
	Who Should Read This Book
	Navigating This Book
	Online Resources
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Embracing Uncertainty
	Embrace Uncertainty
	From Microsoft’s Monoculture to Today’s Healthy Chaos
	Where We Are Right Now
	Browsers
	The Open Web Platform
	Connection Speeds and Quality
	The Human–Computer Interface
	Screen Resolution and Orientation
	Pixel Density
	What’s 2% Anyway?
	This Is What We Wanted

	Chapter 2. Navigating the Uncertain Web
	Don’t Blame the Web for Being the Web
	Identify and Embrace Your Audience
	Test and Pray for the Best
	Focus on Optimal, Not Absolute Solutions
	Embrace Accessibility
	Provide Text Alternatives for All Non-Text Content
	Ensure Information and Structure Can Be Separated from Presentation
	Make All Functionality Operable via a Keyboard Interface
	Content Can Be Paused by the User Unless the Timing or Movement Is Part of an Activity Where Timing or Movement Is Essential
	Provide Mechanisms to Help Users Find Content, Orient Themselves Within It, and Navigate Through It
	Help Users Avoid Mistakes and Make It Easy to Correct Mistakes
	Support Compatibility with Current and Future User Agents (Including Assistive Technologies)
	Don’t Stop There

	Lose Your Technology Biases
	The iPhone Is the Only Mobile Experience
	Closed. Won’t Fix. Can’t Reproduce.
	Contrary to Popular Opinion, Internet Explorer Does Exist
	Embrace Empathy

	Lose Your Stack Biases
	jQuery
	MVWhatever

	Keep at Least One Eye on the Cutting Edge
	Spread Your Wings (and Question Your Assumptions)

	Chapter 3. Lay a Foundation for the Future with Feature Detection and Polyfills
	Feature Detection
	Looking at a More Complicated Feature Detection

	Using Modernizr
	Old IE: The One Thing Modernizr Does Modernize
	Using (and Not Using) Modernizr
	Feature Detection with Modernizr
	Customizing Modernizr
	Using Modernizr’s Tests
	Cross Browser Polyfills
	Additional Modernizr Methods
	Managing the Undetectables
	Common Feature Tests and Associated Polyfills

	“Frontend Development Done Right”

	Chapter 4. Selecting Responsive Design or Another Mobile Experience
	Boston Globe’s RWD Redesign
	Really? RWD for Every Site?
	Mobile First, RESS, and the Rest of the Mobile Development Universe
	Dedicated Mobile Experience
	Mobile First
	Progressive Enhancement
	RESS

	Choosing a Development Path
	The Size and Skills of Your Team
	The Requirements of Your Site or Application
	Your Demographics
	Your Budget
	Benefits of RWD
	Downsides of RWD
	Benefits of a Dedicated Mobile Experience
	Downsides of a Dedicated Mobile Experience
	If Facebook Jumped Off a Bridge, Would You Jump Off a Bridge, Too? Or: What Do the Biggest Sites in the United States Do?
	Choose the Architecture That Makes Sense for Your Project

	Redirects Should Resolve Logically
	Redirect Options
	Simple Redirection
	Options for More Complicated Queries

	Always Offer an Escape from the Mobile Version
	Be Fluid and Design for Your Design
	Feel Free to Abuse Minor Breakpoints
	On Relative Units

	“Accepting the Ebb and Flow of Things”

	Chapter 5. Working with User Input
	The State of User Input on the Web
	The Conceptual Problem with “Touch” Detection
	The Technical Problem with “Touch” Detection

	What It Means to Get It Wrong
	You Can Fail Completely
	You Can Fail Just a Little

	Design for a Spectrum of Potential User Inputs
	Lean Toward Finger-Friendly Interfaces for All Interfaces
	Don’t Rely on Hover
	Embrace Clarity

	Working with the Full User Input Spectrum
	The Current State of Touch and Mouse Event Handling

	Assume Nothing and Accommodate Everyone

	Chapter 6. The Surprisingly Complex World of Images on the Web
	While We Weren’t Paying Attention, Images Got Complicated
	We Want to Serve the Smallest Possible File Size
	We Need to Take Advantage of the Browser Preloader
	We Want to Serve Correctly Sized Images to Multiple Resolutions
	We Need to Serve the Correct Image for Multiple Pixel Ratio Devices
	We Want to Choose Different Sizes/Images at Different Breakpoints
	We Want to Use Design Breakpoints
	Serving the Correct Format
	Images Are Easy, and They Should Stay Easy

	Optimizing Images for the Web
	JPEG
	Choosing the Right File Format
	Look for a CDN Solution

	Responsive Images
	The Option of Doing Nothing (or Nothing New, at Least)
	srcset
	picture
	Picturefill, the picture Polyfill

	Embrace SVG
	On the Server Side
	A Practical Developers Guide to All of This Complexity
	Identify How Important Images Are to Your Site
	Get the Basics Right
	Use the Simplest Possible Solution
	Learn to Love SVG
	Test!

	Conclusion

	Chapter 7. The Horribly Complex World of Web Video
	The Core Technology
	The HTML video Element
	The Flash Fallback
	Containers and Codecs
	Video.js
	Mime Types and Adaptive Bitrate Streaming

	Letting the Pros Handle It
	YouTube
	Vimeo

	Make the Best of a Complicated Situation

	Chapter 8. The Web We Want
	Things Can Get Better (But They Do Occasionally Get Worse)
	Firefox Announced Support for h.264
	Picture Comes Back from the Dead
	Pointer Events Might Be Dead
	I Knew Something Like This Would Happen

	Let’s Push Things Forward
	A Web Built By Developers, Browser Vendors, and Standards Bodies
	A Web That Is Fast, Widely Available, and Reliable
	A Web Where There’s Nothing to Win

	The Web We Want Starts with Us

	Index
	About the Author

